Je remercie Isabelle pour ses desserts.

Un grand merci à toute l'équipe de la cantine : c'est vous qui faites du laboratoire un endroit si spécial.

Merci aussi à mes co-bureaux, qui ont su m'accompagner dans la folie. Certains se disent insupportables, pourtant j'ai savouré leur présence.

Introduction

Voting is the basis of all democracies: it is the keystone that legitimates the actions of a government, and is described by Lyndon B. Johnson, the 58th president of the USA, as the "most powerful instrument ever devised by man for breaking down injustice". Recently, electronic voting arose as a way to improve the existing voting systems. First, electronic voting may allow people to vote through the Internet, which is more accessible than a designated polling station determined by the electoral list. This could represent an interesting alternative to postal or proxy voting, especially for the expatriates, the disabled and the students. Second, electronic voting may be a necessary alternative in case of a long-term lock-down, as seen during the COVID pandemic. Finally, the use of computers can facilitate the act of counting votes and computing the result, and help to limit the usage of paper ballots, which have a negative impact on the environment. Because of these advantages, Internet voting has been used for politically-binding elections in several countries, such as Australia, Canada, France, Norway and Switzerland. Other forms of electronic voting, based on voting machines, were used, for instance, in Bangladesh, Brazil, Namibia, New Zealand, Pakistan, South Korea and the USA. The most notable example for the deployment of Internet voting is Estonia, where voters can vote through the Internet since 2005, and where the proportion of the Internet voters grew from a small percentage to 51% in 2023 [START_REF] Ehin | Internet voting in Estonia 2005-2019: Evidence from eleven elections[END_REF][START_REF]Online votes make up two-thirds of Reform, less than third of EKRE votes[END_REF]. On the other hand, some countries, such as Germany, Italy and the UK, have banned voting machines, considering that they are susceptible to fraud or that a voter must fully understand all the steps that their ballots go through, even if they do not have any technical background.

One of the main reasons to be reluctant about electronic voting is the risk of a hack: by exploiting a vulnerability, an attacker may be able to break down the service, recover the ballots chosen by the voters or rig the result of the election, which would jeopardize the sovereignty of the country and question the legitimacy of the elected representatives. For this reason, it is extremely important that the voting system guarantee privacy and verifiability. Intuitively, privacy is achieved if no one can learn the choice of a given voter. As for verifiability, it is often decomposed into several properties, namely individual verifiability, universal verifiability and eligibility. Informally, eligibility states that only eligible voters may be able to have their ballot counted, and that at most one ballot is counted per voter. Individual verifiability states that a voter is able to verify that the cast ballot is indeed added to the ballot box, and that it contains the chosen voting option (or candidate's name). Finally, universal verifiability states that anyone can verify that the result of the election is consistent with the ballot box. To achieve those properties, it is usual to make several trust assumptions. For instance, in paper voting, it is assumed that the ballot box is secure, so that no one can maliciously remove or add ballots, nor consult the content of a specific ballot. Also, it is generally difficult to enforce several properties simultaneously. For instance, declaring that Kim Jong-un is the winner would perfectly respect privacy, as the voters would not give any information about their choice. By contrast, vote by show of hands could be a possible solution for verifiability, but does not guarantee privacy.

In academic electronic voting, various voting schemes exist to address both privacy and verifiability. For privacy, the main strategy is to encrypt the ballots. This way, if the server is compromised, the attacker -also referred to as the adversary -can only recover encrypted data, which do not tell which voter chose which candidate (or, more generally, which voting option). For universal verifiability, the main cryptographic primitive is the zero knowledge proof (ZKP), which allows the talliers to prove that the tally protocol, that is used to compute the result from the encrypted ballots, was correctly executed by the talliers, who hold the shares of the secret decryption key. A ZKP, as the name implies, does not reveal anything about the secrets used to produce the proof; this way, no information (other than the result of the tally protocol) is leaked about the content of the ballot box, and privacy is preserved.

Encryptions and ZKP are extremely common in electronic voting; however, schemes such as sElect [START_REF] Küsters | sElect: A Lightweight Verifiable Remote Voting System[END_REF] do not rely on ZKP for verifiability, and schemes based on self-tallying ballot boxes (e.g., [START_REF] Kiayias | Self-tallying Elections and Perfect Ballot Secrecy[END_REF]) do not rely on encryption for privacy. Some examples of academic voting systems that combine encryptions and ZKP are Adder [START_REF] Kiayias | An Internet Voting System Supporting User Privacy[END_REF], Helios [START_REF] Adida | Helios: Web-based Open-Audit Voting[END_REF][START_REF] Olivier De Marneffe | Electing a University President Using Open-Audit Voting: Analysis of Real-World Use of Helios[END_REF] and Belenios [START_REF] Cortier | Belenios: A simple private and verifiable electronic voting system[END_REF], which are very similar in their design. However, there are numerous other academic proposals; for instance, schemes such as D-Demos [CZZ + 16] and BeleniosVS [START_REF] Cortier | BeleniosVS: Secrecy and Verifiability Against a Corrupted Voting Device[END_REF] can ensure privacy, even against an adversarial voting device; and schemes such as [START_REF] Cuvelier | Election Verifiability or Ballot Privacy: Do We Need to Choose?[END_REF] provide everlasting privacy (see [START_REF] Haines | Sok: Secure e-voting with everlasting privacy[END_REF] for a survey on the subjet). Other schemes, such as Prêt-à-Voter [START_REF] Peter | A variant of the chaum voter-verifiable scheme[END_REF][START_REF] Peter | Prêt à voter with re-encryption mixes[END_REF], ThreeBallot [START_REF] Smith | Three voting protocols: Threeballot, vav, and twin[END_REF] and Scantegrity [CEC + 08], focus on paperbased electronic voting. When paper ballots are used, the result can be counted from the physical ballots or from the electronic ballots; examples of schemes that count the electronic ballots are STAR-Vote [BBE + 13] and Bingo Voting [START_REF] Bohli | Bingo Voting: Secure and Coercion-Free Voting Using a Trusted Random Number Generator[END_REF]. The interest of having both electronic and physical paper ballots is that a technique known as risk limiting audit [START_REF] Lindeman | A Gentle Introduction to Risk-Limiting Audits[END_REF] can be used to reduce the risk of an error or a manipulation when counting the ballots.

Although privacy and universal verifiability are two fundamental security requirements in electronic voting, they are not considered sufficient for high stake elections. A first difficulty is related to the individual verifiability: since the ballots published in the ballot box are encrypted, it is difficult for the voters to gain confidence as to whether their ballot actually contains the desired voting option. This can be a problem, for instance, if the voting device is compromised by a malware. To address this possibility, several strategies exist to provide cast-as-intended verification. A popular approach is based on return codes: each voting option is associated to a secret code, which is unique for each voter. At some point after the voting phase, the voter receives a return code which is computed from the encrypted ballot, and compares it to the expected one. If the return code corresponds to the chosen voting option, then the voter is convinced that the encrypted ballot was produced and cast correctly. This is the approach, for instance, of [START_REF] Heather | Pretty good democracy for more expressive voting schemes[END_REF] and CHVote [START_REF] Haenni | CHVote Protocol Specification[END_REF]. Return codes were notably used in Norway [START_REF] Gjøsteen | The norwegian internet voting protocol[END_REF][START_REF] Puigalli | Cast-as-Intended Verification in Norway[END_REF] and in Switzerland [START_REF] Galindo | neuchâtel's cast-asintended verification mechanism[END_REF], where Internet voting was allowed from 2003 to 2019 and will be resumed in June 2023.

Apart from return codes, another popular strategy is the Benaloh challenge [START_REF] Benaloh | Simple verifiable elections[END_REF], which is used in Helios. A recent alternative to the Benaloh challenge is proposed in Themis [BCC + 22]. In Estonia, however, cast-as-intended verification is made thanks to a third party verification device, that the voter can query with a cryptographic receipt to check whether the correct voting option was encrypted within the ballot [START_REF] Heiberg | Verifiable internet voting in estonia[END_REF]. Other approaches exist to provide cast-as-intended verification; for instance, Selene [START_REF] Peter | Selene: Voting with transparent verifiability and coercion-mitigation[END_REF] is based on tracking data. For a comparison and a categorization of several academic proposals, see [MZR + 21].

Besides the cast-as-intended verification, a second difficulty, related to privacy, is the risk of vote-buying. Indeed, in a classical voting system such as Helios, the voter produces an encrypted ballot that contains their choice. Yet, by using an ad-hoc voting algorithm, the voter can produce a ballot for which they know the randomness used for the encryption. This randomness can be used as a receipt to convince a vote buyer that the ballot encrypts a specific choice. To capture this threat, the notion of receipt-freeness was proposed [START_REF] Cohen | Receipt-free secret-ballot elections (extended abstract)[END_REF].

There are various notions of receipt-freeness in the literature but, intuitively, a voting system is receipt-free if the voter cannot convince a third party that they voted in a specific way, even if they are willing to give away their privacy or if they follow a specific instruction given by the third party. To achieve receipt-freeness while preserving verifiability, there are two main approaches in the literature. First, the deniable revoting paradigm consists of allowing the voters to revote. When a voter revotes, the previous vote is canceled, but an external observer is unable to tell whether a given ballot has been canceled or not. This way, even if the voter proves that they voted in a specific way, the vote buyer would have no guarantee that the said vote was not cancelled by a subsequent revote. Examples of academic proposals based on the revoting paradigm are, for instance, [START_REF] Locher | Coercion-Resistant Internet Voting with Everlasting Privacy[END_REF] and VoteAgain [START_REF] Lueks | VoteAgain: A scalable coercion-resistant voting system[END_REF].

Another approach is based on the rerandomization paradigm, where the voters cannot directly submit their ballot to the public ballot box. Instead, the ballot is privately sent to a rerandomization server, which is trusted for the purpose of receipt-freeness. The server rerandomizes the ballot, so that it becomes indistinguishable from a random ballot. This way, even if the ballot was created maliciously by the voter (or was given by the vote buyer), it is no longer possible to prove that the rerandomized ballot contains a specific voting option. Nevertheless, individual verifiability is still achieved, which means that the voter has a guarantee that the content of the ballot has not been modified. To achieve this without letting the voter use the guarantee as a receipt, [START_REF] Hirt | Receipt-Free K -out-of-L Voting Based on ElGamal Encryption[END_REF] proposes to use designated verifier zero knowledge proofs (DVZKP) [START_REF] Jakobsson | Mix and Match: Secure Function Evaluation via Ciphertexts[END_REF], which can only convince the voter. However, using DVZKP requires a setup which raises some practical issues. Later on, the need for DVZKP was dropped thanks to bilinear pairings, which introduces the possibility to rerandomize ciphertexts and signatures altogether [START_REF] Blazy | Signatures on Randomizable Ciphertexts[END_REF]. The idea was further developed in BeleniosRF [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], which also provides a modern definition of receipt-freeness.

A threat related to vote buying is that of coercion, where an attacker, the coercer, asks a voter to vote in a specific way, using a threat or a reward. Compared to receipt-freeness, coercionresistance assumes a stronger adversary, which can be active during the voting phase and asks the voter to give away their voting material so as to cast the ballot instead of the voter. When an electronic voting solution is used with no counter-measure against coercion, the coercer can coerce a larger number of voters, or gain confidence -thanks to the verifiability mechanism -as to whether the coerced voters obeyed or not. In Estonia, the main way to mitigate coercion is to allow the voters to revote, so that they can first comply with the coercer and then revote for the desired voting option, when given a moment of privacy. Although revoting is an intuitive counter-measure against coercion, this assumes that the voter is able to revote after the coercer, which is not necessarily justified as the coercer can wait for the last moment to cast their ballot. In addition, if the coercer asks for the voter's credentials, then the voter cannot know when the coercer is going to use them.

The main academic solution to address coercion is the JCJ protocol, proposed in [START_REF] Juels | Coercion-resistant electronic elections[END_REF], which also formalizes the notion of coercion-resistance. The idea is that a voter is able to give a fake, invalid voting credential to the coercer. The latter can cast a ballot with the given credential,

• Privacy: no one can learn how a given voter voted • Individual verifiability: the voter is guaranteed that the cast ballot is added to the ballot box, and contains the desired voting option

• Universal verifiability: everyone can verify that the result of the tally is correct with respect to the ballot box

• Receipt-freeness: a malicious voter is unable to prove that they voted in a specific way

• Coercion-resistance: no one can force the voter to vote in a specific way Figure 1: Some desirable security properties in electronic voting and the ballot will be added to the ballot box independently of the validity of the credential. However, ballots that use an invalid credential, and ballots that use duplicated credentials, are removed after the voting phase. Hence, the main security property of the JCJ protocol is that the coercer is unable to distinguish a real credential from a fake one, or to tell whether a given ballot has been removed or not. In the literature, many subsequent schemes were based on the fake credential paradigm, and can be considered as iterations over the JCJ protocol. The most notorious example is Civitas [START_REF] Michael | Civitas: Toward a Secure Voting System[END_REF], which proposed an explicit registration phase. Other contributions, for instance, were focused on improving credential handling [START_REF] Clark | Selections: Internet Voting with Over-the-Shoulder Coercion-Resistance[END_REF][START_REF] Neumann | Civitas and the real world: problems and solutions from a practical point of view[END_REF]. Finally, many proposals aimed at improving the scalability of JCJ: see, for instance, the schemes by Spycher et al.

Preventing Italian attacks

One major threat which is not addressed in coercion-resistance nor receipt-freeness is that of Italian attacks, which are based on the information available from the result of the tally. Indeed, one of the main strategies to compute the result of the election from the encrypted ballots is to rely on a mixnet [START_REF] David | Untraceable electronic mail, return addresses, and digital pseudonyms[END_REF], which reveals the list of all the voting options chosen by the voters, but in a random order. In general, this gives more information that just the result of the election (i.e. the name(s) of the winner(s), the number of counted ballots and the number of ballots cast), and this information can be used by a coercer to decide if a coerced voter obeyed or not. For instance, in preferential voting, a choice can be any permutation of the candidates, so that there may be much more possible choices than there are voters: in Australia, the 2019 New South Wale legislative election, which used a preferential voting system known as single transferable vote (STV), featured several hundreds of candidates [START_REF]NSWEC -Election results[END_REF]. In such a situation, it is possible for the coercer to instruct the voter to first rank the coercer's preferred candidate, then to use a very specific and unlikely permutation of the candidates, for instance which alternates several opposite parties. If the voter does not obey, there will most likely be no other voter who would cast such a ballot, so that the coercer can deduce, by observing the result of the tally where all the chosen permutations are revealed, whether the voter obeyed or not. This way, the coercer can coerce a large number of voters, and know exactly which of them obeyed or disobeyed. There are not so many counter-measures against Italian attacks in the literature; the most promising approach is that of tally-hiding. In a partially tally-hiding scheme, the tally protocol security proof; second, the protocol specification should undergo an audit to make sure that there is no vulnerability; finally, the implementation should also be audited, for instance through a public bug bounty. For these proofs and audits to be meaningful, the academic community recommends that the specifications of the protocol should be public, so that the whole community can analyze it. In Switzerland, the public audit of the Swiss Post voting system, whose specifications are available at [Swi], allowed the detection of some vulnerabilities before release, as described in [START_REF] Haines | How not to prove your election outcome[END_REF] and [START_REF] Cortier | A privacy attack on the Swiss Post e-voting system[END_REF]. By contrast, it was revealed that the voting system used in Australia had some security issues [START_REF] Halderman | The New South Wales iVote System: Security Failures and Verification Flaws in a Live Online Election[END_REF], as well as the one used in France [START_REF] Debant | Reversing, breaking, and fixing the french legislative election e-voting protocol[END_REF]. This could have been prevented if the academics from the electronic voting community had the opportunity to audit those systems before their deployment. Those failures show that it is not easy to design a secure electronic voting system, let alone assess its security. For this reason, it is usual to provide a computational or a formal proof that the desired properties are verified.

In a computational proof, the adversary is modeled as a Turing machine, which has a limited (polynomial) computational power but can perform arbitrary computations. The main strategy is to exhibit a polynomial reduction to a known computational problem, such as integer factorization or the discrete logarithm problem. In other words, a cryptographic proof is a mathematic proof that if a security property is breached, then there exists an explicit polynomial-time Turing machine (i.e. an efficient algorithm) that solves a computational problem which is considered hard. For a well-studied problem such as the discrete logarithm, this means that the security property is verified.

In a formal proof, a mathematic, symbolic model is designed to represent the protocol and the desired security property. In such a model, the cryptographic primitives used in the protocol, as well as the possible actions that the adversary can perform are idealized, for instance using rewriting rules or equational theories. Once the model has been created, the proof itself consists of an evidence that the security property can or cannot be breached. Typically, a formal proof is obtained thanks to a fully automatic or interactive tool based on deduction techniques. Compared to a computational proof which relies on a well-studied computational assumption, a formal proof assumes that the cryptography is perfect and cannot be breached. However, a formal proof usually covers more attack scenarios.

Before providing a proof, one key step is to model the desired security properties and to give a formal definition for them. Yet, the definitions of the security notions in electronic voting are not stabilized. For instance, one of the first definitions of privacy was given by Benaloh [START_REF] Daniel | Verifiable secret-ballot elections[END_REF], and has been used or extended in various future works (e.g., [START_REF] Kiayias | End-to-End Verifiable Elections in the Standard Model[END_REF][START_REF] Cortier | Voting: You Can't Have Privacy without Individual Verifiability[END_REF]). However, this definition comes with several limitations, so that other definitions were proposed. In particular, the notion of ballot privacy [BCP + 11, BPW12] converged to the BPRIV definition, given in [BCG + 15b]. This definition was extended in [START_REF] Cortier | Fifty Shades of Ballot Privacy: Privacy against a Malicious Board[END_REF], to model the presence of a malicious ballot box.

For receipt-freeness, two modern definitions can be found in [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF] and [START_REF] Kiayias | End-to-End Verifiable Elections in the Standard Model[END_REF]. Compared to the definition of Kiayias et al., the definition of Chaidos et al. does not take into account the individual verifiability mechanism. However, the definition of Kiayias et al. does not consider a malicious voter, which is restrictive. In [START_REF] Devillez | Traceable receipt-free encryption[END_REF], a modified version of the definition of Chaidos et al. has been proposed, where the registration protocol is no longer relevant. This was done in an attempt to achieve receipt-freeness (almost) independently of the remaining of the protocol, which allows a more modular security analysis and makes the voting scheme easier to adapt.

For coercion-resistance, the main academic definition is that of [START_REF] Juels | Coercion-resistant electronic elections[END_REF], which is still a reference in the research about coercion-resistance. Intuitively, this definition compares a real game with an ideal game: in the real game, the adversary observes the real JCJ protocol; in the ideal game, the adversary is only given the "result"; in both games, the goal of the adversary is to guess whether the coerced voter obeyed or evaded coercion. This comparison is made because the adversary, by observing the result, can gain some information about the choice of the coerced voter: this is the idea behind an Italian attack. In [START_REF] Haines | Surveying definitions of coercion resistance[END_REF], it is remarked that the JCJ definition is flawed and cannot be achieved by a voting scheme which has a public ballot box. The main reason why is that the ideal game does not yield any information about the ballot box. Consequently, by observing the size of the ballot box in the real game, and by comparing it to the result of the election (which indicates the number of counted ballots) the adversary gains some information about whether the ballot cast with the coerced voter's credential was counted or not. To fix this flaw, [START_REF] Haines | Surveying definitions of coercion resistance[END_REF] proposes to modify the ideal game, and to add the information about the size of the ballot box. However, the fixed definition is still incomplete, as it does not consider revotes.

Indeed, in the context of coercion-resistance, it is natural to allow revoting, since it can constitute a first counter-measure against an implicit influence from a family member or an employer. Suppose, for instance, that a granddaughter explains to her grandfather how to vote online. For this purpose, she asks him to identify himself to the voting platform and to proceed step by step, while she remains over his shoulder to clarify each step. In this scenario, the grandfather may feel compelled to choose the democratic party while he would have preferred to choose the republican one. When revoting is allowed, the grandfather is able to select just any candidate (or even the candidate "suggested" by the granddaughter). Afterwards, when the granddaughter is no longer here, he can revote with his personal choice. Another example is when an employee is encouraged to vote at work, using a device which may be monitored by the employer. To avoid conflict with the employer, the employee may want to first vote for the conservative party when at work, then revote for the labor party at home. Hence, it is important that a definition of coercion-resistance should take revoting into account.

Our contributions

1. We propose a toolbox for MPC based on the ElGamal encryption scheme, that can be used to achieve full tally-hiding.

Our toolbox, presented in Chapter 5, is based on the conditional gate primitive from [START_REF] Schoenmakers | Practical Two-Party Computation Based on the Conditional Gate[END_REF], which can be used in the ElGamal setting. This gives an interesting alternative to the Paillier setting, which is greatly beneficial on the voter-side and achieves similar computational complexities on the server side. This toolbox provides many MPC protocols to realize various usual operations on encrypted data, such as arithmetic operations and comparisons, but also more complex operations such as sorting. To make this possible, we propose several computation/communication trade-offs, which can be deployed to mitigate the greater communication complexity in the ElGamal setting. In Chapter 6, we apply our toolbox to design a tally-hiding protocol for Condorcet-Schulze, STV, Majority Judgment and the D'Hondt method. In the case of the Condorcet methods, we discovered a privacy breach in the solution of [START_REF] Haines | Surveying definitions of coercion resistance[END_REF], which occurs when a voter gives the same rank to two candidates. In Section 6.1.2, we propose a new way for the voter to submit a ballot for Condorcet voting, which allows blank voting and is compatible with a homomorphic tally. For the Majority Judgment, we remarked a shortcoming in the solution proposed in [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF], which uses a heuristic known as the majority gauge. Indeed, the majority gauge is not guaranteed to output a result. Finally, we also discovered a problem with the solution proposed in [KLM + 20], which was designed to reveal the names of the s candidates that received the most votes, where s is some parameter (for instance, the number of seats).

Introduction

Indeed, in case of a tie, it is possible that their solution actually outputs more than s winners. We propose a non-intrusive way to include any tie-break mechanism into the solution proposed by Ordinos; this preserves the full tally-hiding property and does not deteriorate the efficiency. We prove the security of our toolbox in the security framework of [START_REF] Canetti | A Simpler Variant of Universally Composable Security for Standard Multiparty Computation[END_REF], which is a simpler variant of the universally composable framework of [START_REF] Canetti | Universally Composable Security: A New Paradigm for Cryptographic Protocols[END_REF] (for short, we refer to this framework as the SUC framework). To achieve this, we modified the conditional gate protocol and proved the SUC-security of the modified protocol in Section 4.4. As the SUC framework provides a composition theorem, the SUC-security of the main primitive can be used to prove the desired security properties, such as privacy and verifiability, which is done in Section 6.6.

2. We unveil a leakage in the JCJ scheme which can compromise its coercion-resistance when revoting is allowed.

When revoting is allowed, we discovered that the extra information revealed during the tally phase of the JCJ protocol can be exploited by the coercer to infer the behavior of the coerced voter, using Bayesian probabilities. More precisely, we identified the exact nature of the leakage in JCJ: Compared to the pure result of the election which would contain some information about the total number of ballots removed, the JCJ scheme leaks the number of ballots that have k duplicates for all k ≥ 1, as well as the number of ballots that use an invalid credential. To assess the impact of this leakage, we used the formal framework of [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF] which gives a quantitative definition of coercion-resistance. In this framework, it is possible to compare the coercion level of the real protocol to that of the ideal protocol, which would not suffer from any leakage. Using this framework, we propose several realistic scenarios where the difference between the ideal and the real coercion levels is not negligible. One of the reasons why the flaw of the JCJ protocol was not noticed so far may be because the JCJ definition of coercion-resistance does not allow revoting. In addition, it is known that, in a JCJ-like scheme, an unpredictable number of ballots should be removed during the tally phase: otherwise, the coercer would notice when the ballot cast with the voter's credential is removed. For this reason, it is necessary to model the presence of ballots that use an invalid credential, but that are not a ballot from the coercer: they are referred to as dummy ballots. In the JCJ definition, those ballots are supposed to come from the honest voters, who have to sacrifice their own vote for this. This is not realistic and does not allow modeling a situation where additional dummies are cast by an external party, which is not an eligible voter. For these reasons, we designed a new definition of coercion-resistance, which better captures the presence of dummy ballots as well as the possibility to revote.

As the JCJ protocol does not verify our definition of coercion-resistance, we propose CHide, a variant of the JCJ protocol that uses the tally-hiding toolbox in order to prevent the leakage of the JCJ scheme. This is done in Chapter 8, and shows that our definition of coercion-resistance can be achieved by a practical protocol. To make the protocol practical for realistic parameters, we designed a new cleansing phase that relies on sorting, and is more scalable than the quadratic cleansing phase of JCJ. We prove that privacy, verifiability and coercion-resistance are achieved that CHide under the same trust assumptions as JCJ.

or the eligibility mechanism. Compared to the definition of [START_REF] Kiayias | End-to-End Verifiable Elections in the Standard Model[END_REF], our definition takes into account the fact that the voter may use any algorithm to produce their ballot, including an algorithm which may be provided by the vote buyer. Compared to the definition of [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], our definition allows the adversary to give any instruction to the voter, and not just a given ciphertext. In addition, it also captures the fact that the voter may be given a receipt during the voting phase, due to the individual verifiability mechanism. Overall, our definition of receiptfreeness is closer to the intuition of vote-buying, and achieving this definition can be a first step towards coercion-resistance. In addition, based on the previous work of [START_REF] Devillez | Traceable receipt-free encryption[END_REF], we propose a modular strategy that allows to build a receipt-free protocol, by providing an easy to verify set of conditions about the encryption scheme, the tally protocol and the voting phase. This makes achieving receipt-freeness more modular, and more independent of the specificities of the protocol. We also provide a new encryption scheme that satisfies the properties required by our strategy, so that it can be instantiated. Compared to the scheme proposed in [START_REF] Devillez | Traceable receipt-free encryption[END_REF], this new scheme supports 0/1 proofs (i.e. it is possible to prove that the ballot encrypts a message of a specific form), which is extremely interesting in the context of electronic voting. In addition, the setup protocol is public coin, which means that we need fewer trust assumptions. Compared to the scheme proposed in [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], our encryption scheme is not limited to encrypting small bitstrings.

Structure of the thesis

This thesis is divided into three parts. Part I gives some preliminaries about electronic voting, the security definitions and the security proofs. In Part II, Chapter 4 gives some background in MPC, and the first contribution of this thesis can be found in Section 4.4, where we prove the SUC-security of the modified conditional gate protocol. Afterwards, we present the various protocols of our MPC toolbox in Chapter 5, and explain how to apply them to compute the tally for various counting methods in Chapter 6. Finally, Part III contains our finding about coercionresistance: Chapter 7 unveils the vulnerability of the JCJ scheme and proposes a new definition of coercion-resistance, Chapter 8 introduces CHide and the corresponding security proofs, and Chapter 9 contains our contributions about receipt freeness.

Related publications

• We presented a short paper at E-Vote-ID 2020 [START_REF] Cortier | How to fake zeroknowledge proofs, again[END_REF], where we revealed a vulnerability of the Belenios protocol. This contribution is briefly described in Section 3.2.2.

• Our toolbox for generic tally-hiding in the ElGamal setting was presented at Esorics 2022 [START_REF] Cortier | A Toolbox for Verifiable Tally-Hiding E-Voting Systems[END_REF]. The full version of this paper, which includes details about the MPC protocols that we designed for Condorcet-Schulze, STV, Majority Judgment and D'Hondt, as well as the corresponding security proofs, can be found in [START_REF] Cortier | A toolbox for verifiable tally-hiding e-voting systems[END_REF].

• Our finding about the weakness of the JCJ protocol was published on eprint [START_REF] Cortier | Is the JCJ voting system really coercion-resistant? Cryptology ePrint Archive[END_REF],

where we propose our new definition of coercion-resistance as well as the CHide protocol.

Part I

Preliminaries

Chapter 1

Security in electronic voting

This chapter introduces some vocabulary around electronic voting and defines the main security properties. It provides notations and definitions that are useful in the remaining of this thesis.

The fundamental notions of electronic voting

We first present the most common phases of electronic voting, as well as their participants.

The generic structure of electronic voting protocols

An electronic voting protocol involves many participants, each of whom has a specific role. A participant may be trusted for a given purpose, but not for another: this defines the trust assumptions of the protocol. Finally, the participants interact during different phases, which describe the overall structure of the protocol. Depending on the protocol, different participants, trust assumptions and phases may be used.

The main participants in electronic voting. We first present the most commonly considered participants, as well as some usual trust assumptions; see Table 1 for a summary. Depending on the protocol, additional participants and stronger assumptions may be used, which can be perceived as a drawback. On the other hand, if less participants or weaker assumptions are necessary for the same security level, this can be perceived as a feature. Most often than not, however, each protocol has its own compromise.

The election authorities, i.e. the organizers, choose the public parameters of the election: the questions asked, the possible answers, the eligible voters and the opening and closing dates of the election are up to the organizers. In addition, the latter also chooses the counting method and the actual protocol; this can include, for instance, the cryptographic group and the security parameter. In general, the election authorities are trusted for the above purposes, but not for any other. This is because they only intervene at the very beginning of the process, before the protocol even started. Indeed, the proposed cryptographic protocol ideally undergoes a careful public audit where anyone can look at the specifications and the implementation to make sure that there is no vulnerability or backdoor. Similarly, the non-cryptographic information published by the organizer can be publicly verified, so that it is not easy to add factitious voters or rig the election by choosing a specific counting method or formulating the questions in some biased way.

The public board displays some public information, such as the current state of the ballot box or some verification transcripts. It plays a critical role in both individual and universal verifiability. Nevertheless, it is typically trusted as a public, append-only and shared dataset. It means that anyone can consult its contents, that the same view is given to everyone and that no data can be removed once they have been added to the board. To enforce this behavior, a consensus protocol can be used, as done in [START_REF] Culnane | A Peered Bulletin Board for Robust Use in Verifiable Voting Systems[END_REF][START_REF] Hirschi | Fixing the Achilles Heel of E-Voting: The Bulletin Board[END_REF]. Another solution would be to rely on the blockchain technology, as proposed in [MSH17, [START_REF] Friorik | Blockchain-Based E-Voting System[END_REF][START_REF] Chaieb | Verify-Your-Vote: A Verifiable Blockchain-Based Online Voting Protocol[END_REF] The server may have various roles such as storing data, performing checks, providing communication channels, writing on the public board or providing the source code of the protocol (e.g., a JavaScript). It is usually considered malicious when providing communication channels or writing on the board: for instance, it may temper with the communication with the ballot box or try to add illegitimate ballots. However, it is often assumed to provide the correct public information (e.g., public encryption key and JavaScript). This can be enforced by auditors that will detect any misbehavior of the server.

The distinction between the public board and the server is not always clear. This is because the public board may be hosted by the server, in which case the latter can freely add data on it, including ballots. In addition, it is often necessary to use the server as an intermediate to add a ballot in the public board. Separating the server from the public board allows assuming the server malicious while the public board is still considered honest. Observe that even if the board is honest, there is no guarantee about the validity or the authenticity of its data: we only assume that they are the same for everyone and that they are added in an append-only fashion. Hence, if no mechanism prevents it, a malicious server could add ineligible ballots in the board: this is called ballot stuffing.

The voters send their encrypted ballot to the server. For this purpose, they use a voting device that performs the necessary cryptographic operations. The voters are not trusted: some of them, the corrupted voters, may be under the complete control of the adversary. However, we consider that the non-corrupted voters are honest and follow the protocol rigorously. Interestingly, it is possible to dissociate the voter from the voting device. Indeed, the latter may be compromised by a malware that encrypts another voting option than the chosen one. To address such a situation, a specific strategy called cast-as-intended verification can be deployed, that allows the voter to verify the behavior of the device. When separating the voter from the device, the latter is not trusted for individual verifiability but often trusted for privacy. Indeed, in the convenient scenario where the voter types or selects the chosen voting option, the device unavoidably learns the choice of the voter. For a possible counter-measure, see for instance [START_REF] Cortier | BeleniosVS: Secrecy and Verifiability Against a Corrupted Voting Device[END_REF]. In this thesis, we do not separate the voter from the voting device, and hence assume that the voting device is honest.

The registrars give their voting material (typically, a secret voting credential) to the voters. Intuitively, this credential is necessary to either produce a valid ballot, or to have it accepted by the server. Therefore, the role of the registrars is to guarantee the eligibility. In general, they are trusted as a whole, but some may be corrupted.

The talliers compute the result of the election from the encrypted ballots. For this purpose, they need the secret decryption key. Since the latter allows decrypting the ballots individually, hence compromising privacy, it is common that a specific strategy is deployed to distribute the trust between the talliers, so that no individual tallier can learn the secret key. In general, a cryptographic technique named secret sharing (see Section 2.2.3) is used to enforce privacy, even when up to t talliers are controlled by the adversary, where t is some threshold. In this case, it is assumed that no more than t malicious talliers may collude to break privacy. However, it is common not to trust the talliers at all when it comes to verifiability.

Finally, the auditors are responsible for verifying any accessible data. In general, it is assumed that at least one of them is honest, will perform any possible verification and report Trusted as a group for verifiability and privacy Talliers At most t of them can collude to break privacy Not trusted for verifiability themselves. In general, an electronic voting protocol may use another set of participants and phases: we only presented a generic structure that suits this thesis.

Formalization and notations

To assess the security of a voting protocol, it is important to have a precise mathematical framework so that we can model it, as well as the security properties that we consider.

Counting function. The goal of a voting protocol is to evaluate the result of a counting function on the voting options chosen by the voters. More formally, let V be the set of all possible voting options and I be a set which represent the identities (or aliases) of the voters. Let R be the set of all possible results. For any set A, we denote A * the free monoid generated by A, that is the set all of finite sequences of elements of A. The natural law of this monoid is the concatenation, denoted ||. In this thesis, we consider that a counting function is a function count : V * -→ R, that is invariant over the permutations of its arguments. The invariance property means that the order in which the voters cast their ballot is not important. Consequently, it is assumed that a revote policy is applied before the counting function, so that there is a unique voting option for each voter. Indeed, assume that revoting is allowed, so that a voter who has already voted for some option ν 1 can revote for a (potentially) different option ν 2 . Then the revoting policy may instruct keeping the first choice (revoting is allowed but does not change the choice), to keep the last choice or even to combine the choices in some specific way (for instance, set the final choice as the average choice). In this thesis, we denote cleanse : (I × V) * → V * the revote policy, which takes care of the duplicated id ∈ I.

Remark that our definition for counting function is identity-oblivious, which means that once the revoting policy has been applied, the identity of the voters is no longer relevant, so that the final choices of two voters can be swapped without altering the result. This is not always the case in general: for instance, consider a vote between stakeholders where some voters are given more weight than the others. For more generic, identity-dependent counting methods, the notion of counting function may not be suitable. However, we only considered identity-oblivious counting functions in this thesis, so that this distinction is only relevant when we define privacy in Section 1.3. On this occasion, we will use the terminology tally function, which can be seen as a function tally : (I × V) * → R.

Multiset. Because of the invariance property, it is interesting to introduce the notion of multisets. A multiset of size n is a n-tuple modulo the permutations. It can be seen as a set where there can be duplicates, or a sequence in which the order is not important. Given any sequence A, we denote { {A} } the corresponding multiset (e.g., a, b, c becomes { {a, b, c} }). By abuse of notation, if A is a set, we also denote { {A} } the corresponding multiset. To express that two sequences (or sets) A and B are equal as multisets, we use the notation A ≡ B. When A and B are multisets, we can also use the notation A ≡ B instead of A = B, to insist on the fact that A and B are multisets. The union of two multisets A and B is usually denoted A B. This gives a notion of inclusion. Finally, we say that a multiset A (resp. a sequence A) contains n elements of the multiset B if there exists a multiset C of size n which is included in both A (resp. { {A} }) and B. Since a counting function is invariant over permutations, we can define it on the finite multisets instead of the finite sequences. By abuse of notation, we often use this representation.

Partial tally. For a counting function, an interesting property is the partial tally. We say that count : V → R has the partial tally property if there exists an associative composition law

⋆ in R such that, for all V 1 , V 2 ∈ V * , count(V 1 ||V 2) = count(V 1)⋆count(V 2).
A key example is the counting function which returns the number of times each voting option was chosen.

The fundamental notions of electronic voting

Alternatively, the counting function which returns the multiset of the voting options chosen also has this property. However, not every function has this property. For instance, suppose that there are two candidates, A and B, so that the voting options are V = {A, B}. In this setting, consider the majority counting function, with the possible results R = {A, B}, where A wins in case of an equality. Then this function does not have the partial tally property: since count(A, A||B) = count(A, A), the associativity required for ⋆ would mean that count(A, A||B n) = count(A, A) = A for all n, which is not the case.

Adversary. In this thesis, we model the adversary A as a probabilistic polynomial Turing machine (PPT), which means that it can perform any computation, has access to a source of randomness but is computationally bounded: there exists a polynomial P such that, when A is called with the security parameter λ, it terminates after at most P (λ) transitions. By contrast, a non-uniform adversary is a PPT which also has a different meaningful auxiliary input z(λ) for each value of the security parameter; this can model non-polynomial time precomputation.

Voting system. In this thesis, a voting system for the counting function count is a tuple of algorithms and protocols (Setup, Register, Vote, Check, Valid, Tally, Verify). We consider that they have the following signatures:

Setup(λ, n T , t) is an interactive protocol between the talliers. It takes as input a security parameter λ, a number of participants n T and a threshold t. It outputs a public key pk; a secret key sk; some pairs (h i , s i) n T i=1 where s i is the secret share of the ith participant while h i is a public commitment on s i ; and a transcript Π. In general, the setup can have many other forms, so that this description is specific to our setting. It assumes that the key pair (pk, sk) is generated using a distributed generation key (DKG) protocol (see Section 2.2.3), which is not always the case.

Register(pk, n) is an interactive protocol between n voters and the registrars. We use the notation (c i , π i) n i=1 , Π ←-Register(pk, n) to express that the registration produced the credential c i for each voter, numbered from 1 to n. In addition to their credential, the voters may also receive an individual (potentially empty) transcript π i -for instance to convince the voter that the credential they received is actually valid. Similarly, the protocol outputs a (possibly empty) public transcript Π; for instance a public commitment of each credential, or a proof that the protocol was executed correctly.

Vote is an interactive protocol between the voter, the server and the public board. During this protocol, the voter uses an algorithm Vote pk (ν, c) that produces a ballot for the voting option ν, with the credential c. Afterward, the voter can initiate the protocol Check(ν, c, B, PB) to verify that their ballot B indeed contains the chosen voting option ν and was actually added to the ballot box in PB. This protocol may involve several other participants, such as the voting device, an external auditor and the voting server. Note that we also included the credential c in the inputs required for the voter; however, some other intermediate values obtained during the voting protocol may also be needed. In addition, given an encrypted ballot B and the current public board PB, the algorithm Valid(B, PB) returns 0 or 1, depending on the validity of the ballot with respect to the public board.

Tally(PB, {s i }) is a protocol during which the talliers, who each have a secret s i , collectively compute the result of the election from the encrypted ballots. It outputs a result r ∈ R, along with the verification transcript Π. The output of this protocol can be verified thanks to the algorithm Verify(PB, Π, r), which returns either 0 or 1.

Technically, a voting system is just one part of the specification of a voting protocol. The latter must also articulate all the phases together (which includes the establishment of communication channels) and give instructions about how to behave if a step fails, which is why we used a different terminology. In this thesis, we never describe a voting protocol as a whole and we restrict ourselves at the system level. Therefore, we do not give a formalization for the other layers of a voting protocol.

Small quantities. In cryptography, it is usual to define a negligible quantity as follows. Suppose that a quantity µ(λ) is a function of the security parameter. We say that µ is negligible (in λ) if, for all integer k, we have |µ(λ)| ≤ 1/λ k when λ is large enough. A quantity which is not negligible is said non-negligible. For probabilities, we also have the notion of large and overwhelming probabilities: a probability p(λ) is large if there exists a real ε > 0 such that ε < p(λ) when λ is large enough. Finally, p is overwhelming is 1 -p is negligible. Note that these notions only make sense when considering asymptotically large security parameters, so that 1/2 128 is technically a large probability. To better quantify large probabilities, it is natural to look for an upper bound. For ε > 0, we say that a quantity p(λ) is ε-bounded if there exists a negligible function µ such that |p(λ)| ≤ ε + µ(λ) when λ is large enough.

Game-based definitions. Once the voting protocol is modeled, one must also give a formal definition of the desired security properties. A common approach is to use a gamebased definition. Such a definition models the protocol inside a game (or experiment), where an adversary tries to reach a specific goal. The adversary may impersonate some participants, who are therefore corrupted. However, the game describes the order of activation of the participants, in which channels they may communicate and to which information (i.e. inputs) they have access. It also describes the expected format of the output for each activation of the adversary and how they are processed. At the end of the game, an output is produced (typically 0 or 1) depending on whether the adversary reached its goal or not. When the output is 1, we say that the adversary wins the game. Finally, it is sometimes preferable to consider the advantage of the adversary rather than its probability to win. In this thesis, the advantage of the adversary in a game is the absolute value of the difference between the adversary's probability to win and 1/2. In some other works, it is common to define the advantage as twice this value; however, as we usually demand that the advantage should be negligible, both definitions are equivalent and we may use any of them interchangeably.

Oracle queries. In the description of a game, it is common to encounter oracle queries. Intuitively, they capture the interactive nature of a protocol and represent the other participants. Typically, if the adversary wants to wait for a voter to send a ballot, this can be modeled by a query to an oracle O vote . An oracle is an algorithm whose inputs are chosen by the adversary and which returns its output to the adversary. It is not required that the oracles are computationally bounded. When the adversary can make queries to the oracles O 1 , • • • , O n , we use the notation On . It means that the adversary can make any (polynomial) number of queries to the given oracles, in any order. However, it can only have a black-box access to the oracles, and has no mean to learn anything else than the output. The oracles may have access to all inner states of the game, including the value of the secret key or the random coin. In addition, they can also modify those states, for instance by adding something in the public board. Consequently, the oracles are considered stateful: they have their own inner state and remember any previous query made by the adversary, as well as how it was answered.

A O 1 ,••• ,

The Helios voting protocol

A canonical example is Helios, an online open-source electronic voting protocol introduced in [START_REF] Adida | Helios: Web-based Open-Audit Voting[END_REF]. As the original version had some limitations, an iteration, known as Helios 2.0, was presented in [START_REF] Olivier De Marneffe | Electing a University President Using Open-Audit Voting: Analysis of Real-World Use of Helios[END_REF], on the occasion of the election of the president of the university of Louvain-la-Neuve. The resulting voting platform, accessible at [Hel], is used by the IACR. The 1.1. The fundamental notions of electronic voting key idea is to encode the voting options as a vector of bits and to use the exponential ElGamal encryption scheme, presented in Section 2.2.2, to encrypt it. This way, a homomorphic tally can be used, where the product of all the ciphertexts is decrypted to reveal the result, while no individual ballot is decrypted, hence preserving privacy. The whole protocol can be summed up as follows.

Registration phase. Every voter receives a mail which contains a link to a secure registration website, which plays the role of the registrar. On this website, the voters authenticate themselves using an identity card or a password provided by the election authorities. The registrar assigns the voter a random alias al and a password, which form the voter's credential. The voter is given the credential, and the registrar also sends it to the voting server.

Voting phase. The voter is asked a multiple choice question, and can pick some of the choices depending on the election's rules. For instance, at most one option may be chosen for uninominal voting. For each of the choices, the voter encrypts either 0 or 1 using the exponential ElGamal encryption scheme, depending on whether they want to pick the choice or not. This produces a sequence of ciphertexts C. Then, the voter provides a Zero Knowledge Proof π (ZKP, see Section 2.3) that C is well-formed i.e. that it only contains encryptions of 0 and 1 and that the election rules were respected.

Then the voters authenticate themselves with the voting server using their password and send their alias, as well as their ballot B = (C, π). The server checks that the password is correct with respect to the given alias, checks that the ballot is valid with respect to the public board and adds an entry (al : B) in the ballot box. Note that the voters can revote: if there is already an entry of the form (al : B ′), B ′ is replaced by B.

Valid ballots. In Helios, a valid ballot B = (C, π) has a valid ZKP π. Also, for all ciphertext C ∈ C, C must not already be on the public board. This means that, for all ballot B ′ = (C ′ , π ′) in the board, C must not be one of the ciphertexts of the sequence C ′ .

Open audit. After the voting phase, the ballot box is fixed and the voters are given a few days to check that the ballot that appears right to their alias is correct. If this is not the case, the voter can complain.

Tally. The talliers compute the element-wise product of all the ciphertexts. For instance, suppose that there are three options, so that all the ballots have the form (C 1 , C 2 , C 3 , π). Then the element-wise product of the ciphertexts of two ballots B and B ′ would be

(C 1 C ′ 1 , C 2 C ′ 2 , C 3 C ′ 3
). (In the ElGamal encryption scheme, a ciphertext is a pair of group elements, so that the product of two ciphertexts can be defined by similarly computing the element-wise product.) Let C be the final product. The talliers use a threshold decryption protocol (see Section 2.2.3) to decrypt all the ciphertexts in C. By the homomorphic property of the ElGamal encryption scheme, this reveals the number of voters that choose each voting option. This threshold decryption protocol produces a transcript Π which consists of ZKPs of correct decryption.

The main weakness of the Helios protocol is that its security requires a honest server. Indeed, the ballots in the board are not authenticated, so that a cheating server can add ballots arbitrarily, thus committing ballot stuffing. An alternative to Helios is the Belenios protocol [START_REF] Cortier | Belenios: A simple private and verifiable electronic voting system[END_REF], where the registrar generates a cryptographic signature key while the server generates the password. Consequently, both need to be corrupted to break the eligibility.

To mitigate the lack of eligibility, Helios has an audit phase where the voters can verify their ballot. This imposes some assumptions on the voters, as auditing is not mandatory: in the UCL election mentioned in [START_REF] Olivier De Marneffe | Electing a University President Using Open-Audit Voting: Analysis of Real-World Use of Helios[END_REF], only 30% of the voters verified their ballot. In addition, it is not reasonable to assume that the voters who choose to abstain would verify their ballot. Nevertheless, the solution from Helios can be considered preferable compared to that of Belenios: in Belenios, there is no open audit phase before the tally, so that if the registrars and the server are both corrupted, they can undetectably add some illegitimate ballots. By contrast, the server in Helios has a chance of being detected when cheating. This illustrates that no trust assumption is perfect: depending on the point of view, a given solution may seem reasonable or unacceptable. This is an inherent difficulty in electronic voting, where we need to convince people that a given protocol is secure. Even if it is actually secure under reasonable trust assumptions, there will always be numerous people that will not trust the system, as illustrated by the recent events in Brazil and the USA.

Classical attacks in electronic voting

Now that we have given a concrete example of an electronic voting protocol, this is a good opportunity to list the most classical attacks in electronic voting.

Replay attack. In academic electronic voting, it is usual to consider that the ballot box is public and may be consulted at any given time. Also, we do not suppose that the contained ballots are anonymous. Therefore, a typical ballot will not contain the chosen voting option but rather an encryption. However, suppose that the adversary wants to learn Alice's choice. Then it may try to replay Alice's ballot using as many corrupted voters as necessary, for instance by copying Alice's ballot. If the replay attack is successful, then Alice's choice contribute many times more than it should have, and can be deduced from the result. In theory, this breaks the different definitions of privacy (see Section 1.3), and an analysis done in [START_REF] Mestel | How Efficient are Replay Attacks against Vote Privacy? A Formal Quantitative Analysis[END_REF] reveals that these attacks may be harmful in practice. To prevent them, the usual counter-measure is ballot weeding, where duplicate ballots are not accepted on the public board. This is the main reason why Helios' Valid algorithm does not only verify the ZKP, but also checks that there is no duplication. Note that since the ballots of Helios may contain many independent ciphertexts, rather than checking that the whole ballot is not a duplicate, the protocol checks that no ciphertext is a duplicate. Now, recall that the ElGamal encryption scheme is malleable: as explained in Section 2.2.2, it is possible, from the ballot of Alice, to produce some ciphertexts which are different but encrypt the same voting option, hence defeating the ballot weeding strategy. For this reason, it is commonly accepted that the minimal requirement is that the ballot should be non-malleable, and not only indistinguishable from random (see Section 2.2.1 for a definition of IND-CPA and NM-CPA security). In Helios, the non-malleability of the ballot comes from the ZKP: although it is possible to produce some ciphertexts from Alice's ballot, creating a valid ZKP for those ciphertexts requires to known the randomness which was used to produce them. Yet, if this randomness was known, one could open Alice's ballot.

Ballot dropping. An other classical attack is based on ballot dropping. Suppose that an adversary (typically the server) is able to arbitrarily drop any ballot, i.e. that it can decide whether any given ballot will be tallied or not. Obviously, this adversary is able to break individual verifiability since the voters are not guaranteed that their vote will be counted. However, this also breaks privacy (in theory): indeed, if the adversary wants to know Alice's choice, it can drop all the other ballots and deduce the choice from the result of the tally. To defeat such an attack, it is generally assumed that the voters check that their ballot was indeed added in the ballot box; in Helios, for instance, this is the role of the public audit phase.

Replacing a ballot. Now, dropping all but one ballot will most likely be detected. A related attack is, however, to replace the ballots by a ballot that contains a known voting option. This is possible, for instance, when revoting is allowed while the eligibility is breached: the attacker can wait for a voter to vote, and then replace the legitimate ballot by sending an illegitimate one in the name of the voter. As for ballot dropping, this not only breaks individual verifiability, but 1.1. The fundamental notions of electronic voting also privacy. To defeat such a scenario, an usual academic "solution" is to assume that the voters check their ballot at the end of the voting phase, and not right after casting it. Once again, this is the case in Helios, where the public audit phase takes place after the voting phase, when the ballot can no longer be replaced. The problem with this approach is that it is not clear what we are supposed to do if a problem occurs. Canceling the election would be the safe option, but will most likely be perceived as unacceptable by most people. Also, deciding on a threshold of complains above which the election should be canceled is not easy, as many voters could falsely blame the server for dropping their ballot. Therefore, it is preferable to provide a way for the voters to vote and go, i.e. to check that their ballot is present during the voting phase. This way, if a problem is detected, the voter can revote.

Nevertheless, using a vote-and-go strategy is not that easy. For instance, consider the following scenario, where the server is dishonest. Assume that the voter would typically vote, say, 3 times before complaining. Then the server can drop the first two ballots and accept the last one; however, it can use the first two ballots to launch a replay attack, using some corrupted eligible voters to cast the two ballots. Indeed, since they were never added to the board, this would not be prevented by the weeding strategy. Helios, unfortunately, seems vulnerable to this attack, as this is the case for most electronic voting system. This illustrates the difference between security in theory and security in practice. In theory, one can argue that the voter may complain as soon as the first ballot is not added to the board, and therefore that the protocol is secure. This, indeed, prevents the attack since the protocol which always abort is technically secure. However, aborting the protocol as soon as a voter complains is not a practical solution. See for instance [START_REF] Baloglu | Provably Improving Election Verifiability in Belenios[END_REF] for a possible counter-measure. Clash attacks. Another known attack is the clash attack introduced in [START_REF] Küsters | Clash Attacks on the Verifiability of E-Voting Systems[END_REF]. In this attack, the voting devices are considered corrupted; more precisely, it is assumed that the attacker can have two voters use the exact same ballots when they choose the same voting option. Then, even if the voters check that their ballot is indeed in the board, it is possible that only one of the two ballots was actually added, while the other was dropped. Hence, individual verification is breached. Interestingly, the usual cast-as-intended mechanisms do not prevent such an attack since the voting device actually encrypts the desired voting option. In addition, it may be difficult to detect that the randomness used are rigged, since the voting device might use a pseudo-random generator, but which has the same seed as another device.

In Helios, the ballot box contains elements of the form (al : B) where al is an alias while B is an encrypted ballot. Therefore, it seems that the scheme is not vulnerable to clash attacks. However, suppose that the aliases are generated in some untrusted manner, i.e. that the adversary is able to decide which voter gets which alias, and therefore to produce a situation in which two voters have the same alias al 1 instead of al 1 and al 2 . Then, as explained is [START_REF] Küsters | Clash Attacks on the Verifiability of E-Voting Systems[END_REF], a clash attack would allow not only to break individual verifiability by allowing the adversary to drop some ballots, but also to undetectably break eligibility since the attacker would be able to safely add a ballot, using the remaining alias al 2 .

Individual verifiability and privacy. In most of the above attacks, we remark that a breach in the individual verifiability can be transformed into an attack against privacy. This is an illustration of the generic result of [START_REF] Cortier | Voting: You Can't Have Privacy without Individual Verifiability[END_REF], where privacy is shown to imply individual verifiability under some assumptions. More generally, this shows how the different notions of security in electronic voting are tightly related to each other, which explains why it is so difficult to formalize them individually.

Addressing verifiability

One of the most important properties of an electronic voting protocol is its verifiability, which prevents the participants to temper with the result of the election. This gives the notion of end-to-end verifiability. However, to enforce end-to-end verifiability, the common strategy is to verify each step individually.

Step by step verification

Intuitively, a voting system is verifiable if there is a way to verify that its result is correct with respect to the voting options chosen by the voters. However, the latter are unknown and the whole point of electronic voting is to determine the former. Consequently, it is not possible to verify the result as a whole; instead, we check that every step of the voting protocol was performed correctly. The first step is to encrypt a voting option into a ballot, which is done thanks to a voting device. If the latter is untrusted, it may encrypt another voting option than the one chosen by the voter; yet, due to the encryption, the voter would not be able to detect it immediately. Therefore, the first step is to provide a way to verify that the voting device did not cheat, which is called cast-as-intended verification. In the literature, there are two main methods to provide cast-as-intended verification: return codes (e.g., [START_REF] Galindo | neuchâtel's cast-asintended verification mechanism[END_REF]) and the so-called Benaloh challenge [START_REF] Benaloh | Simple verifiable elections[END_REF], which is presented in Section 9.7 (see [MZR + 21] for a more detailed categorization). A recent alternative to the Benaloh challenge was proposed in [BCC + 22].

Once the ballot is generated, it is added in a ballot box, which is not necessarily public. However, the communication channels and the server are not trusted, so that the voter must gain some evidence that their ballot actually appears in the ballot box. This is called recordedas-cast verification. In academic electronic voting, the ballot box is a part of the public board, so that the voter can check that the ballot output by the voting device appears on the board.

After the voting phase, the ballots are tallied, and we must also verify that the result of the tally actually corresponds to that of the counting function applied on the voting option encrypted in the ballot box. This is the tallied-as-recorded verification. Usually, it is done using ZKP of correct tally (see Section 2.3 for more details about ZKPs).

Finally, the last problem that remains is that of the eligibility: all counted ballot must come from an eligible voter, and all eligible voter must have at most one counted ballot. For this purpose, various authentication protocols may be used. In Helios, the voters directly prove their eligibility to the server using an identity card or an authentication website. In other protocols, they prove their eligibility to the registrars, who give them a credential in return, and only ballots cast with a valid credential are counted.

Intuitively, cast-as-intended and recorded-as-cast are the two components of individual verifiability; however, they are not sufficient. Indeed, in the clash attack presented in [START_REF] Küsters | Clash Attacks on the Verifiability of E-Voting Systems[END_REF], two voters perform those verifications, but one of them is prevented from voting. Overall, it is difficult to construct a satisfying notion of verifiability from the verification of each step.

End-to-end verifiability

Many attempts were made to formalize the notion of verifiability (e.g., [START_REF] Daniel | Verifiable secret-ballot elections[END_REF][START_REF] Kremer | Election Verifiability in Electronic Voting Protocols[END_REF][START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF]); see [CGK + 16] for a survey. A natural approach is to define verifiability as a whole. For instance, [START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF] proposes a generic framework where we can define a predicate γ on the execution of the protocol. Intuitively, γ is a goal that the protocol must achieve, such as a formalization of "the result is correct". In this context, giving this exact goal that must be verified is the same as giving a definition of verifiability: if γ is a goal, a voting scheme is verifiable with respect to γ if, whenever Verify(PB, Π, r) outputs 1, γ is satisfied with overwhelming probability. A straightforward way to satisfy this definition would be to have Verify always output 0. Therefore, it is also required that Tally and Verify must be consistent: for all public board PB, if (r, Π) is the output of Tally(PB, {s i }), then Verify(PB, Π, r) = 1. Other similar requirements may be used; for instance, we may require that Verify outputs 1, but only for honestly generated public board, or accept that it might output 0 with some negligible probability.

In related works (e.g., [START_REF] Küsters | Accountability: definition and relationship to verifiability[END_REF][START_REF] Küsters | Clash Attacks on the Verifiability of E-Voting Systems[END_REF][START_REF] Küsters | Formal analysis of chaumian mix nets with randomized partial checking[END_REF]), a specific verifiability goal is defined with respect to a parameter k: intuitively, γ k (given by Definition 1) is satisfied when the adversary can cheat for at most k ballots. This gives Definition 2, which can be seen as a formalization of end-to-end verifiability: the final result is compared to what is obtained from the choices of the voters. The main weakness of this definition is that it allows an adversary to change arbitrarily the vote of up to k honest voters, and therefore submit k more ballots than there are corrupted voters. In addition, it is not necessarily clear which values of k are acceptable: k = 0 would be ideal but too strong since it typically requires that every voter checks their vote; on the other hand, if k is the number of honest voter, then the corresponding notion of verifiability is too weak.

Definition 1 ([KTV11]

). Let n be the number of voters and n H be the number of honest voters. Let ν 1 , • • • , ν n H be the choices of the honest voters and r the result of the election. Recall that V denotes the set of all possible voting options while count denotes the counting function. The goal γ k is satisfied if there exists c1 ,

• • • , cn ∈ V, which contains at least n H -k elements of the multiset { {ν 1 , • • • , ν n H } }, such that r = count(c 1 , • • • , cn).
Definition 2 (k-verifiability). Let k be some integer. We say that a voting protocol is k-verifiable if, for all execution of the protocol such that Verify(PB, Π, r) = 1, γ k is satisfied with overwhelming probability.

An alternative to this definition is given in [START_REF] Cortier | Election Verifiability for Helios under Weaker Trust Assumptions[END_REF], in which the authors divide the voters into three subsets: first, the happy voters are the honest voters who submitted a ballot and successfully checked that it was added to the board (i.e. they ran the Check protocol, which returned 1); second, the lazy voters are the honest voters who submitted a ballot, but did not check; finally, the corrupted voters are under the control of the adversary. To model the execution of a voting protocol, three game-based definitions are given. In the first, the registrars are honest and the server is malicious; in the second, the server is honest and the registrars are malicious; in the third, the registrars and the server are honest. (In the paper, one can read "dishonest bulletin board"; this refers to the server and not the public board, which is supposed honest.)

Generally, the registrars are trusted as a group (but some may be corrupted) and the server is untrusted. Therefore, we present the first game in Fig. 2 and refer to [START_REF] Cortier | Election Verifiability for Helios under Weaker Trust Assumptions[END_REF] for the others. This game can be read as follows. First, the setup takes place at line 1 and a public encryption key is generated. Then, to express that the verifiability must hold for any number of voters n, we let the adversary choose n at line 2 (in reality, the number of voters is fixed by the election authorities, before the setup phase). However, we want n to be at most polynomial in λ, therefore we ask the adversary to write n using sticks, hence the notation 1 n (one operation is required per voter). Afterwards, the registration takes place at line 3 and a credential is generated for each voter. After the registration, the adversary can produce an arbitrary public board PB, an arbitrary result r and a transcript Π, with the restriction that Verify(PB, Π, r) = 1. For this purpose, it can make queries to the oracles O corrupt (which corrupts a voter) and O vote . The latter keeps three tables HV, L and Checked updated: HV id represents the last voting chosen by

Exp verb (λ, n T , t, A) 1 pk, sk, (h i , s i) n T i=1 , Π S ← Setup(λ, n T , t); 2 1 n ←-A(pk, Π S); 3 (c i , π i) n i=1 , Π R ← Register(pk, n); 4 CU ←-∅; 5 for i = 1 to n do 6 HV i ←-⊥; L i ←-⊥; Checked i ←-0; 7 (PB, r, Π) ←-A Ocorrupt,Ovote (Π R , {s i , i ∈ [1, n T]}); 8 A O check ; 9 if Verify(PB, Π, r) = 0 then return 0; 10 if ∃ L ⊂ { {(i, HV i) | i ̸ ∈ CU, Checked i ̸ = 1, HV i ̸ = ⊥} }, ∃C such that | |C| ≤ |CU| and r = count({ {(i, HV i) | i ̸ ∈ CU, Checked i = 1} } L C) then return 0 else return 1; O corrupt (id) 1 CU ←-CU {id}; 2 return c id ; O vote (id, ν) 1 B ←-Vote pk (ν, c id); 2 HV id ←-ν; 3 L i ←-B; 4 Checked id ←-0; 5 return B;
O check (id)

1 Checked id ← Check(ν, c id , L id , PB)
Figure 2: Definition of end-to-end verifiability [START_REF] Cortier | Election Verifiability for Helios under Weaker Trust Assumptions[END_REF] the honest voter id, L id is the corresponding encrypted ballot and Checked id is either equal to 1 when the voter successfully performed the Check procedure, or 0. In the paper, it is not clear when the voter is supposed to check. To address this, we added an oracle O check which allows the adversary to have a voter initiate this procedure. When the adversary calls O vote , it gets back the ballot produced by the honest voter. Since the adversary creates arbitrarily the public board, it can decide to add it to the board or not. Finally, verifiability is achieved if r = tally(H L C), where H is the multiset of the options chosen by the happy voters, L is included in the multiset of the options chosen by the lazy voters and C is a multiset of options whose size is at most the number of corrupted voters.

Definition 3. A voting scheme (Setup, Register, Vote, Check, Valid, Tally, Verify) is end-to-end verifiable against a malicious server if, for all PPT adversary A, for all n T and t < n T , the probability Pr(Exp verb (λ, n T , t, A) = 1) is negligible in λ.

In verifiability definitions, it may be preferable to consider fully corrupted talliers, but the definition could easily be adapted by letting the adversary output the result of the setup phase. Another remark is that this definition assumes a perfect registration phase, where the corrupted registrars cannot learn the voters' credentials, nor interfere with their generation. In electronic voting, we consider this as a reasonable assumption, and distributed key generation schemes can be used to achieve this (for instance, Civitas [START_REF] Michael | Civitas: Toward a Secure Voting System[END_REF] gives a detailed registration phase in the context of coercion-resistance).

Compared to Definition 2, this does not allow the adversary to cast more ballots than there are corrupted voters. In addition, this gives a comprehensive description of the number of ballots that can be tempered with: the adversary can drop the ballots of the lazy voters, but not change their content. Nevertheless, remark that the definition is hard to verify when revoting is allowed. Indeed, if a lazy voter vote twice, the adversary can drop the second ballot and have the first one be counted instead, which is a winning condition. Consequently, when revoting is allowed, it may be necessary to adapt the definition to allow the adversary to have up to one ballot cast by the lazy voters counted, instead of either the last one or nothing. In any case, the main problem with Definition 3 is that it assumes that the voters check after the voting phase, and not right after casting their ballot. In addition to being arguably less user-friendly, this is actually not ideal, as additional issues may occur in case of a dispute. By contrast, if the voter can check during the voting phase, then it is still possible to revote when an error is detected.

Four notions of privacy

The main reason why verifiability is hard to achieve is because we also want privacy. Numerous concurrent definitions of vote privacy can be found in the literature, which illustrates that this notion is difficult to formalize. In this section, to take into account the possibility for identity dependent tally functions, we consider generic result functions tally : (I × V) * → R instead of counting functions.

Vote swapping and Benaloh privacy

An usual way to define privacy is by the mean of vote swapping. Suppose that, whenever two voters swap their votes, the adversary cannot detect the difference. Then, intuitively, it cannot learn Alice's vote, since Bob might as well be the one who cast it (while Alice casts Bob's vote). This idea is used to defined privacy in formal methods, for instance in [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF]. However, it is slightly too restrictive. In his PhD thesis [START_REF] Daniel | Verifiable secret-ballot elections[END_REF], Benaloh presents a more generic definition. In this definition, the choices of the honest voters define a sequence V 0 or V 1 , where V 0 and V 1 contain elements of the form (id, ν) ∈ I × V, such that tally(V 0) = tally(V 1). Then, the goal of the adversary is to guess whether the honest voters voting according to the sequence V 0 or V 1 . More formally, we give Definition 4, which is a modern restatement of Benaloh's definition. Definition 4. A voting system (Setup, Register, Vote, Check, Valid, Tally, Verify) for a result function tally is Benaloh-private if, for all n T and t < n T , for all PPT adversary A, the advantage | Pr(BenPriv(λ, n T , t, A) = 1) -1/2| is negligible in λ.

Definition 4 is based on the game presented in Fig. 3, which can be read as follows. First, the setup takes place, which generates a public key pk and a transcript Π S . Afterwards, the credentials (c i) n i=1 are generated following the specifications of the voting system. Then the adversary is given the possibility to corrupt a subset of voters, denoted A, after which two possible votes, V 0 i and V 1 i , are declared for each voter i. Also, we flip a random coin and denote b ∈ {0, 1} the result. Then the adversary gets the credentials of the corrupted voters and is given access to the oracles O voteLR and O cast . The query to O voteLR (i, ν 0 , ν 1) returns a honest ballot B from voter i, which encrypts the option ν 0 (when b = 0) or ν 1 (when b = 1). In any case, this oracle modifies both V 0 i and V 1 i , and B is added to the board (this assumes that a ballot obtained with Vote pk is always valid). As for the oracle O cast , it allows the adversary to submit an arbitrary ballot to the ballot box (provided that it is valid). After the voting phase, we check that the multisets formed by the V 0 i 's and the V 1 i 's give the same partial result, otherwise we abort the game. Since we consider the adversary's advantage, we abort by returning the random bit b which leads to an advantage of 0 in this case. We do not abort with 0 because it is much more convenient to use an absolute value when defining the advantage: suppose that there is an adversary which often makes the wrong guess; then the adversary which makes the opposite guess would often be right. Finally, at the end of the game, the adversary must guess the value of b given the output of the Tally protocol.

This definition has several limitations. First, it does not account for individual verifiability, as the votes are automatically added to the board. In general, any attack against individual verifiability would break privacy, as already mentioned in Section 1.1.4. However, it is common not More generally, it appears that this definition actually assumes a somewhat honest server, while the server is usually supposed malicious in electronic voting. Indeed, not only is the adversary unable to drop or replace ballots, but it is also unable to add invalid ballots in the public board. This is because an invalid ballot would be detected by the auditors, so that it is more convenient to abstract away this possibility in the definition. On the other hand, remark that the adversary can cast any valid ballot without any restriction, while normally one would have to authenticate oneself to the server to be able to cast a ballot.

BenPriv(λ, n T , t, A) 1 pk, sk, (h i , s i) n T i=1 , Π S ← Setup(λ, n T , t); 2 1 n ←-A(pk, Π S); 3 (c i , π i) n i=1 , Π R ← Register(pk, n); 4 PB ←-Π S ||Π R ; 5 A ←-A(PB); 6 for i = 1 to n do 7 V 0 i ← ⊥; V 1 i ← ⊥; 8 b $ ←-{0, 1}; 9 A O voteLR ,Ocast ({c i | i ∈ A}); 10 if tally({ {V 0 i | i ̸ ∈ A; V 0 i ̸ = ⊥} }) ̸ = tally({ {V 1 i | i ̸ ∈ A; V 1 i ̸ = ⊥} }) then return b; 11 r, Π ←-Tally(PB, {s i }); 12 b ′ ←-A(r, Π); 13 if b ′ = b then return 1 else return 0; O voteLR (i, ν 0 , ν 1) 1 if i ̸ ∈ A and ν 0 , ν 1 ∈ V then 2 V 0 i ← (i, ν 0); 3 V 1 i ← (i, ν 1); 4 B ←-Vote pk (ν b , c i); 5 PB ←-PB||B; 6 return B; O cast (B) 1 if Valid(B, PB) then 2 PB ←-PB||B;
A second limitation is that this definition does not allow to model corrupted talliers or registrars, since the adversary is not activated during the corresponding phases. In general, the registrars are trusted as a group, and it is common in electronic voting to consider a perfect registration, as already discussed in Section 1.2.2. As for the talliers, the most popular trust assumption is that up to t talliers may be corrupted, while at least t+1 secret shares are necessary to recover the decryption key. For most tally protocols, the role of the talliers is very restricted and well understood, and a threshold decryption scheme or a decryption mixnet prevents a malicious tallier from learning anything else than the result. Therefore, it is also common in privacy definitions to consider a perfect tally.

While the aforementioned issues are interesting to mention, they are very common in electronic voting. A more significant limitation is that this definition does not cover every counting functions. For instance, suppose that there are two candidates, A and B, so that the voting options are V = {A, B}. In this setting, consider the majority counting function, with the possible results R = {A, B}, where A wins in case of an equality. Then the adversary can choose

V 0 = { {(1, A), (2, B)} } and V 1 = { {(1, A), (2, A)} },
which indeed have the same tally (A wins in both cases). However, when adding a ballot in favor of B, the adversary makes B win in the first case while A still wins in the other. Therefore, when the majority function is used, a voting system can never be Benaloh-private. In fact, the notion of Benaloh-privacy only makes sense when the counting function has the partial tally property, which is introduced in Section 1.1.2.

Four notions of privacy

Algorithm 1: Exp s-cons (λ, A)

1 pk, sk, (h i , s i) n T i=1 , Π ← Setup(λ, n T , t); 2 B ←-A(pk, Π); 3 PB ←-∅; 4 for B ∈ B do 5 if Valid(B, PB) = 1 then PB ← PB||B; 6 r, _ ←-Tally(PB, {s i }); 7 if r ̸ = tally((Extract sk (B)) B∈PB) then return 1 else return 0;
Algorithm 2: Exp s-corr (λ, A)

1 pk, sk, (h i , s i) n T i=1 , Π ← Setup(λ, n T , t); 2 id, ν, B ←-A(pk, Π); 3 if (id, ν) ̸ ∈ (I × V) then 4 return 0 5 PB ←-Π||B; 6 B ←-Vote pk (ν, id); 7 if Valid(B, PB) = 0 then return 1 else return 0;

Ballot privacy and ideal tally

When the counting function has partial tally, Benaloh's definition is perfectly suitable and easy to use; however, it does not apply to tally functions which do not have partial tally. In an effort to capture more attacks and to cover more cases, [BCG + 15b] gives a definition based on ballot privacy. Intuitively, a voting system is ballot private if no information about the voting options chosen by the honest voters can be inferred by observing and submitting ballots. Consequently, in a ballot private voting system, the only information that the adversary has is the result of the tally, which is considered unavoidable. To define ballot privacy more formally, we first introduce the notions of strong consistency and strong correctness, which describe two assumptions on the voting system. For this purpose, we use the conventions of [BCG + 15b], where the authors do not consider the registration phase: eligibility and authentication is considered to be taken care of in an independent way. Consequently, their voting process takes as arguments the voting option ν and the identity id instead of the voting option and the credential. (In general, the identityor alternatively an alias -can be a part of the credential.) Strong consistency. A voting system typically provides a Tally protocol that computes a result from the encrypted ballots. On the other hand, a counting function also computes a result, but directly from the voting options. Consequently, it is important to make sure that the Tally protocol actually outputs the same result as the tally function, when applied to the voting options chosen by the voters. This is called correctness. In [BCG + 15b], this is captured by the notion of strong consistency, defined in Definition 5. Compared to the natural notion of correctness, it is required that the Tally protocol is correct, even if the public board was created maliciously.

Definition 5. A voting system (Setup, Register, Vote, Check, Valid, Tally, Verify) for a result function tally : (I × V) * -→ R has strong consistency if there exists an Extract algorithm such that, for all key pair (pk, sk), for all (id, ν) ∈ (I ×V), Extract sk (Vote pk (ν, id)) = (id, ν). In addition, for all PPT adversary A, the probability that Exp s-cons (λ, A) = 1 is negligible in λ, where Exp s-cons is defined in Algorithm 1.

Strong correctness. Another desirable property, which we already used implicitly in Section 1.3.1, is that the Vote and Valid algorithms must be consistent. Namely, if a honest voter produces a ballot B using Vote, then Valid(B, PB) should output 1 independently of the public board. In [BCG + 15b], this is captured by strong correctness, defined in Definition 6. Definition 6. A voting system (Setup, Register, Vote, Check, Valid, Tally, Verify) for a result function tally : (I × V) * -→ R has strong correctness if, for all PPT adversary A, the probability that Exp s-corr (λ, A) = 1 is negligible in λ, where Exp s-cons is defined in Algorithm 2.

Ballot privacy. Strong correctness and strong consistency are two desirable properties that any voting system should verify. However, they tell nothing about privacy. This notion is captured by ballot privacy, given in Definition 7. This definition is based on the BPRIV game, depicted in Fig. 4, where the adversary has access to the oracles O voteLR , O cast , O board . The idea is that there are two concurrent public boards, PB 0 and PB 1 . Depending on the value of a random coin b, the adversary can only see one of them. O voteLR (id, ν 0 , ν 1) allows the adversary to have the voter id submit a ballot for the voting option ν 0 (resp. ν 1) in PB 0 (resp. PB 1); while O cast (B) allows the adversary to cast the ballot B in both boards. However, B must be valid with respect to the current board PB b . Note that this leads to a definition glitch, as the adversary may be able to insert invalid ballots in PB 0 when b = 1. For instance, consider a Tally protocol that aborts (i.e. returns r = ⊥ and Π = ∅) if there is an invalid ballot on the board, and suppose that the Valid algorithm checks that the first bit of the ballot is 0. If not, it checks whether the second bit of the ballot is equal to the XOR of all the bits on the board, and rejects the ballot if this is not the case (in addition, it performs the usual operations, such as verifying the ZKPs and weeding). Suppose that the Vote algorithm always result in ballots that begin with two zero bits, so that strong correctness is preserved. Then the adversary can use this algorithm to produce a valid ballot but replace the first bit by 1, and the second by the XOR of all the bits of PB b . With high probability, when b = 1, this ballot is valid in PB b but not in PB 0 , therefore causing the Tally protocol to abort. On the other hand, when b = 0, a valid ballot in PB b will not cause an abortion. A possible fix to this issue would be to check that the cast ballots are valid in both boards instead of just PB b . However, this needs a careful analysis of whether the remaining properties are preserved, so that we prefer to present the original version instead of the "fixed" one.

In ballot privacy, the goal of the adversary is to guess the value of b. Intuitively, this corresponds to distinguishing the case where the honest voters voted for two arbitrary sequences of voting options, that just have the same length and are no longer restricted to having the same partial tally. Since the result of the tally would a priori leak which distribution was used, we always give the adversary the result obtained from PB 0 . To express the fact that the Tally process itself could leak some information, we also demand that there exists a PPT simulator SimProof which is able to simulate the transcript of the tally. In general, the usual verifiability mechanism prevents the talliers from forging a fake tally, which means that SimProof must somehow subvert the verifications performed by the adversary. For this purpose, it is allowed to interact with it in the random oracle model (see Section 2.3.4 for more details about non-interactive zero-knowledge proofs). In addition, if we consider that the transcript of the tally contains some partial decryptions (which are not ZKP), the simulator must also simulate them, which means that it needs the secret shares of the corrupted talliers. (See for instance Theorem 1 to see how to simulate the partial decryptions in the specific case of a honestly generated ElGamal encryption.) In the original definition, the secret key is not shared between several talliers, so that there is a single tallier which is considered honest. We feel that this is a bit restrictive, as it is common in electronic voting to distribute the key among several authorities. Therefore, we took the liberty to modify the definition a bit: in Definition 7, there can be several trusties but they are all considered honest. A similar modification was done in [BPW12, Definition 5], in the specific case where the threshold t is equal to the number of talliers minus 1 (i.e. all the talliers need to collaborate in order to decrypt). The intuition behind this simulator which can magically recover the shares of the corrupted participants is that the transcript Π, output by Tally along with the result r, does not contain any useful information that can be exploited by the adversary. Indeed, the latter might have produced Π itself using SimProof. This paradigm is a fundamental notion in ZKP, which are the subject of Section 2.3.

Four notions of privacy

BPRIV(λ, A) 1 pk, sk, (h i , s i) n T i=1 , Π ←-Setup(λ, n T , t); 2 PB 0 ←-Π; PB 1 ←-Π; 3 b $ ←-{0, 1}; 4 A O voteLR ,Ocast,O board (pk); 5 r, Π 0 ←-Tally(PB 0 , {s i }); 6 Π 1 ←-SimProof(PB 1 , r); 7 b ′ ←-A(r, Π b); 8 if b = b ′ then return 1; 9 else return 0; O voteLR (id, ν 0 , ν 1) 1 B 0 ← Vote pk (ν 0 , id), B 1 ← Vote pk (ν 1 , id); 2 PB 0 ← PB 0 ||B 0 ; PB 1 ← PB 1 ||B 1 ; O cast (B) 1 if Valid(B, PB b) = 1 then 2 PB 0 ← PB 0 ||B; PB 1 ← PB 1 ||B; O board () 1 return PB b ;
Figure 4: Ballot privacy game Definition 7. A strongly consistent and strongly correct voting system (Setup, Register, Vote, Check, Valid, Tally, Verify) for a result function tally has ballot privacy if there exists an algorithm SimProof s.t. for all PPT A, the advantage | Pr(BPRIV(λ, A) = 1) -1/2| is negligible in λ.

Interestingly, remark that although we said that strong correctness and strong consistency were unrelated to privacy, they are actually required in Definition 7. Indeed, consider a "normal" tally function which returns the number of votes for each candidate, and a Tally protocol which has correctness (i.e. the output r, Π is such that r is the same as the output of tally when Tally is applied to honestly generated ballots) but not strong consistency. Then there is no guarantee about what the output of Tally should be when the board contains maliciously generated ballots. In particular, Tally could output a list of elements of the form (name : vote), which would intuitively break privacy. However, since the adversary only learns the tally of the left world (when b = 0), this does not help when it comes to attacking ballot privacy. For this reason, it is required that the voting system has strong consistency. Also, strong correctness is required to make sure that O voteLR does not result in any invalid ballot being added to a board.

Compared to Benaloh's definition, ballot privacy is not restricted to any specific result function. Although [BCG + 15b] does not consider the registration, it is possible to adapt their definition to add a registration phase and credentials. Another advantage of their definition is that, when it is verified, then the voting protocol is proven to be equivalent to an ideal functionality which returns the output of the result function, evaluated on the choices made by the voters. This result uses an universally composable framework, as the one presented in Section 3.3.

The notion of ballot privacy has a lot of advantages, but still implies some limitations. First, it is fairly difficult to understand, to use and to adapt. Second, it assumes a honest public board, as this is often the case in electronic voting (see [START_REF] Cortier | Fifty Shades of Ballot Privacy: Privacy against a Malicious Board[END_REF] for an attempt to define ballot privacy against a malicious board). However, the most prominent limitation is that it assumes a perfect tally, where the adversary is not activated. Nevertheless, for a result function with no partial tally, the usual strategies to compute the tally, namely homomorphic tally and mixnets, cannot be used. Therefore, the tally protocol could be complex and it is no longer justified to consider a perfect tally. Yet, in ballot privacy, the adversary must decide if a public board PB b is the real board or not. Since Tally requires the public board as an input, the adversary would trivially win the game if it could impersonate a tallier.

A quantitative definition of privacy

In most definitions of privacy, we abstract away the information given by the result of the election. For instance, Benaloh's definition asks for the two multisets V 0 and V 1 to yield the same partial result. As for ballot privacy, it states that the adversary has no more information than that of the result. However, the result itself can already contain a lot of information. As an example, if there are two new votes for a right-wing party after a couple arrived in a small left-wing village, then the villagers can deduce the political orientation of the couple. Consequently, a complementary approach to qualitative privacy is to quantify the actual level of privacy provided by a protocol. This is the approach of [START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF], which gives a generic framework for this purpose.

In their framework, the participants are modeled as interactive Turing machines (ITM), and the voting protocol as a whole is modeled as a concurrent execution of the participants. This is an extremely generic approach, which can be applied to any voting protocol, with any trust assumption, without any assumption on the counting function. For instance, this allows to properly take into account the presence of corrupted authorities or to introduce a malicious public board. The honest participants are merged into a single process e, which depends on a parameter -→ p that represents the probability for each voting option to be chosen. Concretely, if there are three voting options, -→ p is a vector of three positive reals whose sum is 1. (To simplify, we include abstention into the possible voting options.) If a voting protocol is the description of all the honest participants as ITM, then e can be seen as a subset of the protocol which determines the honest participants in an instantiation of the protocol. In addition to the honest participants (which can include the voters, the talliers, the registrars or any additional authority), there is one specific voter (say, Alice) which is not corrupted but not included in e; instead, she is considered under observation. For a given voting option ν, we use the notation π v (ν) to denote Alice's algorithm (which is the same as the other honest voters, except that she always chooses the option ν). In [START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF], the goal of the adversary is to guess Alice's behavior. In this paper, the adversary (denoted π o) is an arbitrary process which can impersonate the participants other than Alice and the honest ones. As such, the adversary can deviate from the protocol. With these notations, the execution of a voting protocol is denoted π o ||π v (ν)||e, where || stands for the concurrent execution. For such an execution, we only consider the output of the adversary. When the latter is 1, we use the notation π o ||π v (ν)||e → 1. We are now ready to give Definition 8, extracted from [START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF].

Definition 8. Let P be a voting protocol, π v ∈ P a voter under observation and e ⊂ (P \{π v }) a set of honest participants. For δ ∈ [0, 1], we say that e achieves δ-privacy if, for all PPT adversary π o , for all voting options ν 0 , ν 1 , the difference

| Pr(π o ||π v (ν 0)||e → 1) -Pr(π o ||π v (ν 1)||e → 1)| is δ-bounded.
A first remark is that δ-privacy is defined with respect to a set e of honest participants. If one wants the privacy level of a given protocol under a specific set of trust assumptions, one should find a δ such that, for any e compatible with the trust assumptions, e achieves δ-privacy. This is tedious, as finding one relevant δ for a specific e is already difficult. Another remark is that, even though this definition is very generic, it restricts privacy to guessing how a specific voter voted, which is simplistic compared to the other definitions presented in this section. Finally, it only gives a quantitative definition of privacy, which does not include a comprehensive way to determine which value of δ is acceptable or not. Consequently, this gives a complementary approach rather than a concurrent one.

Four notions of privacy

Our approach: comparing a real and an ideal process

In this thesis, we analyze the security of electronic voting systems which rely on complex tally protocols. Hence, it is natural to use a notion of privacy that captures the possibility of corrupted talliers, which is not possible in most existing game-based definitions (such as those presented in Sections 1.3.1 and 1.3.2). An alternative is to use the approach of [START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF], presented in Section 1.3.3. However, while being able to quantify privacy is certainly of interest, we prefer to give a qualitative definition which allows deciding whether a given protocol provides privacy or not. In addition, describing the participants as ITMs is not a common practice in electronic voting. Rather, a protocol is given for each phase. For this reason, we propose another approach, which is closer to the usual game-based definitions. The idea is to compare the privacy level of a voting system to that granted by an ideal functionality which collects the choices of the voters (including the corrupted ones), evaluates the tally function and returns the result to the adversary. To define the level of privacy, we used the idea of [START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF]: the privacy level of a protocol is given by the infimum of the δs for which the protocol provides δ-privacy.

