
HAL Id: tel-04206190
https://theses.hal.science/tel-04206190

Submitted on 13 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Résistance à la coercition en vote électronique :
conception et analyse

Quentin Yang

To cite this version:
Quentin Yang. Résistance à la coercition en vote électronique : conception et analyse. Cryptography
and Security [cs.CR]. Université de Lorraine, 2023. English. �NNT : 2023LORR0078�. �tel-04206190�

https://theses.hal.science/tel-04206190
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact bibliothèque : ddoc-theses-contact@univ-lorraine.fr
(Cette adresse ne permet pas de contacter les auteurs)

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Coercion-resistance in electronic
voting: design and analysis

THÈSE

présentée et soutenue publiquement le 23 juin 2023

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Quentin Yang

Composition du jury

Rapporteurs : Adeline Roux-Langlois Chargée de recherche, CNRS, Caen, France
Damien Vergnaud Professeur, Université de Sorbonne, Paris, France

Examinateurs : Henri Gilbert Responsable de laboratoire, ANSSI, Paris, France
Marc Joye Directeur scientifique, Zama, France
Vanessa Teague Associate Professor, ANU, Canberra, Australia

Encadrants : Véronique Cortier Directrice de recherche, CNRS, Nancy, France
Pierrick Gaudry Directeur de recherche, CNRS, Nancy, France

Président du jury : Simon Perdrix Directeur de recherche, Inria, Nancy, France

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Remerciements

Je remercie Isabelle pour ses desserts.
Un grand merci à toute l’équipe de la cantine : c’est vous qui faites du laboratoire un endroit

si spécial.
Merci aussi à mes co-bureaux, qui ont su m’accompagner dans la folie. Certains se disent

insupportables, pourtant j’ai savouré leur présence.
Merci à toi Véronique : tu es devenue l’agaçante petite voix dans ma tête qui dit que ce n’est

pas bien défini, et ça n’a pas de prix.
Merci à toi Pierrick : tes conseils bienveillants et ta culture ont été des balises sur mon

chemin, et tu as su souligner mes erreurs tout en les pardonnant... même si, à la fin, il est temps
que ça se termine.

i

ii

Contents

Introduction 1

Part I Preliminaries 10

Chapter 1 Security in electronic voting 11

1.1 The fundamental notions of electronic voting 11

1.1.1 The generic structure of electronic voting protocols 11

1.1.2 Formalization and notations . 14

1.1.3 The Helios voting protocol . 16

1.1.4 Classical attacks in electronic voting 18

1.2 Addressing verifiability . 20

1.2.1 Step by step verification . 20

1.2.2 End-to-end verifiability . 20

1.3 Four notions of privacy . 23

1.3.1 Vote swapping and Benaloh privacy 23

1.3.2 Ballot privacy and ideal tally . 25

1.3.3 A quantitative definition of privacy 28

1.3.4 Our approach: comparing a real and an ideal process 29

1.3.5 Encountering a new definition: the survival manual 31

Chapter 2 Cryptography in electronic voting 33

2.1 Computational assumptions in electronic voting 33

2.1.1 Algebraic notations for cryptography 33

2.1.2 The decisional Diffie-Hellman assumption 33

2.1.3 The random oracle model . 34

2.2 Encrypting a ballot to preserve privacy . 37

2.2.1 Public key encryption . 37

2.2.2 The ElGamal encryption scheme . 39

2.2.3 Threshold cryptography . 41

iii

Contents

2.2.4 The Paillier encryption scheme . 44

2.3 Zero Knowledge Proofs in electronic voting 46

2.3.1 Introduction to Zero Knwoledge Proofs 46

2.3.2 Generalization . 48

2.3.3 Proof of partial knowledge . 49

2.3.4 Non-interactive proofs . 50

2.3.5 Short proofs and what they can really do 52

2.4 The most commonly used ZKP . 54

2.4.1 A basic example: proving the validity of a ballot 54

2.4.2 Proof of correct decryption . 55

2.4.3 Mixnets and their applications . 55

2.4.4 Plaintext Equivalence Tests . 59

2.4.5 Designated Verifier Zero Knowledge Proofs 60

2.4.6 Cryptographic signatures derived from PoK 60

Chapter 3 Security proofs in electronic voting 62

3.1 Cryptographic reductions and game hops . 62

3.1.1 Game hops . 62

3.1.2 The hybrid lemma . 64

3.2 Known results in the random oracle model 67

3.2.1 Extracting a witness from a proof of knowledge 67

3.2.2 Good practices for non-interactive proofs 68

3.3 Universally composable security . 73

3.3.1 Presentation of the framework . 73

3.3.2 The composition theorem . 75

3.3.3 Programmable random oracle model 77

3.3.4 An illustrative example: synchronous broadcast 77

Part II Secure Tally-Hiding 82

Chapter 4 Multi-party computation for electronic voting 83

4.1 Three popular approaches for multi-party computation 84

4.1.1 Garbled circuits . 84

4.1.2 Linear secret sharing schemes . 85

4.1.3 Fully homomorphic encryption . 86

4.2 The arithmetic blackbox for Paillier encrypted integers 87

4.2.1 MPC from threshold homomorphic encryption 87

iv

4.2.2 Known MPC protocols in the ABB framework 88

4.2.3 Range proofs for Paillier-encrypted integers 88

4.2.4 Comparing two Paillier encrypted integers 90

4.3 The conditional gate protocol in the ElGamal setting 93

4.3.1 Presentation of the protocol . 93

4.3.2 Universal verifiability . 96

4.3.3 Comparison with the multiplication protocol 96

4.4 Security of the conditional gate in the SUC framework 98

4.4.1 Proof strategy for the conditional gate 98

4.4.2 The rerandomization . 100

4.4.3 The threshold decryption . 102

4.4.4 The round of communications . 104

4.4.5 The conditional gate protocol is SUC-secure 108

Chapter 5 A toolbox for verifiable tally-hiding 109

5.1 The basic primitives of the MPC toolbox . 109

5.1.1 Logical operations on encrypted data 109

5.1.2 Application to elementary arithmetic 112

5.1.3 Comparisons and tie breaking . 112

5.2 Advanced algorithms . 114

5.2.1 Multiplication and division . 114

5.2.2 Solving ordering related problems . 115

5.2.3 Aggregation of several encrypted binary values 118

5.2.4 Different communication/computation trade-offs 119

5.3 Comparison with other approaches . 122

5.3.1 Comparison with Ordinos . 123

5.3.2 Public tally hiding . 124

Chapter 6 Application of the toolbox to electronic voting 126

6.1 Homomorphic tally for the Condorcet methods 127

6.1.1 Existing approaches for Condorcet methods 127

6.1.2 A new proof of well-formedness for homomorphic ranked voting . . . 128

6.2 A tally-hiding protocol for Condorcet-Schulze 133

6.2.1 The Schulze method . 133

6.2.2 Ballots as lists of integers . 134

6.2.3 Obtaining the adjacency matrix from the encrypted ballot 135

6.2.4 Computing the result from the encrypted adjacency matrix 135

v

Contents

6.2.5 Condorcet-Schulze, the bottom-line 135

6.2.6 Comparison with Ordinos . 136

6.2.7 Implementation . 138

6.2.8 A possible adaptation for the ranked pairs variant 139

6.3 A solution for single transferable vote . 140

6.3.1 Existing solutions for STV in electronic voting 141

6.3.2 Choosing one version of STV . 142

6.3.3 Ballots as lists of candidates . 143

6.3.4 A tally-hiding protocol for academic STV 143

6.3.5 Complexity analysis . 146

6.4 Majority Judgment . 148

6.4.1 Existing approaches for computing the Majority Judgment 149

6.4.2 A new algorithm for cleartext Majority Judgment 150

6.4.3 Adaptation to the Paillier setting . 150

6.4.4 An adaptation to the ElGamal setting 156

6.4.5 Comparison with [CPST18] . 159

6.5 Single choice voting . 159

6.5.1 Basic single choice voting . 161

6.5.2 List voting: computing the D’Hondt method in MPC 161

6.6 Security of the toolbox in the context of electronic voting 163

6.6.1 Universal verifiability . 165

6.6.2 Privacy . 165

6.7 Lessons learned . 169

Part III Coercion resistance 170

Chapter 7 Is the JCJ voting system really coercion-resistant? 171

7.1 The JCJ family . 171

7.1.1 Presentation of the JCJ protocol . 171

7.1.2 Some variants of the JCJ voting system 172

7.2 Unveiling a shortcoming in JCJ . 173

7.2.1 Leakage in case of revoting . 173

7.3 The impact on coercion-resistance . 174

7.3.1 Quantifying coercion-resistance . 174

7.3.2 The technical incident scenario . 175

7.3.3 A discredit in the press . 176

7.4 Defining coercion-resistance . 176

vi

7.4.1 The original definition of JCJ . 178

7.4.2 Our definition of coercion-resistance 181

7.5 A description of the leakage in JCJ . 183

7.5.1 Generalization . 186

7.6 Discussion . 187

Chapter 8 CHide: a cleansing-hiding variant of JCJ 189

8.1 Description of the protocol . 189

8.1.1 Efficiency considerations . 191

8.2 Security proofs for CHide . 191

8.2.1 Proof of coercion-resistance . 192

8.2.2 Proof of verifiability . 196

8.3 Conclusion . 202

Chapter 9 Traceable encryption for verifiable receipt-free electronic voting 203

9.1 Our definition of receipt-freeness . 205

9.1.1 Existing definitions . 205

9.1.2 Modeling vote buying . 206

9.2 Introduction to traceable encryptions . 209

9.2.1 Definition . 209

9.2.2 Security notions for verifiable receipt-free voting 210

9.3 Building blocks . 211

9.3.1 Bilinear pairings . 211

9.3.2 Linearly Homomorphic Structure-Preserving Signatures 212

9.3.3 The Groth-Sahai proof system . 214

9.4 Construction of a traceable encryption scheme 216

9.5 Security proofs for our traceable encryption scheme 218

9.5.1 Verifiability . 218

9.5.2 Traceability . 221

9.5.3 TCCA security . 224

9.6 Application to verifiable receipt-free electronic voting 228

9.6.1 A voting scheme based on a traceable encryption 228

9.6.2 Implementation . 230

9.6.3 Receipt-freeness . 231

9.7 Adapting the scheme to provide cast-as-intended verification 233

9.7.1 Adapting our scheme for the Benaloh challenge 234

9.7.2 On the fly cast-as-intended verification 236

vii

Contents

9.8 Conclusion . 237

Conclusion 238

Appendices 241

Appendix A ZK-TCPA security of the ElGamal threshold encryption scheme241

Appendix B The hybrid argument 244

Appendix C Proof of correctness for the Majority Judgment algorithm 247

Appendix D Computing the coercion levels 254

D.1 The coercion level in the ideal game . 254

D.2 Modeling the real game . 256

D.3 Quantifying the coercion level in some specific cases 257

D.4 The impact of the parameters . 259

Appendix E Proof of privacy for CHide 262

Bibliography 265

Résumé 281

viii

Introduction

Voting is the basis of all democracies: it is the keystone that legitimates the actions of a gov-
ernment, and is described by Lyndon B. Johnson, the 58th president of the USA, as the “most
powerful instrument ever devised by man for breaking down injustice”. Recently, electronic vot-
ing arose as a way to improve the existing voting systems. First, electronic voting may allow
people to vote through the Internet, which is more accessible than a designated polling station
determined by the electoral list. This could represent an interesting alternative to postal or proxy
voting, especially for the expatriates, the disabled and the students. Second, electronic voting
may be a necessary alternative in case of a long-term lock-down, as seen during the COVID pan-
demic. Finally, the use of computers can facilitate the act of counting votes and computing the
result, and help to limit the usage of paper ballots, which have a negative impact on the environ-
ment. Because of these advantages, Internet voting has been used for politically-binding elections
in several countries, such as Australia, Canada, France, Norway and Switzerland. Other forms
of electronic voting, based on voting machines, were used, for instance, in Bangladesh, Brazil,
Namibia, New Zealand, Pakistan, South Korea and the USA. The most notable example for
the deployment of Internet voting is Estonia, where voters can vote through the Internet since
2005, and where the proportion of the Internet voters grew from a small percentage to 51% in
2023 [ESWV22, Vot23]. On the other hand, some countries, such as Germany, Italy and the
UK, have banned voting machines, considering that they are susceptible to fraud or that a voter
must fully understand all the steps that their ballots go through, even if they do not have any
technical background.

One of the main reasons to be reluctant about electronic voting is the risk of a hack: by
exploiting a vulnerability, an attacker may be able to break down the service, recover the ballots
chosen by the voters or rig the result of the election, which would jeopardize the sovereignty
of the country and question the legitimacy of the elected representatives. For this reason, it
is extremely important that the voting system guarantee privacy and verifiability. Intuitively,
privacy is achieved if no one can learn the choice of a given voter. As for verifiability, it is
often decomposed into several properties, namely individual verifiability, universal verifiability
and eligibility. Informally, eligibility states that only eligible voters may be able to have their
ballot counted, and that at most one ballot is counted per voter. Individual verifiability states
that a voter is able to verify that the cast ballot is indeed added to the ballot box, and that it
contains the chosen voting option (or candidate’s name). Finally, universal verifiability states
that anyone can verify that the result of the election is consistent with the ballot box. To achieve
those properties, it is usual to make several trust assumptions. For instance, in paper voting, it is
assumed that the ballot box is secure, so that no one can maliciously remove or add ballots, nor
consult the content of a specific ballot. Also, it is generally difficult to enforce several properties
simultaneously. For instance, declaring that Kim Jong-un is the winner would perfectly respect
privacy, as the voters would not give any information about their choice. By contrast, vote by
show of hands could be a possible solution for verifiability, but does not guarantee privacy.

1

Introduction

In academic electronic voting, various voting schemes exist to address both privacy and
verifiability. For privacy, the main strategy is to encrypt the ballots. This way, if the server is
compromised, the attacker – also referred to as the adversary – can only recover encrypted data,
which do not tell which voter chose which candidate (or, more generally, which voting option).
For universal verifiability, the main cryptographic primitive is the zero knowledge proof (ZKP),
which allows the talliers to prove that the tally protocol, that is used to compute the result from
the encrypted ballots, was correctly executed by the talliers, who hold the shares of the secret
decryption key. A ZKP, as the name implies, does not reveal anything about the secrets used to
produce the proof; this way, no information (other than the result of the tally protocol) is leaked
about the content of the ballot box, and privacy is preserved.

Encryptions and ZKP are extremely common in electronic voting; however, schemes such as
sElect [KMST16] do not rely on ZKP for verifiability, and schemes based on self-tallying ballot
boxes (e.g., [KY02]) do not rely on encryption for privacy. Some examples of academic voting
systems that combine encryptions and ZKP are Adder [KKW06], Helios [Adi08, dMPQ09] and
Belenios [CGG19], which are very similar in their design. However, there are numerous other
academic proposals; for instance, schemes such as D-Demos [CZZ+16] and BeleniosVS [CFL19]
can ensure privacy, even against an adversarial voting device; and schemes such as [CPP13]
provide everlasting privacy (see [HMMP23] for a survey on the subjet). Other schemes, such
as Prêt-à-Voter [Rya05, RS06], ThreeBallot [Smi07] and Scantegrity [CEC+08], focus on paper-
based electronic voting. When paper ballots are used, the result can be counted from the physical
ballots or from the electronic ballots; examples of schemes that count the electronic ballots are
STAR-Vote [BBE+13] and Bingo Voting [BMR07]. The interest of having both electronic and
physical paper ballots is that a technique known as risk limiting audit [LS12] can be used to
reduce the risk of an error or a manipulation when counting the ballots.

Although privacy and universal verifiability are two fundamental security requirements in
electronic voting, they are not considered sufficient for high stake elections. A first difficulty is
related to the individual verifiability: since the ballots published in the ballot box are encrypted,
it is difficult for the voters to gain confidence as to whether their ballot actually contains the
desired voting option. This can be a problem, for instance, if the voting device is compromised
by a malware. To address this possibility, several strategies exist to provide cast-as-intended
verification. A popular approach is based on return codes: each voting option is associated to
a secret code, which is unique for each voter. At some point after the voting phase, the voter
receives a return code which is computed from the encrypted ballot, and compares it to the
expected one. If the return code corresponds to the chosen voting option, then the voter is
convinced that the encrypted ballot was produced and cast correctly. This is the approach, for
instance, of [HRT10] and CHVote [HKLD17]. Return codes were notably used in Norway [Gjø11,
PG12] and in Switzerland [GGP15], where Internet voting was allowed from 2003 to 2019 and
will be resumed in June 2023.

Apart from return codes, another popular strategy is the Benaloh challenge [Ben06], which is
used in Helios. A recent alternative to the Benaloh challenge is proposed in Themis [BCC+22]. In
Estonia, however, cast-as-intended verification is made thanks to a third party verification device,
that the voter can query with a cryptographic receipt to check whether the correct voting option
was encrypted within the ballot [HW14]. Other approaches exist to provide cast-as-intended
verification; for instance, Selene [RRI16] is based on tracking data. For a comparison and a
categorization of several academic proposals, see [MZR+21].

2

Receipt-freeness and coercion-resistance

Besides the cast-as-intended verification, a second difficulty, related to privacy, is the risk of
vote-buying. Indeed, in a classical voting system such as Helios, the voter produces an encrypted
ballot that contains their choice. Yet, by using an ad-hoc voting algorithm, the voter can produce
a ballot for which they know the randomness used for the encryption. This randomness can be
used as a receipt to convince a vote buyer that the ballot encrypts a specific choice. To capture
this threat, the notion of receipt-freeness was proposed [BT94].

There are various notions of receipt-freeness in the literature but, intuitively, a voting system
is receipt-free if the voter cannot convince a third party that they voted in a specific way, even if
they are willing to give away their privacy or if they follow a specific instruction given by the third
party. To achieve receipt-freeness while preserving verifiability, there are two main approaches
in the literature. First, the deniable revoting paradigm consists of allowing the voters to revote.
When a voter revotes, the previous vote is canceled, but an external observer is unable to tell
whether a given ballot has been canceled or not. This way, even if the voter proves that they voted
in a specific way, the vote buyer would have no guarantee that the said vote was not cancelled
by a subsequent revote. Examples of academic proposals based on the revoting paradigm are,
for instance, [LHK16] and VoteAgain [LQT20].

Another approach is based on the rerandomization paradigm, where the voters cannot directly
submit their ballot to the public ballot box. Instead, the ballot is privately sent to a rerandom-
ization server, which is trusted for the purpose of receipt-freeness. The server rerandomizes the
ballot, so that it becomes indistinguishable from a random ballot. This way, even if the ballot
was created maliciously by the voter (or was given by the vote buyer), it is no longer possible
to prove that the rerandomized ballot contains a specific voting option. Nevertheless, individual
verifiability is still achieved, which means that the voter has a guarantee that the content of
the ballot has not been modified. To achieve this without letting the voter use the guarantee
as a receipt, [Hir10] proposes to use designated verifier zero knowledge proofs (DVZKP) [JJ00],
which can only convince the voter. However, using DVZKP requires a setup which raises some
practical issues. Later on, the need for DVZKP was dropped thanks to bilinear pairings, which
introduces the possibility to rerandomize ciphertexts and signatures altogether [BFPV11]. The
idea was further developed in BeleniosRF [CCFG16], which also provides a modern definition of
receipt-freeness.

A threat related to vote buying is that of coercion, where an attacker, the coercer, asks a voter
to vote in a specific way, using a threat or a reward. Compared to receipt-freeness, coercion-
resistance assumes a stronger adversary, which can be active during the voting phase and asks
the voter to give away their voting material so as to cast the ballot instead of the voter. When
an electronic voting solution is used with no counter-measure against coercion, the coercer can
coerce a larger number of voters, or gain confidence – thanks to the verifiability mechanism – as
to whether the coerced voters obeyed or not. In Estonia, the main way to mitigate coercion is
to allow the voters to revote, so that they can first comply with the coercer and then revote for
the desired voting option, when given a moment of privacy. Although revoting is an intuitive
counter-measure against coercion, this assumes that the voter is able to revote after the coercer,
which is not necessarily justified as the coercer can wait for the last moment to cast their ballot.
In addition, if the coercer asks for the voter’s credentials, then the voter cannot know when the
coercer is going to use them.

The main academic solution to address coercion is the JCJ protocol, proposed in [JCJ05],
which also formalizes the notion of coercion-resistance. The idea is that a voter is able to give a
fake, invalid voting credential to the coercer. The latter can cast a ballot with the given credential,

3

Introduction

• Privacy: no one can learn how a given voter voted

• Individual verifiability: the voter is guaranteed that the cast ballot is added to the ballot
box, and contains the desired voting option

• Universal verifiability: everyone can verify that the result of the tally is correct with respect
to the ballot box

• Receipt-freeness: a malicious voter is unable to prove that they voted in a specific way

• Coercion-resistance: no one can force the voter to vote in a specific way

Figure 1: Some desirable security properties in electronic voting

and the ballot will be added to the ballot box independently of the validity of the credential.
However, ballots that use an invalid credential, and ballots that use duplicated credentials, are
removed after the voting phase. Hence, the main security property of the JCJ protocol is that
the coercer is unable to distinguish a real credential from a fake one, or to tell whether a given
ballot has been removed or not. In the literature, many subsequent schemes were based on
the fake credential paradigm, and can be considered as iterations over the JCJ protocol. The
most notorious example is Civitas [CCM08], which proposed an explicit registration phase. Other
contributions, for instance, were focused on improving credential handling [CH11, NV12]. Finally,
many proposals aimed at improving the scalability of JCJ: see, for instance, the schemes by
Spycher et al. [SKHS11, SHKS11, SKHS12] and the schemes by Araújo et al. [AFT08, ARR+10,
AT13, ABBT16].

Preventing Italian attacks

One major threat which is not addressed in coercion-resistance nor receipt-freeness is that of
Italian attacks, which are based on the information available from the result of the tally. Indeed,
one of the main strategies to compute the result of the election from the encrypted ballots is to
rely on a mixnet [Cha81], which reveals the list of all the voting options chosen by the voters,
but in a random order. In general, this gives more information that just the result of the election
(i.e. the name(s) of the winner(s), the number of counted ballots and the number of ballots cast),
and this information can be used by a coercer to decide if a coerced voter obeyed or not. For
instance, in preferential voting, a choice can be any permutation of the candidates, so that there
may be much more possible choices than there are voters: in Australia, the 2019 New South
Wale legislative election, which used a preferential voting system known as single transferable
vote (STV), featured several hundreds of candidates [NSW19]. In such a situation, it is possible
for the coercer to instruct the voter to first rank the coercer’s preferred candidate, then to use
a very specific and unlikely permutation of the candidates, for instance which alternates several
opposite parties. If the voter does not obey, there will most likely be no other voter who would
cast such a ballot, so that the coercer can deduce, by observing the result of the tally where all
the chosen permutations are revealed, whether the voter obeyed or not. This way, the coercer
can coerce a large number of voters, and know exactly which of them obeyed or disobeyed.

There are not so many counter-measures against Italian attacks in the literature; the most
promising approach is that of tally-hiding. In a partially tally-hiding scheme, the tally protocol

4

still leaks some side-information, but not necessarily all the voting options chosen by the voters.
In [RCPT19], an MPC protocol for instant run-off voting (IRV, a specific case of STV where
there is a single winner) is proposed. This protocol allows to compute an IRV tally without
revealing all the permutations chosen by the voters; however it reveals some information about
the progress of the protocol. For the Condorcet methods, which are several counting methods for
preferential voting which respect a criterion introduced by Condorcet [Con85], the main strategy
is to represent the choice of a voter as a matrix, so that the ballots can be added together.
This is, for instance, the approach proposed in [HPT19]. Another example that uses a form of
partial tally-hiding is the Shuffle-sum scheme [BMN+09], which aims at mitigating the risk of an
Italian attack in STV by concealing the most crucial information. However, the attacker may
still exploit the other side-information that are available in the tally. As explained in [BMN+09,
Section III. B.], it is possible that this information may still be too much: in particular, they
propose a few realistic scenarios where the leakage of their own scheme could be exploited to
detect the absence of a specific permutation, and hence to perform an Italian attack. To address
this, they propose an alternative solution where the information exploited by their attacks are
only available to the talliers, and where less information are leaked to the public. Nevertheless,
this imposes an additional trust assumption, where the talliers are not supposed to collude with
the coercer. In addition, the resulting scheme is only partially tally-hiding, which means that a
full analysis of whether the information leaked during the tally can or cannot be exploited by
the adversary is necessary.

In Kryvos [HKK+22], a solution based on public tally-hiding is proposed. The idea is that
the public only has access to the result of the election, while the talliers learn more information.
The main problem with this approach is that it does not protect the voters against a coercion
from a tallier.

Alternatively, it is possible to design a fully tally-hiding protocol. This was done, for instance,
in [CPST18]; however, this solution was proposed for the Majority Judgment, for which it is
possible to use a homomorphic tally, so that the risk of an Italian attack is low. Concurrently
to this thesis, the independent work of Ordinos [KLM+20] was proposed to achieve full tally-
hiding. Ordinos was extended in [HHK+21] to cover various counting functions, including some
variants of the Condorcet method. The solution proposed in Ordinos is expensive on the voter
side, and does not allow the voters to rank several candidates at equality, which is restrictive
in the context of Condorcet voting. In both proposals, the solution proposed relied in multi-
parti computation (MPC) based on the Paillier encryption scheme, which, compared to the
more popular ElGamal encryption scheme, has the property of being additively homomorphic.
However, this extra property comes with several drawbacks: first, in the Paillier setting, the key
length is much longer, so that computing an encryption is more expensive than in the ElGamal
setting. Compared to a Helios-like solution, the cost of encrypting a ballot on the voter side can
be several order of magnitude more expensive in the Paillier setting, which raises some practical
issues. In addition, as the Paillier encryption scheme is not as widely used as the ElGamal
encryption scheme, there are no well-studied and widely deployed library available, which is all
the more detrimental in electronic voting as we need two libraries: one on the server side and
one on the voter side.

Provable security

The use of well-studied cryptographic primitives – such as encryption and ZKP – is not enough
to guarantee the security of a protocol. Ideally, the latter should be analyzed at several levels
of abstraction. First, the designers of the protocol should provide a cryptographic (or formal)

5

Introduction

security proof; second, the protocol specification should undergo an audit to make sure that
there is no vulnerability; finally, the implementation should also be audited, for instance through
a public bug bounty. For these proofs and audits to be meaningful, the academic community
recommends that the specifications of the protocol should be public, so that the whole commu-
nity can analyze it. In Switzerland, the public audit of the Swiss Post voting system, whose
specifications are available at [Swi], allowed the detection of some vulnerabilities before release,
as described in [HLPT20] and [CDG22]. By contrast, it was revealed that the voting system
used in Australia had some security issues [HT15], as well as the one used in France [DH22].
This could have been prevented if the academics from the electronic voting community had the
opportunity to audit those systems before their deployment. Those failures show that it is not
easy to design a secure electronic voting system, let alone assess its security. For this reason, it
is usual to provide a computational or a formal proof that the desired properties are verified.

In a computational proof, the adversary is modeled as a Turing machine, which has a limited
(polynomial) computational power but can perform arbitrary computations. The main strategy
is to exhibit a polynomial reduction to a known computational problem, such as integer factor-
ization or the discrete logarithm problem. In other words, a cryptographic proof is a mathematic
proof that if a security property is breached, then there exists an explicit polynomial-time Turing
machine (i.e. an efficient algorithm) that solves a computational problem which is considered
hard. For a well-studied problem such as the discrete logarithm, this means that the security
property is verified.

In a formal proof, a mathematic, symbolic model is designed to represent the protocol and
the desired security property. In such a model, the cryptographic primitives used in the protocol,
as well as the possible actions that the adversary can perform are idealized, for instance using
rewriting rules or equational theories. Once the model has been created, the proof itself consists
of an evidence that the security property can or cannot be breached. Typically, a formal proof is
obtained thanks to a fully automatic or interactive tool based on deduction techniques. Compared
to a computational proof which relies on a well-studied computational assumption, a formal
proof assumes that the cryptography is perfect and cannot be breached. However, a formal
proof usually covers more attack scenarios.

Before providing a proof, one key step is to model the desired security properties and to give a
formal definition for them. Yet, the definitions of the security notions in electronic voting are not
stabilized. For instance, one of the first definitions of privacy was given by Benaloh [Ben87], and
has been used or extended in various future works (e.g., [KZZ15, CL18]). However, this definition
comes with several limitations, so that other definitions were proposed. In particular, the notion
of ballot privacy [BCP+11, BPW12] converged to the BPRIV definition, given in [BCG+15b].
This definition was extended in [CLW20], to model the presence of a malicious ballot box.

For receipt-freeness, two modern definitions can be found in [CCFG16] and [KZZ15]. Com-
pared to the definition of Kiayias et al., the definition of Chaidos et al. does not take into account
the individual verifiability mechanism. However, the definition of Kiayias et al. does not con-
sider a malicious voter, which is restrictive. In [DPP22b], a modified version of the definition
of Chaidos et al. has been proposed, where the registration protocol is no longer relevant. This
was done in an attempt to achieve receipt-freeness (almost) independently of the remaining of
the protocol, which allows a more modular security analysis and makes the voting scheme easier
to adapt.

For coercion-resistance, the main academic definition is that of [JCJ05], which is still a
reference in the research about coercion-resistance. Intuitively, this definition compares a real
game with an ideal game: in the real game, the adversary observes the real JCJ protocol; in the

6

ideal game, the adversary is only given the “result”; in both games, the goal of the adversary
is to guess whether the coerced voter obeyed or evaded coercion. This comparison is made
because the adversary, by observing the result, can gain some information about the choice of
the coerced voter: this is the idea behind an Italian attack. In [HS19], it is remarked that the
JCJ definition is flawed and cannot be achieved by a voting scheme which has a public ballot
box. The main reason why is that the ideal game does not yield any information about the ballot
box. Consequently, by observing the size of the ballot box in the real game, and by comparing it
to the result of the election (which indicates the number of counted ballots) the adversary gains
some information about whether the ballot cast with the coerced voter’s credential was counted
or not. To fix this flaw, [HS19] proposes to modify the ideal game, and to add the information
about the size of the ballot box. However, the fixed definition is still incomplete, as it does not
consider revotes.

Indeed, in the context of coercion-resistance, it is natural to allow revoting, since it can
constitute a first counter-measure against an implicit influence from a family member or an
employer. Suppose, for instance, that a granddaughter explains to her grandfather how to vote
online. For this purpose, she asks him to identify himself to the voting platform and to proceed
step by step, while she remains over his shoulder to clarify each step. In this scenario, the
grandfather may feel compelled to choose the democratic party while he would have preferred
to choose the republican one. When revoting is allowed, the grandfather is able to select just
any candidate (or even the candidate “suggested” by the granddaughter). Afterwards, when the
granddaughter is no longer here, he can revote with his personal choice. Another example is
when an employee is encouraged to vote at work, using a device which may be monitored by
the employer. To avoid conflict with the employer, the employee may want to first vote for the
conservative party when at work, then revote for the labor party at home. Hence, it is important
that a definition of coercion-resistance should take revoting into account.

Our contributions

1. We propose a toolbox for MPC based on the ElGamal encryption scheme, that can be used
to achieve full tally-hiding.

Our toolbox, presented in Chapter 5, is based on the conditional gate primitive from [ST04],
which can be used in the ElGamal setting. This gives an interesting alternative to the Pail-
lier setting, which is greatly beneficial on the voter-side and achieves similar computational
complexities on the server side. This toolbox provides many MPC protocols to realize various
usual operations on encrypted data, such as arithmetic operations and comparisons, but also
more complex operations such as sorting. To make this possible, we propose several computa-
tion/communication trade-offs, which can be deployed to mitigate the greater communication
complexity in the ElGamal setting. In Chapter 6, we apply our toolbox to design a tally-hiding
protocol for Condorcet-Schulze, STV, Majority Judgment and the D’Hondt method. In the case
of the Condorcet methods, we discovered a privacy breach in the solution of [HS19], which occurs
when a voter gives the same rank to two candidates. In Section 6.1.2, we propose a new way for
the voter to submit a ballot for Condorcet voting, which allows blank voting and is compatible
with a homomorphic tally. For the Majority Judgment, we remarked a shortcoming in the so-
lution proposed in [CPST18], which uses a heuristic known as the majority gauge. Indeed, the
majority gauge is not guaranteed to output a result. Finally, we also discovered a problem with
the solution proposed in [KLM+20], which was designed to reveal the names of the s candidates
that received the most votes, where s is some parameter (for instance, the number of seats).

7

Introduction

Indeed, in case of a tie, it is possible that their solution actually outputs more than s winners.
We propose a non-intrusive way to include any tie-break mechanism into the solution proposed
by Ordinos; this preserves the full tally-hiding property and does not deteriorate the efficiency.

We prove the security of our toolbox in the security framework of [CCL15], which is a simpler
variant of the universally composable framework of [Can01] (for short, we refer to this framework
as the SUC framework). To achieve this, we modified the conditional gate protocol and proved
the SUC-security of the modified protocol in Section 4.4. As the SUC framework provides a
composition theorem, the SUC-security of the main primitive can be used to prove the desired
security properties, such as privacy and verifiability, which is done in Section 6.6.

2. We unveil a leakage in the JCJ scheme which can compromise its coercion-resistance when
revoting is allowed.

When revoting is allowed, we discovered that the extra information revealed during the tally
phase of the JCJ protocol can be exploited by the coercer to infer the behavior of the coerced
voter, using Bayesian probabilities. More precisely, we identified the exact nature of the leakage
in JCJ: Compared to the pure result of the election which would contain some information about
the total number of ballots removed, the JCJ scheme leaks the number of ballots that have k
duplicates for all k ≥ 1, as well as the number of ballots that use an invalid credential. To assess
the impact of this leakage, we used the formal framework of [KTV10a] which gives a quantitative
definition of coercion-resistance. In this framework, it is possible to compare the coercion level
of the real protocol to that of the ideal protocol, which would not suffer from any leakage. Using
this framework, we propose several realistic scenarios where the difference between the ideal and
the real coercion levels is not negligible.

One of the reasons why the flaw of the JCJ protocol was not noticed so far may be because
the JCJ definition of coercion-resistance does not allow revoting. In addition, it is known that,
in a JCJ-like scheme, an unpredictable number of ballots should be removed during the tally
phase: otherwise, the coercer would notice when the ballot cast with the voter’s credential is
removed. For this reason, it is necessary to model the presence of ballots that use an invalid
credential, but that are not a ballot from the coercer: they are referred to as dummy ballots.
In the JCJ definition, those ballots are supposed to come from the honest voters, who have to
sacrifice their own vote for this. This is not realistic and does not allow modeling a situation
where additional dummies are cast by an external party, which is not an eligible voter. For these
reasons, we designed a new definition of coercion-resistance, which better captures the presence
of dummy ballots as well as the possibility to revote.

As the JCJ protocol does not verify our definition of coercion-resistance, we propose CHide,
a variant of the JCJ protocol that uses the tally-hiding toolbox in order to prevent the leakage of
the JCJ scheme. This is done in Chapter 8, and shows that our definition of coercion-resistance
can be achieved by a practical protocol. To make the protocol practical for realistic parameters,
we designed a new cleansing phase that relies on sorting, and is more scalable than the quadratic
cleansing phase of JCJ. We prove that privacy, verifiability and coercion-resistance are achieved
that CHide under the same trust assumptions as JCJ.

3. We investigate the notion of receipt-freeness, and propose a solution which can be a prac-
tical first step towards coercion-resistance.

In collaboration with Henri Devillez, Olivier Pereira and Thomas Peters, we propose a new
definition of receipt-freeness, which does not make any assumption about the registration phase

8

or the eligibility mechanism. Compared to the definition of [KZZ15], our definition takes into
account the fact that the voter may use any algorithm to produce their ballot, including an
algorithm which may be provided by the vote buyer. Compared to the definition of [CCFG16],
our definition allows the adversary to give any instruction to the voter, and not just a given
ciphertext. In addition, it also captures the fact that the voter may be given a receipt during the
voting phase, due to the individual verifiability mechanism. Overall, our definition of receipt-
freeness is closer to the intuition of vote-buying, and achieving this definition can be a first step
towards coercion-resistance. In addition, based on the previous work of [DPP22b], we propose
a modular strategy that allows to build a receipt-free protocol, by providing an easy to verify
set of conditions about the encryption scheme, the tally protocol and the voting phase. This
makes achieving receipt-freeness more modular, and more independent of the specificities of the
protocol. We also provide a new encryption scheme that satisfies the properties required by our
strategy, so that it can be instantiated. Compared to the scheme proposed in [DPP22b], this
new scheme supports 0/1 proofs (i.e. it is possible to prove that the ballot encrypts a message of
a specific form), which is extremely interesting in the context of electronic voting. In addition,
the setup protocol is public coin, which means that we need fewer trust assumptions. Compared
to the scheme proposed in [CCFG16], our encryption scheme is not limited to encrypting small
bitstrings.

Structure of the thesis

This thesis is divided into three parts. Part I gives some preliminaries about electronic voting,
the security definitions and the security proofs. In Part II, Chapter 4 gives some background
in MPC, and the first contribution of this thesis can be found in Section 4.4, where we prove
the SUC-security of the modified conditional gate protocol. Afterwards, we present the various
protocols of our MPC toolbox in Chapter 5, and explain how to apply them to compute the tally
for various counting methods in Chapter 6. Finally, Part III contains our finding about coercion-
resistance: Chapter 7 unveils the vulnerability of the JCJ scheme and proposes a new definition
of coercion-resistance, Chapter 8 introduces CHide and the corresponding security proofs, and
Chapter 9 contains our contributions about receipt freeness.

Related publications

• We presented a short paper at E-Vote-ID 2020 [CGY20], where we revealed a vulnerability
of the Belenios protocol. This contribution is briefly described in Section 3.2.2.

• Our toolbox for generic tally-hiding in the ElGamal setting was presented at Esorics
2022 [CGY22a]. The full version of this paper, which includes details about the MPC
protocols that we designed for Condorcet-Schulze, STV, Majority Judgment and D’Hondt,
as well as the corresponding security proofs, can be found in [CGY21].

• Our finding about the weakness of the JCJ protocol was published on eprint [CGY22b],
where we propose our new definition of coercion-resistance as well as the CHide protocol.

9

Part I

Preliminaries

10

Chapter 1

Security in electronic voting

This chapter introduces some vocabulary around electronic voting and defines the main security
properties. It provides notations and definitions that are useful in the remaining of this thesis.

1.1 The fundamental notions of electronic voting

We first present the most common phases of electronic voting, as well as their participants.

1.1.1 The generic structure of electronic voting protocols

An electronic voting protocol involves many participants, each of whom has a specific role. A
participant may be trusted for a given purpose, but not for another: this defines the trust
assumptions of the protocol. Finally, the participants interact during different phases, which
describe the overall structure of the protocol. Depending on the protocol, different participants,
trust assumptions and phases may be used.

The main participants in electronic voting. We first present the most commonly considered
participants, as well as some usual trust assumptions; see Table 1 for a summary. Depending
on the protocol, additional participants and stronger assumptions may be used, which can be
perceived as a drawback. On the other hand, if less participants or weaker assumptions are
necessary for the same security level, this can be perceived as a feature. Most often than not,
however, each protocol has its own compromise.

The election authorities, i.e. the organizers, choose the public parameters of the election:
the questions asked, the possible answers, the eligible voters and the opening and closing dates
of the election are up to the organizers. In addition, the latter also chooses the counting method
and the actual protocol; this can include, for instance, the cryptographic group and the security
parameter. In general, the election authorities are trusted for the above purposes, but not for
any other. This is because they only intervene at the very beginning of the process, before
the protocol even started. Indeed, the proposed cryptographic protocol ideally undergoes a
careful public audit where anyone can look at the specifications and the implementation to make
sure that there is no vulnerability or backdoor. Similarly, the non-cryptographic information
published by the organizer can be publicly verified, so that it is not easy to add factitious voters
or rig the election by choosing a specific counting method or formulating the questions in some
biased way.

The public board displays some public information, such as the current state of the ballot
box or some verification transcripts. It plays a critical role in both individual and universal

11

Chapter 1. Security in electronic voting

verifiability. Nevertheless, it is typically trusted as a public, append-only and shared dataset. It
means that anyone can consult its contents, that the same view is given to everyone and that
no data can be removed once they have been added to the board. To enforce this behavior, a
consensus protocol can be used, as done in [CS14, HSB21]. Another solution would be to rely
on the blockchain technology, as proposed in [MSH17, HHHH18, CYLR18]

The server may have various roles such as storing data, performing checks, providing com-
munication channels, writing on the public board or providing the source code of the protocol
(e.g., a JavaScript). It is usually considered malicious when providing communication channels
or writing on the board: for instance, it may temper with the communication with the ballot
box or try to add illegitimate ballots. However, it is often assumed to provide the correct public
information (e.g., public encryption key and JavaScript). This can be enforced by auditors that
will detect any misbehavior of the server.

The distinction between the public board and the server is not always clear. This is because
the public board may be hosted by the server, in which case the latter can freely add data on
it, including ballots. In addition, it is often necessary to use the server as an intermediate to
add a ballot in the public board. Separating the server from the public board allows assuming
the server malicious while the public board is still considered honest. Observe that even if the
board is honest, there is no guarantee about the validity or the authenticity of its data: we only
assume that they are the same for everyone and that they are added in an append-only fashion.
Hence, if no mechanism prevents it, a malicious server could add ineligible ballots in the board:
this is called ballot stuffing.

The voters send their encrypted ballot to the server. For this purpose, they use a voting
device that performs the necessary cryptographic operations. The voters are not trusted: some
of them, the corrupted voters, may be under the complete control of the adversary. However,
we consider that the non-corrupted voters are honest and follow the protocol rigorously. Inter-
estingly, it is possible to dissociate the voter from the voting device. Indeed, the latter may be
compromised by a malware that encrypts another voting option than the chosen one. To address
such a situation, a specific strategy called cast-as-intended verification can be deployed, that
allows the voter to verify the behavior of the device. When separating the voter from the device,
the latter is not trusted for individual verifiability but often trusted for privacy. Indeed, in the
convenient scenario where the voter types or selects the chosen voting option, the device unavoid-
ably learns the choice of the voter. For a possible counter-measure, see for instance [CFL19].
In this thesis, we do not separate the voter from the voting device, and hence assume that the
voting device is honest.

The registrars give their voting material (typically, a secret voting credential) to the voters.
Intuitively, this credential is necessary to either produce a valid ballot, or to have it accepted by
the server. Therefore, the role of the registrars is to guarantee the eligibility. In general, they
are trusted as a whole, but some may be corrupted.

The talliers compute the result of the election from the encrypted ballots. For this purpose,
they need the secret decryption key. Since the latter allows decrypting the ballots individually,
hence compromising privacy, it is common that a specific strategy is deployed to distribute the
trust between the talliers, so that no individual tallier can learn the secret key. In general, a
cryptographic technique named secret sharing (see Section 2.2.3) is used to enforce privacy, even
when up to t talliers are controlled by the adversary, where t is some threshold. In this case, it
is assumed that no more than t malicious talliers may collude to break privacy. However, it is
common not to trust the talliers at all when it comes to verifiability.

Finally, the auditors are responsible for verifying any accessible data. In general, it is
assumed that at least one of them is honest, will perform any possible verification and report

12

1.1. The fundamental notions of electronic voting

Table 1: The typical trust assumptions in electronic voting

Participants Trust assumption
Voter Not trusted

Voting Device Trusted / not trusted for individual verifiability
Trusted for privacy

Registrars Trusted as a group for verifiability and privacy

Talliers At most t of them can collude to break privacy
Not trusted for verifiability

Auditors At least one of them is honest for auditing
Public board Trusted as a append-only shared dataset

Server Untrusted for communication channels
Trusted to provide public data

Election authorities Trusted to provide the voting protocol

Table 2: The most common phases in electronic voting

Phase Participants Goal
Setup Talliers Generate the public cryptographic materials

Registration Registrars
Voters Give their voting credential to the voters

Voting Voters
Server Collect the ballots from the voters

Tally Talliers Compute the result from the collected ballots

any anomaly.

The most common phases in electronic voting. Apart from defining the participants and
the corresponding trust assumptions, a protocol also defines their behavior and their interactions.
In electronic voting, we usually divide the protocol into phases, summarized in Table 2.

The first phase is the setup phase, during which the talliers generate all the necessary
cryptographic materials, such as the public encryption key. In general, the setup phase can also
involve the registrars but, for simplicity, we consider that the latter will only intervene during
the registration phase.

The registration phase allows the voters to get their credentials from the registrars. For
this purpose, they may have to authenticate themselves using a certain method. This is often
left unspecified in electronic voting, and could involve providing an official document such as an
identity card, or using an online authentication platform.

During the voting phase, the voters submit their votes in the form of encrypted ballots.
The server checks the eligibility of the voter, the validity of the ballot and adds it to the ballot
box. Also, it is generally required that the voter checks that the desired ballot was indeed added
to the board, since we usually do not fully trust the server.

Finally, the tally phase happens last. During this phase, the talliers compute the result of
the election from the encrypted ballots and produce a proof that the result is valid with respect
to the public board.

Note that, depending on the protocol, the public board and the server may or may not be
active during any of the aforementioned phases. For instance, the public encryption key can
be added to the public board during the setup, and the voters may use the server to register

13

Chapter 1. Security in electronic voting

themselves. In general, an electronic voting protocol may use another set of participants and
phases: we only presented a generic structure that suits this thesis.

1.1.2 Formalization and notations

To assess the security of a voting protocol, it is important to have a precise mathematical
framework so that we can model it, as well as the security properties that we consider.

Counting function. The goal of a voting protocol is to evaluate the result of a counting
function on the voting options chosen by the voters. More formally, let V be the set of all possible
voting options and I be a set which represent the identities (or aliases) of the voters. LetR be the
set of all possible results. For any set A, we denote A∗ the free monoid generated by A, that is the
set all of finite sequences of elements of A. The natural law of this monoid is the concatenation,
denoted ||. In this thesis, we consider that a counting function is a function count : V∗ −→ R,
that is invariant over the permutations of its arguments. The invariance property means that
the order in which the voters cast their ballot is not important. Consequently, it is assumed that
a revote policy is applied before the counting function, so that there is a unique voting option for
each voter. Indeed, assume that revoting is allowed, so that a voter who has already voted for
some option ν1 can revote for a (potentially) different option ν2. Then the revoting policy may
instruct keeping the first choice (revoting is allowed but does not change the choice), to keep the
last choice or even to combine the choices in some specific way (for instance, set the final choice
as the average choice). In this thesis, we denote cleanse : (I ×V)∗ → V∗ the revote policy, which
takes care of the duplicated id ∈ I.

Remark that our definition for counting function is identity-oblivious, which means that once
the revoting policy has been applied, the identity of the voters is no longer relevant, so that
the final choices of two voters can be swapped without altering the result. This is not always
the case in general: for instance, consider a vote between stakeholders where some voters are
given more weight than the others. For more generic, identity-dependent counting methods, the
notion of counting function may not be suitable. However, we only considered identity-oblivious
counting functions in this thesis, so that this distinction is only relevant when we define privacy
in Section 1.3. On this occasion, we will use the terminology tally function, which can be seen
as a function tally : (I × V)∗ → R.

Multiset. Because of the invariance property, it is interesting to introduce the notion of
multisets. A multiset of size n is a n-tuple modulo the permutations. It can be seen as a set
where there can be duplicates, or a sequence in which the order is not important. Given any
sequence A, we denote {{A}} the corresponding multiset (e.g., a, b, c becomes {{a, b, c}}). By abuse
of notation, if A is a set, we also denote {{A}} the corresponding multiset. To express that two
sequences (or sets) A and B are equal as multisets, we use the notation A ≡ B. When A and B
are multisets, we can also use the notation A ≡ B instead of A = B, to insist on the fact that A
and B are multisets. The union of two multisets A and B is usually denoted A

⊎
B. This gives a

notion of inclusion. Finally, we say that a multiset A (resp. a sequence A) contains n elements
of the multiset B if there exists a multiset C of size n which is included in both A (resp. {{A}})
and B. Since a counting function is invariant over permutations, we can define it on the finite
multisets instead of the finite sequences. By abuse of notation, we often use this representation.

Partial tally. For a counting function, an interesting property is the partial tally. We say
that count : V → R has the partial tally property if there exists an associative composition law
⋆ in R such that, for all V1,V2 ∈ V∗, count(V1||V2) = count(V1)⋆count(V2). A key example
is the counting function which returns the number of times each voting option was chosen.

14

1.1. The fundamental notions of electronic voting

Alternatively, the counting function which returns the multiset of the voting options chosen also
has this property. However, not every function has this property. For instance, suppose that there
are two candidates, A and B, so that the voting options are V = {A,B}. In this setting, consider
the majority counting function, with the possible results R = {A,B}, where A wins in case of
an equality. Then this function does not have the partial tally property: since count(A,A||B) =
count(A,A), the associativity required for ⋆ would mean that count(A,A||Bn) = count(A,A) =
A for all n, which is not the case.

Adversary. In this thesis, we model the adversary A as a probabilistic polynomial Turing
machine (PPT), which means that it can perform any computation, has access to a source of
randomness but is computationally bounded: there exists a polynomial P such that, when A is
called with the security parameter λ, it terminates after at most P (λ) transitions. By contrast,
a non-uniform adversary is a PPT which also has a different meaningful auxiliary input z(λ) for
each value of the security parameter; this can model non-polynomial time precomputation.

Voting system. In this thesis, a voting system for the counting function count is a tuple
of algorithms and protocols (Setup,Register,Vote,Check,Valid,Tally,Verify). We consider that
they have the following signatures:

Setup(λ,nT , t) is an interactive protocol between the talliers. It takes as input a security
parameter λ, a number of participants nT and a threshold t. It outputs a public key pk; a secret
key sk; some pairs (hi, si)nT

i=1 where si is the secret share of the ith participant while hi is a public
commitment on si; and a transcript Π. In general, the setup can have many other forms, so that
this description is specific to our setting. It assumes that the key pair (pk, sk) is generated using
a distributed generation key (DKG) protocol (see Section 2.2.3), which is not always the case.

Register(pk, n) is an interactive protocol between n voters and the registrars. We use the
notation (ci, πi)

n
i=1,Π←− Register(pk, n) to express that the registration produced the credential

ci for each voter, numbered from 1 to n. In addition to their credential, the voters may also
receive an individual (potentially empty) transcript πi – for instance to convince the voter that
the credential they received is actually valid. Similarly, the protocol outputs a (possibly empty)
public transcript Π; for instance a public commitment of each credential, or a proof that the
protocol was executed correctly.

Vote is an interactive protocol between the voter, the server and the public board. During
this protocol, the voter uses an algorithm Votepk(ν, c) that produces a ballot for the voting option
ν, with the credential c. Afterward, the voter can initiate the protocol Check(ν, c,B,PB) to
verify that their ballot B indeed contains the chosen voting option ν and was actually added to
the ballot box in PB. This protocol may involve several other participants, such as the voting
device, an external auditor and the voting server. Note that we also included the credential c in
the inputs required for the voter; however, some other intermediate values obtained during the
voting protocol may also be needed. In addition, given an encrypted ballot B and the current
public board PB, the algorithm Valid(B,PB) returns 0 or 1, depending on the validity of the
ballot with respect to the public board.

Tally(PB,{si}) is a protocol during which the talliers, who each have a secret si, collectively
compute the result of the election from the encrypted ballots. It outputs a result r ∈ R, along
with the verification transcript Π. The output of this protocol can be verified thanks to the
algorithm Verify(PB,Π, r), which returns either 0 or 1.

Technically, a voting system is just one part of the specification of a voting protocol. The
latter must also articulate all the phases together (which includes the establishment of commu-
nication channels) and give instructions about how to behave if a step fails, which is why we
used a different terminology. In this thesis, we never describe a voting protocol as a whole and

15

Chapter 1. Security in electronic voting

we restrict ourselves at the system level. Therefore, we do not give a formalization for the other
layers of a voting protocol.

Small quantities. In cryptography, it is usual to define a negligible quantity as follows.
Suppose that a quantity µ(λ) is a function of the security parameter. We say that µ is negligible
(in λ) if, for all integer k, we have |µ(λ)| ≤ 1/λk when λ is large enough. A quantity which
is not negligible is said non-negligible. For probabilities, we also have the notion of large and
overwhelming probabilities: a probability p(λ) is large if there exists a real ε > 0 such that
ε < p(λ) when λ is large enough. Finally, p is overwhelming is 1 − p is negligible. Note that
these notions only make sense when considering asymptotically large security parameters, so that
1/2128 is technically a large probability. To better quantify large probabilities, it is natural to
look for an upper bound. For ε > 0, we say that a quantity p(λ) is ε-bounded if there exists a
negligible function µ such that |p(λ)| ≤ ε+ µ(λ) when λ is large enough.

Game-based definitions. Once the voting protocol is modeled, one must also give a
formal definition of the desired security properties. A common approach is to use a game-
based definition. Such a definition models the protocol inside a game (or experiment), where an
adversary tries to reach a specific goal. The adversary may impersonate some participants, who
are therefore corrupted. However, the game describes the order of activation of the participants,
in which channels they may communicate and to which information (i.e. inputs) they have
access. It also describes the expected format of the output for each activation of the adversary
and how they are processed. At the end of the game, an output is produced (typically 0 or 1)
depending on whether the adversary reached its goal or not. When the output is 1, we say that
the adversary wins the game. Finally, it is sometimes preferable to consider the advantage of the
adversary rather than its probability to win. In this thesis, the advantage of the adversary in a
game is the absolute value of the difference between the adversary’s probability to win and 1/2.
In some other works, it is common to define the advantage as twice this value; however, as we
usually demand that the advantage should be negligible, both definitions are equivalent and we
may use any of them interchangeably.

Oracle queries. In the description of a game, it is common to encounter oracle queries.
Intuitively, they capture the interactive nature of a protocol and represent the other participants.
Typically, if the adversary wants to wait for a voter to send a ballot, this can be modeled by a
query to an oracle Ovote. An oracle is an algorithm whose inputs are chosen by the adversary and
which returns its output to the adversary. It is not required that the oracles are computationally
bounded. When the adversary can make queries to the oracles O1, · · · ,On, we use the notation
AO1,··· ,On . It means that the adversary can make any (polynomial) number of queries to the
given oracles, in any order. However, it can only have a black-box access to the oracles, and has
no mean to learn anything else than the output. The oracles may have access to all inner states
of the game, including the value of the secret key or the random coin. In addition, they can
also modify those states, for instance by adding something in the public board. Consequently,
the oracles are considered stateful: they have their own inner state and remember any previous
query made by the adversary, as well as how it was answered.

1.1.3 The Helios voting protocol

A canonical example is Helios, an online open-source electronic voting protocol introduced
in [Adi08]. As the original version had some limitations, an iteration, known as Helios 2.0,
was presented in [dMPQ09], on the occasion of the election of the president of the university of
Louvain-la-Neuve. The resulting voting platform, accessible at [Hel], is used by the IACR. The

16

1.1. The fundamental notions of electronic voting

key idea is to encode the voting options as a vector of bits and to use the exponential ElGamal
encryption scheme, presented in Section 2.2.2, to encrypt it. This way, a homomorphic tally
can be used, where the product of all the ciphertexts is decrypted to reveal the result, while no
individual ballot is decrypted, hence preserving privacy. The whole protocol can be summed up
as follows.

Registration phase. Every voter receives a mail which contains a link to a secure regis-
tration website, which plays the role of the registrar. On this website, the voters authenticate
themselves using an identity card or a password provided by the election authorities. The regis-
trar assigns the voter a random alias al and a password, which form the voter’s credential. The
voter is given the credential, and the registrar also sends it to the voting server.

Voting phase. The voter is asked a multiple choice question, and can pick some of the
choices depending on the election’s rules. For instance, at most one option may be chosen for
uninominal voting. For each of the choices, the voter encrypts either 0 or 1 using the exponential
ElGamal encryption scheme, depending on whether they want to pick the choice or not. This
produces a sequence of ciphertexts C. Then, the voter provides a Zero Knowledge Proof π (ZKP,
see Section 2.3) that C is well-formed i.e. that it only contains encryptions of 0 and 1 and that
the election rules were respected.

Then the voters authenticate themselves with the voting server using their password and send
their alias, as well as their ballot B = (C, π). The server checks that the password is correct
with respect to the given alias, checks that the ballot is valid with respect to the public board
and adds an entry (al : B) in the ballot box. Note that the voters can revote: if there is already
an entry of the form (al : B′), B′ is replaced by B.

Valid ballots. In Helios, a valid ballot B = (C, π) has a valid ZKP π. Also, for all ciphertext
C ∈ C, C must not already be on the public board. This means that, for all ballot B′ = (C′, π′)
in the board, C must not be one of the ciphertexts of the sequence C′.

Open audit. After the voting phase, the ballot box is fixed and the voters are given a few
days to check that the ballot that appears right to their alias is correct. If this is not the case,
the voter can complain.

Tally. The talliers compute the element-wise product of all the ciphertexts. For instance,
suppose that there are three options, so that all the ballots have the form (C1, C2, C3, π). Then
the element-wise product of the ciphertexts of two ballots B and B′ would be (C1C

′
1, C2C

′
2, C3C

′
3).

(In the ElGamal encryption scheme, a ciphertext is a pair of group elements, so that the product
of two ciphertexts can be defined by similarly computing the element-wise product.) Let C be
the final product. The talliers use a threshold decryption protocol (see Section 2.2.3) to decrypt
all the ciphertexts in C. By the homomorphic property of the ElGamal encryption scheme, this
reveals the number of voters that choose each voting option. This threshold decryption protocol
produces a transcript Π which consists of ZKPs of correct decryption.

The main weakness of the Helios protocol is that its security requires a honest server. Indeed,
the ballots in the board are not authenticated, so that a cheating server can add ballots arbitrarily,
thus committing ballot stuffing. An alternative to Helios is the Belenios protocol [CGG19], where
the registrar generates a cryptographic signature key while the server generates the password.
Consequently, both need to be corrupted to break the eligibility.

To mitigate the lack of eligibility, Helios has an audit phase where the voters can verify their
ballot. This imposes some assumptions on the voters, as auditing is not mandatory: in the
UCL election mentioned in [dMPQ09], only 30% of the voters verified their ballot. In addition,
it is not reasonable to assume that the voters who choose to abstain would verify their ballot.
Nevertheless, the solution from Helios can be considered preferable compared to that of Belenios:

17

Chapter 1. Security in electronic voting

in Belenios, there is no open audit phase before the tally, so that if the registrars and the server
are both corrupted, they can undetectably add some illegitimate ballots. By contrast, the server
in Helios has a chance of being detected when cheating. This illustrates that no trust assumption
is perfect: depending on the point of view, a given solution may seem reasonable or unacceptable.
This is an inherent difficulty in electronic voting, where we need to convince people that a given
protocol is secure. Even if it is actually secure under reasonable trust assumptions, there will
always be numerous people that will not trust the system, as illustrated by the recent events in
Brazil and the USA.

1.1.4 Classical attacks in electronic voting

Now that we have given a concrete example of an electronic voting protocol, this is a good
opportunity to list the most classical attacks in electronic voting.

Replay attack. In academic electronic voting, it is usual to consider that the ballot box
is public and may be consulted at any given time. Also, we do not suppose that the contained
ballots are anonymous. Therefore, a typical ballot will not contain the chosen voting option but
rather an encryption. However, suppose that the adversary wants to learn Alice’s choice. Then
it may try to replay Alice’s ballot using as many corrupted voters as necessary, for instance by
copying Alice’s ballot. If the replay attack is successful, then Alice’s choice contribute many times
more than it should have, and can be deduced from the result. In theory, this breaks the different
definitions of privacy (see Section 1.3), and an analysis done in [Dav22] reveals that these attacks
may be harmful in practice. To prevent them, the usual counter-measure is ballot weeding, where
duplicate ballots are not accepted on the public board. This is the main reason why Helios’ Valid
algorithm does not only verify the ZKP, but also checks that there is no duplication. Note that
since the ballots of Helios may contain many independent ciphertexts, rather than checking that
the whole ballot is not a duplicate, the protocol checks that no ciphertext is a duplicate.

Now, recall that the ElGamal encryption scheme is malleable: as explained in Section 2.2.2,
it is possible, from the ballot of Alice, to produce some ciphertexts which are different but
encrypt the same voting option, hence defeating the ballot weeding strategy. For this reason, it
is commonly accepted that the minimal requirement is that the ballot should be non-malleable,
and not only indistinguishable from random (see Section 2.2.1 for a definition of IND-CPA and
NM-CPA security). In Helios, the non-malleability of the ballot comes from the ZKP: although
it is possible to produce some ciphertexts from Alice’s ballot, creating a valid ZKP for those
ciphertexts requires to known the randomness which was used to produce them. Yet, if this
randomness was known, one could open Alice’s ballot.

Ballot dropping. An other classical attack is based on ballot dropping. Suppose that an
adversary (typically the server) is able to arbitrarily drop any ballot, i.e. that it can decide
whether any given ballot will be tallied or not. Obviously, this adversary is able to break indi-
vidual verifiability since the voters are not guaranteed that their vote will be counted. However,
this also breaks privacy (in theory): indeed, if the adversary wants to know Alice’s choice, it can
drop all the other ballots and deduce the choice from the result of the tally. To defeat such an
attack, it is generally assumed that the voters check that their ballot was indeed added in the
ballot box; in Helios, for instance, this is the role of the public audit phase.

Replacing a ballot. Now, dropping all but one ballot will most likely be detected. A related
attack is, however, to replace the ballots by a ballot that contains a known voting option. This
is possible, for instance, when revoting is allowed while the eligibility is breached: the attacker
can wait for a voter to vote, and then replace the legitimate ballot by sending an illegitimate one
in the name of the voter. As for ballot dropping, this not only breaks individual verifiability, but

18

1.1. The fundamental notions of electronic voting

also privacy. To defeat such a scenario, an usual academic “solution” is to assume that the voters
check their ballot at the end of the voting phase, and not right after casting it. Once again, this
is the case in Helios, where the public audit phase takes place after the voting phase, when the
ballot can no longer be replaced. The problem with this approach is that it is not clear what
we are supposed to do if a problem occurs. Canceling the election would be the safe option, but
will most likely be perceived as unacceptable by most people. Also, deciding on a threshold of
complains above which the election should be canceled is not easy, as many voters could falsely
blame the server for dropping their ballot. Therefore, it is preferable to provide a way for the
voters to vote and go, i.e. to check that their ballot is present during the voting phase. This
way, if a problem is detected, the voter can revote.

Nevertheless, using a vote-and-go strategy is not that easy. For instance, consider the fol-
lowing scenario, where the server is dishonest. Assume that the voter would typically vote, say,
3 times before complaining. Then the server can drop the first two ballots and accept the last
one; however, it can use the first two ballots to launch a replay attack, using some corrupted
eligible voters to cast the two ballots. Indeed, since they were never added to the board, this
would not be prevented by the weeding strategy. Helios, unfortunately, seems vulnerable to
this attack, as this is the case for most electronic voting system. This illustrates the difference
between security in theory and security in practice. In theory, one can argue that the voter may
complain as soon as the first ballot is not added to the board, and therefore that the protocol
is secure. This, indeed, prevents the attack since the protocol which always abort is technically
secure. However, aborting the protocol as soon as a voter complains is not a practical solution.
See for instance [BBMP21] for a possible counter-measure.

Clash attacks. Another known attack is the clash attack introduced in [KTV12]. In this
attack, the voting devices are considered corrupted; more precisely, it is assumed that the attacker
can have two voters use the exact same ballots when they choose the same voting option. Then,
even if the voters check that their ballot is indeed in the board, it is possible that only one of
the two ballots was actually added, while the other was dropped. Hence, individual verification
is breached. Interestingly, the usual cast-as-intended mechanisms do not prevent such an attack
since the voting device actually encrypts the desired voting option. In addition, it may be difficult
to detect that the randomness used are rigged, since the voting device might use a pseudo-random
generator, but which has the same seed as another device.

In Helios, the ballot box contains elements of the form (al : B) where al is an alias while B is an
encrypted ballot. Therefore, it seems that the scheme is not vulnerable to clash attacks. However,
suppose that the aliases are generated in some untrusted manner, i.e. that the adversary is able
to decide which voter gets which alias, and therefore to produce a situation in which two voters
have the same alias al1 instead of al1 and al2. Then, as explained is [KTV12], a clash attack
would allow not only to break individual verifiability by allowing the adversary to drop some
ballots, but also to undetectably break eligibility since the attacker would be able to safely add
a ballot, using the remaining alias al2.

Individual verifiability and privacy. In most of the above attacks, we remark that a
breach in the individual verifiability can be transformed into an attack against privacy. This
is an illustration of the generic result of [CL18], where privacy is shown to imply individual
verifiability under some assumptions. More generally, this shows how the different notions of
security in electronic voting are tightly related to each other, which explains why it is so difficult
to formalize them individually.

19

Chapter 1. Security in electronic voting

1.2 Addressing verifiability

One of the most important properties of an electronic voting protocol is its verifiability, which
prevents the participants to temper with the result of the election. This gives the notion of
end-to-end verifiability. However, to enforce end-to-end verifiability, the common strategy is to
verify each step individually.

1.2.1 Step by step verification

Intuitively, a voting system is verifiable if there is a way to verify that its result is correct with
respect to the voting options chosen by the voters. However, the latter are unknown and the
whole point of electronic voting is to determine the former. Consequently, it is not possible
to verify the result as a whole; instead, we check that every step of the voting protocol was
performed correctly. The first step is to encrypt a voting option into a ballot, which is done
thanks to a voting device. If the latter is untrusted, it may encrypt another voting option than
the one chosen by the voter; yet, due to the encryption, the voter would not be able to detect
it immediately. Therefore, the first step is to provide a way to verify that the voting device
did not cheat, which is called cast-as-intended verification. In the literature, there are two main
methods to provide cast-as-intended verification: return codes (e.g., [GGP15]) and the so-called
Benaloh challenge [Ben06], which is presented in Section 9.7 (see [MZR+21] for a more detailed
categorization). A recent alternative to the Benaloh challenge was proposed in [BCC+22].

Once the ballot is generated, it is added in a ballot box, which is not necessarily public.
However, the communication channels and the server are not trusted, so that the voter must
gain some evidence that their ballot actually appears in the ballot box. This is called recorded-
as-cast verification. In academic electronic voting, the ballot box is a part of the public board,
so that the voter can check that the ballot output by the voting device appears on the board.

After the voting phase, the ballots are tallied, and we must also verify that the result of the
tally actually corresponds to that of the counting function applied on the voting option encrypted
in the ballot box. This is the tallied-as-recorded verification. Usually, it is done using ZKP of
correct tally (see Section 2.3 for more details about ZKPs).

Finally, the last problem that remains is that of the eligibility : all counted ballot must come
from an eligible voter, and all eligible voter must have at most one counted ballot. For this
purpose, various authentication protocols may be used. In Helios, the voters directly prove their
eligibility to the server using an identity card or an authentication website. In other protocols,
they prove their eligibility to the registrars, who give them a credential in return, and only ballots
cast with a valid credential are counted.

Intuitively, cast-as-intended and recorded-as-cast are the two components of individual ver-
ifiability; however, they are not sufficient. Indeed, in the clash attack presented in [KTV12],
two voters perform those verifications, but one of them is prevented from voting. Overall, it is
difficult to construct a satisfying notion of verifiability from the verification of each step.

1.2.2 End-to-end verifiability

Many attempts were made to formalize the notion of verifiability (e.g., [Ben87, KRS10, KTV11]);
see [CGK+16] for a survey. A natural approach is to define verifiability as a whole. For in-
stance, [KTV11] proposes a generic framework where we can define a predicate γ on the execution
of the protocol. Intuitively, γ is a goal that the protocol must achieve, such as a formalization of
“the result is correct”. In this context, giving this exact goal that must be verified is the same as

20

1.2. Addressing verifiability

giving a definition of verifiability: if γ is a goal, a voting scheme is verifiable with respect to γ
if, whenever Verify(PB,Π, r) outputs 1, γ is satisfied with overwhelming probability. A straight-
forward way to satisfy this definition would be to have Verify always output 0. Therefore, it is
also required that Tally and Verify must be consistent: for all public board PB, if (r,Π) is the
output of Tally(PB, {si}), then Verify(PB,Π, r) = 1. Other similar requirements may be used;
for instance, we may require that Verify outputs 1, but only for honestly generated public board,
or accept that it might output 0 with some negligible probability.

In related works (e.g., [KTV10b, KTV12, KTV14]), a specific verifiability goal is defined with
respect to a parameter k: intuitively, γk (given by Definition 1) is satisfied when the adversary
can cheat for at most k ballots. This gives Definition 2, which can be seen as a formalization of
end-to-end verifiability: the final result is compared to what is obtained from the choices of the
voters. The main weakness of this definition is that it allows an adversary to change arbitrarily
the vote of up to k honest voters, and therefore submit k more ballots than there are corrupted
voters. In addition, it is not necessarily clear which values of k are acceptable: k = 0 would be
ideal but too strong since it typically requires that every voter checks their vote; on the other
hand, if k is the number of honest voter, then the corresponding notion of verifiability is too
weak.

Definition 1 ([KTV11]). Let n be the number of voters and nH be the number of honest voters.
Let ν1, · · · , νnH be the choices of the honest voters and r the result of the election. Recall that
V denotes the set of all possible voting options while count denotes the counting function. The
goal γk is satisfied if there exists c̃1, · · · , c̃n ∈ V, which contains at least nH − k elements of the
multiset {{ν1, · · · , νnH}}, such that r = count(c̃1, · · · , c̃n).

Definition 2 (k-verifiability). Let k be some integer. We say that a voting protocol is k-verifiable
if, for all execution of the protocol such that Verify(PB,Π, r) = 1, γk is satisfied with overwhelming
probability.

An alternative to this definition is given in [CGGI14], in which the authors divide the voters
into three subsets: first, the happy voters are the honest voters who submitted a ballot and
successfully checked that it was added to the board (i.e. they ran the Check protocol, which
returned 1); second, the lazy voters are the honest voters who submitted a ballot, but did not
check; finally, the corrupted voters are under the control of the adversary. To model the execution
of a voting protocol, three game-based definitions are given. In the first, the registrars are honest
and the server is malicious; in the second, the server is honest and the registrars are malicious;
in the third, the registrars and the server are honest. (In the paper, one can read “dishonest
bulletin board”; this refers to the server and not the public board, which is supposed honest.)

Generally, the registrars are trusted as a group (but some may be corrupted) and the server
is untrusted. Therefore, we present the first game in Fig. 2 and refer to [CGGI14] for the others.
This game can be read as follows. First, the setup takes place at line 1 and a public encryption
key is generated. Then, to express that the verifiability must hold for any number of voters n,
we let the adversary choose n at line 2 (in reality, the number of voters is fixed by the election
authorities, before the setup phase). However, we want n to be at most polynomial in λ, therefore
we ask the adversary to write n using sticks, hence the notation 1n (one operation is required
per voter). Afterwards, the registration takes place at line 3 and a credential is generated for
each voter. After the registration, the adversary can produce an arbitrary public board PB, an
arbitrary result r and a transcript Π, with the restriction that Verify(PB,Π, r) = 1. For this
purpose, it can make queries to the oracles Ocorrupt (which corrupts a voter) and Ovote. The
latter keeps three tables HV, L and Checked updated: HVid represents the last voting chosen by

21

Chapter 1. Security in electronic voting

Expverb(λ, nT , t,A)
1 pk, sk, (hi, si)

nT
i=1,Π

S ← Setup(λ, nT , t);
2 1n ←− A(pk,ΠS);
3 (ci, πi)

n
i=1,Π

R ← Register(pk, n);
4 CU ←− ∅;
5 for i = 1 to n do
6 HVi ←− ⊥; Li ←− ⊥; Checkedi ←− 0;

7 (PB, r,Π)←− AOcorrupt,Ovote(ΠR, {si, i ∈ [1, nT]});
8 AOcheck ;
9 if Verify(PB,Π, r) = 0 then return 0;

10 if ∃ L ⊂ {{(i,HVi) | i ̸∈ CU ,Checkedi ̸= 1,HVi ̸= ⊥}},
∃C such that | |C| ≤ |CU| and
r = count({{(i,HVi) | i ̸∈ CU ,Checkedi = 1}}

⊎
L
⊎
C)

then return 0 else return 1;

Ocorrupt(id)

1 CU ←− CU
⋃
{id};

2 return cid;

Ovote(id, ν)

1 B ←− Votepk(ν, cid);
2 HVid ←− ν;
3 Li ←− B;
4 Checkedid ←− 0;
5 return B;

Ocheck(id)

1 Checkedid ←
Check(ν, cid, Lid,PB)

Figure 2: Definition of end-to-end verifiability [CGGI14]

the honest voter id, Lid is the corresponding encrypted ballot and Checkedid is either equal to 1
when the voter successfully performed the Check procedure, or 0. In the paper, it is not clear
when the voter is supposed to check. To address this, we added an oracle Ocheck which allows the
adversary to have a voter initiate this procedure. When the adversary calls Ovote, it gets back the
ballot produced by the honest voter. Since the adversary creates arbitrarily the public board, it
can decide to add it to the board or not. Finally, verifiability is achieved if r = tally(H

⊎
L
⊎
C),

where H is the multiset of the options chosen by the happy voters, L is included in the multiset
of the options chosen by the lazy voters and C is a multiset of options whose size is at most the
number of corrupted voters.

Definition 3. A voting scheme (Setup,Register,Vote,Check,Valid,Tally,Verify) is end-to-end
verifiable against a malicious server if, for all PPT adversary A, for all nT and t < nT , the
probability Pr(Expverb(λ, nT , t,A) = 1) is negligible in λ.

In verifiability definitions, it may be preferable to consider fully corrupted talliers, but the
definition could easily be adapted by letting the adversary output the result of the setup phase.
Another remark is that this definition assumes a perfect registration phase, where the corrupted
registrars cannot learn the voters’ credentials, nor interfere with their generation. In electronic
voting, we consider this as a reasonable assumption, and distributed key generation schemes can
be used to achieve this (for instance, Civitas [CCM08] gives a detailed registration phase in the
context of coercion-resistance).

Compared to Definition 2, this does not allow the adversary to cast more ballots than there
are corrupted voters. In addition, this gives a comprehensive description of the number of ballots
that can be tempered with: the adversary can drop the ballots of the lazy voters, but not change
their content. Nevertheless, remark that the definition is hard to verify when revoting is allowed.
Indeed, if a lazy voter vote twice, the adversary can drop the second ballot and have the first
one be counted instead, which is a winning condition. Consequently, when revoting is allowed, it
may be necessary to adapt the definition to allow the adversary to have up to one ballot cast by
the lazy voters counted, instead of either the last one or nothing. In any case, the main problem
with Definition 3 is that it assumes that the voters check after the voting phase, and not right

22

1.3. Four notions of privacy

after casting their ballot. In addition to being arguably less user-friendly, this is actually not
ideal, as additional issues may occur in case of a dispute. By contrast, if the voter can check
during the voting phase, then it is still possible to revote when an error is detected.

1.3 Four notions of privacy

The main reason why verifiability is hard to achieve is because we also want privacy. Numerous
concurrent definitions of vote privacy can be found in the literature, which illustrates that this
notion is difficult to formalize. In this section, to take into account the possibility for identity
dependent tally functions, we consider generic result functions tally : (I × V)∗ → R instead of
counting functions.

1.3.1 Vote swapping and Benaloh privacy

An usual way to define privacy is by the mean of vote swapping. Suppose that, whenever two
voters swap their votes, the adversary cannot detect the difference. Then, intuitively, it cannot
learn Alice’s vote, since Bob might as well be the one who cast it (while Alice casts Bob’s vote).
This idea is used to defined privacy in formal methods, for instance in [DKR09]. However, it is
slightly too restrictive. In his PhD thesis [Ben87], Benaloh presents a more generic definition.
In this definition, the choices of the honest voters define a sequence V0 or V1, where V0 and V1

contain elements of the form (id, ν) ∈ I × V, such that tally(V0) = tally(V1). Then, the goal of
the adversary is to guess whether the honest voters voting according to the sequence V0 or V1.
More formally, we give Definition 4, which is a modern restatement of Benaloh’s definition.

Definition 4. A voting system (Setup,Register,Vote,Check,Valid,Tally,Verify) for a result func-
tion tally is Benaloh-private if, for all nT and t < nT , for all PPT adversary A, the advantage
|Pr(BenPriv(λ, nT , t,A) = 1)− 1/2| is negligible in λ.

Definition 4 is based on the game presented in Fig. 3, which can be read as follows. First,
the setup takes place, which generates a public key pk and a transcript ΠS. Afterwards, the
credentials (ci)

n
i=1 are generated following the specifications of the voting system. Then the

adversary is given the possibility to corrupt a subset of voters, denoted A, after which two
possible votes, V0

i and V 1
i , are declared for each voter i. Also, we flip a random coin and denote

b ∈ {0, 1} the result. Then the adversary gets the credentials of the corrupted voters and is given
access to the oracles OvoteLR and Ocast. The query to OvoteLR(i, ν0, ν1) returns a honest ballot
B from voter i, which encrypts the option ν0 (when b = 0) or ν1 (when b = 1). In any case,
this oracle modifies both V0

i and V1
i , and B is added to the board (this assumes that a ballot

obtained with Votepk is always valid). As for the oracle Ocast, it allows the adversary to submit
an arbitrary ballot to the ballot box (provided that it is valid). After the voting phase, we check
that the multisets formed by the V0

i ’s and the V1
i ’s give the same partial result, otherwise we

abort the game. Since we consider the adversary’s advantage, we abort by returning the random
bit b which leads to an advantage of 0 in this case. We do not abort with 0 because it is much
more convenient to use an absolute value when defining the advantage: suppose that there is
an adversary which often makes the wrong guess; then the adversary which makes the opposite
guess would often be right. Finally, at the end of the game, the adversary must guess the value
of b given the output of the Tally protocol.

This definition has several limitations. First, it does not account for individual verifiability,
as the votes are automatically added to the board. In general, any attack against individual ver-
ifiability would break privacy, as already mentioned in Section 1.1.4. However, it is common not

23

Chapter 1. Security in electronic voting

BenPriv(λ, nT , t,A)
1 pk, sk, (hi, si)

nT
i=1,Π

S ← Setup(λ, nT , t);
2 1n ←− A(pk,ΠS);
3 (ci, πi)

n
i=1,Π

R ← Register(pk, n);
4 PB←− ΠS||ΠR;
5 A←− A(PB);
6 for i = 1 to n do
7 V0

i ← ⊥; V1
i ← ⊥;

8 b
$←− {0, 1};

9 AOvoteLR,Ocast({ci | i ∈ A});
10 if tally({{V0

i | i ̸∈ A;V0
i ̸= ⊥}}) ̸=

tally({{V1
i | i ̸∈ A;V1

i ̸= ⊥}})
then return b;

11 r,Π←− Tally(PB, {si});
12 b′ ←− A(r,Π);
13 if b′ = b then return 1 else return 0;

OvoteLR(i, ν0, ν1)

1 if i ̸∈ A and ν0, ν1 ∈ V then
2 V0

i ← (i, ν0);
3 V1

i ← (i, ν1);
4 B ←− Votepk(νb, ci);
5 PB←− PB||B;
6 return B;

Ocast(B)

1 if Valid(B,PB) then
2 PB←− PB||B;

Figure 3: Benaloh’s definition of privacy

to consider those attacks in the privacy definition, and to assess the verifiability independently.
More generally, it appears that this definition actually assumes a somewhat honest server, while
the server is usually supposed malicious in electronic voting. Indeed, not only is the adversary
unable to drop or replace ballots, but it is also unable to add invalid ballots in the public board.
This is because an invalid ballot would be detected by the auditors, so that it is more convenient
to abstract away this possibility in the definition. On the other hand, remark that the adversary
can cast any valid ballot without any restriction, while normally one would have to authenticate
oneself to the server to be able to cast a ballot.

A second limitation is that this definition does not allow to model corrupted talliers or
registrars, since the adversary is not activated during the corresponding phases. In general, the
registrars are trusted as a group, and it is common in electronic voting to consider a perfect
registration, as already discussed in Section 1.2.2. As for the talliers, the most popular trust
assumption is that up to t talliers may be corrupted, while at least t+1 secret shares are necessary
to recover the decryption key. For most tally protocols, the role of the talliers is very restricted
and well understood, and a threshold decryption scheme or a decryption mixnet prevents a
malicious tallier from learning anything else than the result. Therefore, it is also common in
privacy definitions to consider a perfect tally.

While the aforementioned issues are interesting to mention, they are very common in elec-
tronic voting. A more significant limitation is that this definition does not cover every counting
functions. For instance, suppose that there are two candidates, A and B, so that the voting
options are V = {A,B}. In this setting, consider the majority counting function, with the pos-
sible results R = {A,B}, where A wins in case of an equality. Then the adversary can choose
V0 = {{(1, A), (2, B)}} and V1 = {{(1, A), (2, A)}}, which indeed have the same tally (A wins in
both cases). However, when adding a ballot in favor of B, the adversary makes B win in the
first case while A still wins in the other. Therefore, when the majority function is used, a voting
system can never be Benaloh-private. In fact, the notion of Benaloh-privacy only makes sense
when the counting function has the partial tally property, which is introduced in Section 1.1.2.

24

1.3. Four notions of privacy

Algorithm 1: Exps-cons(λ,A)
1 pk, sk, (hi, si)

nT
i=1,Π← Setup(λ, nT , t);

2 B ←− A(pk,Π);
3 PB←− ∅;
4 for B ∈ B do
5 if Valid(B,PB) = 1 then PB← PB||B;

6 r,_←− Tally(PB, {si});
7 if r ̸= tally((Extractsk(B))B∈PB) then

return 1 else return 0;

Algorithm 2: Exps-corr(λ,A)
1 pk, sk, (hi, si)

nT
i=1,Π← Setup(λ, nT , t);

2 id, ν,B ←− A(pk,Π);
3 if (id, ν) ̸∈ (I × V) then
4 return 0

5 PB←− Π||B;
6 B ←− Votepk(ν, id);
7 if Valid(B,PB) = 0 then return 1

else return 0;

1.3.2 Ballot privacy and ideal tally

When the counting function has partial tally, Benaloh’s definition is perfectly suitable and easy
to use; however, it does not apply to tally functions which do not have partial tally. In an effort
to capture more attacks and to cover more cases, [BCG+15b] gives a definition based on ballot
privacy. Intuitively, a voting system is ballot private if no information about the voting options
chosen by the honest voters can be inferred by observing and submitting ballots. Consequently,
in a ballot private voting system, the only information that the adversary has is the result of the
tally, which is considered unavoidable. To define ballot privacy more formally, we first introduce
the notions of strong consistency and strong correctness, which describe two assumptions on the
voting system. For this purpose, we use the conventions of [BCG+15b], where the authors do not
consider the registration phase: eligibility and authentication is considered to be taken care of
in an independent way. Consequently, their voting process takes as arguments the voting option
ν and the identity id instead of the voting option and the credential. (In general, the identity –
or alternatively an alias – can be a part of the credential.)

Strong consistency. A voting system typically provides a Tally protocol that computes
a result from the encrypted ballots. On the other hand, a counting function also computes a
result, but directly from the voting options. Consequently, it is important to make sure that
the Tally protocol actually outputs the same result as the tally function, when applied to the
voting options chosen by the voters. This is called correctness. In [BCG+15b], this is captured
by the notion of strong consistency, defined in Definition 5. Compared to the natural notion of
correctness, it is required that the Tally protocol is correct, even if the public board was created
maliciously.

Definition 5. A voting system (Setup,Register,Vote,Check,Valid,Tally,Verify) for a result func-
tion tally : (I × V)∗ −→ R has strong consistency if there exists an Extract algorithm such that,
for all key pair (pk, sk), for all (id, ν) ∈ (I×V), Extractsk(Votepk(ν, id)) = (id, ν). In addition, for
all PPT adversary A, the probability that Exps-cons(λ,A) = 1 is negligible in λ, where Exps-cons

is defined in Algorithm 1.

Strong correctness. Another desirable property, which we already used implicitly in Sec-
tion 1.3.1, is that the Vote and Valid algorithms must be consistent. Namely, if a honest voter
produces a ballot B using Vote, then Valid(B,PB) should output 1 independently of the public
board. In [BCG+15b], this is captured by strong correctness, defined in Definition 6.

Definition 6. A voting system (Setup,Register,Vote,Check,Valid,Tally,Verify) for a result func-
tion tally : (I ×V)∗ −→ R has strong correctness if, for all PPT adversary A, the probability that
Exps-corr(λ,A) = 1 is negligible in λ, where Exps-cons is defined in Algorithm 2.

25

Chapter 1. Security in electronic voting

Ballot privacy. Strong correctness and strong consistency are two desirable properties
that any voting system should verify. However, they tell nothing about privacy. This notion is
captured by ballot privacy, given in Definition 7. This definition is based on the BPRIV game,
depicted in Fig. 4, where the adversary has access to the oracles OvoteLR,Ocast,Oboard. The idea is
that there are two concurrent public boards, PB0 and PB1. Depending on the value of a random
coin b, the adversary can only see one of them. OvoteLR(id, ν0, ν1) allows the adversary to have
the voter id submit a ballot for the voting option ν0 (resp. ν1) in PB0 (resp. PB1); while Ocast(B)
allows the adversary to cast the ballot B in both boards. However, B must be valid with respect
to the current board PBb. Note that this leads to a definition glitch, as the adversary may be
able to insert invalid ballots in PB0 when b = 1. For instance, consider a Tally protocol that
aborts (i.e. returns r = ⊥ and Π = ∅) if there is an invalid ballot on the board, and suppose
that the Valid algorithm checks that the first bit of the ballot is 0. If not, it checks whether
the second bit of the ballot is equal to the XOR of all the bits on the board, and rejects the
ballot if this is not the case (in addition, it performs the usual operations, such as verifying the
ZKPs and weeding). Suppose that the Vote algorithm always result in ballots that begin with
two zero bits, so that strong correctness is preserved. Then the adversary can use this algorithm
to produce a valid ballot but replace the first bit by 1, and the second by the XOR of all the bits
of PBb. With high probability, when b = 1, this ballot is valid in PBb but not in PB0, therefore
causing the Tally protocol to abort. On the other hand, when b = 0, a valid ballot in PBb will
not cause an abortion. A possible fix to this issue would be to check that the cast ballots are
valid in both boards instead of just PBb. However, this needs a careful analysis of whether the
remaining properties are preserved, so that we prefer to present the original version instead of
the “fixed” one.

In ballot privacy, the goal of the adversary is to guess the value of b. Intuitively, this corre-
sponds to distinguishing the case where the honest voters voted for two arbitrary sequences of
voting options, that just have the same length and are no longer restricted to having the same
partial tally. Since the result of the tally would a priori leak which distribution was used, we
always give the adversary the result obtained from PB0. To express the fact that the Tally process
itself could leak some information, we also demand that there exists a PPT simulator SimProof
which is able to simulate the transcript of the tally. In general, the usual verifiability mecha-
nism prevents the talliers from forging a fake tally, which means that SimProof must somehow
subvert the verifications performed by the adversary. For this purpose, it is allowed to interact
with it in the random oracle model (see Section 2.3.4 for more details about non-interactive
zero-knowledge proofs). In addition, if we consider that the transcript of the tally contains some
partial decryptions (which are not ZKP), the simulator must also simulate them, which means
that it needs the secret shares of the corrupted talliers. (See for instance Theorem 1 to see
how to simulate the partial decryptions in the specific case of a honestly generated ElGamal
encryption.) In the original definition, the secret key is not shared between several talliers, so
that there is a single tallier which is considered honest. We feel that this is a bit restrictive,
as it is common in electronic voting to distribute the key among several authorities. Therefore,
we took the liberty to modify the definition a bit: in Definition 7, there can be several trusties
but they are all considered honest. A similar modification was done in [BPW12, Definition 5],
in the specific case where the threshold t is equal to the number of talliers minus 1 (i.e. all the
talliers need to collaborate in order to decrypt). The intuition behind this simulator which can
magically recover the shares of the corrupted participants is that the transcript Π, output by
Tally along with the result r, does not contain any useful information that can be exploited by
the adversary. Indeed, the latter might have produced Π itself using SimProof. This paradigm
is a fundamental notion in ZKP, which are the subject of Section 2.3.

26

1.3. Four notions of privacy

BPRIV(λ,A)
1 pk, sk, (hi, si)

nT
i=1,Π←− Setup(λ, nT , t);

2 PB0 ←− Π; PB1 ←− Π;

3 b
$←− {0, 1};

4 AOvoteLR,Ocast,Oboard(pk);
5 r,Π0 ←− Tally(PB0, {si});
6 Π1 ←− SimProof(PB1, r);
7 b′ ←− A(r,Πb);
8 if b = b′ then return 1;
9 else return 0;

OvoteLR(id, ν0, ν1)

1 B0 ← Votepk(ν0, id), B1 ← Votepk(ν1, id);
2 PB0 ← PB0||B0; PB1 ← PB1||B1;

Ocast(B)

1 if Valid(B,PBb) = 1 then
2 PB0 ← PB0||B; PB1 ← PB1||B;

Oboard()

1 return PBb;

Figure 4: Ballot privacy game

Definition 7. A strongly consistent and strongly correct voting system (Setup,Register,Vote,
Check,Valid,Tally,Verify) for a result function tally has ballot privacy if there exists an algorithm
SimProof s.t. for all PPT A, the advantage |Pr(BPRIV(λ,A) = 1)− 1/2| is negligible in λ.

Interestingly, remark that although we said that strong correctness and strong consistency
were unrelated to privacy, they are actually required in Definition 7. Indeed, consider a “normal”
tally function which returns the number of votes for each candidate, and a Tally protocol which
has correctness (i.e. the output r,Π is such that r is the same as the output of tally when Tally
is applied to honestly generated ballots) but not strong consistency. Then there is no guarantee
about what the output of Tally should be when the board contains maliciously generated ballots.
In particular, Tally could output a list of elements of the form (name : vote), which would
intuitively break privacy. However, since the adversary only learns the tally of the left world
(when b = 0), this does not help when it comes to attacking ballot privacy. For this reason, it
is required that the voting system has strong consistency. Also, strong correctness is required to
make sure that OvoteLR does not result in any invalid ballot being added to a board.

Compared to Benaloh’s definition, ballot privacy is not restricted to any specific result func-
tion. Although [BCG+15b] does not consider the registration, it is possible to adapt their defi-
nition to add a registration phase and credentials. Another advantage of their definition is that,
when it is verified, then the voting protocol is proven to be equivalent to an ideal functionality
which returns the output of the result function, evaluated on the choices made by the voters.
This result uses an universally composable framework, as the one presented in Section 3.3.

The notion of ballot privacy has a lot of advantages, but still implies some limitations. First,
it is fairly difficult to understand, to use and to adapt. Second, it assumes a honest public board,
as this is often the case in electronic voting (see [CLW20] for an attempt to define ballot privacy
against a malicious board). However, the most prominent limitation is that it assumes a perfect
tally, where the adversary is not activated. Nevertheless, for a result function with no partial
tally, the usual strategies to compute the tally, namely homomorphic tally and mixnets, cannot
be used. Therefore, the tally protocol could be complex and it is no longer justified to consider
a perfect tally. Yet, in ballot privacy, the adversary must decide if a public board PBb is the real
board or not. Since Tally requires the public board as an input, the adversary would trivially
win the game if it could impersonate a tallier.

27

Chapter 1. Security in electronic voting

1.3.3 A quantitative definition of privacy

In most definitions of privacy, we abstract away the information given by the result of the election.
For instance, Benaloh’s definition asks for the two multisets V0 and V1 to yield the same partial
result. As for ballot privacy, it states that the adversary has no more information than that of the
result. However, the result itself can already contain a lot of information. As an example, if there
are two new votes for a right-wing party after a couple arrived in a small left-wing village, then
the villagers can deduce the political orientation of the couple. Consequently, a complementary
approach to qualitative privacy is to quantify the actual level of privacy provided by a protocol.
This is the approach of [KTV11], which gives a generic framework for this purpose.

In their framework, the participants are modeled as interactive Turing machines (ITM), and
the voting protocol as a whole is modeled as a concurrent execution of the participants. This
is an extremely generic approach, which can be applied to any voting protocol, with any trust
assumption, without any assumption on the counting function. For instance, this allows to
properly take into account the presence of corrupted authorities or to introduce a malicious
public board. The honest participants are merged into a single process e, which depends on a
parameter −→p that represents the probability for each voting option to be chosen. Concretely,
if there are three voting options, −→p is a vector of three positive reals whose sum is 1. (To
simplify, we include abstention into the possible voting options.) If a voting protocol is the
description of all the honest participants as ITM, then e can be seen as a subset of the protocol
which determines the honest participants in an instantiation of the protocol. In addition to the
honest participants (which can include the voters, the talliers, the registrars or any additional
authority), there is one specific voter (say, Alice) which is not corrupted but not included in e;
instead, she is considered under observation. For a given voting option ν, we use the notation
πv(ν) to denote Alice’s algorithm (which is the same as the other honest voters, except that she
always chooses the option ν). In [KTV11], the goal of the adversary is to guess Alice’s behavior.
In this paper, the adversary (denoted πo) is an arbitrary process which can impersonate the
participants other than Alice and the honest ones. As such, the adversary can deviate from the
protocol. With these notations, the execution of a voting protocol is denoted πo||πv(ν)||e, where
|| stands for the concurrent execution. For such an execution, we only consider the output of the
adversary. When the latter is 1, we use the notation πo||πv(ν)||e 7→ 1. We are now ready to give
Definition 8, extracted from [KTV11].

Definition 8. Let P be a voting protocol, πv ∈ P a voter under observation and e ⊂ (P\{πv}) a
set of honest participants. For δ ∈ [0, 1], we say that e achieves δ-privacy if, for all PPT adversary
πo, for all voting options ν0, ν1, the difference |Pr(πo||πv(ν0)||e 7→ 1)− Pr(πo||πv(ν1)||e 7→ 1)| is
δ-bounded.

A first remark is that δ-privacy is defined with respect to a set e of honest participants. If one
wants the privacy level of a given protocol under a specific set of trust assumptions, one should
find a δ such that, for any e compatible with the trust assumptions, e achieves δ-privacy. This
is tedious, as finding one relevant δ for a specific e is already difficult. Another remark is that,
even though this definition is very generic, it restricts privacy to guessing how a specific voter
voted, which is simplistic compared to the other definitions presented in this section. Finally,
it only gives a quantitative definition of privacy, which does not include a comprehensive way
to determine which value of δ is acceptable or not. Consequently, this gives a complementary
approach rather than a concurrent one.

28

1.3. Four notions of privacy

1.3.4 Our approach: comparing a real and an ideal process

In this thesis, we analyze the security of electronic voting systems which rely on complex tally
protocols. Hence, it is natural to use a notion of privacy that captures the possibility of corrupted
talliers, which is not possible in most existing game-based definitions (such as those presented
in Sections 1.3.1 and 1.3.2). An alternative is to use the approach of [KTV11], presented in
Section 1.3.3. However, while being able to quantify privacy is certainly of interest, we prefer
to give a qualitative definition which allows deciding whether a given protocol provides privacy
or not. In addition, describing the participants as ITMs is not a common practice in electronic
voting. Rather, a protocol is given for each phase. For this reason, we propose another approach,
which is closer to the usual game-based definitions. The idea is to compare the privacy level
of a voting system to that granted by an ideal functionality which collects the choices of the
voters (including the corrupted ones), evaluates the tally function and returns the result to the
adversary. To define the level of privacy, we used the idea of [KTV11]: the privacy level of a
protocol is given by the infimum of the δs for which the protocol provides δ-privacy.

To use this approach, we need to design two games to define the privacy of a voting protocol.
The first one, the ideal game, presents our model of privacy: it describes the winning conditions
of the adversary and the information it has access to. For instance, the adversary may know the
probability distribution for the voting options and learn the result of the election. In addition, it
may also learn the number of ballots cast, which can be deduced from the public board. This is
all modeled in the ideal game, which should remain as simple as possible. A not-quite-so-simple
example is given in Algorithm 4, where the adversary tries to guess Alice’s vote as in [KTV11].
Alice is modeled as the voter j, while the corrupted voters are modeled by the set A. In this ideal
game, we consider a fixed set [1, nC] of valid voting options (excluding abstention), and a family
of distributions B. For all set of aliases I and all number of possible voting options nC , B(I, nC)
is a random variable over (I × V)∗, with V = [1, nC]. Intuitively, the probability distribution of
B(I, nC) represents the probability that each possible sequence is chosen by the honest voters,
whose aliases are described in I. Since we only consider the finite sequences, there is a countable
number of possible outcomes so that we are still in the domain of discrete probabilities. We
assume that the adversary knows a perfect description of B, which is a generalization of the
assumptions made in [KTV11] where the distribution −→p is known. This generalization may
seem abusive since the adversary should only be able to handle information of polynomial size,
while a full description of B would technically require a countably infinite bitsize. To fix ideas,
the reader can consider that for each (I, nC), there are only a finite number of sequences that
can be chosen with a non-zero probability, which solves this technical issue. Remark that in the
ideal game, we do not let the adversary choose the number of voters n. This is because the ideal
game is to be compared to a real game, where the adversary cannot choose n lest it would always
make the most advantageous choice. Consequently, we ask that the probability to win in the
real game should be the same as in the ideal game, this for all possible parameters (including
n and B). Another remark is that in the ideal game, the adversary is given the sequence I
of the identity of the honest voters. This is because we consider that the votes are not cast
anonymously; however, it is possible to adapt the definition to consider an ideal game where the
votes are cast anonymously: in this case, the adversary is given |B| instead of I, where |B| is
the number of ballots cast by a honest voter.

Once the ideal game is defined, we need to design the real game, which should be as close as
possible to the real protocol. The description of the real game factors the trust assumptions, the
assumptions on the communication channels and, of course, the notion of privacy (which should
be the same as in the ideal game). In this thesis, we used the game defined in Algorithm 3,

29

Chapter 1. Security in electronic voting

Algorithm 3: RealPriv

Requires: λ, nT , Ct, n, nA, nC ,B,A
1 pk, sk, (hi, si)

nT
i=1,Π

S ← Setup(λ, nT , t);
2 (ci, πi),Π

R ←− Register(pk, n);
3 PB←− ΠS||ΠR;
4 A←− A(pk,PB, {si | i ∈ Ct});
5 j, ν0, ν1 ←− A({ci | i ∈ A});
6 (* chooses the voter to observe *);
7 if |A| ≠ nA ∨ j ̸∈ [1, n]\A then
8 return 0;

9 B
$←− B([1, n]\A,nC);

10 for (i, νi) ∈ B do
11 AOcast(i,PB);
12 PB←− PB||Votepk(νi, ci);

13 AOcast(i,PB, "end for");

14 b
$←− {0, 1};

15 PB←− PB||Votepk(νb, cj);
16 AOcast(PB);
17 r,Π←− TallyA(PB, {si});
18 b′ ←− A();
19 if ν0, ν1 ∈ [1, nC] ∧ b′ == b then

return 1 else return 0;

Algorithm 4: IdealPriv

Requires: λ, nT , Ct, n, nA, nC ,B,A
1 ;
2 ;
3 ;
4 A←− A(λ);
5 j, ν0, ν1 ←− A();
6 (* chooses the voter to observe *);
7 if |A| ≠ nA ∨ j ̸∈ [1, n]\A then
8 return 0;

9 B
$←− B([1, n]\(A

⋃
{j}), nC);

10 (ν)i∈A ←− A(I);
11 B ←− B||(i, νi)i∈A,νi∈[1,nC];
12 ;
13 ;

14 b
$←− {0, 1};

15 B ←− B||(j, νb);
16 ;
17 r ←− tally(B);
18 b′ ←− A(r);
19 if ν0, ν1 ∈ [1, nC] ∧ b′ == b then

return 1 else return 0;

Figure 5: Definition of privacy, λ is the security parameter, nT the number of talliers, t the
threshold, Ct the set of the corrupted talliers, n the number of voters, nA the number of corrupted
voters, nC the number of voting options (excluding abstention) and B the distribution.

which can be read as follows. First, the setup and the registration take place in an ideal way. As
discussed previously, this is a common abstraction which can be enforced with DKG protocols.
However, to take into account the possibility of a static corruption of up to t talliers, where t is
the threshold, we give the secret shares of the corrupted talliers to the adversary at line 4. Since
we consider static corruption (and not dynamic corruption), we consider that the set Ct of the
corrupted talliers is fixed in advance, as a parameter of the privacy experiment. Afterwards, the
adversary must corrupt exactly nA voters and chooses a voter under observation j. For this voter,
it also chooses two possible voting options, ν0 and ν1. Then the honest voters vote according
to a distribution B and, thanks to an oracle access to Ocast, we let the adversary freely insert
any number of ballots between two ballots cast by a honest voter, provided that the ballots are
valid. To model the fact that the ballots are not sent anonymously, we give away the identity
of the voter to the adversary at line 12. Also, to express that the voter under observation could
revote a certain number of times, we include j as a possible identity for the honest voters at
line 9. Then the voter under observation (re)votes with either ν0 or ν1 and the adversary is
given a last opportunity to cast ballots; after this, the tally is computed with the Tally protocol,
during which the adversary can impersonate the corrupted talliers. To emphasize the fact that
the adversary is active during the tally phase, we use the notation TallyA. Finally, the adversary
must guess whether ν0 or ν1 was chosen.

30

1.3. Four notions of privacy

Once the two games are defined, we define privacy by comparing the probability that the
adversary wins in both games. If the difference is non-negligible, it means that the cryptographic
protocol gave the adversary some information to exploit. On the other hand, if the difference
is negligible, then the adversary has no more information than in the ideal game, and we say
that the protocol is private. A critical point to understand is that we require the difference to
be negligible for all B. For some distribution (e.g., when all the voters choose the same option),
there may be no privacy at all; for others, it may be more difficult to determine Alice’s vote; in
any case, the privacy level of the real game should be the same as the one in the ideal game.

Definition 9. A voting system (Setup,Register,Vote,Check,Valid,Tally,Verify) for a result func-
tion tally guarantees vote privacy if, for all parameters nT , t, n, nA, nC with t < a and nA ≤ n,
for all subset C ⊂ [1, nT] of size at most t, for all familly of distributions B and for all PPT
adversary A, there exists a PPT adversary B and a negligible function µ such that

|Pr(RealPriv(λ, nT , Ct, n, nA, nC ,B,A) = 1)−Pr(IdealPriv(λ, nT , Ct, n, nA, nC ,B,B) = 1)| ≤ µ(λ).

1.3.5 Encountering a new definition: the survival manual

Numerous definitions of privacy can be found in the literature. Indeed, when one wants to prove
the privacy of a specific voting protocol, one may encounter several difficulties in adapting the
existing definitions to the specificities of their protocol. Typically, we defined a voting system as
a tuple (Setup,Register,Vote,Check,Valid,Tally,Verify), where Setup is assumed to use a secret
sharing scheme. However, other authors may want to abstract away registration; to divide the
Check algorithm into two (one for the cast-as-intended verification, the other for the recorded-
as-cast verification); to have the voters perform checks in several steps (for instance, by the
use of return codes); or to see the voting protocol as a more interactive process, which may
lead to several intermediate values being added to the board or exchanged through potentially
unsecure channels. Another example is coercion-resistance, which is the subject of Part III: in
this setting, we usually require an additional algorithm to produce a fake credential. In addition,
a protocol may want to specify the exact role of the server, and have several processes that can
be run in interaction with it, such as voter authentication. Therefore, it is common to design
one’s own definition of privacy. Conversely, a definition of privacy is often to be understood in
a protocol’s context, and, although there might be similarities, it is difficult to come up with a
generic definition that is actually usable. Therefore, it is important to have a good methodology
for encountering a new definition.

The most important thing to understand is what is actually being modeled. If this information
is not given by the authors, the reader should try to find out what the adversary must do to break
privacy, as defined in the definition. For this purpose, the comparison to existing definitions may
be useful. In Benaloh’s definition, the adversary must distinguish two distributions V0 and V1,
with the restriction that they must have the same partial tally; in ballot privacy, the adversary
must distinguish any two distributions of the same size; in Definition 9, the adversary tries to
guess whether a specific voter votes for the option ν0 or the option ν1. If the adversary’s goal does
not intuitively match breaking privacy, or seems too simplistic compared to existing definitions,
it is possible that the definition is not relevant or too restrictive. For instance, Definition 9 gives
a less refined notion of privacy compared to Benaloh’s definition or ballot privacy. However, it
is similar to the existing definition of [KTV11].

Understanding the model also means understanding the inlined assumptions and abstractions,
and whether they allow modeling the desired trust assumptions. Ideally, this should be discussed
by the authors, but it is important to verify that nothing was omitted. In ballot privacy, the

31

Chapter 1. Security in electronic voting

public board and the talliers are honest, the ballots are automatically added to the board and
the server is completely abstracted away. Also, registration is not considered, which means
that additional verifications must be done to ensure eligibility, otherwise privacy may be lost.
Clearly, this deviates from the desired trust assumptions where the server is malicious while
some registrars and up to a threshold of talliers may be corrupted. This is quite common in the
literature and we gave some justifications in Section 1.3.1.

Once the abstractions and simplifications are clear, the reader can compare them to usual
abstractions, see how they are justified and look for attacks that are prevented due to those
abstractions. In Definition 9, we have the same abstractions as in ballot privacy, except that
this definition considers corrupted talliers during the tally phase. In particular, we do not let
the adversary drop any ballot, which certainly prevents some attacks. Clearly, a server that
drops all but Alice’s ballot will deduce Alice’s choice from the result of the tally, but such an
attack would be prevented by the individual privacy mechanism. Nevertheless, other attacks
may be possible, depending on the protocol. As an example, consider the Helios voting system,
and assume that Alice casts the ballot B. Suppose that the server drops this ballot, but that
Alice detects it because individual verifiability is enforced. At this point, Alice will most likely
revote with another ballot that encrypts the same voting option. Indeed, she has no reason
to change her mind and the incident may have been caused by a network issue. Before that,
however, the server can submit B using a corrupted voter (so that this attack is still possible
when eligibility is enforced). At this point, B is valid and added to the board, so that the
server successfully performed a replay attack on Alice’s ballot. This specific attack can easily be
prevented by making the couple (id, B) non-malleable (see Section 2.3 for more details), but this
is not the case in Helios. A similar attack against Belenios is described in [BBMP21], where the
adversary is able to swap two revotes of the same voter, hence breaking individual verifiability.
This illustrates that some attacks may be missed because of the definition. To detect them, the
reader may try all known attacks, such as replay attacks or clash attacks, and try to push the
trust assumptions to the limits by considering a malicious server, some corrupted registrars and
voters, and up to a threshold of talliers that collude to learn Alice’s choice. Finally, an interesting
exercise to gain confidence about a definition is to look for systems that do and do not verify it.
The reader may use their own home-made systems, or known voting systems, to see if they are
private with respect to the considered definition.

To close this discussion, we comment on Definition 9, that we used in this thesis. We did
not use Benaloh’s definition because we consider several counting functions which did not have
partial tally (see Part II), and we did not use ballot privacy either because we wanted to allow
the adversary to impersonate the talliers during the tally phase. For these reasons, we came up
with Definition 9. In hindsight, this definition is more complex than ballot privacy and more
restrictive than Benaloh’s definition, so that it is far from being ideal. Creating a simple and
comprehensive definition of privacy that can apply to any counting function while still allowing
to take into account the corruption of up to a threshold of talliers would be an interesting future
work.

32

Chapter 2

Cryptography in electronic voting

The main difficulty in electronic voting is to provide privacy and verifiability simultaneously.
For this purpose, electronic voting protocols rely a lot on public key cryptography, especially on
homomorphic encryption and zero knowledge proofs. To better understand the remaining of this
thesis, it is necessary to have a look at the main cryptographic primitives used.