To use this approach, we need to design two games to define the privacy of a voting protocol. The first one, the ideal game, presents our model of privacy: it describes the winning conditions of the adversary and the information it has access to. For instance, the adversary may know the probability distribution for the voting options and learn the result of the election. In addition, it may also learn the number of ballots cast, which can be deduced from the public board. This is all modeled in the ideal game, which should remain as simple as possible. A not-quite-so-simple example is given in Algorithm 4, where the adversary tries to guess Alice's vote as in [START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF]. Alice is modeled as the voter j, while the corrupted voters are modeled by the set A. In this ideal game, we consider a fixed set [1, n C] of valid voting options (excluding abstention), and a family of distributions B. For all set of aliases I and all number of possible voting options n C , B(I, n C) is a random variable over (I × V) * , with V = [1, n C]. Intuitively, the probability distribution of B(I, n C) represents the probability that each possible sequence is chosen by the honest voters, whose aliases are described in I. Since we only consider the finite sequences, there is a countable number of possible outcomes so that we are still in the domain of discrete probabilities. We assume that the adversary knows a perfect description of B, which is a generalization of the assumptions made in [START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF] where the distribution -→ p is known. This generalization may seem abusive since the adversary should only be able to handle information of polynomial size, while a full description of B would technically require a countably infinite bitsize. To fix ideas, the reader can consider that for each (I, n C), there are only a finite number of sequences that can be chosen with a non-zero probability, which solves this technical issue. Remark that in the ideal game, we do not let the adversary choose the number of voters n. This is because the ideal game is to be compared to a real game, where the adversary cannot choose n lest it would always make the most advantageous choice. Consequently, we ask that the probability to win in the real game should be the same as in the ideal game, this for all possible parameters (including n and B). Another remark is that in the ideal game, the adversary is given the sequence I of the identity of the honest voters. This is because we consider that the votes are not cast anonymously; however, it is possible to adapt the definition to consider an ideal game where the votes are cast anonymously: in this case, the adversary is given |B| instead of I, where |B| is the number of ballots cast by a honest voter.

Once the ideal game is defined, we need to design the real game, which should be as close as possible to the real protocol. The description of the real game factors the trust assumptions, the assumptions on the communication channels and, of course, the notion of privacy (which should be the same as in the ideal game). In this thesis, we used the game defined in Algorithm 3,

Algorithm 3: Real Priv Requires: λ, n T , C t , n, n A , n C , B, A 1 pk, sk, (h i , s i) n T i=1 , Π S ← Setup(λ, n T , t); 2 (c i , π i), Π R ←-Register(pk, n); 3 PB ←-Π S ||Π R ; 4 A ←-A(pk, PB, {s i | i ∈ C t }); 5 j, ν 0 , ν 1 ←-A({c i | i ∈ A}); 6 (* chooses the voter to observe *); 7 if |A| ̸ = n A ∨ j ̸ ∈ [1, n]\A then 8 return 0; 9 B $ ←-B([1, n]\A, n C); 10 for (i, ν i) ∈ B do 11 A Ocast (i, PB); 12 PB ←-PB||Vote pk (ν i , c i);
13 A Ocast (i, PB, "end for");

14 b $ ←-{0, 1}; 15 PB ←-PB||Vote pk (ν b , c j); 16 A Ocast (PB); 17 r, Π ←-Tally A (PB, {s i }); 18 b ′ ←-A(); 19 if ν 0 , ν 1 ∈ [1, n C] ∧ b ′ == b then return 1 else return 0; Algorithm 4: Ideal Priv Requires: λ, n T , C t , n, n A , n C , B, A 1 ; 2 ; 3 ; 4 A ←-A(λ); 5 j, ν 0 , ν 1 ←-A(); 6 (* chooses the voter to observe *); 7 if |A| ̸ = n A ∨ j ̸ ∈ [1, n]\A then 8 return 0; 9 B $ ←-B([1, n]\(A {j}), n C); 10 (ν) i∈A ←-A(I); 11 B ←-B||(i, ν i) i∈A,ν i ∈[1,n C] ; 12 ; 13 ; 14 b $ ←-{0, 1}; 15 B ←-B||(j, ν b); 16 ; 17 r ←-tally(B); 18 b ′ ←-A(r); 19 if ν 0 , ν 1 ∈ [1, n C] ∧ b ′ == b then
return 1 else return 0; which can be read as follows. First, the setup and the registration take place in an ideal way. As discussed previously, this is a common abstraction which can be enforced with DKG protocols. However, to take into account the possibility of a static corruption of up to t talliers, where t is the threshold, we give the secret shares of the corrupted talliers to the adversary at line 4. Since we consider static corruption (and not dynamic corruption), we consider that the set C t of the corrupted talliers is fixed in advance, as a parameter of the privacy experiment. Afterwards, the adversary must corrupt exactly n A voters and chooses a voter under observation j. For this voter, it also chooses two possible voting options, ν 0 and ν 1 . Then the honest voters vote according to a distribution B and, thanks to an oracle access to O cast , we let the adversary freely insert any number of ballots between two ballots cast by a honest voter, provided that the ballots are valid. To model the fact that the ballots are not sent anonymously, we give away the identity of the voter to the adversary at line 12. Also, to express that the voter under observation could revote a certain number of times, we include j as a possible identity for the honest voters at line 9. Then the voter under observation (re)votes with either ν 0 or ν 1 and the adversary is given a last opportunity to cast ballots; after this, the tally is computed with the Tally protocol, during which the adversary can impersonate the corrupted talliers. To emphasize the fact that the adversary is active during the tally phase, we use the notation Tally A . Finally, the adversary must guess whether ν 0 or ν 1 was chosen.

Four notions of privacy

Once the two games are defined, we define privacy by comparing the probability that the adversary wins in both games. If the difference is non-negligible, it means that the cryptographic protocol gave the adversary some information to exploit. On the other hand, if the difference is negligible, then the adversary has no more information than in the ideal game, and we say that the protocol is private. A critical point to understand is that we require the difference to be negligible for all B. For some distribution (e.g., when all the voters choose the same option), there may be no privacy at all; for others, it may be more difficult to determine Alice's vote; in any case, the privacy level of the real game should be the same as the one in the ideal game. Definition 9. A voting system (Setup, Register, Vote, Check, Valid, Tally, Verify) for a result function tally guarantees vote privacy if, for all parameters n T , t, n, n A , n C with t < a and n A ≤ n, for all subset C ⊂ [1, n T] of size at most t, for all familly of distributions B and for all PPT adversary A, there exists a PPT adversary B and a negligible function µ such that

| Pr(Real Priv (λ, n T , C t , n, n A , n C , B, A) = 1)-Pr(Ideal Priv (λ, n T , C t , n, n A , n C , B, B) = 1)| ≤ µ(λ).

Encountering a new definition: the survival manual

Numerous definitions of privacy can be found in the literature. Indeed, when one wants to prove the privacy of a specific voting protocol, one may encounter several difficulties in adapting the existing definitions to the specificities of their protocol. Typically, we defined a voting system as a tuple (Setup, Register, Vote, Check, Valid, Tally, Verify), where Setup is assumed to use a secret sharing scheme. However, other authors may want to abstract away registration; to divide the Check algorithm into two (one for the cast-as-intended verification, the other for the recordedas-cast verification); to have the voters perform checks in several steps (for instance, by the use of return codes); or to see the voting protocol as a more interactive process, which may lead to several intermediate values being added to the board or exchanged through potentially unsecure channels. Another example is coercion-resistance, which is the subject of Part III: in this setting, we usually require an additional algorithm to produce a fake credential. In addition, a protocol may want to specify the exact role of the server, and have several processes that can be run in interaction with it, such as voter authentication. Therefore, it is common to design one's own definition of privacy. Conversely, a definition of privacy is often to be understood in a protocol's context, and, although there might be similarities, it is difficult to come up with a generic definition that is actually usable. Therefore, it is important to have a good methodology for encountering a new definition.

The most important thing to understand is what is actually being modeled. If this information is not given by the authors, the reader should try to find out what the adversary must do to break privacy, as defined in the definition. For this purpose, the comparison to existing definitions may be useful. In Benaloh's definition, the adversary must distinguish two distributions V 0 and V 1 , with the restriction that they must have the same partial tally; in ballot privacy, the adversary must distinguish any two distributions of the same size; in Definition 9, the adversary tries to guess whether a specific voter votes for the option ν 0 or the option ν 1 . If the adversary's goal does not intuitively match breaking privacy, or seems too simplistic compared to existing definitions, it is possible that the definition is not relevant or too restrictive. For instance, Definition 9 gives a less refined notion of privacy compared to Benaloh's definition or ballot privacy. However, it is similar to the existing definition of [START_REF] Küsters | Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study[END_REF].

Understanding the model also means understanding the inlined assumptions and abstractions, and whether they allow modeling the desired trust assumptions. Ideally, this should be discussed by the authors, but it is important to verify that nothing was omitted. In ballot privacy, the public board and the talliers are honest, the ballots are automatically added to the board and the server is completely abstracted away. Also, registration is not considered, which means that additional verifications must be done to ensure eligibility, otherwise privacy may be lost. Clearly, this deviates from the desired trust assumptions where the server is malicious while some registrars and up to a threshold of talliers may be corrupted. This is quite common in the literature and we gave some justifications in Section 1.3.1.

Once the abstractions and simplifications are clear, the reader can compare them to usual abstractions, see how they are justified and look for attacks that are prevented due to those abstractions. In Definition 9, we have the same abstractions as in ballot privacy, except that this definition considers corrupted talliers during the tally phase. In particular, we do not let the adversary drop any ballot, which certainly prevents some attacks. Clearly, a server that drops all but Alice's ballot will deduce Alice's choice from the result of the tally, but such an attack would be prevented by the individual privacy mechanism. Nevertheless, other attacks may be possible, depending on the protocol. As an example, consider the Helios voting system, and assume that Alice casts the ballot B. Suppose that the server drops this ballot, but that Alice detects it because individual verifiability is enforced. At this point, Alice will most likely revote with another ballot that encrypts the same voting option. Indeed, she has no reason to change her mind and the incident may have been caused by a network issue. Before that, however, the server can submit B using a corrupted voter (so that this attack is still possible when eligibility is enforced). At this point, B is valid and added to the board, so that the server successfully performed a replay attack on Alice's ballot. This specific attack can easily be prevented by making the couple (id, B) non-malleable (see Section 2.3 for more details), but this is not the case in Helios. A similar attack against Belenios is described in [START_REF] Baloglu | Provably Improving Election Verifiability in Belenios[END_REF], where the adversary is able to swap two revotes of the same voter, hence breaking individual verifiability. This illustrates that some attacks may be missed because of the definition. To detect them, the reader may try all known attacks, such as replay attacks or clash attacks, and try to push the trust assumptions to the limits by considering a malicious server, some corrupted registrars and voters, and up to a threshold of talliers that collude to learn Alice's choice. Finally, an interesting exercise to gain confidence about a definition is to look for systems that do and do not verify it. The reader may use their own home-made systems, or known voting systems, to see if they are private with respect to the considered definition.

To close this discussion, we comment on Definition 9, that we used in this thesis. We did not use Benaloh's definition because we consider several counting functions which did not have partial tally (see Part II), and we did not use ballot privacy either because we wanted to allow the adversary to impersonate the talliers during the tally phase. For these reasons, we came up with Definition 9. In hindsight, this definition is more complex than ballot privacy and more restrictive than Benaloh's definition, so that it is far from being ideal. Creating a simple and comprehensive definition of privacy that can apply to any counting function while still allowing to take into account the corruption of up to a threshold of talliers would be an interesting future work.

Chapter 2

Cryptography in electronic voting

The main difficulty in electronic voting is to provide privacy and verifiability simultaneously. For this purpose, electronic voting protocols rely a lot on public key cryptography, especially on homomorphic encryption and zero knowledge proofs. To better understand the remaining of this thesis, it is necessary to have a look at the main cryptographic primitives used.

Computational assumptions in electronic voting

Algebraic notations for cryptography

In public key cryptography, it is common to use algebraic structures, such as rings or groups. Technically, a group is a tuple (G, •) while a ring is a tuple (R, +, ×); however, it is common to drop the composition laws when denoting a group or a ring. In this thesis, the only rings that we consider are the ring of the integers Z and, for n > 1, the finite ring Z n of the integers modulo n. For a ring R, the multiplicative group of its invertible elements is denoted R × . The monoid of the non-negative integers is denoted N. For groups, we consider generic finite abelian groups (for instance, elliptic curves). Although the convention for elliptic curves is to use an additive notation, we use a multiplicative notation for all groups (the additive notation is only used for ring elements). Now, each group G has a structure of Z-module: for any integer n ∈ Z and a ∈ G, a n is obtained by composing n times the neutral element 1 with a (if n < 0, a n = 1/a -n). This is called an exponentiation. In particular, a 0 = 1. (In some specific cases where there could be an ambiguity, we use the notation 1 G to denote the neutral element.) As we only consider finite groups, this Z-module is actually a Z q -module, where q is the order of the group. In this case, for any two integers a, b ∈ Z such that b is coprime with q, there exists an element c ∈ Z such that a = bc modulo q. Hence, for any g ∈ G, g a/b can be defined as g c . In this thesis, we usually consider cyclic groups of prime order, so that Z q is a field and any non-neutral element is a generator. Given the above remark, it follows that such groups have the structure of a vector space over Z q .

The decisional Diffie-Hellman assumption

As soon as one sees a vector space, one naturally wants to use the known effective results from linear algebra. This is not possible because of the discrete logarithm problem. The latter consists, given two group elements g, h ∈ G, to find an integer n such that g n = h. This problem is easy in (Z q , +) (where what we denoted an exponentiation is actually a regular multiplication), and can be solved thanks to the extended Euclidean algorithm. However, it is hard in general. Two related problems are the computational Diffie-Hellman and the decisional Diffie-Hellman (DDH) problems. Given g, g a and g b , the first problem is to compute g ab , and the second requires to distinguish it from a random group element. In other words, given two vectors (g 1 , g 2) and (g 3 , g 4) in the vector space G 2 , the DDH problem is to decide whether they are collinear or not. When this is the case, we say that (g 1 , g 2 , g 3 , g 4) is a DDH tuple. Clearly, the discrete logarithm problem is harder than the computational Diffie-Hellman problem, which is harder than DDH. Nevertheless, the DDH problem is widely considered hard in computer science: it is known to require an exponentially large number of group operations in a generic group (see [START_REF] Shoup | Lower bounds for discrete logarithms and related problems[END_REF]), and there is currently no other algorithm than generic algorithms (e.g., Pollard's rho) for well chosen elliptic curves.

Given the hardness of the DDH problem in practice, one standard computational assumption in cryptography is the DDH assumption, which can be formalized as follows. Let G be a process that, given a security parameter λ, generates a group G (typically, the order of G is exponential in λ). We suppose that this group and its elements can be efficiently represented (i.e. using a number of bits which is polynomial in λ) and that its composition law, the group inversion (i.e. computing the inverse g -1 of a group element g) and the random sampling are efficiently computable (i.e. with polynomial-time algorithms). For instance, G can output an elliptic curve, or a subgroup of the invertible elements of Z n . The DDH assumption on G states that, for all PPT adversary A, A wins the DDH game (see Algorithm 5) with a negligible advantage. In the DDH game, A gets a tuple (g 1 , g 2 , g 3 , g 4) which is either perfectly uniform (b = 0) or a random DDH tuple (b = 1). Given this tuple, A must deduce b.

Although the DDH problem is hard in general, it does not mean that it is hard for just any G. For instance, suppose that for all λ, the order of G(λ) has a non-trivial factorization n = pq with a polynomial p. Then, with probability 1/p the elements g 1 and g 3 of a DDH tuple will be of order q while this only happens with probability 1/p 2 for a random tuple. In this case, computing g q 1 and g q 3 leads to a polynomial-time distinguisher that wins the DDH game with a non-negligible advantage. For this reason, we generally consider groups of prime order. The DDH assumption is the main computational assumption that we consider in this thesis.

Algorithm 5: DDH(G, λ, A)

1 G, q ←-G(λ) (* q is the order of the group *);

2 g 1 $ ←-G; 3 a, b, c $ ←-Z q ; 4 g 2 ← g a ; g 3 ← g b ; g 4 ← g c ; 5 b $ ←-{0, 1}; 6 if b = 1 then g 4 ←-g ab ; 7 b ′ ←-A(g 1 , g 2 , g 3 , g 4); 8 if b = b ′ then return 1 else return 0;

The random oracle model

Apart from the DDH assumption, we also use an abstract model known as the programmable random oracle model (ROM). A random oracle is an oracle O RO that, given a query m, returns a perfectly random bitstring of fixed size (typically, 2λ, where λ is the security parameter).

Computational assumptions in electronic voting

However, if the query m was made previously, the oracle gives the same output as before (see Algorithm 6). This allows to model the unpredictable nature of a hash function, whose outputs can only be known by actually computing the hash. In the ROM, we give the adversary an oracle access to O RO and, for any verification based on a result of a hash function, we use the output of the random oracle instead. For instance, consider the game illustrated in Fig. 6, where Bob tries to guess a random bit chosen by Alice. Bob does not trust Alice; hence, if he loses, he wants her to provide a proof that her bit is actually different from his guess. Consequently, Alice must first send a commitment on this bit, denoted h. For this purpose, she generates λ -1 additional random bits and forms the bitstring m, which is hashed into h, and sends that to Bob. Once Bob receives Alice's commitment, he sends her his guess and Alice has to reveal m. Bob then checks that h = hash(m). Finally, Bob wins if m begins with his guess (denoted g ⪯ m); otherwise, he loses. To model this game in the ROM and make sure that Alice cannot cheat, we can use Algorithm 7. In this game, Alice is modeled by the adversary A, but the hash function is replaced by the random oracle. For this purpose, we give to Alice an access to the oracle O RO and we check that h is the output of this oracle, when applied to m. In this model, it is possible to show that Alice cannot cheat, i.e. that she cannot win with a non-negligible advantage. For this purpose, we consider three possibilities.

Case 1. The first possibility is that, during her first activation, Alice did not make a query to O RO which was answered by h. We denote α 1 the probability of this. In this case, during the second activation, each query to O RO has a probability of at most 1/2 2λ to be answered with h, so the condition O RO (m) = h happens with probability ε prei ≤ q/2 2λ , where q is the number of oracle queries. We denote β 1 the probability that Alice wins if O RO (m) = h in Case 1.

Case 2. The second possibility is that, during her first activation, Alice made at least two different queries m 1 ̸ = m 2 which were both answered with h. This is called a collision, which happens with probability

α 2 ≤ 1 -q-1 i=0 (1 -i/2 2λ). Since q = o(2 2λ
), this probability is equal to approximately q(q-1) 2 2λ+1 , which is why we consider that we need q ≈ 2 λ hash queries to obtain a collision: this is the birthday paradox. We denote β 2 the probability that Alice wins in Case 2.

Case 3. The last possibility is that, during her first activation, Alice made a single query m ′ which was answered with h. Then, since g is chosen at random, g ⪯ m ′ with probability 1/2. Therefore, if Alice wants to win with some advantage, she must find a second preimage m of h, which happens with probability ε snd-prei ≤ q/2 2λ . We denote α 3 the probability of Case 3, and β 3 the probability that Alice wins if she finds a second preimage in Case 3.

Conclusion. Now, the three cases are mutually exclusive and cover all the possibilities, Alice Bob

m $ ←-{0, 1} λ ; h ←-hash(m) h g ∈ {0, 1} m g ? ⪯ m h ? = hash(m)
Figure 6: Guess coin game Algorithm 7: Bob(λ, A)

1 h ←-A O RO (λ); 2 g $ ←-{0, 1}; b $ ←-{0, 1}; 3 m ←-A O RO (g); 4 if O RO (m) ̸ = h then return b; 5 if g ⪯ m then return 0 else return 1; therefore Alice's global probability to win is p = α 1 1 2 (1 -ε prei) + β 1 ε prei + α 2 β 2 + α 3 1 2 (1 -ε snd-prei) + β 3 ε snd-prei . Since α 1 + α 2 + α 3 = 1, Alice advantage is p - 1 2 = α 1 β 1 - 1 2 ε prei + α 2 β 2 - 1 2 + α 3 β 3 - 1 2 ε snd-prei ≤ 1 2 ε prei + 1 2 α 2 + 1 2 ε snd-prei ≤ q 2 2λ + q 2 2 2λ+2 .
The above example shows that the ROM captures the three main properties of a hash function: first preimages, second preimages and collisions should be hard to find. Actually, the ROM is even stronger than that. Indeed, consider an adversary A in the ROM. Then we can construct an adversary B which interacts with A by simulating the random oracle (hence the programmable adjective). Indeed, since A can only make black-box queries to O RO , this can be modeled as A (seen as a PPT) writing a bitstring query in a specific tape, and reading the answer in some other tape. Consequently, we can make the following assumptions:

• B can read the hash queries made by A;

• therefore, B can recover the preimages of a hash output by A;

• B can choose the output of the oracle, provided it is uniformly distributed for all the new queries, and remains the same if the query is made several times.

The last assumption allows B to give trapdoored hash values to A. For instance, suppose that every bitstring encodes a public key. Then, instead of generating random bitstring as expected, B can generate a random secret key and deduce the corresponding public key. Therefore, B will know the secret keys associated to the hash values produced by A. Compared to what is expected from a hash function, the ROM can be considered too strong. More precisely, since any hash function can be implemented by an efficient explicit algorithm, the notion of "random oracle" cannot be instantiated. Worse, an uncomfortable consequence is that some schemes can be proven secure in the ROM while being completely insecure in the standard model (see for instance [START_REF] Buus | Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing Encryption Case[END_REF][START_REF] Canetti | The random oracle methodology, revisited[END_REF]). Consequently, some authors prefer to only rely on the properties of the hash function (i.e. collision resistance), and to use another assumption, known as the common reference string (CRS) instead of the ROM. Although the CRS assumption is more sensible than the ROM, the corresponding primitives are usually less efficient. Consequently, it is extremely common to use the ROM in electronic voting.

Encrypting a ballot to preserve privacy

In electronic voting, an encryption scheme is used to preserve the privacy of the voters. Since we want every voter to be able to encrypt their choice, while none should be able to decrypt the ballot of the others, we use a public key encryption scheme. Also, since we do not want a single authority to be able to recover the secret key and decrypt the ballots, we use a secret sharing scheme and rely on threshold cryptography.

Public key encryption

In public key cryptography, a single person has a secret key sk while a public key pk can be revealed to anyone. When it comes to encryption schemes, sk allows to decrypt and pk allows to encrypt. More formally, given a security parameter λ, let S(λ) be the set of the secret keys and P(λ) be the set of the public keys. Also, we denote P(λ) the set of the plaintexts, R(λ) the set of the randomness and C (λ) the set of the ciphertexts. A public key encryption scheme is a tuple (Gen, Enc, Dec) such that • For all pk ∈ P(λ), there exists sk ∈ S(λ) such that, for all (m, r) ∈ P(λ) × R(λ), Dec sk (Enc pk (m, r)) = m. Such a pair (pk, sk) is called a key pair.

• Gen(λ) is a non-deterministic polynomial algorithm that outputs a random key pair (pk, sk).

The encryption algorithm allows to encrypt a plaintext message into a ciphertext, using some randomness. The idea is that a ciphertext should be indistinguishable from a random element of C , which is captured by the IND-CPA property (given in Definition 10). This property stands for indistinguishability under chosen plaintext attacks. It means that for two chosen messages m 0 , m 1 , the adversary cannot tell an encryption of m 0 from an encryption of m 1 . Definition 10. An encryption scheme (Gen, Enc, Dec) is IND-CPA secure if, for all PPT adversary A, A wins the IND-CPA game (defined in Algorithm 8) with a negligible probability.

Algorithm 8: IND-CPA(λ, A) 1 pk, sk ←-Gen(λ); 2 m 0 , m 1 ←-A(pk); 3 b $ ←-{0, 1}; 4 r $ ←-R; 5 C ←-Enc pk (m b , r); 6 b ′ ←-A(C); 7 if b = b ′ then return 1 else return 0; Algorithm 9: Exp ind-cpa (λ, A) 1 pk, sk ←-Gen(λ); 2 m ←-A(pk); 3 b $ ←-{0, 1}; 4 r $ ←-R; 5 C 1 ←-Enc pk (m, r); C 0 $ ←-C ; 6 b ′ ←-A(C b); 7 if b = b ′ then return 1 else return 0;
To illustrate that the notion of IND-CPA security indeed captures that the ciphertexts are indistinguishable from random ciphertexts, we also give Algorithm 9 which is another formulation of the IND-CPA game. Suppose that there exists an adversary A which wins Exp ind-cpa with some probability p. Then we construct an adversary B for the IND-CPA game as follows. First, B gets pk from the game and forwards it to A which answers with some m. Then B must output m 0 , m 1 in the IND-CPA game. For this purpose, it samples m 0 at random and sets m 1 = m. It is given a ciphertext C which it forwards to A. Finally, B plays A's output in the IND-CPA game. Clearly, B also wins with probability p. Conversely, suppose that there exists an adversary A which wins the IND-CPA game with some probability p. We construct an adversary B for Exp ind-cpa as follows. Just as in the previous reduction, B gets pk from the game and forwards it to A. However, A now returns two plaintexts m 0 , m 1 and B can only play one of them in Exp ind-cpa . Consequently, B flips a coin c ∈ {0, 1} and play m c in Exp ind-cpa to get an encryption C. B forwards C to A which answers with b ′ . If b ′ = c, B returns 1; otherwise, it returns 0. Now, suppose that B got a random encryption of m c (b = 1 in Exp ind-cpa). Then B played a perfect simulation of the IND-CPA game to A, and therefore wins with the same probability p as A. On the other hand, if B got a random element C ∈ C (b = 0 in Exp ind-cpa), A's view (i.e. pk, C) is perfectly independent from c, so that b ′ = c with probability 1/2. Hence, B also wins with probability 1/2. Now, since both situation are equiprobable, it follows that B wins with probability 1/2(p + 1/2), which gives the advantage 1/2|p -1/2| = ε/2, where ε is A's advantage in the IND-CPA game. This shows that both games are indeed equivalent.

The IND-CPA security is the minimal property that an encryption scheme must provide. However, it is not sufficient in electronic voting. Indeed, suppose that a public-key encryption scheme allows anyone, given an encryption C of some plaintext m, to forge an encryption C ′ ̸ = C for a (possibly unknown) plaintext m ′ which is somehow related to m (for instance, m ′ = m). Such an encryption scheme would allow the adversary to launch a replay attack, which would break privacy (see Section 1.1.4).

A more suitable notion of security for electronic voting is the stronger notion of NM-CPA security, which stands for non-malleability under chosen plaintext attacks. Intuitively, this property means that, given an encryption C ⋆ of m 1 , one cannot produce an encryption C ′ ̸ = C ⋆ whose plaintext m ′ is related to m 1 . To model a chosen plaintext attack, in this context, it is usual to ask the adversary to choose the possibilities for the plaintext m 1 , which are represented by the set M at line 2 of the NM-CPA game (see Algorithm 10). Alternatively, M can also be seen a polynomial-time sampling (probabilisic) algorithm. From this set, the challenger randomly samples an element m 1 for which it produces an encryption C ⋆ . Then, to capture the fact that the relationship between m 1 and m ′ could be any efficiently decidable relation R, we let the adversary choose R at line 6. It must also output a list of ciphertexts C which contains a ciphertext C ′ ̸ = C ⋆ such that R(m 1 , m ′) is more likely to be verified than R(m 0 , m ′), where m ′ = Dec sk (C ′) while m 0 is a random element in M . This gives Definition 11, which is adapted from [START_REF] Bellare | Relations Among Notions of Security for Public-Key Encryption Schemes[END_REF].

Definition 11. An encryption scheme (Gen, Enc, Dec) is NM-CPA secure if, for all PPT adversary A, A wins the NM-CPA game (defined in Algorithm 10) with a negligible advantage.

A related but not equivalent security notion is the indistinguishability under adaptive chosen ciphertext attacks (IND-CCA), which can be formalized in the IND-CCA game (see Algorithm 11). In this game, the adversary has access to a decryption oracle O Dec when it chooses the plaintexts, and can also make queries to a decryption oracle O Dec ⋆ when making its guess (however, O Dec ⋆ cannot decrypt the challenge ciphertext C ⋆). In [START_REF] Bellare | Relations Among Notions of Security for Public-Key Encryption Schemes[END_REF], IND-CCA is proven to be

Encrypting a ballot to preserve privacy

Algorithm 10: Exp nm-cpa (λ, A)

1 pk, sk ←-Gen(λ); 2 M ←-A(pk);

3 m 0 , m 1 $ ←-M ; 4 r $ ←-R; 5 C ⋆ ←-Enc pk (m 1 , r); 6 R, C ←-A(C ⋆); 7 m ←-(Dec sk (C)) C∈C\C ⋆ ; 8 b $ ←-{0, 1}; 9 if ∃m ∈ m | R(m b , m) then return 1 10 else return 0; Algorithm 11: Exp ind-cca (λ, A) 1 pk, sk ←-Gen(λ); 2 m 0 , m 1 ←-A O Dec (pk); 3 b $ ←-{0, 1}; 4 r $ ←-R; 5 C ⋆ ←-Enc pk (m b , r); 6 b ′ ←-A O Dec ⋆ (C ⋆); 7 if b = b ′ then return 1 8 else return 0;
strictly stronger than NM-CPA. Therefore, the IND-CCA security is also suitable for electronic voting, although NM-CPA is enough.

The ElGamal encryption scheme

One very popular encryption scheme is the ElGamal cryptosystem. To present it, we consider that the process G , which generates a group description from a security parameter, is fixed. If G is a group which can be output by G (λ) for some λ, we use the notation G ∈ G . In this section, for all G ∈ G , we consider that G is a cyclic group of (publicly) known prime order q, which is at least exponential in λ. For instance, q ≈ 2 2λ in the case of elliptic curves. With that in mind, the plaintext space is P = G, the randomness space is R = Z q and the ciphertext space is C = G × G. Then, the three algorithms of the ElGamal encryption scheme are defined as follows, where G = G (λ).

Gen(λ) picks a random group generator g ∈ G\{1} and a random secret key sk ∈ Z q . Then, the public encryption key is given by the pair pk = (g, g sk).

Enc pk (m, r) : to encrypt a plaintext m ∈ G with the public key pk = (g, h), we pick a random r ∈ Z q and we compute (x, y) = (g r , mh r). The pair (x, y) is the ciphertext Enc pk (m, r).

Dec sk (C) : to decrypt a ciphertext C = (x, y), we return m = yx -sk .

The ElGamal encryption scheme is known to provide IND-CPA security under the DDH assumption on G . Indeed, suppose that there exists an adversary A which wins the IND-CPA game with probability p. We construct an adversary B for the DDH game as follows. First, B receives a challenge tuple (g 1 , g 2 , g 3 , g 4) ∈ G. If g 1 = 1 (this happens with probability 1/q), B can easily decide whether (g 1 , g 2 , g 3 , g 4) is a DDH tuple or not, so that it wins with probability 1. Otherwise, (g 1 , g 2) has the same distribution as an output of Gen, therefore B can forward this to A as the pair pk. The latter answers with some m 0 , m 1 ∈ G. B flips a coin c ∈ {0, 1} at random and compute the ciphertext C = (g 3 , m c g 4) which it gives to A. Finally, if A outputs c, B outputs 1; otherwise, B outputs 0. Now, remark that when the challenge is a random tuple, A's view (i.e. (g 1 , g 2 , g 3 , m c g 4)) is perfectly uniform in G 4 and therefore independent from c. Therefore, A outputs c with probability 1/2 and B wins with probability 1/2. On the other hand, if the challenge is a DDH tuple, (g 3 , m c g 4) follows the same distribution as an ElGamal encryption of m c with the public key (g 1 , g 2), therefore B played a perfect simulation of the IND-CPA game to A and wins with probability p. Overall, when g 1 ̸ = 1, B wins with probability 1/2(p + 1/2).

Since g 1 = 1 with probability 1/q, B's probability to win the DDH game is

1 q + 1 2 1 - 1 q p + 1 2 = 1 2 p + 1 2 + 3 -2p 4q = 1 2 + 1 2 p - 1 2 + 3 -2p 4q .
Since q is exponential in λ while p ∈ [0, 1], this means that B's advantage in the DDH game is about half A's advantage in the IND-CPA game. Conversely, if there exists an adversary A for the DDH game, we can easily construct an adversary which wins Exp ind-cpa with the same probability. Therefore, the IND-CPA security of the ElGamal encryption scheme is equivalent to the DDH assumption on G . Now, we mention that, in general, this equivalence requires that the generator g from the public key pk = (g, h) is chosen at random: we explicitly used this in the security reduction. For instance, assume that there is a non-trivial subgroup H ⊂ G for which there is an efficient membership test, and that g is chosen in H. Then an encryption (x, y) of m ∈ H will always have y ∈ H while an encryption of m ̸ ∈ H will never have y ̸ ∈ H. In this case, the encryption scheme is not IND-CPA, even if the DDH problem is hard in G. In practice, it is common to use a fixed g for convenience, since a group description usually comes with a fixed generator. In this case, an alternative definition of DDH is used, where g 1 is the fixed generator output by G instead of a random group element. In theory, this is a strictly stronger assumption, even when the order of the group is a known prime number (see [START_REF] Bartusek | The Distinction Between Fixed and Random Generators in Group-Based Assumptions[END_REF] for an analysis in the generic group model). In practice, although using a random generator may protect against intensive precomputations, using a fixed generator is the norm and is not considered less secure.

Homomorphic property. Apart from its strong semantic security, the ElGamal cryptosystem has another interesting property: it actually realizes a group isomorphism from G × Z q to G × G. Consequently, for all public key pk, for all plaintext messages m 1 , m 2 ∈ G and for all randomness r 1 , r 2 ∈ Z q , we have

Enc pk (m 1 , r 1)Enc pk (m 2 , r 2) = Enc pk (m 1 m 2 , r 1 + r 2).
This property is extremely useful in general, all the more so in electronic voting. Indeed, this allows to use a strategy known as homomorphic tally (as seen in Section 1.1.3 when we presented Helios). Suppose that there are two possible voting options, say yes or no. Then, given a fixed generator a (typically, a = g or a = h), a yes vote can be encoded as the group element a while a no vote is encoded into 1. Then, after that the voters submitted the encryptions C 1 , • • • , C n , it is possible to decrypt the product C 1 • • • C n to recover a group element b. Finally, the discrete logarithm of b in base a is equal to the number of voters who voted yes. Solving the discrete logarithm problem for small n, even n ≈ 10 10 , can be done within a second using the baby-step, giant-step algorithm [START_REF] Shanks | Class number, a theory of factorization and genera[END_REF]; therefore, it is not a problem here.

More generally, given a generator a, the exponential ElGamal encryption of an integer n is the ElGamal encryption of a n . This gives an additively homomorphic encryption scheme, which is useful in electronic voting. Its drawback is that n must be in a reasonably small interval for the decryption to be possible; otherwise, solving the discrete logarithm problem becomes too hard.

A direct consequence of the homomorphic property of the ElGamal encryption scheme is that it is not NM-CPA secure. Indeed, given an encryption C of some (possibly unknown) plaintext m, one can create another encryption C ′ ̸ = C of m by multiplying C by any encryption of 1. This is called reencryption (or rerandomization). Although the possibility to reencrypt is interesting, it means that the ElGamal encryption scheme should never be used as it is in electronic voting: it is not sufficient to provide privacy. In general, the voters also have to provide a proof of knowledge, which is a ZKP that they can open their ballot (see Section 2.3); a classical result from [START_REF] Bernhard | How Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios[END_REF] shows that this provides NM-CPA security.

Threshold cryptography

In a public key encryption scheme, a single person holds the secret decryption key and is the only one who is able to decrypt ciphertexts. However, in electronic voting, we try as much as possible not to trust a single entity for a specific purpose. If an entity (e.g., the public board) is trusted, it actually means that its behavior can be enforced in practice (e.g., using consensus algorithms). Yet, it is not possible to prevent someone to decrypt publicly available ciphertexts if this person holds the secret decryption key. Therefore, we use a strategy known as secret sharing, which was introduced by Shamir.

Distributed key generation. In a distributed key generation (DKG) protocol, we consider a group of n T participants and a threshold t. We want to share a secret sk ∈ Z q for some prime number q, such that if t or less participants collude, they have no information about sk. However, if t + 1 or more participants collaborate, they can recover the secret key. To achieve this with any t < n T , we assume ideally authenticated private channels (i.e. no participant can send a message in the name of another, and any two participants can exchange private messages). Such channels can be obtained by the mean of symmetric cryptography, after that every pair of participants performed a key exchange, e.g., using the classical sign-and-mac paradigm [START_REF] Krawczyk | SIGMA: The 'SIGn-and-MAc' Approach to Authenticated Diffie-Hellman and Its Use in the IKE-Protocols[END_REF]. This assumes that the participants are well identified, for instance by a public key.

A popular DKG protocol for the discrete logarithm setting is due to Pedersen [START_REF] Torben | A Threshold Cryptosystem without a Trusted Party (Extended Abstract)[END_REF], that is illustrated in Fig. 7. In this protocol, the participants collectively choose a random polynomial f = n T j=1 f j of degree t, by each choosing a random secret polynomial f j . Once f is (implicitly) chosen, the secret key is sk = f (0), and every participant j has a share s j = f (j) of this secret. Hence, using Lagrange polynomials, t + 1 or more participants can recover the secret; however, t or less shares contain no Shannon information about sk.

Note that in general, Step 1 and Step 2 are presented as a single step where the participants broadcast their commitments c i,k . However, this allows the adversary to rig the distribution of the public encryption key, as mentioned in [START_REF] Gennaro | Secure Distributed Key Generation for Discrete-Log Based Cryptosystems[END_REF]. Indeed, suppose -to begin withthat the threshold t and the number of participants n T are such that t ≥ n/2. Suppose that, by corrupting up to t participants, the adversary produces a situation where there is at most t honest participants. Then it can proceeds as follows: first, choose the secret key sk; wait for the other commitments to be published and, for a specific corrupted participant i, choose c i,0 = g sk / j̸ =i c j,0 ; afterwards, for all honest participant j, choose s i,j ∈ Z q at random and, using Lagrange interpolation, compute the (c i,k) t k=0 so that g s i,j = t k=0 c j k i,j for all honest j. This way, the adversary is undetectably able to choose the secret key, which is clearly undesirable.

The standard way to prevent the above attack is to ask for the participants to provide a PoK (see Section 2.3.2) for their secret share s i , and to abort if they are unable to do so. This solution is preferable in practice because it requires less communications than using a round of synchronization as suggested in Fig. 7. However, as mentioned in [START_REF] Gennaro | Secure Distributed Key Generation for Discrete-Log Based Cryptosystems[END_REF], it is still possible for the adversary to (honestly) choose its polynomial after the other commitments are revealed, compute the resulting pk and try over and over again until some specific pattern (i.e. the first 23 bits are 0) is met, hence preventing the public key to be uniformly random as required for the security of the scheme. For this reason, we prefer to present this version of the DKG, in which the adversary cannot temper with the distribution of the key without being detected and blamed. Another difference compared to the original Pedersen's DKG is that it does not provide fairness: even if there are t + 1 honest participants, the adversary can force the protocol to abort.

1. Participant P i chooses a random polynomial f i = t k=0 α i,k X k ∈ Z q [X
] and computes the commitments c i,k = g α i,k for all k. Then P i computes an aggregated commitment b i = hash(c i,0 || • • • ||c i,t). Finally, P i broadcasts b i .

2. Once all the participants have broadcast their b j , P i broadcast c i,0 , • • • , c i,t . It checks that the commitments of the other participants are consistent with their aggregated commitment, i.e. that b j = hash(c j,0 || • • • ||c j,t) for all j. If this is not the case for some j (including i), the protocol aborts and j is blamed. Otherwise, for all j, P i computes s i,j = f i (j) and privately sends this to P j .

3. Upon receiving a share s j,i , P i verify that g s j,i = t k=0 c i k j,k . If this is not the case, P i broadcasts a complain against P j . The secret share of P i is defined as s i = n T j=0 s j,i .

4. If some P j broadcasts a complain against P i , P i broadcasts s i,j . If g s i,j ̸ = t k=0 c j k i,k , the protocol aborts and P i is blamed.

5.

The public key is defined as pk = (g, h), where h = n T j=0 c j,0 . The secret key is defined implicitly as sk = log g (h). The public commitment of P i can be computed as

h i = n T j=0 t k=0 c i k j,k .
Finally, the transcript can be pk, (h i) n T i=1 , signed by all the participants.

Figure 7: Pedersen's DKG (with abort), with a fixed generator g However, we still have accountability: if the protocol aborts, at least one malicious participant will be blamed. Therefore, this is considered acceptable in the context of electronic voting; all the more so as the DKG takes place ahead of time, when there is no real incentive to produce a result right away.

Threshold decryption. One very interesting property of Shamir's secret sharing scheme is that it allows the participants to implicitly use the secret key without ever explicitly recovering it. This gives threshold cryptography, which consists of doing the polynomial interpolation "in the exponent". In electronic voting, the most commonly used protocol is that of threshold decryption, which allows the participants to collectively decrypt an ElGamal cyphertext (x, y) without learning anything about each other's shares, nor about the secret key. The idea is that each participant P i broadcasts a partial decryption w i = x s i , where s i is P i 's share. To ensure that the corrupted participants cannot cause the protocol to output an incorrect decryption, each participant must also give a ZKP that w i is well-formed (with respect to the public commitment h i = g s i of their share). Then, given a subset of size t + 1 of participants whose ZKP is valid, x sk is recovered using Lagrange polynomials. Similar protocols are available for threshold signature.

When a threshold decryption is available, we can define a threshold encryption scheme (Setup, Enc, PartDec, Dec), where Setup is the algorithm obtained by running the DKG with honest participants; Enc is the usual encryption algorithm; PartDec is an algorithm which takes a ciphertext and a secret share and outputs the partial decryption of the ciphertext; and Dec is an algorithm which allows to recombine the partial decryptions in order to recover the plaintext. As stated above, a threshold decryption protocol does not explicitly recover the secret key. Nevertheless, other information (such as the partial decryptions w i and the ZKP) are revealed beside the result of the decryption. Therefore, it is important to assess whether this can be exploited by a PPT adversary or not, for instance to recover a share given sufficiently many partial decryptions. First, the ZKP are discussed in Section 2.3 and reveal no information except that the partial decryptions are well-formed. However, given the public commitment h i of P i 's share, there is a single possibility for w i so that the well-formed partial decryptions actually contain some information about the shares. More precisely, suppose that the adversary produces the ciphertext (x, y) = (g r , h r) with some random r ∈ Z q . Then the partial decryption of (x, y) by participant P i is w i = h r i , so that the adversary is able to distinguish w i from any other group element. Nonetheless, the relationship between w i and x is the same as the one between h i and g (i.e. log g (h i) = log x (w i) = s i), therefore the intuition is that w i does not contain more information than what was already contained in h i .

In general, to capture that something (e.g., w i) does not contain any useful information for the adversary, we use the simulation paradigm: we construct a simulator that the adversary can use to produce w i itself. Then, we argue that no adversary can spot the difference between the real w i and the simulated one. The fact that the partial decryption in the ElGamal setting can be simulated is a folklore result. However, we could not find a proper formulation of this, let alone a proof. Since this is a folklore result, it must be stated (and proved) properly somewhere, for instance in a cryptography course book. Nevertheless, the fact that we could not find it fast enough means that it does not hurt to state it properly again in this thesis. In addition, there are three conditions for the folklore simulator to succeed, listed below. If one condition is not met, then the folklore simulator will fail and another one must be used (if any). In some cases, this could represent a gap in the security proof, which may be an issue.

• The simulator must have access to the secret shares of the corrupted participants;

• The adversary must not know the secret key nor the share of a single honest participant;

• The ciphertext to decrypt must be honestly generated, and not chosen by the adversary.

To capture those conditions, we propose the notion of ZK-TCPA security, which stands for zero knowledge of the threshold decryption protocol under chosen ciphertext attack (see Definition 12). Intuitively, the ZK-TCPA security means that the threshold decryption protocol does not give any additional information compared to the result of the decryption algorithm, since the partial decryptions can be simulated.

Definition 12. We say that a threshold encryption scheme (Setup, Enc, PartDec, Dec) is ZK-TCPA if there exists a simulator Sim such that, for all PPT adversary A, A wins the ZK-TCPA game (defined in Algorithm 13) with a negligible advantage.

Definition 12 is based on the ZK-TCPA game, defined in Algorithm 13. In this game, the DKG is ra honestly but the adversary can corrupt up to t talliers afterwards, and hence learn their respective shares (recall that t + 1 shares are necessary to recover the secret key). Then the adversary chooses an arbitrary plaintext m which is honestly encrypted into a ciphertext C. Finally, the adversary is either given the partial decryptions of the honest participants, or a simulation of them: it must decide which.

In Theorem 1, we claim that the ElGamal threshold encryption scheme is ZK-TCPA under the DDH assumption. For this purpose, we exhibit an explicit simulator in Algorithm 12: given the ciphertext (x, y), its decryption m, the set A of the corrupted participants and their corresponding shares (s i) i∈A , the adversary can compute Sim n T ,t ((x, y), m, A, (s i) i∈A) to simulate the partial decryption w i of each honest participant. In this algorithm, we denote Complete(A, n T) the process which returns the set of the t + 1 -|A| first elements of [0, n T]\A (this always includes 0).

Algorithm 12: Sim n T ,t ((x, y), m, A, (s i) i∈A) Requires: A ⊂ [1, n T] has size |A| ≤ t 1 S ←-A Complete(A, n T); 2 for (i, j) ∈ ([1, n T]\A) × S do 3 Λ S i,j ←- k∈S\{j} i-k j-k ; 4 w 0 ←-y/m; 5 for i ∈ A do w i ←-x s i ; 6 for i ∈ S\(A {0}) do w i $ ←-G; 7 for i ∈ [1, n T]\S do w i ←- j∈S w Λ S i,j j ; 8 return (w i) i∈[1,n T]\A ;
Algorithm 13: Exp ZK-TCPA (λ, A)

1 pk, sk, (h i , s i) n T i=1 , Π ← Setup(λ, n T , t); 2 A ← A(pk, (h i) n T i=1); 3 b $ ←-{0, 1}; 4 if |A| > t or A ̸ ⊂ [1, n T] then return b; 5 m ←-A((s i) i∈A); 6 r $ ←-R; 7 C ←-Enc pk (m, r); 8 S 0 ←-Sim n T ,t (C, m, A, (s i) i∈A); 9 S 1 ←-(PartDec(C, s i)) i̸ ∈A ; 10 b ′ ←-A(C, S b); 11 if b ′ = b then return 1 else return 0;
Theorem 1. The threshold ElGamal encryption scheme is ZK-TCPA in the ROM and under the DDH assumption.

The key idea is that there exists a polynomial f of degree t such that, for all participant i, the secret key is s i = f (i), and the corresponding partial decryption is w i = x s i , where (x, y) is the ciphertext to decrypt. Since the simulator is given the shares of the corrupted participants, it can deduce the corresponding partial decryption. In addition, as the simulator is given the plaintext m = yx -sk , it can deduce w 0 = x sk = x f (0) . This gives the simulator at most t + 1 constraints to respect. Hence, using Lagrange interpolation, it can produce a fake partial decryption w j = x g(j) for all j, where g is a random polynomial of degree t such that g(i) = f (i) for all corrupted i and for i = 0. Note that this only produces a computationally indistinguishable tuple, and not the exact partial decryptions. However, this is sufficient since we consider PPT adversaries.

The proof of this theorem uses a strategy called game hops, which is introduced in Section 3.1.1. Also, it is actually not trivial. Therefore, we prefer to present it in Appendix A rather than here. We already used the notion of ZK-TCPA elsewhere, so that the proof can also be found in [CGY21, Lemma I.1], which is the full version of [START_REF] Cortier | A Toolbox for Verifiable Tally-Hiding E-Voting Systems[END_REF].

The Paillier encryption scheme

In electronic voting, the ElGamal encryption scheme is very popular because of its homomorphic property and the possibility to distribute the secret key with Pedersen's DKG. However, it is not additively homomorphic so that an exponential version must be used, where not every ciphertext can be decrypted. An alternative to this is given in [START_REF] Paillier | Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[END_REF], which provides an additively homomorphic encryption scheme. Although Paillier's encryption scheme is not often used in electronic voting, we compare some of our contributions to preexisting works which rely on it. For this reason, we present the Paillier cryptosystem in this section.

In the Paillier cryptosystem, n is a strong RSA modulus, so that n is coprime with its Euler's totient ϕ(n), which is the cardinality of Z × n . The plaintext space is P = Z n , the randomness space is R = Z × n and the ciphertext space is C = Z × n 2 . The public key is pk = n, and since n is coprime with ϕ(n), there exists an element sk ∈ Z which is congruent to 1 modulo n and to 0 modulo ϕ(n). This element can be seen as an element of Z n × Z ϕ(n) , and hence can be represented as an integer in the range [0, n 2].

Key generation. Pick two random safe primes p and q and compute pk = n = pq and ϕ(n) = (p -1)(q -1). Then, use the extended Euclid algorithm to find a Bézout relation un + vϕ(n) = 1. Finally, set sk = vϕ(n) modulo nϕ(n). Encryption. To encrypt a message m ∈ Z n , one picks a random r ∈ Z × n and computes

(1 + n) m r n modulo n 2 . Since (1 + n) is an element of order n in Z × n 2 , (1 + n) m is
well defined when m ∈ Z n . Readily, we can remark that this defines a group isomorphism: for all m 1 , m 2 ∈ Z n and r 1 , r 2 ∈ Z × n , Enc pk (m 1 , r 1)Enc pk (m 2 , r 2) = Enc pk (m 1 + m 2 , r 1 r 2). Decryption. To decrypt a cyphertext C ∈ Z × n 2 , we first compute C sk which is cast into an integer in [0, n 2 -1]. Then, we deduce m = (C sk -1)/n.

The security of the Paillier's encryption scheme relies on the DCRA assumption, which stands for decisionnal composite residuosity assumption. It states that a nth degree residue modulo n 2 is indistinguishable from a random element. More precisely, the DCRA assumption states that no PPT adversary can win the DCRA game (defined in Algorithm 14) with a non-negligible advantage. Compared to the DDH problem, the DCRA problem is less standard. However, there is currently no better method to attack it than to factor n, so that it is still considered hard in computer science. Consequently, the size of the key n can be chosen following the same recommendations as for factorization; see for instance [Key]. It can be shown that the Paillier's encryption scheme is IND-CPA under the DCRA assumption.

Algorithm 14: DCRA(λ, A)

1 Sample two random safe primes p and q of size keysize(λ); 2 n ←-pq;

3 b $ ←-{0, 1}; 4 C 0 $ ←-Z × n 2 ; 5 C 1 ←-C n 0 ; 6 b ′ ←-A(n, C b); 7 if b = b ′ then return 1 else return 0;
Threshold cryptography. Since the secret key sk lies within a group of unknown order, Shamir's secret sharing scheme cannot be readily used. There exists two concurrent strategies to distribute a Paillier secret key. The first one was presented in [START_REF] Fouque | Sharing Decryption in the Context of Voting or Lotteries[END_REF] and an example of a DKG protocol which relies on this technique can be found in [START_REF] Nishide | Distributed Paillier Cryptosystem without Trusted Dealer[END_REF]. A similar but slightly different approach is presented in [START_REF] Damgård | A generalization of Paillier's public-key system with applications to electronic voting[END_REF]; an example of a DKG which relies on this can be found in [START_REF] Hazay | Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting[END_REF]. Both strategies rely on the fact that the denominator in the Lagrange coefficients are coprime with n, so that it is still somehow possible to perform a polynomial interpolation. In any case, the corresponding DKG protocols are way more complex and computationally involved than Pedersen's DKG. In addition, they are less generic: the solution from [NS10] requires a honest majority, which is restrictive and undesirable in electronic voting; the solution from [START_REF] Hazay | Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting[END_REF] is best suited for the two-party setting. In the resulting threshold encryption schemes, the participants have a share s i and a public commitment h i = v s i to this share, where v is a generator of the group of the invertible squares modulo n 2 (e.g., v = 4). Just as for an ElGamal ciphertext, the threshold decryption of a Paillier ciphertext C requires the authorities to reveal C s i as well as a ZKP of wellformedness. Intuitively, the ZK-TCPA security of the schemes would be obtained using the same arguments as for the ElGamal encryption scheme, except that we need to make the DDH assumption on Z × n 2 in addition to the DCRA assumption. We do not prove this because we do not use Paillier's encryption in this thesis.

Zero Knowledge Proofs in electronic voting

Zero knowledge proofs are the usual strategy that allows to reconcile privacy and verifiability in cryptography. In this section, we introduce the notion of zero knowledge proof and present a generic and standard method to obtain non-interactive zero knowledge proofs. More specific examples are given in Section 2.4.

Introduction to Zero Knwoledge Proofs

A NP language is a subset L ⊂ {0, 1} * for which there exists an efficiently decidable relation R ⊂ {0, 1} * × {0, 1} * and a polynomial P such that, for all z ∈ {0, 1} * , z ∈ L if and only if there exists a witness w ∈ {0, 1} * of size at most P (|z|) such that R(w, z) is true (which is often denoted wRz). The relation R can also be seen as a non-deterministic polynomial decisional algorithm: when only z ∈ {0, 1} * is given, R does not help a polynomial adversary to decide whether z ∈ L; however, if w is also given, deciding whether wRz is polynomial. In general, a NP language is not efficiently decidable. For instance, suppose that Alice has the secret key sk of an ElGamal public key pk = (g, h). Given a pair (m, C) ∈ G × G 2 , C = (x, y) is an encryption of m if and only if m = yx -sk . In this example, L is the set of the pairs (m, C) such that C is an encryption of m, the witness is sk and R(sk, (m, C)) can be efficiently decided by checking whether m = yx -sk . However, given a pair (m, C), deciding whether C is an encryption of m is hard and requires to solve an instance of the DDH problem. Now, in the context of electronic voting, consider a voting protocol where a homomorphic tally is used: the result r of the election is obtained by decrypting a public ciphertext C. Then it is hard to decide whether a given result r is actually correct, i.e. that C is indeed an encryption of r. Of course, Alice could convince Bob by revealing her witness sk, but this would allow him to decrypt the other ballots individually, hence compromising privacy. In such a situation, we use a zero knowledge proof (ZKP), which is often derived from a Σ-protocol.

A Σ-protocol is an interactive protocol during which a prover (Alice) can convince a verifier (Bob) that they hold a witness w such that wRz, where z is a public element that they both agree on (in our example, z is the pair (m, C) and m is given by Alice while C is a public ciphertext). During such a protocol, three messages are exchanged before a final verification step. First, the commitment: Alice sends some commitment c to Bob. Typically, c is chosen at random and does not contain any information. Then, the challenge: Bob chooses a random challenge d with enough entropy and sends it to Alice. Third, the answer: Alice answers the challenge with some a. Finally, the verification: given a transcript c, d, a, Bob can efficiently decide whether the transcript is valid or not. If this is the case, Bob accepts the transcript and is convinced that z ∈ L . Otherwise, Bob rejects the transcript. A Σ-protocol typically provides two interesting properties:

• Correctness. If Alice follows the protocol (and actually knows w such that wRz), Bob accepts the transcript.

• Zero knowledge. There exists a simulator which, given z and the challenge d, generates a transcript c, d, a which is perfectly indistinguishable from the transcript of the protocol.

Intuitively, the zero knowledge property means that Bob cannot learn anything by interacting with the prover, since he might as well generate the transcript himself. This is the simulation paradigm. However, we also want the Σ-protocol to actually prove something. For this reason, we consider two additional properties: • Special soundness. Given any two valid transcripts (c, d 1 , a 1) and (c, d 2 , a 2) which share the same commitment but have two different challenges, anyone can extract a witness w such that wRz in polynomial time.

Prover (g 1 , g 2 , g 3 , g 4) w | g 2 = g w 1 , g 4 = g w 3 Verifier (g 1 , g 2 , g 3 , g 4) α $ ←-Z q ; c 1 ← g α 1 ; c 2 ← g α 3 c 1 , c 2 d $ ←-[0, 2 λ -1] d a = α + wd a c 1 ? = g a 1 g -d 2 c 2 ? = g a 3 g -d 4 Figure 8: Proof of equality of discrete log Prover (g, h) w | h = g w Verifier (g, h) α $ ←-Z q ; c ← g α ; c d $ ←-[0, 2 λ -1] d a = α + wd a c ? = g a h -d
The computational soundness property means that the prover cannot convince the verifier that a false statement is true. However, as this is the case for the example of the discrete logarithm relation (which is bijective), the soundness property can be "empty" as L may be too large. Therefore, it is sometimes required that the prover should also know a witness in order to convince the verifier. In this case, we use the denomination proof of knowledge (PoK), and we need the special soundness property, which is stronger than computational soundness.

To illustrate the notion of ZKP, we present two Σ-protocols in the discrete logarithm setting, whose security will be discussed in Section 2.3.2. In both cases, we consider a group G of known prime order q.

Chaum-Perdersen proof. Given a DDH tuple g 1 , g 2 , g 3 , g 4 , the Chaum-Pedersen protocol allows to prove that log g 1 (g 2) = log g 3 (g 4), knowing their common discrete logarithm. The most common use case is to prove that an ElGamal encryption (x, y) is an encryption of 1 with a public key pk. In this case, (g 1 , g 2) = pk, (g 3 , g 4) = (x, y) and the witness is the randomness r used to encrypt 1. Going back to the example of electronic voting, a proof of correct decryption for the pair (m, C) can be done using (g 1 , g 2) = pk, g 3 = x, g 4 = y/m and the witness sk, where C = (x, y). The Chaum-Pedersen protocol is illustrated in Fig. 8.

Proof of knowledge. Given two group elements (g, h), a proof of knowledge of the discrete logarithm allows Alice to prove that she knows log g (h). This is useful for authentication protocols and is used in the Schnorr sigature. The corresponding Σ-protocol is illustrated in Fig. 9.

Generalization

The two Σ-protocols given in the previous section are very similar. In fact, they are both a special case of a more generic Σ-protocol, which is the proof of knowledge of a preimage. More formally, consider two groups G and H, and a group homomorphism φ : G → H. We suppose that the order of H does not have a divisor smaller than 2 λ (except 1). This suits the discrete logarithm setting where H's exponent is a publicly known prime number. (The exponent of a group is the smallest non-zero integer n ∈ N such that g n = 1 for all g. For instance, G × G has the same exposant as G but not the same order.) Given h ∈ H, it is usually hard to decide whether h ∈ φ(G); however, given a preimage x ∈ G, this becomes easy. Hence, if we use the notations from Section 2.3.1, we have L = φ(G); a witness for z ∈ L is a preimage w of z and we have wRz if and only if φ(w) = z. An example is the exponentiation Z q → G × G which maps an element r ∈ Z q to the pair (g r , h r), where (g, h) is public and fixed. Now, in this generic context, we consider the following Σ-protocol, where Alice tries to convince Bob that she knows a preimage w of an element z ∈ H.

Commitment. Alice picks a random α ∈ G and sends c = φ(α) to Bob.

Challenge. Bob picks a random d ∈ [0, 2 λ -1] and sends this to Alice.

Answer. Alice computes a = αw d and sends this to Bob.

Verification. Bob checks that c = φ(a)z -d .

We now discuss about the security properties of this protocol, and show that it provides the desired properties:

• Completeness. If Alice is honest, φ(a)z -d = φ(αw d)φ(w) -d = φ(α) = c.
• Zero knowledge. Given d ∈ [0, 2 λ -1], one can pick a random a ∈ G and compute c = φ(a)z -d . Since a is chosen at random, c is also uniformly random in φ(G) and follows the same distribution as in the real protocol. Similarly, in the real protocol, a = αw d , which is indeed uniform in G since α is uniform. Hence, the couple (c, a) is a uniform couple such that c = φ(a)z -d .

• Special soundness. Let z ∈ H and c ∈ H. Suppose that there exists two distinct values d 1 , d 2 ∈ [0, 2 λ -1] for which there exists a valid answer

a 1 ∈ G (resp. a 2 ∈ G), such that c = φ(a 1)z -d 1 and c = φ(a 2)z -d 2 . Then φ(a 1)z -d 1 = φ(a 2)z -d 2 , so that φ(a 2 /a 1) = z d 2 -d 1 . Now, since the order n of H has no divisor smaller that 2 λ > |d 2 -d 1 |, d 2 -d 1 is prime with n and there exists α ∈ Z such that α(d 2 -d 1) = 1 modulo n, which gives z = φ((a 2 /a 1) α); hence z ∈ φ(G). By contraposition, if z ̸ ∈ φ(G)
, for all c ∈ H, there exists at most one d ∈ [0, 2 λ -1] for which a valid answer a can be found. Hence Bob accepts with probability at most 2 -λ .

The special soundness does not contradict the zero knowledge property: Bob can generate the transcripts himself and wait for a collision, in which case he will be able to extract a preimage. This shows that finding a preimage by a one-way group homomorphism it is not harder than waiting for a collision between two random elements in φ(G). This is because a homomorphism has a lot more structure than a hash function, for which computing a preimage is harder than finding a collision. In any case, the special soundness property is the main reason why we use the terminology proof of knowledge.

Proof of partial knowledge

The generic proof of Section 2.3.2 is very versatile and allows to prove various propositions in the discrete logarithm setting. However, it is not sufficient in electronic voting. Indeed, suppose that we want to compute the result of a yes/no vote. As seen in Section 2.2.2, the usual strategy is to fix a generator g ∈ G\{1 G } and to encrypt either g0 (no vote) or g1 (yes vote). Then the product of all the eligible ciphertexts is computed and decrypted. Thanks to the homomorphic property of the ElGamal encryption scheme, the number of yes votes can be deduced from the discrete logarithm of the decryption in base g. This is the principle of homomorphic tally. Yet, in electronic voting, we usually do not trust the voters: some may try to encrypt g42 or g-23 , allowing them to have their choice be counted multiple times. Therefore, we want the voters to prove that they either voted for yes or for no. For this purpose, we use a proof of partial knowledge, which is based on [START_REF] Cramer | Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols[END_REF].

In this paper, Cramer, Damgård and Schoenmakers develop an abstract framework which allows to produce a proof of a partial knowledge. For the sake of simplicity, we present a slightly less generic framework. First, we restrict ourselves to the case of a proof of knowledge of a preimage, as introduced in Section 2.3.2. This is the most standard case in electronic voting. Second, we instantiate their notion of monotonic access structure by using Shamir's secret sharing scheme, which is introduced in Section 2.2.3. This not only allows to fix the idea, but also is directly useful in threshold cryptography.

Generic construction. Let G 1 , • • • , G n , H 1 , • • • , H n be
some groups and, for all i, φ i : G i → H i be some group homomorphism. We suppose that there exists a common known prime number q such that, for all i, H i is group of exponent q. This way, we are in the same context as in both Section 2.3.2 and Section 2.2.3. Given z 1 ∈ H 1 , • • • , z n ∈ H n and a threshold t < n, Alice wants to convince Bob that she knows a preimage for at least t of these elements, but she does not want to reveal which one. For this purpose, she forms a set S ⊂ [1, n] of size t such that, for all i ∈ S, she knows a preimage w i such that φ i (w i) = z i . (If she knows more that t preimages, she can ignore this extra knowledge.) Then the protocol consists of the following steps.

Commitment.

• For all i ∈ S, Alice picks a random element α i ∈ G i and computes c i = φ i (α i).

• For all i ∈ [1, n]\S, Alice picks a random d i ∈ Z q , chooses a random a i ∈ G i and computes

c i = φ i (a i)z -d i i .
• Alice sends her commitments c 1 , . . . , c n to Bob.

Challenge. Bob picks a random d ∈ [0, 2 λ -1] and sends this to Alice. Answer. Alice splits the challenge into n challenges and answers each of them individually:

• Alice sets d 0 = d.

• For i ∈ S, she computes

d i = j∈[0,n]\S k∈[0,n]\(S {j})
i-k j-k d j modulo q and deduces a i = α i w d i i .

• Alice sends (d i , a i) n i=1 to Bob.

Verification. Bob verifies that the two following statements; the second one can be checked efficiently using Lagrange interpolation.

• For all i, c i = φ(a i)z -d i i .

• There exists a polynomial P ∈ Z q [X] of degree at most n -t such that P (i) = d i for all i ∈ [0, n], with d 0 = d.

The above protocol is perfectly witness indistinguishable: Bob is convinced that Alice knows a preimage for at least t of the given elements, but does not learn which one. In addition, it inherits the correctness, the special soundness and the zero knowledge properties from the Σ-protocol presented in Section 2.3.2 (see [START_REF] Cramer | Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols[END_REF] for a proof of these claims).

Disjunctive proofs. A common special case is the disjunctive proof, where Alice wants to prove that she knows at least one witness (i.e. t = 1). In this case, Shamir's secret sharing scheme becomes linear. More precisely, if i is the index of the element z i for which Alice knows a preimage w, she can proceed as follows:

• Alice picks a random α ∈ G i and compute c i = φ i (α). For j ̸ = i, she chooses a random d j ∈ Z q as well as a random a j ∈ G j and computes c j = φ j (a j)z -d j j

.

• Bob receives the commitments c 1 , • • • , c n and sends a random challenge d ∈ [0, 2 λ -1].

• Alice computes d i = d -j̸ =i d j and a i = αw d i . She sends (d i , a i) n i=1 to Bob.

• Bob checks that c j = φ j (a j)z

-d j j
for all j and that d = n j=1 d j .

In electronic voting, disjunctive proofs are used to prove the validity of a ballot: if there are n possible voting options, the voter can use a disjunctive proof to prove that the ballots encrypts one of them. Alternatively, when the voter is asked many independent binary questions, the voter can produce that many independent ciphertexts to prove that they answered yes or no to all the questions. More concrete examples are given in Section 2.4.

Non-interactive proofs

Up until now, all the ZKP that we presented were interactive. Yet, in electronic voting, there are two reasons why interactive proofs are not desirable. First, an interactive proof does not leave any trace. After that Alice has convinced Bob, the latter cannot use the transcript to convince any third party since he might have produced the transcript himself, using the simulator. This means that interactive proofs cannot be used to achieve universal verifiability. Second, interactive proofs require the verifier to be active during the proof, which is not the case in electronic voting.

The Fiat-Shamir heuristic. The usual way to obtain a non-interactive ZKP from a Σprotocol is to use the Fiat-Shamir transformation [START_REF] Fiat | How to Prove Yourself: Practical Solutions to Identification and Signature Problems[END_REF], which consists of replacing the challenge by a hash of the commitment. This produces a proof π = (c, a) which can be verified by computing the commitment d from the hash function and checking that the transcript (c, d, a) is valid. This heuristic is standard and is the one that we consider in this thesis. Usually, we use the abbreviation ZKP to designate a non-interactive zero knowledge proof obtained from a Σ-protocol for a disjunctive proof (see Section 2.3.3), using the Fiat-Shamir transformation. In the specific case where the non-interactive proof is derived directly from a Σ-protocol for proving the knowledge of a preimage (see Section 2.3.2), we may also use the abbreviation PoK (for proof of knowledge). In Algorithm 15, we illustrate the Fiat-Shamir heuristic by giving the algorithm which produces a PoK for the equality of discrete logarithm. This can be used to provide a proof of correct decryption, with (g 1 , g 2) = pk and (g 3 , g 4) = (x, y/m), where pk is the Algorithm 15: EQLOG Requires: A group G of prime order q A hash function (g 1 , g 2 , g 3 , g 4) ∈ G A witness w ∈ Z q s.t. The corresponding randomness r

g 3 = g w 1 and g 4 = g w 2 1 α $ ←-Z q ; 2 c 1 ←-g α 1 ; 3 c 2 ←-g α 2 ; 4 d ←-hash(g 1 ||g 2 ||g 3 ||g 4 ||c 1 ||c 2); 5 a ←-α + dw; 6 return (c 1 , c 2 ,
1 α $ ←-Z q ; d 1-i $ ←-Z q ; a 1-i $ ←-Z q ; 2 c i,x ←-g α ; c i,y ←-h α ; 3 c 1-i,x ←-g a 1-i x -d 1-i ; 4 c 1-i,y ←-h a 1-i (y/b 1-i) -d 1-i ; 5 d ← hash(g||h||b||x||y||c 0,x ||c 0,y ||c 1,x ||c 1,y); 6 d i ←-d -d 1-i ; a i ←-α + rd i ; 7 return (c 0,x , c 0,y , c 1,x , c 1,y , d 0 , d 1 , a 0 , a 1);
public ElGamal encryption key, (x, y) is the ciphertext and m is the claimed plaintext. To verify the validity of such a PoK π = (c 1 , c 2 , a), one computes d from the hash function, and check that c 1 = g a 1 g -d 3 and c 2 = g a 2 g -d 4 . Another extremely common ZKP is given in Algorithm 16, which produces a ZKP that a ciphertext (x, y) is indeed an encryption of either 0 or 1, when the exponential ElGamal encryption is used with a base b (usually, b is either g or h, where (g, h) is the public key). To verify the validity of the output π = (c 0,x , c 0,y , c 1,x , c 1,y , d 0 , d 1 , a 0 , a 1), one first computes d from the hash function, checks that d = d 0 + d 1 and verifies that c i,x = g a i x -d i and c i,y = h a i (y/b i) -d i for both i ∈ {0, 1}.

In both examples, remark that the challenge is not computed from the commitment alone, but also from other pieces of context. We discuss more about what exactly should be included in the hash in Section 3.2.2.

Security in the random oracle model. The security of the Fiat-Shamir transformation can be proven in the ROM. Indeed, consider a Σ-protocol P for a NP language L (i.e. three algorithms Com, Ans and Ver). Suppose that P is zero knowledge, and let Sim be the simulator algorithm. Then, for any prefix pre, a non-interactive ZKP in which the challenge is chosen from the commitment c as d = hash(pre||c) can be simulated in the ROM, given only z ∈ L . Indeed, consider an adversary A in the ROM, which is given a honestly generated ZKP π at some point. Then we can construct an adversary B which interacts with A by simulating the random oracle, but is given z instead of π. The idea is that B picks a random d ∈ [0, 2 λ], computes π = Sim(d), handles this proof to A and then outputs whatever A might output. To make sure that the simulated proof actually looks like a valid one to A, whenever the latter makes an oracle query with input pre||c (where π = (c, a)), B answers with d. Since d was chosen at random anyway, this does not change the distribution of A's view, and therefore the output of B will have the same distribution as that of A. Using the same strategy, B can even forge fake ZKP that will look valid to A, even if the statement is false. For this reason, a non-interactive ZKP can be safely removed from A's view. Now, suppose that the Σ-protocol is computationally sound. Then the corresponding noninteractive ZKP is also computationally sound. Indeed, for a given z ̸ ∈ L , suppose that there exists an adversary A that outputs a valid ZKP π with some non-negligible probability. Then we construct an adversary B for the Σ-protocol as follows. First, let q be a polynomial such that A can make at most q oracle queries. Then B picks a random i ∈ [1, q] and runs a copy of A in the ROM. At the ith query (if any), B parses the input as pre||c (if possible) and uses this c as the commitment. The honest verifier answers with a uniformly random d, so that B can use this as the output of the random oracle (for simplicity, we consider that A does not make two queries to the oracle with the same inputs). When A terminates, it outputs a valid proof π = (c, a) with some non-negligible probability p, in which case Ver(c, O RO (pre||c), a) = 1. Yet, the computational soundness assumption means that this cannot happen with a non-negligible probability if O RO (pre||c) is uniform. Hence, O RO (pre||c) is not uniform which means that A made a query to the random oracle with the input pre||c. Since the choices were independent, B has picked this very query with probability 1/q; therefore the verifier will accept the answer a with the non-negligible probability p/q. Thanks to the above arguments, the ROM allows to show that the Fiat-Shamir transformation preserves computational soundness while still being "zero knowledge" with overwhelming probability (indeed, if the prover makes two colliding commitments, the adversary that interacts with the real prover might be able to extract a witness; on the other hand, the adversary that interacts with the simulator might notice that the same oracle query was answered with two different challenges). However, this might be not enough in many cases, for instance in the example of the PoK depicted in Fig. 9. Indeed, in most case, we not only want the prover to prove that z ∈ L , but also to prove that they know a witness. This is important, for instance, for signatures or authentication protocols. In this situation, we need more involved arguments that are presented in Section 3.2.1.

Another remark is that the above proof sketches assumed that L and z are fixed; i.e. hardcoded in the verifier's algorithm. In Section 3.2.2, we show that a non-interactive proof made for a specific L and z can be considered valid for another L ′ and z ′ , which intuitively breaks soundness (this does not contradict the above arguments which assumed that the adversary was unable to choose z and L). For this reason, it is important that the prefix in the hash contains enough pieces of context, which prevents the proof from being used outside of its context. For instance, a description of G, L , the claim z or even a unique identifier which defines at which step of the protocol the proof was needed can also be included in the hash. This can be a lot when there is too much context: think of an electronic voting protocol which uses this specific counting function, takes place at that specific date and the other. However, a great part of this context is actually fixed during the whole protocol and can be factored between several ZKPs, for instance by using a hash of the context instead of the whole context.

Short proofs and what they can really do

The standard proofs that we introduced so far all have a similar complexity when it comes to generating or verifying them. While it is natural that the generation of a proof for a statement becomes harder as the statement grows more complex, the intuition is that verifying a proof should be easier. Yet, in electronic voting, while the talliers can have access to a lot of computational resources, this is not always the case for the auditor. On the contrary: if we want a protocol to be "universally" verifiable, it is preferable that the verification be as easy as possible. For this reason, it could be beneficial to use short zero knowledge proofs.

A popular technique to obtain short proofs is to use recursive inner product arguments. This is the main idea behind the bulletproofs [BBB + 18], which allow to obtain efficient range proofs in the discrete logarithm setting. Although range proofs may be useful in electronic voting, the relevant ranges are so small that it is often more efficient to use a regular disjunctive proof. Bulletproofs can also be used for any generic NP language. In this case, the proof is logarithmic with the size of the statement but the cost of the verification is proportional to the cost of the generation. Consequently, they are not commonly used in electronic voting.

Groth's SNARK. Another popular techique was introduced in [START_REF] Groth | On the Size of Pairing-Based Non-interactive Arguments[END_REF]. In this article, Jens Groth explains how to form a short zero knowledge proof for the arithmetic circuit satisfiability decisional problem, which is known to be NP complete. Hence, from Groth's proof strategy, one can derive a short zero knowledge proof for any NP language L . In [START_REF] Groth | On the Size of Pairing-Based Non-interactive Arguments[END_REF], a circuit is represented by a family of n quadratic equations of the form

m i=0 a i u i,q m i=0 a i v i,q = m i=0 a i w i,q ,
where the a i 's are variables while the u i,q 's, v i,q 's and w i,q 's are public parameters that define the qth equation. Since those equations feature multiplications and additions, the variables and the parameters all belong to a common ring (we actually need it to be a field K for the purpose of polynomial interpolation). In general, some of the variables (say a 0 , • • • , a ℓ) are fixed, otherwise the satisfiability would be trivial. With those constraints, the corresponding statement is to claim that there exists a ℓ+1 , • • • , a m ∈ K such that the n equations are simultaneously satisfied.

An interesting specific case is that of boolean circuit satisfiability: a boolean variable can be represented as an element of Z 2 , a logical and is a multiplication, a logical xor is an addition and the logical negation of the variable b is simply 1 -b. In this setting, Groth's proof strategy allows to create a proof which only consists of 3 group elements, so that its size only depends on the security parameter and not on the complexity of the statement or the size of the circuit. Computing such a proof requires n exponentiations in a pairing-friendly curve, but verifying it only requires ℓ group multiplications in this curve and 3 pairings.

Computing a SNARK. Now, consider the example of a homomorphic tally: let C = (x, y) be an ElGamal ciphertext with public key pk = (g, h) and let m be the claimed plaintext. Then we must prove that there exists sk ∈ Z q such that g sk = h and yx -sk = m. To express this as an arithmetic circuit, the only obvious way is to use a boolean circuit (i.e. with K = Z 2) which realizes a constant-time implementation (e.g., using the Montgomery ladder) of the exponentiations and then performs the equality tests. To fix ideas, suppose that we use a Weierstrass elliptic curve of prime order q, whose group elements are represented using projective coordinates in Z p , where p is some prime number. Then, given a security parameter λ, an exponentiation typically requires Θ(λ) group multiplications, while each group multiplication requires a few operations in Z p , including some multiplications that cost Θ(λ 2) logical operations (asymptotically better complexities are available, but the corresponding algorithms are usually not faster than Montgomery multiplication for a 256 bits p). Consequently, the naive boolean circuit would require n = O(λ 3) exponentiations for the prover, which are to be compared with the 2 exponentiations required in the corresponding standard PoK. Consequently, making an efficient use of Groth's proofs in electronic voting is not an easy task: this is the contribution of Kryvos [HKK + 22], a recent academic work which demonstrates the feasibility of this approach.

Verifying a SNARK. Groth's proofs have this very interesting property that their verification always require ℓ group multiplications and 3 pairings, no matter the complexity of the circuit (i.e. the parameters n and m). In our example of a homomorphic tally, ℓ = Θ(λ) since the fixed variables are defined by the group elements x, y, m. Therefore, verifying the proof requires Θ(λ) group multiplications and 3 pairings. Compared to the 4 exponentiations required to verify the standard PoK, this is not especially interesting. However, in Part II, we consider more complex tally protocols whose verifications using standard ZKPs are quite intensive. Using a SNARK, the verification would typically require O(n V λ) group multiplications and 3 pairings, where n V is the number of voters. This would definitely be a lot faster.

Trapdoor CRS. An important point to mention is that Groth's proofs require a common reference string (CRS). This CRS contains many group elements and scalars that are useful to speed up the algorithms of both the prover and the verifier. However, it is possible to trapdoor a CRS, for instance by choosing the discrete logarithm of the said group elements instead of them directly. Using the knowledge of the trapdoor, it is possible to forge fake proofs for false statements. In general, this is not an issue because the CRS can be generated using a public coin protocol, so that no one can exploit the trapdoor. However, the CRS used in [START_REF] Groth | On the Size of Pairing-Based Non-interactive Arguments[END_REF] is constrained by some algebraic relationships, so that it cannot be derived from some random string. As shown in [BCG + 15a], it is possible to have several authorities jointly generate the CRS so that none of them is able to trapdoor it (except if they are all corrupted). This means that using Groth's proofs requires an additional trust assumption on the participants of this CRS generation protocol, otherwise verifiability will be lost.

The most commonly used ZKP

The typical use case of ZKP in electronic voting is to prove the validity of a ballot and to prove the correctness of the tally. In this section, we review the most standards ZKPs, apart from the proofs that we already detailed in Section 2.3.4.

A basic example: proving the validity of a ballot

In electronic voting, there are two main strategies to perform the tally: homomorphic tally and mixnets. Helios 2.0 [START_REF] Olivier De Marneffe | Electing a University President Using Open-Audit Voting: Analysis of Real-World Use of Helios[END_REF], which is presented in Section 1.1.3, uses a homomorphic tally. In this voting system, the voters are ask a question for which there are several possible answers, numbered from 1 to k. The voters can select between k 1 and k 2 answers, where

0 ≤ k 1 ≤ k 2 ≤ k.
This choice can be encoded into a k bits string a 1 , • • • , a k , depending on whether each answer was picked or not. Consequently, the voting options in Helios V H , where

V H = a 1 , • • • , a k ∈ {0, 1} | k i=1 a i ∈ [k 1 , k 2], ,
which can be decomposed as

V H = s∈[k 1 ,k 2] a 1 , • • • , a k ∈ {0, 1} | k i=1 a i = s .
To encrypt such a voting option, one can produce k ciphertexts C 1 , • • • , C k , using an exponential ElGamal encryption with a base b. Then, to prove that the ciphertexts encrypt a valid voting option, one can proceed as follows:

• For i ∈ [1, k], produce a ZKP π 0/1 i that C i is an encryption of 0 or 1, using Algorithm 16.
Those are the individual proofs.

• Produce a disjunctive ZKP π s that the product C 1 • • • C k is an encryption of either k 1 , k 1 + 1, • • • , or k 2 . This is the overall proof. • Return the proof π = π 0/1 1 || • • • ||π 0/1 k ||π s .
For completeness, we give in Algorithm 17 an algorithm that the voter can use to produce π s . In our example, (x, y) is the product

(C 1 • • • C k); n = k 2 -k 1 + 1; the v i 's are the elements

Algorithm 17: Disjunctive proof for ElGamal encryption

Requires: A group G of prime order q An ElGamal ciphertext (x, y) obtained with public the key (g, h)

n possibilities v 1 , • • • , v n ∈ G i ∈ {1, n} s.t. (x, y) encrypts v i The corresponding randomness r ∈ Z q 1 α $ ←-Z q ; c i,x ←-g α ; c i,y ←-h α ; 2 for j ̸ = i do 3 d j $ ←-Z q ; a j $ ←-Z q ; 4 c j,x ←-g a j x -d j ; c j,y ←-h a j (y/v j) -d j ; 5 d ←-hash(g||h||v 1 || • • • ||v n ||x||y||c 1,x ||c 1,y || • • • ||c n,x ||c n,y); 6 d i ←-d -j̸ =i d j ; a i ←-α + rd i ; 7 return (c j,x , c j,y , d j , a j) n j=1 ; of {b s | s ∈ [k 1 , k 2]};
and r is the sum of all the k randomness that have been used to produce the ciphertexts.

This shows that a large variety of counting functions can be covered by a homomorphic tally, which is not restricted to a single yes / no question. As the 0/1 proof is the basis of many proofs of validity in electronic voting, we mention that it is possible to optimize Algorithm 16 to increase its efficiency for both the verifier and the prover, especially when several bits are encrypted simultaneously; see for instance [START_REF] Devillez | How to Verifiably Encrypt Many Bits for an Election?[END_REF]. Nevertheless, not every functions are covered by homomorphic tally. For more generic counting functions, the usual strategy is to use a mixnet (see Section 2.4.3), which reveals the chosen voting options in some random order. Hence, anonymity is preserved and the tally can be publicly computed on the cleartexts. However, even when a mixnet is used, it is interesting to demand that the voter proves the validity of their ballot: this protects against Italian attacks based on write-ins and prevents replay attacks based on the malleability of the ElGamal encryption scheme. For this purpose, the disjunctive proof of Algorithm 17 can be used (provided that there is a small number of voting options).

Proof of correct decryption

In Section 2.3, we already discussed about how to produce a ZKP of correct decryption for an ElGamal ciphertext, and we gave Algorithm 15 which does just that. However, the secret key sk is usually shared between several authorities (the talliers), so that they cannot use this algorithm. The usual way around is to have each authority reveal a partial decryption of the ciphertext and to recombine the valid partial decryptions afterwards. This gives Algorithm 18, which not only produces the threshold decryption of some ciphertext (x, y), but also a ZKP π of correct decryption. To verify this proof, verify each ZKP π PartDec i and, if there are at least t + 1 valid ones (otherwise, reject the proof), choose any set S as in line 2 and compute m as in lines 3 and 4. Finally, check that this m is equal to the claimed plaintext.

Mixnets and their applications

Mixnets are widely used in cryptography as a way to anonymize data. The idea is to shuffle encrypted or committed data so that it is no longer possible to trace them back to their original sender. In electronic voting, we consider reencryption mixnets and decryption mixnets.

Algorithm 18: Threshold decryption

Requires: A group G of prime order q An ElGamal public key (g, h)

A ciphertext (x, y) to decrypt The public commitments (h i) n i=1 on the secret shares (see Fig. 7) Each tallier has a share s i of the secret key, with the threshold t 1 Each participant i computes w i = x s i and π PartDec i using Algorithm 15 on (g, x, h i , w i);

2 Let S ⊂ [1, n] be a set of size t + 1 such that for all i ∈ S, π PartDec i is valid ;

3 For i ∈ S, compute Λ i = j∈S\{i} j i-j ; 4 m ←-y i∈S w Λ i i ; 5 π ←-w 1 , π PartDec 1 || • • • ||w n ||π PartDec n ; 6 return m, π Proof of a shuffle. Let C = C 1 , • • • , C n be
a list of ciphertexts. To fix ideas, suppose that the encryption scheme used is rerandomizable: given any ciphertext C, we can produce another ciphertext C ′ which encrypts the same plaintext but is still indistinguishable from a random ciphertext. This is the case for any homomorphic encryption scheme, such as the ones of ElGamal and Paillier. Then, a shuffle of those ciphertexts is a list

C ′ = C ′ 1 , • • • , C ′
n which encrypts the same plaintexts. In other words, we have the equality of the following multisets

{ {Dec sk (C ′ i) | i ∈ [1, n]} } ≡ { {Dec sk (C i) | i ∈ [1, n]} }.
When the encryption scheme is rerandomizable, anyone can shuffle C; however, it is hard to decide whether a list C ′ is a shuffle of C or not. Therefore, to prevent the mixers from altering the data, we need them to provide a ZKP, which is called proof of a shuffle. Early examples of efficient proofs of a shuffle can be found in [START_REF] Furukawa | An Efficient Scheme for Proving a Shuffle[END_REF][START_REF] Neff | A verifiable secret shuffle and its application to e-voting[END_REF]. Later, more efficient proofs of a shuffle were given in [START_REF] Wikström | A commitment-consistent proof of a shuffle[END_REF][START_REF] Terelius | Proofs of Restricted Shuffles[END_REF]. Those proofs were implemented and compiled into a free open source verifiable mixnet, known as Open Verificatum [Ver]. The strategy in [START_REF] Wikström | A commitment-consistent proof of a shuffle[END_REF] is to first commit on a permutation π, then to prove that C ′ is consistent with respect to the commitment. The second part can be done using standard PoK as introduced in Section 2.3.2, but the construction is a bit involved. If reading [START_REF] Wikström | A commitment-consistent proof of a shuffle[END_REF] seems too scary, we refer to [HKLD17, Section 5.5] for a helpful and detailed explanation. As for the commitment, one can use the technique from [START_REF] Terelius | Proofs of Restricted Shuffles[END_REF] which we explain below.

Committing to a permutation. Suppose that we have several independent (provably random) group elements g, h 1 , • • • , h n ∈ G, such that no one knows a non-trivial relation between them. They can be used to make a Pedersen commitment of vectors of n elements; i.e.

if x = x 1 , • • • , x n ∈ Z q , and α ∈ Z q , Com(x, α) = g α n i=1 h x i i . Now, consider a matrix M ∈ M n (Z q).
One can commit to this matrix by using random s = s 1 , • • • , s n ∈ Z q and computing a i = Com(s i , m i) for all i, where m i is the ith row of the matrix. To prove that a committed matrix is a permutation matrix, the main strategy is to remark that if M does not have exactly one non-zero coefficient in each row, then following equality does not hold in

Z q [X 1 , • • • , X n]: n i=1 n j=1 m i,j X j = n i=1 X i .
(1)

This condition can be efficiently tested using a result known as the Schwartz-Zippel lemma [START_REF] Zippel | Probabilistic algorithms for sparse polynomials[END_REF][START_REF] Jacob | Fast Probabilistic Algorithms for Verification of Polynomial Identities[END_REF]:

If f ∈ Z q [X 1 , • • • , X n] is a non-zero multivariate polynomial of degree d, then, given uniformly random elements e 1 , • • • , e n ∈ Z q , the probability that f (e 1 , • • • , e n) = 0 is at most d/q.
Since the degree of the above polynomial is the number n of ciphertexts to shuffle while q is the exponentially large size of the field, it means that this probability is negligible. Hence, the proof strategy is that the verifier (or, alternatively, the Fiat-Shamir transformation) gives to the prover the random vector e and that the prover proves that n i=1 n j=1 m i,j e j = n i=1 e i . For this purpose, remark that this can be made "on the commitments". Indeed, if we denote < x, y > the inner product n i=1 x i y i of two vectors x and y, we have

n i=1 a e i i = g <s,e> n i=1 h <m i ,e> i .
Yet, Eq. (1) is verified if and only if there exists some coefficients

c 1 , • • • , c n and a permutation π such that, for all i, n j=1 m i,j X j =< m i , X >= c i X π(i) , with n i=1 c i = 1. Therefore, by proving the knowledge of some e ′ = e ′ 1 , • • • , e ′ n ∈ Z q (e ′ i = e π(i) for all i) and an exponent α =< s, e >∈ Z q such that g α n i=1 h e ′ i i = n i=1 a e i i while n i=1 e ′ i = n
i=1 e i , one can prove that the committed matrix has exactly one non-zero coefficient per row, unless with a negligible probability. Finally, to prove that this coefficient is always 1, and therefore that the matrix is a permutation matrix, one can prove the knowledge of β = n i=1 s i such that n i=1 a i /g i = g β . These proofs can be done using standard ZKP as in Section 2.3.2.

Remark that although the resulting proof of a shuffle is based on standard ZKP, they do not have the special soundness property. Indeed, there is always a negligible probability that, although the preimages α, β, e ′ exist, the polynomial is non-zero so that the matrix is not a permutation matrix. Consequently, a proof of a shuffle is only computationally sound.

Shuffling the rows or the columns of a matrix. In this thesis, we consider a more generic case where the C i 's themselves consist of several ciphertexts. More precisely, suppose that we have a rectangular matrix M of n rows and m columns, and that each coefficient of this matrix is an ElGamal ciphertext, i.e. a pair of two group elements. Suppose that we want to shuffle the rows (or, alternatively, the columns) of the matrix, which means that we want to shuffle each column, but using the same permutation π. Then the Terelius-Wikström strategy is especially efficient, since it allows to use the same commitment for many proofs. We denote ShuffleRow(M, π) (resp. ShuffleColumn(M, π)), the algorithm that shuffles and reencrypts the rows (resp. columns) of M , and produces a ZKP of a correct shuffle. For completeness, we give Algorithm 19, which combines [TW10, Protocol 1] and [START_REF] Wikström | A commitment-consistent proof of a shuffle[END_REF]Protocol 15]. However, to prove that n i=1 e ′ i = n i=1 e i , we use the strategy of [HKLD17, Section 5.5] which consists of creating a chain of Pedersen commitments c1 , • • • , cn . To verify the proof, one computes (e i) n i=1 and d from the hash and check that the following equalities hold, where ĉ0 = h 1 :

g at n i=1 (a ⋆ i /h i) -d = c1 ,t ∀i, g a r,i ĉa ē,i i-1 ĉ-d i = c ĉ,i g a k n i=1 h a ē,i i n i=1 (a ⋆ i) -de i = c ē,k ∀j, Renc pk n i=1 M ′ [i, j] a ē,i , -a r,j n i=1 M [i, j] -de i = c r,j .
A similar algorithm can be used to provably shuffle the columns. Finally, if one wants to shuffle the rows and the columns using the same permutation, ShuffleRow and ShuffleColumn can be combined into ShuffleMatrix. We sum up the complexities of the various proofs of a shuffle in Table 3, which includes the cost to rerandomize the matrix.

Algorithm 19: ShuffleR

Requires: G, a group of prime order q g, h 1 , • • • , h n , some independent generators pk = (g, h), an ElGamal public key Inputs: M , a matrix of ciphertexts of n rows and m columns π, a permutation of [1, • • • , n] Outputs: M ′ , a shuffled and reencrypted matrix Π, a ZKP of a shuffle 1 for all i, j do

2 r i,j $ ←-Z q ; 3 M ′ [i, j] ←-Renc pk (M ′ [π(i), j], r i,j); 4 for i = 1 to n do 5 s i $ ←-Z q ; a ⋆ i ←-g s i h π -1 (i) ; 6 α t $ ←-Z q ; c1 ,t ←-g α ; 7 for i = 1 to n do α ē′ i $ ←-Z q ; 8 α k $ ←-Z q ; c ē,k ←-g α k n i=1 h α ē′ i i ; 9 Com π ←-(a ⋆ i) n 1 , c1 ,t , c ē,k ; 10 for i = 1 to n do e i ←-hash(pk||(h i) n 1 ||M ||M ′ ||Com π ||i); 11 for i = 1 to n do e ′ i ←-e π(i) ; 12 ĉ0 ←-h 1 ; 13 for i = 1 to n do 14 ri , α r,i $ ←-Z q ; 15 ĉi ←-g ri ĉe ′ i i-1 ; 16 c ĉ,i ←-g α r,i ĉα ē′ i i-1 ; 17 r⊤ ←-n i=1 ri n j=i+1 e ′ i ; 18 α r,⊤ $ ←-Z q ; c r,⊤ ←-g α r,⊤ ; 19 Com π ←-Com π ||(ĉ i , c ĉ,i) n 1 ||c r,⊤ ; 20 for j = 1 to m do 21 α r,j $ ←-Z q ; 22 c r,j ← Renc pk n i=1 M ′ [i, j] α ē′ i , -α r,j ; 23 Com π ←-Com π ||c r,j ; 24 d ←-hash(pk||(h i) n 1 ||M ||M ′ ||Com π); 25 a t ←-α t + d n i=1 s i ; 26 a k ←-α k + d n i=1 s i e i ; 27 a r,⊤ ←-α r,⊤ + dr ⊤ ; 28 for i = 1 to n do 29 a ē,i ←-α ē′ i + de ′ i ; 30 a r,i ←-α r,i + dr i ; 31 for j = 1 to m do a r,j ← α r,j + d n i=1 e ′ i r i,j ; 32 Ans π ←-a t , a k , a r,⊤ , (a ē,i , a r,i) n 1 , (a r,j) m 1 ; 33 return M ′ , (Com π , Ans π);
Reencryption mixnet. When a proof of a shuffle is used, the mixer knows the permutation that links the two lists C ′ and C. Therefore, the usual strategy is to have several mixers sequentially shuffling the data, each producing a proof of a shuffle. The idea is that all the mixers need to collude in order to retrieve the final permutation: if at least one of them is honest, the permutation remains unknown and random. The generic structure of a mixnet protocol is illustrated in Fig. 10, where each mixer M i produces a shuffle C i as well as a ZKP π i . This produces a transcript which is the concatenation of all those messages. Reencryption mixnets have various applications in cryptography, especially in multi-party computation (MPC) (see for instance Mix and Match, a generic MPC protocol presented in [START_REF] Jakobsson | Mix and Match: Secure Function Evaluation via Ciphertexts[END_REF]).

Decryption mixnet. In electronic voting, the mixnet is usually applied once, and the ciphertexts are decrypted right away. In this case, it is possible to merge the mixing and the decrypting process: this gives a decryption mixnet, where the mixers are also the talliers who hold the shares of the decryption key. Some examples can be found in [START_REF] Wikström | A Sender Verifiable Mix-Net and a New Proof of a Shuffle[END_REF][START_REF] Adida | How to Shuffle in Public[END_REF].

C M 1 M 2 • • • M n C ′ = C n Final transcript: C||C 1 ||π 1 || • • • ||C n ||π n C 1 , π 1 C 2 , π 2 C n-1 , π n-1 C n , π n

Plaintext Equivalence Tests

A plaintext equivalence test (PET) is a now classical protocol introduced in [JJ00]. It allows the key holders to provably reveal whether two ciphertexts have the same plaintext or not. More precisely, suppose that an ElGamal secret key is shared between several authorities, say P 1 , • • • , P n . Suppose that for two given ciphertexts C 1 and C 2 , the authorities want to reveal whether they have the same plaintext, but they do not want any other information to leak. Then they can proceed as follows, where q is the prime order of the group G of the plaintexts:

1. Form the ciphertext C = C 1 /C 2 .
Each authority P i chooses z i ∈ Z q at random and computes C i = C z i as well as a ZKP π i of wellformedness (for this purpose, they can use Algorithm 15). P i broadcasts a commitment h i = hash(C i).

2. Once all the commitments have been received, P i broadcasts C i , π i . Upon receiving C j , π j from another participant, P i verifies that hash(C j) = h j and that the PoK is valid.

3. Form the ciphertext D = n i=1 C i and decrypt it, using a threshold decryption protocol (see Algorithm 18).

4. Let m ∈ G be the corresponding plaintext. If m = 1 G , then return 1. Otherwise, return 0.
The above protocol allows the authorities to reveal a bit b which states whether the two ciphertexts C 1 and C 2 are equivalent or not. At step 1, they each choose randomly

z i ∈ Z q and compute C i = C z i , so that D = C z 1 +•••+zn .
The commitment phase is there to prevent a malicious participant to choose z i depending on the other C i 's, which would rig the distribution of D. This guarantees that D = C z , with some uniformly random z ∈ Z q (as soon as one participant is honest). The idea is that if C 1 and C 2 encrypt the same plaintext, then D is an encryption of 1 G ; otherwise, D is an encryption of a uniformly random plaintext. Therefore, by decrypting D, we reveal whether C 1 and C 2 are equivalent, but not any other information. Note that in [START_REF] Mcmurtry | When Is a Test Not a Proof?[END_REF], it was disclosed that it is not sufficient to verify that all the PoK are valid. Indeed, if all the participants are malicious, they can choose their z i 's so that their sum is 0, in which case D = (1 G , 1 G), therefore m = 1 G even though C 1 and C 2 might have two different plaintexts. Therefore, one must also verify that

D ̸ = (1 G , 1 G).

Algorithm 20: DVZKP for EQLOG

Requires: G of prime order q

(g 1 , g 2 , g 3 , g 4) ∈ G Two public elements g, h ∈ G w ∈ Z q | (g 1 , g 2) w = (g 3 , g 4) 1 α $ ←-Z q ; 2 c 1 ←-g α 1 ; c 2 ←-g α 2 ; 3 d 2 $ ←-Z q ; a 2 $ ←-Z q ; 4 c 3 ←-g a 2 h -d 2 ; 5 d ← hash(g 1 || • • • ||g 4 ||g||pk v ||c 1 ||c 2 ||c 3); 6 d 1 ←-d -d 2 ; 7 a 1 ←-α + d 1 w; 8 return (c 1 , c 2 , c 3 , d 1 , d 2 , a 1 , a 2); Algorithm 21: DVZKP for EQLOG Requires: G of prime order q (g 1 , g 2 , g 3 , g 4) ∈ G Two public elements g, h ∈ G sk v ∈ Z q | g skv=h 1 α $ ←-Z q ; 2 c 3 ←-g α ; 3 d 1 $ ←-Z q ; a 1 $ ←-Z q ; 4 c 1 ←-g a 1 1 g -d 1 3 ; c 2 ←-g a 1 2 g -d 1 4 ; 5 d ← hash(g 1 || • • • ||g 4 ||g||pk v ||c 1 ||c 2 ||c 3); 6 d 2 ←-d -d 1 ; 7 a 2 ←-α + d 2 sk v ; 8 return (c 1 , c 2 , c 3 , d 1 , d 2 , a 1 , a 2);

Designated Verifier Zero Knowledge Proofs

As explained in Section 2.3.4, a non-interactive ZKP provides a transcript that anyone can verify. In general, this is desirable in electronic voting; however, there can be a few situations where it would be preferable that only a specific entity is convinced by the proof. The main example is in the context of coercion resistance, which is the subject of Part III. To address such situations, designated verifier zero knowledge proofs (DVZKP) were introduced in [JSI96], along with designated verifier signatures. Following this paper, a rich literature was developed (see e.g., [SBWP03, SKM03, LWB05]); some examples of recent academic works are [CC18, BJO + 22]. The solution proposed in [JSI96] is extremely simple: suppose that the verifier has a secret key sk v that corresponds to a public key pk v (for instance, pk v = (g, h) with h = g skv). Then, instead of proving a statement ϕ, the prover can make a disjunctive proof that either ϕ is true, either they know the secret key sk (for instance, using a PoK as presented in Section 2.3.2). This way, the verifier is convinced that ϕ is true (unless the secret key was compromised) but cannot use this proof to convince anyone else since they might have produced it using the knowledge of sk.

For completeness, we give in Algorithm 20 an explicit algorithm that can be used to produce a valid DVZKP π = (c 1 , c 2 , c 3 , d 1 , d 2 , a 1 , a 2) for the Chaum-Pedersen proof. In other words, given a DDH tuple (g 1 , g 2 , g 3 , g 4) ∈ G and a witness w, one can prove to the verifier that log g 1 (g 3) = log g 2 (g 4). However, knowing the secret key sk v , the verifier can forge a valid proof for any tuple, using Algorithm 21. To verify such a proof, one computes d from the hash function, check that d = d 1 + d 2 and verify that the three following equations are satisfied:

c 1 = g a 1 1 g -d 1 3 ; c 2 = g a 1 2 g -d 1 4 ; c 3 = g a 2 h -d 2 .

Cryptographic signatures derived from PoK

In electronic voting, the public board is trusted as a public, append-only shared dataset. However, it does not mean that the data available in the public board (e.g., the ballots) are legitimate.

To prevent ballot stuffing and, more generally, to authenticate the data on the public board, the main strategy is to use signatures. Just as for encryption schemes, we denote S and P the sets of the secret and public keys. With these notations, a public key signature scheme can be

Exp suf-cma (λ, A) 1 pk, sk ←-Gen(λ); S ←-∅; 2 m, σ ←-A O Sign (pk); 3 if Verif pk (σ, m) = 1 and (m, σ) ̸ ∈ S then return 1 else return 0; O Sign (m) 1 σ ←-Sign sk (m); 2 S ←-S {(m, σ)}; 3 return σ;
Figure 11: Strong unforgeability experiment defined as a tuple (Gen, Sign, Verif), such that, for all security parameter λ, Gen(λ) outputs a key pair (pk, sk), where pk is a public verification key and sk is the secret signature key. For such a key pair, we have

∀m ∈ {0, 1} * , Verif pk (Sign sk (m), m) = 1.
The security of a signature scheme is characterized by its unforgeability: without the secret key, it should be unfeasible to forge a valid signature for a given message m. Numerous notions of unforgeability exists. For instance, we give Definition 13 which defines the strong unforgeability under adaptive chosen messages attacks. The unforgeability of a signature scheme in turn allows to guarantee the authenticity and the integrity of a message. Also, since a signature is publicly verifiable, it is usually non-repudiable, which gives a way to provide accountability. Definition 13. A signature scheme is SUF-CMA secure if, for all PPT adversary A, the probability Pr(Exp suf-cma (λ, A) = 1) is negligible in λ, where Exp suf-cma is defined in Fig. 11. Schnorr signature. A classical way to obtain a signature scheme is to use a standard PoK of the signing key, where the message m is also included into the hash. This is the main idea of the Schnorr signature scheme [START_REF] Schnorr | Efficient Identification and Signatures for Smart Cards[END_REF], where Gen generates an ElGamal key pair (pk, sk) while Sign is recalled in Algorithm 22. To verify a signature σ = (c, a) for a message m with respect to a public verification key pk = (g, h), one can compute d = hash(g||h||c||m) and check that c = g a h -d .

Algorithm 22: Schnorr signature

Requires: A group G of prime order q Two public elements (g, h)

A message m ∈ {0, 1} * sk ∈ Z q s.t. h = g sk 1 α $ ←-Z q ; c ←-g α ; 2 d ←-hash(g||h||c||m); 3 a ←-α + dsk; 4 return (c, a);
The Schnorr signature is widely used in practice, as it is extremely efficient and proven SUF-CMA secure in the ROM and under the DDH assumption [START_REF] Pointcheval | Security Proofs for Signature Schemes[END_REF]. However, up until 2008, the DSA/ECDSA was preferred as Schnorr's signature scheme was patented. For this reason, there are still a lot of protocols which use various versions of DSA/ECDSA.

Chapter 3

Security proofs in electronic voting

In modern cryptography, it is more and more important to provide a security proof that a protocol cannot be breached. In this thesis, we use cryptographic, hand-written proofs to link the security of a protocol (e.g., its privacy or its verifiability) to a computational assumption (e.g., the DDH assumption and the ROM). In this chapter, we present the main proof techniques that we use and we illustrate them by proving various results.

Cryptographic reductions and game hops

The main strategy to prove a security property is to exhibit a reduction to a known hard problem, such as factorization, discrete logarithm or DDH (or any hard problem). We already used this strategy in Section 2.2.2, where we proved that the ElGamal encryption scheme was IND-CPA under the DDH assumption. However, it is often too difficult to give a direct reduction to the main computational assumption. For this reason, we use game hops.

Game hops

Recall from Section 1.1.2 that we use game-based definitions to assess the security of a protocol. A game (or experiment) can be seen as an interactive Turing machine (ITM) that can interact with the adversary (seen as a PPT) by writing on its input tape and reading its outputs. Intuitively, the game models the behavior of the honest participants, while the adversary is allowed to impersonate the corrupted ones. For instance, consider the ZK-TCPA game in Algorithm 13, which will be our running example in this section. This algorithm defines the program of the game, seen as an ITM. However, we can see that the game must interact with an adversary, which is activated in lines 2, 5 and 10. During the same experiment, we consider that the adversary is stateful, i.e. that it keeps its memory between each activation. Depending on the actions of the adversary, an experiment outputs either 0 or 1: the adversary wins if the output is 1. This allows to model our security property. To decide whether the adversary wins or not, the game is supposed to have an unbounded computational power, which means that we do not demand that a game is a polynomial-time ITM. For a given game G, it may not be possible to interact with just any adversary A. For instance, the adversary is supposed to output a well-formed plaintext at line 5, otherwise the game could not encrypt it. Therefore, there is always an implicit restriction on the adversary, which is supposed to give its outputs in the correct format. In this case, we say that A is an adversary for the game G. In addition to those implicit requirements, we may give some additional explicit restrictions, as they may not be obvious when just analyzing the type of the variables. For instance, we ask that the set A output at line 4 should be a subset of [1, n T] of size at most t.

During the security analysis, we often refer to the view of the adversary. Formally, the view is a random variable over {0, 1} * which consists of the concatenation of all the inputs that was given to the adversary. Intuitively, a game can be defined by the view that it gives to the adversary and how it computes the final output from the outputs of the adversary. When two views follow the same distribution, we say that they are the same. If two different games give the same views to the same adversary and compute their output in the same way, the output of both games will follow the same distribution. Similarly, if the views are not the same but computationally indistinguishable, the outputs in both games must also be computationally indistinguishable. This is a first example of a game hop, where we slightly modify a game into a more simple game, in such a way that the final output remains approximately the same.

An important specific case in game-based definition is the decisional game. A decisional game is parametrized by a random bit b ∈ {0, 1} which is chosen at the beginning of the game (sometimes, we may flip the bit latter, when it is really needed). Depending on the value of the bit, two different views can be given to the adversary, whose goal is to guess the value of b.

In this case, we are interested in the advantage of the adversary, which is the distance between its probability to win and 1/2 (as mentioned previously, a common alternative definition is to say that the advantage is twice this value, and we may use both definitions interchangeably). For instance, the ZK-TCPA game is a decisional game, and we say that a threshold encryption scheme is ZK-TCPA secure if no adversary can win with a non-negligible advantage.

To prove that a game cannot be won with a non-negligible probability (or advantage), a common strategy is to use several game hops, where we replace a game by another which is simpler to analyze. To argue that this transformation is legitimate, we use a game reduction. To present this notion, we use the following notation: if A is an adversary (seen as a Turing machine), the adversary B A is an adversary which interacts with A by writing and reading on its tapes. Since we consider only polynomial adversaries, B A can only make up to a polynomial number of queries to A, and each query must use inputs of polynomial size. Although B A may read all the tapes of A, a generic Turing machine can be arbitrarily obfuscated. Therefore, there is no constructive way for B A to learn anything else than A's outputs (e.g., the intermediate values of the variables handled by A). For this reason, we use the same notation as for blackbox oracle queries, e.g., B O Dec . This black-box access assumption means that, given another adversary A ′ , B could similarly interact with A ′ so that B can be seen as an ITM which makes some queries to a Turing machine. Then we say that there is a polynomial reduction from G 1 to G 2 if there exists a PPT B, such that, for all adversary A that wins G 1 with a non-negligible probability (or advantage), B A wins G 2 with a non-negligible probability (or advantage). For instance, we gave an explicit reduction from IND-CPA to DDH and the other way around in Section 2.2.2. Now, consider two games G 1 and G 2 . Suppose that there exist several intermediate games H 0 , • • • , H t such that, for all i, there is a polynomial reduction from H i to H i+1 , with H 0 = G 1 and H t = G 2 , where t ∈ N is some fixed integer (that does not depend on the security parameter λ). Then, by transitivity, there is a polynomial reduction from G 1 to G 2 . This is the principle of game hops: here, each H i is a game hop, and is obtained from H i-1 by introducing a little tweak. To see how the notion of game hops can be used to prove Theorem 1, see the proof of the theorem in Appendix A. Alternatively, we also provide some examples of game hops in the following section.

Algorithm 23: Exp ind-pa0 (λ, A) 1 pk, sk ←-Gen(λ); 2 m 0 , m 1 ←-A(pk); 3 b $ ←-{0, 1}; 4 C ←-Enc pk (m b); 5 C ←-A(C); 6 m ←-(Dec sk (y)) y∈C\{C} ; 7 b ′ ←-A(m); 8 if b = b ′ then return 1 else return 0; Algorithm 24: Exp n-ind-pa0 (λ, A) 1 pk, sk ←-Gen(λ); 2 (ν 0,k , ν 1,k) n k=1 ←-A(pk); 3 b $ ←-{0, 1}; 4 for i = 1 to n do C i ← Enc pk (ν b,i); 5 C ←-A((C i) n i=1); 6 M ←-{ {(Dec sk (C)) C∈C\{C i ,i∈[1,n]} } }; 7 b ′ ←-A(M); 8 if b = b ′ then return 1 else return 0;

The hybrid lemma

The polynomial reduction proof strategy was notably used in [START_REF] Bellare | Non-malleable Encryption: Equivalence between Two Notions, and an Indistinguishability-Based Characterization[END_REF] to prove the equivalence between two notions of non-malleability, by giving a succession of polynomial reductions NM-CPA =⇒ SNM-CPA =⇒ IND-PA0 =⇒ NM-CPA, where SNM-CPA is some equivalent formulation of the NM-CPA security while IND-PA0 security is defined in Definition 14. This notion of security is extremely interesting in electronic voting because it is equivalent to a weak version of privacy, captured by Algorithm 24. While this game is not enough to define privacy, it is still interesting to consider as a minimal requirement. Now, it is notable that Algorithms 23 and 24 are similar: the main difference is that the adversary can choose an arbitrary number of pairs at line 2, instead of one in the IND-PA0 game. The equivalence between these two games is a good opportunity to introduce the hyrid lemma.

Definition 14 (IND-PA0 [BS99]

). An encryption scheme (Gen, Enc, Dec) is IND-PA0 secure if, for all PPT A, A wins the IND-PA0 game (defined in Algorithm 23) with a negligible advantage.

Lemma 1 ([BS99]

). An encryption scheme is NM-CPA if and only if it is IND-PA0.

To prove that IND-PA0 (and, therefore, NM-CPA security) is equivalent to n-IND-PA0, the natural strategy is to consider n game hops H 0 , • • • , H n , where H 0 is the IND-PA0 game (and hence does not count as a game hop) while H n is the n-IND-PA0 game. Game H i is defined as in Algorithm 24, except that the adversary can choose up to i + 1 pairs of plaintexts at line 2. Therefore, H i can be seen as a hybrid between the IND-PA0 game (where the adversary can only choose one pair) and the n-IND-PA0 game (where the adversary can choose an arbitrary number of pairs). With such hybrids, it is possible to show that, for all i, if there is an adversary A which wins H i+1 with some non-negligible probability, then there exists an adversary B that wins H i with a non-negligible probability (see Lemma 2).

Lemma 2. For i ∈ N, let H i be the game defined in Algorithm 24, except that the adversary is restricted to n ≤ i + 1 at line 2. Suppose that (Gen, Enc, Dec) is IND-PA0. Then, for i ∈ N, for all adversary PPT A i+1 , there exists a PPT A i and a negligible function µ i such that

| Pr(H i (λ, A i) = 1) -Pr(H i+1 (λ, A i+1) = 1)| ≤ µ i .
Proof. Let i ∈ N and let A i+1 be some PPT adversary for H i+1 . We construct A i as follows. First, A i gets pk from H i and forwards it to A i+1 which answers with i + 2 pairs (ν 0,1 , ν 1,1), • • • , (ν 0,i+2 , ν 1,i+2) (when A i+1 uses less pairs, A i can use them in H i and thus a perfect simulation of H i+1 to A i+1 ; therefore we focus on the specific case where A i+1 uses exactly i + 2 pairs). A i can only play i + 1 of them in H i , therefore A i does not play the last one. At this point, A i gets i + 1 encryptions from game H i but has to show i + 2 ciphertexts to A i+1 . For this purpose, A i completes A i 's view with a random ciphertext C i+2 of a known (random) plaintext ν. This way, A i gets C from A i+1 and plays this in H i . It gets M from H i , removes ν from M and adds ν 0,i+2 instead. Then, it sends the resulting multiset to A i+1 . Finally, A i returns A i+1 's output.

Reduction to IND-PA0. Now, we show that there exists a negligible function µ i which suits the conclusion of the lemma. For this purpose, we consider an adversary B for the IND-PA0 game. This adversary will interact with A i+1 by simulating H i+1 . First, B gets pk from the IND-PA0 game and forwards this to A i+1 which answers with (ν 0,j , ν 1,j) i+2 j=1 . To simulate H i+1 , B picks a random bit b ∈ {0, 1} and compute Now, remark that when the IND-PA0 game encrypts ν b,i+2 , B plays a perfect simulation of H i+1 to A i+1 , and therefore B outputs 1 with probability p i+1 = Pr(H i+1 (λ, A i+1) = 1). On the other hand, when the IND-PA0 game encrypts ν, B plays A i 's simulation of H i+1 to A i+1 . However, it must outputs 0 to win the IND-PA0 game, and thus wins with probability 1-p i , where

C j = Enc pk (ν b,j) for j ∈ [1, i + 1]. However,
p i = Pr(H i (λ, A i) = 1). Therefore, B's advantage in the IND-PA0 game is µ i = 1 2 |p i -p i+1 |.
By the triangular inequality, it follows that for all PPT A against n-IND-PA0, there exists a PPT B and some negligible functions

µ 1 , • • • , µ n such that Pr(Exp n-ind-pa0 (λ, A) = 1) - 1 2 ≤ Pr(Exp ind-pa0 (λ, B) = 1) - 1 2 + n i=1 µ i .
However, an upsetting fact is that a sum of polynomially many negligible functions is not always negligible. Of course, this is the case when there exists a negligible function µ such that µ i ≤ µ for all i ∈ N, and also if n is bounded by some constant. However, suppose that n = λ and consider the example µ i = 2 i /2 λ for all i. Clearly, for any i ∈ N, µ i is negligible; however, n i=1 µ i is not negligible. Therefore, Lemma 2 by itself is not sufficient to conclude: for this purpose, we need the hybrid lemma. In this thesis, we use the version of [MF21, Theorem 3.17], that we restate into Theorem 2, which is better suited for game-based definitions. It is not clear whether our formulation is equivalent to or a consequence of [MF21, Theorem 3.17]. For this reason, we prove Theorem 2 in Appendix B.

In this theorem, we consider the practical use case of the hybrid argument when, given two games G 1 and G 2 , we want to show that there exists a polynomial reduction from G 1 to G 2 . The idea is that the adversary in G 1 can freely choose a (at most polynomial) parameter n while, in G 2 , n is restricted to some small constant (e.g., 1). Then the usual approach is to construct a succession of hybrids (H i) i∈N such that H 0 = G 2 (more precisely, see condition 1), and argue that H n is indistinguishable from G 1 , provided that n is large enough (condition 2). The hybrids must be pairwise similar, i.e. a simulation of H i+1 can be obtained from H i in polynomial time (condition 3). In addition, we need to argue that the simulation is actually indistinguishable from the real H i+1 . For this purpose, we use a computational assumption, which is captured by the condition 4, where we suppose that there exists a decisional game G -in which the adversary has to guess a bit b ∈ {0, 1} -that cannot be won with a non-negligible advantage. To prove that the simulation is indistinguishable from the real H i+1 , we exhibit a polynomial reduction to the computational assumption; however, for the conclusion to hold, we need this reduction to be "uniform": the same reduction is applied when proving the indistinguishability of any two hybrids. In addition, we also need the reduction to be "perfect": we construct an explicit adversary B for game G such that, given i, B plays a perfect simulation of H i+1 to A i+1 when b = 1 in G and A i 's simulation when b = 0 in G. These two additional requirements are expressed by condition 5. When all these conditions are gathered, the hybrid lemma gives the desired conclusion.

Theorem 2 (The hybrid lemma). Let G 1 and G 2 two games. We consider a sequence of games (H i) i∈N which are hybrids between G 1 and G 2 . With these notations, assume that the following conditions are met:

1. For all PPT A, for all security parameter λ, Pr(G 2 (λ, A) = 1) = Pr(H 0 (λ, A) = 1).

For all PPT

A for game G 1 , there exists a polynomial n A such that, for all λ ∈ N,

Pr(H n A (λ) (λ, A) = 1) = Pr(G 1 (λ, A) = 1).
3. There exists a polynomial P and two transformation T and T ′ such that, given any PPT adversary A i+1 (resp.

A i) for game H i+1 (resp. H i), A i = T (A i+1) (resp. A i+1 = T ′ (A i))
is an adversary for game H i (resp. H i+1) which makes at most P (λ) additional transitions.

4. There exists a game G which depends on a parameter b ∈ {0, 1} such that, for all PPT adversary B,

ε B = 2| Pr(G(λ, B) = 1) -1/2| is negligible in λ.
5. There exists a PPT B such that, for all i ∈ N and all PPT A i+1 for game H i+1 (which in turns defines a PPT A i for H i), we have Pr(G(λ,

B A i+1 (i)) = 1 | b = 0) = Pr(H i (λ, A i) = 1) and Pr(G(λ, B A i+1 (i)) = 1 | b = 1) = Pr(H i+1 (λ, A i+1) = 1).
Then, for all PPT A 1 , there exists a PPT A 2 and a PPT B such that

| Pr(G 1 (λ, A 1) = 1) -Pr(G 2 (λ, A 2) = 1)| ≤ n A 1 ε B .
The hybrid lemma is a fundamental result in cryptography. In particular, it allows to prove Lemma 3, which is a key step in the proof of privacy for the Helios-like voting systems. For a complete proof of privacy of Helios, we refer to [BPW12, Theorem 3] or [BCG + 15b, Theorem 2].

Lemma 3. An encryption scheme is IND-PA0 if and only if, for all PPT adversary

A, the advantage Pr(Exp n-ind-pa0 (λ, A) = 1) -1/2 is negligible in λ. Proof. First, it is clear that n-IND-PA0 implies IND-PA0 since Exp ind-pa0
is a special case of Exp n-ind-pa0 with n = 1. Conversely, suppose that an encryption scheme (Gen, Enc, Dec) is IND-PA0 secure. Then we consider the game hops (H i) i∈N defined as in Algorithm 24, except that n is restricted to be at most i + 1 at line 2. Then, with G 1 = Exp n-ind-pa0 and G 2 = H 0 , we have:

1. For all A, λ, Pr(G 2 (λ, A) = 1) = Pr(H 0 (λ, A) = 1).
2. For all PPT A, there exists a polynomial n A such that A can make at most n A transitions.

In particular, A cannot output more than n A pairs at line 2 and therefore Pr(

H n A (λ) (λ, A) = 1) = Pr(G 1 (λ, A) = 1) for all λ ∈ N.
3. Let A i+1 be an adversary for game H i+1 . In the proof of Lemma 2, we construct an adversary A i for H i which only computes an additional encryption. Converselly, given A i , and adversary for game H i , A i+1 = A i is an adversary for game H i+1 .

4.

By assumption, we can use G = Exp ind-pa0 .

5.

We constructed such a B in the proof of Lemma 2.

By the hybrid lemma, for all PPT adversary A which wins Exp n-ind-pa0 with a non-negligible advantage, there exists a PPT adversary B which wins H 0 with a non-negligible advantage. Since H 0 is clearly equivalent to the IND-PA0 game, this concludes the proof.

Known results in the random oracle model

When designing a polynomial reduction in the random oracle model, we construct an adversary B that interacts with another adversary A by simulating a random oracle. This leads to surprisingly powerful results which can be used to prove various security properties.

Extracting a witness from a proof of knowledge

One of the main use cases of the ROM is to prove the security of standard ZKP, i.e. ZKP obtained from a disjunctive proof or a proof of knowledge of a preimage, using the Fiat-Shamir transformation. Indeed, we argued in Section 2.3.4 that the ROM allows to prove that standard ZKP are computationally sound while still revealing no useful information to a PPT adversary. However, the example of the Schnorr signature (see Algorithm 22) illustrates that the computational soundness is not sufficient in some cases. For signatures and authentication, we not only need to make sure that the statement is true, but also that the prover knows the corresponding witness. Fortunately, in the case of PoK of a preimage of z by a homomorphism φ, the ROM not only allows to prove that that z ∈ φ(G) with overwhelming probability, but also that the prover "knows" a preimage of z. In other words, for all group homomorphism φ : G → H, where the order of H does not have any divisor smaller than 2 λ , there exists a PPT extractor which, given z ∈ H and a PPT A that outputs a valid PoK of a preimage of z with some non-negligible probability, is able to extract a preimage of z from A.

The proof method to build this extractor uses the so-called forking lemma (or rewinding lemma), introduced in [START_REF] Pointcheval | Security Proofs for Signature Schemes[END_REF]. First, consider an adversary A in the ROM which outputs a valid proof π = (c, a) with some non-negligible probability. Then A must have made a query to the random oracle with the input c (technically, pre||c), otherwise the challenge d would be uniformly random and the verification equation c = φ(a)z -d would hold with a negligible probability. Then we can consider a PPT B which interacts with A by using the rewinding paradigm: if several independent copies of A are called several times with the same inputs and the same random tape, then they must return the same outputs. Hence, by using two copies of A and feeding them with exactly the same inputs, B can create a situation where both copies make an oracle query with the commitment c as an input. At this point, B gives a different challenge to both copies, in the hope that they would output a valid answer for the same commitment but two different challenges, allowing B to extract a preimage using the special soundness property. However, since B gave a different answer to the copies, they can actually fork at this point; hence the name of the lemma. Using this lemma in the specific case of the Schnorr signature, Pointcheval and Stern showed that it is indeed possible for B to extract a preimage of z in polynomial time.

This extractability result can be generalized as soon as the original Σ-protocol had the special soundness property (see, for instance, [BPW12, Theorem 1]).

Non-malleability in practice. Following the same proof strategy, it is possible to show that a simple transformation of the ElGamal encryption scheme is sufficient to provide NM-CPA security, as stated in Lemma 4. This is an interesting result in electronic voting, as we already stated that NM-CPA is a good notion of security that is necessary for privacy (see Lemma 3). Although there exists other strategies that do not rely on the ROM to create non-malleable variants of the ElGamal encryption (e.g., [START_REF] Cramer | A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack[END_REF]), the "Enc+PoK" paradigm is widely preferred because of its efficiency.

Lemma 4 ([BPW12]

). Let (Gen, Enc, Dec) be an IND-CPA encryption scheme and, for all pk, let A pk (C, m, r) a standard PoK algorithm that, given a ciphertext C, a plaintext m and a randomness r such that Enc pk (m, r) = C, produces a PoK for the language Enc pk (P ×R), where P is the plaintext space while R is the randomness space. Suppose that A pk is obtained from a zero knowledge Σ-protocol that has special soundness, using the strong Fiat-Shamir transformation (i.e. the hash must at least contain the ciphertext C, the public key pk and the commitment c). Then, the encryption scheme (Gen, Enc ′ , Dec ′) is NM-CPA secure, where Enc ′ pk (m, r) returns the pair (C, π) with C = Enc pk (m, r) and π = A pk (C, m, r) while Dec ′ sk (C, π) returns ⊥ if π is invalid and Dec sk (C) otherwise.

Good practices for non-interactive proofs

Non-interactive proofs are ubiquitous in electronic voting, yet their security is not always understood properly. Indeed, recall that all the arguments of Section 2.3.4 (and also Section 3.2.1) assumed that both the NP language L and the element z (supposedly in L) were fixed and could not be chosen by the adversary. However, this is not the case in electronic voting. For instance, consider the example of a voter who produces a ballot that contains an encryption C and a ZKP that C encrypts a valid voting option. Then the statement "C is valid" actually depends on C, which means that a malicious voter has an extra degree on liberty when creating the proof. Namely, suppose that we use a weak Fiat-Sharmir transformation where only the commitment is hashed to obtain the challenge. Then one could very well compute a random commitment c, deduce the challenge d, choose a random answer a and compute z = (φ(a)/c) 1/d . Then the "proof" π = (c, a) will satisfy a verifier who would compute d = hash(c) then check that c = φ(a)z -d ; yet, z is uniformly random (since c is random) and thus not necessarily in φ(G). This illustrates the difference between what a PPT adversary can do with a chosen (hence potentially trapdoored) z compared to with a given z (for which a cannot be extracted because of φ's one-wayness).

"Strong" Fiat-Shamir transformation. Interestingly, it was revealed in [START_REF] Bernhard | How Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios[END_REF] that the ZKP used in Helios were vulnerable to this attack. Worse, it was even revealed that a coalition of t + 1 talliers were able to create a ciphertext for any chosen plaintext, and forge a fake but valid-looking ZKP that this ciphertext encrypts a valid voting option. Although it is generally assumed that up to t talliers may be corrupted, this trust assumption is only made for privacy and not for verifiability. Yet, when a homomorphic tally is used, this allows to undetectably add (or remove) any arbitrary number of votes to any candidate, hence rigging the result. For this reason, the authors introduced the "strong" Fiat-Shamir transformation, in which the challenge is not only obtained from the commitment, but also from the ciphertext; i.e. d = hash(z||c) instead of d = hash(c). In what follows, we show that this is still not enough: while z is indeed fixed, this is not the case for φ.

How to forge a fake ZKP, again. The solution of [START_REF] Bernhard | How Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios[END_REF] is not sufficient in the context of electronic voting. More precisely, although the developers of Belenios [CGG19] used the "strong" Fiat-Shamir transformation as recommended, we found a way for the corrupted talliers to forge a fake but valid-looking ZKP for a false statement. This allows them to cast a ballot for an invalid voting option, which either breaks eligibility or prevents the result from being tallied. We presented this attack at E-Vote-ID as a short paper [START_REF] Cortier | How to fake zeroknowledge proofs, again[END_REF]. To fix ideas, consider the case of an exponential ElGamal encryption in a group G of prime order q, with a base a. To simplify further, assume that a is an element of the public key; for instance, if pk = (g, h), suppose that a = g (a similar attack exists when a = h or when a can be chosen freely by the attacker; if a is fixed in advance or provably random, then a similar attack is possible by taking γ = a at Step 1). With this in mind, recall that the encryption of a bit b ∈ {0, 1} given a public key pk = (g, h) is obtained by choosing a random r ∈ Z q and computing x = g r and y = g b h r . Now, to prove that (x, y) is an encryption of either 0 or 1, assume that we use the "strong" Fiat-Shamir transformation from [START_REF] Bernhard | How Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios[END_REF]: a valid proof π consists of a tuple (c 0,x , c 0,y , c 1,x , c 1,y , d 0 , d 1 , a 0 , a 1) such that, with d = hash(x||y||c 0,x ||c 0,y ||c 1,x ||c 1,y), we have

d 0 + d 1 = d while c i,x = g a i x -d i and c i,y = h a i (y/g i) -d i for all i ∈ {0, 1}.
Then, we explain how the attacker can create an encryption (x, y) of any chosen plaintext m ∈ Z q , and forge a fake but valid-looking ZKP π w.r.t. (x, y). To perform the attack, one must corrupt all the participant of the key generation protocol (i.e. the talliers), and proceed as follows:

1. Choose a random group generator γ ∈ G\{1}.

2. Pick some random scalars ℓ x , ℓ y , r 0x , r 0y , r 1x , r 1y ∈ Z q and compute x = γ ℓx , y = γ ℓy , c 0,x = γ r 0x , c 0,y = γ r 0y , c 1,x = γ r 1x and c 1,y = γ r 1y .

3. Compute d = hash(x||y||c 0,x ||c 0,y ||c 1,x ||c 1,y).

At this point, the ciphertext (x, y) and the commitments are fixed, but not the public encryption key pk. The idea is to use it as some extra degree of liberty, by looking for g and h of the form g = γ ℓg and h = γ skℓg . However, for (x, y) to encrypt the desired plaintext m ̸ ∈ {0, 1}, we need the secret key sk to respect the equation mℓ g = ℓ y -skℓ x . Finally, to forge our valid ZKP, we need to find d 0 , d 1 , a 0 , a 1 that satisfy the verifying equations. By using the trapdoors set at Step 2, we can use the vector space structure of G and express all the desired equations in Z q , using the discrete logarithm in base γ when necessary. This leads to the following system, where the unknowns are in bold while the known values are in blue:

                   mℓ g = ℓ y -skℓ x d = d 0 + d 1 r 0x = a 0 ℓ g -d 0 ℓ x r 0y = a 0 skℓ g -d 0 ℓ y r 1x = a 1 ℓ g -d 1 ℓ x r 1y = a 1 skℓ g -d 1 (ℓ y -ℓ g) ⇐⇒                    mℓ g = ℓ y -skℓ x d = d 0 + d 1 r 0x = a 0 ℓ g -d 0 ℓ x r 0y -skr 0x = d 0 (skℓ x -ℓ y) r 1x = a 1 ℓ g -d 1 ℓ x r 1y -skr 1x = d 1 (skℓ x -ℓ y + ℓ g).
Since this system is quadratic, it is a priori not trivial to solve. However, assuming that the denominators do not cancel (which happens with negligible probability), we have:

                                       sk = ℓ y -mℓ g ℓ x d = d 0 + d 1 a 0 = r 0x + d 0 ℓ x ℓ g d 0 = r 0y -skr 0x skℓ x -ℓ y a 1 = r 1x + d 1 ℓ x ℓ g d 1 = r 1y -skr 1x skℓ x -ℓ y + ℓ g .
Hence everything can be expressed as a function of ℓ g , provided that d = d 0 + d 1 . This last equation can then be rewritten as

d = r 0y -skr 0x skℓ x -ℓ y + r 1y -skr 1x skℓ x -ℓ y + ℓ g = r 0y - ℓy-mℓg ℓx r 0x ℓ y -mℓ g -ℓ y + r 1y - ℓy-mℓg ℓx r 1x ℓ y -mℓ g -ℓ y + ℓ g , hence ℓ g d = ℓy-mℓg ℓx r 0x -r 0y m + r 1y - ℓy-mℓg ℓx r 1x 1 -m .
Now that we finally have a linear equation, we can proceed as follows:

4. Compute ℓ g = r 0x ℓy-r 0y ℓx mℓx + r 1y ℓx-r 1x ℓy (1-m)ℓx d + r 0x ℓx + mr 1x (m-1)ℓx -1
and g = γ ℓg .

Compute sk = ℓy-mℓg ℓx

and h = g sk . Set pk = (g, h).

6. Deduce d 0 , d 1 and then a 0 and a 1 from the above equations.

7. Return the ciphertext (x, y) and the ZKP π = (c 0x , c 0y , c 1x , c 1y , d 0 , d 1 , a 0 , a 1).

This attack allows to forge a single ballot that contains any desired number of voices for a specific candidate. For instance, if the talliers want Alice to win, they can give her any number of additional voices; if they want her not to win, they can give her a negative number of voices. Alternatively, they can also choose a large value of m, so that the tally would be impossible since it would require to solve the discrete logarithm problem. One would argue that those attacks require to freely choose the group generator g, while there is no reason to allow the talliers to do this. Since g must not have any specificity except being uniformly random, it can be obtained by a public coin protocol. In practice, g is actually fixed and determined by the group specification. When g is provably random or fixed, the authorities can no longer choose ℓ g as in Step 4 and hence cannot forge a fake ZKP for the ciphertext (x, y). However, they are still able to choose sk, which allows to create an encryption of some random (not chosen) m ∈ Z q and forge a fake ZKP that m ∈ {0, 1}. Therefore, the soundness of the ZKP is still lost and it is still possible to prevent the tally from being computed without being blamed.

Strong Fiat-Shamir transformation. To obtain a PoK, we recommend that the challenge be obtained from a binding description of the homomorphism φ : G → H, the element z for which we want to prove the knowledge of a preimage and the commitment. When those three are fixed, the soundness of the Fiat-Shamir transformation is proven in the ROM; however, there is no guarantee if, for instance, H or G are allowed to change. In the case of the ElGamal encryption scheme, it is therefore necessary to include the ciphertext and the public key in the hash (along with the commitment). If exponential ElGamal is used with some base a ̸ ∈ {g, h}, then a should be included as well. Finally, one can even include a description of G just to be on the safe side (even if they cannot think of a clever way to use the same pk -seen as a bitstring -in another group).

To conclude this section, we give our own definition of the strong Fiat-Shamir transformation. The original "strong" transformation was too weak, as it allowed a PPT adversary to forge fake ZKP for false statements by using an attack scenario which was not anticipated. Therefore, it is possible that our solution may also be vulnerable to an attack in the future. For this reason, we give a clear context in which our transformation is secure, and which is suitable for electronic voting. First, to fix ideas, we give a definition of Σ-protocols in Definition 15.

Definition 15. Let W , L be two sets parametrized by a security parameter λ. (For the ease of the notations, we drop the dependency on λ.) A Σ-protocol for the relation R = W × L is a tuple of PPT algorithms (Com, Ans, Ver).

It has correctness if, for all (w, z) ∈ R (also denoted wRz), for all d ∈ [0, 2 λ -1], Ver(z, c, d, a) = 1, where c, ρ = Com(z) and a = Ans(w, ρ, z, d).

It is zero knowledge if there exists a PPT simulator Sim such that, for all (w, z) ∈ R and all d ∈ [0, 2 λ -1], (c, ã) = Sim(z, d) follows the same distribution as (c, a), where c, ρ = Com(z) and a = Ans(w, ρ, z, d).

It is computationally sound if there exists a negligible function µ such that, for all PPT adversary A and all z ̸ ∈ L, we have:

Pr(c ← A(λ, z); d $ ← [0, 2 λ -1]; a ← A(d); Ver(z, c, d, a) = 1) ≤ µ(λ).
Then, to introduce the notion of strong Fiat-Shamir transformation, we must capture the fact that the NP language may be chosen by the adversary. For this purpose, we consider in Definition 16 a family of Σ-protocols which are parametrized by a public key pk. In electronic voting, pk is the public encryption key (and, if necessary, the base of the exponentiation for exponential ElGamal). However, we cannot consider just any family since proving the security of the strong Fiat-Shamir transformation in a too generic setting would be hard. Therefore, we restrict ourselves to a uniform case, as it is the case in general (see Definition 16). One of the consequences is that, technically, since we ask for the relation R pk to be efficiently decidable given only pk and λ, the parameter pk must somehow include an encoding of the group, otherwise one would not know how to compute an exponentiation. By uniform, we mean that the same algorithm allows to compute Com pk , Ans pk , Ver pk and the simulator Sim pk . In addition, we also demand that the computational soundness is uniform (see the UCS game in Algorithm 25). This way, we do not have to worry about the sum of polynomially many negligible functions being potentially non-negligible. For the non-interactive proof to be "zero-knowledge" in the ROM, we also ask that if q is polynomial, then q independent commitment from Com, even with potentially different pk, are pairwise distinct, except with a negligible probability. Intuitively, this means that the simulation of a non-interactive proof in the ROM will be perfectly indistinguishable from the real proof, except with a negligible probability. (Indeed, recall that to simulate a proof, the simulator first chooses a random challenge d and a random answer a, then computes c = φ pk (a)z -d , which follows the same distribution as a honestly generated commitment when z ∈ φ pk (G). To be able to forge the proof, the simulator "assigns" the value d to hash(pk||z||c), which may not be possible if c was already used in another simulated ZKP.) Algorithm 25: Exp UCS (λ, A)

Requires: A family of Σ-protocols (Com, Ans, Ver) w.r.t. the languages (L) pk 1 pk, z, c ←-A(λ); c,d,a) = 1 and z ̸ ∈ L pk then return 1 else return 0; Definition 16 (Uniform Σ-protocol). Let (R) pk be a family of relations parametrized by a public key pk and the security parameter λ. (For all pk, we denote L pk = {z | ∃w, wRz}.) Similarly, let (Com, Ans, Ver) pk be a family of Σ-protocols for those relations. Suppose that for all pk, (Com, Ans, Ver) pk has correctness, zero knowledge and computational soundness. We say that this family is uniform if the following conditions are met:

2 d $ ←-[0, 2 λ -1]; 3 a ←-A(d); 4 if Ver pk (z,
• There is a common PPT algorithm R such that, given a public key pk, a security parameter λ and w, z ∈ {0, 1} * , allows to decide if wR pk z;

• There exists a common PPT algorithm Com (resp. Ans and Ver) which, given pk, λ and z (resp. w, ρ, z, d and z, c, d, a), computes Com pk (z) (resp. Ans pk (w, ρ, z, d) and Ver pk (z, c, d, a);

• There exists a common PPT simulator Sim which given pk, λ, z ∈ L pk and d ∈ [0, 2 λ -1], returns Sim pk (z, d), where Sim pk is the simulator of (Com pk , Ans pk , Ver pk);

• There exists a negligible function µ such that, for all non-uniform polynomial A, the probability that A wins the UCS game (defined in Algorithm 25) is at most µ(λ).

• For all polynomial q, q independent commitments from Com are pairwise distinct, except with probability at most qµ.

Now, we argue that the standard Σ-protocol are actually uniform. Indeed, consider a family φ pk : G → H which is parametrized by a parameter pk, but for which there is a common polynomial-time algorithm to compute every φ pk given pk and g ∈ G. (For instance, φ can be the encryption algorithm.) By contrast with the usual, we suppose that the order of H does not have any non-trivial divisor smaller than 2 2λ (instead of 2 λ , which is the case in general since we want to protect ourselves against the birthday paradox. In addition, we also consider that for all pk, φ pk is non-trivial, which means that we may rule out some specific values of pk. We consider (Com, Ans, Ver) pk , the standard Σ-protocol for proving the knowledge of a preimage from ϕ pk (defined in Section 2.3.2). Then (Com pk , Ans pk , Ver pk) clearly comes from a common polynomial-time algorithm, the same goes for Sim pk . In addition, recall that a standard Σprotocol has the special soundness property. Therefore, whenever the adversary outputs pk, z, c such that z ̸ ∈ φ pk (G), then there exists at most one value d ∈ [0, 2 λ -1] for which a valid answer a can be found. Hence, the adversary wins the UCS game with probability at most µ(λ) ≤ 2 -λ , which is indeed independent from pk. Finally, since we assumed that for all pk, φ pk is non-trivial, its image is a non-trivial sub-group of H, and therefore has a cardinality of at least 2 2λ (indeed, recall that the cardinality of a sub-group is a divisor of the order of the group, and that there is no non-trivial divisor smaller than 2 2λ). Yet, the commitment algorithm consists of choosing a random α ∈ G and returning c = φ pk (α), so that c is a random element of φ pk (G), chosen among at least 2 2λ possibilities. Therefore, q independent commitments can collide with probability at most 1 -q-1 i=0 (1 -i2 -2λ). When q is at most polynomial, this is approximately q(q-1)

2 2λ+1 ≤ q 2 2 -2λ ≤ q2 -λ = qµ.
Now that we have fixed the context, we give Definition 17 which explains how to securely turn an interactive Σ-protocol into a non-interactive ZKP. Note that the security of this transformation is already included in the definition of a uniform Σ-protocol, for instance in the UCS game.

Definition 17 (Strong Fiat-Shamir transformation). Consider a uniform Σ-protocol (Com, Ans, Ver) for the family R pk , and hash : {0, 1} * → {0, 1} 2λ a hash function. The strong Fiat-Shamir transformation of this protocol consists of the two following algorithms:

• Prove pk (w, z) : Compute c, ρ = Com pk (z), compute d = hash(pk||z||c) (modulo 2 λ) and
return (z, c, a), where a = Ans pk (w, ρ, z, d).

• Verif pk (z, c, a) : Compute d = hash(pk, z, c) (modulo 2 λ) and return Ver pk (z, c, d, a).

Note that pk must contains all the necessary informations to compute R pk , Com pk , Ans pk , Ver pk and Sim pk . This typically includes the group generator and a specification of a group.

Universally composable security

In electronic voting, we often consider complex protocols that are divided into several phases, whose security is assessed independently. However, recall how the provably secure Fiat-Shamir transformation (that required L and z to be fixed) became unsecure as soon as the adversary was able to choose L and z. This example shows that a protocol as a whole may be unsecure even when its components are individually secure. To address this, we use an universally composable framework in which the security of a protocol can be deduced from the security of its components.

Presentation of the framework

We use the SUC framework [START_REF] Canetti | A Simpler Variant of Universally Composable Security for Standard Multiparty Computation[END_REF], which is a simpler version of the universally composable framework of Canetti [START_REF] Canetti | Universally Composable Security: A New Paradigm for Cryptographic Protocols[END_REF] (hence the acronym SUC). In this framework, a protocol is a fixed set of participants that are modeled as probabilistic polynomial ITM which interact with each other using common input / output tapes (i.e. communication tapes). Executing all the participants concurrently leads to an execution of the protocol, which is called a process. In turn, a process can invoke sub-processes, but with the same participants that must allocate a part of their memory and computation time for this. This way, several sub-processes can be run in parallel. However, we consider that they are all uniquely identified, which means that a message designed for a specific instance of a sub-protocol cannot be (re)used in another instance of the same sub-protocol. The above restriction is a part of the communication model, which also contains the following assumptions. First, we consider that the communication channels provide integrity, and are ideally authenticated: when Alice sends a message to Bob, this message cannot be modified, it cannot be diverted as a message sent to Charlie and Bob will know that Alice was the one who sent it. In addition, a message cannot be replayed: after a message was delivered to a participant, it cannot be delivered again (except if the same message was sent several times). However, the channels are not considered secure: the adversary can read any message between two participants, block the messages and decide at which moment they might be delivered (if at all). In particular, the adversary can freely invert the order in which several messages may be delivered, which means that we consider an asynchronous model of communication. The asynchronicity of the model also means that, at a given time, exactly one entity may be activated. We suppose that an entity's activation is interrupted if and only if the entity sends a message, writes something in its output tape or uses the specific instruction wait (in which case the adversary is activated next). However, any participant can send several messages simultaneously, in which case they may be delivered independently.

Another way to present the model of communication, as done in [START_REF] Canetti | A Simpler Variant of Universally Composable Security for Standard Multiparty Computation[END_REF], is to consider an incorruptible entity, known as the router. When a participant i sends a message m to another participant j, this is modeled as i writing a send query to the router, using a dedicated communication tape. The router then sends (i, j, m) to the adversary which is activated next. Then, at any moment, the adversary can decide to deliver a message that is stored inside the router, in which case the router deletes this message and writes (i, j, m) in j's communication tape. Therefore, we can consider that each (honest) participant has only two communication tapes: one for sending and the other for receiving, and that both tapes are connected to the router. Although the router is always honest, it cannot do anything else than forwarding the messages to the adversary and delivering them when instructed.

In this thesis, we consider an adversary which can non-adaptively corrupt some participants. The corrupted participants may be fully impersonated, which means that the adversary's program is executed instead. When representing the participants as ITM, one can consider that the communication tapes of the corrupted participants are connected to the adversary. In particular, since the router needs to identify which tape belongs to which participant in order to deliver the messages, we consider that the adversary's communication tapes are clearly identified, which means that the corrupted participants can be deduced from the tapes of the adversary. Note that it might be desirable to let the adversary choose the participants to corrupt at the very beginning of the experiment. In this case, we can still assume that the adversary has a dedicated tape for the corrupted participants and that those tapes allow it to "control" them.

In addition to the adversary A, there is an additional polynomial ITM Z which represents the environment. It can arbitrarily write in the input tape of the participants (which activates them) and is activated when they write in their output tape (at which point it can directly read the output). Recall that we consider that several instances of the same sub-protocol are independent. Hence, if the environment writes several times in the input tape of the same participant, the latter will start a fresh, independent session of the protocol. For simplicity, we suppose that, in a given session, a honest participant may only write a single output, after which the session is killed and every local variable is erased. Apart from that, Z can only interact with A, for instance by giving it some specific instructions and reading its feedback. (For simplicity, we consider that Z can only read the outputs of the honest participants since it can instruct A to directly send the corrupted participants' outputs.) Note that the interaction between Z and A is direct and does not use the router. Now, the security of a protocol is assessed by comparing the real protocol with an ideal one in which the computations are handled by some trusted party (which is not necessarily polynomially bounded).

In the ideal protocol, the honest participants handle their inputs to the trusted party which honestly follows a specific algorithm and is expected to give them an answer. However, while the adversary can block or delay the communications between a participant and a trusted party, it cannot read the corresponding messages: the content of the input and that of the trusted party's answer remain private. (Nevertheless, we suppose that the adversary can read a public part of the message, such as its length or the session identifier.) Note that the corrupted parties, who are under the control of the adversary, may send anything to the trusted party and not necessarily the input given by the environment. At some point, the trusted party can send a message to any participant. When such a message is delivered, the honest participant outputs its content. Finally, the adversary may directly interact with the trusted party, without using a corrupted participant or the router as an intermediate. For instance, since the adversary is able to block all the communications, it is possible to consider that it can force the protocol to abort by instructing the trusted party to send ⊥ to all the participants, which in turn will output ⊥.

Intuitively, the protocol is SUC-secure if, for all adversary A in the real process, there exists a PPT simulator S in the ideal process such that no PPT Z can tell whether it is interacting with A in the real process or with S in the ideal process.

The idea is that S can interact with Z by simulating the real process, i.e. the honest participants, the router and the interaction with A. For this purpose, S can act as the adversary of the ideal process in which Z is active. In this process, it makes some queries to the trusted party, impersonates the corrupted participants and delays the communications of the honest participants with the trusted party, as explained above. However, S cannot rewind Z, and therefore cannot rewind A either since it may use Z's instructions to prevent this. With this restricted course of action, S must simulate the messages of the honest participants, but also make sure that its simulation is consistent with the outputs given by the trusted party (recall that the environment can read the outputs of the honest participants). For instance, in a protocol that aims at generating a common random string, the random string generated in the simulation must be the same as the one given by the trusted party in the ideal process.

Since the goal of the environment is to distinguish the simulation from the real process, we consider that it can only output 0 or 1. Also, to capture the fact that Z can be any environment, we consider that Z can have an arbitrary auxiliary input z ∈ {0, 1} * of polynomial size, which represents some precomputed data. This input can depend on the protocol, on the adversary A, and even on the simulator. Technically speaking, z can also depend on the security parameter; therefore, Z can be seen as a non-uniform adversary rather than a Turing machine.

Since Z has access to an unlimited precomputation power, SUC-security is a very strong notion of security. It means that whatever computation that A was able to perform (including something which would rig the distribution of the outputs), S is able to do the exact same thing in the ideal process, where there is no communications between the participants. Nonetheless, SUC-secure does not necessarily mean secure; rather, it means that the protocol is as secure as the ideal one, whose security is easy to assess.

The composition theorem

A composable framework is interesting because the security of a protocol can be deduced from the security of its sub-protocols, which gives a comprehensive way to build a security proof. For instance, suppose that we consider that a functionality F (e.g., generating a common random group element) is taken for granted. Then we can imagine a protocol P in which the participants are able to make arbitrary queries to F in order to get an answer: this is the F-hybrid model, depicted in Fig. 12. In [START_REF] Canetti | A Simpler Variant of Universally Composable Security for Standard Multiparty Computation[END_REF], the hybrid process is similar to the real process, except that the participants can make queries to some trusted parties listed in the family F. By contrast with the ideal process, a query to a trusted party does not necessarily contain the participant's inputs; rather, it can be anything defined by the protocol's specifications. Just as in the ideal process, the content of the query and that of the trusted party's answer remain private, but the adversary can learn some information such as the length or the nature of the message (and use this to decide when to deliver the message, if at all). Finally, another difference is that the trusted party's answer to the participant is not output by the participant but instead processed depending on the specification of the protocol. (Note that the adversary can still directly interact with the ideal functionality, as in the ideal model.) In this thesis, we denote Ideal G,S,Z (λ, z)) the probability that the environment outputs 1 while interacting with A (resp. S) in the F-hybrid process (resp. the ideal process were G is the trusted party). With these notations, SUC-security is given by Definition 18. Note that in the ideal model, the adversary has no access to F; hence, the simulator must also simulate the interactions with F in addition to the messages of the participants and the outputs of G.

Real F P,A,Z (λ, z) (resp. C H 1 H 2 F A Z Authenticated communica- tion, A

Definition 18 ([CCL15]

). Let P be a protocol and F, G two families of trusted parties. We say that P SUC-securely computes G in the F-hybrid model if, for all PPT A, there exists a PPT S such that for all PPT Z and every k ∈ N, there exists a negligible function µ such that for all λ ∈ N and z ∈ {0, 1} λ k ,

Real F P,A,Z (λ, z) -Ideal G,S,Z (λ, z) ≤ µ(λ).
Now, an interesting result in the SUC framework is the universal composability of the SUCsecure property. To better understand this result, consider a protocol P in the F-hybrid model. Also, consider that there is a protocol Q which SUC-securely computes F in the G-hybrid model. Then we can consider the protocol P Q in the G-hybrid model, which is the protocol P except that every query to a trusted party in F is replaced by an invocation of Q as a sub-protocol, where the content of the query is the initial input of each participant. Since we considered that several copies of the same sub-protocol must be independent, it means that each invocation of Q will use its own independent copy of G. The composition theorem [CCL15, Theorem 2.3], reproduced in Lemma 5, states that if Q and P are SUC-secure, then P Q is SUC-secure as well.

Lemma 5. Let P be a protocol in the F-hybrid model and Q be a protocol that SUC-securely computes F in the G-hybrid process. Then, for all PPT A, there exists a PPT S such that for all PPT Z and all k ∈ N, there exists a negligible function µ such that for all λ ∈ N and z ∈ {0, 1} λ k ,

Real G P Q ,S,Z (λ, z) -Real F P,A,Z (λ, z) ≤ µ(λ).
Thanks to this theorem, we can use the usual strategy of game hoping, and modify the protocol step by step so that there is less and less cryptography involved. However, it requires to prove that some sub-protocols are SUC-secure to begin with, which can be scary if we look at the five consecutive quantifiers involved. For this reason, we also mention two fundamental results from the UC framework, which are also valid in the SUC framework (In fact, it is proven that a SUC-secure protocol is also UC-secure, see [CCL15, Theorem 4.13].)

Dummy adversary. The first result is that the first quantification on the PPT A can be dropped. More precisely, it is known that the hardest adversary to simulate is the dummy adversary, which forwards every message to the environment. In addition, the dummy adversary accepts queries of the form send(i, j, m) (resp. deliver(i, j, m)) from the environment, where i is a corrupted (resp. any) participant, j is a participant and m a message. Upon receiving such a query, the adversary writes (i, j, m) in i's outward communication tape (resp. forwards the query to the router). (See for instance [Can00, Claim 11], which states that if the dummy adversary can be simulated, then any adversary can be simulated.)

Restricted environment. The above result means that we do not have to look for a process which, given an adversary, constructs a simulator; rather, we can directly exhibit an explicit, universal simulator. This, indeed, is reassuring and allows to better understand the notion of SUC-security. Nevertheless, the latter is still too generic as the environment is able to choose any input for the participants, including inputs which are not consistent with each other. For instance, consider a threshold decryption protocol. Then, if the participants do not agree with the public encryption key, the messages exchanged during the real protocol will most likely allow the environment to distinguish this situation with that of an ideal protocol. For this reason, it is important to restrict the inputs that the environment can give to the participants. In this thesis, we consider restricted environments, which are only allowed to choose the inputs in some (not necessarily efficiently) decidable language L ⊂ {0, 1} * . In our example of a threshold decryption, the environment must give the same pk, (h i) n T i=1 to every participant, and the secret shares of the participants must be consistent with the public key. In [Nie03, Theorem 3.5], it is shown that the composition theorem still holds if we restrict the environment to choosing such inputs.

Programmable random oracle model

We already mentioned that we use the ROM, which can be incorporated into the SUC framework as the ideal functionality F RO defined in Algorithm 26 (we use the notation x ∈ H to denote that x is a key of H). We acknowledge that using the ROM in a UC framework is not that common. Usually, using the common reference string assumption is preferred since the random oracle cannot be instantiated. We mention that there exists universally composable commitment schemes (see for instance [START_REF] Lindell | Highly-Efficient Universally-Composable Commitments Based on the DDH Assumption[END_REF][START_REF] Fischlin | Non-interactive and Re-usable Universally Composable String Commitments with Adaptive Security[END_REF]) that can be used instead of hash-based commitments. Outside of the ROM, a hash-based commitment is not equivocable nor extractable, and hence not SUC-secure. However, computing a universally composable commitment is by several orders of magnitude less efficient than computing a hash. Consequently, in electronic voting, it is unlikely that UC commitments will be used instead of hash functions in the near future. The same remark applies for ZKP (see for instance [START_REF] Groth | Perfect Non-interactive Zero Knowledge for NP[END_REF] for a construction of universally composable ZKP).

An illustrative example: synchronous broadcast

Now that we introduced the SUC framework, the natural next step is to explain how we can prove that a protocol is SUC-secure. For this purpose, we give our first proof of SUC-security. On this occasion, we identify two sub-protocols that are featured in most asynchronous protocols, which are the broadcast and the synchronous broadcast. In order to simplify the presentation of the protocols in the remaining of this thesis, we will therefore define the corresponding ideal Synchronous broadcast. In the SUC framework, the model of communication is atomic, which means that there is no native way for secure broadcasting. Typically, if a participant is supposed to broadcast a commitment, it can actually send a different commitment to the every other participant, which is certainly undesirable. In general, broadcasting in an unsecure communication network is a fundamental problem related to the byzantine agreement problem, which requires a majority of honest participants. However, it is common to consider that there is an ideal broadcast channel, which allows to abstract away this difficulty as an independent problem. Therefore, we use the F B -hybrid model, where F B is an ideal functionality for broadcasting (see Algorithm 29). For simplicity, we consider that the messages sent by the ideal broadcast functionality arrive "simultaneously", which is technically a breach in the SUC framework since the adversary is supposed to be able to block and delay every message. However, we consider that properly modeling the broadcast ideal functionality in the SUC framework is out of scope for this thesis.

Broadcasting can be used for various reasons, but is sometimes insufficient. Indeed, it is often desirable that the values are not only broadcast (i.e. the same view is given to every participant), but also that they are broadcast simultaneously. In other words, in a situation where several participants must independently broadcast a value, we want to make sure that the adversary cannot cheat and choose the broadcast value depending on the values broadcast by the others. To prevent this, we use a round of synchronization which consists of the following steps. First, broadcast a commitment on the value to broadcast; second, once every commitment has been received, broadcast an opening of the commitment; third, verify the opening of all the other participants. (For a concrete example, see for instance Fig. 7, where this strategy is used to choose a common random implicit polynomial.) In order to simplify the description of our different protocols in the SUC framework, we introduce in Algorithm 28 an ideal functionality F SB (for synchronous broadcast) which allows to factor this sub-protocol into a single query to a trusted party.

Note that F SB is "consumed" when called once, which means that every instance of a synchronous broadcast protocol should call an independent copy of F SB . In practice, it means that at each activation, a honest participant creates a new, fresh session of the protocol with a different identifier, so that all the sessions are independent (this supposes that the session identifiers scheduling is publicly shared). To justify the use of the F SB -hybrid model, we also give in Algorithm 27 the protocol SB which allows to SUC-realize F SB in the F RO , F B -hybrid model, as claimed in Lemma 6.

Syntax of a protocol in the SUC framework. In the SUC framework, a participant is modeled as an ITM, and can be activated by two means: on receiving a message and when the environment writes a new input on its input tape. Depending on how a participant was activated and at which state it is in the procedure, it may have a different behavior, depending on the protocol. To model this, we use a specific syntax which specifies the exact behavior of the participant, see Algorithm 27 for an example. Note that the different actions in this algorithm are not necessarily sequential, as they depend on the state the participant is in and on the nature of the message / input that activated it. Also, recall that the execution is interrupted whenever a participant sends a message (that technically includes any query to an ideal functionality, but, for the sake of simplicity, we may write the procedure as if the following actions were continuous), writes in its output tape (in which case all the local variables are erased and the session is killed) or uses the specific command wait. Finally, remark that we give in Algorithm 27 the behavior for a single honest participant, which has the index i. This is because the same algorithm is used for all the honest participants, as it is always the case in this thesis.

A first proof in the SUC framework. We now give Lemma 6, which states that the SB protocol SUC-securely computes the corresponding ideal functionality. Lemma 6. The SB protocol described by Algorithm 27 SUC-securely computes F SB in the F RO , F B -hybrid model.

Proof. The simulator. We construct an explicit simulator S that simulates the entire hybrid process, including the router, the honest participants, the random oracle and F B ; however, it does not simulate the corrupted participants who are controlled by the dummy adversary (the simulator can only control the corrupted participants of the ideal process). Unless stated otherwise, all of the following actions take place in the simulated real process.

First, the simulator gets the length of the input from the public part of the queries to F SB in the ideal process. With this information, whenever a honest participant is activated in the initial state, the simulator simulates a communication from i to F RO with the corresponding length, and change i's state to the commit state.

Then, whenever i is activated in the commit state, it checks that the activation is due to a message from the (simulated) F RO and changes i's state to the opening state. To simulate i's broadcast, it generates a random a of 2λ bits and broadcasts it.

Then the simulator can run a perfect simulation up until a honest participant i has to reveal α||m i . This can only happen if this participant received a commitment c k from all the other participants, including the corrupted ones. At this moment, since the simulator actually played the role of the random oracle, it can look for a preimage α j ||m k for all c k such that k is corrupted. If no preimage is found (i.e. no query was answered by c k for a given k), the simulator chooses m k at random. Now that the simulator has a value m k for all the corrupted participant, it can use them to query the F SB ideal functionality in the ideal process, using the corresponding value for each corrupted participant. However, it blocks F SB 's answers except for itself. This allows the simulator to learn the input of all the honest participants, and thus to broadcast α||m i in the simulation as required (for this purpose, the simulator generates a random α ∈ {0, 1} λ . Afterward, the corresponding honest participant switches to the verify state. Now, the simulator can run a perfect simulation of the verify state, since it has access to all the information. However, since the simulator does not control the honest participants of the ideal process, it remains to explain how it can have them output the same values as in the simulated hybrid process. Clearly, if a honest participant i outputs blame(j) in the simulated hybrid process, it means that j was corrupted. Then the simulator can have the corrupted participant j send a message to F SB in the ideal process, so that the ideal functionality will send blame(j) to all participants. At this point in the ideal process, the simulator blocks every such On answer q, a from

On answer j, m from F B : if c j = ⊥ then c j ←-m; if c k ̸ = ⊥ for all k then
F RO : for all k s.t. α k ||m k = q do 25 if c k = a then v k ←-1; 26 else Output blame(k); if v j = 1 for all j then 28 Output m 1 || • • • ||m n ;
else wait; Algorithm 28: F SB Requires: n: number of participants States: Initial state q 0 Final state q f (if several SB are required, the participants call several independent copies of F SB) 1 State q 0 : 2 On message m from participant i:

3 if s i ̸ = ⊥ then 4 Change state to q f ; 5 Send blame(i) to all j; 6 s i ←-m; 7 if s j ̸ = ⊥ for all j then 8 Change state to q f ; 9 Send s 1 || • • • ||s n to
|| • • • ||m k of F SB , which causes i to output m 1 || • • • ||m k .
Indistinguishability. Once the simulator is defined, it remains to explain that the simulation is computationally indistinguishable from the real process. For this purpose, we identify the only two elements which might differ in the simulation. First, when a honest participant broadcast a commitment, it broadcasts O RO (α||m i) for some random λ-bits α; however, in the simulation, the simulators does not know m i yet and therefore broadcasts a random 2λ-bit elements. Clearly, except if two participants choose the same α (which happens with a negligible probability), the simulated commitments are perfectly indistinguishable from the real ones.

Second, in the ideal process, all the honest participants that do not output a blame have the same output m 1 || • • • ||m n ; however, in the hybrid process, each said participant may output

a different m ′ 1 || • • • ||m ′ n . However, if a honest participant outputs m ′ 1 || • • • ||m ′ n , it means that they received a message of the form j, α ′ j ||m ′ j such that O RO (α ′ j ||m ′ j) = c k .
Yet, since c k was broadcast using F B , all the honest participants agree on this value, therefore they must all output the same m ′ 1 || • • • ||m ′ n (unless a collision occurred, which happens with a negligible probability). Finally, we also have that m ′ j = m j for all j, except if the adversary managed to find a (first or second) preimage of c k or a collision (see Section 2.1.3 for a rigorous analysis of the security of a hash-based commitment in the ROM).

Part II

Secure Tally-Hiding

As seen in Section 1.1.1, an electronic voting protocol is usually divided into several phases, such as the set up, the registration, the voting phase and the tally phase. For the latter, there are two main strategies: homomorphic tally and mixnets. The first strategy relies on the homomorphic property of the encryption scheme to decrypt the "sum" of the ballots sent by the voters, without decrypting the ballots individually. It is convenient, efficient and arguably ideal in many cases; however, it is not suitable for just any counting function. In particular, some very popular counting functions such as single transferable vote (STV) cannot be readily tallied using this strategy. For a more generic counting function, the solution by default is to rely on a decryption mixnet, which reveals all the choices made by the voters, while still concealing the link between any given voter and any given choice. Once the choices are known in the clear, the desired counting function can be publicly computed. Nevertheless, the main problem with this solution is that it reveals too much information compared to the result of the counting function. For instance, in STV voting, a voter can choose any permutation of the candidates, and there can be several hundreds of candidates. Consequently, there are often more voting options available than there are voters; therefore a voter can "sign" their ballot by using a specific and unlikely permutation. This leads to the so-called Italian attacks, where a coercer asks a voter to first choose the instructed candidate and then to choose a specific permutation. This way, the coercer can efficiently coerce a large number of voters simultaneously, and detect which voter obeys and which one disobeys. To address such a situation, we explore the possibility of using a fully tally-hiding scheme, which only reveals the result of the election. This part presents the results of [START_REF] Cortier | A Toolbox for Verifiable Tally-Hiding E-Voting Systems[END_REF], which is the conference version of [START_REF] Cortier | A toolbox for verifiable tally-hiding e-voting systems[END_REF].

Tally-hiding is possible thanks to multi-party computation (MPC) techniques, which allow to evaluate any function on the private inputs of the participants, without revealing anything else than the output. For this reason, we first introduce some generic MPC protocols that illustrate the usual solutions that exist in the literature. Unfortunately, we will see that they are not always applicable in the context of electronic voting. Afterwards, we present the main primitive that we choose, and explain the motivations behind this choice. From this protocol, it is possible to derive other protocols that securely compute several arithmetic primitives such as additions and comparisons; and eventually to design an entire protocol for secure tally-hiding. For the security proofs, we used some involved arguments in the SUC framework.

Chapter 4

Multi-party computation for electronic voting

In multi-party computation, we consider several participants that each possess a secret input

x 1 , • • • , x n and want to collectively compute f (x 1 , • • • , x n)
without revealing anything else about their individual inputs. In general, f can output a different value to each participant but, for simplicity, we do not consider this possibility. For instance, a voting system can be seen as an instance of an MPC protocol, where the input of a voter is the chosen voting option, f is the counting function, and some additional participants such as the talliers are here to help performing the computations. The usual solution in MPC is to give a representation of f as a boolean circuit that consists of binary gates, to interpret the inputs as the sources of the circuit and to read the outputs from its leaves. In this context, f is considered as a function from ({0, 1} N) n to {0, 1} m , for some fixed N and m: since we do not want to reveal anything on the secret inputs, we do not want to reveal their length either, so that they might be padded in order to always have the maximum possible length N . Once f is represented as a circuit, it remains to explain how to securely evaluate each gate. In general, a boolean circuit can be evaluated thanks to an arithmetic circuit in any field Z q . Indeed, the field elements 0 and 1 would represent the corresponding boolean values; the multiplication corresponds to the logical and; and turning x into 1 -x corresponds to the logical negation.

A wide variety of protocols can be used to evaluate an arithmetic circuit, and we present some of them in Section 4.1. However, they are not necessarily suitable for electronic voting. Indeed, we do not expect the voters to engage into a complex MPC protocol; rather, the ideal is when they can vote and go. Hence, the usual strategy in electronic voting is that the talliers first generate a public encryption key, the voters encrypt their vote and then the talliers compute the result from the encrypted ballots. When transposing this in the MPC setting, it means that the participants of the MPC protocol would be the talliers and that their inputs would be the secret shares. As for the encrypted ballots, they can be a parameter of the function f , or some additional common inputs. In the literature, the Paillier encryption scheme emerged as the solution for MPC on encrypted data. In particular, we introduce the ABB framework in Section 4.2, which is suitable for electronic voting. However, there are many reasons to prefer the ElGamal encryption scheme from that of Paillier. Consequently, we explored the possibility of an MPC protocol based on the ElGamal encryption scheme. In Section 4.3, we present the conditional gate protocol, which is the main MPC building block that we use in this thesis.

Three popular approaches for multi-party computation

First, we mention three popular approaches for generic MPC.

Garbled circuits

A classical MPC strategy is to use the so-called garbled circuits, introduced by Yao in [START_REF] Andrew | How to Generate and Exchange Secrets (Extended Abstract)[END_REF]. In a two-parties setting, we have a garbler Ginny and an evaluator Evan. As in the general setting, they all have a private input that they represent as two bitstrings and a function f that they want to evaluate on their inputs, and that they represent as a boolean circuit. The idea is that Ginny will garble the circuit f : for each gate i, she creates four random labels, say

G 0 i , G 1 i , E 0 i , E 1 i , as well as two random labels O 0 i , O 1 i .
Intuitively, the G i 's represent the two possibilities for the first input while the E i 's represent the two possibilities for the second. Thanks to the truth table of the gate, Ginny can create the mapping g :

{G 0 i , G 1 i } × {E 0 i , E 1 i } → {O 0 i , O 1 i },
that she uses to encrypt the gate. For this purpose, she uses a key derivation mechanism as well as a symmetric encryption function to compute

Enc KDF(G x i ,E y i) (g(G x
i , E y i)) for all x, y ∈ {0, 1}, that she communicates with Evan. Now, so that Evan can evaluate the circuit, Ginny sends him all the labels that correspond to the bitwise representation of her inputs, in the correct order. In addition, she also sends him the labels that correspond to the bitwise representation of Evan' inputs, in the correct order. For this purpose, Ginny and Evan use an oblivious transfer protocol, which allows Evan to get the desired label without revealing the value of any bit of his input (see for instance [START_REF] Lindell | Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer[END_REF] for a construction). Given the labels of the inputs of a gate, Evan derives the corresponding key and uses it to decrypt the output of the circuit. Note that Evan has four values to decrypt, while only one of them is the correct one. Therefore, it is necessary to impose that the decryption fails if an incorrect key is used. Once Evan has evaluated the circuit, he has the labels which correspond to the outputs of the circuit. Depending on whether we want to guarantee that Ginny or Evan gets the result, we can either ask Evan to send Ginny the label (in which case she learns the result and can share it with Evan if she wants), or ask Ginny to use plaintexts instead of random labels for the leaves of the circuit (in which case Evan learns the result and can share it with Ginny if he wants). In any case, it is difficult to guarantee that they both simultaneously get the result, since one can always decide to leave the protocol once they have learned the result.