2.1 Computational assumptions in electronic voting

2.1.1 Algebraic notations for cryptography

In public key cryptography, it is common to use algebraic structures, such as rings or groups.
Technically, a group is a tuple (G, ·) while a ring is a tuple (R,+,×); however, it is common to
drop the composition laws when denoting a group or a ring. In this thesis, the only rings that we
consider are the ring of the integers Z and, for n > 1, the finite ring Zn of the integers modulo
n. For a ring R, the multiplicative group of its invertible elements is denoted R×. The monoid
of the non-negative integers is denoted N. For groups, we consider generic finite abelian groups
(for instance, elliptic curves). Although the convention for elliptic curves is to use an additive
notation, we use a multiplicative notation for all groups (the additive notation is only used for
ring elements).

Now, each group G has a structure of Z-module: for any integer n ∈ Z and a ∈ G, an is
obtained by composing n times the neutral element 1 with a (if n < 0, an = 1/a−n). This is
called an exponentiation. In particular, a0 = 1. (In some specific cases where there could be an
ambiguity, we use the notation 1G to denote the neutral element.) As we only consider finite
groups, this Z-module is actually a Zq-module, where q is the order of the group. In this case,
for any two integers a, b ∈ Z such that b is coprime with q, there exists an element c ∈ Z such
that a = bc modulo q. Hence, for any g ∈ G, ga/b can be defined as gc. In this thesis, we usually
consider cyclic groups of prime order, so that Zq is a field and any non-neutral element is a
generator. Given the above remark, it follows that such groups have the structure of a vector
space over Zq.

2.1.2 The decisional Diffie-Hellman assumption

As soon as one sees a vector space, one naturally wants to use the known effective results from
linear algebra. This is not possible because of the discrete logarithm problem. The latter consists,
given two group elements g, h ∈ G, to find an integer n such that gn = h. This problem is easy
in (Zq,+) (where what we denoted an exponentiation is actually a regular multiplication), and

33

Chapter 2. Cryptography in electronic voting

can be solved thanks to the extended Euclidean algorithm. However, it is hard in general. Two
related problems are the computational Diffie-Hellman and the decisional Diffie-Hellman (DDH)
problems. Given g, ga and gb, the first problem is to compute gab, and the second requires
to distinguish it from a random group element. In other words, given two vectors (g1, g2) and
(g3, g4) in the vector space G2, the DDH problem is to decide whether they are collinear or not.
When this is the case, we say that (g1, g2, g3, g4) is a DDH tuple. Clearly, the discrete logarithm
problem is harder than the computational Diffie-Hellman problem, which is harder than DDH.
Nevertheless, the DDH problem is widely considered hard in computer science: it is known to
require an exponentially large number of group operations in a generic group (see [Sho97]), and
there is currently no other algorithm than generic algorithms (e.g., Pollard’s rho) for well chosen
elliptic curves.

Given the hardness of the DDH problem in practice, one standard computational assumption
in cryptography is the DDH assumption, which can be formalized as follows. Let G be a process
that, given a security parameter λ, generates a group G (typically, the order of G is exponential
in λ). We suppose that this group and its elements can be efficiently represented (i.e. using
a number of bits which is polynomial in λ) and that its composition law, the group inversion
(i.e. computing the inverse g−1 of a group element g) and the random sampling are efficiently
computable (i.e. with polynomial-time algorithms). For instance, G can output an elliptic curve,
or a subgroup of the invertible elements of Zn. The DDH assumption on G states that, for all
PPT adversary A, A wins the DDH game (see Algorithm 5) with a negligible advantage. In the
DDH game, A gets a tuple (g1, g2, g3, g4) which is either perfectly uniform (b = 0) or a random
DDH tuple (b = 1). Given this tuple, A must deduce b.

Although the DDH problem is hard in general, it does not mean that it is hard for just any
G. For instance, suppose that for all λ, the order of G(λ) has a non-trivial factorization n = pq
with a polynomial p. Then, with probability 1/p the elements g1 and g3 of a DDH tuple will
be of order q while this only happens with probability 1/p2 for a random tuple. In this case,
computing gq1 and gq3 leads to a polynomial-time distinguisher that wins the DDH game with
a non-negligible advantage. For this reason, we generally consider groups of prime order. The
DDH assumption is the main computational assumption that we consider in this thesis.

Algorithm 5: DDH(G, λ,A)
1 G, q ←− G(λ) (* q is the order of the group *);

2 g1
$←− G;

3 a, b, c
$←− Zq;

4 g2 ← ga; g3 ← gb; g4 ← gc;

5 b
$←− {0, 1};

6 if b = 1 then g4 ←− gab;
7 b′ ←− A(g1, g2, g3, g4);
8 if b = b′ then return 1 else return 0;

2.1.3 The random oracle model

Apart from the DDH assumption, we also use an abstract model known as the programmable
random oracle model (ROM). A random oracle is an oracle ORO that, given a query m, returns
a perfectly random bitstring of fixed size (typically, 2λ, where λ is the security parameter).

34

2.1. Computational assumptions in electronic voting

However, if the query m was made previously, the oracle gives the same output as before (see
Algorithm 6). This allows to model the unpredictable nature of a hash function, whose outputs
can only be known by actually computing the hash. In the ROM, we give the adversary an oracle
access to ORO and, for any verification based on a result of a hash function, we use the output of
the random oracle instead. For instance, consider the game illustrated in Fig. 6, where Bob tries
to guess a random bit chosen by Alice. Bob does not trust Alice; hence, if he loses, he wants
her to provide a proof that her bit is actually different from his guess. Consequently, Alice must
first send a commitment on this bit, denoted h. For this purpose, she generates λ− 1 additional
random bits and forms the bitstring m, which is hashed into h, and sends that to Bob. Once Bob
receives Alice’s commitment, he sends her his guess and Alice has to reveal m. Bob then checks
that h = hash(m). Finally, Bob wins if m begins with his guess (denoted g ⪯ m); otherwise, he
loses.

Algorithm 6: ORO

Requires: λ, the security parameter
Variables: A hashmap H
Inputs: x, any bitstring

1 if x is a key of H then return the corresponding key H(x);
2 else

3 h
$←− {0, 1}2λ;

4 Add the key x in H with the value h;
5 return h;

To model this game in the ROM and make sure that Alice cannot cheat, we can use Algo-
rithm 7. In this game, Alice is modeled by the adversary A, but the hash function is replaced by
the random oracle. For this purpose, we give to Alice an access to the oracle ORO and we check
that h is the output of this oracle, when applied to m. In this model, it is possible to show that
Alice cannot cheat, i.e. that she cannot win with a non-negligible advantage. For this purpose,
we consider three possibilities.

Case 1. The first possibility is that, during her first activation, Alice did not make a query
to ORO which was answered by h. We denote α1 the probability of this. In this case, during the
second activation, each query to ORO has a probability of at most 1/22λ to be answered with h,
so the condition ORO(m) = h happens with probability εprei ≤ q/22λ, where q is the number of
oracle queries. We denote β1 the probability that Alice wins if ORO(m) = h in Case 1.

Case 2. The second possibility is that, during her first activation, Alice made at least two
different queries m1 ̸= m2 which were both answered with h. This is called a collision, which
happens with probability α2 ≤ 1 −

∏q−1
i=0 (1 − i/22λ). Since q = o(22λ), this probability is equal

to approximately q(q−1)
22λ+1 , which is why we consider that we need q ≈ 2λ hash queries to obtain a

collision: this is the birthday paradox. We denote β2 the probability that Alice wins in Case 2.
Case 3. The last possibility is that, during her first activation, Alice made a single query

m′ which was answered with h. Then, since g is chosen at random, g ⪯ m′ with probability 1/2.
Therefore, if Alice wants to win with some advantage, she must find a second preimage m of h,
which happens with probability εsnd-prei ≤ q/22λ. We denote α3 the probability of Case 3, and
β3 the probability that Alice wins if she finds a second preimage in Case 3.

Conclusion. Now, the three cases are mutually exclusive and cover all the possibilities,

35

Chapter 2. Cryptography in electronic voting

Alice Bob

m
$←− {0, 1}λ;

h←− hash(m)

h

g ∈ {0, 1}

m

g
?
⪯ m h

?
= hash(m)

Figure 6: Guess coin game

Algorithm 7: Bob(λ,A)
1 h←− AORO(λ);

2 g
$←− {0, 1}; b $←− {0, 1};

3 m←− AORO(g);
4 if ORO(m) ̸= h then return b;
5 if g ⪯ m then return 0 else return 1;

therefore Alice’s global probability to win is

p = α1

(
1

2
(1− εprei) + β1εprei

)
+ α2β2 + α3

(
1

2
(1− εsnd-prei) + β3εsnd-prei

)
.

Since α1 + α2 + α3 = 1, Alice advantage is∣∣∣∣p− 1

2

∣∣∣∣ = ∣∣∣∣α1

(
β1 −

1

2

)
εprei + α2

(
β2 −

1

2

)
+ α3

(
β3 −

1

2

)
εsnd-prei

∣∣∣∣
≤ 1

2
εprei +

1

2
α2 +

1

2
εsnd-prei

≤ q

22λ
+

q2

22λ+2
.

The above example shows that the ROM captures the three main properties of a hash func-
tion: first preimages, second preimages and collisions should be hard to find. Actually, the ROM
is even stronger than that. Indeed, consider an adversary A in the ROM. Then we can construct
an adversary B which interacts with A by simulating the random oracle (hence the programmable
adjective). Indeed, since A can only make black-box queries to ORO, this can be modeled as A
(seen as a PPT) writing a bitstring query in a specific tape, and reading the answer in some
other tape. Consequently, we can make the following assumptions:

• B can read the hash queries made by A;

• therefore, B can recover the preimages of a hash output by A;

• B can choose the output of the oracle, provided it is uniformly distributed for all the new
queries, and remains the same if the query is made several times.

The last assumption allows B to give trapdoored hash values to A. For instance, suppose that
every bitstring encodes a public key. Then, instead of generating random bitstring as expected,
B can generate a random secret key and deduce the corresponding public key. Therefore, B
will know the secret keys associated to the hash values produced by A. Compared to what is
expected from a hash function, the ROM can be considered too strong. More precisely, since
any hash function can be implemented by an efficient explicit algorithm, the notion of “random

36

2.2. Encrypting a ballot to preserve privacy

oracle” cannot be instantiated. Worse, an uncomfortable consequence is that some schemes can
be proven secure in the ROM while being completely insecure in the standard model (see for
instance [Nie02, CGH04]). Consequently, some authors prefer to only rely on the properties
of the hash function (i.e. collision resistance), and to use another assumption, known as the
common reference string (CRS) instead of the ROM. Although the CRS assumption is more
sensible than the ROM, the corresponding primitives are usually less efficient. Consequently, it
is extremely common to use the ROM in electronic voting.

2.2 Encrypting a ballot to preserve privacy

In electronic voting, an encryption scheme is used to preserve the privacy of the voters. Since
we want every voter to be able to encrypt their choice, while none should be able to decrypt the
ballot of the others, we use a public key encryption scheme. Also, since we do not want a single
authority to be able to recover the secret key and decrypt the ballots, we use a secret sharing
scheme and rely on threshold cryptography.

2.2.1 Public key encryption

In public key cryptography, a single person has a secret key sk while a public key pk can be
revealed to anyone. When it comes to encryption schemes, sk allows to decrypt and pk allows
to encrypt. More formally, given a security parameter λ, let S(λ) be the set of the secret keys
and P(λ) be the set of the public keys. Also, we denote P(λ) the set of the plaintexts, R(λ)
the set of the randomness and C (λ) the set of the ciphertexts. A public key encryption scheme
is a tuple (Gen,Enc,Dec) such that

• For all pk ∈ P(λ), there exists sk ∈ S(λ) such that, for all (m, r) ∈ P(λ) × R(λ),
Decsk(Encpk(m, r)) = m. Such a pair (pk, sk) is called a key pair.

• Gen(λ) is a non-deterministic polynomial algorithm that outputs a random key pair (pk, sk).

The encryption algorithm allows to encrypt a plaintext message into a ciphertext, using some
randomness. The idea is that a ciphertext should be indistinguishable from a random element of
C , which is captured by the IND-CPA property (given in Definition 10). This property stands
for indistinguishability under chosen plaintext attacks. It means that for two chosen messages
m0,m1, the adversary cannot tell an encryption of m0 from an encryption of m1.

Definition 10. An encryption scheme (Gen,Enc,Dec) is IND-CPA secure if, for all PPT ad-
versary A, A wins the IND-CPA game (defined in Algorithm 8) with a negligible probability.

Algorithm 8: IND-CPA(λ,A)
1 pk, sk←− Gen(λ);
2 m0,m1 ←− A(pk);

3 b
$←− {0, 1};

4 r
$←− R;

5 C ←− Encpk(mb, r);
6 b′ ←− A(C);
7 if b = b′ then return 1 else return 0;

Algorithm 9: Expind-cpa(λ,A)
1 pk, sk←− Gen(λ);
2 m←− A(pk);

3 b
$←− {0, 1};

4 r
$←− R;

5 C1 ←− Encpk(m, r); C0
$←− C ;

6 b′ ←− A(Cb);
7 if b = b′ then return 1 else return 0;

37

Chapter 2. Cryptography in electronic voting

To illustrate that the notion of IND-CPA security indeed captures that the ciphertexts are
indistinguishable from random ciphertexts, we also give Algorithm 9 which is another formulation
of the IND-CPA game. Suppose that there exists an adversary A which wins Expind-cpa with
some probability p. Then we construct an adversary B for the IND-CPA game as follows. First,
B gets pk from the game and forwards it to A which answers with some m. Then B must output
m0,m1 in the IND-CPA game. For this purpose, it samples m0 at random and sets m1 = m.
It is given a ciphertext C which it forwards to A. Finally, B plays A’s output in the IND-CPA
game. Clearly, B also wins with probability p. Conversely, suppose that there exists an adversary
A which wins the IND-CPA game with some probability p. We construct an adversary B for
Expind-cpa as follows. Just as in the previous reduction, B gets pk from the game and forwards
it to A. However, A now returns two plaintexts m0,m1 and B can only play one of them in
Expind-cpa. Consequently, B flips a coin c ∈ {0, 1} and play mc in Expind-cpa to get an encryption
C. B forwards C to A which answers with b′. If b′ = c, B returns 1; otherwise, it returns 0.
Now, suppose that B got a random encryption of mc (b = 1 in Expind-cpa). Then B played a
perfect simulation of the IND-CPA game to A, and therefore wins with the same probability p
as A. On the other hand, if B got a random element C ∈ C (b = 0 in Expind-cpa), A’s view (i.e.
pk, C) is perfectly independent from c, so that b′ = c with probability 1/2. Hence, B also wins
with probability 1/2. Now, since both situation are equiprobable, it follows that B wins with
probability 1/2(p+1/2), which gives the advantage 1/2|p−1/2| = ε/2, where ε is A’s advantage
in the IND-CPA game. This shows that both games are indeed equivalent.

The IND-CPA security is the minimal property that an encryption scheme must provide.
However, it is not sufficient in electronic voting. Indeed, suppose that a public-key encryption
scheme allows anyone, given an encryption C of some plaintext m, to forge an encryption C ′ ̸= C
for a (possibly unknown) plaintext m′ which is somehow related to m (for instance, m′ = m).
Such an encryption scheme would allow the adversary to launch a replay attack, which would
break privacy (see Section 1.1.4).

A more suitable notion of security for electronic voting is the stronger notion of NM-CPA
security, which stands for non-malleability under chosen plaintext attacks. Intuitively, this prop-
erty means that, given an encryption C⋆ of m1, one cannot produce an encryption C ′ ̸= C⋆

whose plaintext m′ is related to m1. To model a chosen plaintext attack, in this context, it is
usual to ask the adversary to choose the possibilities for the plaintext m1, which are represented
by the set M at line 2 of the NM-CPA game (see Algorithm 10). Alternatively, M can also
be seen a polynomial-time sampling (probabilisic) algorithm. From this set, the challenger ran-
domly samples an element m1 for which it produces an encryption C⋆. Then, to capture the
fact that the relationship between m1 and m′ could be any efficiently decidable relation R, we
let the adversary choose R at line 6. It must also output a list of ciphertexts C which contains
a ciphertext C ′ ̸= C⋆ such that R(m1,m

′) is more likely to be verified than R(m0,m
′), where

m′ = Decsk(C
′) while m0 is a random element in M . This gives Definition 11, which is adapted

from [BDPR98].

Definition 11. An encryption scheme (Gen,Enc,Dec) is NM-CPA secure if, for all PPT ad-
versary A, A wins the NM-CPA game (defined in Algorithm 10) with a negligible advantage.

A related but not equivalent security notion is the indistinguishability under adaptive cho-
sen ciphertext attacks (IND-CCA), which can be formalized in the IND-CCA game (see Algo-
rithm 11). In this game, the adversary has access to a decryption oracle ODec when it chooses the
plaintexts, and can also make queries to a decryption oracle ODec

⋆ when making its guess (how-
ever, ODec

⋆ cannot decrypt the challenge ciphertext C⋆). In [BDPR98], IND-CCA is proven to be

38

2.2. Encrypting a ballot to preserve privacy

Algorithm 10: Expnm-cpa(λ,A)
1 pk, sk←− Gen(λ);
2 M ←− A(pk);

3 m0,m1
$←−M ;

4 r
$←− R;

5 C⋆ ←− Encpk(m1, r);
6 R,C ←− A(C⋆);
7 m←− (Decsk(C))C∈C\C⋆ ;

8 b
$←− {0, 1};

9 if ∃m ∈m | R(mb,m) then return 1
10 else return 0;

Algorithm 11: Expind-cca(λ,A)
1 pk, sk←− Gen(λ);
2 m0,m1 ←− AODec(pk);

3 b
$←− {0, 1};

4 r
$←− R;

5 C⋆ ←− Encpk(mb, r);
6 b′ ←− AODec

⋆
(C⋆);

7 if b = b′ then return 1
8 else return 0;

strictly stronger than NM-CPA. Therefore, the IND-CCA security is also suitable for electronic
voting, although NM-CPA is enough.

2.2.2 The ElGamal encryption scheme

One very popular encryption scheme is the ElGamal cryptosystem. To present it, we consider
that the process G , which generates a group description from a security parameter, is fixed. If G
is a group which can be output by G (λ) for some λ, we use the notation G ∈ G . In this section,
for all G ∈ G , we consider that G is a cyclic group of (publicly) known prime order q, which
is at least exponential in λ. For instance, q ≈ 22λ in the case of elliptic curves. With that in
mind, the plaintext space is P = G, the randomness space is R = Zq and the ciphertext space
is C = G × G. Then, the three algorithms of the ElGamal encryption scheme are defined as
follows, where G = G (λ).

Gen(λ) picks a random group generator g ∈ G\{1} and a random secret key sk ∈ Zq. Then,
the public encryption key is given by the pair pk = (g, gsk).

Encpk(m,r) : to encrypt a plaintext m ∈ G with the public key pk = (g, h), we pick a
random r ∈ Zq and we compute (x, y) = (gr,mhr). The pair (x, y) is the ciphertext Encpk(m, r).

Decsk(C) : to decrypt a ciphertext C = (x, y), we return m = yx−sk.

The ElGamal encryption scheme is known to provide IND-CPA security under the DDH
assumption on G . Indeed, suppose that there exists an adversary A which wins the IND-CPA
game with probability p. We construct an adversary B for the DDH game as follows. First, B
receives a challenge tuple (g1, g2, g3, g4) ∈ G. If g1 = 1 (this happens with probability 1/q), B
can easily decide whether (g1, g2, g3, g4) is a DDH tuple or not, so that it wins with probability 1.
Otherwise, (g1, g2) has the same distribution as an output of Gen, therefore B can forward this to
A as the pair pk. The latter answers with some m0,m1 ∈ G. B flips a coin c ∈ {0, 1} at random
and compute the ciphertext C = (g3,mcg4) which it gives to A. Finally, if A outputs c, B outputs
1; otherwise, B outputs 0. Now, remark that when the challenge is a random tuple, A’s view
(i.e. (g1, g2, g3,mcg4)) is perfectly uniform in G4 and therefore independent from c. Therefore,
A outputs c with probability 1/2 and B wins with probability 1/2. On the other hand, if the
challenge is a DDH tuple, (g3,mcg4) follows the same distribution as an ElGamal encryption of
mc with the public key (g1, g2), therefore B played a perfect simulation of the IND-CPA game
to A and wins with probability p. Overall, when g1 ̸= 1, B wins with probability 1/2(p + 1/2).

39

Chapter 2. Cryptography in electronic voting

Since g1 = 1 with probability 1/q, B’s probability to win the DDH game is

1

q
+

1

2

(
1− 1

q

)(
p+

1

2

)
=

1

2

(
p+

1

2

)
+

3− 2p

4q
=

1

2
+

1

2

(
p− 1

2

)
+

3− 2p

4q
.

Since q is exponential in λ while p ∈ [0, 1], this means that B’s advantage in the DDH game
is about half A’s advantage in the IND-CPA game. Conversely, if there exists an adversary A
for the DDH game, we can easily construct an adversary which wins Expind-cpa with the same
probability. Therefore, the IND-CPA security of the ElGamal encryption scheme is equivalent
to the DDH assumption on G . Now, we mention that, in general, this equivalence requires that
the generator g from the public key pk = (g, h) is chosen at random: we explicitly used this
in the security reduction. For instance, assume that there is a non-trivial subgroup H ⊂ G for
which there is an efficient membership test, and that g is chosen in H. Then an encryption (x, y)
of m ∈ H will always have y ∈ H while an encryption of m ̸∈ H will never have y ̸∈ H. In
this case, the encryption scheme is not IND-CPA, even if the DDH problem is hard in G. In
practice, it is common to use a fixed g for convenience, since a group description usually comes
with a fixed generator. In this case, an alternative definition of DDH is used, where g1 is the
fixed generator output by G instead of a random group element. In theory, this is a strictly
stronger assumption, even when the order of the group is a known prime number (see [BMZ19]
for an analysis in the generic group model). In practice, although using a random generator
may protect against intensive precomputations, using a fixed generator is the norm and is not
considered less secure.

Homomorphic property. Apart from its strong semantic security, the ElGamal cryptosys-
tem has another interesting property: it actually realizes a group isomorphism from G × Zq to
G × G. Consequently, for all public key pk, for all plaintext messages m1,m2 ∈ G and for all
randomness r1, r2 ∈ Zq, we have

Encpk(m1, r1)Encpk(m2, r2) = Encpk(m1m2, r1 + r2).

This property is extremely useful in general, all the more so in electronic voting. Indeed, this
allows to use a strategy known as homomorphic tally (as seen in Section 1.1.3 when we presented
Helios). Suppose that there are two possible voting options, say yes or no. Then, given a fixed
generator a (typically, a = g or a = h), a yes vote can be encoded as the group element a while
a no vote is encoded into 1. Then, after that the voters submitted the encryptions C1, · · · , Cn,
it is possible to decrypt the product C1 · · ·Cn to recover a group element b. Finally, the discrete
logarithm of b in base a is equal to the number of voters who voted yes. Solving the discrete
logarithm problem for small n, even n ≈ 1010, can be done within a second using the baby-step,
giant-step algorithm [Sha71]; therefore, it is not a problem here.

More generally, given a generator a, the exponential ElGamal encryption of an integer n is
the ElGamal encryption of an. This gives an additively homomorphic encryption scheme, which
is useful in electronic voting. Its drawback is that n must be in a reasonably small interval for
the decryption to be possible; otherwise, solving the discrete logarithm problem becomes too
hard.

A direct consequence of the homomorphic property of the ElGamal encryption scheme is that
it is not NM-CPA secure. Indeed, given an encryption C of some (possibly unknown) plaintext
m, one can create another encryption C ′ ̸= C of m by multiplying C by any encryption of 1. This
is called reencryption (or rerandomization). Although the possibility to reencrypt is interesting,
it means that the ElGamal encryption scheme should never be used as it is in electronic voting:
it is not sufficient to provide privacy. In general, the voters also have to provide a proof of

40

2.2. Encrypting a ballot to preserve privacy

knowledge, which is a ZKP that they can open their ballot (see Section 2.3); a classical result
from [BPW12] shows that this provides NM-CPA security.

2.2.3 Threshold cryptography

In a public key encryption scheme, a single person holds the secret decryption key and is the only
one who is able to decrypt ciphertexts. However, in electronic voting, we try as much as possible
not to trust a single entity for a specific purpose. If an entity (e.g., the public board) is trusted,
it actually means that its behavior can be enforced in practice (e.g., using consensus algorithms).
Yet, it is not possible to prevent someone to decrypt publicly available ciphertexts if this person
holds the secret decryption key. Therefore, we use a strategy known as secret sharing, which was
introduced by Shamir.

Distributed key generation. In a distributed key generation (DKG) protocol, we consider
a group of nT participants and a threshold t. We want to share a secret sk ∈ Zq for some prime
number q, such that if t or less participants collude, they have no information about sk. However,
if t + 1 or more participants collaborate, they can recover the secret key. To achieve this with
any t < nT , we assume ideally authenticated private channels (i.e. no participant can send
a message in the name of another, and any two participants can exchange private messages).
Such channels can be obtained by the mean of symmetric cryptography, after that every pair of
participants performed a key exchange, e.g., using the classical sign-and-mac paradigm [Kra03].
This assumes that the participants are well identified, for instance by a public key.

A popular DKG protocol for the discrete logarithm setting is due to Pedersen [Ped91a], that
is illustrated in Fig. 7. In this protocol, the participants collectively choose a random polynomial
f =

∑nT
j=1 fj of degree t, by each choosing a random secret polynomial fj . Once f is (implicitly)

chosen, the secret key is sk = f(0), and every participant j has a share sj = f(j) of this secret.
Hence, using Lagrange polynomials, t+ 1 or more participants can recover the secret; however,
t or less shares contain no Shannon information about sk.

Note that in general, Step 1 and Step 2 are presented as a single step where the participants
broadcast their commitments ci,k. However, this allows the adversary to rig the distribution
of the public encryption key, as mentioned in [GJKR99]. Indeed, suppose – to begin with –
that the threshold t and the number of participants nT are such that t ≥ n/2. Suppose that,
by corrupting up to t participants, the adversary produces a situation where there is at most
t honest participants. Then it can proceeds as follows: first, choose the secret key sk; wait
for the other commitments to be published and, for a specific corrupted participant i, choose
ci,0 = gsk/

∏
j ̸=i cj,0; afterwards, for all honest participant j, choose si,j ∈ Zq at random and,

using Lagrange interpolation, compute the (ci,k)tk=0 so that gsi,j =
∏t

k=0 c
jk

i,j for all honest j. This
way, the adversary is undetectably able to choose the secret key, which is clearly undesirable.

The standard way to prevent the above attack is to ask for the participants to provide a
PoK (see Section 2.3.2) for their secret share si, and to abort if they are unable to do so. This
solution is preferable in practice because it requires less communications than using a round of
synchronization as suggested in Fig. 7. However, as mentioned in [GJKR99], it is still possible
for the adversary to (honestly) choose its polynomial after the other commitments are revealed,
compute the resulting pk and try over and over again until some specific pattern (i.e. the first
23 bits are 0) is met, hence preventing the public key to be uniformly random as required for
the security of the scheme. For this reason, we prefer to present this version of the DKG, in
which the adversary cannot temper with the distribution of the key without being detected and
blamed. Another difference compared to the original Pedersen’s DKG is that it does not provide
fairness: even if there are t+1 honest participants, the adversary can force the protocol to abort.

41

Chapter 2. Cryptography in electronic voting

1. Participant Pi chooses a random polynomial fi =
∑t

k=0 αi,kX
k ∈ Zq[X] and computes

the commitments ci,k = gαi,k for all k. Then Pi computes an aggregated commitment
bi = hash(ci,0|| · · · ||ci,t). Finally, Pi broadcasts bi.

2. Once all the participants have broadcast their bj , Pi broadcast ci,0, · · · , ci,t. It checks that
the commitments of the other participants are consistent with their aggregated commit-
ment, i.e. that bj = hash(cj,0|| · · · ||cj,t) for all j. If this is not the case for some j (including
i), the protocol aborts and j is blamed. Otherwise, for all j, Pi computes si,j = fi(j) and
privately sends this to Pj .

3. Upon receiving a share sj,i, Pi verify that gsj,i =
∏t

k=0 c
ik

j,k. If this is not the case, Pi

broadcasts a complain against Pj . The secret share of Pi is defined as si =
∑nT

j=0 sj,i.

4. If some Pj broadcasts a complain against Pi, Pi broadcasts si,j . If gsi,j ̸=
∏t

k=0 c
jk

i,k, the
protocol aborts and Pi is blamed.

5. The public key is defined as pk = (g, h), where h =
∏nT

j=0 cj,0. The secret key is de-
fined implicitly as sk = logg(h). The public commitment of Pi can be computed as
hi =

∏nT
j=0

∏t
k=0 c

ik

j,k. Finally, the transcript can be pk, (hi)
nT
i=1, signed by all the par-

ticipants.

Figure 7: Pedersen’s DKG (with abort), with a fixed generator g

However, we still have accountability: if the protocol aborts, at least one malicious participant
will be blamed. Therefore, this is considered acceptable in the context of electronic voting; all
the more so as the DKG takes place ahead of time, when there is no real incentive to produce a
result right away.

Threshold decryption. One very interesting property of Shamir’s secret sharing scheme is
that it allows the participants to implicitly use the secret key without ever explicitly recovering
it. This gives threshold cryptography, which consists of doing the polynomial interpolation
“in the exponent”. In electronic voting, the most commonly used protocol is that of threshold
decryption, which allows the participants to collectively decrypt an ElGamal cyphertext (x, y)
without learning anything about each other’s shares, nor about the secret key. The idea is that
each participant Pi broadcasts a partial decryption wi = xsi , where si is Pi’s share. To ensure
that the corrupted participants cannot cause the protocol to output an incorrect decryption, each
participant must also give a ZKP that wi is well-formed (with respect to the public commitment
hi = gsi of their share). Then, given a subset of size t+1 of participants whose ZKP is valid, xsk

is recovered using Lagrange polynomials. Similar protocols are available for threshold signature.
When a threshold decryption is available, we can define a threshold encryption scheme

(Setup,Enc,PartDec,Dec), where Setup is the algorithm obtained by running the DKG with
honest participants; Enc is the usual encryption algorithm; PartDec is an algorithm which takes
a ciphertext and a secret share and outputs the partial decryption of the ciphertext; and Dec
is an algorithm which allows to recombine the partial decryptions in order to recover the plain-
text. As stated above, a threshold decryption protocol does not explicitly recover the secret key.
Nevertheless, other information (such as the partial decryptions wi and the ZKP) are revealed
beside the result of the decryption. Therefore, it is important to assess whether this can be ex-
ploited by a PPT adversary or not, for instance to recover a share given sufficiently many partial

42

2.2. Encrypting a ballot to preserve privacy

decryptions. First, the ZKP are discussed in Section 2.3 and reveal no information except that
the partial decryptions are well-formed. However, given the public commitment hi of Pi’s share,
there is a single possibility for wi so that the well-formed partial decryptions actually contain
some information about the shares. More precisely, suppose that the adversary produces the
ciphertext (x, y) = (gr, hr) with some random r ∈ Zq. Then the partial decryption of (x, y) by
participant Pi is wi = hri , so that the adversary is able to distinguish wi from any other group
element. Nonetheless, the relationship between wi and x is the same as the one between hi
and g (i.e. logg(hi) = logx(wi) = si), therefore the intuition is that wi does not contain more
information than what was already contained in hi.

In general, to capture that something (e.g., wi) does not contain any useful information for
the adversary, we use the simulation paradigm: we construct a simulator that the adversary can
use to produce wi itself. Then, we argue that no adversary can spot the difference between the
real wi and the simulated one. The fact that the partial decryption in the ElGamal setting can
be simulated is a folklore result. However, we could not find a proper formulation of this, let
alone a proof. Since this is a folklore result, it must be stated (and proved) properly somewhere,
for instance in a cryptography course book. Nevertheless, the fact that we could not find it fast
enough means that it does not hurt to state it properly again in this thesis. In addition, there
are three conditions for the folklore simulator to succeed, listed below. If one condition is not
met, then the folklore simulator will fail and another one must be used (if any). In some cases,
this could represent a gap in the security proof, which may be an issue.

• The simulator must have access to the secret shares of the corrupted participants;

• The adversary must not know the secret key nor the share of a single honest participant;

• The ciphertext to decrypt must be honestly generated, and not chosen by the adversary.

To capture those conditions, we propose the notion of ZK-TCPA security, which stands
for zero knowledge of the threshold decryption protocol under chosen ciphertext attack (see
Definition 12). Intuitively, the ZK-TCPA security means that the threshold decryption protocol
does not give any additional information compared to the result of the decryption algorithm,
since the partial decryptions can be simulated.

Definition 12. We say that a threshold encryption scheme (Setup,Enc,PartDec,Dec) is ZK-
TCPA if there exists a simulator Sim such that, for all PPT adversary A, A wins the ZK-TCPA
game (defined in Algorithm 13) with a negligible advantage.

Definition 12 is based on the ZK-TCPA game, defined in Algorithm 13. In this game, the
DKG is ra honestly but the adversary can corrupt up to t talliers afterwards, and hence learn
their respective shares (recall that t + 1 shares are necessary to recover the secret key). Then
the adversary chooses an arbitrary plaintext m which is honestly encrypted into a ciphertext
C. Finally, the adversary is either given the partial decryptions of the honest participants, or a
simulation of them: it must decide which.

In Theorem 1, we claim that the ElGamal threshold encryption scheme is ZK-TCPA under the
DDH assumption. For this purpose, we exhibit an explicit simulator in Algorithm 12: given the
ciphertext (x, y), its decryption m, the set A of the corrupted participants and their corresponding
shares (si)i∈A, the adversary can compute SimnT ,t((x, y),m,A, (si)i∈A) to simulate the partial
decryption wi of each honest participant. In this algorithm, we denote Complete(A,nT) the
process which returns the set of the t+ 1− |A| first elements of [0, nT]\A (this always includes
0).

43

Chapter 2. Cryptography in electronic voting

Algorithm 12: SimnT ,t((x, y),m,A, (si)i∈A)

Requires: A ⊂ [1, nT] has size |A| ≤ t
1 S ←− A

⋃
Complete(A,nT);

2 for (i, j) ∈ ([1, nT]\A)× S do
3 ΛS

i,j ←−
∏

k∈S\{j}

i−k
j−k ;

4 w0 ←− y/m;
5 for i ∈ A do wi ←− xsi ;

6 for i ∈ S\(A
⋃
{0}) do wi

$←− G;

7 for i ∈ [1, nT]\S do wi ←−
∏
j∈S

w
ΛS
i,j

j ;

8 return (wi)i∈[1,nT]\A;

Algorithm 13: ExpZK-TCPA(λ,A)
1 pk, sk, (hi, si)

nT
i=1,Π← Setup(λ, nT , t);

2 A← A(pk, (hi)nT
i=1);

3 b
$←− {0, 1};

4 if |A| > t or A ̸⊂ [1, nT] then return b;
5 m←− A((si)i∈A);

6 r
$←− R;

7 C ←− Encpk(m, r);
8 S0 ←− SimnT ,t(C,m,A, (si)i∈A);
9 S1 ←− (PartDec(C, si))i ̸∈A;

10 b′ ←− A(C, Sb);
11 if b′ = b then return 1 else return 0;

Theorem 1. The threshold ElGamal encryption scheme is ZK-TCPA in the ROM and under
the DDH assumption.

The key idea is that there exists a polynomial f of degree t such that, for all participant i, the
secret key is si = f(i), and the corresponding partial decryption is wi = xsi , where (x, y) is the
ciphertext to decrypt. Since the simulator is given the shares of the corrupted participants, it can
deduce the corresponding partial decryption. In addition, as the simulator is given the plaintext
m = yx−sk, it can deduce w0 = xsk = xf(0). This gives the simulator at most t+1 constraints to
respect. Hence, using Lagrange interpolation, it can produce a fake partial decryption wj = xg(j)

for all j, where g is a random polynomial of degree t such that g(i) = f(i) for all corrupted i
and for i = 0. Note that this only produces a computationally indistinguishable tuple, and not
the exact partial decryptions. However, this is sufficient since we consider PPT adversaries.

The proof of this theorem uses a strategy called game hops, which is introduced in Sec-
tion 3.1.1. Also, it is actually not trivial. Therefore, we prefer to present it in Appendix A rather
than here. We already used the notion of ZK-TCPA elsewhere, so that the proof can also be
found in [CGY21, Lemma I.1], which is the full version of [CGY22a].

2.2.4 The Paillier encryption scheme

In electronic voting, the ElGamal encryption scheme is very popular because of its homomorphic
property and the possibility to distribute the secret key with Pedersen’s DKG. However, it is not
additively homomorphic so that an exponential version must be used, where not every cipher-
text can be decrypted. An alternative to this is given in [Pai99], which provides an additively
homomorphic encryption scheme. Although Paillier’s encryption scheme is not often used in
electronic voting, we compare some of our contributions to preexisting works which rely on it.
For this reason, we present the Paillier cryptosystem in this section.

In the Paillier cryptosystem, n is a strong RSA modulus, so that n is coprime with its Euler’s
totient ϕ(n), which is the cardinality of Z×

n . The plaintext space is P = Zn, the randomness
space is R = Z×

n and the ciphertext space is C = Z×
n2 . The public key is pk = n, and since

n is coprime with ϕ(n), there exists an element sk ∈ Z which is congruent to 1 modulo n and
to 0 modulo ϕ(n). This element can be seen as an element of Zn × Zϕ(n), and hence can be
represented as an integer in the range [0, n2].

Key generation. Pick two random safe primes p and q and compute pk = n = pq and

44

2.2. Encrypting a ballot to preserve privacy

ϕ(n) = (p − 1)(q − 1). Then, use the extended Euclid algorithm to find a Bézout relation
un+ vϕ(n) = 1. Finally, set sk = vϕ(n) modulo nϕ(n).

Encryption. To encrypt a message m ∈ Zn, one picks a random r ∈ Z×
n and computes

(1 + n)mrn modulo n2. Since (1 + n) is an element of order n in Z×
n2 , (1 + n)m is well defined

when m ∈ Zn. Readily, we can remark that this defines a group isomorphism: for all m1,m2 ∈ Zn

and r1, r2 ∈ Z×
n , Encpk(m1, r1)Encpk(m2, r2) = Encpk(m1 +m2, r1r2).

Decryption. To decrypt a cyphertext C ∈ Z×
n2 , we first compute Csk which is cast into an

integer in [0, n2 − 1]. Then, we deduce m = (Csk − 1)/n.

The security of the Paillier’s encryption scheme relies on the DCRA assumption, which stands
for decisionnal composite residuosity assumption. It states that a nth degree residue modulo n2

is indistinguishable from a random element. More precisely, the DCRA assumption states that
no PPT adversary can win the DCRA game (defined in Algorithm 14) with a non-negligible
advantage. Compared to the DDH problem, the DCRA problem is less standard. However,
there is currently no better method to attack it than to factor n, so that it is still considered
hard in computer science. Consequently, the size of the key n can be chosen following the same
recommendations as for factorization; see for instance [Key]. It can be shown that the Paillier’s
encryption scheme is IND-CPA under the DCRA assumption.

Algorithm 14: DCRA(λ,A)
1 Sample two random safe primes p and q of size keysize(λ);
2 n←− pq;

3 b
$←− {0, 1};

4 C0
$←− Z×

n2 ;
5 C1 ←− Cn

0 ;
6 b′ ←− A(n,Cb);
7 if b = b′ then return 1 else return 0;

Threshold cryptography. Since the secret key sk lies within a group of unknown order,
Shamir’s secret sharing scheme cannot be readily used. There exists two concurrent strategies
to distribute a Paillier secret key. The first one was presented in [FPS00] and an example of
a DKG protocol which relies on this technique can be found in [NS10]. A similar but slightly
different approach is presented in [DJN10]; an example of a DKG which relies on this can be
found in [HMRT12]. Both strategies rely on the fact that the denominator in the Lagrange
coefficients are coprime with n, so that it is still somehow possible to perform a polynomial
interpolation. In any case, the corresponding DKG protocols are way more complex and com-
putationally involved than Pedersen’s DKG. In addition, they are less generic: the solution
from [NS10] requires a honest majority, which is restrictive and undesirable in electronic voting;
the solution from [HMRT12] is best suited for the two-party setting. In the resulting threshold
encryption schemes, the participants have a share si and a public commitment hi = vsi to this
share, where v is a generator of the group of the invertible squares modulo n2 (e.g., v = 4). Just
as for an ElGamal ciphertext, the threshold decryption of a Paillier ciphertext C requires the
authorities to reveal Csi as well as a ZKP of wellformedness. Intuitively, the ZK-TCPA security
of the schemes would be obtained using the same arguments as for the ElGamal encryption
scheme, except that we need to make the DDH assumption on Z×

n2 in addition to the DCRA
assumption. We do not prove this because we do not use Paillier’s encryption in this thesis.

45

Chapter 2. Cryptography in electronic voting

2.3 Zero Knowledge Proofs in electronic voting

Zero knowledge proofs are the usual strategy that allows to reconcile privacy and verifiability
in cryptography. In this section, we introduce the notion of zero knowledge proof and present
a generic and standard method to obtain non-interactive zero knowledge proofs. More specific
examples are given in Section 2.4.

2.3.1 Introduction to Zero Knwoledge Proofs

A NP language is a subset L ⊂ {0, 1}∗ for which there exists an efficiently decidable relation
R ⊂ {0, 1}∗ × {0, 1}∗ and a polynomial P such that, for all z ∈ {0, 1}∗, z ∈ L if and only if
there exists a witness w ∈ {0, 1}∗ of size at most P (|z|) such that R(w, z) is true (which is often
denoted wRz). The relation R can also be seen as a non-deterministic polynomial decisional
algorithm: when only z ∈ {0, 1}∗ is given, R does not help a polynomial adversary to decide
whether z ∈ L; however, if w is also given, deciding whether wRz is polynomial. In general, a
NP language is not efficiently decidable. For instance, suppose that Alice has the secret key sk
of an ElGamal public key pk = (g, h). Given a pair (m,C) ∈ G×G2, C = (x, y) is an encryption
of m if and only if m = yx−sk. In this example, L is the set of the pairs (m,C) such that C
is an encryption of m, the witness is sk and R(sk, (m,C)) can be efficiently decided by checking
whether m = yx−sk. However, given a pair (m,C), deciding whether C is an encryption of m is
hard and requires to solve an instance of the DDH problem.

Now, in the context of electronic voting, consider a voting protocol where a homomorphic
tally is used: the result r of the election is obtained by decrypting a public ciphertext C. Then it
is hard to decide whether a given result r is actually correct, i.e. that C is indeed an encryption
of r. Of course, Alice could convince Bob by revealing her witness sk, but this would allow him
to decrypt the other ballots individually, hence compromising privacy. In such a situation, we
use a zero knowledge proof (ZKP), which is often derived from a Σ-protocol.

A Σ-protocol is an interactive protocol during which a prover (Alice) can convince a verifier
(Bob) that they hold a witness w such that wRz, where z is a public element that they both
agree on (in our example, z is the pair (m,C) and m is given by Alice while C is a public
ciphertext). During such a protocol, three messages are exchanged before a final verification
step. First, the commitment: Alice sends some commitment c to Bob. Typically, c is chosen
at random and does not contain any information. Then, the challenge: Bob chooses a random
challenge d with enough entropy and sends it to Alice. Third, the answer: Alice answers the
challenge with some a. Finally, the verification: given a transcript c, d, a, Bob can efficiently
decide whether the transcript is valid or not. If this is the case, Bob accepts the transcript and
is convinced that z ∈ L . Otherwise, Bob rejects the transcript. A Σ-protocol typically provides
two interesting properties:

• Correctness. If Alice follows the protocol (and actually knows w such that wRz), Bob
accepts the transcript.

• Zero knowledge. There exists a simulator which, given z and the challenge d, generates
a transcript c, d, a which is perfectly indistinguishable from the transcript of the protocol.

Intuitively, the zero knowledge property means that Bob cannot learn anything by interacting
with the prover, since he might as well generate the transcript himself. This is the simulation
paradigm. However, we also want the Σ-protocol to actually prove something. For this reason,
we consider two additional properties:

46

2.3. Zero Knowledge Proofs in electronic voting

Prover
(g1, g2, g3, g4)

w | g2 = gw1 , g4 = gw3

Verifier
(g1, g2, g3, g4)

α
$←− Zq;

c1 ← gα1 ; c2 ← gα3

c1, c2

d
$←− [0, 2λ − 1]

d

a = α+ wd
a

c1
?
= ga1g

−d
2

c2
?
= ga3g

−d
4

Figure 8: Proof of equality of discrete log

Prover
(g, h)

w | h = gw

Verifier
(g, h)

α
$←− Zq;

c← gα;

c

d
$←− [0, 2λ − 1]

d

a = α+ wd
a

c
?
= gah−d

Figure 9: Proof of knowledge of discrete log

• Computational soundness. If z ̸∈ L , then Bob rejects with overwhelming probability.

• Special soundness. Given any two valid transcripts (c, d1, a1) and (c, d2, a2) which share
the same commitment but have two different challenges, anyone can extract a witness w
such that wRz in polynomial time.

The computational soundness property means that the prover cannot convince the verifier
that a false statement is true. However, as this is the case for the example of the discrete
logarithm relation (which is bijective), the soundness property can be “empty” as L may be too
large. Therefore, it is sometimes required that the prover should also know a witness in order to
convince the verifier. In this case, we use the denomination proof of knowledge (PoK), and we
need the special soundness property, which is stronger than computational soundness.

To illustrate the notion of ZKP, we present two Σ-protocols in the discrete logarithm setting,
whose security will be discussed in Section 2.3.2. In both cases, we consider a group G of known
prime order q.

Chaum-Perdersen proof. Given a DDH tuple g1, g2, g3, g4, the Chaum-Pedersen protocol
allows to prove that logg1(g2) = logg3(g4), knowing their common discrete logarithm. The most
common use case is to prove that an ElGamal encryption (x, y) is an encryption of 1 with a
public key pk. In this case, (g1, g2) = pk, (g3, g4) = (x, y) and the witness is the randomness r
used to encrypt 1. Going back to the example of electronic voting, a proof of correct decryption
for the pair (m,C) can be done using (g1, g2) = pk, g3 = x, g4 = y/m and the witness sk, where
C = (x, y). The Chaum-Pedersen protocol is illustrated in Fig. 8.

Proof of knowledge. Given two group elements (g, h), a proof of knowledge of the discrete
logarithm allows Alice to prove that she knows logg(h). This is useful for authentication protocols
and is used in the Schnorr sigature. The corresponding Σ-protocol is illustrated in Fig. 9.

47

Chapter 2. Cryptography in electronic voting

2.3.2 Generalization

The two Σ-protocols given in the previous section are very similar. In fact, they are both a
special case of a more generic Σ-protocol, which is the proof of knowledge of a preimage. More
formally, consider two groups G and H, and a group homomorphism φ : G → H. We suppose
that the order of H does not have a divisor smaller than 2λ (except 1). This suits the discrete
logarithm setting where H’s exponent is a publicly known prime number. (The exponent of a
group is the smallest non-zero integer n ∈ N such that gn = 1 for all g. For instance, G × G
has the same exposant as G but not the same order.) Given h ∈ H, it is usually hard to decide
whether h ∈ φ(G); however, given a preimage x ∈ G, this becomes easy. Hence, if we use the
notations from Section 2.3.1, we have L = φ(G); a witness for z ∈ L is a preimage w of z and
we have wRz if and only if φ(w) = z. An example is the exponentiation Zq → G × G which
maps an element r ∈ Zq to the pair (gr, hr), where (g, h) is public and fixed. Now, in this generic
context, we consider the following Σ-protocol, where Alice tries to convince Bob that she knows
a preimage w of an element z ∈ H.

Commitment. Alice picks a random α ∈ G and sends c = φ(α) to Bob.
Challenge. Bob picks a random d ∈ [0, 2λ − 1] and sends this to Alice.
Answer. Alice computes a = αwd and sends this to Bob.
Verification. Bob checks that c = φ(a)z−d.

We now discuss about the security properties of this protocol, and show that it provides the
desired properties:

• Completeness. If Alice is honest, φ(a)z−d = φ(αwd)φ(w)−d = φ(α) = c.

• Zero knowledge. Given d ∈ [0, 2λ − 1], one can pick a random a ∈ G and compute
c = φ(a)z−d. Since a is chosen at random, c is also uniformly random in φ(G) and follows
the same distribution as in the real protocol. Similarly, in the real protocol, a = αwd,
which is indeed uniform in G since α is uniform. Hence, the couple (c, a) is a uniform
couple such that c = φ(a)z−d.

• Special soundness. Let z ∈ H and c ∈ H. Suppose that there exists two distinct
values d1, d2 ∈ [0, 2λ − 1] for which there exists a valid answer a1 ∈ G (resp. a2 ∈ G),
such that c = φ(a1)z

−d1 and c = φ(a2)z
−d2 . Then φ(a1)z

−d1 = φ(a2)z
−d2 , so that

φ(a2/a1) = zd2−d1 . Now, since the order n of H has no divisor smaller that 2λ > |d2− d1|,
d2 − d1 is prime with n and there exists α ∈ Z such that α(d2 − d1) = 1 modulo n, which
gives z = φ((a2/a1)

α); hence z ∈ φ(G). By contraposition, if z ̸∈ φ(G), for all c ∈ H,
there exists at most one d ∈ [0, 2λ−1] for which a valid answer a can be found. Hence Bob
accepts with probability at most 2−λ.

The special soundness does not contradict the zero knowledge property: Bob can generate the
transcripts himself and wait for a collision, in which case he will be able to extract a preimage.
This shows that finding a preimage by a one-way group homomorphism it is not harder than
waiting for a collision between two random elements in φ(G). This is because a homomorphism
has a lot more structure than a hash function, for which computing a preimage is harder than
finding a collision. In any case, the special soundness property is the main reason why we use
the terminology proof of knowledge.

48

2.3. Zero Knowledge Proofs in electronic voting

2.3.3 Proof of partial knowledge

The generic proof of Section 2.3.2 is very versatile and allows to prove various propositions in
the discrete logarithm setting. However, it is not sufficient in electronic voting. Indeed, suppose
that we want to compute the result of a yes/no vote. As seen in Section 2.2.2, the usual strategy
is to fix a generator g̃ ∈ G\{1G} and to encrypt either g̃0 (no vote) or g̃1 (yes vote). Then the
product of all the eligible ciphertexts is computed and decrypted. Thanks to the homomorphic
property of the ElGamal encryption scheme, the number of yes votes can be deduced from the
discrete logarithm of the decryption in base g̃. This is the principle of homomorphic tally. Yet,
in electronic voting, we usually do not trust the voters: some may try to encrypt g̃42 or g̃−23,
allowing them to have their choice be counted multiple times. Therefore, we want the voters
to prove that they either voted for yes or for no. For this purpose, we use a proof of partial
knowledge, which is based on [CDS94].

In this paper, Cramer, Damgård and Schoenmakers develop an abstract framework which
allows to produce a proof of a partial knowledge. For the sake of simplicity, we present a slightly
less generic framework. First, we restrict ourselves to the case of a proof of knowledge of a
preimage, as introduced in Section 2.3.2. This is the most standard case in electronic voting.
Second, we instantiate their notion of monotonic access structure by using Shamir’s secret sharing
scheme, which is introduced in Section 2.2.3. This not only allows to fix the idea, but also is
directly useful in threshold cryptography.

Generic construction. Let G1, · · · , Gn, H1, · · · , Hn be some groups and, for all i, φi :
Gi → Hi be some group homomorphism. We suppose that there exists a common known prime
number q such that, for all i, Hi is group of exponent q. This way, we are in the same context
as in both Section 2.3.2 and Section 2.2.3. Given z1 ∈ H1, · · · , zn ∈ Hn and a threshold t < n,
Alice wants to convince Bob that she knows a preimage for at least t of these elements, but she
does not want to reveal which one. For this purpose, she forms a set S ⊂ [1, n] of size t such
that, for all i ∈ S, she knows a preimage wi such that φi(wi) = zi. (If she knows more that
t preimages, she can ignore this extra knowledge.) Then the protocol consists of the following
steps.

Commitment.

• For all i ∈ S, Alice picks a random element αi ∈ Gi and computes ci = φi(αi).

• For all i ∈ [1, n]\S, Alice picks a random di ∈ Zq, chooses a random ai ∈ Gi and computes
ci = φi(ai)z

−di
i .

• Alice sends her commitments c1, . . . , cn to Bob.

Challenge. Bob picks a random d ∈ [0, 2λ − 1] and sends this to Alice.
Answer. Alice splits the challenge into n challenges and answers each of them individually:

• Alice sets d0 = d.

• For i ∈ S, she computes di =
∑

j∈[0,n]\S
∏

k∈[0,n]\(S
⋃
{j})

i−k
j−kdj modulo q and deduces

ai = αiw
di
i .

• Alice sends (di, ai)
n
i=1 to Bob.

Verification. Bob verifies that the two following statements; the second one can be checked
efficiently using Lagrange interpolation.

49

Chapter 2. Cryptography in electronic voting

• For all i, ci = φ(ai)z
−di
i .

• There exists a polynomial P ∈ Zq[X] of degree at most n − t such that P (i) = di for all
i ∈ [0, n], with d0 = d.

The above protocol is perfectly witness indistinguishable: Bob is convinced that Alice knows
a preimage for at least t of the given elements, but does not learn which one. In addition,
it inherits the correctness, the special soundness and the zero knowledge properties from the
Σ-protocol presented in Section 2.3.2 (see [CDS94] for a proof of these claims).

Disjunctive proofs. A common special case is the disjunctive proof, where Alice wants to
prove that she knows at least one witness (i.e. t = 1). In this case, Shamir’s secret sharing
scheme becomes linear. More precisely, if i is the index of the element zi for which Alice knows
a preimage w, she can proceed as follows:

• Alice picks a random α ∈ Gi and compute ci = φi(α). For j ̸= i, she chooses a random
dj ∈ Zq as well as a random aj ∈ Gj and computes cj = φj(aj)z

−dj
j .

• Bob receives the commitments c1, · · · , cn and sends a random challenge d ∈ [0, 2λ − 1].

• Alice computes di = d−
∑

j ̸=i dj and ai = αwdi . She sends (di, ai)
n
i=1 to Bob.

• Bob checks that cj = φj(aj)z
−dj
j for all j and that d =

∑n
j=1 dj .

In electronic voting, disjunctive proofs are used to prove the validity of a ballot: if there are
n possible voting options, the voter can use a disjunctive proof to prove that the ballots encrypts
one of them. Alternatively, when the voter is asked many independent binary questions, the
voter can produce that many independent ciphertexts to prove that they answered yes or no to
all the questions. More concrete examples are given in Section 2.4.

2.3.4 Non-interactive proofs

Up until now, all the ZKP that we presented were interactive. Yet, in electronic voting, there are
two reasons why interactive proofs are not desirable. First, an interactive proof does not leave
any trace. After that Alice has convinced Bob, the latter cannot use the transcript to convince
any third party since he might have produced the transcript himself, using the simulator. This
means that interactive proofs cannot be used to achieve universal verifiability. Second, interactive
proofs require the verifier to be active during the proof, which is not the case in electronic voting.

The Fiat-Shamir heuristic. The usual way to obtain a non-interactive ZKP from a Σ-
protocol is to use the Fiat-Shamir transformation [FS86], which consists of replacing the challenge
by a hash of the commitment. This produces a proof π = (c, a) which can be verified by
computing the commitment d from the hash function and checking that the transcript (c, d, a)
is valid. This heuristic is standard and is the one that we consider in this thesis. Usually, we
use the abbreviation ZKP to designate a non-interactive zero knowledge proof obtained from
a Σ-protocol for a disjunctive proof (see Section 2.3.3), using the Fiat-Shamir transformation.
In the specific case where the non-interactive proof is derived directly from a Σ-protocol for
proving the knowledge of a preimage (see Section 2.3.2), we may also use the abbreviation PoK
(for proof of knowledge). In Algorithm 15, we illustrate the Fiat-Shamir heuristic by giving the
algorithm which produces a PoK for the equality of discrete logarithm. This can be used to
provide a proof of correct decryption, with (g1, g2) = pk and (g3, g4) = (x, y/m), where pk is the

50

2.3. Zero Knowledge Proofs in electronic voting

Algorithm 15: EQLOG
Requires: A group G of prime

order q
A hash function
(g1, g2, g3, g4) ∈ G
A witness w ∈ Zq s.t.
g3 = gw1 and g4 = gw2

1 α
$←− Zq;

2 c1 ←− gα1 ;
3 c2 ←− gα2 ;
4 d←− hash(g1||g2||g3||g4||c1||c2);
5 a←− α+ dw;
6 return (c1, c2, a);

Algorithm 16: 0/1 proof
Requires: G of order q and generator b

A ciphertext (x, y) obtained with
the public key (g, h)
i ∈ {0, 1} s.t. (x, y) encrypts bi

The corresponding randomness r

1 α
$←− Zq; d1−i

$←− Zq; a1−i
$←− Zq;

2 ci,x ←− gα; ci,y ←− hα;
3 c1−i,x ←− ga1−ix−d1−i ;
4 c1−i,y ←− ha1−i(y/b1−i)−d1−i ;
5 d← hash(g||h||b||x||y||c0,x||c0,y||c1,x||c1,y);
6 di ←− d− d1−i; ai ←− α+ rdi;
7 return (c0,x, c0,y, c1,x, c1,y, d0, d1, a0, a1);

public ElGamal encryption key, (x, y) is the ciphertext and m is the claimed plaintext. To verify
the validity of such a PoK π = (c1, c2, a), one computes d from the hash function, and check
that c1 = ga1g

−d
3 and c2 = ga2g

−d
4 . Another extremely common ZKP is given in Algorithm 16,

which produces a ZKP that a ciphertext (x, y) is indeed an encryption of either 0 or 1, when the
exponential ElGamal encryption is used with a base b (usually, b is either g or h, where (g, h)
is the public key). To verify the validity of the output π = (c0,x, c0,y, c1,x, c1,y, d0, d1, a0, a1), one
first computes d from the hash function, checks that d = d0 + d1 and verifies that ci,x = gaix−di

and ci,y = hai(y/bi)−di for both i ∈ {0, 1}.
In both examples, remark that the challenge is not computed from the commitment alone,

but also from other pieces of context. We discuss more about what exactly should be included
in the hash in Section 3.2.2.

Security in the random oracle model. The security of the Fiat-Shamir transformation
can be proven in the ROM. Indeed, consider a Σ-protocol P for a NP language L (i.e. three
algorithms Com, Ans and Ver). Suppose that P is zero knowledge, and let Sim be the simulator
algorithm. Then, for any prefix pre, a non-interactive ZKP in which the challenge is chosen from
the commitment c as d = hash(pre||c) can be simulated in the ROM, given only z ∈ L . Indeed,
consider an adversary A in the ROM, which is given a honestly generated ZKP π at some point.
Then we can construct an adversary B which interacts with A by simulating the random oracle,
but is given z instead of π. The idea is that B picks a random d ∈ [0, 2λ], computes π = Sim(d),
handles this proof to A and then outputs whatever A might output. To make sure that the
simulated proof actually looks like a valid one to A, whenever the latter makes an oracle query
with input pre||c (where π = (c, a)), B answers with d. Since d was chosen at random anyway,
this does not change the distribution of A’s view, and therefore the output of B will have the
same distribution as that of A. Using the same strategy, B can even forge fake ZKP that will
look valid to A, even if the statement is false. For this reason, a non-interactive ZKP can be
safely removed from A’s view.

Now, suppose that the Σ-protocol is computationally sound. Then the corresponding non-
interactive ZKP is also computationally sound. Indeed, for a given z ̸∈ L , suppose that there
exists an adversary A that outputs a valid ZKP π with some non-negligible probability. Then
we construct an adversary B for the Σ-protocol as follows. First, let q be a polynomial such that
A can make at most q oracle queries. Then B picks a random i ∈ [1, q] and runs a copy of A
in the ROM. At the ith query (if any), B parses the input as pre||c (if possible) and uses this

51

Chapter 2. Cryptography in electronic voting

c as the commitment. The honest verifier answers with a uniformly random d, so that B can
use this as the output of the random oracle (for simplicity, we consider that A does not make
two queries to the oracle with the same inputs). When A terminates, it outputs a valid proof
π = (c, a) with some non-negligible probability p, in which case Ver(c,ORO(pre||c), a) = 1. Yet,
the computational soundness assumption means that this cannot happen with a non-negligible
probability if ORO(pre||c) is uniform. Hence, ORO(pre||c) is not uniform which means that A
made a query to the random oracle with the input pre||c. Since the choices were independent,
B has picked this very query with probability 1/q; therefore the verifier will accept the answer a
with the non-negligible probability p/q.

Thanks to the above arguments, the ROM allows to show that the Fiat-Shamir transforma-
tion preserves computational soundness while still being “zero knowledge” with overwhelming
probability (indeed, if the prover makes two colliding commitments, the adversary that inter-
acts with the real prover might be able to extract a witness; on the other hand, the adversary
that interacts with the simulator might notice that the same oracle query was answered with
two different challenges). However, this might be not enough in many cases, for instance in the
example of the PoK depicted in Fig. 9. Indeed, in most case, we not only want the prover to
prove that z ∈ L , but also to prove that they know a witness. This is important, for instance,
for signatures or authentication protocols. In this situation, we need more involved arguments
that are presented in Section 3.2.1.

Another remark is that the above proof sketches assumed that L and z are fixed; i.e. hard-
coded in the verifier’s algorithm. In Section 3.2.2, we show that a non-interactive proof made
for a specific L and z can be considered valid for another L ′ and z′, which intuitively breaks
soundness (this does not contradict the above arguments which assumed that the adversary was
unable to choose z and L). For this reason, it is important that the prefix in the hash contains
enough pieces of context, which prevents the proof from being used outside of its context. For
instance, a description of G, L , the claim z or even a unique identifier which defines at which
step of the protocol the proof was needed can also be included in the hash. This can be a lot
when there is too much context: think of an electronic voting protocol which uses this specific
counting function, takes place at that specific date and the other. However, a great part of this
context is actually fixed during the whole protocol and can be factored between several ZKPs,
for instance by using a hash of the context instead of the whole context.

2.3.5 Short proofs and what they can really do

The standard proofs that we introduced so far all have a similar complexity when it comes to
generating or verifying them. While it is natural that the generation of a proof for a statement
becomes harder as the statement grows more complex, the intuition is that verifying a proof
should be easier. Yet, in electronic voting, while the talliers can have access to a lot of compu-
tational resources, this is not always the case for the auditor. On the contrary: if we want a
protocol to be “universally” verifiable, it is preferable that the verification be as easy as possible.
For this reason, it could be beneficial to use short zero knowledge proofs.

A popular technique to obtain short proofs is to use recursive inner product arguments. This
is the main idea behind the bulletproofs [BBB+18], which allow to obtain efficient range proofs
in the discrete logarithm setting. Although range proofs may be useful in electronic voting, the
relevant ranges are so small that it is often more efficient to use a regular disjunctive proof.
Bulletproofs can also be used for any generic NP language. In this case, the proof is logarithmic
with the size of the statement but the cost of the verification is proportional to the cost of the
generation. Consequently, they are not commonly used in electronic voting.

52

2.3. Zero Knowledge Proofs in electronic voting

Groth’s SNARK. Another popular techique was introduced in [Gro16]. In this article, Jens
Groth explains how to form a short zero knowledge proof for the arithmetic circuit satisfiability
decisional problem, which is known to be NP complete. Hence, from Groth’s proof strategy,
one can derive a short zero knowledge proof for any NP language L . In [Gro16], a circuit is
represented by a family of n quadratic equations of the form

m∑
i=0

aiui,q

m∑
i=0

aivi,q =
m∑
i=0

aiwi,q,

where the ai’s are variables while the ui,q’s, vi,q’s and wi,q’s are public parameters that define the
qth equation. Since those equations feature multiplications and additions, the variables and the
parameters all belong to a common ring (we actually need it to be a field K for the purpose of
polynomial interpolation). In general, some of the variables (say a0, · · · , aℓ) are fixed, otherwise
the satisfiability would be trivial. With those constraints, the corresponding statement is to
claim that there exists aℓ+1, · · · , am ∈ K such that the n equations are simultaneously satisfied.

An interesting specific case is that of boolean circuit satisfiability: a boolean variable can be
represented as an element of Z2, a logical and is a multiplication, a logical xor is an addition
and the logical negation of the variable b is simply 1− b. In this setting, Groth’s proof strategy
allows to create a proof which only consists of 3 group elements, so that its size only depends
on the security parameter and not on the complexity of the statement or the size of the circuit.
Computing such a proof requires n exponentiations in a pairing-friendly curve, but verifying it
only requires ℓ group multiplications in this curve and 3 pairings.

Computing a SNARK. Now, consider the example of a homomorphic tally: let C = (x, y)
be an ElGamal ciphertext with public key pk = (g, h) and let m be the claimed plaintext.
Then we must prove that there exists sk ∈ Zq such that gsk = h and yx−sk = m. To express
this as an arithmetic circuit, the only obvious way is to use a boolean circuit (i.e. with K =
Z2) which realizes a constant-time implementation (e.g., using the Montgomery ladder) of the
exponentiations and then performs the equality tests. To fix ideas, suppose that we use a
Weierstrass elliptic curve of prime order q, whose group elements are represented using projective
coordinates in Zp, where p is some prime number. Then, given a security parameter λ, an
exponentiation typically requires Θ(λ) group multiplications, while each group multiplication
requires a few operations in Zp, including some multiplications that cost Θ(λ2) logical operations
(asymptotically better complexities are available, but the corresponding algorithms are usually
not faster than Montgomery multiplication for a 256 bits p). Consequently, the naive boolean
circuit would require n = O(λ3) exponentiations for the prover, which are to be compared with
the 2 exponentiations required in the corresponding standard PoK. Consequently, making an
efficient use of Groth’s proofs in electronic voting is not an easy task: this is the contribution of
Kryvos [HKK+22], a recent academic work which demonstrates the feasibility of this approach.

Verifying a SNARK. Groth’s proofs have this very interesting property that their verifica-
tion always require ℓ group multiplications and 3 pairings, no matter the complexity of the circuit
(i.e. the parameters n and m). In our example of a homomorphic tally, ℓ = Θ(λ) since the fixed
variables are defined by the group elements x, y,m. Therefore, verifying the proof requires Θ(λ)
group multiplications and 3 pairings. Compared to the 4 exponentiations required to verify the
standard PoK, this is not especially interesting. However, in Part II, we consider more complex
tally protocols whose verifications using standard ZKPs are quite intensive. Using a SNARK,
the verification would typically require O(nV λ) group multiplications and 3 pairings, where nV

is the number of voters. This would definitely be a lot faster.
Trapdoor CRS. An important point to mention is that Groth’s proofs require a common

reference string (CRS). This CRS contains many group elements and scalars that are useful to

53

Chapter 2. Cryptography in electronic voting

speed up the algorithms of both the prover and the verifier. However, it is possible to trapdoor
a CRS, for instance by choosing the discrete logarithm of the said group elements instead of
them directly. Using the knowledge of the trapdoor, it is possible to forge fake proofs for false
statements. In general, this is not an issue because the CRS can be generated using a public
coin protocol, so that no one can exploit the trapdoor. However, the CRS used in [Gro16] is
constrained by some algebraic relationships, so that it cannot be derived from some random
string. As shown in [BCG+15a], it is possible to have several authorities jointly generate the
CRS so that none of them is able to trapdoor it (except if they are all corrupted). This means
that using Groth’s proofs requires an additional trust assumption on the participants of this CRS
generation protocol, otherwise verifiability will be lost.

2.4 The most commonly used ZKP

The typical use case of ZKP in electronic voting is to prove the validity of a ballot and to prove
the correctness of the tally. In this section, we review the most standards ZKPs, apart from the
proofs that we already detailed in Section 2.3.4.

2.4.1 A basic example: proving the validity of a ballot

In electronic voting, there are two main strategies to perform the tally: homomorphic tally and
mixnets. Helios 2.0 [dMPQ09], which is presented in Section 1.1.3, uses a homomorphic tally.
In this voting system, the voters are ask a question for which there are several possible answers,
numbered from 1 to k. The voters can select between k1 and k2 answers, where 0 ≤ k1 ≤ k2 ≤ k.
This choice can be encoded into a k bits string a1, · · · , ak, depending on whether each answer
was picked or not. Consequently, the voting options in Helios VH , where

VH =

{
a1, · · · , ak ∈ {0, 1} |

k∑
i=1

ai ∈ [k1, k2],

}
,

which can be decomposed as

VH =
⋃

s∈[k1,k2]

{
a1, · · · , ak ∈ {0, 1} |

k∑
i=1

ai = s

}
.

To encrypt such a voting option, one can produce k ciphertexts C1, · · · , Ck, using an exponential
ElGamal encryption with a base b. Then, to prove that the ciphertexts encrypt a valid voting
option, one can proceed as follows:

• For i ∈ [1, k], produce a ZKP π
0/1
i that Ci is an encryption of 0 or 1, using Algorithm 16.

Those are the individual proofs.

• Produce a disjunctive ZKP πs that the product C1 · · ·Ck is an encryption of either k1,
k1 + 1, · · · , or k2. This is the overall proof.

• Return the proof π = π
0/1
1 || · · · ||π

0/1
k ||πs.

For completeness, we give in Algorithm 17 an algorithm that the voter can use to produce
πs. In our example, (x, y) is the product (C1 · · ·Ck); n = k2 − k1 + 1; the vi’s are the elements

54

2.4. The most commonly used ZKP

Algorithm 17: Disjunctive proof for ElGamal encryption
Requires: A group G of prime order q

An ElGamal ciphertext (x, y) obtained with public the key (g, h)
n possibilities v1, · · · , vn ∈ G
i ∈ {1, n} s.t. (x, y) encrypts vi
The corresponding randomness r ∈ Zq

1 α
$←− Zq; ci,x ←− gα; ci,y ←− hα;

2 for j ̸= i do

3 dj
$←− Zq; aj

$←− Zq;
4 cj,x ←− gajx−dj ; cj,y ←− haj (y/vj)

−dj ;

5 d←− hash(g||h||v1|| · · · ||vn||x||y||c1,x||c1,y|| · · · ||cn,x||cn,y);
6 di ←− d−

∑
j ̸=i dj ; ai ←− α+ rdi;

7 return (cj,x, cj,y, dj , aj)
n
j=1;

of {bs | s ∈ [k1, k2]}; and r is the sum of all the k randomness that have been used to produce
the ciphertexts.

This shows that a large variety of counting functions can be covered by a homomorphic tally,
which is not restricted to a single yes / no question. As the 0/1 proof is the basis of many proofs of
validity in electronic voting, we mention that it is possible to optimize Algorithm 16 to increase
its efficiency for both the verifier and the prover, especially when several bits are encrypted
simultaneously; see for instance [DPP22a]. Nevertheless, not every functions are covered by
homomorphic tally. For more generic counting functions, the usual strategy is to use a mixnet
(see Section 2.4.3), which reveals the chosen voting options in some random order. Hence,
anonymity is preserved and the tally can be publicly computed on the cleartexts. However, even
when a mixnet is used, it is interesting to demand that the voter proves the validity of their
ballot: this protects against Italian attacks based on write-ins and prevents replay attacks based
on the malleability of the ElGamal encryption scheme. For this purpose, the disjunctive proof
of Algorithm 17 can be used (provided that there is a small number of voting options).

2.4.2 Proof of correct decryption

In Section 2.3, we already discussed about how to produce a ZKP of correct decryption for
an ElGamal ciphertext, and we gave Algorithm 15 which does just that. However, the secret
key sk is usually shared between several authorities (the talliers), so that they cannot use this
algorithm. The usual way around is to have each authority reveal a partial decryption of the
ciphertext and to recombine the valid partial decryptions afterwards. This gives Algorithm 18,
which not only produces the threshold decryption of some ciphertext (x, y), but also a ZKP π
of correct decryption. To verify this proof, verify each ZKP πPartDec

i and, if there are at least
t+ 1 valid ones (otherwise, reject the proof), choose any set S as in line 2 and compute m as in
lines 3 and 4. Finally, check that this m is equal to the claimed plaintext.

2.4.3 Mixnets and their applications

Mixnets are widely used in cryptography as a way to anonymize data. The idea is to shuffle
encrypted or committed data so that it is no longer possible to trace them back to their original
sender. In electronic voting, we consider reencryption mixnets and decryption mixnets.

55

Chapter 2. Cryptography in electronic voting

Algorithm 18: Threshold decryption
Requires: A group G of prime order q

An ElGamal public key (g, h)
A ciphertext (x, y) to decrypt
The public commitments (hi)

n
i=1 on the secret shares (see Fig. 7)

Each tallier has a share si of the secret key, with the threshold t
1 Each participant i computes wi = xsi and πPartDec

i using Algorithm 15 on (g, x, hi, wi);
2 Let S ⊂ [1, n] be a set of size t+ 1 such that for all i ∈ S, πPartDec

i is valid ;
3 For i ∈ S, compute Λi =

∏
j∈S\{i}

j
i−j ;

4 m←− y
∏

i∈S wΛi
i ;

5 π ←− w1, π
PartDec
1 || · · · ||wn||πPartDec

n ;
6 return m,π

Proof of a shuffle. Let C = C1, · · · , Cn be a list of ciphertexts. To fix ideas, suppose
that the encryption scheme used is rerandomizable: given any ciphertext C, we can produce
another ciphertext C ′ which encrypts the same plaintext but is still indistinguishable from a
random ciphertext. This is the case for any homomorphic encryption scheme, such as the ones
of ElGamal and Paillier. Then, a shuffle of those ciphertexts is a list C′ = C ′

1, · · · , C ′
n which

encrypts the same plaintexts. In other words, we have the equality of the following multisets

{{Decsk(C
′
i) | i ∈ [1, n]}} ≡ {{Decsk(Ci) | i ∈ [1, n]}}.

When the encryption scheme is rerandomizable, anyone can shuffle C; however, it is hard to
decide whether a list C′ is a shuffle of C or not. Therefore, to prevent the mixers from altering
the data, we need them to provide a ZKP, which is called proof of a shuffle. Early examples of
efficient proofs of a shuffle can be found in [FS01, Nef01]. Later, more efficient proofs of a shuffle
were given in [Wik09, TW10]. Those proofs were implemented and compiled into a free open
source verifiable mixnet, known as Open Verificatum [Ver].

The strategy in [Wik09] is to first commit on a permutation π, then to prove that C′ is
consistent with respect to the commitment. The second part can be done using standard PoK
as introduced in Section 2.3.2, but the construction is a bit involved. If reading [Wik09] seems
too scary, we refer to [HKLD17, Section 5.5] for a helpful and detailed explanation. As for the
commitment, one can use the technique from [TW10] which we explain below.

Committing to a permutation. Suppose that we have several independent (provably
random) group elements g, h1, · · · , hn ∈ G, such that no one knows a non-trivial relation between
them. They can be used to make a Pedersen commitment of vectors of n elements; i.e. if
x = x1, · · · , xn ∈ Zq, and α ∈ Zq, Com(x, α) = gα

∏n
i=1 h

xi
i . Now, consider a matrix M ∈

Mn(Zq). One can commit to this matrix by using random s = s1, · · · , sn ∈ Zq and computing
ai = Com(si,mi) for all i, where mi is the ith row of the matrix. To prove that a committed
matrix is a permutation matrix, the main strategy is to remark that if M does not have exactly
one non-zero coefficient in each row, then following equality does not hold in Zq[X1, · · · , Xn]:

n∏
i=1

n∑
j=1

mi,jXj =
n∏

i=1

Xi. (1)

This condition can be efficiently tested using a result known as the Schwartz-Zippel lemma [Zip79,
Sch80]: If f ∈ Zq[X1, · · · , Xn] is a non-zero multivariate polynomial of degree d, then, given

56

2.4. The most commonly used ZKP

uniformly random elements e1, · · · , en ∈ Zq, the probability that f(e1, · · · , en) = 0 is at most
d/q. Since the degree of the above polynomial is the number n of ciphertexts to shuffle while
q is the exponentially large size of the field, it means that this probability is negligible. Hence,
the proof strategy is that the verifier (or, alternatively, the Fiat-Shamir transformation) gives
to the prover the random vector e and that the prover proves that

∏n
i=1

∑n
j=1mi,jej =

∏n
i=1 ei.

For this purpose, remark that this can be made “on the commitments”. Indeed, if we denote
< x,y > the inner product

∑n
i=1 xiyi of two vectors x and y, we have

n∏
i=1

aeii = g<s,e>
n∏

i=1

h<mi,e>
i .

Yet, Eq. (1) is verified if and only if there exists some coefficients c1, · · · , cn and a permutation
π such that, for all i,

∑n
j=1mi,jXj =< mi,X >= ciXπ(i), with

∏n
i=1 ci = 1. Therefore, by

proving the knowledge of some e′ = e′1, · · · , e′n ∈ Zq (e′i = eπ(i) for all i) and an exponent

α =< s, e >∈ Zq such that gα
∏n

i=1 h
e′i
i =

∏n
i=1 a

ei
i while

∏n
i=1 e

′
i =

∏n
i=1 ei, one can prove

that the committed matrix has exactly one non-zero coefficient per row, unless with a negligible
probability. Finally, to prove that this coefficient is always 1, and therefore that the matrix is
a permutation matrix, one can prove the knowledge of β =

∑n
i=1 si such that

∏n
i=1 ai/gi = gβ .

These proofs can be done using standard ZKP as in Section 2.3.2.
Remark that although the resulting proof of a shuffle is based on standard ZKP, they do

not have the special soundness property. Indeed, there is always a negligible probability that,
although the preimages α, β, e′ exist, the polynomial is non-zero so that the matrix is not a
permutation matrix. Consequently, a proof of a shuffle is only computationally sound.

Shuffling the rows or the columns of a matrix. In this thesis, we consider a more
generic case where the Ci’s themselves consist of several ciphertexts. More precisely, suppose
that we have a rectangular matrix M of n rows and m columns, and that each coefficient of
this matrix is an ElGamal ciphertext, i.e. a pair of two group elements. Suppose that we want
to shuffle the rows (or, alternatively, the columns) of the matrix, which means that we want to
shuffle each column, but using the same permutation π. Then the Terelius-Wikström strategy
is especially efficient, since it allows to use the same commitment for many proofs. We denote
ShuffleRow(M,π) (resp. ShuffleColumn(M,π)), the algorithm that shuffles and reencrypts the
rows (resp. columns) of M , and produces a ZKP of a correct shuffle. For completeness, we give
Algorithm 19, which combines [TW10, Protocol 1] and [Wik09, Protocol 15]. However, to prove
that

∏n
i=1 e

′
i =

∏n
i=1 ei, we use the strategy of [HKLD17, Section 5.5] which consists of creating

a chain of Pedersen commitments c̃1, · · · , c̃n. To verify the proof, one computes (ei)
n
i=1 and d

from the hash and check that the following equalities hold, where ĉ0 = h1:

gat

(
n∏

i=1

(a⋆i /hi)

)−d

= c1̄,t

∀i, gar̂,i ĉaē,ii−1ĉ
−d
i = cĉ,i

gak
n∏

i=1

h
aē,i
i

n∏
i=1

(a⋆i)
−dei = cē,k

∀j,Rencpk

(
n∏

i=1

M ′[i, j]aē,i ,−ar,j

)
n∏

i=1

M [i, j]−dei = cr,j .

57

Chapter 2. Cryptography in electronic voting

A similar algorithm can be used to provably shuffle the columns. Finally, if one wants to
shuffle the rows and the columns using the same permutation, ShuffleRow and ShuffleColumn
can be combined into ShuffleMatrix. We sum up the complexities of the various proofs of a
shuffle in Table 3, which includes the cost to rerandomize the matrix.

Algorithm 19: ShuffleR
Requires: G, a group of prime order q

g, h1, · · · , hn, some independent generators
pk = (g, h), an ElGamal public key

Inputs: M , a matrix of ciphertexts of n rows and m columns
π, a permutation of [1, · · · , n]

Outputs: M ′, a shuffled and reencrypted matrix
Π, a ZKP of a shuffle

1 for all i, j do

2 ri,j
$←− Zq;

3 M ′[i, j]←− Rencpk(M
′[π(i), j], ri,j);

4 for i = 1 to n do

5 si
$←− Zq; a⋆i ←− gsihπ−1(i);

6 αt
$←− Zq; c1̄,t ←− gα;

7 for i = 1 to n do αē′i

$←− Zq;

8 αk
$←− Zq; cē,k ←− gαk

∏n
i=1 h

αē′
i

i ;
9 Comπ ←− (a⋆i)

n
1 , c1̄,t, cē,k;

10 for i = 1 to n do
ei ←− hash(pk||(hi)n1 ||M ||M ′||Comπ||i);

11 for i = 1 to n do e′i ←− eπ(i);
12 ĉ0 ←− h1;
13 for i = 1 to n do

14 r̂i, αr̂,i
$←− Zq;

15 ĉi ←− gr̂i ĉ
e′i
i−1;

16 cĉ,i ←− gαr̂,i ĉ
αē′

i
i−1;

17 r̂⊤ ←−
∑n

i=1 r̂i
∏n

j=i+1 e
′
i;

18 αr̂,⊤
$←− Zq; cr̂,⊤ ←− gαr̂,⊤ ;

19 Comπ ←− Comπ||(ĉi, cĉ,i)n1 ||cr̂,⊤;
20 for j = 1 to m do

21 αr,j
$←− Zq;

22 cr,j ← Rencpk

(
n∏

i=1
M ′[i, j]

αē′
i ,−αr,j

)
;

23 Comπ ←− Comπ||cr,j ;
24 d←− hash(pk||(hi)n1 ||M ||M ′||Comπ);
25 at ←− αt + d

∑n
i=1 si;

26 ak ←− αk + d
∑n

i=1 siei;
27 ar̂,⊤ ←− αr̂,⊤ + dr̂⊤;
28 for i = 1 to n do
29 aē,i ←− αē′i

+ de′i;
30 ar̂,i ←− αr̂,i + dr̂i;

31 for j = 1 to m do ar,j ← αr,j + d
n∑

i=1
e′iri,j ;

32 Ansπ ←− at, ak, ar̂,⊤, (aē,i, ar̂,i)
n
1 , (ar,j)

m
1 ;

33 return M ′, (Comπ,Ansπ);

Reencryption mixnet. When a proof of a shuffle is used, the mixer knows the permutation
that links the two lists C′ and C. Therefore, the usual strategy is to have several mixers
sequentially shuffling the data, each producing a proof of a shuffle. The idea is that all the
mixers need to collude in order to retrieve the final permutation: if at least one of them is
honest, the permutation remains unknown and random. The generic structure of a mixnet
protocol is illustrated in Fig. 10, where each mixer Mi produces a shuffle Ci as well as a ZKP
πi. This produces a transcript which is the concatenation of all those messages. Reencryption
mixnets have various applications in cryptography, especially in multi-party computation (MPC)
(see for instance Mix and Match, a generic MPC protocol presented in [JJ00]).

Decryption mixnet. In electronic voting, the mixnet is usually applied once, and the
ciphertexts are decrypted right away. In this case, it is possible to merge the mixing and the
decrypting process: this gives a decryption mixnet, where the mixers are also the talliers who
hold the shares of the decryption key. Some examples can be found in [Wik05, AW07].

58

2.4. The most commonly used ZKP

Table 3: Cost of ShuffleRow, ShuffleColumn and ShuffleMatrix, with n rows and m columns

Proof Prover (# exp.) Verifier (# exp.) Transcript (×256 bits)
ShuffleRow 4nm+ 6n+m+ 3 4nm+ 5n+m+ 3 2nm+ 7n+ 3m+ 6

ShuffleColumn 4nm+ 6m+ n+ 3 4nm+ 5m+ n+ 3 2nm+ 7m+ 3n+ 6
ShuffleMatrix 8n2 + 13n+ 6 8n2 + 12n+ 4 4n2 + 19n+ 12

C M1 M2 · · · Mn C′ = Cn

Final transcript: C||C1||π1|| · · · ||Cn||πn

C1, π1 C2, π2 Cn−1, πn−1 Cn, πn

Figure 10: Generic structure of a mixnet protocol

2.4.4 Plaintext Equivalence Tests

A plaintext equivalence test (PET) is a now classical protocol introduced in [JJ00]. It allows
the key holders to provably reveal whether two ciphertexts have the same plaintext or not.
More precisely, suppose that an ElGamal secret key is shared between several authorities, say
P1, · · · , Pn. Suppose that for two given ciphertexts C1 and C2, the authorities want to reveal
whether they have the same plaintext, but they do not want any other information to leak. Then
they can proceed as follows, where q is the prime order of the group G of the plaintexts:

1. Form the ciphertext C = C1/C2. Each authority Pi chooses zi ∈ Zq at random and
computes Ci = Czi as well as a ZKP πi of wellformedness (for this purpose, they can use
Algorithm 15). Pi broadcasts a commitment hi = hash(Ci).

2. Once all the commitments have been received, Pi broadcasts Ci, πi. Upon receiving Cj , πj
from another participant, Pi verifies that hash(Cj) = hj and that the PoK is valid.

3. Form the ciphertext D =
∏n

i=1Ci and decrypt it, using a threshold decryption protocol
(see Algorithm 18).

4. Let m ∈ G be the corresponding plaintext. If m = 1G, then return 1. Otherwise, return 0.

The above protocol allows the authorities to reveal a bit b which states whether the two
ciphertexts C1 and C2 are equivalent or not. At step 1, they each choose randomly zi ∈ Zq

and compute Ci = Czi , so that D = Cz1+···+zn . The commitment phase is there to prevent a
malicious participant to choose zi depending on the other Ci’s, which would rig the distribution
of D. This guarantees that D = Cz, with some uniformly random z ∈ Zq (as soon as one
participant is honest). The idea is that if C1 and C2 encrypt the same plaintext, then D is an
encryption of 1G; otherwise, D is an encryption of a uniformly random plaintext. Therefore, by
decrypting D, we reveal whether C1 and C2 are equivalent, but not any other information. Note
that in [MPT20], it was disclosed that it is not sufficient to verify that all the PoK are valid.
Indeed, if all the participants are malicious, they can choose their zi’s so that their sum is 0, in
which case D = (1G, 1G), therefore m = 1G even though C1 and C2 might have two different
plaintexts. Therefore, one must also verify that D ̸= (1G, 1G).

59

Chapter 2. Cryptography in electronic voting

Algorithm 20: DVZKP for EQLOG
Requires: G of prime order q

(g1, g2, g3, g4) ∈ G
Two public elements
g, h ∈ G
w ∈ Zq | (g1, g2)w = (g3, g4)

1 α
$←− Zq;

2 c1 ←− gα1 ; c2 ←− gα2 ;

3 d2
$←− Zq; a2

$←− Zq;
4 c3 ←− ga2h−d2 ;
5 d← hash(g1|| · · · ||g4||g||pkv||c1||c2||c3);
6 d1 ←− d− d2;
7 a1 ←− α+ d1w;
8 return (c1, c2, c3, d1, d2, a1, a2);

Algorithm 21: DVZKP for EQLOG
Requires: G of prime order q

(g1, g2, g3, g4) ∈ G
Two public elements
g, h ∈ G
skv ∈ Zq | gskv=h

1 α
$←− Zq;

2 c3 ←− gα;

3 d1
$←− Zq; a1

$←− Zq;
4 c1 ←− ga11 g−d1

3 ; c2 ←− ga12 g−d1
4 ;

5 d← hash(g1|| · · · ||g4||g||pkv||c1||c2||c3);
6 d2 ←− d− d1;
7 a2 ←− α+ d2skv;
8 return (c1, c2, c3, d1, d2, a1, a2);

2.4.5 Designated Verifier Zero Knowledge Proofs

As explained in Section 2.3.4, a non-interactive ZKP provides a transcript that anyone can
verify. In general, this is desirable in electronic voting; however, there can be a few situations
where it would be preferable that only a specific entity is convinced by the proof. The main
example is in the context of coercion resistance, which is the subject of Part III. To address such
situations, designated verifier zero knowledge proofs (DVZKP) were introduced in [JSI96], along
with designated verifier signatures. Following this paper, a rich literature was developed (see
e.g., [SBWP03, SKM03, LWB05]); some examples of recent academic works are [CC18, BJO+22].
The solution proposed in [JSI96] is extremely simple: suppose that the verifier has a secret key
skv that corresponds to a public key pkv (for instance, pkv = (g, h) with h = gskv). Then, instead
of proving a statement ϕ, the prover can make a disjunctive proof that either ϕ is true, either
they know the secret key sk (for instance, using a PoK as presented in Section 2.3.2). This way,
the verifier is convinced that ϕ is true (unless the secret key was compromised) but cannot use
this proof to convince anyone else since they might have produced it using the knowledge of sk.

For completeness, we give in Algorithm 20 an explicit algorithm that can be used to produce
a valid DVZKP π = (c1, c2, c3, d1, d2, a1, a2) for the Chaum-Pedersen proof. In other words,
given a DDH tuple (g1, g2, g3, g4) ∈ G and a witness w, one can prove to the verifier that
logg1(g3) = logg2(g4). However, knowing the secret key skv, the verifier can forge a valid proof
for any tuple, using Algorithm 21. To verify such a proof, one computes d from the hash function,
check that d = d1 + d2 and verify that the three following equations are satisfied:

c1 = ga11 g−d1
3 ; c2 = ga12 g−d1

4 ; c3 = ga2h−d2 .

2.4.6 Cryptographic signatures derived from PoK

In electronic voting, the public board is trusted as a public, append-only shared dataset. However,
it does not mean that the data available in the public board (e.g., the ballots) are legitimate.
To prevent ballot stuffing and, more generally, to authenticate the data on the public board, the
main strategy is to use signatures. Just as for encryption schemes, we denote S and P the
sets of the secret and public keys. With these notations, a public key signature scheme can be

60

2.4. The most commonly used ZKP

Expsuf-cma(λ,A)
1 pk, sk←− Gen(λ); S ←− ∅;
2 m,σ ←− AOSign(pk);
3 if Verifpk(σ,m) = 1 and (m,σ) ̸∈ S

then return 1 else return 0;

OSign(m)

1 σ ←− Signsk(m);
2 S ←− S

⋃
{(m,σ)};

3 return σ;

Figure 11: Strong unforgeability experiment

defined as a tuple (Gen,Sign,Verif), such that, for all security parameter λ, Gen(λ) outputs a
key pair (pk, sk), where pk is a public verification key and sk is the secret signature key. For such
a key pair, we have

∀m ∈ {0, 1}∗,Verifpk(Signsk(m),m) = 1.

The security of a signature scheme is characterized by its unforgeability : without the secret
key, it should be unfeasible to forge a valid signature for a given message m. Numerous notions of
unforgeability exists. For instance, we give Definition 13 which defines the strong unforgeability
under adaptive chosen messages attacks. The unforgeability of a signature scheme in turn allows
to guarantee the authenticity and the integrity of a message. Also, since a signature is publicly
verifiable, it is usually non-repudiable, which gives a way to provide accountability.

Definition 13. A signature scheme is SUF-CMA secure if, for all PPT adversary A, the prob-
ability Pr(Expsuf-cma(λ,A) = 1) is negligible in λ, where Expsuf-cma is defined in Fig. 11.

Schnorr signature. A classical way to obtain a signature scheme is to use a standard PoK
of the signing key, where the message m is also included into the hash. This is the main idea of
the Schnorr signature scheme [Sch89], where Gen generates an ElGamal key pair (pk, sk) while
Sign is recalled in Algorithm 22. To verify a signature σ = (c, a) for a message m with respect
to a public verification key pk = (g, h), one can compute d = hash(g||h||c||m) and check that
c = gah−d.

Algorithm 22: Schnorr signature
Requires: A group G of prime order q

Two public elements (g, h)
A message m ∈ {0, 1}∗
sk ∈ Zq s.t. h = gsk

1 α
$←− Zq; c←− gα;

2 d←− hash(g||h||c||m);
3 a←− α+ dsk;
4 return (c, a);

The Schnorr signature is widely used in practice, as it is extremely efficient and proven SUF-
CMA secure in the ROM and under the DDH assumption [PS96]. However, up until 2008, the
DSA/ECDSA was preferred as Schnorr’s signature scheme was patented. For this reason, there
are still a lot of protocols which use various versions of DSA/ECDSA.

61

Chapter 3

Security proofs in electronic voting

In modern cryptography, it is more and more important to provide a security proof that a
protocol cannot be breached. In this thesis, we use cryptographic, hand-written proofs to link
the security of a protocol (e.g., its privacy or its verifiability) to a computational assumption
(e.g., the DDH assumption and the ROM). In this chapter, we present the main proof techniques
that we use and we illustrate them by proving various results.

3.1 Cryptographic reductions and game hops

The main strategy to prove a security property is to exhibit a reduction to a known hard problem,
such as factorization, discrete logarithm or DDH (or any hard problem). We already used this
strategy in Section 2.2.2, where we proved that the ElGamal encryption scheme was IND-CPA
under the DDH assumption. However, it is often too difficult to give a direct reduction to the
main computational assumption. For this reason, we use game hops.

3.1.1 Game hops

Recall from Section 1.1.2 that we use game-based definitions to assess the security of a protocol. A
game (or experiment) can be seen as an interactive Turing machine (ITM) that can interact with
the adversary (seen as a PPT) by writing on its input tape and reading its outputs. Intuitively,
the game models the behavior of the honest participants, while the adversary is allowed to
impersonate the corrupted ones. For instance, consider the ZK-TCPA game in Algorithm 13,
which will be our running example in this section. This algorithm defines the program of the
game, seen as an ITM. However, we can see that the game must interact with an adversary, which
is activated in lines 2, 5 and 10. During the same experiment, we consider that the adversary
is stateful, i.e. that it keeps its memory between each activation. Depending on the actions of
the adversary, an experiment outputs either 0 or 1: the adversary wins if the output is 1. This
allows to model our security property. To decide whether the adversary wins or not, the game is
supposed to have an unbounded computational power, which means that we do not demand that
a game is a polynomial-time ITM. For a given game G, it may not be possible to interact with just
any adversary A. For instance, the adversary is supposed to output a well-formed plaintext at
line 5, otherwise the game could not encrypt it. Therefore, there is always an implicit restriction
on the adversary, which is supposed to give its outputs in the correct format. In this case, we
say that A is an adversary for the game G. In addition to those implicit requirements, we may
give some additional explicit restrictions, as they may not be obvious when just analyzing the

62

3.1. Cryptographic reductions and game hops

type of the variables. For instance, we ask that the set A output at line 4 should be a subset of
[1, nT] of size at most t.

During the security analysis, we often refer to the view of the adversary. Formally, the view is
a random variable over {0, 1}∗ which consists of the concatenation of all the inputs that was given
to the adversary. Intuitively, a game can be defined by the view that it gives to the adversary
and how it computes the final output from the outputs of the adversary. When two views follow
the same distribution, we say that they are the same. If two different games give the same views
to the same adversary and compute their output in the same way, the output of both games
will follow the same distribution. Similarly, if the views are not the same but computationally
indistinguishable, the outputs in both games must also be computationally indistinguishable.
This is a first example of a game hop, where we slightly modify a game into a more simple game,
in such a way that the final output remains approximately the same.

An important specific case in game-based definition is the decisional game. A decisional
game is parametrized by a random bit b ∈ {0, 1} which is chosen at the beginning of the game
(sometimes, we may flip the bit latter, when it is really needed). Depending on the value of
the bit, two different views can be given to the adversary, whose goal is to guess the value of b.
In this case, we are interested in the advantage of the adversary, which is the distance between
its probability to win and 1/2 (as mentioned previously, a common alternative definition is to
say that the advantage is twice this value, and we may use both definitions interchangeably).
For instance, the ZK-TCPA game is a decisional game, and we say that a threshold encryption
scheme is ZK-TCPA secure if no adversary can win with a non-negligible advantage.

To prove that a game cannot be won with a non-negligible probability (or advantage), a
common strategy is to use several game hops, where we replace a game by another which is
simpler to analyze. To argue that this transformation is legitimate, we use a game reduction.
To present this notion, we use the following notation: if A is an adversary (seen as a Turing
machine), the adversary BA is an adversary which interacts with A by writing and reading on
its tapes. Since we consider only polynomial adversaries, BA can only make up to a polynomial
number of queries to A, and each query must use inputs of polynomial size. Although BA may
read all the tapes of A, a generic Turing machine can be arbitrarily obfuscated. Therefore, there
is no constructive way for BA to learn anything else than A’s outputs (e.g., the intermediate
values of the variables handled by A). For this reason, we use the same notation as for black-
box oracle queries, e.g., BODec . This black-box access assumption means that, given another
adversary A′, B could similarly interact with A′ so that B can be seen as an ITM which makes
some queries to a Turing machine. Then we say that there is a polynomial reduction from G1

to G2 if there exists a PPT B, such that, for all adversary A that wins G1 with a non-negligible
probability (or advantage), BA wins G2 with a non-negligible probability (or advantage). For
instance, we gave an explicit reduction from IND-CPA to DDH and the other way around in
Section 2.2.2.

Now, consider two games G1 and G2. Suppose that there exist several intermediate games
H0, · · · , Ht such that, for all i, there is a polynomial reduction from Hi to Hi+1, with H0 = G1

and Ht = G2, where t ∈ N is some fixed integer (that does not depend on the security parameter
λ). Then, by transitivity, there is a polynomial reduction from G1 to G2. This is the principle
of game hops: here, each Hi is a game hop, and is obtained from Hi−1 by introducing a little
tweak. To see how the notion of game hops can be used to prove Theorem 1, see the proof of
the theorem in Appendix A. Alternatively, we also provide some examples of game hops in the
following section.

63

Chapter 3. Security proofs in electronic voting

Algorithm 23: Expind-pa0(λ,A)
1 pk, sk←− Gen(λ);
2 m0,m1 ←− A(pk);

3 b
$←− {0, 1};

4 C ←− Encpk(mb);
5 C ←− A(C);
6 m←− (Decsk(y))y∈C\{C};
7 b′ ←− A(m);
8 if b = b′ then return 1 else return 0;

Algorithm 24: Expn-ind-pa0(λ,A)
1 pk, sk←− Gen(λ);
2 (ν0,k, ν1,k)

n
k=1 ←− A(pk);

3 b
$←− {0, 1};

4 for i = 1 to n do Ci ← Encpk(νb,i);
5 C ←− A((Ci)

n
i=1);

6 M ←− {{(Decsk(C))C∈C\{Ci,i∈[1,n]}}};
7 b′ ←− A(M);
8 if b = b′ then return 1 else return 0;

3.1.2 The hybrid lemma

The polynomial reduction proof strategy was notably used in [BS99] to prove the equivalence
between two notions of non-malleability, by giving a succession of polynomial reductions NM-
CPA =⇒ SNM-CPA =⇒ IND-PA0 =⇒ NM-CPA, where SNM-CPA is some equivalent formu-
lation of the NM-CPA security while IND-PA0 security is defined in Definition 14. This notion
of security is extremely interesting in electronic voting because it is equivalent to a weak version
of privacy, captured by Algorithm 24. While this game is not enough to define privacy, it is still
interesting to consider as a minimal requirement. Now, it is notable that Algorithms 23 and 24
are similar: the main difference is that the adversary can choose an arbitrary number of pairs at
line 2, instead of one in the IND-PA0 game. The equivalence between these two games is a good
opportunity to introduce the hyrid lemma.

Definition 14 (IND-PA0 [BS99]). An encryption scheme (Gen,Enc,Dec) is IND-PA0 secure if,
for all PPT A, A wins the IND-PA0 game (defined in Algorithm 23) with a negligible advantage.

Lemma 1 ([BS99]). An encryption scheme is NM-CPA if and only if it is IND-PA0.

To prove that IND-PA0 (and, therefore, NM-CPA security) is equivalent to n-IND-PA0, the
natural strategy is to consider n game hops H0, · · · , Hn, where H0 is the IND-PA0 game (and
hence does not count as a game hop) while Hn is the n-IND-PA0 game. Game Hi is defined as
in Algorithm 24, except that the adversary can choose up to i + 1 pairs of plaintexts at line 2.
Therefore, Hi can be seen as a hybrid between the IND-PA0 game (where the adversary can
only choose one pair) and the n-IND-PA0 game (where the adversary can choose an arbitrary
number of pairs). With such hybrids, it is possible to show that, for all i, if there is an adversary
A which wins Hi+1 with some non-negligible probability, then there exists an adversary B that
wins Hi with a non-negligible probability (see Lemma 2).

Lemma 2. For i ∈ N, let Hi be the game defined in Algorithm 24, except that the adversary is
restricted to n ≤ i+ 1 at line 2. Suppose that (Gen,Enc,Dec) is IND-PA0. Then, for i ∈ N, for
all adversary PPT Ai+1, there exists a PPT Ai and a negligible function µi such that

|Pr(Hi(λ,Ai) = 1)− Pr(Hi+1(λ,Ai+1) = 1)| ≤ µi.

Proof. Let i ∈ N and let Ai+1 be some PPT adversary for Hi+1. We construct Ai as fol-
lows. First, Ai gets pk from Hi and forwards it to Ai+1 which answers with i + 2 pairs
(ν0,1, ν1,1), · · · , (ν0,i+2, ν1,i+2) (when Ai+1 uses less pairs, Ai can use them in Hi and thus a

64

3.1. Cryptographic reductions and game hops

perfect simulation of Hi+1 to Ai+1; therefore we focus on the specific case where Ai+1 uses ex-
actly i+ 2 pairs). Ai can only play i+ 1 of them in Hi, therefore Ai does not play the last one.
At this point, Ai gets i+1 encryptions from game Hi but has to show i+2 ciphertexts to Ai+1.
For this purpose, Ai completes Ai’s view with a random ciphertext Ci+2 of a known (random)
plaintext ν. This way, Ai gets C from Ai+1 and plays this in Hi. It gets M from Hi, removes
ν from M and adds ν0,i+2 instead. Then, it sends the resulting multiset to Ai+1. Finally, Ai

returns Ai+1’s output.
Reduction to IND-PA0. Now, we show that there exists a negligible function µi which

suits the conclusion of the lemma. For this purpose, we consider an adversary B for the IND-
PA0 game. This adversary will interact with Ai+1 by simulating Hi+1. First, B gets pk from the
IND-PA0 game and forwards this to Ai+1 which answers with (ν0,j , ν1,j)

i+2
j=1. To simulate Hi+1,

B picks a random bit b ∈ {0, 1} and compute Cj = Encpk(νb,j) for j ∈ [1, i+1]. However, for the
last ciphertext, B picks a random plaintext ν and sends (ν, νb,i+2) in the IND-PA0 game which
gives back the ciphertext Ci+2. Then B give those i+ 2 ciphertexts to Ai+1 which answers with
C. Then B plays this in the IND-PA0 game which gives back the decryptions m. Finally, B
sends {{m}}

⊎
{{(ν0,j)i+2

j=1}} to Ai+1 which answers with b′. If b′ = b, B returns 1 to claim that the
IND-PA0 encrypted νb,i+2; otherwise B returns 0 to claim that the IND-PA0 encrypted ν.

Now, remark that when the IND-PA0 game encrypts νb,i+2, B plays a perfect simulation of
Hi+1 to Ai+1, and therefore B outputs 1 with probability pi+1 = Pr(Hi+1(λ,Ai+1) = 1). On
the other hand, when the IND-PA0 game encrypts ν, B plays Ai’s simulation of Hi+1 to Ai+1.
However, it must outputs 0 to win the IND-PA0 game, and thus wins with probability 1−pi, where
pi = Pr(Hi(λ,Ai) = 1). Therefore, B’s advantage in the IND-PA0 game is µi =

1
2 |pi− pi+1|.

By the triangular inequality, it follows that for all PPT A against n-IND-PA0, there exists a
PPT B and some negligible functions µ1, · · · , µn such that∣∣∣∣Pr(Expn-ind-pa0(λ,A) = 1)− 1

2

∣∣∣∣ ≤ ∣∣∣∣Pr(Expind-pa0(λ,B) = 1)− 1

2

∣∣∣∣+ n∑
i=1

µi.

However, an upsetting fact is that a sum of polynomially many negligible functions is not always
negligible. Of course, this is the case when there exists a negligible function µ such that µi ≤ µ
for all i ∈ N, and also if n is bounded by some constant. However, suppose that n = λ and
consider the example µi = 2i/2λ for all i. Clearly, for any i ∈ N, µi is negligible; however,∑n

i=1 µi is not negligible. Therefore, Lemma 2 by itself is not sufficient to conclude: for this
purpose, we need the hybrid lemma. In this thesis, we use the version of [MF21, Theorem 3.17],
that we restate into Theorem 2, which is better suited for game-based definitions. It is not clear
whether our formulation is equivalent to or a consequence of [MF21, Theorem 3.17]. For this
reason, we prove Theorem 2 in Appendix B.

In this theorem, we consider the practical use case of the hybrid argument when, given two
games G1 and G2, we want to show that there exists a polynomial reduction from G1 to G2. The
idea is that the adversary in G1 can freely choose a (at most polynomial) parameter n while,
in G2, n is restricted to some small constant (e.g., 1). Then the usual approach is to construct
a succession of hybrids (Hi)i∈N such that H0 = G2 (more precisely, see condition 1), and argue
that Hn is indistinguishable from G1, provided that n is large enough (condition 2). The hybrids
must be pairwise similar, i.e. a simulation of Hi+1 can be obtained from Hi in polynomial time
(condition 3). In addition, we need to argue that the simulation is actually indistinguishable
from the real Hi+1. For this purpose, we use a computational assumption, which is captured
by the condition 4, where we suppose that there exists a decisional game G – in which the

65

Chapter 3. Security proofs in electronic voting

adversary has to guess a bit b ∈ {0, 1} – that cannot be won with a non-negligible advantage.
To prove that the simulation is indistinguishable from the real Hi+1, we exhibit a polynomial
reduction to the computational assumption; however, for the conclusion to hold, we need this
reduction to be “uniform”: the same reduction is applied when proving the indistinguishability
of any two hybrids. In addition, we also need the reduction to be “perfect”: we construct an
explicit adversary B for game G such that, given i, B plays a perfect simulation of Hi+1 to Ai+1

when b = 1 in G and Ai’s simulation when b = 0 in G. These two additional requirements are
expressed by condition 5. When all these conditions are gathered, the hybrid lemma gives the
desired conclusion.

Theorem 2 (The hybrid lemma). Let G1 and G2 two games. We consider a sequence of games
(Hi)i∈N which are hybrids between G1 and G2. With these notations, assume that the following
conditions are met:

1. For all PPT A, for all security parameter λ, Pr(G2(λ,A) = 1) = Pr(H0(λ,A) = 1).

2. For all PPT A for game G1, there exists a polynomial nA such that, for all λ ∈ N,
Pr(HnA(λ)(λ,A) = 1) = Pr(G1(λ,A) = 1).

3. There exists a polynomial P and two transformation T and T ′ such that, given any PPT
adversary Ai+1 (resp. Ai) for game Hi+1 (resp. Hi), Ai = T (Ai+1) (resp. Ai+1 = T ′(Ai))
is an adversary for game Hi (resp. Hi+1) which makes at most P (λ) additional transitions.

4. There exists a game G which depends on a parameter b ∈ {0, 1} such that, for all PPT
adversary B, εB = 2|Pr(G(λ,B) = 1)− 1/2| is negligible in λ.

5. There exists a PPT B such that, for all i ∈ N and all PPT Ai+1 for game Hi+1 (which in
turns defines a PPT Ai for Hi), we have Pr(G(λ,BAi+1(i)) = 1 | b = 0) = Pr(Hi(λ,Ai) =
1) and Pr(G(λ,BAi+1(i)) = 1 | b = 1) = Pr(Hi+1(λ,Ai+1) = 1).

Then, for all PPT A1, there exists a PPT A2 and a PPT B such that

|Pr(G1(λ,A1) = 1)− Pr(G2(λ,A2) = 1)| ≤ nA1εB.

The hybrid lemma is a fundamental result in cryptography. In particular, it allows to prove
Lemma 3, which is a key step in the proof of privacy for the Helios-like voting systems. For a
complete proof of privacy of Helios, we refer to [BPW12, Theorem 3] or [BCG+15b, Theorem 2].

Lemma 3. An encryption scheme is IND-PA0 if and only if, for all PPT adversary A, the
advantage

∣∣Pr(Expn-ind-pa0(λ,A) = 1)− 1/2
∣∣ is negligible in λ.