Garbled circuit are still popular nowadays and benefited from many improvements over the years (e.g., [START_REF] Zahur | Two Halves Make a Whole -Reducing Data Transfer in Garbled Circuits Using Half Gates[END_REF][START_REF] Ball | Garbling gadgets for boolean and arithmetic circuits[END_REF]). However, it is not clear whether they can be applied in the context of electronic voting. A major difficulty is related to universal verifiability. Indeed, to prevent Ginny from encrypting an incorrect circuit that has the same number of gates, the participants use a cut-and-choose strategy: instead of garbling a single circuit, Ginny produces, say, k garbled circuits and has to open k -1 of them, chosen randomly by Evan. This way, if Ginny tries to cheat, this is detected with probability at least (k -1)/k. Nevertheless, it means that the garbler still has a non-negligible probability to cheat without being caught, which leads to an uncomfortable situation in electronic voting. In addition to not providing computational soundness, this paradigm also assumes that Evan is honest. If this is not the case, then Ginny and Evan can agree on one random circuit to rig: Evan opens the others, which are indeed valid, but evaluates the fake one. Unfortunately, it is difficult to fix this using the usual Fiat-Shamir transformation: if the circuits to open were determined from a hash of the encrypted circuits, Ginny could generate k -1 valid circuits and rig one at random, compute the ones that she has to open and start over again until she is successful. Therefore, using garbled circuits imposes an additional trust assumption on the participants, which is not ideal.

Linear secret sharing schemes

Another popular strategy is based on linear secret sharing schemes, as introduced in [START_REF] Ben-Or | Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract)[END_REF][START_REF] Chaum | Multiparty unconditionally secure protocols (extended abstract)[END_REF]. For simplicity, we consider Shamir's secret sharing scheme, where n participants share a secret x with a threshold t, using a random (implicit) polynomial P of degree t such that P (0) = x. In this setting, recall that the share of participant i is x i = P (i). Now, remark that if two secrets x and y have been shared with the (implicit) polynomials P and Q, then the participants can compute the sum x i +y i = (P +Q)(i), which is a share of x+y = (P +Q)(0). In other words, it is possible to add -without interaction -two shared secrets; hence the adjective linear. Now, by computing x i y i , the participants can similarly create the shares of the value xy; however, the polynomial P Q has a degree 2t and it would be preferable to share xy with a polynomial of degree t instead. Indeed, if the participants want to evaluate a complex arithmetic circuit on their shared secrets, they cannot afford to let the degree of the polynomial increase after each multiplication gate; otherwise, it would not be possible to recover the final output.

To circumvent this difficulty, assume that 2t < n, so that it is still possible for the participants to recover the value xy from their shares x i y i . In what follows, we denote x i t the share of a secret x for the participant i, using a degree t polynomial. So that they can each obtain xy i t from x i t and y i t , the participants can proceed as follows: • Collectively generate m i t and m i 2t , for some random and unknown mask m ∈ Z q . Locally compute the shares

z i 2t of z = xy -m, as z i 2t = x i t y i t -m i 2t .
• Each participant broadcast their share z i 2t of z, allowing them to deduce the value of z using Lagrange interpolation. Indeed, z i 2t is the value obtained when evaluating in i a polynomial of degree 2t. Therefore, by collecting 2t + 1 or more of them, one can deduce z, the value of the polynomial when evaluated in 0.

• Locally deduce xy i t as z + m i t . Indeed, z can be considered as a trivial share of itself, using a constant polynomial. Therefore, since the secret sharing scheme is linear, z + m i t is a share of z + m = xy, as desired.

With the above protocol, it remains to explain how to actually generate m t and m 2t . A possible solution would be to use Pedersen's verifiable secret sharing scheme [START_REF] Torben | Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing[END_REF]: each participant i can choose two polynomials P and Q of degree t and 2t, broadcast the corresponding commitments (c i,k) t k=0 and (c ′ i,k) 2t k=0 with c i,0 = c ′ i,0 (this condition means that both shared secrets are the same) and secretly send their shares P (j) and Q(j) to the other participants. Just as in Pedersen's DKG depicted in Fig. 7, the latter can check that their shares are consistent with the commitments, therefore the overall protocol would be secure, provided that we have a way to make sure that the commitments are actually broadcast, i.e. that the view of the commitments is the same for all the participants. After that each participant has broadcast m i t and m i 2t , everyone can locally compute the sum of all their shares. More involved solutions allow to decrease the overall complexity, especially the communication cost; see for instance [START_REF] Goyal | Guaranteed Output Delivery Comes Free in Honest Majority MPC[END_REF].

In the context of electronic voting, using linear secret sharing schemes is more suitable than garbled circuits. First, the trust assumption where we require a honest majority is closer to what we usually assume for the talliers: although it is preferable to consider any threshold so that we can decrease their number, asking for t < n/2 can be considered acceptable. Second, it is no longer possible for the adversary to cheat without being caught with an overwhelming probability, therefore the verifiability of the corresponding protocols is closer to the usual notion of verifiability in electronic voting. In addition, we can think of various ways to augment those protocols with public commitments and/or ZKP to obtain universal verifiability, which means that the trust assumption on the talliers would only be required for privacy, as this is usually the case in electronic voting. Finally, we already use secret sharing and a DKG protocol, therefore the MPC techniques are not that far from what we are used to.

However, in electronic voting, the talliers have the shares of the secret decryption key, and not of the voting options chosen by the voters. Hence, to actually use MPC based on secret sharing, we have but two solutions: either have the voters privately send a share of the chosen voting option to each tallier, or have the talliers evaluate a rather complex circuit which depends on the public ballots and takes the secret shares as inputs, instead of the chosen voting options. Since each multiplication gate requires to interactively precompute some m t , m 2t and to perform an additional interactive protocol once the ballots are known, the second solution may be too expensive. As for the first one, it would be preferable to let the voters produce a single encrypted ballot as usual, rather than asking them to compute a share for each tallier. Indeed, although computing a share seems like an easy task compared to an encryption and, say, a ZKP, the voters have to send their shares privately, which means that an additional (asymmetric) encryption must be computed for each tallier. In addition, it is not clear how the voters can prove that the shares they send are actually consistent with their ballot. A related question was addressed in Kryvos [HKK + 22], where the voters send a commitment to the board and the share of their voting option to the talliers. However, the proposed solution requires the voters to compute an expensive SNARK (see Section 2.3.5), which takes up to several minutes according to their benchmark.

Fully homomorphic encryption

The linear secret sharing schemes offer an efficient and simple solution for generic MPC; however, it seems that they are not the perfect tool that we need in electronic voting. Ideally, we would like the talliers, who hold the shares of the secret key, to compute the result of the election from the encrypted ballots sent by the voters. Therefore, what we want is actually to perform some operations on encrypted, unknown data, rather than on known private inputs. At this point, a prominent question is "why don't you use fully homomorphic encryption?". Indeed, performing operations on encrypted data is a typical goal in cloud computing, where the proposed solution is to use a fully homomorphic encryption scheme (FHE). FHE recently emerged as a solution for generic MPC [KLO + 19], and benefited from many improvements since the first practical proposals [START_REF] Gentry | Fully homomorphic encryption using ideal lattices[END_REF][START_REF] Van Dijk | Fully Homomorphic Encryption over the Integers[END_REF] (see for instance [START_REF] Chillotti | Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds[END_REF][START_REF] Chillotti | Improved Programmable Bootstrapping with Larger Precision and Efficient Arithmetic Circuits for TFHE[END_REF]). Today, it is efficient enough to be used in practice. In addition, non-interactive ZKP for FHE schemes can be derived from lattice-based ZKP, which was the subject of active research recently [BCK + 14, DFMS19, ESLL19, LNP22]. Finally, a distributed protocol to collectively evaluate an arithmetic circuit when the secret key has been shared between several participants can be found in [BGG + 18]. Despite this, it seems that there is no well-established distributed key generation protocol for FHE schemes: the most relevant contributions that we could find are [KLO + 19, AMM22]. Currently, other strategies are used to distribute the trust between the talliers, such as multi-key encryption [START_REF] Hao Chen | Multi-key homomorphic encryption from TFHE[END_REF]; see for instance [START_REF] Del Pino | Practical Quantum-Safe Voting from Lattices[END_REF] for an academic proposition of a post-quantum electronic voting system, and [START_REF] Chillotti | A Homomorphic LWE Based E-voting Scheme[END_REF] for another proposal based on FHE. With these materials, asking whether FHE may be used is a legitimate question that requires a thorough analysis. Designing a voting system is a tricky task that includes many pitfalls: the confidence that we have in the current solutions such as Helios is only possible thanks to years of studies.

The arithmetic blackbox for Paillier encrypted integers

A suitable framework for electronic voting is the ABB framework [Nie03, Part III], which allows to securely evaluate any function on encrypted data, provided that the secret key has been shared between several participants. This framework has been notably used in the independent work of Ordinos [KLM + 20], that gives a contribution which is similar to our tally-hiding toolbox. To explain how Ordinos compares to our contribution, we provide several comparisons at different levels. First, we compare the primitives in Section 4.3.3; then we give a comparison at the protocol level in Section 5.3.1; finally, we compare the resulting voting systems in Chapter 6. In this section, we give all the necessary materials to fully understand the mechanism of Ordinos.

MPC from threshold homomorphic encryption

The main primitive of the ABB framework is a multiplication protocol which relies on the homomorphic property of the Paillier encryption scheme, introduced in Section 2.2.4.

First, recall that in the Paillier cryptosystem, the public encryption key is a stong RSA modulus n, such that n = pq with two safe prime numbers p and q. Such a modulus is necessary coprime with its Euler totient ϕ(n), and the secret key is defined as an integer which is congruent to 0 modulo ϕ(n) and to 1 modulo n. To encrypt a message m ∈ Z n , one picks a random r

∈ Z × n 2 and computes C = (1 + n) m r n ∈ Z × n 2 . For m ∈ Z n , we denote E n = (1 + n) m
, the trivial encryption of m with the randomness 1. To decrypt C with the secret key sk, one computes C sk -1 modulo n 2 , interpret this as an integer u ∈ [0, n 2 -1] and returns m = u/n. Also, we recall that the Paillier encryption scheme is additively homomorphic:

given two m 1 , m 2 ∈ Z n and r 1 , r 2 ∈ Z × n 2 , we have Enc pk (m 1 , r 1)Enc pk (m 2 , r 2) = Enc pk (m 1 + m 2 , r 1 r 2).
Finally, recall that there are DKG protocols and threshold decryption protocols available for the Paillier encryption scheme.

With all the above remarks, the only remaining ingredient that we need for secure computations on encrypted data is to be able to multiply two Paillier-encrypted messages. For this purpose, one can use the protocol of [START_REF] Damgård | Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption[END_REF], which is an adaptation of the protocol from [START_REF] Cramer | Multiparty Computation from Threshold Homomorphic Encryption[END_REF]. We reproduce this protocol in Algorithm 30.

Algorithm 30: Mul

Requires: A threshold decryption setup for the Paillier cryptosystem, with the public key n

A, B ∈ Z × n 2 , two encryptions of (unknown) a, b ∈ Z n Outputs: C, a random encryption of ab 1 Each party i chooses a random d i ∈ Z n , computes M i = B d i , a random encryption D i of
d i and a PoK π i that M i and D i are well-formed. Finally, i broadcasts M i , D i , π i ; 2 Let S be the subset of the parties that gave a valid PoK. Each party compute A i∈S D i .

Then this value is decrypted into x = a + i∈S d i using threshold decryption; 3 The parties output

C = B x / i∈S M i ;
This protocol use the same mask-reveal paradigm as in Section 4.1.2: we first mask the value a by adding a random (unknown) value d and reveal x = a + d. Then, using the homomorphic property of the Paillier encryption scheme, we compute B x , which is an encryption of b(a + d). Afterwards, the value bd needs to be removed. For this purpose, we need an encryption M of bd, so that we can compute C = B x /M . The resulting protocol is arguably simple: only two broadcasts are required per participant, and the size of the exchanged messages remain reasonable. The security of this protocol has been assessed in a UC framework, see [Nie03, Part III].

Known MPC protocols in the ABB framework

It is remarkable that Algorithm 30 realizes the same functionality (the multiplication) as the protocol presented in Section 4.1.2; the main difference is that it operates on encrypted data instead of data that are shared between the participants. This similarity, in conjunction with the additively homomorphic property of the Paillier encryption scheme, is interesting because it means that most of the known protocols from the MPC community can be used in the ABB framework. For instance, although it is not explicitly stated, Ordinos makes an intensive use of the following classical MPC protocols:

• RandBit is a protocol which allows to collectively generate an encryption B of a random bit b ∈ {0, 1}. See Algorithm 32 for a possible realization.

• RandBits(ℓ) is a protocol which allows to collectively generate an encryption R of a random (quasi-uniform) r ∈ [0, n-1], along with the encryptions R 0 , • • • , R ℓ-1 of its ℓ least significant bits. See Algorithm 31, which is adapted from [DFK + 06]. In this algorithm, RangeProof allows to produce a zero knowledge proof that some element r * ,i is in a specific range. To produce such a proof, a common reference string of the form N, g, h is necessary, where N is a strong RSA modulus and g, h two independent generators of the subgroup of the invertible squares modulo N . See Section 4.2.3 for more details.

• RandInv is a protocol which allows to collectively generate two encryptions R, R ′ of two r, r ′ ∈ Z n such that rr ′ = 1. See Algorithm 34, which is adapted from [START_REF] Bar-Ilan | Non-Cryptographic Fault-Tolerant Computing in Constant Number of Rounds of Interaction[END_REF].

• Prefix is a protocol which takes as input some encryptions M 1 , • • • , M k of (invertible and unknown) plaintexts (m 1 , • • • , m k) and outputs some encryptions Z 1 , • • • , Z k such that, for all i, Z i is an encryption of the product m 1 • • • m i . See Algorithm 34, which is adapted from [START_REF] Bar-Ilan | Non-Cryptographic Fault-Tolerant Computing in Constant Number of Rounds of Interaction[END_REF].

The main interest of those protocols is that they are highly parallelizable and can be done using a constant number of rounds. Indeed, they mostly consists of the generation of many independent random numbers. In addition, those generations can be precomputed, which is very interesting in electronic voting since this allows to allocate more time to compute the tally.

Range proofs for Paillier-encrypted integers

A non-interactive zero-knowledge range proof allows a prover to prove that a value is in a given range. To prove that v ∈ [a, b], the main strategy is to prove that (v -a)(b -v) ≥ 0, therefore a range proof can be obtained from a proof that a value is non-negative. In the context of a Paillier encrypted values, a classical method to prove that x ≥ 0 (see for instance [START_REF] Lipmaa | On Diophantine Complexity and Statistical Zero-Knowledge Arguments[END_REF]) consists of making an integer commitment c of the plaintext x, to prove that c is consistent with the Paillier ciphertext X, then to prove that x is the sum of four squares. This proof method has been slightly optimized in [Gro05, Section 5], where it is remarked that it is sufficient to prove that 4x + 1 is the sum of three squares. To compute such squares, one can first choose a random even integer x 1 ∈ N of a carefully calibrated size, so that p = 4x + 1 -x 2 1 is prime with some non-negligible probability (otherwise, pick another x 1). Since p is congruent to 1 modulo 4, it can be written as the sum of two squares.

Algorithm 31: RandomBits

Requires: A CRS σ = (N, g, h) n, a Paillier encryption key ℓ, the number of bits Outputs: R, (R 0 ,

• • • , R ℓ-1) s.t. R is an encryption of r ∈ [0, n -1] and (R 0 , • • • , R ℓ-1) are encryptions of the ℓ least significant bits of r for i = 0 to ℓ -1 do R i ← RandBit(); for i = 1 to n T , participant i do B ←-2 ℓ+λ-1 -1; r * ,i $ ←-[0, B]; R * ,i , π i ← RangeProof(σ, n, B, r * ,i); R ←- n T i=1 R * ,i ; for i = m -1 down to 0 do R ←-R 2 ; R = RR i ; 10 return R, (R 0 , • • • , R m-1);
Algorithm 32: RandBit Requires: pk, an exponential ElGamal or Paillier encryption key E 1 , an encryption of 1

Outputs: Z, an encryption of a random b ∈ {0, 1} 1 Z 0 ←-E 1 ; 2 for i = 1 to n T , participant i do 3 s i $ ←-{-1, 1}; r $ ←-R; 4 Z i ←-Z s i i-1 Enc pk (0, r); 5
Produce a PoK π i of well-formedness;

6

Send (Z i , π i) to the other participants;

7 The participants verify the PoK of the others;

8 return (E 1 Z n T) 1 2 ; Algorithm 33: Prefix Requires: M 1 , • • • , M N encryptions of m 1 , • • • , m N ∈ Z × n Outputs: Z 1 , • • • , Z N , encryptions of m 1 , m 1 m 2 , • • • , N i=1 m i R 0 ←-1; for i = 1 to N do R i , R ′ i ←-RandInv(); S i ←-Mul(R i-1 , M i); S i ←-Mul(S i , R ′ i); Decrypt S i into s i . Z 1 ←-M 1 ; for i = 2 to N do a i ←- i j=1 s j ; 10 Z i ←-R a i i ; 11 return Z 1 , • • • , Z N ;
Algorithm 34: Randinv Outputs: R, R ′ , encryptions of r ∈ r Z x n and r -1 1 The participants simultaneously broadcast some random

A i , B i ∈ Z n 2 ; 2 A ←-n T i=1 A i ; B ←-n T i=1 B i ; 3 C ←-Mul(A, B); 4 The participants decrypt C into c; 5 R ←-A; R ′ = B c -1 ; 6 return R, R ′ ;
Table 4: Estimated complexity of the range proof, assuming that |n| = |N | = 3072 and that λ = 128; the computational complexity is expressed as an approximative equivalent in the number of exponentiations modulo n 2 , with a 3072 bits exponent Prover (# exp.) Verifier (# exp.) Proof size 6 4 ∼ 20|n|

For completeness, we give a possible construction for a range proof in the Paillier setting in Algorithm 35. In this algorithm, we use the integer commitment scheme of [START_REF] Damgård | A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order[END_REF], as well as the corresponding ZKP that allows to prove that a given commitment c and Paillier ciphertext X opens to the same integer x. The algorithm can be seen as a combination of the two proofs, that we reproduced from [CPP17, Section 3.2] and [CPP17, Fig. 2]. See also [START_REF] Devevey | Rational Modular Encoding in the DCR Setting: Non-interactive Range Proofs and Paillier-Based Naor-Yung in the Standard Model[END_REF] for another proof system.

For the complexity analysis, our main metric is the number of exponentiations modulo n 2 , with an exponent n. This corresponds to the cost of computing a Paillier encryption of 0. Since the exponentiations do not have the same size, we counted the number of modular multiplications instead, then converted this number to a number of exponentiation by dividing by log n. However, a multiplication modulo N does not cost the same as modulo n 2 . Since there are twice as many bits to compute, the latter costs approximately four times as much as the former. Hence, we count the number of modular multiplications modulo N , add to this four time the number of modular multiplications modulo n 2 . Then, considering that n and N have approximately the same size, we divide by 4 log n to convert this number to a number of exponentiations modulo n 2 . To simplify, we considered that the number ℓ of bits to generate in the RandBits process (which is the only protocol where the range proof is needed) is small compared to the other parameters. The resulting complexity estimate is given in Table 4, assuming that N and n are 3072-bits integers and that the security parameter is λ = 128.

Comparing two Paillier encrypted integers

We can now present the main primitive of Ordinos, which is the equality test from [START_REF] Lipmaa | Secure Equality and Greater-Than Tests with Sublinear Online Complexity[END_REF]. To test whether two Paillier encrypted ℓ-bits integers x and y are equal, one can use the additively homomorphic property of the Paillier encryption scheme to obtain an encryption of x -y, and test whether x -y = 0. To test whether an encrypted x is equal to 0, Lipmaa and Toft suggest to create the unique polynomial P ℓ such that P ℓ (1) = 1 and

P ℓ (k) = 0 for k ∈ {2, • • • , ℓ + 1}.
Their strategy is to first compute the Hamming weight h of x, then to evaluate P ℓ on 1 + h, from which they derive the result. The corresponding protocol is given in Algorithm 37.

The advantage of this approach is that most of the procedure can be precomputed so that only a small part has to be done online, after the operands are known.

From this protocol, one can construct a recursive comparison protocol, as explained in [START_REF] Lipmaa | Secure Equality and Greater-Than Tests with Sublinear Online Complexity[END_REF]. To compute the greater-than comparison on two encrypted x and y, the idea is to test the equality of the most significant halves of x and y. If they are equal, we compare the least significant halves recursively; otherwise, we compare the most significant halves recursively. This gives Algorithm 38, which is also used in Ordinos. In this algorithm, we took the liberty to denote R ⊤ , R ⊥ the result of RandBits, while RandBits returns some encryptions of the form R, (R 0 , • • • , R l-1). We can derive R ⊥ as i<ℓ/2 (R i) 2 i and R ⊤ in a similar manner.

1 s $ ←-Z × n 2 ; X ←-Enc n (x, s); 2 r $ ←-[0, N -1]; c ←-g x h r ;
3 (* PoK that c and X are consistent: *);

4 α $ ←-[0, 2 2λ n -1]; ρ $ ←-Z × n 2 ; 5 β $ ←-[0, 2 2λ n -1]; 6 c Enc ←-Enc n (α, ρ); 7 c Com ←-g α h β ; 8 d P oK ←-hash(n||N ||g||h||c Enc ||c Com); 9 a x ←-α + d P oK x; a s ←-ρs d ; a r ←-β + dr; π P oK ←-(c Enc , c Com , a x , a s , a r); (* Beginning of the range proof *); Compute x 1 , x 2 , x 3 ∈ Z s.t. 4(B -x)x + 1 = 3 i=1 x 2 i ; r 1 , r 2 , r 3 $ ←-[0, N]; for i = 1 to 3 do c i ← g x i h r i ; x 0 ←-B -x; r 0 ←-r; m 0 , • • • , m 3 $ ←-[0, 2 2λ B]; s 0 , • • • , s 3 $ ←-[0, 2 2λ N]; σ $ ←-[0, 2 2λ BN]; for i = 1 to 3 do e i ←-g m i h s i ; e 4 ←-h σ c 4m 0 3 i=1 c -m i i ; d ←- hash(n||N ||g||h||B||c||(c i) 3 i=1 ||(e i) 4 i=1); for i = 0 to 3 do z i ←-dx i + m i ; t i ←-dr i + s i ; τ ←-σ + d(x 0 r 0 -3 i=1 x i r i); Π ←- (c, π P oK , (c i) 3 i=1 , (e i) 4 i=1 , (z i , t i) 3 i=0 , τ); return X, Π; Algorithm 36: Verification algorithm Requires: A strong RSA modulus N Two squares (g, h) ∈ Z × N A Paillier encryption key n A bound B A ciphertext X ∈ Z n 2 Inputs: c Enc , a s ∈ Z × n 2 , c Com ∈ Z × N a x , a r ∈ Z c, (c i) 3 i=1 , (e i) 4 i=1 ∈ Z × N (z i , t i) 3 i=0 , τ ∈ Z 1 (* Verification of the PoK*); 2 d P oK ←-hash(n||N ||g||h||c Enc ||c Com); 3 if c Enc ̸ = Enc n (a x , a s)X -d P oK or c Com ̸ = g ax h ar c -d P oK then return 0; 4 (* Verification of the range proof*) d ←- hash(n||N ||g||h||B||c||(c i) 3 i=1 ||(e i) 4 i=1); 5 for i = 0 to 3 do 6 if g z i h t i c -d i ̸ = e i then return 0; 7 if e 4 ̸ = h τ g d c 4z 0 3 i=1 c -z i i then return 0; 8 return 1;
Algorithm 37: EQH Requires: An encryption X of a ℓ-bit integer x P ℓ , the unique polynomial of degree ℓ such that P ℓ (1) = 1 and

P ℓ (k) = 0 for k ∈ {2, • • • , ℓ + 1} Outputs: Z, an encryption of 1 if x = 0 mod 2 ℓ , of 0 otherwise 1 R, R ℓ-1 , • • • , R 0 ←-RandBits(ℓ); 2 M, M ′ ←-RandInv(); 3 M 1 , • • • , M ℓ ←-Prefix(M, • • • , M); 4 A ←-X/R; 5 The participants collectively decrypt A into a; 6 Let a 0 , • • • , a ℓ-1 be the bit representation of a -n modulo 2 ℓ ; 7 H ←-E 1 ℓ-1 i=0 E a i R 1-2a i i (* h = 1 + ℓ-1 i=0 a i ⊕ r i *); 8 M H ←-Mul(M ′ , H); 9 The participants decrypts M H into m H ; 10 for i = 0 to ℓ do 11 H i ←-M (m H) i i 12 Return Z = ℓ i=0 H α i i (*
where the α i 's are the coefficients of P ℓ *);

Algorithm 38: GTH Requires: X, Y, ℓ, two encryptions of two ℓ-bit integers x and y Outputs: Z, an encryption of 1 if x ≥ y, of 0 otherwise

1 if ℓ = 1 then 2 return E 1 /Y Mul(X, Y); 3 R, R ⊥ , R ⊤ ←-RandBits(ℓ); 4 W ←-E 2 ℓ X/Y ; 5 M ←-W R; 6 Decrypt M into m; 7 m ⊥ ←-m mod 2 ℓ/2 ; m ⊤ ←-m/2 ℓ/2 mod 2 ℓ/2 ; 8 B ←-EQH(E m ⊤ , R ⊤) (* x ⊤ = y ⊤ *); 9 C ←-B m ⊥ -m ⊤ E m ⊤ (* m ⊥ if b = 1, m ⊤ otherwise *); 10 D ←-Mul(B, R ⊥ /R ⊤)R ⊤ (* r ⊥ if b = 1, r ⊤ otherwise *); 11 F ←-E 1 /GTH(C, D); 12 W ′ ←-F 2 ℓ E m mod 2 ℓ /(R 2 ℓ/2 ⊤ R ⊥) (* w mod 2 ℓ *); 13 Return Z = (W/W ′) 1/2 ℓ ;

The conditional gate protocol in the ElGamal setting

Until now, we presented existing MPC protocols, and gave some details about the protocols used in Ordinos. We now present the protocol that we used in this thesis, and explain the motivations behind this choice.

Presentation of the protocol

Suppose that the secret key sk of an exponential ElGamal public key has been shared between several participants. For instance, pk = (g, h) and, to encrypt m ∈ Z q , one picks r ∈ Z q at random and computes (g r , g m h r). For m ∈ Z q , we denote E x = (1 G , g m), the trivial exponential ElGamal encryption of m. In this setting, we can readily compute the logical negation of two encrypted bits: if X is an encryption of b, then E 1 /X is an encryption of 1 -b. To compute the logical and, we use the conditional gate protocol from [START_REF] Schoenmakers | Practical Two-Party Computation Based on the Conditional Gate[END_REF]. However, we adapted the original protocol into Algorithm 39, for the sake of SUC-security. In this algorithm, we denote Renc pk (X, r) the algorithm that takes a ciphertext X, a random r ∈ Z q , and returns XEnc pk (0, r). Compared to the original protocol, the adaptation is less efficient but can be proven secure in the SUC framework, as shown in Theorem 3.

Although the original protocol in [START_REF] Schoenmakers | Practical Two-Party Computation Based on the Conditional Gate[END_REF] is called the conditional gate in [ST04], we denoted Algorithm 39 CSZ, which stands for "conditionally set to zero". Indeed, given an encryption X of any x ∈ Z q and Y of y ∈ {0, 1}, CSZ(X, Y) is a random reencryption of X if y = 1 and a random encryption of 0 otherwise. Therefore, this algorithm is slightly more useful than a logical and gates which would require both inputs to be in a binary domain.

Algorithm 39: CSZ

Requires: G, a group of prime order q and public coin generator g pk of the form (g, h), an exponential ElGamal public key, whose shares are distributed among the n T participants h ∈ G, a public element independent from pk X, an encryption of some x ∈ Z q Y , an encryption of y ∈ {0, 1} Outputs: Z, a random encryption of xy 1 Y 0 ←-E -1 Y 2 ; X 0 ←-X; 2 for i = 1 to n T , for the authority i, do 11 They output Z = (XX ′yn T) 1 2 ; Algorithm 39 consists of three interactive steps. To begin with, as Y is supposed to be an encryption of y ∈ {0, 1}, we use the homomorphic property to turn it into an encryption Y 0 of 2y -1 ∈ {-1, 1} at line 1. This operation is essentially free, and does not require any interaction. Then, the first real step is a round of communications (lines 1 to 8). During this step, the authorities collectively generate a random and implicit s ∈ {-1, 1} and compute a reencryption X n T (resp. Y n T) of X s (resp. Y s 0). This way, Y n T is an encryption of a random y ′ = s(2y -1) ∈ {-1, 1}, so that decrypting it does not reveal anything about the initial value of y. The second step is a rerandomization phase (line 9) which we added to obtain SUC-security. Finally, the last step is a threshold decryption protocol (line 10), during which the authorities decrypt Y ′ to obtain y ′ . Then, by computing X ′y ′ , they can form an encryption of x(2y -1) (indeed, X ′ is an encryption of sx so that the sign s is simplified in the exponent). To derive the desired encryption of xy, they can locally multiply by X (to obtain an encryption of 2xy) then raise to the power of (q + 1)/2, which cancels the factor 2 in the exponent. In what follows, we comment on the modifications that we made compared to the original version of [START_REF] Schoenmakers | Practical Two-Party Computation Based on the Conditional Gate[END_REF].

3 (u, v) ←-X i-1 ; 4 r 1 , r 2 $ ←-Z q ; s $ ←-{-1, 1}; 5 X i ←-(u s g r 1 , v s h r 1); e ←-hr 1 ; 6 Y i ←-Renc pk (Y s i-1 , r 2); 7 Broadcast X i ,
Public coin g. For a technical reason, we require that g is obtained with a public coin protocol. For this purpose, we consider that g is derived from a hash of "Conditional gate". This is useful for an explicit reduction to DDH, since it prevents the environment of the SUC framework to choose g freely. Note that there exists other versions of the DDH game, where the adversary is allowed to choose the generator g. If such a computational assumption is made, we no longer need g to be public coin.

Round of communications.

Compared to the original conditional gate protocol, we added the following modifications:

1. We use an ElGamal commitment (u s g r 1 , hr 1) instead of a Pedersen commitment g s hr ;

2. In addition, we require that the ElGamal commitment and the reencryption use the same randomness r 1 ;

3. Finally, we also demand that the participants prove that s ∈ {-1, 1}, while it was originally only required to prove the knowledge of some s ∈ Z q .

The two first modifications were made to obtain the extractability of u s à la Shoup (without rewinding). Combined with the third modification, they allow the simulator to extract the value s 1 ∈ {-1, 1} used by the adversary, which is required in the proof of SUC-security. (Since u may be chosen by the adversary, this also requires to check that u ̸ = 1.) To prevent the adversary from exploiting the trapdoor log h(g) (which allows to extract u s) not the trapdoor log h(h) (which allows to extract v s), we can derive h from a hash of pk. In addition to provide extractability, the third modification prevents the adversary from choosing s 1 ̸ ∈ {-1, 1}. This means that, after the round of communications, Y n T is an encryption of y ′ = s 1 s 2 (2y -1) ∈ {-1, 1}, where s 2 ∈ {-1, 1} is a random element determined by the choices of the honest participants. Hence, by computing X y ′ n T , the sign s 1 s 2 is simplified in the exponent, as expected. To obtain the PoK required at line 7, one can use a standard disjunctive PoK (see Algorithm 41).

Rerandomization. We also added a second step, which is a reencryption phase (see line 9). This is necessary for the SUC framework; indeed, consider an attacker that corrupts the last participant. Then it can choose many random s, r 1 , r 2 until X n T meets a particular pattern that occurs with non-negligible probability (for instance, the 7 first bits in its bitwise representation are 0). The consequence of such an "attack" is that Z will not be an uniformly random encryption of xy as desired, so that SUC-security would be lost. To perform the rerandomization, we can use a synchronous broadcast of random encryptions of 0, along with the corresponding ZKP. (On this occasion, we recall that synchronous broadcast is discussed in Section 3.3.4.) For the rerandomization phase, we consider the protocol described in Algorithm 40.

Algorithm 40: Rerandomization

Requires: G, a group of prime order q pk, an ElGamal public key Inputs: X, a ciphertext Outputs: X ′ , a rerandomization of X for i = 1 to n T , participant i do

r i $ ←-Z q ; A i ←-Enc pk (0, r i); π i ←-PoK 0 (pk, A i , r i);
(* Can be obtained Algorithm 15, with (g 1 , g 2) = pk and (g 3 , g 4) = A i *)

c i ←-hash(A i , π i);
Broadcast the commitment c i ;

Once a commitment has been received from all the other authorities, broadcast A i , π i ; Verify that the broadcast A j , π j are consistent with the corresponding commitments;

10 return X n T i=1 A i ;
Computing the PoK. At line 7, we need a PoK that X i , c s , Y i is well formed. This proof guarantees that there exists s ∈ {-1, 1} and r 1 , r 2 ∈ Z q such that X i = Renc pk (X i-1 , r 1), e = hr 1 and Y i = Renc pk (Y s i-1 , r 2). We use the following standard disjunctive proof:

X i = Renc pk (X i-1 , r 1) and Y i = Renc pk (Y i-1 , r 2
) and e = hr 1 or

X i = Renc pk (X -1 i-1 , r 1) and Y i = Renc pk (Y -1 i-1 , r 2
) and e = hr 1 .

Algorithm 41: PoK-CSZ Requires: A group G of prime order q An exponential ElGamal public key pk Some ciphertexts X i , Y i , X i-1 , Y i-1 and e ∈ G r 1 , r 2 ∈ Z q and s ∈ {-1, 1} such that

X i = Renc pk (X s i-1 , r 1), Y i = Renc pk (Y s i-1 , r 2) and e = hr 1 α, β $ ←-Z q ; c s,X ←-Enc pk (0, α); c s,Y ←-Enc pk (0, β); c s,e ←-hα ; d -s , a -s,X , a -s,Y $ ←-Z q ; c -s,X ←-Enc pk (0, a -s,X)(X i X s i-1) -d -s ; c -s,Y ←-Enc pk (0, a -s,Y)(Y i Y s i-1) -d -s ; c -s,e ←-ha -s,X e -d -s ; d ←-hash(pk||X i-1 ||Y i-1 ||X i ||Y i ||c 1,X ||c 1,Y ||c -1,X ||c -1,Y ||c 1,e ||c -1,e); d s ←-d -d -s ; a s,X ←-α + r 1 d s ; a s,Y ←-β + r 2 d s ; 10 Return (c 1,X , c 1,Y , c -1,X , c -1,Y , c 1,e , c -1,e , d 1 , d -1 , a 1,X , a 1,Y , a -1,X , a -1,Y);
To verify the proof, one can use Algorithm 42.

Algorithm 42: Ver-CSZ

Requires: A group G of prime order q An exponential ElGamal public key pk Some ciphertexts

X i , Y i , X i-1 , Y i-1 and e ∈ G π = (c 1,X , c 1,Y , c -1,X , c -1,Y , c 1,e , c -1,e , d 1 , d -1 , a 1,X , a 1,Y , a -1,X , a -1,Y) 1 if X i is of the form (1 g , *) then return 0; 2 d ←-hash(pk||X i-1 ||Y i-1 ||X i ||Y i ||c 1,X ||c 1,Y ||c -1,X ||c -1,Y ||c 1,e ||c -1,e);
3 Check that the following equalities hold:

4 d 1 + d -1 ? = d; 5 Enc(0, a 1,X)(X i /X i-1) -d 1 ? = c 1,X ; 6 Enc(0, a 1,Y)(Y i /Y i-1) -d 1 ? = c 1,Y ; 7 ha 1,X e -d 1 ? = c 1,e ; 8 ha -1,X e -d -1 ? = c -1,e ; 9 Enc(0, a -1,X)(X i X i-1) -d -1 ? = c -1,X ; 10 Enc(0, a -1,Y)(Y i Y i-1) -d -1 ? = c -1,Y ; 11 if so then return 1 else return 0;

Universal verifiability

An interesting property of the CSZ protocol is its universal verifiability. Indeed, each step of the protocol produces a transcript and some ZKP that allow any external auditor to check that the correct operations were performed. For instance, the round of communications (line 3 to 6) produce the transcript π RC = (X i , e i , Y i , π i) n T i=1 , where π i is a ZKP that there exists X i , e i , Y i are well-formed. Afterwards, the rerandomization produces the transcript π RR (U i , V i , π 0 i) n T i=1 where U i , V i are some ciphertexts and π 0 i is a ZKP proof that they are encryption of 0. By verifying all these proofs and computing X ′ = X i n T i=1 U i and Y ′ = n T i=1 V i , the verifier can deduce the result of the rerandomization phase and is guaranteed that X ′ and Y ′ are wellformed. Finally, the threshold decryption produces the transcript π T D = (w i , π Dec i) n T i=1 , where w i is i's partial decryption of Y ′ and π Dec i is a ZKP that it is well-formed. By verifying those proofs and combining the partial decryptions, the verifier can deduce the value Z of the output and be assured that Z is indeed an encryption of xy as desired. The final transcript of CSZ is

π CSZ = π RC ||π RR ||π T D .

Comparison with the multiplication protocol

At a first glance, the conditional gate seems less useful than the multiplication protocol presented in Section 4.2. Indeed, to compute a multiplication on encrypted data with the conditional gate, we need to evaluate an already complex boolean circuit with many conditional gate sub-protocols; by contrast, this requires a single call of Mul. In this section, we give our main motivations for choosing the conditional gate anyway. Before that, however, we give a few metrics that are going to be useful in the remaining of this thesis. Some metrics to evaluate the complexity of an MPC protocol. A first metric is the computational complexity. In asymmetric cryptography, the most prominent operation is the exponentiation, therefore we evaluate the complexity by counting (approximately) the number of exponentiations. Now, another important thing to assess in an interactive protocol is the A first indicator is the total size of the messages exchanged. To evaluate this in the context of electronic voting, we give the size of the verification transcript, which is a collection of scalars and group elements that allow anyone to verify that the protocol was executed correctly, and therefore that its output is valid. This transcript gives a fair estimate of the complexity of the communications, as it is closely related to the total size of the messages exchanged. However, another important metric to consider is the number of synchronization steps. Indeed, in a purely asynchronous protocol, everyone can perform their computation locally and send and receive whenever it is needed. By contrast, if a participant must wait for the other participants to send some contribution before they can continue to operate, then the protocol becomes less efficient.

With the above metrics, the conditional gate protocol seems less efficient than the Mul protocol (see Tab. 5). The main difference comes from the fact that CSZ requires a round of communication when then authorities must in turn perform some computations, while Mul only consists of a few broadcasts. In MPC, reducing the number of communications is crucial; however, we do not have that many talliers: in general, n T ≤ 5. Therefore, provided that several CSZ protocols are computed in parallel, the efficiency loss can be amortized.

Comparison of the Paillier and ElGamal cryptosystems. Although the conditional gate protocol seems less interesting than the multiplication protocol in all aspects, we recall that the CSZ can be used with the exponential ElGamal encryption, while the Mul protocol requires the Paillier encryption scheme. This was our main motivation when choosing the CSZ protocol, and there are many reasons for this.

The computational assumption. First, the Paillier encryption scheme is based on DCRA, while the ElGamal encryption scheme is based on the DDH assumption. The DCRA is not as old as the DDH assumption; in addition, it is only used for Paillier encryption, while there are a lot of cryptographic schemes that rely on the DDH assumption. For this reason, although it is currently believed that attacking DCRA requires to factor n, it is possible that it might actually be easier. In addition, there are sub-exponential algorithms for factorization, while this is not the case for DDH on well-chosen elliptic curves. The consequence is that, for the same level of security, it is recommended to choose a 3072-bits n, while the size of the group in an ElGamal setting can be a 256-bits prime number q. Clearly, computing an exponentiation with a 3072-bits exponent modulo a number of 6144 bits is not the same as computing an exponentiation with a 256-bits exponent in an elliptic curve over Z p , where p is another 256-bits prime number. In Table 6, we provide estimates based on a medium level of optimization, for a native implementation on a modern processor (based on OpenSSL and using RSA for Paillier emulation), and for a JavaScript implementation running in a modern web browser (based on libsodium.js and JS BigInt). Since an ElGamal encryption requires two exponentiations, a raw estimate is that a Paillier encryption is about 1 250 times more expensive than an ElGamal encryption on the voter side.

Available libraries. Another reason to choose ElGamal over Paillier is the availability of widely used libraries that support elliptic curve cryptography, such as Libsodium, OpenSSL or Crypto++. By contrast, although some libraries that support the Paillier encryption scheme can be found, they are not used by a large community that would have detected most of the vulnerabilities. In Ordinos [Ord], they implemented the Paillier cryptosystem from scratch, based on the gmp library. In electronic voting, the need for a well-studied library is all the more so important because we usually need one on the voter side, and one on the server side.

Distributed key generation. A related difficulty is that the DKG in the Paillier setting is really complex and difficult to implement; by contrast, Pedersen's DKG is more simple and is often used in electronic voting. If we want to use an electronic voting system based on the Paillier encryption scheme in the future, it means that we would need to produce a safe implementation of the DKG, which is not done in the implementation of Ordinos.

Conclusion.

In this thesis, we demonstrate that it is possible to make a reasonable use of the ElGamal encryption scheme in MPC. Switching to ElGamal is a win some, lose some decision: the communication complexity becomes larger and the dependency on the size of the inputs is more important. However, it can be greatly beneficial in some situations, which include electronic voting protocols.

Security of the conditional gate in the SUC framework

The conditional gate is our main building block for our toolbox. In order to build confidence on the resulting protocols, we use an universally composable security framework, introduced in Section 3.3. In this section, we prove the SUC-security of the conditional gate protocol, which is stated in Theorem 3. To make the proof as easy to follow as possible, we use a comprehensible proof strategy and use the composition theorem.

Proof strategy for the conditional gate

To assess the security of any protocol in the SUC framework, a natural strategy is to use the following steps.

1 Definition of the ideal functionality. First, we give F CSZ , the description of the trusted party that realizes the conditional set to zero functionality in the ideal process. As explained in Section 3.3, a SUC-secure protocol is not necessarily secure; rather, it is as secure as the ideal protocol. For this reason, it is important to provide an easy to analyze ideal functionality. We give Algorithm 43, in which the command abort causes the ideal functionality to erase any local data and send ⊥ to all the participants as well as the adversary. This ideal functionality works as closely as possible as a trusted party: it collects the inputs of the participants, check their consistency and return the desired output. However, pk is supposed to be the public key, (h i) n T i=1 the public commitments of the shares of the participants and X and Y the two ciphertexts to operate on. Therefore, whenever a participant communicates with F CSZ , we consider that this part of the message can be read by the adversary (recall that the adversary can read a public part of the message when a participant communicates with the ideal functionality, but not the totality of the message). Remark that the ideal functionality can abort even if there is a majority of honest participants, which means that we do not guarantee fairness. In addition, the abortion message ⊥ does not allow to blame anyone, which means that we do not provide accountability.

Algorithm 43: F CSZ Requires: G, a group of prime order q 1 On message (g, h), (h j) n T j=1 , s, X, Y from participant i:

2 Send (g, h), (h j) n T j=1 , X, Y to S; 3 if g s ̸ = h i then abort; 4 X i ←-X; Y i ←-Y ; s i ←-s; 5 if X j ̸ = ⊥ for all j then 6
Check that the received (g, h), (h j) n T j=1 are all the same (if not, abort);

7 if there exists j 1 , j 2 s.t. X j 1 ̸ = X j 2 or Y j 1 ̸ = Y j 2 then abort; 8
Using the shares, decrypt X 1 and Y 1 into x and y; 2 Definition of the hybrid process. The second step is to define the hybrid process; which allows to model the protocol in the SUC-framework. For this purpose, we need to define all the ideal functionalities that we are going to use: they define the main abstractions of the proof. In our case, we use the F RO -hybrid model, as already discussed in 3.3.3, as well as the F SB -hybrid model, which we discussed in Section 3.3.4, where we showed that it can be realized from the ideal broadcast functionality F B and F RO .

In general, describing the hybrid process also requires to give the exact algorithm of the honest participants in the hybrid model. Since the conditional gate protocol is rather complex, we are going to decompose it into several sub-protocols and use the composition theorem.

3 Decomposition into several sub-protocols. As explained in Section 4.3, the conditional gate protocol is divided into three parts: the round of communications (lines 1 to 8), the rerandomization (line 9) and the threshold decryption (line 10). Then, a natural way to decompose the protocol is to analyze the three parts separately, which will be done in the remaining on this chapter. Each part has its dedicated sub-section but, for the purpose of the proof, we do not treat them in the chronological order.

4 Restrictions on the environment. Finally, as we mentioned in Section 3.3.2, it is sometimes necessary to impose a restriction on the environment. For the conditional gate, the condition is that y ∈ {0, 1}. Therefore, we demand that the input of the participants is of the form (g, h), (h j) n T j=1 , s i , X, Y such that Y is an exponential ElGamal encryption of 0 or 1 obtained with the public key (g, h) (i.e. an ElGamal encryption of either 1 G or g). In addition, we require that (g, h), (h j) n T j=1 , X, Y , which is supposed to be a public input, is the same for all the participants. To simplify the presentation, we also demand that (g, h), (h j) n T j=1 , s i is the output of a DKG, i.e. that there exists a polynomial f of degree t such that g f (j) = h j for all j, with g f (0) = h 0 and f (i) = s i . This additional condition is not only decidable, but also efficiently so; therefore the participants can check it themselves and abort if it is not met. However, those additional checks may distract the reader from the important ones.

Algorithm 44: RR (algorithm of i)

Requires: G, a group of prime order q Inputs: pk, an exp. ElGamal key A ciphertext X 1 On input (g, h), X: Wait for the answer d;

2 Start a new independent session; 3 r 1 $ ←-Z q ; α $ ←-Z q ; 4 U i ←-Enc pk (0, r 1); 5 c u ←-Enc pk (0,
16 if c uj ̸ = Enc pk (0, a uj)U -d j 17 then Output ⊥; 18 Output X n T i=1 U i ;
Algorithm 45: F rerand Requires: G, a group of prime order q 1 On message pk, X from i:

2 pk i ←-pk; X i ←-X; 3 if X j ̸ = ⊥ for all j then 4 if X j = X 1 and pk j = pk 1 ∀j then 5 α $ ←-Z q ; 6 X ′ ←-Renc pk 1 (X 1 , α);

The rerandomization

We start with the easiest phase, which is the rerandomization phase. We show in Lemma 7 that it SUC-securely computes the F rerand ideal functionality, defined in Algorithm 45. This ideal functionality outputs ⊥ if the participants do not agree on a common public key pk and a common ciphertexts X (since the participants need to rerandomize two ciphertexts, they will need to call the ideal functionality twice). If they do, it outputs a random rerandomization X ′ of X. Also, since the inputs of the participants are supposed to be a common public pk, X, this ideal functionality allows the adversary to learn the input of each participant.

Lemma 7. Assuming that there is at least one honest participant, the rerandomization subprotocol described in Algorithm 44 SUC-securely computes the F rerand ideal functionality (given in Algorithm 45) in the F RO , F SB -hybrid model, where F SB is defined in Algorithm 28.

Proof. We construct the simulator S which interacts with the environment in the ideal process, and simulates the hybrid process.

First, the simulator acts in the ideal process and forwards the messages of all the honest participants, which allows it to learn their inputs from F rerand . With this knowledge, it runs a perfect simulation of the RR protocol, up until when it has to reveal the answer of F SB to a corrupted participant at line 10. At this moment, the simulator checks that the honest participants all had the same input pk, X. To begin with, suppose that this is not the case, which is Case 1. Then the simulator continues the perfect simulation and, whenever a simulated honest participant outputs something in the simulated hybrid process, S forwards the answer of F rerand (which is necessarily ⊥) to the same participant in the ideal process. This way, the said participant outputs ⊥ in the ideal process. Since the simulator runs a perfect simulation of the hybrid process, it remains to show that when two participants do not have the same input in the hybrid process, then the output of any honest participant (if any) is ⊥ with overwhelming probability.

Case 1: no consensus. If two honest participants, say i and j, have two different inputs pk i , X i and pk j , X j then, for all honest participant k, either the PoK π i or the PoK π j will appear invalid (except with negligible probability). Indeed, pk k , X k cannot be simultaneously equal to pk i , X i and pk j , X j . Without a loss of generality, assume that (pk k , X k) ̸ = (pk i , X i). Then F RO , when queried with (pk k ||X k ||U i ||c ui) outputs a different answer than when queried with (pk i ||X i ||U i ||c ui), except with a negligible probability. Let d k and d i be the two different answers. Since the proofs are generated honestly, we have

c ui = Enc pk i (0, a ui)U -d i i . Except with negligible probability, this is different from Enc pk k (0, a ui)U -d k i
, therefore k rejects the proof as invalid and outputs ⊥, except with a negligible probability.

Case 2. Now, suppose that all the honest participants have the same input pk, X. Then, for all corrupted participant j, the simulator looks for a query to F RO of the form (pk||X||U j ||c uj), which was answered by some d j such that c uj = Enc pk (0, a uj)U -d j j (i.e. the PoK π j is valid). If there is no such query for some j, then the corresponding proof will look invalid to all the honest participants, except with negligible probability. In this case, all the honest participants will output ⊥ in the hybrid process. To have the same output in the ideal process, the simulator makes a query from all the corrupted participants, but with an input (pk ′ , X ′) ̸ = (pk, X). This way, the ideal process answers ⊥ to all the participants as desired.

If there is such a query for all j, the proof will appear valid to all the honest participants, which will therefore output X n T i=1 U i in the hybrid process. To have this match the output of the ideal process, the simulator first sends the query (pk, X) to F rerand with all the corrupted participants, so that F rerand answers with some X ′ . However, the simulator blocks all the answers towards a honest participant: it will deliver them one by one, when it will need a honest participant to output X ′ in the ideal process. Then, the simulator changes the contribution of a single honest participant i in the simulation, and sets U i = X ′ /(X j̸ =i U i). Also, using the control over the random oracle, it simulates the PoK π i so that it appears valid to the adversary. For this purpose, it chooses a challenge d at random and the answer a ∈ Z q at random as well. Then, it computes c u = Enc pk (0, a)U -d i . Since d was chosen at random, then (except with a negligible probability) no query was made to F RO with the input pk||X||U i ||c u , so that the simulator can answer every subsequent such query with d. The simulated proof is then π = (c u , a). Remark that since π j is valid for all j, then, by the computational soundness of the PoK, U j is encryptions of 0 for all j, except with a negligible probability. Consequently, j̸ =i U j is an encryption of 0. Also, since X ′ is a random reencryption of X, X ′ /X is a random encryption of 0. Therefore, U i is also a random encryption of 0. Hence, by the zero knowledge property of the PoK, U i , π follows the same distribution as in the real hybrid process (except with a negligible probability).

Conclusion.

The above simulator gives a perfect simulation of the hybrid process, except with a negligible probability. In addition, the outputs of the honest participants are the same in the simulated hybrid and in the ideal process. Therefore, the view of the environment is the same in both the hybrid and the ideal processes, except with a negligible probability.

The threshold decryption

We now address the threshold decryption part, whose goal is to evaluate the ideal functionality F Dec given in Algorithm 47. Compared to the "ideal" ideal functionality, this one lives in a setting where each participant i has the result pk, (h j) n T j=1 , s i of a DKG as an input, as well as a ciphertext Y to decrypt. In this input, only the secret share s i is private so that the ideal functionality allows the adversary to learn the remaining (public) part. Apart from that, F Dec is similar to F CSZ : it collects the inputs of the participants, checks their consistency and returns the desired output, which is the decryption of the common ciphertext Y .

A subtle difficulty is that the threshold decryption protocol in the ElGamal setting is not universally composable. Indeed, although we exhibited a simulator in Theorem 1, the latter suffers from two major flaws which are detrimental for the sake of SUC-security. First, the simulated partial decryptions do not follow the same distribution as the real partial decryptions. Yet, in a UC framework, the environment chooses the inputs of the participants (and therefore their shares), which allows it to distinguish the simulated partial decryption from the real ones. A similar difficulty is that the simulator also chooses the ciphertext to decrypt, while Theorem 1 only gave a notion of security against chosen plaintext attacks -and not chosen ciphertexts. Therefore, the threshold decryption protocol is only SUC-secure if the adversary corrupts exactly t participants: if less participants are corrupted, the simulator does not have access to enough secret share to perform the polynomial interpolation in the exponent. This is when our rerandomization phase comes to the rescue. In Lemma 8, we show that if the decryption protocol is preceded by a (perfect) rerandomization phase, then it achieves SUC-security.

Lemma 8. The threshold decryption protocol described in Algorithm 46 SUC-securely computes F Dec (defined in Algorithm 47) in the F rerand , F RO -hybrid model.

Proof. We construct a simulator S which interacts with the environment in the ideal process and simulates the hybrid process by simulating the honest participants and the F rerand , F RO ideal functionalities. First, the simulator acts in the ideal process and forwards all the messages of the honest participants to F Dec in order to get (g, h), (h j) n T j=1 , Y . If the data of the honest participants are not consistent, the simulators can run a perfect simulation of the hybrid process, since F rerand will output ⊥ which will cause all the honest participants to output ⊥ as in the ideal process. Consequently, we suppose that all the honest participants have the same (g, h), (h j) n T j=1 , Y . Then the simulator uses the corrupted participants of the ideal process and forwards their inputs to the ideal functionality, which causes it to send the plaintext y to everyone. However, S blocks this answer to everyone, except for itself: it will deliver the answers one by one, when it will need a honest participant to output y in the ideal process. Now that S knows the plaintext y that corresponds to Y , it picks r ∈ Z q at random and compute u = g r as well as v = yh r , so that Y ′ = (u, v) is a random reencryption of Y . Using this Y ′ , S can run a perfect simulation of F rerand .

After the rerandomization phase, S has to simulate the actual threshold decryption protocol, except that it does not know the secret share of the honest participants. Let i be a honest participant. When i receives Y ′ from F reerand in the simulated hybrid process, S computes w i = h r i , chooses a ∈ Z q at random as well as the challenge d. Then, S computes c g = g a h -d i and c u = u a w -d i . Since those two are random, no query to F RO was made with the input (g, h)||Y ′ ||w i ||c g ||c u (except with a negligible probability) so that the simulator can answer all subsequent such queries with d. Now, since (g, u, h i , w i) is a DDH tuple, (c g , c u , d, a) follows the Algorithm 46: TD (algorithm of i)

Requires: G, a group of prime order q Inputs: (g, h), an ElGamal public key (h j) n T j=1 , the commitments on the shares of the participants s i , the secret share of participant i Y , a ciphertext 1 On input:

2 Start a new independent session; 3 Send (g, h), Y to F rerand ; 4 On ⊥ from F rerand : Output ⊥; 5 On message Y ′ from F rerand : 6 Parse Y ′ as (u, v); 7 w i ←-u s i ; 8 Compute the PoK: 9 α $ ←-Z q ; c g ←-g α ; c u ←-u α ; Query F RO with ((g, h)||Y ′ ||w i ||c g ||c u);
Wait for the answer d; a ←-α + ds i ;

Send (w i , c g , c u , a) to all j;

On message (w, c g , c u , a) from j:

Query F RO with ((g, h)||Y ′ ||w||c g ||c u);
Wait for the answer d;

if c g ̸ = g a h -d j or c u ̸ = u a w -d then Output ⊥ else w j ←-w; if ∃S ⊂ [1, n T] s.t. |S| = t + 1 and ∀j ∈ S, w j ̸ = ⊥ then for j ∈ S do Λ j ←- k∈S\{j} k j-k ; y ←-v j∈S w Λ j j ;
Output y; else wait;

Algorithm 47: F Dec Requires: G, a group of prime order q 1 On (g, h), (h j) n T j=1 , s, Y from i: same distribution as in the real hybrid process (this is the zero knowledge property of the ZKP), therefore the simulation is perfectly indistinguishable from the real process. Finally, when a (simulated) honest participant i receives (w, c g , c u , a) from some j, the simulator runs the algorithm of the participant to decide whether it should output ⊥, output some value y ′ computed from the received shares or wait. If the participant has to output ⊥, it means that j was corrupted. Then S uses j in the ideal process to send a query to F Dec , but with an inconsistent s j . This way F Dec sends ⊥ to all participants and S can block every answer, except for i which will therefore output ⊥ in the ideal process. If i has to wait, then S makes it wait. However, if i has to output something, it outputs y ′ = v j∈S w Λ j j while it can only output y in the ideal process. Fortunately, for all j in S, the PoK of correct partial decryption is valid. Therefore, by the soundness of the ZKP, (except with a negligible probability) there exists s j ∈ Z q such that g s j = h i and u s j = w j . Hence, except with a negligible probability, y ′ = y (this comes from the Lagrange interpolation of f (0)).

2 Send (g, h), (h j) n T j=1 , Y to S; 3 if g s ̸ = h i then abort; 4 Y i ←-Y ; s i ←-s; 5 if Y j ̸ = ⊥

The round of communications

The final part is the round of communication. Since we could not find a smart ideal functionality that is realized by this part, we conclude the proof by giving Lemma 9, which states the SUCsecurity of Algorithm 48, which is the conditional gate protocol in the F RO , F Dec -hybrid process. In this Algorithm, Rnd can be derived from Algorithm 39 (lines 3 to 6) and Algorithm 41, and Ver-CSZ can be derived from Algorithm 42. Rnd allows a participant to produce X i , Y i , e and to prove that they are well-formed; Ver-CSZ allows to verify the ZKP.

Compared to the protocol presented in Algorithm 39, we can see that the participants broadcast

(X i-1 , Y i-1 , X i , Y i , e, π) instead of just (X i , Y i , e, π
). This allows them to synchronize their view "on the fly", without adding too many synchronization steps at each broadcast. The price to cost is that at the end of the round of communications, all the participants may not agree on the same X n T , Y n T .

Another difference is that in Algorithm 39, the participants simultaneously rerandomize X n T and Y n T into X ′ and Y ′ , while the two rerandomization got somehow separated in Algorithm 48: one is done right away and the other one is consumed by F Dec (see Section 4.4.3). This is purely for the sake of the presentation: since the two rerandomizations are independent, they can actually be done simultaneously.

Finally, in the SUC framework, the environment is allowed to choose freely the inputs of the participants which, for convenience, include g. Yet, recall that we said in Section 4.3 that g must be public coin (otherwise we would need another version of DDH, which would also be acceptable). Therefore, at the beginning of the protocol, the participants get g from the random oracle and check that it is consistent with their input. Note that, to be able to write g in the input of the participants, the environment must first query it to the random oracle, using the adversary or a corrupted participant.

Lemma 9. Assuming that there is at least one honest participant, and under the DDH assumption, the protocol depicted in Algorithm 48 SUC-securely computes F CSZ (defined in Algorithm 43) in the F RO , F rerand , F Dec -hybrid model.

Proof. We construct a simulator S which interacts with the environment in the ideal process and simulates the hybrid process by simulating the honest participants and the F RO , F Dec ideal functionalities. First, the simulator chooses a random g ∈ G and, whenever F RO is queried with "Conditional Gate", the simulator answers with g. Also, whenever F RO is queried with a new input of the form (g||h), S chooses a random trapdoor τ , computes h = g 1/τ and answers with Algorithm 48: CSZ (algorithm of participant i)

Requires: G, a group of prime order q Inputs: (g, h), (h j) n T j=1 , s i , X, Y Variables: Two ciphertexts pr j

x and pr j y for all j ̸ = i (initially, ⊥) On input:

Start a new independent session; Query F RO with "Conditional Gate";

Check that the answer is g (otherwise, Output ⊥);

E -1 ←-(1 G , g -1); X 0 ←-X; Y 0 ←-E -1 Y 2 ;
Query F RO with (g||h);

Wait for the answer h;

if i > 1 then change to Waiting 1, wait; else X 1 , e, Y 1 , π 1 ←-Rnd(X 0 , Y 0 , h);
Change state to Waiting 2; Send (X 0 , Y 0 , X 1 , e, Y 1 , π 1) to all j;

State Waiting 1:

On (A, B, C, e, D, π) from j < i:

if X j = ⊥ then 18 X j ← C, e j ← e; 19 Y j ← D; π j ← π; 20 pr j x ← A; pr j y ← B;
21 Ignore all future messages from j;

if X k ̸ = ⊥ for all k < i then 23 for j = 1 to i -1 do 24 if X j-1 ̸ = pr j x or Y j-1 ̸ = pr j y 25 then Output ⊥; 26 X i , e, Y i , π ← Rnd(X i-1 , Y i-1 , h); 27
Change state to Waiting 2;

28 Output (XX ′y) 1/2 ; h. This way the simulation is perfectly indistinguishable from the real hybrid (if τ = 0, S sets h to 1 G). At some point, the environment must activate a honest participant by writing on its input tape, which fixes (g, h), (h i) n T i=1 , X, Y for the session. (If the same participant is activated several times, the simulator runs several independent sessions. This assumes, for instance, that a different prefix is used for querying F RO in each session.) Now that the protocol has really began, we explain how to simulate the different states.

Send (X i-1 , Y i-1 , X i ,
Simulation until Waiting 2. Let i be the last honest participant (i.e. for all j > i, participant j is corrupted). The simulator runs a perfect simulation of the round of communications, up until when i has to change to the state "Waiting 2". This can happen at line 13 or line 27. In any case, for all j < i, participant j revealed its contribution X j , e j , Y j , π j . Before revealing the contribution of i, the simulator checks all the ZKP. If one is invalid, then all the honest participants will output ⊥ at line 25, 40 or 42, therefore the simulator will not have to simulate the decryption. Hence, the best course of action is to continue the perfect simulation without cheating, until every honest participant outputs ⊥.

If all the proof are valid then the computational soundness guarantees that, except with a negligible probability, there exists r 1 , r 2 ∈ Z q and s ∈ {-1, 1} such that X i-1 = Renc pk (X s 0 , r 1) and Y i-1 = Renc pk (Y s 0 , r 2). The simulator first acts in the ideal process and forwards all the messages of the honest participants to the ideal functionality F CSZ . Also, it instructs the corrupted participants to send their inputs to F CSZ as well, so that F CSZ answers with some ciphertext Z f . Note that due to the restrictions on the environment, F CSZ does not abort. As usual, the simulator blocks the answer towards all the participant except itself: it will deliver them when it will need a honest participant to output Z f in the ideal process.

Since Z f is the output of the ideal process, the couple

Z f , (1 G , g) is such that Z f is a reencryp- tion of X y i-1 and (1 G , g) is a reencryption of Y y i-1
, where y = Dec sk (Y i-1) (except with a negligible probability since this comes from the soundness of the ZKP). However, this couple is not random enough and the environment might notice that a trivial encryption of 1 is used. Therefore the simulator rerandomizes it by choosing a random s ′ ∈ {-1, 1}, two random α, β ∈ Z q and computing X i = Renc pk (Z s ′ f , α) and Y i = Renc pk ((1 G , g s ′), β). This way, X i and Y i becomes independent from Z f and y, and follow the correct distribution. We denote X i = (u x,i , v x,i) and

X i-1 = (v x,i-1 , v x,i-1).
At this point, there is a single value of e i for which X i , e i , Y i is well-formed, but this value depends on y: e i = (u x,i /u ys ′

x,i-1) τ . However, S has no way to know y. Therefore, it cannot produce a perfect simulation and will pick e as a uniformly random element instead. Now, S has to forge a fake ZKP π i , which is possible thanks to the control over F RO . However, since the statement to prove is most likely false, the forged ZKP does not follow the same distribution as the real one. Since the view of the environment is not the same as in the real hybrid process, we will need to prove that the simulated view is indistinguishable from the fake one.

Remark that the simulator created a situation where Y i is an encryption of a known plaintext s ′ , which will be useful in the remaining of the proof.

Simulation of Waiting 2. Since there are no honest participant left to simulate, the simulator can perform a perfect simulation of Waiting 2. Nevertheless, each time a participant j > i sends a valid X j-1 , Y j-1 , X j , e j , Y j , π j , then the soundness of the ZKP assures the existence of r 1 , r 2 ∈ Z q and s ∈ {-1, 1} such that (u x,j , v x,j) = X j = (g r 1 u s x,j-1 , h r 1 v s x,j-1), Y j = Renc pk (Y s j-1 , r 2) and e j = hr 1 , where (u x,j-1 , v x,j-1) = X j-1 . Hence, by computing u x,j e -τ j , S recovers either u x,j-1 or u -1 x,j-1 depending on s, which enables it to deduce the value of s used by j (recall that if the proof π j-1 is valid, then u x,j-1 ̸ = 1; j -1 > 0 since j > i ≥ 1).

To avoid the confusion with j's secret share, we denote it σ j .

Simulation of the rerandomization of X. When a honest participant reaches the Rerandomize state, the simulator knows the value y = s ′ j>i σ j which is encrypted into Y n T . At this point, except with a negligible probability (if the adversary managed to forge a fake ZKP), the ciphertext X ′ = (Z 2 f /X) y is a "random" reencryption of X n T . (Indeed, the environment had no information about Z f yet, therefore X ′ follows the correct distribution and is independent from the remaining of its view.) Hence the simulator can use his value as the output of F rerand instead of a honestly generated reencryption.

Simulation of the decryption. To simulate the decryption, the simulator uses the real plaintext y. This way the output (XX ′y) 1/2 is indeed equal to Z f .

Indistinguishability. We now prove that the simulation is indistinguishable from the real hybrid game. Before giving the reduction to DDH, we propose to dream up a bit and construct an imaginary simulator S i , which can compute a discrete logarithm. This simulator uses the same simulation as S, except that for the last honest participant i, e i is not chosen as a random group element. Indeed, since S i can decrypt Y i-1 , it can use the "correct" value of e i for which X i , e i , Y i is well-formed. In turn, by the zero knowledge property of the ZKP, the simulated proof π i will be perfectly indistinguishable from the real one. In fact, the tuple X i , e i , Y i , π i computed by S i follows the same distribution as in the real hybrid process. Since the remaining of the simulation is perfect (except with a negligible probability), S i creates a perfect simulation of the real hybrid process (except with a negligible probability). Hence, the environment can distinguish S's simulation from the real hybrid process if and only if it can distinguish the simulation from S's from S i 's. Now, let Z be an environment and A be an adversary for DDH. (Recall that the "adversary" in the SUC framework is just the dummy adversary, so that only the environment is relevant.) We denote p and p i the probability that Z outputs 1 when interacting with S and S i . The adversary A receives a challenge tuple g 1 , g 2 , g 3 , g 4 in the DDH game. To decide whether it is a DDH tuple or not, it interacts with Z by simulation S as well as the corrupted participants. However, when Z queries F RO with "Conditional Gate", A answers with g = g 1 (if Z creates several independent sessions, A can use a random α ∈ Z q and answer with g = g α 1 instead; in this case, it will also use g α 3 instead of g 3). In addition, whenever the environment makes a new query of the form (g||h), A chooses a random τ ∈ Z q and computes h = g τ 2 . This way, except if g 2 = 1 G or g 1 = 1 G (in which case the DDH challenge is trivial), g, h, h follows the exact same distribution as in S's simulation.

At some point, the environment must write on the input tape of a participant, which fixes (g, h), (h j) n T j=1 for the session. Due to the restrictions on the environment, Z must write an input of the form (g, h), (h j) n T j=1 , s k in the input tape of all the participants, which allows A to learn sk = log g (h) by combining all the secret shares.

Afterwards, A continues the simulation until it must reveal the contribution (X i , e i , Y i) of the last honest participant. For this purpose, A parses X i-1 as (u x,i-1 , v x,i-1), chooses a random s ∈ {-1, 1} and computes u x,i = u s x,i-1 g 3 as well as v x,i = v s x,i-1 g sk 3 , which defines X i = (u x,i , v x,i). As for Y i , A chooses r 2 at random and compute Y i = Renc pk (Y s i-1 , r 2). Finally, it sets e i as g τ 4 , so that X i , e i , Y i is well-formed if and only if g 1 , g 2 , g 3 , g 4 is a DDH tuple. Then A continues the simulation normally, except that it cannot use τ to extract s j for j > i, since hτ ̸ = g. However, it can extract s j by decrypting Y j and Y j-1 using sk: if the plaintexts are equal, s j = 1; otherwise, s j = -1.

At the end of the simulation, the environment outputs a bit b. If b = 1, A states that g 1 , g 2 , g 3 , g 4 was a DDH tuple; otherwise, it states that the challenge tuple was a random tuple. Remark that when the challenge is a DDH tuple, A runs the same simulation as S i and hence wins with probability p i ; on the other hand, when the challenge is a random tuple, A runs S's simulation but must output 0 to win, therefore it wins with probability 1 -p. Hence A's probability to win the DDH game is 1 2 (p ′ + 1 -p), so that A's advantage is 1 2 |p ′ -p|. Under the DDH assumption, A's advantage is negligible, therefore |p ′ -p| is negligible, which concludes the proof.

The conditional gate protocol is SUC-secure

Now that we proved that all the components of the conditional gate protocol are SUC-secure, the SUC-security of the protocol is a direct consequence of the composition theorem, given in Lemma 5. Indeed, by Lemma 9, we have the SUC-security provided that the threshold decryption protocol and the rerandomization are SUC-secure. In Lemma 8, we showed that the SUC-security of the threshold decryption can be derived from that of the rerandomization. Also, in Lemma 7, we showed that the SUC-security of the rerandomization is a consequence of that of the synchronous broadcast, whose security comes from F B and F RO by Lemma 6. When we compile all those results together, this gives Theorem 3, which is the desired result.

Theorem 3. Under the DDH assumption, and if at least one participant is honest, the conditional gate protocol given in Algorithm 39 SUC-securely computes the F CSZ ideal functionality given in Algorithm 43, in the F RO , F B -hybrid model, where F RO is the programmable random oracle ideal functionality (see Algorithm 26) and F B is the broadcast ideal functionality (see Algorithm 29).

Proof. This is a direct consequence of Lemma 9, Lemma 8, Lemma 7, Lemma 6 and Lemma 5.

Chapter 5

A toolbox for verifiable tally-hiding

The first contribution of this thesis is to provide a toolbox for verifiable tally-hiding in the ElGamal setting. This toolbox is built upon the conditional gate protocol from [START_REF] Schoenmakers | Practical Two-Party Computation Based on the Conditional Gate[END_REF] which allows to securely realize the conditionally set to zero functionality on bitwise encrypted data (see Section 4.3). It consists of various MPC protocols which allow to realize several useful functionalities. For some functionalities, we propose several computation/communication tradeoffs, which can mitigate the potentially expensive communication cost. Most of the considered protocols, as well as their respective complexity are displayed in Table 8. Since we proved the security of this building block in the SUC framework, it means that the security of the whole toolbox is guaranteed in the SUC-framework as well; in other words, we can prove that the resulting protocols are as secure as if they were executed by some trusted party. Similarly, the universal verifiability of the resulting protocols can be deduced from that of CSZ.

The basic primitives of the MPC toolbox

Logical operations on encrypted data

Thanks to the conditional gate protocol and the homomorphic property of the exponential ElGamal encryption scheme, it is possible to derive a protocol for the most common logical operations. For convenience, we drop the other inputs (such as (g, h, (h i) n T i=1) and use the notation CSZ(X, Y)

to denote the output of the conditional gate protocol, when applied to the ciphertexts X and Y . By abuse of notation, we consider that this output is always a well-formed ciphertext Z and not ⊥ (i.e. that the protocol does not abort), so that CSZ(X, Y) can be used as an input in another protocol. The same goes for the other protocols that we build upon the conditional gate. Basic boolean operations. Recall that the logical negation can be evaluated "for free" thanks to the homomorphic property: Not(B) = E 1 /B. In addition, remark that the CSZ protocol readily allows to compute the And algorithm, which is a specific case where X is also supposed to be an encryption of x ∈ {0, 1}. Thanks to the homomorphic property, it is easy to derive a protocol to evaluate the logical or and the logical xor.

Algorithm 49: Xor

Requires: X, Y , encryptions of x, y ∈ {0, 1} Outputs: Z, an encryption of x ⊕ y 1 return XY /CSZ(X, Y) 2 ; Algorithm 50: Or

Requires: X, Y , encryptions of x, y ∈ {0, 1} Outputs: Z, an encryption of x ∨ y 1 return XY /CSZ(X, Y);

Since the basic binary boolean operations (i.e. and, xor, or) are associative, it is possible to compute And(X 0 , • • • , X m-1) (resp. Or(X 0 , • • • , X m-1) and Xor(X 0 , • • • , X m-1)) using a logarithmic number of synchronization steps, thanks to a boolean circuit that has a tree structure. See for instance Algorithm 51 for the case of the logical and.

Algorithm 51: And

Requires:

(X 1 , • • • , X N), encryptions of x 1 , • • • , x N ∈ {0, 1} Outputs: Z, an encryption of x 1 ∧ • • • ∧ x N 1 m ←-⌈log N ⌉; 2 for j = 0 to N -1 do X 1,j ←-X j+1 ; 3 for i = 1 to m do 4 for j = 0 to ⌊N/2⌋ -1 (in parallel) do 5 X i+1,j ←-And(X i,2j , X i,2j+1); 6 if N is odd then X i+1,⌊N/2⌋ ←-X i,N -1 ; 7 N ←-⌈N/2⌉; 8 return X m+1,0 ;
Conditional branching. In addition to providing a way to realize the basic boolean operations, the conditionally set to zero functionality can also be used to evaluate a branching condition. In generic MPC, we want to avoid branching as much as possible since we do not want to reveal which branch is being evaluated: this could constitute a side-channel information. Therefore, the main strategy is to evaluate both branches and use a protocol to (obliviously) keep the relevant one. A classical solution is to use the ternary operator If, which takes as input a boolean b, two expressions x and y and returns either x when b = 1 or y when b = 0. This operator can be evaluated with a single call to CSZ; the same goes for the conditional swap. Note that in some cases, such as in Algorithm 51 (line 6), the branching condition depends on a public parameter, so that there is no need to hide which branch is computed.

Note that those operators can be used for many bits in parallel. For instance, assume that

X = X 0 , • • • , X ℓ-1 , that Y = X 0 , • • • , Y ℓ-1
, and that B is an encryption of a bit b ∈ {0, 1}.

Then we can define

If(B, X, Y) as If(B, X 0 , Y 0), • • • , If(B, X ℓ-1 , Y ℓ-1). Similarly, if (X ′ i , Y ′ i) = Swap(B, X i , Y i) for all i, Swap(B, X, Y) can also be defined as (X ′ 0 , • • • , X ′ ℓ-1), (Y ′ 0 , • • • , Y ′ ℓ-1).
Algorithm 52: Swap Requires: B, a cipher of b ∈ {0, 1} X, Y , encryptions of x, y Outputs: Selection of an element in a list. The CSZ protocol can also be used to select an element inside a list. For this purpose, we suppose that [X i] (resp. [X i]) is a list of m ciphertexts (resp. of m lists of ℓ encryptions of bits) and that [B i] is a list of m encryptions of the bits b i , such that one of them is 1 while the others are 0. Then we can recover a reencryption of X i (resp. ℓ reencryptions of X i) where i is the index such that b i = 1. By abuse of notation, we denote this procedure Select in both cases.

X ′ , Y ′ , s.t. X ′ (resp. Y ′) is a reenc. of Y (X) if b = 1, of X (resp. Y) otherwise 1 Z ←-If(B,
Algorithm 54: Select Requires: [(X i,0 , • • • , X i,ℓ-1)], [B i] Outputs: Z, a rencryption of X i s.t. B i is an encryption of 1 1 for all i, j do A i,j ←-CSZ(X i,j , B i); 2 for all j do Z j ←-i A i,j ; 3 return (Z 0 , • • • , Z ℓ-1) Algorithm 55: Select Requires: [X i], [B i] Outputs: Z, a rencryption of X i s.t. B i is an encryption of 1 1 return i CSZ(X i , B i);
Integer shift. Finally, consider an integer x and its binary representation x 0 , • • • , x ℓ-1 , such that x = ℓ-1 i=0 x i 2 i . A common operation is to shift the binary representation: the right shift corresponds to 0, x 0 , • • • , x ℓ-2 and the left shift corresponds to x 1 , • • • , x ℓ-1 , 0. In an MPC setting where x is encrypted bit-by-bit, we can perform the shift operations on the encrypted data for free, by using a trivial encryption E 0 of 0. We denoted the corresponding processes ShiftR and ShiftL. However, it may be useful to perform those operations conditionally to an encrypted boolean b. For this purpose, we can use the If protocol in parallel, which gives the conditional left shift and conditional right shift protocols.

Algorithm 56: CLS

Requires:

(V 0 , • • • , V ℓ-1), ciphertexts B, an encryption of 0 or 1 Outputs: V ′ , a reencrypted left shift of V if b = 1, a reencryption of V otherwise. 1 V ℓ ←-E 0 ; 2 for j = 0 to ℓ -1 (in parallel) do 3 V ′ j ←-If(B, V j+1 , V j); 4 Return V ′ ; Algorithm 57: CRS Requires: (V 0 , • • • , V ℓ-1), ciphertexts B, an encryption of 0 or 1 Outputs: V ′ , a reencrypted right shift of V if b = 1, a reencryption of V otherwise. 1 V -1 ←-E 0 ; 2 for j = 0 to ℓ -1 (in parallel) do 3 V ′ j ←-If(B, V j-1 , V j); 4 Return V ′ ;

Application to elementary arithmetic

With the boolean operations, we can readily use the schoolbook boolean circuits to evaluate the elementary arithmetic operations. We give Algorithm 58, which comes from the schoolbook algorithm for the addition. At line 6, the new value of the carry bit is deduced by polynomial interpolation as a function of the other parameters. In the resulting formula, we recall that 1/2 corresponds to (q +1)/2 modulo q. On this occasion, we remark that there is a possible optimization when one of the two operands is known, which allows to save half of the computations. We explicit the corresponding optimization in Algorithm 59, where E y i denotes a trivial encryption of y i . In addition, note that the Add protocol returns a ℓ-bits results when given two (ℓ -1)-bits inputs. Sometimes, it may be preferable to keep operands of the same size and drop the last carry bit, in which case the operation would be performed modulo 2 ℓ . In this case, we use the notation Add [ℓ] .

Algorithm 58: Add

Requires:

(X 0 , • • • , X ℓ-1), (Y 0 , • • • , Y ℓ-1), bit-wise encryptions of x, y Outputs: (Z 0 , • • • , Z ℓ), bit-wise encryption of x + y 1 R ←-And(X 0 , Y 0) (* carry bit *); 2 Z 0 ←-X 0 Y 0 /R 2 (* x 0 ⊕ y 0 *); 3 for i = 1 to ℓ -1 do 4 A ←-Xor(X i , Y i); 5 Z i ←-Xor(A, R); 6 R ←-(X i Y i R/Z i) 1 2 ; 7 return Z 0 , • • • , Z ℓ-1 , R Algorithm 59: AddKnown Requires: (X 0 , • • • , X ℓ-1), bit-wise encryption of x (y 0 , • • • , y ℓ-1
), the bits of y Outputs:

(Z 0 , • • • , Z ℓ), bit-wise encryption of x + y 1 R ←-X y 0 0 (* carry bit *); 2 Z 0 ←-X 0 E y 0 /R 2 (* x 0 ⊕ y 0 *); 3 for i = 1 to ℓ -1 do 4 A ←-X y i i ; 5 Z i ←-Xor(A, R); 6 R ←-(X i E y i R/Z i) 1 2 ; 7 return Z 0 , • • • , Z ℓ-1 , R
The subtraction is a bit more tricky, as it may result in a negative value. To circumvent this, it is usual to perform all the computations modulo 2 ℓ . This gives Algorithm 60, in which the new value of the borrow bit is deduced by evaluating the boolean formula (y i ∧ r) ∨ [(y i ∨ r) ∧ ¬x i] at line 9.

As we use 2's complement, computing a representation of -x from that of x is not as simple as flipping a single bit sign. For this reason, we give Algorithm 62 which is another adaptation from the schoolbook.

Comparisons and tie breaking

Apart from the additions and the subtractions, the most common operations in electronic voting are the equality tests and the comparisons. For the latter, we remark that we can already derive a comparison test from the subtraction algorithm. Indeed, x < y if and only if x -y < 0 so that we can use Algorithm 60 and return the last bit. We denote this protocol Lt. In Section 5.2.4, we will propose another protocol that offers another communication/computation trade-off. For the equality test, one strategy is to first compute the bitwise XOR of x and y and to check that the resulting bits are all 0. For this purpose, one can use Algorithm 51.

Since the Eq and Lt protocols shares some CSZ in common, it is possible to same some additional computations if we need to evaluate the result of both operations. We denote the Algorithm 60: Sub Requires:

(X 0 , • • • , X ℓ-1), (Y 0 , • • • , Y ℓ-1
), bit-wise encryptions of x, y Outputs: (Z 0 , • • • , Z ℓ-1), bit-wise enc. of x -y modulo 2 ℓ R, an enc. of the bit sign (1 if the result is negative) A ←-And(X 0 , Y 0) (* carry bit *);

Z 0 ←-X 0 Y 0 /A 2 (* x 0 ⊕ y 0 *); R ←-Y 0 /A (* y 0 ∧ ¬x 0 *); for i = 1 to ℓ -1 do A ←-And(Y i , R); B ←-Y i R/A 2 (* y i ⊕ r *); C ←-And(X i , B); Z i ←-X i B/C 2 (* x i ⊕ y i ⊕ r *); R ←-Y i R/(AC) ; 10 return (Z 0 , • • • , Z ℓ-1), R Algorithm 61: SubKnown Requires: (X 0 , • • • , X ℓ-1), bit-wise encryption of x (y 0 , • • • , y ℓ-1
), the bits of y Outputs: (Z 0 , • • • , Z ℓ-1), bit-wise enc. of x -y modulo 2 ℓ R, an enc. of the bit sign (1 if the result is negative)

1 A ←-X y 0 0 (* carry bit *); 2 Z 0 ←-X 0 E y 0 /A 2 (* x 0 ⊕ y 0 *); 3 R ←-E y 0 /A (* y 0 ∧ ¬x 0 *); 4 for i = 1 to ℓ -1 do 5 A ←-R y i ; 6 B ←-E y i R/A 2 (* y i ⊕ r *); 7 C ←-And(X i , B); 8 Z i ←-X i B/C 2 (* x i ⊕ y i ⊕ r *); 9 R ←-E y i R/(AC) ; 10 return (Z 0 , • • • , Z ℓ-1), R Algorithm 62: Neg Requires: (X 0 , • • • , X ℓ-1), a bit-wise encryption of x modulo 2 ℓ Outputs: (Z 0 , • • • , Z ℓ-1), a bit-wise encryption of -x modulo 2 ℓ Z 0 ←-X 0 ; R 0 ←-Not(X 0); for i = 1 to ℓ -1 do R i ←-And(Not(X i), R i-1); Z i ←-Not(X i)R i-1 /R 2 i ; return Z 0 , • • • , Z ℓ-1 ; Algorithm 63: Eq Requires: (X 0 , • • • , X ℓ-1), (Y 0 , • • • , Y ℓ-1),
bit-wise encryptions of x, y Outputs: Z, an encryption of 1 if x = y, of 0 otherwise for i = 0 to ℓ -1 (in parallel) do

A i ←-Not(And(X i , Y i)); return And(A 0 , • • • , A ℓ-1); Algorithm 64: EqKnown Requires: (X 0 , • • • , X ℓ-1), bit-wise encryption of x (y 0 , • • • , y ℓ-1
), the bits of y Outputs: Z, an encryption of 1 if x = y, of 0 otherwise

1 for i = 0 to ℓ -1 (in parallel) do 2 A i ←-Not(X y i i); 3 return And(A 0 , • • • , A ℓ-1);
resulting protocols LtEq and LtEqKnown.

Tie breaking. In the context of electronic voting, the integers x 1 , • • • , x k that we are going to compare would typically represent the "score" of a candidate at a specific moment in the tally process. Now, suppose that we want to apply a specific rule for tie-breaking (e.g., the oldest candidate wins in case of a tie). Enforcing this using Lt, Eq and If is definitely possible, but may result into unnecessary redundant operations. Instead, we propose to directly "encode" this rule into the least significant bits of x 1 , • • • , x k . More precisely, suppose that we have the candidates C 1 , • • • , C k , for which a public rule for tie-breaking has been decided. Without a loss of generality, we represent this rule as a permutation σ of [1, k] such that C i wins over C j (in case of an equality) if σ i > σ j . Then assume that we obtained the bitwise encryptions X 1 , • • • , X k of the scores of the candidates. Then, by adding a bit-wise encryption of σ 1 , • • • , σ k in the least significant bits, we end up with pair-wise distinct scores that are compliant with both the tie-break rule and the initial scores (i.e. this does not change the result, except if a tie occurs). More precisely, if σ i = log k j=0 s i,j 2 j for all j, then we use

E s i,0 || • • • ||E s i,log k ||X i instead of X i .
Since the Lt protocol requires 2CSZ per bit, this only costs 2 log k additional CSZ per comparison.

Interestingly, the same strategy could be applied if we want the tie break rule to be random and secret: indeed, the prefixes can be shuffled using a reencryption mixnet.

Advanced algorithms

Although the most common operations in voting are the additions and the comparisons, it is possible that evaluating a counting function requires more complex operations. For this reason, we give more advanced algorithms, which include a way to obtain the encrypted data from the encrypted ballots.

Multiplication and division

Basic arithmetic operations include multiplication and division. For the multiplication, we give Algorithm 65 which is adapted from the schoolbook binary algorithm, also known as "peasant multiplication". This shows that multiplying two encrypted integers is expensive in the ElGamal setting, as it requires a quadratic number of conditional gates.

Algorithm 65: Mult

Requires:

(X 0 , • • • , X ℓx-1), (Y 0 , • • • , Y ℓy-1
), bitwise encryptions of x and y Outputs:

Z 0 , • • • , Z ℓx+ℓy-1 , bitwise encryption of xy 1 for i ∈ [0, ℓ x -1] (in parallel) do A i,0 , • • • , A i,ℓy-1 ←-CSZ(Y , X i); 2 Z 0 ←-A 0,0 ; 3 (T 0 , • • • , T ℓy-1) ←-(A 0,1 , • • • , A 0,ℓy-1 , E 0); 4 for i = 1 to ℓ x -1 do 5 (T 0 , • • • , T ℓy) ←-Add((T 0 , • • • , T ℓy-1), (A i,0 , • • • , A i,ℓy-1)); 6 Z i ←-T 0 ; 7 for j = 0 to ℓ y -1 do T j ←-T j+1 ; 8 for i = ℓ x to ℓ x + ℓ y -1 do Z i ←-T i-ℓx ; 9 return Z 0 , • • • , Z ℓx+ℓy-1 ;
For the division, we choose to represent fractions with a fixed number of binary places so that a fraction is encoded and encrypted as an integer (instead of, for instance, a couple of integers). This allows to re-use most of the primitives from this section, while providing a certain degree of precision and generality. From the schoolbook division algorithm, we derive Algorithm 66, which takes as inputs bit-wise encryptions of x and y with y > x and return the r first binary places of x/y. In other words, if we interpret the output z of the division as an integer, we have

| x y -z 2 r | < 2 -r
. This algorithm could be generalized for any pair (x, y) (i.e. the condition y > x is not necessary), but the restriction is useful in the special case of STV, and gives a simpler description. Note that in Algorithm 66, we choose to stick to the convention where the least significant bit is given first, which means that the output binary places are output in "reverse" order compared to the usual. This way, it is possible to add two fractions together without having to reverse their binary representation.

Algorithm 66: Div Requires:

(X 0 , • • • , X ℓ-1), (Y 0 , • • • , Y ℓ-1
), bit-wise encryptions of 0 ≤ x < y, r, the number of bits of precision Outputs: Z 0 , • • • , Z r-1 , encryptions of the first r binary places of x/y (z 0 is the least significant bit)

1 A ←-E 0 ||X (* 2x *); 2 Y ←-Y ||E 0 (* y, padded to have the same size *); 3 for i = 0 to r -1 do 4 B, R i = Sub(A, Y); 5 A ←-ShiftR(If(R i , A, B
)) (* this right shift is non-standard: we use a representation with the LSB first; it corresponds to a multiplication by 2 *);

6 Z r-1-i ←-Not(R i) 7 return Z 0 , • • • , Z r-1

Solving ordering related problems

Voting consists of finding the "most preferred" option. Consequently, it is common to encounter an algorithmic problem related to ordering. Maximum and minimum. The most obvious problem is to find the largest or the smallest element of a list. A natural solution would be to linearly scan the list, using a comparison algorithm. However, the min and max operators are associative and as such, allow tree-based parallelization as we did in Algorithm 51. This gives Algorithm 67, which finds the maximum, the minimum and their respective position, using a logarithmic number of rounds of communications. In this algorithm, we denote j bits the trivial bitwise encryption of the integer j, with a fixed number of bits. We denote Min (resp. Max) the protocol that only returns a bitwise encryption of the minimum (resp. the maximum) as well as its position in the list.

Finding the s largest elements. A related problem is to find the s largest values of a list. For this purpose, we propose two different approaches: the selection approach and the insertion approach, base on insertion sort and selection sort. The insertion approach consists of first sorting the s first elements of the list so that we have the list of the s largest elements of the s first elements of the list. Then, we iteratively update this small list by inserting the remaining elements of the large list, so that at the kth iteration, the small list consists of the s largest elements of the s + k first elements of the list. This approach imitates what the selection Algorithm 67: MinMax Requires:

(X 1 , • • • , X N) bitwise encryptions of x 1 , • • • , x N ℓ
, the common bitsize of the x i 's Outputs: Z, a bitwise encryption of min N i=1 (x i) I, a bitwise encryption of its index in the input list T , a bitwise encryption of max N i=1 (x i) J , a bitwise encryption of its index in the input list

1 m ←-⌈log N ⌉; 2 for j = 0 to N -1 do 3 Z 1,j ←-X j+1 ; 4 I 1,j ←-j + 1 bits ; 5 T 1,j ←-X j+1 ; 6 J 1,j ←-j + 1 bits ; 7 for i = 1 to m do 8 for j = 0 to ⌊N/2⌋ -1 (in parallel) do 9
(* The two following operations can be done in parallel *)

B Z ←-Lt(Z i,2j , Z i,2j+1); B T ←-Lt(T i,2j , T i,2j+1);
(* The four following operations can be done in parallel *)

Z i+1,j ←-If(B Z , Z i,2j , Z i,2j+1); I i+1,j ←-If(B Z , I i,2j , I i,2j+1); T i+1,j ←-If(B T , T i,2j+1 , Z i,2j); J i+1,j ←-If(B T , J i,2j+1 , J i,2j); if N is odd then Z i+1,⌊N/2⌋ ←-Z i,N -1 ; I i+1,⌊N/2⌋ ←-I i,N -1 ; T i+1,⌊N/2⌋ ←-T i,N -1 ; J i+1,⌊N/2⌋ ←-J i,N -1 ; N ←-⌈N/2⌉; return Z m+1,0 , I m+1,0 , T m+1,0 , J m+1,0 ; Algorithm 68: sInsert Requires: X 0 , • • • , X N -1 , bitwise encryptions of x 0 , • • • , x N -1 s, a positive integer Outputs: Z 1 , • • • , Z s , bitwise enc. of the s largest values I 1 , • • • , I s , bitwise encryptions of their indexes 1 for i = 1 to s do 2 Z i ←-X i-1 ; 3 I i ←-i -1 bits ; 4 for j = i -1 down to 1 do 5 B ←-Lt(Z j , Z j+1); 6 Z j , Z j+1 ←- Swap(B, Z j , Z j+1); 7 I j , I j+1 ←-Swap(B, I j , I j+1); 8 for i = s + 1 to N do 9 B ←-Lt(Z s , X i-1); 10 Z s ←-If(B, X i-1 , Z s); 11 I s ←-If(B, i -1 bits , I s); 12 for j = s -1 down to 1 do 13 B ←-Lt(Z j , Z j+1); 14 Z j , Z j+1 ←- Swap(B, Z j , Z j+1); 15 I j , I j+1 ←-Swap(B, I j , I j+1); 16 return (Z 1 , • • • , Z s), (I 1 , • • • , I s); Algorithm 69: sSelect Requires: X 0 , • • • , X N -1 , bitwise encryptions of x 0 , • • • , x N -1 s, a positive integer Outputs: Z 1 , • • • , Z s , bitwise enc. of the s largest values I 1 , • • • , I s , bitwise encryptions of their indexes 1 for i = 1 to s do 2 Z i , I i ←-Max(X 0 , • • • , X N -1); 3 for j = 0 to N -1 (in parallel) do 4
Writes j in base 2:

5 j = ℓ k=0 m k 2 k ; 6 for k = 0 to ℓ do 7 J k ←-E 1-m k I 2m k -1 i,k ; 8 (* Eq(I i,k , m k) *) 9 B ←-And(J 0 , • • • , J ℓ); 10 X j ←-CSZ(X j , B); 11 return (Z 1 , • • • , Z s), (I 1 , • • • , I s);
sort would do, but avoids the quadratic cost by maintaining a small list of size s. However, the drawback is that it is expensive communication-wise, since the process is mostly iterative. For this reason, we propose another approach, based on selection sort. It consists of using the Max protocol to get the maximum value in a logarithmic number of rounds, as well as its respective index in the list. Then, using the index, the equality test and the CSZ protocol, we can "remove" this maximum from the list (actually, we replace it by a 0 value) without leaking its position. This way, we can iteratively get the s largest elements, using only s iterations.

Sorting. Finally, another recurrent problem is to sort a list. Using Lt and Swap, it is possible to sort encrypted data without revealing any side information. For this purpose, we need a data-oblivious sorting algorithm, that is an algorithm whose control flow does not depend on the result of the comparisons. The popular fast sorting algorithms, such as Quicksort, Mergesort or Heapsort, do not verify this property. Consequently, we use the OddEvenMerge-Sort by Batcher [START_REF] Batcher | Sorting Networks and Their Applications[END_REF], which has a quasi-linear complexity and is used in practice for sorting networks in GPU. This gives Algorithm 70, adapted from [Knu73, Section 5.2.2, Algorithm M]). This sorting algorithm requires approximately 1 4 N log(N) 2 comparisons and conditional swaps, in approximately 1 2 log(N) 2 rounds of communications, where N is the number of elements to be sorted. Remark that in Algorithm 70, we consider that we want to sort some values (for instance, the index of the candidate) with respect to a corresponding key. It is possible to adapt this algorithm for a setting where we just want to sort bitwise encrypted integers, which are not linked to a specific value, or to have the values be bitwise encrypted.

Another usual solution for sorting in an MPC setting is to first shuffle the data, then use a more efficient algorithm such as Mergesort, but which requires to leak the result of all the comparisons. This usually leads to a better computational efficiency, but a far worse communication efficiency (typically, Mergesort would require a linear number of synchronization steps compared to the number of elements to sort). In addition, the security of the resulting protocol would not be guaranteed by the SUC framework since there is currently no known SUC-secure reencryption mixnet.

Algorithm 70: OddEvenMergeSort Requires:

(V i , K i) N -1
i=0 , where, for all i, V i is a ciphertext and K i is a bitwise encryption of an integer k i Outputs:

(V ′ i , K ′ i) N -1 i=0 , reencryptions of the same values, but sorted with increasing k i 1 t ←-⌈log N ⌉; p ←-2 t-1 2 while p > 0 do 3 q ←-2 t-1 ; r ←-0; d ←-p 4 while d > 0 do 5 for i = 0 to n -d -1 (in parallel) do 6 if BitwiseAnd(i, p) = r then 7 B ←-Lt(K i+d , K i) 8 V i , V i+d ←-Swap(B, V i , V i+d) 9 K i , K i+d ←-Swap(B, K i , K i+d) 10 d ←-q -p; q ←-⌊q/2⌋; r ←-p 11 p ←-⌊p/2⌋ 12 return (V i , K i) n-1 i=0

Aggregation of several encrypted binary values

In electronic voting, it is usual that the voter encrypts their ballots using encryptions of 0 or 1, as this is the case in Helios. Afterwards, we need to aggregate those encrypted bits into bitwise encrypted integers, so that we can use the various protocols of this toolbox. Since the addition is associative, we use again a tree-based strategy that allows to compute several additions in parallel. By adding together integers of (almost) the same size and by performing as many additions in parallel as possible, we gain in efficiency both communication-wise and computation-wise. The algorithm is similar to the previous tree-based protocols, but we have to take care of the size of the operands. For this reason, we introduce the notation Add x,y which denotes a protocol, derived from Add, which is able to add two operands of different (known) sizes s x = ⌊log x⌋ + 1 and s y = ⌊log y⌋ + 1. The size of the output is ⌊log(x + y)⌋ + 1, the number of communication rounds is max(s x , s y) and the number of CSZ is s x + s y -1. This gives Algorithm 71 where, at the ith iteration, we add integers of size at most i, which costs at most 2iCSZ communicationwise, and up to 2iN/2 i CSZ computation-wise. Hence, the number of rounds of communication is about 1 2 log(N) 2 while the computational cost is at most

m i=1 2i -1 2 i N CSZ ≤ ∞ i=1 2i -1 2 i N CSZ ≤ 3N CSZ.
In some cases, the quadratic number of synchronization steps may be a problem. For this reason, we can use the UFCAdd (introduced in Section 5.2.4) instead of the regular addition. This leads to a number of rounds of communication of at most 2 log N log log N , and a computational cost of at most

m i=1 3i log(i + 1) 2 i+1 N CSZ ≤ ∞ i=1 3i log(i + 1) 2 i+1 N CSZ ≤ 5.54N CSZ.
Algorithm 71: Aggreg

Requires: B 1 , • • • , B N , encryptions of b 1 , • • • , b N ∈ {0, 1} Outputs: S 0 , • • • , S m-1 , a bitwise encryption of s = N i=1 b i 1 m ←-⌈log N ⌉; 2 for j = 0 to N -1 do 3 B 1,j ←-B j+1 ; 4 c 1,j ←-1; 5 for i = 1 to m do 6 for j = 0 to ⌊N/2⌋ -1 (in parallel) do 7 B i+1,j ←-Add c i,2j ,c i,2j+1 (B i,2j , B i,2j+1); 8 c i+1,j ←-c i,2j + c i,2j+1 ; 9 if N is odd then 10 for j = ⌊N/2⌋ down to 1 do 11 B i+1,j ←-B i+1,j-1 ; 12 c i+1,j ←-c i+1,j-1 ; 13 B i+1,0 ←-B i,N -1 ; 14 c i+1,0 ←-c i,N -1 ; 15 N ←-⌈N/2⌉; 16 return B m+1,0 ;

Different communication/computation trade-offs

Compared to the existing MPC toolbox that use the Paillier encryption scheme, our toolbox proposes several protocols which require n T synchronization steps (i.e. a round of communication) per encrypted bit. Yet, it is important to keep the number of synchronization steps down. For this reason, we propose to use more sophisticated boolean circuits, following the (now classical) approach of Brent and Kung [START_REF] Brent | A Regular Layout for Parallel Adders[END_REF]. We do not reproduce their full algorithm here but we sketch the key idea and give the resulting algorithms and their complexity.

First, recall that the ith bit of x + y is z i = x i ⊕ y i ⊕ r i , where r i is the ith carry bit. The idea is to first compute all the x i ⊕ y i in parallel, then to compute all the r i in parallel, so as to deduce the result. To perform the second step efficiently, Brent and Kung's approach consists of computing the variables (p i , g i) where p i = x i ∨ y i and g i = x i ∧ y i . Those variables are used to encode elements of a set Σ = {P, G, K}, where P is encoded by (1, 0), K by (0, 0) and G by (0, 1) and (1, 1). They represent the fact that the carry bit will be propagated, generated of killed in the ith position. They define an operation • as follows (which we slightly modify into an equivalent operation for the sake of presentation).

P • P = P G • P = G K • P = K x • G = G x • K = K.
In the boolean representation, the • law can be computed with the following formula.

(p, g) • (p ′ , g ′) = (p ∧ p ′ , g ′ ∨ (p ′ ∧ g)).
It is possible to show that • is associative [START_REF] Brent | A Regular Layout for Parallel Adders[END_REF]; this enables tree-based parallelization for computing all the prefixes of (p 0 , g 0)

• • • • • (p m-1 , g m-1
), which gives essentially the ith carry bit for all i. From here onward, we diverge from [START_REF] Brent | A Regular Layout for Parallel Adders[END_REF]'s work since we are not interested in designing hardware, so that the unbounded fan-in is not an issue. From Brent and Kunt's circuit design, that we reproduce in Fig. 13, we deduce the UFC algorithm (see Algorithm 72), which stands for unbounded fan-in composition. It allows to compute all the prefixes of a sequence, when composed with an associative composition law. Then, we derive another protocol for the addition, given in Algorithm 73. The resulting protocol is more efficient in term of communications than the Add protocol: it only requires about log(m) times more synchronization steps than what is required for •. However, this comes with an increase in term of computations as the number of calls to • is about 1 2 ℓ log(ℓ). Therefore, the linear approach could be preferable in some cases.

Algorithm 72: UFC Requires: •, an associative composition law a 0 , • • • , a N , some elements compatible with this law Outputs: z 0 , • • • , z N , where z i = • i j=0 a j for all i

1 for i = 0 to N -1 do z i ←-a i m ←-⌈log N ⌉; 2 for i = 1 to m do 3 for j = 0 to ((N -1)/2 i-1 -1)/2 (in parallel) do 4 idx ←-(2j + 1)2 i-1 -1; 5 stop ←-min(2 i-1 , N -(2j + 1)2 i-1); 6 for k = 1 to stop (in parallel) do 7 idy ←-idx + k; 8 z idy ←-•(a idx , a idy); 9 return z 0 , • • • , z N -1 ;
The same idea can be used for computing a subtraction: we only need to change the initialization of the p i 's and g i 's. For the subtraction, we have initially p i = x i ⊕ y i and g i = y i ∧ ¬x i . Hence, to obtain UFCSub, one can replace line 4 by P i ←-B i and line 5 by

G i ←-Y i /A i in Algorithm 73. Algorithm 73: UFCAdd Requires: (X 0 , • • • , X ℓ-1), (Y 0 , • • • , Y ℓ-1
), bit-wise encryptions of x and y.

Outputs:

(Z 0 , • • • , Z ℓ-1), bit-wise encryption of x + y mod 2 ℓ 1 for i = 0 to ℓ -1 (* in parallel *) do 2 A i ←-And(X i , Y i); 3 B i ←-X i Y i /A 2 i (* x i ⊕ y i *); 4 P i ←-X i Y i /A i (* x i ∨ y i *); 5 G i ←-A i (* x i ∧ y i *); 6 m ←-⌈log ℓ⌉; 7 for i = 1 to m do 8 for j = 0 to ((ℓ -1)/2 i-1 -1)/2 (in parallel) do 9 idx ←-(2j + 1)2 i-1 -1; stop ←-min(2 i-1 , ℓ -(2j + 1)2 i-1); for k = 1 to stop (in parallel) do idy ←-idx + k;
T ←-And(P idy , G idx);

P idy ←-And(P idx , P idy);

G idy ←-Or(T, G idy)); Z 0 ←-B 0 ; for i = 1 to ℓ -1 (in parallel) do Z i ←-Xor(B i , G i-1); return Z 0 , • • • , Z m-1
x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 x 16 x 17 x 18 x 19 x 20 x 21 x 22 When it comes to comparing two integers, only the last carry bit is of interest so we do not need to compute all the prefixes. In this case, a simpler algorithm exists and allows to compute the comparison with ℓ -1 calls to • but a communication cost which remains of the order of log(ℓ). We call this algorithm CLt, which stands for chained lesser than (see Algorithm 74). Note that this algorithm returns an additional bit R which tells whether the two inputs are equal. If this bit is not needed, some computations can be saved (remove line 10).

• •

Algorithm 74: CLt

Requires:

(X 0 , • • • , X ℓ-1), (Y 0 , • • • , Y ℓ-1
) bit-wise encryption of x and y.

Outputs: Z, s.t. Z is an encryption of 1 if x < y, 0 otherwise R, s.t. R is an encryption of 1 of x = y, 0 otherwise 1 m ←-⌈log ℓ⌉; 2 for i = 0 to ℓ -1 (in parallel) do 3 A i ←-And(X i , Y i); 4 P 0,i ←-X i Y i /A 2 i ; 5 G 0,i ←-Y i /A i ; 6 B 0,i ←-Not(P i); 7 m ←-⌈log ℓ⌉; 8 for i = 1 to m do 9 for j = 0 to ⌊ℓ/2⌋ -1 (in parallel) do 10 B i,j ←-And(B i-1,2j , B i-1,2j+1) ; 11 T ←-And(P i-1,2j+1 , G i-1,2j); 12 P i,j ←-And(P i-1,2j , P i-1,2j+1); 13 G i,j ←-Or(G i-1,2j+1 , T); 14 if ℓ is odd then 15 B i,⌊ℓ/2⌋ ←-B i-1,ℓ-1 ; 16 P i,⌊ℓ/2⌋ ←-P i-1,ℓ-1 ; 17 G i,⌊ℓ/2⌋ ←-G i-1,ℓ-1 ; 18 ℓ ←-⌈ℓ/2⌉;
19 return G m,0 , B m,0 ;

Comparison with other approaches

Now that we have presented our toolbox, we propose to compare it to the existing MPC protocols, especially those who are available in the ABB framework, and rely on the Paillier setting. For this purpose, we first give the complexities of our different protocols in Table 8. As explained in Section 4.3.3, the main metrics that we consider are the number of exponentiations, the number of synchronization steps and the size of the transcript. In the ElGamal setting, the exponentiations are cheaper and the key size is smaller, which impacts the size of the transcript. However, we usually require a larger number of synchronization steps, which could be a problem. For this reason, we propose various communication/computation trade-offs, based on careful parallelization.

Comparison with Ordinos

Our first element of comparison is the concurrent contribution of Ordinos, which also proposes to use MPC protocols to achieve tally-hiding, using the ABB framework based in the Paillier encryption scheme that we introduced in Section 4.2. The main protocols used in Ordinos are the multiplication, the equality test and the comparison. Due to the number of different subprotocols that they use, it is difficult to come up with a meaningful formula to express their complexity: in particular, there are many exponentiations which have a different nature, with modulus and exponents of various sizes. In Table 7, we give some undervalued approximates for the various primitives or Ordinos, which will be our first element of comparison. Since the exponentiations are more expensive in the Paillier setting, this reveals that the computational costs and the transcript sizes for the comparison and the equality test are by one order of magnitude cheaper in our ElGamal toolbox compared to the existing MPC protocols based on the Paillier encryption.

In addition to allowing a more efficient tally, the ElGamal setting is also beneficial on the voterside. Indeed, using our toolbox or not is essentially transparent for the voter: recall that it is usual that they have to send several ElGamal encryptions of bits anyway, as this is the case in Helios. On the other hand, switching to the Paillier setting may be up to a thousand times more expensive for the voter, which is definitely an issue, if not prohibitive.

However, the multiplication will typically be cheaper in the Paillier setting, and the addition is free. In addition, the protocols in the Paillier setting usually require less synchronization steps than our protocols. Finally, most of the computations can be precomputed. For all these reasons, depending on which operation is the most used, the Paillier setting may still be preferable, especially when the number of voters is large since the aggregation is free in the Paillier setting.

Public tally hiding

Another approach to achieve tally-hiding was proposed in Kryvos [HKK + 22]. By contrast with our approach and Ordinos's approach, they do not rely on MPC protocols. Instead, they allow the talliers to learn the "full" result of the election (i.e. what would be typically output by a traditional tally that relies on homomorphic tally or mixnet). From this, they locally compute the result r of the counting function, but only publish r as well as a ZKP of correctness. This gives the notion of publicly tally-hiding, where the talliers learn more information than the public. For the ZKP, Kryvos proposes to use Groth's SNARK (see Section 2.3.5) which, according to their benchmark, allows a more efficient tally than traditional MPC. In addition, the verification by the external auditor is way faster.

There are four major drawbacks with the approach of Kryvos. First, publicly tally hiding is not the same as fully tally hiding. In general, tally hiding is a counter-measure against Italian attacks, which are a mean for coercing voters into choosing a specific voting option. Yet, although a publicly tally hiding protocol would offer some protection against the coercer, all of it is lost when the coercer is a tallier.

A second remark concerns the technical solution proposed by Kryvos: to allow for efficient SNARK of correct tally, they need the ballots to have the form of a homomorphic commitment. This means that whenever Kryvos's solution can be used, it is also possible to use a homomorphic tally, for which there are arguably fewer risks of an Italian attack. For a counting function such as STV where tally hiding is needed the most, there is no smart way to encode a voting option into n choices bits, in such a way that two encodings can be meaningfully added together. The only obvious solution would be to let n choices be the total number of possible choices, as discussed in [HKK + 22, Section 4.3] when they propose their solution for instant runoff voting (IRV), which is a (simple) specific case of STV. In the example of IRV, using their proposed solution would lead to n choices = n C i=0 n C i i!, where n C is the number of candidates. This is impractical as soon as n C ≥ 6. More generally, there is a "real" risk for an Italian attack when n choices is larger than the number of voters. Since Kryvos requires the voters to compute n T n choices encryptions, it means that Kryvos is either impractical on the voter side, or not-quite-so necessary as it could be replaced by a classical homomorphic tally.

A third drawback is that Kryvos imposes a lot of computation stress on the voter side. Compared to Helios, the voters must typically compute n T times more encryptions, and the corresponding ZKP is much more expensive: according to the provided benchmark, the time required for the voter to prove the validity of their ballot can be similar to that required for the talliers to compute the tally and prove its validity.

Finally, a fourth drawback is that Kryvos requires a honestly generated common reference string, as discussed in Section 2.3.5. In practice, the common reference string is obtained with an MPC protocol, which may be expensive given the number of scalars and group elements to generate. Although this generation can be done in advance, it is not clear how its cost compares to that of the tally itself, so that its computational complexity should be taken into account. In addition, the use of the SNARK imposes a not usual trust assumption on the participants of this MPC protocol: if the SNARK is not honestly generated, then verifiability is lost.

Table 8: Leading terms of the costs of the MPC primitives; n T is the number of participants, N is the number of operands, ℓ is the bitlength of the operands, r is the precision in the division. All logarithms are in base 2. For the CSZ protocol, we express the computation cost as the number of exponentiations per participants, and the unit of the transcript size is the key size (typically 256 bits). For the other protocols, we express their cost as the number of CSZ required.

Functionality

Application of the toolbox to electronic voting

The toolbox that we provide in Chapter 5 allows several talliers, that each have a secret share of an ElGamal public key, to securely evaluate any function from the encrypted inputs. However, if one wants to evaluate some specific function, one needs to design a specific boolean circuit that corresponds to this function, and it is not clear whether this would lead to an efficient and practical MPC protocol. For this reason, we studied a large variety of popular counting functions and designed an MPC protocol for some of them, including Condorcet-Schulze, STV, Majority Judgment and the D'Hondt method. For each of these counting functions, we explain how the MPC protocol was designed and we give estimates for the resulting complexities; in addition, we provide an implementation in the case of the Condorcet-Schulze [sou22] method.

Homomorphic tally for the Condorcet methods

The Condorcet method was proposed to determine the most rightful candidate [START_REF] De | Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix[END_REF]. For this purpose, every voter must rank the candidates by order of preference, possibly with equalities. Then a Condorcet winner is a candidate that is preferred to every other candidate by a majority of voters. More formally, for all pair (i, j) of candidates, we denote d i,j the number of voters who (strictly) prefer candidate i over j. Then a Condorcet winner is a candidate i such that d i,j > d j,i for all j ̸ = i. There can be at most one such winner. Such a Condorcet winner may not exist, this is the Condorcet paradox. For example, consider Fig. 14, in which the ape is preferred from the beaver by a majority, the beaver is preferred from the capybara and the capybara is preferred ape by a majority. This shows that the relation "is preferred by a majority" is not transitive. It is commonly accepted that the Condorcet paradox occurs quite often, even if there is a large number of voters. For instance, if we suppose that all the preferences are equiprobable, the probability that the there is no Condorcet winner decreases towards 15 16 when the number of voters increases [START_REF] William | The expected probability of condorcet's paradox[END_REF].

Alice To circumvent the Condorcet paradox, several methods exist. Those variants would pick the Condorcet winner as the winner whenever there is a Condorcet winner, but provide a way to determine a single winner otherwise (except with a small probability). Hence, they are Condorcetcompliant and we consider them as a Condorcet methods. The most popular ones are the Schulze method and ranked pairs; the Schulze method is notably used for Ubuntu elections [Ubu12].

Existing approaches for Condorcet methods

For most of the Condorcet methods, the result of the counting function can be deduced from the preference matrix m, whose coefficient m i,j is defined by m i,j = d i,j -d j,i , where d i,j is the number of candidates that (strictly) prefer i over j. We use this matrix rather than d for a technical reason only: for instance, it is antisymmetric. However, some authors may prefer to use d directly. Interestingly, this global preference matrix can be deduced as the sum of the individual preference matrix of the voters. Therefore, apart from using a decryption mixnet, there is a second natural strategy which consists of having the voter encode their choice (i.e. a permutation c 1 , • • • , c n C of the candidates, but possibly with equalities) as a preference matrix m, where c i is the rank of candidate i and

m i,j =    1 if c i < c j 0 if c i = c j -1 otherwise.
The voters then encrypt each element of this matrix independently, which gives an encrypted matrix M . Then the matrix given by every voter can by homomorphically added together, so that decrypting the resulting product would only reveal the global preference matrix and not the individual preferences of any voter. However, to turn this idea into an actual voting system, we also need to explain how a voter can prove that the ballot is well-formed, that is, corresponds to the matrix of a total order (with equalities). This requires in particular to prove that if the voter prefers i over j and j over k then i is also preferred over k:

(m i,j = 1) ∧ (m j,k = 1) ⇒ (m i,k = 1);
and similar relations when m i,j and m j,k are equal to 0 or -1, yielding O(n C

3) statements, where n C is the number of candidates. This is roughly how the voters produce their ballot in [HHK + 21], where it is also assumed that voters cannot give the same rank to two candidates (i.e. the case c i = c j is forbidden). To discharge the voter from such a proof effort, it is proposed in [START_REF] Haines | Verifiable Homomorphic Tallying for the Schulze Vote Counting Scheme[END_REF] that the authorities shuffle each preference matrix in blocks and then decrypt it to check whether the ballot is well formed. However, this yields a privacy breach, unnoticed by the authors: for each voter, everyone learns the number of candidates placed at equality. Indeed, even though the matrix is shuffled before being decrypted, it is still possible to count the number of 0 which is encrypted in the matrix. In particular, everyone learns who votes blank.

A new proof of well-formedness for homomorphic ranked voting

In this thesis, we propose an alternative approach which allows the voters to prove the wellformedness of their matrix in O(n C

2) exponentiations, while still allowing the voter to give the same rank to several candidates. This is of great interest if one is ready to leak the preference matrix, as the tally can be computed without any MPC protocol apart from the threshold decryption. We first present our proof strategy on the cleartexts, and then instantiate it on the ciphertexts using standard ZKP.

Proof strategy on the cleartexts. Suppose that Alice wants to vote the ordering (1, • • • , k) (i.e. the candidate number i is ranked i th). Then her preference matrix would be as follows:

m init [i, j] =    0 if i = j 1 if i < j -1 otherwise.
Now, assume that Alice wants to rank σ(i) th the candidate number i, for some permutation σ. If the candidate number i were numbered σ(i) instead, Alice could have voted using m init as above. This means that the preference matrix of Alice m a is such that m a [σ -1 (i), σ -1 (j)] = m init [i, j] for all (i, j). Therefore m a can be obtained by using the permutation σ to shuffle m init (using the permutation on the rows, then on the columns).

Finally, assume that Alice wants to give the same rank to several candidates and let r i be the rank of candidate i according to her personal preferences. Alice first sorts the candidates according to their rank, in increasing order. For this purpose, she uses a permutation σ such that σ(i) < σ(j) =⇒ r i ≤ r j . To obtain her preference matrix m a from m init , Alice first transforms m init into m σ , such that m σ [i, j] = m a [σ -1 (i), σ -1 (j)]. For this purpose, she computes a vector b of size k -1 such that for all i, b i = 1 if r σ -1 (i) = r σ -1 (i+1) , and 0 otherwise. Afterwards, Alice modifies m init diagonal by diagonal, so as to indicate that some candidates are ranked equal. (Since the preference matrix is antisymmetric, Alice only needs to compute the upper half, from which she deduces the lower half.) For the first diagonal, we have

m σ [i, i + 1] = 1 -b i .
For the (j +1) th diagonal (i, i+j +1) i , assume that the previous diagonal has been computed. Then, as the candidates are sorted in order of preference, we have

m σ [i, i + j + 1] = 0 if (m σ [i, i + j] = 0) ∧ (m σ [i + 1, i + j + 1] = 0), 1 otherwise.
Therefore, Alice can apply an iterative algorithm, using the following formula:

m σ [i, i + j + 1] = 1 -(1 -m σ [i, i + j])(1 -m σ [i + 1, i + j + 1]) = m σ [i, i + j] + m σ [i + 1, i + j + 1] -m σ [i, i + j]m σ [i + 1, i + j + 1]. (2)
Once m σ is obtained, Alice can finally derive m a by shuffling the rows and the columns, using the permutation σ.

An illustrative example with five candidates. Suppose, for instance, that there are five candidates, say, the Ape, the Beaver, the Capybara, the Dolphin and the Elephant, that are numbered from 1 to 5. Suppose that Alice wants to give them the ranks r 1 = 3, r 2 = 3, r 3 = 1, r 4 = 3 and r 5 = 2, as depicted in Table 9. In other words, Alice's preferred candidate is the Capybara, then Alice prefers the Elephant, and then Alice likes the Beaver just as much as the Dolphin and the Ape. To sort them, Alice can use the permutations σ, as depicted in Fig. 9. There may be several permutations that are consistent with the ranking, and Alice may also choose another permutation that, for instance, permutes the Beaver, the Dolphin and the Ape. From this permutation σ, she computes the vector b, depicted in Table 10. This vector is used to modify the first diagonal of m init , as shown in Fig. 15.

Afterwards, the second, the third and the fourth diagonals are modified in turn, as shown in Fig. 16. This modification is done thanks to Eq. (2), which gives the next diagonal as a function of the previous one. Once the upper half is obtained, the bottom half is deduced thanks to the antisymmetric property. Finally, the final preference matrix is obtained by shuffling m σ column by column then row by row, using the permutation σ, as shown in Fig. 17. Algorithm on the ciphertexts. To summarize our construction, we recap the procedure to provide a ballot and prove its well-formedness in Algorithm 75. In this algorithm, we require at line 7 that the voter produces a ZKP that a ciphertext B i is indeed an encryption of a bit b i ∈ {0, 1}. For this purpose, a standard ZKP such as Algorithm 16 can be used. In addition, we also require at line 16 that the voter proves that some ciphertext Z i,i+j+1 encrypts the product of the plaintexts of two other ciphertexts M σ [i, i+j] and M σ [i+1, i+j +1]. We can easily build such a proof using standard ZKP; see Algorithm 76. Finally, we also require that the voter shuffles the matrix. For this purpose, we can use ShuffleMatrix, which is presented in Section 2.4.3.

i 0 0 1 1       0 1 1 1 1 -1 0 1 1 1 -1 -1 0 1 1 -1 -1 -1 0 1 -1 -1 -1 -1 0       -→       0 1 1 1 1 -1 0 1 1 1 -1 -1 0 0 1 -1 -1 -1 0 0 -1 -1 -1 -1 0      
      0 1 1 1 1 -1 0 1 1 1 -1 -1 0 0 0 -1 -1 -1 0 0 -1 -1 -1 -1 0       -→       0 1 1 1 1 -1 0 1 1 1 -1 -1 0 0 0 -1 -1 -1 0 0 -1 -1 -1 -1 0       -→       0 1 1 1 1 -1 0 1 1 1 -1 -1 0 0 0 -1 -1 -1 0 0 -1 -1 -1 -1 0      
m σ =       0 1 1 1 1 -1 0 1 1 1 -1 -1 0 0 0 -1 -1 0 0 0 -1 -1 0 0 0       Shuffle ----→ rows       -1 -1 0 0 0 -1 -1 0 0 0 0 1 1 1 1 -1 -1 0 0 0 -1 0 1 1 1       Shuffle -----→ columns       0 0 -1 0 -1 0 0 -1 0 -1 1 1 0 1 1 0 0 -1 0 -1 1 1 -1 1 0       = m a
Technically, a ballot can be considered as a matrix M σ that encodes which candidate are ranked at equality, a matrix M a that encodes the permutation and a ZKP Π. However, since M σ can be recovered from Π, we do not include it in the output of Algorithm 75.

To verify that a ballot is well-formed, one can first verify all the ZKP π 0/1 i . Then, using the B i 's, M init and the Z i,i+j+1 's, the verifier can compute the matrix M σ . The fact that M σ is well-formed can be verified by checking all the ZKP π Mult i,i+j+1 , using M σ and the Z i,i+j+1 's. Finally, the verifier verifies the proofs of a shuffle using π Shuffle , M σ and M a .

Algorithm 75: MatrixBallot

Requires: pk, a public exponential ElGamal encryption key E 1 , E 0 , E -1 , trivial encryptions of 1, 0 and -1 r 1 , • • • , r n C , the rank of each candidate Outputs: M a , the encrypted matrix of preferences Π a ZKP of well-formedness 1 Sort the candidate by increasing order of rank; 2 This gives a permutation σ such that σ(i) < σ(j) =⇒ r i ≤ r j ;

3 for i = 1 to n C do 4 if r σ -1 (i) = r σ -1 (i+1) then b i ←-1 else b i ←-0; 5 r i $ ←-Z q ; 6 B i ←-Enc pk (b i , r i); 7 π 0/1 i ←-Pok 0/1 (B i , b i , r i) (* see Algorithm 16 *); 8 m σ [i, i] ←-0; m σ [i, i + 1] ←-1 -b i ; 9 r i,i ←-0; r i,i+1 ←--r i ; M σ [i, i] ←-E 0 ; M σ [i, i + 1] ←-E 1 /B i ; for j = 1 to n C -1 do for i = 1 to n C -j -1 do m σ [i, i + j + 1] ←-m σ [i, i + j] + m σ [i + 1, i + j + 1] -m σ [i, i + j]m σ [i + 1, i + j + 1]; X ←-M σ [i, i + j]; x ←-m σ [i, i + j]; r x ←-r i,i+j ; Y ←-M σ [i + 1, i + j + 1]; r z $ ←-Z q ; Z i,i+j+1 , π Mult i,i+j+1 ←-ZKPmult(X, x, r x , Y, r z); r Z ←-xr i+1,i+j+1 + r z ; M σ [i, i + j + 1] ←-M σ [i, i + j]M σ [i + 1, i + j + 1]/Z i,i+j+1 ; r i,i+j+1 ←-r i,i+j + r i+1,i+j+1 -r Z ; for all (i, j) s.t. i < j do M σ [j, i] = 1/M σ [i, j]; M a , π Shuffle ←-ShuffleMatrix(M σ , σ); Π ←-π Shuffle ||(Z i,i+j+1 , π Mult i,i+j+1) i,j ||(B i , π 0/1 i) i ; return M a , Π;
Algorithm 76: ZKmult Requires: G a group of prime order q pk, a public exponential ElGamal encryption key X, x, r x , s.t.

X = Enc pk (x, r x) Y , any ciphertext r z ∈ Z q , a randomness Outputs: Z, a reencryption of Y x π Mult , a ZKP of well-formedness 1 Z ←-Renc pk (Y x , r z); 2 α, ρ x , ρ z $ ←-Z q ; 3 c z ←-Renc pk (Y α , ρ z); 4 c x ←-Enc(α, ρ x); 5 d ←-hash(pk||X||Y ||Z||c x ||c z); 6 a x ←-α + xd; a rx ←-ρ x + r x d; 7 a rz ←-ρ z + r z d; 8 π Mult ←-(c x , c z , a x , a rx , a rz); 9 return Z, π mul

Algorithm 77: Verification algorithm

Requires: G a group of prime order q pk, a public exponential ElGamal encryption key X, Y, Z, three ciphertexts π mul = (c x , c z , a x , a rx , a rz), a ZKP Outputs: 1 if the proof is valid, 0 otherwise 1 d ←-hash(pk||X||Y ||Z||c x ||c z); 2 Verify the following equalities:

3 c x ? = Enc pk (a x , a rx)X -d ; 4 c z ?
= Renc pk (Y ax , a rz)Z -d ; 5 if so then return 1 else return 0; Security of the construction. Our construction inherits the completeness, the computational soundness and the statistical zero knowledge from that of the standard PoK and the Terelius-Wikström proof of a shuffle. Indeed, if we consider that a ballot is a couple of encrypted matrices M σ , M a , then the ciphertexts Z i,i+j+1 and B i can be recovered from M σ and M init . Then, the remaining of Π can be simulated thanks to the zero knowledge property of the standard PoK and the proof of a shuffle.

Complexity analysis. We now give the complexity of our construction. To simplify the expression, we only give the leading term of the formula. First, the voter has to produce n C -1 encryptions of a bit and the corresponding ZKP, which leads to O(n C) exponentiations. Then, for j ∈ [1, n C -1], the (j +1)th diagonal has (n C -j -1) ciphertexts to compute. For each of these ciphertexts, the only expensive operation is to compute ZKPmult; indeed, the other operations are arithmetic operations in Z q . Since x ∈ {0, 1}, computing Y x is cheap; therefore, ZKPmult requires 7 exponentiations to compute and to verify. Finally, the cost of ShuffleMatrix is given in Table 3. Overall, producing and proving the validity of a ballot requires 23 2 n C 2 exponentiations. For comparison, the "naive" cubic algorithm requires 18n C 3 exponentiations for the prover and 20n C 3 exponentiations for the verifier.

A tally-hiding protocol for Condorcet-Schulze

The previous section gives a solution for most of the Condorcet methods, based on a homomorphic tally. However, this implies to reveal the global preference matrix, which contains more information than just the set of the winners. For this reason, we investigate the possibility of performing a fully tally hiding protocol, that only reveals which candidate wins the election. We especially focus on the Schulze method, as it is by far the most popular variant of Condorcet.

The Schulze method

The Schulze method consists of several steps. First, for all pair (i, j) of candidates, compute d i,j , which is the number of voters who (strictly) prefer candidate i over candidate j. Second, deduce b i,j = d i,j -d j,i . For all pair of candidates (u, v), a path p of length ℓ from u to v is a finite sequence of ℓ + 1 candidates such that u = p 0 and v = p ℓ . We say that (i, j) ∈ p if there exists an index 0 ≤ k < ℓ such that i = p k and j = p k+1 . The strength of a path p is defined as s(p) = min (i,j)∈p b i,j . With this in mind, the third step of the Schulze method is to compute f i,j = max σ∈[i⇝j] s(σ), where [i ⇝ j] denotes the set of all paths from i to j. Finally, i is a winner by the Schulze method if f i,j ≥ f j,i for all j. Note that it is possible that there are several winners according to the Schulze method. However, when such a case arises, then for all pair of winner (i, j), we have f i,j = f j,i . Therefore, the Schulze method has the resolvability property, which means that a single winner is output with high probability, and the probability that a tie occurs decreases towards 0 when the number of voters increases. Hence, the Schulze method is indeed a solution to the Condorcet paradox.

Computing f i,j for all (i, j) is actually a well-known problem in graph theory, which is called the maximum capacity problem [START_REF] Pollack | The Maximum Capacity through a Network[END_REF]. To solve this, we can use the Floyd-Warshall algorithm [START_REF] Floyd | Algorithm 97: Shortest path[END_REF][START_REF] Warshall | A theorem on boolean matrices[END_REF] on the matrix b, but where the min operator is replaced by the max operator and the + operator is replaced by the min operator, as explained in [START_REF] Pair | Sur des algorithmes pour des problèmes de cheminement dans les graphes finis[END_REF]. However, remark that some of the coefficients of b may be negative, which can be a problem in our ElGamal toolbox where the subtractions are computed modulo a power of 2. For this reason, we use the adjacency matrix a, defined by

a i,j = d i,j -d j,i if d i,j ≥ d j,i 0 otherwise,
which only has non-negative elements. In Lemma 10, we show that the Schulze winner can be deduced from the positive matrix a instead of b.

Lemma 10. Let n C be the number of candidates, and b an antisymmetric matrix of size n C × n C (i.e. for all i, j, b i,j = -b j,i). Let a be the matrix defined by the coefficients a i,j = max(0, b i,j). For all (i, j), we denote

f i,j = max σ∈[i⇝j] min (k,ℓ)∈σ b k,ℓ f ′ i,j = max σ∈[i⇝j] min (k,ℓ)∈σ a k,ℓ .
With these notations, we have ∀i, (∀j,

f i,j ≥ f j,i) ⇐⇒ (∀j, f ′ i,j ≥ f ′ j,i).
Proof. For all path p, we denote s(p) = min (i,j)∈p b i,j and s ′ (p) = min (i,j)∈p a i,j . Let i be a candidate, suppose that for all j, f i,j ≥ f j,i (i.e. i is a Schulze winner). Let j be any candidate. If j = i, clearly f ′ i,j ≥ f ′ j,i , so we assume that j ̸ = i. Since j ̸ = i, there is no path from i to j (nor from j to i) of length 0. Now, let p be a path from i to j which maximizes s(p), so that f i,j = s(p). We consider two cases: First, assume that b p k ,p k+1 < 0 for some k. Then f i,j = s(p) < 0 and, for all path p ′ from j to i, s(p ′) ≤ f j,i < 0. Consequently, there exists

k ′ such that b p ′ k ′ ,p ′ k ′ +1 < 0, so that a p ′ k ′ ,p ′ k ′ +1
= 0, thus s ′ (p ′) = 0. Since this is holds for all p ′ , f ′ j,i = 0 ≤ f ′ i,j . Second, if b p k ,p k+1 ≥ 0 for all k, then for all k, a p k ,p k+1 = b p k ,p k+1 , so that s(p) = s ′ (p). Now consider any path p ′ from j to i.

If b p ′ k ′ ,p ′ k ′ +1 ≥ 0 for all k ′ , then s ′ (p ′) = s(p ′) ≤ f j,i ≤ f i,j = s(p) = s ′ (p) ≤ f ′ i,j . If there exists k ′ such that b p ′ k ′ ,p ′ k ′ +1 < 0, then s ′ (p ′) = 0 ≤ f ′ i,j . Hence, s ′ (p ′) ≤ f ′ i,j for all p ′ , so that f ′ j,i ≤ f ′ i,j . Conversely, let i such that f ′ j,i ≤ f ′ i,j
for all j. Let j be any candidate (as above, w.l.o.g. we assume that i ̸ = j). We consider three cases.

First, suppose that f i,j < 0. Then for all path p from i to j, s(p) ≤ f i,j < 0 so that there exists (u, v) ∈ p such that b u,v < 0 (we call this proposition *). In particular, (i, j) is a path from i to j. Hence, b i,j < 0, so b j,i = -b i,j > 0, therefore b j,i = a j,i and f ′ j,i ≥ s ′ (j, i) = a j,i = b j,i > 0. On the other hand, by * we have f ′ i,j = 0, which contradicts f ′ j,i ≤ f ′ i,j = 0. Therefore f i,j ≥ 0. Second, suppose that f i,j = 0. Then for all path p from i to j, s(p) ≤ f i,j so that there exists

(u, v) ∈ p such that b u,v ≤ 0, hence f ′ i,j = 0. Let p ′ be a path from j to i (of length n ′ > 0). Suppose that for all (u, v) ∈ p ′ , b u,v > 0. Then 0 < s ′ (p) ≤ f ′ j,i , which contradicts f ′ j,i ≤ f ′ i,j . Consequently, there exists (u, v) ∈ p ′ such that b u,v ≤ 0, therefore s(p ′) ≤ 0 = f i,j . This holds for all p ′ so f j, i ≤ f i,j .
Finally, suppose that f i,j > 0. Let p ′ be a path from j to i. If there exists

(u, v) ∈ p ′ such that b u,v ≤ 0, then s(p ′) ≤ 0 < f i,j . Otherwise, for all (u, v) ∈ p ′ , b u,v > 0 so s(p ′) = s ′ (p ′) ≤ f ′ j,i ≤ f ′ i,j ≤ f i,j .

Ballots as lists of integers

Before describing the tally process, we need to present the expected form of the ballots. We decide to make the cost on the voter side as cheap as possible, because it is often critical in electronic voting. While the voter may only have a limited computational power, the tallier and the auditor may have access to a powerful server or rent a supercomputer. For this reason, we do not use the solution from Section 6.1.2. Instead, we ask the voter to provide log n C encryption of 0 or 1 for each candidate, which encodes the desired rank for the candidate. This way, they can give the rank they want to each candidate, without restriction, which accounts for the possibility of giving the same rank to several candidates. Note that there may be gaps in the given ranks; for instance, a voter may give the rank 0 to one candidate and the rank 2 to two candidates, without giving the rank 1 to any candidate. In addition, since n C -1 may not be a power of 2, a voter may give a rank that exceeds n C -1. This is not a problem and we consider that any ballot which encrypts n C log n C bits is valid. Thanks to the relative absence of restrictions, the voter can produce and prove the validity of their ballot in about 6n C log n C exponentiations. On this occasion, we refer to [START_REF] Devillez | How to Verifiably Encrypt Many Bits for an Election?[END_REF], where various solutions to simultaneously encrypt many bits and produce the corresponding ZKP in the ElGamal setting are proposed. Compared to Algorithm 16, they remark that it is possible to save 2 exponentiation per bit without changing anything except the way the proof is generated. Since the voter also needs to compute 2 exponentiation per encryption, this gives a total of 6n C log n C exponentiations per voter ballot, which is way cheaper than in the homomorphic variant.

Obtaining the adjacency matrix from the encrypted ballot

We now explain how the talliers can collectively turn every ballot into the corresponding individual preference matrix. For this purpose, they use an MPC protocol that operates on encrypted data. First, we assume here that each ballot consists of n C ⌈log(n C + 1)⌉ ciphertexts, along with as many ZKP that prove that they are encryptions of 0 or 1. Those ciphertexts are interpreted as n C bitwise encrypted integers, denoted

R i 1 , • • • , R i n C
, where i is the index of the voter. The corresponding integers represent the rank that the voter i gives to each candidate.

To compute an encryption of the preference matrix of a voter, the talliers can use the protocol LtEq which returns two encrypted bits: one for the lesser-than test and the other for the equality test (see Section 5.1.3). This gives Algorithm 78. At this point, the encrypted matrices can be aggregated using the homomorphic property, and the resulting product can be decrypted. This gives yet another possibility for the homomorphic tally. However, since we assumed that the talliers are ready to perform complex MPC, we can also aggregate the matrices using the Aggreg algorithm, which gives the bitwise encryption of the global preference matrix. Finally, the adjacency matrix can be deduced using the Sub protocol. Remark that in this protocol, the last encrypted bit indicates whether the result is negative or not. Hence, to ensure that the result are all positive, we can use the CSZ protocol to set the negative values to zero as desired.

Algorithm 78: BtoM

Requires: A group G of prime order q pk, an exponential ElGamal public key

E 1 , E 0 , trivial encryptions of 1 and 0 R 1 , • • • , R n C
, bitwise encryptions of the same size ℓ = ⌈log(n C + 1)⌉, where n C is the number of candidates Outputs: M , the corresponding encrypted preference matrix

1 for i = 1 to n C (in parallel) do 2 M i,i ←-E 0 ; 3 for j = i + 1 to n C (in parallel) do 4 Z, T ←-LtEq(R i , R j); 5 M i,j ←-Z; 6 M j,i ←-CSZ(E 1 /Z, T); 7 return M ;

Computing the result from the encrypted adjacency matrix

Finally, once the global adjacency matrix has been obtained, one can derive the result from the Floyd-Warshall algorithm; see Algorithm 80.

Condorcet-Schulze, the bottom-line

We provide a bottom line where we give again all the necessary details. First, to submit a ballot, a voter can use the procedure given in Algorithm 81. We made it as simple as possible, with the objective to minimize the computation stress on the voter side. Namely, the voter can give any rank to any candidate, without any restriction (except that the rank must in the range [0, 2 ℓ -1], where n C is the number of candidates and ℓ = ⌈log(n C + 1)⌉). This way, the voter only needs 6n C log n C exponentiations to vote. The previous approach, presented in Section 6.1.2, requires Algorithm 79: FW (Floyd-Warshall) Requires: (P) i,j , the encrypted adjacency matrix n C , the # of candidates Outputs: (S) i,j , s.t. S i,j is an encryption of the strength of the strongest path from i to j 1 S ←-P ;

2 for k = 1 to n C do 3 for i = 1 to n C (in parallel) do 4 for j = 1 to n C (in parallel) do 5 (* proceed only if (i ̸ = j) *); 6 T ←-Lt(S i,k , S k,j); 7 A i,j ←-If(T, S i,k , S k,j); 8 T ←-Lt(A i,j , b mS i,j); 9 B i,j ←-If(T, S i,j , A i,j); 10 for all (i ̸ = j) do S i,j ←-B i,j ; 11 return S;
Algorithm 80: Schulze Requires: (P) i,j , the encrypted adjacency matrix n C , the # of candidates Outputs: w, the indicator of the Schulze winners 1 (S) i,j ←-FW(P);

2 for i = 1 to n C (in parallel) do 3 for j ̸ = i (in parallel) do 4 B j ←-Not(Lt(S i,j , S j,i)); 5 W i ←-And((B j) j̸ =i); 6 w i ←-Dec(W i); 7 return w 1 , • • • , w n C ; about 11.5n C
2 exponentiations. Note that only the ordering of the candidates is of interest, so that ranking three candidates 1, 1 and 2 is the same as ranking them 0, 0 and 3.

Second, the talliers turn each individual ballot into the corresponding encrypted preference matrix, using the BtoM protocol. Then they aggregate all the individual preference matrices into a single preference matrix, using the Aggreg protocol. Finally, they turn the global preference matrix into an adjacency matrix and deduce the result from the Schulze algorithm. This gives Algorithm 82, whose complexity is detailed in Table 12.

Comparison with Ordinos

Ordinos [KLM + 20] is a concurrent contribution that allows tally-hiding in the Paillier setting. It was extended in [HHK + 21] to cover various counting functions, including the Schulze method. Therefore, we discuss how our work compares to that of Ordinos. First, Ordinos does not allow the voters to rank several candidates at equality, which is too restrictive; therefore they do not provide a solution for Condorcet-Schulze in general. Second, Ordinos requires the Paillier encryption scheme and asks the voters to compute O(n C

3) exponentiations to cast a ballot. By comparison, we use the ElGamal encryption scheme (hence the exponentiation is a lot cheaper on the voter side) and we only require the voters to compute 6n C log n C exponentiations to cast their ballot. That being said, we can still compare the overall performances of both tallyhiding schemes. For this purpose, we use [HHK + 21, Fig. 7] to deduce the overall complexity of computing a Condorcet-Schulze tally with Ordinos. However, we also include the cost of verifying the validity of the ballots in the task of the talliers: if they do not verify the ZKP, then a malicious server can break privacy, for instance using a replay attack.

In Table 13, we give the complexity estimates of various solutions for tallying the Condorcet-Schulze method, including our fully tally hiding protocol as well as Ordinos'. From the resulting Algorithm 81: Ballot casting procedure for the Condorcet-Schulze method Requires: G, a group of prime order q pk, an exponential ElGamal public key n C , the number of candidates ℓ = ⌈log(n C + 1)⌉ r 1 , • • • , r n C the ranks given to each candidate for i = 1 to n C do Writes r i in base 2:

r i = ℓ-1 j=0 b i,j 2 j ; for i = 1 to n C do for j = 0 to ℓ -1 do ρ i,j ←-Z q ; R i,j ←-Enc pk (b i,j , ρ i,j); π 0/1 i,k ←-PoK(R i,j , b i,j , ρ i,j) (* see [DPP22a] *); return (R i,j , π i,j) i,j ; Algorithm 82: Condorcet-Schulze Requires: (R i 1 , • • • , R i n C) n V i=1
, the n V encrypted ballots n C , the number of candidates Outputs: w, the indicator of the set of the Schulze winners

for v = 1 to n V (in parallel) do M v ←-BtoM(R v 1 , • • • , R v n C); for i = 1 to n C (in parallel) do for j = 1 to n C (in parallel) do M [i, j] ←-Aggreg(M 1 [i, j], • • • , M n V [i, j]); for i = 1 to n C (in parallel) do A[i, i] ←-0 bits ; for j = i + 1 to n C (in parallel) do D, T ←-Sub(M [i, j], M [j, i]); 10 A[j, i] ←-CSZ(Neg(D), T); 11 A[i, j] ←-CSZ(D, Not(T));
12 return Schulze(A); Table 12: Leading terms in the complexity for fully tally-hiding the Schulze method; the computation, communication and transcript sizes are given as the number of CSZ required

Part

Computations Communications Transcript BtoM

3 2 n V n C 2 log n C 2 log n C 3 2 n V n C 2 log n C Aggreg 3n V n C 2 1 2 log(n V) 2 3n V n C 2 Adjacency 5n C 2 log n V 3 log n V 5n C 2 log n V FW 6n C 3 log n V 4n C log n V 6n C 3 log n V Result 3n C 2 log n V 3 log n V 3n C 2 log n V Total 3 2 n V n C 2 log n C +6n C 3 log n V 4n C log n V 3 2 n V n C 2 log n C +6n C 3 log n V
6n C 2 [1] 14n V n C 2 n T 2n T 3n V n C 2 n T [HHK + 21] (Paillier setting) 5n C 3 [2]
precomp. precomp.

9n V n C 3 + 178n C 3 n T log n V 78n C 3 n T log n V O(n T) comp. comp. 6n V n C 3 [3] 14n C log log n V +66n C 3 n T Section 6.1.2[4] 17.5n C 2 15.5n V n C 2 1 8.5n V n C 2 Partial MPC[4] (ours) 6n C log n C 49.5n V n C 2 n T log n C 2n T log n C 50n V n C 2 n T log n C Full MPC (ours) 6n C log n C 49.5n V n C 2 n T log n C +198n C 3 n T log n V 4n C n T log n V 50n V n C 2 n T log n C +204n C 3 n T log n V [1] [HPT19
] leaks the adjacency matrix. In addition, for each ballot, the number of candidates ranked at equality is public. In particular, who voted blank is known to everyone.

[2] [HHK + 21] does not allow voters to give the same rank to several candidates.

[3] [HHK + 21] originally does not take into account the cost of verifying the ZKP provided by the voters.

[4] Leaks the adjacency matrix.

formulas, it appears that the computational time in Ordinos is greater than ours. Indeed, recall that the cost of an exponentiation in the Paillier setting is larger than in the ElGamal setting. Nevertheless, most of the computations in the Ordinos setting can be precomputed, so that Ordinos' performances are roughly comparable to ours (except that precomputing does have a cost). Apart from that, it appears that the solution of Ordinos result in a transcript which is about one order of magnitude larger than ours, due to the Paillier ciphertexts being about 12 times larger than the typical ElGamal ciphertexts. One metric for which Ordinos performs better than our toolbox is the number of synchronization steps. However, if this becomes a real problem, we can use the CLt protocol instead of the Lt protocol for the comparison, which would lead to a similar communication cost to that of Ordinos. As shown in Table 8, the extra cost on the computation side is reasonable and we would still be comparable to Ordinos in terms of computational efficiency. Given the gain in efficiency in the voter size and all the other advantages of the ElGamal setting compared to the Paillier setting, we outperform Ordinos when it comes to computing a Condorcet-Schulze tally.

That being said, Table 13 only gives approximate formulas, and the latter are pretty complex. Therefore, a complementary way to compare Ordinos' performances to that of our toolbox would be to run both implementations. We discuss of this comparison in Section 6.2.7.

Implementation

In order to evaluate the practical feasibility of our approach, we have written a prototype implementation in the ElGamal setting. The libsodium library is used for randomness and all elliptic curve and hashing operations. The rest is implemented as a standalone C++ program. It is available in [sou22] and is published as a free software. Most of the primitives of our toolbox

The ranked pairs variant. In the ranked pairs method, the adjacency matrix is seen as the adjacency matrix of a graph G. Then the method is divided into three steps. The first step is to sort the edges of G in decreasing order of weights. Then, the second step is to sequentially add those edges to a graph G ′ which initially has n C vertices and no edge; however, we do not add the edges which create a cycle. Finally, as G ′ is an oriented graph without cycle, it can be seen as the graph of a partial order over the candidates. The sources of the graph are the winners.

Assuming that we have the encrypted adjacency matrix, an MPC version of the ranked pairs method goes as follows. First, to sort the edges, we can use the OddEvenMergeSort algorithm. We encode the edges with three ciphertexts, one for the source, one for the destination and one for the weight. The sources and the destination would each require log n C ciphertexts, where n C is the number of candidates, and the weight requires log n V ciphertexts, where n V is the number of valid ballots. Hence, applying the OddEvenMergeSort would require about n C 2 log(n C) 2 (3 log n V + 2 log n C) CSZ in terms of computation and transcript size, and 2 log(n C) 2 log n V CSZ in terms of synchronization steps.

Then, the main procedure is to update an encrypted matrix B i,j = Enc(b i,j), where b i,j = 1 if there is a path from i to j, and 0 otherwise. Initially, B is a trivial encryption of the identity matrix. To add the edge (i, j), we compute b ′ s,t for all (s, t), as follows:

b ′ s,t = b s,t ∨ (b s,i ∧ b j,t).
However, since i and j are encrypted, we first need to recover (the encrypted) andO(n C 2 log n C)CSZ in terms of synchronization steps. This means that computing ranked pairs in MPC is more expensive than computing the Schulze method, but still possible.

A solution for single transferable vote

Single transferable vote (STV) is a counting function which is widely used for politically binding elections, for instance in Australia, Canada, the United States and the United Kingdom. Its goal is to designate an electoral board or committee; in other words, given a number s of seats and several candidates, STV allows to elect s candidates. There are various versions of STV; nevertheless, the main idea is the following. First, each voter chooses a subset of the candidates: those are the candidates that they like, i.e. for which they would be happy if they are given a seat. In addition, they order those candidates according to their personal preferences; however, by contrast with Condorcet voting, the order is strict. For instance, if there are are four candidates represented by the number 1, 2, 3 and 4, Alice can vote (1, 3) while Bob can vote (4, 1, 2).

Once the ballots are cast, each is attributed a weight, initially 1. Then the counting process consists of several rounds: during each round, each ballot grants a number of votes (equal to the ballot's weight) to the first candidate mentioned in the ballot. If some candidates meet a certain quota q (which is fixed during the whole process), they are selected. The selected candidates keep q votes for themselves but, for each received ballot, they transfer some of its weight to the next candidate on the ballot, for instance with a transfer coefficient. If no candidate reach the quota, the ones with the lowest number of votes is eliminated and transfer all of their ballot to the next candidate in the ballot, but with the same weight. The process terminates when s candidates are elected, or when the number of candidates that remain is equal to the number of (still) available seats.

The various versions of STV may differ in several aspects: for instance, one or several candidates may be elected simultaneously. If several candidates are elected simultaneously, they may transfer some votes to each other, which causes some additional complications; see for instance the Meek method [START_REF] Meek | Une nouvelle approche du scrutin transférable[END_REF] which proposes to solve this using a system of (polynomial) equations. Similarly, several candidates may be eliminated simultaneously. Finally, the exact rule for transferring votes does not necessarily imply a transfer coefficient. For instance, we can also choose a fraction of the ballots at random and transfer them entirely to the next candidate on the ballot.

Existing solutions for STV in electronic voting

Since STV demands the voters to give a permutation of some candidates, there are a lot of possible ballots and using a mixnet (i.e. revealing all the chosen ballots in the clear, but without leaking which voter cast which ballot) is not an ideal solution. Indeed, this allows Italian attacks. For this reason, it is important to provide a tally-hiding protocol for STV.

When we looked for academic solutions in the literature, we could not find many contributions. The most interesting one is called Shuffle-sum [BMN + 09], which proposes a strategy where some information is revealed between each round of the STV algorithm, for instance the score (i.e. the number of votes) of all the candidates. The authors acknowledge that revealing the intermediates scores might be too much; in particular, they propose realistic scenarios where a coercer could successfully use this information. Consequently, they also propose a variant where the most crucial information are only leaked to the trustees: for an external observer, the only available side information is an approximation of the transfer coefficient, as well as the score of the selected candidate at each round. As discussed in Section 5.3.2, giving some information to the talliers only is certainly interesting, but does not protect the voters in the scenario where the coercer is a tallier.

Another solution is proposed in the technical report [START_REF] Wen | Mix and Test Counting in Preferential Electoral Systems[END_REF]. Just as Shuffle-sum, their solution implies to leak some information at each round, namely whether the round is a selection or an elimination, and the score of the selected candidate. In addition, we remark that their technique involves a very sequential first phase with a number of rounds of communications that is proportional to the number of ballots, which may be impractical.

A related contribution, which is not a solution for generic STV but for IRV (a specific case where there is only one seat to provide), can be found in [START_REF] Ramchen | Universally Verifiable MPC and IRV Ballot Counting[END_REF]. In this proposal based on generic MPC, the score of all the candidates is revealed at each round.

In any case, none of the existing approach is fully tally hiding, and a careful analysis of whether the leaked information can or cannot be exploited is necessary. Thanks to our toolbox, we can design a completely leakage-free tally scheme.

Choosing one version of STV

Since there are many variants of STV, we had to choose one before providing an MPC solution for computing the corresponding tally function. We took guidance from Australian academics, and decided to consider an academic version of STV, where one candidate is elected or eliminated at each round. As for the quota, we define it as the Droop quota q = n V s+1 + 1, where n V is the number of valid ballots and s the number of seats. Finally, when a candidate is selected, we use the following rule. First, we denote v the sum of the weights of the ballots received by the selected candidate, and we compute the transfer coefficient t = (v -q)/v (remark that since the candidate was selected, v > q). Then, for each ballot received by the candidate, we multiply the weight by t and transfer the ballot to the next candidate on the list. Finally, we remove the name of the selected candidate from every ballot.

Before applying this solution in MPC, however, we need a way to handle the fractions. Indeed, all along the STV algorithm, the weights of the ballots and the transfer coefficients are rational numbers that can be stored as pairs of integers. While this looks as the cleanest approach, we noticed that this leads to an exponential worse-case complexity. Indeed, the transfer coefficient t i at a round i is a fraction whose height typically doubles at each round where a candidate is selected, and we get a complexity that is exponential in the number of seats. This observation is a major problem in an MPC setting where the worst-case complexity is also the best-cast complexity, since we want to hide every side-information. Also, outside any cryptographic consideration, we recovered the data of the 2019 election of the Legislative Council of New South Wales in Australia [START_REF]NSWEC -Election results[END_REF], where there were 21 seats, 346 candidates and 3.5 millions ballots. With a basic implementation using Sagemath, we ran the academic STV algorithm on the publicly available ballots and remarked that the memory required to store all the fractions is exponential with respect to the number of selections, with a regression coefficient of r 2 ≥ 0.997 (see Fig. 18). Since there can be up to 21 selections, this means that one may need up to 82 GB of central memory just to store all the fractions. In real elections, and due to the fact that elections were initially counted by hand, approximations of fractions are used instead. Therefore, we also represent fractions with a fix-point arithmetic, allowing r binary digits after the radix point.

Selections

Note that depending on the version of STV which is applied, the result might differ, see for

A solution for single transferable vote

instance [START_REF] Goré | Simulating STV Hand-Counting by Computers Considered Harmful[END_REF] for an analysis.

Ballots as lists of candidates

Now that the version of STV is fixed, we are almost ready to explain how to build a tally-hiding protocol for computing the result with no leakage. Before that, we must however explain what is the expected format for the ballots and how the voters can produce them. Just as for Condorcet-Schulze which was the subject of Section 6.2, we focus on the voter-side complexity, and tries to make the ballots as simple as possible. For this reason, we propose that the voters give a list of candidate

C 0 , • • • , C n C
, where n C is the number of candidates. So that the voter does not reveal how many candidates are ranked in the ballot, the ballot always consists of n C + 1 candidate. However, there is a sink candidate, candidate number 0, that represents the end of the ballot and that cannot be selected nor eliminated. All the candidates that are ranked after the candidate 0 are not actually a part of the ballot and are here for the sole purpose of hiding the size of the ballot. Since we want to be able to use our MPC toolbox on the ballots, we need the candidates to be bitwise encrypted. For this reason, for all i, C i consists of ℓ = ⌈log(n C + 1)⌉ encryptions of a bit. Also, we require that the corresponding bitstrings encode a permutation of [0, n C].

To produce a ballot and to prove its validity, the voter shuffles the initial ballot B init = (0 bits , • • • , n C bits), which consists of n C trivial bitwise encryptions of the same size ℓ; i.e.

0 bits is E 0 , • • • , E 0 , 1 bits is E 1 , E 0 , • • • , E 0 and
so on. To prove that the ballot is well-formed, the voter provides a proof of a shuffle, using ShuffleRow (see Algorithm 19).

A tally-hiding protocol for academic STV

We are now ready to present our tally-hiding protocol for STV. On this occasion, we recall that we use the following parameters:

• n C is the number of candidate (an additional artificial candidate is considered, not included in this number);

• n V is the number of valid ballots;

• m = ⌈log(n V + 1)⌉ is the maximum bitsize of the number of voters who ranked first a given candidate;

• s is the number of seats to attribute;

• q = n V s+1 + 1 is a quota above which a candidate is selected;

• r is the precision for the fractions, i.e. the number of binary places after the radix point;

• ℓ = ⌈log(n C + 1)⌉ is the bitsize used to represent a candidate, numbered from 0 to n C ;

• E 0 and E 1 are trivial encryptions of 0 or 1;

• For i ∈ [0, n C], i bits consists of the ℓ trivial encryptions of the bits of i.

The first task of the talliers is to initialize a data structure as follows:

• H is the hopeful vector. It contains n C encryptions of bits (initially E 1) which state whether a candidate can still be selected or not.

• W is the winner vector. It contains n C encryptions of bits (initially E 0) which state whether a candidate has been selected or not.

• S is the score vector. It contains n C bitwise encrypted integers of size m + r; it contains the sum of the weights of the ballots received by each candidate.

• V is the value matrix. For all i ∈ [1, n V] V i is a bitwise encrypted integer of size r + 1, initially (E 0 , • • • , E 1); the r less significant bits (on the left) represent the r binary places.

• B is the ballot matrix.

For all i ∈ [1, n V], B i [0], • • • , B i [n C
] are bitwise encrypted integers of size ℓ that represent a candidate.

The initialization only requires to read the ballots submitted by the voters and can be considered free compared to the cost of the remaining of the protocol. Then the talliers will loop n C -1 iterations of the following operations:

1. Finished? (Algorithm 83.) From the candidate data structure, compute the number of candidates (apart from candidate 0) that got a seat or are still hopeful. If this is equal to the number of available seats s, then mark as selected all the hopeful candidates. Note that during the first iterations of the loop, this test is not necessary.

2. Count votes. (Algorithm 84.) For each ballot B i , take the candidate ranked first Bi[0], and add the weight V i of the ballot to the score S i of this candidate.

3. Search min-max. (Algorithm 85.) Compute i and j the indexes of the candidates that have the maximum and minimum score. If the score s i of candidate i is larger than the quota, set the variables a to 0, c to i and t to (s i -q)/s i . Otherwise, the candidate j will be eliminated and set a to 1, c to j and t to 1.

4. Select, delete, transfer. (Algorithm 86.) Mark the candidate c as no longer hopeful, and c as a winner if a is 0. Also, for all ballot, remove the candidate c. This is done in one pass over the list of preferences of each ballot. For each ballot, if c was in the first position, multiply its weight by the transfer value t.

After this, the vector W is decrypted to reveal which of the candidates won the election.

In theory, the STV process stops when s candidates have been selected or when the number of candidates that remain is equal to the number of (still) available seats. However, we do not want to reveal when the process finished, as this would constitute a side-information. For this reason, we will let it continue by computing some additional rounds, even after reaching the point when it should have stopped. After that s candidates are selected, adding some additional rounds will not modify the result as it is not possible for s + 1 or more candidates to reach the quota. Consequently, no subsequent selection would occur and W will no longer be modified. However, if the number of candidates that remain is equal to the number of remaining seats, adding an additional round may lead to an elimination if no candidate reach the quota, so it is important to select all the candidates right away, before they get eliminated. Since a candidate is either selected or eliminated each round, the round index i is such that the number of remaining candidates is equal to n C -i. Moreover, the number of remaining seats is s -N , where N is the number of selected candidates. Therefore we need to test whether n C -i = s -N , in which case we must select all the remaining candidates. Note that since n C -i > 0, this condition is exclusive with N = s, so that we do not have to worry about this causing some extra candidate being selected if s were already selected. Also, this condition can only occur once, since afterwards Algorithm 83: Finished Requires: s, the number of seats n C , the number of candidates i, the round index (0 for the first iteration) Inputs: H, the encrypted hopeful vector W , the encrypted winners vector Outputs:

H, W N ←-Aggreg(W 1 , • • • , W n C) (* number of winners *); F ←-EqKnown(N , s -n C + i) (* f = 1 if the process finished this round *); for i = 1 to n C (in parallel) do T i ←-CSZ(H i , Not(F)) (* sets as 0 if f = 1 *) ; O i ←-H i Not(T i) (* h i ∧ f *); W i ←-Or(W i , O i) (*
sets as winners the hopeful *);

H i ←-T i ; return H, W
Algorithm 84: CountVotes Requires: n V , the number of valid ballots n C , the number of candidates Inputs: B, the matrix of the encrypted ballots V , the encrypted vector of the value of each ballot Outputs: S, the encrypted vector of the scores of the candidates

for i = 1 to n V (in parallel) do for j = 1 to n C (in parallel) do T i,j ←-EqKnown(B i [0], j); C i,j ←-CSZ(V i , T i,j); for j = 1 to n C (in parallel) do S j ←-Add(C 1,j , • • • , C n V ,j);
return S; N = s. Finally, since we mark every candidate as no longer hopeful when the condition is met, no further modification of W can occur during the subsequent rounds.

In the CountVote protocol, we use a tree-based parallelization protocol to add n V different values, as we already did many times for other associative laws in Chapter 5; see for instance Algorithm 51.

Algorithm 85: SearchMinMax

Requires: r, the precision for the division Inputs: S, the encrypted vector of the scores of the candidates Outputs: A, an encryption of 0 if we have a selection, of 1 if we have an elimination C,a bitwise encryption of the index of the candidate to select or eliminate T , a bitwise encryption of the transfer coefficient

1 _, I, Z, J ←-MinMax(S 1 , • • • , S n C); 2 ∆, A ←-SubKnown(Z, q); 3 T ←-CSZ(Div(∆, Z, r), Not(A))||A; 4 C ←-If(A, I, J); 5 return A, C, T
In the SearchMinMax protocol, we first compute the maximum score z and the index i, j of the candidates that have the minimum and the maximum score. Then, if z ≥ q, we set a to 0 and compute t = (z -q)/z. For this purpose, we use the Div algorithm which returns the r first binary places and we add a 0 as the most significant bit. If z < q, we set a to 1 and set all the binary places of t to 0, but add 1 as the most significant bit.

Finally, the SelectDeleteTransfer protocol is a naive transposition of the cleartext algorithm in the MPC toolbox.

Complexity analysis

To analyze the complexity of our protocol, we give in Table 15 the complexity of each subprotocol. Apart from the Finished sub-protocol which is only called s times (the number of seats), every sub-protocol is called n C -1 times exactly, hence the bottom line of the table. Note that the Finished protocol can be computed in parallel with the CountVotes and SearchMinMax protocols. Therefore, we do not include its communication cost in the total.

The intrinsic cost of STV is that of Ω(n V n C 2) operations, since there are n C rounds, and each of them modifies n V ballots that contains n C candidates. Therefore, it seems that the computational cost of our MPC approach is reasonable when compared to the best possible complexity. However, the number of synchronization steps would be quadratic in r, n C and log n V , which could be problematic since there can be hundreds of candidates. Thankfully, we provide some computation / communication trade-offs in our toolbox. Hence, it is possible to modify the naive transposition of STV using more communication-efficient primitives. For this purpose, we can proceed as follows.

• In SearchMinMax, modify the MinMax protocol by using the communication-efficient variant, based on CLt;

• In SearchMinMax, use UFCSub instead of Sub to compute the subtractions;

• In SearchMinMax, modify the division by replacing the Sub protocol by UFCSub;

Algorithm 86: SelectDeleteTransfer Requires: n V , the number of valid ballots n C , the number of candidates Inputs: A, an encryption of 0 if we have a selection, of 1 if we have an elimination C,a bitwise encryption of the index of the candidate to select or eliminate T , a bitwise encryption of the transfer coefficient H, the encrypted hopeful vector W , the encrypted winners vector B, the matrix of the encrypted ballots V , the encrypted vector of the value of each ballot Outputs: H, W, B, V And(T,Not(A));

1 for i = 1 to n C (in parallel) do 2 T ←-EqKnown(C, i); 3 H i ←-CSZ(H i , Not(T)); 4 T ←-
5 W i ←-Or(W i , T); 6 for i = 1 to n V (in parallel) do 7 A ←-Eq(B i [0], C); 8 F ←-A (* f
indicates whether the candidate was found in the list *);

9 for j = 0 to n C -1 do 10 B i [j] ←-If(F, B i [j + 1], B i [j]); 11 F ←-Or(F, Eq(B i [j + 1], C); 12 M ←-Mult(V i , T) (* we only keep the m + r msb *); 13 V i ←-If(A, M , V i);
14 return H, W, B, V ; Table 15: Leading terms of the cost of the various sub-protocols for STV (naive approach); n C is the number of candidates, n V is the number of valid ballots, r is the number of binary places after the radix point; the cost are expressed in the number of CSZ required; the transcript size can be deduced directly from the second column.

Protocol Computations Communications Finished 5n C 1 2 log(n C) 2 CountVotes n V n C (3r + 3 log n V + log n C) 2 log n V (r + log n V) SearchMinMax (6n C + 3r)(r + log n V) + 2n C log n C 2(log n V + r)(r + log n C) SelDelTrans n V (3n C log n C + 3r(r + log n V)) n C log log n C + 2r(r + log n V) Total n V n C 2 (3r + 3 log n V + 4 log n C) 2n C (r + log n V)(2r + log n V + log n C) +n C 2 log log n C
• In SelectDeleteTransfer, modify the multiplication by replacing the Add protocol by UF-CAdd;

• In SelectDelateTransfer, replace the innermost for loop using an UFC to computes all the values of F in parallel (see Algorithm 87).

Algorithm 87: SelectDeleteTransfer (communication efficient) Requires: n V , the number of valid ballots n C , the number of candidates Inputs: A, an encryption of 0 if we have a selection, of 1 if we have an elimination C,a bitwise encryption of the index of the candidate to select or eliminate T , a bitwise encryption of the transfer coefficient H, the encrypted hopeful vector W , the encrypted winners vector B, the matrix of the encrypted ballots V , the encrypted vector of the value of each ballot Outputs: H, W, B, V

1 for i = 1 to n C (in parallel) do 2 T ←-EqKnown(C, i); 3 H i ←-CSZ(H i , Not(T)); 4 T ←-And(T, Not(A)); 5 W i ←-Or(W i , T); 6 for i = 1 to n V (in parallel) do 7 for j = 0 to n C -1 (in parallel) do F i ←-Eq(B i [j], C); 8 F 0 , • • • , F n C -1 ←-UFC(Or, F 0 , • • • , F n C -1); 9 for j = 0 to n C -1 (in parallel) do B ′ i [j] ←-If(F j , B i [j + 1], B i [j]); 10 M ←-Mult(V i , T) (* we only keep the m + r msb *); 11 V i ←-If(F 0 , M , V i);
12 return H, W, B, V ;

This gives a more advanced approach, where all the quadratic terms in the number of synchronization steps are removed. With this approach, the number of synchronization steps become reasonable, at the cost of a small constant in the computation cost (see Table 16).

Majority Judgment

Majority Judgment is a counting method which has been notably used in the primary election for the 2022 presidential in France, where about 400 000 voters participated [gua22]. It is defined in [START_REF] Balinski | Majority Judgment: Measuring Ranking and Electing[END_REF], and is often cited by French researchers as a strategy-resistant alternative to the current voting system [mie]. In this method, the voter must give a grade to each candidate, for instance Excellent, Good, Medium, Bad or Reject. The number of possible grades is supposed to be small, typically 5 to 7, and we denote it n G . Each grade is represented by a number, from 1 to n G . However, the tradition in MJ is to use a reversed ordering (i.e. 1 is a better / higher grade than 2). Since each voter has to grade each candidate, each candidate ends up with a list of n V grades, where n V is the number of voters who did not abstain or vote blank. For simplicity, we assume that the lists are sorted in decreasing order (highest grades first). Thus, Table 16: Leading terms of the cost of the various sub-protocols for STV (advanced approach); n C is the number of candidates, n V is the number of valid ballots; ; for any expression expr, we denote (expr) * the expression expr log expr; the cost are expressed in the number of CSZ required; the transcript size can be deduced directly from the second column.

Protocol Computations Communications Finished 6n C 1 2 log(n C) 2 CountVotes 3 2 n V n C (r + log n V) * 2 log n V log(r + log n V) SearchMinMax (r + log n V)(10n C + 3 2 r log(r + log n V)) 2(r + log n C) * SelectDeleteTransfer n V (7 2 n C * + 3 2 r(r + log n V) *) 2r log(r + log n V) Total n V n C 2 3 2 (r + log n V) * + 7 2 log n C 2n C log n V log(r + log n V) +2n C (r + log n C) * +2n C r log(r + log n V)
we consider that each candidate has a sorted n V -tuple. Note that two n V -tuples are equal if and only if the candidates received exactly the same number of each grade. Given a sorted n

V -tuple u 1 , • • • , u n V , the median of u is med(u) = u ⌈n V /2⌉ , and we denote û the (n V -1)-tuple u 1 , • • • , u ⌈n/2⌉-1 , u ⌈n/2⌉+1 , • • • , u n V ;
that is, the tuple u in which the median element has been removed. Finally, the relation ≤ maj is defines as follows, where < stands for the grade-wise comparison (which is the opposite of the natural comparison of integers).

Definition 19. Let u and v be two n-tuples of grades, sorted in decreasing order. If n = 1, u < maj v if u 1 < v 1 . Otherwise, u < maj v if one of the following conditions holds:

• med(u) < med(v)
• med(u) = med(v) and û < maj v.

Finally, u ≤ maj v if u = v or u < maj v.
It is possible to show that ≤ maj is a total order, and that the Majority Judgment declares as a winner any candidate whose grades form a maximal n V -tuple (once sorted) for ≤ maj .