Proof. First, it is clear that n-IND-PA0 implies IND-PA0 since Expind-pa0 is a special case of
Expn-ind-pa0 with n = 1. Conversely, suppose that an encryption scheme (Gen,Enc,Dec) is IND-
PA0 secure. Then we consider the game hops (Hi)i∈N defined as in Algorithm 24, except that n
is restricted to be at most i+ 1 at line 2. Then, with G1 = Expn-ind-pa0 and G2 = H0, we have:

1. For all A, λ, Pr(G2(λ,A) = 1) = Pr(H0(λ,A) = 1).

2. For all PPT A, there exists a polynomial nA such that A can make at most nA transitions.
In particular, A cannot output more than nA pairs at line 2 and therefore Pr(HnA(λ)(λ,A) =
1) = Pr(G1(λ,A) = 1) for all λ ∈ N.

66

3.2. Known results in the random oracle model

3. Let Ai+1 be an adversary for game Hi+1. In the proof of Lemma 2, we construct an
adversary Ai for Hi which only computes an additional encryption. Converselly, given Ai,
and adversary for game Hi, Ai+1 = Ai is an adversary for game Hi+1.

4. By assumption, we can use G = Expind-pa0.

5. We constructed such a B in the proof of Lemma 2.

By the hybrid lemma, for all PPT adversary A which wins Expn-ind-pa0 with a non-negligible
advantage, there exists a PPT adversary B which wins H0 with a non-negligible advantage.
Since H0 is clearly equivalent to the IND-PA0 game, this concludes the proof.

3.2 Known results in the random oracle model

When designing a polynomial reduction in the random oracle model, we construct an adversary B
that interacts with another adversary A by simulating a random oracle. This leads to surprisingly
powerful results which can be used to prove various security properties.

3.2.1 Extracting a witness from a proof of knowledge

One of the main use cases of the ROM is to prove the security of standard ZKP, i.e. ZKP
obtained from a disjunctive proof or a proof of knowledge of a preimage, using the Fiat-Shamir
transformation. Indeed, we argued in Section 2.3.4 that the ROM allows to prove that standard
ZKP are computationally sound while still revealing no useful information to a PPT adversary.
However, the example of the Schnorr signature (see Algorithm 22) illustrates that the computa-
tional soundness is not sufficient in some cases. For signatures and authentication, we not only
need to make sure that the statement is true, but also that the prover knows the corresponding
witness. Fortunately, in the case of PoK of a preimage of z by a homomorphism φ, the ROM
not only allows to prove that that z ∈ φ(G) with overwhelming probability, but also that the
prover “knows” a preimage of z. In other words, for all group homomorphism φ : G→ H, where
the order of H does not have any divisor smaller than 2λ, there exists a PPT extractor which,
given z ∈ H and a PPT A that outputs a valid PoK of a preimage of z with some non-negligible
probability, is able to extract a preimage of z from A.

The proof method to build this extractor uses the so-called forking lemma (or rewinding
lemma), introduced in [PS96]. First, consider an adversary A in the ROM which outputs a valid
proof π = (c, a) with some non-negligible probability. Then A must have made a query to the
random oracle with the input c (technically, pre||c), otherwise the challenge d would be uniformly
random and the verification equation c = φ(a)z−d would hold with a negligible probability. Then
we can consider a PPT B which interacts with A by using the rewinding paradigm: if several
independent copies of A are called several times with the same inputs and the same random tape,
then they must return the same outputs. Hence, by using two copies of A and feeding them with
exactly the same inputs, B can create a situation where both copies make an oracle query with
the commitment c as an input. At this point, B gives a different challenge to both copies, in
the hope that they would output a valid answer for the same commitment but two different
challenges, allowing B to extract a preimage using the special soundness property. However,
since B gave a different answer to the copies, they can actually fork at this point; hence the
name of the lemma. Using this lemma in the specific case of the Schnorr signature, Pointcheval
and Stern showed that it is indeed possible for B to extract a preimage of z in polynomial time.

67

Chapter 3. Security proofs in electronic voting

This extractability result can be generalized as soon as the original Σ-protocol had the special
soundness property (see, for instance, [BPW12, Theorem 1]).

Non-malleability in practice. Following the same proof strategy, it is possible to show
that a simple transformation of the ElGamal encryption scheme is sufficient to provide NM-CPA
security, as stated in Lemma 4. This is an interesting result in electronic voting, as we already
stated that NM-CPA is a good notion of security that is necessary for privacy (see Lemma 3).
Although there exists other strategies that do not rely on the ROM to create non-malleable
variants of the ElGamal encryption (e.g., [CS98]), the “Enc+PoK” paradigm is widely preferred
because of its efficiency.

Lemma 4 ([BPW12]). Let (Gen,Enc,Dec) be an IND-CPA encryption scheme and, for all pk,
let Apk(C,m, r) a standard PoK algorithm that, given a ciphertext C, a plaintext m and a ran-
domness r such that Encpk(m, r) = C, produces a PoK for the language Encpk(P×R), where P
is the plaintext space while R is the randomness space. Suppose that Apk is obtained from a zero
knowledge Σ-protocol that has special soundness, using the strong Fiat-Shamir transformation
(i.e. the hash must at least contain the ciphertext C, the public key pk and the commitment c).
Then, the encryption scheme (Gen,Enc′,Dec′) is NM-CPA secure, where Enc′pk(m, r) returns
the pair (C, π) with C = Encpk(m, r) and π = Apk(C,m, r) while Dec′sk(C, π) returns ⊥ if π is
invalid and Decsk(C) otherwise.

3.2.2 Good practices for non-interactive proofs

Non-interactive proofs are ubiquitous in electronic voting, yet their security is not always un-
derstood properly. Indeed, recall that all the arguments of Section 2.3.4 (and also Section 3.2.1)
assumed that both the NP language L and the element z (supposedly in L) were fixed and
could not be chosen by the adversary. However, this is not the case in electronic voting. For
instance, consider the example of a voter who produces a ballot that contains an encryption C
and a ZKP that C encrypts a valid voting option. Then the statement “C is valid” actually
depends on C, which means that a malicious voter has an extra degree on liberty when creating
the proof. Namely, suppose that we use a weak Fiat-Sharmir transformation where only the
commitment is hashed to obtain the challenge. Then one could very well compute a random
commitment c, deduce the challenge d, choose a random answer a and compute z = (φ(a)/c)1/d.
Then the “proof” π = (c, a) will satisfy a verifier who would compute d = hash(c) then check
that c = φ(a)z−d; yet, z is uniformly random (since c is random) and thus not necessarily in
φ(G). This illustrates the difference between what a PPT adversary can do with a chosen (hence
potentially trapdoored) z compared to with a given z (for which a cannot be extracted because
of φ’s one-wayness).

“Strong” Fiat-Shamir transformation. Interestingly, it was revealed in [BPW12] that the
ZKP used in Helios were vulnerable to this attack. Worse, it was even revealed that a coalition
of t + 1 talliers were able to create a ciphertext for any chosen plaintext, and forge a fake but
valid-looking ZKP that this ciphertext encrypts a valid voting option. Although it is generally
assumed that up to t talliers may be corrupted, this trust assumption is only made for privacy
and not for verifiability. Yet, when a homomorphic tally is used, this allows to undetectably add
(or remove) any arbitrary number of votes to any candidate, hence rigging the result. For this
reason, the authors introduced the “strong” Fiat-Shamir transformation, in which the challenge
is not only obtained from the commitment, but also from the ciphertext; i.e. d = hash(z||c)
instead of d = hash(c). In what follows, we show that this is still not enough: while z is indeed
fixed, this is not the case for φ.

68

3.2. Known results in the random oracle model

How to forge a fake ZKP, again. The solution of [BPW12] is not sufficient in the context
of electronic voting. More precisely, although the developers of Belenios [CGG19] used the
“strong” Fiat-Shamir transformation as recommended, we found a way for the corrupted talliers
to forge a fake but valid-looking ZKP for a false statement. This allows them to cast a ballot for
an invalid voting option, which either breaks eligibility or prevents the result from being tallied.
We presented this attack at E-Vote-ID as a short paper [CGY20]. To fix ideas, consider the case
of an exponential ElGamal encryption in a group G of prime order q, with a base a. To simplify
further, assume that a is an element of the public key; for instance, if pk = (g, h), suppose that
a = g (a similar attack exists when a = h or when a can be chosen freely by the attacker; if
a is fixed in advance or provably random, then a similar attack is possible by taking γ = a at
Step 1). With this in mind, recall that the encryption of a bit b ∈ {0, 1} given a public key
pk = (g, h) is obtained by choosing a random r ∈ Zq and computing x = gr and y = gbhr. Now,
to prove that (x, y) is an encryption of either 0 or 1, assume that we use the “strong” Fiat-Shamir
transformation from [BPW12]: a valid proof π consists of a tuple (c0,x, c0,y, c1,x, c1,y, d0, d1, a0, a1)
such that, with d = hash(x||y||c0,x||c0,y||c1,x||c1,y), we have d0 + d1 = d while ci,x = gaix−di and
ci,y = hai(y/gi)−di for all i ∈ {0, 1}. Then, we explain how the attacker can create an encryption
(x, y) of any chosen plaintext m ∈ Zq, and forge a fake but valid-looking ZKP π w.r.t. (x, y). To
perform the attack, one must corrupt all the participant of the key generation protocol (i.e. the
talliers), and proceed as follows:

1. Choose a random group generator γ ∈ G\{1}.

2. Pick some random scalars ℓx, ℓy, r0x, r0y, r1x, r1y ∈ Zq and compute x = γℓx , y = γℓy ,
c0,x = γr0x , c0,y = γr0y , c1,x = γr1x and c1,y = γr1y .

3. Compute d = hash(x||y||c0,x||c0,y||c1,x||c1,y).

At this point, the ciphertext (x, y) and the commitments are fixed, but not the public en-
cryption key pk. The idea is to use it as some extra degree of liberty, by looking for g and h of
the form g = γℓg and h = γskℓg . However, for (x, y) to encrypt the desired plaintext m ̸∈ {0, 1},
we need the secret key sk to respect the equation mℓg = ℓy − skℓx. Finally, to forge our valid
ZKP, we need to find d0, d1, a0, a1 that satisfy the verifying equations. By using the trapdoors
set at Step 2, we can use the vector space structure of G and express all the desired equations in
Zq, using the discrete logarithm in base γ when necessary. This leads to the following system,
where the unknowns are in bold while the known values are in blue:

mℓg = ℓy − skℓx

d = d0 + d1

r0x = a0ℓg − d0ℓx

r0y = a0skℓg − d0ℓy

r1x = a1ℓg − d1ℓx

r1y = a1skℓg − d1(ℓy − ℓg)

⇐⇒

mℓg = ℓy − skℓx

d = d0 + d1

r0x = a0ℓg − d0ℓx

r0y − skr0x = d0(skℓx − ℓy)

r1x = a1ℓg − d1ℓx

r1y − skr1x = d1(skℓx − ℓy + ℓg).

Since this system is quadratic, it is a priori not trivial to solve. However, assuming that the

69

Chapter 3. Security proofs in electronic voting

denominators do not cancel (which happens with negligible probability), we have:

sk =
ℓy −mℓg

ℓx
d = d0 + d1

a0 =
r0x + d0ℓx

ℓg

d0 =
r0y − skr0x
skℓx − ℓy

a1 =
r1x + d1ℓx

ℓg

d1 =
r1y − skr1x

skℓx − ℓy + ℓg
.

Hence everything can be expressed as a function of ℓg, provided that d = d0 + d1. This last
equation can then be rewritten as

d =
r0y − skr0x
skℓx − ℓy

+
r1y − skr1x

skℓx − ℓy + ℓg
=

r0y − ℓy−mℓg
ℓx

r0x

ℓy −mℓg − ℓy
+

r1y − ℓy−mℓg
ℓx

r1x

ℓy −mℓg − ℓy + ℓg
, hence

ℓgd =

ℓy−mℓg
ℓx

r0x − r0y

m
+

r1y − ℓy−mℓg
ℓx

r1x

1−m
.

Now that we finally have a linear equation, we can proceed as follows:

4. Compute ℓg =
(
r0xℓy−r0yℓx

mℓx
+

r1yℓx−r1xℓy
(1−m)ℓx

)(
d+ r0x

ℓx
+ mr1x

(m−1)ℓx

)−1
and g = γℓg .

5. Compute sk =
ℓy−mℓg

ℓx
and h = gsk. Set pk = (g, h).

6. Deduce d0, d1 and then a0 and a1 from the above equations.

7. Return the ciphertext (x, y) and the ZKP π = (c0x, c0y, c1x, c1y, d0, d1, a0, a1).

This attack allows to forge a single ballot that contains any desired number of voices for a
specific candidate. For instance, if the talliers want Alice to win, they can give her any number
of additional voices; if they want her not to win, they can give her a negative number of voices.
Alternatively, they can also choose a large value of m, so that the tally would be impossible since
it would require to solve the discrete logarithm problem. One would argue that those attacks
require to freely choose the group generator g, while there is no reason to allow the talliers to do
this. Since g must not have any specificity except being uniformly random, it can be obtained by
a public coin protocol. In practice, g is actually fixed and determined by the group specification.
When g is provably random or fixed, the authorities can no longer choose ℓg as in Step 4 and
hence cannot forge a fake ZKP for the ciphertext (x, y). However, they are still able to choose
sk, which allows to create an encryption of some random (not chosen) m ∈ Zq and forge a fake
ZKP that m ∈ {0, 1}. Therefore, the soundness of the ZKP is still lost and it is still possible to
prevent the tally from being computed without being blamed.

Strong Fiat-Shamir transformation. To obtain a PoK, we recommend that the challenge
be obtained from a binding description of the homomorphism φ : G → H, the element z for
which we want to prove the knowledge of a preimage and the commitment. When those three
are fixed, the soundness of the Fiat-Shamir transformation is proven in the ROM; however, there

70

3.2. Known results in the random oracle model

is no guarantee if, for instance, H or G are allowed to change. In the case of the ElGamal
encryption scheme, it is therefore necessary to include the ciphertext and the public key in the
hash (along with the commitment). If exponential ElGamal is used with some base a ̸∈ {g, h},
then a should be included as well. Finally, one can even include a description of G just to be on
the safe side (even if they cannot think of a clever way to use the same pk – seen as a bitstring
– in another group).

To conclude this section, we give our own definition of the strong Fiat-Shamir transformation.
The original “strong” transformation was too weak, as it allowed a PPT adversary to forge fake
ZKP for false statements by using an attack scenario which was not anticipated. Therefore, it is
possible that our solution may also be vulnerable to an attack in the future. For this reason, we
give a clear context in which our transformation is secure, and which is suitable for electronic
voting. First, to fix ideas, we give a definition of Σ-protocols in Definition 15.

Definition 15. Let W ,L be two sets parametrized by a security parameter λ. (For the ease of
the notations, we drop the dependency on λ.) A Σ-protocol for the relation R = W × L is a
tuple of PPT algorithms (Com,Ans,Ver).

It has correctness if, for all (w, z) ∈ R (also denoted wRz), for all d ∈ [0, 2λ − 1],
Ver(z, c, d, a) = 1, where c, ρ = Com(z) and a = Ans(w, ρ, z, d).

It is zero knowledge if there exists a PPT simulator Sim such that, for all (w, z) ∈ R and
all d ∈ [0, 2λ − 1], (c̃, ã) = Sim(z, d) follows the same distribution as (c, a), where c, ρ = Com(z)
and a = Ans(w, ρ, z, d).

It is computationally sound if there exists a negligible function µ such that, for all PPT
adversary A and all z ̸∈ L, we have:

Pr(c← A(λ, z); d $← [0, 2λ − 1]; a← A(d); Ver(z, c, d, a) = 1) ≤ µ(λ).

Then, to introduce the notion of strong Fiat-Shamir transformation, we must capture the
fact that the NP language may be chosen by the adversary. For this purpose, we consider in
Definition 16 a family of Σ-protocols which are parametrized by a public key pk. In electronic
voting, pk is the public encryption key (and, if necessary, the base of the exponentiation for
exponential ElGamal). However, we cannot consider just any family since proving the security
of the strong Fiat-Shamir transformation in a too generic setting would be hard. Therefore,
we restrict ourselves to a uniform case, as it is the case in general (see Definition 16). One of
the consequences is that, technically, since we ask for the relation Rpk to be efficiently decidable
given only pk and λ, the parameter pk must somehow include an encoding of the group, otherwise
one would not know how to compute an exponentiation. By uniform, we mean that the same
algorithm allows to compute Compk, Anspk, Verpk and the simulator Simpk. In addition, we also
demand that the computational soundness is uniform (see the UCS game in Algorithm 25). This
way, we do not have to worry about the sum of polynomially many negligible functions being
potentially non-negligible. For the non-interactive proof to be “zero-knowledge” in the ROM, we
also ask that if q is polynomial, then q independent commitment from Com, even with potentially
different pk, are pairwise distinct, except with a negligible probability. Intuitively, this means
that the simulation of a non-interactive proof in the ROM will be perfectly indistinguishable
from the real proof, except with a negligible probability. (Indeed, recall that to simulate a
proof, the simulator first chooses a random challenge d and a random answer a, then computes
c = φpk(a)z

−d, which follows the same distribution as a honestly generated commitment when
z ∈ φpk(G). To be able to forge the proof, the simulator “assigns” the value d to hash(pk||z||c),
which may not be possible if c was already used in another simulated ZKP.)

71

Chapter 3. Security proofs in electronic voting

Algorithm 25: ExpUCS(λ,A)
Requires: A family of Σ-protocols (Com,Ans,Ver) w.r.t. the languages (L)pk

1 pk, z, c←− A(λ);

2 d
$←− [0, 2λ − 1];

3 a←− A(d);
4 if Verpk(z, c, d, a) = 1 and z ̸∈ Lpk then return 1 else return 0;

Definition 16 (Uniform Σ-protocol). Let (R)pk be a family of relations parametrized by a public
key pk and the security parameter λ. (For all pk, we denote Lpk = {z | ∃w,wRz}.) Similarly,
let (Com,Ans,Ver)pk be a family of Σ-protocols for those relations. Suppose that for all pk,
(Com,Ans,Ver)pk has correctness, zero knowledge and computational soundness. We say that
this family is uniform if the following conditions are met:

• There is a common PPT algorithm R such that, given a public key pk, a security parameter
λ and w, z ∈ {0, 1}∗, allows to decide if wRpkz;

• There exists a common PPT algorithm Com (resp. Ans and Ver) which, given pk, λ
and z (resp. w, ρ, z, d and z, c, d, a), computes Compk(z) (resp. Anspk(w, ρ, z, d) and
Verpk(z, c, d, a);

• There exists a common PPT simulator Sim which given pk, λ, z ∈ Lpk and d ∈ [0, 2λ− 1],
returns Simpk(z, d), where Simpk is the simulator of (Compk,Anspk,Verpk);

• There exists a negligible function µ such that, for all non-uniform polynomial A, the prob-
ability that A wins the UCS game (defined in Algorithm 25) is at most µ(λ).

• For all polynomial q, q independent commitments from Com are pairwise distinct, except
with probability at most qµ.

Now, we argue that the standard Σ-protocol are actually uniform. Indeed, consider a family
φpk : G → H which is parametrized by a parameter pk, but for which there is a common
polynomial-time algorithm to compute every φpk given pk and g ∈ G. (For instance, φ can be
the encryption algorithm.) By contrast with the usual, we suppose that the order of H does not
have any non-trivial divisor smaller than 22λ (instead of 2λ, which is the case in general since
we want to protect ourselves against the birthday paradox. In addition, we also consider that
for all pk, φpk is non-trivial, which means that we may rule out some specific values of pk. We
consider (Com,Ans,Ver)pk, the standard Σ-protocol for proving the knowledge of a preimage
from ϕpk (defined in Section 2.3.2). Then (Compk,Anspk,Verpk) clearly comes from a common
polynomial-time algorithm, the same goes for Simpk. In addition, recall that a standard Σ-
protocol has the special soundness property. Therefore, whenever the adversary outputs pk, z, c
such that z ̸∈ φpk(G), then there exists at most one value d ∈ [0, 2λ − 1] for which a valid
answer a can be found. Hence, the adversary wins the UCS game with probability at most
µ(λ) ≤ 2−λ, which is indeed independent from pk. Finally, since we assumed that for all pk, φpk

is non-trivial, its image is a non-trivial sub-group of H, and therefore has a cardinality of at least
22λ (indeed, recall that the cardinality of a sub-group is a divisor of the order of the group, and
that there is no non-trivial divisor smaller than 22λ). Yet, the commitment algorithm consists
of choosing a random α ∈ G and returning c = φpk(α), so that c is a random element of φpk(G),
chosen among at least 22λ possibilities. Therefore, q independent commitments can collide with

72

3.3. Universally composable security

probability at most 1−
∏q−1

i=0 (1− i2−2λ). When q is at most polynomial, this is approximately
q(q−1)
22λ+1 ≤ q22−2λ ≤ q2−λ = qµ.

Now that we have fixed the context, we give Definition 17 which explains how to securely turn
an interactive Σ-protocol into a non-interactive ZKP. Note that the security of this transformation
is already included in the definition of a uniform Σ-protocol, for instance in the UCS game.

Definition 17 (Strong Fiat-Shamir transformation). Consider a uniform Σ-protocol (Com,Ans,
Ver) for the family Rpk, and hash : {0, 1}∗ → {0, 1}2λ a hash function. The strong Fiat-Shamir
transformation of this protocol consists of the two following algorithms:

• Provepk(w,z) : Compute c, ρ = Compk(z), compute d = hash(pk||z||c) (modulo 2λ) and
return (z, c, a), where a = Anspk(w, ρ, z, d).

• Verifpk(z, c, a) : Compute d = hash(pk, z, c) (modulo 2λ) and return Verpk(z, c, d, a).

Note that pk must contains all the necessary informations to compute Rpk, Compk, Anspk, Verpk
and Simpk. This typically includes the group generator and a specification of a group.

3.3 Universally composable security

In electronic voting, we often consider complex protocols that are divided into several phases,
whose security is assessed independently. However, recall how the provably secure Fiat-Shamir
transformation (that required L and z to be fixed) became unsecure as soon as the adversary was
able to choose L and z. This example shows that a protocol as a whole may be unsecure even
when its components are individually secure. To address this, we use an universally composable
framework in which the security of a protocol can be deduced from the security of its components.

3.3.1 Presentation of the framework

We use the SUC framework [CCL15], which is a simpler version of the universally composable
framework of Canetti [Can01] (hence the acronym SUC). In this framework, a protocol is a
fixed set of participants that are modeled as probabilistic polynomial ITM which interact with
each other using common input / output tapes (i.e. communication tapes). Executing all the
participants concurrently leads to an execution of the protocol, which is called a process. In
turn, a process can invoke sub-processes, but with the same participants that must allocate a
part of their memory and computation time for this. This way, several sub-processes can be
run in parallel. However, we consider that they are all uniquely identified, which means that a
message designed for a specific instance of a sub-protocol cannot be (re)used in another instance
of the same sub-protocol.

The above restriction is a part of the communication model, which also contains the following
assumptions. First, we consider that the communication channels provide integrity, and are
ideally authenticated: when Alice sends a message to Bob, this message cannot be modified, it
cannot be diverted as a message sent to Charlie and Bob will know that Alice was the one who
sent it. In addition, a message cannot be replayed: after a message was delivered to a participant,
it cannot be delivered again (except if the same message was sent several times). However, the
channels are not considered secure: the adversary can read any message between two participants,
block the messages and decide at which moment they might be delivered (if at all). In particular,
the adversary can freely invert the order in which several messages may be delivered, which means
that we consider an asynchronous model of communication. The asynchronicity of the model

73

Chapter 3. Security proofs in electronic voting

also means that, at a given time, exactly one entity may be activated. We suppose that an
entity’s activation is interrupted if and only if the entity sends a message, writes something in its
output tape or uses the specific instruction wait (in which case the adversary is activated next).
However, any participant can send several messages simultaneously, in which case they may be
delivered independently.

Another way to present the model of communication, as done in [CCL15], is to consider an
incorruptible entity, known as the router. When a participant i sends a message m to another
participant j, this is modeled as i writing a send query to the router, using a dedicated commu-
nication tape. The router then sends (i, j,m) to the adversary which is activated next. Then,
at any moment, the adversary can decide to deliver a message that is stored inside the router,
in which case the router deletes this message and writes (i, j,m) in j’s communication tape.
Therefore, we can consider that each (honest) participant has only two communication tapes:
one for sending and the other for receiving, and that both tapes are connected to the router.
Although the router is always honest, it cannot do anything else than forwarding the messages
to the adversary and delivering them when instructed.

In this thesis, we consider an adversary which can non-adaptively corrupt some participants.
The corrupted participants may be fully impersonated, which means that the adversary’s program
is executed instead. When representing the participants as ITM, one can consider that the
communication tapes of the corrupted participants are connected to the adversary. In particular,
since the router needs to identify which tape belongs to which participant in order to deliver
the messages, we consider that the adversary’s communication tapes are clearly identified, which
means that the corrupted participants can be deduced from the tapes of the adversary. Note
that it might be desirable to let the adversary choose the participants to corrupt at the very
beginning of the experiment. In this case, we can still assume that the adversary has a dedicated
tape for the corrupted participants and that those tapes allow it to “control” them.

In addition to the adversary A, there is an additional polynomial ITM Z which represents the
environment. It can arbitrarily write in the input tape of the participants (which activates them)
and is activated when they write in their output tape (at which point it can directly read the
output). Recall that we consider that several instances of the same sub-protocol are independent.
Hence, if the environment writes several times in the input tape of the same participant, the
latter will start a fresh, independent session of the protocol. For simplicity, we suppose that,
in a given session, a honest participant may only write a single output, after which the session
is killed and every local variable is erased. Apart from that, Z can only interact with A, for
instance by giving it some specific instructions and reading its feedback. (For simplicity, we
consider that Z can only read the outputs of the honest participants since it can instruct A to
directly send the corrupted participants’ outputs.) Note that the interaction between Z and A
is direct and does not use the router. Now, the security of a protocol is assessed by comparing
the real protocol with an ideal one in which the computations are handled by some trusted party
(which is not necessarily polynomially bounded).

In the ideal protocol, the honest participants handle their inputs to the trusted party which
honestly follows a specific algorithm and is expected to give them an answer. However, while
the adversary can block or delay the communications between a participant and a trusted party,
it cannot read the corresponding messages: the content of the input and that of the trusted
party’s answer remain private. (Nevertheless, we suppose that the adversary can read a public
part of the message, such as its length or the session identifier.) Note that the corrupted parties,
who are under the control of the adversary, may send anything to the trusted party and not
necessarily the input given by the environment. At some point, the trusted party can send a
message to any participant. When such a message is delivered, the honest participant outputs

74

3.3. Universally composable security

its content. Finally, the adversary may directly interact with the trusted party, without using a
corrupted participant or the router as an intermediate. For instance, since the adversary is able
to block all the communications, it is possible to consider that it can force the protocol to abort
by instructing the trusted party to send ⊥ to all the participants, which in turn will output ⊥.

Intuitively, the protocol is SUC-secure if, for all adversary A in the real process, there exists
a PPT simulator S in the ideal process such that no PPT Z can tell whether it is interacting
with A in the real process or with S in the ideal process.

The idea is that S can interact with Z by simulating the real process, i.e. the honest
participants, the router and the interaction with A. For this purpose, S can act as the adversary
of the ideal process in which Z is active. In this process, it makes some queries to the trusted
party, impersonates the corrupted participants and delays the communications of the honest
participants with the trusted party, as explained above. However, S cannot rewind Z, and
therefore cannot rewind A either since it may use Z’s instructions to prevent this. With this
restricted course of action, S must simulate the messages of the honest participants, but also
make sure that its simulation is consistent with the outputs given by the trusted party (recall
that the environment can read the outputs of the honest participants). For instance, in a protocol
that aims at generating a common random string, the random string generated in the simulation
must be the same as the one given by the trusted party in the ideal process.

Since the goal of the environment is to distinguish the simulation from the real process, we
consider that it can only output 0 or 1. Also, to capture the fact that Z can be any environment,
we consider that Z can have an arbitrary auxiliary input z ∈ {0, 1}∗ of polynomial size, which
represents some precomputed data. This input can depend on the protocol, on the adversary A,
and even on the simulator. Technically speaking, z can also depend on the security parameter;
therefore, Z can be seen as a non-uniform adversary rather than a Turing machine.

Since Z has access to an unlimited precomputation power, SUC-security is a very strong
notion of security. It means that whatever computation that A was able to perform (including
something which would rig the distribution of the outputs), S is able to do the exact same thing
in the ideal process, where there is no communications between the participants. Nonetheless,
SUC-secure does not necessarily mean secure; rather, it means that the protocol is as secure as
the ideal one, whose security is easy to assess.

3.3.2 The composition theorem

A composable framework is interesting because the security of a protocol can be deduced from
the security of its sub-protocols, which gives a comprehensive way to build a security proof. For
instance, suppose that we consider that a functionality F (e.g., generating a common random
group element) is taken for granted. Then we can imagine a protocol P in which the participants
are able to make arbitrary queries to F in order to get an answer: this is the F-hybrid model,
depicted in Fig. 12. In [CCL15], the hybrid process is similar to the real process, except that
the participants can make queries to some trusted parties listed in the family F . By contrast
with the ideal process, a query to a trusted party does not necessarily contain the participant’s
inputs; rather, it can be anything defined by the protocol’s specifications. Just as in the ideal
process, the content of the query and that of the trusted party’s answer remain private, but
the adversary can learn some information such as the length or the nature of the message (and
use this to decide when to deliver the message, if at all). Finally, another difference is that the
trusted party’s answer to the participant is not output by the participant but instead processed
depending on the specification of the protocol. (Note that the adversary can still directly interact
with the ideal functionality, as in the ideal model.) In this thesis, we denote RealFP,A,Z(λ, z) (resp.

75

Chapter 3. Security proofs in electronic voting

C

H1H2

F

A Z

Authenticated communica-
tion, A can read, block and
delay the messages

Authenticated and private, A
can block, delay and read a
public part of the message

Z writes the inputs and
reads the outputs

A fully impersonates the cor-
rupted participants

Direct I/O communication

Figure 12: Illustration of the F-hybrid process, with one corrupted participant C and two honest
participants H1 and H2

IdealG,S,Z(λ, z)) the probability that the environment outputs 1 while interacting with A (resp.
S) in the F-hybrid process (resp. the ideal process were G is the trusted party). With these
notations, SUC-security is given by Definition 18. Note that in the ideal model, the adversary
has no access to F ; hence, the simulator must also simulate the interactions with F in addition
to the messages of the participants and the outputs of G.

Definition 18 ([CCL15]). Let P be a protocol and F ,G two families of trusted parties. We say
that P SUC-securely computes G in the F-hybrid model if, for all PPT A, there exists a PPT S
such that for all PPT Z and every k ∈ N, there exists a negligible function µ such that for all
λ ∈ N and z ∈ {0, 1}λk , ∣∣RealFP,A,Z(λ, z)− IdealG,S,Z(λ, z)

∣∣ ≤ µ(λ).

Now, an interesting result in the SUC framework is the universal composability of the SUC-
secure property. To better understand this result, consider a protocol P in the F-hybrid model.
Also, consider that there is a protocol Q which SUC-securely computes F in the G-hybrid model.
Then we can consider the protocol PQ in the G-hybrid model, which is the protocol P except
that every query to a trusted party in F is replaced by an invocation of Q as a sub-protocol,
where the content of the query is the initial input of each participant. Since we considered that
several copies of the same sub-protocol must be independent, it means that each invocation of
Q will use its own independent copy of G. The composition theorem [CCL15, Theorem 2.3],
reproduced in Lemma 5, states that if Q and P are SUC-secure, then PQ is SUC-secure as well.

Lemma 5. Let P be a protocol in the F-hybrid model and Q be a protocol that SUC-securely
computes F in the G-hybrid process. Then, for all PPT A, there exists a PPT S such that for all
PPT Z and all k ∈ N, there exists a negligible function µ such that for all λ ∈ N and z ∈ {0, 1}λk ,∣∣∣RealGPQ,S,Z(λ, z)− RealFP,A,Z(λ, z)

∣∣∣ ≤ µ(λ).

Thanks to this theorem, we can use the usual strategy of game hoping, and modify the
protocol step by step so that there is less and less cryptography involved. However, it requires

76

3.3. Universally composable security

to prove that some sub-protocols are SUC-secure to begin with, which can be scary if we look
at the five consecutive quantifiers involved. For this reason, we also mention two fundamental
results from the UC framework, which are also valid in the SUC framework (In fact, it is proven
that a SUC-secure protocol is also UC-secure, see [CCL15, Theorem 4.13].)

Dummy adversary. The first result is that the first quantification on the PPT A can
be dropped. More precisely, it is known that the hardest adversary to simulate is the dummy
adversary, which forwards every message to the environment. In addition, the dummy adversary
accepts queries of the form send(i, j,m) (resp. deliver(i, j,m)) from the environment, where i is
a corrupted (resp. any) participant, j is a participant and m a message. Upon receiving such a
query, the adversary writes (i, j,m) in i’s outward communication tape (resp. forwards the query
to the router). (See for instance [Can00, Claim 11], which states that if the dummy adversary
can be simulated, then any adversary can be simulated.)

Restricted environment. The above result means that we do not have to look for a process
which, given an adversary, constructs a simulator; rather, we can directly exhibit an explicit,
universal simulator. This, indeed, is reassuring and allows to better understand the notion of
SUC-security. Nevertheless, the latter is still too generic as the environment is able to choose
any input for the participants, including inputs which are not consistent with each other. For
instance, consider a threshold decryption protocol. Then, if the participants do not agree with
the public encryption key, the messages exchanged during the real protocol will most likely allow
the environment to distinguish this situation with that of an ideal protocol. For this reason, it is
important to restrict the inputs that the environment can give to the participants. In this thesis,
we consider restricted environments, which are only allowed to choose the inputs in some (not
necessarily efficiently) decidable language L ⊂ {0, 1}∗. In our example of a threshold decryption,
the environment must give the same pk, (hi)

nT
i=1 to every participant, and the secret shares of the

participants must be consistent with the public key. In [Nie03, Theorem 3.5], it is shown that
the composition theorem still holds if we restrict the environment to choosing such inputs.

3.3.3 Programmable random oracle model

We already mentioned that we use the ROM, which can be incorporated into the SUC framework
as the ideal functionality FRO defined in Algorithm 26 (we use the notation x ∈ H to denote
that x is a key of H). We acknowledge that using the ROM in a UC framework is not that
common. Usually, using the common reference string assumption is preferred since the random
oracle cannot be instantiated. We mention that there exists universally composable commitment
schemes (see for instance [Lin11, FLM11]) that can be used instead of hash-based commitments.
Outside of the ROM, a hash-based commitment is not equivocable nor extractable, and hence not
SUC-secure. However, computing a universally composable commitment is by several orders of
magnitude less efficient than computing a hash. Consequently, in electronic voting, it is unlikely
that UC commitments will be used instead of hash functions in the near future. The same remark
applies for ZKP (see for instance [GOS06] for a construction of universally composable ZKP).

3.3.4 An illustrative example: synchronous broadcast

Now that we introduced the SUC framework, the natural next step is to explain how we can
prove that a protocol is SUC-secure. For this purpose, we give our first proof of SUC-security.
On this occasion, we identify two sub-protocols that are featured in most asynchronous protocols,
which are the broadcast and the synchronous broadcast. In order to simplify the presentation
of the protocols in the remaining of this thesis, we will therefore define the corresponding ideal

77

Chapter 3. Security proofs in electronic voting

Algorithm 26: FRO

Requires: The security parameter λ
Variables: A hashmap H (initially empty)

1 On message m from participant i:
2 if m ∈ H then Answer to i with m,H(m) ;
3 else

4 s
$←− {0, 1}2λ;

5 Add the key m in H with the value s;
6 Answer to i with m, s;

functionalities FB and FSB, and use the FB,FSB-hybrid model.
Synchronous broadcast. In the SUC framework, the model of communication is atomic,

which means that there is no native way for secure broadcasting. Typically, if a participant is
supposed to broadcast a commitment, it can actually send a different commitment to the ev-
ery other participant, which is certainly undesirable. In general, broadcasting in an unsecure
communication network is a fundamental problem related to the byzantine agreement problem,
which requires a majority of honest participants. However, it is common to consider that there is
an ideal broadcast channel, which allows to abstract away this difficulty as an independent prob-
lem. Therefore, we use the FB-hybrid model, where FB is an ideal functionality for broadcasting
(see Algorithm 29). For simplicity, we consider that the messages sent by the ideal broadcast
functionality arrive “simultaneously”, which is technically a breach in the SUC framework since
the adversary is supposed to be able to block and delay every message. However, we consider
that properly modeling the broadcast ideal functionality in the SUC framework is out of scope
for this thesis.

Broadcasting can be used for various reasons, but is sometimes insufficient. Indeed, it is
often desirable that the values are not only broadcast (i.e. the same view is given to every
participant), but also that they are broadcast simultaneously. In other words, in a situation
where several participants must independently broadcast a value, we want to make sure that the
adversary cannot cheat and choose the broadcast value depending on the values broadcast by
the others. To prevent this, we use a round of synchronization which consists of the following
steps. First, broadcast a commitment on the value to broadcast; second, once every commitment
has been received, broadcast an opening of the commitment; third, verify the opening of all the
other participants. (For a concrete example, see for instance Fig. 7, where this strategy is used
to choose a common random implicit polynomial.) In order to simplify the description of our
different protocols in the SUC framework, we introduce in Algorithm 28 an ideal functionality
FSB (for synchronous broadcast) which allows to factor this sub-protocol into a single query to
a trusted party.

Note that FSB is “consumed” when called once, which means that every instance of a syn-
chronous broadcast protocol should call an independent copy of FSB. In practice, it means
that at each activation, a honest participant creates a new, fresh session of the protocol with
a different identifier, so that all the sessions are independent (this supposes that the session
identifiers scheduling is publicly shared). To justify the use of the FSB-hybrid model, we also
give in Algorithm 27 the protocol SB which allows to SUC-realize FSB in the FRO,FB-hybrid
model, as claimed in Lemma 6.

Syntax of a protocol in the SUC framework. In the SUC framework, a participant

78

3.3. Universally composable security

is modeled as an ITM, and can be activated by two means: on receiving a message and when
the environment writes a new input on its input tape. Depending on how a participant was
activated and at which state it is in the procedure, it may have a different behavior, depending
on the protocol. To model this, we use a specific syntax which specifies the exact behavior of the
participant, see Algorithm 27 for an example. Note that the different actions in this algorithm
are not necessarily sequential, as they depend on the state the participant is in and on the nature
of the message / input that activated it. Also, recall that the execution is interrupted whenever
a participant sends a message (that technically includes any query to an ideal functionality, but,
for the sake of simplicity, we may write the procedure as if the following actions were continuous),
writes in its output tape (in which case all the local variables are erased and the session is killed)
or uses the specific command wait. Finally, remark that we give in Algorithm 27 the behavior
for a single honest participant, which has the index i. This is because the same algorithm is used
for all the honest participants, as it is always the case in this thesis.

A first proof in the SUC framework. We now give Lemma 6, which states that the SB
protocol SUC-securely computes the corresponding ideal functionality.

Lemma 6. The SB protocol described by Algorithm 27 SUC-securely computes FSB in the
FRO,FB-hybrid model.

Proof. The simulator. We construct an explicit simulator S that simulates the entire hybrid
process, including the router, the honest participants, the random oracle and FB; however,
it does not simulate the corrupted participants who are controlled by the dummy adversary
(the simulator can only control the corrupted participants of the ideal process). Unless stated
otherwise, all of the following actions take place in the simulated real process.

First, the simulator gets the length of the input from the public part of the queries to FSB in
the ideal process. With this information, whenever a honest participant is activated in the initial
state, the simulator simulates a communication from i to FRO with the corresponding length,
and change i’s state to the commit state.

Then, whenever i is activated in the commit state, it checks that the activation is due to a
message from the (simulated) FRO and changes i’s state to the opening state. To simulate i’s
broadcast, it generates a random a of 2λ bits and broadcasts it.

Then the simulator can run a perfect simulation up until a honest participant i has to reveal
α||mi. This can only happen if this participant received a commitment ck from all the other
participants, including the corrupted ones. At this moment, since the simulator actually played
the role of the random oracle, it can look for a preimage αj ||mk for all ck such that k is corrupted.
If no preimage is found (i.e. no query was answered by ck for a given k), the simulator chooses
mk at random. Now that the simulator has a value mk for all the corrupted participant, it
can use them to query the FSB ideal functionality in the ideal process, using the corresponding
value for each corrupted participant. However, it blocks FSB’s answers except for itself. This
allows the simulator to learn the input of all the honest participants, and thus to broadcast α||mi

in the simulation as required (for this purpose, the simulator generates a random α ∈ {0, 1}λ.
Afterward, the corresponding honest participant switches to the verify state.

Now, the simulator can run a perfect simulation of the verify state, since it has access to
all the information. However, since the simulator does not control the honest participants of
the ideal process, it remains to explain how it can have them output the same values as in the
simulated hybrid process. Clearly, if a honest participant i outputs blame(j) in the simulated
hybrid process, it means that j was corrupted. Then the simulator can have the corrupted
participant j send a message to FSB in the ideal process, so that the ideal functionality will send
blame(j) to all participants. At this point in the ideal process, the simulator blocks every such

79

Chapter 3. Security proofs in electronic voting

Algorithm 27: SB
Requires: The security parameter λ

n: number of participants
Inputs: A message mi

1 On input mi:
2 Start a new independent session
3 in the Commit state;

4 α
$←− {0, 1}λ;

5 Query FRO with α||mi;

6 State Commit:
7 On answer q, a from FRO:
8 Change state to Open;
9 Query FB with a;

10 State Open:
11 On answer j,m from FB:
12 if cj = ⊥ then cj ←− m;
13 if ck ̸= ⊥ for all k then
14 Change state to Verify;
15 Query FB with α||mi;

16 else wait;

17 State Verify:
18 On answer j,m from FB:
19 if mj = ⊥ and |m| ≥ λ then
20 Parse m as αj ||mj ;
21 Query FRO with m;

22 else wait;

23 On answer q, a from FRO:
24 for all k s.t. αk||mk = q do
25 if ck = a then vk ←− 1;
26 else Output blame(k);

27 if vj = 1 for all j then
28 Output m1|| · · · ||mn;

29 else wait;

Algorithm 28: FSB

Requires: n: number of participants
States: Initial state q0

Final state qf
(if several SB are required, the
participants call several
independent copies of FSB)

1 State q0:
2 On message m from participant i:
3 if si ̸= ⊥ then
4 Change state to qf ;
5 Send blame(i) to all j;

6 si ←− m;
7 if sj ̸= ⊥ for all j then
8 Change state to qf ;
9 Send s1|| · · · ||sn to all j and

S;

10 else wait;

11 State qf :
12 On message from i:
13 Send blame(i) to all j;

Algorithm 29: FB

1 On message m from participant i:
2 Send i,m to all j ̸= i;
3 (no other message can be delivered

between two of those messages,
but the order in which they are
delivered is still up to the
adversary)

80

3.3. Universally composable security

message except for i, which will cause the latter to output blame(j) as in the simulation. Finally,
if a honest participant i outputs m′

1|| · · · ||m′
n in the simulation, the simulator uses the router of

the ideal process to deliver to i the initial message m1|| · · · ||mk of FSB, which causes i to output
m1|| · · · ||mk.

Indistinguishability. Once the simulator is defined, it remains to explain that the simu-
lation is computationally indistinguishable from the real process. For this purpose, we identify
the only two elements which might differ in the simulation. First, when a honest participant
broadcast a commitment, it broadcasts ORO(α||mi) for some random λ-bits α; however, in the
simulation, the simulators does not know mi yet and therefore broadcasts a random 2λ-bit ele-
ments. Clearly, except if two participants choose the same α (which happens with a negligible
probability), the simulated commitments are perfectly indistinguishable from the real ones.

Second, in the ideal process, all the honest participants that do not output a blame have
the same output m1|| · · · ||mn; however, in the hybrid process, each said participant may output
a different m′

1|| · · · ||m′
n. However, if a honest participant outputs m′

1|| · · · ||m′
n, it means that

they received a message of the form j, α′
j ||m′

j such that ORO(α
′
j ||m′

j) = ck. Yet, since ck was
broadcast using FB, all the honest participants agree on this value, therefore they must all output
the same m′

1|| · · · ||m′
n (unless a collision occurred, which happens with a negligible probability).

Finally, we also have that m′
j = mj for all j, except if the adversary managed to find a (first or

second) preimage of ck or a collision (see Section 2.1.3 for a rigorous analysis of the security of
a hash-based commitment in the ROM).

81

Part II

Secure Tally-Hiding

As seen in Section 1.1.1, an electronic voting protocol is usually divided into several phases,
such as the set up, the registration, the voting phase and the tally phase. For the latter, there
are two main strategies: homomorphic tally and mixnets. The first strategy relies on the ho-
momorphic property of the encryption scheme to decrypt the “sum” of the ballots sent by the
voters, without decrypting the ballots individually. It is convenient, efficient and arguably ideal
in many cases; however, it is not suitable for just any counting function. In particular, some
very popular counting functions such as single transferable vote (STV) cannot be readily tallied
using this strategy. For a more generic counting function, the solution by default is to rely on
a decryption mixnet, which reveals all the choices made by the voters, while still concealing the
link between any given voter and any given choice. Once the choices are known in the clear,
the desired counting function can be publicly computed. Nevertheless, the main problem with
this solution is that it reveals too much information compared to the result of the counting func-
tion. For instance, in STV voting, a voter can choose any permutation of the candidates, and
there can be several hundreds of candidates. Consequently, there are often more voting options
available than there are voters; therefore a voter can “sign” their ballot by using a specific and
unlikely permutation. This leads to the so-called Italian attacks, where a coercer asks a voter to
first choose the instructed candidate and then to choose a specific permutation. This way, the
coercer can efficiently coerce a large number of voters simultaneously, and detect which voter
obeys and which one disobeys. To address such a situation, we explore the possibility of using
a fully tally-hiding scheme, which only reveals the result of the election. This part presents the
results of [CGY22a], which is the conference version of [CGY21].

Tally-hiding is possible thanks to multi-party computation (MPC) techniques, which allow to
evaluate any function on the private inputs of the participants, without revealing anything else
than the output. For this reason, we first introduce some generic MPC protocols that illustrate
the usual solutions that exist in the literature. Unfortunately, we will see that they are not
always applicable in the context of electronic voting. Afterwards, we present the main primitive
that we choose, and explain the motivations behind this choice. From this protocol, it is possible
to derive other protocols that securely compute several arithmetic primitives such as additions
and comparisons; and eventually to design an entire protocol for secure tally-hiding. For the
security proofs, we used some involved arguments in the SUC framework.

82

Chapter 4

Multi-party computation for electronic
voting

In multi-party computation, we consider several participants that each possess a secret input
x1, · · · , xn and want to collectively compute f(x1, · · · , xn) without revealing anything else about
their individual inputs. In general, f can output a different value to each participant but, for
simplicity, we do not consider this possibility. For instance, a voting system can be seen as
an instance of an MPC protocol, where the input of a voter is the chosen voting option, f is
the counting function, and some additional participants such as the talliers are here to help
performing the computations. The usual solution in MPC is to give a representation of f as a
boolean circuit that consists of binary gates, to interpret the inputs as the sources of the circuit
and to read the outputs from its leaves. In this context, f is considered as a function from
({0, 1}N)n to {0, 1}m, for some fixed N and m: since we do not want to reveal anything on the
secret inputs, we do not want to reveal their length either, so that they might be padded in order
to always have the maximum possible length N . Once f is represented as a circuit, it remains to
explain how to securely evaluate each gate. In general, a boolean circuit can be evaluated thanks
to an arithmetic circuit in any field Zq. Indeed, the field elements 0 and 1 would represent the
corresponding boolean values; the multiplication corresponds to the logical and; and turning x
into 1− x corresponds to the logical negation.

A wide variety of protocols can be used to evaluate an arithmetic circuit, and we present
some of them in Section 4.1. However, they are not necessarily suitable for electronic voting.
Indeed, we do not expect the voters to engage into a complex MPC protocol; rather, the ideal is
when they can vote and go. Hence, the usual strategy in electronic voting is that the talliers first
generate a public encryption key, the voters encrypt their vote and then the talliers compute
the result from the encrypted ballots. When transposing this in the MPC setting, it means
that the participants of the MPC protocol would be the talliers and that their inputs would be
the secret shares. As for the encrypted ballots, they can be a parameter of the function f , or
some additional common inputs. In the literature, the Paillier encryption scheme emerged as
the solution for MPC on encrypted data. In particular, we introduce the ABB framework in
Section 4.2, which is suitable for electronic voting. However, there are many reasons to prefer
the ElGamal encryption scheme from that of Paillier. Consequently, we explored the possibility
of an MPC protocol based on the ElGamal encryption scheme. In Section 4.3, we present the
conditional gate protocol, which is the main MPC building block that we use in this thesis.

83

Chapter 4. Multi-party computation for electronic voting

4.1 Three popular approaches for multi-party computation

First, we mention three popular approaches for generic MPC.

4.1.1 Garbled circuits

A classical MPC strategy is to use the so-called garbled circuits, introduced by Yao in [Yao86]. In
a two-parties setting, we have a garbler Ginny and an evaluator Evan. As in the general setting,
they all have a private input that they represent as two bitstrings and a function f that they want
to evaluate on their inputs, and that they represent as a boolean circuit. The idea is that Ginny
will garble the circuit f : for each gate i, she creates four random labels, say G0

i , G
1
i , E

0
i , E

1
i , as

well as two random labels O0
i , O

1
i . Intuitively, the Gi’s represent the two possibilities for the

first input while the Ei’s represent the two possibilities for the second. Thanks to the truth
table of the gate, Ginny can create the mapping g : {G0

i , G
1
i } × {E0

i , E
1
i } → {O0

i , O
1
i }, that she

uses to encrypt the gate. For this purpose, she uses a key derivation mechanism as well as a
symmetric encryption function to compute EncKDF(Gx

i ,E
y
i)
(g(Gx

i , E
y
i)) for all x, y ∈ {0, 1}, that

she communicates with Evan.
Now, so that Evan can evaluate the circuit, Ginny sends him all the labels that correspond

to the bitwise representation of her inputs, in the correct order. In addition, she also sends him
the labels that correspond to the bitwise representation of Evan’ inputs, in the correct order.
For this purpose, Ginny and Evan use an oblivious transfer protocol, which allows Evan to get
the desired label without revealing the value of any bit of his input (see for instance [LP11] for a
construction). Given the labels of the inputs of a gate, Evan derives the corresponding key and
uses it to decrypt the output of the circuit. Note that Evan has four values to decrypt, while only
one of them is the correct one. Therefore, it is necessary to impose that the decryption fails if an
incorrect key is used. Once Evan has evaluated the circuit, he has the labels which correspond
to the outputs of the circuit. Depending on whether we want to guarantee that Ginny or Evan
gets the result, we can either ask Evan to send Ginny the label (in which case she learns the
result and can share it with Evan if she wants), or ask Ginny to use plaintexts instead of random
labels for the leaves of the circuit (in which case Evan learns the result and can share it with
Ginny if he wants). In any case, it is difficult to guarantee that they both simultaneously get
the result, since one can always decide to leave the protocol once they have learned the result.

Garbled circuit are still popular nowadays and benefited from many improvements over the
years (e.g., [ZRE15, BMR16]). However, it is not clear whether they can be applied in the
context of electronic voting. A major difficulty is related to universal verifiability. Indeed, to
prevent Ginny from encrypting an incorrect circuit that has the same number of gates, the
participants use a cut-and-choose strategy: instead of garbling a single circuit, Ginny produces,
say, k garbled circuits and has to open k − 1 of them, chosen randomly by Evan. This way, if
Ginny tries to cheat, this is detected with probability at least (k − 1)/k. Nevertheless, it means
that the garbler still has a non-negligible probability to cheat without being caught, which leads
to an uncomfortable situation in electronic voting. In addition to not providing computational
soundness, this paradigm also assumes that Evan is honest. If this is not the case, then Ginny
and Evan can agree on one random circuit to rig: Evan opens the others, which are indeed valid,
but evaluates the fake one. Unfortunately, it is difficult to fix this using the usual Fiat-Shamir
transformation: if the circuits to open were determined from a hash of the encrypted circuits,
Ginny could generate k − 1 valid circuits and rig one at random, compute the ones that she has
to open and start over again until she is successful. Therefore, using garbled circuits imposes an
additional trust assumption on the participants, which is not ideal.

84

4.1. Three popular approaches for multi-party computation

4.1.2 Linear secret sharing schemes

Another popular strategy is based on linear secret sharing schemes, as introduced in [BGW88,
CCD88]. For simplicity, we consider Shamir’s secret sharing scheme, where n participants share
a secret x with a threshold t, using a random (implicit) polynomial P of degree t such that
P (0) = x. In this setting, recall that the share of participant i is xi = P (i). Now, remark
that if two secrets x and y have been shared with the (implicit) polynomials P and Q, then the
participants can compute the sum xi+yi = (P +Q)(i), which is a share of x+y = (P +Q)(0). In
other words, it is possible to add – without interaction – two shared secrets; hence the adjective
linear. Now, by computing xiyi, the participants can similarly create the shares of the value
xy; however, the polynomial PQ has a degree 2t and it would be preferable to share xy with a
polynomial of degree t instead. Indeed, if the participants want to evaluate a complex arithmetic
circuit on their shared secrets, they cannot afford to let the degree of the polynomial increase
after each multiplication gate; otherwise, it would not be possible to recover the final output.

To circumvent this difficulty, assume that 2t < n, so that it is still possible for the participants
to recover the value xy from their shares xiyi. In what follows, we denote JxKit the share of a
secret x for the participant i, using a degree t polynomial. So that they can each obtain JxyKit
from JxKit and JyKit, the participants can proceed as follows:

• Collectively generate JmKit and JmKi2t, for some random and unknown mask m ∈ Zq. Locally
compute the shares JzKi2t of z = xy −m, as JzKi2t = JxKitJyKit − JmKi2t.

• Each participant broadcast their share JzKi2t of z, allowing them to deduce the value of z
using Lagrange interpolation. Indeed, JzKi2t is the value obtained when evaluating in i a
polynomial of degree 2t. Therefore, by collecting 2t + 1 or more of them, one can deduce
z, the value of the polynomial when evaluated in 0.

• Locally deduce JxyKit as z + JmKit. Indeed, z can be considered as a trivial share of itself,
using a constant polynomial. Therefore, since the secret sharing scheme is linear, z+ JmKit
is a share of z +m = xy, as desired.

With the above protocol, it remains to explain how to actually generate JmKt and JmK2t.
A possible solution would be to use Pedersen’s verifiable secret sharing scheme [Ped91b]: each
participant i can choose two polynomials P and Q of degree t and 2t, broadcast the corresponding
commitments (ci,k)

t
k=0 and (c′i,k)

2t
k=0 with ci,0 = c′i,0 (this condition means that both shared

secrets are the same) and secretly send their shares P (j) and Q(j) to the other participants. Just
as in Pedersen’s DKG depicted in Fig. 7, the latter can check that their shares are consistent with
the commitments, therefore the overall protocol would be secure, provided that we have a way to
make sure that the commitments are actually broadcast, i.e. that the view of the commitments
is the same for all the participants. After that each participant has broadcast JmiKt and JmiK2t,
everyone can locally compute the sum of all their shares. More involved solutions allow to
decrease the overall complexity, especially the communication cost; see for instance [GSZ20].

In the context of electronic voting, using linear secret sharing schemes is more suitable than
garbled circuits. First, the trust assumption where we require a honest majority is closer to
what we usually assume for the talliers: although it is preferable to consider any threshold so
that we can decrease their number, asking for t < n/2 can be considered acceptable. Second,
it is no longer possible for the adversary to cheat without being caught with an overwhelming
probability, therefore the verifiability of the corresponding protocols is closer to the usual notion
of verifiability in electronic voting. In addition, we can think of various ways to augment those
protocols with public commitments and/or ZKP to obtain universal verifiability, which means

85

Chapter 4. Multi-party computation for electronic voting

that the trust assumption on the talliers would only be required for privacy, as this is usually the
case in electronic voting. Finally, we already use secret sharing and a DKG protocol, therefore
the MPC techniques are not that far from what we are used to.

However, in electronic voting, the talliers have the shares of the secret decryption key, and
not of the voting options chosen by the voters. Hence, to actually use MPC based on secret
sharing, we have but two solutions: either have the voters privately send a share of the chosen
voting option to each tallier, or have the talliers evaluate a rather complex circuit which depends
on the public ballots and takes the secret shares as inputs, instead of the chosen voting options.
Since each multiplication gate requires to interactively precompute some JmKt, JmK2t and to
perform an additional interactive protocol once the ballots are known, the second solution may
be too expensive. As for the first one, it would be preferable to let the voters produce a single
encrypted ballot as usual, rather than asking them to compute a share for each tallier. Indeed,
although computing a share seems like an easy task compared to an encryption and, say, a ZKP,
the voters have to send their shares privately, which means that an additional (asymmetric)
encryption must be computed for each tallier. In addition, it is not clear how the voters can
prove that the shares they send are actually consistent with their ballot. A related question
was addressed in Kryvos [HKK+22], where the voters send a commitment to the board and the
share of their voting option to the talliers. However, the proposed solution requires the voters to
compute an expensive SNARK (see Section 2.3.5), which takes up to several minutes according
to their benchmark.

4.1.3 Fully homomorphic encryption

The linear secret sharing schemes offer an efficient and simple solution for generic MPC; how-
ever, it seems that they are not the perfect tool that we need in electronic voting. Ideally,
we would like the talliers, who hold the shares of the secret key, to compute the result of the
election from the encrypted ballots sent by the voters. Therefore, what we want is actually to
perform some operations on encrypted, unknown data, rather than on known private inputs.
At this point, a prominent question is “why don’t you use fully homomorphic encryption?”.
Indeed, performing operations on encrypted data is a typical goal in cloud computing, where
the proposed solution is to use a fully homomorphic encryption scheme (FHE). FHE recently
emerged as a solution for generic MPC [KLO+19], and benefited from many improvements since
the first practical proposals [Gen09, vDGHV10] (see for instance [CGGI16b, CLOT21]). To-
day, it is efficient enough to be used in practice. In addition, non-interactive ZKP for FHE
schemes can be derived from lattice-based ZKP, which was the subject of active research re-
cently [BCK+14, DFMS19, ESLL19, LNP22]. Finally, a distributed protocol to collectively
evaluate an arithmetic circuit when the secret key has been shared between several participants
can be found in [BGG+18]. Despite this, it seems that there is no well-established distributed
key generation protocol for FHE schemes: the most relevant contributions that we could find
are [KLO+19, AMM22]. Currently, other strategies are used to distribute the trust between
the talliers, such as multi-key encryption [CCS19]; see for instance [dPLNS17] for an academic
proposition of a post-quantum electronic voting system, and [CGGI16a] for another proposal
based on FHE. With these materials, asking whether FHE may be used is a legitimate question
that requires a thorough analysis. Designing a voting system is a tricky task that includes many
pitfalls: the confidence that we have in the current solutions such as Helios is only possible thanks
to years of studies.

86

4.2. The arithmetic blackbox for Paillier encrypted integers

4.2 The arithmetic blackbox for Paillier encrypted integers

A suitable framework for electronic voting is the ABB framework [Nie03, Part III], which allows
to securely evaluate any function on encrypted data, provided that the secret key has been shared
between several participants. This framework has been notably used in the independent work
of Ordinos [KLM+20], that gives a contribution which is similar to our tally-hiding toolbox. To
explain how Ordinos compares to our contribution, we provide several comparisons at different
levels. First, we compare the primitives in Section 4.3.3; then we give a comparison at the
protocol level in Section 5.3.1; finally, we compare the resulting voting systems in Chapter 6. In
this section, we give all the necessary materials to fully understand the mechanism of Ordinos.

4.2.1 MPC from threshold homomorphic encryption

The main primitive of the ABB framework is a multiplication protocol which relies on the
homomorphic property of the Paillier encryption scheme, introduced in Section 2.2.4.

First, recall that in the Paillier cryptosystem, the public encryption key is a stong RSA
modulus n, such that n = pq with two safe prime numbers p and q. Such a modulus is necessary
coprime with its Euler totient ϕ(n), and the secret key is defined as an integer which is congruent
to 0 modulo ϕ(n) and to 1 modulo n. To encrypt a message m ∈ Zn, one picks a random r ∈ Z×

n2

and computes C = (1 + n)mrn ∈ Z×
n2 . For m ∈ Zn, we denote En = (1 + n)m, the trivial

encryption of m with the randomness 1. To decrypt C with the secret key sk, one computes
Csk − 1 modulo n2, interpret this as an integer u ∈ [0, n2 − 1] and returns m = u/n. Also, we
recall that the Paillier encryption scheme is additively homomorphic: given two m1,m2 ∈ Zn and
r1, r2 ∈ Z×

n2 , we have Encpk(m1, r1)Encpk(m2, r2) = Encpk(m1 + m2, r1r2). Finally, recall that
there are DKG protocols and threshold decryption protocols available for the Paillier encryption
scheme.

With all the above remarks, the only remaining ingredient that we need for secure compu-
tations on encrypted data is to be able to multiply two Paillier-encrypted messages. For this
purpose, one can use the protocol of [DN03], which is an adaptation of the protocol from [CDN01].
We reproduce this protocol in Algorithm 30.

Algorithm 30: Mul
Requires: A threshold decryption setup for the Paillier cryptosystem,

with the public key n
A,B ∈ Z×

n2 , two encryptions of (unknown) a, b ∈ Zn

Outputs: C, a random encryption of ab
1 Each party i chooses a random di ∈ Zn, computes Mi = Bdi , a random encryption Di of

di and a PoK πi that Mi and Di are well-formed. Finally, i broadcasts Mi, Di, πi;
2 Let S be the subset of the parties that gave a valid PoK. Each party compute A

∏
i∈S Di.

Then this value is decrypted into x = a+
∑

i∈S di using threshold decryption;
3 The parties output C = Bx/

∏
i∈S Mi;

This protocol use the same mask-reveal paradigm as in Section 4.1.2: we first mask the value
a by adding a random (unknown) value d and reveal x = a + d. Then, using the homomorphic
property of the Paillier encryption scheme, we compute Bx, which is an encryption of b(a+ d).
Afterwards, the value bd needs to be removed. For this purpose, we need an encryption M
of bd, so that we can compute C = Bx/M . The resulting protocol is arguably simple: only
two broadcasts are required per participant, and the size of the exchanged messages remain

87

Chapter 4. Multi-party computation for electronic voting

reasonable. The security of this protocol has been assessed in a UC framework, see [Nie03,
Part III].

4.2.2 Known MPC protocols in the ABB framework

It is remarkable that Algorithm 30 realizes the same functionality (the multiplication) as the
protocol presented in Section 4.1.2; the main difference is that it operates on encrypted data
instead of data that are shared between the participants. This similarity, in conjunction with
the additively homomorphic property of the Paillier encryption scheme, is interesting because
it means that most of the known protocols from the MPC community can be used in the ABB
framework. For instance, although it is not explicitly stated, Ordinos makes an intensive use of
the following classical MPC protocols:

• RandBit is a protocol which allows to collectively generate an encryption B of a random
bit b ∈ {0, 1}. See Algorithm 32 for a possible realization.

• RandBits(ℓ) is a protocol which allows to collectively generate an encryption R of a
random (quasi-uniform) r ∈ [0, n−1], along with the encryptions R0, · · · , Rℓ−1 of its ℓ least
significant bits. See Algorithm 31, which is adapted from [DFK+06]. In this algorithm,
RangeProof allows to produce a zero knowledge proof that some element r∗,i is in a specific
range. To produce such a proof, a common reference string of the form N, g, h is necessary,
where N is a strong RSA modulus and g, h two independent generators of the subgroup of
the invertible squares modulo N . See Section 4.2.3 for more details.

• RandInv is a protocol which allows to collectively generate two encryptions R,R′ of two
r, r′ ∈ Zn such that rr′ = 1. See Algorithm 34, which is adapted from [BB89].

• Prefix is a protocol which takes as input some encryptions M1, · · · ,Mk of (invertible and
unknown) plaintexts (m1, · · · ,mk) and outputs some encryptions Z1, · · · , Zk such that, for
all i, Zi is an encryption of the product m1 · · ·mi. See Algorithm 34, which is adapted
from [BB89].

The main interest of those protocols is that they are highly parallelizable and can be done
using a constant number of rounds. Indeed, they mostly consists of the generation of many
independent random numbers. In addition, those generations can be precomputed, which is very
interesting in electronic voting since this allows to allocate more time to compute the tally.

4.2.3 Range proofs for Paillier-encrypted integers

A non-interactive zero-knowledge range proof allows a prover to prove that a value is in a
given range. To prove that v ∈ [a, b], the main strategy is to prove that (v − a)(b − v) ≥ 0,
therefore a range proof can be obtained from a proof that a value is non-negative. In the context
of a Paillier encrypted values, a classical method to prove that x ≥ 0 (see for instance [Lip03])
consists of making an integer commitment c of the plaintext x, to prove that c is consistent with
the Paillier ciphertext X, then to prove that x is the sum of four squares. This proof method has
been slightly optimized in [Gro05, Section 5], where it is remarked that it is sufficient to prove
that 4x+1 is the sum of three squares. To compute such squares, one can first choose a random
even integer x1 ∈ N of a carefully calibrated size, so that p = 4x + 1 − x21 is prime with some
non-negligible probability (otherwise, pick another x1). Since p is congruent to 1 modulo 4, it
can be written as the sum of two squares.

88

4.2. The arithmetic blackbox for Paillier encrypted integers

Algorithm 31: RandomBits

Requires: A CRS σ = (N, g, h)
n, a Paillier encryption key
ℓ, the number of bits

Outputs: R, (R0, · · · , Rℓ−1) s.t.
R is an encryption of
r ∈ [0, n− 1] and
(R0, · · · , Rℓ−1) are
encryptions of the ℓ least
significant bits of r

1 for i = 0 to ℓ− 1 do Ri ← RandBit();
2 for i = 1 to nT , participant i do
3 B ←− 2ℓ+λ−1 − 1;

4 r∗,i
$←− [0, B];

5 R∗,i, πi ← RangeProof(σ, n,B, r∗,i);

6 R←−
nT∏
i=1

R∗,i;

7 for i = m− 1 down to 0 do
8 R←− R2;
9 R = RRi;

10 return R, (R0, · · · , Rm−1);

Algorithm 32: RandBit
Requires: pk, an exponential ElGamal

or Paillier encryption key
E1, an encryption of 1

Outputs: Z, an encryption of a
random b ∈ {0, 1}

1 Z0 ←− E1;
2 for i = 1 to nT , participant i do

3 si
$←− {−1, 1}; r $←− R;

4 Zi ←− Zsi
i−1Encpk(0, r);

5 Produce a PoK πi of
well-formedness;

6 Send (Zi, πi) to the other
participants;

7 The participants verify the PoK of the
others;

8 return (E1ZnT)
1
2 ;

Algorithm 33: Prefix
Requires: M1, · · · ,MN encryptions of

m1, · · · ,mN ∈ Z×
n

Outputs: Z1, · · · , ZN , encryptions of
m1,m1m2, · · · ,

∏N
i=1mi

1 R0 ←− 1;
2 for i = 1 to N do
3 Ri, R

′
i ←−RandInv();

4 Si ←− Mul(Ri−1,Mi);
5 Si ←− Mul(Si, R

′
i);

6 Decrypt Si into si.

7 Z1 ←−M1;
8 for i = 2 to N do

9 ai ←−
i∏

j=1
sj ;

10 Zi ←− Rai
i ;

11 return Z1, · · · , ZN ;

Algorithm 34: Randinv
Outputs: R,R′, encryptions of

r ∈r Zx
n and r−1

1 The participants simultaneously
broadcast some random Ai, Bi ∈ Zn2 ;

2 A←−
∏nT

i=1Ai; B ←−
∏nT

i=1Bi;
3 C ←− Mul(A,B);
4 The participants decrypt C into c;
5 R←− A; R′ = Bc−1 ;
6 return R,R′;

89

Chapter 4. Multi-party computation for electronic voting

Table 4: Estimated complexity of the range proof, assuming that |n| = |N | = 3072 and that
λ = 128; the computational complexity is expressed as an approximative equivalent in the
number of exponentiations modulo n2, with a 3072 bits exponent

Prover (# exp.) Verifier (# exp.) Proof size
6 4 ∼ 20|n|

For completeness, we give a possible construction for a range proof in the Paillier setting in
Algorithm 35. In this algorithm, we use the integer commitment scheme of [DF02], as well as
the corresponding ZKP that allows to prove that a given commitment c and Paillier ciphertext
X opens to the same integer x. The algorithm can be seen as a combination of the two proofs,
that we reproduced from [CPP17, Section 3.2] and [CPP17, Fig. 2]. See also [DLP22] for another
proof system.

For the complexity analysis, our main metric is the number of exponentiations modulo n2,
with an exponent n. This corresponds to the cost of computing a Paillier encryption of 0. Since
the exponentiations do not have the same size, we counted the number of modular multiplications
instead, then converted this number to a number of exponentiation by dividing by log n. However,
a multiplication modulo N does not cost the same as modulo n2. Since there are twice as many
bits to compute, the latter costs approximately four times as much as the former. Hence, we
count the number of modular multiplications modulo N , add to this four time the number of
modular multiplications modulo n2. Then, considering that n and N have approximately the
same size, we divide by 4 log n to convert this number to a number of exponentiations modulo
n2. To simplify, we considered that the number ℓ of bits to generate in the RandBits process
(which is the only protocol where the range proof is needed) is small compared to the other
parameters. The resulting complexity estimate is given in Table 4, assuming that N and n are
3072-bits integers and that the security parameter is λ = 128.

4.2.4 Comparing two Paillier encrypted integers

We can now present the main primitive of Ordinos, which is the equality test from [LT13]. To
test whether two Paillier encrypted ℓ-bits integers x and y are equal, one can use the additively
homomorphic property of the Paillier encryption scheme to obtain an encryption of x − y, and
test whether x− y = 0. To test whether an encrypted x is equal to 0, Lipmaa and Toft suggest
to create the unique polynomial Pℓ such that Pℓ(1) = 1 and Pℓ(k) = 0 for k ∈ {2, · · · , ℓ + 1}.
Their strategy is to first compute the Hamming weight h of x, then to evaluate Pℓ on 1+h, from
which they derive the result. The corresponding protocol is given in Algorithm 37.

The advantage of this approach is that most of the procedure can be precomputed so that
only a small part has to be done online, after the operands are known.

From this protocol, one can construct a recursive comparison protocol, as explained in [LT13].
To compute the greater-than comparison on two encrypted x and y, the idea is to test the
equality of the most significant halves of x and y. If they are equal, we compare the least
significant halves recursively; otherwise, we compare the most significant halves recursively. This
gives Algorithm 38, which is also used in Ordinos. In this algorithm, we took the liberty to
denote R⊤, R⊥ the result of RandBits, while RandBits returns some encryptions of the form
R, (R0, · · · , Rl−1). We can derive R⊥ as

∏
i<ℓ/2(Ri)

2i and R⊤ in a similar manner.

90

4.2. The arithmetic blackbox for Paillier encrypted integers

Algorithm 35: Range proof
Requires: A strong RSA modulus N

Two squares (g, h) ∈ Z×
N

A Paillier encryption key n
A bound B, and x ∈ [0, B]

Outputs: X, a Paillier encryption of x
and a ZKP π that x ∈ [0, B]

1 s
$←− Z×

n2 ; X ←− Encn(x, s);

2 r
$←− [0, N − 1]; c←− gxhr;

3 (* PoK that c and X are consistent: *);

4 α
$←− [0, 22λn− 1]; ρ $←− Z×

n2 ;

5 β
$←− [0, 22λn− 1];

6 cEnc ←− Encn(α, ρ);
7 cCom ←− gαhβ ;
8 dPoK ←− hash(n||N ||g||h||cEnc||cCom);
9 ax ←− α+ dPoKx;

10 as ←− ρsd;
11 ar ←− β + dr;
12 πPoK ←− (cEnc, cCom, ax, as, ar);
13 (* Beginning of the range proof *);
14 Compute x1, x2, x3 ∈ Z s.t.

4(B − x)x+ 1 =
∑3

i=1 x
2
i ;

15 r1, r2, r3
$←− [0, N];

16 for i = 1 to 3 do ci ← gxihri ;
17 x0 ←− B − x; r0 ←− r;

18 m0, · · · ,m3
$←− [0, 22λB];

19 s0, · · · , s3
$←− [0, 22λN];

20 σ
$←− [0, 22λBN];

21 for i = 1 to 3 do ei ←− gmihsi ;
22 e4 ←− hσc4m0

∏3
i=1 c

−mi
i ;

23 d←−
hash(n||N ||g||h||B||c||(ci)3i=1||(ei)4i=1);

24 for i = 0 to 3 do
25 zi ←− dxi +mi;
26 ti ←− dri + si;

27 τ ←− σ + d(x0r0 −
∑3

i=1 xiri);
28 Π←−

(c, πPoK , (ci)
3
i=1, (ei)

4
i=1, (zi, ti)

3
i=0, τ);

29 return X,Π;

Algorithm 36: Verification algorithm
Requires: A strong RSA modulus N

Two squares (g, h) ∈ Z×
N

A Paillier encryption key n
A bound B
A ciphertext X ∈ Zn2

Inputs: cEnc, as ∈ Z×
n2 , cCom ∈ Z×

N

ax, ar ∈ Z
c, (ci)

3
i=1, (ei)

4
i=1 ∈ Z×

N

(zi, ti)
3
i=0, τ ∈ Z

1 (* Verification of the PoK*);
2 dPoK ←− hash(n||N ||g||h||cEnc||cCom);
3 if cEnc ̸= Encn(ax, as)X

−dPoK or
cCom ̸= gaxharc−dPoK then return 0;

4 (* Verification of the range proof*)
d←−
hash(n||N ||g||h||B||c||(ci)3i=1||(ei)4i=1);

5 for i = 0 to 3 do
6 if gzihtic−d

i ̸= ei then return 0;

7 if e4 ̸= hτgdc4z0
∏3

i=1 c
−zi
i

then return 0;
8 return 1;

91

Chapter 4. Multi-party computation for electronic voting

Algorithm 37: EQH
Requires: An encryption X of a ℓ-bit integer x

Pℓ, the unique polynomial of degree ℓ such that Pℓ(1) = 1 and Pℓ(k) = 0 for
k ∈ {2, · · · , ℓ+ 1}

Outputs: Z, an encryption of 1 if x = 0 mod 2ℓ, of 0 otherwise
1 R,Rℓ−1, · · · , R0 ←− RandBits(ℓ);
2 M,M ′ ←− RandInv();
3 M1, · · · ,Mℓ ←− Prefix(M, · · · ,M);
4 A←− X/R;
5 The participants collectively decrypt A into a;
6 Let a0, · · · , aℓ−1 be the bit representation of a− n modulo 2ℓ;

7 H ←− E1

ℓ−1∏
i=0

EaiR
1−2ai
i (* h = 1 +

ℓ−1∑
i=0

ai ⊕ ri *);

8 MH ←− Mul(M ′, H);
9 The participants decrypts MH into mH ;

10 for i = 0 to ℓ do
11 Hi ←−M

(mH)i

i

12 Return Z =
∏ℓ

i=0H
αi
i (* where the αi’s are the coefficients of Pℓ *);

Algorithm 38: GTH
Requires: X,Y, ℓ, two encryptions of two ℓ-bit integers x and y
Outputs: Z, an encryption of 1 if x ≥ y, of 0 otherwise

1 if ℓ = 1 then
2 return E1/YMul(X,Y);

3 R,R⊥, R⊤ ←− RandBits(ℓ);
4 W ←− E2ℓX/Y ;
5 M ←−WR;
6 Decrypt M into m;
7 m⊥ ←− m mod 2ℓ/2; m⊤ ←−

⌊
m/2ℓ/2

⌋
mod 2ℓ/2;

8 B ←−EQH(Em⊤ , R⊤) (* x⊤ = y⊤ *);
9 C ←− Bm⊥−m⊤Em⊤ (* m⊥ if b = 1, m⊤ otherwise *);

10 D ←− Mul(B,R⊥/R⊤)R⊤ (* r⊥ if b = 1, r⊤ otherwise *);
11 F ←− E1/GTH(C,D);
12 W ′ ←− F 2ℓEm mod 2ℓ/(R

2ℓ/2

⊤ R⊥) (* w mod 2ℓ *);
13 Return Z = (W/W ′)1/2

ℓ ;

92

4.3. The conditional gate protocol in the ElGamal setting

4.3 The conditional gate protocol in the ElGamal setting

Until now, we presented existing MPC protocols, and gave some details about the protocols used
in Ordinos. We now present the protocol that we used in this thesis, and explain the motivations
behind this choice.

4.3.1 Presentation of the protocol

Suppose that the secret key sk of an exponential ElGamal public key has been shared between
several participants. For instance, pk = (g, h) and, to encrypt m ∈ Zq, one picks r ∈ Zq at random
and computes (gr, gmhr). For m ∈ Zq, we denote Ex = (1G, g

m), the trivial exponential ElGamal
encryption of m. In this setting, we can readily compute the logical negation of two encrypted
bits: if X is an encryption of b, then E1/X is an encryption of 1−b. To compute the logical and,
we use the conditional gate protocol from [ST04]. However, we adapted the original protocol
into Algorithm 39, for the sake of SUC-security. In this algorithm, we denote Rencpk(X, r) the
algorithm that takes a ciphertext X, a random r ∈ Zq, and returns XEncpk(0, r). Compared
to the original protocol, the adaptation is less efficient but can be proven secure in the SUC
framework, as shown in Theorem 3.

Although the original protocol in [ST04] is called the conditional gate in [ST04], we denoted
Algorithm 39 CSZ, which stands for “conditionally set to zero”. Indeed, given an encryption X
of any x ∈ Zq and Y of y ∈ {0, 1}, CSZ(X,Y) is a random reencryption of X if y = 1 and a
random encryption of 0 otherwise. Therefore, this algorithm is slightly more useful than a logical
and gates which would require both inputs to be in a binary domain.

Algorithm 39: CSZ
Requires: G, a group of prime order q and public coin generator g

pk of the form (g, h), an exponential ElGamal public key,
whose shares are distributed among the nT participants
h̃ ∈ G, a public element independent from pk
X, an encryption of some x ∈ Zq

Y , an encryption of y ∈ {0, 1}
Outputs: Z, a random encryption of xy

1 Y0 ←− E−1Y
2; X0 ←− X;

2 for i = 1 to nT , for the authority i, do
3 (u, v)←− Xi−1 ;

4 r1, r2
$←− Zq; s

$←− {−1, 1};
5 Xi ←− (usgr1 , vshr1); e←− h̃r1 ;
6 Yi ←− Rencpk(Y

s
i−1, r2);

7 Broadcast Xi, e, Yi and a ZKP πi that they are well formed (see Algorithm 41) ;

8 Each authority verifies the proof of the other authorities (see Algorithm 42) ;
9 They collectively rerandomize XnT and YnT into X ′ and Y ′ (see Algorithm 40) ;

10 They collectively decrypt Y ′ into ynT (see Algorithm 18);
11 They output Z = (XX ′ynT)

1
2 ;

Algorithm 39 consists of three interactive steps. To begin with, as Y is supposed to be
an encryption of y ∈ {0, 1}, we use the homomorphic property to turn it into an encryption
Y0 of 2y − 1 ∈ {−1, 1} at line 1. This operation is essentially free, and does not require any

93

Chapter 4. Multi-party computation for electronic voting

interaction. Then, the first real step is a round of communications (lines 1 to 8). During this
step, the authorities collectively generate a random and implicit s ∈ {−1, 1} and compute a
reencryption XnT (resp. YnT) of Xs (resp. Y s

0). This way, YnT is an encryption of a random
y′ = s(2y−1) ∈ {−1, 1}, so that decrypting it does not reveal anything about the initial value of
y. The second step is a rerandomization phase (line 9) which we added to obtain SUC-security.
Finally, the last step is a threshold decryption protocol (line 10), during which the authorities
decrypt Y ′ to obtain y′. Then, by computing X ′y′ , they can form an encryption of x(2y − 1)
(indeed, X ′ is an encryption of sx so that the sign s is simplified in the exponent). To derive the
desired encryption of xy, they can locally multiply by X (to obtain an encryption of 2xy) then
raise to the power of (q + 1)/2, which cancels the factor 2 in the exponent. In what follows, we
comment on the modifications that we made compared to the original version of [ST04].

Public coin g. For a technical reason, we require that g is obtained with a public coin
protocol. For this purpose, we consider that g is derived from a hash of "Conditional gate".
This is useful for an explicit reduction to DDH, since it prevents the environment of the SUC
framework to choose g freely. Note that there exists other versions of the DDH game, where the
adversary is allowed to choose the generator g. If such a computational assumption is made, we
no longer need g to be public coin.

Round of communications. Compared to the original conditional gate protocol, we added
the following modifications:

1. We use an ElGamal commitment (usgr1 , h̃r1) instead of a Pedersen commitment gsh̃r;

2. In addition, we require that the ElGamal commitment and the reencryption use the same
randomness r1;

3. Finally, we also demand that the participants prove that s ∈ {−1, 1}, while it was originally
only required to prove the knowledge of some s ∈ Zq.

The two first modifications were made to obtain the extractability of us à la Shoup (without
rewinding). Combined with the third modification, they allow the simulator to extract the value
s1 ∈ {−1, 1} used by the adversary, which is required in the proof of SUC-security. (Since u may
be chosen by the adversary, this also requires to check that u ̸= 1.) To prevent the adversary
from exploiting the trapdoor logh̃(g) (which allows to extract us) not the trapdoor logh̃(h) (which
allows to extract vs), we can derive h̃ from a hash of pk. In addition to provide extractability,
the third modification prevents the adversary from choosing s1 ̸∈ {−1, 1}. This means that,
after the round of communications, YnT is an encryption of y′ = s1s2(2y − 1) ∈ {−1, 1}, where
s2 ∈ {−1, 1} is a random element determined by the choices of the honest participants. Hence,
by computing Xy′

nT , the sign s1s2 is simplified in the exponent, as expected. To obtain the PoK
required at line 7, one can use a standard disjunctive PoK (see Algorithm 41).

Rerandomization. We also added a second step, which is a reencryption phase (see line 9).
This is necessary for the SUC framework; indeed, consider an attacker that corrupts the last
participant. Then it can choose many random s, r1, r2 until XnT meets a particular pattern that
occurs with non-negligible probability (for instance, the 7 first bits in its bitwise representation
are 0). The consequence of such an “attack” is that Z will not be an uniformly random encryption
of xy as desired, so that SUC-security would be lost. To perform the rerandomization, we can
use a synchronous broadcast of random encryptions of 0, along with the corresponding ZKP.
(On this occasion, we recall that synchronous broadcast is discussed in Section 3.3.4.) For the
rerandomization phase, we consider the protocol described in Algorithm 40.

94

4.3. The conditional gate protocol in the ElGamal setting

Algorithm 40: Rerandomization
Requires: G, a group of prime order q

pk, an ElGamal public key
Inputs: X, a ciphertext
Outputs: X ′, a rerandomization of X

1 for i = 1 to nT , participant i do

2 ri
$←− Zq;

3 Ai ←− Encpk(0, ri);
4 πi ←−PoK0(pk, Ai, ri);
5 (* Can be obtained Algorithm 15, with (g1, g2) = pk and (g3, g4) = Ai*)
6 ci ←− hash(Ai, πi);
7 Broadcast the commitment ci;
8 Once a commitment has been received from all the other authorities, broadcast

Ai, πi;
9 Verify that the broadcast Aj , πj are consistent with the corresponding commitments;

10 return X
∏nT

i=1Ai;

Computing the PoK. At line 7, we need a PoK that Xi, cs, Yi is well formed. This proof
guarantees that there exists s ∈ {−1, 1} and r1, r2 ∈ Zq such that Xi = Rencpk(Xi−1, r1), e = h̃r1

and Yi = Rencpk(Y
s
i−1, r2). We use the following standard disjunctive proof:

Xi = Rencpk(Xi−1, r1) and Yi = Rencpk(Yi−1, r2) and e = h̃r1

or

Xi = Rencpk(X
−1
i−1, r1) and Yi = Rencpk(Y

−1
i−1, r2) and e = h̃r1 .

Algorithm 41: PoK-CSZ
Requires: A group G of prime order q

An exponential ElGamal public key pk
Some ciphertexts Xi, Yi, Xi−1, Yi−1 and e ∈ G
r1, r2 ∈ Zq and s ∈ {−1, 1} such that
Xi = Rencpk(X

s
i−1, r1), Yi = Rencpk(Y

s
i−1, r2) and e = h̃r1

1 α, β
$←− Zq;

2 cs,X ←− Encpk(0, α); cs,Y ←− Encpk(0, β); cs,e ←− h̃α;

3 d−s, a−s,X , a−s,Y
$←− Zq;

4 c−s,X ←− Encpk(0, a−s,X)(XiX
s
i−1)

−d−s ;
5 c−s,Y ←− Encpk(0, a−s,Y)(YiY

s
i−1)

−d−s ;
6 c−s,e ←− h̃a−s,Xe−d−s ;
7 d←− hash(pk||Xi−1||Yi−1||Xi||Yi||c1,X ||c1,Y ||c−1,X ||c−1,Y ||c1,e||c−1,e);
8 ds ←− d− d−s;
9 as,X ←− α+ r1ds; as,Y ←− β + r2ds;

10 Return (c1,X , c1,Y , c−1,X , c−1,Y , c1,e, c−1,e, d1, d−1, a1,X , a1,Y , a−1,X , a−1,Y);

To verify the proof, one can use Algorithm 42.

95

Chapter 4. Multi-party computation for electronic voting

Algorithm 42: Ver-CSZ
Requires: A group G of prime order q

An exponential ElGamal public key pk
Some ciphertexts Xi, Yi, Xi−1, Yi−1 and e ∈ G
π = (c1,X , c1,Y , c−1,X , c−1,Y , c1,e, c−1,e, d1, d−1, a1,X , a1,Y , a−1,X , a−1,Y)

1 if Xi is of the form (1g, ∗) then return 0;
2 d←− hash(pk||Xi−1||Yi−1||Xi||Yi||c1,X ||c1,Y ||c−1,X ||c−1,Y ||c1,e||c−1,e);
3 Check that the following equalities hold:

4 d1 + d−1
?
= d;

5 Enc(0, a1,X)(Xi/Xi−1)
−d1 ?

= c1,X ;

6 Enc(0, a1,Y)(Yi/Yi−1)
−d1 ?

= c1,Y ;

7 h̃a1,Xe−d1 ?
= c1,e;

8 h̃a−1,Xe−d−1
?
= c−1,e;

9 Enc(0, a−1,X)(XiXi−1)
−d−1

?
= c−1,X ;

10 Enc(0, a−1,Y)(YiYi−1)
−d−1

?
= c−1,Y ;

11 if so then return 1 else return 0;

4.3.2 Universal verifiability

An interesting property of the CSZ protocol is its universal verifiability. Indeed, each step of
the protocol produces a transcript and some ZKP that allow any external auditor to check that
the correct operations were performed. For instance, the round of communications (line 3 to 6)
produce the transcript πRC = (Xi, ei, Yi, πi)

nT
i=1, where πi is a ZKP that there exists Xi, ei, Yi

are well-formed. Afterwards, the rerandomization produces the transcript πRR(Ui, Vi, π
0
i)

nT
i=1

where Ui, Vi are some ciphertexts and π0
i is a ZKP proof that they are encryption of 0. By

verifying all these proofs and computing X ′ = Xi
∏nT

i=1 Ui and Y ′ =
∏nT

i=1 Vi, the verifier can
deduce the result of the rerandomization phase and is guaranteed that X ′ and Y ′ are well-
formed. Finally, the threshold decryption produces the transcript πTD = (wi, π

Dec
i)nT

i=1, where
wi is i’s partial decryption of Y ′ and πDec

i is a ZKP that it is well-formed. By verifying those
proofs and combining the partial decryptions, the verifier can deduce the value Z of the output
and be assured that Z is indeed an encryption of xy as desired. The final transcript of CSZ is
πCSZ = πRC ||πRR||πTD.

4.3.3 Comparison with the multiplication protocol

At a first glance, the conditional gate seems less useful than the multiplication protocol presented
in Section 4.2. Indeed, to compute a multiplication on encrypted data with the conditional gate,
we need to evaluate an already complex boolean circuit with many conditional gate sub-protocols;
by contrast, this requires a single call of Mul. In this section, we give our main motivations for
choosing the conditional gate anyway. Before that, however, we give a few metrics that are going
to be useful in the remaining of this thesis.

Some metrics to evaluate the complexity of an MPC protocol. A first metric is the
computational complexity. In asymmetric cryptography, the most prominent operation is the
exponentiation, therefore we evaluate the complexity by counting (approximately) the number
of exponentiations. Now, another important thing to assess in an interactive protocol is the

96

4.3. The conditional gate protocol in the ElGamal setting

Table 5: Complexity estimate for the CSZ in a group G of order q and the Mul protocol with
the public key n, where nT is the number of participants.

exponentiations per participant # synchronization steps transcript size (# bits)
Mul 9nT + 4 2 17nT |n|
CSZ 33nT nT + 2 34nT |q|

communication complexity. This is more difficult because several factors can be relevant, such
as the communication delay, the uploading / downloading speed and even the available memory.
A first indicator is the total size of the messages exchanged. To evaluate this in the context of
electronic voting, we give the size of the verification transcript, which is a collection of scalars
and group elements that allow anyone to verify that the protocol was executed correctly, and
therefore that its output is valid. This transcript gives a fair estimate of the complexity of the
communications, as it is closely related to the total size of the messages exchanged. However,
another important metric to consider is the number of synchronization steps. Indeed, in a purely
asynchronous protocol, everyone can perform their computation locally and send and receive
whenever it is needed. By contrast, if a participant must wait for the other participants to send
some contribution before they can continue to operate, then the protocol becomes less efficient.

With the above metrics, the conditional gate protocol seems less efficient than the Mul
protocol (see Tab. 5). The main difference comes from the fact that CSZ requires a round
of communication when then authorities must in turn perform some computations, while Mul
only consists of a few broadcasts. In MPC, reducing the number of communications is crucial;
however, we do not have that many talliers: in general, nT ≤ 5. Therefore, provided that several
CSZ protocols are computed in parallel, the efficiency loss can be amortized.

Comparison of the Paillier and ElGamal cryptosystems. Although the conditional gate
protocol seems less interesting than the multiplication protocol in all aspects, we recall that the
CSZ can be used with the exponential ElGamal encryption, while the Mul protocol requires the
Paillier encryption scheme. This was our main motivation when choosing the CSZ protocol, and
there are many reasons for this.

The computational assumption. First, the Paillier encryption scheme is based on DCRA,
while the ElGamal encryption scheme is based on the DDH assumption. The DCRA is not as old
as the DDH assumption; in addition, it is only used for Paillier encryption, while there are a lot of
cryptographic schemes that rely on the DDH assumption. For this reason, although it is currently
believed that attacking DCRA requires to factor n, it is possible that it might actually be easier.
In addition, there are sub-exponential algorithms for factorization, while this is not the case for
DDH on well-chosen elliptic curves. The consequence is that, for the same level of security, it
is recommended to choose a 3072-bits n, while the size of the group in an ElGamal setting can
be a 256-bits prime number q. Clearly, computing an exponentiation with a 3072-bits exponent
modulo a number of 6144 bits is not the same as computing an exponentiation with a 256-bits
exponent in an elliptic curve over Zp, where p is another 256-bits prime number. In Table 6,
we provide estimates based on a medium level of optimization, for a native implementation on a
modern processor (based on OpenSSL and using RSA for Paillier emulation), and for a JavaScript
implementation running in a modern web browser (based on libsodium.js and JS BigInt). Since
an ElGamal encryption requires two exponentiations, a raw estimate is that a Paillier encryption
is about 1 250 times more expensive than an ElGamal encryption on the voter side.

Available libraries. Another reason to choose ElGamal over Paillier is the availability of
widely used libraries that support elliptic curve cryptography, such as Libsodium, OpenSSL or

97

Chapter 4. Multi-party computation for electronic voting

Table 6: Estimated number of exponentiation per second in the Paillier and ElGamal setting

Paillier Elliptic curve ElGamal
Server-side 200 10 000

Voter-side 2 5 000

Crypto++. By contrast, although some libraries that support the Paillier encryption scheme
can be found, they are not used by a large community that would have detected most of the
vulnerabilities. In Ordinos [Ord], they implemented the Paillier cryptosystem from scratch, based
on the gmp library. In electronic voting, the need for a well-studied library is all the more so
important because we usually need one on the voter side, and one on the server side.

Distributed key generation. A related difficulty is that the DKG in the Paillier setting
is really complex and difficult to implement; by contrast, Pedersen’s DKG is more simple and is
often used in electronic voting. If we want to use an electronic voting system based on the Paillier
encryption scheme in the future, it means that we would need to produce a safe implementation
of the DKG, which is not done in the implementation of Ordinos.

Conclusion. In this thesis, we demonstrate that it is possible to make a reasonable use of the
ElGamal encryption scheme in MPC. Switching to ElGamal is a win some, lose some decision:
the communication complexity becomes larger and the dependency on the size of the inputs is
more important. However, it can be greatly beneficial in some situations, which include electronic
voting protocols.

4.4 Security of the conditional gate in the SUC framework

The conditional gate is our main building block for our toolbox. In order to build confidence
on the resulting protocols, we use an universally composable security framework, introduced in
Section 3.3. In this section, we prove the SUC-security of the conditional gate protocol, which is
stated in Theorem 3. To make the proof as easy to follow as possible, we use a comprehensible
proof strategy and use the composition theorem.

4.4.1 Proof strategy for the conditional gate

To assess the security of any protocol in the SUC framework, a natural strategy is to use the
following steps.

1 Definition of the ideal functionality. First, we give FCSZ , the description of the trusted
party that realizes the conditional set to zero functionality in the ideal process. As explained in
Section 3.3, a SUC-secure protocol is not necessarily secure; rather, it is as secure as the ideal
protocol. For this reason, it is important to provide an easy to analyze ideal functionality. We
give Algorithm 43, in which the command abort causes the ideal functionality to erase any local
data and send ⊥ to all the participants as well as the adversary. This ideal functionality works
as closely as possible as a trusted party: it collects the inputs of the participants, check their
consistency and return the desired output. However, pk is supposed to be the public key, (hi)nT

i=1

the public commitments of the shares of the participants and X and Y the two ciphertexts to
operate on. Therefore, whenever a participant communicates with FCSZ , we consider that this
part of the message can be read by the adversary (recall that the adversary can read a public
part of the message when a participant communicates with the ideal functionality, but not the
totality of the message). Remark that the ideal functionality can abort even if there is a majority

98

4.4. Security of the conditional gate in the SUC framework

of honest participants, which means that we do not guarantee fairness. In addition, the abortion
message ⊥ does not allow to blame anyone, which means that we do not provide accountability.

Algorithm 43: FCSZ

Requires: G, a group of prime order q
1 On message (g, h), (hj)

nT
j=1, s,X, Y from participant i:

2 Send (g, h), (hj)
nT
j=1, X, Y to S;

3 if gs ̸= hi then abort;
4 Xi ←− X; Yi ←− Y ; si ←− s;
5 if Xj ̸= ⊥ for all j then
6 Check that the received (g, h), (hj)

nT
j=1 are all the same (if not, abort);

7 if there exists j1, j2 s.t. Xj1 ̸= Xj2 or Yj1 ̸= Yj2 then abort;
8 Using the shares, decrypt X1 and Y1 into x and y;

9 r
$←− Zq; Z ←− Encpk(xy, r);

10 Send Z to all participants and S;

11 else wait;

2 Definition of the hybrid process. The second step is to define the hybrid process; which
allows to model the protocol in the SUC-framework. For this purpose, we need to define all the
ideal functionalities that we are going to use: they define the main abstractions of the proof. In
our case, we use the FRO-hybrid model, as already discussed in 3.3.3, as well as the FSB-hybrid
model, which we discussed in Section 3.3.4, where we showed that it can be realized from the
ideal broadcast functionality FB and FRO.

In general, describing the hybrid process also requires to give the exact algorithm of the
honest participants in the hybrid model. Since the conditional gate protocol is rather complex,
we are going to decompose it into several sub-protocols and use the composition theorem.

3 Decomposition into several sub-protocols. As explained in Section 4.3, the conditional
gate protocol is divided into three parts: the round of communications (lines 1 to 8), the reran-
domization (line 9) and the threshold decryption (line 10). Then, a natural way to decompose
the protocol is to analyze the three parts separately, which will be done in the remaining on this
chapter. Each part has its dedicated sub-section but, for the purpose of the proof, we do not
treat them in the chronological order.

4 Restrictions on the environment. Finally, as we mentioned in Section 3.3.2, it is some-
times necessary to impose a restriction on the environment. For the conditional gate, the con-
dition is that y ∈ {0, 1}. Therefore, we demand that the input of the participants is of the form
(g, h), (hj)

nT
j=1, si, X, Y such that Y is an exponential ElGamal encryption of 0 or 1 obtained with

the public key (g, h) (i.e. an ElGamal encryption of either 1G or g). In addition, we require that
(g, h), (hj)

nT
j=1, X, Y , which is supposed to be a public input, is the same for all the participants.

To simplify the presentation, we also demand that (g, h), (hj)nT
j=1, si is the output of a DKG, i.e.

that there exists a polynomial f of degree t such that gf(j) = hj for all j, with gf(0) = h0 and
f(i) = si. This additional condition is not only decidable, but also efficiently so; therefore the
participants can check it themselves and abort if it is not met. However, those additional checks
may distract the reader from the important ones.

99

Chapter 4. Multi-party computation for electronic voting

Algorithm 44: RR (algorithm of i)
Requires: G, a group of prime order q
Inputs: pk, an exp. ElGamal key

A ciphertext X
1 On input (g, h), X:
2 Start a new independent session;

3 r1
$←− Zq; α

$←− Zq;
4 Ui ←− Encpk(0, r1);
5 cu ←− Encpk(0, α);
6 Query FRO with (pk||X||Ui||cu);
7 Wait for the answer d;
8 au ←− α+ r1d;
9 Query FSB with Ui, cu, au;

10 On message (Uj , πj)
nT
j=1 from FSB:

11 for j = 1 to nT do
12 cuj , auj ←− πj ;
13 Verify the PoK:
14 Query FRO with

(pk||X||Uj ||cuj);
15 Wait for the answer d;
16 if cuj ̸= Encpk(0, auj)U

−d
j

17 then Output ⊥;

18 Output X
∏nT

i=1 Ui;

Algorithm 45: Frerand

Requires: G, a group of prime order q
1 On message pk, X from i:
2 pki ←− pk; Xi ←− X;

3 if Xj ̸= ⊥ for all j then
4 if Xj = X1 and pkj = pk1 ∀j then

5 α
$←− Zq;

6 X ′ ←− Rencpk1(X1, α);
7 Send X ′ to all j and to S;

8 else abort;

9 else wait;
10 On message i from S:
11 Send pki, Xi to S;

4.4.2 The rerandomization

We start with the easiest phase, which is the rerandomization phase. We show in Lemma 7
that it SUC-securely computes the Frerand ideal functionality, defined in Algorithm 45. This
ideal functionality outputs ⊥ if the participants do not agree on a common public key pk and
a common ciphertexts X (since the participants need to rerandomize two ciphertexts, they will
need to call the ideal functionality twice). If they do, it outputs a random rerandomization X ′

of X. Also, since the inputs of the participants are supposed to be a common public pk, X, this
ideal functionality allows the adversary to learn the input of each participant.

Lemma 7. Assuming that there is at least one honest participant, the rerandomization sub-
protocol described in Algorithm 44 SUC-securely computes the Frerand ideal functionality (given
in Algorithm 45) in the FRO,FSB-hybrid model, where FSB is defined in Algorithm 28.

Proof. We construct the simulator S which interacts with the environment in the ideal process,
and simulates the hybrid process.

First, the simulator acts in the ideal process and forwards the messages of all the honest
participants, which allows it to learn their inputs from Frerand. With this knowledge, it runs
a perfect simulation of the RR protocol, up until when it has to reveal the answer of FSB

to a corrupted participant at line 10. At this moment, the simulator checks that the honest
participants all had the same input pk, X. To begin with, suppose that this is not the case,
which is Case 1. Then the simulator continues the perfect simulation and, whenever a simulated

100

4.4. Security of the conditional gate in the SUC framework

honest participant outputs something in the simulated hybrid process, S forwards the answer of
Frerand (which is necessarily ⊥) to the same participant in the ideal process. This way, the said
participant outputs ⊥ in the ideal process. Since the simulator runs a perfect simulation of the
hybrid process, it remains to show that when two participants do not have the same input in
the hybrid process, then the output of any honest participant (if any) is ⊥ with overwhelming
probability.

Case 1: no consensus. If two honest participants, say i and j, have two different inputs
pki, Xi and pkj , Xj then, for all honest participant k, either the PoK πi or the PoK πj will
appear invalid (except with negligible probability). Indeed, pkk, Xk cannot be simultaneously
equal to pki, Xi and pkj , Xj . Without a loss of generality, assume that (pkk, Xk) ̸= (pki, Xi).
Then FRO, when queried with (pkk||Xk||Ui||cui) outputs a different answer than when queried
with (pki||Xi||Ui||cui), except with a negligible probability. Let dk and di be the two different
answers. Since the proofs are generated honestly, we have cui = Encpki(0, aui)U

−di
i . Except with

negligible probability, this is different from Encpkk(0, aui)U
−dk
i , therefore k rejects the proof as

invalid and outputs ⊥, except with a negligible probability.

Case 2. Now, suppose that all the honest participants have the same input pk, X. Then, for
all corrupted participant j, the simulator looks for a query to FRO of the form (pk||X||Uj ||cuj),
which was answered by some dj such that cuj = Encpk(0, auj)U

−dj
j (i.e. the PoK πj is valid).

If there is no such query for some j, then the corresponding proof will look invalid to all the
honest participants, except with negligible probability. In this case, all the honest participants
will output ⊥ in the hybrid process. To have the same output in the ideal process, the simulator
makes a query from all the corrupted participants, but with an input (pk′, X ′) ̸= (pk, X). This
way, the ideal process answers ⊥ to all the participants as desired.

If there is such a query for all j, the proof will appear valid to all the honest participants, which
will therefore output X

∏nT
i=1 Ui in the hybrid process. To have this match the output of the ideal

process, the simulator first sends the query (pk, X) to Frerand with all the corrupted participants,
so that Frerand answers with some X ′. However, the simulator blocks all the answers towards
a honest participant: it will deliver them one by one, when it will need a honest participant to
output X ′ in the ideal process. Then, the simulator changes the contribution of a single honest
participant i in the simulation, and sets Ui = X ′/(X

∏
j ̸=i Ui). Also, using the control over the

random oracle, it simulates the PoK πi so that it appears valid to the adversary. For this purpose,
it chooses a challenge d at random and the answer a ∈ Zq at random as well. Then, it computes
cu = Encpk(0, a)U

−d
i . Since d was chosen at random, then (except with a negligible probability)

no query was made to FRO with the input pk||X||Ui||cu, so that the simulator can answer every
subsequent such query with d. The simulated proof is then π = (cu, a). Remark that since πj is
valid for all j, then, by the computational soundness of the PoK, Uj is encryptions of 0 for all
j, except with a negligible probability. Consequently,

∏
j ̸=i Uj is an encryption of 0. Also, since

X ′ is a random reencryption of X, X ′/X is a random encryption of 0. Therefore, Ui is also a
random encryption of 0. Hence, by the zero knowledge property of the PoK, Ui, π follows the
same distribution as in the real hybrid process (except with a negligible probability).

Conclusion. The above simulator gives a perfect simulation of the hybrid process, except
with a negligible probability. In addition, the outputs of the honest participants are the same
in the simulated hybrid and in the ideal process. Therefore, the view of the environment is the
same in both the hybrid and the ideal processes, except with a negligible probability.

101

Chapter 4. Multi-party computation for electronic voting

4.4.3 The threshold decryption

We now address the threshold decryption part, whose goal is to evaluate the ideal functionality
FDec given in Algorithm 47. Compared to the “ideal” ideal functionality, this one lives in a
setting where each participant i has the result pk, (hj)

nT
j=1, si of a DKG as an input, as well as

a ciphertext Y to decrypt. In this input, only the secret share si is private so that the ideal
functionality allows the adversary to learn the remaining (public) part. Apart from that, FDec

is similar to FCSZ: it collects the inputs of the participants, checks their consistency and returns
the desired output, which is the decryption of the common ciphertext Y .

A subtle difficulty is that the threshold decryption protocol in the ElGamal setting is not
universally composable. Indeed, although we exhibited a simulator in Theorem 1, the latter
suffers from two major flaws which are detrimental for the sake of SUC-security. First, the
simulated partial decryptions do not follow the same distribution as the real partial decryptions.
Yet, in a UC framework, the environment chooses the inputs of the participants (and therefore
their shares), which allows it to distinguish the simulated partial decryption from the real ones.
A similar difficulty is that the simulator also chooses the ciphertext to decrypt, while Theorem 1
only gave a notion of security against chosen plaintext attacks – and not chosen ciphertexts.
Therefore, the threshold decryption protocol is only SUC-secure if the adversary corrupts exactly
t participants: if less participants are corrupted, the simulator does not have access to enough
secret share to perform the polynomial interpolation in the exponent.

This is when our rerandomization phase comes to the rescue. In Lemma 8, we show that
if the decryption protocol is preceded by a (perfect) rerandomization phase, then it achieves
SUC-security.

Lemma 8. The threshold decryption protocol described in Algorithm 46 SUC-securely computes
FDec (defined in Algorithm 47) in the Frerand,FRO-hybrid model.

Proof. We construct a simulator S which interacts with the environment in the ideal process and
simulates the hybrid process by simulating the honest participants and the Frerand,FRO ideal
functionalities. First, the simulator acts in the ideal process and forwards all the messages of the
honest participants to FDec in order to get (g, h), (hj)nT

j=1, Y . If the data of the honest participants
are not consistent, the simulators can run a perfect simulation of the hybrid process, since Frerand

will output ⊥ which will cause all the honest participants to output ⊥ as in the ideal process.
Consequently, we suppose that all the honest participants have the same (g, h), (hj)

nT
j=1, Y . Then

the simulator uses the corrupted participants of the ideal process and forwards their inputs to
the ideal functionality, which causes it to send the plaintext y to everyone. However, S blocks
this answer to everyone, except for itself: it will deliver the answers one by one, when it will
need a honest participant to output y in the ideal process.

Now that S knows the plaintext y that corresponds to Y , it picks r ∈ Zq at random and
compute u = gr as well as v = yhr, so that Y ′ = (u, v) is a random reencryption of Y . Using
this Y ′, S can run a perfect simulation of Frerand.

After the rerandomization phase, S has to simulate the actual threshold decryption protocol,
except that it does not know the secret share of the honest participants. Let i be a honest
participant. When i receives Y ′ from Freerand in the simulated hybrid process, S computes
wi = hri , chooses a ∈ Zq at random as well as the challenge d. Then, S computes cg = gah−d

i

and cu = uaw−d
i . Since those two are random, no query to FRO was made with the input

(g, h)||Y ′||wi||cg||cu (except with a negligible probability) so that the simulator can answer all
subsequent such queries with d. Now, since (g, u, hi, wi) is a DDH tuple, (cg, cu, d, a) follows the

102

4.4. Security of the conditional gate in the SUC framework

Algorithm 46: TD (algorithm of i)
Requires: G, a group of prime order q
Inputs: (g, h), an ElGamal public key

(hj)
nT
j=1, the commitments on

the shares of the participants
si, the secret share of
participant i
Y , a ciphertext

1 On input:
2 Start a new independent session;
3 Send (g, h), Y to Frerand;

4 On ⊥ from Frerand: Output ⊥;
5 On message Y ′ from Frerand:
6 Parse Y ′ as (u, v);
7 wi ←− usi ;
8 Compute the PoK:

9 α
$←− Zq;

10 cg ←− gα; cu ←− uα;
11 Query FRO with

((g, h)||Y ′||wi||cg||cu);
12 Wait for the answer d;
13 a←− α+ dsi;
14 Send (wi, cg, cu, a) to all j;

15 On message (w, cg, cu, a) from j:
16 Query FRO with

((g, h)||Y ′||w||cg||cu);
17 Wait for the answer d;
18 if cg ̸= gah−d

j or cu ̸= uaw−d

19 then Output ⊥ else wj ←− w;
20 if ∃S ⊂ [1, nT] s.t. |S| = t+ 1 and

∀j ∈ S,wj ̸= ⊥ then
21 for j ∈ S do Λj ←−

∏
k∈S\{j}

k
j−k ;

22 y ←− v
∏

j∈S w
Λj

j ;
23 Output y;

24 else wait;

Algorithm 47: FDec

Requires: G, a group of prime order q
1 On (g, h), (hj)

nT
j=1, s, Y from i:

2 Send (g, h), (hj)
nT
j=1, Y to S;

3 if gs ̸= hi then abort;
4 Yi ←− Y ; si ←− s;
5 if Yj ̸= ⊥ for all j then
6 Check that the received (g, h),
7 (hj)

nT
j=1 are all the same

8 if not then abort;
9 if there exists j1, j2 s.t.

10 Yj1 ̸= Yj2then abort;
11 Decrypt Y1 into y;
12 Send y to all participants and S;

13 else wait;

103

Chapter 4. Multi-party computation for electronic voting

same distribution as in the real hybrid process (this is the zero knowledge property of the ZKP),
therefore the simulation is perfectly indistinguishable from the real process.

Finally, when a (simulated) honest participant i receives (w, cg, cu, a) from some j, the sim-
ulator runs the algorithm of the participant to decide whether it should output ⊥, output some
value y′ computed from the received shares or wait. If the participant has to output ⊥, it means
that j was corrupted. Then S uses j in the ideal process to send a query to FDec, but with
an inconsistent sj . This way FDec sends ⊥ to all participants and S can block every answer,
except for i which will therefore output ⊥ in the ideal process. If i has to wait, then S makes
it wait. However, if i has to output something, it outputs y′ = v

∏
j∈S w

Λj

j while it can only
output y in the ideal process. Fortunately, for all j in S, the PoK of correct partial decryption is
valid. Therefore, by the soundness of the ZKP, (except with a negligible probability) there exists
sj ∈ Zq such that gsj = hi and usj = wj . Hence, except with a negligible probability, y′ = y
(this comes from the Lagrange interpolation of f(0)).

4.4.4 The round of communications

The final part is the round of communication. Since we could not find a smart ideal functionality
that is realized by this part, we conclude the proof by giving Lemma 9, which states the SUC-
security of Algorithm 48, which is the conditional gate protocol in the FRO,FDec-hybrid process.
In this Algorithm, Rnd can be derived from Algorithm 39 (lines 3 to 6) and Algorithm 41, and
Ver-CSZ can be derived from Algorithm 42. Rnd allows a participant to produce Xi, Yi, e and
to prove that they are well-formed; Ver-CSZ allows to verify the ZKP.

Compared to the protocol presented in Algorithm 39, we can see that the participants broad-
cast (Xi−1, Yi−1, Xi, Yi, e, π) instead of just (Xi, Yi, e, π). This allows them to synchronize their
view “on the fly”, without adding too many synchronization steps at each broadcast. The price
to cost is that at the end of the round of communications, all the participants may not agree on
the same XnT , YnT .

Another difference is that in Algorithm 39, the participants simultaneously rerandomize XnT

and YnT into X ′ and Y ′, while the two rerandomization got somehow separated in Algorithm 48:
one is done right away and the other one is consumed by FDec (see Section 4.4.3). This is
purely for the sake of the presentation: since the two rerandomizations are independent, they
can actually be done simultaneously.

Finally, in the SUC framework, the environment is allowed to choose freely the inputs of
the participants which, for convenience, include g. Yet, recall that we said in Section 4.3 that
g must be public coin (otherwise we would need another version of DDH, which would also be
acceptable). Therefore, at the beginning of the protocol, the participants get g from the random
oracle and check that it is consistent with their input. Note that, to be able to write g in the
input of the participants, the environment must first query it to the random oracle, using the
adversary or a corrupted participant.

Lemma 9. Assuming that there is at least one honest participant, and under the DDH assump-
tion, the protocol depicted in Algorithm 48 SUC-securely computes FCSZ (defined in Algorithm 43)
in the FRO,Frerand,FDec-hybrid model.

Proof. We construct a simulator S which interacts with the environment in the ideal process
and simulates the hybrid process by simulating the honest participants and the FRO,FDec ideal
functionalities. First, the simulator chooses a random g ∈ G and, whenever FRO is queried with
"Conditional Gate", the simulator answers with g. Also, whenever FRO is queried with a new
input of the form (g||h), S chooses a random trapdoor τ , computes h̃ = g1/τ and answers with

104

4.4. Security of the conditional gate in the SUC framework

Algorithm 48: CSZ (algorithm of participant i)
Requires: G, a group of prime order q
Inputs: (g, h), (hj)

nT
j=1, si, X, Y

Variables: Two ciphertexts prjx and prjy for all j ̸= i (initially, ⊥)
1 On input:
2 Start a new independent session;
3 Query FRO with "Conditional Gate";
4 Check that the answer is g
5 (otherwise, Output ⊥);
6 E−1 ←− (1G, g

−1);
7 X0 ←− X; Y0 ←− E−1Y

2;
8 Query FRO with (g||h);
9 Wait for the answer h̃;

10 if i > 1 then change to Waiting 1, wait;
11 else
12 X1, e, Y1, π1 ←− Rnd(X0, Y0, h̃);
13 Change state to Waiting 2;
14 Send (X0, Y0, X1, e, Y1, π1) to all j;

15 State Waiting 1:
16 On (A,B,C, e,D, π) from j < i:
17 if Xj = ⊥ then
18 Xj ← C, ej ← e;
19 Yj ← D; πj ← π;
20 prjx ← A; prjy ← B;
21 Ignore all future messages from j;

22 if Xk ̸= ⊥ for all k < i then
23 for j = 1 to i− 1 do
24 if Xj−1 ̸= prjx or Yj−1 ̸= prjy
25 then Output ⊥;

26 Xi, e, Yi, π ← Rnd(Xi−1, Yi−1, h̃);
27 Change state to Waiting 2;
28 Send (Xi−1, Yi−1, Xi, e, Yi, π) to all;

29 else wait;

30 State Waiting 2:
31 On A,B,C, e,D, π) from j> i:
32 if Xj = ⊥ then
33 Xj ← C, ej ← e;
34 Yj ← D; πj ← π;
35 prjx ← A; prjy ← B;
36 Ignore all future messages from j;

37 if Xk ̸= ⊥ for all k> i then
38 for j = i+ 1 to nT do
39 if Xj−1 ̸= prjx or Yj−1 ̸= prjy
40 then Output ⊥;

41 Check all the PoK:
for j = 1 to nT do

42 if Ver-CSZ(pk, Xi−1, Yi−1, Xi,
Yi, e, πi) = 0 then Output ⊥;

43 Change state to Decrypt;
44 Send (g, h), X to Frerand;

45 else wait;

46 State Decrypt :
47 On ⊥ from Frerand Output ⊥;
48 On message X ′ from Frerand:
49 Send (g, h), (hk)k, si, YnT to FDec;

50 On ⊥ from FDec Output ⊥;
51 On message gy from FDec:
52 Output (XX ′y)1/2;

105

Chapter 4. Multi-party computation for electronic voting

h̃. This way the simulation is perfectly indistinguishable from the real hybrid (if τ = 0, S sets
h̃ to 1G). At some point, the environment must activate a honest participant by writing on its
input tape, which fixes (g, h), (hi)

nT
i=1, X, Y for the session. (If the same participant is activated

several times, the simulator runs several independent sessions. This assumes, for instance, that
a different prefix is used for querying FRO in each session.) Now that the protocol has really
began, we explain how to simulate the different states.

Simulation until Waiting 2. Let i be the last honest participant (i.e. for all j > i, partic-
ipant j is corrupted). The simulator runs a perfect simulation of the round of communications,
up until when i has to change to the state “Waiting 2”. This can happen at line 13 or line 27.
In any case, for all j < i, participant j revealed its contribution Xj , ej , Yj , πj . Before revealing
the contribution of i, the simulator checks all the ZKP. If one is invalid, then all the honest
participants will output ⊥ at line 25, 40 or 42, therefore the simulator will not have to simulate
the decryption. Hence, the best course of action is to continue the perfect simulation without
cheating, until every honest participant outputs ⊥.

If all the proof are valid then the computational soundness guarantees that, except with a
negligible probability, there exists r1, r2 ∈ Zq and s ∈ {−1, 1} such that Xi−1 = Rencpk(X

s
0 , r1)

and Yi−1 = Rencpk(Y
s
0 , r2). The simulator first acts in the ideal process and forwards all the mes-

sages of the honest participants to the ideal functionality FCSZ. Also, it instructs the corrupted
participants to send their inputs to FCSZ as well, so that FCSZ answers with some ciphertext
Zf . Note that due to the restrictions on the environment, FCSZ does not abort. As usual, the
simulator blocks the answer towards all the participant except itself: it will deliver them when
it will need a honest participant to output Zf in the ideal process.

Since Zf is the output of the ideal process, the couple Zf , (1G, g) is such that Zf is a reencryp-
tion of Xy

i−1 and (1G, g) is a reencryption of Y y
i−1, where y = Decsk(Yi−1) (except with a negligible

probability since this comes from the soundness of the ZKP). However, this couple is not ran-
dom enough and the environment might notice that a trivial encryption of 1 is used. Therefore
the simulator rerandomizes it by choosing a random s′ ∈ {−1, 1}, two random α, β ∈ Zq and
computing Xi = Rencpk(Z

s′
f , α) and Yi = Rencpk((1G, g

s′), β). This way, Xi and Yi becomes
independent from Zf and y, and follow the correct distribution. We denote Xi = (ux,i, vx,i) and
Xi−1 = (vx,i−1, vx,i−1).

At this point, there is a single value of ei for which Xi, ei, Yi is well-formed, but this value
depends on y: ei = (ux,i/u

ys′

x,i−1)
τ . However, S has no way to know y. Therefore, it cannot

produce a perfect simulation and will pick e as a uniformly random element instead.
Now, S has to forge a fake ZKP πi, which is possible thanks to the control over FRO.

However, since the statement to prove is most likely false, the forged ZKP does not follow the
same distribution as the real one. Since the view of the environment is not the same as in the
real hybrid process, we will need to prove that the simulated view is indistinguishable from the
fake one.

Remark that the simulator created a situation where Yi is an encryption of a known plaintext
s′, which will be useful in the remaining of the proof.

Simulation of Waiting 2. Since there are no honest participant left to simulate, the
simulator can perform a perfect simulation of Waiting 2. Nevertheless, each time a partici-
pant j > i sends a valid Xj−1, Yj−1, Xj , ej , Yj , πj , then the soundness of the ZKP assures the
existence of r1, r2 ∈ Zq and s ∈ {−1, 1} such that (ux,j , vx,j) = Xj = (gr1usx,j−1, h

r1vsx,j−1),
Yj = Rencpk(Y

s
j−1, r2) and ej = h̃r1 , where (ux,j−1, vx,j−1) = Xj−1. Hence, by computing

ux,je
−τ
j , S recovers either ux,j−1 or u−1

x,j−1 depending on s, which enables it to deduce the value
of s used by j (recall that if the proof πj−1 is valid, then ux,j−1 ̸= 1; j − 1 > 0 since j > i ≥ 1).

106

4.4. Security of the conditional gate in the SUC framework

To avoid the confusion with j’s secret share, we denote it σj .
Simulation of the rerandomization of X. When a honest participant reaches the Reran-

domize state, the simulator knows the value y = s′
∏

j>i σj which is encrypted into YnT . At this
point, except with a negligible probability (if the adversary managed to forge a fake ZKP), the
ciphertext X ′ = (Z2

f/X)y is a “random” reencryption of XnT . (Indeed, the environment had no
information about Zf yet, therefore X ′ follows the correct distribution and is independent from
the remaining of its view.) Hence the simulator can use his value as the output of Frerand instead
of a honestly generated reencryption.

Simulation of the decryption. To simulate the decryption, the simulator uses the real
plaintext y. This way the output (XX ′y)1/2 is indeed equal to Zf .

Indistinguishability. We now prove that the simulation is indistinguishable from the real
hybrid game. Before giving the reduction to DDH, we propose to dream up a bit and construct
an imaginary simulator Si, which can compute a discrete logarithm. This simulator uses the
same simulation as S, except that for the last honest participant i, ei is not chosen as a random
group element. Indeed, since Si can decrypt Yi−1, it can use the “correct” value of ei for which
Xi, ei, Yi is well-formed. In turn, by the zero knowledge property of the ZKP, the simulated proof
πi will be perfectly indistinguishable from the real one. In fact, the tuple Xi, ei, Yi, πi computed
by Si follows the same distribution as in the real hybrid process. Since the remaining of the
simulation is perfect (except with a negligible probability), Si creates a perfect simulation of the
real hybrid process (except with a negligible probability). Hence, the environment can distinguish
S’s simulation from the real hybrid process if and only if it can distinguish the simulation from
S’s from Si’s.

Now, let Z be an environment and A be an adversary for DDH. (Recall that the “adversary”
in the SUC framework is just the dummy adversary, so that only the environment is relevant.)
We denote p and pi the probability that Z outputs 1 when interacting with S and Si. The
adversary A receives a challenge tuple g1, g2, g3, g4 in the DDH game. To decide whether it is
a DDH tuple or not, it interacts with Z by simulation S as well as the corrupted participants.
However, when Z queries FRO with "Conditional Gate", A answers with g = g1 (if Z creates
several independent sessions, A can use a random α ∈ Zq and answer with g = gα1 instead; in
this case, it will also use gα3 instead of g3). In addition, whenever the environment makes a new
query of the form (g||h), A chooses a random τ ∈ Zq and computes h̃ = gτ2 . This way, except if
g2 = 1G or g1 = 1G (in which case the DDH challenge is trivial), g, h, h̃ follows the exact same
distribution as in S’s simulation.

At some point, the environment must write on the input tape of a participant, which fixes
(g, h), (hj)

nT
j=1 for the session. Due to the restrictions on the environment, Z must write an input

of the form (g, h), (hj)
nT
j=1, sk in the input tape of all the participants, which allows A to learn

sk = logg(h) by combining all the secret shares.
Afterwards, A continues the simulation until it must reveal the contribution (Xi, ei, Yi) of the

last honest participant. For this purpose, A parses Xi−1 as (ux,i−1, vx,i−1), chooses a random s ∈
{−1, 1} and computes ux,i = usx,i−1g3 as well as vx,i = vsx,i−1g

sk
3 , which defines Xi = (ux,i, vx,i).

As for Yi, A chooses r2 at random and compute Yi = Rencpk(Y
s
i−1, r2). Finally, it sets ei as gτ4 ,

so that Xi, ei, Yi is well-formed if and only if g1, g2, g3, g4 is a DDH tuple. Then A continues the
simulation normally, except that it cannot use τ to extract sj for j > i, since h̃τ ̸= g. However, it
can extract sj by decrypting Yj and Yj−1 using sk: if the plaintexts are equal, sj = 1; otherwise,
sj = −1.

At the end of the simulation, the environment outputs a bit b. If b = 1, A states that
g1, g2, g3, g4 was a DDH tuple; otherwise, it states that the challenge tuple was a random tuple.
Remark that when the challenge is a DDH tuple, A runs the same simulation as Si and hence

107

Chapter 4. Multi-party computation for electronic voting

wins with probability pi; on the other hand, when the challenge is a random tuple, A runs
S’s simulation but must output 0 to win, therefore it wins with probability 1 − p. Hence A’s
probability to win the DDH game is 1

2(p
′ + 1− p), so that A’s advantage is 1

2 |p
′ − p|. Under the

DDH assumption, A’s advantage is negligible, therefore |p′−p| is negligible, which concludes the
proof.

4.4.5 The conditional gate protocol is SUC-secure

Now that we proved that all the components of the conditional gate protocol are SUC-secure,
the SUC-security of the protocol is a direct consequence of the composition theorem, given
in Lemma 5. Indeed, by Lemma 9, we have the SUC-security provided that the threshold
decryption protocol and the rerandomization are SUC-secure. In Lemma 8, we showed that the
SUC-security of the threshold decryption can be derived from that of the rerandomization. Also,
in Lemma 7, we showed that the SUC-security of the rerandomization is a consequence of that
of the synchronous broadcast, whose security comes from FB and FRO by Lemma 6. When we
compile all those results together, this gives Theorem 3, which is the desired result.

Theorem 3. Under the DDH assumption, and if at least one participant is honest, the conditional
gate protocol given in Algorithm 39 SUC-securely computes the FCSZ ideal functionality given in
Algorithm 43, in the FRO,FB-hybrid model, where FRO is the programmable random oracle ideal
functionality (see Algorithm 26) and FB is the broadcast ideal functionality (see Algorithm 29).

Proof. This is a direct consequence of Lemma 9, Lemma 8, Lemma 7, Lemma 6 and Lemma 5.

108

Chapter 5

A toolbox for verifiable tally-hiding

The first contribution of this thesis is to provide a toolbox for verifiable tally-hiding in the
ElGamal setting. This toolbox is built upon the conditional gate protocol from [ST04] which
allows to securely realize the conditionally set to zero functionality on bitwise encrypted data
(see Section 4.3). It consists of various MPC protocols which allow to realize several useful
functionalities. For some functionalities, we propose several computation/communication trade-
offs, which can mitigate the potentially expensive communication cost. Most of the considered
protocols, as well as their respective complexity are displayed in Table 8. Since we proved the
security of this building block in the SUC framework, it means that the security of the whole
toolbox is guaranteed in the SUC-framework as well; in other words, we can prove that the
resulting protocols are as secure as if they were executed by some trusted party. Similarly, the
universal verifiability of the resulting protocols can be deduced from that of CSZ.

Contents
5.1 The basic primitives of the MPC toolbox 109

5.1.1 Logical operations on encrypted data 109
5.1.2 Application to elementary arithmetic 112
5.1.3 Comparisons and tie breaking . 112

5.2 Advanced algorithms . 114
5.2.1 Multiplication and division . 114
5.2.2 Solving ordering related problems 115
5.2.3 Aggregation of several encrypted binary values 118
5.2.4 Different communication/computation trade-offs 119

5.3 Comparison with other approaches 122
5.3.1 Comparison with Ordinos . 123
5.3.2 Public tally hiding . 124

5.1 The basic primitives of the MPC toolbox

5.1.1 Logical operations on encrypted data

Thanks to the conditional gate protocol and the homomorphic property of the exponential ElGa-
mal encryption scheme, it is possible to derive a protocol for the most common logical operations.
For convenience, we drop the other inputs (such as (g, h, (hi)nT

i=1) and use the notation CSZ(X,Y)

109

Chapter 5. A toolbox for verifiable tally-hiding

to denote the output of the conditional gate protocol, when applied to the ciphertexts X and Y .
By abuse of notation, we consider that this output is always a well-formed ciphertext Z and not
⊥ (i.e. that the protocol does not abort), so that CSZ(X,Y) can be used as an input in another
protocol. The same goes for the other protocols that we build upon the conditional gate.

Basic boolean operations. Recall that the logical negation can be evaluated “for free”
thanks to the homomorphic property: Not(B) = E1/B. In addition, remark that the CSZ
protocol readily allows to compute the And algorithm, which is a specific case where X is also
supposed to be an encryption of x ∈ {0, 1}. Thanks to the homomorphic property, it is easy to
derive a protocol to evaluate the logical or and the logical xor.

Algorithm 49: Xor
Requires: X,Y , encryptions of

x, y ∈ {0, 1}
Outputs: Z, an encryption of x⊕ y

1 return XY/CSZ(X,Y)2;

Algorithm 50: Or

Requires: X,Y , encryptions of
x, y ∈ {0, 1}

Outputs: Z, an encryption of x ∨ y
1 return XY/CSZ(X,Y);

Since the basic binary boolean operations (i.e. and, xor, or) are associative, it is possible
to compute And(X0, · · · , Xm−1) (resp. Or(X0, · · · , Xm−1) and Xor(X0, · · · , Xm−1)) using a
logarithmic number of synchronization steps, thanks to a boolean circuit that has a tree structure.
See for instance Algorithm 51 for the case of the logical and.

Algorithm 51: And
Requires: (X1, · · · , XN), encryptions of x1, · · · , xN ∈ {0, 1}
Outputs: Z, an encryption of x1 ∧ · · · ∧ xN

1 m←− ⌈logN⌉;
2 for j = 0 to N − 1 do X1,j ←− Xj+1;
3 for i = 1 to m do
4 for j = 0 to ⌊N/2⌋ − 1 (in parallel) do
5 Xi+1,j ←− And(Xi,2j , Xi,2j+1);

6 if N is odd then Xi+1,⌊N/2⌋ ←− Xi,N−1;
7 N ←− ⌈N/2⌉;
8 return Xm+1,0;

Conditional branching. In addition to providing a way to realize the basic boolean op-
erations, the conditionally set to zero functionality can also be used to evaluate a branching
condition. In generic MPC, we want to avoid branching as much as possible since we do not
want to reveal which branch is being evaluated: this could constitute a side-channel information.
Therefore, the main strategy is to evaluate both branches and use a protocol to (obliviously)
keep the relevant one. A classical solution is to use the ternary operator If, which takes as input
a boolean b, two expressions x and y and returns either x when b = 1 or y when b = 0. This
operator can be evaluated with a single call to CSZ; the same goes for the conditional swap.
Note that in some cases, such as in Algorithm 51 (line 6), the branching condition depends on a
public parameter, so that there is no need to hide which branch is computed.

Note that those operators can be used for many bits in parallel. For instance, assume that
X = X0, · · · , Xℓ−1, that Y = X0, · · · , Yℓ−1, and that B is an encryption of a bit b ∈ {0, 1}.
Then we can define If(B,X,Y) as If(B,X0, Y0), · · · , If(B,Xℓ−1, Yℓ−1). Similarly, if (X ′

i, Y
′
i) =

Swap(B,Xi, Yi) for all i, Swap(B,X,Y) can also be defined as (X ′
0, · · · , X ′

ℓ−1), (Y
′
0 , · · · , Y ′

ℓ−1).

110

5.1. The basic primitives of the MPC toolbox

Algorithm 52: Swap
Requires: B, a cipher of b ∈ {0, 1}

X,Y , encryptions of x, y
Outputs: X ′, Y ′, s.t. X ′ (resp. Y ′) is

a reenc. of Y (X) if b = 1,
of X (resp. Y) otherwise

1 Z ←− If(B, Y,X);
2 return Z,XY/Z;

Algorithm 53: If
Requires: B, a cipher of b ∈ {0, 1}

X,Y , encryptions of x, y
Outputs: Z, an encryption of x if

b = 1, of y otherwise
1 return Y CSZ(X/Y,B);

Selection of an element in a list. The CSZ protocol can also be used to select an element
inside a list. For this purpose, we suppose that [Xi] (resp. [Xi]) is a list of m ciphertexts (resp.
of m lists of ℓ encryptions of bits) and that [Bi] is a list of m encryptions of the bits bi, such
that one of them is 1 while the others are 0. Then we can recover a reencryption of Xi (resp. ℓ
reencryptions of Xi) where i is the index such that bi = 1. By abuse of notation, we denote this
procedure Select in both cases.

Algorithm 54: Select
Requires: [(Xi,0, · · · , Xi,ℓ−1)], [Bi]
Outputs: Z, a rencryption of Xi s.t.

Bi is an encryption of 1
1 for all i, j do Ai,j ←− CSZ(Xi,j , Bi);
2 for all j do Zj ←−

∏
iAi,j ;

3 return (Z0, · · · , Zℓ−1)

Algorithm 55: Select
Requires: [Xi], [Bi]
Outputs: Z, a rencryption of Xi s.t.

Bi is an encryption of 1
1 return

∏
iCSZ(Xi, Bi);

Integer shift. Finally, consider an integer x and its binary representation x0, · · · , xℓ−1,
such that x =

∑ℓ−1
i=0 xi2

i. A common operation is to shift the binary representation: the right
shift corresponds to 0, x0, · · · , xℓ−2 and the left shift corresponds to x1, · · · , xℓ−1, 0. In an MPC
setting where x is encrypted bit-by-bit, we can perform the shift operations on the encrypted
data for free, by using a trivial encryption E0 of 0. We denoted the corresponding processes
ShiftR and ShiftL. However, it may be useful to perform those operations conditionally to an
encrypted boolean b. For this purpose, we can use the If protocol in parallel, which gives the
conditional left shift and conditional right shift protocols.

Algorithm 56: CLS
Requires: (V0, · · · , Vℓ−1), ciphertexts

B, an encryption of 0 or 1
Outputs: V ′, a reencrypted left shift

of V if b = 1, a reencryption
of V otherwise.

1 Vℓ ←− E0;
2 for j = 0 to ℓ− 1 (in parallel) do
3 V ′

j ←− If(B, Vj+1, Vj);

4 Return V ′;

Algorithm 57: CRS
Requires: (V0, · · · , Vℓ−1), ciphertexts

B, an encryption of 0 or 1
Outputs: V ′, a reencrypted right shift

of V if b = 1, a reencryption
of V otherwise.

1 V−1 ←− E0;
2 for j = 0 to ℓ− 1 (in parallel) do
3 V ′

j ←− If(B, Vj−1, Vj);

4 Return V ′;

111

Chapter 5. A toolbox for verifiable tally-hiding

5.1.2 Application to elementary arithmetic

With the boolean operations, we can readily use the schoolbook boolean circuits to evaluate
the elementary arithmetic operations. We give Algorithm 58, which comes from the schoolbook
algorithm for the addition. At line 6, the new value of the carry bit is deduced by polynomial
interpolation as a function of the other parameters. In the resulting formula, we recall that 1/2
corresponds to (q+1)/2 modulo q. On this occasion, we remark that there is a possible optimiza-
tion when one of the two operands is known, which allows to save half of the computations. We
explicit the corresponding optimization in Algorithm 59, where Eyi denotes a trivial encryption
of yi. In addition, note that the Add protocol returns a ℓ-bits results when given two (ℓ−1)-bits
inputs. Sometimes, it may be preferable to keep operands of the same size and drop the last
carry bit, in which case the operation would be performed modulo 2ℓ. In this case, we use the
notation Add[ℓ].

Algorithm 58: Add
Requires: (X0, · · · , Xℓ−1), (Y0, · · · , Yℓ−1),

bit-wise encryptions of x, y
Outputs: (Z0, · · · , Zℓ), bit-wise

encryption of x+ y
1 R←− And(X0, Y0) (* carry bit *);
2 Z0 ←− X0Y0/R

2 (* x0 ⊕ y0 *);
3 for i = 1 to ℓ− 1 do
4 A←− Xor(Xi, Yi);
5 Zi ←− Xor(A,R);
6 R←− (XiYiR/Zi)

1
2 ;

7 return Z0, · · · , Zℓ−1, R

Algorithm 59: AddKnown

Requires: (X0, · · · , Xℓ−1), bit-wise
encryption of x
(y0, · · · , yℓ−1), the bits of y

Outputs: (Z0, · · · , Zℓ), bit-wise
encryption of x+ y

1 R←− Xy0
0 (* carry bit *);

2 Z0 ←− X0Ey0/R
2 (* x0 ⊕ y0 *);

3 for i = 1 to ℓ− 1 do
4 A←− Xyi

i ;
5 Zi ←− Xor(A,R);
6 R←− (XiEyiR/Zi)

1
2 ;

7 return Z0, · · · , Zℓ−1, R

The subtraction is a bit more tricky, as it may result in a negative value. To circumvent this,
it is usual to perform all the computations modulo 2ℓ. This gives Algorithm 60, in which the
new value of the borrow bit is deduced by evaluating the boolean formula (yi∧r)∨ [(yi∨r)∧¬xi]
at line 9.

As we use 2’s complement, computing a representation of −x from that of x is not as simple
as flipping a single bit sign. For this reason, we give Algorithm 62 which is another adaptation
from the schoolbook.

5.1.3 Comparisons and tie breaking

Apart from the additions and the subtractions, the most common operations in electronic
voting are the equality tests and the comparisons. For the latter, we remark that we can already
derive a comparison test from the subtraction algorithm. Indeed, x < y if and only if x− y < 0
so that we can use Algorithm 60 and return the last bit. We denote this protocol Lt. In
Section 5.2.4, we will propose another protocol that offers another communication/computation
trade-off. For the equality test, one strategy is to first compute the bitwise XOR of x and y and
to check that the resulting bits are all 0. For this purpose, one can use Algorithm 51.

Since the Eq and Lt protocols shares some CSZ in common, it is possible to same some
additional computations if we need to evaluate the result of both operations. We denote the

112

5.1. The basic primitives of the MPC toolbox

Algorithm 60: Sub
Requires: (X0, · · · , Xℓ−1), (Y0, · · · , Yℓ−1),

bit-wise encryptions of x, y
Outputs: (Z0, · · · , Zℓ−1), bit-wise enc.

of x− y modulo 2ℓ

R, an enc. of the bit sign
(1 if the result is negative)

1 A←− And(X0, Y0) (* carry bit *);
2 Z0 ←− X0Y0/A

2 (* x0 ⊕ y0 *);
3 R←− Y0/A (* y0 ∧ ¬x0 *);
4 for i = 1 to ℓ− 1 do
5 A←− And(Yi, R);
6 B ←− YiR/A2 (* yi ⊕ r *);
7 C ←− And(Xi, B);
8 Zi ←− XiB/C2 (* xi ⊕ yi ⊕ r *);
9 R←− YiR/(AC) ;

10 return (Z0, · · · , Zℓ−1), R

Algorithm 61: SubKnown

Requires: (X0, · · · , Xℓ−1), bit-wise
encryption of x
(y0, · · · , yℓ−1), the bits of y

Outputs: (Z0, · · · , Zℓ−1), bit-wise enc.
of x− y modulo 2ℓ

R, an enc. of the bit sign
(1 if the result is negative)

1 A←− Xy0
0 (* carry bit *);

2 Z0 ←− X0Ey0/A
2 (* x0 ⊕ y0 *);

3 R←− Ey0/A (* y0 ∧ ¬x0 *);
4 for i = 1 to ℓ− 1 do
5 A←− Ryi ;
6 B ←− EyiR/A2 (* yi ⊕ r *);
7 C ←− And(Xi, B);
8 Zi ←− XiB/C2 (* xi ⊕ yi ⊕ r *);
9 R←− EyiR/(AC) ;

10 return (Z0, · · · , Zℓ−1), R

Algorithm 62: Neg
Requires: (X0, · · · , Xℓ−1), a bit-wise encryption of x modulo 2ℓ

Outputs: (Z0, · · · , Zℓ−1), a bit-wise encryption of −x modulo 2ℓ

1 Z0 ←− X0; R0 ←− Not(X0);
2 for i = 1 to ℓ− 1 do
3 Ri ←− And(Not(Xi), Ri−1);
4 Zi ←− Not(Xi)Ri−1/R

2
i ;

5 return Z0, · · · , Zℓ−1;

Algorithm 63: Eq
Requires: (X0, · · · , Xℓ−1), (Y0, · · · , Yℓ−1),

bit-wise encryptions of x, y
Outputs: Z, an encryption of 1 if

x = y, of 0 otherwise
1 for i = 0 to ℓ− 1 (in parallel) do
2 Ai ←− Not(And(Xi, Yi));

3 return And(A0, · · · , Aℓ−1);

Algorithm 64: EqKnown

Requires: (X0, · · · , Xℓ−1), bit-wise
encryption of x
(y0, · · · , yℓ−1), the bits of y

Outputs: Z, an encryption of 1 if
x = y, of 0 otherwise

1 for i = 0 to ℓ− 1 (in parallel) do
2 Ai ←− Not(Xyi

i);

3 return And(A0, · · · , Aℓ−1);

113

Chapter 5. A toolbox for verifiable tally-hiding

resulting protocols LtEq and LtEqKnown.
Tie breaking. In the context of electronic voting, the integers x1, · · · , xk that we are going

to compare would typically represent the “score” of a candidate at a specific moment in the tally
process. Now, suppose that we want to apply a specific rule for tie-breaking (e.g., the oldest
candidate wins in case of a tie). Enforcing this using Lt, Eq and If is definitely possible, but
may result into unnecessary redundant operations. Instead, we propose to directly “encode”
this rule into the least significant bits of x1, · · · , xk. More precisely, suppose that we have the
candidates C1, · · · , Ck, for which a public rule for tie-breaking has been decided. Without a
loss of generality, we represent this rule as a permutation σ of [1, k] such that Ci wins over
Cj (in case of an equality) if σi > σj . Then assume that we obtained the bitwise encryptions
X1, · · · ,Xk of the scores of the candidates. Then, by adding a bit-wise encryption of σ1, · · · , σk
in the least significant bits, we end up with pair-wise distinct scores that are compliant with
both the tie-break rule and the initial scores (i.e. this does not change the result, except if a tie
occurs). More precisely, if σi =

∑log k
j=0 si,j2

j for all j, then we use Esi,0 || · · · ||Esi,log k
||Xi instead

of Xi. Since the Lt protocol requires 2CSZ per bit, this only costs 2 log k additional CSZ per
comparison.

Interestingly, the same strategy could be applied if we want the tie break rule to be random
and secret: indeed, the prefixes can be shuffled using a reencryption mixnet.

5.2 Advanced algorithms

Although the most common operations in voting are the additions and the comparisons, it is
possible that evaluating a counting function requires more complex operations. For this reason,
we give more advanced algorithms, which include a way to obtain the encrypted data from the
encrypted ballots.

5.2.1 Multiplication and division

Basic arithmetic operations include multiplication and division. For the multiplication, we
give Algorithm 65 which is adapted from the schoolbook binary algorithm, also known as “peasant
multiplication”. This shows that multiplying two encrypted integers is expensive in the ElGamal
setting, as it requires a quadratic number of conditional gates.

Algorithm 65: Mult

Requires: (X0, · · · , Xℓx−1), (Y0, · · · , Yℓy−1), bitwise encryptions of x and y
Outputs: Z0, · · · , Zℓx+ℓy−1, bitwise encryption of xy

1 for i ∈ [0, ℓx − 1] (in parallel) do Ai,0, · · · , Ai,ℓy−1 ←− CSZ(Y , Xi);
2 Z0 ←− A0,0;
3 (T0, · · · , Tℓy−1)←− (A0,1, · · · , A0,ℓy−1, E0);
4 for i = 1 to ℓx − 1 do
5 (T0, · · · , Tℓy)←− Add((T0, · · · , Tℓy−1), (Ai,0, · · · , Ai,ℓy−1));
6 Zi ←− T0;
7 for j = 0 to ℓy − 1 do Tj ←− Tj+1;

8 for i = ℓx to ℓx + ℓy − 1 do Zi ←− Ti−ℓx ;
9 return Z0, · · · , Zℓx+ℓy−1;

114

5.2. Advanced algorithms

For the division, we choose to represent fractions with a fixed number of binary places so that
a fraction is encoded and encrypted as an integer (instead of, for instance, a couple of integers).
This allows to re-use most of the primitives from this section, while providing a certain degree
of precision and generality. From the schoolbook division algorithm, we derive Algorithm 66,
which takes as inputs bit-wise encryptions of x and y with y > x and return the r first binary
places of x/y. In other words, if we interpret the output z of the division as an integer, we have
|xy −

z
2r | < 2−r. This algorithm could be generalized for any pair (x, y) (i.e. the condition y > x

is not necessary), but the restriction is useful in the special case of STV, and gives a simpler
description. Note that in Algorithm 66, we choose to stick to the convention where the least
significant bit is given first, which means that the output binary places are output in “reverse”
order compared to the usual. This way, it is possible to add two fractions together without
having to reverse their binary representation.

Algorithm 66: Div

Requires: (X0, · · · , Xℓ−1), (Y0, · · · , Yℓ−1), bit-wise encryptions of 0 ≤ x < y,
r, the number of bits of precision

Outputs: Z0, · · · , Zr−1, encryptions of the first r binary places of x/y
(z0 is the least significant bit)

1 A←− E0||X (* 2x *);
2 Y ←− Y ||E0 (* y, padded to have the same size *);
3 for i = 0 to r − 1 do
4 B, Ri = Sub(A,Y);
5 A←− ShiftR(If(Ri,A,B)) (* this right shift is non-standard: we use a

representation with the LSB first; it corresponds to a multiplication by 2 *);
6 Zr−1−i ←− Not(Ri)

7 return Z0, · · · , Zr−1

5.2.2 Solving ordering related problems

Voting consists of finding the “most preferred” option. Consequently, it is common to encounter
an algorithmic problem related to ordering.

Maximum and minimum. The most obvious problem is to find the largest or the smallest
element of a list. A natural solution would be to linearly scan the list, using a comparison
algorithm. However, the min and max operators are associative and as such, allow tree-based
parallelization as we did in Algorithm 51. This gives Algorithm 67, which finds the maximum, the
minimum and their respective position, using a logarithmic number of rounds of communications.
In this algorithm, we denote jbits the trivial bitwise encryption of the integer j, with a fixed
number of bits. We denote Min (resp. Max) the protocol that only returns a bitwise encryption
of the minimum (resp. the maximum) as well as its position in the list.

Finding the s largest elements. A related problem is to find the s largest values of a
list. For this purpose, we propose two different approaches: the selection approach and the
insertion approach, base on insertion sort and selection sort. The insertion approach consists
of first sorting the s first elements of the list so that we have the list of the s largest elements
of the s first elements of the list. Then, we iteratively update this small list by inserting the
remaining elements of the large list, so that at the kth iteration, the small list consists of the s
largest elements of the s+ k first elements of the list. This approach imitates what the selection

115

Chapter 5. A toolbox for verifiable tally-hiding

Algorithm 67: MinMax

Requires: (X1, · · · ,XN) bitwise encryptions of x1, · · · , xN
ℓ, the common bitsize of the xi’s

Outputs: Z, a bitwise encryption of minNi=1(xi)
I, a bitwise encryption of its index in the input list
T , a bitwise encryption of maxNi=1(xi)
J , a bitwise encryption of its index in the input list

1 m←− ⌈logN⌉;
2 for j = 0 to N − 1 do
3 Z1,j ←−Xj+1;
4 I1,j ←− j + 1bits;
5 T1,j ←−Xj+1;
6 J1,j ←− j + 1bits;

7 for i = 1 to m do
8 for j = 0 to ⌊N/2⌋ − 1 (in parallel) do
9 (* The two following operations can be done in parallel *)

10 BZ ←− Lt(Zi,2j ,Zi,2j+1);
11 BT ←− Lt(Ti,2j ,Ti,2j+1);
12 (* The four following operations can be done in parallel *)
13 Zi+1,j ←− If(BZ ,Zi,2j ,Zi,2j+1);
14 Ii+1,j ←− If(BZ , Ii,2j , Ii,2j+1);
15 Ti+1,j ←− If(BT ,Ti,2j+1,Zi,2j);
16 Ji+1,j ←− If(BT ,Ji,2j+1,Ji,2j);

17 if N is odd then
18 Zi+1,⌊N/2⌋ ←− Zi,N−1;
19 Ii+1,⌊N/2⌋ ←− Ii,N−1;
20 Ti+1,⌊N/2⌋ ←− Ti,N−1;
21 Ji+1,⌊N/2⌋ ←− Ji,N−1;

22 N ←− ⌈N/2⌉;
23 return Zm+1,0, Im+1,0,Tm+1,0,Jm+1,0;

116

5.2. Advanced algorithms

Algorithm 68: sInsert
Requires: X0, · · · ,XN−1, bitwise

encryptions of x0, · · · , xN−1

s, a positive integer
Outputs: Z1, · · · ,Zs, bitwise enc. of

the s largest values
I1, · · · , Is, bitwise
encryptions of their indexes

1 for i = 1 to s do
2 Zi ←−Xi−1;
3 Ii ←− i− 1bits;
4 for j = i− 1 down to 1 do
5 B ←− Lt(Zj ,Zj+1);
6 Zj ,Zj+1 ←−

Swap(B,Zj ,Zj+1);
7 Ij , Ij+1 ←− Swap(B, Ij , Ij+1);

8 for i = s+ 1 to N do
9 B ←− Lt(Zs,Xi−1);

10 Zs ←− If(B,Xi−1,Zs);
11 Is ←− If(B, i − 1bits, Is);
12 for j = s− 1 down to 1 do
13 B ←− Lt(Zj ,Zj+1);
14 Zj ,Zj+1 ←−

Swap(B,Zj ,Zj+1);
15 Ij , Ij+1 ←− Swap(B, Ij , Ij+1);

16 return (Z1, · · · ,Zs), (I1, · · · , Is);

Algorithm 69: sSelect
Requires: X0, · · · ,XN−1, bitwise

encryptions of x0, · · · , xN−1

s, a positive integer
Outputs: Z1, · · · ,Zs, bitwise enc. of

the s largest values
I1, · · · , Is, bitwise
encryptions of their indexes

1 for i = 1 to s do
2 Zi, Ii ←− Max(X0, · · · ,XN−1);
3 for j = 0 to N − 1 (in parallel) do
4 Writes j in base 2:
5 j =

∑ℓ
k=0mk2

k;
6 for k = 0 to ℓ do
7 Jk ←− E1−mk

I2mk−1
i,k ;

8 (* Eq(Ii,k,mk) *)

9 B ←− And(J0, · · · , Jℓ);
10 Xj ←− CSZ(Xj , B);

11 return (Z1, · · · ,Zs), (I1, · · · , Is);

sort would do, but avoids the quadratic cost by maintaining a small list of size s. However, the
drawback is that it is expensive communication-wise, since the process is mostly iterative. For
this reason, we propose another approach, based on selection sort. It consists of using the Max
protocol to get the maximum value in a logarithmic number of rounds, as well as its respective
index in the list. Then, using the index, the equality test and the CSZ protocol, we can “remove”
this maximum from the list (actually, we replace it by a 0 value) without leaking its position.
This way, we can iteratively get the s largest elements, using only s iterations.

Sorting. Finally, another recurrent problem is to sort a list. Using Lt and Swap, it is
possible to sort encrypted data without revealing any side information. For this purpose, we
need a data-oblivious sorting algorithm, that is an algorithm whose control flow does not de-
pend on the result of the comparisons. The popular fast sorting algorithms, such as Quicksort,
Mergesort or Heapsort, do not verify this property. Consequently, we use the OddEvenMerge-
Sort by Batcher [Bat68], which has a quasi-linear complexity and is used in practice for sorting
networks in GPU. This gives Algorithm 70, adapted from [Knu73, Section 5.2.2, Algorithm M]).
This sorting algorithm requires approximately 1

4N log(N)2 comparisons and conditional swaps,
in approximately 1

2 log(N)2 rounds of communications, where N is the number of elements to
be sorted. Remark that in Algorithm 70, we consider that we want to sort some values (for

117

Chapter 5. A toolbox for verifiable tally-hiding

instance, the index of the candidate) with respect to a corresponding key. It is possible to adapt
this algorithm for a setting where we just want to sort bitwise encrypted integers, which are not
linked to a specific value, or to have the values be bitwise encrypted.

Another usual solution for sorting in an MPC setting is to first shuffle the data, then use a
more efficient algorithm such as Mergesort, but which requires to leak the result of all the com-
parisons. This usually leads to a better computational efficiency, but a far worse communication
efficiency (typically, Mergesort would require a linear number of synchronization steps compared
to the number of elements to sort). In addition, the security of the resulting protocol would not
be guaranteed by the SUC framework since there is currently no known SUC-secure reencryption
mixnet.

Algorithm 70: OddEvenMergeSort
Requires: (Vi,Ki)

N−1
i=0 , where, for all i, Vi is a ciphertext and

Ki is a bitwise encryption of an integer ki
Outputs: (V ′

i ,K
′
i)

N−1
i=0 , reencryptions of the same values, but sorted with increasing ki

1 t←− ⌈logN⌉; p←− 2t−1

2 while p > 0 do
3 q ←− 2t−1; r ←− 0; d←− p
4 while d > 0 do
5 for i = 0 to n− d− 1 (in parallel) do
6 if BitwiseAnd(i, p) = r then
7 B ←− Lt(Ki+d,Ki)
8 Vi, Vi+d ←− Swap(B, Vi, Vi+d)
9 Ki,Ki+d ←− Swap(B,Ki,Ki+d)

10 d←− q − p; q ←− ⌊q/2⌋; r ←− p

11 p←− ⌊p/2⌋
12 return (Vi,Ki)

n−1
i=0

5.2.3 Aggregation of several encrypted binary values

In electronic voting, it is usual that the voter encrypts their ballots using encryptions of 0 or 1,
as this is the case in Helios. Afterwards, we need to aggregate those encrypted bits into bitwise
encrypted integers, so that we can use the various protocols of this toolbox. Since the addition is
associative, we use again a tree-based strategy that allows to compute several additions in parallel.
By adding together integers of (almost) the same size and by performing as many additions in
parallel as possible, we gain in efficiency both communication-wise and computation-wise. The
algorithm is similar to the previous tree-based protocols, but we have to take care of the size
of the operands. For this reason, we introduce the notation Addx,y which denotes a protocol,
derived from Add, which is able to add two operands of different (known) sizes sx = ⌊log x⌋+ 1
and sy = ⌊log y⌋ + 1. The size of the output is ⌊log(x+ y)⌋ + 1, the number of communication
rounds is max(sx, sy) and the number of CSZ is sx + sy − 1. This gives Algorithm 71 where, at
the ith iteration, we add integers of size at most i, which costs at most 2iCSZ communication-
wise, and up to 2iN/2iCSZ computation-wise. Hence, the number of rounds of communication

118

5.2. Advanced algorithms

is about 1
2 log(N)2 while the computational cost is at most

m∑
i=1

2i− 1

2i
NCSZ ≤

∞∑
i=1

2i− 1

2i
NCSZ ≤ 3NCSZ.

In some cases, the quadratic number of synchronization steps may be a problem. For this
reason, we can use the UFCAdd (introduced in Section 5.2.4) instead of the regular addition. This
leads to a number of rounds of communication of at most 2 logN log logN , and a computational
cost of at most

m∑
i=1

3i log(i+ 1)

2i+1
NCSZ ≤

∞∑
i=1

3i log(i+ 1)

2i+1
NCSZ ≤ 5.54NCSZ.

Algorithm 71: Aggreg
Requires: B1, · · · , BN , encryptions of b1, · · · , bN ∈ {0, 1}
Outputs: S0, · · · , Sm−1, a bitwise encryption of s =

∑N
i=1 bi

1 m←− ⌈logN⌉;
2 for j = 0 to N − 1 do
3 B1,j ←− Bj+1;
4 c1,j ←− 1;

5 for i = 1 to m do
6 for j = 0 to ⌊N/2⌋ − 1 (in parallel) do
7 Bi+1,j ←− Addci,2j ,ci,2j+1(Bi,2j ,Bi,2j+1);
8 ci+1,j ←− ci,2j + ci,2j+1;

9 if N is odd then
10 for j = ⌊N/2⌋ down to 1 do
11 Bi+1,j ←− Bi+1,j−1;
12 ci+1,j ←− ci+1,j−1;

13 Bi+1,0 ←− Bi,N−1;
14 ci+1,0 ←− ci,N−1;

15 N ←− ⌈N/2⌉;
16 return Bm+1,0;

5.2.4 Different communication/computation trade-offs

Compared to the existing MPC toolbox that use the Paillier encryption scheme, our toolbox pro-
poses several protocols which require nT synchronization steps (i.e. a round of communication)
per encrypted bit. Yet, it is important to keep the number of synchronization steps down. For
this reason, we propose to use more sophisticated boolean circuits, following the (now classical)
approach of Brent and Kung [BK82]. We do not reproduce their full algorithm here but we
sketch the key idea and give the resulting algorithms and their complexity.

First, recall that the ith bit of x + y is zi = xi ⊕ yi ⊕ ri, where ri is the ith carry bit. The
idea is to first compute all the xi ⊕ yi in parallel, then to compute all the ri in parallel, so as to
deduce the result. To perform the second step efficiently, Brent and Kung’s approach consists

119

Chapter 5. A toolbox for verifiable tally-hiding

of computing the variables (pi, gi) where pi = xi ∨ yi and gi = xi ∧ yi. Those variables are used
to encode elements of a set Σ = {P,G,K}, where P is encoded by (1, 0), K by (0, 0) and G
by (0, 1) and (1, 1). They represent the fact that the carry bit will be propagated, generated of
killed in the ith position. They define an operation ◦ as follows (which we slightly modify into
an equivalent operation for the sake of presentation).

P ◦ P = P

G ◦ P = G

K ◦ P = K

x ◦G = G

x ◦K = K.

In the boolean representation, the ◦ law can be computed with the following formula.

(p, g) ◦ (p′, g′) = (p ∧ p′, g′ ∨ (p′ ∧ g)).

It is possible to show that ◦ is associative [BK82]; this enables tree-based parallelization for
computing all the prefixes of (p0, g0)◦ · · · ◦ (pm−1, gm−1), which gives essentially the ith carry bit
for all i. From here onward, we diverge from [BK82]’s work since we are not interested in designing
hardware, so that the unbounded fan-in is not an issue. From Brent and Kunt’s circuit design,
that we reproduce in Fig. 13, we deduce the UFC algorithm (see Algorithm 72), which stands
for unbounded fan-in composition. It allows to compute all the prefixes of a sequence, when
composed with an associative composition law. Then, we derive another protocol for the addition,
given in Algorithm 73. The resulting protocol is more efficient in term of communications than
the Add protocol: it only requires about log(m) times more synchronization steps than what is
required for ◦. However, this comes with an increase in term of computations as the number of
calls to ◦ is about 1

2ℓ log(ℓ). Therefore, the linear approach could be preferable in some cases.

Algorithm 72: UFC
Requires: ◦, an associative composition law

a0, · · · , aN , some elements compatible with this law
Outputs: z0, · · · , zN , where zi = ◦ij=0aj for all i

1 for i = 0 to N − 1 do zi ←− ai m←− ⌈logN⌉;
2 for i = 1 to m do
3 for j = 0 to

⌊
((N − 1)/2i−1 − 1)/2

⌋
(in parallel) do

4 idx←− (2j + 1)2i−1 − 1;
5 stop←− min(2i−1, N − (2j + 1)2i−1);
6 for k = 1 to stop (in parallel) do
7 idy←− idx + k;
8 zidy ←− ◦(aidx, aidy);

9 return z0, · · · , zN−1;

The same idea can be used for computing a subtraction: we only need to change the initial-
ization of the pi’s and gi’s. For the subtraction, we have initially pi = xi ⊕ yi and gi = yi ∧ ¬xi.
Hence, to obtain UFCSub, one can replace line 4 by Pi ←− Bi and line 5 by Gi ←− Yi/Ai in
Algorithm 73.

120

5.2. Advanced algorithms

Algorithm 73: UFCAdd
Requires: (X0, · · · , Xℓ−1), (Y0, · · · , Yℓ−1), bit-wise encryptions of x and y.
Outputs: (Z0, · · · , Zℓ−1), bit-wise encryption of x+ y mod 2ℓ

1 for i = 0 to ℓ− 1 (* in parallel *) do
2 Ai ←− And(Xi, Yi);
3 Bi ←− XiYi/A

2
i (* xi ⊕ yi *);

4 Pi ←− XiYi/Ai (* xi ∨ yi *);
5 Gi ←− Ai (* xi ∧ yi *);

6 m←− ⌈log ℓ⌉;
7 for i = 1 to m do
8 for j = 0 to

⌊
((ℓ− 1)/2i−1 − 1)/2

⌋
(in parallel) do

9 idx←− (2j + 1)2i−1 − 1;
10 stop←− min(2i−1, ℓ− (2j + 1)2i−1);
11 for k = 1 to stop (in parallel) do
12 idy←− idx + k;
13 T ←− And(Pidy, Gidx);
14 Pidy ←− And(Pidx, Pidy);
15 Gidy ←− Or(T,Gidy));

16 Z0 ←− B0;
17 for i = 1 to ℓ− 1 (in parallel) do
18 Zi ←− Xor(Bi, Gi−1);

19 return Z0, · · · , Zm−1

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

Figure 13: Illustration of Brent and Kunt’s algorithm, for 23 operands

121

Chapter 5. A toolbox for verifiable tally-hiding

When it comes to comparing two integers, only the last carry bit is of interest so we do not
need to compute all the prefixes. In this case, a simpler algorithm exists and allows to compute
the comparison with ℓ − 1 calls to ◦ but a communication cost which remains of the order of
log(ℓ). We call this algorithm CLt, which stands for chained lesser than (see Algorithm 74). Note
that this algorithm returns an additional bit R which tells whether the two inputs are equal. If
this bit is not needed, some computations can be saved (remove line 10).

Algorithm 74: CLt
Requires: (X0, · · · , Xℓ−1), (Y0, · · · , Yℓ−1) bit-wise encryption of x and y.
Outputs: Z, s.t. Z is an encryption of 1 if x < y, 0 otherwise

R, s.t. R is an encryption of 1 of x = y, 0 otherwise
1 m←− ⌈log ℓ⌉;
2 for i = 0 to ℓ− 1 (in parallel) do
3 Ai ←− And(Xi, Yi);
4 P0,i ←− XiYi/A

2
i ;

5 G0,i ←− Yi/Ai;
6 B0,i ←− Not(Pi);

7 m←− ⌈log ℓ⌉;
8 for i = 1 to m do
9 for j = 0 to ⌊ℓ/2⌋ − 1 (in parallel) do

10 Bi,j ←− And(Bi−1,2j , Bi−1,2j+1) ;
11 T ←− And(Pi−1,2j+1, Gi−1,2j);
12 Pi,j ←− And(Pi−1,2j , Pi−1,2j+1);
13 Gi,j ←− Or(Gi−1,2j+1, T);

14 if ℓ is odd then
15 Bi,⌊ℓ/2⌋ ←− Bi−1,ℓ−1;
16 Pi,⌊ℓ/2⌋ ←− Pi−1,ℓ−1;
17 Gi,⌊ℓ/2⌋ ←− Gi−1,ℓ−1;

18 ℓ←− ⌈ℓ/2⌉;
19 return Gm,0, Bm,0;

5.3 Comparison with other approaches

Now that we have presented our toolbox, we propose to compare it to the existing MPC protocols,
especially those who are available in the ABB framework, and rely on the Paillier setting. For
this purpose, we first give the complexities of our different protocols in Table 8. As explained
in Section 4.3.3, the main metrics that we consider are the number of exponentiations, the
number of synchronization steps and the size of the transcript. In the ElGamal setting, the
exponentiations are cheaper and the key size is smaller, which impacts the size of the transcript.
However, we usually require a larger number of synchronization steps, which could be a problem.
For this reason, we propose various communication/computation trade-offs, based on careful
parallelization.

122

5.3. Comparison with other approaches

Table 7: Leading terms and estimated run time for the cost of the MPC primitives of Ordinos
and our toolbox; nT is the number of participants, ℓ is the bit-length of the operands. The
precomputable part can be evaluated before the tally; the run time is estimated for nT = 3 and
ℓ = 10; all logarithms are in base 2 and the key sizes are |q| = 256 in the ElGamal setting and
|n| = 3072 in the Paillier setting.

Functionality Protocol # exp. time (s) Synch. locks Transcript size

Addition − 0 − 0 0
Add 66ℓnT 0.20 2ℓnT 68ℓnT |q|

Multiplication Mul 9nT 0.14 2 17nT |n|
Mult 99ℓ2nT 3.0 2ℓ2nT 102ℓ2nT |q|

Equality EQH

precomp.

6.1

precomp.

69nT ℓ|n|
39nT ℓ O(nT)
comp. comp.
19nT 4

Eq 66ℓnT 0.20 log ℓnT 68ℓnT |q|

Comparison GTH

precomp.

6.5

precomp.

89nT ℓ|n|
43nT ℓ O(nT)
comp. comp.
33nT 7 log ℓ

Lt 66ℓnT 0.20 2ℓnT 68ℓnT |q|

5.3.1 Comparison with Ordinos

Our first element of comparison is the concurrent contribution of Ordinos, which also proposes
to use MPC protocols to achieve tally-hiding, using the ABB framework based in the Paillier
encryption scheme that we introduced in Section 4.2. The main protocols used in Ordinos are the
multiplication, the equality test and the comparison. Due to the number of different subprotocols
that they use, it is difficult to come up with a meaningful formula to express their complexity:
in particular, there are many exponentiations which have a different nature, with modulus and
exponents of various sizes. In Table 7, we give some undervalued approximates for the various
primitives or Ordinos, which will be our first element of comparison. Since the exponentiations
are more expensive in the Paillier setting, this reveals that the computational costs and the
transcript sizes for the comparison and the equality test are by one order of magnitude cheaper
in our ElGamal toolbox compared to the existing MPC protocols based on the Paillier encryption.
In addition to allowing a more efficient tally, the ElGamal setting is also beneficial on the voter-
side. Indeed, using our toolbox or not is essentially transparent for the voter: recall that it is
usual that they have to send several ElGamal encryptions of bits anyway, as this is the case in
Helios. On the other hand, switching to the Paillier setting may be up to a thousand times more
expensive for the voter, which is definitely an issue, if not prohibitive.

However, the multiplication will typically be cheaper in the Paillier setting, and the addition
is free. In addition, the protocols in the Paillier setting usually require less synchronization steps
than our protocols. Finally, most of the computations can be precomputed. For all these reasons,
depending on which operation is the most used, the Paillier setting may still be preferable,
especially when the number of voters is large since the aggregation is free in the Paillier setting.

123

Chapter 5. A toolbox for verifiable tally-hiding

5.3.2 Public tally hiding

Another approach to achieve tally-hiding was proposed in Kryvos [HKK+22]. By contrast with
our approach and Ordinos’s approach, they do not rely on MPC protocols. Instead, they allow
the talliers to learn the “full” result of the election (i.e. what would be typically output by a
traditional tally that relies on homomorphic tally or mixnet). From this, they locally compute
the result r of the counting function, but only publish r as well as a ZKP of correctness. This
gives the notion of publicly tally-hiding, where the talliers learn more information than the public.
For the ZKP, Kryvos proposes to use Groth’s SNARK (see Section 2.3.5) which, according to
their benchmark, allows a more efficient tally than traditional MPC. In addition, the verification
by the external auditor is way faster.

There are four major drawbacks with the approach of Kryvos. First, publicly tally hiding is
not the same as fully tally hiding. In general, tally hiding is a counter-measure against Italian
attacks, which are a mean for coercing voters into choosing a specific voting option. Yet, although
a publicly tally hiding protocol would offer some protection against the coercer, all of it is lost
when the coercer is a tallier.

A second remark concerns the technical solution proposed by Kryvos: to allow for efficient
SNARK of correct tally, they need the ballots to have the form of a homomorphic commitment.
This means that whenever Kryvos’s solution can be used, it is also possible to use a homomorphic
tally, for which there are arguably fewer risks of an Italian attack. For a counting function such
as STV where tally hiding is needed the most, there is no smart way to encode a voting option
into nchoices bits, in such a way that two encodings can be meaningfully added together. The
only obvious solution would be to let nchoices be the total number of possible choices, as discussed
in [HKK+22, Section 4.3] when they propose their solution for instant runoff voting (IRV), which
is a (simple) specific case of STV. In the example of IRV, using their proposed solution would
lead to nchoices =

∑nC
i=0

(
nC
i

)
i!, where nC is the number of candidates. This is impractical as

soon as nC ≥ 6. More generally, there is a “real” risk for an Italian attack when nchoices is larger
than the number of voters. Since Kryvos requires the voters to compute nTnchoices encryptions,
it means that Kryvos is either impractical on the voter side, or not-quite-so necessary as it could
be replaced by a classical homomorphic tally.

A third drawback is that Kryvos imposes a lot of computation stress on the voter side.
Compared to Helios, the voters must typically compute nT times more encryptions, and the
corresponding ZKP is much more expensive: according to the provided benchmark, the time
required for the voter to prove the validity of their ballot can be similar to that required for the
talliers to compute the tally and prove its validity.

Finally, a fourth drawback is that Kryvos requires a honestly generated common reference
string, as discussed in Section 2.3.5. In practice, the common reference string is obtained with
an MPC protocol, which may be expensive given the number of scalars and group elements to
generate. Although this generation can be done in advance, it is not clear how its cost compares
to that of the tally itself, so that its computational complexity should be taken into account. In
addition, the use of the SNARK imposes a not usual trust assumption on the participants of this
MPC protocol: if the SNARK is not honestly generated, then verifiability is lost.

124

5.3.
C
om

parison
w
ith

other
approaches

Table 8: Leading terms of the costs of the MPC primitives; nT is the number of participants, N is the number of operands, ℓ is the bit-
length of the operands, r is the precision in the division. All logarithms are in base 2. For the CSZ protocol, we express the computation
cost as the number of exponentiations per participants, and the unit of the transcript size is the key size (typically 256 bits). For the
other protocols, we express their cost as the number of CSZ required.

Functionality Option Protocol # exp. Synch. locks Transcript size
Not − − 0 0 0

CSZ
original [ST04] 19nT nT 18nT

SUC-secure CSZ 33nT nT 34nT

And, Or, Xor − And,Or,Xor CSZ CSZ CSZ

If, Cond. swap − If, Swap CSZ CSZ CSZ

Select, Cond. shift − Select,CLS,CRS NCSZ CSZ NCSZ

Addition, linear Add,Sub 2ℓCSZ 2ℓCSZ 2ℓCSZ
subtraction sublinear UFCAdd 3

2ℓ log ℓCSZ 2 log ℓCSZ 3
2ℓ log ℓCSZ

Opposite − Neg ℓCSZ ℓCSZ ℓCSZ

Aggregation − Aggreg 3NCSZ 1
2 log(N)2CSZ 3NCSZ

UFC (use UFCAdd) 5.54NCSZ 2N logN log logNCSZ 5.54NCSZ

Multiplication − Mult 3ℓ2CSZ 2ℓ2CSZ 3ℓ2CSZ

Division − Div 3rℓCSZ 2rℓCSZ 3rℓCSZ

Equality − Eq 2ℓCSZ log ℓCSZ 2ℓCSZ

Comparison

linear Lt 2ℓCSZ 2ℓCSZ 2ℓCSZ
lin. + eq LtEq 3ℓCSZ 2ℓCSZ 3ℓCSZ
sublinear CLt 4ℓCSZ 2 log ℓCSZ 4ℓCSZ

sublin. + eq CLt 5ℓCSZ 2 log ℓCSZ 5ℓCSZ

Min, max linear Min,Max (3ℓ+ logN)NCSZ 2ℓ logNCSZ (3ℓ+ logN)N
sublinear (CLt instead of Lt) (5ℓ+ logN)NCSZ 2 log ℓ logNCSZ (5ℓ+ logN)NCSZ

s largest
comp. sInsert (N − s

2)s(3ℓ+ logN)CSZ 2ℓs(N − s
2)CSZ (3ℓ+ logN)NCSZ

trade-off sSelect Ns(3ℓ+ logN)CSZ 2sℓ logNCSZ Ns(3ℓ+ logN)CSZ
comm. (use sublin. Max) Ns(5ℓ+ logN)CSZ 2s log ℓ logNCSZ Ns(5ℓ+ logN)CSZ

Sorting oblivious OddEvenMergeSort 3
4N log(N)2ℓCSZ ℓ log(N)2CSZ 3

4N log(N)2ℓCSZ
with CLt 5

4N log(N)2ℓCSZ log ℓ log(N)2CSZ 5
4N log(N)2ℓCSZ125

Chapter 6

Application of the toolbox to electronic
voting

The toolbox that we provide in Chapter 5 allows several talliers, that each have a secret share of
an ElGamal public key, to securely evaluate any function from the encrypted inputs. However,
if one wants to evaluate some specific function, one needs to design a specific boolean circuit
that corresponds to this function, and it is not clear whether this would lead to an efficient and
practical MPC protocol. For this reason, we studied a large variety of popular counting functions
and designed an MPC protocol for some of them, including Condorcet-Schulze, STV, Majority
Judgment and the D’Hondt method. For each of these counting functions, we explain how the
MPC protocol was designed and we give estimates for the resulting complexities; in addition, we
provide an implementation in the case of the Condorcet-Schulze [sou22] method.

Contents
6.1 Homomorphic tally for the Condorcet methods 127

6.1.1 Existing approaches for Condorcet methods 127
6.1.2 A new proof of well-formedness for homomorphic ranked voting . . 128

6.2 A tally-hiding protocol for Condorcet-Schulze 133
6.2.1 The Schulze method . 133
6.2.2 Ballots as lists of integers . 134
6.2.3 Obtaining the adjacency matrix from the encrypted ballot 135
6.2.4 Computing the result from the encrypted adjacency matrix 135
6.2.5 Condorcet-Schulze, the bottom-line 135
6.2.6 Comparison with Ordinos . 136
6.2.7 Implementation . 138
6.2.8 A possible adaptation for the ranked pairs variant 139

6.3 A solution for single transferable vote 140
6.3.1 Existing solutions for STV in electronic voting 141
6.3.2 Choosing one version of STV . 142
6.3.3 Ballots as lists of candidates . 143
6.3.4 A tally-hiding protocol for academic STV 143
6.3.5 Complexity analysis . 146

6.4 Majority Judgment . 148
6.4.1 Existing approaches for computing the Majority Judgment 149

126

6.1. Homomorphic tally for the Condorcet methods

6.4.2 A new algorithm for cleartext Majority Judgment 150
6.4.3 Adaptation to the Paillier setting 150
6.4.4 An adaptation to the ElGamal setting 156
6.4.5 Comparison with [CPST18] . 159

6.5 Single choice voting . 159
6.5.1 Basic single choice voting . 161
6.5.2 List voting: computing the D’Hondt method in MPC 161

6.6 Security of the toolbox in the context of electronic voting . . . 163
6.6.1 Universal verifiability . 165
6.6.2 Privacy . 165

6.7 Lessons learned . 169

6.1 Homomorphic tally for the Condorcet methods

The Condorcet method was proposed to determine the most rightful candidate [Con85]. For this
purpose, every voter must rank the candidates by order of preference, possibly with equalities.
Then a Condorcet winner is a candidate that is preferred to every other candidate by a majority
of voters. More formally, for all pair (i, j) of candidates, we denote di,j the number of voters
who (strictly) prefer candidate i over j. Then a Condorcet winner is a candidate i such that
di,j > dj,i for all j ̸= i. There can be at most one such winner.

Such a Condorcet winner may not exist, this is the Condorcet paradox. For example, consider
Fig. 14, in which the ape is preferred from the beaver by a majority, the beaver is preferred from
the capybara and the capybara is preferred ape by a majority. This shows that the relation “is
preferred by a majority” is not transitive. It is commonly accepted that the Condorcet paradox
occurs quite often, even if there is a large number of voters. For instance, if we suppose that all
the preferences are equiprobable, the probability that the there is no Condorcet winner decreases
towards 15

16 when the number of voters increases [Geh81].

Alice’s ballot
Ape

Beaver
Capybara

Bob’s ballot
Beaver

Capybara
Ape

Charlie’s ballot
Capybara

Ape
Beaver

Figure 14: Illustration of a Condorcet paradox with 3 voters and 3 candidates

To circumvent the Condorcet paradox, several methods exist. Those variants would pick the
Condorcet winner as the winner whenever there is a Condorcet winner, but provide a way to
determine a single winner otherwise (except with a small probability). Hence, they are Condorcet-
compliant and we consider them as a Condorcet methods. The most popular ones are the Schulze
method and ranked pairs; the Schulze method is notably used for Ubuntu elections [Ubu12].

6.1.1 Existing approaches for Condorcet methods

For most of the Condorcet methods, the result of the counting function can be deduced from
the preference matrix m, whose coefficient mi,j is defined by mi,j = di,j − dj,i, where di,j is
the number of candidates that (strictly) prefer i over j. We use this matrix rather than d for

127

Chapter 6. Application of the toolbox to electronic voting

a technical reason only: for instance, it is antisymmetric. However, some authors may prefer
to use d directly. Interestingly, this global preference matrix can be deduced as the sum of the
individual preference matrix of the voters. Therefore, apart from using a decryption mixnet,
there is a second natural strategy which consists of having the voter encode their choice (i.e. a
permutation c1, · · · , cnC of the candidates, but possibly with equalities) as a preference matrix
m, where ci is the rank of candidate i and

mi,j =

1 if ci < cj
0 if ci = cj
−1 otherwise.

The voters then encrypt each element of this matrix independently, which gives an encrypted
matrix M . Then the matrix given by every voter can by homomorphically added together, so
that decrypting the resulting product would only reveal the global preference matrix and not the
individual preferences of any voter. However, to turn this idea into an actual voting system, we
also need to explain how a voter can prove that the ballot is well-formed, that is, corresponds
to the matrix of a total order (with equalities). This requires in particular to prove that if the
voter prefers i over j and j over k then i is also preferred over k:

(mi,j = 1) ∧ (mj,k = 1)⇒ (mi,k = 1);

and similar relations when mi,j and mj,k are equal to 0 or −1, yielding O(nC
3) statements, where

nC is the number of candidates. This is roughly how the voters produce their ballot in [HHK+21],
where it is also assumed that voters cannot give the same rank to two candidates (i.e. the case
ci = cj is forbidden). To discharge the voter from such a proof effort, it is proposed in [HPT19]
that the authorities shuffle each preference matrix in blocks and then decrypt it to check whether
the ballot is well formed. However, this yields a privacy breach, unnoticed by the authors: for
each voter, everyone learns the number of candidates placed at equality. Indeed, even though
the matrix is shuffled before being decrypted, it is still possible to count the number of 0 which
is encrypted in the matrix. In particular, everyone learns who votes blank.

6.1.2 A new proof of well-formedness for homomorphic ranked voting

In this thesis, we propose an alternative approach which allows the voters to prove the well-
formedness of their matrix in O(nC

2) exponentiations, while still allowing the voter to give the
same rank to several candidates. This is of great interest if one is ready to leak the preference
matrix, as the tally can be computed without any MPC protocol apart from the threshold
decryption. We first present our proof strategy on the cleartexts, and then instantiate it on the
ciphertexts using standard ZKP.

Proof strategy on the cleartexts. Suppose that Alice wants to vote the ordering (1, · · · , k)
(i.e. the candidate number i is ranked ith). Then her preference matrix would be as follows:

minit[i, j] =

0 if i = j
1 if i < j
−1 otherwise.

Now, assume that Alice wants to rank σ(i)th the candidate number i, for some permutation σ. If
the candidate number i were numbered σ(i) instead, Alice could have voted using minit as above.

128

6.1. Homomorphic tally for the Condorcet methods

This means that the preference matrix of Alice ma is such that ma[σ
−1(i), σ−1(j)] = minit[i, j]

for all (i, j). Therefore ma can be obtained by using the permutation σ to shuffle minit (using
the permutation on the rows, then on the columns).

Finally, assume that Alice wants to give the same rank to several candidates and let ri be
the rank of candidate i according to her personal preferences. Alice first sorts the candidates
according to their rank, in increasing order. For this purpose, she uses a permutation σ such that
σ(i) < σ(j) =⇒ ri ≤ rj . To obtain her preference matrix ma from minit, Alice first transforms
minit into mσ, such that mσ[i, j] = ma[σ

−1(i), σ−1(j)]. For this purpose, she computes a vector
b of size k− 1 such that for all i, bi = 1 if rσ−1(i) = rσ−1(i+1), and 0 otherwise. Afterwards, Alice
modifies minit diagonal by diagonal, so as to indicate that some candidates are ranked equal.
(Since the preference matrix is antisymmetric, Alice only needs to compute the upper half, from
which she deduces the lower half.) For the first diagonal, we have mσ[i, i+ 1] = 1− bi.

For the (j+1)th diagonal (i, i+j+1)i, assume that the previous diagonal has been computed.
Then, as the candidates are sorted in order of preference, we have

mσ[i, i+ j + 1] =

{
0 if (mσ[i, i+ j] = 0) ∧ (mσ[i+ 1, i+ j + 1] = 0),
1 otherwise.

Therefore, Alice can apply an iterative algorithm, using the following formula:

mσ[i, i+ j + 1] = 1− (1−mσ[i, i+ j])(1−mσ[i+ 1, i+ j + 1])

= mσ[i, i+ j] +mσ[i+ 1, i+ j + 1]−mσ[i, i+ j]mσ[i+ 1, i+ j + 1].
(2)

Once mσ is obtained, Alice can finally derive ma by shuffling the rows and the columns, using
the permutation σ.

An illustrative example with five candidates. Suppose, for instance, that there are
five candidates, say, the Ape, the Beaver, the Capybara, the Dolphin and the Elephant, that are
numbered from 1 to 5. Suppose that Alice wants to give them the ranks r1 = 3, r2 = 3, r3 = 1,
r4 = 3 and r5 = 2, as depicted in Table 9. In other words, Alice’s preferred candidate is the
Capybara, then Alice prefers the Elephant, and then Alice likes the Beaver just as much as the
Dolphin and the Ape.

Table 9: Alice’s choice when ranking the five candidates

Candidate Ape Beaver Capybara Dolphin Elephant
Number 1 2 3 4 5
Rank 3 3 1 3 2
σ 3 4 1 5 2

σ−1 3 5 1 2 4

To sort them, Alice can use the permutations σ, as depicted in Fig. 9. There may be
several permutations that are consistent with the ranking, and Alice may also choose another
permutation that, for instance, permutes the Beaver, the Dolphin and the Ape. From this
permutation σ, she computes the vector b, depicted in Table 10. This vector is used to modify
the first diagonal of minit, as shown in Fig. 15.

Afterwards, the second, the third and the fourth diagonals are modified in turn, as shown in
Fig. 16. This modification is done thanks to Eq. (2), which gives the next diagonal as a function
of the previous one.

129

Chapter 6. Application of the toolbox to electronic voting

Table 10: The vector b that corresponds to Alice’s choice

i 1 2 3 4
bi 0 0 1 1

0 1 1 1 1
−1 0 1 1 1
−1 −1 0 1 1
−1 −1 −1 0 1
−1 −1 −1 −1 0

 −→

0 1 1 1 1
−1 0 1 1 1
−1 −1 0 0 1
−1 −1 −1 0 0
−1 −1 −1 −1 0

Figure 15: Modification of the first diagonal, to encode equalities

Once the upper half is obtained, the bottom half is deduced thanks to the antisymmetric
property. Finally, the final preference matrix is obtained by shuffling mσ column by column then
row by row, using the permutation σ, as shown in Fig. 17.

0 1 1 1 1
−1 0 1 1 1
−1 −1 0 0 0
−1 −1 −1 0 0
−1 −1 −1 −1 0

 −→

0 1 1 1 1
−1 0 1 1 1
−1 −1 0 0 0
−1 −1 −1 0 0
−1 −1 −1 −1 0

 −→

0 1 1 1 1
−1 0 1 1 1
−1 −1 0 0 0
−1 −1 −1 0 0
−1 −1 −1 −1 0

Figure 16: Modification of the matrix, diagonal by diagonal, to ensure consistency

mσ =

0 1 1 1 1
−1 0 1 1 1
−1 −1 0 0 0
−1 −1 0 0 0
−1 −1 0 0 0

 Shuffle−−−−→
rows

−1 −1 0 0 0
−1 −1 0 0 0
0 1 1 1 1
−1 −1 0 0 0
−1 0 1 1 1

 Shuffle−−−−−→
columns

0 0 −1 0 −1
0 0 −1 0 −1
1 1 0 1 1
0 0 −1 0 −1
1 1 −1 1 0

 = ma

Figure 17: Derivation of the preference matrix by permuting mσ

Algorithm on the ciphertexts. To summarize our construction, we recap the procedure
to provide a ballot and prove its well-formedness in Algorithm 75. In this algorithm, we require
at line 7 that the voter produces a ZKP that a ciphertext Bi is indeed an encryption of a bit
bi ∈ {0, 1}. For this purpose, a standard ZKP such as Algorithm 16 can be used. In addition, we
also require at line 16 that the voter proves that some ciphertext Zi,i+j+1 encrypts the product of
the plaintexts of two other ciphertexts Mσ[i, i+j] and Mσ[i+1, i+j+1]. We can easily build such
a proof using standard ZKP; see Algorithm 76. Finally, we also require that the voter shuffles
the matrix. For this purpose, we can use ShuffleMatrix, which is presented in Section 2.4.3.

Technically, a ballot can be considered as a matrix Mσ that encodes which candidate are
ranked at equality, a matrix Ma that encodes the permutation and a ZKP Π. However, since
Mσ can be recovered from Π, we do not include it in the output of Algorithm 75.

To verify that a ballot is well-formed, one can first verify all the ZKP π
0/1
i . Then, using

the Bi’s, Minit and the Zi,i+j+1’s, the verifier can compute the matrix Mσ. The fact that Mσ

is well-formed can be verified by checking all the ZKP πMult
i,i+j+1 , using Mσ and the Zi,i+j+1’s.

Finally, the verifier verifies the proofs of a shuffle using πShuffle, Mσ and Ma.

130

6.1. Homomorphic tally for the Condorcet methods

Algorithm 75: MatrixBallot
Requires: pk, a public exponential ElGamal encryption key

E1, E0, E−1, trivial encryptions of 1, 0 and −1
r1, · · · , rnC , the rank of each candidate

Outputs: Ma, the encrypted matrix of preferences
Π a ZKP of well-formedness

1 Sort the candidate by increasing order of rank;
2 This gives a permutation σ such that σ(i) < σ(j) =⇒ ri ≤ rj ;
3 for i = 1 to nC do
4 if rσ−1(i) = rσ−1(i+1) then bi ←− 1 else bi ←− 0;

5 ri
$←− Zq;

6 Bi ←− Encpk(bi, ri);
7 π

0/1
i ←−Pok0/1(Bi, bi, ri) (* see Algorithm 16 *);

8 mσ[i, i]←− 0; mσ[i, i+ 1]←− 1− bi;
9 ri,i ←− 0; ri,i+1 ←− −ri;

10 Mσ[i, i]←− E0; Mσ[i, i+ 1]←− E1/Bi;

11 for j = 1 to nC − 1 do
12 for i = 1 to nC − j − 1 do
13 mσ[i, i+ j+1]←− mσ[i, i+ j]+mσ[i+1, i+ j+1]−mσ[i, i+ j]mσ[i+1, i+ j+1];
14 X ←−Mσ[i, i+ j]; x←− mσ[i, i+ j]; rx ←− ri,i+j ;

15 Y ←−Mσ[i+ 1, i+ j + 1]; rz
$←− Zq;

16 Zi,i+j+1, π
Mult
i,i+j+1 ←−ZKPmult(X,x, rx, Y, rz);

17 rZ ←− xri+1,i+j+1 + rz;
18 Mσ[i, i+ j + 1]←−Mσ[i, i+ j]Mσ[i+ 1, i+ j + 1]/Zi,i+j+1;
19 ri,i+j+1 ←− ri,i+j + ri+1,i+j+1 − rZ ;

20 for all (i, j) s.t. i < j do Mσ[j, i] = 1/Mσ[i, j];
21 Ma, π

Shuffle ←− ShuffleMatrix(Mσ, σ);
22 Π←− πShuffle||(Zi,i+j+1, π

Mult
i,i+j+1)i,j ||(Bi, π

0/1
i)i;

23 return Ma,Π;

131

Chapter 6. Application of the toolbox to electronic voting

Algorithm 76: ZKmult
Requires: G a group of prime order q

pk, a public exponential
ElGamal encryption key
X,x, rx, s.t.
X = Encpk(x, rx)
Y , any ciphertext
rz ∈ Zq, a randomness

Outputs: Z, a reencryption of Y x

πMult, a ZKP of
well-formedness

1 Z ←− Rencpk(Y
x, rz);

2 α, ρx, ρz
$←− Zq;

3 cz ←− Rencpk(Y
α, ρz);

4 cx ←− Enc(α, ρx);
5 d←− hash(pk||X||Y ||Z||cx||cz);
6 ax ←− α+ xd; arx ←− ρx + rxd;
7 arz ←− ρz + rzd;
8 πMult ←− (cx, cz, ax, arx, arz);
9 return Z, πmul

Algorithm 77: Verification algorithm
Requires: G a group of prime order q

pk, a public exponential
ElGamal encryption key
X,Y, Z, three ciphertexts
πmul = (cx, cz, ax, arx, arz),
a ZKP

Outputs: 1 if the proof is valid, 0
otherwise

1 d←− hash(pk||X||Y ||Z||cx||cz);
2 Verify the following equalities:

3 cx
?
= Encpk(ax, arx)X

−d;

4 cz
?
= Rencpk(Y

ax , arz)Z
−d;

5 if so then return 1 else return 0;

Table 11: Complexity of the proof of validity of the ballot matrix, where nC is the number of
candidates

Prover (# exp.) Verifier (# exp.) Transcript (×256 bits)
11.5nC

2 11.5nC
2 8.5nC

2

Security of the construction. Our construction inherits the completeness, the compu-
tational soundness and the statistical zero knowledge from that of the standard PoK and the
Terelius-Wikström proof of a shuffle. Indeed, if we consider that a ballot is a couple of en-
crypted matrices Mσ,Ma, then the ciphertexts Zi,i+j+1 and Bi can be recovered from Mσ and
Minit. Then, the remaining of Π can be simulated thanks to the zero knowledge property of the
standard PoK and the proof of a shuffle.

Complexity analysis. We now give the complexity of our construction. To simplify the
expression, we only give the leading term of the formula. First, the voter has to produce nC − 1
encryptions of a bit and the corresponding ZKP, which leads to O(nC) exponentiations. Then,
for j ∈ [1, nC−1], the (j+1)th diagonal has (nC−j−1) ciphertexts to compute. For each of these
ciphertexts, the only expensive operation is to compute ZKPmult; indeed, the other operations
are arithmetic operations in Zq. Since x ∈ {0, 1}, computing Y x is cheap; therefore, ZKPmult
requires 7 exponentiations to compute and to verify. Finally, the cost of ShuffleMatrix is given in
Table 3. Overall, producing and proving the validity of a ballot requires 23

2 nC
2 exponentiations.

For comparison, the “naive” cubic algorithm requires 18nC
3 exponentiations for the prover and

20nC
3 exponentiations for the verifier.

132

6.2. A tally-hiding protocol for Condorcet-Schulze

6.2 A tally-hiding protocol for Condorcet-Schulze

The previous section gives a solution for most of the Condorcet methods, based on a homomor-
phic tally. However, this implies to reveal the global preference matrix, which contains more
information than just the set of the winners. For this reason, we investigate the possibility of
performing a fully tally hiding protocol, that only reveals which candidate wins the election. We
especially focus on the Schulze method, as it is by far the most popular variant of Condorcet.

6.2.1 The Schulze method

The Schulze method consists of several steps. First, for all pair (i, j) of candidates, compute
di,j , which is the number of voters who (strictly) prefer candidate i over candidate j. Second,
deduce bi,j = di,j − dj,i. For all pair of candidates (u, v), a path p of length ℓ from u to v is a
finite sequence of ℓ + 1 candidates such that u = p0 and v = pℓ. We say that (i, j) ∈ p if there
exists an index 0 ≤ k < ℓ such that i = pk and j = pk+1. The strength of a path p is defined
as s(p) = min(i,j)∈p bi,j . With this in mind, the third step of the Schulze method is to compute
fi,j = maxσ∈[i⇝j] s(σ), where [i ⇝ j] denotes the set of all paths from i to j. Finally, i is a
winner by the Schulze method if fi,j ≥ fj,i for all j.

Note that it is possible that there are several winners according to the Schulze method.
However, when such a case arises, then for all pair of winner (i, j), we have fi,j = fj,i. Therefore,
the Schulze method has the resolvability property, which means that a single winner is output
with high probability, and the probability that a tie occurs decreases towards 0 when the number
of voters increases. Hence, the Schulze method is indeed a solution to the Condorcet paradox.

Computing fi,j for all (i, j) is actually a well-known problem in graph theory, which is called
the maximum capacity problem [Pol60]. To solve this, we can use the Floyd-Warshall algo-
rithm [Flo62, War62] on the matrix b, but where the min operator is replaced by the max
operator and the + operator is replaced by the min operator, as explained in [Pai66]. However,
remark that some of the coefficients of b may be negative, which can be a problem in our ElGamal
toolbox where the subtractions are computed modulo a power of 2. For this reason, we use the
adjacency matrix a, defined by

ai,j =

{
di,j − dj,i if di,j ≥ dj,i
0 otherwise,

which only has non-negative elements. In Lemma 10, we show that the Schulze winner can be
deduced from the positive matrix a instead of b.

Lemma 10. Let nC be the number of candidates, and b an antisymmetric matrix of size nC×nC

(i.e. for all i, j, bi,j = −bj,i). Let a be the matrix defined by the coefficients ai,j = max(0, bi,j).
For all (i, j), we denote

fi,j = max
σ∈[i⇝j]

min
(k,ℓ)∈σ

bk,ℓ

f ′
i,j = max

σ∈[i⇝j]
min

(k,ℓ)∈σ
ak,ℓ.

With these notations, we have ∀i, (∀j, fi,j ≥ fj,i) ⇐⇒ (∀j, f ′
i,j ≥ f ′

j,i).

Proof. For all path p, we denote s(p) = min(i,j)∈p bi,j and s′(p) = min(i,j)∈p ai,j .
Let i be a candidate, suppose that for all j, fi,j ≥ fj,i (i.e. i is a Schulze winner). Let j be

any candidate. If j = i, clearly f ′
i,j ≥ f ′

j,i, so we assume that j ̸= i. Since j ̸= i, there is no path

133

Chapter 6. Application of the toolbox to electronic voting

from i to j (nor from j to i) of length 0. Now, let p be a path from i to j which maximizes s(p),
so that fi,j = s(p). We consider two cases:

First, assume that bpk,pk+1
< 0 for some k. Then fi,j = s(p) < 0 and, for all path p′ from j

to i, s(p′) ≤ fj,i < 0. Consequently, there exists k′ such that bp′
k′ ,p

′
k′+1

< 0, so that ap′
k′ ,p

′
k′+1

= 0,
thus s′(p′) = 0. Since this is holds for all p′, f ′

j,i = 0 ≤ f ′
i,j .

Second, if bpk,pk+1
≥ 0 for all k, then for all k, apk,pk+1

= bpk,pk+1
, so that s(p) = s′(p). Now

consider any path p′ from j to i. If bp′
k′ ,p

′
k′+1
≥ 0 for all k′, then s′(p′) = s(p′) ≤ fj,i ≤ fi,j =

s(p) = s′(p) ≤ f ′
i,j . If there exists k′ such that bp′

k′ ,p
′
k′+1

< 0, then s′(p′) = 0 ≤ f ′
i,j . Hence,

s′(p′) ≤ f ′
i,j for all p′, so that f ′

j,i ≤ f ′
i,j .

Conversely, let i such that f ′
j,i ≤ f ′

i,j for all j. Let j be any candidate (as above, w.l.o.g. we
assume that i ̸= j). We consider three cases.

First, suppose that fi,j < 0. Then for all path p from i to j, s(p) ≤ fi,j < 0 so that there
exists (u, v) ∈ p such that bu,v < 0 (we call this proposition ∗). In particular, (i, j) is a path from
i to j. Hence, bi,j < 0, so bj,i = −bi,j > 0, therefore bj,i = aj,i and f ′

j,i ≥ s′(j, i) = aj,i = bj,i > 0.
On the other hand, by ∗ we have f ′

i,j = 0, which contradicts f ′
j,i ≤ f ′

i,j = 0. Therefore fi,j ≥ 0.
Second, suppose that fi,j = 0. Then for all path p from i to j, s(p) ≤ fi,j so that there exists

(u, v) ∈ p such that bu,v ≤ 0, hence f ′
i,j = 0. Let p′ be a path from j to i (of length n′ > 0).

Suppose that for all (u, v) ∈ p′, bu,v > 0. Then 0 < s′(p) ≤ f ′
j,i, which contradicts f ′

j,i ≤ f ′
i,j .

Consequently, there exists (u, v) ∈ p′ such that bu,v ≤ 0, therefore s(p′) ≤ 0 = fi,j . This holds
for all p′ so fj, i ≤ fi,j .

Finally, suppose that fi,j > 0. Let p′ be a path from j to i. If there exists (u, v) ∈ p′ such
that bu,v ≤ 0, then s(p′) ≤ 0 < fi,j . Otherwise, for all (u, v) ∈ p′, bu,v > 0 so s(p′) = s′(p′) ≤
f ′
j,i ≤ f ′

i,j ≤ fi,j .

6.2.2 Ballots as lists of integers

Before describing the tally process, we need to present the expected form of the ballots. We
decide to make the cost on the voter side as cheap as possible, because it is often critical in
electronic voting. While the voter may only have a limited computational power, the tallier
and the auditor may have access to a powerful server or rent a supercomputer. For this reason,
we do not use the solution from Section 6.1.2. Instead, we ask the voter to provide log nC

encryption of 0 or 1 for each candidate, which encodes the desired rank for the candidate. This
way, they can give the rank they want to each candidate, without restriction, which accounts
for the possibility of giving the same rank to several candidates. Note that there may be gaps
in the given ranks; for instance, a voter may give the rank 0 to one candidate and the rank
2 to two candidates, without giving the rank 1 to any candidate. In addition, since nC − 1
may not be a power of 2, a voter may give a rank that exceeds nC − 1. This is not a problem
and we consider that any ballot which encrypts nC log nC bits is valid. Thanks to the relative
absence of restrictions, the voter can produce and prove the validity of their ballot in about
6nC log nC exponentiations. On this occasion, we refer to [DPP22a], where various solutions to
simultaneously encrypt many bits and produce the corresponding ZKP in the ElGamal setting are
proposed. Compared to Algorithm 16, they remark that it is possible to save 2 exponentiation per
bit without changing anything except the way the proof is generated. Since the voter also needs
to compute 2 exponentiation per encryption, this gives a total of 6nC log nC exponentiations per
voter ballot, which is way cheaper than in the homomorphic variant.

134

6.2. A tally-hiding protocol for Condorcet-Schulze

6.2.3 Obtaining the adjacency matrix from the encrypted ballot

We now explain how the talliers can collectively turn every ballot into the corresponding individ-
ual preference matrix. For this purpose, they use an MPC protocol that operates on encrypted
data. First, we assume here that each ballot consists of nC ⌈log(nC + 1)⌉ ciphertexts, along with
as many ZKP that prove that they are encryptions of 0 or 1. Those ciphertexts are interpreted
as nC bitwise encrypted integers, denoted Ri

1, · · · ,Ri
nC

, where i is the index of the voter. The
corresponding integers represent the rank that the voter i gives to each candidate.

To compute an encryption of the preference matrix of a voter, the talliers can use the protocol
LtEq which returns two encrypted bits: one for the lesser-than test and the other for the equality
test (see Section 5.1.3). This gives Algorithm 78. At this point, the encrypted matrices can
be aggregated using the homomorphic property, and the resulting product can be decrypted.
This gives yet another possibility for the homomorphic tally. However, since we assumed that
the talliers are ready to perform complex MPC, we can also aggregate the matrices using the
Aggreg algorithm, which gives the bitwise encryption of the global preference matrix. Finally,
the adjacency matrix can be deduced using the Sub protocol. Remark that in this protocol,
the last encrypted bit indicates whether the result is negative or not. Hence, to ensure that the
result are all positive, we can use the CSZ protocol to set the negative values to zero as desired.

Algorithm 78: BtoM
Requires: A group G of prime order q

pk, an exponential ElGamal public key
E1, E0, trivial encryptions of 1 and 0
R1, · · · ,RnC , bitwise encryptions of the same size
ℓ = ⌈log(nC + 1)⌉, where nC is the number of candidates

Outputs: M , the corresponding encrypted preference matrix
1 for i = 1 to nC (in parallel) do
2 Mi,i ←− E0;
3 for j = i+ 1 to nC (in parallel) do
4 Z, T ←− LtEq(Ri,Rj);
5 Mi,j ←− Z;
6 Mj,i ←− CSZ(E1/Z, T);

7 return M ;

6.2.4 Computing the result from the encrypted adjacency matrix

Finally, once the global adjacency matrix has been obtained, one can derive the result from the
Floyd-Warshall algorithm; see Algorithm 80.

6.2.5 Condorcet-Schulze, the bottom-line

We provide a bottom line where we give again all the necessary details. First, to submit a ballot,
a voter can use the procedure given in Algorithm 81. We made it as simple as possible, with the
objective to minimize the computation stress on the voter side. Namely, the voter can give any
rank to any candidate, without any restriction (except that the rank must in the range [0, 2ℓ−1],
where nC is the number of candidates and ℓ = ⌈log(nC + 1)⌉). This way, the voter only needs
6nC log nC exponentiations to vote. The previous approach, presented in Section 6.1.2, requires

135

Chapter 6. Application of the toolbox to electronic voting

Algorithm 79: FW (Floyd-Warshall)
Requires: (P)i,j , the encrypted

adjacency matrix
nC , the # of candidates

Outputs: (S)i,j , s.t. Si,j is an
encryption of the strength
of the strongest path from i
to j

1 S ←− P ;
2 for k = 1 to nC do
3 for i = 1 to nC (in parallel) do
4 for j = 1 to nC (in parallel) do
5 (* proceed only if (i ̸= j) *);
6 T ←− Lt(Si,k,Sk,j);
7 Ai,j ←− If(T,Si,k,Sk,j);
8 T ←− Lt(Ai,j ,bmSi,j);
9 Bi,j ←− If(T,Si,j ,Ai,j);

10 for all (i ̸= j) do Si,j ←− Bi,j ;

11 return S;

Algorithm 80: Schulze
Requires: (P)i,j , the encrypted

adjacency matrix
nC , the # of candidates

Outputs: w, the indicator of the
Schulze winners

1 (S)i,j ←−FW(P);
2 for i = 1 to nC (in parallel) do
3 for j ̸= i (in parallel) do
4 Bj ←− Not(Lt(Si,j ,Sj,i));

5 Wi ←− And((Bj)j ̸=i);
6 wi ←− Dec(Wi);

7 return w1, · · · , wnC ;

about 11.5nC
2 exponentiations. Note that only the ordering of the candidates is of interest, so

that ranking three candidates 1, 1 and 2 is the same as ranking them 0, 0 and 3.
Second, the talliers turn each individual ballot into the corresponding encrypted preference

matrix, using the BtoM protocol. Then they aggregate all the individual preference matrices into
a single preference matrix, using the Aggreg protocol. Finally, they turn the global preference
matrix into an adjacency matrix and deduce the result from the Schulze algorithm. This gives
Algorithm 82, whose complexity is detailed in Table 12.

6.2.6 Comparison with Ordinos

Ordinos [KLM+20] is a concurrent contribution that allows tally-hiding in the Paillier setting.
It was extended in [HHK+21] to cover various counting functions, including the Schulze method.
Therefore, we discuss how our work compares to that of Ordinos. First, Ordinos does not allow
the voters to rank several candidates at equality, which is too restrictive; therefore they do
not provide a solution for Condorcet-Schulze in general. Second, Ordinos requires the Paillier
encryption scheme and asks the voters to compute O(nC

3) exponentiations to cast a ballot. By
comparison, we use the ElGamal encryption scheme (hence the exponentiation is a lot cheaper
on the voter side) and we only require the voters to compute 6nC log nC exponentiations to
cast their ballot. That being said, we can still compare the overall performances of both tally-
hiding schemes. For this purpose, we use [HHK+21, Fig. 7] to deduce the overall complexity
of computing a Condorcet-Schulze tally with Ordinos. However, we also include the cost of
verifying the validity of the ballots in the task of the talliers: if they do not verify the ZKP, then
a malicious server can break privacy, for instance using a replay attack.

In Table 13, we give the complexity estimates of various solutions for tallying the Condorcet-
Schulze method, including our fully tally hiding protocol as well as Ordinos’. From the resulting

136

6.2. A tally-hiding protocol for Condorcet-Schulze

Algorithm 81: Ballot casting procedure for the Condorcet-Schulze method
Requires: G, a group of prime order q

pk, an exponential ElGamal public key
nC , the number of candidates
ℓ = ⌈log(nC + 1)⌉
r1, · · · , rnC the ranks given to each candidate

1 for i = 1 to nC do Writes ri in base 2: ri =
∑ℓ−1

j=0 bi,j2
j ;

2 for i = 1 to nC do
3 for j = 0 to ℓ− 1 do
4 ρi,j ←− Zq;
5 Ri,j ←− Encpk(bi,j , ρi,j);
6 π

0/1
i,k ←−PoK(Ri,j , bi,j , ρi,j) (* see [DPP22a] *);

7 return (Ri,j , πi,j)i,j ;

Algorithm 82: Condorcet-Schulze
Requires: (Ri

1, · · · ,Ri
nC

)nV
i=1, the nV encrypted ballots

nC , the number of candidates
Outputs: w, the indicator of the set of the Schulze winners

1 for v = 1 to nV (in parallel) do
2 Mv ←−BtoM(Rv

1, · · · ,Rv
nC

);

3 for i = 1 to nC (in parallel) do
4 for j = 1 to nC (in parallel) do
5 M [i, j]←− Aggreg(M1[i, j], · · · ,MnV [i, j]);

6 for i = 1 to nC (in parallel) do
7 A[i, i]←− 0bits;
8 for j = i+ 1 to nC (in parallel) do
9 D, T ←− Sub(M [i, j],M[j, i]);

10 A[j, i]←− CSZ(Neg(D), T);
11 A[i, j]←− CSZ(D,Not(T));

12 return Schulze(A);

Table 12: Leading terms in the complexity for fully tally-hiding the Schulze method; the com-
putation, communication and transcript sizes are given as the number of CSZ required

Part Computations Communications Transcript
BtoM 3

2nV nC
2 log nC 2 log nC

3
2nV nC

2 log nC

Aggreg 3nV nC
2 1

2 log(nV)
2 3nV nC

2

Adjacency 5nC
2 log nV 3 log nV 5nC

2 log nV

FW 6nC
3 log nV 4nC log nV 6nC

3 log nV

Result 3nC
2 log nV 3 log nV 3nC

2 log nV

Total
3
2nV nC

2 log nC

+6nC
3 log nV

4nC log nV

3
2nV nC

2 log nC

+6nC
3 log nV

137

Chapter 6. Application of the toolbox to electronic voting

Table 13: Leading terms of the cost of various solutions for Condorcet-Schulze. nV is the number
of voters, nC is the number of candidates, nT is the number of talliers. The unit of the transcript
size is the key size, which is 256 bits in the ElGamal setting and 3072 bits in the Paillier setting.

Version Voters
exp.

Authorities
exp. # synch. locks Transcript size

[HPT19] 6nC
2[1] 14nV nC

2nT 2nT 3nV nC
2nT

[HHK+21]
(Paillier setting) 5nC

3[2]

precomp. precomp.

9nV nC
3+

178nC
3nT log nV

78nC
3nT log nV O(nT)
comp. comp.

6nV nC
3[3]

14nC log lognV+66nC
3nT

Section 6.1.2[4] 17.5nC
2 15.5nV nC

2 1 8.5nV nC
2

Partial MPC[4]
(ours) 6nC log nC 49.5nV nC

2nT log nC 2nT log nC 50nV nC
2nT log nC

Full MPC
(ours) 6nC log nC

49.5nV nC
2nT log nC

+198nC
3nT log nV

4nCnT log nV
50nV nC

2nT log nC

+204nC
3nT log nV

[1] [HPT19] leaks the adjacency matrix. In addition, for each ballot, the number of candidates
ranked at equality is public. In particular, who voted blank is known to everyone.
[2] [HHK+21] does not allow voters to give the same rank to several candidates.
[3] [HHK+21] originally does not take into account the cost of verifying the ZKP provided by the
voters.
[4] Leaks the adjacency matrix.

formulas, it appears that the computational time in Ordinos is greater than ours. Indeed, recall
that the cost of an exponentiation in the Paillier setting is larger than in the ElGamal setting.
Nevertheless, most of the computations in the Ordinos setting can be precomputed, so that
Ordinos’ performances are roughly comparable to ours (except that precomputing does have a
cost). Apart from that, it appears that the solution of Ordinos result in a transcript which is
about one order of magnitude larger than ours, due to the Paillier ciphertexts being about 12
times larger than the typical ElGamal ciphertexts.

One metric for which Ordinos performs better than our toolbox is the number of synchro-
nization steps. However, if this becomes a real problem, we can use the CLt protocol instead of
the Lt protocol for the comparison, which would lead to a similar communication cost to that
of Ordinos. As shown in Table 8, the extra cost on the computation side is reasonable and we
would still be comparable to Ordinos in terms of computational efficiency. Given the gain in
efficiency in the voter size and all the other advantages of the ElGamal setting compared to the
Paillier setting, we outperform Ordinos when it comes to computing a Condorcet-Schulze tally.

That being said, Table 13 only gives approximate formulas, and the latter are pretty complex.
Therefore, a complementary way to compare Ordinos’ performances to that of our toolbox would
be to run both implementations. We discuss of this comparison in Section 6.2.7.

6.2.7 Implementation

In order to evaluate the practical feasibility of our approach, we have written a prototype imple-
mentation in the ElGamal setting. The libsodium library is used for randomness and all elliptic
curve and hashing operations. The rest is implemented as a standalone C++ program. It is
available in [sou22] and is published as a free software. Most of the primitives of our toolbox

138

6.2. A tally-hiding protocol for Condorcet-Schulze

Table 14: Wall-clock time and transcript size of fully tally-hiding Condorcet-Schulze.

voters 5 candidates 10 candidates 20 candidates
64 1m50s / 49 MB 8m30s / 0.30 GB 45m / 1.8 GB
128 2m40s / 87 MB 12m / 0.51 GB 1h27m / 2.9 GB
256 4m35s / 160 MB 20m / 0.88 GB 2h37m / 4.8 GB
512 8m10s / 305 MB 34m / 1.6 GB 4h43m / 8.6 GB
1024 15m / 595 MB 1h05m / 3.1 GB 8h50m / 16 GB

have been implemented and, as a proof of concept, we have written a fully tally-hiding protocol
for Condorcet-Schulze.

We ran our software with various parameters. In order to compare to Ordinos [HHK+21],
we also considered 3 trustees (and no threshold). Our experimental setting is a single server
hosting two 16-core AMD EPYC 7282 processors and 128 GB or RAM. Each of the 3 trustees
runs 4 computing threads and a few scheduling and I/O threads. The communication between
the trustees is emulated via the loopback network interface. Thus, all the network system calls
are performed by the program, even though this is just a simulation. In Table 14, we summarize
the cost in terms of wall-clock time and the size of the transcript, measured by the program.

This experiment demonstrates that the approach is sound and in the realm of practicability,
for moderate-sized elections. By comparison, [HHK+21] reports a computation time of more
than 9 days and 10 hours for tallying a 20-candidates Condorcet-Schulze election, which does
not account for the verification of the validity of the ballots. Since each ballot requires a cubic
number of ZKP with respect to the number of candidates, verifying all the ballots may be more
expensive than computing the tally in the Schulze setting, depending on the number of voters.
In addition, the implementation of Ordinos, which is available at [Ord], does not account for the
precomputation, i.e. the subprotocols of the equality test MPC protocol that are presented in
Section 4.2.2. Yet, most of the computations in Ordinos are precomputations, so that it is not
clear whether they can be disregarded. Typically, their solution would require a few months of
precomputation time.

6.2.8 A possible adaptation for the ranked pairs variant

The Schulze method is not the only variant of Condorcet. Among them, Tideman’s method, also
known as ranked pairs [Tid87], appears to be the second most popular. Compared to the Schulze
method, it provides the same properties as a counting function: it is Condorcet-compliant, has
resolvability and is resistant against strategical voting. For these reasons, we also explored the
possibility to provide a fully tally-hiding protocol for ranked pairs, that we discuss below. In
Ordinos [HHK+21], other variants, namely plain Condorcet, weak Condorcet, and the Smith,
Copeland and Minimax methods are discussed. The plain, weak, Smith and Copeland methods
are considered for the sole purpose of comparison, and are not popular variants of the Condorcet
method since they do not have the resolvability property, which means that they do not address
the Condorcet paradox entirely. In practice, it is still possible to use them, but in conjunction
with a tie-break method (typically, a voting method named instant runoff voting). As for the
Minimax variant, the Schulze method was originally designed to address some of its shortcomings,
as it was too vulnerable to strategical voting. It is still possible to prefer the Minimax variant
for its greater simplicity, and we mention that it is easy to evaluate it with our MPC toolbox,
using the Min and the Max protocols.

139

Chapter 6. Application of the toolbox to electronic voting

The ranked pairs variant.
In the ranked pairs method, the adjacency matrix is seen as the adjacency matrix of a graph

G. Then the method is divided into three steps. The first step is to sort the edges of G in
decreasing order of weights. Then, the second step is to sequentially add those edges to a graph
G′ which initially has nC vertices and no edge; however, we do not add the edges which create a
cycle. Finally, as G′ is an oriented graph without cycle, it can be seen as the graph of a partial
order over the candidates. The sources of the graph are the winners.

Assuming that we have the encrypted adjacency matrix, an MPC version of the ranked
pairs method goes as follows. First, to sort the edges, we can use the OddEvenMergeSort
algorithm. We encode the edges with three ciphertexts, one for the source, one for the des-
tination and one for the weight. The sources and the destination would each require log nC

ciphertexts, where nC is the number of candidates, and the weight requires log nV ciphertexts,
where nV is the number of valid ballots. Hence, applying the OddEvenMergeSort would require
about nC

2 log(nC)
2(3 log nV + 2 log nC) CSZ in terms of computation and transcript size, and

2 log(nC)
2 log nV CSZ in terms of synchronization steps.

Then, the main procedure is to update an encrypted matrix Bi,j = Enc(bi,j), where bi,j = 1
if there is a path from i to j, and 0 otherwise. Initially, B is a trivial encryption of the identity
matrix. To add the edge (i, j), we compute b′s,t for all (s, t), as follows:

b′s,t = bs,t ∨ (bs,i ∧ bj,t).

However, since i and j are encrypted, we first need to recover (the encrypted) bs,i and bj,t for
all s, t. For this purpose, we can use equality tests and the Select protocol, which accounts for
a total of 4nC

2 log nCCSZ in terms of computation and 2 log nCCSZ in terms of synchronization
steps. The edge will create a cycle if and only if b′s,t = b′t,s = 1 for some (s, t), hence we compute
the encryption of the boolean

c = ∨s ̸=t(b
′
s,t ∧ b′t,s).

Finally, we can update bi,j using If and c. Overall, since we need to do this for the O(nC
2)

edges, it means that the cost of the second step is O(nC
4 log nCCSZ) in terms of computation,

and O(nC
2 log nC) in terms of synchronization steps.

Finally, finding the sources of the graph can be done by exhaustive search on the final B,
which cost O(nC

2CSZ). The whole process can be performed in O(nC
4 log nC)CSZ in terms

of computation and transcript size, and O(nC
2 log nC)CSZ in terms of synchronization steps.

This means that computing ranked pairs in MPC is more expensive than computing the Schulze
method, but still possible.

6.3 A solution for single transferable vote

Single transferable vote (STV) is a counting function which is widely used for politically binding
elections, for instance in Australia, Canada, the United States and the United Kingdom. Its
goal is to designate an electoral board or committee; in other words, given a number s of seats
and several candidates, STV allows to elect s candidates. There are various versions of STV;
nevertheless, the main idea is the following. First, each voter chooses a subset of the candidates:
those are the candidates that they like, i.e. for which they would be happy if they are given a
seat. In addition, they order those candidates according to their personal preferences; however, by
contrast with Condorcet voting, the order is strict. For instance, if there are are four candidates
represented by the number 1, 2, 3 and 4, Alice can vote (1, 3) while Bob can vote (4, 1, 2).