Existing approaches for computing the Majority Judgment

Interestingly, it is possible to adapt the Helios protocol to cover the Majority Judgment. For this purpose, one can define the grade matrix G as a matrix of n C rows and n G columns, where n C is the number of candidates and n G is the number of grades. Then, giving a grade to each candidate is the same as choosing a single cell for each row of the matrix. Hence, a voter can encrypt a matrix of n C n G bits, and use a standard ZKP to prove that the ballot is well-formed (i.e. that each ciphertext is indeed an encryption of 0 or 1 and that each row contains exactly one 1; to allow blank voting, it may also be authorized to encrypt a matrix of zeros). Once every ballot has been submitted, a homomorphic tally can be used to reveal the aggregated grade matrix, which states how many voters gave each grade to each candidate. From this, the result of the Majority Judgment can be deduced.

In [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF], an MPC implementation based on the Paillier encryption scheme was proposed to compute the majority judgment in a fully tally-hiding fashion. For this purpose, they used a heuristic from [START_REF] Balinski | Majority Judgment: Measuring Ranking and Electing[END_REF], which is called the majority gauge. It is known that this heuristic is sound: if a winner can be determined with this approach, it is indeed a MJ winner. However, it may also fail to conclude. An experiment run in [START_REF] Balinski | Majority Judgment: Measuring Ranking and Electing[END_REF] on real ballots of a political election with 12 candidates is reassuring: the simplified approach fails only with probability 0, 001 for an election with 100 voters. However, this is due to the fact that in this particular election, there was a high correlation between candidates: if a voter likes a candidate, another candidate from a similar political party is also likely to be liked. If there are less candidates and if the distribution of votes is uniform, then the probability of failure raises up to 22%, as shown in Table 17. In any case, the approach of [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF] leaks more information about the ballots than just the result, since it reveals whether the result can be determined with the majority gauge.

In order to fix the flaw of [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF] and to compare the performance of our toolbox with that of a similar approach that relies the Paillier encryption scheme, we developed a strategy for full tally-hiding in the MJ setting.

A new algorithm for cleartext Majority Judgment

One of the main reasons why [CPST18] used the majority gauge instead of the real MJ algorithm is because the latter is quite complex: if n V is the number of voters, comparing two candidates can take up to n V comparisons between grades, and is a highly sequential process. The book [START_REF] Balinski | Majority Judgment: Measuring Ranking and Electing[END_REF] does provide an alternative algorithm to compute the result faster, but the algorithm is also a bit complex and not easy to adapt in MPC. For this reason, we propose a new algorithm for computing the result of the Majority Judgment (see Algorithm 88, which requires O(n C n G) comparisons between grades. Instead of comparing the medians one by one, this algorithm uses the fact that the sequences formed by the successive medians (that we call the median sequence) contains batches of identical elements. Therefore, we can speed up the comparison by comparing the median sequence batch by batch instead of element by element. We prove the correctness of our algorithm in Theorem 4, which is the subject of the remaining of this subsection.

Theorem 4. Algorithm 88 returns the set of maxima according to ≤ maj in O(n C n G) comparisons between grades, where n C is the number of candidates and n G the number of grades.

The proof of this theorem is available in Appendix C.

Adaptation to the Paillier setting

Before giving a protocol in the ElGamal setting, we propose to perform a first iteration to adapt Algorithm 88 to the MPC setting, but in the context of Paillier. This allows not to address all the difficulties at once. Since we only focus on the tally phase and since obtaining (an element-wise encryption of) the aggregated matrix from the ballots is easy in the Paillier setting, we consider that (an element-wise encryption of) the aggregated matrix is available. We first rewrite the algorithm into Algorithm 91 and prove that the new algorithm is equivalent to Algorithm 88. Using our MPC toolbox, it is easy to implement Algorithm 91 in MPC (see Algorithm 93). This subsection details all the steps that we used to adapt the MJ algorithm in the Paillier setting, and proves the correctness of the resulting MPC protocol. As usual, we use the notation E m to Algorithm 88: Majority Judgment Requires: n C , the number of candidates n G , the number of grades n V , the number of voters Inputs: a, the aggregated grade matrix s.t.

a[i, j] is the number of voters who gave the rank j to the candidate i

1 m ←-max{m i | m i is the median of candidate i}; 2 C ←-{i | m i = m}; 3 I -←-1; I + ←-1; 4 s ←-1; 5 for i ∈ C do 6 p i ←-m-1 j=1 a i,j ; 7 q i ←-n G j=l+1 a i,j ; 8 m - i ←-⌊n V /2⌋ -p i ; 9 m + i ←-⌊n V /2⌋ -q i ; while |C| > 1 and s ̸ = 0 do for i ∈ C do if m - i ≤ m + i then s i ←-p i ; else s i ←--q i ; s ←-max{s i | i ∈ C}; C ←-{i ∈ C | s i = s}; if s ≥ 0 then for i ∈ C do 18 m + i ←-m + i -m - i ; 19 m - i ←-a i,m-I -; 20 p i ←-p i -a i i, m -I -; I -←-I -+ 1; else for i ∈ C do 24 m - i ←-m - i -m + i ; 25 m - i ←-a i,m+I + ;
denote a trivial encryption of m. However, as m may be a complex expression, we may also use the notation Enc(m).

We first provide Algorithm 89 which returns the grade vector as defined in [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF]. It is a (term-by-term) encryption of g such that g j = 1 if j is strictly better than the best median m, and g j = 0 otherwise. The idea of this algorithm is that, for all candidate i and grade j, j is strictly better than the best median if and only if the number of grades better than j is strictly lower than half the number of grades. This translates into the formula 2 j ℓ=1 a i,ℓ < n G ℓ=1 a i,ℓ , which allows to compute c i,j for all (i, j), where c i,j = 1 if j is strictly better than i's median. To deduce the grade vector, we compute the logical conjunction column by column.

Algorithm 89: Grade (Paillier setting)

Requires: n G , the number of grades n C , the number of candidates Inputs: A, the encrypted aggregated grade matrix Outputs: G, the encrypted grade vector s.t. for all j, G j is an encryption of 1 if j is strictly better than the best median, of 0 otherwise.

1 V ←- n G j=1
A 1,j ;

2 for i = 1 to n C do 3 for j = 1 to n G do 4 B ←- j ℓ=1 A i,ℓ 2 ; 5 C i,j ←-Not(GTH(B, V)) 6 for j = 1 to n G do 7 G j ←-C 1,j ; 8 for i = 2 to k do 9 G j ←-Mul(G j , C i,j);
10 Return G Once the grade vector is computed, we can initialize p i , m - i , m + i and q i with Algorithm 90, which is adapted from [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF].

The idea is that p i can be obtained from G thanks to p i = n G j=1 a i,j g j while q i can be obtained similarly with a right shift of G's negation. Indeed, Not(G) is the vector of encryptions of 1 if j is worse than the best median, of 0 otherwise. Its right shift is therefore encryptions of 1 if j is strictly worse than the best median, of 0 otherwise. At this point, we remark that we can replace C as defined in line 2 of Algorithm 88 by the whole set of candidates, this without affecting the result, (see Lemma 11). In what follows, we call Algorithm 88.11 the Algorithm 88 in which this transformation has been done. Lemma 11. In Algorithm 88, replacing line 2 by "C ←-[1, n C]" will not alter the output.

Proof. We show that after the first iteration of the loop, the C sets of both algorithms are the same, which shows that invariants from Lemma 18 are verified at the beginning of the second iteration of the loop, if any (if not the output is correct as well since the sets are the same). Requires: n V , the number of voters Inputs: (A) i,j , the encrypted aggregated grade matrix G, the encrypted grade vector Outputs: P, M -, M + , Q where, for all i, -P i is an encryption of p i , the number of grades received by i which are strictly better than the best median, -

M - i is an encryption of ⌊n V /2⌋ -p i ,
-Q i is an encryption of the number q i of grades received by i which are strictly worse than the best median, -M + i is an encryption of ⌊n V /2⌋ -q i .

1 for i = 1 to n C do 2 P i ←- n G j=1 Mul(A i,j , Gj); 3 M - i ←-Enc(⌊n/2⌋)/P i ; 4 Q i ←- n G j=2 Mul(A i,j , Not(G j-1)); 5 M + i ←-Enc(⌊n V /2⌋)/Q i ; 6 return P, M -, M + , Q;
Let m be the best median, and a and b be two candidates such that med(b) < med(a) = m. For all i, after line 7 in both algorithms, p i is the number of grades strictly better than m received by candidate i while q i is the number of grades strictly worse than m received by candidate i. By definition of the median, we have q a ≤ ⌊n V /2⌋. On the other hand, p b ≤ ⌊n V /2⌋ < q b . But after line 9, we have m - i + p i = m + i + q i = ⌊n V /2⌋ for all i so m - b > m + b and S b = -q b after line 13. As S a ∈ {p a , -q a } with p a ≥ -q a ≥ -⌊n V /2⌋ > -q b , we have S b < S a . Therefore b is discarded from C at line 15.

Lemma 11 allows to initialize p i , m - i , m + i and q i for all candidate i with no care of whether i's median is m or not. Now we explain how to run the while loop in MPC without revealing the number of iterations, nor the number of candidates which remain at any given point (see Lemma 12).

Lemma 12. In Algorithm 88.11, we can replace the while loop by a for loop with n G iterations, without affecting the result. Moreover, invariants from Lemma 18 are still preserved.

Proof. Following the proof of Lemma 18, we remark that the proof does not depend on the number of iterations, so the loop invariants are preserved even if additional iterations are performed. Since the number of iterations is at most n G as explained in the proof of Theorem 4, this concludes the proof.

In what follows, we denote Algorithm 88.12 the Algorithm 88.11 in which the while loop is replaced by a for loop with n G iterations.

To encode C, we use its indicator (which we also denote C). To show the implied modification, we explicitly give Algorithm 91, where the transformations induced by Lemmas 11 and 12 have been made.

To prove its correctness, we give the following lemma.

Lemma 13. In Algorithm 91, c is the indicator of C from Algorithm 88.12.

Proof. We verify that this property holds as a loop invariant.

Initialization. Before the first loop iteration, we have

c i = 1 for all i ∈ [1, n C] and C = [1, n C] so c is C's indicator.
Heredity. Suppose that before the j th iteration in Algorithm 91, c is the indicator of the set C such as before the j th iteration in Algorithm 88.12. Then for i ∈ C, c i = 1 so s i is the same in both algorithms. On the other hand, for i ̸ ∈ C, c i = 0 so s i = -n in Algorithm 91. By Lemma 11, after the first loop iteration in Algorithm 88.11, C only contains candidates of median m. They therefore have at least a grade equal to m, so for all i ∈ C, q i ≤ n V -1 < n V after the first iteration. Since q i can only decrease, we always have p i ≥ -q i > -n V for i ∈ C, hence s i > -n V . Therefore, for i ∈ C and j ̸ ∈ C, s i > s j . This is also true in Algorithm 88.12, so s is the same in both algorithms after line 15. Now we explain how to get a i,m-I -and a i,m+I + without revealing m -I -et m + I + . We use two vectors L and R of size n G such that L j is an encryption of 1 if j = m -I -, of 0 otherwise, while R j is an encryption of 1 if j = m + I + , of 0 otherwise. This way a i,m-I -and a i,m+I + can be obtained with Select. To initialize L and R, we use Algorithm 92 which uses the grade matrix g such that g j = 1 if j < m, where m is the best median, and g j = 0 otherwise. The idea is that m -1 is the last index for which g j = 1, so that l j = g j -g j+1 . Note that an initialization of R is obtained from L, with two right shifts. The only difficulty is when the best median is equal to the best possible grade, in which case g and l are null, while r 2 = 1. In any other case, g 0 = 1 and r 2 = 0, so we have r 2 = 1 -g 0 .

In order to increment I -and I + , we use the conditional left and right shift, which are protocols of the toolbox. Note that we always have L n G = Enc(0) while R n G = Enc(0), so L and R can be processed as vectors of n G -1 ciphertexts.

The complete procedure is given in Algorithm 93, whose correctness is the claim of Theorem 5. In this algorithm, we add the constant n V (the number of voters) to the candidates' scores at line 15, so that each integers to be compared are non-negative. The comparison requires therefore one additional bit but only for the first loop iteration. In the remaining iterations, we have q i ≤ ⌊n V /2⌋ so that we can add ⌊n V /2⌋ instead of n V . Since p i ≤ ⌊n V /2⌋, we no longer need an extra bit. For simplicity, we did not explicitly write this optimization in Algorithm 93. Another notable difference compared to Algorithm 91 is that instead of computing m - i ≤ m + i , we compute p i ≥ q i (which is equivalent by invariant 1 from Lemma 18) since p i and q i are non-negative, while m + i and m - i could be negative during the first loop iteration.

Theorem 5. Algorithm 93 is correct.

Proof. See Lemmas 11, 12, 13 and 18, as well as Lemma 14 below.

Lemma 14. In Algorithm 93, after the i th loop iteration, L and R are such that L j is an encryption of 1 if j = m -I -and 0 otherwise, and R j is an encryption 1 if j = m + I + , of 0 otherwise.

Algorithm 91: MJ; with a fixed number of loops, and an indicator instead of a set. Requires: n C , the number of candidates n G , the number of grades n V , the number of voters Inputs: a, the aggregated matrix. Outputs: c, the indicator of the set of MJ winners. 1 Let m be the best median among all candidates; 2 Let c such that for i ∈ [1, n C], c i = 1; 3 Let I -= 1 and I + = 1 be counters;

4 for i = 1 to n C do 5 p i ←- m-1 j=1 a i,j ; q i ←- n G j=m+1 a i,j ; 6 m - i = n V 2 -p i ; m + i = n V 2 -q i ; 7 for j = 1 to n G do 8 for i = 1 to n V do 9 if m - i ≤ m + i then s i ←-p i ; else s i ←--q i ;
if c i = 0 then s i ←--n V (* Already eliminated candidates are given a fake score *)

s ←-max{s i | i ∈ [1, n C]}; for i = 1 to n C do if s i ̸ = s then c i ←-0; if s ≥ 0 then for i = 1 to n C do m + i ←-m + i -m - i ; m - i ←-a i,m-I -; p i ←-p i -a i,m-I -; I -←-I -+ 1; else for i = 1 to n C do m - i ←-m - i -m + i ; m + i ←-a i,m+I + ; q i ←-q i -a i,m+I + I + ←-I + + 1; return c;
Algorithm 93: MJ: MPC version (Paillier setting) Requires: n V , the number of voters n G , the number of grades n C , the number of candidates Inputs: A, the (encrypted) aggregated matrix Outputs: c, the indicator of the set of winners.

1 for i = 1 to n C do C i ←-E 1 ; 2 G ←-Grade(A); 3 P, M -, M + , Q ←-InitD(A, G); 4 L, R ←-InitP(G); 5 for j = 1 to n G do 6 (* scores computation *) 7 for i = 1 to n C (in parallel) do 8 B 1 ←-GTH(P i , Q i) (* p i ≥ q i *); 9 S i ←-If(B 1 , P i , 1/Q i) (* p i if p i ≥ q i , -q i otherwise *); S i ←-If(C i , S i , E -n V) (* eliminated candidates get the fake -n V score*); S i ←-E n V S i (* s i = s i + n *); S ←-S 1 (* research of the best score *); for i = 2 to n C do B 2 ←-GTH(S i , S); S ←-If(B 2 , S i , S) (* s i is s i ≥ s, s otherwise *) for i = 1 to n C do B 3 ←-EQH(S, S i); C i ←-Mul(C i , B
3) (* elimination of those who do not have the best score *);

B 4 ←-GTH(S, E n); for i = 1 to n C (in parallel) do A ′ i,m-I -←-Select((A i,1 , • • • , A i,n G -1), L); A ′ i,m+I + ←-Select((A i,2 , • • • , A i,n G), R); T + ←-If(B 4 , M + i /M - i , A ′ i,m+I +) (* m + i -m - i if b 4 = 1, a i,m+I + otherwise *); T -←-If(B 4 , A ′ i,m-I -, M - i /M + i) (* a i,m+-I -if b 4 = 1, m - i -m + i otherwise *); P i ←-If(B 4 , P i /A ′ i,m-I -, P i) (* p i -a i,m-I -if b 4 = 1, p i otherwise *); M - i ←-T -; M + i ←-T + ; Q i ←-If(B 4 , Q i , Q i /A ′ i,m+I +) (* q i if b 4 = 1, q i -a i,m+I + otherwise *); L ←-CLS(L, B 4); R ←-CRS(R, Not(B 4)) c ←-Dec(C) (* bit-wise decryption *); return c
Algorithm 94: InitALL Requires: n V , the number of voters n C , the number of candidates n G , the number of grades Inputs: A, s.t., for all (i, j), A i,j is a bitwise encryption of a i,j , the number of voters who gave the grade j to candidate i Outputs:

P, M -, M + , Q, C s.t., for all i ∈ [1, n C],
• P i is a bitwise encryption of p i , the number of grades received by i which are strictly greater than the best median,

• M - i is a bitwise encryption of ⌊n V /2⌋ -p i , • Q i is a bitwise encryption of q i , the number of grades received by candidate i which are strictly worse than the best median,

• M + i is a bit-wise encryption of ⌊n/2⌋ -q i , • C i is an encryption of 1 if i's median is the best median, of 0 otherwise.

Outputs: L, R s.t., if N is the best median, then for all j ∈ [1, n G],
• L j is an encryption of 1 if j = N -1 and 0 otherwise, • R j is an encryption of 1 if j = N + 1 and 0 otherwise.

1 for i = 1 to n C (in parallel) do 2 S i,1 ←-A i,1 ; 3 for j = 1 to n G -1 do 4 D i,j ←-LtKnown(S i,j , ⌈n V /2⌉); 5 S i,j+1 ←-Add(S i,j , A i,j+1) (* s i,j = j k=1 a i,k *); 6 for j = 1 to n G -1(in parallel) do 7 G j ←-And(D 1,j , • • • , D n C ,j); 8 for i = 1 to n C (in parallel) do 9 for j = 1 to n G -1 (in parallel) do X i,j ←-Eq(G j , D i , j); C i ←-And(X i,1 , • • • , X i,n G -1); L, R ←-InitP(G); for i = 1 to n C (in parallel) do P i ←-n G -1
j=1 CSZ(S i,j , L j) (* Bit-wise product and CSZ, as in Select *);

Q i ←-n G
j=2 CSZ(S i,j , L j-1) (* same as above *);

Q i ←-Sub(S i,n G , Q i); M - i ←-SubKnown(⌊n V /2⌋ , P i); M + i ←-SubKnown(⌊n V /2⌋ , Q i); return P, M -, M + , Q, C, L, R;
to initialize C consistently with Algorithm 88 has approximately the same cost. Afterwards, for all i, we have | s i |≤ ⌊n V /2⌋ so we can add the constant 2 ℓ-1 instead, where ℓ is the bit length of the integers. Indeed, 2 ℓ-1 > ⌊n V /2⌋ ≥ q i and 2 ℓ-1 + p i ≤ 2 ℓ-1 + ⌊n V /2⌋ < 2 ℓ . This is of interest because computing 2 ℓ-1 + p i is completely free: we just add E 1 as the most significant bit. Therefore, we only need to call Neg once to compute 2 ℓ-1 -q i instead of calling two Add. This gives Algorithm 95, our ElGamal version of a fully-hiding tallying of MJ.

Comparison with [CPST18]

Compared to [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF], we compute the real Majority Judgment counting function, and not the majority gauge heuristic. Hence, the fear is that our approach may be less efficient than that of [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF]. Actually, this is not as simple as that. Indeed, recall that the Paillier setting is more expensive than the ElGamal setting. Consequently, considering that n T ≤ 5, verifying the validity of the ballots and computing the aggregation phase in the ElGamal setting is only about twice as expensive as just verifying the validity of the ballots in the Paillier setting. Since the voting process can be several orders of magnitude cheaper on the voter side, this is an interesting trade-off. As for the remaining of the process, we remark that we are actually more efficient computation-wise, but less efficient communication-wise. Overall, our toolbox allows to compute the real Majority Judgment counting function without moving from practical to impractical. See Table 18 for the approximate complexities of both approaches.

Single choice voting

In single choice voting, the voters can only pick one choice between several possibilities. The choice can be a candidate (basic voting) or a list of candidates (list voting). In any case, single choice voting can be handled by a homomorphic tally: although the resulting voting system would leak more than just the result (i.e. the name of the winners), the risk for an Italian attack is arguably very low. Despite from that, the first iteration of [KLM + 20] proposed a solution for single choice voting, which was designed to reveal the s choices (candidate or list of candidates) who received the most votes, where s is the number of seats. Unfortunately, their approach suffers from a shortcoming where more than s candidates may be output in case of a tie between two candidates. To solve this, it is possible to encode a tie-breaking mechanism in the least significant bits of the score of each candidate, as explained in Section 5.1.3.

The solution of Ordinos, once fixed, can be interesting when a choice corresponds to a single candidate. However, when it comes to list voting, revealing which lists received the most votes is not enough: often, a rule is applied to distribute the s seats among the different lists, depending on the number of votes they each received. One popular approach for this is the D'Hondt method, which is notably used in Belgium for politically binding elections.

If c 1 , • • • , c n C is the number of votes received by each list and s the number of seats, the D'Hondt method defines the parameters w 1 , • • • , w s with w 1 < w 2 < • • • < w s , and constructs the values c i /w j for all i, j. The s greatest values from those coefficients each come from a list i (i.e., they are of the form c i /w j for some j), and therefore grants a seat to the list i. The way that the list distributes the granted seats among its candidates is up to the political party (alternatively, it can be encoded in the ordering of the candidates in the list). Generally, it is common to take w j = j for all j, so that we only considered this possibility. In this thesis, we fix the shortcoming of Ordinos, where more than s candidates may be output in case of a tie, we propose an adaptation of Ordinos for the D'Hondt method and provide an equivalent in Algorithm 95: MJ: MPC version (ElGamal setting)

Requires: n C , the number of candidates n V , the number of voters ℓ = ⌈log(n V + 1)⌉ Inputs: B, the n V encrypted ballots (each is a bitwise encrypted grade matrix) Outputs: c, the indicator of the set of winners.

1 for i = 1 to n C (in parallel) do 2 for j = 1 to n G (in parallel) do 3 A i,j ←-Aggreg(B i [j, 1], • • • , B i [j, n V]); 4 P, M -, M + , Q, C, L, R ←-InitALL(A); 5 for j = 1 to n G do 6 for i = 1 to n C (in parallel) do 7 B 1 ←-Not(Lt(P i , Q i)); 8 P + i ←-P i,0 , • • • , P i,ℓ-2 , E 1 (* 2 ℓ-1 + p i *); 9 Q + i ←-Neg(Q i) (* 2 ℓ-1 -q i *); S i ←-If(B 1 , P + i , Q + i); S i ←-CSZ(S i , C i) (*
give the fake score 0 to already eliminated candidates *);

S, ←-Max(S 1 , • • • , S n C
) (* we do not compute the index of the maximum *);

for i = 1 to n C (in parallel) do B 3 ←-Eq(S, S i); C i ←-And(C i , B 3);
B 4 ←-S ℓ-1 (* the m.s.b. of s tells whether s ≥ 2 ℓ-1 *);

for i = 1 to n C (in parallel) do A ′ i,m-I -←-Select((A i,1 , • • • , A i,n G -1), L); A ′ i,m+I + ←-Select((A i,1 , • • • , A i,n G -1), R); M +-←-Sub(M + i , M - i); M -+ ←-Neg(M +- bits); T + ←-If(B 4 , M +-, A ′ i,m+I +); T -←-If(B 4 , A ′ i,m-I -, M -+); P i ←-If(B 4 , Sub(P i , A ′ i,m-I -), P i); M - i ←-T -; M + i ←-T + ; Q i ←-If(B 4 , Q i , Sub(Q i , A ′ i,m+I +)); L ←-CLS(L, B 4); R ←-CRS(R, Not(B 4)); c = Dec(C) (*
5n C n G 4n V n C n G + n C log n V n T (224n C + 58n G) (4 log n V + n G)n T 6n V n C n G + n C log n V n T (280n C + 62n G) Ours (ElGamal) 6n C n G 99n V n C n G n T + 33n C log n V n T n G (23 + 2n G) 1 2 log(n V) 2 n T + 2n G log n C log n V n T 102n V n C n G n T + 34n C log n V n T n G (23 + 2n G)
the ElGamal setting, using our toolbox. In addition, we propose two additional computationcommunication trade-offs in the ElGamal setting.

Basic single choice voting

To find the s largest values in a list of N ciphertexts c 1 , • • • , c N , the strategy of Ordinos consists of first building the (encrypted) matrix M rank of the pairwise comparisons c i ≥ c j for all i, j. Then, to decide whether a candidate i is a winner, they compute an encryption of the sum S i = N j=1 1 c i ≥c j , using the homomorphic property of the Paillier encryption scheme. Finally, they produce an encryption of 1 if S i ≥ N -s + 1, of 0 otherwise, and decrypt the result of the test. Hence, the candidate i is a winner if there are at most s -1 candidates which have strictly more votes than i. As mentioned above, this can lead to more than s candidates being elected in case of a tie. To fix this, we propose to encode the tie-beak function in the least significant bits of the score of each candidates. More precisely, if C i is the encryption of the number of votes received by i and r i ∈ [1, N] is a number which encodes the tie break rule for i (i.e. if there is a tie between i and j, then the one with the largest r is preferred), then we replace C i by C 2 ℓ i E r i , where ℓ = ⌈log(N + 1)⌉ is the number of bits required to encode each r, and E r i is a trivial encryption of r i . Hence, a tie can no longer occur and the strategy of Ordinos can be applied. The impact of this fix in the overall performances of Ordinos is low: we only increase the size of the integers to compare by ℓ, which means that we lose less than a factor 2.

Adaptation to the ElGamal setting. Thanks to our toolbox, it is easy to compute the winner of a basic single-choice voting election, using Aggreg and sSelect or OddEvenMergeSort. However, we can also adapt Ordinos strategy using pairwise comparisons. This leads to different computation/communication trade-offs; each can be interesting depending on the ratio between s and n C . In Table 19, we give the approximate costs of all approaches, which includes the fixed solution of Ordinos. Once again, we conclude that our toolbox is more efficient computationwise, but less efficient communication-wise. However, in this particular case, the additional synchronization steps that are required in the ElGamal setting are affordable, and it is still possible to switch to more communication-efficient protocols such as CLt ar UFCAdd if needed.

List voting: computing the D'Hondt method in MPC

We now explain how to adapt the strategies from the previous section to compute a D'Hondt tally in MPC. Although the D'Hondt method can be computed with a homomorphic tally, this is a good opportunity to evaluate the performances of our toolbox for a more complex counting function. First, the strategy of Ordinos can be adapted by computing the pairwise comparisons c i /w j ≥ c i ′ /w j ′ . Sice comparing two fractions may be expensive, it is more efficient to precompute all the product c i w j ′ beforehand. For this purpose, one can use the efficient UFC algorithm (see Algorithm 72), which, given s (dupicated) bitwise encryptions of c i , returns the bitwise

9n V n C + 79.5n C 2 log(n V n C)n T 41n C 2 log(n V n C)n T O(n T) comp. comp. 4n V n C + 14 log log(n V n C) 25n C 2 log(n V n C)n T EG (adaptation) 99n V n C n T + 33n C 2 log(n V n C)n T 1 2 (log(n V) 2 + log(n C) 2)n T 102n V n C n T + 34n C 2 log(n V n C)n T EG (sSelect) 99n V n C n T + 33n C s(3 log n V + log n C)n T 1 2 log(n V) 2 n T + 2s log n V log n C n T 102n V n C n T + 34n C s(3 log n V + log n C)n T EG (OddEven) 99n V n C n T + 25n C log(n C) 2 log n V n T 1 2 log(n V) 2 n T + log n V log(n C) 2 n T 102n V n C n T + 25.5n C log(n C) 2 log n V n T
Table 20: Leading terms of the cost of the different MPC solutions for the D'Hondt method; n V is the number of voters, n C is the number of lists of candidates, s is the number of seats, m = lcm(1, • • • , s), n T is the number of talliers and all the logarithms are in base 2

Version # exp. # synch. steps transcript Adaptation of [KLM + 20] 99n V n C n T + +33n C 2 s 2 log(n V n C s)n T 1 2 (log(n V) 2 + log(n C) 2)n T +2 log s log n V n T 102n V n C n T +34n C 2 s 2 log(n V n C s)n T sSelect 99n V n C n T + 33n C s 2 log(m 3 n V 6 n C s)n T 1 2 log(n V) 2 n T + 2s log(mn V) log(n C s)n T 102n V n C n T + 34n C s 2 log(m 3 n V 6 n C s)n T OddEven 99n V n C n T + 99n C s 2 log n V n T + 25n C s log(n C s) 2 log(mn V)n T 1 2 log(n V) 2 n T + 2 log n V log m log(mn V) log(n C s) 2 n T 102n V n C n T + 102n C s 2 log n V n T + 25.5n C s log(n C s) 2 log(mn V)n T encryptions S i,1 , • • • , S i,s of c i , 2c i , • • • , sc i .
The cost of this protocol is negligible compared to the remaining of the process. Then, we can add the tie-breaking mechanism in the least significant bits and apply Ordinos' strategy. This leads to a solution which is efficient communication-wise, but requires Ω(n C 2 s 2) operations, where n C is the number of candidates and s is the number of voters. Hence, it may be preferable to also adapt the other solutions for computing the s largest values, namely sSelect and OddEvenMergeSort. For those solution, however, precomputing all the S i,j does not help much. Indeed, while c i /w j ≥ c i ′ /w j ′ is indeed equivalent to c i w j ′ ≥ c i ′ w j , sSelect and OddEvenMergeSort imply a lot of conditional swaps, which means that the index i, j and i ′ , j ′ are not known. Consequently, we propose to multiply by the least common multiple m = lcm(1, • • • , s) to get an encryption of the integers d i,j = c i m j for all i, j. Since one of the operands is known, a slightly optimized version of Mult can be use, where a third of the computation is saved. To simplify the complexity analysis, we consider e = exp(1) and we note that, by [RS62, Theorem 12], log m < 1.039s log e. Hence, the cost of computing the n C s multiplications in parallel is approximately that of 2n C s 2 log n V log eCSZ < 3n C s 2 log n V CSZ, and this approximation is valid for all s. This means that the cost of the multiplications is reasonable compared to the rest of the protocol. However, by multiplying the values to compare by m, we make the comparisons more expensive since there are s log e additional bits to process.

Remark that for all of our MPC protocols, P count is divided into two phases. First, the MPC part feature no communication between the participants, except during a conditional gate subprotocol. Second, the final step is to decrypt a vector W of ciphertexts, using the threshold decryption protocol. Note, in addition, that those ciphertexts consist of outputs of a conditional gate protocol.

Hence, to simulate the hybrid process, S can also proceed into two phases. During the first phase, S only has to simulate the answers of F CSZ . For this purpose, S first look whether this answer is one of the ciphertexts of W or not (i.e. if the ciphertext will be decrypted in a subsequent threshold decryption protocol). If this is not the case, S uses the answer of the ideal functionality F count , which includes the output of all the conditional gates. Otherwise, S uses a random encryption of the corresponding plaintext z, using a known randomness ρ. Note that S can deduce z from the result r output by F count . This way, S's answers are perfectly indistinguishable from that of F CSZ .

Once the first phase has terminated, S must simulate the interactions during the threshold decryption protocols. First, the ZKP of correct partial decryption can be simulated in the ROM thanks to their zero knowledge property. Therefore, it only remains to explain how the simulator can generate the partial decryptions. For this purpose, suppose that S needs to simulate the decryption of a ciphertext Z = (x, y), which is an output of a conditional gate protocol. Then, we have x = g ρ and y = zh ρ , where (g, h) is the public encryption key, z is the corresponding plaintext and ρ the randomness chosen by S. As seen in the proof of Lemma 8, this allows the simulator to compute the partial decryptions of all the participants, and hence to perfectly simulate the threshold decryption protocol. Indeed, if h i is the public commitment of the participant i, then the partial decryption of i is w i = h ρ i . With the above S, the simulated hybrid process is perfectly indistinguishable from the real one.

In what follows, we explain how this SUC-security can be used to prove the privacy and the verifiability of a voting system that uses our toolbox to compute the tally in MPC. For simplicity, we only give the proof in the case of Condorcet-Shulze. For this purpose, we define a minimal voting system that we call TH-voting; however, since we only considered the tally process, we do not detail how the other phases are taken care of. Hence, TH-voting is defined as follows:

Setup. We consider an ideal DKG that produces a public key pk, the public commitments (h i) n T i=1 and distributes their secret shares s i to the talliers.

Register. We consider an ideal registration where each voter v received an ElGamal key pair pk v , sk v , and where the public key of each eligible voter is published on the board.

Vote. To vote, a voter produces n C log n C encryptions of 0 or 1, and give the corresponding PoK that they are all encryptions of 0 or 1. Finally, they sign the resulting ballot using sk v . The ballot has the form (pk v , B, π, s), where B is the matrix of the encrypted bits, π contains the corresponding PoK and s the signature of B.

Check. The voter checks that the last cast ballot B appears on the board PB, and that no subsequent ballot uses the same public signature key pk v .

Valid. To verify the validity of a ballot, we verify the signature and the ZKP, and we also verify that no previously cast ballot uses the same matrix B.

Tally. To compute the tally, the talliers first keep, for each credential pk v , the last valid ballot that uses pk v as a verification key. Then they use the MPC protocol described in Algorithm 82; see Section 6.2 for more details.

Verify. To verify the validity of the tally, first verify the valididy of the ballots on the board and, from the list of the valid ballots and the given transcript, compute the output of all the

Universal verifiability

The universal verifiability of our tally process is a direct consequence of the computational soundness of the ZKP and the correctness of the tally protocol. Indeed, consider the definition of end-to-end verifiability of [START_REF] Cortier | Election Verifiability for Helios under Weaker Trust Assumptions[END_REF] (introduced in Section 1.2.2), which combines the individual and the universal verifiability. Since allowing revoting would require to adapt the definition and is independent from the tally process, we do not consider it and assume that the adversary can call O vote at most once for all voter. (To improve readability, we reproduce Fig. 2 below, which describes the verifiability experiment considered in this definition.) In what follows, we give a proof sketch that our minimal voting system has end-to-end verifiability.

Theorem 7. In the ROM and assuming the strong unforgeability of the signature scheme, THvoting has end-to-end verifiability as of Definition 3. Proof sketch. To win the verifiability experiment, the adversary must give a transcript which contains valid ZKP. Yet, by the soundness of those ZKP, the result r must be the same as the one computed from PB using an instance of the tally protocol. Now, since all the happy voters verified that their ballot is in PB and that no subsequent ballot uses the same pk v , it means that their ballots are included in the tally. In addition, by the strong unforgeability of the signature, for all valid ballot in the board such that pk v is not the credential of a honest voter, pk v must be the credential of a corrupted voter. Hence, since we keep up to one ballot per credential, the condition |C| ≤ |CU| is verified. Finally, the strong unforgeability also guarantees that if a ballot that uses the credential pk v of a lazy voter is valid, then it must be a ballot output by O vote .

Privacy

Proving the privacy of our voting system is less straightforward than for the verifiability. A first difficulty, discussed in Section 1.3.5, is that there is no notion of privacy which is satisfactory for To construct A 1 , we use Theorem 6 which states that Tally SUC-securely computes F Tally in the F-hybrid model, with F = F RO , F B . Hence, there exists a simulator S such that, for all environment Z, |Real F Tally,A 0 ,Z (λ, 0) -Ideal F Tally ,S,Z (λ, 0)| is negligible. In particular, we consider the environment Real Priv , so that Real F Tally,A 0 ,Z = S 0 . Then, A 1 can interact with A 0 by simulating the real game using S, so that Ideal F Tally ,S,Z (λ, 0) = S 1 . Hence, |S 1 -S 0 | is negligible.

Game 2: In this game, A 2 is no longer given Π Z and is only given r.

We construct A 2 that interacts with A 1 by simulating Π Z . For this purpose, A 2 uses uniformly random ciphertexts.

To argue the validity of this transition, we construct an adversary B for DDH as follows. First, B gets the challenge tuple (g 1 , g 2 , g 3 , g 4) from the DDH game and sets pk = (g 1 , g 2). To run the setup, B recovers the set S of the corrupted participants from A 1 , and picks s i ∈ Z q at random for all i ∈ S. It the completes S into I by picking some additional s i ∈ Z q at random for all i ∈ I\S, where I ⊂ [1, n T] is a set of size t that contains S, and n T is the number of talliers. For i ∈ I, it computes h i = g s i 1 and, for i ∈ [1, n T]\I, it deduces h i with Lagrange interpolation. It then runs the remaining of Game 2 honestly, but each time A 1 casts a ballot, B extracts the corresponding voting option from A 1 's proof of knowledge. In the ROM, this is possible in polynomial time, as a consequence of the forking lemma (see for instance Theorem [BPW12, Theorem 1]). This way, B can compute the result r of the tally without knowing the secret key sk. Finally, since B knows the cleartexts of the ballots to tally, B can run the tally protocol "on the cleartexts", i.e. it can compute the cleartext of each of the outputs of each conditional gate, since it is the product of two cleartexts. To simulate the output of a conditional gate, B "encrypts" the corresponding cleartext z by choosing two random ρ 1 , ρ 2 ∈ Z q and computing Z = (g ρ 1 1 g ρ 2 3 , g z 1 g ρ 1 2 g ρ 2 4). Finally, if A 1 wins the game, B states that the challenge was a DDH tuple; otherwise, it states that is was a random tuple. Remark that if (g 1 , g 2 , g 3 , g 4) is a DDH tuple, then B played a perfect simulation of Game 1 to A 1 and hence wins with probability S 1 . On the other hand, if the challenge tuple is a random tuple, B played A 2 's simulation of Game 1 and wins with probability 1 -S 2 . Yet, under the DDH assumption, B's advantage in the DDH game must be negligible, hence |S 1 -S 2 | is negligible.

Game 3: In this game, whenever a honest voter cast a ballots, a random ballot is added to the board instead of a ballot that encrypts the chosen voting option.

To argue that |S 3 -S 2 | is negligible, we use a hybrid argument (the hybrid lemma is stated in Theorem 2, Section 3.1.2). Technically, this is not required since the number of voters is not chosen by the adversary but is a parameter fixed by the experiment. However, giving a hybrid argument shows that the difference in probability |S 3 -S 2 | scales linearly with respect to n V , which is certainly reassuring. For this purpose, we denote Game 2 G 1 and Game 3 G 2 . We construct a succession of games hop (H i) N such that, for all i, H i is game G 2 except that for the first i honest voters, the real ballot is added to the board instead of a random ballot. This way, G 2 = H 0 , which is the first condition of the lemma. In addition, for all adversary A, there exists a polynomial n A = n V such that H n A = G 1 ; hence, for all λ ∈ N, Pr(H n A (λ, A) = 1) = Pr(G 1 (λ, A) = 1), which is the second condition of the lemma. Now, the third condition is that there exists a polynomial P such that for all A ′ i+1 for game H i+1 , there exists A ′ i for game H i which makes at most P transitions. Conversely, given A ′ i for H i , we need to construct A ′ i+1 for H i+1 that makes at most P transitions. In our case, A ′ i+1 is given an additional ballot while A ′ i is given a random fake ballot instead. However, since the ballot is encrypted anyway, it must be indistinguishable from a random. Hence we use A ′ i = A ′ i+1 and P = 0.

The fourth condition is that we need a decisional game which is considered hard. For this purpose, we use the IND-PA0 game (see Algorithm 23, that we reproduce in Algorithm 98 below). Indeed, by Lemmas 4, 1 and 3, the encryption scheme Gen, Vote, Extract is IND-PA0 , where Gen is the generation algorithm for the ElGamal encryption scheme, Vote is the voting algorithm and Extract is the algorithm that verifies the ZKP of the ballot, outputs ⊥ if it is invalid, decrypts it and outputs the corresponding voting option if it is valid.

Finally, the last condition is that there exists a uniform reduction to IND-PA0. We construct the required PPT B for the IND-PA0 game as follows. First, B is given the public key pk in the IND-PA0 game. Given i, it interacts with an adversary A ′ i+1 for H i+1 by simulating H i+1 . For this purpose, B gets the set of the corrupted talliers and generates their secret shares at random to simulate the setup as in Game 2. Then, it runs a perfect simulation of H i+1 by picking a random b ∈ {0, 1} and sampling the distribution B at random from B. However, for the i + 1th honest voter, instead of creating a ballot for the corresponding voting option ν, it chooses a random voting option ν ′ and plays the pair ν, ν ′ in the IND-PA0 game. Finally, when B needs to output the result of the tally to A ′ i+1 , B decrypts the valid ballots cast by A ′ i+1 by querying them to the IND-PA0 game, which allows B to compute the result of the tally. If A ′ i+1 correctly guesses the bit b, B states that the IND-PA0 game encrypted ν; otherwise, it states that it encrypted ν ′ . Now, remark that when the IND-PA0 game encrypt ν, B plays a perfect simulation of H i+1 . However, when the IND-PA0 game encrypts ν ′ , B plays a perfect simulation of H i . Hence, the last condition of the hybrid lemma is met and there exists A 3 such that |S 2 -S 3 | is negligible. In addition, since we took A ′ i+1 = A ′ i for all i, we have

A 3 = A 2 .
Algorithm 98: Exp ind-pa0 (λ, A)

1 pk, sk ←-Gen(λ); 2 ν 0 , ν 1 ←-A(pk);

3 b $ ←-{0, 1}; 4 C ←-Enc pk (m b); 5 C ←-A(C); 6 m ←-(Dec sk (y)) y∈C\{C} ; 7 b ′ ←-A(m); 8 if b = b ′ then return 1 else return 0;
Game 4: This game is the ideal game. Finally, we construct A 4 that interacts with A 3 by simulating Game 3. First, A 4 runs the setup honestly by generating a random secret key sk and acting as the trusted dealer. Then, it also runs the registration honestly and get the set of the corrupted voters A from A 3 , that it plays in the ideal game. Then it gives to A 3 the credentials of the corrupted voters and gets j, ν 0 , ν 1 in return, that it plays in the ideal game. Afterwards, it simulates the voting phase using I by emulating the public board as follows. For i ∈ I, A 4 calls A 3 with the input i and the current (simulated) public board PB. Whenever A 3 casts a valid ballot using O cast , by the strong unforgeability of the signature scheme, the ballot must use the credential of a a corrupted voter j. Also, by the computational soundness of the ZKP, the ballot must encrypt some valid voting option. Hence A 4 can decrypt the ballot using sk and update ν j using the corresponding 6.7. Lessons learned voting option. Finally, whenever a voter (including the honest voter) casts a ballot, A 4 adds a random ballot in the public board, just as in Game 3. Finally, after the last call of O cast by A 3 , A 4 plays (ν j) j∈A in the ideal game and gets the result r in return, that it forwards to A 3 . Finally, it outputs A 3 's guess.

Clearly, except if A 3 forges a valid ZKP for an invalid ballot or forges a signature, A 4 plays a perfect simulation of Game 3 to A 3 , so that |S 3 -S 4 | is negligible.

Conclusion.

By the triangular inequality, this shows that for all PPT adversary A for the real game, there exists a PPT adversary B for the ideal game that wins with the same probability, with up to a negligible difference.

Lessons learned

Our study shows that it is possible to compute the result of an election without leaking any additional information about the original ballots, often at a realistic cost. In this thesis, we provide a toolbox that can be used for this purpose, and apply it to several counting methods. During the process, we made some interesting findings that we give here as the lessons learned.

Think ElGamal. While Paillier is the Swiss-Army knife for MPC, our study has shown that ElGamal can often suffice, even when encrypted integers need to be added or multiplied. This can be a big advantage in terms of efficiency and availability of software libraries.

Rethink the encoding of ballots. The encoding of a ballot can have a huge impact on the cost of the rest of the procedure. For example, encoding integers in their bit representation adds an initial cost that can later save a lot of computation. It is often necessary in the ElGamal setting. The encoding of ballots also offers different tradeoffs in terms of load balance between the voters and the talliers, as seen in the case of the Condorcet methods.

A proof of a shuffle is a versatile tool. The typical use of a proof of a shuffle is inside a mixnet, where some ciphertexts are mixed and re-randomized. However, a proof of a shuffle can also be used to prove the validity of a ballot, in the context of preferential voting. From this remark, we proposed an original usage of the proof of a shuffle in the context of STV and Condorcet voting, which both give two very efficient voting procedures. In the case of Condorcet voting, this gives an efficient solution on the voter-side that is compatible with a homomorphic tally.

Consider the full algorithmic toolbox. When designing an MPC protocol, the constraints are rather not standard. The worst case complexity always needs to be considered, and all the branches need to be visited, just as in the circuit complexity model. In fact, this circuit point of view is highly relevant, and we borrowed some designs from the hardware literature. The depth of the circuit is related to the number of communication rounds; but limits on the fan-in or fan-out of a gate are irrelevant. Some rather advanced algorithms like the MJ counting functions or the Floyd-Warshall shortest path algorithm can be translated rather easily. On the other hand, some basic tasks can be surprisingly expensive. For instance, many classical algorithms assume that accessing the i th value of an array T [i] takes a constant time, even when i is a computed value. In MPC, this requires a linear time to pass through all the values of T in order to hide the value of i. Another example is the addition of encrypted integers, where the carry propagation can generate a chain of dependencies that translates into a linear number of communication rounds. Breaking the chain of carries as done in hardware circuits allows to reduce this to a logarithmic number of rounds.

Part III

Coercion resistance

Coercion is a common security concern in electronic voting. It occurs when an attacker, the coercer, asks a voter to vote in a specific way, using a threat or a reward. This phenomenon is known to exist in real-world elections, with traditional voting at polling stations. However, an electronic voting system which is not designed to tackle coercion could allow the attacker to coerce a larger number of voters, or to gain a more convincing evidence that the coerced voters actually obeyed. Also, since Internet voting is a remote voting process, this introduces new attacks compared to polling station voting. For instance, the coercer can ask the voter to give all the voting materials that they received. The classical verifiability mechanisms will then provide a proof to the coercer that the voter did not cheat.

In the literature, the most notable approach to address coercion is that of Juels, Catalano and Jakobsson [START_REF] Juels | Coercion-resistant electronic elections[END_REF], who gave a formalization of the notion of coercion-resistance as well as the first coercion-resistant protocol. Their definition and their protocol, now known as the JCJ protocol, remain the reference for the research on coercion-resistance in electronic voting. In this thesis, we disclose that the original protocol of JCJ is not perfectly coercion-resistant when revoting is allowed. This is because of an issue in the definition of coercion-resistant, which does not allow to properly take revoting into account. In Chapter 7, we present the vulnerability of the JCJ scheme, we evaluate its impact and we propose a new definition of coercion-resistance which better models revoting. Since the JCJ protocol is the basis of most of the academic protocols that aim at achieving coercion-resistance, a large majority of the existing protocols are also concerned with the vulnerability that exists in JCJ. In Chapter 8, we present CHide, which is a variant of the JCJ protocol which achieves our definition of coercion-resistance, and corrects the vulnerability of JCJ.

Chapter 7

Is the JCJ voting system really coercion-resistant?

The JCJ family

A prominent strategy to address coercion is that of the JCJ family, which is based on the fake credential paradigm. The idea is that whatever the coercer might ask the voter to do, it can do it itself when given the credential of the voter. Hence, the strategy of JCJ is to provide a way for the voter to give a fake credential to the coercer. The coercer, who votes with the provided credential, has no way to detect whether the latter is valid or not. In order to guarantee that, during the voting phase, the ballots are accepted in the ballot box regardless of their credentials; those which use an invalid or a duplicate one are removed later, during a cleansing phase. The output of this cleansing phase is a set of ballots that is tallied in the usual way. The main security feature is that, given a credential and all the publicly available information, the coercer is unable to tell whether the credential is real or fake. At the same time, for the legitimate voters, verifiability is preserved.

Presentation of the JCJ protocol

In the case of the JCJ family, we define a voting system as usual, but we also consider that the voting system must provide a polynomial time probabilistic algorithm Fakecred that allows a voter under coercion to produce a fake credential. Hence, a voting system is a tuple (Setup, Register, Vote, Check, Valid, Fakecred, Tally, Verify). More precisely, the protocol must actually provides an evasion strategy, which is a list of instructions that the voter can follow to evade coercion; i.e. to be able to deceive the coercer and still vote for the desired voting option. The JCJ voting system consists of the following phases.

Setup. The talliers jointly generate an ElGamal encryption key pk for a group G of prime order q. The resulting public information, such as pk, (h i) n T i=1 , is published in the public board. Registration. The registrars jointly compute n V random credential c 1 , • • • , c n V , where n V is an eligible voter. For each credential i, they generate a random encryption C i of c i , and form the public roster

Π R = (C 1 , • • • , C n V).
Then, whenever an eligible voter authenticates themselves with the registrars, the latter privately send the voter one available credential at random, possibly with designated zero-knowledge proofs (DVZKP) that guarantees the voters that their credential is valid [JSI96]. This DVZKP is such that it can only convince the voter, and a voter under coercion can forge a fake DVZKP for any statement.

Voting. To cast a ballot, a voter encrypts their voting option ν with the public key pk, which gives the ciphertext V (or list / matrix of ciphertexts, depending on the expected format of a ballot). In addition, they also encrypt their credential c, which gives a ciphertext C. They prove the knowledge of ν and c using a PoK, and prove in zero knowledge that ν is a valid voting option, yielding an overall proof π. The resulting ballot B = (V, C, π) is sent anonymously to the bulletin board.

Tallying. The tally phase consists of four steps.

1. Ballots with duplicated credentials are detected using Plaintext Equivalence Tests [JJ00] (PET). (We present the PET in Section 2.4.4.) At most one ballot (typically, the last) is kept per credential.

2. The trustees shuffle the remaining ballots, using a mixnet.

3. PET are used again to remove the ballots with invalid credential, that is, whose credential is not present in an encrypted form in Π R .

4. Finally, each remaining ballot is decrypted so that the result can be computed. (Alternatively, any other tally process could be deployed.)

Each step includes a zero-knowledge proof that the correct operations are performed. Evading coercion. In the JCJ voting system, a voter under coercion generates a random, fake credential c ′ (i.e. Fakecred is an algorithm that produces a uniformly random credential) and hands this over to the coercer, pretending that it is the real credential obtained during the registration phase. Afterwards, the voter under coercion votes once for the desired voting option (or abstain, depending on their personal preference). Note that if the coercer casts a ballot using the fake credential c ′ , the ballot will be removed at Step 3. of the tally phase. However, thanks to the mixnet, the coercer is unable to learn that the suppressed was the one it cast with the credential c ′ .

Some variants of the JCJ voting system

The JCJ scheme was impactful in the literature, and most of the subsequent schemes that addressed coercion-resistance were aimed at improving its scalability, or at least were largely inspired by the JCJ protocol. Civitas [START_REF] Michael | Civitas: Toward a Secure Voting System[END_REF] is one of the most notable examples, and is widely considered as an important step towards a practical version of JCJ. Among other things, it introduces the notion of ballot blocks, that mitigates the quadratic cost of the cleansing phase. Other attempts were made to improve the efficiency of JCJ. In [START_REF] Spycher | A New Approach towards Coercion-Resistant Remote E-Voting in Linear Time[END_REF], Spycher et al. claim a linear time cleansing, but this comes with a deterioration of the coercion-resistance. Later on, the same authors proposed other schemes with a clear trade-off between efficiency and coercion-resistance, thanks to anonymity sets [START_REF] Spycher | Achieving Meaningful Efficiency in Coercion-Resistant, Verifiable Internet Voting[END_REF]. Other improvements include [START_REF] Araújo | A practical and secure coercion-resistant scheme for remote elections[END_REF], where Araújo et al. propose the AFT scheme to perform the cleansing phase in linear time, and [START_REF] Clark | Selections: Internet Voting with Over-the-Shoulder Coercion-Resistance[END_REF], which introduces the idea of over-the-shoulder coercion-resistance. Note that the AFT scheme was itself the subject of many iterations, see for instance [ARR + 10, ABBT16].

In any case, the JCJ protocol and the fake credential paradigm is always the underlying idea behind those proposals.

Unveiling a shortcoming in JCJ

Despite the JCJ protocol being a central protocol in the literature, we discovered a shortcoming that occurs when revoting is allowed. In the context of coercion-resistance, allowing revoting is a natural counter-measure that can address, for instance, a coercion from a family member or an employer. The idea is that the voter first complies with the coercer, but then revotes using the desired voting option when given a moment of privacy. In particular, the Estonian electronic voting system entirely relies on revoting to mitigate coercion [START_REF] Madise | The first Practice of Country-wide binding Internet Voting in the World[END_REF]. Hence, we consider that it is natural for a coercion-resistant protocol to allow revoting. Note that in [IRRR17, Section 4.4], it was already mentioned that some problems may arise due to revoting in the JCJ scheme.

Leakage in case of revoting

For a verifiable voting system, it seems unavoidable to leak the number of received ballots in the public board. The number of ballots that use a valid credential is also leaked unless a more sophisticated tally methods is used, such as tally-hiding. However, the JCJ protocol leaks the following additional information:

• n B , the total number of received ballots;

• n V , the total number of valid (and counted) ballots;

• n R , the total number of revotes;

• the complete distribution of revotes per (encrypted) credential (hence, for all k, the number of credentials used to revote k times).

This can be exploited by a coercer to detect when a coerced voter disobeys. Indeed, there is no reason to assume that revoting is independent from the choice of the candidate. On the contrary, revoting is often due to voters changing their mind between candidates, for instance due to some late announcements in the press.

An attack against coercion-resistance. To illustrate that the leakage can indeed be exploited in some cases, we consider an extreme case, with two candidates A and B. Suppose that voters voting for A do not revote while those voting for B always revote, exactly once. We denote r A (resp. r B) the number of votes for A (resp. B), and we suppose that those information can be deduced by the result of the tally, which is often the case except if a tally-hiding strategy is used. Due to the considered revoting behaviors, the number of revotes n R corresponds to the number of votes for B sent by the honest voters.

Assume now that Alice wants to vote for B but is instructed by her coercer to vote for A.

• If Alice obeys, the coercer will observe r B = n R .

• If Alice disobeys and casts one ballot for B, the coercer will observe that r B = n R + 1.

Hence the coercer will detect that Alice has disobeyed, which breaks coercion-resistance.

One could argue that Alice should follow a different evasion strategy and cast one ballot if she votes for A and two if she votes for B. This does not work either. Indeed, assume now that Alice wants to vote for A, but is instructed to vote for B.

• If she obeys, she gives her real credential c to her coercer. The latter then casts exactly one ballot for B using c.

• Otherwise, she provides a fake credential c ′ , that the coercer uses to vote for B. Alice then votes for A using c.

In the first case, r B = n R + 1 but in the second case, r B = n R . Once again, the coercer is able to detect that Alice disobeyed and coercion-resistance is lost. More generally, it seems difficult to come up with a simple evasion strategy that fixes the issue in JCJ; see the discussion in Section 7.6.

The impact on coercion-resistance

In the previous section, we explained the leakage of the JCJ protocol and we illustrated, on an extreme scenario, how this can be exploited to completely break coercion-resistance. In this section, we estimate the impact of the leakage in more realistic scenarios. For this purpose, we use the framework of [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF] which allows to quantify the coercion level of a voting protocol.

Quantifying coercion-resistance

We consider n V voters, among which one is under coercion. The others are supposed honest and independent. They choose a voting option among C + 1 possibilities, which includes abstention and blank voting. We suppose that the choices follow a probability distribution (P 0 , . . . , P C), where P 0 is the probability to abstain. Let α be the voting option corresponding to the intention of the coerced voter, and β be the one that is the instruction of the coercer. The coerced voter either disobeys, gives a fake credential and votes with the option α (the evasion strategy does not imply any revote), or obeys and gives their real credential which the coercer uses to vote with option β. The coercer must decide whether the voter obeyed or not, given only the result. The ideal result is R Ideal = -→ res = (res 0 , • • • , res C), the number of voters who opted for each option. In JCJ, however, the real result R Real is -→ res, as well as, for all k, the number of voters who revoted k times. In addition, both results should also include the number of ballots that are removed during the cleansing phase. However, to focus on the leakage of JCJ, we assume that a large and unpredictable number of dummy ballots are cast, so that the adversary cannot gain information by observing this number. This approximation is necessary to use the framework of [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF], which does not model the possibility to cast a ballot with an invalid credential in the ideal setting.

We now instantiate [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF] in our scenario. To simplify the analysis, we assume that a voter revotes at most once, so that R Real = (-→ res, n R), where n R is the total number of revotes. We also assume that all the parties are honest except for the coercer, and that the cryptography is perfect, so that the coercer does not learn any other information than the result. With these assumptions, we define the real and ideal games, where the behavior of the coerced voter is decided at random (the coerced voter obeys with probability 1/2 and tries to evade coercion with probability 1/2). The coercer wins the real (resp. ideal) game if they correctly guess the behavior of the coerced voter given the real (resp. ideal) result. For g ∈ {Real, Ideal} and for a pair (α, β), we denote W g α,β the event when the coercer wins the game. We denote δ g α,β = 2| Pr(W g α,β) -1/2|, and δ g = max α,β δ g α,β . We call δ Real (resp. δ Ideal) the coercion level of the real (resp. ideal) game.

We denote by Pr(R g |α) (resp. Pr(R g |β)), the probability that the result R g is obtained, assuming the voter votes for α (resp. obeys the coercer and votes for β). According to [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF], the best strategy for the coercer is to assume that the voter obeyed if and only if Pr(R g |β) ≥

A discredit in the press

We still consider two candidates A and B, and in this scenario, we assume that during the period of the voting phase, the candidate A is discredited by an announcement in the press. As a consequence, some proportion of the voters who initially voted for A will change their mind and revote for B. For simplicity, we assume that no revote occurs that is not due to this event.

Such discredits have happened in the past. For instance, Dominique Strauss-Kahn, a former IMF managing director, was highly expected to become the next French president in 2012. However, due to an accusation of sexual assault, his political party chose to support another candidate. This occurred before the time of the election, and no electronic voting was involved. We can also mention the 2022 Tory leadership election for the succession of Boris Johnson; the voters could vote by Internet, and revote was initially authorized (before a security concern forced the organizers to forbid it). The duration was more than a month, which is more than enough for a discrediting event to occur (for this election, it did not occur).

To study the potential impact of JCJ's leakage in such a scenario, we first, we fix a small number of voters, so that the effect is more visible, and we study the influence of the other parameters.

In Fig. 21, we plot the real and ideal coercion levels as the proportion x of voters who change their mind from A to B ranges from 0 to 1. When x = 0, there is no difference since there is no revote. When x = 1, there is no difference either since nobody votes for A anymore, so that there is no coercion-resistance in both the real and ideal games (note that this is because there are only two candidates; if there are more candidates, there would be no coercion-resistance in the real game but still the coercion level of the ideal game would remain reasonable: this is the scenario of Section 7.2.1). However, a non-negligible difference can be observed for the intermediate values of x.

In Fig. 22, we plot the real and ideal coercion levels with a fixed value of x = 0.3 (i.e. 30% of the voters who voted for A revote for B) and we let the initial proportion p in favor of A vary from 0 to 1. When p = 0, everyone votes for B so that there is no coercion-resistance. When p is large, we get close to the scenario presented in Section 7.2.1, so that there is no coercion-resistance in the real game while the ideal game still offers some coercion-resistance.

In Fig. 23, we plot the real and ideal coercion levels with fixed x = 0.3 and p = 0.7 and we let the abstention rate P 0 range between 0 and 1. When P 0 = 0, there is no coercionresistance because forced-abstention attacks are trivial; similarly, there is no coercion-resistance when P 0 = 1. However, a non-negligible difference can be observed for the intermediate values.

Finally, in Fig. 24, we plot the real and ideal coercion levels with fixed x = 0.3, p = 0.7 and P 0 = 0.3, for a number of uncoerced honest voters equals to 16, 32, 64, 128, 256, 512 and 1024. This shows that the difference between both coercion levels remains non-negligible even when the number of voters is large. An asymptotic analysis (see e.g. [START_REF] Mestel | How Efficient are Replay Attacks against Vote Privacy? A Formal Quantitative Analysis[END_REF]) reveals that the coercion level decreases in 1/ √ n V .

Defining coercion-resistance

One of the reasons why the weakness of JCJ was not discovered so far is because the original definition of coercion-resistance is flawed, and does not consider revoting. In this section, we present the original definition of JCJ, we mention another existing definition and we propose a new definition of coercion-resistance. Figure 24: Coercion levels as a function of the number of voters with 30% abstention, 21% revotes and a distribution of 70%-30% between the candidates.

The original definition of JCJ

The intuition of the JCJ definition of coercion-resistance is that an adversary must not be able to guess whether a coerced voter obeyed or evaded coercion. When the voter obeys (b = 1 in the definition), they give their real credential and abstain from doing any other action. Note that a coercer may ask the voter to cast some specific vote or to perform some specific computations, but this is not considered in the definition as the adversary might as well do it itself, with the given credential. When the voter evades (b = 0 in the definition), they give a fake credential and cast a single vote for the desired voting option (or abstain, depending on their personal choice). This yields the game Real CR JCJ presented in Algorithm 116. Voting choices are represented as integers between 1 and n C , and ϕ represents the choice to abstain. During this game, the adversary selects the set of corrupted voters. It is given the corresponding private credentials as well as all the public roster Π R (i.e. the encrypted credentials in the JCJ protocol, which are included in the transcript Π R of the registration). It then chooses (j, α), where j denotes the voter under coercion and α their desired voting option. The evasion strategy is modeled in lines 10 and 12: when the voter disobeys, they create a fake credential and cast a vote for α (or abstain if α = ϕ). Otherwise, they give their real credential.

In the definition of JCJ, the honest voters vote according to a distribution which depends on the number of options n C and returns a value that may be:

• any valid vote ν ∈ [1, n C];
• ϕ, which represents abstention;

• κ, which represents casting a vote with a fake credential.

We extend the Vote function to votes equal to κ as follows.

Vote pk (κ, c) = Vote pk (ν, c),

where c = Fakecred(c) and ν is sampled from [1, n C].
It is worth noting that the advantage of an adversary in game Real CR JCJ will always be non negligible since one can compare the result of the tally with the expected result, given the distribution D of the voting intentions. For example, if the adversary wants to cast a vote for a very unlikely candidate, they may observe cases where the latter does not get a single vote in the result, which is a clear indication that the coerced voter disobeyed. Hence, the JCJ definition compares the advantage of an adversary in game Real CR JCJ with the one in an ideal game Ideal CR JCJ , where there is no other information than what is unavoidably leaked, that is, the result. The game Ideal CR JCJ is presented in Algorithm 117. Compared to the original definition, we present a slightly modified version that reasons on the clear votes only. This simplifies the understanding by focusing on the information given to the adversary. All our claims and remarks hold on the original definition as well.

Definition 20 (adapted from [START_REF] Juels | Coercion-resistant electronic elections[END_REF]). A voting system is JCJ-coercion resistant if for all PPT adversary A, for all parameters n T , t, n V , n A , n C , and for all distributions D, there exists a PPT adversary B and a negligible function µ such that

| Pr(Ideal CR JCJ (B, λ, n V , n A , n C , D) = 1) -Pr(Real CR JCJ (A, λ, n T , t, n V , n A , n C , D) = 1)| ≤ µ(λ).
As noticed in [START_REF] Haines | Surveying definitions of coercion resistance[END_REF], this definition cannot be realized by a scheme which uses a public board. Indeed, in the real game, the adversary observes the length n B of the board which corresponds to the total number of ballots cast by non-corrupted voters. Then the adversary learns the result and in particular its size |r|, that is the number of valid ballots counted. Hence the total number ∆ = n B -|r| of ballots discarded can be deduced, which is not available in the ideal game Ideal CR JCJ . The value of ∆ can be compared with its expected number, according to the distribution D. Since there is an additional ballot discarded (the one of the coercer) when the voter evades coercion, the adversary has a non-negligible advantage in the real game. For instance, if D is such that no voters cast a ballot with an invalid credential, either n B = |r|, which means that the adversary's ballot has been counted, or n B = |r| + 1, meaning that the adversary's ballot has been discarded and that the voter has disobeyed. Of course, the same issue applies to the JCJ definition as stated in [START_REF] Juels | Coercion-resistant electronic elections[END_REF].

The authors of [START_REF] Haines | Surveying definitions of coercion resistance[END_REF] proposed a patch to the issue they discovered: the length of the board should be given to the adversary in the ideal game as well. Intuitively, this corresponds to rewriting line 17 of Algorithm 117 as (ν i) i∈V , α ←-A(|D|). However, this still does not allow to detect the leakage of the JCJ protocol during the tally. Indeed, the distribution D fails to model several aspects:

• First, the addition of a ballot with an invalid credential only happens when a honest voter sacrifices their own vote. This is unlikely in practice, and does not model ballots sent by non-eligible voters (for instance, by the authorities).

• Second, revoting is not considered at all in D, which explains why the leakage of the JCJ protocol was not detected.

A final remark about the definition of JCJ concerns its underlying trust assumptions, which are slightly different from the usual. For clarity, we recall them here. First of all, it is assumed that all the registrars are honest and that the adversary is inactive during the registration phase (or, alternatively, the registration is untappable, which means that the communications between the registrars and the voter leave no trace). Second, the adversary can only corrupt a minority of decryption authorities. Also, ballots are cast through anonymous channels. Finally, the bulletin board is honest.

Our definition of coercion-resistance

Apart from the definition of JCJ, there are other definitions in the literature (see [START_REF] Haines | Surveying definitions of coercion resistance[END_REF] for a survey). In particular, we already used the framework of [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF] (KTV) in Section 7.3. In this framework, a quantitative definition of coercion-resistance is proposed, where the notion of δ-coercion-resistance comes with two conditions: first, the coerced voter must have a strategy to meet their objective with overwhelming probability; second, the adversary cannot decide, with an advantage greater than δ, whether the voter used this strategy or forwarded all received messages (including their credential).

The KTV definition is abstract. To use it, it is necessary to model the voting protocol, its participants and the evasion strategy. In addition, it does not say much about how ballots sent with an invalid credential should be handled since the honest participants are assumed to vote following a fixed distribution of valid voting options. Finally, it does not tell if a specific δ is acceptable or not. To address this, we propose our own definition which can be seen as an instantiation of KTV, where δ is shown to be minimal, that is, not greater than that of an ideal protocol.

If we compare the advantage of the adversary in the real game with its advantage in the ideal one, we need to cover a large family of vote distributions. Otherwise, we may miss security flaws. In particular, we need to cover cases explicitly planned by the protocol such as revote and addition of ballots with fake credentials. Therefore, given a set S of unique identifiers and the number n C of voting options (excluding abstention), we consider a distribution B(S, n C) of sequences of pairs of the form (j, ν) where ν ∈ [1, n C] represents a vote and j represents either a valid voter (when j ∈ S) or a fake voter, with a fake credential. Typically, if A is the set of corrupted voters, S = [1, n V]\A. To avoid collisions with identifiers which may be in A, we consider that any j ̸ ∈ S holds a negative value. The distribution B captures the abstention of a voter j with the absence of a couple of the form (j, *). It models both revoting and the addition of fake ballots, typically by authorities:

• revoting is reflected in B by the fact that a voter may appear several times in the same sequence;

• fake ballots are modeled by pairs (j, ν) where j / ∈ S. They may be added by authorities or voters. Note that B also models the case of a revote with a fake credential.

For example, in the sequence (1, 1), (2, 1), (1, 2), (-1, 2), (1, 1) with n V = 3, we have three voters V 1 , V 2 and V 3 . V 1 first votes 1, V 2 votes 1, then V 1 revotes for 2, then a fake vote for 2 is added, then V 1 changes back her vote to 1. V 3 chooses to abstain.

Our Real CR game, defined in Algorithm 101, is similar to Real CR JCJ . Votes are drawn according to B([1, n V]\A, n C), yielding a sequence B. It typically contains pairs (i, ν) with i < 0, which corresponds to the addition of ballots with fake credentials. For such a pair, we therefore generate a fake credential at lines 10-11. Just as in the definition of JCJ, the adversary must guess a bit b. If b = 1, the coerced voter j obeys, hence any vote from j is removed from B and the real credential is provided to the adversary. If b = 0, the voter follows the evasion strategy, namely they cast one vote for β (if β ̸ = ϕ) and provides a fake credential. Hence the votes from j in B are replaced by a single vote for β (if β ̸ = ϕ). Then ballots are added according to B. They correspond either to real or fake votes (or revotes). Compared to the original JCJ definition, we also slightly improve the power of the adversary by letting them observe the board after each vote and add ballots if they want to, which better reflects the reality. Also, recall that the notation Tally A is used to capture the fact that the adversary is active during the tally phase, and can impersonate the corrupted talliers. Again, the advantage of the adversary in the real game is compared with its advantage in an ideal game Ideal CR (see Algorithm 119), where the adversary can only observe the number of ballots and the result. The latter is computed from the considered counting function count, but also from a function cleanse that removes votes from invalid voters j / ∈ [1, n V] and that takes care of revotes according to the policy (typically, the last vote is kept). Definition 21. A voting system is coercion resistant if for all PPT adversary A, for all parameters n T , t, n V , n A , n C , for all subset C t ⊂ [1, n T] of size at most t and for all distribution B, there exists a PPT adversary B and a negligible function µ such that

| Pr(Ideal CR (B, λ, n V , n A , n C , B) = 1) -Pr(Real CR (A, λ, n T , C t , n V , n A , n C , B) = 1)| ≤ µ(λ).
The main difference between our definition and the original one is that we consider a larger family of distributions, which allows to analyze a protocol in the context of revotes and fake ballots.

Another difference is that the adversary shall not gain any advantage for any distribution B, while the JCJ definition defines coercion-resistance with respect to a particular distribution. This is preferable since a protocol should be as secure as the ideal one, whatever the considered distribution. It is counter-intuitive to design a cryptographic protocol that resists only for particular distributions. Of course, it makes sense to analyze the exact advantage in the ideal game for a particular distribution, and devise whether voters are reasonably protected in that case of not. But the cryptographic protocol itself should be as solid as the ideal one nevertheless.

A description of the leakage in JCJ

Because of a leakage during the tally phase, the JCJ protocol does not verify Definition 21 and is not fully coercion-resistant. In Section 7.3.1, we quantified the impact of the leakage in some realistic scenarios; however, it is also interesting to qualify its exact.

In Definition 22, we define a weaker notion of coercion-resistance, where the votes are no longer considered perfectly anonymous. Rather, we consider that the adversary is able to detect when a ballot is a revote or not. More precisely, in the ideal game, we generate a pseudonym c i for each voter i occurring in B. The first voter who votes is given pseudonym 1, the second one is given pseudonym 2, and so on. The rest of the game is left unchanged except that at the end (line 25 of Algorithm 119), the adversary is given an additional information, that we denote I, which tells which ballots correspond to the same credential (invalid or not). More formally, I is a sequence of pseudonyms, each corresponding to the voter that has voted at this step. This is exactly what can be observed in JCJ. See Algorithm 120 for a description of the ideal game Ideal CR W . As for the real game, it is left unchanged.

Definition 22. A voting system is weakly coercion resistant if for all PPT adversary A, for all parameters n T , t, n V , n A , n C , and for all distribution B, there exists a PPT adversary B and a negligible function µ such that

| Pr(Ideal CR W (B, λ, n V , n A , n C , B) = 1) -Pr(Real CR (A, λ, n T , t, n V , n A , n C , B) = 1)| ≤ µ(λ) .
Assuming that the cryptography used in JCJ is perfect (i.e. that the tally protocol is SUCsecure), it is possible to prove that JCJ satisfies this relaxed version of coercion-resistance under JCJ's trust assumptions: the registration is untappable, the voting channel is anonymous, up to a threshold t of talliers is corrupted, and the registrars are honest. In reality, the tally protocol used in JCJ is not SUC-secure since it uses a reencryption mixnet (there is currently no known UC-secure reencryption mixnet). Also, the PET originally used in JCJ was not verifiable when all the participants are corrupted [START_REF] Mcmurtry | When Is a Test Not a Proof?[END_REF]. While the fix proposed in [START_REF] Mcmurtry | When Is a Test Not a Proof?[END_REF] is not proven SUC-secure, we consider that proving the security of JCJ's cryptographic primitives is out of scope for this thesis.

Theorem 9. Under the DDH assumption and in the ROM, if the Tally protocol of JCJ is SUCsecure, then the JCJ protocol is weakly coercion-resistant.

In Chapter 8, we present a variant of the JCJ protocol that is coercion-resistant, and prove its coercion-resistance in Section 8.2.1. The proof of Theorem 9, is extremely similar to the proof of Section 8.2.1. The main difference is the beginning of the proof, where the ideal result is X, I instead of just X. Apart from that, we use the exact same transitions and arguments. Therefore, we only provide a short proof where we reproduce the main transitions. See Section 8.2.1 for a complete proof where each transition is justified.

Proof sketch. Consider an adversary A 0 for the real game. We construct a succession of game hops. For all i, we construct an adversary A i and we denote S i the probability that A i wins Game i.

Game 1: In this game, the adversary no longer takes part into the tally process at line 24 but instead is given the output of the protocol, computed by a trusted party (i.e. the result of each PET, the result of the reencryption mixnet and the result of the decryption).

Since we assumed that the cryptographic primitives of JCJ are perfect (i.e. SUC-secure), there exists an adversary A 1 such that |S 1 -S 0 | is negligible.

Game 2: In this game, the adversary no longer has access to the output of the PET, the reencryption mixnet and the final decryptions; instead it is given X, I, the final result of the tally.

To construct A 2 , it is sufficient to show that one can simulate the missing outputs, given X and I. First, using I, the adversary not only learns the number of duplicates n d , but also the pairwise results of the PETs for all the ballots of the board. Indeed, if (C 1 , C 2 , π) and (C ′ 1 , C ′ 2 , π ′) are two ballots of respective indexes j > i in the board, PET(C 2 , C ′ 2) = 1 if and only if id j = id i , where id i is the pseudonym given to the ith ballot in I. As for the mixnet, its output can easily be simulated by using |PB| -n d random encryptions. By the IND-CPA property of the ElGamal encryption under the DDH assumption, this leads to a computationally indistinguishable simulation. Afterwards, to simulate the last phase where PETs are used again, the adversary can return |X| 1s at some random positions, the remaining outputs being 0s.

Game 3: In this game, the honest voters only use their real credential for their last (re)vote. For their previous vote, they use a random (and fake) credential instead. This, however, does not change I, which is constructed depending on the identity of the voters and not how they formed their ballots. This is the same transition as Game 4 in Section 8.2.1. Using the same argument, we construct an adversary A 3 such that |S 3 -S 2 | is negligible.

Game 4: In this game, the adversary no longer has access to the roster Π R at line 4.

Game 5: In this game, before computing the tally, we decrypt every valid ballot sent by the adversary at lines 21 and 23. If one of these ballots uses the same credential as a ballot sent by a honest voter (i.e. a ballot added to the board at line 22 for some (i, ν i) with i ∈ [1, n V]\(A {j}), we abort the game and output a random bit.

Game 6: In this game, we remove line 21 so that the adversary can no longer insert its own ballots between two honest ballots. In other words, the adversary must send all its ballots at the end, after every honest voter has voted.

Game 7: The final game is the ideal game.

We construct an adversary A 7 which interacts with A 6 by simulating Game 6. For this purpose, A 7 runs the setup and the registration honestly, by generating the secret key and the credentials. For c, it uses a uniformly random credential. Then, when given |B| in the ideal game, it forwards it to A 6 which answers with a sequence of calls to O cast . To deduce the corresponding voting options (ν i) i∈A and β, A 7 creates a hashmap with the keys {c i ; i ∈ A} and c, and values (ν i) i∈A and β which are initially ϕ (for abstention). For each valid ballot cast by A 6 , A 7 decrypts the ballot using the secret key and deduces (ν, c). Since the ballot is valid, by the soundness of the ZKP, c consists of λ bits and ν is a valid voting option. If c is a key of the hashmap, it changes the corresponding value to ν. (Otherwise, it ignores the ballot.) It plays the obtained values in Game 7 and receives the result of the tally which it forwards to A 6 . Finally, it outputs A 6 's output. Remark that A 7 played a perfect simulation of Game 6, so that S 7 = S 6 .

Conclusion. With all the above transitions, we showed that for all adversary A for the real game, there exists an adversary B for the weakened ideal game which wins with the same probability (up to a negligible difference). By definition, this shows that JCJ is weakly coercion-resistant.

Generalization

Our notion of weak coercion-resistance can be adapted, in principle, to emphasize the various qualities of coercion-resistance provided by JCJ-like schemes.

We start with the scheme presented by Araújo, Foulle and Traoré (AFT) in [START_REF] Araújo | A practical and secure coercion-resistant scheme for remote elections[END_REF]. Its main feature is that it has a linear time complexity for the cleansing and tallying phases. While they use different cryptographic primitives from JCJ, their scheme has a similar structure: voters are given credentials to vote with, and can provide a fake credential to a coercer. Assuming that the cryptography is perfect, we can analyze their leakage and compare it with that of JCJ.

During the tally, both the number of duplicates and the number of ballots which use a fake credential are revealed, just as in JCJ. However, it is possible to deduce, by observing the board, how many revotes each ballot has. In JCJ, this information is only available during the tally, when it is no longer possible for the adversary to submit a ballot. In the AFT scheme, this information is available on the fly, during the whole voting phase, and the adversary may exploit it to submit ballots in a specific way. Consequently, the AFT scheme provides a coercionresistance level which is similar to Definition 22, but where I is given to A at line 16 instead of line 21 in the ideal game. This is slightly (but strictly) weaker.

Another interesting example is Civitas [START_REF] Michael | Civitas: Toward a Secure Voting System[END_REF], a scheme considered as an implementation of JCJ which has a similar level of security regarding coercion-resistance. Among the few differences that could have an impact, we concentrate on the leakage during the cleansing and tallying phases. Interestingly, Civitas actually leaks more information than JCJ. First, it provides the same leakage as the AFT protocol: the number of revotes for each ballot can be directly deduced from the board. Furthermore, in order to reduce the (quadratic) number of PETs, Civitas proposes to group voters by blocks: each credential is publicly assigned to one block, and the voter indicates their block in clear when casting their ballot. Compared to JCJ, the adversary still learns how many revotes each ballot has and how many invalid ballots there is, but also has access to this information block by block. Modeling the exact security of Civitas would 7.6. Discussion require to weaken the coercion-resistance definition compared to the one we sketched for AFT. In particular, the definition would have to take the number of blocks as a parameter, so that the ideal game could leak a list of K information sets similar to I.

Finally, for voting schemes that are not based on JCJ, the adaptation is less immediate. For instance, in the VoteAgain system [START_REF] Lueks | VoteAgain: A scalable coercion-resistant voting system[END_REF], the paradigm for coercion-resistance is different, since the voters are assumed to be able to vote after the coercer. The idea of revoting is key to the security and needs to be reflected in the definition of coercion-resistance by preventing the adversary to vote at any time. Even though the situation is too different from what we have presented in our work to be applied directly, the amount of information revealed during the cleansing phase should also be carefully assessed when analyzing its resistance to coercion.

Discussion

The leakage in practice. The scenario considered in Section 7.2.1 is extreme, but illustrates that the JCJ protocol does not provide coercion-resistance in some cases. In addition, this scenario can occur if A and B are two candidates for similar political parties, but A benefits for way more support than B, so that there is actually no one that votes for B instead of A (however, there can be some other candidates). Nevertheless, A can suffer from a discredit in the press, which can lead some of the voters to change their mind and vote for B instead, so that all the voters that vote for B revote exactly once. Conversely, assuming that revoting is not a well-spread behavior, none of the voters that vote for A would revote.

In general, the distribution of revotes is not independent from the final choices of the voters, so that the coercer learns some information by observing the leakage in JCJ, and hence detect when a voter disobeys with some non-negligible advantage. In Section 7.3, we analyze the impact of the leakage for some realistic scenarios, and reveal that it can be significant in not-so-extreme cases.

One could argue that in Definition 21, the adversary is supposed to know a perfect description of the distribution B, which can be considered too much. This is a conservative assumptions where we consider that any information which is not a secret should be available to the adversary. In addition, to obtain the non-negligible advantages that we exhibit in Section 7.3, the adversary does not need to know the full distribution B, but only the expected distribution of votes and revotes, as well as their dependencies. This can be deduced by exit poll or the analysis of the social media, where some voters indicate whether they revoted or not and what was the final choice.

More noise is needed. A known issue of JCJ is that an unpredictable number of fake, dummy ballots (i.e. some ballots that use an invalid credential) should be added, in order to hide to a coercer that their ballot has been removed. Indeed, if it is usual that absolutely no ballot with a fake credential is removed during the cleansing phase, then a coercer, who observes that exactly one ballot is removed, would suspect that the coerced voter has provided a fake credential.

In JCJ, this "noise" comes from honest voters sending dummy ballots, but this source alone may not be sufficient, and it is unnatural to expect that a honest voter would send a fake ballot. A natural approach is to have the authorities add a random number of dummies. For instance, [START_REF] Spycher | A New Approach towards Coercion-Resistant Remote E-Voting in Linear Time[END_REF] uses this to mitigate a leakage during the tally. This noise made of fake ballots should however be calibrated carefully since the computation overhead is important. In a context where revoting is a well spread behavior, it could be judicious to rely on revoting, at least partially, as an additional source of noise. This is not possible in JCJ where a dummy can be distinguished from a revote, but becomes a possibility if our solution from Section 8.1 is used.

Considering other evasion strategies. One possibility to correct JCJ's flaw would be to define other evasion strategies in case of revoting. Indeed, if Alice wants to vote, JCJ's evasion strategy instructs her to do so exactly once. Consequently, if it is usual for everyone to revote several times, the leakage in JCJ allows the coercer to detect that a single person voted once without revoting, and thus that Alice disobeyed. However, it seems very hard to instruct voters to use revoting, according to a certain distribution, when they are under coercion. As seen above, the natural way to proceed does not work and the task is made even harder by the fact that the strategy may evolve depending on new events that could change the revoting distribution for the honest voters.

Hence, we propose another option (see Section 8.1) that consists in reinforcing JCJ in case of revoting, such that there is no leakage besides the total number of ballots and the number of valid ballots. For our proposed protocol, we prove coercion-resistance with the original evasion strategy of JCJ. We acknowledge that the latter is not perfect; in particular, it does not allow a voter under coercion to change their mind and revote. However, modeling a wide variety of behaviors for the coerced voter is too complex for the time being. verification step Check. The auditors verify that the ZKP are valid and that there is no other ballot on the board with the same (C 1 , C 2); this defines the verification Valid.

Cleansing phase. Just as in JCJ, only one ballot is kept per valid credential. However, the ballots that use an invalid or a duplicate credential are not actually removed ; instead, the talliers use the CSZ protocol to replace the corresponding C 1 with an encryption of 0, which represents an invalid voting option. This way, no one knows whether a specific ballot is removed or not, let alone for which reason (either because the credential was invalid or used multiple times). For this purpose, the talliers need to first compute an encrypted validity boolean for each ballot. Using the tally-hiding toolbox, it is possible to directly adapt the JCJ cleansing phase in MPC, using Eq instead of PET. However, the quadratic cost of JCJ would result to a large number of CSZ protocol, which would make the MPC protocol impractical. Instead, we propose a quasi linear approach, which relies on sorting. This means that CHide is more scalable than JCJ; however, for an election of a typical size (i.e. about 1000 to 10000 voters), it is less efficient.

First, the talliers create a list of pairs of encrypted data

(V i , K i) n B +n V i=1
, where n B is the number of valid ballots on the board and n V the number of voters.

The first pairs come from the public board: for all 1

≤ q i ≤ n B , if (C i 1 , C i 2 , π i 1 , π i 2)
is the ith valid ballot on the board, then

V i = C 1 and K i = (K ⊥ i , K ⊤ i)
, where K ⊥ i is a bitwise encryption of the order of appearance on the public board and K ⊤ i = C 2 . The order of appearance is numbered between 0 and n B -1; however, since we also want to encrypt the upper bound n B , K ⊥ i is encrypted using ⌈log(n B + 1)⌉ encrypted bits. For the sake of verifiability, those encryptions use the randomness 0.

Afterwards, the remaining pairs come from the public encryptions of the valid credential, i.e. the public roster: for all n B + 1

≤ i ≤ n B + n V , if R i is the (i -n B)
th entry of the roster, V i = E 0 , a trivial encryption of 0, and

K i = (K ⊥ i , K ⊤ i) with K ⊥ i = n B bits and K ⊤ i = R i .
The talliers then use the OddEvenMergeSort protocol to sort the list of the (V i , K i), in increasing order. This has the following effect:

• First, the elements of the list are sorted according to K ⊤ i , in increasing order. Hence the ballots that use the same credential are grouped together;

• Second, the elements that have the same K ⊤ i (i.e. the ballots that use the same credential) are sort in increasing order of K ⊥ i . Hence, the entry coming from the roster (if any) appears at the end of the group and the last valid ballot cast (if any) is moved just behind.

After this step, an entry comes from a ballot with a valid credential if and only if the two following conditions are met: 1) its K ⊤ i part is the same as the one from its successor in the sorted list; 2) the K ⊥ i part of its successor encodes n B . These tests can be efficiently implemented with the MPC toolbox and we need only a linear number of them.

The P tally protocol is more precisely presented as follows.

1. Discard all the ballots marked as invalid by the Valid procedure. Let (C i 1 , C i 2) n B i=1 be the remaining ballots, without the ZKPs. We denote ℓ = ⌈log(n B + 1)⌉.

For all

1 ≤ i ≤ n B , set V i = C i 1 and K i = (i -1) bits ||C i 2
, where (i -1) bits is a trivial bit-wise encryption of i -1 that uses ℓ bits (least significant bit first).

For all n

B + 1 ≤ i ≤ n B + n V , set K i = n B bits || = R i-n B and V i = E 0 .
4. Sort the (V i , K i) in increasing order, using the keys K i . This produces a result

(V ′ i , K ′ i) n B +n V i=1
and a transcript Π Sort .

For all

1 ≤ i < n B + n V , compute D i = Eq(K ′ ⊤ i , K ′ ⊤ i+1
), where K ′ ⊤ i refers to the λ most significant (encrypted) bits of K ′ i . This produces the transcript Π Eq i,1 .

6.

For all 1 ≤ i < n B + n V , compute F i = EqKnown(K ′ ⊥ i+1 , n B bits), where K ′ ⊥ i+1 refers to the ℓ least significant bits of K ′ i+1 . This produces the transcript Π Eq i,2 . 7. For all 1 ≤ i < n B + n V , replace V ′ i by CSZ(V ′ i , And(D i , F i)). 8. Apply a decryption mixnet on the

(V ′ i) n B +n V -1 i=1
. This produces the result of the election as well as a verification transcript Π Mixnet .

Each step produces a transcript, published on the board, and verified by the auditors.

Evading coercion. As mentioned previously, we keep the same evasion strategy as in JCJ: to evade coercion, a voter generates a random credential which consists of λ uniformly random bits and gives this to the coercer. Latter, the voter uses the legitimate credential to vote (once) for the desired voting option (or abstain).

Efficiency considerations

In terms of computational and communication costs, CHide is less efficient than JCJ, mainly because the encrypted credentials are now formed by λ ciphertexts instead of a single one.

For the talliers, the cleansing phase is more complex but scales better with the number of submitted ballots. While JCJ is quadratic, we propose a quasi-linear tally protocol based on sorting. Another difference is that, due to the MPC toolbox, the number of communication rounds between them is no longer constant, but slightly depends on the number of ballots and the security parameter. Nevertheless, the task is highly parallelizable and remains affordable for medium-size elections. Also, we mentioned that we use the mixnet of [START_REF] Wikström | A Universally Composable Mix-Net[END_REF] instead of the one from [START_REF] Wikström | A commitment-consistent proof of a shuffle[END_REF][START_REF] Terelius | Proofs of Restricted Shuffles[END_REF]. This is so that the whole tally protocol remains SUC-secure. The complexity of [START_REF] Wikström | A Universally Composable Mix-Net[END_REF] is different from that of [START_REF] Wikström | A commitment-consistent proof of a shuffle[END_REF][START_REF] Terelius | Proofs of Restricted Shuffles[END_REF] and can be more expensive; however, it is still linear with respect to the number of ciphertexts to shuffle. Since there are n B + n V -1 such ciphertexts to decrypt, the factor λ is no longer present and the mixing phase is going to be way cheaper than the remaining of the cleansing phase. Hence, it is safe to consider that the cost of the decryption mixnet is negligible compared to that of applying the toolbox.

For the voters, the computational load increases but the total cost for realistic parameters is around a thousand exponentiations, which should be a matter of seconds with a standard implementation in JavaScript running within a modern browser.

In Table 21, we give estimates of the number of exponentiations and of the transcript size for both JCJ and CHide. For this purpose, we consider a number of n T = 3 talliers with a threshold t = 2, a security parameter of λ = 128 and a number of n C = 2 voting options. We also give the corresponding running times, based on an estimate of 5000 exponentiations per second on the client side, and 10000 per second on the server side. This reveals that the CHide voting system is still a realistic option for under 10000 submitted ballots, since computing the tally would take about 9 hours if each tallier uses 128 CPU cores.

Security proofs for CHide

In this section, we prove that CHide is coercion-resistant, ensures privacy and is universally verifiable. For this purpose, we use the same trust assumptions as in JCJ: the registrars are supposed honest, up to a threshold of t talliers can be corrupted and the public board is honest.

Proof of coercion-resistance

The definition of coercion-resistance is given in Definition 21, based on the comparison of two games that we reproduce below. Just as in the JCJ paper, we consider that the registration is perfect, that the voting channel is anonymous, that up to a threshold t of talliers is corrupted, and that the registrars are honest. Note that in Appendix E, we also give a proof of privacy for CHide, which is similar to that of coercion-resistance.

Theorem 10. Under the DDH assumption and in the ROM, assuming a SUC-secure decryption mixnet, CHide is coercion-resistant.

Proof. We give a succession of games such that Game 0 is the real game and Game 9 is the ideal game. We consider a PPT A 0 for Game 0. For Game i, we construct a PPT adversary A i for this game and we denote S i the probability that A i wins this game. (To ease the notation, we drop the dependency in λ when the context is clear.) For all i, we show that |S i+1 -S i | is negligible, which proves that |S 0 -S 9 | is also negligible.

Game 1: In this game, the adversary no longer takes part into the whole tally process at line 24, but only in the decryption mixnet process. Instead, it is given the result of all the conditional gates, computed by a trusted party. With a similar argument as in Theorem 6, we can show that the cleansing phase up to the decryption mixnet is SUC-secure, so that there exists an adversary A 1 such that |S 1 -S 0 | is negligible.

Game 2: In this game, the adversary no longer takes part in the decryption mixnet and is instead given the result at line 25, computed by a trusted party. Since the decryption mixnet is supposed SUC-secure, we can similarly construct an adversary A 2 such that |S 2 -S 1 | is negligible.

Game 3: In this game, the adversary is no longer given the output of the conditional gates. Just as in the transition to Game 2 in the proof of Theorem 8, under the DDH assumption and in the ROM, there exists A 3 such that |S 3 -S 2 | is negligible. encryption C 2 of the credential and uses it as the (n V -i)th element of Π R instead of an honest bitwise encryption of c n V -i . Afterwards, B continues the simulation of H i (see the transition to Game 4 for more details) and outputs 1 if and only if A 4 wins the game.

Clearly, when the IND-PA0 encrypts (ν, c n V -i) (resp. (ν, c)), B plays a perfect simulation of game H i (resp. H i+1) to A 4 , so that the advantage of B in the IND-PA0 game is

| 1 2 (W i + 1 - W i+1) -1 2 | ≤ ε PA0
. By the triangular inequality,

|S 5 -S 4 | ≤ 2n V ε PA0 .
Game 6: In this game, before computing the tally, we decrypt every valid ballot sent by the adversary at lines 21 and 23. If one of these ballots uses the same credential as a ballot sent by a honest voter (i.e. a ballot added to the board at line 22 for some (i, ν i) with i ∈ [1, n V]\(A {j}), we abort the game and output a random bit. Now, we set A 6 = A 5 and, to argue that |S 6 -S 5 | is negligible, we remark that |S 6 -S 5 | = ε/2, where ε is the probability that we abort in Game 6. Let E be the event of an abortion. We construct an adversary B for IND-PA0 which wins with a non-negligible advantage whenever E occurs and wins with probability 1/2 otherwise, which shows that ε is negligible.

First, B gets pk from the IND-PA0 game and forwards it to A 5 . It simulate Game 5 as in the transition to Game 4. However, it chooses a random honest voter x that would send a ballot (if no honest voter votes, E cannot happen) and, for this voter, generates a fresh, second random credential c. When this voter votes (which happens at most once due to the transition to Game 4), B plays the pair (ν, c x), (ν, c) in the IND-PA0 game, where ν is the voting option chosen by x. It gets back an encrypted ballot C, which it uses in the simulation instead of the ballot from x. Afterwards, B gets the list of all valid ballots sent by A 5 in the simulation and plays them in the IND-PA0 game to get their decryption. If there is a ballot which uses the credential c x (resp. c), B states that the IND-PA0 encrypted (ν, c x) (resp. (ν, c)). If there is no such ballot, a ballot which uses c and a ballot which uses c x or if no honest voter votes, B guesses at random. Now, suppose that b = 0 (resp. 1) in the IND-PA0 game; in other words, that C is an encryption of (ν, c x) (resp. (ν, c,)). Let q be the number of valid ballots sent by A 5 . With probability ε, A 5 managed to produce a ballot which uses the same credential as a ballot sent by some honest voter. In this case, with probability at least 1/n H , one of the concerned honest voter is x. Then, when B gets the decryption from the IND-PA0 game, there is a ballot of the form (γ, c x) (resp. (γ, c)). In addition, A 5 has no information about c (resp. c x) so that with probability at least 1 -q/2 λ , there is no ballot of the form (γ, c) (resp. (γ, c x)). Hence B wins with probability at least 1 -q/2 λ+1 . Otherwise, no ballot uses the credential c x (resp. c) and since the adversary has no information about c (resp. c x), the probability that a ballot uses the credential c (resp. c x) is at most q/2 λ . Therefore, the probability that B wins the IND-PA0 game is at least (1 -q/2 λ)/2. Overall, B's probability to win is at least

ε n H (1 -q/2 λ+1) + (1 - ε n H)(1 -q/2 λ)/2 = 1 2 + ε 2n H - q 2 λ+1 . Therefore, we have ε 2n H - q 2 λ+1 ≤ Adv IND-PA0 B ≤ ε PA0 , hence |S 6 -S 5 | = ε/2 ≤ n H ε PA0 + qn H 2 λ+1
, where q is the number of valid ballots sent by the adversary.

Game 7: In this game, we remove line 21 so that the adversary can no longer insert its own ballots between two honest ballots. In other words, the adversary must send all its ballots at the end, after every honest voter has voted. We construct A 7 which interacts with A 6 by simulating Game 6. For this purpose, A 7 gets PB = (B 1 , • • • , B n) at line 23 and creates a fake empty ballot box PB ′ . Then, in the kth iteration of the for loop, it appends to PB ′ the valid ballots output by A 6 and then B k . The remaining of the simulation is similar to that of the transition to Game 4.

Clearly, A 7 plays a perfect simulation of Game 6 if the result of the tally is the same. Besides, the latter can only differ if the credential of a ballot sent by A 6 is the same as the credential of a ballot sent by some honest voter. In this case, both games abort with a random output and A 7 's probability to win is the same as A 6 's in Game 6. Consequently, S 7 = S 6 .

Game 8: In this game, the adversary has no longer access to the ballot box PB at line 23 but instead has |B| (which is equal to |PB|). With a similar argument as in Game 5, we construct A 8 and we have

|S 8 -S 7 | ≤ |PB|ε PA0 .
Game 9: The final game is the ideal game.

We construct an adversary A 9 which interacts with A 8 by simulating Game 8. For this purpose, A 9 runs the setup and the registration honestly, by generating the secret key and the credentials. For c, it uses a uniformly random credential. Then, when given |B| in the ideal game, it forwards it to A 8 which answers with a sequence of calls to O cast . To deduce the corresponding voting options (ν i) i∈A and β, A 9 creates a hashmap with the keys {c i ; i ∈ A} and c, and values (ν i) i∈A and β which are initially ϕ (for abstention). For each valid ballot cast by A 8 , A 9 decrypts the ballot using the secret key and deduces (ν, c). Since the ballot is valid, by the soundness of the ZKP, c consists of λ bits and ν is a valid voting option. If c is a key of the hashmap, it changes the corresponding value to ν. (Otherwise, it ignores the ballot.) It plays the obtained values in Game 9 and receives the result of the tally which it forwards to A 8 . Finally, it outputs A 8 's output. Remark that A 9 played a perfect simulation of Game 8, so that S 9 = S 8 .

Conclusion. With all the above transitions, we showed that for all adversary A for the real game, there exists an adversary B for the ideal game which wins with the same probability (up to a negligible difference. By definition, this shows that CHide is coercion-resistant.

Proof of verifiability

To formalize the notion of universal privacy, we use the approach of [START_REF] Cortier | Election Verifiability for Helios under Weaker Trust Assumptions[END_REF] which is presented in Section 1.2.2. This, however, comes with a difficulty when revoting is allowed. Indeed, if a voter's votes are, in order, (ν 1 , ν 2 , ν 3) and if the voter does not verify that each of the corresponding ballots appear on the board when casting them, then the adversary might drop any of those ballots and have the voter abstain, or have their vote counted as ν 1 , ν 2 or ν 3 , which technically breaks the definition since the adversary should only be able to have the vote be counted as ν 3 or nothing. Most of the existing electronic voting schemes are actually vulnerable to this when revoting is allowed, and specific measures to enforce that the definition of [START_REF] Cortier | Election Verifiability for Helios under Weaker Trust Assumptions[END_REF] is verified are yet to appear in the literature. This problem, which concerns individual verifiability, is independent from the tally phase and whether JCJ of CHide is used. Therefore, we consider a weaker definition where every voter systematically verifies that their ballot appears on the board. This gives Definition 23, based on the verifiability game given in Fig. 28. In this game, the setup and the registration are run honestly and the adversary is given the public transcripts Π S , Π R , which contains the public key pk, the public commitments (h i) n T i=1 on the secret shares of the talliers and the public roster Π R . Also, the adversary is given the secret shares of the corrupted talliers. Afterwards, it can corrupt a subset A of the voters. Then, given the roster and the credentials of the corrupted voters, the adversary must generate a valid bulletin board. For this purpose, it has access to the oracle O cast which takes as input a ballot B and adds it to the public board if the ballot is valid. The adversary also has access to O vote , which models the ballots sent by the honest voters. However, O vote modifies two inner tables H and HV. The first one model the fact that a honest voter is supposed to check that their ballot appears on the board. If a honest voter vote but does not check or if their check fails, they become unhappy. The second tabular represent the state of a voter, and contains their ballot, their credential and their chosen voting option. The adversary can have a voter i check their vote by calling O check (i) which causes the voter to initiate the Check procedure with the current state HV i of the voter and the current bulletin board. The adversary can call O cast , O vote and O check any (polynomial) number of times, in any order. It then takes part into the tally to produce the result X as well as the transcript Π. The goal of the adversary is to produce a valid X, Π which is different from any result obtained with the sequence (i, HV i) i concatenated with another sequence (cor i , α i) i , where the cor i 's are corrupted voters. In addition, all honest voter who have voted must be happy.

We acknowledge that, in our definition, we assume that the registrar is honest, and that up to t decryption trustees can be corrupted. Usually, one would want verifiability even if all the talliers and the registrar are corrupted. In [START_REF] Cortier | Election Verifiability for Helios under Weaker Trust Assumptions[END_REF], for instance, it is assumed that either the registrar or the bulletin board is honest. However, in JCJ-like voting systems, the registrar knows the credential of the voter and can therefore break eligibility by voting instead of the abstaining voters (ballot stuffing), or even change the choice of any voter by revoting with their credential afterwards. Similarly, since an encryption of the credentials is published in the roster Π R , if more than a threshold t of talliers is corrupted, they can decrypt the credentials and perform the same attacks. Therefore, it is necessary to assume that the registrar is honest and that up to a threshold of talliers can be corrupted. Those shortcomings are already present in JCJ.

Definition 23 (Verifiability). We say that the a voting system (Setup, Register, Vote, Check, Valid, Fakecred, Tally, Verify) is verifiable if, for all adversary A, for all parameters (n T , t, n C) and for all subset C t ⊂ [1, n T] of size at most t, there exists a negligible function µ such that Pr(Ver(A, λ, n T , C t , n C) = 1) ≤ µ(λ).

We now prove that CHide has verifiability. Despite the difference between coercion-resistance and verifiability, there are arguments in common in the two proofs and some parts were reproduced verbatim.

Theorem 11. Under the DDH assumption and in the ROM, CHide is verifiable as of Definition 23.

Proof. We give a succession of games such that Game 0 is the Ver game and Game 6 is a game which outputs 1 with negligible probability. We consider a PPT A 0 for Game 0. For Game i, we construct a PPT adversary A i for this game and we denote S i the probability that A i wins this game. (To ease the notations, we drop the dependency in λ when the context is clear.) For all i, we show that |S i+1 -S i | is negligible, which proves that |S 0 -S 6 | is also negligible.

Game 1: In this game, the adversary no longer takes part into the whole tally process at line 24, but only in the decryption mixnet process. Instead, it is given the result of all the conditional gates, computed by a trusted party. With a similar argument as in Theorem 6, we can show that the cleansing phase up to the decryption mixnet is SUC-secure, so that there exists an adversary A 1 such that |S 1 -S 0 | is negligible.

Game 2: In this game, the adversary no longer takes part in the decryption mixnet and is instead given the result at line 25, computed by a trusted party. Since the decryption mixnet of [START_REF] Wikström | A Universally Composable Mix-Net[END_REF] is proven UC-secure, we can similarly construct an adversary A 2 such that |S 2 -S 1 | is negligible.

Game 3: In this game, the adversary is no longer given the output of the conditional gates. Just as in the transition to Game 2 in the proof of Theorem 8, under the DDH assumption and in the ROM, there exists A 3 such that |S 3 -S 2 | is negligible.

Game 4: In this game, we create a secret internal state Cred i for each voter. It contains a sequence of credentials which is initially [c i], where c i is i's credential. In addition, we also modify O vote so that it uses the last element of Cred i instead of c i . It also generates a fresh random credential c which is added at the end of Cred i , so that the next instance of O vote with the same voter will use this new credential instead of the old one. (In case if c is a collision with another voter, we pick another random credential.) Finally, we change the way the result of the tally r is computed. Now, we decrypt each valid ballot of PB into a couple (ν, c). For each such couple, we look for a voter i such that c appears in the sequence Cred i and we set i's vote as ν (since there is no collision, there may be up to one such voter). Finally, we deduce r by evaluating count on the voters' votes.

To construct A 4 and show that |S 4 -S 3 | is negligible, we use a hybrid argument with G 1 as Game 3 and G 2 as Game 4. This hybrid argument needs to cover two dimensions since the adversary chooses both the number of revotes and the number of voters, which can be at most polynomial. Hence, we use a bijection from N to N 2 that travels the grid N × N diagonal by diagonal, as illustrated in Fig 29 . For k ∈ N, we denote i(k), j(k) the corresponding elements in N×N. Now, we define H 0 as G 2 , so that the first condition of the hybrid lemma is verified. Then, for k ≥ 1, we define H k as H k-1 , except that the i(k)th vote of the j(k)th voter uses a fresh new credential, as explained above (the subsequent votes use the last generated credential). Remark that, if n V is the number of voters and n R the maximum number of times a voter revotes, for n A = (n V + n R) 2 , we have that H n A is perfectly indistinguishable from G 1 , which means that the second condition of the hybrid lemma is verified. Now, for all adversary A k+1 for H k+1 , we consider the same adversary A k for H k ; similarly, for all A k for H k , we consider the adversary A k+1 = A k for H k+1 , so that the third condition of the lemma is met. For the fourth condition, we will consider the IND-PA0 game.

Finally, we construct the adversary B for IND-PA0 as follows. Let k be some index and A k+1 be an adversary for game H k+1 . We denote i = i(k) and j = j(k). The adversary B gets pk from the IND-PA0 game and uses this to simulate an instance of H k+1 to A k+1 . For this purpose, it generates {s i | i ∈ C t } at random, computes the corresponding h i and generates (h i) i̸ ∈Ct by Lagrange interpolation, so that pk, (s i , h i) n T i=1 follows the same distribution as in the verification game. Then, B runs the registration honestly and creates PB, HV, H and Cred, that it will update according to the answers of A k+1 . It will also simulate the oracles O vote , O cast , O check .

The ith time O vote is called with voter j (let ν be the corresponding voting option), B retrieves the last credential c used by j from Cred j and generates a new, fresh credential c ′ that it adds to Cred j as in H k+1 . However, instead of computing Vote pk (ν, c ′), B plays (ν, c), (ν, c ′) in the IND-PA0 game and uses the answer C ⋆ as the output of O vote . At some point, A 3 terminates and B must decide whether the IND-PA0 game encrypted (ν, c) or (ν, c ′). For this purpose, B uses PB, the list of the ballots cast by A k+1 . If C ⋆ ∈ PB, B removes it from PB but keeps in memory its index. For the remaining ballots, B decrypts them using the decryption oracle of the IND-PA0 game. Thanks to the result of the decryptions, B can decide whether A k+1 won the game or not. In this case, B states that (ν, c) was encrypted; otherwise, it states that (ν, c ′) was encrypted.

Clearly, when (ν, c) is encrypted, B plays a perfect simulation of H k to A k+1 and, when (ν, c ′) is encrypted, B plays a perfect simulation of H k+1 . Therefore, by the hybrid argument, we deduce that there exists an adversary A 4 = A 3 such that |S 4 -S 3 | is negligible.

Game 5: In this game, the public roster roster π R is no longer added to the public board, and therefore no longer given to the adversary at line 5.

To construct A 5 and argue that |S 5 -S 4 | is negligible, we use another hybrid argument. This time, the idea is to remove the ciphertexts of the public roster one by one. More precisely, we define G 1 as Game 4, G 2 as Game 5, and, for i ∈ N, H i as G 2 , except that the i first entries of the public roster (an entry consists of λ ciphertexts, where λ is the security parameter) are given to the adversary. If A i+1 is an adversary for H i+1 , we construct A i as an adversary which forwards the i first entries of the public roster that it gets from H i , and uses λ random encryption of random bits as the (i + 1)th entry of the roster. This way, A i+1 makes P additional transitions, where P is a polynomial that corresponds to the cost of generating λ ciphertexts. Now, we construct the adversary B for IND-PA0 as follows. Given i and A i+1 , B gets the public key pk from the IND-PA0 game and uses this to simulate H i+1 to A i+1 . However, for the (i + 1)th entry of the public roster, instead of a honestly generated bitwise encryption of the credential c, B generates a random voting option ν, a random credential c ′ and plays the couple (ν, c ′), (ν, c) in the IND-PA0 game, where c ′ is c. It gets a challenge ciphertext C ⋆ from which it extracts the C 2 part, which it uses as the (i + 1)th entry of the public roster. At the end of the simulation, B uses the decryption oracle of the IND-PA0 game to decrypt the ballots sent by A i+1 , and learn whether A i+1 wins the simulation or not. It outputs 1 if and only if A i+1 wins the simulation.

Remark that, when the IND-PA0 game encrypts (ν, c), B plays a perfect simulation of game H i+1 to A i+1 . In addition, when the IND-PA0 game encrypts (_nu, c ′), B played A i 's simulation of H i+1 to A i+1 . Once again, all the conditions of the hybrid lemma are met.

Game 6: In this game, before computing the result, we decrypt every valid ballot of PB which is not the output of some O vote . If one of these ballots uses the same credential as a ballot output by O vote , we abort the game and output a random bit. Now, we set A 6 = A 5 and, to argue that |S 6 -S 5 | is negligible, we remark that |S 6 -S 5 | = ε/2, where ε is the probability that we abort in Game 6. Let E be the event of an abortion. We construct an adversary B for IND-PA0 which wins with a non-negligible advantage whenever E occurs and wins with probability 1/2 otherwise, which shows that ε is negligible. (ν,c)). Let q v be the number of (valid) calls to O vote and q c be the number of ballots from PB which are not an output of O vote . With probability ε, A 5 managed to produce a ballot which uses the same credential as a ballot output by O vote . In this case, with probability at least 1/q v , one of the concerned ballot is B. Then, when B gets the decryption from the IND-PA0 game, there is a ballot of the form (γ, c) (resp. (γ, c)). In addition, A 5 has no information about c (resp. c) so that with probability at least 1 -q c /2 λ , there is no ballot of the form (γ, c) (resp. (γ, c)). Hence B wins with probability at least 1 -q c /2 λ+1 . Otherwise, no ballot uses the credential c (resp. c) and since the adversary has no information about c (resp. c), the probability that a ballot uses the credential c (resp. c) is at most q c /2 λ . Therefore, the probability that B wins the IND-PA0 game is at least (1 -q c /2 λ)/2. Overall, B's probability to win is at least

ε q v (1 -q c /2 λ+1) + (1 - ε q v)(1 -q c /2 λ)/2 = 1 2 + ε 2q v - q c 2 λ+1 . Therefore, we have ε 2q v - q c 2 λ+1 ≤ Adv IND-PA0 B ≤ ε PA0 , hence |S 6 -S 5 | = ε/2 ≤ q v ε PA0 + qcqv 2 λ+1
, where q v is the number of calls to O vote and q c the number of ballots in PB which are not an output of O vote .

Conclusion. Now, remark that due to the nature of O vote which overwrite HV, it is clear that the adversary must call O check (i) between each call of O vote with the same voter i, otherwise H i < 1 at line 9. Also, it is also necessary for the adversary to call O cast (B) before O check (i), where B is the output of O vote (i, ν) (otherwise O check does not modify HV. Note that due to the randomness involved in Vote, except with negligible probability µ, the adversary cannot call O cast (B) before O vote (i, ν) (at which point it has no information about B). Therefore, the order of the revotes of each voter is enforced in PB and, because of the last transition and the nature of the tally, we readily have that the condition at line 12 always result in a 0 output. Therefore, |S 6 | ≤ µ, which concludes the proof.

Conclusion

We showed that it is possible to correct the flaw of the JCJ protocol and to achieve coercionresistance as defined in Definition 21. Coercion typically appears in a high stake election, with a politically-binding result that can durably affect the future of a country. For such an election, the priority is the security, and it is not a possibility to tolerate a flaw such as that of JCJ, especially when it can be devastating in some cases. The CHide protocol, although less efficient than the typical electronic voting protocol, allows to address the vulnerability of JCJ. Since coercion is considered as an important threat for many governments, it is not far-fetched that, for a high-stake election, a government may be willing to pay the cost of CHide in order to achieve coercion-resistance. Indeed, CHide's efficiency, although not better than JCJ's, is still practical as it is possible to obtain the result within a day, for less than 3$ per voter. In addition, just as many subsequent schemes focused on improving the scalability of JCJ, it is possible that CHide's efficiency may be improved in future works.

The efficiency considerations, as important as they are, are not the main reason why no coercion-resistant mechanism has been deployed for a politically binding election, other than the revoting paradigm. For the time being, the JCJ protocol, as well as CHide, are still academic proposals that are difficult to apply in practice. For instance, they suppose that the voters are able to correctly handle their credential and use the evasion strategy when under coercion. In addition, the trust assumptions where all the registrars are supposed honest can be considered not acceptable: to extend the verifiability and the privacy in a case where some (but not all) registrars can be corrupted, the usual strategy is that of Civitas [START_REF] Michael | Civitas: Toward a Secure Voting System[END_REF], which requires the voters to have a well-identified public key and to be able to generate a DVZKP when under coercion. Overall, those "practical" difficulties are far more concerning than the fact that CHide requires a bit more computational power.

Chapter 9

Traceable encryption for verifiable receipt-free electronic voting

In previous chapters, we studied the notion of coercion-resistance, where the adversary can ask the voter to vote in a specific way, using a threat or a reward. A related security notion is that of receipt-freeness, where the voter actively tries to convince a third party (typically the adversary) that they voted in a specific way. In receipt-freeness, it is usual to consider that the adversary might be a vote buyer, i.e. that it gives the voter some specific instructions to follow, just as in coercion-resistance. However, the main difference is that we do not consider forced-abstention attacks and that, in receipt-freeness, the adversary cannot ask the voter to give away their credential. Hence, receipt-freeness is often considered as a weaker version of coercion-resistance, but that still addresses the threat of vote buying. There are various approaches to achieve receipt-freeness. One of the first strategies was, for each voter and each voting option, to prepare an encryption in advance so that the voter cannot use a specific randomness to obtain a receipt [START_REF] Sako | Receipt-Free Mix-Type Voting Scheme -A Practical Solution to the Implementation of a Voting Booth[END_REF][START_REF] Hirt | Efficient Receipt-Free Voting Based on Homomorphic Encryption[END_REF]. However, this requires a lot of precomputation. In particular, when there are too many voting options, as this is the case with preferential voting, this solution may not be practical. A second approach is based on deniable revoting, where the voter can prove that their ballot contains a specific voting option, but is also given the possibility to revote. This way, the vote buyer does not know whether the ballot was canceled by a subsequent ballot or not. In this context, it is important to hide the number of revotes for each voter. Otherwise, the vote buyer can use a strategy known as the "1009 attack", which consists of instructing the voter to vote 1009 times (or any unlikely number, which may be different for each voter). Then, if the voter revotes to cancel the last vote, the attacker may notice that no one actually voted 1009 times. Interestingly, we showed in Chapter 7 that it is also important to conceal the number of revotes per voter, in the context of coercion-resistance. Schemes that prevent the 1009 attack are, for instance, [START_REF] Locher | Coercion-Resistant Internet Voting with Everlasting Privacy[END_REF] and VoteAgain [START_REF] Lueks | VoteAgain: A scalable coercion-resistant voting system[END_REF]. Finally, the rerandomization paradigm consists of letting the voters cast their ballot as usual. However, the ballot is sent to a rerandomization server, which is trusted for the purpose of receipt-freeness. The server rerandomizes the ballot, so that it becomes indistinguishable from a random ballot. This way, even if the ballot was created maliciously, it is no longer possible to prove that the ballot contains a specific voting option. Nevertheless, the voter still has a guarantee that the content of the ballot has not been modified. Some examples of academic proposals based on this strategy are, for instance [START_REF] Hirt | Receipt-Free K -out-of-L Voting Based on ElGamal Encryption[END_REF], [START_REF] Blazy | Signatures on Randomizable Ciphertexts[END_REF] and BeleniosRF [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF].

In [START_REF] Devillez | Traceable receipt-free encryption[END_REF], Devillez, Pereira and Peters introduce the notion of traceable encryption, which augments the notion of encryption scheme with some additional properties related to rerandom-ization. When those properties are verified, they show that it is possible to achieve receiptfreeness with very few assumptions about the voting protocol. This allows considering registration and eligibility independently from receipt-freeness, which gives more modularity to the protocol design compared to BeleniosRF. In particular, it means that a more generic purpose secret key can be used for the sake of eligibility. For instance, the voters may identify themselves through their health insurance or an electronic identity card, such as the one used in Estonia. In this context, it is plausible that a voter might not be willing to give away their secret credential, as it might be used for other purposes than voting (for instance, to get a loan or a mortgage). By contrast, it is more difficult to argue that the voter might not be willing to give away a short term secret such as the one used in BeleniosRF.

The present chapter is a follow-up of [START_REF] Devillez | Traceable receipt-free encryption[END_REF], made in collaboration with Henri Devillez, Olivier Pereira and Thomas Peters. We remark that the construction of [START_REF] Devillez | Traceable receipt-free encryption[END_REF], compared to that of [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], allows vote buying: a vote buyer can give some instructions that the voter can follow to produce a convincing receipt. We come to the conclusion that the definition of receipt-freeness used in [START_REF] Devillez | Traceable receipt-free encryption[END_REF] has a shortcoming and does not properly model vote buying. Therefore, we propose a new definition of receipt-freeness, that is presented in Section 9.1. Just as the definition of [START_REF] Devillez | Traceable receipt-free encryption[END_REF], ours considers that the registration phase and the eligibility mechanism are independent from receipt freeness. To satisfy our definition, we adapt the voting scheme from [START_REF] Devillez | Traceable receipt-free encryption[END_REF]; the new voting scheme is presented in Section 9.6. Compared to the solution of [START_REF] Devillez | Traceable receipt-free encryption[END_REF], our construction does not allow vote buying, even if the adversary can give an arbitrary instruction to the voter. It also uses a new traceable encryption scheme, which is compatible with 0/1 proofs (as it is often required in electronic voting) and uses a public coin setup protocol, that needs fewer trust assumptions compared to that of [START_REF] Devillez | Traceable receipt-free encryption[END_REF]. Compared to the encryption scheme used in BeleniosRF, ours has an encryption and a decryption algorithm which have a linear complexity with respect to the bitlength ℓ of the plaintext (e.g., the number of choices in a multiple choices question), while the decryption algorithm used in BeleniosRF requires an exponential number of group operations (with respect to ℓ). Our traceable encryption scheme is presented in Section 9.4. Finally, we also investigate the possibility to adapt the voting scheme to allow cast-a-intended verification, using the Benaloh challenge (see Section 9.7). In this collaboration, my main contribution was during the design of the new definition of receiptfreeness, the proposed voting protocol and the corresponding security proofs. By contrast, I was not involved in the design of the new traceable encryption scheme, nor in the implementation available at [tre].

Our definition of receipt-freeness

Our first contribution is to provide a new definition of receipt-freeness. Compared to existing definitions, it is closer to the notion of coercion-resistance and better addresses the threat of vote-buying.

Existing definitions

There are numerous definitions of receipt-freeness in the literature. For instance, [START_REF] Kiayias | End-to-End Verifiable Elections in the Standard Model[END_REF] gives a game-based definition to capture both privacy and receipt-freeness. However, this definition considers that the voter uses the expected algorithm to cast a ballot, so that the Helios voting protocol can be considered receipt-free as of their definition. By contrast, if the voter uses a malicious algorithm to cast a ballot in Helios, they can keep in memory the randomness used to encrypt the vote, which can be used as a receipt to prove to a third party that their ballot contains a specific voting option.

In BeleniosRF [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], which proposes to adapt the BPRIV definition from [BCG + 15b] to account for receipt-freeness, no assumption is made about how the voter may send their ballot. On the contrary, it considers that the ballot is provided by the adversary, so that the latter may know the randomness used to encrypt the ballot. However, compared to the definition of Kiayias et al., the definition of Chaidos et al. does not account for the possibility that the voter may be given a receipt during the voting phase (for instance through the individual verifiability mechanism). In addition, the definition supposes that the adversary can only provide a ciphertext to the voter, and not just any instruction. This may be restrictive, as it rules out schemes such as [START_REF] Sako | Receipt-Free Mix-Type Voting Scheme -A Practical Solution to the Implementation of a Voting Booth[END_REF][START_REF] Hirt | Efficient Receipt-Free Voting Based on Homomorphic Encryption[END_REF], where the voters do not create the ciphertexts themselves (rather, the ciphertext is provided by the voting authorities).

In [START_REF] Devillez | Traceable receipt-free encryption[END_REF], a variant of the definition of BeleniosRF is used, which makes fewer assumptions on the registration phase. However, it makes more assumptions on the instructions provided by the adversary, which is questionable. In particular, even if their definition is verified, it is possible for the adversary to provide a specific ballot to the voter (that contains the desired voting option), so that the adversary knows exactly if the voter casts this ballot or another ballot. Intuitively, the definition of [START_REF] Devillez | Traceable receipt-free encryption[END_REF] captures a less generic version of receipt-freeness, which considers a purely passive adversary, that does not give any instruction to the voter.

Finally, we mention that there exists formal definitions (e.g., [START_REF] Delaune | Coercion-resistance and receipt-freeness in electronic voting[END_REF]), or simulation-based definitions (e.g., [START_REF] Moran | Receipt-Free Universally-Verifiable Voting with Everlasting Privacy[END_REF]). However, we prefer to focus on game-based definitions.

• In receipt-freeness, the adversary does not monitor or interact with the voter;

• In particular, coercion-resistance considers forced-abstention attacks and usually requires an anonymous channel, which is not the case for receipt-freeness;

• In receipt-freeness, we do not consider that the adversary threatens the voter: a voter that fails to convince the adversary will not be punished;

• In particular, the voter may be willing to fool the adversary in order to gain money, as they have nothing to lose;

• In receipt-freeness, we do not consider that the adversary may ask the voter to provide their voting credential; instead, it may give some explicit instructions to follow.

Figure 30: The main differences between coercion-resistance and receipt-freeness.

Modeling vote buying

To model vote buying, we consider a situation where an adversary, the vote buyer, runs the website voteselling.onion, where a voter can download (or read) some instructions, say instructions.exe (or instructions.txt). The instructions may be different for each voter, and generated after the voter registers in the website by providing a username and a password. In addition, since the adversary can wait until all the public information are available before releasing the website, the instructions can depend, for instance, on the public encryption key. To simplify the study, we consider that the instructions can be modeled as a deterministic Turing machine I. In addition, we also consider that I is compatible with the voting protocol, i.e. that the voter can use I to successfully cast a ballot. In other words, the voter can use I() to get the first message to send during the Vote protocol; then, given the answer a of the server, the voter can use I(a) to get the second message to send and so on. We assume that, this way, all the messages sent by the voter are considered valid by the server. When the voter follows the instructions, they get a receipt s, which is an arbitrary string of polynomial size (for instance, the randomness used to encrypt the ballot). Typically, s can be seen as the final output of I, and can depend on any feedback that the voter gets from the voting protocol.

Once the voter gets s, they can upload it on voteselling.onion. Then, given s and the access to the public ballot box, the vote buyer decides whether the voter actually followed the instructions or not. If so, they reward them (how exactly is not relevant).

Our scenario models the threat of vote buying and is close to that of coercion that we studied in the previous chapters. However, there are some differences that we highlight in Fig. 30.

We now give our definition of receipt-freeness, which is designed to capture the above scenario. This definition is adapted from the BPRIV definition [BCG + 15b], which means that it requires the voting system to have strong-correctness and strong consistency (see Section 1.3.2). In particular, there exists an efficient algorithm Extract such that, for all honestly generated ballot B of the form Vote pk (ν, id) (where ν is a voting option and id is the identity of the voter), we have Extract sk (B) = (id, ν). Note that to match the notations of Bernhard et al., we consider that the voting process takes as input the voting option and the identity rather than the voting option and the credential. This means that we consider that receipt-freeness must be achieved independently of the eligibility mechanism, and explains why the definition does not feature a registration protocol.

To capture receipt-free voting systems that are based on the rerandomization paradigm, we consider that the voting protocol is an interactive protocol between the voter, the server (denoted RS) and the public board. If V is the process of the voter id, we use the notation s, B ←-Vote(id, V, RS, PB) to express that the voting protocol resulted in the production of the ballot B and the receipt s for the voter (s can be the empty string, a string maliciously obtained by the voter, or any evidence that the voting protocol ended successfully). Note that B might have been rerandomized by the server. If ν is a valid voting option, we use the notation s, B ←-Vote(id, ν, RS, PB) to express that the voter honestly followed the specifications of the voting protocol to vote for ν.

Finally, as explained above, we consider that the adversary can give some instructions to the voter, that we model as a Turing machine I. However, I must be compatible with the voting protocol, which means that if the voter runs I instead of V , the messages sent by the voter during the voting protocol are valid. We say that the adversary A is non-restrictive if they only give compatible instructions.

Definition 24 (Receipt-freeness). A voting system (Setup, Vote, Check, Valid, Tally, Verify) that has strong-correctness and strong-consistency has receipt-freeness if there exists two algorithms SimSetup, SimProof, a PPT D and a negligible function µ such that:

• for parameters n T , t and all non-restrictive PPT A, we have

Pr Exp rf-0 (λ, A) = 1 -Pr Exp rf-1 (λ, A) = 1 ≤ µ(λ),
where Exp rf-b is defined in Figure 31; • for all voter id, for all compatible instruction I (i.e. s. Just as in [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], we define receipt-freeness using an experiment Exp rf-b , where the bit b must be guessed by the adversary. The intuition is that when b = 0, the protocol is ran honestly and the voter follows the instructions of the vote buyer. When b = 1, however, the voter votes according to their own preference but still gives the adversary a receipt. This is possible thanks to the deceiving algorithm D, which allows the voter to not only produce a ballot that looks like the one cast when following the instructions, but also to generate a deceiving receipt. Hence, if the adversary is unable to guess b with a non-negligible advantage, it means that the voter cannot convince the adversary that they followed the instruction instead of applying the deceiving strategy. Alternatively, it also means that the voter might as well vote with the desired voting option and still try to convince the vote buyer in order to gain the reward.

A key element in this definition is that, when b = 1, the tally is simulated so that the result of the election is the same whatever the value of b, just as in the BPRIV definition. Consequently, during the experiment, the adversary cannot use any information from the tally to infer whether the voter obeyed or not. To simulate the tally, we stick to the setting of [BCG + 15b] and we require that there exists a couple of PPT (SimProof, SimSetup). In this thesis, we mostly rely on the ROM, so that SimSetup is not required to simulate the proofs. In the standard model, however, it is usual that the ZKP can only be simulated using a trapdoor τ generated during the setup.

During the experiment, the adversary has access to several oracles. O cast allows the adversary to cast a valid ballot B in both boards. In the BPRIV definition, the validity is only verified

Introduction to traceable encryptions

with respect to the current board PB b ; however, this leads to a definition glitch as discussed in Section 1.3.2.

The oracle O voteLR (id, ν 0 , ν 1) is similar to that of the BPRIV definition, and causes the honest voter id to vote with the voting option ν 0 when b = 0 and ν 1 when b = 1.

The oracle O receiptLR (id, I, ν) takes as input a honest voter id, a compatible instruction I and a voting intent ν. When b = 0, id follows the instruction I which leads to the creation of a ballot B 0 with the receipt s 0 . Note that since we only consider compatible instructions, B 0 is necessarily a valid ballot. Also, recall that the ballot is created in interaction with the server, and might be a rerandomized version of a ballot sent by the voter. Hence, when the voter follows the instructions, they actually act as a dummy router that forwards the messages produced by I (seen as a Turing machine) to RS and the other way around. When b = 1, however, the voter runs the deceiving algorithm D in interaction with I, and votes with the voting option ν.

Finally, the oracle O tally is similar to that of the BPRIV definition: it computes the result (r, Π) of the tally with respect to the board PB 0 and return r, Π b where Π b is either Π when b = 0 or a simulated transcript when b = 1.

Introduction to traceable encryptions

To achieve receipt-freeness, we propose to use the notion of traceable encryption, introduced in [START_REF] Devillez | Traceable receipt-free encryption[END_REF]. Indeed, a traceable encryption scheme can provide various security properties that are useful in the context of verifiable receipt-free voting. In this section, we give all the definitions related to traceable encryptions.

Definition

A traceable encryption is a public key encryption scheme (Gen, Enc, Dec), augmented with the additional algorithms (LGen, LEnc, Trace, Rand, Ver), where:

• LGen(pk) is the link generation algorithm, which generates a random link key lk.

• LEnc pk (lk, m, r) is the linked encryption algorithm, which outputs an encryption C of the plaintext m, obtained with the randomness r.

• Trace pk (C) is the tracing algorithm, which outputs the trace of a ciphertext C.

• Rand pk (C, r) is the rerandomization algorithm, which outputs a rerandomization C ′ of the ciphertext C, obtained with the randomness r.

• Ver pk (C) is a verification algorithm, which outputs either 0 or 1.

Intuitively, when a voter wants to cast a ballot for a voting option m, they first generate a random link key lk using LGen, then use LEnc to encrypt m. This produces a ciphertext C, which is rerandomized into C ′ by the server. Then, the voter can verify that Trace pk (C ′) = Trace pk (C), so that it gains some guarantee that C ′ contains the same plaintext m, unless the server managed to find lk. Since the voter knows lk, however, the voter is able to forge a ciphertext C v such that Trace pk (C v) = Trace pk (C) for any voting option v, hence this guarantee cannot be used to convince a third party that the ballot contains a specific voting option. Just as any encryption scheme, a traceable encryption must verify some correctness properties.

Definition 25 (Correctness). A tuple (Gen, Enc, Dec, LGen, LEnc, Trace, Rand, Ver) has correctness if:

• For all key pair (pk, sk) output by Gen, for all plaintext m and all randomness r, we have Dec sk (Enc pk (m, r)) = m.

• The algorithm Enc pk (m, r) consists of first sampling a random lk with LGen, then computing LEnc pk (lk, m, r).

• For all public key pk, for all link key lk, for all plaintexts m 0 , m 1 and all randomness r 0 , r 1 , Trace pk (LEnc pk (lk, m 0 , r 0)) = Trace pk (LEnc pk (lk, m 1 , r 1)). This is the link traceability property.

• For all key pair (pk, sk), for all ciphertext C, for all randomness r, we have Dec sk (C) = Dec sk (Rand pk (C, r)) and Trace pk (C) = Trace pk (Rand pk (C, r)). This is the publicly traceable rerandomization property.

• For all public key pk, for all plaintext m and for all randomness r, Ver pk (Enc pk (m, r)) = 1.

We note that the link traceability property ensures that the trace of a ciphertext does not depend on the message that is encrypted: intuitively, this means that the link key cannot be used as a receipt by a malicious voter.

Security notions for verifiable receipt-free voting

In electronic voting, encrypting the voting options is not sufficient to obtain privacy. Indeed, we already mentioned that the encryption scheme must provide some additional security properties, such as NM-CPA security. Similarly, using a traceable encryption is not enough to obtain receiptfreeness. For this purpose, [START_REF] Devillez | Traceable receipt-free encryption[END_REF] introduces several security properties which are verifiability, TCCA security, traceability and strong rerandomization. Compared to the original definition of verifiability, this thesis uses a slightly weaker version, as it is sufficient for our purpose.

Definition 26 (Verifiability). A traceable encryption is verifiable if, for every efficient adversary A, the probability Pr ((pk, sk) ← Gen(λ); C ← A(pk, sk); Ver pk (C) = 1 ∧ Dec sk (C) ̸ ∈ P) is negligible in λ, where P is the plaintext space.

In the context of electronic voting, the public verifiability of the encryption scheme allows to ensure that an encrypted ballot indeed contains a valid voting option.

Definition 27 (TCCA). A traceable encryption scheme is secure against traceable chosenciphertext attacks (TCCA-secure) if, for all PPT adversary A, the advantage of A in the experiment defined in Algorithm 106 is negligible in λ.

The TCCA-security game can be read as follows. First, a random key pair (pk, sk) is generated by the challenger, and the adversary is given the public key. In addition, it has access to a decryption oracle, which can decrypt any well-formed ciphertext (i.e. an element C s.t. Ver pk (C) = 1). With this oracle, the adversary must output two valid ciphertexts C 0 and C 1 that share the same trace, and the challenger rerandomizes one of them at random, yielding the challenge ciphertext C ⋆ . At this point, the adversary must guess whether C 0 and C 1 has been rerandomized; for this purpose, it can make queries to the decryption oracle O Dec ⋆ . Similarly to O Dec , this oracle can only decrypt valid ciphertexts; however, it cannot decrypt a ciphertext that has the same trace as C ⋆ .

The intuition is that if the traceable encryption scheme is TCCA, then even if one is instructed to submit a specific ciphertext C 1 , the rerandomization C ⋆ of C 1 is indistinguishable from that of any other ciphertext C 0 , provided that C 0 and C 1 have the same trace. contained in 2n -1 linear equations: at most n -1 equations are given by the validity of the signatures, and are of the form e(n i=1

N χ i i , ĝ)e(n i=1
, N γ i i , ĥ) = n i=1 e(N i , ĝi)

for some N i 's and n equations comes from the public key, and are of the form ĝi = ĝχ i ĥγ i . Hence, when E occurs, the probability that (Z, R) = (Z ′ , R ′) is at most 1/q. Yet, if (ĝ, ĥ, ĝ1 , ĥ1) is a random tuple and if (Z, R) ̸ = (Z ′ , R ′), then e(Z/Z ′ , ĝ1) = e(R ′ /R, ĥ1) occurs with probability 1/q. Therefore, there exists a negligible function µ, that respects 0 ≤ µ ≤ 2 q , such that, when E occurs while (ĝ, ĥ, ĝ1 , ĥ1) is a random tuple, B wins the DDH game with probability 1 -µ.

Overall, the probability that B wins the DDH game is

1 2 (1 -ε) + 1 2 ε(1 + 1 -µ) = 1 2 + 1 2 ε - 1 2 εµ.
This shows that ε ≤ 2ε SXDH + 2 q , where ε SXDH is the advantage of B in the DDH game. By the SXDH assumption, ε is negligible.

The Groth-Sahai proof system

In the context of bilinear-friendly groups, the Groth-Sahai proofs were introduce in [START_REF] Groth | Efficient non-interactive proof systems for bilinear groups[END_REF] and can be used to prove that quadratic equations are verified on committed values. In what follows, we focus on pairing product equations, which have the form where X 1 , . . . , X n ∈ G and Ŷ1 , . . . , Ŷm ∈ Ĝ are committed secret values; B1 , . . . , Bn ∈ Ĝ, A 1 , . . . , A m ∈ G and T ∈ G T are public group elements and, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, γ i,j ∈ Z q are public scalars. For instance, the verification equation (4) of the LHSP signature is a pairing product equation.

The Groth-Sahai proof system provides, among others, several algorithms to commit to secret values and prove that pairing product equations hold on the committed values. In what follows, we do not fully detail the construction of Groth-Sahai proofs based on SXDH, but only what is necessary for our purpose.

• Gen(pp) : given the public parameter pp, choose ⃗ u

1 = (u 1,1 , u 1,2), ⃗ u 2 = (u 2,1 , u 2,2) ∈ G 2 , ⃗ v1 = (v 1,1 , v1 ,
2) and ⃗ v2 = (v 2,1 , v2,2) ∈ Ĝ2 at random. The common reference string (CRS) of the proof system is given by (⃗ u 1 , ⃗ u 2 , ⃗ v1 , ⃗ v2).

• Com(crs, X, ⃗ r) : to commit to an element X ∈ G (resp. Ŷ ∈ Ĝ) with randomness

⃗ r = (r 1 , r 2) ∈ Z 2 q , compute ⃗ C = ι(X)⃗ u r 1 1 ⃗ u r 2 2 (resp. ⃗ Ĉ = ι(Ŷ) ⃗ vr 1 1 ⃗ vr 2 2). • CRand(crs, ⃗ C, ⃗ r ′) : to rerandomize a commitment ⃗ C ∈ G (resp. ⃗ Ĉ ∈ Ĝ) with randomness ⃗ r ′ = (r ′ 1 , r ′ 2), compute ⃗ C ′ = ⃗ C⃗ u r ′ 1 1 u r ′ 2 2 (resp. ⃗ Ĉ′ = ⃗ Ĉ⃗ v r ′ 1 1 ⃗ v r ′ 2
2).

• Prove(crs, E, W, ρ) : Given a pairing product equation E and a set of witnesses that verify the equation W = {(X i , ⃗ r i) m i=1 , (Ŷj , ⃗ r ′ j) n j=1 } (the ⃗ r i 's and the ⃗ r ′ j 's are the randomness used to produce the respective commitments), the proving algorithm produces a proof ⃗ π, ⃗ π ∈ G 4 × Ĝ4 that the witnesses verify the equation. If the equation is linear in G (resp. Ĝ), the proof lies in Ĝ2 (resp. G 2).

• PRand(crs, ⃗ C ′ , ⃗ π, ⃗ π, ⃗ r ′) : Given the randomness ⃗ r ′ used to rerandomize the commitment ⃗ C into ⃗ C ′ , it is possible to rerandomize ⃗ π, ⃗ π into ⃗ π ′ , ⃗ π′ .

• Verify(crs, E, C, ⃗ π, ⃗ π) : Given a CRS, an equation, some commitments C (one commitment in G 2 for each witness in G and one commitment in Ĝ2 for each witness in Ĝ) and a proof ⃗ π, ⃗ π, the verification algorithm returns 1 if the proof is valid and 0 otherwise.

The Groth-Sahai proofs have various well-known interesting properties. For our purpose, we mention the following properties, and we refer to [START_REF] Groth | Efficient Non-interactive Proof Systems for Bilinear Groups[END_REF] for more details.

Correctness. If the witnesses verify the equation, then running Com and Prove generates a valid tuple of proof and commitments. In addition, the rerandomization of a valid tuple of proofs and commitments is also valid.

Linearity. Thanks to the algorithms CRand and PRand, the Groth-Sahai proofs are rerandomizable. More generally, they are known to be malleable [START_REF] Fuchsbauer | Commuting Signatures and Verifiable Encryption[END_REF][START_REF] Chase | Malleable Proof Systems and Applications[END_REF]. In our construction, we do not need the generic malleability theory, and we only use the following facts:

1. Let A 1 , A ′ 1 , • • • , A m-1 , A ′ m-1
∈ G be some group elements that define the equations (5) and (6), let ⃗ Ĉ1 , • • • , ⃗ Ĉm be some commitments on witnesses that verify both equations and let ⃗ π 1 , ⃗ π 2 be two valid Groth-Sahai proofs w.r.t. those equations and commitments. Then, for all θ ′ ∈ Z q , the proof ⃗ π 1 ⃗ π 2 θ ′ is a valid proof for Eq. (7) with respect to the commitments

⃗ Ĉ1 , • • • , ⃗ Ĉm-2 , ⃗ Ĉm-1 ⃗ Ĉθ ′ m . m-2 j=1 e(A j , Ŷj) = e(A m-1 , Ŷm-1) (5) m-2 j=1 e(A ′ j , Ŷj) = e(A m-1 , Ŷm) (6)
m-2 j=1 e(A j A ′ j θ ′ , Ŷj) = e(A m-1 , Ŷm-1) (7)
2. Let B1 , • • • , Bn ∈ Ĝ be some group elements and, for t ∈ G T , let E t be the equation (8

). Let t ∈ G T and ⃗ C 1 , • • • , ⃗
C n be some commitments on witnesses that verify the equation E t , and π a valid proof w.r.t. E t and those commitments. Let t ′ ∈ G T and w 1 , • • • , w n ∈ G be some witnesses that verify the equation E t ′ . Then, for all θ ′ ∈ Z q , the proof π is a valid proof w.r.t. E tt ′θ ′ and the commitment ⃗

C 1 ι(w θ ′ 1), • • • , ⃗ C n ι(w θ ′ n). n i=1 e(X i , Bi) = t (8)
Perfect rerandomization. Let ⃗ w, ⃗ ŵ be a vector of witnesses for the equation E, C be some commitments and ⃗ π, ⃗ π a proof obtained with the Prove algorithm. Then the tuple C 1 , ⃗ π 1 , ⃗ π1

• LGen(pk) : First, generate a LHSP key pair (osk, ô pk) from the public parameters ĝ, ĥ and the dimension n = 3: osk, ô pk ←-Keygen((ĝ, ĥ), 3). Then, derive (F, G, H) = hash(ô pk) from the public key and set lk = (osk, ô pk, F, G, H).

• LEnc pk (lk, ⃗ m, r) : To encrypt the plaintext ⃗ m = (m 1 , • • • , m ℓ) ∈ {0, 1} ℓ with the link key lk = (osk, ô pk, F, G, H) and the randomness r, conduct the following steps:

1. Pick θ $ ←-Z q and compute the CPA encryption ⃗ c = (c 1 , c 2 , (d i) ℓ i=1), where c 1 = g θ , c 2 = h θ and d i = g m i i f θ i , and keep the random coin θ. Afterwards, the steps 2-4 are dedicated to the traceability.

2. Authenticate the row space of the matrix T = T i,j 1≤i,j≤3 given below:

T =    g ℓ i=1 d i c 1 1 ℓ i=1 f i g 1 F G    . (9)
Namely, sign each row ⃗ T i = (T i,1 , T i,2 , T i,3) of T using the LHSP signature. This

results in ⃗ σ = (⃗ σ i) 3 i=1 ∈ G 6 , where ⃗ σ i = (Z i , R i) ∈ G 2 . 3. Using the Groth-Sahai commitment scheme and the CRS crs ′ , commit to ⃗ σ 1 = (Z 1 , R 1). This gives ⃗ C Z , ⃗ C R ∈ G 2 .
To ensure that ⃗ σ 1 is a valid one-time LHSP signature on (g, ℓ i=1 d i , c 1) with respect to the public key opk = (l1 , l2 , l3), compute the Groth-Sahai proof ⃗ πsig that e(Z 1 , ĝ)e(R 1 , ĥ) = e(g, l1)e(ℓ i=1 d i , l2)e(c 1 , l3). 4. Set â = b = 1 Ĝ and ŵ = ĝ and commit to these elements, using the Groth-Sahai commitment scheme and the CRS ⃗ crs. This gives ⃗ ĈA , ⃗ ĈB , ⃗ ĈW ∈ Ĝ2 . Compute the Groth-Sahai proof ⃗ π SS that e(S, â)e(T, b) = e(H, ĝ/ ŵ).

5.

Set M i = g m i , Mi = ĝm i for i = 1, . . . , ℓ and Θ = ĝθ and commit to these elements with the CRS crs. This yields ⃗

C M 1 , ⃗ ĈM 1 , • • • , ⃗ C M ℓ , ⃗ ĈM ℓ ⃗ ĈΘ ∈ G 2 .
Compute the Groth-Sahai proofs ⃗ π 1 that e(c 1 , ŵ) = e(g, Θ), ⃗ π 2 that e(c 2 , ŵ) = e(h, Θ) and, for all i, ⃗ π d i that e(d i , ŵ) = e(g i , Mi)e(f i , Θ). 6. To prove that each m i is equal to 0 or 1, compute the Groth-Sahai proof (⃗ π 01,i , ⃗ π 01,i) ℓ i=1 that e(g/M i , Mi) = 1 and e(M i , ĝ) = e(g, Mi).

7.

To allow strong randomization, commit to x = ĝ with the CRS crs. This gives the commitment ⃗ Ĉx . Then, compute the Groth-Sahai proofs ⃗ π r,1 that e(g, ŵ) = e(g, x), ⃗ π r,2 that e(h, ŵ) = e(h, x) and, for all i, ⃗ π r,d i that e(f i , ŵ) = e(f i , x).

Output the ciphertext

CT = ⃗ c, ⃗ C Z , ⃗ C R , ⃗ σ 2 , ⃗ σ 3 , ⃗ πsig , ô pk, ⃗ ĈA , ⃗ ĈB , ⃗ ĈW , ⃗ π SS , (⃗ C M i , ⃗ ĈM i) ℓ i=1 , ⃗ ĈΘ , ⃗ ĈX , ⃗ π 1 , ⃗ π 2 , (⃗ π d i , ⃗ π 01,i , ⃗ π01,i) ℓ i=1 , ⃗ π r,1 , ⃗ π r,2 , (⃗ π r,d i) ℓ i=1 ,
which consists of 20 + 11ℓ elements of G and 15 + 6ℓ elements of Ĝ.

• Enc pk (⃗ m, r) : To encrypt the plaintext ⃗ m = (m 1 , • • • , m ℓ) ∈ {0, 1} ℓ with the randomness r, first generates lk using LGen and return LEnc pk (lk, ⃗ m, r).

• Trace pk (CT) : Parse pk and CT as above, and output ô pk.

• Rand pk (CT) : Pick θ ′ $ ←-Z q and do the following operations:

1. Parse the CPA encryption part as c 1 , c 2 , (d i) ℓ i=1 and compute ⃗ c ′ = (c ′ 1 , c ′ 2 , (d ′ i) ℓ i=1) where c ′ 1 = c 1 g θ ′ , c ′ 2 = c 2 h θ ′ and d ′ i = d i f θ ′ i for i = 1, . . . , ℓ. 2. Update (⃗ C Z , ⃗ C R), the committed signature ⃗ σ 1 . That is, parse ⃗ σ 2 as (Z 2 , R 2) and compute ⃗ C ′ Z = ⃗ C Z ι(Z θ ′ 2) and ⃗ C ′ R = ⃗ C R ι(R θ ′ 2)
. By the linearity of the LHSP scheme and the Groth-Sahai proof, the proof πsig is valid w.r.t. (g, d ′ i , c ′ 1) and ô pk.

Update the proofs

⃗ π 1 , ⃗ π 2 and ⃗ π d i . That is, compute ⃗ π ′ 1 = ⃗ π 1 ⃗ π θ ′ r,1 , ⃗ π ′ 2 = ⃗ π 2 ⃗ π θ ′ r,2 and ⃗ π ′ d i = ⃗ π d i ⃗ π θ ′ r,d i for all i. Also, compute ⃗ Ĉ′ Θ = ⃗ ĈΘ ⃗ Ĉθ ′ X .
By the linearity of the Groth-Sahai proofs, the adapted proofs are now valid with regards to ⃗ c ′ , ⃗ ĈW , ⃗ ĈM i and ⃗ Ĉ′ Θ . 4. Rerandomize all the commitments with CRand and the proofs with PRand. We note

⃗ C ′′ Z , ⃗ C ′′ R , ⃗ Ĉ′ A , ⃗ Ĉ′ B , ⃗ Ĉ′ W , ⃗ C ′ M i , ⃗ Ĉ′ M i , ⃗ Ĉ′ X , ⃗ Ĉ′′ Θ the resulting commitments and ⃗ π′ sig , ⃗ π ′ SS , ⃗ π ′ 1 , ⃗ π ′ 2 , ⃗ π ′ d i , ⃗ π ′ i,01 , ⃗ π′ i,01 , ⃗ π ′ r,1 , ⃗ π ′ r,2 , ⃗ π ′ r,d i the resulting proofs.
Return the re-randomized ciphertext

CT ′ = c ′ , ⃗ C ′′ Z , ⃗ C ′′ R , ⃗ σ 2 , ⃗ σ 3 , ⃗ π′ sig , ô pk, ⃗ Ĉ′ A , ⃗ Ĉ′ B , ⃗ Ĉ′ W , ⃗ π ′ SS , (⃗ C ′ M i , ⃗ Ĉ′ M i) ℓ i=1 , ⃗ Ĉ′′ Θ , ⃗ Ĉ′ X , ⃗ π ′ 1 , ⃗ π ′ 2 , (⃗ π ′ d i , ⃗ π ′ i,01 , ⃗ π′ i,01) ℓ i=1 , ⃗ π ′ r,1 , ⃗ π ′ r,2 , (⃗ π ′ r,d i) ℓ i=1 .
• Ver pk (CT) : First, output 0 if pk or CT does not parse properly. Second, verify the validity of the LHSP signatures ⃗ σ 2 and ⃗ σ 3 with respect to the public key ô pk, and output 1 if it is invalid. Third, verify that the proofs ⃗ πsig , ⃗ π SS , ⃗ π 1 , ⃗ π 2 , (⃗ π d i , ⃗ π i,01 , ⃗ πi,01) ℓ i=1 , ⃗ π r,1 , ⃗ π r,2 , (⃗ π r,d i) ℓ i=1 are valid with regard to their corresponding equations. If at least one of these proofs is invalid, output 0; otherwise, output 1.

• Dec sk (CT) : Given the secret decryption key sk = (α i , β i) ℓ i=1 and c = (c 0 , c 1 , c 2) included in CT, set m i as log g

i (d i c -α i 1 c -β i 2) and return (m 1 , • • • , m ℓ).

Security proofs for our traceable encryption scheme

It is easy to see that our encryption scheme is correct, and its strong rerandomization property comes readily from that of the Groth-Sahai proofs. In this section, we provide a security proof for the verifiability, the TCCA security and the traceable property.

Verifiability

First, we recall that a traceable encryption scheme is verifiable if the adversary cannot forge a valid ciphertext which does not decrypt into a valid plaintext (See Definition 26; the corresponding experiment Exp ver is given in Fig. 33). With this in mind, we prove that our traceable encryption scheme has verifiability.

Theorem 12. Under the SXDH assumption and in the ROM, for all ℓ ≥ 1, our traceable encryption scheme defined in Section 9.4 is verifiable with the plaintext space P = {0, 1} ℓ .

Exp ver (λ, A) Requires: P, the plaintext space 1 pk, sk ←-Gen(λ); 2 C ←-A(pk, sk); 3 if Ver pk (C) = 1 ∧ Dec sk (C) ̸ ∈ P then return 1; 4 else return 0;

Figure 33: The verifiability experiment for a traceable encryption scheme Proof. Let A be an adversary against the verifiability. We give a succession of games H 0 , • • • , H 7 where H 0 corresponds to the verifiability game. For each of those games, we denote S i the probability that H i outputs 1. As we rely on the SXDH assumption, the main proof strategy is to show that for each i, |S i -S i+1 | is proportional to the advantage of an explicit PPT adversary in the DDH game. By abuse of notation, we denote this advantage ε sxdh .

Game 1: In this game, we modify the generation of the Groth-Sahai CRS by picking an exponent ν

$ ←-Z q , ⃗ u $ ←-G 2 and computing ⃗ u 2 = ⃗ u ν 1 . Now, we show that |S 1 -S 0 | ≤ 2ε sxdh .
For this purpose, we construct an adversary B for the DDH game. It is given a tuple z 1 , z 2 , z 3 , z 4 ∈ G which is either a DDH tuple or a random tuple. B interacts with A and simulates H 0 , excepts that it sets u 1,1 = z 1 , u 1,2 = z 2 , u 2,1 = z 3 and u 2,2 = z 4 . Clearly, if B is given a DDH tuple, it plays a perfect simulation of H 1 while, if it is given a random tuple, B plays a perfect simulation of H 0 . Hence B's probability to win the DDH game is 1/2(S 1 + 1 -S 0), and |S 1 -S 0 | ≤ 2ε sxdh .

Game 2: In this game, we abort (by outputting a random bit) if u 1,1 = 1 G . Note that when we abort, we still have a probability of 1/2 to output the correct value, so that |S 2 -S 1 | ≤ 1 2q .

Game 3: In this game, we still pick u 1,1 as in Game 2, but pick a trapdoor τ u $ ←-Z q and compute u 1,2 = u τu 1,1 . Since u 1,1 ̸ = 1 G , this does not change the distribution of the CRS so that S 3 = S 2 .

Game 4: In this game, we similarly trapdoor the Groth-Sahai CRS

⃗ u ′ 1 , ⃗ u ′ 2 and ⃗ v1 , ⃗ v2 with random ν, ν $ ←-Z q so that ⃗ u ′ 2 = ⃗ u ′ν 1 and ⃗ v2 = ⃗ vν 1 .
With the same argument as in Game 1 (applied twice), we have |S 4 -S 3 | ≤ 4ε sxdh .

Game 5: In this game, we similarly abort when u

′ 1,1 = 1 G or when v1,1 = 1 Ĝ and compute u ′ 1,2 = u ′ τ u ′ 1,1 and v1,2 = vτ v 1,2 with τ u ′ , τ v $ ←-Z q .
As above, we have |S 5 -S 4 | ≤ 1 q .

Game 6: In this game, we abort (by outputting a random bit) when S = 1 G or T = 1 G .

Clearly |S 6 -S 5 | ≤ 1 q .

Game 7: In this game, we denote

CT = ⃗ c, ⃗ C Z , ⃗ C R , ⃗ σ 2 , ⃗ σ 3 , ⃗ πsig , ô pk, ⃗ ĈA , ⃗ ĈB , ⃗ ĈW , ⃗ π SS , (⃗ C M i , ⃗ ĈM i) ℓ i=1 , ⃗ ĈΘ , ⃗ ĈX , ⃗ π 1 , ⃗ π 2 , (⃗ π d i , ⃗ π 01,i , ⃗ π01,i) ℓ i=1 , ⃗ π r,1 , ⃗ π r,2 , (⃗ π r,d i) ℓ i=1
the ciphertext sent by the adversary and we use the extractability of the Groth-Sahai proofs to extract the witnesses from the commitments, using the trapdoors. More precisely, we extract the witnesses

Z 1 , R 1 , â, b, ŵ, Θ, (M i , Mi) i , x such that e(Z 1 , ĝ)e(R 1 , ĥ) = e(g, l1)e(ℓ i=1 d i , l2)e(c 1 , l3) (10
e(c 2 , ŵ) = e(h, Θ)

∀i, e(d i , ŵ) = e(g i , Mi)e(f i , Θ)

∀i, e(g/M i , Mi) = 1

∀i, e(M i , ĝ) = e(g, Mi)

e(g, ŵ) = e(g, x)

e(h, ŵ) = e(h, x)

e(f i , ŵ) = e(f i , x),

where (l1 , l2 , l3) = ô pk, (F, G, H) = hash(ô pk) and (g, ĝ, h, ĥ, S, T, (g i , f i) ℓ i=1) are parts of the public key. Afterwards, we abort (by outputting 0) whenever the following equations are not verified.

â = b = 1 Ĝ and ŵ = ĝ.

Clearly, the output of Game 7 differs from Game 6 if and only if the adversary outputs a valid CT (in particular, with valid Groth-Sahai proofs which allow the extraction) such that Eq. (20) is not verified. We denote E this event and ε its probability, so that |S 7 -S 6 | ≤ ε. We construct an adversary B for the DDH game as follows.

First, B gets a challenge tuple S, T, U, V from the DDH game. If S = 1 G or T = 1 G , which happens with a negligible probability µ st , B outputs a random guess. Otherwise, it simulates Game 6 to A in the ROM.

For this purpose, B generates the public key honestly, except that it uses the S, T defined above. In addition, whenever A makes a new query to the random oracle with an input of the form l1 , l2 , l3 ∈ Ĝ (by new, we mean that the same query was not made previously; otherwise B simply outputs the same answer as before), B generates α, β $ ←-Z q and computes H = S α T β . It then samples F and G at random, and uses F, G, H to answer the random oracle query. Eventually, A outputs some ciphertext CT. If it is invalid, E cannot occur and B outputs a random guess, hence wins with probability 1/2. If the ciphertext is valid, B can extract the witnesses as in Game 7 and check whether Eq. (20) is verified or not. If the equation is verified, B similarly outputs a random guess. If not, B checks whether e(U, â(ĝ/ ŵ) -α)e(V, b(ĝ/ ŵ) -β) = 1 G T and states that the challenge tuple is a DDH challenge if and only if this identity is verified. Now, remark that B's simulation is perfectly indistinguishable from Game 6. In addition, if E occurs when S, T, U, V is a DDH tuple, e(S, â)e(T, b) = e(H, ĝ/ ŵ) by Eq. (11), so that e(U, â(ĝ/ ŵ) -α)e(V, b(ĝ/ ŵ) -β) = 1 G T and B wins the DDH game. By contrast, if E occurs when S, T, U, V is a random tuple, then either â ̸ = 1 Ĝ, b ̸ = 1 Ĝ or ŵ ̸ = ĝ. Since the adversary had no information on α, β except that H = S α T β , the probability µ 1 that â(ĝ/ ŵ) -α and b(ĝ/ ŵ) -β are simultaneously trivial is a most 1/q. Hence, e(U, â(ĝ/ ŵ) -α)e(V, b(ĝ/ ŵ) -β) is uniformly random (the adversary had no information about U and V) and is equal to 1 G T with probability 1/q. Therefore B wins the DDH game with probability 1 -µ ′ with |µ ′ | ≤ 2/q.

Finally, remark that since A is not given any information about U, V , the event E is independent from the fact that S, T, U, V is a DDH tuple or not. Consequently, B's probability to win the DDH game is

1 2 µ st + (1 -µ st) 1 2 ε(1 + 1 -µ ′) + 1 2 (1 -ε) = 1 2 µ st + 1 2 (1 -µ st) 1 + ε -µ ′ = 1 2 + 1 2 (ε -µ ′ -µ st (ε -µ ′)).
Hence, ε ≤ 2ε sxdh + 4 q and is indeed negligible.

Game 8: In this game, we abort (by outputting a random bit) if g = 1 G , h = G or ĝ = 1 Ĝ, and if there exists i such that

f i = 1 G or g i = 1 G . Clearly, |S 8 -S 7 | ≤ 3+2ℓ 2q .
Conclusion. Now, we have â = b = 1 Ĝ and ŵ = ĝ. Since ̸ = 1 Ĝ, there exists a unique θ ∈ Z q such that Θ = ĝθ . Similarly, for all i, there exists a unique m i , mi ∈ Z q such that M i = g m i and Mi = ĝ mi . By Eq. (16), m i = mi for all i and, by Eq. (15), m i ∈ {0, 1} for all i. Also, by Eq. (12), c 1 = g θ ; by Eq. (13), c 2 = h θ and, for all i, Eq. (14) gives d i = g m i i f θ i .

Traceability

We now show that our traceable encryption scheme is traceable as of Definition 28, which means that one cannot forge a ciphertext CT ⋆ that has the same trace as a given ciphertext CT, but does not encrypt the same plaintext. To ease readability, we reproduce the traceability experiment in Fig. 34.

Theorem 13. Under the SXDH assumption and in the ROM, for all ℓ ≥ 1, our traceable encryption scheme defined in Section 9.4 is traceable.

Proof. Let A be an adversary against the traceability. Just as in the proof of verifiability, we give a succession of games H 0 , • • • , H 3 where H 0 corresponds to the traceability game. For each game, we denote S i the probability that H i outputs 1. As we rely on the SXDH assumption, the main strategy is to show that for each i, |S i -S i+1 | is proportional to the advantage of an explicit adversary in the DDH game. By abuse of notation, we denote this advantage ε sxdh .

Exp trace (λ, A)

1 pk, sk ←-Gen(λ); 2 m ←-A(pk, sk); Game 1: We begin with the same transitions as in the proof of Theorem 12. Namely, we define Game 0 as the traceability experiment, and Game 1 is a modified game where the Groth-Sahai CRS are generated in the extractability mode and where we added some conditions to abort. With the same arguments, |S 1 -S 0 | is negligible under the SXDH assumption and in the ROM.

Game 2: In this game, we generate a LHSP keypair ô pk, osk at random, before giving pk, sk to the adversary. Also, we generate a random α ∈ Z q , compute F = ℓ i=1 f α i and G = g α and we pick H $ ←-G. Then, whenever the adversary queries the random oracle with the input ô pk, we answer with F, G, H. Also, when the adversary gives the plaintext m to encrypt, we use the link key osk instead of a random link key.

To argue that |S 2 -S 1 | is negligible, we construct an adversary B for the DDH game that interacts with A by simulating Game 1. B gets a challenge tuple g 1 , g 2 , g 3 , g 4 from the DDH game and uses g 1 as g in the simulation. In addition, instead of generating the f i 's honestly, B generates f 1 , • • • , f ℓ-1 at random and sets f ℓ such that ℓ i=1 f i = g 2 . The remaining of the simulation is as in Game 2, except that B sets G as g 3 and F as g 4 . Finally, to decide whether A wins or loses the simulation, B checks that CT ⋆ is valid and has the same trace as CT. If so, B extracts the plaintext m ⋆ 1 , • • • , m ⋆ ℓ from the Groth-Sahai commitments of CT ⋆ (this is possible, thanks to the same argument as in the verifiability game), and tests whether m ⋆ = m. This way, B can decide whether A wins the simulated game. If A wins the simulation, B states that the challenge was a DDH tuple; otherwise, it states that it was a random tuple.

Remark that when the challenge is a random tuple, B plays a perfect simulation of Game 1 to A and hence wins with probability 1 -S 1 . Otherwise, B plays a perfect simulation of Game 2 and wins with probability S 2 . Therefore, B's advantage in the DDH game is

1 2 |S 2 -S 1 |, so that |S 2 -S 1 | ≤ 2ε sxdh .
Game 3: In this game, we use the same arguments as in the verifiability game to extract a

plaintext m ′ 1 , • • • , m ′ ℓ ∈ {0, 1} ℓ from CT ⋆ (this is only possible if the latter is a valid ciphertext). If m ′ 1 , • • • , m ′ ℓ ̸ = m 1 , • • • , m ℓ but ℓ i=1 g m ′ i i = ℓ i=1 g m i i
, we abort by outputting 0. The output of this game differs from that of Game 2 if and only if the adversary outputs a valid ciphertext CT ⋆ such that Trace pk (CT ⋆) = Trace pk (CT), Dec sk (CT) ̸ = Dec sk (CT ⋆) and ℓ i=1 g

m ′ i i = ℓ i=1 g m i i , where m 1 , • • • , m ℓ = Dec sk (CT) and m ′ 1 , • • • , m ′ ℓ = Dec sk (CT ⋆).
We denote E this event and ε its probability, so that |S 3 -S 2 | ≤ ε.

We construct and adversary B against the DDH game as follows. First, B gets a challenge tuple g 1 , g 2 , g 3 , g 4 . If g 1 = 1 or g 2 = 1, which happens with a negligible probability µ ≤ 2/q, B can trivially guess whether the challenge tuple is a DDH tuple or not, and hence wins the DDH game. Otherwise, B interacts with A by simulating Game 2; however, instead of generating the g i 's at random, for all i, it picks two random α i , β i ∈ Z q and computes g i = g α i 1 g β i 2 , so that B's simulation is perfectly indistinguishable from Game 2.

Remark that since B has the secret key sk, it can efficiently detect when E occurs and extract the corresponding m

1 , m ′ 1 , • • • , m ℓ , m ′ ℓ ∈ {0, 1}. Yet, when E occurs, we have ℓ i=1 g m i i = i=1 ℓg m ′ i i ℓ i=1 g (m i -m ′ i)α i 1 = ℓ i=1 g (m ′ i -m i)β i 2 , so that g 1 = g s 2 , with s = ℓ i=1 (m ′ i -m i)β i ℓ i=1 (m i -m ′ i)α i
. By computing s, and checking whether g 3 = g s 4 , B can decide whether g 1 , g 2 , g 3 , g 4 is a DDH tuple or not, and thus win the DDH game. To sum up, B check whether E occurs, compute s and decide whether the challenge is a DDH tuple or not. If E does not occur or if E occurs but with ℓ i=1 (m i -m ′ i)α i = 0 (in which case B cannot compute s), B outputs a random guess. Now, note that since the adversary has no information about (α i , β i) i , when E occurs, the event ℓ i=1 (m i -m ′ i)α i = 0 occurs with probability 1/q. Hence, B's probability to win the DDH game is

1 2 (1 -ε) + ε 1 2q + (1 -1/q) = 1 2 + 1 2 ε - 1 2q ε.
Therefore, ε ≤ 2ε sxdh + 1 q and is indeed negligible.

Conclusion.

We conclude by giving a reduction to the lin-unf experiment defined in Definition 30. We refer to this experiment as the unforgeability game, and we construct an adversary B for the unforgeability game which interacts with A by simulating H 3 . First, B gets ô pk from the unforgeability game and uses this ô pk to simulate H 3 . However, B does not have the secret key osk; therefore, when A sends m 1 , • • • , m ℓ ∈ {0, 1}, B queries the LHSP signatures of (g, ℓ i=1 d i , c 1) and (1, ℓ i=1 f i , g) using the signing oracle. Thanks to the trapdoor α introduced in Game 2, B can deduce a valid LHSP signature for (1, F, G).

Recall that A wins H 3 with probability S 3 , which means that it outputs a valid ciphertext

CT ⋆ such that Trace pk (CT ⋆) = Trace pk (CT) = ô pk. Since this ciphertext is valid, B can extract the signature Z 1 , R 1 and the plaintext m ′ 1 , • • • , m ′ ℓ ∈ {0, 1} from the Groth-Sahai proofs. In particular, (Z 1 , R 1) is a valid signature of (g, ℓ i=1 d ⋆ i , c ⋆ 1
). Yet, with the same arguments as in the verifiability, we know that there exists θ

⋆ ∈ Z q such that c ⋆ 1 = g θ ⋆ and d ⋆ i = g m ′ i i f θ ⋆
i for all i. Also, since CT was honestly generated, there exists θ ∈ Z q such that c 1 = g θ and d i = g m i i f θ i for all i. Hence, the message (g, ℓ i=1 d ⋆ i , c ⋆ 1) is linearly independent from the messages signed by the signing oracle if and only if the matrix (21) has rank 3. By Gaussian elimination, we can transform this matrix into matrix (22) then matrix (23); the latter clearly has rank 3.

Hence, whenever A wins the traceability game, B wins the unforgeability game. Since we showed in Lemma 16 that the LHSP scheme is unforgeable under the SXDH assumption and in the ROM, this shows that S 3 is indeed negligible.



  g ℓ i=1 g m i i f θ i g θ g ℓ i=1 g m ′ i i f θ ⋆ i g θ ⋆ 1 ℓ i=1 f i g    (21)    g ℓ i=1 g m i i 1 g ℓ i=1 g m ′ i i 1 1 ℓ i=1 f i g    (22)    g ℓ i=1 g m i i 1 1 ℓ i=1 g m ′ i -m i i 1 1 ℓ i=1 f i g    (23)
Exp tcca (λ, A)

1 pk, sk ←-Gen(λ); 2 C 0 , C 1 ←-A O Dec (pk); 3 b $ ←-{0, 1}; 4 if Trace pk (C 0) ̸ = Trace pk (C 1) or Ver pk (C 0) = 0 or Ver pk (C 1) = 0 then return b; 5 r $ ←-R; 6 C ⋆ ←-Rand pk (C b , r); 7 b ′ ←-A O Dec ⋆ (C ⋆); 8 if b = b ′ then return 1 else return 0;

TCCA security

Finally, we prove that our traceable encryption scheme provides TCCA-security as of Definition 27, which means that the rerandomizations of two given ciphertexts that have the same trace are indistinguishable. To ease readability, we reproduce the TCCA experiment in Fig. 35. Theorem 14. Under the SXDH assumption and in the ROM, for all ℓ ≥ 1, our traceable encryption scheme defined in Section 9.4 is TCCA-secure.

Proof. Let A be an adversary against the TCCA security. As usual, we give a succession of games H 0 , • • • , H 3 where H 0 corresponds to the TCCA game. For each of those games, we denote S i the probability that H i outputs 1. As we rely on the SXDH assumption, the main proof strategy is to show that for each i, |S i -S i+1 | is proportional to the advantage of an explicit PPT adversary in the DDH game. By abuse of notation, we denote this advantage ε sxdh .

Game 1: In this game, we abort (by outputting a random bit) when S = 1

G or T = 1 G . Clearly, |S 1 -S 0 | is negligible.
Game 2: In this game, we trapdoor the random oracle answers: when the adversary makes a hash query with some input, if the same query was made previously we answer with the same output as before; otherwise we pick F, G $ ←-G as in game H 0 , and pick τ

x , τ ′ x $ ←-Z q , compute H = S τx T τ ′
x , keep in memory the association between H and τ x , τ ′ x and output F, G, H. Note that since (S, T) ̸ = (1 G , 1 G), the distribution of the output is not changed, so that S 2 = S 1 .

Game 3: In this game, we change the way we generate CT ⋆ , and more precisely the Groth-Sahai proofs and their commitments. The commitments C Z , C R and the proof πsig are processed as usual; however, for the other commitment and proofs, we do not follow the Rand procedure. Instead, we first generate some witnesses â, b, ŵ, Θ, Mi , M i , x that verify the equations (10) to (19). Since most of the equations are linear, we can set ŵ, Θ, Mi , M i , x as trivial elements. Finally, to obtain â and b such that e(S, â)e(T, b) = e(H, ĝ) (recall that we set ŵ to the trivial element 1 Ĝ), we use the trapdoors τ x , τ ′

x such that H = S τx T τ ′ x , so that e(H, ĝ) = e(S, ĝτx)e(T, ĝτ ′ x). Namely, we set â = ĝτx and b = ĝτ ′

x . Once those witnesses have been generated, we generate fresh random commitments and Groth-Sahai proofs using them, and use the corresponding commitments and proofs instead of the rerandomized ones.