140

6.3. A solution for single transferable vote

Once the ballots are cast, each is attributed a weight, initially 1. Then the counting process
consists of several rounds: during each round, each ballot grants a number of votes (equal to the
ballot’s weight) to the first candidate mentioned in the ballot. If some candidates meet a certain
quota q (which is fixed during the whole process), they are selected. The selected candidates
keep q votes for themselves but, for each received ballot, they transfer some of its weight to the
next candidate on the ballot, for instance with a transfer coefficient. If no candidate reach the
quota, the ones with the lowest number of votes is eliminated and transfer all of their ballot
to the next candidate in the ballot, but with the same weight. The process terminates when s
candidates are elected, or when the number of candidates that remain is equal to the number of
(still) available seats.

The various versions of STV may differ in several aspects: for instance, one or several candi-
dates may be elected simultaneously. If several candidates are elected simultaneously, they may
transfer some votes to each other, which causes some additional complications; see for instance
the Meek method [Mee69] which proposes to solve this using a system of (polynomial) equations.
Similarly, several candidates may be eliminated simultaneously. Finally, the exact rule for trans-
ferring votes does not necessarily imply a transfer coefficient. For instance, we can also choose a
fraction of the ballots at random and transfer them entirely to the next candidate on the ballot.

6.3.1 Existing solutions for STV in electronic voting

Since STV demands the voters to give a permutation of some candidates, there are a lot of
possible ballots and using a mixnet (i.e. revealing all the chosen ballots in the clear, but without
leaking which voter cast which ballot) is not an ideal solution. Indeed, this allows Italian attacks.
For this reason, it is important to provide a tally-hiding protocol for STV.

When we looked for academic solutions in the literature, we could not find many contribu-
tions. The most interesting one is called Shuffle-sum [BMN+09], which proposes a strategy where
some information is revealed between each round of the STV algorithm, for instance the score
(i.e. the number of votes) of all the candidates. The authors acknowledge that revealing the
intermediates scores might be too much; in particular, they propose realistic scenarios where a
coercer could successfully use this information. Consequently, they also propose a variant where
the most crucial information are only leaked to the trustees: for an external observer, the only
available side information is an approximation of the transfer coefficient, as well as the score of
the selected candidate at each round. As discussed in Section 5.3.2, giving some information to
the talliers only is certainly interesting, but does not protect the voters in the scenario where
the coercer is a tallier.

Another solution is proposed in the technical report [WB08]. Just as Shuffle-sum, their
solution implies to leak some information at each round, namely whether the round is a selection
or an elimination, and the score of the selected candidate. In addition, we remark that their
technique involves a very sequential first phase with a number of rounds of communications that
is proportional to the number of ballots, which may be impractical.

A related contribution, which is not a solution for generic STV but for IRV (a specific case
where there is only one seat to provide), can be found in [RCPT19]. In this proposal based on
generic MPC, the score of all the candidates is revealed at each round.

In any case, none of the existing approach is fully tally hiding, and a careful analysis of
whether the leaked information can or cannot be exploited is necessary. Thanks to our toolbox,
we can design a completely leakage-free tally scheme.

141

Chapter 6. Application of the toolbox to electronic voting

6.3.2 Choosing one version of STV

Since there are many variants of STV, we had to choose one before providing an MPC solution
for computing the corresponding tally function. We took guidance from Australian academics,
and decided to consider an academic version of STV, where one candidate is elected or eliminated
at each round. As for the quota, we define it as the Droop quota q =

⌊
nV
s+1

⌋
+ 1, where nV is

the number of valid ballots and s the number of seats. Finally, when a candidate is selected, we
use the following rule. First, we denote v the sum of the weights of the ballots received by the
selected candidate, and we compute the transfer coefficient t = (v− q)/v (remark that since the
candidate was selected, v > q). Then, for each ballot received by the candidate, we multiply
the weight by t and transfer the ballot to the next candidate on the list. Finally, we remove the
name of the selected candidate from every ballot.

Before applying this solution in MPC, however, we need a way to handle the fractions.
Indeed, all along the STV algorithm, the weights of the ballots and the transfer coefficients
are rational numbers that can be stored as pairs of integers. While this looks as the cleanest
approach, we noticed that this leads to an exponential worse-case complexity. Indeed, the transfer
coefficient ti at a round i is a fraction whose height typically doubles at each round where
a candidate is selected, and we get a complexity that is exponential in the number of seats.
This observation is a major problem in an MPC setting where the worst-case complexity is
also the best-cast complexity, since we want to hide every side-information. Also, outside any
cryptographic consideration, we recovered the data of the 2019 election of the Legislative Council
of New South Wales in Australia [NSW19], where there were 21 seats, 346 candidates and
3.5 millions ballots. With a basic implementation using Sagemath, we ran the academic STV
algorithm on the publicly available ballots and remarked that the memory required to store all
the fractions is exponential with respect to the number of selections, with a regression coefficient
of r2 ≥ 0.997 (see Fig. 18).

Selections Bytes
1 15139638
2 25708340
3 37498896
4 55311551
5 84089187
6 137366005

1 2 3 4 5 6
0

50

100

150

Number of selections in STV

M
em

or
y

re
qu

ir
ed

(M
B

)

Figure 18: Memory required to run the STV algorithm, as a function of the number of selections

Since there can be up to 21 selections, this means that one may need up to 82 GB of central
memory just to store all the fractions. In real elections, and due to the fact that elections
were initially counted by hand, approximations of fractions are used instead. Therefore, we also
represent fractions with a fix-point arithmetic, allowing r binary digits after the radix point.

Note that depending on the version of STV which is applied, the result might differ, see for

142

6.3. A solution for single transferable vote

instance [GL17] for an analysis.

6.3.3 Ballots as lists of candidates

Now that the version of STV is fixed, we are almost ready to explain how to build a tally-hiding
protocol for computing the result with no leakage. Before that, we must however explain what is
the expected format for the ballots and how the voters can produce them. Just as for Condorcet-
Schulze which was the subject of Section 6.2, we focus on the voter-side complexity, and tries to
make the ballots as simple as possible. For this reason, we propose that the voters give a list of
candidate C0, · · · ,CnC , where nC is the number of candidates. So that the voter does not reveal
how many candidates are ranked in the ballot, the ballot always consists of nC + 1 candidate.
However, there is a sink candidate, candidate number 0, that represents the end of the ballot and
that cannot be selected nor eliminated. All the candidates that are ranked after the candidate
0 are not actually a part of the ballot and are here for the sole purpose of hiding the size of the
ballot. Since we want to be able to use our MPC toolbox on the ballots, we need the candidates
to be bitwise encrypted. For this reason, for all i, Ci consists of ℓ = ⌈log(nC + 1)⌉ encryptions
of a bit. Also, we require that the corresponding bitstrings encode a permutation of [0, nC].

To produce a ballot and to prove its validity, the voter shuffles the initial ballot Binit =
(0bits, · · · , nC

bits), which consists of nC trivial bitwise encryptions of the same size ℓ; i.e. 0bits is
E0, · · · , E0, 1bits is E1, E0, · · · , E0 and so on. To prove that the ballot is well-formed, the voter
provides a proof of a shuffle, using ShuffleRow (see Algorithm 19).

6.3.4 A tally-hiding protocol for academic STV

We are now ready to present our tally-hiding protocol for STV. On this occasion, we recall that
we use the following parameters:

• nC is the number of candidate (an additional artificial candidate is considered, not included
in this number);

• nV is the number of valid ballots;

• m = ⌈log(nV + 1)⌉ is the maximum bitsize of the number of voters who ranked first a given
candidate;

• s is the number of seats to attribute;

• q =
⌊

nV
s+1

⌋
+ 1 is a quota above which a candidate is selected;

• r is the precision for the fractions, i.e. the number of binary places after the radix point;

• ℓ = ⌈log(nC + 1)⌉ is the bitsize used to represent a candidate, numbered from 0 to nC ;

• E0 and E1 are trivial encryptions of 0 or 1;

• For i ∈ [0, nC], ibits consists of the ℓ trivial encryptions of the bits of i.

The first task of the talliers is to initialize a data structure as follows:

• H is the hopeful vector. It contains nC encryptions of bits (initially E1) which state whether
a candidate can still be selected or not.

143

Chapter 6. Application of the toolbox to electronic voting

• W is the winner vector. It contains nC encryptions of bits (initially E0) which state
whether a candidate has been selected or not.

• S is the score vector. It contains nC bitwise encrypted integers of size m + r; it contains
the sum of the weights of the ballots received by each candidate.

• V is the value matrix. For all i ∈ [1, nV] Vi is a bitwise encrypted integer of size r + 1,
initially (E0, · · · , E1); the r less significant bits (on the left) represent the r binary places.

• B is the ballot matrix. For all i ∈ [1, nV], Bi[0], · · · , Bi[nC] are bitwise encrypted integers
of size ℓ that represent a candidate.

The initialization only requires to read the ballots submitted by the voters and can be considered
free compared to the cost of the remaining of the protocol. Then the talliers will loop nC − 1
iterations of the following operations:

1. Finished? (Algorithm 83.) From the candidate data structure, compute the number of
candidates (apart from candidate 0) that got a seat or are still hopeful. If this is equal
to the number of available seats s, then mark as selected all the hopeful candidates. Note
that during the first iterations of the loop, this test is not necessary.

2. Count votes. (Algorithm 84.) For each ballot Bi, take the candidate ranked first Bi[0],
and add the weight Vi of the ballot to the score Si of this candidate.

3. Search min-max. (Algorithm 85.) Compute i and j the indexes of the candidates that
have the maximum and minimum score. If the score si of candidate i is larger than the
quota, set the variables a to 0, c to i and t to (si − q)/si. Otherwise, the candidate j will
be eliminated and set a to 1, c to j and t to 1.

4. Select, delete, transfer. (Algorithm 86.) Mark the candidate c as no longer hopeful,
and c as a winner if a is 0. Also, for all ballot, remove the candidate c. This is done in one
pass over the list of preferences of each ballot. For each ballot, if c was in the first position,
multiply its weight by the transfer value t.

After this, the vector W is decrypted to reveal which of the candidates won the election.
In theory, the STV process stops when s candidates have been selected or when the number

of candidates that remain is equal to the number of (still) available seats. However, we do not
want to reveal when the process finished, as this would constitute a side-information. For this
reason, we will let it continue by computing some additional rounds, even after reaching the
point when it should have stopped. After that s candidates are selected, adding some additional
rounds will not modify the result as it is not possible for s+ 1 or more candidates to reach the
quota. Consequently, no subsequent selection would occur and W will no longer be modified.
However, if the number of candidates that remain is equal to the number of remaining seats,
adding an additional round may lead to an elimination if no candidate reach the quota, so it is
important to select all the candidates right away, before they get eliminated. Since a candidate is
either selected or eliminated each round, the round index i is such that the number of remaining
candidates is equal to nC − i. Moreover, the number of remaining seats is s−N , where N is the
number of selected candidates. Therefore we need to test whether nC − i = s−N , in which case
we must select all the remaining candidates. Note that since nC−i > 0, this condition is exclusive
with N = s, so that we do not have to worry about this causing some extra candidate being
selected if s were already selected. Also, this condition can only occur once, since afterwards

144

6.3. A solution for single transferable vote

Algorithm 83: Finished
Requires: s, the number of seats

nC , the number of candidates
i, the round index (0 for the first iteration)

Inputs: H, the encrypted hopeful vector
W , the encrypted winners vector

Outputs: H,W
1 N ←− Aggreg(W1, · · · ,WnC) (* number of winners *);
2 F ←− EqKnown(N , s− nC + i) (* f = 1 if the process finished this round *);
3 for i = 1 to nC (in parallel) do
4 Ti ←− CSZ(Hi,Not(F)) (* sets as 0 if f = 1 *) ;
5 Oi ←− HiNot(Ti) (* hi ∧ f *);
6 Wi ←− Or(Wi, Oi) (* sets as winners the hopeful *);
7 Hi ←− Ti;

8 return H,W

Algorithm 84: CountVotes
Requires: nV , the number of valid ballots

nC , the number of candidates
Inputs: B, the matrix of the encrypted ballots

V , the encrypted vector of the value of each ballot
Outputs: S, the encrypted vector of the scores of the candidates

1 for i = 1 to nV (in parallel) do
2 for j = 1 to nC (in parallel) do
3 Ti,j ←− EqKnown(Bi[0], j);
4 Ci,j ←− CSZ(Vi, Ti,j);

5 for j = 1 to nC (in parallel) do
6 Sj ←− Add(C1,j , · · · ,CnV ,j);

7 return S;

145

Chapter 6. Application of the toolbox to electronic voting

N = s. Finally, since we mark every candidate as no longer hopeful when the condition is met,
no further modification of W can occur during the subsequent rounds.

In the CountVote protocol, we use a tree-based parallelization protocol to add nV different
values, as we already did many times for other associative laws in Chapter 5; see for instance
Algorithm 51.

Algorithm 85: SearchMinMax
Requires: r, the precision for the division
Inputs: S, the encrypted vector of the scores of the candidates
Outputs: A, an encryption of 0 if we have a selection, of 1 if we have an elimination

C,a bitwise encryption of the index of the candidate to select or eliminate
T , a bitwise encryption of the transfer coefficient

1 _, I,Z,J ←− MinMax(S1, · · · ,SnC);
2 ∆, A←− SubKnown(Z, q);
3 T ←− CSZ(Div(∆,Z, r),Not(A))||A;
4 C ←− If(A, I,J);
5 return A,C,T

In the SearchMinMax protocol, we first compute the maximum score z and the index i, j of
the candidates that have the minimum and the maximum score. Then, if z ≥ q, we set a to 0
and compute t = (z− q)/z. For this purpose, we use the Div algorithm which returns the r first
binary places and we add a 0 as the most significant bit. If z < q, we set a to 1 and set all the
binary places of t to 0, but add 1 as the most significant bit.

Finally, the SelectDeleteTransfer protocol is a naive transposition of the cleartext algorithm
in the MPC toolbox.

6.3.5 Complexity analysis

To analyze the complexity of our protocol, we give in Table 15 the complexity of each sub-
protocol. Apart from the Finished sub-protocol which is only called s times (the number of
seats), every sub-protocol is called nC−1 times exactly, hence the bottom line of the table. Note
that the Finished protocol can be computed in parallel with the CountVotes and SearchMinMax
protocols. Therefore, we do not include its communication cost in the total.

The intrinsic cost of STV is that of Ω(nV nC
2) operations, since there are nC rounds, and

each of them modifies nV ballots that contains nC candidates. Therefore, it seems that the
computational cost of our MPC approach is reasonable when compared to the best possible
complexity. However, the number of synchronization steps would be quadratic in r, nC and
log nV , which could be problematic since there can be hundreds of candidates. Thankfully, we
provide some computation / communication trade-offs in our toolbox. Hence, it is possible to
modify the naive transposition of STV using more communication-efficient primitives. For this
purpose, we can proceed as follows.

• In SearchMinMax, modify the MinMax protocol by using the communication-efficient vari-
ant, based on CLt;

• In SearchMinMax, use UFCSub instead of Sub to compute the subtractions;

• In SearchMinMax, modify the division by replacing the Sub protocol by UFCSub;

146

6.3. A solution for single transferable vote

Algorithm 86: SelectDeleteTransfer
Requires: nV , the number of valid ballots

nC , the number of candidates
Inputs: A, an encryption of 0 if we have a selection, of 1 if we have an elimination

C,a bitwise encryption of the index of the candidate to select or eliminate
T , a bitwise encryption of the transfer coefficient
H, the encrypted hopeful vector
W , the encrypted winners vector
B, the matrix of the encrypted ballots
V , the encrypted vector of the value of each ballot

Outputs: H,W,B, V
1 for i = 1 to nC (in parallel) do
2 T ←− EqKnown(C, i);
3 Hi ←− CSZ(Hi,Not(T));
4 T ←− And(T,Not(A));
5 Wi ←− Or(Wi, T);

6 for i = 1 to nV (in parallel) do
7 A←− Eq(Bi[0],C);
8 F ←− A (* f indicates whether the candidate was found in the list *);
9 for j = 0 to nC − 1 do

10 Bi[j]←− If(F,Bi[j + 1],Bi[j]);
11 F ←− Or(F,Eq(Bi[j + 1],C);

12 M ←− Mult(Vi,T) (* we only keep the m+ r msb *);
13 Vi ←− If(A,M ,Vi);

14 return H,W,B, V ;

Table 15: Leading terms of the cost of the various sub-protocols for STV (naive approach); nC

is the number of candidates, nV is the number of valid ballots, r is the number of binary places
after the radix point; the cost are expressed in the number of CSZ required; the transcript size
can be deduced directly from the second column.

Protocol Computations Communications
Finished 5nC

1
2 log(nC)

2

CountVotes nV nC(3r + 3 log nV + log nC) 2 log nV (r + log nV)
SearchMinMax (6nC + 3r)(r + log nV) + 2nC log nC 2(log nV + r)(r + log nC)
SelDelTrans nV (3nC log nC + 3r(r + log nV)) nC log log nC + 2r(r + log nV)

Total nV nC
2(3r + 3 log nV + 4 log nC)

2nC(r + log nV)(2r + log nV + log nC)
+nC

2 log lognC

147

Chapter 6. Application of the toolbox to electronic voting

• In SelectDeleteTransfer, modify the multiplication by replacing the Add protocol by UF-
CAdd;

• In SelectDelateTransfer, replace the innermost for loop using an UFC to computes all the
values of F in parallel (see Algorithm 87).

Algorithm 87: SelectDeleteTransfer (communication efficient)
Requires: nV , the number of valid ballots

nC , the number of candidates
Inputs: A, an encryption of 0 if we have a selection, of 1 if we have an elimination

C,a bitwise encryption of the index of the candidate to select or eliminate
T , a bitwise encryption of the transfer coefficient
H, the encrypted hopeful vector
W , the encrypted winners vector
B, the matrix of the encrypted ballots
V , the encrypted vector of the value of each ballot

Outputs: H,W,B, V
1 for i = 1 to nC (in parallel) do
2 T ←− EqKnown(C, i);
3 Hi ←− CSZ(Hi,Not(T));
4 T ←− And(T,Not(A));
5 Wi ←− Or(Wi, T);

6 for i = 1 to nV (in parallel) do
7 for j = 0 to nC − 1 (in parallel) do Fi ←− Eq(Bi[j],C);
8 F0, · · · , FnC−1 ←−UFC(Or, F0, · · · , FnC−1);
9 for j = 0 to nC − 1 (in parallel) do B′

i[j]←− If(Fj ,Bi[j + 1],Bi[j]);
10 M ←− Mult(Vi,T) (* we only keep the m+ r msb *);
11 Vi ←− If(F0,M ,Vi);

12 return H,W,B, V ;

This gives a more advanced approach, where all the quadratic terms in the number of syn-
chronization steps are removed. With this approach, the number of synchronization steps become
reasonable, at the cost of a small constant in the computation cost (see Table 16).

6.4 Majority Judgment

Majority Judgment is a counting method which has been notably used in the primary election for
the 2022 presidential in France, where about 400 000 voters participated [gua22]. It is defined
in [BL10], and is often cited by French researchers as a strategy-resistant alternative to the
current voting system [mie]. In this method, the voter must give a grade to each candidate, for
instance Excellent, Good, Medium, Bad or Reject. The number of possible grades is supposed
to be small, typically 5 to 7, and we denote it nG. Each grade is represented by a number, from
1 to nG. However, the tradition in MJ is to use a reversed ordering (i.e. 1 is a better / higher
grade than 2). Since each voter has to grade each candidate, each candidate ends up with a
list of nV grades, where nV is the number of voters who did not abstain or vote blank. For
simplicity, we assume that the lists are sorted in decreasing order (highest grades first). Thus,

148

6.4. Majority Judgment

Table 16: Leading terms of the cost of the various sub-protocols for STV (advanced approach);
nC is the number of candidates, nV is the number of valid ballots; ; for any expression expr,
we denote (expr)∗ the expression expr log expr; the cost are expressed in the number of CSZ
required; the transcript size can be deduced directly from the second column.

Protocol Computations Communications
Finished 6nC

1
2 log(nC)

2

CountVotes 3
2nV nC(r + log nV)

∗ 2 log nV log(r + log nV)
SearchMinMax (r + log nV)(10nC + 3

2r log(r + log nV)) 2(r + log nC)
∗

SelectDeleteTransfer nV (
7
2nC

∗ + 3
2r(r + log nV)

∗) 2r log(r + log nV)

Total nV nC
2
(
3
2(r + log nV)

∗ + 7
2 log nC

) 2nC log nV log(r + log nV)
+2nC(r + log nC)

∗

+2nCr log(r + log nV)

we consider that each candidate has a sorted nV -tuple. Note that two nV -tuples are equal if
and only if the candidates received exactly the same number of each grade. Given a sorted
nV -tuple u1, · · · , unV , the median of u is med(u) = u⌈nV /2⌉, and we denote û the (nV − 1)-tuple
u1, · · · , u⌈n/2⌉−1, u⌈n/2⌉+1, · · · , unV ; that is, the tuple u in which the median element has been
removed. Finally, the relation ≤maj is defines as follows, where < stands for the grade-wise
comparison (which is the opposite of the natural comparison of integers).

Definition 19. Let u and v be two n-tuples of grades, sorted in decreasing order. If n = 1,
u <maj v if u1 < v1. Otherwise, u <maj v if one of the following conditions holds:

• med(u) < med(v)

• med(u) = med(v) and û <maj v̂.

Finally, u ≤maj v if u = v or u <maj v.

It is possible to show that ≤maj is a total order, and that the Majority Judgment declares as
a winner any candidate whose grades form a maximal nV -tuple (once sorted) for ≤maj.

6.4.1 Existing approaches for computing the Majority Judgment

Interestingly, it is possible to adapt the Helios protocol to cover the Majority Judgment. For
this purpose, one can define the grade matrix G as a matrix of nC rows and nG columns, where
nC is the number of candidates and nG is the number of grades. Then, giving a grade to each
candidate is the same as choosing a single cell for each row of the matrix. Hence, a voter can
encrypt a matrix of nCnG bits, and use a standard ZKP to prove that the ballot is well-formed
(i.e. that each ciphertext is indeed an encryption of 0 or 1 and that each row contains exactly
one 1; to allow blank voting, it may also be authorized to encrypt a matrix of zeros). Once every
ballot has been submitted, a homomorphic tally can be used to reveal the aggregated grade
matrix, which states how many voters gave each grade to each candidate. From this, the result
of the Majority Judgment can be deduced.

In [CPST18], an MPC implementation based on the Paillier encryption scheme was proposed
to compute the majority judgment in a fully tally-hiding fashion. For this purpose, they used
a heuristic from [BL10], which is called the majority gauge. It is known that this heuristic is
sound: if a winner can be determined with this approach, it is indeed a MJ winner. However,

149

Chapter 6. Application of the toolbox to electronic voting

Table 17: Estimated probability that the majority gauge fails to determine the MJ winner(s).

voters 10 100 1000
uniform distribution
over 5 candidates 0.384 0.220 0.080

it may also fail to conclude. An experiment run in [BL10] on real ballots of a political election
with 12 candidates is reassuring: the simplified approach fails only with probability 0, 001 for an
election with 100 voters. However, this is due to the fact that in this particular election, there
was a high correlation between candidates: if a voter likes a candidate, another candidate from a
similar political party is also likely to be liked. If there are less candidates and if the distribution
of votes is uniform, then the probability of failure raises up to 22%, as shown in Table 17. In any
case, the approach of [CPST18] leaks more information about the ballots than just the result,
since it reveals whether the result can be determined with the majority gauge.

In order to fix the flaw of [CPST18] and to compare the performance of our toolbox with
that of a similar approach that relies the Paillier encryption scheme, we developed a strategy for
full tally-hiding in the MJ setting.

6.4.2 A new algorithm for cleartext Majority Judgment

One of the main reasons why [CPST18] used the majority gauge instead of the real MJ algorithm
is because the latter is quite complex: if nV is the number of voters, comparing two candidates can
take up to nV comparisons between grades, and is a highly sequential process. The book [BL10]
does provide an alternative algorithm to compute the result faster, but the algorithm is also
a bit complex and not easy to adapt in MPC. For this reason, we propose a new algorithm
for computing the result of the Majority Judgment (see Algorithm 88, which requires O(nCnG)
comparisons between grades. Instead of comparing the medians one by one, this algorithm uses
the fact that the sequences formed by the successive medians (that we call the median sequence)
contains batches of identical elements. Therefore, we can speed up the comparison by comparing
the median sequence batch by batch instead of element by element. We prove the correctness of
our algorithm in Theorem 4, which is the subject of the remaining of this subsection.

Theorem 4. Algorithm 88 returns the set of maxima according to ≤maj in O(nCnG) comparisons
between grades, where nC is the number of candidates and nG the number of grades.

The proof of this theorem is available in Appendix C.

6.4.3 Adaptation to the Paillier setting

Before giving a protocol in the ElGamal setting, we propose to perform a first iteration to adapt
Algorithm 88 to the MPC setting, but in the context of Paillier. This allows not to address all the
difficulties at once. Since we only focus on the tally phase and since obtaining (an element-wise
encryption of) the aggregated matrix from the ballots is easy in the Paillier setting, we consider
that (an element-wise encryption of) the aggregated matrix is available. We first rewrite the
algorithm into Algorithm 91 and prove that the new algorithm is equivalent to Algorithm 88.
Using our MPC toolbox, it is easy to implement Algorithm 91 in MPC (see Algorithm 93). This
subsection details all the steps that we used to adapt the MJ algorithm in the Paillier setting,
and proves the correctness of the resulting MPC protocol. As usual, we use the notation Em to

150

6.4. Majority Judgment

Algorithm 88: Majority Judgment
Requires: nC , the number of candidates

nG, the number of grades
nV , the number of voters

Inputs: a, the aggregated grade matrix s.t.
a[i, j] is the number of voters who gave the rank j to the candidate i

1 m←− max{mi | mi is the median of candidate i};
2 C ←− {i | mi = m};
3 I− ←− 1; I+ ←− 1;
4 s←− 1;
5 for i ∈ C do
6 pi ←−

∑m−1
j=1 ai,j ;

7 qi ←−
∑nG

j=l+1 ai,j ;
8 m−

i ←− ⌊nV /2⌋ − pi;
9 m+

i ←− ⌊nV /2⌋ − qi;

10 while |C| > 1 and s ̸= 0 do
11 for i ∈ C do
12 if m−

i ≤ m+
i then si ←− pi;

13 else si ←− −qi;
14 s←− max{si | i ∈ C};
15 C ←− {i ∈ C | si = s};
16 if s ≥ 0 then
17 for i ∈ C do
18 m+

i ←− m+
i −m−

i ;
19 m−

i ←− ai,m−I− ;
20 pi ←− pi − aii,m− I−;

21 I− ←− I− + 1;

22 else
23 for i ∈ C do
24 m−

i ←− m−
i −m+

i ;
25 m−

i ←− ai,m+I+ ;
26 qi ←− qi − ai,m+I+ ;

27 I+ ←− I+ + 1;

28 return C;

151

Chapter 6. Application of the toolbox to electronic voting

denote a trivial encryption of m. However, as m may be a complex expression, we may also use
the notation Enc(m).

We first provide Algorithm 89 which returns the grade vector as defined in [CPST18]. It is
a (term-by-term) encryption of g such that gj = 1 if j is strictly better than the best median
m, and gj = 0 otherwise. The idea of this algorithm is that, for all candidate i and grade j, j is
strictly better than the best median if and only if the number of grades better than j is strictly
lower than half the number of grades. This translates into the formula 2

∑j
ℓ=1 ai,ℓ <

∑nG
ℓ=1 ai,ℓ,

which allows to compute ci,j for all (i, j), where ci,j = 1 if j is strictly better than i’s median.
To deduce the grade vector, we compute the logical conjunction column by column.

Algorithm 89: Grade (Paillier setting)
Requires: nG, the number of grades

nC , the number of candidates
Inputs: A, the encrypted aggregated grade matrix
Outputs: G, the encrypted grade vector s.t. for all j, Gj is an encryption of 1 if j is

strictly better than the best median, of 0 otherwise.

1 V ←−
nG∏
j=1

A1,j ;

2 for i = 1 to nC do
3 for j = 1 to nG do

4 B ←−

(
j∏

ℓ=1

Ai,ℓ

)2

;

5 Ci,j ←− Not(GTH(B, V))

6 for j = 1 to nG do
7 Gj ←− C1,j ;
8 for i = 2 to k do
9 Gj ←− Mul(Gj , Ci,j);

10 Return G

Once the grade vector is computed, we can initialize pi, m
−
i , m

+
i and qi with Algorithm 90,

which is adapted from [CPST18].
The idea is that pi can be obtained from G thanks to pi =

∑nG
j=1 ai,jgj while qi can be

obtained similarly with a right shift of G’s negation. Indeed, Not(G) is the vector of encryptions
of 1 if j is worse than the best median, of 0 otherwise. Its right shift is therefore encryptions of
1 if j is strictly worse than the best median, of 0 otherwise.

At this point, we remark that we can replace C as defined in line 2 of Algorithm 88 by the
whole set of candidates, this without affecting the result, (see Lemma 11). In what follows, we
call Algorithm 88.11 the Algorithm 88 in which this transformation has been done.

Lemma 11. In Algorithm 88, replacing line 2 by “C ←− [1, nC]” will not alter the output.

Proof. We show that after the first iteration of the loop, the C sets of both algorithms are the
same, which shows that invariants from Lemma 18 are verified at the beginning of the second
iteration of the loop, if any (if not the output is correct as well since the sets are the same).

152

6.4. Majority Judgment

Algorithm 90: InitD (Paillier setting)
Requires: nV , the number of voters
Inputs: (A)i,j , the encrypted aggregated grade matrix

G, the encrypted grade vector
Outputs: P,M−,M+, Q where, for all i,

- Pi is an encryption of pi, the number of grades received by i which are strictly better
than the best median,

- M−
i is an encryption of ⌊nV /2⌋ − pi,

- Qi is an encryption of the number qi of grades received by i which are strictly worse than
the best median,

- M+
i is an encryption of ⌊nV /2⌋ − qi.

1 for i = 1 to nC do

2 Pi ←−
nG∏
j=1

Mul(Ai,j , Gj);

3 M−
i ←− Enc(⌊n/2⌋)/Pi;

4 Qi ←−
nG∏
j=2

Mul(Ai,j ,Not(Gj−1));

5 M+
i ←− Enc(⌊nV /2⌋)/Qi;

6 return P,M−,M+, Q;

Let m be the best median, and a and b be two candidates such that med(b) < med(a) = m.
For all i, after line 7 in both algorithms, pi is the number of grades strictly better than m received
by candidate i while qi is the number of grades strictly worse than m received by candidate i.
By definition of the median, we have qa ≤ ⌊nV /2⌋. On the other hand, pb ≤ ⌊nV /2⌋ < qb. But
after line 9, we have m−

i + pi = m+
i + qi = ⌊nV /2⌋ for all i so m−

b > m+
b and Sb = −qb after

line 13. As Sa ∈ {pa,−qa} with pa ≥ −qa ≥ −⌊nV /2⌋ > −qb, we have Sb < Sa. Therefore b is
discarded from C at line 15.

Lemma 11 allows to initialize pi, m−
i , m+

i and qi for all candidate i with no care of whether
i’s median is m or not. Now we explain how to run the while loop in MPC without revealing
the number of iterations, nor the number of candidates which remain at any given point (see
Lemma 12).

Lemma 12. In Algorithm 88.11, we can replace the while loop by a for loop with nG iterations,
without affecting the result. Moreover, invariants from Lemma 18 are still preserved.

Proof. Following the proof of Lemma 18, we remark that the proof does not depend on the
number of iterations, so the loop invariants are preserved even if additional iterations are per-
formed. Since the number of iterations is at most nG as explained in the proof of Theorem 4,
this concludes the proof.

In what follows, we denote Algorithm 88.12 the Algorithm 88.11 in which the while loop is
replaced by a for loop with nG iterations.

153

Chapter 6. Application of the toolbox to electronic voting

To encode C, we use its indicator (which we also denote C). To show the implied modification,
we explicitly give Algorithm 91, where the transformations induced by Lemmas 11 and 12 have
been made.

To prove its correctness, we give the following lemma.

Lemma 13. In Algorithm 91, c is the indicator of C from Algorithm 88.12.

Proof. We verify that this property holds as a loop invariant.
Initialization. Before the first loop iteration, we have ci = 1 for all i ∈ [1, nC] and C =

[1, nC] so c is C’s indicator.
Heredity. Suppose that before the jth iteration in Algorithm 91, c is the indicator of the

set C such as before the jth iteration in Algorithm 88.12. Then for i ∈ C, ci = 1 so si is the
same in both algorithms. On the other hand, for i ̸∈ C, ci = 0 so si = −n in Algorithm 91.
By Lemma 11, after the first loop iteration in Algorithm 88.11, C only contains candidates of
median m. They therefore have at least a grade equal to m, so for all i ∈ C, qi ≤ nV − 1 < nV

after the first iteration. Since qi can only decrease, we always have pi ≥ −qi > −nV for i ∈ C,
hence si > −nV . Therefore, for i ∈ C and j ̸∈ C, si > sj . This is also true in Algorithm 88.12,
so s is the same in both algorithms after line 15.

Now we explain how to get ai,m−I− and ai,m+I+ without revealing m−I− et m+I+. We use
two vectors L and R of size nG such that Lj is an encryption of 1 if j = m− I−, of 0 otherwise,
while Rj is an encryption of 1 if j = m+ I+, of 0 otherwise. This way ai,m−I− and ai,m+I+ can
be obtained with Select. To initialize L and R, we use Algorithm 92 which uses the grade matrix
g such that gj = 1 if j < m, where m is the best median, and gj = 0 otherwise. The idea is that
m− 1 is the last index for which gj = 1, so that lj = gj − gj+1. Note that an initialization of R
is obtained from L, with two right shifts. The only difficulty is when the best median is equal to
the best possible grade, in which case g and l are null, while r2 = 1. In any other case, g0 = 1
and r2 = 0, so we have r2 = 1− g0.

In order to increment I− and I+, we use the conditional left and right shift, which are
protocols of the toolbox. Note that we always have LnG = Enc(0) while RnG = Enc(0), so L
and R can be processed as vectors of nG − 1 ciphertexts.

The complete procedure is given in Algorithm 93, whose correctness is the claim of Theorem 5.
In this algorithm, we add the constant nV (the number of voters) to the candidates’ scores
at line 15, so that each integers to be compared are non-negative. The comparison requires
therefore one additional bit but only for the first loop iteration. In the remaining iterations, we
have qi ≤ ⌊nV /2⌋ so that we can add ⌊nV /2⌋ instead of nV . Since pi ≤ ⌊nV /2⌋, we no longer
need an extra bit. For simplicity, we did not explicitly write this optimization in Algorithm 93.
Another notable difference compared to Algorithm 91 is that instead of computing m−

i ≤ m+
i ,

we compute pi ≥ qi (which is equivalent by invariant 1 from Lemma 18) since pi and qi are
non-negative, while m+

i and m−
i could be negative during the first loop iteration.

Theorem 5. Algorithm 93 is correct.

Proof. See Lemmas 11, 12, 13 and 18, as well as Lemma 14 below.

Lemma 14. In Algorithm 93, after the ith loop iteration, L and R are such that Lj is an
encryption of 1 if j = m − I− and 0 otherwise, and Rj is an encryption 1 if j = m + I+, of 0
otherwise.

154

6.4. Majority Judgment

Algorithm 91: MJ; with a fixed number of loops, and an indicator instead of a set.
Requires: nC , the number of candidates

nG, the number of grades
nV , the number of voters

Inputs: a, the aggregated matrix.
Outputs: c, the indicator of the set of MJ winners.

1 Let m be the best median among all candidates;
2 Let c such that for i ∈ [1, nC], ci = 1;
3 Let I− = 1 and I+ = 1 be counters;
4 for i = 1 to nC do

5 pi ←−
m−1∑
j=1

ai,j ; qi ←−
nG∑

j=m+1
ai,j ;

6 m−
i =

⌊
nV
2

⌋
− pi; m+

i =
⌊
nV
2

⌋
− qi;

7 for j = 1 to nG do
8 for i = 1 to nV do
9 if m−

i ≤ m+
i then si ←− pi;

10 else si ←− −qi;
11 if ci = 0 then
12 si ←− −nV (* Already eliminated candidates are given a fake score *)

13 s←− max{si | i ∈ [1, nC]};
14 for i = 1 to nC do
15 if si ̸= s then ci ←− 0;

16 if s ≥ 0 then
17 for i = 1 to nC do
18 m+

i ←− m+
i −m−

i ;
19 m−

i ←− ai,m−I− ;
20 pi ←− pi − ai,m−I− ;

21 I− ←− I− + 1;

22 else
23 for i = 1 to nC do
24 m−

i ←− m−
i −m+

i ;
25 m+

i ←− ai,m+I+ ;
26 qi ←− qi − ai,m+I+

27 I+ ←− I+ + 1;

28 return c;

155

Chapter 6. Application of the toolbox to electronic voting

Algorithm 92: InitP
Requires: nG, the number of grades
Inputs: G, the grade matrix
Outputs: L,R, two vectors such that, for all i,

- Li is an encryption of i = m− 1,

- Ri is an encryption of i = m+ 1.

1 for i = 1 to nG − 1 do Li ←− Gi/Gi+1 ;
2 LnG ←− E0;
3 for i = 3 to nG do Ri ←− Li−2 ;
4 R1 ←− E0; R2 ←− Not(G0);
5 return L,R;

6.4.4 An adaptation to the ElGamal setting

In the previous section, we gave an adaptation in MPC of the MJ counting function for the Paillier
setting. However, we are interested in the ElGamal setting. Thankfully, most of Algorithm 93
is easy to adapt in the ElGamal setting thanks to the toolbox we provide. In this setting,
the (encrypted) aggregated matrix must be encrypted in bit-encoding, so that obtaining the
aggregated matrix from the list of encrypted ballots requires nGnC parallel calls to the Aggreg
protocol, which is the main drawback of this approach. Even if those computations can be made
on the fly while the voters submit their ballot, if nV is too large, the Paillier setting might be
preferable as this phase would be too expensive.

A related difference is that in the Paillier setting, some procedures were performed “for free”
thanks to the homomorphic property while they need the Add protocol in the ElGamal setting.
As replacing each multiplication of two ciphertexts in Algorithm 93 by a call to Algorithm 58
might deteriorate the complexity too much, we made a few modifications listed below.

First, we give Algorithm 94 which allows to initialize pi, m−
i , m+

i and qi, just as Algorithm 90,
but also initialize L and R as in Algorithm 92. Finally Algorithm 94 also initializes C as the
indicator of the candidates whose median is the best median. On this occasion, recall that mbits

is a (trivial) bitwise encryption of the integer m.
Algorithm 94 is a merger of Algorithms 89, 90 and 92. Merging all three algorithms together

allows to exploit common intermediate computations. Note that at line 4, we compute ⌈nV /2⌉ >
si,j instead of nV > 2si,j , so as to use one bit fewer. (See Lemma 15 which states that the two
comparisons are equivalent.)

Lemma 15. For all n, s ∈ Z, we have n > 2s if and only if ⌈n/2⌉ > s.

Proof. Let n, s be integers. If n > 2s, ⌈n/2⌉ ≥ n/2 > s. Conversely, suppose that ⌈n/2⌉ > s.
We first consider the case where n is even. Then n/2 = ⌈n/2⌉ so n = 2 ⌈n/2⌉ > 2s. If n is odd,
we have ⌈n/2⌉ = (n+1)/2 so n+1 > 2s, therefore n+1 ≥ 2s+1, hence n ≥ 2s. Since n is odd,
n ̸= 2s, thus n > 2s.

In Algorithm 93, we did not have to initialize C (see Lemma 11). However, as the variables
could be negative, we decided to add a constant. This would not be that easy in the ElGamal
setting since adding a constant to a bit-encoded encrypted integers requires a non-trivial opera-
tion. In this case, eliminating the candidates who do not have the best median right away so as

156

6.4. Majority Judgment

Algorithm 93: MJ: MPC version (Paillier setting)
Requires: nV , the number of voters

nG, the number of grades
nC , the number of candidates

Inputs: A, the (encrypted) aggregated matrix
Outputs: c, the indicator of the set of winners.

1 for i = 1 to nC do Ci ←− E1 ;
2 G←−Grade(A);
3 P,M−,M+, Q←−InitD(A,G);
4 L,R←−InitP(G);
5 for j = 1 to nG do
6 (* scores computation *)
7 for i = 1 to nC (in parallel) do
8 B1 ←− GTH(Pi, Qi) (* pi ≥ qi *);
9 Si ←− If(B1, Pi, 1/Qi) (* pi if pi ≥ qi, −qi otherwise *);

10 Si ←− If(Ci, Si, E−nV) (* eliminated candidates get the fake −nV score*);
11 Si ←− EnV Si (* si = si + n *);

12 S ←− S1 (* research of the best score *);
13 for i = 2 to nC do
14 B2 ←− GTH(Si, S);
15 S ←− If(B2, Si, S) (* si is si ≥ s, s otherwise *)

16 for i = 1 to nC do
17 B3 ←− EQH(S, Si);
18 Ci ←− Mul(Ci, B3) (* elimination of those who do not have the best score *);

19 B4 ←− GTH(S,En);
20 for i = 1 to nC (in parallel) do
21 A′

i,m−I− ←− Select((Ai,1, · · · , Ai,nG−1), L);
22 A′

i,m+I+ ←− Select((Ai,2, · · · , Ai,nG), R);
23 T+ ←− If(B4,M

+
i /M−

i , A′
i,m+I+) (* m+

i −m−
i if b4 = 1, ai,m+I+ otherwise *);

24 T− ←− If(B4, A
′
i,m−I− ,M

−
i /M+

i) (* ai,m+−I− if b4 = 1, m−
i −m+

i otherwise *);
25 Pi ←− If(B4, Pi/A

′
i,m−I− , Pi) (* pi − ai,m−I− if b4 = 1, pi otherwise *);

26 M−
i ←− T−;

27 M+
i ←− T+;

28 Qi ←− If(B4, Qi, Qi/A
′
i,m+I+) (* qi if b4 = 1, qi − ai,m+I+ otherwise *);

29 L←− CLS(L,B4); R←− CRS(R,Not(B4))

30 c←− Dec(C) (* bit-wise decryption *);
31 return c

157

Chapter 6. Application of the toolbox to electronic voting

Algorithm 94: InitALL
Requires: nV , the number of voters

nC , the number of candidates
nG, the number of grades

Inputs: A, s.t., for all (i, j), Ai,j is a bitwise encryption of ai,j , the number of voters
who gave the grade j to candidate i

Outputs: P,M−,M+, Q,C s.t., for all i ∈ [1, nC],

• Pi is a bitwise encryption of pi, the number of grades received by i which are strictly
greater than the best median,

• M−
i is a bitwise encryption of ⌊nV /2⌋ − pi,

• Qi is a bitwise encryption of qi, the number of grades received by candidate i which are
strictly worse than the best median,

• M+
i is a bit-wise encryption of ⌊n/2⌋ − qi,

• Ci is an encryption of 1 if i’s median is the best median, of 0 otherwise.

Outputs: L,R s.t., if N is the best median, then for all j ∈ [1, nG],

• Lj is an encryption of 1 if j = N − 1 and 0 otherwise,

• Rj is an encryption of 1 if j = N + 1 and 0 otherwise.

1 for i = 1 to nC (in parallel) do
2 Si,1 ←− Ai,1;
3 for j = 1 to nG − 1 do
4 Di,j ←− LtKnown(Si,j , ⌈nV /2⌉);
5 Si,j+1 ←− Add(Si,j ,Ai,j+1) (* si,j =

∑j
k=1 ai,k *);

6 for j = 1 to nG − 1(in parallel) do
7 Gj ←− And(D1,j , · · · , DnC ,j);

8 for i = 1 to nC (in parallel) do
9 for j = 1 to nG − 1 (in parallel) do Xi,j ←− Eq(Gj , Di, j);

10 Ci ←− And(Xi,1, · · · , Xi,nG−1);

11 L,R←−InitP(G);
12 for i = 1 to nC (in parallel) do
13 Pi ←−

∏nG−1
j=1 CSZ(Si,j , Lj) (* Bit-wise product and CSZ, as in Select *);

14 Qi ←−
∏nG

j=2CSZ(Si,j , Lj−1) (* same as above *);
15 Qi ←− Sub(Si,nG

,Qi);
16 M−

i ←− SubKnown(⌊nV /2⌋ ,Pi);
17 M+

i ←− SubKnown(⌊nV /2⌋ ,Qi);

18 return P,M−,M+, Q,C, L,R;

158

6.5. Single choice voting

to initialize C consistently with Algorithm 88 has approximately the same cost. Afterwards, for
all i, we have | si |≤ ⌊nV /2⌋ so we can add the constant 2ℓ−1 instead, where ℓ is the bit length
of the integers. Indeed, 2ℓ−1 > ⌊nV /2⌋ ≥ qi and 2ℓ−1 + pi ≤ 2ℓ−1 + ⌊nV /2⌋ < 2ℓ. This is of
interest because computing 2ℓ−1 + pi is completely free: we just add E1 as the most significant
bit. Therefore, we only need to call Neg once to compute 2ℓ−1 − qi instead of calling two Add.
This gives Algorithm 95, our ElGamal version of a fully-hiding tallying of MJ.

6.4.5 Comparison with [CPST18]

Compared to [CPST18], we compute the real Majority Judgment counting function, and not the
majority gauge heuristic. Hence, the fear is that our approach may be less efficient than that
of [CPST18]. Actually, this is not as simple as that. Indeed, recall that the Paillier setting is
more expensive than the ElGamal setting. Consequently, considering that nT ≤ 5, verifying the
validity of the ballots and computing the aggregation phase in the ElGamal setting is only about
twice as expensive as just verifying the validity of the ballots in the Paillier setting. Since the
voting process can be several orders of magnitude cheaper on the voter side, this is an interesting
trade-off. As for the remaining of the process, we remark that we are actually more efficient
computation-wise, but less efficient communication-wise. Overall, our toolbox allows to compute
the real Majority Judgment counting function without moving from practical to impractical. See
Table 18 for the approximate complexities of both approaches.

6.5 Single choice voting

In single choice voting, the voters can only pick one choice between several possibilities. The
choice can be a candidate (basic voting) or a list of candidates (list voting). In any case, single
choice voting can be handled by a homomorphic tally: although the resulting voting system
would leak more than just the result (i.e. the name of the winners), the risk for an Italian attack
is arguably very low. Despite from that, the first iteration of [KLM+20] proposed a solution for
single choice voting, which was designed to reveal the s choices (candidate or list of candidates)
who received the most votes, where s is the number of seats. Unfortunately, their approach
suffers from a shortcoming where more than s candidates may be output in case of a tie between
two candidates. To solve this, it is possible to encode a tie-breaking mechanism in the least
significant bits of the score of each candidate, as explained in Section 5.1.3.

The solution of Ordinos, once fixed, can be interesting when a choice corresponds to a single
candidate. However, when it comes to list voting, revealing which lists received the most votes is
not enough: often, a rule is applied to distribute the s seats among the different lists, depending
on the number of votes they each received. One popular approach for this is the D’Hondt method,
which is notably used in Belgium for politically binding elections.

If c1, · · · , cnC is the number of votes received by each list and s the number of seats, the
D’Hondt method defines the parameters w1, · · · , ws with w1 < w2 < · · · < ws, and constructs
the values ci/wj for all i, j. The s greatest values from those coefficients each come from a
list i (i.e., they are of the form ci/wj for some j), and therefore grants a seat to the list i. The
way that the list distributes the granted seats among its candidates is up to the political party
(alternatively, it can be encoded in the ordering of the candidates in the list). Generally, it is
common to take wj = j for all j, so that we only considered this possibility. In this thesis,
we fix the shortcoming of Ordinos, where more than s candidates may be output in case of a
tie, we propose an adaptation of Ordinos for the D’Hondt method and provide an equivalent in

159

Chapter 6. Application of the toolbox to electronic voting

Algorithm 95: MJ: MPC version (ElGamal setting)
Requires: nC , the number of candidates

nV , the number of voters
ℓ = ⌈log(nV + 1)⌉

Inputs: B, the nV encrypted ballots (each is a bitwise encrypted grade matrix)
Outputs: c, the indicator of the set of winners.

1 for i = 1 to nC (in parallel) do
2 for j = 1 to nG (in parallel) do
3 Ai,j ←− Aggreg(Bi[j, 1], · · · , Bi[j, nV]);

4 P,M−,M+, Q,C, L,R←−InitALL(A);
5 for j = 1 to nG do
6 for i = 1 to nC (in parallel) do
7 B1 ←− Not(Lt(Pi,Qi));
8 P+

i ←− Pi,0, · · · , Pi,ℓ−2, E1 (* 2ℓ−1 + pi *);
9 Q+

i ←− Neg(Qi) (* 2ℓ−1 − qi *);
10 Si ←− If(B1,P

+
i ,Q+

i);
11 Si ←− CSZ(Si, Ci) (* give the fake score 0 to already eliminated candidates *);

12 S,←− Max(S1, · · · ,SnC) (* we do not compute the index of the maximum *);
13 for i = 1 to nC (in parallel) do
14 B3 ←− Eq(S,Si);
15 Ci ←− And(Ci, B3);

16 B4 ←− Sℓ−1 (* the m.s.b. of s tells whether s ≥ 2ℓ−1 *);
17 for i = 1 to nC (in parallel) do
18 A′

i,m−I− ←− Select((Ai,1, · · · ,Ai,nG−1), L);
19 A′

i,m+I+ ←− Select((Ai,1, · · · ,Ai,nG−1), R);

20 M+− ←− Sub(M+
i ,M−

i);
21 M−+ ←− Neg(M+−

bits);
22 T+ ←− If(B4,M+−,A′

i,m+I+);
23 T− ←− If(B4,A

′
i,m−I− ,M−+);

24 Pi ←− If(B4, Sub(Pi,A
′
i,m−I−),Pi);

25 M−
i ←− T−;

26 M+
i ←− T+;

27 Qi ←− If(B4,Qi, Sub(Qi,A
′
i,m+I+));

28 L←− CLS(L,B4); R←− CRS(R,Not(B4));

29 c = Dec(C) (* bit-wise decryption *);
30 return c

160

6.5. Single choice voting

Table 18: Leading terms of the cost of computing the Majority Judgment in MPC; nV is the
number of voters, nC is the number of candidates and nG is the number of grades

Version Voters
(# exp.) Talliers (# exp.) Talliers (# synch. steps) Transcript (key size)

[CPST18]
(Paillier) 5nCnG

4nV nCnG+
nC log nV nT (224nC + 58nG)

(4 log nV + nG)nT
6nV nCnG+

nC log nV nT (280nC + 62nG)
Ours

(ElGamal) 6nCnG
99nV nCnGnT+

33nC log nV nTnG(23 + 2nG)

1
2 log(nV)

2nT+
2nG log nC log nV nT

102nV nCnGnT+
34nC log nV nTnG(23 + 2nG)

the ElGamal setting, using our toolbox. In addition, we propose two additional computation-
communication trade-offs in the ElGamal setting.

6.5.1 Basic single choice voting

To find the s largest values in a list of N ciphertexts c1, · · · , cN , the strategy of Ordinos consists
of first building the (encrypted) matrix Mrank of the pairwise comparisons ci ≥ cj for all i, j.
Then, to decide whether a candidate i is a winner, they compute an encryption of the sum
Si =

∑N
j=1 1ci≥cj , using the homomorphic property of the Paillier encryption scheme. Finally,

they produce an encryption of 1 if Si ≥ N − s+ 1, of 0 otherwise, and decrypt the result of the
test. Hence, the candidate i is a winner if there are at most s− 1 candidates which have strictly
more votes than i. As mentioned above, this can lead to more than s candidates being elected
in case of a tie. To fix this, we propose to encode the tie-beak function in the least significant
bits of the score of each candidates. More precisely, if Ci is the encryption of the number of
votes received by i and ri ∈ [1, N] is a number which encodes the tie break rule for i (i.e. if
there is a tie between i and j, then the one with the largest r is preferred), then we replace Ci

by C2ℓ
i Eri , where ℓ = ⌈log(N + 1)⌉ is the number of bits required to encode each r, and Eri is

a trivial encryption of ri. Hence, a tie can no longer occur and the strategy of Ordinos can be
applied. The impact of this fix in the overall performances of Ordinos is low: we only increase
the size of the integers to compare by ℓ, which means that we lose less than a factor 2.

Adaptation to the ElGamal setting. Thanks to our toolbox, it is easy to compute the
winner of a basic single-choice voting election, using Aggreg and sSelect or OddEvenMergeSort.
However, we can also adapt Ordinos strategy using pairwise comparisons. This leads to different
computation/communication trade-offs; each can be interesting depending on the ratio between
s and nC . In Table 19, we give the approximate costs of all approaches, which includes the fixed
solution of Ordinos. Once again, we conclude that our toolbox is more efficient computation-
wise, but less efficient communication-wise. However, in this particular case, the additional
synchronization steps that are required in the ElGamal setting are affordable, and it is still
possible to switch to more communication-efficient protocols such as CLt ar UFCAdd if needed.

6.5.2 List voting: computing the D’Hondt method in MPC

We now explain how to adapt the strategies from the previous section to compute a D’Hondt
tally in MPC. Although the D’Hondt method can be computed with a homomorphic tally, this
is a good opportunity to evaluate the performances of our toolbox for a more complex counting
function. First, the strategy of Ordinos can be adapted by computing the pairwise comparisons
ci/wj ≥ ci′/wj′ . Sice comparing two fractions may be expensive, it is more efficient to precompute
all the product ciwj′ beforehand. For this purpose, one can use the efficient UFC algorithm
(see Algorithm 72), which, given s (dupicated) bitwise encryptions of ci, returns the bitwise

161

Chapter 6. Application of the toolbox to electronic voting

Table 19: Leading terms of the cost of different MPC solutions for single choice voting; nV is the
number of voters, nC the number of candidates, s the number of seats, nT the number of talliers

Version # exp. # synch. steps transcript

[KLM+20] (fixed)

precomp. precomp.

9nV nC+
79.5nC

2 log(nV nC)nT

41nC
2 log(nV nC)nT O(nT)
comp. comp.
4nV nC+ 14 log log(nV nC)25nC
2 log(nV nC)nT

EG (adaptation) 99nV nCnT+
33nC

2 log(nV nC)nT

1
2(log(nV)

2 + log(nC)
2)nT

102nV nCnT+
34nC

2 log(nV nC)nT

EG (sSelect) 99nV nCnT+
33nCs(3 log nV + log nC)nT

1
2 log(nV)

2nT+
2s log nV log nCnT

102nV nCnT+
34nCs(3 log nV + log nC)nT

EG (OddEven) 99nV nCnT+
25nC log(nC)

2 log nV nT

1
2 log(nV)

2nT+
log nV log(nC)

2nT

102nV nCnT+
25.5nC log(nC)

2 log nV nT

Table 20: Leading terms of the cost of the different MPC solutions for the D’Hondt method;
nV is the number of voters, nC is the number of lists of candidates, s is the number of seats,
m = lcm(1, · · · , s), nT is the number of talliers and all the logarithms are in base 2

Version # exp. # synch. steps transcript
Adaptation

of [KLM+20]
99nV nCnT+

+33nC
2s2 log(nV nCs)nT

1
2(log(nV)

2 + log(nC)
2)nT

+2 log s log nV nT

102nV nCnT

+34nC
2s2 log(nV nCs)nT

sSelect
99nV nCnT+

33nCs
2 log(m3nV

6nCs)nT

1
2 log(nV)

2nT+
2s log(mnV) log(nCs)nT

102nV nCnT+
34nCs

2 log(m3nV
6nCs)nT

OddEven
99nV nCnT+

99nCs
2 log nV nT+

25nCs log(nCs)
2 log(mnV)nT

1
2 log(nV)

2nT+
2 log nV logm

log(mnV) log(nCs)
2nT

102nV nCnT+
102nCs

2 log nV nT+
25.5nCs log(nCs)

2 log(mnV)nT

encryptions Si,1, · · · ,Si,s of ci, 2ci, · · · , sci. The cost of this protocol is negligible compared to
the remaining of the process. Then, we can add the tie-breaking mechanism in the least significant
bits and apply Ordinos’ strategy. This leads to a solution which is efficient communication-wise,
but requires Ω(nC

2s2) operations, where nC is the number of candidates and s is the number of
voters. Hence, it may be preferable to also adapt the other solutions for computing the s largest
values, namely sSelect and OddEvenMergeSort. For those solution, however, precomputing all
the Si,j does not help much. Indeed, while ci/wj ≥ ci′/wj′ is indeed equivalent to ciwj′ ≥ ci′wj ,
sSelect and OddEvenMergeSort imply a lot of conditional swaps, which means that the index
i, j and i′, j′ are not known. Consequently, we propose to multiply by the least common multiple
m = lcm(1, · · · , s) to get an encryption of the integers di,j = ci

m
j for all i, j. Since one of

the operands is known, a slightly optimized version of Mult can be use, where a third of the
computation is saved. To simplify the complexity analysis, we consider e = exp(1) and we
note that, by [RS62, Theorem 12], logm < 1.039s log e. Hence, the cost of computing the nCs
multiplications in parallel is approximately that of 2nCs

2 log nV log eCSZ < 3nCs
2 log nV CSZ,

and this approximation is valid for all s. This means that the cost of the multiplications is
reasonable compared to the rest of the protocol. However, by multiplying the values to compare
by m, we make the comparisons more expensive since there are s log e additional bits to process.

162

6.6. Security of the toolbox in the context of electronic voting

6.6 Security of the toolbox in the context of electronic voting

In Section 4.4, we proved the SUC-security of the conditional gate. Since our toolbox is only
composed of conditional gates, it means that for every combination of protocols of our toolbox,
the resulting protocol is as secure as if it was performed by some honest third party. Finally,
in the context of electronic voting, it is usual that we require the talliers to actually decrypt
something at some point; for instance, in the STV protocol, we decrypt the vector W of the
winners. Since the threshold decryption itself is not SUC-secure, a risk is that we might lose
the SUC-security because of this last step. For this reason, we give Theorem 6, which gives
states that the SUC-security is not lost in our case. The intuition is that a conditional gate
followed by a reencryption phase is the same as just a conditional gate. Hence, by Lemma 8, it
follows that if the only elements that we decrypt are some outputs of a conditional gate, then
the SUC-security is preserved. Note that the same result apply if we replace the conditional gate
by, for instance, If,Or,Xor,And,Eq,Lt and their negations using Not. Indeed, since the CSZ
protocol is SUC-secure, it is easy to show that they are also SUC-secure.

In Theorem 6, we use the following notations:

• We denote CS the counting function defined by the Condorcet-Schulze method and PCS the
protocol that we provide in Section 6.2 to compute CS (see Algorithm 82). We denote FCS

the trusted party that honestly evaluates PCS and returns the output of all the conditional
gates as well as the result (i.e. the set of the winners).

• We denote STV the counting function defined by the STV method and PSTV any of the two
protocols that we provide in Section 6.3.4 to compute STV. We denote FSTV the trusted
party that honestly evaluates PSTV and returns the output of all the conditional gates as
well as the result (i.e. the set of the winners).

• We denote MJ the counting function defined by the Majority Judgment and PMJ the
protocol that we provide in Section 6.4.4 to compute MJ (see Algorithm 95). We denote
FMJ the trusted party that honestly evaluates PMJ and returns the output of all the
conditional gates as well as the result (i.e. the set of the winners).

• We denote DH the counting function defined by the D’Hondt method and PDH any of the
protocols that we provide in Section 6.5.2 to compute DH. We denote FDH the trusted
party that honestly evaluates PDH and returns the output of all the conditional gates as
well as the result (i.e. the set of the winners).

Theorem 6. Under the DDH assumption and if at least one participant is honest, for count ∈
{CS, STV,MJ,DH}, Pcount SUC-securely computes Fcount in the FRO,FB-hybrid model. (Recall
that they model the ROM and the ideal broadcast channel.)

Proof. Let count ∈ {CS,STV,MJ,DH}. First, by Theorem 3, the conditional gate protocol
SUC-securely realizes FCSZ in the FRO,FB-hybrid model. Therefore, we can replace every
conditional subprotocol in Pcount by a call to the trusted party FCSZ and show that the resulting
protocol SUC-securely computes Fcount in the FCSZ-hybrid model. This is a consequence of the
composition theorem, stated in Lemma 5.

Now, we construct a simulator S which interacts with the environment in the ideal process
and simulates the hybrid process by simulating the honest participants and the FCSZ ideal
functionality. First, by interacting with the ideal process, S gets the outputs of all the conditional
gates, as well as the result r. Afterwards, S proceeds with the simulation of Pcount.

163

Chapter 6. Application of the toolbox to electronic voting

Remark that for all of our MPC protocols, Pcount is divided into two phases. First, the
MPC part feature no communication between the participants, except during a conditional gate
subprotocol. Second, the final step is to decrypt a vector W of ciphertexts, using the threshold
decryption protocol. Note, in addition, that those ciphertexts consist of outputs of a conditional
gate protocol.

Hence, to simulate the hybrid process, S can also proceed into two phases. During the first
phase, S only has to simulate the answers of FCSZ. For this purpose, S first look whether
this answer is one of the ciphertexts of W or not (i.e. if the ciphertext will be decrypted in
a subsequent threshold decryption protocol). If this is not the case, S uses the answer of the
ideal functionality Fcount, which includes the output of all the conditional gates. Otherwise, S
uses a random encryption of the corresponding plaintext z, using a known randomness ρ. Note
that S can deduce z from the result r output by Fcount. This way, S’s answers are perfectly
indistinguishable from that of FCSZ.

Once the first phase has terminated, S must simulate the interactions during the threshold
decryption protocols. First, the ZKP of correct partial decryption can be simulated in the
ROM thanks to their zero knowledge property. Therefore, it only remains to explain how the
simulator can generate the partial decryptions. For this purpose, suppose that S needs to
simulate the decryption of a ciphertext Z = (x, y), which is an output of a conditional gate
protocol. Then, we have x = gρ and y = zhρ, where (g, h) is the public encryption key, z is the
corresponding plaintext and ρ the randomness chosen by S. As seen in the proof of Lemma 8,
this allows the simulator to compute the partial decryptions of all the participants, and hence to
perfectly simulate the threshold decryption protocol. Indeed, if hi is the public commitment of
the participant i, then the partial decryption of i is wi = hρi .

With the above S, the simulated hybrid process is perfectly indistinguishable from the real
one.

In what follows, we explain how this SUC-security can be used to prove the privacy and the
verifiability of a voting system that uses our toolbox to compute the tally in MPC. For simplicity,
we only give the proof in the case of Condorcet-Shulze. For this purpose, we define a minimal
voting system that we call TH-voting; however, since we only considered the tally process, we
do not detail how the other phases are taken care of. Hence, TH-voting is defined as follows:

Setup. We consider an ideal DKG that produces a public key pk, the public commitments
(hi)

nT
i=1 and distributes their secret shares si to the talliers.
Register. We consider an ideal registration where each voter v received an ElGamal key

pair pkv, skv, and where the public key of each eligible voter is published on the board.
Vote. To vote, a voter produces nC log nC encryptions of 0 or 1, and give the corresponding

PoK that they are all encryptions of 0 or 1. Finally, they sign the resulting ballot using skv. The
ballot has the form (pkv, B, π, s), where B is the matrix of the encrypted bits, π contains the
corresponding PoK and s the signature of B.

Check. The voter checks that the last cast ballot B appears on the board PB, and that no
subsequent ballot uses the same public signature key pkv.

Valid. To verify the validity of a ballot, we verify the signature and the ZKP, and we also
verify that no previously cast ballot uses the same matrix B.

Tally. To compute the tally, the talliers first keep, for each credential pkv, the last valid ballot
that uses pkv as a verification key. Then they use the MPC protocol described in Algorithm 82;
see Section 6.2 for more details.

Verify. To verify the validity of the tally, first verify the valididy of the ballots on the board
and, from the list of the valid ballots and the given transcript, compute the output of all the

164

6.6. Security of the toolbox in the context of electronic voting

Expverb(λ, nT , t,A)
1 pk, sk, (hi, si)

nT
i=1,Π

S ← Setup(λ, nT , t);
2 1n ←− A(pk,ΠS);
3 (ci, πi)

n
i=1,Π

R ← Register(pk, n);
4 CU ←− ∅;
5 for i = 1 to n do
6 HVi ←− ⊥; Li ←− ⊥; Checkedi ←− 0;

7 (PB, r,Π)←− AOcorrupt,Ovote ;
8 AOcheck ;
9 if Verify(PB,Π, r) = 0 then return 0;

10 if ∃ L ⊂ {{(i,HVi) | i ̸∈ CU ,Checkedi ̸= 1,HVi ̸= ⊥}},
∃C such that | |C| ≤ |CU| and
r = count({{(i,HVi) | i ̸∈ CU ,Checkedi = 1}}

⊎
L
⊎

C)
then return 0 else return 1;

Ocorrupt(id)

1 CU ←− CU
⋃
{id};

2 return cid;

Ovote(id, ν)

1 B ←− Votepk(ν, cid);
2 HVid ←− ν;
3 Li ←− B;
4 Checkedid ←− 0;
5 return B;

Ocheck(id)

1 Checkedid ←
Check(ν, cid, Lid,PB)

conditional gates. Then use the transcript of the threshold decryptions to deduce the result and
verify that is it corresponds to te given result. Finally, verify that each conditional gate and each
threshold decryption has a corresponding valid ZKP.

6.6.1 Universal verifiability

The universal verifiability of our tally process is a direct consequence of the computational
soundness of the ZKP and the correctness of the tally protocol. Indeed, consider the definition of
end-to-end verifiability of [CGGI14] (introduced in Section 1.2.2), which combines the individual
and the universal verifiability. Since allowing revoting would require to adapt the definition and
is independent from the tally process, we do not consider it and assume that the adversary can
call Ovote at most once for all voter. (To improve readability, we reproduce Fig. 2 below, which
describes the verifiability experiment considered in this definition.) In what follows, we give a
proof sketch that our minimal voting system has end-to-end verifiability.

Theorem 7. In the ROM and assuming the strong unforgeability of the signature scheme, TH-
voting has end-to-end verifiability as of Definition 3.

Proof sketch. To win the verifiability experiment, the adversary must give a transcript which
contains valid ZKP. Yet, by the soundness of those ZKP, the result r must be the same as the
one computed from PB using an instance of the tally protocol. Now, since all the happy voters
verified that their ballot is in PB and that no subsequent ballot uses the same pkv, it means that
their ballots are included in the tally. In addition, by the strong unforgeability of the signature,
for all valid ballot in the board such that pkv is not the credential of a honest voter, pkv must
be the credential of a corrupted voter. Hence, since we keep up to one ballot per credential, the
condition |C| ≤ |CU| is verified. Finally, the strong unforgeability also guarantees that if a ballot
that uses the credential pkv of a lazy voter is valid, then it must be a ballot output by Ovote.

6.6.2 Privacy

Proving the privacy of our voting system is less straightforward than for the verifiability. A first
difficulty, discussed in Section 1.3.5, is that there is no notion of privacy which is satisfactory for

165

Chapter 6. Application of the toolbox to electronic voting

Algorithm 96: RealPriv

Requires: λ, nT , Ct, n, nA, nC ,B,A
1 pk, sk, (hi, si)

nT
i=1,Π

S ← Setup(λ, nT , t);
2 (ci, πi),Π

R ←− Register(pk, n);
3 PB←− ΠS||ΠR;
4 A←− A(pk,PB, {si | i ∈ Ct});
5 j, ν0, ν1 ←− A({ci | i ∈ A});
6 (* chooses the voter to observe *);
7 if |A| ≠ nA ∨ j ̸∈ [1, n]\A then
8 return 0;

9 B
$←− B([1, n]\A,nC);

10 for (i, νi) ∈ B do
11 AOcast(i,PB);
12 PB←− PB||Votepk(νi, ci);

13 AOcast(i,PB, "end for");

14 b
$←− {0, 1};

15 PB←− PB||Votepk(νb, cj);
16 AOcast(PB);
17 r,Π←− TallyA(PB, {si});
18 b′ ←− A();
19 if ν0, ν1 ∈ [1, nC] ∧ b′ == b then

return 1 else return 0;

Algorithm 97: IdealPriv

Requires: λ, nT , Ct, n, nA, nC ,B,A
1 ;
2 ;
3 ;
4 A←− A(λ);
5 j, ν0, ν1 ←− A();
6 (* chooses the voter to observe *);
7 if |A| ≠ nA ∨ j ̸∈ [1, n]\A then
8 return 0;

9 B
$←− B([1, n]\(A

⋃
{j}), nC);

10 (ν)i∈A ←− A(I);
11 B ←− B||(i, νi)i∈A,νi∈[1,nC];
12 ;
13 ;

14 b
$←− {0, 1};

15 B ←− B||(j, νb);
16 ;
17 r ←− tally(B);
18 b′ ←− A(r);
19 if ν0, ν1 ∈ [1, nC] ∧ b′ == b then

return 1 else return 0;

Figure 19: Definition of privacy, λ is the security parameter, nT the number of talliers, t the
threshold, Ct the set of the corrupted talliers, n the number of voters, nA the number of corrupted
voters, nC the number of voting options (excluding abstention) and B the distribution.

our specific case, where the counting function does not have the partial tally property and where
we want to consider some fully corrupted talliers. For this reason, we introduced Definition 9 in
Section 1.3.4. To improve readability, we reproduce the corresponding experiments above and
we recall that, to prove privacy, we need to prove that for all PPT adversary A0 for the real
game, there exists an adversary B for the ideal game such that, when interacting with A0, B
wins the ideal game with the same probability as A0 wins the real game (with up to a negligible
difference). We now give Theorem 8, and conclude the section with a proof of this result.

Theorem 8. Assuming an ideal broadcast channel, under the DDH assumption an in the ROM,
TH-voting has privacy as of Definition 9.

Proof. We proceed by game hops and construct a succession of games G1, · · · , G4 where G4 is
the ideal game. For each of these games, we construct an adversary Ai and we denote Si the
probability that Ai wins Gi.

Game 1: In this game, the adversary A1 is no longer able to take part in the tally process.
Instead, we consider a trusted party FTally which gets the shares of the participants and computes
the result r of the tally as well as the output ΠZ of each conditional gate, by running the protocol
Tally itself, when all the participants are honest. At line 18, A1 gets r,ΠZ and must output its
guess b′ from this.

166

6.6. Security of the toolbox in the context of electronic voting

To construct A1, we use Theorem 6 which states that Tally SUC-securely computes FTally in
the F-hybrid model, with F = FRO,FB. Hence, there exists a simulator S such that, for all
environment Z, |RealFTally,A0,Z(λ, 0)− IdealFTally,S,Z(λ, 0)| is negligible. In particular, we consider
the environment RealPriv, so that RealFTally,A0,Z = S0. Then, A1 can interact with A0 by simulating
the real game using S, so that IdealFTally,S,Z(λ, 0) = S1. Hence, |S1 − S0| is negligible.

Game 2: In this game, A2 is no longer given ΠZ and is only given r.

We construct A2 that interacts with A1 by simulating ΠZ . For this purpose, A2 uses uniformly
random ciphertexts.

To argue the validity of this transition, we construct an adversary B for DDH as follows.
First, B gets the challenge tuple (g1, g2, g3, g4) from the DDH game and sets pk = (g1, g2). To
run the setup, B recovers the set S of the corrupted participants from A1, and picks si ∈ Zq at
random for all i ∈ S. It the completes S into I by picking some additional si ∈ Zq at random for
all i ∈ I\S, where I ⊂ [1, nT] is a set of size t that contains S, and nT is the number of talliers.
For i ∈ I, it computes hi = gsi1 and, for i ∈ [1, nT]\I, it deduces hi with Lagrange interpolation.

It then runs the remaining of Game 2 honestly, but each time A1 casts a ballot, B extracts
the corresponding voting option from A1’s proof of knowledge. In the ROM, this is possible in
polynomial time, as a consequence of the forking lemma (see for instance Theorem [BPW12,
Theorem 1]). This way, B can compute the result r of the tally without knowing the secret key
sk. Finally, since B knows the cleartexts of the ballots to tally, B can run the tally protocol
“on the cleartexts”, i.e. it can compute the cleartext of each of the outputs of each conditional
gate, since it is the product of two cleartexts. To simulate the output of a conditional gate, B
“encrypts” the corresponding cleartext z by choosing two random ρ1, ρ2 ∈ Zq and computing
Z = (gρ11 gρ23 , gz1g

ρ1
2 gρ24). Finally, if A1 wins the game, B states that the challenge was a DDH

tuple; otherwise, it states that is was a random tuple. Remark that if (g1, g2, g3, g4) is a DDH
tuple, then B played a perfect simulation of Game 1 to A1 and hence wins with probability S1.
On the other hand, if the challenge tuple is a random tuple, B played A2’s simulation of Game 1
and wins with probability 1− S2. Yet, under the DDH assumption, B’s advantage in the DDH
game must be negligible, hence |S1 − S2| is negligible.

Game 3: In this game, whenever a honest voter cast a ballots, a random ballot is added to
the board instead of a ballot that encrypts the chosen voting option.

To argue that |S3 − S2| is negligible, we use a hybrid argument (the hybrid lemma is stated
in Theorem 2, Section 3.1.2). Technically, this is not required since the number of voters is
not chosen by the adversary but is a parameter fixed by the experiment. However, giving a
hybrid argument shows that the difference in probability |S3 − S2| scales linearly with respect
to nV , which is certainly reassuring. For this purpose, we denote Game 2 G1 and Game 3
G2. We construct a succession of games hop (Hi)N such that, for all i, Hi is game G2 except
that for the first i honest voters, the real ballot is added to the board instead of a random
ballot. This way, G2 = H0, which is the first condition of the lemma. In addition, for all
adversary A, there exists a polynomial nA = nV such that HnA = G1; hence, for all λ ∈ N,
Pr(HnA(λ,A) = 1) = Pr(G1(λ,A) = 1), which is the second condition of the lemma. Now, the
third condition is that there exists a polynomial P such that for all A′

i+1 for game Hi+1, there
exists A′

i for game Hi which makes at most P transitions. Conversely, given A′
i for Hi, we need

to construct A′
i+1 for Hi+1 that makes at most P transitions. In our case, A′

i+1 is given an
additional ballot while A′

i is given a random fake ballot instead. However, since the ballot is

167

Chapter 6. Application of the toolbox to electronic voting

encrypted anyway, it must be indistinguishable from a random. Hence we use A′
i = A′

i+1 and
P = 0.

The fourth condition is that we need a decisional game which is considered hard. For this
purpose, we use the IND-PA0 game (see Algorithm 23, that we reproduce in Algorithm 98 below).
Indeed, by Lemmas 4, 1 and 3, the encryption scheme Gen,Vote,Extract is IND-PA0 , where Gen
is the generation algorithm for the ElGamal encryption scheme, Vote is the voting algorithm and
Extract is the algorithm that verifies the ZKP of the ballot, outputs ⊥ if it is invalid, decrypts
it and outputs the corresponding voting option if it is valid.

Finally, the last condition is that there exists a uniform reduction to IND-PA0. We construct
the required PPT B for the IND-PA0 game as follows. First, B is given the public key pk in the
IND-PA0 game. Given i, it interacts with an adversary A′

i+1 for Hi+1 by simulating Hi+1. For
this purpose, B gets the set of the corrupted talliers and generates their secret shares at random
to simulate the setup as in Game 2. Then, it runs a perfect simulation of Hi+1 by picking a
random b ∈ {0, 1} and sampling the distribution B at random from B. However, for the i+1th
honest voter, instead of creating a ballot for the corresponding voting option ν, it chooses a
random voting option ν ′ and plays the pair ν, ν ′ in the IND-PA0 game. Finally, when B needs to
output the result of the tally to A′

i+1, B decrypts the valid ballots cast by A′
i+1 by querying them

to the IND-PA0 game, which allows B to compute the result of the tally. If A′
i+1 correctly guesses

the bit b, B states that the IND-PA0 game encrypted ν; otherwise, it states that it encrypted
ν ′. Now, remark that when the IND-PA0 game encrypt ν, B plays a perfect simulation of Hi+1.
However, when the IND-PA0 game encrypts ν ′, B plays a perfect simulation of Hi. Hence, the
last condition of the hybrid lemma is met and there exists A3 such that |S2 − S3| is negligible.
In addition, since we took A′

i+1 = A′
i for all i, we have A3 = A2.

Algorithm 98: Expind-pa0(λ,A)
1 pk, sk←− Gen(λ);
2 ν0, ν1 ←− A(pk);

3 b
$←− {0, 1};

4 C ←− Encpk(mb);
5 C ←− A(C);
6 m←− (Decsk(y))y∈C\{C};
7 b′ ←− A(m);
8 if b = b′ then return 1 else return 0;

Game 4: This game is the ideal game.

Finally, we construct A4 that interacts with A3 by simulating Game 3. First, A4 runs the
setup honestly by generating a random secret key sk and acting as the trusted dealer. Then,
it also runs the registration honestly and get the set of the corrupted voters A from A3, that
it plays in the ideal game. Then it gives to A3 the credentials of the corrupted voters and gets
j, ν0, ν1 in return, that it plays in the ideal game. Afterwards, it simulates the voting phase
using I by emulating the public board as follows. For i ∈ I, A4 calls A3 with the input i and
the current (simulated) public board PB. Whenever A3 casts a valid ballot using Ocast, by the
strong unforgeability of the signature scheme, the ballot must use the credential of a a corrupted
voter j. Also, by the computational soundness of the ZKP, the ballot must encrypt some valid
voting option. Hence A4 can decrypt the ballot using sk and update νj using the corresponding

168

6.7. Lessons learned

voting option. Finally, whenever a voter (including the honest voter) casts a ballot, A4 adds a
random ballot in the public board, just as in Game 3. Finally, after the last call of Ocast by
A3, A4 plays (νj)j∈A in the ideal game and gets the result r in return, that it forwards to A3.
Finally, it outputs A3’s guess.

Clearly, except if A3 forges a valid ZKP for an invalid ballot or forges a signature, A4 plays
a perfect simulation of Game 3 to A3, so that |S3 − S4| is negligible.

Conclusion. By the triangular inequality, this shows that for all PPT adversary A for the real
game, there exists a PPT adversary B for the ideal game that wins with the same probability,
with up to a negligible difference.

6.7 Lessons learned

Our study shows that it is possible to compute the result of an election without leaking any
additional information about the original ballots, often at a realistic cost. In this thesis, we
provide a toolbox that can be used for this purpose, and apply it to several counting methods.
During the process, we made some interesting findings that we give here as the lessons learned.

Think ElGamal. While Paillier is the Swiss-Army knife for MPC, our study has shown that
ElGamal can often suffice, even when encrypted integers need to be added or multiplied. This
can be a big advantage in terms of efficiency and availability of software libraries.

Rethink the encoding of ballots. The encoding of a ballot can have a huge impact on the cost
of the rest of the procedure. For example, encoding integers in their bit representation adds an
initial cost that can later save a lot of computation. It is often necessary in the ElGamal setting.
The encoding of ballots also offers different tradeoffs in terms of load balance between the voters
and the talliers, as seen in the case of the Condorcet methods.

A proof of a shuffle is a versatile tool. The typical use of a proof of a shuffle is inside a mixnet,
where some ciphertexts are mixed and re-randomized. However, a proof of a shuffle can also be
used to prove the validity of a ballot, in the context of preferential voting. From this remark, we
proposed an original usage of the proof of a shuffle in the context of STV and Condorcet voting,
which both give two very efficient voting procedures. In the case of Condorcet voting, this gives
an efficient solution on the voter-side that is compatible with a homomorphic tally.

Consider the full algorithmic toolbox. When designing an MPC protocol, the constraints
are rather not standard. The worst case complexity always needs to be considered, and all the
branches need to be visited, just as in the circuit complexity model. In fact, this circuit point
of view is highly relevant, and we borrowed some designs from the hardware literature. The
depth of the circuit is related to the number of communication rounds; but limits on the fan-in
or fan-out of a gate are irrelevant.

Some rather advanced algorithms like the MJ counting functions or the Floyd-Warshall short-
est path algorithm can be translated rather easily. On the other hand, some basic tasks can be
surprisingly expensive. For instance, many classical algorithms assume that accessing the ith

value of an array T [i] takes a constant time, even when i is a computed value. In MPC, this
requires a linear time to pass through all the values of T in order to hide the value of i. Another
example is the addition of encrypted integers, where the carry propagation can generate a chain
of dependencies that translates into a linear number of communication rounds. Breaking the
chain of carries as done in hardware circuits allows to reduce this to a logarithmic number of
rounds.

169

Part III

Coercion resistance

Coercion is a common security concern in electronic voting. It occurs when an attacker, the
coercer, asks a voter to vote in a specific way, using a threat or a reward. This phenomenon
is known to exist in real-world elections, with traditional voting at polling stations. However,
an electronic voting system which is not designed to tackle coercion could allow the attacker
to coerce a larger number of voters, or to gain a more convincing evidence that the coerced
voters actually obeyed. Also, since Internet voting is a remote voting process, this introduces
new attacks compared to polling station voting. For instance, the coercer can ask the voter to
give all the voting materials that they received. The classical verifiability mechanisms will then
provide a proof to the coercer that the voter did not cheat.

In the literature, the most notable approach to address coercion is that of Juels, Catalano
and Jakobsson [JCJ05], who gave a formalization of the notion of coercion-resistance as well as
the first coercion-resistant protocol. Their definition and their protocol, now known as the JCJ
protocol, remain the reference for the research on coercion-resistance in electronic voting. In
this thesis, we disclose that the original protocol of JCJ is not perfectly coercion-resistant when
revoting is allowed. This is because of an issue in the definition of coercion-resistant, which does
not allow to properly take revoting into account. In Chapter 7, we present the vulnerability of
the JCJ scheme, we evaluate its impact and we propose a new definition of coercion-resistance
which better models revoting. Since the JCJ protocol is the basis of most of the academic
protocols that aim at achieving coercion-resistance, a large majority of the existing protocols are
also concerned with the vulnerability that exists in JCJ. In Chapter 8, we present CHide, which
is a variant of the JCJ protocol which achieves our definition of coercion-resistance, and corrects
the vulnerability of JCJ.

170

Chapter 7

Is the JCJ voting system really
coercion-resistant?

7.1 The JCJ family

A prominent strategy to address coercion is that of the JCJ family, which is based on the fake
credential paradigm. The idea is that whatever the coercer might ask the voter to do, it can do
it itself when given the credential of the voter. Hence, the strategy of JCJ is to provide a way
for the voter to give a fake credential to the coercer. The coercer, who votes with the provided
credential, has no way to detect whether the latter is valid or not. In order to guarantee that,
during the voting phase, the ballots are accepted in the ballot box regardless of their credentials;
those which use an invalid or a duplicate one are removed later, during a cleansing phase. The
output of this cleansing phase is a set of ballots that is tallied in the usual way. The main
security feature is that, given a credential and all the publicly available information, the coercer
is unable to tell whether the credential is real or fake. At the same time, for the legitimate voters,
verifiability is preserved.

7.1.1 Presentation of the JCJ protocol

In the case of the JCJ family, we define a voting system as usual, but we also consider that
the voting system must provide a polynomial time probabilistic algorithm Fakecred that allows
a voter under coercion to produce a fake credential. Hence, a voting system is a tuple (Setup,
Register,Vote,Check,Valid,Fakecred,Tally,Verify). More precisely, the protocol must actually
provides an evasion strategy, which is a list of instructions that the voter can follow to evade
coercion; i.e. to be able to deceive the coercer and still vote for the desired voting option. The
JCJ voting system consists of the following phases.

Setup. The talliers jointly generate an ElGamal encryption key pk for a group G of prime
order q. The resulting public information, such as pk, (hi)

nT
i=1, is published in the public board.

Registration. The registrars jointly compute nV random credential c1, · · · , cnV , where nV

is an eligible voter. For each credential i, they generate a random encryption Ci of ci, and
form the public roster ΠR = (C1, · · · , CnV). Then, whenever an eligible voter authenticates
themselves with the registrars, the latter privately send the voter one available credential at
random, possibly with designated zero-knowledge proofs (DVZKP) that guarantees the voters
that their credential is valid [JSI96]. This DVZKP is such that it can only convince the voter,
and a voter under coercion can forge a fake DVZKP for any statement.

171

Chapter 7. Is the JCJ voting system really coercion-resistant?

Voting. To cast a ballot, a voter encrypts their voting option ν with the public key pk,
which gives the ciphertext V (or list / matrix of ciphertexts, depending on the expected format
of a ballot). In addition, they also encrypt their credential c, which gives a ciphertext C. They
prove the knowledge of ν and c using a PoK, and prove in zero knowledge that ν is a valid voting
option, yielding an overall proof π. The resulting ballot B = (V,C, π) is sent anonymously to
the bulletin board.

Tallying. The tally phase consists of four steps.

1. Ballots with duplicated credentials are detected using Plaintext Equivalence Tests [JJ00]
(PET). (We present the PET in Section 2.4.4.) At most one ballot (typically, the last) is
kept per credential.

2. The trustees shuffle the remaining ballots, using a mixnet.

3. PET are used again to remove the ballots with invalid credential, that is, whose credential
is not present in an encrypted form in ΠR.

4. Finally, each remaining ballot is decrypted so that the result can be computed. (Alterna-
tively, any other tally process could be deployed.)

Each step includes a zero-knowledge proof that the correct operations are performed.
Evading coercion. In the JCJ voting system, a voter under coercion generates a random,

fake credential c′ (i.e. Fakecred is an algorithm that produces a uniformly random credential)
and hands this over to the coercer, pretending that it is the real credential obtained during the
registration phase. Afterwards, the voter under coercion votes once for the desired voting option
(or abstain, depending on their personal preference). Note that if the coercer casts a ballot using
the fake credential c′, the ballot will be removed at Step 3. of the tally phase. However, thanks
to the mixnet, the coercer is unable to learn that the suppressed was the one it cast with the
credential c′.

7.1.2 Some variants of the JCJ voting system

The JCJ scheme was impactful in the literature, and most of the subsequent schemes that
addressed coercion-resistance were aimed at improving its scalability, or at least were largely
inspired by the JCJ protocol. Civitas [CCM08] is one of the most notable examples, and is
widely considered as an important step towards a practical version of JCJ. Among other things,
it introduces the notion of ballot blocks, that mitigates the quadratic cost of the cleansing
phase. Other attempts were made to improve the efficiency of JCJ. In [SKHS11], Spycher et
al. claim a linear time cleansing, but this comes with a deterioration of the coercion-resistance.
Later on, the same authors proposed other schemes with a clear trade-off between efficiency and
coercion-resistance, thanks to anonymity sets [SKHS12]. Other improvements include [AFT08],
where Araújo et al. propose the AFT scheme to perform the cleansing phase in linear time,
and [CH11], which introduces the idea of over-the-shoulder coercion-resistance. Note that the
AFT scheme was itself the subject of many iterations, see for instance [ARR+10, ABBT16].

In any case, the JCJ protocol and the fake credential paradigm is always the underlying idea
behind those proposals.

172

7.2. Unveiling a shortcoming in JCJ

7.2 Unveiling a shortcoming in JCJ

Despite the JCJ protocol being a central protocol in the literature, we discovered a shortcoming
that occurs when revoting is allowed. In the context of coercion-resistance, allowing revoting is
a natural counter-measure that can address, for instance, a coercion from a family member or
an employer. The idea is that the voter first complies with the coercer, but then revotes using
the desired voting option when given a moment of privacy. In particular, the Estonian electronic
voting system entirely relies on revoting to mitigate coercion [MM06]. Hence, we consider that
it is natural for a coercion-resistant protocol to allow revoting. Note that in [IRRR17, Section
4.4], it was already mentioned that some problems may arise due to revoting in the JCJ scheme.

7.2.1 Leakage in case of revoting

For a verifiable voting system, it seems unavoidable to leak the number of received ballots in
the public board. The number of ballots that use a valid credential is also leaked unless a more
sophisticated tally methods is used, such as tally-hiding. However, the JCJ protocol leaks the
following additional information:

• nB, the total number of received ballots;

• nV , the total number of valid (and counted) ballots;

• nR, the total number of revotes;

• the complete distribution of revotes per (encrypted) credential (hence, for all k, the number
of credentials used to revote k times).

This can be exploited by a coercer to detect when a coerced voter disobeys. Indeed, there
is no reason to assume that revoting is independent from the choice of the candidate. On the
contrary, revoting is often due to voters changing their mind between candidates, for instance
due to some late announcements in the press.

An attack against coercion-resistance. To illustrate that the leakage can indeed be exploited
in some cases, we consider an extreme case, with two candidates A and B. Suppose that voters
voting for A do not revote while those voting for B always revote, exactly once. We denote rA
(resp. rB) the number of votes for A (resp. B), and we suppose that those information can be
deduced by the result of the tally, which is often the case except if a tally-hiding strategy is used.
Due to the considered revoting behaviors, the number of revotes nR corresponds to the number
of votes for B sent by the honest voters.

Assume now that Alice wants to vote for B but is instructed by her coercer to vote for A.

• If Alice obeys, the coercer will observe rB = nR.

• If Alice disobeys and casts one ballot for B, the coercer will observe that rB = nR + 1.

Hence the coercer will detect that Alice has disobeyed, which breaks coercion-resistance.

One could argue that Alice should follow a different evasion strategy and cast one ballot if
she votes for A and two if she votes for B. This does not work either. Indeed, assume now that
Alice wants to vote for A, but is instructed to vote for B.

• If she obeys, she gives her real credential c to her coercer. The latter then casts exactly
one ballot for B using c.

173

Chapter 7. Is the JCJ voting system really coercion-resistant?

• Otherwise, she provides a fake credential c′, that the coercer uses to vote for B. Alice then
votes for A using c.

In the first case, rB = nR + 1 but in the second case, rB = nR. Once again, the coercer is able
to detect that Alice disobeyed and coercion-resistance is lost. More generally, it seems difficult
to come up with a simple evasion strategy that fixes the issue in JCJ; see the discussion in
Section 7.6.

7.3 The impact on coercion-resistance

In the previous section, we explained the leakage of the JCJ protocol and we illustrated, on
an extreme scenario, how this can be exploited to completely break coercion-resistance. In this
section, we estimate the impact of the leakage in more realistic scenarios. For this purpose, we
use the framework of [KTV10a] which allows to quantify the coercion level of a voting protocol.

7.3.1 Quantifying coercion-resistance

We consider nV voters, among which one is under coercion. The others are supposed honest and
independent. They choose a voting option among C + 1 possibilities, which includes abstention
and blank voting. We suppose that the choices follow a probability distribution (P0, . . . , PC),
where P0 is the probability to abstain. Let α be the voting option corresponding to the intention
of the coerced voter, and β be the one that is the instruction of the coercer. The coerced voter
either disobeys, gives a fake credential and votes with the option α (the evasion strategy does
not imply any revote), or obeys and gives their real credential which the coercer uses to vote
with option β. The coercer must decide whether the voter obeyed or not, given only the result.

The ideal result is RIdeal = −→res = (res0, · · · , resC), the number of voters who opted for each
option. In JCJ, however, the real result RReal is −→res, as well as, for all k, the number of voters
who revoted k times. In addition, both results should also include the number of ballots that are
removed during the cleansing phase. However, to focus on the leakage of JCJ, we assume that
a large and unpredictable number of dummy ballots are cast, so that the adversary cannot gain
information by observing this number. This approximation is necessary to use the framework
of [KTV10a], which does not model the possibility to cast a ballot with an invalid credential in
the ideal setting.

We now instantiate [KTV10a] in our scenario. To simplify the analysis, we assume that a
voter revotes at most once, so that RReal = (−→res, nR), where nR is the total number of revotes.
We also assume that all the parties are honest except for the coercer, and that the cryptography
is perfect, so that the coercer does not learn any other information than the result. With these
assumptions, we define the real and ideal games, where the behavior of the coerced voter is
decided at random (the coerced voter obeys with probability 1/2 and tries to evade coercion
with probability 1/2). The coercer wins the real (resp. ideal) game if they correctly guess
the behavior of the coerced voter given the real (resp. ideal) result. For g ∈ {Real, Ideal}
and for a pair (α, β), we denote W g

α,β the event when the coercer wins the game. We denote
δgα,β = 2|Pr(W g

α,β)− 1/2|, and δg = maxα,β δ
g
α,β . We call δReal (resp. δIdeal) the coercion level of

the real (resp. ideal) game.
We denote by Pr(Rg|α) (resp. Pr(Rg|β)), the probability that the result Rg is obtained,

assuming the voter votes for α (resp. obeys the coercer and votes for β). According to [KTV10a],
the best strategy for the coercer is to assume that the voter obeyed if and only if Pr(Rg|β) ≥

174

7.3. The impact on coercion-resistance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of revotes (same choice)

co
er

ci
on

le
ve

l

Real
Ideal

Figure 20: Coercion levels as a function of the revote, with 20 voters, 2 candidates, 30% abstention
and a 50%-50% distribution of votes between the candidates.

Pr(Rg|α). This gives a close formula for the coercion level which can be written as

δg = max
(α,β)

∑
Rg∈Mα,β

Pr(Rg|β)− Pr(Rg|α), (3)

where Mα,β is the set of all possible results Rg such that Pr(Rg|β) ≥ Pr(Rg|α).
In the remaining of this section, we compare δReal and δIdeal in two scenarios, where external

events provoke many revotes. In these scenarios, we assume that there are two candidates A and
B, no blank vote, but the possibility to abstain or to revote once. In Appendix D, we explain in
more details how the different figures of this section were obtained.

7.3.2 The technical incident scenario

In general, we can expect revoting to be rare. This is something that is not allowed in classical
paper-based elections, so that in a context where electronic voting is recent, voters will not be
using this possibility. Even in a country such as Estonia, where revoting is available for Internet
voters since 2005, a recent study revealed a revoting rate of about 2% [ESWV22].

However, much more revotes could occur if an announcement reveals a suspicion of a technical
incident, and encourages the voters to revote to be on the safe side. In this case, many voters
could be inclined to revote with the same voting option, which would seem harmless if they
are not aware of the weaknesses of JCJ. Note that the coercer could be the source of such an
announcement, and spread fake news about the necessity to revote.

In Fig. 20, we consider this situation where a proportion of voters (who already voted) revote
for the same voting option.

We plot the coercion level in both the real and ideal settings when the proportion x of
revotes ranges from 0 to 1. When x = 0, both coercion levels are the same since there is no
revote. However, when x = 1, there is no coercion-resistance in JCJ because the coerced voter
would be the only one to cast a ballot without revoting. Note that the ideal coercion level
remains constant since the overall probability to choose each voting option is unaffected by x.

175

Chapter 7. Is the JCJ voting system really coercion-resistant?

7.3.3 A discredit in the press

We still consider two candidates A and B, and in this scenario, we assume that during the
period of the voting phase, the candidate A is discredited by an announcement in the press. As
a consequence, some proportion of the voters who initially voted for A will change their mind
and revote for B. For simplicity, we assume that no revote occurs that is not due to this event.

Such discredits have happened in the past. For instance, Dominique Strauss-Kahn, a former
IMF managing director, was highly expected to become the next French president in 2012.
However, due to an accusation of sexual assault, his political party chose to support another
candidate. This occurred before the time of the election, and no electronic voting was involved.
We can also mention the 2022 Tory leadership election for the succession of Boris Johnson; the
voters could vote by Internet, and revote was initially authorized (before a security concern
forced the organizers to forbid it). The duration was more than a month, which is more than
enough for a discrediting event to occur (for this election, it did not occur).

To study the potential impact of JCJ’s leakage in such a scenario, we first, we fix a small
number of voters, so that the effect is more visible, and we study the influence of the other
parameters.

In Fig. 21, we plot the real and ideal coercion levels as the proportion x of voters who change
their mind from A to B ranges from 0 to 1. When x = 0, there is no difference since there is
no revote. When x = 1, there is no difference either since nobody votes for A anymore, so that
there is no coercion-resistance in both the real and ideal games (note that this is because there
are only two candidates; if there are more candidates, there would be no coercion-resistance
in the real game but still the coercion level of the ideal game would remain reasonable: this
is the scenario of Section 7.2.1). However, a non-negligible difference can be observed for the
intermediate values of x.

In Fig. 22, we plot the real and ideal coercion levels with a fixed value of x = 0.3 (i.e. 30%
of the voters who voted for A revote for B) and we let the initial proportion p in favor of A
vary from 0 to 1. When p = 0, everyone votes for B so that there is no coercion-resistance.
When p is large, we get close to the scenario presented in Section 7.2.1, so that there is no
coercion-resistance in the real game while the ideal game still offers some coercion-resistance.

In Fig. 23, we plot the real and ideal coercion levels with fixed x = 0.3 and p = 0.7 and
we let the abstention rate P0 range between 0 and 1. When P0 = 0, there is no coercion-
resistance because forced-abstention attacks are trivial; similarly, there is no coercion-resistance
when P0 = 1. However, a non-negligible difference can be observed for the intermediate values.

Finally, in Fig. 24, we plot the real and ideal coercion levels with fixed x = 0.3, p = 0.7 and
P0 = 0.3, for a number of uncoerced honest voters equals to 16, 32, 64, 128, 256, 512 and 1024.
This shows that the difference between both coercion levels remains non-negligible even when
the number of voters is large. An asymptotic analysis (see e.g. [Dav22]) reveals that the coercion
level decreases in 1/

√
nV .

7.4 Defining coercion-resistance

One of the reasons why the weakness of JCJ was not discovered so far is because the original
definition of coercion-resistance is flawed, and does not consider revoting. In this section, we
present the original definition of JCJ, we mention another existing definition and we propose a
new definition of coercion-resistance.

176

7.4. Defining coercion-resistance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

impact of the announce

co
er

ci
on

le
ve

l

Real
Ideal

Figure 21: Coercion levels as a function of the impact for 20 voters, 2 candidates, 30% abstention
and a 70%-30% distribution between the candidates.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

initial proportion in favor of A

co
er

ci
on

le
ve

l

Real
Ideal

Figure 22: Coercion levels as a function of the
proportion in favor of A for 20 voters, 2 candi-
dates and 30% abstention.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

abstention rate

co
er

ci
on

le
ve

l

Real
Ideal

Figure 23: Coercion levels as a function of
the abstention for 20 voters, 2 candidates, 21%
revotes and a distribution of 70%-30% between
the candidates.

177

Chapter 7. Is the JCJ voting system really coercion-resistant?

33 65 129 257 513 1025
0

0.1

0.2

0.3

number of voters

co
er

ci
on

le
ve

l

Real
Ideal

Figure 24: Coercion levels as a function of the number of voters with 30% abstention, 21%
revotes and a distribution of 70%-30% between the candidates.

7.4.1 The original definition of JCJ

The intuition of the JCJ definition of coercion-resistance is that an adversary must not be able
to guess whether a coerced voter obeyed or evaded coercion. When the voter obeys (b = 1 in the
definition), they give their real credential and abstain from doing any other action. Note that a
coercer may ask the voter to cast some specific vote or to perform some specific computations,
but this is not considered in the definition as the adversary might as well do it itself, with the
given credential. When the voter evades (b = 0 in the definition), they give a fake credential and
cast a single vote for the desired voting option (or abstain, depending on their personal choice).

This yields the game RealCRJCJ presented in Algorithm 116. Voting choices are represented
as integers between 1 and nC , and ϕ represents the choice to abstain. During this game, the
adversary selects the set of corrupted voters. It is given the corresponding private credentials
as well as all the public roster ΠR (i.e. the encrypted credentials in the JCJ protocol, which
are included in the transcript ΠR of the registration). It then chooses (j, α), where j denotes
the voter under coercion and α their desired voting option. The evasion strategy is modeled in
lines 10 and 12: when the voter disobeys, they create a fake credential and cast a vote for α (or
abstain if α = ϕ). Otherwise, they give their real credential.

In the definition of JCJ, the honest voters vote according to a distribution which depends on
the number of options nC and returns a value that may be:

• any valid vote ν ∈ [1, nC];

• ϕ, which represents abstention;

• κ, which represents casting a vote with a fake credential.

We extend the Vote function to votes equal to κ as follows.

Votepk(κ, c) = Votepk(ν, c̃),

where c̃ = Fakecred(c) and ν is sampled from [1, nC].
It is worth noting that the advantage of an adversary in game RealCRJCJ will always be non

negligible since one can compare the result of the tally with the expected result, given the

178

7.4. Defining coercion-resistance

Algorithm 99: RealCRJCJ
Requires: A, λ, nT , t, nV , nA, nC ,D

1 pk, (si, hi)
nT
i=1,Π

S ←− Setup(λ, nT , t);
2 (ci, πi),Π

R ←− Register(pk, nV);
3 PB←− ΠS ||ΠR;
4 A←− A(PB);
5 (j, α)←− A({ci; i ∈ A});
6 if |A| ≠ nA ∨ j ̸∈ [1, nV]\A ∨ α ̸∈

[1, nC]
⋃
{ϕ} then return 0 ;

7 b
$←− {0, 1};

8 c̃←− cj ;
9 if b = 0 then

10 c̃←− Fakecred(cj);
11 if α ̸= ϕ then
12 PB←− PB

⋃
{Votepk(cj , α)};

13 for i ∈ [1, nV]\(A
⋃
{j}) do

14 νi ←− DnC ();
15 if νi ̸= ϕ then
16 PB←− PB

⋃
{Votepk(ci, νi)}

17 PB←− PB
⋃
A(c̃,PB);

18 ;
19 ;
20 X,Π←− PA

tally(PB,Π
R, pk, {hi, si}, t);

21 b′ ←− A();
22 if b′ = b then return 1 else return 0;

Algorithm 100: IdealCRJCJ
Requires: A, λ, nV , nA, nC ,D

1 ;
2 ;
3 D ←− ∅;
4 A←− A(λ);
5 (j, α)←− A();
6 if |A| ≠ nA ∨ j ̸∈ [1, nV]\A ∨ α ̸∈

[1, nC]
⋃
{ϕ} then return 0 ;

7 b
$←− {0, 1};

8 ;
9 if b = 0 ∧ α ̸= ϕ then

10 D ←− D
⋃
{α};

11 ;
12 ;
13 for i ∈ [1, nV]\(A

⋃
{j}) do

14 νi ←− DnC ();
15 if νi ̸∈ {ϕ, λ} then
16 D = D

⋃
{νi}

17 (νi)i∈A, β ←− A();
18 if b = 1 ∧ β ∈ [1, nC] then
19 D ←− D

⋃
{β};

20 X ← count(D
⋃
{νi | i ∈ A, νi ∈ [1, nC]});

21 b′ ←− A(X);
22 if b′ = b then return 1 else return 0;

Figure 25: JCJ definition of coercion resistance. λ is the security parameter, nT the number of
talliers, t the threshold, nV the number of voters, nA the number of corrupted voters, nC the
number of voting options and D the distribution of votes.

179

Chapter 7. Is the JCJ voting system really coercion-resistant?

distribution D of the voting intentions. For example, if the adversary wants to cast a vote for a
very unlikely candidate, they may observe cases where the latter does not get a single vote in the
result, which is a clear indication that the coerced voter disobeyed. Hence, the JCJ definition
compares the advantage of an adversary in game RealCRJCJ with the one in an ideal game IdealCRJCJ,
where there is no other information than what is unavoidably leaked, that is, the result. The
game IdealCRJCJ is presented in Algorithm 117. Compared to the original definition, we present a
slightly modified version that reasons on the clear votes only. This simplifies the understanding
by focusing on the information given to the adversary. All our claims and remarks hold on the
original definition as well.

Definition 20 (adapted from [JCJ05]). A voting system is JCJ-coercion resistant if for all PPT
adversary A, for all parameters nT , t, nV , nA, nC , and for all distributions D, there exists a PPT
adversary B and a negligible function µ such that

|Pr(IdealCRJCJ(B, λ, nV , nA, nC ,D) = 1)− Pr(RealCRJCJ(A, λ, nT , t, nV , nA, nC ,D) = 1)| ≤ µ(λ).

As noticed in [HS19], this definition cannot be realized by a scheme which uses a public
board. Indeed, in the real game, the adversary observes the length nB of the board which
corresponds to the total number of ballots cast by non-corrupted voters. Then the adversary
learns the result and in particular its size |r|, that is the number of valid ballots counted. Hence
the total number ∆ = nB − |r| of ballots discarded can be deduced, which is not available in the
ideal game IdealCRJCJ. The value of ∆ can be compared with its expected number, according to
the distribution D. Since there is an additional ballot discarded (the one of the coercer) when
the voter evades coercion, the adversary has a non-negligible advantage in the real game. For
instance, if D is such that no voters cast a ballot with an invalid credential, either nB = |r|,
which means that the adversary’s ballot has been counted, or nB = |r| + 1, meaning that the
adversary’s ballot has been discarded and that the voter has disobeyed. Of course, the same
issue applies to the JCJ definition as stated in [JCJ05].

The authors of [HS19] proposed a patch to the issue they discovered: the length of the board
should be given to the adversary in the ideal game as well. Intuitively, this corresponds to
rewriting line 17 of Algorithm 117 as (νi)i∈V , α←− A(|D|). However, this still does not allow to
detect the leakage of the JCJ protocol during the tally. Indeed, the distribution D fails to model
several aspects:

• First, the addition of a ballot with an invalid credential only happens when a honest voter
sacrifices their own vote. This is unlikely in practice, and does not model ballots sent by
non-eligible voters (for instance, by the authorities).

• Second, revoting is not considered at all in D, which explains why the leakage of the JCJ
protocol was not detected.

A final remark about the definition of JCJ concerns its underlying trust assumptions, which
are slightly different from the usual. For clarity, we recall them here. First of all, it is assumed
that all the registrars are honest and that the adversary is inactive during the registration phase
(or, alternatively, the registration is untappable, which means that the communications between
the registrars and the voter leave no trace). Second, the adversary can only corrupt a minority of
decryption authorities. Also, ballots are cast through anonymous channels. Finally, the bulletin
board is honest.

180

7.4. Defining coercion-resistance

7.4.2 Our definition of coercion-resistance

Apart from the definition of JCJ, there are other definitions in the literature (see [HS19] for a
survey). In particular, we already used the framework of [KTV10a] (KTV) in Section 7.3. In
this framework, a quantitative definition of coercion-resistance is proposed, where the notion of
δ-coercion-resistance comes with two conditions: first, the coerced voter must have a strategy
to meet their objective with overwhelming probability; second, the adversary cannot decide,
with an advantage greater than δ, whether the voter used this strategy or forwarded all received
messages (including their credential).

The KTV definition is abstract. To use it, it is necessary to model the voting protocol,
its participants and the evasion strategy. In addition, it does not say much about how ballots
sent with an invalid credential should be handled since the honest participants are assumed to
vote following a fixed distribution of valid voting options. Finally, it does not tell if a specific
δ is acceptable or not. To address this, we propose our own definition which can be seen as an
instantiation of KTV, where δ is shown to be minimal, that is, not greater than that of an ideal
protocol.

If we compare the advantage of the adversary in the real game with its advantage in the
ideal one, we need to cover a large family of vote distributions. Otherwise, we may miss security
flaws. In particular, we need to cover cases explicitly planned by the protocol such as revote and
addition of ballots with fake credentials.

Therefore, given a set S of unique identifiers and the number nC of voting options (excluding
abstention), we consider a distribution B(S, nC) of sequences of pairs of the form (j, ν) where
ν ∈ [1, nC] represents a vote and j represents either a valid voter (when j ∈ S) or a fake voter,
with a fake credential. Typically, if A is the set of corrupted voters, S = [1, nV]\A. To avoid
collisions with identifiers which may be in A, we consider that any j ̸∈ S holds a negative value.
The distribution B captures the abstention of a voter j with the absence of a couple of the form
(j, ∗). It models both revoting and the addition of fake ballots, typically by authorities:

• revoting is reflected in B by the fact that a voter may appear several times in the same
sequence;

• fake ballots are modeled by pairs (j, ν) where j /∈ S. They may be added by authorities or
voters. Note that B also models the case of a revote with a fake credential.

For example, in the sequence (1, 1), (2, 1), (1, 2), (−1, 2), (1, 1) with nV = 3, we have three voters
V1, V2 and V3. V1 first votes 1, V2 votes 1, then V1 revotes for 2, then a fake vote for 2 is added,
then V1 changes back her vote to 1. V3 chooses to abstain.

Our RealCR game, defined in Algorithm 101, is similar to RealCRJCJ. Votes are drawn according
to B([1, nV]\A,nC), yielding a sequence B. It typically contains pairs (i, ν) with i < 0, which
corresponds to the addition of ballots with fake credentials. For such a pair, we therefore generate
a fake credential at lines 10-11. Just as in the definition of JCJ, the adversary must guess a bit
b. If b = 1, the coerced voter j obeys, hence any vote from j is removed from B and the real
credential is provided to the adversary. If b = 0, the voter follows the evasion strategy, namely
they cast one vote for β (if β ̸= ϕ) and provides a fake credential. Hence the votes from j in
B are replaced by a single vote for β (if β ̸= ϕ). Then ballots are added according to B. They
correspond either to real or fake votes (or revotes). Compared to the original JCJ definition,
we also slightly improve the power of the adversary by letting them observe the board after
each vote and add ballots if they want to, which better reflects the reality. Also, recall that the
notation TallyA is used to capture the fact that the adversary is active during the tally phase,
and can impersonate the corrupted talliers.

181

Chapter 7. Is the JCJ voting system really coercion-resistant?

Algorithm 101: RealCR

Requires: A, λ, nT , Ct, nV , nA, nC ,B
1 pk, (si, hi)

nT
i=1,Π

S ←− Setup(λ, nT , t);
2 (ci, πi),Π

R ←− Register(pk, nV);
3 PB←− ΠS ||ΠR;
4 A←− A(PB, {si | i ∈ Ct}) (* corrupt

voters *);
5 (j, α)←− A({ci; i ∈ A});
6 (* coerces j who has the intention α *)
7 if |A| ≠ nA ∨ j ̸∈ [1, nV]\A ∨ α ̸∈

[1, nC]
⋃
{ϕ} then return 0 ;

8 B ←− B([1, nV]\A,nC);
9 (* samples a sequence of pairs (i, νi)

with i ∈ ([1, nV]\A)
⋃
{n | n < 0} *)

10 for (i, ∗) ∈ B, i /∈ [1, nV] do
11 ci ←− Fakecred();
12 (* this captures dummy ballots *)

13 b
$←− {0, 1};

14 c̃←− cj ;
15 if b = 1 then Remove all (j, ∗) ∈ B;
16 else
17 Remove all (j, ∗) ∈ B but the last,

which is replaced by (j, α) if α ̸= ϕ
and removed otherwise;

18 c̃←− Fakecred(cj);

19 A(c̃) (* A learns c̃ *);
20 for (i, νi) ∈ B (in this order) do
21 AOcast(PB) (* casts valid ballots *);
22 PB← PB

⋃
{Votepk(ci, νi)};

23 AOcast(PB, "end for");
24 X,Π← TallyA(PB, pk, {si});
25 b′ ←− A();
26 if b′ = b then return 1 else return 0;

Algorithm 102: IdealCR

Requires: A, λ, nV , nA, nC ,B
1 ;
2 ;
3 ;
4 A←− A(λ) (* corrupt voters *);
5 (j, α)←− A();
6 (* coerces j who has the intention α *);
7 if |A| ≠ nA ∨ j ̸∈ [1, nV]\A
∨α ̸∈ [1, nC]

⋃
{ϕ} then return 0 ;

8 B ←− B([1, nV]\A,nC);
9 (* samples a sequence of pairs (i, νi)

with i ∈ ([1, nV]\A)
⋃
{n | n < 0} *);

10 ;
11 ;
12 ;

13 b
$←− {0, 1};

14 ;
15 if b = 1 then Remove all (j, ∗) ∈ B ;
16 else
17 Remove all (j, ∗) ∈ B but the last,

which is replaced by (j, α) if α ̸= ϕ
and removed otherwise;

18 ;
19 ;
20 (νi)i∈A, β ←− A(|B|);
21 if (b = 1) ∧ (β ∈ [1, nC]) then
22 B ←− B

⋃
{(j, β)};

23 B ←− B
⋃
{(i, νi) | i ∈ A, νi ∈ [1, nC]};

24 X ←− count(cleanse(B));
25 b′ ←− A(X);
26 if b′ = b then return 1 else return 0;

Figure 26: Definition of coercion-resistance. λ is the security parameter, nT the number of
talliers, t the threshold, Ct the set of the corrupted talliers, nV the number of voters, nA the
number of corrupted voters, nC the number of voting options and B the distribution.

182

7.5. A description of the leakage in JCJ

Again, the advantage of the adversary in the real game is compared with its advantage in
an ideal game IdealCR (see Algorithm 119), where the adversary can only observe the number of
ballots and the result. The latter is computed from the considered counting function count, but
also from a function cleanse that removes votes from invalid voters j /∈ [1, nV] and that takes
care of revotes according to the policy (typically, the last vote is kept).

Definition 21. A voting system is coercion resistant if for all PPT adversary A, for all param-
eters nT , t, nV , nA, nC , for all subset Ct ⊂ [1, nT] of size at most t and for all distribution B,
there exists a PPT adversary B and a negligible function µ such that

|Pr(IdealCR(B, λ, nV , nA, nC ,B) = 1)− Pr(RealCR(A, λ, nT , Ct, nV , nA, nC ,B) = 1)| ≤ µ(λ).

The main difference between our definition and the original one is that we consider a larger
family of distributions, which allows to analyze a protocol in the context of revotes and fake
ballots.

Another difference is that the adversary shall not gain any advantage for any distribution
B, while the JCJ definition defines coercion-resistance with respect to a particular distribution.
This is preferable since a protocol should be as secure as the ideal one, whatever the considered
distribution. It is counter-intuitive to design a cryptographic protocol that resists only for par-
ticular distributions. Of course, it makes sense to analyze the exact advantage in the ideal game
for a particular distribution, and devise whether voters are reasonably protected in that case of
not. But the cryptographic protocol itself should be as solid as the ideal one nevertheless.

7.5 A description of the leakage in JCJ

Because of a leakage during the tally phase, the JCJ protocol does not verify Definition 21 and
is not fully coercion-resistant. In Section 7.3.1, we quantified the impact of the leakage in some
realistic scenarios; however, it is also interesting to qualify its exact.

In Definition 22, we define a weaker notion of coercion-resistance, where the votes are no
longer considered perfectly anonymous. Rather, we consider that the adversary is able to detect
when a ballot is a revote or not. More precisely, in the ideal game, we generate a pseudonym ci
for each voter i occurring in B. The first voter who votes is given pseudonym 1, the second one
is given pseudonym 2, and so on. The rest of the game is left unchanged except that at the end
(line 25 of Algorithm 119), the adversary is given an additional information, that we denote I,
which tells which ballots correspond to the same credential (invalid or not). More formally, I
is a sequence of pseudonyms, each corresponding to the voter that has voted at this step. This
is exactly what can be observed in JCJ. See Algorithm 120 for a description of the ideal game
IdealCRW . As for the real game, it is left unchanged.

Definition 22. A voting system is weakly coercion resistant if for all PPT adversary A, for all
parameters nT , t, nV , nA, nC , and for all distribution B, there exists a PPT adversary B and a
negligible function µ such that

|Pr(IdealCRW (B, λ, nV , nA, nC ,B) = 1)− Pr(RealCR(A, λ, nT , t, nV , nA, nC ,B) = 1)| ≤ µ(λ) .

Assuming that the cryptography used in JCJ is perfect (i.e. that the tally protocol is SUC-
secure), it is possible to prove that JCJ satisfies this relaxed version of coercion-resistance under
JCJ’s trust assumptions: the registration is untappable, the voting channel is anonymous, up to
a threshold t of talliers is corrupted, and the registrars are honest. In reality, the tally protocol

183

Chapter 7. Is the JCJ voting system really coercion-resistant?

Algorithm 103: IdealCRW
Requires: A, λ, nV , nA, nC ,B

1 k ←− 1;
2 A←− A(λ) (* corrupt voters *);
3 (j, α)←− A({ci; i ∈ A});
4 (* coerce a voter j who has the intention α *);
5 if |A| ≠ nA ∨ j ̸∈ [1, nV]\A ∨ α ̸∈ [1, nC]

⋃
{ϕ} then return 0 ;

6 B ←− B([1, nV]\A,nC);
7 (* samples a sequence of pairs (i, νi) with i ∈ ([1, nV]\A)

⋃
{n | n < 0} *)

8 for (i, ∗) ∈ B do
9 if ci = ⊥ then

10 ci ←− k; k ←− k + 1;

11 b
$←− {0, 1};

12 ;
13 if b = 1 then Remove all (j, ∗) ∈ B ;
14 else
15 Remove all (j, ∗) ∈ B but the last, which is replaced by (j, α) if α ̸= ϕ and removed

otherwise;

16 (νi)i∈A, β ←− A(|B|);
17 I ←− {ci; (i, ∗) ∈ B} (* in this order, with duplicates *) ;
18 if (b = 1) ∧ (β ∈ [1, nC]) then B ←− B

⋃
{(j, β)} ;

19 B ←− B
⋃
{(i, νi) | i ∈ A, νi ∈ [1, nC]};

20 X ←− count(cleanse(B));
21 b′ ←− A(X, I);
22 if b′ = b then return 1 else return 0;

184

7.5. A description of the leakage in JCJ

used in JCJ is not SUC-secure since it uses a reencryption mixnet (there is currently no known
UC-secure reencryption mixnet). Also, the PET originally used in JCJ was not verifiable when
all the participants are corrupted [MPT20]. While the fix proposed in [MPT20] is not proven
SUC-secure, we consider that proving the security of JCJ’s cryptographic primitives is out of
scope for this thesis.

Theorem 9. Under the DDH assumption and in the ROM, if the Tally protocol of JCJ is SUC-
secure, then the JCJ protocol is weakly coercion-resistant.

In Chapter 8, we present a variant of the JCJ protocol that is coercion-resistant, and prove
its coercion-resistance in Section 8.2.1. The proof of Theorem 9, is extremely similar to the proof
of Section 8.2.1. The main difference is the beginning of the proof, where the ideal result is X, I
instead of just X. Apart from that, we use the exact same transitions and arguments. Therefore,
we only provide a short proof where we reproduce the main transitions. See Section 8.2.1 for a
complete proof where each transition is justified.

Proof sketch. Consider an adversary A0 for the real game. We construct a succession of game
hops. For all i, we construct an adversary Ai and we denote Si the probability that Ai wins
Game i.

Game 1: In this game, the adversary no longer takes part into the tally process at line 24
but instead is given the output of the protocol, computed by a trusted party (i.e. the result of
each PET, the result of the reencryption mixnet and the result of the decryption).

Since we assumed that the cryptographic primitives of JCJ are perfect (i.e. SUC-secure),
there exists an adversary A1 such that |S1 − S0| is negligible.

Game 2: In this game, the adversary no longer has access to the output of the PET, the
reencryption mixnet and the final decryptions; instead it is given X, I, the final result of the
tally.

To construct A2, it is sufficient to show that one can simulate the missing outputs, given
X and I. First, using I, the adversary not only learns the number of duplicates nd, but also
the pairwise results of the PETs for all the ballots of the board. Indeed, if (C1, C2, π) and
(C ′

1, C
′
2, π

′) are two ballots of respective indexes j > i in the board, PET(C2, C
′
2) = 1 if and

only if idj = idi, where idi is the pseudonym given to the ith ballot in I. As for the mixnet,
its output can easily be simulated by using |PB| − nd random encryptions. By the IND-CPA
property of the ElGamal encryption under the DDH assumption, this leads to a computationally
indistinguishable simulation. Afterwards, to simulate the last phase where PETs are used again,
the adversary can return |X| 1s at some random positions, the remaining outputs being 0s.

Game 3: In this game, the honest voters only use their real credential for their last (re)vote.
For their previous vote, they use a random (and fake) credential instead. This, however, does
not change I, which is constructed depending on the identity of the voters and not how they
formed their ballots. This is the same transition as Game 4 in Section 8.2.1. Using the same
argument, we construct an adversary A3 such that |S3 − S2| is negligible.

Game 4: In this game, the adversary no longer has access to the roster ΠR at line 4.

Game 5: In this game, before computing the tally, we decrypt every valid ballot sent by the
adversary at lines 21 and 23. If one of these ballots uses the same credential as a ballot sent by a
honest voter (i.e. a ballot added to the board at line 22 for some (i, νi) with i ∈ [1, nV]\(A

⋃
{j}),

we abort the game and output a random bit.

185

Chapter 7. Is the JCJ voting system really coercion-resistant?

Game 6: In this game, we remove line 21 so that the adversary can no longer insert its own
ballots between two honest ballots. In other words, the adversary must send all its ballots at the
end, after every honest voter has voted.

Game 7: The final game is the ideal game.

We construct an adversary A7 which interacts with A6 by simulating Game 6. For this
purpose, A7 runs the setup and the registration honestly, by generating the secret key and the
credentials. For c̃, it uses a uniformly random credential. Then, when given |B| in the ideal game,
it forwards it to A6 which answers with a sequence of calls to Ocast. To deduce the corresponding
voting options (νi)i∈A and β, A7 creates a hashmap with the keys {ci; i ∈ A} and c̃, and values
(νi)i∈A and β which are initially ϕ (for abstention). For each valid ballot cast by A6, A7 decrypts
the ballot using the secret key and deduces (ν, c). Since the ballot is valid, by the soundness
of the ZKP, c consists of λ bits and ν is a valid voting option. If c is a key of the hashmap, it
changes the corresponding value to ν. (Otherwise, it ignores the ballot.) It plays the obtained
values in Game 7 and receives the result of the tally which it forwards to A6. Finally, it outputs
A6’s output. Remark that A7 played a perfect simulation of Game 6, so that S7 = S6.

Conclusion. With all the above transitions, we showed that for all adversary A for the real game,
there exists an adversary B for the weakened ideal game which wins with the same probability (up
to a negligible difference). By definition, this shows that JCJ is weakly coercion-resistant.

7.5.1 Generalization

Our notion of weak coercion-resistance can be adapted, in principle, to emphasize the various
qualities of coercion-resistance provided by JCJ-like schemes.

We start with the scheme presented by Araújo, Foulle and Traoré (AFT) in [AFT08]. Its
main feature is that it has a linear time complexity for the cleansing and tallying phases. While
they use different cryptographic primitives from JCJ, their scheme has a similar structure: voters
are given credentials to vote with, and can provide a fake credential to a coercer. Assuming that
the cryptography is perfect, we can analyze their leakage and compare it with that of JCJ.

During the tally, both the number of duplicates and the number of ballots which use a
fake credential are revealed, just as in JCJ. However, it is possible to deduce, by observing the
board, how many revotes each ballot has. In JCJ, this information is only available during the
tally, when it is no longer possible for the adversary to submit a ballot. In the AFT scheme,
this information is available on the fly, during the whole voting phase, and the adversary may
exploit it to submit ballots in a specific way. Consequently, the AFT scheme provides a coercion-
resistance level which is similar to Definition 22, but where I is given to A at line 16 instead of
line 21 in the ideal game. This is slightly (but strictly) weaker.

Another interesting example is Civitas [CCM08], a scheme considered as an implementation of
JCJ which has a similar level of security regarding coercion-resistance. Among the few differences
that could have an impact, we concentrate on the leakage during the cleansing and tallying
phases. Interestingly, Civitas actually leaks more information than JCJ. First, it provides the
same leakage as the AFT protocol: the number of revotes for each ballot can be directly deduced
from the board. Furthermore, in order to reduce the (quadratic) number of PETs, Civitas
proposes to group voters by blocks: each credential is publicly assigned to one block, and the
voter indicates their block in clear when casting their ballot. Compared to JCJ, the adversary
still learns how many revotes each ballot has and how many invalid ballots there is, but also
has access to this information block by block. Modeling the exact security of Civitas would

186

7.6. Discussion

require to weaken the coercion-resistance definition compared to the one we sketched for AFT.
In particular, the definition would have to take the number of blocks as a parameter, so that the
ideal game could leak a list of K information sets similar to I.

Finally, for voting schemes that are not based on JCJ, the adaptation is less immediate. For
instance, in the VoteAgain system [LQT20], the paradigm for coercion-resistance is different,
since the voters are assumed to be able to vote after the coercer. The idea of revoting is key
to the security and needs to be reflected in the definition of coercion-resistance by preventing
the adversary to vote at any time. Even though the situation is too different from what we
have presented in our work to be applied directly, the amount of information revealed during the
cleansing phase should also be carefully assessed when analyzing its resistance to coercion.

7.6 Discussion

The leakage in practice. The scenario considered in Section 7.2.1 is extreme, but illustrates
that the JCJ protocol does not provide coercion-resistance in some cases. In addition, this
scenario can occur if A and B are two candidates for similar political parties, but A benefits
for way more support than B, so that there is actually no one that votes for B instead of A
(however, there can be some other candidates). Nevertheless, A can suffer from a discredit in
the press, which can lead some of the voters to change their mind and vote for B instead, so that
all the voters that vote for B revote exactly once. Conversely, assuming that revoting is not a
well-spread behavior, none of the voters that vote for A would revote.

In general, the distribution of revotes is not independent from the final choices of the voters,
so that the coercer learns some information by observing the leakage in JCJ, and hence detect
when a voter disobeys with some non-negligible advantage. In Section 7.3, we analyze the impact
of the leakage for some realistic scenarios, and reveal that it can be significant in not-so-extreme
cases.

One could argue that in Definition 21, the adversary is supposed to know a perfect description
of the distribution B, which can be considered too much. This is a conservative assumptions
where we consider that any information which is not a secret should be available to the adversary.
In addition, to obtain the non-negligible advantages that we exhibit in Section 7.3, the adversary
does not need to know the full distribution B, but only the expected distribution of votes and
revotes, as well as their dependencies. This can be deduced by exit poll or the analysis of the
social media, where some voters indicate whether they revoted or not and what was the final
choice.

More noise is needed. A known issue of JCJ is that an unpredictable number of fake, dummy
ballots (i.e. some ballots that use an invalid credential) should be added, in order to hide to a
coercer that their ballot has been removed. Indeed, if it is usual that absolutely no ballot with a
fake credential is removed during the cleansing phase, then a coercer, who observes that exactly
one ballot is removed, would suspect that the coerced voter has provided a fake credential.

In JCJ, this “noise” comes from honest voters sending dummy ballots, but this source alone
may not be sufficient, and it is unnatural to expect that a honest voter would send a fake
ballot. A natural approach is to have the authorities add a random number of dummies. For
instance, [SKHS11] uses this to mitigate a leakage during the tally. This noise made of fake
ballots should however be calibrated carefully since the computation overhead is important. In
a context where revoting is a well spread behavior, it could be judicious to rely on revoting, at
least partially, as an additional source of noise. This is not possible in JCJ where a dummy can
be distinguished from a revote, but becomes a possibility if our solution from Section 8.1 is used.

187

Chapter 7. Is the JCJ voting system really coercion-resistant?

Considering other evasion strategies. One possibility to correct JCJ’s flaw would be to
define other evasion strategies in case of revoting. Indeed, if Alice wants to vote, JCJ’s evasion
strategy instructs her to do so exactly once. Consequently, if it is usual for everyone to revote
several times, the leakage in JCJ allows the coercer to detect that a single person voted once
without revoting, and thus that Alice disobeyed. However, it seems very hard to instruct voters
to use revoting, according to a certain distribution, when they are under coercion. As seen above,
the natural way to proceed does not work and the task is made even harder by the fact that the
strategy may evolve depending on new events that could change the revoting distribution for the
honest voters.

Hence, we propose another option (see Section 8.1) that consists in reinforcing JCJ in case
of revoting, such that there is no leakage besides the total number of ballots and the number of
valid ballots. For our proposed protocol, we prove coercion-resistance with the original evasion
strategy of JCJ. We acknowledge that the latter is not perfect; in particular, it does not allow
a voter under coercion to change their mind and revote. However, modeling a wide variety of
behaviors for the coerced voter is too complex for the time being.

188

Chapter 8

CHide: a cleansing-hiding variant of
JCJ

We propose a modification of JCJ that provides full coercion-resistance. During the tally phase,
the trustees perform the same tasks of cleansing, mixing and decrypting as in JCJ, but in a hidden
way, so that the coercer (or anyone) does not learn how many ballots were deleted because they
correspond to revotes or to invalid credentials. For this purpose, we propose a new cleansing
algorithm based on the tally-hiding toolbox.

8.1 Description of the protocol

We design CHide to be as close to the JCJ protocol as possible. In particular, we consider that
the final result of the tally consists of the list of the voting options chosen by the voters, in some
random order, which means that we do not consider Italian attacks. For the sake of the SUC
security, we propose to use a UC-secure decryption mixnet instead of the Terelius-Wikström
mixnet; see for instance [Wik04]. Alternatively, any other tally protocol can be applied. Also,
we use the same trust assumptions as in JCJ.

Setup. The setup is the same as in JCJ.
Registration. Just as for JCJ, the registrars generate nV random credentials, where nV

is the number of eligible voters. However, the credentials are generated bit by bit; in other
words, for all 1 ≤ i ≤ nV , the registrars generates λ random bits (ci,1, · · · , ci,λ) that constitute
a valid credential ci. In addition, they generate the corresponding public encryptions Ri =
(Ri,1, · · · , Ri,λ), which are added to the board as a part of the roaster ΠR = (Ri)

nV
i=1. Apart from

that, the registration is the same as in JCJ: we consider a perfect and untappable registration,
where the registrars privately send one unique valid credential to each voter.

Voting phase. In order to cast a vote for the option ν (encoded as a group element), a voter
computes C1, an encryption of ν and C2, a bitwise encryption of the credential. The neutral
element 1G (the encoding g0 of the zero bit) should not represent any voting option as it will
be used to encode the invalid voting options. The voter also produces a PoK π1 that proves the
knowledge of ν and cj for all j. To ensure a strong Fiat-Shamir transformation [BPW12], the
computation of the challenge from the commitment of the Σ-protocol must include all public
informations in the hash, such as g, pk, C1 and C2. Finally, a ZKP π2 that ν is a valid voting
option and that c1, . . . , cλ are bits must be added to prevent forced-abstention attacks which
use write-ins. The ballot (C1,C2, π1, π2) = Votepk(ν, c) is sent to the public board, using an
anonymous channel. The voters check that their ballot is present on the board; this defines the

189

Chapter 8. CHide: a cleansing-hiding variant of JCJ

verification step Check. The auditors verify that the ZKP are valid and that there is no other
ballot on the board with the same (C1,C2); this defines the verification Valid.

Cleansing phase. Just as in JCJ, only one ballot is kept per valid credential. However, the
ballots that use an invalid or a duplicate credential are not actually removed ; instead, the talliers
use the CSZ protocol to replace the corresponding C1 with an encryption of 0, which represents
an invalid voting option. This way, no one knows whether a specific ballot is removed or not, let
alone for which reason (either because the credential was invalid or used multiple times). For this
purpose, the talliers need to first compute an encrypted validity boolean for each ballot. Using
the tally-hiding toolbox, it is possible to directly adapt the JCJ cleansing phase in MPC, using
Eq instead of PET. However, the quadratic cost of JCJ would result to a large number of CSZ
protocol, which would make the MPC protocol impractical. Instead, we propose a quasi linear
approach, which relies on sorting. This means that CHide is more scalable than JCJ; however,
for an election of a typical size (i.e. about 1000 to 10000 voters), it is less efficient.

First, the talliers create a list of pairs of encrypted data (Vi,Ki)
nB+nV
i=1 , where nB is the

number of valid ballots on the board and nV the number of voters.
The first pairs come from the public board: for all 1 ≤q i ≤ nB, if (Ci

1,C
i
2, π

i
1, π

i
2) is the ith

valid ballot on the board, then Vi = C1 and Ki = (K⊥
i ,K⊤

i), where K⊥
i is a bitwise encryption

of the order of appearance on the public board and K⊤
i = C2. The order of appearance is

numbered between 0 and nB − 1; however, since we also want to encrypt the upper bound
nB, K⊥

i is encrypted using ⌈log(nB + 1)⌉ encrypted bits. For the sake of verifiability, those
encryptions use the randomness 0.

Afterwards, the remaining pairs come from the public encryptions of the valid credential, i.e.
the public roster: for all nB + 1 ≤ i ≤ nB + nV , if Ri is the (i − nB)th entry of the roster,
Vi = E0, a trivial encryption of 0, and Ki = (K⊥

i ,K⊤
i) with K⊥

i = nB
bits and K⊤

i = Ri.
The talliers then use the OddEvenMergeSort protocol to sort the list of the (Vi,Ki), in

increasing order. This has the following effect:

• First, the elements of the list are sorted according to K⊤
i , in increasing order. Hence the

ballots that use the same credential are grouped together;

• Second, the elements that have the same K⊤
i (i.e. the ballots that use the same credential)

are sort in increasing order of K⊥
i . Hence, the entry coming from the roster (if any) appears

at the end of the group and the last valid ballot cast (if any) is moved just behind.

After this step, an entry comes from a ballot with a valid credential if and only if the two following
conditions are met: 1) its K⊤

i part is the same as the one from its successor in the sorted list;
2) the K⊥

i part of its successor encodes nB. These tests can be efficiently implemented with the
MPC toolbox and we need only a linear number of them.

The Ptally protocol is more precisely presented as follows.

1. Discard all the ballots marked as invalid by the Valid procedure. Let (Ci
1,C

i
2)

nB
i=1 be the

remaining ballots, without the ZKPs. We denote ℓ = ⌈log(nB + 1)⌉.

2. For all 1 ≤ i ≤ nB, set Vi = Ci
1 and Ki = (i− 1)bits||Ci

2, where (i− 1)bits is a trivial
bit-wise encryption of i− 1 that uses ℓ bits (least significant bit first).

3. For all nB + 1 ≤ i ≤ nB + nV , set Ki = nB
bits|| = Ri−nB

and Vi = E0.

4. Sort the (Vi,Ki) in increasing order, using the keys Ki. This produces a result (V ′
i ,K

′
i)

nB+nV
i=1

and a transcript ΠSort.

190

8.2. Security proofs for CHide

5. For all 1 ≤ i < nB +nV , compute Di = Eq(K′⊤
i ,K′⊤

i+1), where K′⊤
i refers to the λ most

significant (encrypted) bits of K′
i. This produces the transcript ΠEq

i,1 .

6. For all 1 ≤ i < nB + nV , compute Fi = EqKnown(K′⊥
i+1, nB

bits), where K′⊥
i+1 refers to

the ℓ least significant bits of K′
i+1. This produces the transcript ΠEq

i,2 .

7. For all 1 ≤ i < nB + nV , replace V ′
i by CSZ(V ′

i ,And(Di, Fi)).

8. Apply a decryption mixnet on the (V ′
i)

nB+nV −1
i=1 . This produces the result of the election

as well as a verification transcript ΠMixnet.

Each step produces a transcript, published on the board, and verified by the auditors.

Evading coercion. As mentioned previously, we keep the same evasion strategy as in JCJ:
to evade coercion, a voter generates a random credential which consists of λ uniformly random
bits and gives this to the coercer. Latter, the voter uses the legitimate credential to vote (once)
for the desired voting option (or abstain).

8.1.1 Efficiency considerations

In terms of computational and communication costs, CHide is less efficient than JCJ, mainly
because the encrypted credentials are now formed by λ ciphertexts instead of a single one.

For the talliers, the cleansing phase is more complex but scales better with the number of
submitted ballots. While JCJ is quadratic, we propose a quasi-linear tally protocol based on
sorting. Another difference is that, due to the MPC toolbox, the number of communication
rounds between them is no longer constant, but slightly depends on the number of ballots and
the security parameter. Nevertheless, the task is highly parallelizable and remains affordable
for medium-size elections. Also, we mentioned that we use the mixnet of [Wik04] instead of
the one from [Wik09, TW10]. This is so that the whole tally protocol remains SUC-secure.
The complexity of [Wik04] is different from that of [Wik09, TW10] and can be more expensive;
however, it is still linear with respect to the number of ciphertexts to shuffle. Since there are
nB+nV −1 such ciphertexts to decrypt, the factor λ is no longer present and the mixing phase is
going to be way cheaper than the remaining of the cleansing phase. Hence, it is safe to consider
that the cost of the decryption mixnet is negligible compared to that of applying the toolbox.

For the voters, the computational load increases but the total cost for realistic parameters
is around a thousand exponentiations, which should be a matter of seconds with a standard
implementation in JavaScript running within a modern browser.

In Table 21, we give estimates of the number of exponentiations and of the transcript size for
both JCJ and CHide. For this purpose, we consider a number of nT = 3 talliers with a threshold
t = 2, a security parameter of λ = 128 and a number of nC = 2 voting options. We also give the
corresponding running times, based on an estimate of 5000 exponentiations per second on the
client side, and 10000 per second on the server side. This reveals that the CHide voting system
is still a realistic option for under 10000 submitted ballots, since computing the tally would take
about 9 hours if each tallier uses 128 CPU cores.

8.2 Security proofs for CHide

In this section, we prove that CHide is coercion-resistant, ensures privacy and is universally
verifiable. For this purpose, we use the same trust assumptions as in JCJ: the registrars are
supposed honest, up to a threshold of t talliers can be corrupted and the public board is honest.

191

Chapter 8. CHide: a cleansing-hiding variant of JCJ

Table 21: Number of exponentiations and transcript size in JCJ and CHide, with λ = 128.

voters # exp. estimated CPU time transcript
any JCJ CHide JCJ CHide JCJ CHide

(Vote) 27 1.4k 5.4ms 0.28s 1.1kB 58kB
10 JCJ CHide JCJ CHide JCJ CHide

(Tally) 4.26k 4.1M 0.43s 6.8min 170kB 65MB
100 JCJ CHide JCJ CHide JCJ CHide

(Tally) 380k 120M 38s 3.3h 16.0MB 1, 9GB
1000 JCJ CHide JCJ CHide JCJ CHide

(Tally) 37.5M 2.4G 1.0h 2.8d 1.59GB 39GB
10000 JCJ CHide JCJ CHide JCJ CHide
(Tally) 3.75G 41G 4, 3d 48d 158GB 668GB
100000 JCJ CHide JCJ CHide JCJ CHide
(Tally) 375G 658G 1.2y 2.1y 15.8TB 10.6TB

1000000 JCJ CHide JCJ CHide JCJ CHide
(Tally) 37.5T 9.4T 1.2× 102y 30y 1.58PB 152TB

8.2.1 Proof of coercion-resistance

The definition of coercion-resistance is given in Definition 21, based on the comparison of two
games that we reproduce below. Just as in the JCJ paper, we consider that the registration is
perfect, that the voting channel is anonymous, that up to a threshold t of talliers is corrupted,
and that the registrars are honest. Note that in Appendix E, we also give a proof of privacy for
CHide, which is similar to that of coercion-resistance.

Theorem 10. Under the DDH assumption and in the ROM, assuming a SUC-secure decryption
mixnet, CHide is coercion-resistant.

Proof. We give a succession of games such that Game 0 is the real game and Game 9 is the ideal
game. We consider a PPT A0 for Game 0. For Game i, we construct a PPT adversary Ai for this
game and we denote Si the probability that Ai wins this game. (To ease the notation, we drop
the dependency in λ when the context is clear.) For all i, we show that |Si+1 − Si| is negligible,
which proves that |S0 − S9| is also negligible.

Game 1: In this game, the adversary no longer takes part into the whole tally process at
line 24, but only in the decryption mixnet process. Instead, it is given the result of all the
conditional gates, computed by a trusted party. With a similar argument as in Theorem 6, we
can show that the cleansing phase up to the decryption mixnet is SUC-secure, so that there
exists an adversary A1 such that |S1 − S0| is negligible.

Game 2: In this game, the adversary no longer takes part in the decryption mixnet and is
instead given the result at line 25, computed by a trusted party. Since the decryption mixnet is
supposed SUC-secure, we can similarly construct an adversary A2 such that |S2−S1| is negligible.

Game 3: In this game, the adversary is no longer given the output of the conditional gates.
Just as in the transition to Game 2 in the proof of Theorem 8, under the DDH assumption and
in the ROM, there exists A3 such that |S3 − S2| is negligible.

192

8.2. Security proofs for CHide

Algorithm 104: RealCR

Requires: A, λ, nT , Ct, nV , nA, nC ,B
1 pk, (si, hi)

nT
i=1,Π

S ←− Setup(λ, nT , t);
2 (ci, πi),Π

R ←− Register(pk, nV);
3 PB←− ΠS ||ΠR;
4 A←− A(PB, {si | i ∈ Ct}) (* corrupt

voters *);
5 (j, α)←− A({ci; i ∈ A});
6 (* coerces j who has the intention α *)
7 if |A| ≠ nA ∨ j ̸∈ [1, nV]\A ∨ α ̸∈

[1, nC]
⋃
{ϕ} then return 0 ;

8 B ←− B([1, nV]\A,nC);
9 (* samples a sequence of pairs (i, νi)

with i ∈ ([1, nV]\A)
⋃
{n | n < 0} *)

10 for (i, ∗) ∈ B, i /∈ [1, nV] do
11 ci ←− Fakecred();
12 (* this captures dummy ballots *)

13 b
$←− {0, 1};

14 c̃←− cj ;
15 if b = 1 then Remove all (j, ∗) ∈ B;
16 else
17 Remove all (j, ∗) ∈ B but the last,

which is replaced by (j, α) if α ̸= ϕ
and removed otherwise;

18 c̃←− Fakecred(cj);

19 A(c̃) (* A learns c̃ *);
20 for (i, νi) ∈ B (in this order) do
21 AOcast(PB) (* casts valid ballots *);
22 PB← PB

⋃
{Votepk(ci, νi)};

23 AOcast(PB, "end for");
24 X,Π← TallyA(PB, pk, {si});
25 b′ ←− A();
26 if b′ = b then return 1 else return 0;

Algorithm 105: IdealCR

Requires: A, λ, nV , nA, nC ,B
1 ;
2 ;
3 ;
4 A←− A(λ) (* corrupt voters *);
5 (j, α)←− A();
6 (* coerces j who has the intention α *);
7 if |A| ≠ nA ∨ j ̸∈ [1, nV]\A
∨α ̸∈ [1, nC]

⋃
{ϕ} then return 0 ;

8 B ←− B([1, nV]\A,nC);
9 (* samples a sequence of pairs (i, νi)

with i ∈ ([1, nV]\A)
⋃
{n | n < 0} *);

10 ;
11 ;
12 ;

13 b
$←− {0, 1};

14 ;
15 if b = 1 then Remove all (j, ∗) ∈ B ;
16 else
17 Remove all (j, ∗) ∈ B but the last,

which is replaced by (j, α) if α ̸= ϕ
and removed otherwise;

18 ;
19 ;
20 (νi)i∈A, β ←− A(|B|);
21 if (b = 1) ∧ (β ∈ [1, nC]) then
22 B ←− B

⋃
{(j, β)};

23 B ←− B
⋃
{(i, νi) | i ∈ A, νi ∈ [1, nC]};

24 X ←− count(cleanse(B));
25 b′ ←− A(X);
26 if b′ = b then return 1 else return 0;

Figure 27: Definition of coercion-resistance. λ is the security parameter, nT the number of
talliers, t the threshold, Ct the set of the corrupted talliers, nV the number of voters, nA the
number of corrupted voters, nC the number of voting options and B the distribution.

193

Chapter 8. CHide: a cleansing-hiding variant of JCJ

Game 4: In this game, we modify the sequence B so that the honest voters no longer revote.
Instead, for all honest voter x, we replace all but the last occurrence of the form (x, ν) in B by
an occurrence of the form (x̃, ν) which uses a fresh and unique x̃ < 0. This way, the last vote
remains the same but the previous votes are replaced by a vote with a fresh, random (and fake)
credential. Note that this modification happens on the sequence B, before the voters actually
cast their votes according to this sequence.

Let nR be the number of revotes. We set A4 = A3 and argue that |S4−S3| is negligible. For
this purpose, we give a succession of hops H0, · · · , HnR such that in game Hi, we replace the
last i revotes as described above. This way, H0 is Game 3 and Hnr is Game 4. For each of these
games, we denote Wi the probability that A4 wins this game.

Now, let i be some index. We construct an adversary B for IND-PA0 as follows. First, B
receives pk from the IND-PA0 game. It simulates game Hi by giving this pk to A4 and generating
the credentials at random. It then gets (j, α) from Hi and chooses b at random. Afterwards,
B generates B from the distribution B, (j, α) and b. It then continues the simulation of Hi

by replacing the i last revotes as necessary. However, for the next remaining revote, it looks
up for the previous vote (x, ν) with the same x and generates a random, fresh credential c. It
plays (ν, cx), (ν, c) in the IND-PA0 game and gets an encrypted ballot C which it plays in the
simulation of Hi instead of a honestly generated ballot for (ν, cx) (therefore, C is added on the
board). Finally, to compute the tally, B plays the concatenation of all the valid ballots sent
by A4 in the IND-PA0 game, which returns a decryption of these ballots. Remark that due to
the nature of Valid which uses a form of weeding, a valid ballot is not already on the board.
Therefore, none of the valid ballots sent by A4 can be equal to C, so that the IND-PA0 will
indeed accept to decrypt them. B computes the result of the tally from the plaintexts and gives
it to A4 which answers with some bit b′. This is possible because every valid ballot of the board
has a valid ZKP π2, whose soundness guarantees that the corresponding plaintext (ν, c) is such
that c is a λ-bit credential and ν a valid voting option. If b = b′, B states that the IND-PA0
game encrypted (cx, ν), and (c, ν) otherwise.

Clearly, when the IND-PA0 game encrypts (ν, cx) (resp. (ν, c)), B plays a perfect simulation
of game Hi (resp. Hi+1) so that b = b′ with probability Wi (resp. Wi+1). Hence, B’s advantage
in the IND-PA0 game is |12(Wi + 1−Wi+1)− 1

2 | ≤ εPA0. By the triangular inequality,

|S4 − S3| ≤ 2nRεPA0.

Game 5: In this game, the adversary no longer has access to the roster ΠR, which contains
the encryptions of the valid credentials. We construct A5 which interacts with A4 by simulating
Game 4. For this purpose, it generates nV λ ElGamal encryptions of random bits and uses it
to simulate the roster. For the remaining of the game, it can play a perfect simulation since
both games are identical. To argue that |S5 − S4| is negligible, we construct a succession of
hop H0, · · · , HnV such that in game Hi, the last i elements of ΠR are replaced by a random
encryption. This way, H0 is Game 4 and HnV is Game 5. For each of these games, we denote
Wi the probability that A4 wins this game.

Now, let i be some index. We construct an adversary B for IND-PA0 as follows. B gets pk
from the IND-PA0 game and plays this pk to A4 to simulate Hi. It generates the credentials and
replaces the last i elements of the roster by encryptions of random bits just as in Hi. However,
for the (nV − i)th element of ΠR, it generates a second random credential c and plays the pair
(ν, cnV −i), (ν, c) in the IND-PA0 game, where ν is some valid voting option. The IND-PA0 game
answers with some encrypted ballot of the form (C1,C2, π). B retrieves the ElGamal bitwise

194

8.2. Security proofs for CHide

encryption C2 of the credential and uses it as the (nV − i)th element of ΠR instead of an honest
bitwise encryption of cnV −i. Afterwards, B continues the simulation of Hi (see the transition
to Game 4 for more details) and outputs 1 if and only if A4 wins the game.

Clearly, when the IND-PA0 encrypts (ν, cnV −i) (resp. (ν, c)), B plays a perfect simulation of
game Hi (resp. Hi+1) to A4, so that the advantage of B in the IND-PA0 game is |12(Wi + 1 −
Wi+1)− 1

2 | ≤ εPA0. By the triangular inequality,

|S5 − S4| ≤ 2nV εPA0.

Game 6: In this game, before computing the tally, we decrypt every valid ballot sent by the
adversary at lines 21 and 23. If one of these ballots uses the same credential as a ballot sent by a
honest voter (i.e. a ballot added to the board at line 22 for some (i, νi) with i ∈ [1, nV]\(A

⋃
{j}),

we abort the game and output a random bit.

Now, we set A6 = A5 and, to argue that |S6−S5| is negligible, we remark that |S6−S5| = ε/2,
where ε is the probability that we abort in Game 6. Let E be the event of an abortion. We
construct an adversary B for IND-PA0 which wins with a non-negligible advantage whenever E
occurs and wins with probability 1/2 otherwise, which shows that ε is negligible.

First, B gets pk from the IND-PA0 game and forwards it to A5. It simulate Game 5 as
in the transition to Game 4. However, it chooses a random honest voter x that would send a
ballot (if no honest voter votes, E cannot happen) and, for this voter, generates a fresh, second
random credential c. When this voter votes (which happens at most once due to the transition
to Game 4), B plays the pair (ν, cx), (ν, c) in the IND-PA0 game, where ν is the voting option
chosen by x. It gets back an encrypted ballot C, which it uses in the simulation instead of the
ballot from x. Afterwards, B gets the list of all valid ballots sent by A5 in the simulation and
plays them in the IND-PA0 game to get their decryption. If there is a ballot which uses the
credential cx (resp. c), B states that the IND-PA0 encrypted (ν, cx) (resp. (ν, c)). If there is
no such ballot, a ballot which uses c and a ballot which uses cx or if no honest voter votes, B
guesses at random.

Now, suppose that b = 0 (resp. 1) in the IND-PA0 game; in other words, that C is an
encryption of (ν, cx) (resp. (ν, c,)). Let q be the number of valid ballots sent by A5. With
probability ε, A5 managed to produce a ballot which uses the same credential as a ballot sent
by some honest voter. In this case, with probability at least 1/nH , one of the concerned honest
voter is x. Then, when B gets the decryption from the IND-PA0 game, there is a ballot of the
form (γ, cx) (resp. (γ, c)). In addition, A5 has no information about c (resp. cx) so that with
probability at least 1 − q/2λ, there is no ballot of the form (γ, c) (resp. (γ, cx)). Hence B wins
with probability at least 1 − q/2λ+1. Otherwise, no ballot uses the credential cx (resp. c) and
since the adversary has no information about c (resp. cx), the probability that a ballot uses the
credential c (resp. cx) is at most q/2λ. Therefore, the probability that B wins the IND-PA0
game is at least (1− q/2λ)/2. Overall, B’s probability to win is at least

ε

nH
(1− q/2λ+1) + (1− ε

nH
)(1− q/2λ)/2 =

1

2
+

ε

2nH
− q

2λ+1
.

Therefore, we have
ε

2nH
− q

2λ+1
≤ AdvIND−PA0

B ≤ εPA0,

hence |S6 − S5| = ε/2 ≤ nHεPA0 + qnH

2λ+1 , where q is the number of valid ballots sent by the
adversary.

195

Chapter 8. CHide: a cleansing-hiding variant of JCJ

Game 7: In this game, we remove line 21 so that the adversary can no longer insert its own
ballots between two honest ballots. In other words, the adversary must send all its ballots at the
end, after every honest voter has voted. We construct A7 which interacts with A6 by simulating
Game 6. For this purpose, A7 gets PB = (B1, · · · , Bn) at line 23 and creates a fake empty ballot
box PB′. Then, in the kth iteration of the for loop, it appends to PB′ the valid ballots output by
A6 and then Bk. The remaining of the simulation is similar to that of the transition to Game 4.

Clearly, A7 plays a perfect simulation of Game 6 if the result of the tally is the same. Besides,
the latter can only differ if the credential of a ballot sent by A6 is the same as the credential of
a ballot sent by some honest voter. In this case, both games abort with a random output and
A7’s probability to win is the same as A6’s in Game 6. Consequently, S7 = S6.

Game 8: In this game, the adversary has no longer access to the ballot box PB at line 23
but instead has |B| (which is equal to |PB|). With a similar argument as in Game 5, we construct
A8 and we have

|S8 − S7| ≤ |PB|εPA0.

Game 9: The final game is the ideal game.

We construct an adversary A9 which interacts with A8 by simulating Game 8. For this
purpose, A9 runs the setup and the registration honestly, by generating the secret key and the
credentials. For c̃, it uses a uniformly random credential. Then, when given |B| in the ideal game,
it forwards it to A8 which answers with a sequence of calls to Ocast. To deduce the corresponding
voting options (νi)i∈A and β, A9 creates a hashmap with the keys {ci; i ∈ A} and c̃, and values
(νi)i∈A and β which are initially ϕ (for abstention). For each valid ballot cast by A8, A9 decrypts
the ballot using the secret key and deduces (ν, c). Since the ballot is valid, by the soundness
of the ZKP, c consists of λ bits and ν is a valid voting option. If c is a key of the hashmap, it
changes the corresponding value to ν. (Otherwise, it ignores the ballot.) It plays the obtained
values in Game 9 and receives the result of the tally which it forwards to A8. Finally, it outputs
A8’s output. Remark that A9 played a perfect simulation of Game 8, so that S9 = S8.

Conclusion. With all the above transitions, we showed that for all adversary A for the real
game, there exists an adversary B for the ideal game which wins with the same probability (up
to a negligible difference. By definition, this shows that CHide is coercion-resistant.

8.2.2 Proof of verifiability

To formalize the notion of universal privacy, we use the approach of [CGGI14] which is presented
in Section 1.2.2. This, however, comes with a difficulty when revoting is allowed. Indeed,
if a voter’s votes are, in order, (ν1, ν2, ν3) and if the voter does not verify that each of the
corresponding ballots appear on the board when casting them, then the adversary might drop
any of those ballots and have the voter abstain, or have their vote counted as ν1, ν2 or ν3, which
technically breaks the definition since the adversary should only be able to have the vote be
counted as ν3 or nothing. Most of the existing electronic voting schemes are actually vulnerable
to this when revoting is allowed, and specific measures to enforce that the definition of [CGGI14]
is verified are yet to appear in the literature. This problem, which concerns individual verifiability,
is independent from the tally phase and whether JCJ of CHide is used. Therefore, we consider a
weaker definition where every voter systematically verifies that their ballot appears on the board.

This gives Definition 23, based on the verifiability game given in Fig. 28. In this game, the
setup and the registration are run honestly and the adversary is given the public transcripts

196

8.2. Security proofs for CHide

ΠS ,ΠR, which contains the public key pk, the public commitments (hi)
nT
i=1 on the secret shares

of the talliers and the public roster ΠR. Also, the adversary is given the secret shares of the
corrupted talliers. Afterwards, it can corrupt a subset A of the voters. Then, given the roster
and the credentials of the corrupted voters, the adversary must generate a valid bulletin board.
For this purpose, it has access to the oracle Ocast which takes as input a ballot B and adds it
to the public board if the ballot is valid. The adversary also has access to Ovote, which models
the ballots sent by the honest voters. However, Ovote modifies two inner tables H and HV. The
first one model the fact that a honest voter is supposed to check that their ballot appears on the
board. If a honest voter vote but does not check or if their check fails, they become unhappy.
The second tabular represent the state of a voter, and contains their ballot, their credential and
their chosen voting option. The adversary can have a voter i check their vote by calling Ocheck(i)
which causes the voter to initiate the Check procedure with the current state HVi of the voter
and the current bulletin board. The adversary can call Ocast, Ovote and Ocheck any (polynomial)
number of times, in any order. It then takes part into the tally to produce the result X as well
as the transcript Π. The goal of the adversary is to produce a valid X,Π which is different from
any result obtained with the sequence (i,HVi)i concatenated with another sequence (cori, αi)i,
where the cori’s are corrupted voters. In addition, all honest voter who have voted must be
happy.

We acknowledge that, in our definition, we assume that the registrar is honest, and that up
to t decryption trustees can be corrupted. Usually, one would want verifiability even if all the
talliers and the registrar are corrupted. In [CGGI14], for instance, it is assumed that either the
registrar or the bulletin board is honest. However, in JCJ-like voting systems, the registrar knows
the credential of the voter and can therefore break eligibility by voting instead of the abstaining
voters (ballot stuffing), or even change the choice of any voter by revoting with their credential
afterwards. Similarly, since an encryption of the credentials is published in the roster ΠR, if
more than a threshold t of talliers is corrupted, they can decrypt the credentials and perform
the same attacks. Therefore, it is necessary to assume that the registrar is honest and that up
to a threshold of talliers can be corrupted. Those shortcomings are already present in JCJ.

Definition 23 (Verifiability). We say that the a voting system (Setup,Register,Vote,Check,
Valid,Fakecred,Tally,Verify) is verifiable if, for all adversary A, for all parameters (nT , t, nC)
and for all subset Ct ⊂ [1, nT] of size at most t, there exists a negligible function µ such that
Pr(Ver(A, λ, nT , Ct, nC) = 1) ≤ µ(λ).

We now prove that CHide has verifiability. Despite the difference between coercion-resistance
and verifiability, there are arguments in common in the two proofs and some parts were repro-
duced verbatim.

Theorem 11. Under the DDH assumption and in the ROM, CHide is verifiable as of Defini-
tion 23.

Proof. We give a succession of games such that Game 0 is the Ver game and Game 6 is a game
which outputs 1 with negligible probability. We consider a PPT A0 for Game 0. For Game i, we
construct a PPT adversary Ai for this game and we denote Si the probability that Ai wins this
game. (To ease the notations, we drop the dependency in λ when the context is clear.) For all
i, we show that |Si+1 − Si| is negligible, which proves that |S0 − S6| is also negligible.

Game 1: In this game, the adversary no longer takes part into the whole tally process at
line 24, but only in the decryption mixnet process. Instead, it is given the result of all the
conditional gates, computed by a trusted party. With a similar argument as in Theorem 6, we

197

Chapter 8. CHide: a cleansing-hiding variant of JCJ

Ver
Inputs: A, λ, nT , Ct, nC

1 pk, (si, hi)
nT
i=1,Π

S ←− Setup(λ, nT , t);
2 1nV ←− A(ΠS , {si | i ∈ Ct});
3 {ci; i ∈ [1, nV]},ΠR ← Register(pk, nV);
4 PB←− ΠS ||ΠR;
5 A←− A(PB);
6 for i ∈ [1, nV]\A do
7 HVi ←− ⊥;Hi ←− 1;

8 AOvote,Ocast,Ocheck({ci; i ∈ A});
9 if ∃i ̸∈ A | Hi < 1 then return 0;

10 r,Π←− PA
tally(PB, {si});

11 if Verify(PB,Π, r) = 0 then return 0;
12 if ∃(cori, αi)

n
i=1 ∈ (A× [1, nC]) |

r = count(cleanse({{(i,HVi[0]) | i ∈
[1, nV]\A,HVi ̸= ⊥}}

⊎
{{(cori, αi) | i ∈

[1, n]}})) then return 0 else return 1

Ovote (updates the tabulars HV and H)
Inputs: i, ν

1 if i ∈ [1, nV]\A ∧ ν ∈ [1, nC] then
2 Hi ←− Hi − 1;
3 B ←− Votepk(ν, ci);
4 HVi ←− (ν, ci, B);
5 return B;

Ocast (updates the bulletin board PB)
Inputs: B

1 if Valid(pk,PB, B) = 1 then
PB←− PB

⋃
{B}

Ocheck (updates HV and H)
Inputs: i

1 ν, ci, B ←− HVi;
2 if Check(ν, ci, B,PB) = 1 then
3 Hi ←− Hi + 1;
4 HVi ←− ν, ci,⊥;

Figure 28: Definition of verifiability, λ is the security parameter, nT the number of talliers, t
the threshold, Ct the set of the corrupted talliers, nV the number of voters, nA the number of
corrupted voters and nC the number of voting options (excluding abstention)

198

8.2. Security proofs for CHide

0

0

1

1

2

2

3

3

Hk

4
j (# voters)

i (# votes)

Figure 29: A bijection from N to N× N

can show that the cleansing phase up to the decryption mixnet is SUC-secure, so that there
exists an adversary A1 such that |S1 − S0| is negligible.

Game 2: In this game, the adversary no longer takes part in the decryption mixnet and is
instead given the result at line 25, computed by a trusted party. Since the decryption mixnet
of [Wik04] is proven UC-secure, we can similarly construct an adversary A2 such that |S2 − S1|
is negligible.

Game 3: In this game, the adversary is no longer given the output of the conditional gates.
Just as in the transition to Game 2 in the proof of Theorem 8, under the DDH assumption and
in the ROM, there exists A3 such that |S3 − S2| is negligible.

Game 4: In this game, we create a secret internal state Credi for each voter. It contains
a sequence of credentials which is initially [ci], where ci is i’s credential. In addition, we also
modify Ovote so that it uses the last element of Credi instead of ci. It also generates a fresh
random credential c which is added at the end of Credi, so that the next instance of Ovote with
the same voter will use this new credential instead of the old one. (In case if c is a collision
with another voter, we pick another random credential.) Finally, we change the way the result
of the tally r is computed. Now, we decrypt each valid ballot of PB into a couple (ν, c). For
each such couple, we look for a voter i such that c appears in the sequence Credi and we set i’s
vote as ν (since there is no collision, there may be up to one such voter). Finally, we deduce r
by evaluating count on the voters’ votes.

To construct A4 and show that |S4 − S3| is negligible, we use a hybrid argument with G1

as Game 3 and G2 as Game 4. This hybrid argument needs to cover two dimensions since the
adversary chooses both the number of revotes and the number of voters, which can be at most
polynomial. Hence, we use a bijection from N to N2 that travels the grid N × N diagonal by
diagonal, as illustrated in Fig 29. For k ∈ N, we denote i(k), j(k) the corresponding elements in
N×N. Now, we define H0 as G2, so that the first condition of the hybrid lemma is verified. Then,
for k ≥ 1, we define Hk as Hk−1, except that the i(k)th vote of the j(k)th voter uses a fresh new
credential, as explained above (the subsequent votes use the last generated credential). Remark
that, if nV is the number of voters and nR the maximum number of times a voter revotes, for
nA = (nV + nR)

2, we have that HnA is perfectly indistinguishable from G1, which means that
the second condition of the hybrid lemma is verified.

199

Chapter 8. CHide: a cleansing-hiding variant of JCJ

Now, for all adversary Ak+1 for Hk+1, we consider the same adversary Ak for Hk; similarly,
for all Ak for Hk, we consider the adversary Ak+1 = Ak for Hk+1, so that the third condition of
the lemma is met. For the fourth condition, we will consider the IND-PA0 game.

Finally, we construct the adversary B for IND-PA0 as follows. Let k be some index and Ak+1

be an adversary for game Hk+1. We denote i = i(k) and j = j(k). The adversary B gets pk from
the IND-PA0 game and uses this to simulate an instance of Hk+1 to Ak+1. For this purpose,
it generates {si | i ∈ Ct} at random, computes the corresponding hi and generates (hi)i ̸∈Ct by
Lagrange interpolation, so that pk, (si, hi)

nT
i=1 follows the same distribution as in the verification

game. Then, B runs the registration honestly and creates PB,HV,H and Cred, that it will update
according to the answers of Ak+1. It will also simulate the oracles Ovote,Ocast,Ocheck.

The ith time Ovote is called with voter j (let ν be the corresponding voting option), B retrieves
the last credential c used by j from Credj and generates a new, fresh credential c′ that it adds
to Credj as in Hk+1. However, instead of computing Votepk(ν, c′), B plays (ν, c), (ν, c′) in the
IND-PA0 game and uses the answer C⋆ as the output of Ovote. At some point, A3 terminates
and B must decide whether the IND-PA0 game encrypted (ν, c) or (ν, c′). For this purpose, B
uses PB, the list of the ballots cast by Ak+1. If C⋆ ∈ PB, B removes it from PB but keeps in
memory its index. For the remaining ballots, B decrypts them using the decryption oracle of the
IND-PA0 game. Thanks to the result of the decryptions, B can decide whether Ak+1 won the
game or not. In this case, B states that (ν, c) was encrypted; otherwise, it states that (ν, c′) was
encrypted.

Clearly, when (ν, c) is encrypted, B plays a perfect simulation of Hk to Ak+1 and, when
(ν, c′) is encrypted, B plays a perfect simulation of Hk+1. Therefore, by the hybrid argument,
we deduce that there exists an adversary A4 = A3 such that |S4 − S3| is negligible.

Game 5: In this game, the public roster roster πR is no longer added to the public board,
and therefore no longer given to the adversary at line 5.

To construct A5 and argue that |S5−S4| is negligible, we use another hybrid argument. This
time, the idea is to remove the ciphertexts of the public roster one by one. More precisely, we
define G1 as Game 4, G2 as Game 5, and, for i ∈ N, Hi as G2, except that the i first entries of the
public roster (an entry consists of λ ciphertexts, where λ is the security parameter) are given to
the adversary. If Ai+1 is an adversary for Hi+1, we construct Ai as an adversary which forwards
the i first entries of the public roster that it gets from Hi, and uses λ random encryption of
random bits as the (i+ 1)th entry of the roster. This way, Ai+1 makes P additional transitions,
where P is a polynomial that corresponds to the cost of generating λ ciphertexts.

Now, we construct the adversary B for IND-PA0 as follows. Given i and Ai+1, B gets the
public key pk from the IND-PA0 game and uses this to simulate Hi+1 to Ai+1. However, for
the (i+1)th entry of the public roster, instead of a honestly generated bitwise encryption of the
credential c, B generates a random voting option ν, a random credential c′ and plays the couple
(ν, c′), (ν, c) in the IND-PA0 game, where c′ is c. It gets a challenge ciphertext C⋆ from which
it extracts the C2 part, which it uses as the (i + 1)th entry of the public roster. At the end of
the simulation, B uses the decryption oracle of the IND-PA0 game to decrypt the ballots sent by
Ai+1, and learn whether Ai+1 wins the simulation or not. It outputs 1 if and only if Ai+1 wins
the simulation.

Remark that, when the IND-PA0 game encrypts (ν, c), B plays a perfect simulation of game
Hi+1 to Ai+1. In addition, when the IND-PA0 game encrypts (_nu, c′), B played Ai’s simulation
of Hi+1 to Ai+1. Once again, all the conditions of the hybrid lemma are met.

200

8.2. Security proofs for CHide

Game 6: In this game, before computing the result, we decrypt every valid ballot of PB
which is not the output of some Ovote. If one of these ballots uses the same credential as a ballot
output by Ovote, we abort the game and output a random bit.

Now, we set A6 = A5 and, to argue that |S6−S5| is negligible, we remark that |S6−S5| = ε/2,
where ε is the probability that we abort in Game 6. Let E be the event of an abortion. We
construct an adversary B for IND-PA0 which wins with a non-negligible advantage whenever E
occurs and wins with probability 1/2 otherwise, which shows that ε is negligible.

First, B gets pk from the IND-PA0 game and uses it to simulate Game 5 to A5. However,
it chooses a random instance of Ovote (let (x, ν) be its inputs) and, for this instance, generates
two random credential c, c̃. B plays the pair (ν, c), (ν, c̃) in the IND-PA0 game, and gets back
an encrypted ballot B, which it uses in the simulation as the output of Ovote. Afterwards, B
removes from PB any ballot output by Ovote (including B) and plays PB in the IND-PA0 game
to get the decryption of the remaining ballots. If one uses the credential c (resp. c̃), B states
that the IND-PA0 encrypted (ν, c) (resp. (ν, c̃)). If there is no such ballot or if there is a ballot
which uses c and a ballot which uses c̃, B guesses at random.

Now, suppose that b = 0 (resp. 1) in the IND-PA0 game; in other words, that B is an
encryption of (ν, c) (resp. (ν, c̃)). Let qv be the number of (valid) calls to Ovote and qc be the
number of ballots from PB which are not an output of Ovote. With probability ε, A5 managed to
produce a ballot which uses the same credential as a ballot output by Ovote. In this case, with
probability at least 1/qv, one of the concerned ballot is B. Then, when B gets the decryption
from the IND-PA0 game, there is a ballot of the form (γ, c) (resp. (γ, c̃)). In addition, A5 has
no information about c̃ (resp. c) so that with probability at least 1− qc/2

λ, there is no ballot of
the form (γ, c̃) (resp. (γ, c)). Hence B wins with probability at least 1− qc/2

λ+1. Otherwise, no
ballot uses the credential c (resp. c̃) and since the adversary has no information about c̃ (resp.
c), the probability that a ballot uses the credential c̃ (resp. c) is at most qc/2

λ. Therefore, the
probability that B wins the IND-PA0 game is at least (1− qc/2

λ)/2. Overall, B’s probability to
win is at least

ε

qv
(1− qc/2

λ+1) + (1− ε

qv
)(1− qc/2

λ)/2 =
1

2
+

ε

2qv
− qc

2λ+1
.

Therefore, we have
ε

2qv
− qc

2λ+1
≤ AdvIND−PA0

B ≤ εPA0,

hence |S6−S5| = ε/2 ≤ qvεPA0+
qcqv
2λ+1 , where qv is the number of calls to Ovote and qc the number

of ballots in PB which are not an output of Ovote.

Conclusion. Now, remark that due to the nature of Ovote which overwrite HV, it is clear
that the adversary must call Ocheck(i) between each call of Ovote with the same voter i, otherwise
Hi < 1 at line 9. Also, it is also necessary for the adversary to call Ocast(B) before Ocheck(i),
where B is the output of Ovote(i, ν) (otherwise Ocheck does not modify HV. Note that due to
the randomness involved in Vote, except with negligible probability µ, the adversary cannot call
Ocast(B) before Ovote(i, ν) (at which point it has no information about B). Therefore, the order
of the revotes of each voter is enforced in PB and, because of the last transition and the nature
of the tally, we readily have that the condition at line 12 always result in a 0 output. Therefore,
|S6| ≤ µ, which concludes the proof.

201

Chapter 8. CHide: a cleansing-hiding variant of JCJ

8.3 Conclusion

We showed that it is possible to correct the flaw of the JCJ protocol and to achieve coercion-
resistance as defined in Definition 21. Coercion typically appears in a high stake election, with
a politically-binding result that can durably affect the future of a country. For such an election,
the priority is the security, and it is not a possibility to tolerate a flaw such as that of JCJ,
especially when it can be devastating in some cases. The CHide protocol, although less efficient
than the typical electronic voting protocol, allows to address the vulnerability of JCJ. Since
coercion is considered as an important threat for many governments, it is not far-fetched that,
for a high-stake election, a government may be willing to pay the cost of CHide in order to
achieve coercion-resistance. Indeed, CHide’s efficiency, although not better than JCJ’s, is still
practical as it is possible to obtain the result within a day, for less than 3$ per voter. In addition,
just as many subsequent schemes focused on improving the scalability of JCJ, it is possible that
CHide’s efficiency may be improved in future works.

The efficiency considerations, as important as they are, are not the main reason why no
coercion-resistant mechanism has been deployed for a politically binding election, other than the
revoting paradigm. For the time being, the JCJ protocol, as well as CHide, are still academic
proposals that are difficult to apply in practice. For instance, they suppose that the voters are
able to correctly handle their credential and use the evasion strategy when under coercion. In
addition, the trust assumptions where all the registrars are supposed honest can be considered
not acceptable: to extend the verifiability and the privacy in a case where some (but not all)
registrars can be corrupted, the usual strategy is that of Civitas [CCM08], which requires the
voters to have a well-identified public key and to be able to generate a DVZKP when under
coercion. Overall, those “practical” difficulties are far more concerning than the fact that CHide
requires a bit more computational power.

202

Chapter 9

Traceable encryption for verifiable
receipt-free electronic voting

In previous chapters, we studied the notion of coercion-resistance, where the adversary can ask
the voter to vote in a specific way, using a threat or a reward. A related security notion is
that of receipt-freeness, where the voter actively tries to convince a third party (typically the
adversary) that they voted in a specific way. In receipt-freeness, it is usual to consider that
the adversary might be a vote buyer, i.e. that it gives the voter some specific instructions to
follow, just as in coercion-resistance. However, the main difference is that we do not consider
forced-abstention attacks and that, in receipt-freeness, the adversary cannot ask the voter to
give away their credential. Hence, receipt-freeness is often considered as a weaker version of
coercion-resistance, but that still addresses the threat of vote buying.

There are various approaches to achieve receipt-freeness. One of the first strategies was, for
each voter and each voting option, to prepare an encryption in advance so that the voter cannot
use a specific randomness to obtain a receipt [SK95, HS00]. However, this requires a lot of
precomputation. In particular, when there are too many voting options, as this is the case with
preferential voting, this solution may not be practical. A second approach is based on deniable
revoting, where the voter can prove that their ballot contains a specific voting option, but is also
given the possibility to revote. This way, the vote buyer does not know whether the ballot was
canceled by a subsequent ballot or not. In this context, it is important to hide the number of
revotes for each voter. Otherwise, the vote buyer can use a strategy known as the “1009 attack”,
which consists of instructing the voter to vote 1009 times (or any unlikely number, which may
be different for each voter). Then, if the voter revotes to cancel the last vote, the attacker may
notice that no one actually voted 1009 times. Interestingly, we showed in Chapter 7 that it is
also important to conceal the number of revotes per voter, in the context of coercion-resistance.
Schemes that prevent the 1009 attack are, for instance, [LHK16] and VoteAgain [LQT20]. Finally,
the rerandomization paradigm consists of letting the voters cast their ballot as usual. However,
the ballot is sent to a rerandomization server, which is trusted for the purpose of receipt-freeness.
The server rerandomizes the ballot, so that it becomes indistinguishable from a random ballot.
This way, even if the ballot was created maliciously, it is no longer possible to prove that the
ballot contains a specific voting option. Nevertheless, the voter still has a guarantee that the
content of the ballot has not been modified. Some examples of academic proposals based on this
strategy are, for instance [Hir10], [BFPV11] and BeleniosRF [CCFG16].

In [DPP22b], Devillez, Pereira and Peters introduce the notion of traceable encryption, which
augments the notion of encryption scheme with some additional properties related to rerandom-

203

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

ization. When those properties are verified, they show that it is possible to achieve receipt-
freeness with very few assumptions about the voting protocol. This allows considering regis-
tration and eligibility independently from receipt-freeness, which gives more modularity to the
protocol design compared to BeleniosRF. In particular, it means that a more generic purpose
secret key can be used for the sake of eligibility. For instance, the voters may identify themselves
through their health insurance or an electronic identity card, such as the one used in Estonia. In
this context, it is plausible that a voter might not be willing to give away their secret credential,
as it might be used for other purposes than voting (for instance, to get a loan or a mortgage).
By contrast, it is more difficult to argue that the voter might not be willing to give away a short
term secret such as the one used in BeleniosRF.

The present chapter is a follow-up of [DPP22b], made in collaboration with Henri Devillez,
Olivier Pereira and Thomas Peters. We remark that the construction of [DPP22b], compared to
that of [CCFG16], allows vote buying: a vote buyer can give some instructions that the voter
can follow to produce a convincing receipt. We come to the conclusion that the definition of
receipt-freeness used in [DPP22b] has a shortcoming and does not properly model vote buying.
Therefore, we propose a new definition of receipt-freeness, that is presented in Section 9.1.
Just as the definition of [DPP22b], ours considers that the registration phase and the eligibility
mechanism are independent from receipt freeness. To satisfy our definition, we adapt the voting
scheme from [DPP22b]; the new voting scheme is presented in Section 9.6. Compared to the
solution of [DPP22b], our construction does not allow vote buying, even if the adversary can
give an arbitrary instruction to the voter. It also uses a new traceable encryption scheme, which
is compatible with 0/1 proofs (as it is often required in electronic voting) and uses a public coin
setup protocol, that needs fewer trust assumptions compared to that of [DPP22b]. Compared to
the encryption scheme used in BeleniosRF, ours has an encryption and a decryption algorithm
which have a linear complexity with respect to the bitlength ℓ of the plaintext (e.g., the number
of choices in a multiple choices question), while the decryption algorithm used in BeleniosRF
requires an exponential number of group operations (with respect to ℓ). Our traceable encryption
scheme is presented in Section 9.4. Finally, we also investigate the possibility to adapt the voting
scheme to allow cast-a-intended verification, using the Benaloh challenge (see Section 9.7). In
this collaboration, my main contribution was during the design of the new definition of receipt-
freeness, the proposed voting protocol and the corresponding security proofs. By contrast, I was
not involved in the design of the new traceable encryption scheme, nor in the implementation
available at [tre].

Contents
9.1 Our definition of receipt-freeness 205

9.1.1 Existing definitions . 205
9.1.2 Modeling vote buying . 206

9.2 Introduction to traceable encryptions 209
9.2.1 Definition . 209
9.2.2 Security notions for verifiable receipt-free voting 210

9.3 Building blocks . 211
9.3.1 Bilinear pairings . 211
9.3.2 Linearly Homomorphic Structure-Preserving Signatures 212
9.3.3 The Groth-Sahai proof system . 214

9.4 Construction of a traceable encryption scheme 216
9.5 Security proofs for our traceable encryption scheme 218

204

9.1. Our definition of receipt-freeness

9.5.1 Verifiability . 218
9.5.2 Traceability . 221
9.5.3 TCCA security . 224

9.6 Application to verifiable receipt-free electronic voting 228
9.6.1 A voting scheme based on a traceable encryption 228
9.6.2 Implementation . 230
9.6.3 Receipt-freeness . 231

9.7 Adapting the scheme to provide cast-as-intended verification . 233
9.7.1 Adapting our scheme for the Benaloh challenge 234
9.7.2 On the fly cast-as-intended verification 236

9.8 Conclusion . 237

9.1 Our definition of receipt-freeness

Our first contribution is to provide a new definition of receipt-freeness. Compared to existing
definitions, it is closer to the notion of coercion-resistance and better addresses the threat of
vote-buying.

9.1.1 Existing definitions

There are numerous definitions of receipt-freeness in the literature. For instance, [KZZ15] gives
a game-based definition to capture both privacy and receipt-freeness. However, this definition
considers that the voter uses the expected algorithm to cast a ballot, so that the Helios voting
protocol can be considered receipt-free as of their definition. By contrast, if the voter uses a
malicious algorithm to cast a ballot in Helios, they can keep in memory the randomness used
to encrypt the vote, which can be used as a receipt to prove to a third party that their ballot
contains a specific voting option.

In BeleniosRF [CCFG16], which proposes to adapt the BPRIV definition from [BCG+15b] to
account for receipt-freeness, no assumption is made about how the voter may send their ballot.
On the contrary, it considers that the ballot is provided by the adversary, so that the latter
may know the randomness used to encrypt the ballot. However, compared to the definition of
Kiayias et al., the definition of Chaidos et al. does not account for the possibility that the voter
may be given a receipt during the voting phase (for instance through the individual verifiability
mechanism). In addition, the definition supposes that the adversary can only provide a ciphertext
to the voter, and not just any instruction. This may be restrictive, as it rules out schemes such
as [SK95, HS00], where the voters do not create the ciphertexts themselves (rather, the ciphertext
is provided by the voting authorities).

In [DPP22b], a variant of the definition of BeleniosRF is used, which makes fewer assumptions
on the registration phase. However, it makes more assumptions on the instructions provided by
the adversary, which is questionable. In particular, even if their definition is verified, it is possible
for the adversary to provide a specific ballot to the voter (that contains the desired voting option),
so that the adversary knows exactly if the voter casts this ballot or another ballot. Intuitively,
the definition of [DPP22b] captures a less generic version of receipt-freeness, which considers a
purely passive adversary, that does not give any instruction to the voter.

Finally, we mention that there exists formal definitions (e.g., [DKR06]), or simulation-based
definitions (e.g., [MN06]). However, we prefer to focus on game-based definitions.

205

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

• In receipt-freeness, the adversary does not monitor or interact with the voter;

• In particular, coercion-resistance considers forced-abstention attacks and usually requires
an anonymous channel, which is not the case for receipt-freeness;

• In receipt-freeness, we do not consider that the adversary threatens the voter: a voter that
fails to convince the adversary will not be punished;

• In particular, the voter may be willing to fool the adversary in order to gain money, as
they have nothing to lose;

• In receipt-freeness, we do not consider that the adversary may ask the voter to provide
their voting credential; instead, it may give some explicit instructions to follow.

Figure 30: The main differences between coercion-resistance and receipt-freeness.

9.1.2 Modeling vote buying

To model vote buying, we consider a situation where an adversary, the vote buyer, runs the web-
site voteselling.onion, where a voter can download (or read) some instructions, say instructions.exe
(or instructions.txt). The instructions may be different for each voter, and generated after the
voter registers in the website by providing a username and a password. In addition, since the
adversary can wait until all the public information are available before releasing the website, the
instructions can depend, for instance, on the public encryption key. To simplify the study, we
consider that the instructions can be modeled as a deterministic Turing machine I. In addition,
we also consider that I is compatible with the voting protocol, i.e. that the voter can use I to
successfully cast a ballot. In other words, the voter can use I() to get the first message to send
during the Vote protocol; then, given the answer a of the server, the voter can use I(a) to get the
second message to send and so on. We assume that, this way, all the messages sent by the voter
are considered valid by the server. When the voter follows the instructions, they get a receipt
s, which is an arbitrary string of polynomial size (for instance, the randomness used to encrypt
the ballot). Typically, s can be seen as the final output of I, and can depend on any feedback
that the voter gets from the voting protocol.

Once the voter gets s, they can upload it on voteselling.onion. Then, given s and the access to
the public ballot box, the vote buyer decides whether the voter actually followed the instructions
or not. If so, they reward them (how exactly is not relevant).

Our scenario models the threat of vote buying and is close to that of coercion that we studied
in the previous chapters. However, there are some differences that we highlight in Fig. 30.

We now give our definition of receipt-freeness, which is designed to capture the above scenario.
This definition is adapted from the BPRIV definition [BCG+15b], which means that it requires
the voting system to have strong-correctness and strong consistency (see Section 1.3.2). In
particular, there exists an efficient algorithm Extract such that, for all honestly generated ballot
B of the form Votepk(ν, id) (where ν is a voting option and id is the identity of the voter), we
have Extractsk(B) = (id, ν). Note that to match the notations of Bernhard et al., we consider
that the voting process takes as input the voting option and the identity rather than the voting
option and the credential. This means that we consider that receipt-freeness must be achieved
independently of the eligibility mechanism, and explains why the definition does not feature a

206

9.1. Our definition of receipt-freeness

registration protocol.
To capture receipt-free voting systems that are based on the rerandomization paradigm,

we consider that the voting protocol is an interactive protocol between the voter, the server
(denoted RS) and the public board. If V is the process of the voter id, we use the notation
s,B ←− Vote(id, V,RS,PB) to express that the voting protocol resulted in the production of
the ballot B and the receipt s for the voter (s can be the empty string, a string maliciously
obtained by the voter, or any evidence that the voting protocol ended successfully). Note that
B might have been rerandomized by the server. If ν is a valid voting option, we use the notation
s,B ←− Vote(id, ν,RS,PB) to express that the voter honestly followed the specifications of the
voting protocol to vote for ν.

Finally, as explained above, we consider that the adversary can give some instructions to the
voter, that we model as a Turing machine I. However, I must be compatible with the voting
protocol, which means that if the voter runs I instead of V , the messages sent by the voter
during the voting protocol are valid. We say that the adversary A is non-restrictive if they only
give compatible instructions.

Definition 24 (Receipt-freeness). A voting system (Setup,Vote,Check,Valid,Tally,Verify) that
has strong-correctness and strong-consistency has receipt-freeness if there exists two algorithms
SimSetup, SimProof, a PPT D and a negligible function µ such that:

• for parameters nT , t and all non-restrictive PPT A, we have∣∣∣Pr(Exprf-0(λ,A) = 1
)
− Pr

(
Exprf-1(λ,A) = 1

)∣∣∣ ≤ µ(λ),

where Exprf-b is defined in Figure 31;

• for all voter id, for all compatible instruction I (i.e. s.t. if s,B ←− Vote(id, I,RS,PB),
then Valid(B,PB) = 1) and all voting option ν, if (s,B) ←− Vote(DI(ν),RS,PB), then
Valid(B,PB) = 1 and Extractsk(B) = (id, ν).

Just as in [CCFG16], we define receipt-freeness using an experiment Exprf-b, where the bit b
must be guessed by the adversary. The intuition is that when b = 0, the protocol is ran honestly
and the voter follows the instructions of the vote buyer. When b = 1, however, the voter votes
according to their own preference but still gives the adversary a receipt. This is possible thanks
to the deceiving algorithm D, which allows the voter to not only produce a ballot that looks like
the one cast when following the instructions, but also to generate a deceiving receipt. Hence,
if the adversary is unable to guess b with a non-negligible advantage, it means that the voter
cannot convince the adversary that they followed the instruction instead of applying the deceiving
strategy. Alternatively, it also means that the voter might as well vote with the desired voting
option and still try to convince the vote buyer in order to gain the reward.

A key element in this definition is that, when b = 1, the tally is simulated so that the result of
the election is the same whatever the value of b, just as in the BPRIV definition. Consequently,
during the experiment, the adversary cannot use any information from the tally to infer whether
the voter obeyed or not. To simulate the tally, we stick to the setting of [BCG+15b] and we
require that there exists a couple of PPT (SimProof, SimSetup). In this thesis, we mostly rely
on the ROM, so that SimSetup is not required to simulate the proofs. In the standard model,
however, it is usual that the ZKP can only be simulated using a trapdoor τ generated during
the setup.

During the experiment, the adversary has access to several oracles. Ocast allows the adversary
to cast a valid ballot B in both boards. In the BPRIV definition, the validity is only verified

207

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

Exprf-b(λ,A)
1 PB1 ←− ∅; PB2 ←− ∅;
2 pk, sk, τ ←− Oinit(λ, nT , t);
3 AOcast,Oboard,OvoteLR,OreceiptLR(pk);
4 r,Π←− Otally();
5 b′ ←− A(r,Π);
6 if b′ = b then return 1 else return 0;

Oinit(λ, nT , t)

1 τ ←− ⊥;
2 if b = 0 then
3 pk, sk, (hi, si)i,_←− Setup(λ, nT , t);

4 else
5 pk, sk, (hi, si)i, τ ←− SimSetup(λ, nT , t);

6 return pk, sk, τ ;

Ocast(B)

1 if Valid(B,PB0) = 1 and Valid(B,PB1) = 1
then

2 Append(PB0, B); Append(PB1, B);

Oboard()

1 return PBb;

OvoteLR(id, ν0, ν1)

1 if ν0 ̸∈ V or ν1 ̸∈ V then return ⊥;
2 s0, B0 ←− Vote(id, ν0,RS,PB);
3 s1, B1 ←− Vote(id, ν1,RS,PB);
4 Append(PB0, B0); Append(PB1, B1);

OreceiptLR(id, I, ν)

1 if ν ̸∈ V then return ⊥;
2 s0, B0 ←− Vote(id, I,RS,PB);
3 s1, B1 ←− Vote(id,DI(ν),RS,PB);
4 Append(PB0, B0); Append(PB1, B1);
5 return sb;

Otally()

1 r0,Π0 ←− Tally(PB0, sk);
2 Π1 ←− SimProof(PB1, r0, τ);
3 return r0,Πb;

Figure 31: The receipt-free experiment and its oracles, where V is the set of the voting options.

208

9.2. Introduction to traceable encryptions

with respect to the current board PBb; however, this leads to a definition glitch as discussed in
Section 1.3.2.

The oracle OvoteLR(id, ν0, ν1) is similar to that of the BPRIV definition, and causes the honest
voter id to vote with the voting option ν0 when b = 0 and ν1 when b = 1.

The oracle OreceiptLR(id, I, ν) takes as input a honest voter id, a compatible instruction I and
a voting intent ν. When b = 0, id follows the instruction I which leads to the creation of a
ballot B0 with the receipt s0. Note that since we only consider compatible instructions, B0 is
necessarily a valid ballot. Also, recall that the ballot is created in interaction with the server,
and might be a rerandomized version of a ballot sent by the voter. Hence, when the voter follows
the instructions, they actually act as a dummy router that forwards the messages produced by
I (seen as a Turing machine) to RS and the other way around. When b = 1, however, the voter
runs the deceiving algorithm D in interaction with I, and votes with the voting option ν.

Finally, the oracle Otally is similar to that of the BPRIV definition: it computes the result
(r,Π) of the tally with respect to the board PB0 and return r,Πb where Πb is either Π when
b = 0 or a simulated transcript when b = 1.

9.2 Introduction to traceable encryptions

To achieve receipt-freeness, we propose to use the notion of traceable encryption, introduced
in [DPP22b]. Indeed, a traceable encryption scheme can provide various security properties that
are useful in the context of verifiable receipt-free voting. In this section, we give all the definitions
related to traceable encryptions.

9.2.1 Definition

A traceable encryption is a public key encryption scheme (Gen,Enc,Dec), augmented with the
additional algorithms (LGen,LEnc,Trace,Rand,Ver), where:

• LGen(pk) is the link generation algorithm, which generates a random link key lk.

• LEncpk(lk,m, r) is the linked encryption algorithm, which outputs an encryption C of the
plaintext m, obtained with the randomness r.

• Tracepk(C) is the tracing algorithm, which outputs the trace of a ciphertext C.

• Randpk(C, r) is the rerandomization algorithm, which outputs a rerandomization C ′ of the
ciphertext C, obtained with the randomness r.

• Verpk(C) is a verification algorithm, which outputs either 0 or 1.

Intuitively, when a voter wants to cast a ballot for a voting option m, they first generate a
random link key lk using LGen, then use LEnc to encrypt m. This produces a ciphertext C, which
is rerandomized into C ′ by the server. Then, the voter can verify that Tracepk(C ′) = Tracepk(C),
so that it gains some guarantee that C ′ contains the same plaintext m, unless the server managed
to find lk. Since the voter knows lk, however, the voter is able to forge a ciphertext Cv such
that Tracepk(Cv) = Tracepk(C) for any voting option v, hence this guarantee cannot be used to
convince a third party that the ballot contains a specific voting option. Just as any encryption
scheme, a traceable encryption must verify some correctness properties.

Definition 25 (Correctness). A tuple (Gen,Enc,Dec,LGen,LEnc,Trace,Rand,Ver) has cor-
rectness if:

209

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

• For all key pair (pk, sk) output by Gen, for all plaintext m and all randomness r, we have
Decsk(Encpk(m, r)) = m.

• The algorithm Encpk(m, r) consists of first sampling a random lk with LGen, then comput-
ing LEncpk(lk,m, r).

• For all public key pk, for all link key lk, for all plaintexts m0,m1 and all randomness
r0, r1, Tracepk(LEncpk(lk,m0, r0)) = Tracepk(LEncpk(lk,m1, r1)). This is the link traceabil-
ity property.

• For all key pair (pk, sk), for all ciphertext C, for all randomness r, we have Decsk(C) =
Decsk(Randpk(C, r)) and Tracepk(C) = Tracepk(Randpk(C, r)). This is the publicly trace-
able rerandomization property.

• For all public key pk, for all plaintext m and for all randomness r, Verpk(Encpk(m, r)) = 1.

We note that the link traceability property ensures that the trace of a ciphertext does not
depend on the message that is encrypted: intuitively, this means that the link key cannot be
used as a receipt by a malicious voter.

9.2.2 Security notions for verifiable receipt-free voting

In electronic voting, encrypting the voting options is not sufficient to obtain privacy. Indeed, we
already mentioned that the encryption scheme must provide some additional security properties,
such as NM-CPA security. Similarly, using a traceable encryption is not enough to obtain receipt-
freeness. For this purpose, [DPP22b] introduces several security properties which are verifiability,
TCCA security, traceability and strong rerandomization. Compared to the original definition of
verifiability, this thesis uses a slightly weaker version, as it is sufficient for our purpose.

Definition 26 (Verifiability). A traceable encryption is verifiable if, for every efficient adver-
sary A, the probability Pr ((pk, sk)← Gen(λ);C ← A(pk, sk); Verpk(C) = 1 ∧Decsk(C) ̸∈P) is
negligible in λ, where P is the plaintext space.

In the context of electronic voting, the public verifiability of the encryption scheme allows to
ensure that an encrypted ballot indeed contains a valid voting option.

Definition 27 (TCCA). A traceable encryption scheme is secure against traceable chosen-
ciphertext attacks (TCCA-secure) if, for all PPT adversary A, the advantage of A in the ex-
periment defined in Algorithm 106 is negligible in λ.

The TCCA-security game can be read as follows. First, a random key pair (pk, sk) is gen-
erated by the challenger, and the adversary is given the public key. In addition, it has access
to a decryption oracle, which can decrypt any well-formed ciphertext (i.e. an element C s.t.
Verpk(C) = 1). With this oracle, the adversary must output two valid ciphertexts C0 and C1

that share the same trace, and the challenger rerandomizes one of them at random, yielding the
challenge ciphertext C⋆. At this point, the adversary must guess whether C0 and C1 has been
rerandomized; for this purpose, it can make queries to the decryption oracle ODec⋆ . Similarly
to ODec, this oracle can only decrypt valid ciphertexts; however, it cannot decrypt a ciphertext
that has the same trace as C⋆.

The intuition is that if the traceable encryption scheme is TCCA, then even if one is instructed
to submit a specific ciphertext C1, the rerandomization C⋆ of C1 is indistinguishable from that
of any other ciphertext C0, provided that C0 and C1 have the same trace.

210

9.3. Building blocks

Algorithm 106: Exptcca(λ,A)
1 pk, sk←− Gen(λ);
2 C0, C1 ←− AODec(pk);

3 b
$←− {0, 1};

4 if Tracepk(C0) ̸= Tracepk(C1) or
Verpk(C0) = 0 or Verpk(C1) = 0 then
return b;

5 r
$←− R;

6 C⋆ ←− Randpk(Cb, r);
7 b′ ←− AODec⋆ (C⋆);
8 if b = b′ then return 1 else return 0;

Algorithm 107: Exptrace(λ,A)
1 pk, sk←− Gen(λ);
2 m←− A(pk, sk);

3 r
$←− R;

4 C ←− Encpk(m, r);
5 C⋆ ←− A(C);
6 if m ∈P and Verpk(C

⋆) = 1 and
Tracepk(C) = Tracepk(C

⋆) and
Decsk(C

⋆) ̸= m then return 1;
7 else return 0;

Another interesting property is the traceability, which states that given a honestly generated
ciphertext, one cannot forge another ciphertext that shares the same trace but does not encrypt
the same value. In the context of electronic voting, this property prevents the rerandomization
server from modifying the votes.

Definition 28 (Traceability). A traceable encryption is traceable if, for all PPT adversary A, the
probability Pr(Exptrace(λ,A) = 1) is negligible in λ, where Exptrace is defined in Algorithm 107.

Finally, the strong rerandomization means that a rerandomized ciphertext follows the same
distribution as a fresh ciphertext output by LEnc. In other words, it means that the reran-
domization process is not supposed to “add” some entropy: even with no rerandomization, the
encryption scheme itself would be sementically secure, so that the rerandomization server does
not have to be trusted for the purpose of privacy.

Definition 29 (Strong rerandomization). A traceable encryption is strongly rerandomizable if,
for all plaintext m, for all link key lk, for all randomness r0, if C0 = LEncpk(lk,m, r0) and if R
is the uniform random variable over the randomness space, we have the following computational
indistinguishability:

Randpk(C0, R) ≈ LEncpk(lk,m,R).

9.3 Building blocks

We now provide the building blocks that we used to construct a traceable encryption scheme
that achieves all the desired properties. They are the same as the ones proposed in [DPP22b],
where an instantiation based on bilinear maps is mentioned.

9.3.1 Bilinear pairings

Let G, Ĝ,GT be three groups of prime order q, and g (resp. ĝ) be a generator of G (resp. Ĝ). A
pairing is a bilinear map e : G×Ĝ −→ GT , and we say that G, Ĝ are pairing-friendly if there exists
a non-trivial, efficiently computable pairing. On this occasion, recall that we use a multiplicative
notation, so that for all a, b ∈ G, ĉ ∈ Ĝ and α, β ∈ Zq, we have e(aαbβ, ĉ) = e(a, ĉ)αe(b, ĉ)β . In
addition, it is usual to denote ι : G → G2 the injection that maps X ∈ G to ι(X) = (X, 1).

211

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

Respectively, we define the ι̂ : Ĝ→ Ĝ2 the injection that maps X̂ ∈ Ĝ to ι̂(X̂) = (X̂, 1). Finally,
in our construction, we rely on the SXDH assumption.

The SXDH assumption. The SXDH assumption is a classical computational assumption
in pairings-friendly groups, defined, for instance, in [BGdMM05]. Intuitively, it states that the
DDH problem is hard in both G and Ĝ. Note that since there is an efficiently computable
pairing, the SXDH assumption is not true if G = Ĝ or, alternatively, if there exists an efficiently
computable group isomorphism from G to Ĝ (or the other way around).

9.3.2 Linearly Homomorphic Structure-Preserving Signatures

A central tool for our construction is the linearly homomorphic structure-preserving (LHSP)
signature. The structure preserving property, defined, for instance, in [AFG+10], allows to sign
messages that respect a vector space structure. The additional linearly homomorphic feature,
introduced in [LPJY13], allows to derive a signature on any linear combination of already signed
vectors. In what follows, we describe the LHSP signature that we used in our construction.

Description of the LHSP scheme. Just as an encryption scheme, a signature scheme
is defined by a tuple of algorithms, i.e. (Keygen, Sign,Verify). In the LHSP scheme that we
consider, they are defined as follows.

• Keygen(pp, n). Given the dimension n of the vector space and the public parameters pp
(here, pp contains two indepent group elements ĝ, ĥ ∈ Ĝ), the key generation algorithm
picks (χi, γi)

n
i=1 ∈ Zq at random and computes ĝi = ĝχi ĥγi for i = 1 to n. It returns the

pair (pk, sk), where the private key is sk = (χi, γi)
n
i=1 and the public key is pk = (ĝi)

n
i=1.

• Signsk(M1, · · ·,Mn). To sign a vector
−→
M ∈ Gn using sk = (χi, γi)

n
i=1, one returns σ =

(Z,R) with Z =
∏n

i=1M
χi
i and R =

∏n
i=1,M

γi
i .

• Verifypk(M1, · · ·,Mn, σ). To verify that a signature σ = (Z,R) is valid with respect to a
public key pk = (ĝi)

n
i=1, one checks the equality

e(Z, ĝ)e(R, ĥ) =

n∏
i=1

e(Mi, ĝi). (4)

Unforgeability. It is easy to check that the signature scheme is correct, i.e. that a honestly
generated signature is considered valid by the Verify algorithm. A less trivial property is that
of the unforgeability of linearly independent messages. More precisely, we give Definition 30
which is adapted from [LPJY13]. In this definition, we consider some honestly generated public
parameters pp and we let the adversary choose n ≥ 1, the dimension of the vector space. Then
the adversary has access to a signing oracle that it can query to obtain valid signatures of some
chosen messages. The signing oracle updates the set V of all the plaintexts that the adversary
queried, and the goal of the adversary is to output a valid signature of a message M which is not in
the vector space spanned by V , denoted < V >. In other words, M must be linearly independent
from all the signed messages obtained by the adversary. Note that if (Z1, R1) and (Z2, R2) are
two valid signatures of M1, · · · ,Mn and N1, · · · , Nn, then, for all α, β ∈ Zq, (Zα

1 Z
β
2 , R

α
1R

β
2) is

a valid signature of (Mα
1 N

β
1 , · · · ,Mα

nN
β
n). In particular, (1, 1) is a valid signature of (1, · · · , 1).

Hence, the linear independence is required for the unforgeability.

Definition 30. A LHSP scheme is secure if, for all PPT adversary A, the probability that A
wins the experiment Explin-unf (defined in Figure 32) is negligible in λ.

212

9.3. Building blocks

Explin-unf(λ,A)
Requires: Setup, an algorithm that

generates the public
parameters

1 pp←− Setup(λ); V ←− ∅;
2 1n ←− A(pp);
3 (pk, sk)←− Keygen(pp, n);
4 M1, · · · ,Mn, σ ←− AOSign(pk);
5 if

−→
M ̸∈< V > and

Verifypk(M1, · · · ,Mn, σ) = 1 then
return 1;

6 else return 0;

OSign(M1, · · · ,Mn)

1 V ←− V
⋃
{(M1, · · · ,Mn)};

2 σ ←− Signsk(M1, · · · ,Mn);
3 return σ

Figure 32: Definition of unforgeability of linearly independent messages

We now prove that the above LHSP scheme is secure under the SXDH assumption. The
proof is extremely similar to that of [LPJY13].

Lemma 16. Under the SXDH assumption, the LHSP signature scheme presented in this section
is secure.

Proof. Let A be an adversary for Explin-unf. We construct an adversary B against SXDH, that
interacts with A as follows. The SXDH assumption states that the DDH problem is hard in
both G and Ĝ. Hence, we only need to construct an adversary for the DDH game in Ĝ. First,
B gets a challenge tuple in the DDH game, that we denote ĝ, ĥ, ĝ1, ĥ1 ∈ Ĝ. It plays ĝ, ĥ in the
unforgeability game, as the public parameters pp. Then, A chooses n and B picks a random
secret key (χi, γi)

n
i=1 as well as the corresponding public key pk = (ĝi)

n
i=1, with ĝi = ĝχi ĥγi for

all i.
B sends pk to A and uses sk to simulate the signing oracle. It also updates V , the set of the

messages that it signs for A. At some point, A outputs M1, · · · ,Mn, σ, and B signs M1, · · · ,Mn

to generate another signature σ′.
If A does not win the unforgeability game, B guesses at random. If A wins the unforge-

ability game, then σ = (Z,R) and σ′ = (Z ′, R′) are two valid signatures for the same message
M1, · · · ,Mn, so that

e(Z, ĝ)e(R, ĥ) =

n∏
i=1

e(Mi, ĝi) = e(Z ′, ĝ)e(R′, ĥ).

Hence, e(Z/Z ′, ĝ) = e(R′/R, ĥ) and B can proceed as follows: if e(Z/Z ′, ĝ1) = e(R′/R, ĥ1), it
states that ĝ, ĥ, ĝ1, ĥ1 was a DDH tuple. Otherwise, it states that it was a random tuple.

Now, let E be the event in which A wins the unforgeability game and ε the probability that E
occurs. When E occurs, (Z,R) and (Z ′, R′) are valid signatures so that e(Z/Z ′, ĝ) = e(R′/R, ĥ).
Hence, if (ĝ, ĥ, ĝ1, ĥ1) is a DDH tuple, we also have e(Z/Z ′, ĝ1) = e(R/R′, ĥ1) so that B wins the
DDH game with probability 1. In addition, when E occurs, (M1, · · · ,Mn) ̸∈< V > so that we
can obtain a basis of < V > of size at most n− 1. Given V and the corresponding signatures, a
computationally unbounded adversary has no more information about the secret key than that

213

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

contained in 2n − 1 linear equations: at most n − 1 equations are given by the validity of the
signatures, and are of the form

e(

n∏
i=1

Nχi
i , ĝ)e(

n∏
i=1

, Nγi
i , ĥ) =

n∏
i=1

e(Ni, ĝi)

for some Ni’s and n equations comes from the public key, and are of the form ĝi = ĝχi ĥγi . Hence,
when E occurs, the probability that (Z,R) = (Z ′, R′) is at most 1/q. Yet, if (ĝ, ĥ, ĝ1, ĥ1) is a
random tuple and if (Z,R) ̸= (Z ′, R′), then e(Z/Z ′, ĝ1) = e(R′/R, ĥ1) occurs with probability
1/q. Therefore, there exists a negligible function µ, that respects 0 ≤ µ ≤ 2

q , such that, when E

occurs while (ĝ, ĥ, ĝ1, ĥ1) is a random tuple, B wins the DDH game with probability 1− µ.
Overall, the probability that B wins the DDH game is

1

2
(1− ε) +

1

2
ε(1 + 1− µ) =

1

2
+

1

2
ε− 1

2
εµ.

This shows that ε ≤ 2εSXDH + 2
q , where εSXDH is the advantage of B in the DDH game. By

the SXDH assumption, ε is negligible.

9.3.3 The Groth-Sahai proof system

In the context of bilinear-friendly groups, the Groth-Sahai proofs were introduce in [GS08] and
can be used to prove that quadratic equations are verified on committed values. In what follows,
we focus on pairing product equations, which have the form

n∏
i=1

e(Xi, B̂i)

m∏
j=1

e(Aj , Ŷj)

n∏
i=1

m∏
j=1

e(Xi, Ŷj)
γij = T,

where X1, . . . , Xn ∈ G and Ŷ1, . . . , Ŷm ∈ Ĝ are committed secret values; B̂1, . . . , B̂n ∈ Ĝ,
A1, . . . , Am ∈ G and T ∈ GT are public group elements and, for 1 ≤ i ≤ n and 1 ≤ j ≤ m,
γi,j ∈ Zq are public scalars. For instance, the verification equation (4) of the LHSP signature is
a pairing product equation.

The Groth-Sahai proof system provides, among others, several algorithms to commit to secret
values and prove that pairing product equations hold on the committed values. In what follows,
we do not fully detail the construction of Groth-Sahai proofs based on SXDH, but only what is
necessary for our purpose.

• Gen(pp) : given the public parameter pp, choose u⃗1 = (u1,1, u1,2), u⃗2 = (u2,1, u2,2) ∈ G2,
⃗̂v1 = (v̂1,1, v̂1,2) and ⃗̂v2 = (v̂2,1, v̂2,2) ∈ Ĝ2 at random. The common reference string (CRS)
of the proof system is given by (u⃗1, u⃗2, ⃗̂v1, ⃗̂v2).

• Com(crs,X, r⃗) : to commit to an element X ∈ G (resp. Ŷ ∈ Ĝ) with randomness
r⃗ = (r1, r2) ∈ Z2

q , compute C⃗ = ι(X)u⃗r11 u⃗r22 (resp. ⃗̂
C = ι̂(Ŷ)⃗̂vr11

⃗̂vr22).

• CRand(crs, C⃗, r⃗′) : to rerandomize a commitment C⃗ ∈ G (resp. ⃗̂
C ∈ Ĝ) with randomness

r⃗′ = (r′1, r
′
2), compute C⃗ ′ = C⃗u⃗

r′1
1 u

r′2
2 (resp. ⃗̂

C ′ =
⃗̂
Cv⃗

r′1
1 v⃗

r′2
2).

214

9.3. Building blocks

• Prove(crs,E,W, ρ) : Given a pairing product equation E and a set of witnesses that
verify the equation W = {(Xi, r⃗i)

m
i=1, (Ŷj ,

ˆ⃗r′j)
n
j=1} (the r⃗i’s and the ˆ⃗r′j ’s are the randomness

used to produce the respective commitments), the proving algorithm produces a proof
π⃗, ⃗̂π ∈ G4 × Ĝ4 that the witnesses verify the equation. If the equation is linear in G (resp.
Ĝ), the proof lies in Ĝ2 (resp. G2).

• PRand(crs, C⃗′, π⃗, ⃗̂π, r⃗′) : Given the randomness r⃗′ used to rerandomize the commitment
C⃗ into C⃗ ′, it is possible to rerandomize π⃗, ⃗̂π into π⃗′, ⃗̂π′.

• Verify(crs,E,C, π⃗, ⃗̂π) : Given a CRS, an equation, some commitments C (one commit-
ment in G2 for each witness in G and one commitment in Ĝ2 for each witness in Ĝ) and a
proof π⃗, ⃗̂π, the verification algorithm returns 1 if the proof is valid and 0 otherwise.

The Groth-Sahai proofs have various well-known interesting properties. For our purpose, we
mention the following properties, and we refer to [GS07] for more details.

Correctness. If the witnesses verify the equation, then running Com and Prove generates
a valid tuple of proof and commitments. In addition, the rerandomization of a valid tuple of
proofs and commitments is also valid.

Linearity. Thanks to the algorithms CRand and PRand, the Groth-Sahai proofs are reran-
domizable. More generally, they are known to be malleable [Fuc11, CKLM12]. In our construc-
tion, we do not need the generic malleability theory, and we only use the following facts:

1. Let A1, A
′
1, · · · , Am−1, A

′
m−1 ∈ G be some group elements that define the equations (5)

and (6), let ⃗̂
C1, · · · , ⃗̂Cm be some commitments on witnesses that verify both equations and

let π⃗1, π⃗2 be two valid Groth-Sahai proofs w.r.t. those equations and commitments. Then,
for all θ′ ∈ Zq, the proof π⃗1π⃗2θ

′
is a valid proof for Eq. (7) with respect to the commitments

⃗̂
C1, · · · , ⃗̂Cm−2,

⃗̂
Cm−1

⃗̂
Cθ′
m.

m−2∏
j=1

e(Aj , Ŷj) = e(Am−1, Ŷm−1) (5)

m−2∏
j=1

e(A′
j , Ŷj) = e(Am−1, Ŷm) (6)

m−2∏
j=1

e(AjA
′
j
θ′
, Ŷj) = e(Am−1, Ŷm−1) (7)

2. Let B̂1, · · · , B̂n ∈ Ĝ be some group elements and, for t ∈ GT , let Et be the equation (8).
Let t ∈ GT and C⃗1, · · · , C⃗n be some commitments on witnesses that verify the equation
Et, and π̂ a valid proof w.r.t. Et and those commitments. Let t′ ∈ GT and w1, · · · , wn ∈ G
be some witnesses that verify the equation Et′ . Then, for all θ′ ∈ Zq, the proof π̂ is a valid
proof w.r.t. Ett′θ′ and the commitment C⃗1ι(w

θ′
1), · · · , C⃗nι(w

θ′
n).

n∏
i=1

e(Xi, B̂i) = t (8)

Perfect rerandomization. Let w⃗, ⃗̂w be a vector of witnesses for the equation E, C be some
commitments and π⃗, ⃗̂π a proof obtained with the Prove algorithm. Then the tuple C1, π⃗1, ⃗̂π1

215

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

obtained by running Com and Prove follows the same distribution as the tuple C2, π⃗2, ⃗̂π2 obtained
by rerandomizing C and π⃗, ⃗̂π.

Witness indistinguishability. Let w⃗1, ⃗̂w1 and w⃗2, ⃗̂w2 be some witnesses for the equation
E, and let u⃗1, u⃗2 and ⃗̂v1, ⃗̂v2 the corresponding CRS. Let C1 and C2 be some honestly generated
commitments on those witnesses (i.e. using the commitment algorithm with uniformly random
r) and π⃗1, ⃗̂π1 and π⃗2, ⃗̂π2 two honestly generated Groth-Sahai proofs (i.e. using the proving
algorithm with a uniformly random ρ). Then, unless u⃗1, u⃗2 or ⃗̂v1, ⃗̂v2 is a DDH tuple, the tuple
C1, π⃗1, ⃗̂π1 follows the same distribution as the tuple C2, π⃗2, ⃗̂π2. More precisely, they are uniformly
distributed in the space of the tuples that satisfy the verification equation.

Extractability. Suppose that there exists τ and τ̂ such that u⃗τ1 = u⃗2 and ⃗̂vτ̂1 = ⃗̂v2 (i.e. u⃗1, u⃗2
and ⃗̂v1, ⃗̂v2 are two DDH tuples). Then, for all product pairing equation E and from any tuple
C, π⃗, ⃗̂π such that π⃗, ⃗̂π is valid, it is possible to efficiently extract (using τ and τ̂) some witnesses
w⃗, ⃗̂w that verify the equation E.

9.4 Construction of a traceable encryption scheme

In [DPP22b], a construction of a traceable encryption scheme is proposed, and achieves verifia-
bility, TCCA-security, traceability and strong rerandomization. However, the verifiability of the
encryption scheme is limited as the plaintext space is large, which can be a problem in electronic
voting. Indeed, to apply the usual homomorphic tally, it is often necessary that the plaintexts
have a specific form, which is enforced with 0/1 proofs. By contrast, when any group element is a
valid plaintext, it is often required that the tally relies on a mixnet, which may be too restrictive,
leak more information than a homomorphic tally and enable, among others, forced abstention
attacks based on specific write-ins. Although we do not consider forced abstention attacks in
receipt freeness (nor any attack based on an information available in the result, such as Italian
attacks), we consider that it is interesting to provide an alternative encryption scheme, which
supports 0/1 proofs. This way, the protocol designer can decide whether they want to use a
homomorphic tally or a mixnet, and use either our construction or that of [DPP22b].

Another advantage of our construction is that the key generation algorithm is public coin:
in other words, the CRS required can be derived from the hash of some public elements (for
instance, the group specification or the public key), which was not the case in the construction
of [DPP22b]. This is extremely interesting in the context of electronic voting, since this means
that we need fewer trust assumptions.

• Gen(λ, ℓ) : Given the security parameter λ and the dimension ℓ, the key generation algo-
rithm proceeds as follows:

1. Generate g, h, (gi)
ℓ
i=1, S, T ∈ G and ĝ, ĥ ∈ Ĝ at random.

2. For i = 1 to ℓ, pick some random (αi, βi)
$←− Zq and set fi = gαihβi .

3. Generate two random Groth-Sahai CRS c⃗rs and c⃗rs′ where the elements of Ĝ in c⃗rs′

are dropped. That is, c⃗rs = (u⃗1, u⃗2, ⃗̂v1, ⃗̂v2) and c⃗rs′ = (u⃗′1, u⃗
′
2) where u⃗1, u⃗2, u⃗′1, u⃗′2 ∈ G2

and ⃗̂v1, ⃗̂v2 ∈ G2 are uniformly random group elements.

The private key consists of sk = (αi, βi)
ℓ
i=1 and the public key pk ∈ G12+2ℓ × Ĝ6 is

pk =
(
g, ĝ, h, ĥ, S, T, (gi, fi)

ℓ
i=1, c⃗rs, c⃗rs

′
)

.

216

9.4. Construction of a traceable encryption scheme

• LGen(pk) : First, generate a LHSP key pair (osk, ˆopk) from the public parameters ĝ, ĥ and
the dimension n = 3: osk, ˆopk ←− Keygen((ĝ, ĥ), 3). Then, derive (F,G,H) = hash(ˆopk)
from the public key and set lk = (osk, ˆopk, F,G,H).

• LEncpk(lk, m⃗, r) : To encrypt the plaintext m⃗ = (m1, · · · ,mℓ) ∈ {0, 1}ℓ with the link key
lk = (osk, ˆopk, F,G,H) and the randomness r, conduct the following steps:

1. Pick θ
$←− Zq and compute the CPA encryption c⃗ = (c1, c2, (di)

ℓ
i=1), where c1 = gθ,

c2 = hθ and di = gmi
i fθ

i , and keep the random coin θ.
Afterwards, the steps 2-4 are dedicated to the traceability.

2. Authenticate the row space of the matrix T =
(
Ti,j

)
1≤i,j≤3

given below:

T =

g
∏ℓ

i=1 di c1

1
∏ℓ

i=1 fi g

1 F G

 . (9)

Namely, sign each row T⃗i = (Ti,1, Ti,2, Ti,3) of T using the LHSP signature. This
results in σ⃗ = (σ⃗i)

3
i=1 ∈ G6, where σ⃗i = (Zi, Ri) ∈ G2.

3. Using the Groth-Sahai commitment scheme and the CRS crs′, commit to σ⃗1 =
(Z1, R1). This gives C⃗Z , C⃗R ∈ G2. To ensure that σ⃗1 is a valid one-time LHSP
signature on (g,

∏ℓ
i=1 di, c1) with respect to the public key opk = (l̂1, l̂2, l̂3), compute

the Groth-Sahai proof ⃗̂πsig that e(Z1, ĝ)e(R1, ĥ) = e(g, l̂1)e(
∏ℓ

i=1 di, l̂2)e(c1, l̂3).

4. Set â = b̂ = 1Ĝ and ŵ = ĝ and commit to these elements, using the Groth-Sahai

commitment scheme and the CRS c⃗rs. This gives ⃗̂
CA,

⃗̂
CB,

⃗̂
CW ∈ Ĝ2. Compute the

Groth-Sahai proof π⃗SS that e(S, â)e(T, b̂) = e(H, ĝ/ŵ).
5. Set Mi = gmi , M̂i = ĝmi for i = 1, . . . , ℓ and Θ̂ = ĝθ and commit to these elements

with the CRS crs. This yields C⃗M1 ,
⃗̂
CM1 , · · · , C⃗Mℓ

,
⃗̂
CMℓ

⃗̂
CΘ ∈ G2. Compute the Groth-

Sahai proofs π⃗1 that e(c1, ŵ) = e(g, Θ̂), π⃗2 that e(c2, ŵ) = e(h, Θ̂) and, for all i, π⃗di
that e(di, ŵ) = e(gi, M̂i)e(fi, Θ̂).

6. To prove that each mi is equal to 0 or 1, compute the Groth-Sahai proof (π⃗01,i, ˆ⃗π01,i)ℓi=1

that e(g/Mi, M̂i) = 1 and e(Mi, ĝ) = e(g, M̂i).
7. To allow strong randomization, commit to x̂ = ĝ with the CRS crs. This gives the

commitment ⃗̂
Cx. Then, compute the Groth-Sahai proofs π⃗r,1 that e(g, ŵ) = e(g, x̂),

π⃗r,2 that e(h, ŵ) = e(h, x̂) and, for all i, π⃗r,di that e(fi, ŵ) = e(fi, x̂).

Output the ciphertext

CT =
(
c⃗, C⃗Z , C⃗R, σ⃗2, σ⃗3, ⃗̂πsig, ˆopk,

⃗̂
CA,

⃗̂
CB,

⃗̂
CW , π⃗SS , (C⃗Mi ,

⃗̂
CMi)

ℓ
i=1,

⃗̂
CΘ,

⃗̂
CX , π⃗1, π⃗2,

(π⃗di , π⃗01,i,
⃗̂π01,i)

ℓ
i=1, π⃗r,1, π⃗r,2, (π⃗r,di)

ℓ
i=1

)
,

which consists of 20 + 11ℓ elements of G and 15 + 6ℓ elements of Ĝ.

• Encpk(m⃗, r) : To encrypt the plaintext m⃗ = (m1, · · · ,mℓ) ∈ {0, 1}ℓ with the randomness
r, first generates lk using LGen and return LEncpk(lk, m⃗, r).

217

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

• Tracepk(CT) : Parse pk and CT as above, and output ˆopk.

• Randpk(CT) : Pick θ′
$←− Zq and do the following operations:

1. Parse the CPA encryption part as c1, c2, (di)
ℓ
i=1 and compute c⃗′ = (c′1, c

′
2, (d

′
i)
ℓ
i=1)

where c′1 = c1g
θ′ , c′2 = c2h

θ′ and d′i = dif
θ′
i for i = 1, . . . , ℓ.

2. Update (C⃗Z , C⃗R), the committed signature σ⃗1. That is, parse σ⃗2 as (Z2, R2) and
compute C⃗ ′

Z = C⃗Zι(Z
θ′
2) and C⃗ ′

R = C⃗Rι(R
θ′
2). By the linearity of the LHSP scheme

and the Groth-Sahai proof, the proof π̂sig is valid w.r.t. (g,
∏

d′i, c
′
1) and ˆopk.

3. Update the proofs π⃗1, π⃗2 and π⃗di . That is, compute π⃗′
1 = π⃗1π⃗

θ′
r,1, π⃗′

2 = π⃗2π⃗
θ′
r,2 and

π⃗′
di

= π⃗di π⃗
θ′
r,di

for all i. Also, compute ⃗̂
C ′
Θ =

⃗̂
CΘ

⃗̂
Cθ′
X . By the linearity of the Groth-

Sahai proofs, the adapted proofs are now valid with regards to c⃗′, ⃗̂
CW ,

⃗̂
CMi and ⃗̂

C ′
Θ.

4. Rerandomize all the commitments with CRand and the proofs with PRand. We note
C⃗ ′′
Z , C⃗

′′
R,

⃗̂
C ′
A,

⃗̂
C ′
B,

⃗̂
C ′
W , C⃗ ′

Mi
,
⃗̂
C ′
Mi

,
⃗̂
C ′
X ,

⃗̂
C ′′
Θ the resulting commitments and ⃗̂π′

sig, π⃗
′
SS , π⃗

′
1,

π⃗′
2, π⃗

′
di
, π⃗′

i,01,
⃗̂π′
i,01, π⃗

′
r,1, π⃗

′
r,2, π⃗

′
r,di

the resulting proofs.

Return the re-randomized ciphertext

CT′ =
(
c′, C⃗ ′′

Z , C⃗
′′
R, σ⃗2, σ⃗3,

⃗̂π′
sig,

ˆopk,
⃗̂
C ′
A,

⃗̂
C ′
B,

⃗̂
C ′
W , π⃗′

SS ,

(C⃗ ′
Mi

,
⃗̂
C ′
Mi

)ℓi=1,
⃗̂
C ′′
Θ,

⃗̂
C ′
X , π⃗′

1, π⃗
′
2, (π⃗

′
di
, π⃗′

i,01,
⃗̂π′
i,01)

ℓ
i=1, π⃗

′
r,1, π⃗

′
r,2, (π⃗

′
r,di

)ℓi=1

)
.

• Verpk(CT) : First, output 0 if pk or CT does not parse properly. Second, verify the validity
of the LHSP signatures σ⃗2 and σ⃗3 with respect to the public key ˆopk, and output 1 if it
is invalid. Third, verify that the proofs ⃗̂πsig, π⃗SS , π⃗1, π⃗2, (π⃗di , π⃗i,01,

⃗̂πi,01)
ℓ
i=1, π⃗r,1, π⃗r,2,

(π⃗r,di)
ℓ
i=1 are valid with regard to their corresponding equations. If at least one of these

proofs is invalid, output 0; otherwise, output 1.

• Decsk(CT) : Given the secret decryption key sk = (αi, βi)
ℓ
i=1 and c = (c0, c1, c2) included

in CT, set mi as loggi(dic
−αi
1 c−βi

2) and return (m1, · · · ,mℓ).

9.5 Security proofs for our traceable encryption scheme

It is easy to see that our encryption scheme is correct, and its strong rerandomization property
comes readily from that of the Groth-Sahai proofs. In this section, we provide a security proof
for the verifiability, the TCCA security and the traceable property.

9.5.1 Verifiability

First, we recall that a traceable encryption scheme is verifiable if the adversary cannot forge
a valid ciphertext which does not decrypt into a valid plaintext (See Definition 26; the corre-
sponding experiment Expver is given in Fig. 33). With this in mind, we prove that our traceable
encryption scheme has verifiability.

Theorem 12. Under the SXDH assumption and in the ROM, for all ℓ ≥ 1, our traceable
encryption scheme defined in Section 9.4 is verifiable with the plaintext space P = {0, 1}ℓ.

218

9.5. Security proofs for our traceable encryption scheme

Expver(λ,A)
Requires: P, the plaintext space

1 pk, sk←− Gen(λ);
2 C ←− A(pk, sk);
3 if Verpk(C) = 1 ∧Decsk(C) ̸∈P then return 1;
4 else return 0;

Figure 33: The verifiability experiment for a traceable encryption scheme

Proof. Let A be an adversary against the verifiability. We give a succession of games H0, · · · , H7

where H0 corresponds to the verifiability game. For each of those games, we denote Si the
probability that Hi outputs 1. As we rely on the SXDH assumption, the main proof strategy is
to show that for each i, |Si−Si+1| is proportional to the advantage of an explicit PPT adversary
in the DDH game. By abuse of notation, we denote this advantage εsxdh.

Game 1: In this game, we modify the generation of the Groth-Sahai CRS by picking an
exponent ν

$←− Zq, u⃗
$←− G2 and computing u⃗2 = u⃗ν1 .

Now, we show that |S1 − S0| ≤ 2εsxdh. For this purpose, we construct an adversary B for
the DDH game. It is given a tuple z1, z2, z3, z4 ∈ G which is either a DDH tuple or a random
tuple. B interacts with A and simulates H0, excepts that it sets u1,1 = z1, u1,2 = z2, u2,1 = z3
and u2,2 = z4. Clearly, if B is given a DDH tuple, it plays a perfect simulation of H1 while, if
it is given a random tuple, B plays a perfect simulation of H0. Hence B’s probability to win the
DDH game is 1/2(S1 + 1− S0), and |S1 − S0| ≤ 2εsxdh.

Game 2: In this game, we abort (by outputting a random bit) if u1,1 = 1G. Note that when
we abort, we still have a probability of 1/2 to output the correct value, so that |S2 − S1| ≤ 1

2q .

Game 3: In this game, we still pick u1,1 as in Game 2, but pick a trapdoor τu
$←− Zq and

compute u1,2 = uτu1,1. Since u1,1 ̸= 1G, this does not change the distribution of the CRS so that
S3 = S2.

Game 4: In this game, we similarly trapdoor the Groth-Sahai CRS u⃗′1, u⃗
′
2 and ⃗̂v1, ⃗̂v2 with

random ν, ν̂
$←− Zq so that u⃗′2 = u⃗′ν1 and ⃗̂v2 = ⃗̂vν̂1 .

With the same argument as in Game 1 (applied twice), we have |S4 − S3| ≤ 4εsxdh.

Game 5: In this game, we similarly abort when u′1,1 = 1G or when v̂1,1 = 1Ĝ and compute

u′1,2 = u′
τu′
1,1 and v̂1,2 = v̂τv̂1,2 with τu′ , τv̂

$←− Zq.

As above, we have |S5 − S4| ≤ 1
q .

Game 6: In this game, we abort (by outputting a random bit) when S = 1G or T = 1G.

Clearly |S6 − S5| ≤ 1
q .

219

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

Game 7: In this game, we denote

CT =
(
c⃗, C⃗Z , C⃗R, σ⃗2, σ⃗3, ⃗̂πsig, ˆopk,

⃗̂
CA,

⃗̂
CB,

⃗̂
CW , π⃗SS , (C⃗Mi ,

⃗̂
CMi)

ℓ
i=1,

⃗̂
CΘ,

⃗̂
CX , π⃗1, π⃗2,

(π⃗di , π⃗01,i,
⃗̂π01,i)

ℓ
i=1, π⃗r,1, π⃗r,2, (π⃗r,di)

ℓ
i=1

)
the ciphertext sent by the adversary and we use the extractability of the Groth-Sahai proofs to
extract the witnesses from the commitments, using the trapdoors. More precisely, we extract
the witnesses Z1, R1, â, b̂, ŵ, Θ̂, (Mi, M̂i)i, x̂ such that

e(Z1, ĝ)e(R1, ĥ) = e(g, l̂1)e(
ℓ∏

i=1

di, l̂2)e(c1, l̂3) (10)

e(S, â)e(T, b̂) = e(H, ĝ/ŵ) (11)

e(c1, ŵ) = e(g, Θ̂) (12)

e(c2, ŵ) = e(h, Θ̂) (13)

∀i, e(di, ŵ) = e(gi, M̂i)e(fi, Θ̂) (14)

∀i, e(g/Mi, M̂i) = 1 (15)

∀i, e(Mi, ĝ) = e(g, M̂i) (16)
e(g, ŵ) = e(g, x̂) (17)
e(h, ŵ) = e(h, x̂) (18)
e(fi, ŵ) = e(fi, x̂), (19)

where (l̂1, l̂2, l̂3) = ˆopk, (F,G,H) = hash(ˆopk) and (g, ĝ, h, ĥ, S, T, (gi, fi)
ℓ
i=1) are parts of the

public key. Afterwards, we abort (by outputting 0) whenever the following equations are not
verified.

â = b̂ = 1Ĝ and ŵ = ĝ. (20)

Clearly, the output of Game 7 differs from Game 6 if and only if the adversary outputs a valid
CT (in particular, with valid Groth-Sahai proofs which allow the extraction) such that Eq. (20)
is not verified. We denote E this event and ε its probability, so that |S7−S6| ≤ ε. We construct
an adversary B for the DDH game as follows.

First, B gets a challenge tuple S, T, U, V from the DDH game. If S = 1G or T = 1G, which
happens with a negligible probability µst, B outputs a random guess. Otherwise, it simulates
Game 6 to A in the ROM.

For this purpose, B generates the public key honestly, except that it uses the S, T defined
above. In addition, whenever A makes a new query to the random oracle with an input of the form
l̂1, l̂2, l̂3 ∈ Ĝ (by new, we mean that the same query was not made previously; otherwise B simply
outputs the same answer as before), B generates α, β

$←− Zq and computes H = SαT β . It then
samples F and G at random, and uses F,G,H to answer the random oracle query. Eventually,
A outputs some ciphertext CT. If it is invalid, E cannot occur and B outputs a random guess,
hence wins with probability 1/2. If the ciphertext is valid, B can extract the witnesses as in
Game 7 and check whether Eq. (20) is verified or not. If the equation is verified, B similarly

220

9.5. Security proofs for our traceable encryption scheme

outputs a random guess. If not, B checks whether e(U, â(ĝ/ŵ)−α)e(V, b̂(ĝ/ŵ)−β) = 1GT
and

states that the challenge tuple is a DDH challenge if and only if this identity is verified.

Now, remark that B’s simulation is perfectly indistinguishable from Game 6. In addition,
if E occurs when S, T, U, V is a DDH tuple, e(S, â)e(T, b̂) = e(H, ĝ/ŵ) by Eq. (11), so that
e(U, â(ĝ/ŵ)−α)e(V, b̂(ĝ/ŵ)−β) = 1GT

and B wins the DDH game. By contrast, if E occurs when
S, T, U, V is a random tuple, then either â ̸= 1Ĝ, b̂ ̸= 1Ĝ or ŵ ̸= ĝ. Since the adversary had no
information on α, β except that H = SαT β , the probability µ1 that â(ĝ/ŵ)−α and b̂(ĝ/ŵ)−β are
simultaneously trivial is a most 1/q. Hence, e(U, â(ĝ/ŵ)−α)e(V, b̂(ĝ/ŵ)−β) is uniformly random
(the adversary had no information about U and V) and is equal to 1GT

with probability 1/q.
Therefore B wins the DDH game with probability 1− µ′ with |µ′| ≤ 2/q.

Finally, remark that since A is not given any information about U, V , the event E is inde-
pendent from the fact that S, T, U, V is a DDH tuple or not. Consequently, B’s probability to
win the DDH game is

1

2
µst + (1− µst)

(
1

2
ε(1 + 1− µ′) +

1

2
(1− ε)

)
=

1

2
µst +

1

2
(1− µst)

(
1 + ε− µ′)

=
1

2
+

1

2
(ε− µ′ − µst(ε− µ′)).

Hence, ε ≤ 2εsxdh +
4
q and is indeed negligible.

Game 8: In this game, we abort (by outputting a random bit) if g = 1G, h = G or ĝ = 1Ĝ,
and if there exists i such that fi = 1G or gi = 1G.

Clearly, |S8 − S7| ≤ 3+2ℓ
2q .

Conclusion. Now, we have â = b̂ = 1Ĝ and ŵ = ĝ. Since ̸= 1Ĝ, there exists a unique θ ∈ Zq

such that Θ̂ = ĝθ. Similarly, for all i, there exists a unique mi, m̂i ∈ Zq such that Mi = gmi and
M̂i = ĝm̂i .

By Eq. (16), mi = m̂i for all i and, by Eq. (15), mi ∈ {0, 1} for all i. Also, by Eq. (12),
c1 = gθ; by Eq. (13), c2 = hθ and, for all i, Eq. (14) gives di = gmi

i fθ
i .

9.5.2 Traceability

We now show that our traceable encryption scheme is traceable as of Definition 28, which means
that one cannot forge a ciphertext CT⋆ that has the same trace as a given ciphertext CT, but does
not encrypt the same plaintext. To ease readability, we reproduce the traceability experiment in
Fig. 34.

Theorem 13. Under the SXDH assumption and in the ROM, for all ℓ ≥ 1, our traceable
encryption scheme defined in Section 9.4 is traceable.

Proof. Let A be an adversary against the traceability. Just as in the proof of verifiability, we
give a succession of games H0, · · · , H3 where H0 corresponds to the traceability game. For each
game, we denote Si the probability that Hi outputs 1. As we rely on the SXDH assumption,
the main strategy is to show that for each i, |Si − Si+1| is proportional to the advantage of an
explicit adversary in the DDH game. By abuse of notation, we denote this advantage εsxdh.

221

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

Exptrace(λ,A)
1 pk, sk←− Gen(λ);
2 m←− A(pk, sk);

3 r
$←− R;

4 C ←− Encpk(m, r);
5 C⋆ ←− A(C);
6 if m ∈P and Verpk(C

⋆) = 1 and Tracepk(C) = Tracepk(C
⋆) and Decsk(C

⋆) ̸= m then
return 1 else return 0;

Figure 34: Traceability experiment for a traceable encryption scheme

Game 1: We begin with the same transitions as in the proof of Theorem 12. Namely, we
define Game 0 as the traceability experiment, and Game 1 is a modified game where the Groth-
Sahai CRS are generated in the extractability mode and where we added some conditions to
abort. With the same arguments, |S1−S0| is negligible under the SXDH assumption and in the
ROM.

Game 2: In this game, we generate a LHSP keypair ˆopk, osk at random, before giving pk, sk
to the adversary. Also, we generate a random α ∈ Zq, compute F =

∏ℓ
i=1 f

α
i and G = gα and

we pick H
$←− G. Then, whenever the adversary queries the random oracle with the input ˆopk,

we answer with F,G,H. Also, when the adversary gives the plaintext m to encrypt, we use the
link key osk instead of a random link key.

To argue that |S2 − S1| is negligible, we construct an adversary B for the DDH game that
interacts with A by simulating Game 1. B gets a challenge tuple g1, g2, g3, g4 from the DDH
game and uses g1 as g in the simulation. In addition, instead of generating the fi’s honestly,
B generates f1, · · · , fℓ−1 at random and sets fℓ such that

∏ℓ
i=1 fi = g2. The remaining of the

simulation is as in Game 2, except that B sets G as g3 and F as g4. Finally, to decide whether A
wins or loses the simulation, B checks that CT⋆ is valid and has the same trace as CT. If so, B
extracts the plaintext m⋆

1, · · · ,m⋆
ℓ from the Groth-Sahai commitments of CT⋆ (this is possible,

thanks to the same argument as in the verifiability game), and tests whether m⋆ = m. This way,
B can decide whether A wins the simulated game. If A wins the simulation, B states that the
challenge was a DDH tuple; otherwise, it states that it was a random tuple.

Remark that when the challenge is a random tuple, B plays a perfect simulation of Game 1
to A and hence wins with probability 1−S1. Otherwise, B plays a perfect simulation of Game 2
and wins with probability S2. Therefore, B’s advantage in the DDH game is 1

2 |S2 − S1|, so that
|S2 − S1| ≤ 2εsxdh.

Game 3: In this game, we use the same arguments as in the verifiability game to extract a
plaintext m′

1, · · · ,m′
ℓ ∈ {0, 1}ℓ from CT⋆ (this is only possible if the latter is a valid ciphertext).

If m′
1, · · · ,m′

ℓ ̸= m1, · · · ,mℓ but
∏ℓ

i=1 g
m′

i
i =

∏ℓ
i=1 g

mi
i , we abort by outputting 0.

The output of this game differs from that of Game 2 if and only if the adversary outputs
a valid ciphertext CT⋆ such that Tracepk(CT

⋆) = Tracepk(CT), Decsk(CT) ̸= Decsk(CT
⋆) and∏ℓ

i=1 g
m′

i
i =

∏ℓ
i=1 g

mi
i , where m1, · · · ,mℓ = Decsk(CT) and m′

1, · · · ,m′
ℓ = Decsk(CT

⋆). We
denote E this event and ε its probability, so that |S3 − S2| ≤ ε.

We construct and adversary B against the DDH game as follows. First, B gets a challenge

222

9.5. Security proofs for our traceable encryption scheme

tuple g1, g2, g3, g4. If g1 = 1 or g2 = 1, which happens with a negligible probability µ ≤ 2/q, B
can trivially guess whether the challenge tuple is a DDH tuple or not, and hence wins the DDH
game. Otherwise, B interacts with A by simulating Game 2; however, instead of generating the
gi’s at random, for all i, it picks two random αi, βi ∈ Zq and computes gi = gαi

1 gβi
2 , so that B’s

simulation is perfectly indistinguishable from Game 2.

Remark that since B has the secret key sk, it can efficiently detect when E occurs and extract
the corresponding m1,m

′
1, · · · ,mℓ,m

′
ℓ ∈ {0, 1}. Yet, when E occurs, we have

ℓ∏
i=1

gmi
i =

∏
i=1

ℓg
m′

i
i

ℓ∏
i=1

g
(mi−m′

i)αi

1 =
ℓ∏

i=1

g
(m′

i−mi)βi

2 ,

so that g1 = gs2, with s =
∑ℓ

i=1(m
′
i−mi)βi∑ℓ

i=1(mi−m′
i)αi

. By computing s, and checking whether g3 = gs4, B can
decide whether g1, g2, g3, g4 is a DDH tuple or not, and thus win the DDH game. To sum up, B
check whether E occurs, compute s and decide whether the challenge is a DDH tuple or not. If
E does not occur or if E occurs but with

∑ℓ
i=1(mi−m′

i)αi = 0 (in which case B cannot compute
s), B outputs a random guess.

Now, note that since the adversary has no information about (αi, βi)i, when E occurs, the
event

∑ℓ
i=1(mi−m′

i)αi = 0 occurs with probability 1/q. Hence, B’s probability to win the DDH
game is

1

2
(1− ε) + ε

(
1

2q
+ (1− 1/q)

)
=

1

2
+

1

2
ε− 1

2q
ε.

Therefore, ε ≤ 2εsxdh +
1
q and is indeed negligible.

Conclusion. We conclude by giving a reduction to the lin-unf experiment defined in Defini-
tion 30. We refer to this experiment as the unforgeability game, and we construct an adversary
B for the unforgeability game which interacts with A by simulating H3. First, B gets ˆopk from
the unforgeability game and uses this ˆopk to simulate H3. However, B does not have the se-
cret key osk; therefore, when A sends m1, · · · ,mℓ ∈ {0, 1}, B queries the LHSP signatures of
(g,
∏ℓ

i=1 di, c1) and (1,
∏ℓ

i=1 fi, g) using the signing oracle. Thanks to the trapdoor α introduced
in Game 2, B can deduce a valid LHSP signature for (1, F,G).

Recall that A wins H3 with probability S3, which means that it outputs a valid ciphertext
CT⋆ such that Tracepk(CT

⋆) = Tracepk(CT) = ˆopk. Since this ciphertext is valid, B can extract
the signature Z1, R1 and the plaintext m′

1, · · · ,m′
ℓ ∈ {0, 1} from the Groth-Sahai proofs. In

particular, (Z1, R1) is a valid signature of (g,
∏ℓ

i=1 d
⋆
i , c

⋆
1). Yet, with the same arguments as in

the verifiability, we know that there exists θ⋆ ∈ Zq such that c⋆1 = gθ
⋆ and d⋆i = g

m′
i

i fθ⋆
i for all

i. Also, since CT was honestly generated, there exists θ ∈ Zq such that c1 = gθ and di = gmi
i fθ

i

for all i. Hence, the message (g,
∏ℓ

i=1 d
⋆
i , c

⋆
1) is linearly independent from the messages signed

by the signing oracle if and only if the matrix (21) has rank 3. By Gaussian elimination, we can
transform this matrix into matrix (22) then matrix (23); the latter clearly has rank 3.

Hence, whenever A wins the traceability game, B wins the unforgeability game. Since we
showed in Lemma 16 that the LHSP scheme is unforgeable under the SXDH assumption and in
the ROM, this shows that S3 is indeed negligible.

223

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

g
∏ℓ

i=1 g
mi
i fθ

i gθ

g
∏ℓ

i=1 g
m′

i
i fθ⋆

i gθ
⋆

1
∏ℓ

i=1 fi g

 (21)

g
∏ℓ

i=1 g
mi
i 1

g
∏ℓ

i=1 g
m′

i
i 1

1
∏ℓ

i=1 fi g

 (22)

g
∏ℓ

i=1 g
mi
i 1

1
∏ℓ

i=1 g
m′

i−mi

i 1

1
∏ℓ

i=1 fi g

 (23)

Exptcca(λ,A)
1 pk, sk←− Gen(λ);
2 C0, C1 ←− AODec(pk);

3 b
$←− {0, 1};

4 if Tracepk(C0) ̸= Tracepk(C1) or Verpk(C0) = 0 or Verpk(C1) = 0 then return b;

5 r
$←− R;

6 C⋆ ←− Randpk(Cb, r);
7 b′ ←− AODec⋆ (C⋆);
8 if b = b′ then return 1 else return 0;

Figure 35: TCCA-experiment for a traceable encryption scheme.

9.5.3 TCCA security

Finally, we prove that our traceable encryption scheme provides TCCA-security as of Defini-
tion 27, which means that the rerandomizations of two given ciphertexts that have the same
trace are indistinguishable. To ease readability, we reproduce the TCCA experiment in Fig. 35.

Theorem 14. Under the SXDH assumption and in the ROM, for all ℓ ≥ 1, our traceable
encryption scheme defined in Section 9.4 is TCCA-secure.

Proof. Let A be an adversary against the TCCA security. As usual, we give a succession of games
H0, · · · , H3 where H0 corresponds to the TCCA game. For each of those games, we denote Si the
probability that Hi outputs 1. As we rely on the SXDH assumption, the main proof strategy is
to show that for each i, |Si−Si+1| is proportional to the advantage of an explicit PPT adversary
in the DDH game. By abuse of notation, we denote this advantage εsxdh.

Game 1: In this game, we abort (by outputting a random bit) when S = 1G or T = 1G.
Clearly, |S1 − S0| is negligible.

Game 2: In this game, we trapdoor the random oracle answers: when the adversary makes
a hash query with some input, if the same query was made previously we answer with the same
output as before; otherwise we pick F,G

$←− G as in game H0, and pick τx, τ
′
x

$←− Zq, compute
H = SτxT τ ′x , keep in memory the association between H and τx, τ

′
x and output F,G,H.

Note that since (S, T) ̸= (1G, 1G), the distribution of the output is not changed, so that
S2 = S1.

Game 3: In this game, we change the way we generate CT ⋆, and more precisely the Groth-
Sahai proofs and their commitments. The commitments CZ , CR and the proof π̂sig are processed
as usual; however, for the other commitment and proofs, we do not follow the Rand procedure. In-
stead, we first generate some witnesses â, b̂, ŵ, Θ̂, M̂i,Mi, x̂ that verify the equations (10) to (19).
Since most of the equations are linear, we can set ŵ, Θ̂, M̂i,Mi, x̂ as trivial elements. Finally, to

224

9.5. Security proofs for our traceable encryption scheme

obtain â and b̂ such that e(S, â)e(T, b̂) = e(H, ĝ) (recall that we set ŵ to the trivial element 1Ĝ),
we use the trapdoors τx, τ

′
x such that H = SτxT τ ′x , so that e(H, ĝ) = e(S, ĝτx)e(T, ĝτ

′
x). Namely,

we set â = ĝτx and b̂ = ĝτ
′
x .

Once those witnesses have been generated, we generate fresh random commitments and
Groth-Sahai proofs using them, and use the corresponding commitments and proofs instead of
the rerandomized ones.

By the perfect rerandomization and the witness indistinguishability of the Groth-Sahai proofs,
unless there is a DDH tuple in the Groth-Sahai CRS, this game is perfectly indistinguishable
from the previous one. Hence, |S3 − S2| ≤ 3

q .

Game 4: In this game, we abort (by outputting b) if the two ciphertexts CT0 and CT1 given
by the adversary use different LHSP signatures, i.e. if σ0

2 ̸= σ1
2 or σ0

3 ̸= σ1
3.

When Game 4 differs from Game 3, Tracepk(CT0) = Tracepk(CT1), hence the group elements
F,G,H derived from this common public key are the same. Therefore σ0

2 and σ1
2 (resp. σ0

3 and
σ1
3) are valid LHSP signatures of the same message (1,

∏ℓ
i=1 fi, g) (resp. (1, F,G)). Thus, if

σ0
2 ̸= σ1

2 or σ0
3 ̸= σ1

3, we have a straightforward reduction to SXDH. (We refer to the proof of
Lemma 16 where we gave an explicit reduction from finding two different LHSP signatures on
the same message and winning the DDH game.)

Game 5: In this game, we change the generation of the Groth-Sahai CRS crs: instead of
picking them at random, we pick them as random DDH tuple, and we keep the corresponding
trapdoor. Also, we abort by outputting a random bit if one of the element of the CRS is a trivial
element. (Note that the second CRS crs′, which is used for ⃗̂πsig only, is still generated honestly.)

Using a similar argument as in Games Game 3 to Game 5 from the proof of verifiability, it
is easy to show that |S5 − S4| is negligible under the SXDH assumption.

Game 6: In this game, whenever the adversary outputs a valid ciphertext (including during
a decryption query), we extract Z1, R1, â, b̂, ŵ, Θ̂, M̂i,Mi, x̂ from the commitments and abort (by
outputing a random bit) if Eq. (20) is not verified.

Using a similar argument as in the proof of verifiability (see Game 7), we have that |S6−S5|,
is negligible.

Game 7: In this game, whenever the adversary A makes a new random oracle query, we
picks a random τ ∈ Zq, compute F =

∏ℓ
i=1 f

τ
i and G = gτ .

To argue that |S7 − S6| is negligible, we construct a succession of games (Hi)i. The game
Hi is Game 7, except that the first i queries to the random oracle are answered as in Game 6
(i.e. using uniformly random F,G and the trapdoored H). With the same idea as in the proof
of traceability (see Game 2), it is easy to show that all the conditions of the hybrid lemma are
verified, so that |S7 − S6| is negligible.

Game 8: In this game, we denote sk = (αi, βi)
ℓ
i=1 the secret key, and we abort (by outputting

a random bit) if h
∑ℓ

i=1 βig
∑ℓ

i=1 αi = 1. Clearly |S8 − S7| is negligible.

Game 9: In this game, we generate g, h, G̃, H̃ ∈ G\{1} at random and generate the secret
key (αi, βi)

ℓ
i=1 such that h

∑ℓ
i=1 βig

∑ℓ
i=1 αi ̸= 1. Also, we denote F̃ = H̃

∑ℓ
i=1 βiG̃

∑ℓ
i=1 αi .

Then, whenever the adversary makes a query to the random oracle with a new input ˆopk,
we do not compute F =

∏ℓ
i=1 f

τ
i and G = gτ for some random τ . Instead, we compute F = F̃ τ

225

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

and G = G̃τ ; as for H, it is generated as usual (i.e. by generating two random τH , τ ′H ∈ Zq and
computing H = SτHT τ ′H). We answer to the random oracle query with F,G,H.

When A outputs the ciphertexts CT0 and CT1, we pick a random bit b ∈ {0, 1}. However,
instead of rerandomizing CTb as in Game 8, we parse it as

CTb =
(
cb1, c

b
2, (d

b
i)

ℓ
i=1, C⃗Z , C⃗R, σ⃗2, σ⃗3, ⃗̂πsig, ˆopk,

⃗̂
CA,

⃗̂
CB,

⃗̂
CW , π⃗SS , (C⃗Mi ,

⃗̂
CMi)

ℓ
i=1,

⃗̂
CΘ,

⃗̂
CX , π⃗1, π⃗2,

(π⃗di , π⃗01,i,
⃗̂π01,i)

ℓ
i=1, π⃗r,1, π⃗r,2, (π⃗r,di)

ℓ
i=1

)
and compute CT⋆ as follows. First, we recover (F,G,H) and the corresponding τ ∈ Zq from

Tracepk(CTb), compute H̄ = H̃τ , pick µ1, µ2
$←− Zq and compute

c⋆1 = cb1g
µ1Gµ2 , c⋆2 = cb2h

µ1H̄µ2 , and, for all i, d⋆i = dbif
µ1
i Fµ2

i ,

where Fi = GαiH̄βi .

To produce C⃗⋆
Z , C⃗⋆

R and ⃗̂π⋆
sig, we extract (Z1, R1) from the Groth-Sahai commitments C⃗b

Z

and C⃗b
R, parses σ⃗2 as (Z2, R2), σ⃗3 as (Z3, R3) and compute the witnesses Z = Z1Z

µ1
2 Zµ2

3 and
R = R1R

µ1
2 Rµ2

3 . (Recall that σ⃗2 and σ⃗3 are the same for both ciphertexts CT0 and CT1.) Since

ℓ∏
i=1

Fi = G
∑ℓ

i=1 αiH̄
∑ℓ

i=1 βi = F̃ τ = F,

the vector (g,
∏ℓ

i=1 d
⋆
i , c

⋆
1) is a linear combination of (g,

∏ℓ
i=1 d

b
i , c

b
1), (1,

∏ℓ
i=1 fi, g) and (1, F,G),

with the coefficients 1, µ1 and µ2. Therefore, by the linearity of the LHSP signature, (Z,R) is
a valid signature of (g,

∏ℓ
i=1 d

⋆
i , c

⋆
1). Using these witnesses, we generate C⃗⋆

Z and C⃗⋆
R using the

Groth-Sahai commitment scheme, and ⃗̂π⋆
sig using the Groth-Sahai proving algorithm.

Finally, we generate the remaining of CT⋆ as in Game 8, using the trapdoors τH and τ ′H such
that H = SτHT τ ′H .

To argue that Game 9 is indistinguishable from Game 8, we show that both games are
indistinguishable when g, h, G̃, H̃ happens to be a DDH tuple.

Indeed, consider that g, h, G̃, H̃ is a DDH tuple, and that none of its component is trivial.
Then there exists γ ∈ Z×

q such that G̃ = gγ and H̃ = hγ . This way, when we answer to a random
oracle query with F = F̃ τ and G = G̃τ for some random τ , we have

F = F̃ τ =
(
H̃

∑ℓ
i=1 βiG̃

∑ℓ
i=1 αi

)τ
=
(
h
∑ℓ

i=1 βig
∑ℓ

i=1 αi

)τγ
=

ℓ∏
i=1

f τγ
i

and G = gτγ . Hence (F,G,H) follows the same distribution as in Game 8.

In addition, we have

c⋆1 = cb1g
µ1Gµ2 = cb1g

µ1G̃τµ2 = cb1g
µ1+γτµ2

c⋆2 = cb2h
µ1H̄µ2 = cb2h

µ1H̃τµ2 = cb2h
µ1+γτµ2

d⋆i = dbif
µ1
i Fµ2

i = dbif
µ1
i

(
GαiH̄βi

)µ2

= dbif
µ1+γτµ2
i .

226

9.5. Security proofs for our traceable encryption scheme

Finally, it remains to argue that the vector (Z2, R2) and (Z3, R3) are collinear, except with a
negligible probability. Indeed, when they are collinear, (Z,R) follows the same distribution as
in Game 8, and since the Groth-Sahai proofs and commitments are computed from (Z,R) in the
same way, they also follow the same distribution as in Game 8.

Now, let p be the probability that (Z2, R2) and (Z3, R3) are not collinear when g, h, G̃, H̃ is
a DDH tuple. We construct an adversary B against DDH which interacts with A by simulating
Game 9. However, it gets ĝ, ĥ, ĝ′, ĥ′ as a tuple challenge from the DDH game, picks a random
γ ∈ Z×

q and sets G̃ = gγ and H̃ = hγ . At some point, A outputs the two ciphertexts from which
B deduces (Z2, R2) and (Z3, R3). Since they are valid signatures, we have

e(Z2, ĝ)e(R2, ĥ) = e(
ℓ∏

i=1

fi, l̂2)e(g, l̂3)

e(Z3, ĝ)e(R3, ĥ) = e(F, l̂2)e(G, l̂3) = e(
ℓ∏

i=1

f τγ
i , l̂2)e(g

τγ , l̂3).

Hence, we have e(Z3Z
−τγ
2 , ĝ)e(R3R

−τγ
2 , ĥ) = 1.

Therefore, B can proceed as follows. It computes e(Z3Z
−τγ
2 , ĝ′)e(R3R

−τγ
2 , ĥ′) and, if this is

equal to 1, states that ĝ, ĥ, ĝ′, ĥ′ was a DDH tuple; otherwise, it states that it was a random
tuple. Remark that when ĝ, ĥ, ĝ′, ĥ′ is a DDH tuple, the corresponding equality always hold so
that B wins with probability 1. If ĝ, ĥ, ĝ′, ĥ′ is a random tuple, then, there are two possibilities:
either Z3Z

−τγ
2 = R3R

−τγ
2 = 1 so that the equality also holds in any case; either this is not the

case and the equality hold with probability 1/q (this is because the adversary had no information
about ĝ′, ĥ′, which is uniformly random). Let p′ be the probability that Z3Z

−τγ
2 = R3R

−τγ
2 = 1

does not hold.

Then, the probability that B wins the DDH game is 1
2(1 + p′(1 − 1/q)), so that p ≤ p′ ≤

2εsxdh+
1
q . Indeed, if (Z2, R2) and (Z3, R3) are not collinear, the equalities Z3Z

−τγ
2 = R3R

−τγ
2 = 1

are not possible so that p ≤ p′.

Conclusion. To conclude the proof, we show that the view of the adversary when b = 0 is
statistically indistinguishable from that of the adversary when b = 1. For this purpose, recall
that thanks to the transition to Game 6, the only decryption queries which are accepted contains
a ciphertext CT for which the CPA part is of the form (gρ, hρ, gm1

1 fρ
1 , · · · , g

mℓ
ℓ fρ

ℓ), for some ρ ∈Zq .
Consequently, the equations gmi

i = dic
−αi
1 c−βi

2 that can be deduced by the answer of the oracle
queries are collinear with the equations fi = gαihβi from the public key.

In addition, when we answer to a new random oracle query, we compute H independently
and F = F̃ τ and G = G̃τ with a fresh random τ . Therefore, a random query unrelated to ˆopk
does not give any more information than F̃ , G̃.

Also, since the commitments C⃗⋆
Z , C⃗

⋆
R and the Groth-Sahai proof ⃗̂πsig use another independent

CRS crs′ which is not trapdoored, unless this CRS contains a DDH tuple, they are perfectly
witness indistinguishable, which means that they reveal no information about b.

Besides, since the other Groth-Sahai commitments and proofs are computed independently
of CT0, CT1 and b, they similarly reveal no information about b.

Overall, a computationally unbounded adversary has access to the information contained in
the following equations:

227

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

H̃
∑ℓ

i=1 βiG̃
∑ℓ

i=1 αi = F̃ (24)

∀i, gαihβi = fi (25)

cb1g
µ1G̃τµ2 = c⋆1 (26)

cb2h
µ1H̃τµ2 = c⋆2 (27)

∀i, dbif
µ1
i

(
gταiH̃βi

)µ2

= d⋆i . (28)

Yet, unless τ = 0 or g, h, G̃, H̃ is a DDH tuple, the vectors (g, h) and (G̃τ , H̃τ) are linearly
independent so that there exists a unique µ1

1, µ
1
2 (resp. µ0

1, µ
0
2) such that Eq. (26) and (27) are

verified with b = 1 (resp. b = 0).
Also, remark that unless g = 1G or H̃ = 1G or µ1

2 = 0 (resp. µ0
2 = 0), the 2ℓ equations defined

in Eq. (25) and 28 are linear in the secret key, and linearly independent. Therefore, there exists
a unique secret key (α1

i , β
1
i)

ℓ
i=1 (resp. (α1

i , β
1
i)

ℓ
i=1 that verifies them).

Finally, unless
∑ℓ

i=1 βi = 0, Eq. 24 is equivalent to H̃ =
(
F̃ G̃−

∑ℓ
i=1 αi

)(∑ℓ
i=1 βi)

−1

.
Therefore, except with probability at most 7/q, the probability that a specific CT⋆ is output

to the adversary is the same when b = 0 as when b = 1. Hence, CT⋆ is independent from b and
the probability that the adversary wins is exactly 1/2. Overall, this shows that the advantage of
A in Game 9 is negligible as required.

9.6 Application to verifiable receipt-free electronic voting

Until now, we presented a new definition of receipt-freeness as well as the notion of traceable en-
cryption, which is adapted to the rerandomization paradigm. In this section, we propose TREnc,
a Helios-like voting scheme that allows to obtain receipt-freeness with very little assumptions on
the protocol. This contribution is similar to that of [DPP22b], except that the setup is public
coin and that we support 0/1 proofs.

9.6.1 A voting scheme based on a traceable encryption

To define our voting scheme, we give the algorithms (Setup,Vote,Check,Valid,Tally,Verify). Re-
call that our construction is independent from the registration, so that we do not explicit the
registration protocol nor how the eligibility is enforced. Just as for Helios, we propose a voting
system that can be augmented with any mechanism to obtain eligibility. One of the specificities
of our protocol is that the Vote protocol is interactive, and requires two messages from the voter.
This is because we use an interactive Σ-protocol to prove the knowledge of the link key. This is
needed in the strategy that we propose to deceive the vote buyer, since the voter can use this
interactive protocol to extract the link key. (Note that the voter does not interact with the vote
buyer, but rather with the instructions that are given, seen as a Turing machine.)

For the tally part, we use the fact that our traceable encryption has a somewhat homomorphic
property, which means that a homomorphic strategy can be applied. Alternatively, a decryption
mixnet can also be used. In our construction, the universal verifiability comes from the compu-
tational soundness of the threshold decryption protocol. Also, assuming that the voting device is
honest, the individual verifiability comes from the traceability of the encryption scheme and the

228

9.6. Application to verifiable receipt-free electronic voting

Table 22: Trust assumptions in TREnc.

Indiv. verif. Univ. verif. Privacy Receipt-freeness
Server not trusted not trusted not trusted trusted
Talliers not trusted not trusted t out of nT t out of nT

Device trusted not trusted trusted trusted

zero knowledge property of the Σ-protocol used to prove the knowledge of the link key. The trust
assumptions of our voting system are given in Table 22; in Section 9.7, we discuss about how to
provide cast-as-intended verification against a malicious device. The proof of receipt-freeness is
given in Section 9.6.3.

• Setup(λ,nT , t) : Recall that the public key has the form pk = (g, ĝ, h, ĥ, S, T, (gi, fi)
ℓ
i=1,

c⃗rs, c⃗rs′). To proceed with the setup, choose some pairing-friendly groups G, Ĝ,GT of
prime order q > 22λ calibrated for the security parameter λ, and choose g, ĝ at random,
for instance by deriving them from a specification of G, Ĝ and the name of the protocol.
Similarly, pick h, ĥ, (gi)

ℓ
i=1, S, T as provably random group elements, as well as crs and crs′.

Finally, use a DKG protocol to generate (fi)
ℓ
i=1, distribute the shares of the secret key

among the nT talliers with the threshold t and generate the corresponding commitments
on the secret shares.

• Vote(id, ν,RS,PB) : the vote protocol is done in interaction between the voter id, the
rerandomizing server RS and the public board PB. It is illustrated in Fig. 36. First, the
voter chooses a random link key lk using the LGen algorithm. Using this link key, the voter
encrypts the desired voting option ν with the LEnc algorithm, yielding the valid ciphertext
CT. In parallel, the voter computes a random commitment for interactively proving the
knowledge of lk in zero-knowledge, using the commitment algorithm of the Σ-protocol.
(Namely, in our scheme, the voter samples six random r1, r2, r3, r

′
1, r

′
2, r

′
3 ∈ Zq, computes

l̂′1 = ĝr1 ĥr
′
1 , l̂′2 = ĝr2 ĥr

′
2 and l̂′3 = ĝr3 ĥr

′
3 and uses (l̂1, l̂2, l̂3) as a commitment.) The voter

sends (id,CT, C) to the server, where C is the commitment.

The server computes a random challenge d
$←− [0, 2λ − 1] and sends it to the voter.

The voter answer to this challenge using the Ans algorithm of the Σ-protocol.

The server verifies the proof. If it is valid, it rerandomizes CT into CT′ using Rand, checks
that CT′ is valid and that the answer of the voter to the challenge was valid. Finally, it
checks that no other ciphertext in the public board use the same trace as CT′. If all the
verifications succeed, it adds an entry B′ = (id,CT′) to the public board.

• Check(ν, id,B,PB) : To check that the ballot B = (id,CT) was correctly processed,
the voter checks that the last entry of the public board of the form (id,CT′) is such that
Tracepk(CT) = Tracepk(CT

′).

• Valid(B,PB) : to check that a ballot B = (id,CT′) is valid with respect to the public
board, we check that Verpk(CT

′) = 1 and that no entry of the public board contains a
ballot of the form (id′,CT) with Tracepk(CT) = Tracepk(CT

′).

• Tally(PB,{si}) : Let B1, · · · , Bn be the list of valid ballots obtained from PB by keeping
the last valid ballot for each voter. For all i, we denote ci1, c

i
2, (d

i
j)

ℓ
j=1 the CPA part

of the ballot. The first step of the tally protocol is to aggregate the CPA parts to obtain

229

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

Voter
(id, v)

RS PB

lk←− LGen(pk)

CT
$←− LEncpk(lk, ν, ·)

r, r′
$←− Z3

q ; C ←− ĝrĥr
′

(id,CT,C)

d
$←− [0, 2λ − 1]

a← r + dγ; a′ ← r′ + dδ

(a,a′)

CT′ ←− Randpk(CT); check that
Valid((id,CT′),PB) = 1

and that ĝaĥa
′
= C · ˆopk

d

with ˆopk = Tracepk(CT)

(id,CT′)“success”

Check that the last a valid entry
of the form (id,CT′) is such that
Tracepk(CT

′) = Tracepk(CT)

Figure 36: The Vote protocol

c1, c2, (d
i
j)

ℓ
j=1 as the product of all the ci1, c

i
2, (d

i
j)

ℓ
j=1’s. Then, the second part is to compute

Rj = djc
−αj

1 c
−βj

2 for all j, using a threshold decryption protocol. This protocol also
returns a transcript Π, which is used for the verifiability. Finally, the tally protocol outputs
(ri)

ℓ
i=1,Π, where ri = loggi(Ri) is the number of voters that set the ith bit to 1.

• Verify(PB,Π, r) : From PB and Π, recomputes the result of the tally r′ and check that
r = r′. Also, check that the transcript Π is valid with respect to PB.

9.6.2 Implementation

We provide a Python implementation in [tre], which evaluates the time to encrypt a ballot for
various values of ℓ. Using this implementation, we compare the performance of our scheme to
that of BeleniosRF. We conducted our experiments on a laptop with a 1.8Ghz Intel i7 processor
and 16GB of RAM running Ubuntu 20.04 LTS and Python 3.7.9. We used the Charm frame-
work [AGM+13] with pbc-0.5.14 and OpenSSL-1.0.1. We used a 159-bits MNT pairing curve.
All our results are averaged over 100 runs.

We see in Table 23 that, for a 32-choices race, the encryption time of is a couple of seconds.
Looking at the literature, one of the best alternative to our scheme is the one proposed in

230

9.6. Application to verifiable receipt-free electronic voting

Table 23: Time to encrypt a ballot with ℓ = 1, 2, 4, 32 bits. The times reported are in seconds.

ℓ 1 2 4 32
BeleniosRF 0.07 0.10 0.16 0.94

TREnc 0.17 0.25 0.40 2.49

Exps-cons(λ,A)
1 pk, sk, (hi, si)

nT
i=1,Π← Setup(λ, nT , t);

2 B ←− A(pk,Π);
3 PB←− ∅;
4 for B ∈ B do
5 if Valid(B,PB) = 1 then PB← PB||B;

6 r,_←− Tally(PB, {si});
7 if r ̸= tally((Extractsk(B))B∈PB) then

return 1 else return 0;

Exps-corr(λ,A)
1 pk, sk, (hi, si)

nT
i=1,Π← Setup(λ, nT , t);

2 id, ν,B ←− A(pk,Π);
3 if (id, ν) ̸∈ (I × V) then
4 return 0

5 PB←− Π||B;
6 B ←− Votepk(ν, id);
7 if Valid(B,PB) = 0 then return 1

else return 0;

Figure 37: The strong correctness and strong consistency experiments

BeleniosRF [CCFG16], which would be faster than ours.
However, the BeleniosRF scheme has several drawbacks; the most notable one is that the

bitlength ℓ is limited to some small value, as the decryption algorithm requires an exponential
number of group operations. By contrast, our scheme scales linearly with respect to ℓ.

9.6.3 Receipt-freeness

We now show that our TREnc voting scheme has receipt-freeness. Note that our definition of
receipt-freeness is close to the BPRIV definition [BCG+15b] (see Definition 7) for privacy: the
main difference is that, in privacy, the rerandomization server is not trusted. However, thanks
to the strong rerandomization property, it is easy to adapt the proof of receipt-freeness to obtain
privacy. For this reason, we do not give a separate proof of privacy.

Interestingly, the resulting proof is very modular so that it would be possible to adapt our
result to another scheme that uses a verifiable, traceable, strongly rerandomizable and TCCA-
secure traceable encryption scheme.

To begin with, we perform a necessary sanity check and argue that TREnc has strong cor-
rectness and strong consistency (the corresponding experiments are reproduced in Fig. 37).

Strong consistency. We define the Extract algorithm with the decryption algorithm:
Extractsk(id,CT) = (id,Decsk(CT)). Thanks to the correctness of the traceable encryption
scheme, using Extract on a honestly generated ballot from voter id for the voting option ν ∈
{0, 1}ℓ indeed returns (id, ν). Also, the verifiability of the traceable encryption scheme and the
homomorphic property of the Tally protocol guarantees that no adversary can win the strong
consistency experiment with a non-negligible probability.

Strong correctness. The strong-correctness comes from the correctness of the traceable
encryption scheme, and the fact that LGen outputs a link key chosen randomly from a super-
polynomial space.

Theorem 15. Assume that the Σ-protocol used during the Vote protocol to prove the knowledge
of lk has the special soundness property, is zero knowledge and has the correctness property.

231

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

Exprf-b(λ,A)
1 PB1 ←− ∅; PB2 ←− ∅;
2 pk, sk, τ ←− Oinit(λ, nT , t);
3 AOcast,Oboard,OvoteLR,OreceiptLR(pk);
4 r,Π←− Otally();
5 b′ ←− A(r,Π);
6 if b′ = b then return 1 else return 0;

Oinit(λ, nT , t)

1 τ ←− ⊥;
2 if b = 0 then
3 pk, sk, (hi, si)i,_←− Setup(λ, nT , t);

4 else
5 pk, sk, (hi, si)i, τ ←− SimSetup(λ, nT , t);

6 return pk, sk, τ ;

Ocast(B)

1 if Valid(B,PB0) = 1 and Valid(B,PB1) = 1
then

2 Append(PB0, B); Append(PB1, B);

Oboard()

1 return PBb;

OvoteLR(id, ν0, ν1)

1 if ν0 ̸∈ V or ν1 ̸∈ V then return ⊥;
2 s0, B0 ←− Vote(id, ν0,RS,PB);
3 s1, B1 ←− Vote(id, ν1,RS,PB);
4 Append(PB0, B0); Append(PB1, B1);

OreceiptLR(id, I, ν)

1 if ν ̸∈ V then return ⊥;
2 s0, B0 ←− Vote(id, I,RS,PB);
3 s1, B1 ←− Vote(id,DI(ν),RS,PB);
4 Append(PB0, B0); Append(PB1, B1);
5 return sb;

Otally()

1 r0,Π0 ←− Tally(PB0, sk);
2 Π1 ←− SimProof(PB1, r0, τ);
3 return r0,Πb;

Figure 38: The receipt-free experiment and its oracles, where V is the set of the voting options.

Assume that the tally protocol is zero knowledge in a sense that there exists a simulator
SimProof such that, for all (r,PB), if (r′,Π) is the output of Tally, then SimProof(PB, r, τ) is
computationally indistinguishable from Π, where τ is a trapdoor generated by SimSetup.

Then, under the SXDH assumption and in the random oracle model, TREnc has receipt-
freeness as of Definition 24.

To improve readability, we reproduce the receipt-freeness experiment in Fig. 38.

Proof. First, we explicit the deceiving strategy D. For this purpose, recall that we only consider
non-restrictive adversaries. Therefore, at each call to OreceiptLR with input (I, ν), I is a compatible
instruction (i.e. a Turing machine that takes as input (id,PB) and returns a valid ciphertext
CT0 with respect to PB, as well as a commitment C. It then takes as input a challenge d and
returns a valid answer a,a′, as well as a receipt s.)

In this setting, D creates three copies of I and runs them in parallel. For the first copy, it
inputs a random challenge d1; for the second copy, it inputs a random challenge d2 ̸= d1. This
allows to extract the secret link key osk which corresponds to the produced ballot CT, using
the special soundness property. Then D uses this link key to produce another ciphertext CT1

with the desired voting option ν, and computes the commitment c′ honestly. The RS answers to
(id,CT1, c

′) with some random challenge d that D plays in the third copy of I to get the receipt s.
To prove receipt-freeness, we give a succession of games H0, · · · , H5 such that H0 corresponds

to the experiment Exprf-0 while H5 corresponds to the experiment Exprf-1. For each of these
games, we denote Si the probability that Hi outputs 1.

232

9.7. Adapting the scheme to provide cast-as-intended verification

Game 1: In this game, we create a third fake board PB and answer each call to Oboard with
PB. For this purpose, we update PB the same way we update PB0, and we replace every validity
check that implies PB0 with its counterpart with PB. This way, the adversary’s view does not
change. Clearly S1 = S0.

Game 2: In this game, we compute Π using SimProof(r,PB) instead. By assumption, |S2−
S1| is negligible.

Game 3: In this game, each time a new ballot B is added to a board (and thus is valid
with respect to this board), we use the secret key to decrypt the encryption part and abort if
this is not a valid plaintext. Clearly, |S3 − S2| is negligible by the verifiability of the traceable
encryption scheme.

Game 4: In this game, each time the adversary calls OvoteLR with valid inputs (ν0, ν1), we
add a random ballot for ν1 (instead of ν0) to PB, and still add a random ballot for ν0 to PB0,
using the same link key.

To argue that |S4 − S3| is negligible, we use a hybrid argument and show that it is possible
to modify the calls to OvoteLR one by one. More precisely, we construct a succession of hybrids
(Hi)N such that for all i, Hi is Game 4 except that the first i calls to OvoteLR are handled as
usual (the subsequent one are handled as explained above).

We construct an adversary B that, given i, interacts with A by simulating Hi+1. For this
purpose, each time A makes a Ocast query with a valid ballot, B uses the decryption query to
decrypt it. This way, B knows the plaintext that correspond to every ballot in every public
board, so that it can compute the tally and run a perfect simulation of Hi+1.

However, for the (i+1)th call to OvoteLR, B generates two random ballots B0 and B1 for the
voting options ν0 and ν1 (using the same link key) and plays them in the TCCA game which
answers with the challenge ciphertext CT⋆. Then, B uses this CT⋆ to form the ballot to add to
PB instead of a rerandomization of B0. The remaining of the simulation is ra honestly, except
that to compute the result of the tally, B since it cannot decrypt the ballot cast by A. Finally,
if A wins the simulation, B outputs 1 in the TCCA game; otherwise, it outputs 0.

Clearly, when the TCCA game rerandomizes CT0, B plays a perfect simulation of game Hi+1

and, when the TCCA game rerandomizes CT1, B plays a perfect simulation of game Hi. By the
hybrid argument, |S4 − S3| is negligible.

Game 5: In this game, whenever the adversary calls OreceiptLR with instruction I and voting
option ν, we compute (s1, B1) from DI(v), add B1 (instead of B0) to PB and return s1 (instead
of s0). We still compute (s0, B0) from I and add B0 to PB0.

Remark that s1 is obtained from I with the same inputs as for s0 so that s1 = s0. Remark
that as in the previous transition, it is easy to give a hybrid argument and show that Game 5 is
indistinguishable from Game 4, thanks to the TCCA-security of the encryption scheme.

Conclusion. We deduce that |Pr
(
Exprf-0 = 1

)
−Pr

(
Exprf-1 = 1

)
| is negligible, so that TREnc

has receipt-freeness.

9.7 Adapting the scheme to provide cast-as-intended verification

The Benaloh challenge is a counter-measure to protect the voters against a cheating voting device,
which would encrypt another voting option than the chosen one. It works as follows: first, the

233

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

voter decides whether to cast or to audit the ballot. In the cast scenario, the voter types on the
device the desired voting option. Otherwise, they type a random and independent option. In
any case, the voting device is not aware of the choice and must produce a ballot. The voter then
reveals if they want to cast or audit it. When the voter chooses to audit, the voting device must
reveal an opening of the encrypted ballot (for instance, the randomness used for encryption).
The voter then inputs the ballot and this opening to an auditing device which checks whether
the voting device encrypted the correct voting option.

Interestingly, the voter may gain confidence as to whether the cast ballot contains the correct
voting option, but this cannot be used to break receipt-freeness because the audited ballots are
never cast (they instead are spoiled using some mechanism to prevent casting). However, when
the ballots are re-randomized, this strategy cannot be used as it is. Indeed, the cheating voting
device can always display a honestly generated ballot but cast a dishonestly generated one which
uses the same trace, hence defeating the Benaloh challenge. In addition, it may be desirable to
publish the spoiled ballots for various reasons; for instance to delegate a part of the verification
or to avoid having to transfer data from the voting device to the auditing device. Unfortunately,
the published spoiled ballots may then be used as a receipt.

9.7.1 Adapting our scheme for the Benaloh challenge

We propose to slightly adapt the voting protocol so that the voting device can no longer defeat
the Benaloh challenge, even if the re-randomization server is dishonest. Our modification does
not compromising receipt freeness, even if (a part of) the spoiled ballots are published. (Recall,
however, that the re-randomization server is supposed honest when considering receipt-freeness.)
The voter still decides in advance whether to audit or to cast, and picks a random voting option
when auditing. The voting device encrypts the choice and commits to some random group
elements as before. Then, the re-randomization server replies with the re-randomized ballot and
a random challenge. At this point, the voter reveals if they want to audit or cast:

• In the cast scenario, the voting device answers to the challenge, the server checks the ZKP
and the validity of the ballot and adds it to the public board. The voter then checks that
the added ballot corresponds to the one sent by the server.

• In the audit scenario, the voting device and the server reveal the randomness used, so that
the voter can check that the ballot opens to the correct voting option.

At the end of the interaction, the voter chooses which spoiled ballots they want to publish.
The audit and cast protocols are pictured in Fig. 39. In this figure, (si)ni=1 is a bitstring that

indicates which of the previously spoiled ballots the voter wants to publish. For such ballots, the
voter can delegate the opening and just check that there is an entry with the correct CT′ and ν.
Note that allowing the voter to have some spoiled ballots published may expose them to coercion
if the adversary is active during the voting phase. It is also more demanding for the public board.
For this reason, if there is a direct channel from the voting device or the re-randomization server
to the auditing device (for instance, by flashing a QR code), it may be preferable not to let the
voters publish any spoiled ballot.

Theorem 16. Assume that the Σ-protocol used during the Vote protocol to prove the knowledge
of lk has the special soundness property, is zero knowledge and has the correctness property.

Assume that the tally protocol is zero knowledge in a sense that there exists a simulator
SimProof such that, for all (r,PB), if (r′,Π) is the output of Tally, then SimProof(PB, r, τ) is
computationally indistinguishable from Π, where τ is a trapdoor generated by SimSetup.

234

9.7. Adapting the scheme to provide cast-as-intended verification

Cast procedure

PBRSVoting DeviceVoter
(id, ν, “cast”)

(id, ν) (id,CT,C)

d
$←− [0, 2λ − 1]

CT′

“cast”, (si)
n
i=1 (a,a′), (si)

n
i=1

(id,CT′)
(CT′

i, νi, θi + θ′i)i|si=1

Check that (id,CT′)
is added to the board

Audit procedure

Voter
(id, “audit”)

Voting Device RS

ν
$←− {0, 1}ℓ

(id, ν) (id,CT,C)

d
$←− [0, 2λ − 1]

CT′

“audit” “spoil”

θ′(θ, θ′)

Open CT′ using θ, θ′;
Check that ν = ν ′

Figure 39: The Vote protocol, adapted to the Benaloh’s challenge, where (CT′
i, θi + θ′i, vi)

n
i=1 is

the list of previously spoiled ballots. θ and θ′ are respectively the randomnesses used to encrypt
and rerandomize a ballot.

235

Chapter 9. Traceable encryption for verifiable receipt-free electronic voting

Then, under the SXDH assumption and in the random oracle model, the modified voting
system presented in this section has receipt-freeness as of Definition 24.

Proof sketch. We give the new deceiving strategy D. First, D makes several copies of I, denoted
A, B and C. It runs A honestly in interaction with RS, until the first time A sends a “cast” query.
Let CT0 be the ballot created by A and CT0 the honest re-randomization given by RS. At this
point, D runs B with the exact same inputs, but replaces the last challenge with another randomly
chosen challenge. Since A answered “cast” when given an identically distributed challenge, B will
also cast with some non-negligible probability (otherwise D rewinds and picks another challenge
again). This allows D to extract osk with the special soundness property and to produce another
ballot CT1 which has the same trace as CT0, but encrypts the desired voting option ν. D asks
RS to spoil CT0 and sends (id,CT1,C) to RS, which answers with d and CT1, where C is a the
commitment in the Σ-protocol computed by D. Using a third copy of I, D rewinds A to replace
CT0 by CT1 and the last challenge by d. From the TCCA security, C cannot distinguish CT0

from CT1. Consequently, C also outputs “cast” with some non-negligible probability (otherwise
D sends “spoil" to the server and starts over). When C eventually outputs “cast”, (si)

n
i=1, D

sends (a,a′), (s′i)
n′
i=1 to the server, so that the bits set at 1 corresponds to the spoiled ballots

that C wants published. Finally, D outputs C’s output as the receipt.
Note that D is a PPT, which means that there is a non-zero (but negligible) probability that

D does not terminate in polynomial time. For instance, if I casts with probability 1/2, there is
a probability 1/22

κ that I does not cast after 2κ interactions. A less extreme example is where I
tries to fake the proof of knowledge of osk by picking a specific challenge d and casting only when
d is given as a challenge. Then there is a probability of 2−λ that RS picks this d as a challenge,
in which case D will never be able to extract osk since I will never cast with a challenge d′ ̸= d.

Now, we show that the couple (s1, B1) produced by D in interaction with RS is indistin-
guishable from the couple (s0, B0) produced by I, even if the adversary can see the public board.
Indeed, let A be an adversary which can distinguish both distributions with an advantage ε.
We construct an adversary B for TCCA which interacts with I and A by simulating D and RS.
B runs D’s algorithm, but instead of replacing CT0 by CT1, it replaces it by the CT∗ obtained
in the TCCA game, using the ciphertexts CT0 and CT1. The remaining of the experiment is
simulated honestly, so that B wins the TCCA game with the same advantage ε.

Finally, remark that if publishing the spoiled ballots is not an option, it is even easier to
achieve receipt-freeness since D no longer needs to compute (s′i)

n′
i=1.

9.7.2 On the fly cast-as-intended verification

The solution from Section 9.7.1 allows to use the Benaloh challenge without modifying the
protocol too much. In particular, casting requires the same number of interactions for the voter.
The main drawback is that checking may be delayed at some point after casting, which could
be embarrassing if there is no revoting policy. This can be the case, for instance, if there is no
direct channel from the voting device and the rerandomization server to the auditing device.

In this section, we sketch an alternative solution which allows on-the-fly cast-as-intended
verification, so as to offer the same properties as the original Benaloh challenge, assuming a
channel from the public board to the auditing device. The idea is that instead of choosing
cast or audit, the voter chooses “cast”, “audit-private” or “audit-public”. When “audit-private” is
chosen, the re-randomization server sends the randomness used to re-randomize the ciphertext
and the voting device must display the randomness used to encrypt the ballot. When “audit-
public” is chosen, the voting device sends the randomness used for encryption to the server which

236

9.8. Conclusion

publishes the ballot, the necessary data for opening it and the corresponding voting option. This
way, the voter can check the opening of the ballot with the auditing device.

When this solution is used, the adversary can now instruct the voter to “audit-public” at some
specific points, which would prevent our deceiving strategy from working (completely rewinding
is no longer an option since we cannot rewind the public board). Consequently, we need a more
refined deceiving strategy, described as follows, where I is the instruction given by the adversary.

1. Run honestly until I decides to cast.

2. Let (CTI , dI ,CT
′
I) be the last conversation.

(a) Using a second copy of I, extract the link key.

(b) Use “audit-private” to have RS drop CT′
I and submit CTV , a ciphertext which contains

the desired voting option. The server answers with dV and CT′
V .

(c) Rewind I to replace dI and CT′
I with dV and CT′

V .

3. If I casts again, we are done. Otherwise, audit-private to have RS drop CT′
V

4. Rewind I back to before step 2 but replace dI and CT′
I by RS’s when given again the ballot

CTI . Audit-private and rewind until I decides to cast again.

With the same arguments as in Theorem 16, we can prove that this achieves receipt-freeness.

9.8 Conclusion

In this collaboration, we proposed a new definition of receipt-freeness, which better models the
risk of vote buying. This definition considers that the vote buyer may give any instruction to the
voter, and ask the latter to provide a receipt to prove that the instruction was followed. With this
approach, receipt-freeness becomes closer to coercion-resistance: the main limitations are that
we do not consider forced-abstention attacks and that the adversary cannot ask the voter to give
away their voting material. Interestingly, our definition does not make any assumption about
the eligibility mechanism nor the registration phase, and considers that they are independent
from receipt-freeness. This means that we can use any long term secret key to authenticate the
voters, such as the electronic identity card used in Estonia or the health insurance system. This
way, it is easier to argue that the voter is not going to give away their credential for a small
amount of money.

An unusual specificity of our voting scheme is that the Vote protocol requires the voter to
send several messages, in interaction with a rerandomization server. This requirement comes from
the cryptographic techniques that we deployed, that feature an interactive ZKP to prevent the
adversary from providing the ballot to vote with. In electronic voting, it is often considered that
the situation where the voter can “vote and go” is preferable, and that the Vote protocol should
be non-interactive. We argue that this interaction is actually required for the voting device:
on the voter side, the user experience would be similar to that of the Helios voting protocol.
In practice, the voting device needs to exchange many additional messages with the server, for
instance to establish a TLS channel. Therefore, the interactive nature of the Vote protocol
might not be detrimental. In any case, an interesting future work would be to investigate on the
possibility to design a verifiable receipt-free voting scheme that does not use any assumption on
the registration phase, but where the voter only needs to send a single message.

237

Conclusion

In hindsight, this thesis was articulated around three thematics: security definitions, security
proofs and protocol design. To conclude this manuscript, we summarize our main contributions
and mention some possible future works.

Security definitions

In provable security, providing a security definition is a fundamental key step. It is important to
make sure that the formalization that we provide actually corresponds to the security property we
want to capture. Unfortunately, the existing definitions are not stabilized, and it is often required
to adapt an existing definition to the specificities of a protocol. This is all the more problematic
when we want to assess additional, less standard security properties, such as receipt-freeness and
coercion-resistance.

Our contributions. In this thesis, we studied the academic definition of coercion-resistance pro-
vided in [JCJ05] and remarked that it did not model the possibility of revoting. When revoting is
allowed, we detected a shortcoming in the JCJ protocol where various side-information – which
are publicly available during the tally protocol – allow the adversary to gain a non-negligible ad-
vantage in guessing whether the coerced voter obeyed or not, using bayesian inference. Hence, we
designed a new definition of coercion-resistance, that properly models revoting and the potential
presence of dummy ballots, i.e. ballots cast with an invalid credential, but not by the coercer.
This definition covers a wider variety of scenarios compared to the JCJ definition, and compares
the probability that the adversary correctly guesses the behavior of the coerced voter in the real
protocol (i.e. whether they obey or not) to that probability in an ideal protocol, where the only
available information are the result (which includes the number of voters that contributed to this
result), the number of ballots cast and the number of eligible voters. This way, our definition
does not state that the adversary cannot gain a non-negligible advantage (i.e. it can still use –
for instance – bayesian inference); rather, it states that this advantage is the same as in the ideal
protocol. Intuitively, when the information contained in the result are exactly those required by
the regulation, a protocol that satisfies our definition would be as coercion-resistant as possible.

A notion related to coercion-resistance is that of receipt-freeness. By contrast with coercion-
resistance, there is no canonical definition of receipt-freeness in the literature: some interesting
definitions are given, for instance, in [MN06, KZZ15, CCFG16, DPP22b]. The problem with
these definitions is that they do not model the vote-buying scenario, where an adversary can
give some specific instructions to the voters and reward those who followed the instructions: for
each of these definitions, it is easy to design a voting protocol that verifies the definition but
for which vote buying would not be prevented. For this reason, we propose a new definition of
receipt-freeness, that was calibrated to address vote buying. In this definition, we consider that
some malicious voters may be willing to follow some arbitrary instructions given by the adversary,
providing that they are compatible with the voting protocol. This makes the notion of receipt-

238

freeness closer to that of coercion-resistance, and more suitable for real-world threats. The main
differences with coercion-resistance is that it does not consider forced-abstention attacks, and
that the adversary cannot ask the voters to give away their voting credential.

Future works. Readily, there are a few short-term future works that might be worth investi-
gating. First, we remarked that the BPRIV definition suffered from a small glitch which caused
it to reject too many voting protocols. Indeed, recall that in this definition, there are two public
board PB0 and PB1 and the adversary is able to cast a ballot in both boards. yet, we only verify
that the ballot is valid with respect to PBb, the board that the adversary is able to see, which
might lead to some invalid ballots being added to PB0. As explained in Section 1.3.2, the naive
way to fix this is to check that the ballot is valid in both boards, but further investigations are
required to verify that the remaining properties of the BPRIV definition are preserved; namely,
we need to verify that the fixed definition still implies that the voting protocol securely realizes
some ideal voting protocol in an universally composable framework. Similarly, we adapted the
BPRIV definition in Section 9.1 to obtain a new definition of receipt-freeness, and it would be
interesting to prove that this definition also implies that the voting protocol similarly realizes an
ideal voting protocol.

More generally, the lack of composability is an open problem in electronic voting: the exist-
ing definitions are limited, interdependent and make various assumptions on the nature of the
protocol or the trust assumptions. Consequently, it is often impossible to use an existing defini-
tion for a protocol it was not designed for: it would use different phases, participants and trust
assumptions. For instance, the BPRIV definition does not model the fact that the adversary
might actively impersonate some talliers during the tally phase. For this reason, it would be
interesting to provide more modular, composable security definitions. In Section 6.6, we used
the universally composable framework of [CCL15] to exhibit a reduction from a situation where
the adversary can impersonate some talliers during the tally protocol to a situation where the
adversary is inactive during the tally phase. Hence, a possible approach would be to generalize
this result by giving some definitions and conditions under which a similar reduction would be
possible. This way, we would be able to create a security framework which gives more modularity
on the trust assumptions.

Security proofs

The security proofs are probably what kept us busy for the longest during this thesis. Providing
a satisfying level of provable security is definitely a non-trivial task, and we managed to prove
various security properties – such as privacy, verifiability, coercion-resistance and receipt-freeness
– for our different voting systems. In particular, we used the SUC-framework, which resulted
in complex and hard to verify hand-written proofs. Due to the complexity of those proofs,
an interesting future work would be to investigate the possibility of machine-checking them.
In [CDDW18], for instance, EasyCrypt [BDG+13] has been used to check various security proofs
on Belenios. Compared to game-based definitions, however, the simulation-based definitions of
the universally composable frameworks are different in nature. Therefore, the first step would
be to determine whether the existing tools such as EasyCrypt allow to machine-check the proofs
in the SUC framework.

Protocol design

Apart from writing proofs, a large part of this thesis was spent designing protocols. However,
we made several concessions in the process, which might lead to interesting future works.

239

Conclusion

Our contributions. In this thesis, we provide a toolbox for generic MPC in the ElGamal
setting, and show that it can be used to achieve full tally-hiding in electronic voting, which
addresses the threat of Italian attacks. In particular, we design some explicit tally protocols for
Condorcet-Schulze, STV, Majority Judgment and the D’Hondt method, and show that they are
efficient and practical, even compared to other approaches based on MPC in the Paillier setting.
We also propose CHide, which uses this toolbox to achieve our definition of coercion-resistance.
Interestingly, the complex functionalities provided by the toolbox, such as sorting, allow CHide
to be more scalable than the original JCJ protocol.

Finally, we also propose TREnc, a voting system that aims at achieving receipt-freeness.
Compared to the two other proposals, TREnc is probably more ready-to-go as it is extremely
similar to Helios. In particular, it does not require the talliers to run any MPC protocol outside
of the DKG protocol and the threshold decryption.

Future works. First, despite the proof of security in the SUC framework, our toolbox does not
provide accountability. This can be detrimental during the tally phase, as people are waiting for
the result to be published. If the adversary is able to make the protocol abort without being
punished, it may use this as a strategy to diminish the public confidence in the protocol. For this
reason, providing accountability and dispute resolution (i.e. a way to punish at least a malicious
participant when the protocol aborts, without punishing any honest one) is extremely important.
In the SUC framework, the messages are authenticated, which means that the participants
can blame each other using the messages they received. However, an authentication is not an
identification: when Alice receives a message m from Bob, Alice knows that m comes from Bob
but cannot use this knowledge to convince a third party, since she might have forged m herself.
For this reason, accountability requires a dispute resolution protocol which clearly states which
participant is to blame in any given situation. A possible solution is to use non-repudiable
signatures, but the latter are often more expensive to compute compared to, for instance, a
message authentication code. Therefore, signing every single message could lead to an efficiency
issue. Analyzing which message must be signed and how to solve the disputes with the signed
messages would be an interesting future work.

Concerning coercion-resistance, a challenging topic is that of registration. More precisely, it
is often required that the adversary is inactive during the registration phase, or that the latter
is perfect, in a sense that the adversary cannot record any of the messages exchanged between
the voter and the registrars. This can be achieved, for instance, by an in person registration
process. However, if the registration is made online, then the assumptions on the registration
may be too strong. Indeed, even if we assume that the registration is done through an untappable
channel, the adversary might perform the registration instead of the voter and, when required to
authenticate itself, forwards the authentication messages to the voter. This way, the adversary
would be able to receive the voter’s credential directly from the registrars. Therefore, designing
a registration protocol that supports the presence of an active adversary can be an interesting
future work.

Finally, all of our constructions were based on the DDH assumption, or the SXDH assump-
tion which is a variant of DDH in the context of bilinear groups. Yet, the emergence of quantum
computing is looming large, so that the DDH problem might become easy in the foreseeable
future. Consequently, a post-quantum solution will be required soon. In this context, we men-
tioned in Section 4.1.3 that FHE might be an interesting lead to design a post-quantum MPC
toolbox. On this subject, an interesting starting point would be the contribution of [KLO+19].

240

Appendix A

ZK-TCPA security of the ElGamal
threshold encryption scheme

In this Section, we prove Theorem 1 that states that the ElGamal threshold encryption scheme
is ZK-TCPA under the DDH assumption. To ease the readability, we reproduce the ZK-TCPA
game here, as well as the simulator.

SimnT ,t((x, y),m,A, (si)i∈A)

Requires: A ⊂ [1, nT] has size |A| ≤ t
1 S ←− A

⋃
Complete(A,nT);

2 for (i, j) ∈ ([1, nT]\A)× S do
3 ΛS

i,j ←−
∏

k∈S\{j}

i−k
j−k ;

4 w0 ←− y/m;
5 for i ∈ A do wi ←− xsi ;

6 for i ∈ S\(A
⋃
{0}) do wi

$←− G;

7 for i ∈ [1, nT]\S do wi ←−
∏
j∈S

w
ΛS
i,j

j ;

8 return (wi)i∈[1,nT]\A;

ExpZK-TCPA(λ,A)
1 pk, sk, (hi, si)

nT
i=1,Π← Setup(λ, nT , t);

2 A← A(pk, (hi)nT
i=1);

3 b
$←− {0, 1};

4 if |A| > t or A ̸⊂ [1, nT] then return b;
5 m←− A((si)i∈A);

6 r
$←− R;

7 C ←− Encpk(m, r);
8 S0 ←− SimnT ,t(C,m,A, (si)i∈A);
9 S1 ←− (PartDec(C, si))i ̸∈A;

10 b′ ←− A(C, Sb);
11 if b′ = b then return 1 else return 0;

Theorem 1. The threshold ElGamal encryption scheme is ZK-TCPA in the ROM and under
the DDH assumption.

To establish this result, we consider Shamir’s secret sharing scheme, with a threshold t and
nT participants. This way, the Setup algorithm consists of the following:

• Pick a random generator g;

• Pick a random polynomial f ∈ Zq[X] of degree t;

• For all i ∈ [1, nT], set si = f(i) and hi = gsi ;

• Set sk = f(0), h = gsk and pk = (g, h);

• Return pk, sk, (hi, si)
nT
i=1.

241

Appendix A. ZK-TCPA security of the ElGamal threshold encryption scheme

Finally, we consider that the algorithm PartDec((x, y), s) returns w = xs (the ZKP part is
discussed in Section 3.2.1), and we recall that the decryption of a ciphertext (x, y) is derived
from the partial decryptions using Lagrange interpolation.

Proof of Theorem 1. We give a succession of games Ht, · · · , H0. Each game is a copy of the
ZK-TCPA game, except that the adversary has to corrupt exactly i participants in game Hi.
Remark that, when the adversary corrupts t participants, the simulator SimnT ,t outputs some
partial decryptions which are equal to (and thus perfectly indistinguishable from) the real partial
decryptions. This is due to Lagrange interpolation. Therefore, for all adversary At, At wins Ht

with probability 1/2. Now, for all i < t, we exhibit a polynomial reduction (i.e. a game hop)
from Hi to Hi+1, which means that the adversary cannot gain some non-negligible advantage by
corrupting less participants.

Game hop. Let i < t, Ai be an adversary for Hi and pi its probability to win. We construct
an adversary Ai+1 for Hi+1 as follows. First, Ai+1 is given (pk, (hi)

nT
i=1) in Hi+1 and forwards

this to Ai which answers with some set A ⊂ [1, nT] of size i. Then Ai+1 adds to A the smallest
element j of [1, nT]\A to form A′ which it plays in Hi+1. In return, Ai+1 is given pk and (si)i∈A′ .
Since A ⊂ A′, Ai+1 can send pk and (si)i∈A to Ai. The latter answers with some m ∈ G, that
Ai+1 plays in Hi+1. Ai+1 is then given a ciphertext C = (x, y) and a set of nT − i − 1 partial
tallies. To complete this to a set of nT − i partial tallies as required for Ai, Ai+1 computes
wj = xsj . Finally, it returns Ai’s output.

Reduction to DDH. Now, let pi+1 be the probability that Ai+1 wins Hi+1. To argue
that pi ≈ pi+1 with up to a negligible difference, we construct an adversary B for DDH whose
advantage in the DDH game is proportional to |pi+1 − pi|. Under the DDH assumption, B’s
advantage should be negligible, therefore |pi+1− pi| is also negligible. The adversary B interacts
with Ai by simulating game Hi as follows.

Line 1. First, B gets a challenge (g1, g2, g3, g4) from the DDH game. (For simplicity, we
assume that g1 ̸= 1; see the reduction from IND-CPA to DDH in Section 2.2.2 to see how
to handle this possibility properly.) It sets g = g1, chooses a random sk ∈ Zq and computes
h0 = gsk. At this point, pk = (g, h0) is an ElGamal public key. Now, B chooses a random subset
A′ ⊂ [1, nT] of size i and sets j as the smallest element of [1, nT]\A′. For k ∈ A′, it chooses
a random secret share sk ∈ Zq and computes hk = gsk . Also, it sets hj = g2. Afterwards,
B computes S = A′⋃Complete(A′, nT) (this set of t + 1 elements contains 0 and j) and, for
k ∈ S\(A′⋃{j, 0}), sets hk as a random group element. Finally, for k ∈ [1, nT]\S, B computes
hk =

∏
ℓ∈S h

Λk,ℓ

ℓ , where Λk,ℓ =
∏

m∈S\{ℓ}
k−m
ℓ−m modulo q.

The above operations allow B to simulate the setup: it can now call Ai with the entry
(pk, (hi)

nT
i=1). At this point, Ai answers with a set A of size i which is equal to A′ with probability

1/
(
nT
i

)
(if this is not the case, B starts over again with some fresh randomness). Since nT does

not depend on the security parameter λ, B has to start over a constant number of times until
A = A′.

Line 5. Since A = A′, B can send (sj)j∈A to Ai which answers with m ∈ G. To encrypt
m, B sets x = g3 and computes y = mxsk. The ciphertext (x, y) is therefore a well-formed
encryption of m with the public key pk. For k ∈ A, B computes wk = xsk . For k = j, B sets
wj = g4. For k = 0, B sets w0 = xsk. For k ∈ S\(A

⋃
{j, 0}), B sets wk as a random element. For

k ∈ [1, nT]\S, B computes wk =
∏

ℓ∈S w
Λk,ℓ

ℓ . Finally, B sends (x, y), (si)i∈[1,nT]\A to Ai which
answers b′ that B outputs as its guess in the DDH game.

Probability success of B. Now, if the challenge (g, hj , x, wj) is a DDH tuple, then B played
Ai+1’s simulation of Hi and therefore wins with probability pi+1. However, if the challenge is
a random tuple, then B played a perfect simulation of Hi, but must output 0 to win. Hence it

242

wins with probability 1 − pi. Overall B’s advantage in the DDH game is 1
2 |pi+1 − pi|, so that

|pi+1 − pi| is negligible.
Conclusion. By the triangular inequality, for all i ∈ [0, t] and for all Ai, Ai’s advantage

is bounded by (t − i)εDDH , where εDDH is some negligible function. Now, if we consider an
adversary A in the ZK-TCPA game, A must corrupt i participants for some i ∈ [0, t], therefore A’s
probability to win (say, p) is some barycenter of A’s probability to win in each Hi. Consequently,
A’s advantage, which can be interpreted geometrically as the distance between the barycenter p
and 1/2, is bounded by the largest of those distances, and therefore is negligible (since they are
all negligible). Overall, A’s advantage in the ZK-TCPA game is bounded by tεDDH , where εDDH
is the advantage of some PPT adversary in the DDH game.

243

Appendix B

The hybrid argument

The hybrid argument is a fundamental proof strategy in cryptography, that allows to prove the
indistinguishaiblity of two distributions. In this thesis, however, we do not want to prove the
indistinguishability of two distributions, but rather the equivalence of two games. For this reason,
we adapted the statement of [MF21, Theorem 3.17] into Theorem 2, which gives a game-based
version of the hybid lemma. A game is an ITM which, in interaction with an adversary, may
give it a view which can be considered as a random variable sampled from a specific distribution.
Since the view depends on the interactions with the adversary, the game-based version of the
hybrid argument is intuitively more expressive than the distribution-based version, and it is not
clear that the former is a consequence of the latter. For this reason, we prove Theorem 2 (restated
below) in this appendix.

The goal of Theorem 2 is to give a list of easy-to-check conditions that matches the natural
proof strategy in game-based definitions. Nevertheless, it is remarkable that, in the statement of
the theorem, the succession of hybrids (Hi)N is constructed in the reverse order: H0 corresponds
to G2 and, when n grows larger, Hn gets closer to G1. It may be possible that someone may
want to construct the succession (Hi)N in the natural order: from G1 to G2. For this reason, we
give another version of the hybrid lemma, which is Theorem 17, and we prove that this version
is also valid.

Due to space and time limitations, it is common that the hybrid lemma is not properly stated
or used in the litterature. Thanks to Theorem 2 and 17, it is now not longer to properly use the
hybrid lemma.

Theorem 2 (The hybrid lemma). Let G1 and G2 two games. We consider a sequence of games
(Hi)i∈N which are hybrids between G1 and G2. With these notations, assume that the following
conditions are met:

1. For all PPT A, for all security parameter λ, Pr(G2(λ,A) = 1) = Pr(H0(λ,A) = 1).

2. For all PPT A for game G1, there exists a polynomial nA such that, for all λ ∈ N,
Pr(HnA(λ)(λ,A) = 1) = Pr(G1(λ,A) = 1).

3. There exists a polynomial P and two transformation T and T ′ such that, given any PPT
adversary Ai+1 (resp. Ai) for game Hi+1 (resp. Hi), Ai = T (Ai+1) (resp. Ai+1 = T ′(Ai))
is an adversary for game Hi (resp. Hi+1) which makes at most P (λ) additional transitions.

4. There exists a game G which depends on a parameter b ∈ {0, 1} such that, for all PPT
adversary B, εB = 2|Pr(G(λ,B) = 1)− 1/2| is negligible in λ.

244

5. There exists a PPT B such that, for all i ∈ N and all PPT Ai+1 for game Hi+1 (which in
turns defines a PPT Ai for Hi), we have Pr(G(λ,BAi+1(i)) = 1 | b = 0) = Pr(Hi(λ,Ai) =
1) and Pr(G(λ,BAi+1(i)) = 1 | b = 1) = Pr(Hi+1(λ,Ai+1) = 1).

Then, for all PPT A1, there exists a PPT A2 and a PPT B such that

|Pr(G1(λ,A1) = 1)− Pr(G2(λ,A2) = 1)| ≤ nA1εB.

Proof. Let A1 be a PPT adversary for G1. From condition 3, and the polynomial nA1 from
condition 2, we construct a succession of adversaries (Ãi)i∈N s.t. for all i, Ãi is an adversary for
the hybrid Hi. If nA1(λ) = i, Ãi runs A1’s algorithm. If nA1(λ) < i, Ãi runs T ′(Ãi−1)’s algorithm.
Finally, if nA1(λ) > i, Ãi runs T (Ãi+1)’s algorithm. By condition 3, Ãi makes |nA1(λ)− i|P (λ)
more transitions than A1, and is indeed a PPT adversary.

We define A2 as Ã0, which makes at most nA1P additional transitions from A1. Remark that,
for all λ ∈ N, conditions 1 and 2 give

|Pr(G1(λ,A1) = 1)− Pr(G2(λ,A2) = 1)| = |Pr(HnA1 (λ)
(λ,A1) = 1)− Pr(H0(λ,A2) = 1)|

= |Pr(HnA1 (λ)
(λ, ÃnA1 (λ)

) = 1)− Pr(H0(λ, Ã0) = 1)|

=

∣∣∣∣∣∣
nA1 (λ)−1∑

i=0

Pr(Hi+1(λ, Ãi+1) = 1)− Pr(Hi(λ, Ãi) = 1)

∣∣∣∣∣∣ .
Now, we denote B̃ the PPT from condition 5. We construct a PPT B from the game G (from
condition 4) as follows: B chooses a random i ∈ [0, nA1(λ) − 1] and interacts with ˜Ai+1, using
B̃(i)’s algorithm. This way, we have

εB = 2|Pr(G(λ,B) = 1)− 1/2| = 2

nA1(λ)

∣∣∣∣∣∣
nA1 (λ)−1∑

i=0

(Pr(G(λ, B̃Ãi+1(i) = 1)− 1/2)

∣∣∣∣∣∣
=

1

nA1(λ)

∣∣∣∣∣∣
nA1 (λ)−1∑

i=0

(
Pr(G(λ, B̃Ãi+1(i)) = 1 | b = 1)− Pr(G(λ, B̃Ãi+1(i)) = 1 | b = 0)

)∣∣∣∣∣∣ .
By condition 4, εB is negligible. In addition, by condition 5, we have

εB =
1

nA1(λ)

∣∣∣∣∣∣
nA1 (λ)−1∑

i=0

(Pr(Hi+1(λ, Ãi+1) = 1)− Pr(Hi(λ, Ãi) = 1)

∣∣∣∣∣∣ .
Hence,

|Pr(G1(λ,A1) = 1)− Pr(G2(λ,A2) = 1)| = nA1(λ)εB.

Theorem 17. Let G1 and G2 two games. We consider a sequence of games (Hi)i∈N which are
hybrids between G1 and G2. With these notations, assume that the following conditions are met:

1. For all PPT A, for all security parameter λ, Pr(G1(λ,A) = 1) = Pr(H0(λ,A) = 1).

2. There exists a polynomial P and a transformation T such that, given any PPT adversary
Ai for game Hi, Ai+1 = T (Ai) is an adversary for game Hi+1 which makes at most P (λ)
additional transitions.

245

Appendix B. The hybrid argument

3. For all PPT A for game G1, there exists a polynomial nA such that, for all λ ∈ N,
Pr(HnA(λ)(λ,AnA(λ)) = 1) = Pr(G2(λ,AnA(λ)) = 1), where AnA(λ) = TnA(λ)(A).

4. There exists a game G which depends on a parameter b ∈ {0, 1} such that, for all PPT
adversary B, εB = 2|Pr(G(λ,B) = 1)− 1/2| is negligible in λ.

5. There exists a PPT B such that, for all i ∈ N and all PPT Ai for game Hi (which in turns
defines a PPT Ai+1 for Hi+1), we have Pr(G(λ,BAi(i)) = 1 | b = 1) = Pr(Hi(λ,Ai) = 1)
and Pr(G(λ,BAi(i)) = 1 | b = 0) = Pr(Hi+1(λ,Ai+1) = 1).

Then, for all PPT A1, there exists a PPT A2 and a PPT B such that

|Pr(G1(λ,A1) = 1)− Pr(G2(λ,A2) = 1)| ≤ nA1εB.

Proof. Let A1 be a PPT for G1. Bys condition 1, we can interpret A1 as an adversary Ã0 for
game H0. From condition 2, we construct a succession of adversaries (Ãi)N such that, for all i,
Ãi = T i(A) is a PPT adversary for Hi which makes at most iP more transitions than A. From
condition 3, we define the polynomial nA1 , and the PPT A2 that, given λ, computes nA1(λ) and
runs ÃnA1 (λ)

’s algorithm. This way, for all λ ∈ N,

|Pr(G1(λ,A1) = 1)− Pr(G2(λ,A2) = 1)| = |Pr(H0(λ, Ã0) = 1)− Pr(HnA(λ)(λ, ÃnA(λ)) = 1)|

=

∣∣∣∣∣∣
nA1 (λ)−1∑

i=0

Pr(Hi(λ, Ãi) = 1)− Pr(Hi+1(λ, Ãi+1) = 1)

∣∣∣∣∣∣ .
Now, let B̃ be the PPT from condition 5 and G the game from condition 4. We define B, a PPT
for game G, that picks a random i ∈ [0, nA1(λ)− 1] and runs B̃(i)’s simulation to Ãi. This way,

εB = 2|Pr(G(λ,B) = 1)− 1/2| = 2

nA1(λ

∣∣∣∣∣
nA1(λ)∑
i=0

(Pr(G(λ, B̃Ãi(i)) = 1)− 1/2)

∣∣∣∣∣ .
By condition 4, εB is negligible. In addition, by condition 5, we have

εB =
1

nA1(λ

∣∣∣∣∣
nA1(λ)∑
i=0

(Pr(G(λ, B̃Ãi(i)) = 1 | b = 1)− Pr(G(λ, B̃Ãi(i)) = 1 | b = 0))

∣∣∣∣∣
=

1

nA1(λ

∣∣∣∣∣
nA1(λ)∑
i=0

(Pr(Hi(λ, Ãi) = 1)− Pr(Hi+1(λ, Ãi+1) = 1))

∣∣∣∣∣
Hence,

|Pr(G1(λ,A1) = 1)− Pr(G2(λ,A2) = 1)| ≤ nA1εB.

246

Appendix C

Proof of correctness for the Majority
Judgment algorithm

This appendix is dedicated to the proof of Theorem 4, that we restate below. For convenience,
we also reproduced Algorithm 88 in Fig. 40.

Theorem 4. Algorithm 88 returns the set of maxima according to ≤maj in O(nCnG) comparisons
between grades, where nC is the number of candidates and nG the number of grades.

To prove this theorem, we define the median sequence in Definition 31 and remark that
≤maj is the lexicographic order for the median sequences. Hence, it is important to describe the
behavior of the median sequence, which is done in Lemma 17.

Definition 31 (The median sequence). The median sequence of a sorted n-tuple u, denoted
m(u) is the sequence formed by med(u) followed by m(û).

Lemma 17. Let u be a sorted n-tuple. For k ∈ [1, n], the kth element of the median sequence of
u is the element of index m+ (−1)k+n ⌊k/2⌋, where m =

⌈
n
2

⌉
.

Proof. We distinguish the cases where n is even or odd and give a recurrence in k.
Case 1: n is even. The first element of the median sequence is um by definition. Let k ≥ 1.

Suppose that for i ∈ [1, k], the ith element of the median sequence is um+(−1)i⌊i/2⌋. By definition,
the (k+1)th element of the median sequence is the element of index

⌈
n−k
2

⌉
of some (n−k)-tuple,

obtained by removing the first k elements of the median sequence of u.
If k is even, by recurrence hypothesis, the removed elements have indexes m,m + 1,m −

1, · · · ,m− (k/2− 1),m+ k/2 thus the remaining elements are

(u1, · · · , um−k/2, um+k/2+1, · · · , un).

As n and k are even,
⌈
n−k
2

⌉
= m− k/2. Therefore, the (k+1)th element of the median sequence

is um−k/2, and since k is even, m− k/2 = m+ (−1)k+1
⌊
k+1
2

⌋
.

If k is odd, by recurrence hypothesis, the removed elements have indexes m,m + 1,m −
1, · · · ,m+ (k − 1)/2,m− (k − 1)/2 so the remaining elements are

(u1, · · · , um−(k+1)/2, um+(k+1)/2, · · · , un).

Since n is even while k odd,
⌈
n−k
2

⌉
= m − (k − 1)/2, so the (k + 1)th element of the median

sequence is the one following um−(k+1)/2 in the above list, namely um+(k+1)/2, with m+(k+1)/2 =

m+ (−1)k+1
⌊
k+1
2

⌋
.

247

Appendix C. Proof of correctness for the Majority Judgment algorithm

Majority Judgment
Requires: nC , the number of candidates

nG, the number of grades
nV , the number of voters

Inputs: a, the aggregated grade matrix s.t.
a[i, j] is the number of voters who gave the rank j to the candidate i

1 m←− max{mi | mi is the median of candidate i};
2 C ←− {i | mi = m};
3 I− ←− 1; I+ ←− 1;
4 s←− 1;
5 for i ∈ C do
6 pi ←−

∑m−1
j=1 ai,j ;

7 qi ←−
∑nG

j=l+1 ai,j ;
8 m−

i ←− ⌊nV /2⌋ − pi;
9 m+

i ←− ⌊nV /2⌋ − qi;

10 while |C| > 1 and s ̸= 0 do
11 for i ∈ C do
12 if m−

i ≤ m+
i then si ←− pi;

13 else si ←− −qi;
14 s←− max{si | i ∈ C};
15 C ←− {i ∈ C | si = s};
16 if s ≥ 0 then
17 for i ∈ C do
18 m+

i ←− m+
i −m−

i ;
19 m−

i ←− ai,m−I− ;
20 pi ←− pi − aii,m− I−;

21 I− ←− I− + 1;

22 else
23 for i ∈ C do
24 m−

i ←− m−
i −m+

i ;
25 m−

i ←− ai,m+I+ ;
26 qi ←− qi − ai,m+I+ ;

27 I+ ←− I+ + 1;

28 return C;

Figure 40: Reproduction of our algorithm to compute the Majority Judgment

248

Case 2: n is odd. The first element of the median sequence is um by definition. Let k ≥ 1.
Suppose that for i ∈ [1, k], the ith element of the median sequence is um−(−1)i⌊i/2⌋. By definition,
the (k+1)th element of the median sequence is the element of index

⌈
n−k
2

⌉
of some (n−k)-tuple,

obtained by removing the first k elements of the median sequence of u.
If k is even, by recurrence hypothesis, the removed elements have indexes m,m − 1,m +

1, · · · ,m+ (k/2− 1),m− k/2 so the remaining elements are

(u1, · · · , um−k/2−1, um+k/2, · · · , un).

As n is odd and k even,
⌈
n−k
2

⌉
= m−k/2. Therefore the (k+1)th element of the median sequence

is the one following um−k/2−1 in the above list, namely um+k/2 with m+k/2 = m−(−1)k+1
⌊
k+1
2

⌋
.

If k is odd, by recurrence hypothesis, the removed elements have indexes m,m − 1,m +
1, · · · ,m− (k − 1)/2,m+ (k − 1)/2 so the remaining elements are

(u1, · · · , um−(k+1)/2, um+(k+1)/2, · · · , un).

As n and k are odds,
⌈
n−k
2

⌉
= m−(k+1)/2. Hence the (k+1)th element of the median sequence

is um−(k+1)/2, with m− (k + 1)/2 = m− (−1)k+1
⌊
k+1
2

⌋
.

We now exhibit a collection of loop invariants, where a sum indexed with the empty set is 0
and gi,1, · · · , gi,nV denote the list of grades received by candidate i, sorted in decreasing order.
Note that m is used to denote the best median, and not

⌈
nV
2

⌉
as in the previous lemma.

Lemma 18. In Algorithm 88, the following loop invariants hold at the beginning (line 10) and
at the end (line 27) of the while loop.

1. For all i ∈ C, pi +m−
i = m+

i + qi, and this value is the same for all i.

2. For all i ∈ C, m+
i ≥ 0 and m−

i ≥ 0.

3. For all i ∈ C, pi =
m−I−∑
j=1

ai,j. Hence pi ≥ 0.

4. For all i ∈ C, qi =
nG∑

j=m+I+
ai,j. Hence, qi ≥ 0.

5. Let L = pi+m−
i +m+

i + qi. The nV −L first elements of the median sequence are identical
for all i ∈ C.

6. For all i ∈ C, for all j ∈ [1,m−
i], gi,pi+j = m−I−+1 and, for all j ∈ [1,m+

i], gi,nV −qi−j+1 =
m+ I+ − 1.

7. C contains all the MJ winners.

Proof. Initialization. First of all, we verify that the loop invariants are true after line 7.
Invariants 1 to 4:
We have pi +m−

i = ⌊nV /2⌋ = m+
i + qi.

Moreover pi is the number of grades strictly greater than the median, so by definition of the
median, pi ≤ ⌊nV /2⌋ hence m−

i = ⌊nV /2⌋− pi ≥ 0. Similarly, qi is the number of grades strictly
worse than the median, so by definition of the median, qi ≤ ⌊nV /2⌋ hence m+

i = ⌊nV /2⌋−qi ≥ 0.
Finally, Equalities 3 and 4 are true with I− = I+ = 1.

249

Appendix C. Proof of correctness for the Majority Judgment algorithm

Invariant 5:
Initially, L = pi +m−

i +m+
i + qi = 2 ⌊nV /2⌋ so if nV is even, nV −L = 0. Else, nV −L = 1.

As the first element of the median sequence is the median, the nV − L first elements are the
same for all candidates in C after line 9.

Invariant 6:
After line 7, pi is the number of grades strictly greater than the median for candidate i so,

for all j ≥ 1, gi,pi+j ≥ m. Moreover m−
i is lower than the number of grades equal to the median

received by i. So for all j ≤ m−
i , gi,pi+j ≤ m. Hence, for all j ∈ [1,m−

i], gi,pi+j = m. Similarly,
for all j ∈ [1,m+

i], gi,n−qi−j+1 = m.
Invariant 7:
After line 9, C contains the candidates who have the best median, thus contains the winners.

Heredity. Assume that the loop invariants are verified at the beginning of the loop, we show
that they are preserved at the end of the loop.

We first show the following result, which is a consequence of loop invariants 1 to 4.
Sub-lemma. For all candidates i, si ≥ 0 if and only if m−

i ≤ m+
i .

Let i be a candidate. Suppose si ≥ 0 and m−
i > m+

i . Then 0 ≤ si = −qi ≤ 0 so qi = 0 and as
pi +m−

i = m+
i + qi, we have pi +m−

i = m+
i , which contradicts pi ≥ 0. Conversely, if m−

i ≤ m+
i ,

si = pi ≥ 0.
To show that the loop invariants are preserved, we denote C1 the set C at the beginning of

the loop and C2 the set C at the end of the loop. Let i ∈ C2. Let i ∈ C2, then i ∈ C1 so the
loop invariants hold at the beginning of the loop, for all i ∈ C2. We denote p1 the value of pi at
the beginning of the loop and p2 at the end, and the same for all other variable m−

i , m+
i , qi, I−,

I+ and L.
Invariants 1 to 4: Let s = max{si | i ∈ C}. C2 = {i | si = s}.
If s ≥ 0, then si = s ≥ 0 so m−

1 ≤ m+
1 by the sub-lemma. Hence m+

2 = m+
1 − m−

1 ≥ 0,
m−

2 = ai,m−I−1
≥ 0.

In addition, p2 = p1 − ai,m−I−1
and q2 = q1. Therefore p2 +m−

2 = p1 = si = s, which is the
same for all i. Moreover m+

2 + q2 = m+
1 −m−

1 + q1 = p1 +m−
1 −m−

1 = p1 = S.

Finally, line 20 together with line 21 and loop invariant 3 give p2 =
m−I−2∑
j=1

ai,j , which shows

that invariant 3 is preserved. (Invariant 4 is also preserved because q2 = q1 and I+2 = I+1 .)
If s < 0, then si = s < 0 so m−

1 > m+
1 by the sub-lemma. Hence m−

2 = m−
1 − m+

1 ≥ 0,
m+

2 = ai,m+I+1
≥ 0, q2 = q1 − ai,m+I+1

and p2 = p1. So m+
2 + q2 = q1 = −Si = −S, which is the

same for all i. In addition p2+m−
2 = p1+m−

1 −m+
1 = m+

1 + q1−m+
1 = q1 = −S. Finally line 26

together with line 27 and loop invariant 4 give q2 =
c∑

j=m+I+2

ai,j , so that invariant 4 is preserved.

(Invariant 3 is also preserved because p2 = p1 and I−2 = I−1 .)
Invariant 5:
If s ≥ 0, m−

1 ≤ m+
1 . Consequently, p1 = si = s and since p1 + m−

1 is the same for all i,
we deduce that m−

1 is the same for all i. In addition we have p2 +m−
2 = p1 (lines 19 and 20),

m+
2 = m+

1 −m−
1 (line 18) and q2 = q1, so

L2 = p2 +m−
2 +m+

2 + q2

= p1 +m+
1 −m−

1 + q1

= p1 +m−
1 +m+

1 + q1 − 2m−
1 = L1 − 2m−

1 ,

250

and since the n−L1 first elements of the median sequence are the same for all candidates in C1,
we only have to show that the 2m−

1 next elements are the same for all candidates in C2. For this
purpose, we remark that loop invariant 1 implies that L1 is even and we suppose m−

1 > 0. (If
m−

1 = 0, our job is already done.)
By Lemma 17, the elements of indexes n−L1+1, · · · , n−L1+2m−

1 of the median sequence
are the elements

gi,⌈n/2⌉+(−1)2n−L1+1⌊(n−L1+1)/2⌋, gi,⌈n/2⌉+(−1)2n−L1+2⌊(n−L1+2)/2⌋, · · ·
g
i,⌈n/2⌉+(−1)2n−L1+2m−

1 ⌊(n−L1+2m−
1)/2⌋

;

which are also the elements

gi,⌈n/2⌉−⌊(n+1)/2⌋+L1/2, gi,⌈n/2⌉+⌊n/2⌋−L1/2+1, · · ·
gi,⌈n/2⌉−⌊(n−1)/2⌋+L1/2−m−

1
, gi,⌈n/2⌉+⌊n/2⌋−L1/2+m−

1
.

But L1 = p1 +m−
1 +m+

1 + q1 so, by invariant 1, L1/2 = p1 +m−
1 = m+

1 + q1. Since ⌈n/2⌉ =
⌊(n+ 1)/2⌋ and ⌈n/2⌉+ ⌊n/2⌋ = n for all n, we can rewrite them as

gi,p1+m−
1
, gi,n−q1−m+

1 +1, · · · , gi,p1+1, gi,n−q1−m+
1 +m−

1
.

In what follows, we prove that for all j ∈ [1,m−
i], gi,n−q1−m+

1 +j = m + I+1 − 1. Indeed,
n− q1 −m+

1 + j = n− q1 − (m+
1 − j + 1) + 1 and since m+

1 ≥ m−
1 > 0, m+

1 − j + 1 ∈ [1,m+
1] for

all j ∈ [1,m−
1], which allows to prove our claim by invariant 6.

In addition, gi,p1+j = m − I−1 + 1 for all j ∈ [1,m−
1] by invariant 6, so the elements listed

above are equal to m − I−1 + 1,m + I+1 − 1, · · · ,m − I−1 + 1,m + I+1 − 1 and therefore are the
same for all i ∈ C2, which shows that invariant 5 is preserved.

If s < 0, m−
1 > m+

1 . Consequently, q1 = −si = −s and since m+
1 + q1 is the same for all i, so

is m+
1 . Moreover m+

2 + q2 = q1 (lines 25 and 26), m−
2 = m−

1 −m+
1 (line 24) and p2 = p1 so

L2 = p2 +m−
2 +m+

2 + q2

= p1 +m−
1 −m+

1 + q1

= p1 +m−
1 +m+

1 + q1 − 2m+
1 = L1 − 2m+

1 ,

and since the n−L1 first elements of the median sequence are the same for all candidates in C1,
we only have to show that the 2m+

1 next elements are the same for all candidates in C2. For this
purpose, we remark that invariant 1 implies that L1 is even and we suppose that m+

1 > 0. (If
m+

1 = 0, our job is done.)
By Lemma 17, the elements of indexes n−L1+1, · · · , n−L1+2m+

1 of the median sequence
are

gi,⌈n/2⌉+(−1)2n−L1+1⌊(n−L1+1)/2⌋, gi,⌈n/2⌉+(−1)2n−L1+2⌊(n−L1+2)/2⌋, · · ·
g
i,⌈n/2⌉+(−1)2n−L1+2m+

1 ⌊(n−L1+2m+
1)/2⌋

;

which are also the elements

gi,⌈n/2⌉−⌊(n+1)/2⌋+L1/2, gi,⌈n/2⌉+⌊n/2⌋−L1/2+1, · · ·
gi,⌈n/2⌉−⌊(n−1)/2⌋+L1/2−m+

1
, gi,⌈n/2⌉+⌊n/2⌋−L1/2+m+

1
.

251

Appendix C. Proof of correctness for the Majority Judgment algorithm

But L1 = p1 + m−
1 + m+

1 + q1 so, by invariant 1, L1/2 = p1 + m−
1 = m+

1 + q1. Since
⌈n/2⌉ = ⌊(n+ 1)/2⌋ et ⌈n/2⌉+ ⌊n/2⌋ = n for all n, we can rewrite them as

gi,p1+m−
1
, gn−q1−m+

1 +1, · · · , gi,p1+m−
1 −m+

1 +1, gi,n−q1 .

We now show that for all j ∈ [1,m+
i], gi,p1+m−

1 −j+1 = m − I−1 + 1. Indeed, p1 +m−
1 − j + 1 =

p1 + (m−
1 − j + 1) and since m−

1 > m+
1 > 0, (m−

1 − j + 1) ∈ [1,m−
1] for all j ∈ [1,m+

1], which
allows to prove our claim by invariant 6.

In addition, gi,n−q1−j+1 = m+ I+1 −1 for all j ∈ [1,m+
1] by invariant 6, so the elements listed

above are equal to m − I−1 + 1,m + I+1 − 1, · · · ,m − I−1 + 1,m + I+1 − 1 and therefore are the
same for all i ∈ C2, which shows that invariant 5 is preserved.

Invariant 6:

If s ≥ 0, m−
1 ≤ m+

1 so p2 = p1 − ai,m−I−1
and m−

2 = ai,m−I−1
. But p1 =

m−I−1∑
j=1

ai,j , which

is exactly the number of grades strictly greater than m − I−1 + 1 received by i so by definition
of ai,m−I−1

, p2 is the number of grades strictly greater than m − I−1 . Therefore gi,p2+1 is lower
than m− I−1 and as there are ai,m−I−1

= m−
2 grades equal to m− I−1 , we deduce that gi,p2+j =

m − I−1 = m − (I− + 1) + 1 = m − I−2 + 1 for all j ∈ [1,m−
2]. In addition, for all j ∈ [1,m+

1],
gi,n−q1−j+1 = m+ I+1 − 1 so, a fortiori, for all j ∈ [1,m+

1 −m−
1], gi,n−q1−j+1 = m+ I+2 − 1.

If s < 0, m−
1 > m+

1 so q2 = q1 − ai,m+I+1
and m+

2 = ai,m+I+1
. But q1 =

c∑
j=m+I+1

ai,j , which

is exactly the number of grades strictly worse than m + I+1 − 1 so by definition of ai,m+I+1
, q2

is the number of grades strictly worse than m + I+1 . Therefore gi,n−q2 is greater than m + I+1
and as there are ai,m+I+1

= m+
2 grades equal to m+ I+1 , we deduce that gi,n−q2−j+1 = m+ I+1 =

m+(I++1)−1 = m+I+2 −1 for all j ∈ [1,m+
2]. In addition, for all j ∈ [1,m−

1], gi,p1+j = m−I−1 +1
so, a fortiori, for all j ∈ [1,m+

1 −m−
1], gi,p1+j = m− I−2 + 1.

Invariant 7:
Let b ∈ C2, (namely b ∈ C1 such that sb = s). We show that for all a ∈ C1\C2, (namely for

all a ∈ C1 such that sa < s), a <maj b.
Positive case. Suppose that s ≥ 0. Let a ∈ C1 such that sa < s.
Positive-negative case. We first assume that sa < 0. Therefore sa < 0 ≤ s = sb. By the

sub-lemma, we have m−
a > m+

a and m−
b ≤ m+

b .
Suppose that m+

a < m−
b . With the same reasoning as in the proof of invariant 6, we show

that the elements of indexes 1 to n− L+ 2m+
a of the median sequence of a and b are the same.

Since m−
a > m+

a , by Lemma 17 and loop invariant 1 and 6, the n− L+ 2m+
a + 1 th elements of

the median sequence of a and b are respectively

ga,pa+m−
a −m+

a
= m− I− + 1 and

gb,pa+m−
a −m+

a
= gb,pb+m−

b −m+
a
= m− I− + 1.

However, the n− L+ 2m+
a + 2 th element of the median sequence of a is

ga,n−qa+1 < ga,n−qa = m+ I+ − 1,

while b’s is
gb,n−qa−m+

a +m+
a +1 = gb,n−qb−(m+

b −m+
a)+1 = m+ I+ − 1.

252

Therefore a <maj b.
Now suppose that m+

a ≥ m−
b . As above, the n − L + 2m−

b first elements of the median
sequence of a and b are the same. The elements of index n− L+ 2m−

b + 1 are respectively

ga,pa+m−
a −m−

b
= ga,pa+(m−

a −m+
a)+(m+

a −m−
b) = m− I− + 1− and

gb,pa+m−
a −m−

b
= gb,pb > m− I− + 1.

Therefore a <maj b.
Positive-positive case. Now suppose that 0 ≤ sa. By the sub-lemma, m−

b ≤ m+
b , m−

a ≤
m+

a . Consequently sa = pa and sb = pb and since sa < sb, by invariant 1, we have m−
a > m−

b .
Then again, we deduce that the n−L+2m−

b first elements of the median sequence are the same
and that b wins over a thanks to the next element.

Negative case. Finally, suppose that s < 0. Then sa < sb = s < 0 so, by the sub-lemma,
m−

a > m+
a and m−

b > m+
b . Consequently sa = −qa and sb = −qb and since sa < sb, by

invariant 1, we have m+
b > m+

a . Then again, we deduce that the n − L + 2m+
a first elements

of the median sequence are the same. In addition m−
a > m+

a , so by Lemma 17 and invariants 1
and 6, the n− L+ 2m+

a + 1 th elements of the median sequence of a and b are

ga,pa+m−
a −m+

a
= m− I− + 1 and

gb,pa+m−
a −m+

a
= gb,pb+m−

b −m+
a
= m− I− + 1.

However, the n− L+ 2m+
a + 2 th element for a is

ga,n−qa+1 > ga,n−qa = m+ I+ − 1,

while b’s is
gb,n−qa−m+

a +m+
a +1 = gb,n−qb−(m+

b −m+
a)+1 = m+ I+ − 1.

Therefore a <maj b.

Once the loop invariants are established, we can use them to derive the correctness of our
algorithm.

Proof of Theorem 4. Complexity. By Lemma 18, pi =
m−I−∑
j=1

ai,j and qi =
c∑

j=m+I+
ai,j . But

at each iteration, we subtract ai,m−I− to pi or ai,m+I+ to qi so there cannot be more than nG

iterations before both are equal to 0. When pi = qi = 0 for all i, s = 0, which terminates the
loop. Hence the Algorithm terminates after O(nCnG) comparisons.

Correctness. If the algorithm terminates because | C |= 1, C contains only one element
and since C contains the winners, C is the set of winners. Otherwise, s = 0. Recall that s is the
maximum of si and let i such that si = s. If m−

i > m+
i , we have si = −qi thus qi = 0, which

contradicts pi +m−
i = m+

i + qi and pi ≥ 0 so m−
i ≤ m+

i and pi = si = s = 0. But m−
i ≤ m+

i

and pi + m−
i = m+

i + qi. Since qi ≥ 0, qi = 0 thus m−
i = m+

i . Hence, by invariants 6 and 7,
each candidate in C are equal with respect to ≤maj . Since C contains the winners, C is the set
of winners.

253

Appendix D

Computing the coercion levels

In the context of coercion-resistance, the framework of [KTV10a] provides an effective method-
ology to evaluate the coercion level of a given protocol, and to compare it with that of an ideal
protocol. As explained in Section 7.3, the coercion level can be evaluated thanks to Eq. (3), that
we reproduce below. This assumes that the cryptography is perfect, that a large and unpre-
dictable number of ballots is removed during the tally phase and that the adversary is able to
compare Pr(Rg|α) and Pr(Rg|β), given Rg with g ∈ {Real, Ideal}. In this appendix, we give more
details about how this comparison can be done as well as some efficient ways to evaluate the
formula from Eq. (3). In particular, this allows to understand how the figures from Section 7.3
were obtained.

δg = max
(α,β)

∑
Rg∈Mα,β

Pr(Rg|β)− Pr(Rg|α). (3)

D.1 The coercion level in the ideal game

In the ideal game, RIdeal is the vector −→res, and computing Pr(−→res|α) for any α can be done thanks
to a formula given in the following result from [KTV10a].

Lemma 19 ([KTV10a]). Let (α, β) be two options, nH the number of honest voters and a pure
result −→res such that

∑C
i=0 resi = nH + 1. Let

−→
P be the probability distribution for the honest

voters. Assuming PαPβ ̸= 0, we have Pr(−→res|β) ≥ Pr(−→res|α) if and only if resβPα ≥ resαPβ.
In addition, we have

Pr(−→res|α) = nH !∏C
k=0 resk!

(
C∏

k=0

P resk
k

)
resα
Pα

.

Finally, with Mα,β = {−→res | Pr(−→res|β) ≥ Pr(−→res|α)}, the optimal value of δIdealα,β is

δIdeal
CR

α,β =
∑

−→res∈Mα,β

(Pr(−→res|β)− Pr(−→res|α)) =
∑

−→res∈Mα,β

nH !∏C
k=0 resk!

(
C∏

k=0

P resk
k

)(
resβ
Pβ
− resα

Pα

)
.

Note that computing the sum over Mα,β might be expensive due to the size of this set. Thanks
to this result, the adversary can compare Pr(RIdeal|α) and Pr(RIdeal|β) in O(1) floating operations,
as long as it has access to Pα and Pβ (note that it does not need the whole distribution), where

254

D.1. The coercion level in the ideal game

the O notation considers that nH grows to infinity while the other parameters are fixed. To
deduce the resulting coercion level, we further analyze this expression to give a representation
which is easier to compute. For this purpose, we give Lemma 20, which allows to compute δIdeal

in O(nH) floating operations.

Lemma 20. Let (α, β) be two options, nH the number of honest voters and a pure result −→res such
that

∑C
i=0 resi = nH + 1. Let

−→
P be the probability distribution for the honest voters. Assuming

PαPβ ̸= 0, we have

δIdeal
CR

α,β = nH !

nH∑
x=0

TxP
Tx−1
β PNx−Tx

α

x!Tx!(Nx − Tx)!
(1−Pβ−Pα)

x, where Nx = nH−x+1 and Tx =

⌈
Pβ

Pβ + Pα
Nx

⌉
.

Proof. First, we partition Mα,β into
⋃nH

x=0M
x
α,β , where Mx

α,β is the subset of all results in Mα,β

where the options other than α and β received exactly x votes. Then, we further partition
Mx

α,β into subsets where resβ = y (and, thus, resα = Nx − y). Note that due to the condition
from Lemma 19, resβPα ≥ resαPβ hence y ranges from Tx to Nx. To express the formula from
Lemma 19 using this partition, we assume that α and β are the last two voting options (otherwise
we reorder them) and denote M̃x = {−→res ∈ NC−2 |

∑C−2
k=0 resk = x}. With these notations, we

have

δIdeal
CR

α,β =

nH∑
x=0

∑
−→res∈M̃x

Nx∑
y=Tx

nH !∏C−2
k=0 resk!

(
C−2∏
k=0

P resk
k

)
P y
βP

Nx−y
α

y!(Nx − y)!

(
y

Pβ
− Nx − y

Pα

)

=

nH∑
x=0

∑
−→res∈M̃x

nH !∏C−2
k=0 resk!

(
C−2∏
k=0

P resk
k

)
Nx∑

y=Tx

P y
βP

Nx−y
α

y!(Nx − y)!

(
y

Pβ
− Nx − y

Pα

)
.

Now, we show that, for all 0 ≤ T ≤ N ,
N∑

y=T

P y
βP

N−y
α

y!(N − y)!

(
y

Pβ
− N − y

Pα

)
=

TP T−1
β PN−T

α

T !(N − T)!
.

For this purpose, we first fix some N ≥ 0 and we proceed by backward iteration over T .
First, it is true when T = N . Now, suppose that it is true for some 0 < T ≤ N ; we show that it
is also true for T − 1:

N∑
y=T−1

P y
βP

N−y
α

y!(N − y)!

(
y

Pβ
− N − y

Pα

)
=

=
P T−1
β PN−T+1

α

(T − 1)!(N − T + 1)!

(
T − 1

Pβ
− N − T + 1

Pα

)
+

N∑
y=T

P y
βP

N−y
α

y!(N − y)!

(
y

Pβ
− N − y

Pα

)

=
P T−1
β PN−T+1

α

(T − 1)!(N − T + 1)!

(
T − 1

Pβ
− N − T + 1

Pα

)
+

TP T−1
β PN−T

α

T !(N − T)!

=
(T − 1)P T−2

β PN−T+1
α

(T − 1)!(N − T + 1)!
.

255

Appendix D. Computing the coercion levels

Hence, with T = Tx and N = Nx, we deduce that

δIdeal
CR

α,β =

nH∑
x=0

∑
−→res∈M̃x

nH !∏C−2
k=0 resk!

(
C−2∏
k=0

P resk
k

)
TxP

Tx−1
β PNx−Tx

α

Tx!(Nx − Tx)!

= nH !

nH∑
x=0

TxP
Tx−1
β PNx−Tx

α

x!Tx!(Nx − Tx)!
(1− Pβ − Pα)

x
∑

−→res∈M̃x

x!∏C−2
k=0 resk!

C−2∏
k=0

(
Pk

1− Pβ − Pα

)resk

= nH !

nH∑
x=0

TxP
Tx−1
β PNx−Tx

α

x!Tx!(Nx − Tx)!
(1− Pβ − Pα)

x.

Indeed, the last summation is the sum over all possibilities of a multinomial distribution, which
is 1.

D.2 Modeling the real game

For the real game where revoting is possible, we propose a model in which each honest voter
does the following

• Abstain with probability P0,

• Otherwise, vote for option ℓ > 0 with probability pℓ,∅,

• Revote with probability rℓ,

• In this case, choose option k > 0 with probability pℓ,k.

In this model, a voter may revote at most once. Also, a voter who abstains does not “revote”.
If a voter who initially wanted to abstain changes their mind, it will count as voting once. This
approximation is made because the adversary has access to the number of revotes, and not the
number of voters who changed their mind. Also, the probability to revote depends on the initial
choice. This is to capture the fact that an announcement on the press can make some voter
revote if their candidate has been compromised. Similarly, the probability distribution when
revoting depends on the first choice. See Fig. 41 for an illustration. In this figure, the label on
the left of an edge denotes the nature of the transition and the label on the right denotes the
probability of the transition. On leafs, we used labels of the form (n, P) when n denotes the
total number of honest voters who choose this path and P the probability to choose this path.
For instance, P1,2 is the probability to first vote for option 1 but to finally revote for option 2
while P2,∅ is the probability to vote for option 2 and not to revote. Since abstention plays a
specific role, we denote it as choice 0, while the other choices actually imply to send a ballot.

Now, we must decide on the information the adversary has access to. The most conservative
approach is that it may have access to anything which is not a secret; here, all the probability
transitions. With this assumption, if −→res = (res0, · · · , resC) is the number of votes for each option
and nR is the number of revotes, then Pr((−→res, nR)|α) is the probability that the honest voters
votes resk −1k=α times for each candidate k and revote nR times. Given the above tree, for any
possible outcome (−→res, nR) with nH honest voters, we have

Pr(−→res, nR) =
∑
Hnr−→res

nH !

res0!
∏C

k=1 nk,∅!
∏C

ℓ=1 nℓ,k!
P res0
0

C∏
k=1

P
nk,∅
k,∅

C∏
ℓ=1

P
nℓ,k

ℓ,k , (29)

256

D.3. Quantifying the coercion level in some specific cases

n0, P0

abst.
P0

1− P0

vote
1
p1,∅ vo

te
2
p2,∅

revotes
r1

revotes
r2

n1,∅, P1,∅ n2,∅, P2,∅

1− r1 1− r2

n1,1, P1,1 n2,2, P2,2

revote 1
p1,1 rev

ote
2
p2,2

n1,2, P1,2 n2,1, P2,1

rev
ote

2
p1,2

revote
1

p2,1

Figure 41: Tree structure for two candidates.

where Hnr−→res = {(nk,∅), (nℓ,k) |
∑
ℓ,k

nℓ,k = nr,∀k > 0, nk,∅+
C∑

k=1

nℓ,k = resk} is the set of all possible

atomic outcomes compatible with −→res and nR.

D.3 Quantifying the coercion level in some specific cases

Because of the complexity of Eq. (29), we only consider the specific cases where there are two
candidates and the possibility to abstain (i.e. C = 2). In these simpler cases, we give Lemma 21
which allows to compute the coercion level in O(nH

4) floating operations. Interestingly, δReal

does not depend on the Pℓ,k directly but only on the sums Pr1 and Pr2, which correspond to
the probability to revote for 1 or 2 respectively. This is because the adversary can only observe
the number of revotes and has no information about the initial intention of the voter. Hence,
they cannot exploit the dependency between the final choice and the first choice. In practice, we
can imagine a scenario where the probability to revote and the probability distributions when
revoting and when not revoting are known to the adversary, for instance thanks to exit poll or
social media, where the voters tell whether they revote and what was their final choice. In this
more realistic scenario when the adversary does not know all the probabilities on the tree, the
latter can still compare Pr(RReal|α) and Pr(RReal|β), which takes O(nH) floating operations.

Lemma 21. Let nH be the number of honest voters, (res0, res1, res2) such that res0 + res1 +
res2 = nH + 1 and nR ≤ nH − res0. Let β ∈ {0, 1, 2} be a voting option. Then the probability
Pr((res0, res1, res2), nR|β) that there are res0 abstentions, res1 votes for option 1, res2 votes for
option 2 and nR revotes when the coerced voter chooses the voting option β is given by the
following algorithm.

• First, set −→res = (res0, res1, res2).

257

Appendix D. Computing the coercion levels

• If resβ = 0, return 0, otherwise, do resβ ← resβ − 1.

• Set N = nH − res0 − nR, Pr1 = P1,1 + P2,1 and Pr2 = P1,2 + P2,2. Return

Pr(−→res, nR) =
nH !P res0

0

res0!

∑
n1,∅

P
n1,∅
1,∅ P

N−n1,∅
2,∅

n1,∅!(N − n1,∅)!

P
res1−n1,∅
r1

(res1 − n1,∅)!

P
nR+n1,∅−res1
r2

(nR + n1,∅ − res1)!
,

where max(0, res1 − nR) ≤ n1,∅ ≤ min(res1, nH − res0 − nR).

Proof. As shown in Section D.2, Pr((res0, res1, res2), nR|β) is given by Eq. (29). We explicit the
sum over HnR−→res. First, 0 ≤ n2,∅ ≤ res2 and n1,∅+n2,∅ = nH−res0−nr and res0+res1+res2 = nH ,
therefore

0 ≤n1,∅ ≤ res1

res1 − nR ≤n1,∅ ≤ nH − res0 − nR.

In addition, n1,∅ + n1,1 + n2,1 = res1 and 0 ≤ n2,1 ≤ nR so that

0 ≤n1,1 ≤ nR

res1 − n1,∅ − nR ≤n1,1 ≤ res1 − n1,∅.

Finally, n1,2 + n2,2 = nR − n1,1 − n2,1 = nR + n1,∅ − res1, thus

0 ≤ n1,2 ≤ res2 − n2,∅ = nR + n1,∅ − res1.

Let N = nH − res0−nR, Nn1,∅ = res1−n1,∅ and N ′
n1,∅ = nR+n1,∅− res1. Considering all these

inequalities, we have

Pr(−→res, nR) =
nH !P res0

0

res0!

∑
n1,∅

P
n1,∅
1,∅ P

N−n1,∅
2,∅

n1,∅!(N − n1,∅)!

∑
n1,1

P
n1,1

1,1 P
Nn1,∅−n1,1

2,1

n1,1!(Nn1,∅ − n1,1)!

∑
n1,2

P
n1,2

1,2 P
N ′

n1,∅−n1,2

2,2

n1,2!(N ′
n1,∅ − n1,2)!

=
nH !P res0

0

res0!

∑
n1,∅

P
n1,∅
1,∅ P

N−n1,∅
2,∅

n1,∅!(N − n1,∅)!

∑
n1,1

P
n1,1

1,1 P
Nn1,∅−n1,1

2,1

n1,1!(Nn1,∅ − n1,1)!

(P1,2 + P2,2)
N ′

n1,∅

N ′
n1,∅ !

.

Now, res1−n1,∅ is equal to the number of revotes for 1, so that res1−n1,∅ ≤ nR. Therefore,
the innermost summation is also on the full domain for n1,2. Hence,

Pr(−→res, nr) =
nH !P res0

0

res0!

∑
n1,∅

P
n1,∅
1,∅ P

N−n1,∅
2,∅

n1,∅!(N − n1,∅)!

(P1,1 + P2,1)
Nn1,∅

Nn1,∅ !

(P1,2 + P2,2)
N ′

n1,∅

N ′
n1,∅ !

=
nH !P res0

0

res0!

∑
n1,∅

P
n1,∅
1,∅ P

N−n1,∅
2,∅

n1,∅!(N − n1,∅)!

P
res1−n1,∅
r1

(res1 − n1,∅)!

P
nr+n1,∅−res1
r2

(nr + n1,∅ − res1)!
,

where Pr1 = P1,1 + P2,1 and Pr2 = P1,2 + P2,2.
Note that this can be computed in O(nH) floating operations. Since we must range over all

possibilities for res0, res1, res2, nr, the overall δReal can be computed in O(nH
4) floating operations.

In Section 7.3, we used the formulas from Lemma 21 and 20 to evaluate the coercion levels.
The only exceptions are Figures 46 and 24, where the real coercion levels for 513 and 1025 voters
were obtained with a Monte-Carlo estimates with 1000000 iterations, which gives a sufficiently
small confidence interval for our purpose. The reason why is that evaluating the formula from
Lemma 21 would be too long for such values of nV .

258

D.4. The impact of the parameters

abst.
P0 pa

rt.
1− P0

revote
r

no
rev

ote

1− r

revote
1

r1

vote
1

p1

re
vo

te
2

r2 vo
te
2
p2

Figure 42: Simplified tree structure for two candidates.

D.4 The impact of the parameters

We now give some relevant parameters and evaluate their impact on the real and ideal coercion
levels. This analysis shows that the scenarios presented in Sections 7.3.2 and 7.3.3 are not the
only plausible ones that might occur. In Lemma 21, we saw that δReal only depends on P0, the
probability of abstention, Pr1 (resp. Pr2), the probability to revote for option 1 (resp. 2) and
P1,∅ (resp. P2,∅), the probability to vote for option 1 (resp. 2) without revoting. To give a
better representation of these parameters, we define

r = (Pr1 + Pr2)/(Pr1 + Pr2 + P1,∅ + P2,∅),

which is the probability to revote (after voting),

p1 = P1,∅/(P1,∅ + P2,∅) and p2 = P2,∅/(P1,∅ + P2,∅),

which are the probabilities to vote for option 1 and option 2 when voting exactly once and

r1 = Pr1/(Pr1 + Pr2) and r2 = Pr2/(Pr1 + Pr2),

the probabilities to vote for option 1 and 2 when revoting (see Fig. 42 for an illustration).
A first important parameter is r, the probability of revoting. In Fig. 43, we let it vary from 0

to 1, and we plot the coercion level in JCJ and in the ideal protocol for various values of (p1, p2)
and (r1, r2). As expected, since the leakage we detected comes from the revotes, both are the
same when there is no revote. Note that when everyone revotes, there is no coercion resistance
anymore. This is due to the considered evasion strategy, which instructs the voter to vote once
(which is detected if they are the only one to do so).

Now, an important point to notice is that, if (p1, p2) and (r1, r2) are close, the difference
between the ideal and the real coercion level is small, unless there are a lot of revotes. On
the other hand, if both distributions are opposite, the difference is noticeable, even with a
reasonable proportion of revotes. Therefore, another interesting parameter to consider is the
distance between (p1, p2) and (r1, r2), defined as 2|p1 − r1|, which we call the bias. In Fig. 44,
we let the bias vary from 0 to 2 and we plot the coercion level in the real and ideal protocols,
for various probability of revoting. As expected, when the bias is maximal, there is no coercion

259

Appendix D. Computing the coercion levels

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of revotes

(60%− 40%) vs (80%− 20%)

Real
Ideal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of revotes

(40%− 60%) vs (80%− 20%)

Real
Ideal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of revotes

(30%− 70%) vs (90%− 10%)

Real
Ideal

Figure 43: Coercion levels as a function of the probability of revoting; with 20 voters, 2 candidates
and 30% abstention, with three different distributions between the candidates.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

bias when revoting

co
er

ci
on

le
ve

l

20% revote rate
Real
Ideal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

bias when revoting

co
er

ci
on

le
ve

l

40% revote rate
Real
Ideal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

bias when revoting

co
er

ci
on

le
ve

l

60% revote rate
Real
Ideal

Figure 44: Coercion levels as a function of the bias when revoting; with 20 voters, 2 candidates
and 30% abstention.

resistance at all (this corresponds to the scenario of Section 7.2.1). Note, however, that the
leakage is non-zero when there is no bias. This, once again, is due to the fact that the adversary
can count the number of revotes, and therefore have a non-negligible advantage to decide whether
the coerced voter voted or abstained.

Another natural parameter to consider is the abstention rate. Until now, it was fixed at 0.3
in our experimentations. However, it can variate a lot in real-life elections. In Fig. 45, we plot
the real and ideal coercion levels as a function of the abstention rate, with various probabilities
of revoting and bias. As expected, when there is no abstention, the attacker can trivially break
coercion-resistance with a forced-abstention attack. Similarly, when everyone but the coerced
voter abstains, there is no coercion-resistance (both situations are captured by the ideal model).

Finally, the last parameter of interest is the number of honest voters. In Fig. 46, we plot the
real and ideal coercion levels for 16, 32, 64, 128, 256, 512 and 1024 honest uncoerced voters, with
various probabilities of revoting and bias. As expected, the coercion level decreases as nH grows
for both the ideal and real game. Interestingly, the difference remains noticeable as long as there
is enough revotes.

260

D.4. The impact of the parameters

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

abstention rate

co
er

ci
on

le
ve

l

20% revote rate, bias of 0.4

Real
Ideal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

abstention rate

co
er

ci
on

le
ve

l

40% revote rate, bias of 0.8

Real
Ideal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

abstention rate

co
er

ci
on

le
ve

l

60% revote rate, bias of 1.2

Real
Ideal

Figure 45: Coercion level as a function of the abstention rate; with 20 voters and 2 candidates.

33 65 129 257 513 1025
0

0.2

0.4

number of voters

co
er

ci
on

le
ve

l

40% revote rate, bias of 0, 5

Real
Ideal

33 65 129 257 513 1025
0

0.2

0.4

number of voters

co
er

ci
on

le
ve

l

60% revote rate, bias of 1

Real
Ideal

33 65 129 257 513 1025
0

0.2

0.4

number of voters

co
er

ci
on

le
ve

l

80% revote rate, bias of 1, 5

Real
Ideal

Figure 46: Coercion level as a function of the number of voters; with 2 candidates and 30%
abstention

261

Appendix E

Proof of privacy for CHide

In this appendix, we provide a proof that CHide is private, as of Definition 9 (the corresponding
real and ideal games are reproduced below). The proof is extremely similar to that of coercion-
resistance and some parts are reproduced verbatim, with some little tweaks to take into account
the differences between RealCR and RealPriv. Just as for coercion-resistance, we make the same
assumptions as in JCJ; however, we no longer assume an anonymous channels for voting.

Theorem 18. Under the DDH assumption and in the ROM, assuming a SUC-secure decryption
mixnet, CHide is private.

Proof. We give a succession of games such that Game 0 is the real game and Game 9 is the ideal
game. We consider a PPT A0 for Game 0. For Game i, we construct a PPT adversary Ai for this
game and we denote Si the probability that Ai wins this game. (To ease the notations, we drop
the dependency in λ when the context is clear.) For all i, we show that |Si+1 − Si| is negligible,
which proves that |S0 − S9| is also negligible.

Game 1: In this game, the adversary no longer takes part into the whole tally process at
line 17, but only in the decryption mixnet process. Instead, it is given the result of all the
conditional gates, computed by a trusted party. With a similar argument as in Theorem 6, we
can show that the cleansing phase up to the decryption mixnet is SUC-secure, so that there
exists an adversary A1 such that |S1 − S0| is negligible.

Game 2: In this game, the adversary no longer takes part in the decryption mixnet and is
instead given the result at line 18, computed by a trusted party. Since the decryption mixnet is
supposed UC-secure, we can similarly construct an adversary A2 such that |S2−S1| is negligible.

Game 3: In this game, the adversary is no longer given the output of the conditional gates.
Just as in the transition to Game 2 in the proof of Theorem 8, under the DDH assumption and
in the ROM, there exists A3 such that |S3 − S2| is negligible.

Game 4: In this game, we modify the sequence B so that the honest voters no longer revote.
Instead, for all honest voter x, we replace all but the last occurrence of the form (x, ν) in B by
an occurrence of the form (x → x̃, ν) where x̃ is a fresh and unique negative number. Then, at
line 12, when i is of the form x→ x̃, we give x to the adversary but we add a ballot of the form
Votepk(c, ν) with a fresh random (fake) credential c.

Although this transition is slightly different from the transition to Game 4 in the proof of
coercion resistance, the reduction argument is the same.

262

Algorithm 108: RealPriv

Requires: λ, nT , Ct, n, nA, nC ,B,A
1 pk, sk, (hi, si)

nT
i=1,Π

S ← Setup(λ, nT , t);
2 (ci, πi),Π

R ←− Register(pk, n);
3 PB←− ΠS||ΠR;
4 A←− A(pk,PB, {si | i ∈ Ct});
5 j, ν0, ν1 ←− A({ci | i ∈ A});
6 (* chooses the voter to observe *);
7 if |A| ≠ nA ∨ j ̸∈ [1, n]\A then
8 return 0;

9 B
$←− B([1, n]\A,nC);

10 for (i, νi) ∈ B do
11 AOcast(i,PB);
12 PB←− PB||Votepk(νi, ci);

13 AOcast(i,PB, "end for");

14 b
$←− {0, 1};

15 PB←− PB||Votepk(νb, cj);
16 AOcast(PB);
17 r,Π←− TallyA(PB, {si});
18 b′ ←− A();
19 if ν0, ν1 ∈ [1, nC] ∧ b′ == b then

return 1 else return 0;

Algorithm 109: IdealPriv

Requires: λ, nT , Ct, n, nA, nC ,B,A
1 ;
2 ;
3 ;
4 A←− A(λ);
5 j, ν0, ν1 ←− A();
6 (* chooses the voter to observe *);
7 if |A| ≠ nA ∨ j ̸∈ [1, n]\A then
8 return 0;

9 B
$←− B([1, n]\(A

⋃
{j}), nC);

10 (ν)i∈A ←− A(I);
11 B ←− B||(i, νi)i∈A,νi∈[1,nC];
12 ;
13 ;

14 b
$←− {0, 1};

15 B ←− B||(j, νb);
16 ;
17 r ←− tally(B);
18 b′ ←− A(r);
19 if ν0, ν1 ∈ [1, nC] ∧ b′ == b then

return 1 else return 0;

Figure 47: Definition of privacy, λ is the security parameter, nT the number of talliers, t the
threshold, Ct the set of the corrupted talliers, n the number of voters, nA the number of corrupted
voters, nC the number of voting options (excluding abstention) and B the distribution.

263

Appendix E. Proof of privacy for CHide

Game 5: In this game, the adversary no longer has access to the roster ΠR at line 4.

Just as in the transition to Game 5 in the proof of coercion-resistance, we can construct A5

which interacts with A4 by simulating Game 4, so that |S5 − S4| is negligible.

|S5 − S4| ≤ 2nV εPA0.

Game 6: In this game, before computing the tally, we decrypt every valid ballot sent by the
adversary at lines 11, 13 and 16. If one of these ballots uses the same credential as a ballot sent
by a honest voter (i.e. a ballot added to the board at line 12 for some (i, νi) with i ∈ [1, nV]\A),
we abort the game and output a random bit.

This is the same transition as the one to Game 6 in the proof of coercion-resistance. Using
the same arguments, we can show that |S6 − S5| is negligible.

Game 7: In this game, we remove lines 11 and 13 so that the adversary can no longer insert
its own ballots between two honest ballots. In addition, we give I to the adversary at line 16.

This transition is very similar to the transition to Game 7 in the proof of coercion-resistance.
Similarly, we construct A7 which interacts with A6 by simulating Game 6. For this purpose, A7

gets PB and I at line 16 and creates a fake empty ballot box PB′. Then, in the kth iteration of
the for loop, it gives the next entry of I to A6 as i, as well as the current PB′. Then, A6 casts
some ballots and A7 adds the valid ones to PB′. Finally, to simulate the vote of i, A7 adds the
next entry of PB to PB′. One the for loop has ended, A7 can similarly simulate line 13.

Clearly, A7 plays a perfect simulation of Game 6 if the result of the tally is the same. Besides,
the latter can only differ if the credential of a ballot sent by A6 is the same as the credential of
a ballot sent by some honest voter. In this case, both games abort with a random output and
A7’s probability to win is the same as A6’s in Game 6. Consequently, S7 = S6.

Game 8: In this game, the adversary has no longer access to the ballot box PB at line 16
but is only given I. Using a similar argument as in the transition to Game 8 in the proof of
coercion-resistance, we can show that |S8 − S7| is negligible.

Game 9: The final game is the ideal game.

We construct an adversary A9 which interacts with A8 by simulating Game 8. For this
purpose, A9 runs the setup and the registration honestly, by generating the secret key and the
credentials. This allows A9 to get j, ν0, ν1 from A8, that it plays in the ideal game. Then, when
given I in the ideal game, it forwards it to A8 which answers with a list of cast ballots M by
interacting with the cast oracle. To deduce the corresponding voting options (νi)i∈A, A9 creates
a hashmap with the keys {ci; i ∈ A}, and values (νi)i∈A (initially ϕ, for abstention). For each
valid ballot cast by A8, A9 decrypts the ballot using the secret key and deduces (ν, c). Since the
ballot is valid, by the soundness of the ZKP, c consists of λ bits and ν is a valid voting option.
If c is a key of the hashmap, A9 changes the corresponding value to ν. (Otherwise, it ignores
the ballot.) It plays the obtained values in Game 9 and receives the result of the tally which it
forwards to A8. Finally, it outputs A8’s output. Remark that A9 played a perfect simulation of
Game 8, so that S9 = S8.

264

Bibliography

[ABBT16] Roberto Araújo, Amira Barki, Solenn Brunet, and Jacques Traoré. Remote Elec-
tronic Voting Can Be Efficient, Verifiable and Coercion-Resistant. In Financial
Cryptography and Data Security - FC’16. Springer, 2016.

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX Security Sympo-
sium. USENIX, 2008.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-Preserving Signatures and Commitments to Group Elements.
In CRYPTO’10. Springer, 2010.

[AFT08] Roberto Araújo, Sébastien Foulle, and Jacques Traoré. A practical and secure
coercion-resistant scheme for remote elections. In Frontiers of Electronic Voting.
Schloss Dagstuhl, 2008.

[AGM+13] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael
Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a framework for rapidly
prototyping cryptosystems. J. Cryptogr. Eng., 3(2):111–128, 2013.

[AMM22] Ferran Alborch, Ramiro Martínez, and Paz Morillo. R-LWE-Based Distributed
Key Generation and Threshold Decryption. Mathematics, 10(5):728, 2022.

[ARR+10] Roberto Araújo, Narjes Ben Rajeb, Riadh Robbana, Jacques Traoré, and Souheib
Yousfi. Towards Practical and Secure Coercion-Resistant Electronic Elections. In
Cryptology and Network Security - CANS’10. Springer, 2010.

[AT13] Roberto Araújo and Jacques Traoré. A Practical Coercion Resistant Voting Scheme
Revisited. In E-Voting and Identify - VoteID’13. Springer, 2013.

[AW07] Ben Adida and Douglas Wikström. How to Shuffle in Public. In 4th Theory of
Cryptography Conference, TCC’07. Springer, 2007.

[Bat68] Kenneth E. Batcher. Sorting Networks and Their Applications. In Spring Joint
Computer Conference, American Federation of Information Processing Societies -
AFIPS’68. ACM, 1968.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-Cryptographic Fault-Tolerant Computing
in Constant Number of Rounds of Interaction. In Symposium on Principles of
Distributed Computing - PODC’89. ACM, 1989.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Gregory Maxwell. Bulletproofs: Short Proofs for Confidential Transactions
and More. In Symposium on Security and Privacy S&P’18. IEEE, 2018.

265

Bibliography

[BBE+13] Josh Benaloh, Michael D. Byrne, Bryce Eakin, Philip T. Kortum, Neal McBur-
nett, Olivier Pereira, Philip B. Stark, Dan S. Wallach, Gail Fisher, Julian Mon-
toya, Michelle Parker, and Michael Winn. STAR-Vote: A Secure, Transparent,
Auditable, and Reliable Voting System. In Electronic Voting Technology Workshop
/ Workshop on Trustworthy Elections - EVT/WOTE’13. USENIX, 2013.

[BBMP21] Sevdenur Baloglu, Sergiu Bursuc, Sjouke Mauw, and Jun Pang. Provably Improving
Election Verifiability in Belenios. In International Conference for Electronic Voting
- E-Vote-ID’21. Springer, 2021.

[BCC+22] Mikael Bougon, Hervé Chabanne, Véronique Cortier, Alexandre Debant, Em-
manuelle Dottax, Jannik Dreier, Pierrick Gaudry, and Mathieu Turuani. Themis:
An On-Site Voting System with Systematic Cast-as-intended Verification and Par-
tial Accountability. In Conference on Computer and Communications Security -
CCS’22. ACM, 2022.

[BCG+15a] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars
Virza. Secure Sampling of Public Parameters for Succinct Zero Knowledge Proofs.
In Symposium on Security and Privacy - S&P’15. IEEE, 2015.

[BCG+15b] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan
Warinschi. SoK: A Comprehensive Analysis of Game-Based Ballot Privacy Defini-
tions. In Symposium on Security and Privacy - S&P’15. IEEE, 2015.

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and
Gregory Neven. Better Zero-Knowledge Proofs for Lattice Encryption and Their
Application to Group Signatures. In ASIACRYPT’14. Springer, 2014.

[BCP+11] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan
Warinschi. Adapting helios for provable ballot privacy. In ESORICS’11. Springer,
2011.

[BDG+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In Foundations of Se-
curity Analysis and Design - FOSAD’13, Tutorial Lectures. Springer, 2013.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
Among Notions of Security for Public-Key Encryption Schemes. In CRYPTO’98.
Springer, 1998.

[Ben87] Josh Daniel Cohen Benaloh. Verifiable secret-ballot elections. PhD thesis, Yale
University, 1987.

[Ben06] Josh Benaloh. Simple verifiable elections. In Electronic Voting Technology Work-
shop - EVT’06. USENIX, 2006.

[BFPV11] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Sig-
natures on Randomizable Ciphertexts. In Public Key Cryptography - PKC’11.
Springer, 2011.

[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose.
Correlation-Resistant Storage via Keyword-Searchable Encryption. http://
eprint.iacr.org/2005/417, 2005. Last updated: 22-11-2005.

266

http://eprint.iacr.org/2005/417
http://eprint.iacr.org/2005/417

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter
M. R. Rasmussen, and Amit Sahai. Threshold Cryptosystems from Threshold
Fully Homomorphic Encryption. In CRYPTO’18. Springer, 2018.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract).
In Symposium on Theory of Computing - STOC’88. ACM, 1988.

[BJO+22] Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart.
Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs. In Confer-
ence on Computer and Communications Security - CCS’22, 2022.

[BK82] Richard P. Brent and H. T. Kung. A Regular Layout for Parallel Adders. IEEE
Trans. Computers, 31(3):260–264, 1982.

[BL10] Michel Balinski and Rida Laraki. Majority Judgment: Measuring Ranking and
Electing. MIT Press, 2010.

[BMN+09] Josh Benaloh, Tal Moran, Lee Naish, Kim Ramchen, and Vanessa Teague. Shuffle-
sum: coercion-resistant verifiable tallying for STV voting. IEEE Trans. Inf. Foren-
sics Secur., 4(4):685–698, 2009.

[BMR07] Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich. Bingo Voting: Se-
cure and Coercion-Free Voting Using a Trusted Random Number Generator. In
E-Voting and Identity - VOTE-ID’07. Springer, 2007.

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean and
arithmetic circuits. In Conference on Computer and Communications Security -
CCS’16. ACM, 2016.

[BMZ19] James Bartusek, Fermi Ma, and Mark Zhandry. The Distinction Between Fixed
and Random Generators in Group-Based Assumptions. In CRYPTO’19. Springer,
2019.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not to Prove Your-
self: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In ASI-
ACRYPT’12. Springer, 2012.

[BS99] Mihir Bellare and Amit Sahai. Non-malleable Encryption: Equivalence between
Two Notions, and an Indistinguishability-Based Characterization. In CRYPTO
’99. Springer, 1999.

[BT94] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (ex-
tended abstract). In Symposium on Theory of Computing - STOC’94. ACM, 1994.

[Can00] Ran Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. Cryptology ePrint Archive, Paper 2000/067, 2000. Last edited:
12-02-2020.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In Symposium on Foundations of Computer Science - FOCS’01.
IEEE, 2001.

267

Bibliography

[CC18] Pyrros Chaidos and Geoffroy Couteau. Efficient Designated-Verifier Non-
interactive Zero-Knowledge Proofs of Knowledge. In EUROCRYPT’18. Springer,
2018.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally
secure protocols (extended abstract). In Symposium on Theory of Computing -
STOC’88. ACM, 1988.

[CCFG16] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. Bele-
niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme. In Conference
on Computer and Communications Security - CCS’16. ACM, 2016.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A Simpler Variant of Univer-
sally Composable Security for Standard Multiparty Computation. In CRYPTO’15.
Springer, 2015.

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a
Secure Voting System. In Symposium on Security and Privacy - S&P’08. IEEE,
2008.

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Multi-key homomorphic encryption
from TFHE. In ASIACRYPT’19. Springer, 2019.

[CDDW18] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir, and Bogdan
Warinschi. Machine-Checked Proofs for Electronic Voting: Privacy and Verifiability
for Belenios. In Computer Security Foundations Symposium, CSF’18. IEEE, 2018.

[CDG22] Véronique Cortier, Alexandre Debant, and Pierrick Gaudry. A privacy attack on
the Swiss Post e-voting system. In Real World Crypto Symposium- RWC’22. IACR,
2022.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty Computation
from Threshold Homomorphic Encryption. In EUROCRYPT’01. Springer, 2001.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of Partial Knowl-
edge and Simplified Design of Witness Hiding Protocols. In CRYPTO’94. Springer,
1994.

[CEC+08] David Chaum, Aleksander Essex, Richard Carback, Jeremy Clark, Stefan Popove-
niuc, Alan T. Sherman, and Poorvi L. Vora. Scantegrity: End-to-end voter-
verifiable optical-scan voting. IEEE Secur. Priv., 6(3):40–46, 2008.

[CFL19] Véronique Cortier, Alicia Filipiak, and Joseph Lallemand. BeleniosVS: Secrecy and
Verifiability Against a Corrupted Voting Device. In Computer Security Foundations
Symposium - CSF’19. IEEE, 2019.

[CGG19] Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. Belenios: A simple pri-
vate and verifiable electronic voting system. In Foundations of Security, Protocols,
and Equational Reasoning. Springer, 2019.

[CGGI14] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène. Elec-
tion Verifiability for Helios under Weaker Trust Assumptions. In ESORICS’14.
Springer, 2014.

268

[CGGI16a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. A Ho-
momorphic LWE Based E-voting Scheme. In Post-Quantum Cryptography - 7th
International Workshop, PQCrypto’16. Springer, 2016.

[CGGI16b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds. In
ASIACRYPT’16, 2016.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[CGK+16] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and Tomasz
Truderung. SoK: Verifiability Notions for E-Voting Protocols. In Symposium on
Security and Privacy - S&P’16. IEEE, 2016.

[CGY20] Véronique Cortier, Pierrick Gaudry, and Quentin Yang. How to fake zero-
knowledge proofs, again. In The International Conference for Electronic Voting
- E-Vote-Id’20, 2020.

[CGY21] Véronique Cortier, Pierrick Gaudry, and Quentin Yang. A toolbox for verifiable
tally-hiding e-voting systems. Cryptology ePrint Archive, Paper 2021/491, 2021.
https://eprint.iacr.org/2021/491.

[CGY22a] Véronique Cortier, Pierrick Gaudry, and Quentin Yang. A Toolbox for Verifiable
Tally-Hiding E-Voting Systems. In ESORICS’22. Springer, 2022.

[CGY22b] Véronique Cortier, Pierrick Gaudry, and Quentin Yang. Is the JCJ voting sys-
tem really coercion-resistant? Cryptology ePrint Archive, Paper 2022/430, 2022.
https://eprint.iacr.org/2022/430.

[CH11] Jeremy Clark and Urs Hengartner. Selections: Internet Voting with Over-the-
Shoulder Coercion-Resistance. In Financial Cryptography and Data Security -
FC’11. Springer, 2011.

[Cha81] David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[CKLM12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Mal-
leable Proof Systems and Applications. In EUROCRYPT’12. Springer, 2012.

[CL18] Véronique Cortier and Joseph Lallemand. Voting: You Can’t Have Privacy without
Individual Verifiability. In Conference on Computer and Communications Security
- CCS’18. ACM, 2018.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved
Programmable Bootstrapping with Larger Precision and Efficient Arithmetic Cir-
cuits for TFHE. In ASIACRYPT’21. Springer, 2021.

[CLW20] Véronique Cortier, Joseph Lallemand, and Bogdan Warinschi. Fifty Shades of Bal-
lot Privacy: Privacy against a Malicious Board. In Computer Security Foundations
Symposium - CSF’20. IEEE, 2020.

269

https://eprint.iacr.org/2021/491
https://eprint.iacr.org/2022/430

Bibliography

[Con85] Nicolas de Condorcet. Essai sur l’application de l’analyse à la probabilité des déci-
sions rendues à la pluralité des voix. Paris : Imprimerie Royale, 1785.

[CPP13] Edouard Cuvelier, Olivier Pereira, and Thomas Peters. Election Verifiability or
Ballot Privacy: Do We Need to Choose? In ESORICS’13. Springer, 2013.

[CPP17] Geoffroy Couteau, Thomas Peters, and David Pointcheval. Removing the Strong
RSA Assumption from Arguments over the Integers. In EUROCRYPT’17, 2017.

[CPST18] Sébastien Canard, David Pointcheval, Quentin Santos, and Jacques Traoré. Prac-
tical Strategy-Resistant Privacy-Preserving Elections. In ESORICS’18. Springer,
2018.

[CS98] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosystem Provably
Secure Against Adaptive Chosen Ciphertext Attack. In CRYPTO’98. Springer,
1998.

[CS14] Chris Culnane and Steve A. Schneider. A Peered Bulletin Board for Robust Use in
Verifiable Voting Systems. In Computer Security Foundations Symposium - CSF’14.
IEEE, 2014.

[CYLR18] Marwa Chaieb, Souheib Yousfi, Pascal Lafourcade, and Riadh Robbana. Verify-
Your-Vote: A Verifiable Blockchain-Based Online Voting Protocol. In European,
Mediterranean, and Middle Eastern Conference on Information Systems - EM-
CIS’18. Springer, 2018.

[CZZ+16] Nikos Chondros, Bingsheng Zhang, Thomas Zacharias, Panos Diamantopoulos,
Stathis Maneas, Christos Patsonakis, Alex Delis, Aggelos Kiayias, and Mema Rous-
sopoulos. D-DEMOS: A Distributed, End-to-End Verifiable, Internet Voting Sys-
tem. In International Conference on Distributed Computing Systems - ICDCS’16.
IEEE, 2016.

[Dav22] David Mestel and Johannes Müller and Pascal Reisert. How Efficient are Replay
Attacks against Vote Privacy? A Formal Quantitative Analysis. In Computer
Security Foundations Symposium - CSF’22. IEEE, 2022.

[DF02] Ivan Damgård and Eiichiro Fujisaki. A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. In ASIACRYPT’02. Springer, 2002.

[DFK+06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.
Unconditionally Secure Constant-Rounds Multi-party Computation for Equality,
Comparison, Bits and Exponentiation. In Theory of Cryptography Conference -
TCC’06. Springer, 2006.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of
the Fiat-Shamir Transformation in the Quantum Random-Oracle Model. In
CRYPTO’19. Springer, 2019.

[DH22] Alexandre Debant and Lucca Hirschi. Reversing, breaking, and fixing the french
legislative election e-voting protocol. IACR Cryptol. ePrint Arch., 2022.

270

[DJN10] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. A generalization of Paillier’s
public-key system with applications to electronic voting. Int. J. Inf. Sec., 9(6):371–
385, 2010.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-resistance and
receipt-freeness in electronic voting. In Computer Security Foundations Workshop
- CSFW’06. IEEE, 2006.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type proper-
ties of electronic voting protocols. J. Comput. Secur., 17(4):435–487, 2009.

[DLP22] Julien Devevey, Benoît Libert, and Thomas Peters. Rational Modular Encoding in
the DCR Setting: Non-interactive Range Proofs and Paillier-Based Naor-Yung in
the Standard Model. In Public-Key Cryptography - PKC’22. Springer, 2022.

[dMPQ09] Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater. Electing a
University President Using Open-Audit Voting: Analysis of Real-World Use of
Helios. In Electronic Voting Technology Workshop / Workshop on Trustworthy
Elections - EVT/WOTE’09. USENIX, 2009.

[DN03] Ivan Damgård and Jesper Buus Nielsen. Universally Composable Efficient Mul-
tiparty Computation from Threshold Homomorphic Encryption. In CRYPTO’03.
Springer, 2003.

[dPLNS17] Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler. Practical
Quantum-Safe Voting from Lattices. In Conference on Computer and Communi-
cations Security - CCS’17. ACM, 2017.

[DPP22a] Henri Devillez, Olivier Pereira, and Thomas Peters. How to Verifiably Encrypt
Many Bits for an Election? In ESORICS’22. Springer, 2022.

[DPP22b] Henri Devillez, Olivier Pereira, and Thomas Peters. Traceable receipt-free encryp-
tion. In ASIACRYPT’22. Springer, 2022.

[ESLL19] Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Lattice-Based
Zero-Knowledge Proofs: New Techniques for Shorter and Faster Constructions and
Applications. In CRYPTO’19. Springer, 2019.

[ESWV22] Piret Ehin, Mihkel Solvak, Jan Willemson, and Priit Vinkel. Internet voting in
Estonia 2005-2019: Evidence from eleven elections. Gov. Inf. Q., 39(4):101718,
2022.

[FLM11] Marc Fischlin, Benoît Libert, and Mark Manulis. Non-interactive and Re-usable
Universally Composable String Commitments with Adaptive Security. In ASI-
ACRYPT’11. Springer, 2011.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6), 1962.

[FPS00] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing Decryption
in the Context of Voting or Lotteries. In Financial Cryptography - FC’00. Springer,
2000.

271

Bibliography

[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. In CRYPTO’86. Springer, 1986.

[FS01] Jun Furukawa and Kazue Sako. An Efficient Scheme for Proving a Shuffle. In
CRYPTO’01. Springer, 2001.

[Fuc11] Georg Fuchsbauer. Commuting Signatures and Verifiable Encryption. In EURO-
CRYPT’11. Springer, 2011.

[Geh81] William V. Gehrlein. The expected probability of condorcet’s paradox. Economics
Letters, 7(1):33–37, 1981.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Symposium
on Theory of Computing - STOC’09. ACM, 2009.

[GGP15] David Galindo, Sandra Guasch, and Jordi Puiggali. 2015 neuchâtel’s cast-as-
intended verification mechanism. In E-Voting and Identity - VoteID’15. Springer,
2015.

[GJKR99] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
Distributed Key Generation for Discrete-Log Based Cryptosystems. In EURO-
CRYPT’99. Springer, 1999.

[Gjø11] Kristian Gjøsteen. The norwegian internet voting protocol. In E-Voting and Iden-
tity - VoteID’11. Springer, 2011.

[GL17] Rajeev Goré and Ekaterina Lebedeva. Simulating STV Hand-Counting by Com-
puters Considered Harmful. In International Joint Conference in Electronic Voting
- E-Vote-ID’16. Springer, 2017.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect Non-interactive Zero Knowl-
edge for NP. In EUROCRYPT’06. Springer, 2006.

[Gro05] Jens Groth. Non-interactive Zero-Knowledge Arguments for Voting. In Applied
Cryptography and Network Security - ACNS’05, 2005.

[Gro16] Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In EURO-
CRYPT’16. Springer, 2016.

[GS07] Jens Groth and Amit Sahai. Efficient Non-interactive Proof Systems for Bilinear
Groups. https://eprint.iacr.org/2007/155, 2007. Last updated: 11-04-2016.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In EUROCRYPT’08. Springer, 2008.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed Output Delivery Comes
Free in Honest Majority MPC. In CRYPTO’20. Springer, 2020.

[gua22] ‘People’s primary’ backs Christiane Taubira as unity candidate of French left. the-
guardian.com, 2022. Accessed: 16-03-23.

[Hel] Helios Voting. https://vote.heliosvoting.org/. Accessed: 03-03-2023.

272

https://eprint.iacr.org/2007/155
https://www.theguardian.com/world/2022/jan/30/peoples-primary-backs-as-taubira-as-unity-candidate-of-french-left
https://www.theguardian.com/world/2022/jan/30/peoples-primary-backs-as-taubira-as-unity-candidate-of-french-left
https://vote.heliosvoting.org/

[HHHH18] Friorik P. Hjalmarsson, Gunnlaugur K. Hreioarsson, Mohammad Hamdaqa, and
Gísli Hjálmtýsson. Blockchain-Based E-Voting System. In International Conference
on Cloud Computing, CLOUD’18. IEEE, 2018.

[HHK+21] Fabian Hertel, Nicolas Huber, Jonas Kittelberger, Ralf Kuesters, Julian Liedtke,
and Daniel Rausch. Extending the Tally-Hiding Ordinos System: Implementations
for Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting. In International
Conference for Electronic Voting - E-Vote-ID’21. University of Tartu Press, 2021.

[Hir10] Martin Hirt. Receipt-Free K -out-of-L Voting Based on ElGamal Encryption. In To-
wards Trustworthy Elections, New Directions in Electronic Voting. Springer, 2010.

[HKK+22] Nicolas Huber, Ralf Küsters, Toomas Krips, Julian Liedtke, Johannes Müller,
Daniel Rausch, Pascal Reisert, and Andreas Vogt. Kryvos: Publicly Tally-Hiding
Verifiable E-Voting. In Conference on Computer and Communications Security -
CCS’22. ACM, 2022.

[HKLD17] Rolf Haenni, Reto E. Koenig, Philipp Locher, and Eric Dubuis. CHVote Protocol
Specification. https://eprint.iacr.org/2017/325, 2017. Last edited: 29-11-
2022.

[HLPT20] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. How not
to prove your election outcome. In Symposium on Security and Privacy - S& P’20.
IEEE, 2020.

[HMMP23] Thomas Haines, Rafieh Mosaheb, Johannes Müller, and Ivan Pryvalov. Sok: Secure
e-voting with everlasting privacy. Proc. Priv. Enhancing Technol., 2023(1):279–293,
2023.

[HMRT12] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. Efficient RSA
Key Generation and Threshold Paillier in the Two-Party Setting. In Topics in
Cryptology - CT-RSA’12. Springer, 2012.

[HPT19] Thomas Haines, Dirk Pattinson, and Mukesh Tiwari. Verifiable Homomorphic
Tallying for the Schulze Vote Counting Scheme. In Verified Software. Theories,
Tools, and Experiments - VSTTE’19. Springer, 2019.

[HRT10] James Heather, Peter Y. A. Ryan, and Vanessa Teague. Pretty good democracy
for more expressive voting schemes. In ESORICS’10. Springer, 2010.

[HS00] Martin Hirt and Kazue Sako. Efficient Receipt-Free Voting Based on Homomorphic
Encryption. In EUROCRYPT’00. Springer, 2000.

[HS19] Thomas Haines and Ben Smyth. Surveying definitions of coercion resistance. Cryp-
tology ePrint Archive, Report 2019/822, 2019. https://ia.cr/2019/822.

[HSB21] Lucca Hirschi, Lara Schmid, and David A. Basin. Fixing the Achilles Heel of
E-Voting: The Bulletin Board. In Computer Security Foundations Symposium -
CSF’21. IEEE, 2021.

[HT15] J. Alex Halderman and Vanessa Teague. The New South Wales iVote System:
Security Failures and Verification Flaws in a Live Online Election. In E-Voting and
Identity - VoteID’15. Springer, 2015.

273

https://eprint.iacr.org/2017/325
https://ia.cr/2019/822

Bibliography

[HW14] Sven Heiberg and Jan Willemson. Verifiable internet voting in estonia. In Inter-
national Conference on Electronic Voting: Verifying the Vote, EVOTE’14. IEEE,
2014.

[IRRR17] Vincenzo Iovino, Alfredo Rial, Peter B. Rønne, and Peter Y. A. Ryan. Using selene
to verify your vote in JCJ. In Financial Cryptography and Data Security - FC’17
International Workshops, Lecture Notes in Computer Science. Springer, 2017.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Workshop on Privacy in the Electronic Society - WPES’05, 2005.

[JJ00] Markus Jakobsson and Ari Juels. Mix and Match: Secure Function Evaluation via
Ciphertexts. In ASIACRYPT’00. Springer, 2000.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated Verifier
Proofs and Their Applications. In EUROCRYPT’96. Springer, 1996.

[Key] BlueKrypt Cryptographic Key Length Recommendation. https://www.
keylength.com/. Accessed: 23-02-2023.

[KKW06] Aggelos Kiayias, Michael Korman, and David Walluck. An Internet Voting Sys-
tem Supporting User Privacy. In Computer Security Applications Conference -
ACSAC’06. IEEE, 2006.

[KLM+20] Ralf Küsters, Julian Liedtke, Johannes Müller, Daniel Rausch, and Andreas Vogt.
Ordinos: A Verifiable Tally-Hiding E-Voting System. In European Symposium on
Security and Privacy - EuroS&P’20. IEEE, 2020.

[KLO+19] Michael Kraitsberg, Yehuda Lindell, Valery Osheter, Nigel P Smart, and Younes
Talibi Alaoui. Adding distributed decryption and key generation to a ring-LWE
based CCA encryption scheme. In Australasian Conference on Information Security
and Privacy - ACISP’19. Springer, 2019.

[KMST16] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung. sElect: A
Lightweight Verifiable Remote Voting System. In Computer Security Foundations
Symposium - CSF’16. IEEE, 2016.

[Knu73] Donald Knuth. The Art Of Computer Programming, vol. 3: Sorting And Searching.
Addison-Wesley, 1973.

[Kra03] Hugo Krawczyk. SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols. In CRYPTO’03. Springer, 2003.

[KRS10] Steve Kremer, Mark Ryan, and Ben Smyth. Election Verifiability in Electronic
Voting Protocols. In ESORICS’10. Springer, 2010.

[KTV10a] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A Game-Based Definition
of Coercion-Resistance and its Applications. In Computer Security Foundations
Symposium - CSF’10. IEEE, 2010.

[KTV10b] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: definition
and relationship to verifiability. In Conference on Computer and Communications
Security - CCS’10. ACM, 2010.

274

https://www.keylength.com/
https://www.keylength.com/

[KTV11] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifiability, Privacy, and
Coercion-Resistance: New Insights from a Case Study. In Symposium on Security
and Privacy - S&P’11. IEEE, 2011.

[KTV12] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Clash Attacks on the Ver-
ifiability of E-Voting Systems. In Symposium on Security and Privacy - S&P’12.
IEEE, 2012.

[KTV14] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Formal analysis of chaumian
mix nets with randomized partial checking. In Symposium on Security and Privacy
- S&P’14, pages 343–358. IEEE, 2014.

[KY02] Aggelos Kiayias and Moti Yung. Self-tallying Elections and Perfect Ballot Secrecy.
In International Workshop on Practice and Theory in Public Key Cryptosystems -
PKC’02. Springer, 2002.

[KZZ15] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-End Verifiable
Elections in the Standard Model. In EUROCRYPT’15. Springer, 2015.

[LHK16] Philipp Locher, Rolf Haenni, and Reto E. Koenig. Coercion-Resistant Internet
Voting with Everlasting Privacy. In Financial Cryptography and Data Security -
FC’16 International Workshops. Springer, 2016.

[Lin11] Yehuda Lindell. Highly-Efficient Universally-Composable Commitments Based on
the DDH Assumption. In EUROCRYPT’11, 2011.

[Lip03] Helger Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Ar-
guments. In ASIACRYPT’03. Springer, 2003.

[LNP22] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-Based
Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. In
CRYPTO’22. Springer, 2022.

[LP11] Yehuda Lindell and Benny Pinkas. Secure Two-Party Computation via Cut-and-
Choose Oblivious Transfer. In Theory of Cryptography Conference - TCC. Springer,
2011.

[LPJY13] Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly Homomorphic
Structure-Preserving Signatures and Their Applications. In CRYPTO’13. Springer,
2013.

[LQT20] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso. VoteAgain:
A scalable coercion-resistant voting system. In USENIX Security Symposium.
USENIX, 2020.

[LS12] Mark Lindeman and Philip B. Stark. A Gentle Introduction to Risk-Limiting
Audits. IEEE Secur. Priv., 10(5):42–49, 2012.

[LT13] Helger Lipmaa and Tomas Toft. Secure Equality and Greater-Than Tests with Sub-
linear Online Complexity. In International Colloquium on Automata, Languages,
and Programming - ICALP’13. Springer, 2013.

275

Bibliography

[LWB05] Helger Lipmaa, Guilin Wang, and Feng Bao. Designated Verifier Signature
Schemes: Attacks, New Security Notions and a New Construction. In International
Colloquium on Automata Languages and Programming - ICALP’05. Springer, 2005.

[Mee69] B. L. Meek. Une nouvelle approche du scrutin transférable. Mathématiques et
Sciences humaines, 25:13 – 23, 1969.

[MF21] Arno Mittelbach and Marc Fischlin. The Theory of Hash Functions and Random
Oracles - An Approach to Modern Cryptography. Information Security and Cryp-
tography. Springer, 2021.

[mie] Mieux voter. https://mieuxvoter.fr/qui-sommes-nous. Accessed: 16-03-2023.

[MM06] Ülle Madise and Tarvi Martens. E-voting in Estonia 2005. The first Practice of
Country-wide binding Internet Voting in the World. In International Workshop in
Electronic Voting - EVOTE’06. GI, 2006.

[MN06] Tal Moran and Moni Naor. Receipt-Free Universally-Verifiable Voting with Ever-
lasting Privacy. In CRYPTO’06. Springer, 2006.

[MPT20] Eleanor McMurtry, Olivier Pereira, and Vanessa Teague. When Is a Test Not a
Proof? In ESORICS’20. Springer, 2020.

[MSH17] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A Smart Contract for
Boardroom Voting with Maximum Voter Privacy. In Financial Cryptography and
Data Security - FC’17. Springer, 2017.

[MZR+21] Karola Marky, Marie-Laure Zollinger, Peter Roenne, Peter YA Ryan, Tim Grube,
and Kai Kunze. Investigating usability and user experience of individually ver-
ifiable internet voting schemes. Transactions on Computer-Human Interaction -
TOCHI’21, 28(5):1–36, 2021.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
Conference on Computer and Communications Security - CCS’01. ACM, 2001.

[Nie02] Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In CRYPTO’02. Springer, 2002.

[Nie03] Jesper Buus Nielsen. On Protocol Security in the Cryptographic Model. PhD thesis,
University of Aarhus, 2003.

[NS10] Takashi Nishide and Kouichi Sakurai. Distributed Paillier Cryptosystem without
Trusted Dealer. In International Workshop on Information Security Applications -
WISA’10. Springer, 2010.

[NSW19] NSWEC – Election results. NSW Electoral Commision,
pastvtr.elections.nsw.gov.au, 2019. Accessed: 2020-08-05.

[NV12] Stephan Neumann and Melanie Volkamer. Civitas and the real world: problems and
solutions from a practical point of view. In International Conference on Availability,
Reliability and Security - ARES’12. IEEE, 2012.

[Ord] Ordinos Extension (E-Vote-ID 2021). https://github.com/JulianLiedtke/
ordinos. Accessed: 27-02-2023.

276

https://mieuxvoter.fr/qui-sommes-nous
https://pastvtr.elections.nsw.gov.au/SG1901/LC/State/preferences
https://github.com/JulianLiedtke/ordinos
https://github.com/JulianLiedtke/ordinos

[Pai66] Claude Pair. Sur des algorithmes pour des problèmes de cheminement dans les
graphes finis. In Théorie des graphes, journées internationales d’études. Dunod
(Paris), 1966.

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In EUROCRYPT’99. Springer, 1999.

[Ped91a] Torben P. Pedersen. A Threshold Cryptosystem without a Trusted Party (Extended
Abstract). In EUROCRYPT’91. Springer, 1991.

[Ped91b] Torben P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing. In CRYPTO’91. Springer, 1991.

[PG12] Jordi Puigalli and Sandra Guasch. Cast-as-Intended Verification in Norway. In
International Conference on Electronic Voting - EVOTE’12. GI, 2012.

[Pol60] Maurice Pollack. The Maximum Capacity through a Network. Operations Research,
8(5):733–736, 1960.

[PS96] David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes. In
EUROCRYPT’96. Springer, 1996.

[RCPT19] Kim Ramchen, Chris Culnane, Olivier Pereira, and Vanessa Teague. Universally
Verifiable MPC and IRV Ballot Counting. In Financial Cryptography and Data
Security - FC’19. Springer, 2019.

[RRI16] Peter Y. A. Ryan, Peter B. Rønne, and Vincenzo Iovino. Selene: Voting with
transparent verifiability and coercion-mitigation. In Financial Cryptography and
Data Security - FC’16 International Workshops, BITCOIN, VOTING, and WAHC.
Springer, 2016.

[RS62] J Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions
of prime numbers. Illinois Journal of Mathematics, 6(1):64–94, 1962.

[RS06] Peter Y. A. Ryan and Steve A. Schneider. Prêt à voter with re-encryption mixes.
In ESORICS’06. Springer, 2006.

[Rya05] Peter Y. A. Ryan. A variant of the chaum voter-verifiable scheme. In Workshop
on Issues in the Theory of in the Theory of Security - WITS’05. ACM, 2005.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal
Designated-Verifier Signatures. In ASIACRYPT’03. Springer, 2003.

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial
Identities. J. ACM, 27(4):701–717, 1980.

[Sch89] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In
CRYPTO’89. Springer, 1989.

[Sha71] Daniel Shanks. Class number, a theory of factorization and genera. Proc. symp.
Pure Math., 20:415 – 440, 1071.

277

Bibliography

[SHKS11] Michael Schläpfer, Rolf Haenni, Reto E. Koenig, and Oliver Spycher. Efficient Vote
Authorization in Coercion-Resistant Internet Voting. In E-Voting and Identity -
VoteID’11. Springer, 2011.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
EUROCRYPT’97. Springer, 1997.

[SK95] Kazue Sako and Joe Kilian. Receipt-Free Mix-Type Voting Scheme - A Practical
Solution to the Implementation of a Voting Booth. In EUROCRYPT’95. Springer,
1995.

[SKHS11] Oliver Spycher, Reto E. Koenig, Rolf Haenni, and Michael Schläpfer. A New Ap-
proach towards Coercion-Resistant Remote E-Voting in Linear Time. In Financial
Cryptography and Data Security - FC’11. Springer, 2011.

[SKHS12] Oliver Spycher, Reto E. Koenig, Rolf Haenni, and Michael Schläpfer. Achieving
Meaningful Efficiency in Coercion-Resistant, Verifiable Internet Voting. In Inter-
national Conference on Electronic Voting - EVOTE’12. GI, 2012.

[SKM03] Shahrokh Saeednia, Steve Kremer, and Olivier Markowitch. An Efficient Strong
Designated Verifier Signature Scheme. In Information Security and Cryptology -
ICISC’03. Springer, 2003.

[Smi07] Warren D. Smith. Three voting protocols: Threeballot, vav, and twin. In Electronic
Voting Technology Workshop - EVT’07. USENIX, 2007.

[sou22] Source code of prototype implementation of condorcet-schulze. Available at https:
//gitlab.inria.fr/gaudry/THproto, 2022.

[ST04] Berry Schoenmakers and Pim Tuyls. Practical Two-Party Computation Based on
the Conditional Gate. In ASIACRYPT’04. Springer, 2004.

[Swi] swisspost-evoting. https://gitlab.com/swisspost-evoting. Accessed: 11-04-
2023.

[Tid87] T Nicolaus Tideman. Independence of clones as a criterion for voting rules. Social
Choice and Welfare, 4(3):185–206, 1987.

[tre] Receipt-free trenc implementation. https://github.com/receiptfreevoting/
trenc_implem. Accessed: 17-04-2023.

[TW10] Björn Terelius and Douglas Wikström. Proofs of Restricted Shuffles. In Progress
in Cryptology - AFRICACRYPT’10. Springer, 2010.

[Ubu12] Ubuntu IRC council position. https://lists.ubuntu.com/archives/
ubuntu-irc/2012-May/001538.html, 2012. Accessed: 04/01/2022.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
Homomorphic Encryption over the Integers. In EUROCRYPT’10. Springer, 2010.

[Ver] Open Verificatum. https://www.verificatum.org/. Accessed: 07-02-2023.

[Vot23] Online votes make up two-thirds of Reform, less than third of EKRE votes.
news.err.ee, 2023. Accessed: 13-04-2023.

278

https://gitlab.inria.fr/gaudry/THproto
https://gitlab.inria.fr/gaudry/THproto
https://gitlab.com/swisspost-evoting
https://github.com/receiptfreevoting/trenc_implem
https://github.com/receiptfreevoting/trenc_implem
https://lists.ubuntu.com/archives/ubuntu-irc/2012-May/001538.html
https://lists.ubuntu.com/archives/ubuntu-irc/2012-May/001538.html
https://www.verificatum.org/
https://news.err.ee/1608906014/online-votes-make-up-two-thirds-of-reform-less-than-third-of-ekre-votes

[War62] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1),
1962.

[WB08] Roland Wen and Richard Buckland. Mix and Test Counting in Preferential Elec-
toral Systems. Technical report, University of New South Wales, 2008.

[Wik04] Douglas Wikström. A Universally Composable Mix-Net. In Theory of Cryptography
Conference - TCC’04, Lecture Notes in Computer Science. Springer, 2004.

[Wik05] Douglas Wikström. A Sender Verifiable Mix-Net and a New Proof of a Shuffle. In
Bimal K. Roy, editor, ASIACRYPT’05. Springer, 2005.

[Wik09] Douglas Wikström. A commitment-consistent proof of a shuffle. In Australasian
Conference on Information Security and Privacy - ACISP’09. Springer, 2009.

[Yao86] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets (Extended Ab-
stract). In Symposium on Foundations of Computer Science - FOCS’86. IEEE,
1986.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and
Algebraic Computation - EUROSAM’79. Springer, 1979.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two Halves Make a Whole - Re-
ducing Data Transfer in Garbled Circuits Using Half Gates. In EUROCRYPT’15,
Lecture Notes in Computer Science. Springer, 2015.

279

Bibliography

280

Résumé

Le vote est la base de toutes les démocraties : c’est la clef de voûte qui légitime les actions d’un
gouvernement, et il est décrit par Lyndon B. Johnson, le 58ème président des États-Unis, comme
« l’instrument le plus puissant jamais conçu par l’homme pour briser l’injustice ». Récemment, le
vote électronique est apparu comme un moyen d’améliorer les systèmes de vote existants. Tout
d’abord, le vote électronique peut permettre aux citoyens de voter par internet, qui est plus
accessible qu’un bureau de vote dépendant de la liste électorale. Cela pourrait représenter une
alternative intéressante au vote par correspondance ou par procuration, en particulier pour les
personnes expatriées, les handicapées et les étudiants. Deuxièmement, le vote électronique peut
être une alternative nécessaire en cas de confinement de longue durée, comme cela a été le cas
lors de la pandémie de COVID. Enfin, l’utilisation d’ordinateurs peut faciliter le décompte des
voix, et contribuer à limiter l’utilisation de bulletins de vote en papier, qui ont un impact négatif
sur l’environnement.

En raison de ces avantages, le vote par Internet a été utilisé pour des élections politiques
dans plusieurs pays, comme par exemple l’Australie, le Canada, la France, la Norvège et la
Suisse. D’autres formes de vote électronique, basées sur des machines à voter, ont été utilisées,
par exemple, au Bangladesh, au Brésil, en Namibie, en Nouvelle-Zélande, au Pakistan, en Corée
du Sud et aux États-Unis. L’exemple le plus remarquable est l’Estonie, où le vote par internet
est possible depuis 2005, et où la proportion de votants par internet est passée d’un faible
pourcentage à 51% en 2023 [ESWV22, Vot23]. D’autre part d’autre part, certains pays, tels
que l’Allemagne, l’Italie et le Royaume-Uni, ont interdit les machines à voter, estimant qu’elles
peuvent être sujettes à la fraude ou qu’un électeur doit comprendre toutes les étapes de son vote,
même sans connaissances techniques.

L’une des principales raisons de se méfier du vote électronique est le risque d’une attaque
informatique : en exploitant une vulnérabilité, un pirate peut être en mesure d’interrompre le
service, de récupérer les bulletins choisis par les électeurs ou de truquer le résultat de l’élection,
ce qui mettrait en péril la souveraineté du pays et remettrait en cause la légitimité des élus. C’est
pourquoi il est extrêmement important que le système de vote garantisse la confidentialité et la
vérifiabilité. Intuitivement, le secret du vote est atteint si personne ne peut connaître le choix
d’un électeur donné. Quant à vérifiabilité, elle est souvent décomposée en plusieurs propriétés,
à savoir la vérifiabilité individuelle, la vérifiabilité universelle et l’éligibilité. Informellement,
l’éligibilité stipule que seuls les personnes éligibles peuvent voter, et qu’au maximum un bulletin
est compté par personne. La vérifiabilité individuelle signifie qu’un votant est en mesure de
vérifier que le bulletin de vote a bien été déposé dans l’urne t qu’il contient bien l’option de
vote choisie (par exemple, le nom du candidat). Enfin, la vérifiabilité universelle indique que
n’importe qui peut vérifier que le résultat de l’élection est conforme à l’urne. Pour obtenir ces
propriétés, il est habituel de faire plusieurs hypothèses de confiance. Par exemple, dans le cas du
vote sur papier, on suppose que l’urne est sécurisée, de sorte que personne ne peut malicieusement
retirer ou ajouter des bulletins, ni consulter le contenu d’un bulletin spécifique. En outre, il est
généralement difficile de garantir plusieurs propriétés simultanément. Par exemple, déclarer que
Kim Jong-un est le vainqueur respecterait parfaitement le sevret du vote, puisque personne ne
donneraient aucune information sur ses préférences. Au contraire, le vote à main levée pourrait
garantir la vérifiabilité, mais pas le secret du vote.

281

En vote électronique, il existe plusieurs moyens d’assurer la confidentialité et la vérifiabilité.
En ce qui concerne la confidentialité, la principale stratégie consiste à chiffrer les bulletins de
vote. Ainsi, si le serveur est compromis, l’attaquant - également appelé adversaire - ne peut
récupérer que des données chiffrées, qui ne permettent pas de savoir quel électeur a choisi quel
candidat (ou, plus généralement, quelle option de vote). Pour la vérifiabilité universelle, la
principale primitive cryptographique est la preuve à divulgation nulle (on utilisera l’abréviation
ZKP, pour Zero Knowledge Proof), qui permet de prouver que le protocole de décompte, utilisé
pour calculer le résultat à partir des bulletins chiffrés, a été correctement exécuté. Comme son
nom l’indique, une ZKP ne révèle rien sur les secrets utilisés pour produire la preuve ; ainsi,
aucune information autre que le résultat n’est révélée, et le secret du vote est préservé.

Le chiffrement et les ZKP sont très courants en vote électronique ; cependant, des systèmes
tels que sElect [KMST16] ne s’appuient sur les ZKP pour la vérifiabilité, et les systèmes basés
sur des urnes au dépouillement autonome (e.g., [KY02]) ne s’appuient pas sur le chiffrement pour
le secret du vote. Des exemples de systèmes de vote académiques qui combinent chiffrement et
ZKP sont Adder [KKW06], Helios [Adi08, dMPQ09] et Belenios [CGG19], qui sont très similaires
dans leur conception. Cependant, il existe de nombreuses autres propositions. Par exemple, des
schémas tels que D-Demos [CZZ+16] et BeleniosVS [CFL19] peuvent garantir la confidential-
ité, même contre un appareil de vote malicieux ; et des systèmes tels que [CPP13] permettent
d’obtenir un secret du vote intemporel (voir [HMMP23] pour une étude sur le sujet). D’autres
systèmes, tels que le Prêt-à-Voter [Rya05, RS06], ThreeBallot [Smi07] et Scantegrity [CEC+08],
se concentrent sur le vote papier. Lorsque du vote papier est utilisé, le résultat peut être calculé
à partir des bulletins physiques ou électroniques ; des exemples de systèmes qui comptent les
bulletins électroniques sont STAR-Vote [BBE+13] et Bingo Voting [BMR07]. L’intérêt de dis-
poser à la fois de bulletins électroniques et de bulletins papier est qu’une technique connue sous
le nom de audit de limitation des risques [LS12] peut être utilisée pour réduire le risque d’erreur
ou de manipulation.

Bien que le secret du vote et la vérifiabilité universelle soient deux exigences fondamentales
en matière de sécurité dans le cadre du vote électronique, elles ne sont pas ne sont pas considérées
comme suffisantes pour des élections à fort enjeu. Une première difficulté est liée à la vérifiabilité
individuelle : étant donné que les bulletins de vote publiés dans l’urne sont chiffrés, il est difficile
pour les électeurs de savoir si leur bulletin contient effectivement l’option de vote souhaitée.
Cela peut poser un problème, par exemple si l’appareil de vote est compromis par un logiciel
malveillant. Pour pallier cette éventualité, il existe plusieurs stratégies permettant d’assurer une
propriété appelée cast-as-intended verification. Une approche populaire est basée sur les codes
de retour : chaque option de vote est associée à un code secret, qui est unique pour chaque
électeur. À un moment donné après la phase de vote, l’électeur reçoit un code de retour calculé
à partir du bulletin chiffré, et le compare au code attendu. Si les codes correspondent, l’électeur
est convaincu que le contenu fu bulletin chiffré n’a pas été modifié. C’est l’approche adoptée, par
exemple, par [HRT10] et CHVote [HKLD17]. Les codes de retour ont notamment été utilisés en
Norvège [Gjø11, PG12] et en Suisse [GGP15], où le vote par internet a été autorisé de 2003 à
2019 et reprendra en juin 2023.

En dehors des codes de retour, une autre stratégie populaire est le défi de Benaloh [Ben06],
qui est utilisé dans Helios. Une alternative récente au est proposée dans Themis [BCC+22].
En Estonie, cependant, la vérification est effectuée grâce à un serveur tiers, que l’électeur peut
interroger à l’aide d’un reçu cryptographique [HW14]. Il existe d’autres approches ; par exemple,
Selene [RRI16] est basée sur des données de suivi. Pour une comparaison et une catégorisation
plus exhaustive, voir [MZR+21].

282

Vote sans reçu et résistance à la coercition

Outre la vérification de l’intention de vote, une deuxième difficulté, liée au secret du vote, est
le risque de l’achat de vote. En effet, dans un système de vote classique tel qu’Helios, l’électeur
produit un bulletin chiffré qui contient son choix. Or, en utilisant un algorithme de vote ad hoc,
l’électeur peut produire un bulletin dont il connaît l’aléatoire utilisé pour le chiffrement. Cet aléa
peut être utilisé comme reçu pour convaincre un acheteur de vote que le bulletin chiffre un choix
spécifique. Pour tenir compte de cette menace, la notion de vote sans reçu (receipt-freeness) a
été proposée [BT94].

Il existe plusieurs notions de receipt-freeness dans la littérature. Intuitivement, un système
de vote est sans reçu si l’électeur ne peut pas convaincre un tiers qu’il a voté d’une certaine
manière, même s’il est prêt à renoncer au secret du vote ou s’il suit un certain jeu d’instructions.
Pour parvenir à l’absence de reçu tout en préservant la vérifiabilité, il existe deux approches
principales. Tout d’abord, le paradigme du revote silencieux (deniable revoting) consiste à
permettre aux électeurs de revoter. Lors d’un revote, le vote précédent est annulé, mais un
observateur externe n’est pas en mesure de dire si un bulletin donné est annulé ou non. Ainsi,
même si l’électeur prouve qu’il a voté d’une manière spécifique, l’acheteur du vote n’aurait aucune
garantie que le vote n’a pas été annulé par un revote. Des exemples basés sur ce paradigme sont,
par exemple, [LHK16] et VoteAgain [LQT20].

Une autre approche est basée sur le rechiffrement, où les électeurs ne peuvent pas directement
déposer leur bulletin dans l’urne publique. Au lieu de cela, le bulletin est envoyé à un serveur
de rechiffrement, auquel on fait confiance pour ce qui concerne la receipt-freeness. Le serveur
rechiffre le bulletin de manière à ce qu’il devienne indistinguable d’un bulletin aléatoire. Ainsi,
même si le bulletin a été créé de manière malveillante par l’électeur (ou s’il a été donné par
l’acheteur du vote), il n’est plus possible de savoir si le bulletin rechiffré contient l’option de
vote voulue. Néanmoins, la vérifiabilité individuelle est toujours assurée, ce qui signifie que le
votant a la garantie que le contenu de son bulletin n’a pas été modifié. Afin que cette garantie
ne puisse être transmise à l’acheteur de vote, [Hir10] propose d’utiliser des ZKP à vérifieur
désigné (DVZKP) [JJ00], qui ne peuvent convaincre que le votant. Cependant, l’utilisation
des DVZKP nécessite une mise en place qui soulève des problèmes pratiques. Plus tard, la
nécessité de DVZKP a été levée grâce aux couplages bilinéaires, qui introduisent la possibilité
de rechiffrer des signatures [BFPV11]. L’idée a été développée dans BeleniosRF [CCFG16], qui
fournit également une définition moderne de l’absence de reçu.

Une menace liée à l’achat de vote est celle de la coercition. Un attaquant, le coerciteur,
demande à un électeur de voter d’une manière spécifique, en utilisant une menace ou une ré-
compense. Par rapport à l’absence de reçu, la résistance à la coercition suppose un adversaire
plus fort, qui peut être actif pendant la phase de vote et demander au votant de lui donner son
matériel de vote pour pouvoir voter à sa place. Lorsqu’une solution de vote électronique est util-
isée sans contre-mesure contre la coercition, le coerciteur peut contraindre un plus grand nombre
d’électeurs ou s’assurer - grâce au mécanisme de vérifiabilité - que les électeurs contraints ont
bien obéi. En Estonie, le principal moyen d’atténuer la coercition est de permettre aux électeurs
de revoter, afin qu’ils puissent d’abord obéir au coerciteur et ensuite revoter avec l’option de
vote souhaitée, lorsqu’ils disposent d’un moment d’intimité. Bien que le revote soit une contre-
mesure intuitive contre la coercition, cela suppose que l’électeur est capable de revoter après le
coerciteur, ce qui n’est pas nécessairement justifié car ce dernier peut attendre le dernier moment
pour voter. En outre, si le coerciteur demande à l’électeur son matériel de vote, ce dernier ne
peut pas savoir quand le coerciteur va l’utiliser.

La principale solution académique pour prévenir la coercition est le protocole JCJ, proposé

283

dans [JCJ05], qui formalise également la notion de résistance à la coercition. L’idée est qu’un
électeur est capable de donner un faux matériel de vote au coerciteur. Ce dernier peut émettre
un bulletin de vote avec le matériel donné, et le bulletin sera ajouté à l’urne indépendamment
de la validité du matériel de vote utilisé. Cependant, les bulletins de vote émis avec un mauvais
matériel de vote sont retirés après la phase de vote. La principale propriété de sécurité du
protocole JCJ est que le coerciteur n’est pas en mesure de distinguer un vrai matériel de vote
d’un faux, ou de dire si un bulletin de vote donné a été retiré ou non. Dans la littérature, de
nombreux schémas ultérieurs ont été basés sur le paradigme du faux matériel de vote, et peuvent
être considérés comme des itérations permettant d’améliorer certains points du protocole JCJ.
L’exemple le plus connu est Civitas [CCM08], qui propose une phase d’enregistrement explicite.
D’autres contributions, par exemple, se sont concentrées sur l’amélioration de la gestion du
matériel de vote [CH11, NV12]. Enfin, de nombreuses propositions visent à améliorer l’efficacité
du protocole : voir, par exemple, les schémas de Spycher et al. [SKHS11, SHKS11, SKHS12] et
les schémas d’Araújo et al. [AFT08, ARR+10, AT13, ABBT16].

La prévention des attaques à l’italienne

Une menace majeure qui n’est pas prise en compte dans la résistance à la coercition ou dans
l’absence de reçu est celle des attaques à l’italienne, qui sont basées sur les informations disponibles
dans le résultat du décompte. En effet, l’une des principales stratégies pour déterminer le résultat
de l’élection à partir des bulletins chiffrés consiste à utiliser un mixnet [Cha81], qui révèle la liste
de toutes les options de vote choisies par les électeurs, mais dans un ordre aléatoire. En général,
cela donne plus d’informations que le simple résultat (typiquement, le nom du ou des vainqueurs,
le nombre de bulletins dépouillés et le nombre de bulletins exprimés), et ces informations peuvent
être utilisées par un coerciteur pour décider si un votant placé sous la contrainte a obéi ou non.
Par exemple, dans le cas du vote préférentiel, un choix peut être n’importe quelle permutation
des candidats, de sorte qu’il peut y avoir beaucoup plus de choix possibles qu’il n’y a d’électeurs.
En Australie, les élections législatives de 2019 en Nouvelle-Galles du Sud, qui ont utilisé un
système de vote préférentiel connu sous le nom de vote unique transférable (STV), ont compté
plusieurs centaines de candidats [NSW19]. Dans une telle situation, il est possible de demander
à l’électeur de classer d’abord le candidat préféré du coerciteur, puis d’utiliser une permutation
très spécifique et improbable des autres candidats, par exemple en alternant plusieurs partis
opposés. Si l’électeur n’obéit pas, il est fort probable que personne d’autre ne soumettra un tel
bulletin, si bien que le coerciteur pourra déduire, en observant le résultat du décompte où toutes
les permutations choisies sont révélées, que le votant a désobéi. De cette manière, le coerciteur
peut contraindre un grand nombre d’électeurs et savoir exactement lesquels ont obéi.

Il n’existe pas beaucoup de contre-mesures contre les attaques italiennes dans la littéra-
ture ; l’approche la plus prometteuse repose sur le tally-hiding. Dans un système partiellement
tally-hiding, le protocole de dépouillement fuite certaines informations supplémentaires, mais pas
nécessairement toutes les options de vote choisies par les électeurs. Dans [RCPT19], un protocole
MPC est proposé afin de dépouiller un système de vote nommé IRV (un cas spécifique de STV
où il n’y a qu’un seul vainqueur) est proposé. Ce protocole permet de calculer un décompte
IRV sans révéler toutes les permutations choisies par les électeurs. Cependant, il révèle cer-
taines informations sur le déroulement du protocole. Pour les méthodes de Condorcet, qui sont
plusieurs méthodes de comptage s’appliquant au vote préférentiel respectant un critère introduit
par Condorcet [Con85], la principale stratégie consiste à représenter le choix d’un électeur sous
la forme d’une matrice, de sorte que les bulletins peuvent être additionnés. C’est, par exemple,
l’approche proposée dans [HPT19]. Un autre exemple qui utilise une forme de tally-hiding par-

284

tielle est Shuffle-sum [BMN+09], qui vise à atténuer le risque d’une attaque italienne dans STV
en cachant les informations les plus cruciales.

Dans Kryvos [HKK+22], une solution basée sur le tally-hiding public est proposée. L’idée est
que le public n’a accès qu’au résultat de l’élection, tandis que les dépouilleurs apprennent plus
d’informations. Le principal problème de cette approche est qu’elle ne protège pas les électeurs
contre une coercition de la part d’un dépouilleur.

Il est également possible de concevoir un protocole complètement tally hiding. C’est ce qui a
été fait, par exemple, dans [CPST18] ; toutefois, cette solution a été proposée pour le jugement
majoritaire, pour lequel il est possible d’utiliser un décompte homomorphe, de sorte que le
risque d’une attaque à l’italienne est faible. Parallèlement à cette thèse, le travail indépendant
d’Ordinos [KLM+20] a été proposé pour réaliser un tally hiding complet. Ordinos a été étendu
dans [HHK+21] pour couvrir diverses fonctions de comptage, y compris certaines variantes de la
méthode de Condorcet. La solution proposée par Ordinos est coûteuse pour l’électeur et ne lui
permet pas de classer plusieurs candidats à égalité, ce qui est restrictif dans le contexte du vote
de Condorcet. Dans les deux propositions, la solution proposée repose sur le calcul multi-partie
(MPC) basé sur le schéma de chiffrement de Paillier, qui, comparé au plus populaire chiffrement
d’ElGamal, a la propriété d’être additivement homomorphe. Cependant, le chiffrement de Paillier
nécissite une longueur de la clef beaucoup plus importante, de sorte que le calcul d’un chiffrement
est plus coûteux que pour le chiffrement d’ElGamal. Par rapport à une solution de type Helios,
le coût du chiffrement d’un bulletin peut être supérieur de plusieurs ordres de grandeur lorsque
l’on utilise le chiffrement de Paillier, ce qui soulève des questions pratiques. En outre, comme
le système de chiffrement de Paillier n’est pas aussi largement utilisé que celui d’ElGamal, il
n’existe pas de bibliothèque aussi bien étudiée et largement déployée. Cela est d’autant plus
préjudiciable en vote électronique que nous avons besoin de deux bibliothèques, l’une du côté du
serveur et l’autre du côté de l’électeur.

Les preuves de sécurité

L’utilisation de primitives cryptographiques bien étudiées, telles que le chiffrement et le ZKP,
ne suffit pas à garantir la sécurité d’un protocole. Idéalement, ce dernier devrait être analysé à
plusieurs niveaux d’abstraction. Premièrement, les concepteurs du protocole devraient fournir
une preuve de sécurité cryptographique (ou formelle) ; ensuite, la spécification du protocole de-
vrait faire l’objet d’un audit pour s’assurer qu’il n’y a pas de vulnérabilités ; enfin, l’implémentation
devrait également être auditée, par exemple dans le cadre d’un programme de prime aux bogues.
Pour que ces preuves et ces audits soient significatifs, la communauté académique recommande
que les spécifications du protocole soient publiques, afin que l’ensemble de la communauté puisse
l’analyser. En Suisse, l’audit public du système de vote de La Poste Suisse, dont les spécifica-
tions sont disponibles à [Swi], a permis de détecter certaines vulnérabilités avant la publication,
comme décrit dans [HLPT20] et [CDG22]. En revanche, il a été révélé que le système de vote
utilisé en Australie présentait certains problèmes de sécurité [HT15], de même que celui utilisé
en France [DH22]. Ces problèmes auraient pu être évités si la communauté du vote électronique
avait eu l’occasion d’auditer ces systèmes avant leur déploiement. Ces échecs montrent qu’il
n’est pas facile de concevoir un système de vote électronique sécurisé, et encore moins d’évaluer
sa sécurité. C’est pourquoi il est habituel de fournir une preuve calculatoire ou formelle que les
propriétés souhaitées sont vérifiées.

Dans une preuve calculatoire, l’adversaire est modélisé comme une machine de Turing, qui a
une puissance de calcul limitée (polynomiale) mais qui peut effectuer des calculs arbitraires. La
principale stratégie consiste à présenter une réduction polynomiale d’un problème connu, tel que

285

la factorisation des entiers ou le problème du logarithme discret. En d’autres termes, une preuve
cryptographique est une preuve mathématique qui stipule que, si une propriété de sécurité est
violée, il existe une machine de Turing explicite polynomiale (c’est-à-dire un algorithme efficace)
qui résout un problème calculatoire considéré comme difficile. Pour un problème bien étudié tel
que le logarithme discret, cela signifie que la propriété de sécurité est vérifiée.

Dans une preuve formelle, un modèle mathématique et symbolique est conçu pour représenter
le protocole et la propriété de sécurité souhaitée. souhaitée. Dans un tel modèle, les primitives
cryptographiques utilisées, ainsi que les actions possibles que l’adversaire peut effectuer, sont
idéalisées, par exemple à l’aide de règles de réécriture ou de théories équationnelles. Une fois le
modèle créé, la preuve proprement dite consiste à démontrer que la propriété de sécurité peut
ou ne peut pas être violée. Généralement, une preuve formelle est obtenue grâce à un outil
entièrement automatique ou interactif basé sur des techniques de déduction. Par rapport à une
preuve calculatoire qui repose sur une hypothèse de calcul bien étudiée, une preuve formelle
suppose que la cryptographie est parfaite et ne peut être violée. Cependant, elle peut couvrir
plus de scénarios d’attaque.

Avant de fournir une preuve, une étape clef consiste à modéliser les propriétés de sécurité
souhaitées et à en donner une définition formelle. Or, les définitions des notions de sécurité
dans le domaine du vote électronique ne sont pas stabilisées. Par exemple, l’une des premières
définitions pour le secret du vote a été donnée par Benaloh [Ben87], et a été utilisée ou étendue
dans divers travaux ultérieurs (e.g., [KZZ15, CL18]). Cependant, cette définition comporte
plusieurs limites, de sorte que d’autres définitions ont été proposées. En particulier, la notion de
ballot privacy [BCP+11, BPW12] a convergé vers la définition BPRIV, donnée dans [BCG+15b].
Cette définition a été étendue dans [CLW20], pour modéliser modéliser la présence d’une urne
malveillante.

Pour la receipt-freeness, deux définitions modernes peuvent être trouvées dans [CCFG16]
et [KZZ15]. Par rapport à la définition de Kiayias et al., la définition de Chaidos et al. ne tient
pas compte du mécanisme de vérifiabilité individuel. Cependant, la définition de Kiayias et al.
ne prend pas en compte le fait que le votant peut construire son bulletin de manière malveillante,
ce qui est restrictif. Dans [DPP22b], une version modifiée de la définition de Chaidos et al. a été
proposée, où le protocole d’inscription n’est plus pertinent. Cela a été fait dans le but d’atteindre
l’absence de reçu (presque) indépendamment du reste du protocole, ce qui permet une analyse
de sécurité plus modulaire et rend le système de vote plus adaptable.

Pour la résistance à la coercition, la principale définition académique est celle de [JCJ05],
qui reste une référence sur le sujet. Intuitivement, cette définition compare un jeu réel à un
jeu idéal : dans le jeu réel, l’adversaire observe le protocole réel ; dans le jeu idéal, l’adversaire
n’a pas d’autres informations que celles contenues dans le résultat final ; dans les deux jeux, le
but de l’adversaire est de deviner si le votant a obéi ou non. Cette comparaison est faite car,
en observant le résultat, on peut obtenir des informations sur le choix de l’électeur soumis à la
contrainte : c’est l’idée qui sous-tend les attaques à l’italienne. Dans [HS19], on remarque que
la définition de JCJ est défectueuse et ne peut pas être réalisée par un système de vote avec une
urne publique. La raison principale est que le jeu idéal ne fournit aucune information sur l’urne.
Par conséquent, en observant la taille de l’urne dans le jeu réel et en la comparant au résultat
de l’élection (qui indique le nombre de bulletins dépouillés), on peut inférer si le bulletin soumis
avec le matériel de vote du votant a été retiré ou non. Pour corriger ce défaut, [HS19] propose
de modifier le jeu idéal et d’ajouter l’information sur la taille de l’urne. Cependant, la définition
qui résulte reste incomplète, car elle ne prend pas en compte les revotes.

En effet, dans le contexte de la résistance à la coercition, il est naturel de permettre le revote,
qui peut constituer une première contre-mesure face aux influences implicites d’un membre de la

286

famille ou d’un employeur. Supposons, par exemple, qu’une petite-fille explique à son grand-père
comment voter en ligne. Pour ce faire, elle lui demande de s’identifier à la plateforme de vote et
de procéder étape par étape, tandis qu’elle reste derrière lui pour clarifier chaque étape. Dans
ce scénario, le grand-père peut se sentir obligé de choisir le parti démocratique alors qu’il aurait
préféré choisir le parti républicain. Lorsque le revote est autorisé, le grand-père peut choisir
n’importe quel candidat (ou même le candidat suggéré par la petite-fille). Par la suite, lorsque
la petite-fille n’est plus là, il peut revoter avec son choix personnel. Autre exemple : un employé
est encouragé à voter au travail, en utilisant un appareil qui peut être surveillé par l’employeur.
Pour éviter tout conflit, le votant peut être tenté de voter dans un premier temps pour le parti
conservateur, puis revoter pour le parti travailliste lorsqu’il est chez lui. Il est donc important
que les définitions de la résistance à la coercition prennent en compte le revote.

Nos contributions

1. Nous proposons une boîte à outils MPC basée sur le schéma de chiffrement ElGamal, qui
peut être utilisé pour réaliser un tally hiding complet.

Notre boîte à outils, présentée au chapitre 5, est basée sur la primitive de porte condition-
nelle [ST04]. Elle offre une alternative intéressante au cadre de Paillier, qui permet notamment
de diminuer les coûts du côté du votant sans trop détériorer la compléxité du côté du serveur.
Cette boîte à outils fournit de nombreux protocoles MPC pour réaliser diverses opérations sur
des données cryptées, telles que des opérations arithmétiques et des comparaisons, mais aussi
des opérations plus complexes comme celles liées au tri. De plus, nous proposons plusieurs com-
promis entre le coût calculatoire et le nombre de communications, qui peuvent être déployés
pour atténuer le fait que le chiffrement d’ElGamal nécessite plus de communications. Dans le
chapitre 6, nous appliquons notre boîte à outils pour concevoir un protocole complètement tally
hiding pour les méthodes de Condorcet-Schulze, STV, le jugement majoritaire et la méthode
D’Hondt. Dans le cas de la méthode de Condorcet, nous avons découvert une violation de la vie
privée dans la solution de [HS19], qui se produit lorsqu’un électeur donne le même rang à deux
candidats.

Dans la section 6.1.2, nous proposons une nouvelle façon pour l’électeur de soumettre un
bulletin de vote pour le vote de Condorcet, qui permet le vote blanc et est compatible avec le
dépouillement homomorphique. Pour le jugement majoritaire, nous avons remarqué un défaut
dans la solution proposée dans [CPST18], qui utilise une heuristique connue sous le nom de major-
ity gauge. En effet, cette heuristique ne garantit pas de produire systématiquement un résultat.
Enfin, nous avons également découvert un problème avec la solution proposée dans [KLM+20],
qui a été conçue pour révéler les noms des s candidats ayant reçu le plus de votes, où s est un
paramètre quelconque (par exemple, le nombre de sièges). En effet, en cas d’égalité, il est possi-
ble que leur solution produise en fait plus de s gagnants. Nous proposons un moyen non intrusif
d’inclure un mécanisme de départage dans la solution proposée par Ordinos ; cela préserve la
propriété de tally hiding et ne détériore pas l’efficacité.

Nous prouvons la sécurité de notre boîte à outils dans le cadre de sécurité de [CCL15],
qui est une variante plus simple du cadredriciel universellement composable de [Can01] (en
bref, nous utilisons l’abréviation SUC pour désigner ce cadriciel). Pour ce faire, nous avons
modifié le protocole de la porte conditionnelle et prouvé sa sécurité SUC du protocole modifié
en Section 4.4. Comme le cadre SUC fournit un théorème de composition, la sécurité SUC de la
primitive principale peut être utilisée pour prouver les propriétés de sécurité souhaitées, telles
que la confidentialité et la vérifiabilité, ce qui est fait dans la section 6.6.

287

2. Nous dévoilons une fuite dans le schéma JCJ qui peut compromettre sa résistance à la
coercition lorsque le revote est autorisé.

Lorsque le revote est autorisé, nous avons découvert que les informations supplémentaires
révélées pendant la phase de décompte du protocole JCJ peuvent être exploitées par le coerci-
teur pour déduire le comportement de l’électeur soumis à la contrainte, en utilisant l’inférence
bayésienne. Plus précisément, nous avons identifié la nature exacte de la fuite dans le protocole
JCJ : Par rapport au pur résultat de l’élection, qui contiendrait des informations sur le nombre
total de bulletins retirés, le protocole JCJ divulgue le nombre de votants ayant revoté k fois,
pour tout k ≥ 1, ainsi que le nombre de bulletins qui utilisent un matériel de vote invalide. Pour
évaluer l’impact de cette fuite d’informations, nous avons utilisé le cadre formel de [KTV10a] qui
donne une définition quantitative de la résistance à la coercition. Dans ce cadre, il est possible
de comparer le niveau de coercition du protocole réel à celui du protocole idéal, qui ne souffrirait
d’aucune fuite. En utilisant ce cadre, nous proposons plusieurs scénarios réalistes où la différence
entre les niveaux de coercition (idéal et réel) n’est pas négligeable.

L’une des raisons pour lesquelles le défaut du protocole JCJ n’a pas été remarqué jusqu’à
présent est peut-être que la définition de JCJ ne tient pas en compte du revote. En outre, on sait
que, dans un système de type JCJ, un nombre imprévisible de bulletins doit être retiré pendant
le décompte. Autrement, le coerciteur s’apercevrait que le bulletin déposé avec le matériel de
vote fourni par l’électeur a été retiré. C’est pourquoi il est nécessaire de modéliser la présence
de bulletins utilisant un matériel de vote invalide, mais qui ne sont pas des bulletins soumis
par le coerciteur : ils sont appelés bulletins fictifs. Dans la définition JCJ, ces bulletins sont
censés provenir des électeurs honnêtes, qui doivent pour cela sacrifier leur propre vote. Cette
modélisation n’est pas réaliste et ne permet pas d’envisager une situation où des bulletins fictifs
supplémentaires seraient déposés, par exemple par une tierse partie qui n’est pas un votant
éligible. Pour ces raisons, nous avons conçu une nouvelle définition de la résistance à la coercition,
qui tient mieux compte de la présence de bulletins fictifs et de la possibilité de revoter.

Comme le protocole JCJ ne vérifie pas notre définition de la résistance à la coercition, nous
proposons CHide, une variante du protocole JCJ qui utilise la boîte à outils afin d’empêcher la
fuite présente dans le schéma JCJ. Ceci est fait dans le chapitre 8, et montre que notre définition
de résistance à la coercition peut être satisfaite en pratique. Pour rendre le protocole pratique
pour des paramètres réalistes, nous avons conçu une nouvelle phase de nettoyage qui s’appuie
sur le tri, et qui et qui est plus robuste vis-à-vis du nombre de bulletins soumis. Nous prouvons
que la confidentialité, la vérifiabilité et la résistance à la coercition sont atteintes par CHide sous
les mêmes hypothèses de confiance que JCJ.

3. Nous étudions la notion d’absence de reçu et proposons une solution qui peut constituer
un premier pas pratique vers la résistance à la coercition.

En collaboration avec Henri Devillez, Olivier Pereira et Thomas Peters, nous proposons une
nouvelle définition de la notion de receipt-freeness qui ne fait aucune hypothèse sur la phase
d’enregistrement ou le mécanisme d’éligibilité. Par rapport à la définition de [KZZ15], notre
définition prend en compte le fait que l’électeur peut utiliser n’importe quel algorithme pour
produire son bulletin de vote, y compris un algorithme qui peut être fourni par l’acheteur de
votes. Par rapport à la définition de [CCFG16], notre définition permet à l’adversaire de donner
une instruction quelconque à l’électeur, et pas seulement un bulletin chiffré. En outre, elle tient
compte du fait que l’électeur peut se voir remettre un reçu pendant la phase de vote, en raison
du mécanisme de vérifiabilité individuelle. Dans l’ensemble, notre définition de l’absence de reçu

288

est plus proche de l’intuition de l’achat de votes, et la réalisation de cette définition peut être
un premier pas vers la résistance à la coercition. En outre, sur la base des travaux antérieurs
de [DPP22b], nous proposons une stratégie modulaire qui permet de construire un système de
vote sans reçu, en fournissant un ensemble de conditions faciles à vérifier concernant le schéma
de chiffrement, le protocole de comptage et la phase de vote.

Cela rend la réalisation de l’absence de reçu plus modulaire et plus indépendante des spéci-
ficités du protocole. Nous fournissons également un nouveau schéma de chiffrement qui satisfait
aux propriétés requises par notre stratégie, de sorte qu’il peut être instancié. Par rapport au
schéma proposé dans [DPP22b], ce nouveau schéma supporte les preuves 0/1 (c’est-à-dire qu’il
est possible de prouver que le bulletin de vote chiffre un message d’une forme spécifique), ce qui
est extrêmement intéressant dans le contexte du vote électronique. En outre, la génération des
paramètres nécessaires à ce schéma de chiffrement peut être faite à l’aide d’aléa publiques, ce
qui signifie que nous avons besoin de moins d’hypothèses de confiance. Enfin, par rapport au
schéma proposé dans [CCFG16], le nôtre n’est pas limité au chiffrement de petites chaînes de
bits.

289

290

	Couverture
	Remerciements
	Contents
	Introduction
	Part I Preliminaries
	Security in electronic voting
	The fundamental notions of electronic voting
	The generic structure of electronic voting protocols
	Formalization and notations
	The Helios voting protocol
	Classical attacks in electronic voting

	Addressing verifiability
	Step by step verification
	End-to-end verifiability

	Four notions of privacy
	Vote swapping and Benaloh privacy
	Ballot privacy and ideal tally
	A quantitative definition of privacy
	Our approach: comparing a real and an ideal process
	Encountering a new definition: the survival manual

	Cryptography in electronic voting
	Computational assumptions in electronic voting
	Algebraic notations for cryptography
	The decisional Diffie-Hellman assumption
	The random oracle model

	Encrypting a ballot to preserve privacy
	Public key encryption
	The ElGamal encryption scheme
	Threshold cryptography
	The Paillier encryption scheme

	Zero Knowledge Proofs in electronic voting
	Introduction to Zero Knwoledge Proofs
	Generalization
	Proof of partial knowledge
	Non-interactive proofs
	Short proofs and what they can really do

	The most commonly used ZKP
	A basic example: proving the validity of a ballot
	Proof of correct decryption
	Mixnets and their applications
	Plaintext Equivalence Tests
	Designated Verifier Zero Knowledge Proofs
	Cryptographic signatures derived from PoK

	Security proofs in electronic voting
	Cryptographic reductions and game hops
	Game hops
	The hybrid lemma

	Known results in the random oracle model
	Extracting a witness from a proof of knowledge
	Good practices for non-interactive proofs

	Universally composable security
	Presentation of the framework
	The composition theorem
	Programmable random oracle model
	An illustrative example: synchronous broadcast

	Part II Secure Tally-Hiding
	Multi-party computation for electronic voting
	Three popular approaches for multi-party computation
	Garbled circuits
	Linear secret sharing schemes
	Fully homomorphic encryption

	The arithmetic blackbox for Paillier encrypted integers
	MPC from threshold homomorphic encryption
	Known MPC protocols in the ABB framework
	Range proofs for Paillier-encrypted integers
	Comparing two Paillier encrypted integers

	The conditional gate protocol in the ElGamal setting
	Presentation of the protocol
	Universal verifiability
	Comparison with the multiplication protocol

	Security of the conditional gate in the SUC framework
	Proof strategy for the conditional gate
	The rerandomization
	The threshold decryption
	The round of communications
	The conditional gate protocol is SUC-secure

	A toolbox for verifiable tally-hiding
	The basic primitives of the MPC toolbox
	Logical operations on encrypted data
	Application to elementary arithmetic
	Comparisons and tie breaking

	Advanced algorithms
	Multiplication and division
	Solving ordering related problems
	Aggregation of several encrypted binary values
	Different communication/computation trade-offs

	Comparison with other approaches
	Comparison with Ordinos
	Public tally hiding

	Application of the toolbox to electronic voting
	Homomorphic tally for the Condorcet methods
	Existing approaches for Condorcet methods
	A new proof of well-formedness for homomorphic ranked voting

	A tally-hiding protocol for Condorcet-Schulze
	The Schulze method
	Ballots as lists of integers
	Obtaining the adjacency matrix from the encrypted ballot
	Computing the result from the encrypted adjacency matrix
	Condorcet-Schulze, the bottom-line
	Comparison with Ordinos
	Implementation
	A possible adaptation for the ranked pairs variant

	A solution for single transferable vote
	Existing solutions for STV in electronic voting
	Choosing one version of STV
	Ballots as lists of candidates
	A tally-hiding protocol for academic STV
	Complexity analysis

	Majority Judgment
	Existing approaches for computing the Majority Judgment
	A new algorithm for cleartext Majority Judgment
	Adaptation to the Paillier setting
	An adaptation to the ElGamal setting
	Comparison with CPST18

	Single choice voting
	Basic single choice voting
	List voting: computing the D'Hondt method in MPC

	Security of the toolbox in the context of electronic voting
	Universal verifiability
	Privacy

	Lessons learned

	Part III Coercion resistance
	Is the JCJ voting system really coercion-resistant?
	The JCJ family
	Presentation of the JCJ protocol
	Some variants of the JCJ voting system

	Unveiling a shortcoming in JCJ
	Leakage in case of revoting

	The impact on coercion-resistance
	Quantifying coercion-resistance
	The technical incident scenario
	A discredit in the press

	Defining coercion-resistance
	The original definition of JCJ
	Our definition of coercion-resistance

	A description of the leakage in JCJ
	Generalization

	Discussion

	CHide: a cleansing-hiding variant of JCJ
	Description of the protocol
	Efficiency considerations

	Security proofs for CHide
	Proof of coercion-resistance
	Proof of verifiability

	Conclusion

	Traceable encryption for verifiable receipt-free electronic voting
	Our definition of receipt-freeness
	Existing definitions
	Modeling vote buying

	Introduction to traceable encryptions
	Definition
	Security notions for verifiable receipt-free voting

	Building blocks
	Bilinear pairings
	Linearly Homomorphic Structure-Preserving Signatures
	The Groth-Sahai proof system

	Construction of a traceable encryption scheme
	Security proofs for our traceable encryption scheme
	Verifiability
	Traceability
	TCCA security

	Application to verifiable receipt-free electronic voting
	A voting scheme based on a traceable encryption
	Implementation
	Receipt-freeness

	Adapting the scheme to provide cast-as-intended verification
	Adapting our scheme for the Benaloh challenge
	On the fly cast-as-intended verification

	Conclusion

	Conclusion
	Appendices
	ZK-TCPA security of the ElGamal threshold encryption scheme
	The hybrid argument
	Proof of correctness for the Majority Judgment algorithm
	Computing the coercion levels
	The coercion level in the ideal game
	Modeling the real game
	Quantifying the coercion level in some specific cases
	The impact of the parameters

	Proof of privacy for CHide

	Bibliography
	Résumé
	Résumé