By the perfect rerandomization and the witness indistinguishability of the Groth-Sahai proofs, unless there is a DDH tuple in the Groth-Sahai CRS, this game is perfectly indistinguishable from the previous one. Hence, |S 3 -S 2 | ≤ 3 q .

Game 4: In this game, we abort (by outputting b) if the two ciphertexts CT 0 and CT 1 given by the adversary use different LHSP signatures, i.e. if σ 0 2 ̸ = σ 1 2 or σ 0 3 ̸ = σ 1 3 . When Game 4 differs from Game 3, Trace pk (CT 0) = Trace pk (CT 1), hence the group elements F, G, H derived from this common public key are the same. Therefore σ 0 2 and σ 1 2 (resp. σ 0 3 and σ 1

3) are valid LHSP signatures of the same message (1, ℓ i=1 f i , g) (resp. (1, F, G)). Thus, if σ 0 2 ̸ = σ 1 2 or σ 0 3 ̸ = σ 1 3 , we have a straightforward reduction to SXDH. (We refer to the proof of Lemma 16 where we gave an explicit reduction from finding two different LHSP signatures on the same message and winning the DDH game.)

Game 5: In this game, we change the generation of the Groth-Sahai CRS crs: instead of picking them at random, we pick them as random DDH tuple, and we keep the corresponding trapdoor. Also, we abort by outputting a random bit if one of the element of the CRS is a trivial element. (Note that the second CRS crs ′ , which is used for ⃗ πsig only, is still generated honestly.) Using a similar argument as in Games Game 3 to Game 5 from the proof of verifiability, it is easy to show that |S 5 -S 4 | is negligible under the SXDH assumption.

Game 6: In this game, whenever the adversary outputs a valid ciphertext (including during a decryption query), we extract Z 1 , R 1 , â, b, ŵ, Θ, Mi , M i , x from the commitments and abort (by outputing a random bit) if Eq. (20) is not verified.

Using a similar argument as in the proof of verifiability (see Game 7), we have that |S 6 -S 5 |, is negligible.

Game 7: In this game, whenever the adversary A makes a new random oracle query, we picks a random τ ∈ Z q , compute F = ℓ i=1 f τ i and G = g τ . To argue that |S 7 -S 6 | is negligible, we construct a succession of games (H i) i . The game H i is Game 7, except that the first i queries to the random oracle are answered as in Game 6 (i.e. using uniformly random F, G and the trapdoored H). With the same idea as in the proof of traceability (see Game 2), it is easy to show that all the conditions of the hybrid lemma are verified, so that |S 7 -S 6 | is negligible.

Game 8: In this game, we denote sk = (α i , β i) ℓ i=1 the secret key, and we abort (by outputting a random bit) if

h ℓ i=1 β i g ℓ i=1 α i = 1. Clearly |S 8 -S 7 | is negligible.
Game 9: In this game, we generate g, h, G, H ∈ G\{1} at random and generate the secret key

(α i , β i) ℓ i=1 such that h ℓ i=1 β i g ℓ i=1 α i ̸ = 1. Also, we denote F = H ℓ i=1 β i G ℓ i=1 α i .
Then, whenever the adversary makes a query to the random oracle with a new input ô pk, we do not compute F = ℓ i=1 f τ i and G = g τ for some random τ . Instead, we compute F = F τ and G = Gτ ; as for H, it is generated as usual (i.e. by generating two random τ H , τ ′ H ∈ Z q and computing H = S τ H T τ ′ H). We answer to the random oracle query with F, G, H. When A outputs the ciphertexts CT 0 and CT 1 , we pick a random bit b ∈ {0, 1}. However, instead of rerandomizing CT b as in Game 8, we parse it as

CT b = c b 1 , c b 2 , (d b i) ℓ i=1 , ⃗ C Z , ⃗ C R , ⃗ σ 2 , ⃗ σ 3 , ⃗ πsig , ô pk, ⃗ ĈA , ⃗ ĈB , ⃗ ĈW , ⃗ π SS , (⃗ C M i , ⃗ ĈM i) ℓ i=1 , ⃗ ĈΘ , ⃗ ĈX , ⃗ π 1 , ⃗ π 2 , (⃗ π d i , ⃗ π 01,i , ⃗ π01,i) ℓ i=1 , ⃗ π r,1 , ⃗ π r,2 , (⃗ π r,d i) ℓ i=1
and compute CT ⋆ as follows. First, we recover (F, G, H) and the corresponding τ

∈ Z q from Trace pk (CT b), compute H = Hτ , pick µ 1 , µ 2 $ ←-Z q and compute c ⋆ 1 = c b 1 g µ 1 G µ 2 , c ⋆ 2 = c b 2 h µ 1 Hµ 2 , and, for all i, d ⋆ i = d b i f µ 1 i F µ 2 i ,
where

F i = G α i Hβ i . To produce ⃗ C ⋆ Z , ⃗ C ⋆ R and ⃗ π⋆ sig , we extract (Z 1 , R 1) from the Groth-Sahai commitments ⃗ C b Z and ⃗ C b R , parses ⃗ σ 2 as (Z 2 , R 2), ⃗ σ 3 as (Z 3 , R 3) and compute the witnesses Z = Z 1 Z µ 1 2 Z µ 2 3 and R = R 1 R µ 1 2 R µ 2 3 .
(Recall that ⃗ σ 2 and ⃗ σ 3 are the same for both ciphertexts CT 0 and CT 1 .) Since

ℓ i=1 F i = G ℓ i=1 α i H ℓ i=1 β i = F τ = F, the vector (g, ℓ i=1 d ⋆ i , c ⋆ 1
) is a linear combination of (g, ℓ i=1 d b i , c b 1), (1, ℓ i=1 f i , g) and (1, F, G), with the coefficients 1, µ 1 and µ 2 . Therefore, by the linearity of the LHSP signature, (Z, R) is a valid signature of (g, ℓ i=1 d ⋆ i , c ⋆ 1). Using these witnesses, we generate ⃗ C ⋆ Z and ⃗ C ⋆ R using the Groth-Sahai commitment scheme, and ⃗ π⋆ sig using the Groth-Sahai proving algorithm. Finally, we generate the remaining of CT ⋆ as in Game 8, using the trapdoors τ H and τ ′ H such that H = S τ H T τ ′ H . To argue that Game 9 is indistinguishable from Game 8, we show that both games are indistinguishable when g, h, G, H happens to be a DDH tuple. Indeed, consider that g, h, G, H is a DDH tuple, and that none of its component is trivial. Then there exists γ ∈ Z × q such that G = g γ and H = h γ . This way, when we answer to a random oracle query with F = F τ and G = Gτ for some random τ , we have

F = F τ = H ℓ i=1 β i G ℓ i=1 α i τ = h ℓ i=1 β i g ℓ i=1 α i τ γ = ℓ i=1 f τ γ i
and G = g τ γ . Hence (F, G, H) follows the same distribution as in Game 8.

In addition, we have

c ⋆ 1 = c b 1 g µ 1 G µ 2 = c b 1 g µ 1 Gτµ 2 = c b 1 g µ 1 +γτ µ 2 c ⋆ 2 = c b 2 h µ 1 Hµ 2 = c b 2 h µ 1 Hτµ 2 = c b 2 h µ 1 +γτ µ 2 d ⋆ i = d b i f µ 1 i F µ 2 i = d b i f µ 1 i G α i Hβ i µ 2 = d b i f µ 1 +γτ µ 2 i .
Finally, it remains to argue that the vector (Z 2 , R 2) and (Z 3 , R 3) are collinear, except with a negligible probability. Indeed, when they are collinear, (Z, R) follows the same distribution as in Game 8, and since the Groth-Sahai proofs and commitments are computed from (Z, R) in the same way, they also follow the same distribution as in Game 8. Now, let p be the probability that (Z 2 , R 2) and (Z 3 , R 3) are not collinear when g, h, G, H is a DDH tuple. We construct an adversary B against DDH which interacts with A by simulating Game 9. However, it gets ĝ, ĥ, ĝ′ , ĥ′ as a tuple challenge from the DDH game, picks a random γ ∈ Z × q and sets G = g γ and H = h γ . At some point, A outputs the two ciphertexts from which B deduces (Z 2 , R 2) and (Z 3 , R 3). Since they are valid signatures, we have e(Z 2 , ĝ)e(R 2 , ĥ) = e(ℓ i=1 f i , l2)e(g, l3) e(Z 3 , ĝ)e(R 3 , ĥ) = e(F, l2)e(G, l3) = e(ℓ i=1 f τ γ i , l2)e(g τ γ , l3).

Hence, we have e(Z 3 Z

-τ γ 2 , ĝ)e(R 3 R -τ γ 2 , ĥ) = 1.
Therefore, B can proceed as follows. It computes e

(Z 3 Z -τ γ 2 , ĝ′)e(R 3 R -τ γ 2
, ĥ′) and, if this is equal to 1, states that ĝ, ĥ, ĝ′ , ĥ′ was a DDH tuple; otherwise, it states that it was a random tuple. Remark that when ĝ, ĥ, ĝ′ , ĥ′ is a DDH tuple, the corresponding equality always hold so that B wins with probability 1. If ĝ, ĥ, ĝ′ , ĥ′ is a random tuple, then, there are two possibilities: either

Z 3 Z -τ γ 2 = R 3 R -τ γ 2
= 1 so that the equality also holds in any case; either this is not the case and the equality hold with probability 1/q (this is because the adversary had no information about ĝ′ , ĥ′ , which is uniformly random). Let p ′ be the probability that

Z 3 Z -τ γ 2 = R 3 R -τ γ 2 = 1 does not hold.
Then, the probability that B wins the DDH game is 1 2 (1 + p ′ (1 -1/q)), so that p ≤ p ′ ≤ 2ε sxdh + 1 q . Indeed, if (Z 2 , R 2) and (Z 3 , R 3) are not collinear, the equalities

Z 3 Z -τ γ 2 = R 3 R -τ γ 2 = 1 are not possible so that p ≤ p ′ .

Conclusion.

To conclude the proof, we show that the view of the adversary when b = 0 is statistically indistinguishable from that of the adversary when b = 1. For this purpose, recall that thanks to the transition to Game 6, the only decryption queries which are accepted contains a ciphertext CT for which the CPA part is of the form

(g ρ , h ρ , g m 1 1 f ρ 1 , • • • , g m ℓ ℓ f ρ ℓ), for some ρ ∈ Z q . Consequently, the equations g m i i = d i c -α i 1 c -β i 2
that can be deduced by the answer of the oracle queries are collinear with the equations f i = g α i h β i from the public key.

In addition, when we answer to a new random oracle query, we compute H independently and F = F τ and G = Gτ with a fresh random τ . Therefore, a random query unrelated to ô pk does not give any more information than F , G.

Also, since the commitments ⃗ C ⋆ Z , ⃗ C ⋆ R and the Groth-Sahai proof ⃗ πsig use another independent CRS crs ′ which is not trapdoored, unless this CRS contains a DDH tuple, they are perfectly witness indistinguishable, which means that they reveal no information about b.

Besides, since the other Groth-Sahai commitments and proofs are computed independently of CT 0 , CT 1 and b, they similarly reveal no information about b.

Overall, a computationally unbounded adversary has access to the information contained in the following equations:

H ℓ i=1 β i G ℓ i=1 α i = F (24) ∀i, g α i h β i = f i (25) c b 1 g µ 1 Gτµ 2 = c ⋆ 1 (26) c b 2 h µ 1 Hτµ 2 = c ⋆ 2 (27) ∀i, d b i f µ 1 i g τ α i Hβ i µ 2 = d ⋆ i . (28)
Yet, unless τ = 0 or g, h, G, H is a DDH tuple, the vectors (g, h) and (Gτ , Hτ) are linearly independent so that there exists a unique µ 1 1 , µ 1 2 (resp. µ 0 1 , µ 0 2) such that Eq. (26) and (27) are verified with b = 1 (resp. b = 0).

Also, remark that unless g = 1 G or H = 1 G or µ 1 2 = 0 (resp. µ 0 2 = 0), the 2ℓ equations defined in Eq. (25) and 28 are linear in the secret key, and linearly independent. Therefore, there exists a unique secret key (α

1 i , β 1 i) ℓ i=1 (resp. (α 1 i , β 1 i) ℓ i=1 that verifies them).
Finally, unless ℓ i=1 β i = 0, Eq. 24 is equivalent to

H = F G-ℓ i=1 α i (ℓ i=1 β i) -1
.

Therefore, except with probability at most 7/q, the probability that a specific CT ⋆ is output to the adversary is the same when b = 0 as when b = 1. Hence, CT ⋆ is independent from b and the probability that the adversary wins is exactly 1/2. Overall, this shows that the advantage of A in Game 9 is negligible as required.

Application to verifiable receipt-free electronic voting

Until now, we presented a new definition of receipt-freeness as well as the notion of traceable encryption, which is adapted to the rerandomization paradigm. In this section, we propose TREnc, a Helios-like voting scheme that allows to obtain receipt-freeness with very little assumptions on the protocol. This contribution is similar to that of [START_REF] Devillez | Traceable receipt-free encryption[END_REF], except that the setup is public coin and that we support 0/1 proofs.

A voting scheme based on a traceable encryption

To define our voting scheme, we give the algorithms (Setup, Vote, Check, Valid, Tally, Verify). Recall that our construction is independent from the registration, so that we do not explicit the registration protocol nor how the eligibility is enforced. Just as for Helios, we propose a voting system that can be augmented with any mechanism to obtain eligibility. One of the specificities of our protocol is that the Vote protocol is interactive, and requires two messages from the voter. This is because we use an interactive Σ-protocol to prove the knowledge of the link key. This is needed in the strategy that we propose to deceive the vote buyer, since the voter can use this interactive protocol to extract the link key. (Note that the voter does not interact with the vote buyer, but rather with the instructions that are given, seen as a Turing machine.)

For the tally part, we use the fact that our traceable encryption has a somewhat homomorphic property, which means that a homomorphic strategy can be applied. Alternatively, a decryption mixnet can also be used. In our construction, the universal verifiability comes from the computational soundness of the threshold decryption protocol. Also, assuming that the voting device is honest, the individual verifiability comes from the traceability of the encryption scheme and the Game 1: In this game, we create a third fake board PB and answer each call to O board with PB. For this purpose, we update PB the same way we update PB 0 , and we replace every validity check that implies PB 0 with its counterpart with PB. This way, the adversary's view does not change. Clearly S 1 = S 0 .

Game 2: In this game, we compute Π using SimProof(r, PB) instead. By assumption, |S 2 -S 1 | is negligible.

Game 3: In this game, each time a new ballot B is added to a board (and thus is valid with respect to this board), we use the secret key to decrypt the encryption part and abort if this is not a valid plaintext. Clearly, |S 3 -S 2 | is negligible by the verifiability of the traceable encryption scheme.

Game 4: In this game, each time the adversary calls O voteLR with valid inputs (ν 0 , ν 1), we add a random ballot for ν 1 (instead of ν 0) to PB, and still add a random ballot for ν 0 to PB 0 , using the same link key.

To argue that |S 4 -S 3 | is negligible, we use a hybrid argument and show that it is possible to modify the calls to O voteLR one by one. More precisely, we construct a succession of hybrids (H i) N such that for all i, H i is Game 4 except that the first i calls to O voteLR are handled as usual (the subsequent one are handled as explained above).

We construct an adversary B that, given i, interacts with A by simulating H i+1 . For this purpose, each time A makes a O cast query with a valid ballot, B uses the decryption query to decrypt it. This way, B knows the plaintext that correspond to every ballot in every public board, so that it can compute the tally and run a perfect simulation of H i+1 . However, for the (i + 1)th call to O voteLR , B generates two random ballots B 0 and B 1 for the voting options ν 0 and ν 1 (using the same link key) and plays them in the TCCA game which answers with the challenge ciphertext CT ⋆ . Then, B uses this CT ⋆ to form the ballot to add to PB instead of a rerandomization of B 0 . The remaining of the simulation is ra honestly, except that to compute the result of the tally, B since it cannot decrypt the ballot cast by A. Finally, if A wins the simulation, B outputs 1 in the TCCA game; otherwise, it outputs 0.

Clearly, when the TCCA game rerandomizes CT 0 , B plays a perfect simulation of game H i+1 and, when the TCCA game rerandomizes CT 1 , B plays a perfect simulation of game H i . By the hybrid argument, |S 4 -S 3 | is negligible.

Game 5: In this game, whenever the adversary calls O receiptLR with instruction I and voting option ν, we compute (s 1 , B 1) from D I (v), add B 1 (instead of B 0) to PB and return s 1 (instead of s 0). We still compute (s 0 , B 0) from I and add B 0 to PB 0 .

Remark that s 1 is obtained from I with the same inputs as for s 0 so that s 1 = s 0 . Remark that as in the previous transition, it is easy to give a hybrid argument and show that Game 5 is indistinguishable from Game 4, thanks to the TCCA-security of the encryption scheme.

Conclusion.

We deduce that | Pr Exp rf-0 = 1 -Pr Exp rf-1 = 1 | is negligible, so that TREnc has receipt-freeness.

Adapting the scheme to provide cast-as-intended verification

The Benaloh challenge is a counter-measure to protect the voters against a cheating voting device, which would encrypt another voting option than the chosen one. It works as follows: first, the voter decides whether to cast or to audit the ballot. In the cast scenario, the voter types on the device the desired voting option. Otherwise, they type a random and independent option. In any case, the voting device is not aware of the choice and must produce a ballot. The voter then reveals if they want to cast or audit it. When the voter chooses to audit, the voting device must reveal an opening of the encrypted ballot (for instance, the randomness used for encryption). The voter then inputs the ballot and this opening to an auditing device which checks whether the voting device encrypted the correct voting option.

Interestingly, the voter may gain confidence as to whether the cast ballot contains the correct voting option, but this cannot be used to break receipt-freeness because the audited ballots are never cast (they instead are spoiled using some mechanism to prevent casting). However, when the ballots are re-randomized, this strategy cannot be used as it is. Indeed, the cheating voting device can always display a honestly generated ballot but cast a dishonestly generated one which uses the same trace, hence defeating the Benaloh challenge. In addition, it may be desirable to publish the spoiled ballots for various reasons; for instance to delegate a part of the verification or to avoid having to transfer data from the voting device to the auditing device. Unfortunately, the published spoiled ballots may then be used as a receipt.

Adapting our scheme for the Benaloh challenge

We propose to slightly adapt the voting protocol so that the voting device can no longer defeat the Benaloh challenge, even if the re-randomization server is dishonest. Our modification does not compromising receipt freeness, even if (a part of) the spoiled ballots are published. (Recall, however, that the re-randomization server is supposed honest when considering receipt-freeness.)

The voter still decides in advance whether to audit or to cast, and picks a random voting option when auditing. The voting device encrypts the choice and commits to some random group elements as before. Then, the re-randomization server replies with the re-randomized ballot and a random challenge. At this point, the voter reveals if they want to audit or cast:

• In the cast scenario, the voting device answers to the challenge, the server checks the ZKP and the validity of the ballot and adds it to the public board. The voter then checks that the added ballot corresponds to the one sent by the server.

• In the audit scenario, the voting device and the server reveal the randomness used, so that the voter can check that the ballot opens to the correct voting option.

At the end of the interaction, the voter chooses which spoiled ballots they want to publish. The audit and cast protocols are pictured in Fig. 39. In this figure, (s i) n i=1 is a bitstring that indicates which of the previously spoiled ballots the voter wants to publish. For such ballots, the voter can delegate the opening and just check that there is an entry with the correct CT ′ and ν. Note that allowing the voter to have some spoiled ballots published may expose them to coercion if the adversary is active during the voting phase. It is also more demanding for the public board. For this reason, if there is a direct channel from the voting device or the re-randomization server to the auditing device (for instance, by flashing a QR code), it may be preferable not to let the voters publish any spoiled ballot.

Theorem 16. Assume that the Σ-protocol used during the Vote protocol to prove the knowledge of lk has the special soundness property, is zero knowledge and has the correctness property.

Assume that the tally protocol is zero knowledge in a sense that there exists a simulator SimProof such that, for all (r, PB), if (r ′ , Π) is the output of Tally, then SimProof(PB, r, τ) is computationally indistinguishable from Π, where τ is a trapdoor generated by SimSetup.

Then, under the SXDH assumption and in the random oracle model, the modified voting system presented in this section has receipt-freeness as of Definition 24.

Proof sketch. We give the new deceiving strategy D. First, D makes several copies of I, denoted A, B and C. It runs A honestly in interaction with RS, until the first time A sends a "cast" query. Let CT 0 be the ballot created by A and CT 0 the honest re-randomization given by RS. At this point, D runs B with the exact same inputs, but replaces the last challenge with another randomly chosen challenge. Since A answered "cast" when given an identically distributed challenge, B will also cast with some non-negligible probability (otherwise D rewinds and picks another challenge again). This allows D to extract osk with the special soundness property and to produce another ballot CT 1 which has the same trace as CT 0 , but encrypts the desired voting option ν. D asks RS to spoil CT 0 and sends (id, CT 1 , C) to RS, which answers with d and CT 1 , where C is a the commitment in the Σ-protocol computed by D. Using a third copy of I, D rewinds A to replace CT 0 by CT 1 and the last challenge by d. From the TCCA security, C cannot distinguish CT 0 from CT 1 . Consequently, C also outputs "cast" with some non-negligible probability (otherwise D sends "spoil" to the server and starts over). When C eventually outputs "cast", (s i) n i=1 , D sends (a, a ′), (s ′ i) n ′ i=1 to the server, so that the bits set at 1 corresponds to the spoiled ballots that C wants published. Finally, D outputs C's output as the receipt.

Note that D is a PPT, which means that there is a non-zero (but negligible) probability that D does not terminate in polynomial time. For instance, if I casts with probability 1/2, there is a probability 1/2 2 κ that I does not cast after 2 κ interactions. A less extreme example is where I tries to fake the proof of knowledge of osk by picking a specific challenge d and casting only when d is given as a challenge. Then there is a probability of 2 -λ that RS picks this d as a challenge, in which case D will never be able to extract osk since I will never cast with a challenge d ′ ̸ = d. Now, we show that the couple (s 1 , B 1) produced by D in interaction with RS is indistinguishable from the couple (s 0 , B 0) produced by I, even if the adversary can see the public board. Indeed, let A be an adversary which can distinguish both distributions with an advantage ε. We construct an adversary B for TCCA which interacts with I and A by simulating D and RS.

B runs D's algorithm, but instead of replacing CT 0 by CT 1 , it replaces it by the CT * obtained in the TCCA game, using the ciphertexts CT 0 and CT 1 . The remaining of the experiment is simulated honestly, so that B wins the TCCA game with the same advantage ε.

Finally, remark that if publishing the spoiled ballots is not an option, it is even easier to achieve receipt-freeness since D no longer needs to compute (s ′ i) n ′ i=1 .

On the fly cast-as-intended verification

The solution from Section 9.7.1 allows to use the Benaloh challenge without modifying the protocol too much. In particular, casting requires the same number of interactions for the voter. The main drawback is that checking may be delayed at some point after casting, which could be embarrassing if there is no revoting policy. This can be the case, for instance, if there is no direct channel from the voting device and the rerandomization server to the auditing device.

In this section, we sketch an alternative solution which allows on-the-fly cast-as-intended verification, so as to offer the same properties as the original Benaloh challenge, assuming a channel from the public board to the auditing device. The idea is that instead of choosing cast or audit, the voter chooses "cast", "audit-private" or "audit-public". When "audit-private" is chosen, the re-randomization server sends the randomness used to re-randomize the ciphertext and the voting device must display the randomness used to encrypt the ballot. When "auditpublic" is chosen, the voting device sends the randomness used for encryption to the server which publishes the ballot, the necessary data for opening it and the corresponding voting option. This way, the voter can check the opening of the ballot with the auditing device.

When this solution is used, the adversary can now instruct the voter to "audit-public" at some specific points, which would prevent our deceiving strategy from working (completely rewinding is no longer an option since we cannot rewind the public board). Consequently, we need a more refined deceiving strategy, described as follows, where I is the instruction given by the adversary.

1. Run honestly until I decides to cast. With the same arguments as in Theorem 16, we can prove that this achieves receipt-freeness.

Conclusion

In this collaboration, we proposed a new definition of receipt-freeness, which better models the risk of vote buying. This definition considers that the vote buyer may give any instruction to the voter, and ask the latter to provide a receipt to prove that the instruction was followed. With this approach, receipt-freeness becomes closer to coercion-resistance: the main limitations are that we do not consider forced-abstention attacks and that the adversary cannot ask the voter to give away their voting material. Interestingly, our definition does not make any assumption about the eligibility mechanism nor the registration phase, and considers that they are independent from receipt-freeness. This means that we can use any long term secret key to authenticate the voters, such as the electronic identity card used in Estonia or the health insurance system. This way, it is easier to argue that the voter is not going to give away their credential for a small amount of money.

An unusual specificity of our voting scheme is that the Vote protocol requires the voter to send several messages, in interaction with a rerandomization server. This requirement comes from the cryptographic techniques that we deployed, that feature an interactive ZKP to prevent the adversary from providing the ballot to vote with. In electronic voting, it is often considered that the situation where the voter can "vote and go" is preferable, and that the Vote protocol should be non-interactive. We argue that this interaction is actually required for the voting device: on the voter side, the user experience would be similar to that of the Helios voting protocol. In practice, the voting device needs to exchange many additional messages with the server, for instance to establish a TLS channel. Therefore, the interactive nature of the Vote protocol might not be detrimental. In any case, an interesting future work would be to investigate on the possibility to design a verifiable receipt-free voting scheme that does not use any assumption on the registration phase, but where the voter only needs to send a single message.

Conclusion

In hindsight, this thesis was articulated around three thematics: security definitions, security proofs and protocol design. To conclude this manuscript, we summarize our main contributions and mention some possible future works.

Security definitions

In provable security, providing a security definition is a fundamental key step. It is important to make sure that the formalization that we provide actually corresponds to the security property we want to capture. Unfortunately, the existing definitions are not stabilized, and it is often required to adapt an existing definition to the specificities of a protocol. This is all the more problematic when we want to assess additional, less standard security properties, such as receipt-freeness and coercion-resistance.

Our contributions. In this thesis, we studied the academic definition of coercion-resistance provided in [START_REF] Juels | Coercion-resistant electronic elections[END_REF] and remarked that it did not model the possibility of revoting. When revoting is allowed, we detected a shortcoming in the JCJ protocol where various side-information -which are publicly available during the tally protocol -allow the adversary to gain a non-negligible advantage in guessing whether the coerced voter obeyed or not, using bayesian inference. Hence, we designed a new definition of coercion-resistance, that properly models revoting and the potential presence of dummy ballots, i.e. ballots cast with an invalid credential, but not by the coercer. This definition covers a wider variety of scenarios compared to the JCJ definition, and compares the probability that the adversary correctly guesses the behavior of the coerced voter in the real protocol (i.e. whether they obey or not) to that probability in an ideal protocol, where the only available information are the result (which includes the number of voters that contributed to this result), the number of ballots cast and the number of eligible voters. This way, our definition does not state that the adversary cannot gain a non-negligible advantage (i.e. it can still usefor instance -bayesian inference); rather, it states that this advantage is the same as in the ideal protocol. Intuitively, when the information contained in the result are exactly those required by the regulation, a protocol that satisfies our definition would be as coercion-resistant as possible.

A notion related to coercion-resistance is that of receipt-freeness. By contrast with coercionresistance, there is no canonical definition of receipt-freeness in the literature: some interesting definitions are given, for instance, in [MN06, [START_REF] Kiayias | End-to-End Verifiable Elections in the Standard Model[END_REF][START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF][START_REF] Devillez | Traceable receipt-free encryption[END_REF]. The problem with these definitions is that they do not model the vote-buying scenario, where an adversary can give some specific instructions to the voters and reward those who followed the instructions: for each of these definitions, it is easy to design a voting protocol that verifies the definition but for which vote buying would not be prevented. For this reason, we propose a new definition of receipt-freeness, that was calibrated to address vote buying. In this definition, we consider that some malicious voters may be willing to follow some arbitrary instructions given by the adversary, providing that they are compatible with the voting protocol. This makes the notion of receipt-freeness closer to that of coercion-resistance, and more suitable for real-world threats. The main differences with coercion-resistance is that it does not consider forced-abstention attacks, and that the adversary cannot ask the voters to give away their voting credential.

Future works. Readily, there are a few short-term future works that might be worth investigating. First, we remarked that the BPRIV definition suffered from a small glitch which caused it to reject too many voting protocols. Indeed, recall that in this definition, there are two public board PB 0 and PB 1 and the adversary is able to cast a ballot in both boards. yet, we only verify that the ballot is valid with respect to PB b , the board that the adversary is able to see, which might lead to some invalid ballots being added to PB 0 . As explained in Section 1.3.2, the naive way to fix this is to check that the ballot is valid in both boards, but further investigations are required to verify that the remaining properties of the BPRIV definition are preserved; namely, we need to verify that the fixed definition still implies that the voting protocol securely realizes some ideal voting protocol in an universally composable framework. Similarly, we adapted the BPRIV definition in Section 9.1 to obtain a new definition of receipt-freeness, and it would be interesting to prove that this definition also implies that the voting protocol similarly realizes an ideal voting protocol.

More generally, the lack of composability is an open problem in electronic voting: the existing definitions are limited, interdependent and make various assumptions on the nature of the protocol or the trust assumptions. Consequently, it is often impossible to use an existing definition for a protocol it was not designed for: it would use different phases, participants and trust assumptions. For instance, the BPRIV definition does not model the fact that the adversary might actively impersonate some talliers during the tally phase. For this reason, it would be interesting to provide more modular, composable security definitions. In Section 6.6, we used the universally composable framework of [START_REF] Canetti | A Simpler Variant of Universally Composable Security for Standard Multiparty Computation[END_REF] to exhibit a reduction from a situation where the adversary can impersonate some talliers during the tally protocol to a situation where the adversary is inactive during the tally phase. Hence, a possible approach would be to generalize this result by giving some definitions and conditions under which a similar reduction would be possible. This way, we would be able to create a security framework which gives more modularity on the trust assumptions.

Security proofs

The security proofs are probably what kept us busy for the longest during this thesis. Providing a satisfying level of provable security is definitely a non-trivial task, and we managed to prove various security properties -such as privacy, verifiability, coercion-resistance and receipt-freeness -for our different voting systems. In particular, we used the SUC-framework, which resulted in complex and hard to verify hand-written proofs. Due to the complexity of those proofs, an interesting future work would be to investigate the possibility of machine-checking them. In [START_REF] Cortier | Machine-Checked Proofs for Electronic Voting: Privacy and Verifiability for Belenios[END_REF], for instance, EasyCrypt [BDG + 13] has been used to check various security proofs on Belenios. Compared to game-based definitions, however, the simulation-based definitions of the universally composable frameworks are different in nature. Therefore, the first step would be to determine whether the existing tools such as EasyCrypt allow to machine-check the proofs in the SUC framework.

Protocol design

Apart from writing proofs, a large part of this thesis was spent designing protocols. However, we made several concessions in the process, which might lead to interesting future works.

Our contributions. In this thesis, we provide a toolbox for generic MPC in the ElGamal setting, and show that it can be used to achieve full tally-hiding in electronic voting, which addresses the threat of Italian attacks. In particular, we design some explicit tally protocols for Condorcet-Schulze, STV, Majority Judgment and the D'Hondt method, and show that they are efficient and practical, even compared to other approaches based on MPC in the Paillier setting. We also propose CHide, which uses this toolbox to achieve our definition of coercion-resistance. Interestingly, the complex functionalities provided by the toolbox, such as sorting, allow CHide to be more scalable than the original JCJ protocol.

Finally, we also propose TREnc, a voting system that aims at achieving receipt-freeness. Compared to the two other proposals, TREnc is probably more ready-to-go as it is extremely similar to Helios. In particular, it does not require the talliers to run any MPC protocol outside of the DKG protocol and the threshold decryption.

Future works. First, despite the proof of security in the SUC framework, our toolbox does not provide accountability. This can be detrimental during the tally phase, as people are waiting for the result to be published. If the adversary is able to make the protocol abort without being punished, it may use this as a strategy to diminish the public confidence in the protocol. For this reason, providing accountability and dispute resolution (i.e. a way to punish at least a malicious participant when the protocol aborts, without punishing any honest one) is extremely important. In the SUC framework, the messages are authenticated, which means that the participants can blame each other using the messages they received. However, an authentication is not an identification: when Alice receives a message m from Bob, Alice knows that m comes from Bob but cannot use this knowledge to convince a third party, since she might have forged m herself. For this reason, accountability requires a dispute resolution protocol which clearly states which participant is to blame in any given situation. A possible solution is to use non-repudiable signatures, but the latter are often more expensive to compute compared to, for instance, a message authentication code. Therefore, signing every single message could lead to an efficiency issue. Analyzing which message must be signed and how to solve the disputes with the signed messages would be an interesting future work.

Concerning coercion-resistance, a challenging topic is that of registration. More precisely, it is often required that the adversary is inactive during the registration phase, or that the latter is perfect, in a sense that the adversary cannot record any of the messages exchanged between the voter and the registrars. This can be achieved, for instance, by an in person registration process. However, if the registration is made online, then the assumptions on the registration may be too strong. Indeed, even if we assume that the registration is done through an untappable channel, the adversary might perform the registration instead of the voter and, when required to authenticate itself, forwards the authentication messages to the voter. This way, the adversary would be able to receive the voter's credential directly from the registrars. Therefore, designing a registration protocol that supports the presence of an active adversary can be an interesting future work.

Finally, all of our constructions were based on the DDH assumption, or the SXDH assumption which is a variant of DDH in the context of bilinear groups. Yet, the emergence of quantum computing is looming large, so that the DDH problem might become easy in the foreseeable future. Consequently, a post-quantum solution will be required soon. In this context, we mentioned in Section 4.1.3 that FHE might be an interesting lead to design a post-quantum MPC toolbox. On this subject, an interesting starting point would be the contribution of [KLO + 19].

Finally, we consider that the algorithm PartDec((x, y), s) returns w = x s (the ZKP part is discussed in Section 3.2.1), and we recall that the decryption of a ciphertext (x, y) is derived from the partial decryptions using Lagrange interpolation.

Proof of Theorem 1. We give a succession of games H t , • • • , H 0 . Each game is a copy of the ZK-TCPA game, except that the adversary has to corrupt exactly i participants in game H i . Remark that, when the adversary corrupts t participants, the simulator Sim n T ,t outputs some partial decryptions which are equal to (and thus perfectly indistinguishable from) the real partial decryptions. This is due to Lagrange interpolation. Therefore, for all adversary A t , A t wins H t with probability 1/2. Now, for all i < t, we exhibit a polynomial reduction (i.e. a game hop) from H i to H i+1 , which means that the adversary cannot gain some non-negligible advantage by corrupting less participants.

Game hop. Let i < t, A i be an adversary for H i and p i its probability to win. We construct an adversary A i+1 for H i+1 as follows. First, A i+1 is given (pk, (h i) n T i=1) in H i+1 and forwards this to A i which answers with some set A ⊂ [1, n T] of size i. Then A i+1 adds to A the smallest element j of [1, n T]\A to form A ′ which it plays in H i+1 . In return, A i+1 is given pk and (s i) i∈A ′ . Since A ⊂ A ′ , A i+1 can send pk and (s i) i∈A to A i . The latter answers with some m ∈ G, that A i+1 plays in H i+1 . A i+1 is then given a ciphertext C = (x, y) and a set of n T -i -1 partial tallies. To complete this to a set of n T -i partial tallies as required for A i , A i+1 computes w j = x s j . Finally, it returns A i 's output.

Reduction to DDH. Now, let p i+1 be the probability that A i+1 wins H i+1 . To argue that p i ≈ p i+1 with up to a negligible difference, we construct an adversary B for DDH whose advantage in the DDH game is proportional to |p i+1 -p i |. Under the DDH assumption, B's advantage should be negligible, therefore |p i+1 -p i | is also negligible. The adversary B interacts with A i by simulating game H i as follows.

Line 1. First, B gets a challenge (g 1 , g 2 , g 3 , g 4) from the DDH game. (For simplicity, we assume that g 1 ̸ = 1; see the reduction from IND-CPA to DDH in Section 2.2.2 to see how to handle this possibility properly.) It sets g = g 1 , chooses a random sk ∈ Z q and computes h 0 = g sk . At this point, pk = (g, h 0) is an ElGamal public key. Now, B chooses a random subset A ′ ⊂ [1, n T] of size i and sets j as the smallest element of [1, n T]\A ′ . For k ∈ A ′ , it chooses a random secret share s k ∈ Z q and computes h k = g s k . Also, it sets h j = g 2 . Afterwards, B computes S = A ′ Complete(A ′ , n T) (this set of t + 1 elements contains 0 and j) and, for k ∈ S\(A ′ {j, 0}), sets h k as a random group element. Finally, for k ∈ [1, n T]\S, B computes

h k = ℓ∈S h Λ k,ℓ ℓ
, where Λ k,ℓ = m∈S\{ℓ} k-m ℓ-m modulo q. The above operations allow B to simulate the setup: it can now call A i with the entry (pk, (h i) n T i=1). At this point, A i answers with a set A of size i which is equal to A ′ with probability 1/ n T i (if this is not the case, B starts over again with some fresh randomness). Since n T does not depend on the security parameter λ, B has to start over a constant number of times until A = A ′ . Line 5. Since A = A ′ , B can send (s j) j∈A to A i which answers with m ∈ G. To encrypt m, B sets x = g 3 and computes y = mx sk . The ciphertext (x, y) is therefore a well-formed encryption of m with the public key pk. For k ∈ A, B computes w k = x s k . For k = j, B sets w j = g 4 . For k = 0, B sets w 0 = x sk . For k ∈ S\(A {j, 0}), B sets w k as a random element. For k ∈ [1, n T]\S, B computes w k = ℓ∈S w Λ k,ℓ ℓ . Finally, B sends (x, y), (s i) i∈[1,n T]\A to A i which answers b ′ that B outputs as its guess in the DDH game.

Probability success of B. Now, if the challenge (g, h j , x, w j) is a DDH tuple, then B played A i+1 's simulation of H i and therefore wins with probability p i+1 . However, if the challenge is a random tuple, then B played a perfect simulation of H i , but must output 0 to win. Hence it m + i ←-⌊n V /2⌋ -q i ; 10 while |C| > 1 and s ̸ = 0 do

11 for i ∈ C do 12 if m - i ≤ m + i then s i ←-p i ;
13 else s i ←--q i ; Once the loop invariants are established, we can use them to derive the correctness of our algorithm.

Proof of Theorem 4. Complexity. By Lemma 18, p i = m-I - j=1 a i,j and q i = c j=m+I + a i,j . But at each iteration, we subtract a i,m-I -to p i or a i,m+I + to q i so there cannot be more than n G iterations before both are equal to 0. When p i = q i = 0 for all i, s = 0, which terminates the loop. Hence the Algorithm terminates after O(n C n G) comparisons.

Correctness. If the algorithm terminates because | C |= 1, C contains only one element and since C contains the winners, C is the set of winners. Otherwise, s = 0. Recall that s is the maximum of s i and let i such that s i = s. If m - i > m + i , we have s i = -q i thus q i = 0, which contradicts p i + m - i = m + i + q i and p i ≥ 0 so m - i ≤ m + i and p i = s i = s = 0. But m - i ≤ m + i and p i + m - i = m + i + q i . Since q i ≥ 0, q i = 0 thus m - i = m + i . Hence, by invariants 6 and 7, each candidate in C are equal with respect to ≤ maj . Since C contains the winners, C is the set of winners.

Appendix D

Computing the coercion levels

In the context of coercion-resistance, the framework of [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF] provides an effective methodology to evaluate the coercion level of a given protocol, and to compare it with that of an ideal protocol. As explained in Section 7.3, the coercion level can be evaluated thanks to Eq. (3), that we reproduce below. This assumes that the cryptography is perfect, that a large and unpredictable number of ballots is removed during the tally phase and that the adversary is able to compare Pr(R g |α) and Pr(R g |β), given R g with g ∈ {Real, Ideal}. In this appendix, we give more details about how this comparison can be done as well as some efficient ways to evaluate the formula from Eq. (3). In particular, this allows to understand how the figures from Section 7.3 were obtained.

δ g = max (α,β) R g ∈M α,β
Pr(R g |β) -Pr(R g |α).

(3)

D.1 The coercion level in the ideal game

In the ideal game, R Ideal is the vector -→ res, and computing Pr(-→ res|α) for any α can be done thanks to a formula given in the following result from [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF].

Lemma 19 [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF]). Let (α, β) be two options, n H the number of honest voters and a pure result -→ res such that C i=0 res i = n H + 1. Let -→ P be the probability distribution for the honest voters. Assuming P α P β ̸ = 0, we have Pr(-→ res|β) ≥ Pr(-→ res|α) if and only if res β P α ≥ res α P β . In addition, we have (1 -P β -P α) x .

Indeed, the last summation is the sum over all possibilities of a multinomial distribution, which is 1.

D.2 Modeling the real game

For the real game where revoting is possible, we propose a model in which each honest voter does the following

• Abstain with probability P 0 ,

• Otherwise, vote for option ℓ > 0 with probability p ℓ,∅ ,

• Revote with probability r ℓ ,

• In this case, choose option k > 0 with probability p ℓ,k .

In this model, a voter may revote at most once. Also, a voter who abstains does not "revote". If a voter who initially wanted to abstain changes their mind, it will count as voting once. This approximation is made because the adversary has access to the number of revotes, and not the number of voters who changed their mind. Also, the probability to revote depends on the initial choice. This is to capture the fact that an announcement on the press can make some voter revote if their candidate has been compromised. Similarly, the probability distribution when revoting depends on the first choice. See Fig. 41 for an illustration. In this figure, the label on the left of an edge denotes the nature of the transition and the label on the right denotes the probability of the transition. On leafs, we used labels of the form (n, P) when n denotes the total number of honest voters who choose this path and P the probability to choose this path. For instance, P 1,2 is the probability to first vote for option 1 but to finally revote for option 2 while P 2,∅ is the probability to vote for option 2 and not to revote. Since abstention plays a specific role, we denote it as choice 0, while the other choices actually imply to send a ballot. Now, we must decide on the information the adversary has access to. The most conservative approach is that it may have access to anything which is not a secret; here, all the probability transitions. With this assumption, if -→ res = (res 0 , • • • , res C) is the number of votes for each option and n R is the number of revotes, then Pr((-→ res, n R)|α) is the probability that the honest voters votes res k -1 k=α times for each candidate k and revote n R times. Given the above tree, for any

D.3 Quantifying the coercion level in some specific cases

Because of the complexity of Eq. (29), we only consider the specific cases where there are two candidates and the possibility to abstain (i.e. C = 2). In these simpler cases, we give Lemma 21 which allows to compute the coercion level in O(n H 4) floating operations. Interestingly, δ Real does not depend on the P ℓ,k directly but only on the sums P r1 and P r2 , which correspond to the probability to revote for 1 or 2 respectively. This is because the adversary can only observe the number of revotes and has no information about the initial intention of the voter. Hence, they cannot exploit the dependency between the final choice and the first choice. In practice, we can imagine a scenario where the probability to revote and the probability distributions when revoting and when not revoting are known to the adversary, for instance thanks to exit poll or social media, where the voters tell whether they revote and what was their final choice. In this more realistic scenario when the adversary does not know all the probabilities on the tree, the latter can still compare Pr(R Real |α) and Pr(R Real |β), which takes O(n H) floating operations.

Lemma 21. Let n H be the number of honest voters, (res 0 , res 1 , res 2) such that res 0 + res 1 + res 2 = n H + 1 and n R ≤ n H -res 0 . Let β ∈ {0, 1, 2} be a voting option. Then the probability Pr((res 0 , res 1 , res 2), n R |β) that there are res 0 abstentions, res 1 votes for option 1, res 2 votes for option 2 and n R revotes when the coerced voter chooses the voting option β is given by the following algorithm.

• First, set -→ res = (res 0 , res 1 , res 2).

Résumé

Le vote est la base de toutes les démocraties : c'est la clef de voûte qui légitime les actions d'un gouvernement, et il est décrit par Lyndon B. Johnson, le 58ème président des États-Unis, comme « l'instrument le plus puissant jamais conçu par l'homme pour briser l'injustice ». Récemment, le vote électronique est apparu comme un moyen d'améliorer les systèmes de vote existants. Tout d'abord, le vote électronique peut permettre aux citoyens de voter par internet, qui est plus accessible qu'un bureau de vote dépendant de la liste électorale. Cela pourrait représenter une alternative intéressante au vote par correspondance ou par procuration, en particulier pour les personnes expatriées, les handicapées et les étudiants. Deuxièmement, le vote électronique peut être une alternative nécessaire en cas de confinement de longue durée, comme cela a été le cas lors de la pandémie de COVID. Enfin, l'utilisation d'ordinateurs peut faciliter le décompte des voix, et contribuer à limiter l'utilisation de bulletins de vote en papier, qui ont un impact négatif sur l'environnement. En raison de ces avantages, le vote par Internet a été utilisé pour des élections politiques dans plusieurs pays, comme par exemple l'Australie, le Canada, la France, la Norvège et la Suisse. D'autres formes de vote électronique, basées sur des machines à voter, ont été utilisées, par exemple, au Bangladesh, au Brésil, en Namibie, en Nouvelle-Zélande, au Pakistan, en Corée du Sud et aux États-Unis. L'exemple le plus remarquable est l'Estonie, où le vote par internet est possible depuis 2005, et où la proportion de votants par internet est passée d'un faible pourcentage à 51% en 2023 [START_REF] Ehin | Internet voting in Estonia 2005-2019: Evidence from eleven elections[END_REF][START_REF]Online votes make up two-thirds of Reform, less than third of EKRE votes[END_REF]. D'autre part d'autre part, certains pays, tels que l'Allemagne, l'Italie et le Royaume-Uni, ont interdit les machines à voter, estimant qu'elles peuvent être sujettes à la fraude ou qu'un électeur doit comprendre toutes les étapes de son vote, même sans connaissances techniques.

L'une des principales raisons de se méfier du vote électronique est le risque d'une attaque informatique : en exploitant une vulnérabilité, un pirate peut être en mesure d'interrompre le service, de récupérer les bulletins choisis par les électeurs ou de truquer le résultat de l'élection, ce qui mettrait en péril la souveraineté du pays et remettrait en cause la légitimité des élus. C'est pourquoi il est extrêmement important que le système de vote garantisse la confidentialité et la vérifiabilité. Intuitivement, le secret du vote est atteint si personne ne peut connaître le choix d'un électeur donné. Quant à vérifiabilité, elle est souvent décomposée en plusieurs propriétés, à savoir la vérifiabilité individuelle, la vérifiabilité universelle et l'éligibilité. Informellement, l'éligibilité stipule que seuls les personnes éligibles peuvent voter, et qu'au maximum un bulletin est compté par personne. La vérifiabilité individuelle signifie qu'un votant est en mesure de vérifier que le bulletin de vote a bien été déposé dans l'urne t qu'il contient bien l'option de vote choisie (par exemple, le nom du candidat). Enfin, la vérifiabilité universelle indique que n'importe qui peut vérifier que le résultat de l'élection est conforme à l'urne. Pour obtenir ces propriétés, il est habituel de faire plusieurs hypothèses de confiance. Par exemple, dans le cas du vote sur papier, on suppose que l'urne est sécurisée, de sorte que personne ne peut malicieusement retirer ou ajouter des bulletins, ni consulter le contenu d'un bulletin spécifique. En outre, il est généralement difficile de garantir plusieurs propriétés simultanément. Par exemple, déclarer que Kim Jong-un est le vainqueur respecterait parfaitement le sevret du vote, puisque personne ne donneraient aucune information sur ses préférences. Au contraire, le vote à main levée pourrait garantir la vérifiabilité, mais pas le secret du vote.

Vote sans reçu et résistance à la coercition

Outre la vérification de l'intention de vote, une deuxième difficulté, liée au secret du vote, est le risque de l'achat de vote. En effet, dans un système de vote classique tel qu'Helios, l'électeur produit un bulletin chiffré qui contient son choix. Or, en utilisant un algorithme de vote ad hoc, l'électeur peut produire un bulletin dont il connaît l'aléatoire utilisé pour le chiffrement. Cet aléa peut être utilisé comme reçu pour convaincre un acheteur de vote que le bulletin chiffre un choix spécifique. Pour tenir compte de cette menace, la notion de vote sans reçu (receipt-freeness) a été proposée [START_REF] Cohen | Receipt-free secret-ballot elections (extended abstract)[END_REF].

Il existe plusieurs notions de receipt-freeness dans la littérature. Intuitivement, un système de vote est sans reçu si l'électeur ne peut pas convaincre un tiers qu'il a voté d'une certaine manière, même s'il est prêt à renoncer au secret du vote ou s'il suit un certain jeu d'instructions. Pour parvenir à l'absence de reçu tout en préservant la vérifiabilité, il existe deux approches principales. Tout d'abord, le paradigme du revote silencieux (deniable revoting) consiste à permettre aux électeurs de revoter. Lors d'un revote, le vote précédent est annulé, mais un observateur externe n'est pas en mesure de dire si un bulletin donné est annulé ou non. Ainsi, même si l'électeur prouve qu'il a voté d'une manière spécifique, l'acheteur du vote n'aurait aucune garantie que le vote n'a pas été annulé par un revote. Des exemples basés sur ce paradigme sont, par exemple, [START_REF] Locher | Coercion-Resistant Internet Voting with Everlasting Privacy[END_REF] et VoteAgain [START_REF] Lueks | VoteAgain: A scalable coercion-resistant voting system[END_REF].

Une autre approche est basée sur le rechiffrement, où les électeurs ne peuvent pas directement déposer leur bulletin dans l'urne publique. Au lieu de cela, le bulletin est envoyé à un serveur de rechiffrement, auquel on fait confiance pour ce qui concerne la receipt-freeness. Le serveur rechiffre le bulletin de manière à ce qu'il devienne indistinguable d'un bulletin aléatoire. Ainsi, même si le bulletin a été créé de manière malveillante par l'électeur (ou s'il a été donné par l'acheteur du vote), il n'est plus possible de savoir si le bulletin rechiffré contient l'option de vote voulue. Néanmoins, la vérifiabilité individuelle est toujours assurée, ce qui signifie que le votant a la garantie que le contenu de son bulletin n'a pas été modifié. Afin que cette garantie ne puisse être transmise à l'acheteur de vote, [START_REF] Hirt | Receipt-Free K -out-of-L Voting Based on ElGamal Encryption[END_REF] propose d'utiliser des ZKP à vérifieur désigné (DVZKP) [START_REF] Jakobsson | Mix and Match: Secure Function Evaluation via Ciphertexts[END_REF], qui ne peuvent convaincre que le votant. Cependant, l'utilisation des DVZKP nécessite une mise en place qui soulève des problèmes pratiques. Plus tard, la nécessité de DVZKP a été levée grâce aux couplages bilinéaires, qui introduisent la possibilité de rechiffrer des signatures [START_REF] Blazy | Signatures on Randomizable Ciphertexts[END_REF]. L'idée a été développée dans BeleniosRF [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], qui fournit également une définition moderne de l'absence de reçu.

Une menace liée à l'achat de vote est celle de la coercition. Un attaquant, le coerciteur, demande à un électeur de voter d'une manière spécifique, en utilisant une menace ou une récompense. Par rapport à l'absence de reçu, la résistance à la coercition suppose un adversaire plus fort, qui peut être actif pendant la phase de vote et demander au votant de lui donner son matériel de vote pour pouvoir voter à sa place. Lorsqu'une solution de vote électronique est utilisée sans contre-mesure contre la coercition, le coerciteur peut contraindre un plus grand nombre d'électeurs ou s'assurer -grâce au mécanisme de vérifiabilité -que les électeurs contraints ont bien obéi. En Estonie, le principal moyen d'atténuer la coercition est de permettre aux électeurs de revoter, afin qu'ils puissent d'abord obéir au coerciteur et ensuite revoter avec l'option de vote souhaitée, lorsqu'ils disposent d'un moment d'intimité. Bien que le revote soit une contremesure intuitive contre la coercition, cela suppose que l'électeur est capable de revoter après le coerciteur, ce qui n'est pas nécessairement justifié car ce dernier peut attendre le dernier moment pour voter. En outre, si le coerciteur demande à l'électeur son matériel de vote, ce dernier ne peut pas savoir quand le coerciteur va l'utiliser.

La principale solution académique pour prévenir la coercition est le protocole JCJ, proposé dans [START_REF] Juels | Coercion-resistant electronic elections[END_REF], qui formalise également la notion de résistance à la coercition. L'idée est qu'un électeur est capable de donner un faux matériel de vote au coerciteur. Ce dernier peut émettre un bulletin de vote avec le matériel donné, et le bulletin sera ajouté à l'urne indépendamment de la validité du matériel de vote utilisé. Cependant, les bulletins de vote émis avec un mauvais matériel de vote sont retirés après la phase de vote. La principale propriété de sécurité du protocole JCJ est que le coerciteur n'est pas en mesure de distinguer un vrai matériel de vote d'un faux, ou de dire si un bulletin de vote donné a été retiré ou non.

La prévention des attaques à l'italienne

Une menace majeure qui n'est pas prise en compte dans la résistance à la coercition ou dans l'absence de reçu est celle des attaques à l'italienne, qui sont basées sur les informations disponibles dans le résultat du décompte. En effet, l'une des principales stratégies pour déterminer le résultat de l'élection à partir des bulletins chiffrés consiste à utiliser un mixnet [START_REF] David | Untraceable electronic mail, return addresses, and digital pseudonyms[END_REF], qui révèle la liste de toutes les options de vote choisies par les électeurs, mais dans un ordre aléatoire. En général, cela donne plus d'informations que le simple résultat (typiquement, le nom du ou des vainqueurs, le nombre de bulletins dépouillés et le nombre de bulletins exprimés), et ces informations peuvent être utilisées par un coerciteur pour décider si un votant placé sous la contrainte a obéi ou non. Par exemple, dans le cas du vote préférentiel, un choix peut être n'importe quelle permutation des candidats, de sorte qu'il peut y avoir beaucoup plus de choix possibles qu'il n'y a d'électeurs. En Australie, les élections législatives de 2019 en Nouvelle-Galles du Sud, qui ont utilisé un système de vote préférentiel connu sous le nom de vote unique transférable (STV), ont compté plusieurs centaines de candidats [START_REF]NSWEC -Election results[END_REF]. Dans une telle situation, il est possible de demander à l'électeur de classer d'abord le candidat préféré du coerciteur, puis d'utiliser une permutation très spécifique et improbable des autres candidats, par exemple en alternant plusieurs partis opposés. Si l'électeur n'obéit pas, il est fort probable que personne d'autre ne soumettra un tel bulletin, si bien que le coerciteur pourra déduire, en observant le résultat du décompte où toutes les permutations choisies sont révélées, que le votant a désobéi. De cette manière, le coerciteur peut contraindre un grand nombre d'électeurs et savoir exactement lesquels ont obéi.

Il n'existe pas beaucoup de contre-mesures contre les attaques italiennes dans la littérature ; l'approche la plus prometteuse repose sur le tally-hiding. Dans un système partiellement tally-hiding, le protocole de dépouillement fuite certaines informations supplémentaires, mais pas nécessairement toutes les options de vote choisies par les électeurs. Dans [START_REF] Ramchen | Universally Verifiable MPC and IRV Ballot Counting[END_REF], un protocole MPC est proposé afin de dépouiller un système de vote nommé IRV (un cas spécifique de STV où il n'y a qu'un seul vainqueur) est proposé. Ce protocole permet de calculer un décompte IRV sans révéler toutes les permutations choisies par les électeurs. Cependant, il révèle certaines informations sur le déroulement du protocole. Pour les méthodes de Condorcet, qui sont plusieurs méthodes de comptage s'appliquant au vote préférentiel respectant un critère introduit par Condorcet [START_REF] De | Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix[END_REF], la principale stratégie consiste à représenter le choix d'un électeur sous la forme d'une matrice, de sorte que les bulletins peuvent être additionnés. C'est, par exemple, l'approche proposée dans [START_REF] Haines | Verifiable Homomorphic Tallying for the Schulze Vote Counting Scheme[END_REF]. Un autre exemple qui utilise une forme de tally-hiding par-tielle est Shuffle-sum [BMN + 09], qui vise à atténuer le risque d'une attaque italienne dans STV en cachant les informations les plus cruciales.

Dans Kryvos [HKK + 22], une solution basée sur le tally-hiding public est proposée. L'idée est que le public n'a accès qu'au résultat de l'élection, tandis que les dépouilleurs apprennent plus d'informations. Le principal problème de cette approche est qu'elle ne protège pas les électeurs contre une coercition de la part d'un dépouilleur.

Il est également possible de concevoir un protocole complètement tally hiding. C'est ce qui a été fait, par exemple, dans [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF] ; toutefois, cette solution a été proposée pour le jugement majoritaire, pour lequel il est possible d'utiliser un décompte homomorphe, de sorte que le risque d'une attaque à l'italienne est faible. Parallèlement à cette thèse, le travail indépendant d'Ordinos [KLM + 20] a été proposé pour réaliser un tally hiding complet. Ordinos a été étendu dans [HHK + 21] pour couvrir diverses fonctions de comptage, y compris certaines variantes de la méthode de Condorcet. La solution proposée par Ordinos est coûteuse pour l'électeur et ne lui permet pas de classer plusieurs candidats à égalité, ce qui est restrictif dans le contexte du vote de Condorcet. Dans les deux propositions, la solution proposée repose sur le calcul multi-partie (MPC) basé sur le schéma de chiffrement de Paillier, qui, comparé au plus populaire chiffrement d'ElGamal, a la propriété d'être additivement homomorphe. Cependant, le chiffrement de Paillier nécissite une longueur de la clef beaucoup plus importante, de sorte que le calcul d'un chiffrement est plus coûteux que pour le chiffrement d'ElGamal. Par rapport à une solution de type Helios, le coût du chiffrement d'un bulletin peut être supérieur de plusieurs ordres de grandeur lorsque l'on utilise le chiffrement de Paillier, ce qui soulève des questions pratiques. En outre, comme le système de chiffrement de Paillier n'est pas aussi largement utilisé que celui d'ElGamal, il n'existe pas de bibliothèque aussi bien étudiée et largement déployée. Cela est d'autant plus préjudiciable en vote électronique que nous avons besoin de deux bibliothèques, l'une du côté du serveur et l'autre du côté de l'électeur.

Les preuves de sécurité

L'utilisation de primitives cryptographiques bien étudiées, telles que le chiffrement et le ZKP, ne suffit pas à garantir la sécurité d'un protocole. Idéalement, ce dernier devrait être analysé à plusieurs niveaux d'abstraction. Premièrement, les concepteurs du protocole devraient fournir une preuve de sécurité cryptographique (ou formelle) ; ensuite, la spécification du protocole devrait faire l'objet d'un audit pour s'assurer qu'il n'y a pas de vulnérabilités ; enfin, l'implémentation devrait également être auditée, par exemple dans le cadre d'un programme de prime aux bogues. Pour que ces preuves et ces audits soient significatifs, la communauté académique recommande que les spécifications du protocole soient publiques, afin que l'ensemble de la communauté puisse l'analyser. En Suisse, l'audit public du système de vote de La Poste Suisse, dont les spécifications sont disponibles à [Swi], a permis de détecter certaines vulnérabilités avant la publication, comme décrit dans [START_REF] Haines | How not to prove your election outcome[END_REF] et [START_REF] Cortier | A privacy attack on the Swiss Post e-voting system[END_REF]. En revanche, il a été révélé que le système de vote utilisé en Australie présentait certains problèmes de sécurité [START_REF] Halderman | The New South Wales iVote System: Security Failures and Verification Flaws in a Live Online Election[END_REF], de même que celui utilisé en France [START_REF] Debant | Reversing, breaking, and fixing the french legislative election e-voting protocol[END_REF]. Ces problèmes auraient pu être évités si la communauté du vote électronique avait eu l'occasion d'auditer ces systèmes avant leur déploiement. Ces échecs montrent qu'il n'est pas facile de concevoir un système de vote électronique sécurisé, et encore moins d'évaluer sa sécurité. C'est pourquoi il est habituel de fournir une preuve calculatoire ou formelle que les propriétés souhaitées sont vérifiées.

Dans une preuve calculatoire, l'adversaire est modélisé comme une machine de Turing, qui a une puissance de calcul limitée (polynomiale) mais qui peut effectuer des calculs arbitraires. La principale stratégie consiste à présenter une réduction polynomiale d'un problème connu, tel que la factorisation des entiers ou le problème du logarithme discret. En d'autres termes, une preuve cryptographique est une preuve mathématique qui stipule que, si une propriété de sécurité est violée, il existe une machine de Turing explicite polynomiale (c'est-à-dire un algorithme efficace) qui résout un problème calculatoire considéré comme difficile. Pour un problème bien étudié tel que le logarithme discret, cela signifie que la propriété de sécurité est vérifiée.

Dans une preuve formelle, un modèle mathématique et symbolique est conçu pour représenter le protocole et la propriété de sécurité souhaitée. souhaitée. Dans un tel modèle, les primitives cryptographiques utilisées, ainsi que les actions possibles que l'adversaire peut effectuer, sont idéalisées, par exemple à l'aide de règles de réécriture ou de théories équationnelles. Une fois le modèle créé, la preuve proprement dite consiste à démontrer que la propriété de sécurité peut ou ne peut pas être violée. Généralement, une preuve formelle est obtenue grâce à un outil entièrement automatique ou interactif basé sur des techniques de déduction. Par rapport à une preuve calculatoire qui repose sur une hypothèse de calcul bien étudiée, une preuve formelle suppose que la cryptographie est parfaite et ne peut être violée. Cependant, elle peut couvrir plus de scénarios d'attaque.

Avant de fournir une preuve, une étape clef consiste à modéliser les propriétés de sécurité souhaitées et à en donner une définition formelle. Or, les définitions des notions de sécurité dans le domaine du vote électronique ne sont pas stabilisées. Par exemple, l'une des premières définitions pour le secret du vote a été donnée par Benaloh [START_REF] Daniel | Verifiable secret-ballot elections[END_REF], et a été utilisée ou étendue dans divers travaux ultérieurs (e.g., [START_REF] Kiayias | End-to-End Verifiable Elections in the Standard Model[END_REF][START_REF] Cortier | Voting: You Can't Have Privacy without Individual Verifiability[END_REF]). Cependant, cette définition comporte plusieurs limites, de sorte que d'autres définitions ont été proposées. En particulier, la notion de Pour la résistance à la coercition, la principale définition académique est celle de [START_REF] Juels | Coercion-resistant electronic elections[END_REF], qui reste une référence sur le sujet. Intuitivement, cette définition compare un jeu réel à un jeu idéal : dans le jeu réel, l'adversaire observe le protocole réel ; dans le jeu idéal, l'adversaire n'a pas d'autres informations que celles contenues dans le résultat final ; dans les deux jeux, le but de l'adversaire est de deviner si le votant a obéi ou non. Cette comparaison est faite car, en observant le résultat, on peut obtenir des informations sur le choix de l'électeur soumis à la contrainte : c'est l'idée qui sous-tend les attaques à l'italienne. Dans [START_REF] Haines | Surveying definitions of coercion resistance[END_REF], on remarque que la définition de JCJ est défectueuse et ne peut pas être réalisée par un système de vote avec une urne publique. La raison principale est que le jeu idéal ne fournit aucune information sur l'urne. Par conséquent, en observant la taille de l'urne dans le jeu réel et en la comparant au résultat de l'élection (qui indique le nombre de bulletins dépouillés), on peut inférer si le bulletin soumis avec le matériel de vote du votant a été retiré ou non. Pour corriger ce défaut, [START_REF] Haines | Surveying definitions of coercion resistance[END_REF] propose de modifier le jeu idéal et d'ajouter l'information sur la taille de l'urne. Cependant, la définition qui résulte reste incomplète, car elle ne prend pas en compte les revotes.

En effet, dans le contexte de la résistance à la coercition, il est naturel de permettre le revote, qui peut constituer une première contre-mesure face aux influences implicites d'un membre de la famille ou d'un employeur. Supposons, par exemple, qu'une petite-fille explique à son grand-père comment voter en ligne. Pour ce faire, elle lui demande de s'identifier à la plateforme de vote et de procéder étape par étape, tandis qu'elle reste derrière lui pour clarifier chaque étape. Dans ce scénario, le grand-père peut se sentir obligé de choisir le parti démocratique alors qu'il aurait préféré choisir le parti républicain. Lorsque le revote est autorisé, le grand-père peut choisir n'importe quel candidat (ou même le candidat suggéré par la petite-fille). Par la suite, lorsque la petite-fille n'est plus là, il peut revoter avec son choix personnel. Autre exemple : un employé est encouragé à voter au travail, en utilisant un appareil qui peut être surveillé par l'employeur. Pour éviter tout conflit, le votant peut être tenté de voter dans un premier temps pour le parti conservateur, puis revoter pour le parti travailliste lorsqu'il est chez lui. Il est donc important que les définitions de la résistance à la coercition prennent en compte le revote.

Nos contributions

1. Nous proposons une boîte à outils MPC basée sur le schéma de chiffrement ElGamal, qui peut être utilisé pour réaliser un tally hiding complet.

Notre boîte à outils, présentée au chapitre 5, est basée sur la primitive de porte conditionnelle [START_REF] Schoenmakers | Practical Two-Party Computation Based on the Conditional Gate[END_REF]. Elle offre une alternative intéressante au cadre de Paillier, qui permet notamment de diminuer les coûts du côté du votant sans trop détériorer la compléxité du côté du serveur. Cette boîte à outils fournit de nombreux protocoles MPC pour réaliser diverses opérations sur des données cryptées, telles que des opérations arithmétiques et des comparaisons, mais aussi des opérations plus complexes comme celles liées au tri. De plus, nous proposons plusieurs compromis entre le coût calculatoire et le nombre de communications, qui peuvent être déployés pour atténuer le fait que le chiffrement d'ElGamal nécessite plus de communications. Dans le chapitre 6, nous appliquons notre boîte à outils pour concevoir un protocole complètement tally hiding pour les méthodes de Condorcet-Schulze, STV, le jugement majoritaire et la méthode D'Hondt. Dans le cas de la méthode de Condorcet, nous avons découvert une violation de la vie privée dans la solution de [START_REF] Haines | Surveying definitions of coercion resistance[END_REF], qui se produit lorsqu'un électeur donne le même rang à deux candidats.

Dans la section 6.1.2, nous proposons une nouvelle façon pour l'électeur de soumettre un bulletin de vote pour le vote de Condorcet, qui permet le vote blanc et est compatible avec le dépouillement homomorphique. Pour le jugement majoritaire, nous avons remarqué un défaut dans la solution proposée dans [START_REF] Canard | Practical Strategy-Resistant Privacy-Preserving Elections[END_REF], qui utilise une heuristique connue sous le nom de majority gauge. En effet, cette heuristique ne garantit pas de produire systématiquement un résultat. Enfin, nous avons également découvert un problème avec la solution proposée dans [KLM + 20], qui a été conçue pour révéler les noms des s candidats ayant reçu le plus de votes, où s est un paramètre quelconque (par exemple, le nombre de sièges). En effet, en cas d'égalité, il est possible que leur solution produise en fait plus de s gagnants. Nous proposons un moyen non intrusif d'inclure un mécanisme de départage dans la solution proposée par Ordinos ; cela préserve la propriété de tally hiding et ne détériore pas l'efficacité.

Nous prouvons la sécurité de notre boîte à outils dans le cadre de sécurité de [START_REF] Canetti | A Simpler Variant of Universally Composable Security for Standard Multiparty Computation[END_REF], qui est une variante plus simple du cadredriciel universellement composable de [START_REF] Canetti | Universally Composable Security: A New Paradigm for Cryptographic Protocols[END_REF] (en bref, nous utilisons l'abréviation SUC pour désigner ce cadriciel). Pour ce faire, nous avons modifié le protocole de la porte conditionnelle et prouvé sa sécurité SUC du protocole modifié en Section 4.4. Comme le cadre SUC fournit un théorème de composition, la sécurité SUC de la primitive principale peut être utilisée pour prouver les propriétés de sécurité souhaitées, telles que la confidentialité et la vérifiabilité, ce qui est fait dans la section 6.6.

2. Nous dévoilons une fuite dans le schéma JCJ qui peut compromettre sa résistance à la coercition lorsque le revote est autorisé.

Lorsque le revote est autorisé, nous avons découvert que les informations supplémentaires révélées pendant la phase de décompte du protocole JCJ peuvent être exploitées par le coerciteur pour déduire le comportement de l'électeur soumis à la contrainte, en utilisant l'inférence bayésienne. Plus précisément, nous avons identifié la nature exacte de la fuite dans le protocole JCJ : Par rapport au pur résultat de l'élection, qui contiendrait des informations sur le nombre total de bulletins retirés, le protocole JCJ divulgue le nombre de votants ayant revoté k fois, pour tout k ≥ 1, ainsi que le nombre de bulletins qui utilisent un matériel de vote invalide. Pour évaluer l'impact de cette fuite d'informations, nous avons utilisé le cadre formel de [START_REF] Küsters | A Game-Based Definition of Coercion-Resistance and its Applications[END_REF] qui donne une définition quantitative de la résistance à la coercition. Dans ce cadre, il est possible de comparer le niveau de coercition du protocole réel à celui du protocole idéal, qui ne souffrirait d'aucune fuite. En utilisant ce cadre, nous proposons plusieurs scénarios réalistes où la différence entre les niveaux de coercition (idéal et réel) n'est pas négligeable.

L'une des raisons pour lesquelles le défaut du protocole JCJ n'a pas été remarqué jusqu'à présent est peut-être que la définition de JCJ ne tient pas en compte du revote. En outre, on sait que, dans un système de type JCJ, un nombre imprévisible de bulletins doit être retiré pendant le décompte. Autrement, le coerciteur s'apercevrait que le bulletin déposé avec le matériel de vote fourni par l'électeur a été retiré. C'est pourquoi il est nécessaire de modéliser la présence de bulletins utilisant un matériel de vote invalide, mais qui ne sont pas des bulletins soumis par le coerciteur : ils sont appelés bulletins fictifs. Dans la définition JCJ, ces bulletins sont censés provenir des électeurs honnêtes, qui doivent pour cela sacrifier leur propre vote. Cette modélisation n'est pas réaliste et ne permet pas d'envisager une situation où des bulletins fictifs supplémentaires seraient déposés, par exemple par une tierse partie qui n'est pas un votant éligible. Pour ces raisons, nous avons conçu une nouvelle définition de la résistance à la coercition, qui tient mieux compte de la présence de bulletins fictifs et de la possibilité de revoter.

Comme le protocole JCJ ne vérifie pas notre définition de la résistance à la coercition, nous proposons CHide, une variante du protocole JCJ qui utilise la boîte à outils afin d'empêcher la fuite présente dans le schéma JCJ. Ceci est fait dans le chapitre 8, et montre que notre définition de résistance à la coercition peut être satisfaite en pratique. Pour rendre le protocole pratique pour des paramètres réalistes, nous avons conçu une nouvelle phase de nettoyage qui s'appuie sur le tri, et qui et qui est plus robuste vis-à-vis du nombre de bulletins soumis. Nous prouvons que la confidentialité, la vérifiabilité et la résistance à la coercition sont atteintes par CHide sous les mêmes hypothèses de confiance que JCJ.

Nous étudions la notion d'absence de reçu et proposons une solution qui peut constituer

un premier pas pratique vers la résistance à la coercition.

En collaboration avec Henri Devillez, Olivier Pereira et Thomas Peters, nous proposons une nouvelle définition de la notion de receipt-freeness qui ne fait aucune hypothèse sur la phase d'enregistrement ou le mécanisme d'éligibilité. Par rapport à la définition de [START_REF] Kiayias | End-to-End Verifiable Elections in the Standard Model[END_REF], notre définition prend en compte le fait que l'électeur peut utiliser n'importe quel algorithme pour produire son bulletin de vote, y compris un algorithme qui peut être fourni par l'acheteur de votes. Par rapport à la définition de [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], notre définition permet à l'adversaire de donner une instruction quelconque à l'électeur, et pas seulement un bulletin chiffré. En outre, elle tient compte du fait que l'électeur peut se voir remettre un reçu pendant la phase de vote, en raison du mécanisme de vérifiabilité individuelle. Dans l'ensemble, notre définition de l'absence de reçu est plus proche de l'intuition de l'achat de votes, et la réalisation de cette définition peut être un premier pas vers la résistance à la coercition. En outre, sur la base des travaux antérieurs de [START_REF] Devillez | Traceable receipt-free encryption[END_REF], nous proposons une stratégie modulaire qui permet de construire un système de vote sans reçu, en fournissant un ensemble de conditions faciles à vérifier concernant le schéma de chiffrement, le protocole de comptage et la phase de vote.

Cela rend la réalisation de l'absence de reçu plus modulaire et plus indépendante des spécificités du protocole. Nous fournissons également un nouveau schéma de chiffrement qui satisfait aux propriétés requises par notre stratégie, de sorte qu'il peut être instancié. Par rapport au schéma proposé dans [START_REF] Devillez | Traceable receipt-free encryption[END_REF], ce nouveau schéma supporte les preuves 0/1 (c'est-à-dire qu'il est possible de prouver que le bulletin de vote chiffre un message d'une forme spécifique), ce qui est extrêmement intéressant dans le contexte du vote électronique. En outre, la génération des paramètres nécessaires à ce schéma de chiffrement peut être faite à l'aide d'aléa publiques, ce qui signifie que nous avons besoin de moins d'hypothèses de confiance. Enfin, par rapport au schéma proposé dans [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], le nôtre n'est pas limité au chiffrement de petites chaînes de bits.

 [SKHS11, SHKS11, SKHS12] and the schemes by Araújo et al. [AFT08, ARR + 10, AT13, ABBT16].

Figure 3 :

 3 Figure 3: Benaloh's definition of privacy

Figure 5 :

 5 Figure 5: Definition of privacy, λ is the security parameter, n T the number of talliers, t the threshold, C t the set of the corrupted talliers, n the number of voters, n A the number of corrupted voters, n C the number of voting options (excluding abstention) and B the distribution.

Figure 9 :

 9 Figure 9: Proof of knowledge of discrete log

Figure 10 :

 10 Figure 10: Generic structure of a mixnet protocol

 for the last ciphertext, B picks a random plaintext ν and sends (ν, ν b,i+2) in the IND-PA0 game which gives back the ciphertext C i+2 . Then B give those i + 2 ciphertexts to A i+1 which answers with C. Then B plays this in the IND-PA0 game which gives back the decryptions m. Finally, B sends { {m} } { {(ν 0,j) i+2 j=1 } } to A i+1 which answers with b ′ . If b ′ = b, B returns 1 to claim that the IND-PA0 encrypted ν b,i+2 ; otherwise B returns 0 to claim that the IND-PA0 encrypted ν.

 Algorithm 26: F RO Requires: The security parameter λ Variables: A hashmap H (initially empty) 1 On message m from participant i: 2 if m ∈ H then Answer to i with m, H(m) ; , 1} 2λ ; 5 Add the key m in H with the value s; 6 Answer to i with m, s; functionalities F B and F SB , and use the F B , F SB -hybrid model.

14

 Change state to Verify; 15 Query F B with α||m i ; else wait; State Verify: On answer j, m from F B : if m j = ⊥ and |m| ≥ λ then 20 Parse m as α j ||m j ; 21 Query F RO with m; else wait;

Algorithm 35 :

 35 Range proof Requires: A strong RSA modulus N Two squares (g, h) ∈ Z × N A Paillier encryption key n A bound B, and x ∈ [0, B] Outputs: X, a Paillier encryption of x and a ZKP π that x ∈ [0, B]

 q ; Z ←-Enc pk (xy, r); 10 Send Z to all participants and S; 11 else wait;

7

 Send X ′ to all j and to S; 8 else abort; 9 else wait; 10 On message i from S: 11 Send pk i , X i to S;

Contents 5 . 1

 51 The basic primitives of the MPC toolbox 109 5.1.1 Logical operations on encrypted data 109 5.1.2 Application to elementary arithmetic 112 5.1.3 Comparisons and tie breaking . 112 5.2 Advanced algorithms . 114 5.2.1 Multiplication and division . 114 5.2.2 Solving ordering related problems 115 5.2.3 Aggregation of several encrypted binary values 118 5.2.4 Different communication/computation trade-offs 119 5.3 Comparison with other approaches 122 5.3.1 Comparison with Ordinos . 123 5.3.2 Public tally hiding . 124

 Y, X); 2 return Z, XY /Z; Algorithm 53: If Requires: B, a cipher of b ∈ {0, 1} X, Y , encryptions of x, y Outputs: Z, an encryption of x if b = 1, of y otherwise 1 return Y CSZ(X/Y, B);

Figure 13 :

 13 Figure 13: Illustration of Brent and Kunt's algorithm, for 23 operands

3 4 N

 4 log(N) 2 ℓCSZ ℓ log(N) 2 CSZ 3 4 N log(N) 2 ℓCSZ with CLt 5 4 N log(N) 2 ℓCSZ log ℓ log(N) 2 CSZ 5 4 N log(N) 2 ℓCSZ 125 Chapter 6

Figure 14 :

 14 Figure 14: Illustration of a Condorcet paradox with 3 voters and 3 candidates

Figure 15 :

 15 Figure 15: Modification of the first diagonal, to encode equalities

Figure 16 :

 16 Figure 16: Modification of the matrix, diagonal by diagonal, to ensure consistency

Figure 17 :

 17 Figure 17: Derivation of the preference matrix by permuting m σ

Figure 18 :

 18 Figure 18: Memory required to run the STV algorithm, as a function of the number of selections

Algorithm 90 :

 90 InitD (Paillier setting)

Figure 21 :Figure 22 :Figure 23 :

 212223 Figure21: Coercion levels as a function of the impact for 20 voters, 2 candidates, 30% abstention and a 70%-30% distribution between the candidates.

Figure 26 :

 26 Figure 26: Definition of coercion-resistance. λ is the security parameter, n T the number of talliers, t the threshold, C t the set of the corrupted talliers, n V the number of voters, n A the number of corrupted voters, n C the number of voting options and B the distribution.

Figure 27 :

 27 Figure 27: Definition of coercion-resistance. λ is the security parameter, n T the number of talliers, t the threshold, C t the set of the corrupted talliers, n V the number of voters, n A the number of corrupted voters, n C the number of voting options and B the distribution.

Figure 29 :

 29 Figure 29: A bijection from N to N × N

First, B

 B gets pk from the IND-PA0 game and uses it to simulate Game 5 to A 5 . However, it chooses a random instance of O vote (let (x, ν) be its inputs) and, for this instance, generates two random credential c, c. B plays the pair (ν, c), (ν, c) in the IND-PA0 game, and gets back an encrypted ballot B, which it uses in the simulation as the output of O vote . Afterwards, B removes from PB any ballot output by O vote (including B) and plays PB in the IND-PA0 game to get the decryption of the remaining ballots. If one uses the credential c (resp. c), B states that the IND-PA0 encrypted (ν, c) (resp. (ν, c)). If there is no such ballot or if there is a ballot which uses c and a ballot which uses c, B guesses at random. Now, suppose that b = 0 (resp. 1) in the IND-PA0 game; in other words, that B is an encryption of (ν, c) (resp.

Contents 9 . 1

 91 Our definition of receipt-freeness 205 9.1.1 Existing definitions . 205 9.1.2 Modeling vote buying . 206 9.2 Introduction to traceable encryptions 209 9.2.1 Definition . 209 9.2.2 Security notions for verifiable receipt-free voting 210 9.3 Building blocks . 211 9.3.1 Bilinear pairings . 211 9.3.2 Linearly Homomorphic Structure-Preserving Signatures 212 9.3.3 The Groth-Sahai proof system . 214 9.4 Construction of a traceable encryption scheme 216 9.5 Security proofs for our traceable encryption scheme 218 9.5.1 Verifiability . 218 9.5.2 Traceability . 221 9.5.3 TCCA security . 224 9.6 Application to verifiable receipt-free electronic voting 228 9.6.1 A voting scheme based on a traceable encryption 228 9.6.2 Implementation . 230 9.6.3 Receipt-freeness . 231 9.7 Adapting the scheme to provide cast-as-intended verification . 233 9.7.1 Adapting our scheme for the Benaloh challenge 234 9.7.2 On the fly cast-as-intended verification 236 9.8 Conclusion . 237

 t. if s, B ←-Vote(id, I, RS, PB), then Valid(B, PB) = 1) and all voting option ν, if (s, B) ←-Vote(D I (ν), RS, PB), then Valid(B, PB) = 1 and Extract sk (B) = (id, ν).

 i , Ŷj) γ ij = T,

) e(S, â)e(T, b) = e(H, ĝ/ ŵ) (11) e(c 1 , ŵ) = e(g, Θ)

Figure 34 :

 34 Figure 34: Traceability experiment for a traceable encryption scheme

Figure 35 :

 35 Figure 35: TCCA-experiment for a traceable encryption scheme.

2.

 Let (CT I , d I , CT ′ I) be the last conversation. (a) Using a second copy of I, extract the link key. (b) Use "audit-private" to have RS drop CT ′ I and submit CT V , a ciphertext which contains the desired voting option. The server answers with d V and CT ′ V . (c) Rewind I to replace d I and CT ′ I with d V and CT ′ V . 3. If I casts again, we are done. Otherwise, audit-private to have RS drop CT ′ V 4. Rewind I back to before step 2 but replace d I and CT ′ I by RS's when given again the ballot CT I . Audit-private and rewind until I decides to cast again.

14 s 16 if s ≥ 0 then 17 for i ∈ C do 18 m 23 for i ∈ C do 24 m

 141617182324 ←-max{s i | i ∈ C}; 15 C ←-{i ∈ C | s i = s}; + i ←-m + i -m - i ; 19 m - i ←-a i,m-I -; 20 p i ←-p i -a i i, m -I -; 21 I -←-I -+ 1; 22 else - i ←-m - i -m + i ; 25 m - i ←-a i,m+I + ; 26 q i ←-q i -a i,m+I + ; 27 I + ←-I + + 1;28 return C;

Figure 40 :

 40 Figure 40: Reproduction of our algorithm to compute the Majority Judgment

 M α,β = { -→ res | Pr(-→ res|β) ≥ Pr(-→ res|α)}, the optimal value of δ Ideal αNote that computing the sum over M α,β might be expensive due to the size of this set. Thanks to this result, the adversary can compare Pr(R Ideal |α) and Pr(R Ideal |β) in O(1) floating operations, as long as it has access to P α and P β (note that it does not need the whole distribution), where Hence, with T = T x and N = N x , we deduce that x !(N x -T x)!(1 -P β -P α) x x !(N x -T x)!

Figure 41 :

 41 Figure 41: Tree structure for two candidates.

 ballot privacy [BCP + 11, BPW12] a convergé vers la définition BPRIV, donnée dans [BCG + 15b]. Cette définition a été étendue dans [CLW20], pour modéliser modéliser la présence d'une urne malveillante. Pour la receipt-freeness, deux définitions modernes peuvent être trouvées dans [CCFG16] et [KZZ15]. Par rapport à la définition de Kiayias et al., la définition de Chaidos et al. ne tient pas compte du mécanisme de vérifiabilité individuel. Cependant, la définition de Kiayias et al. ne prend pas en compte le fait que le votant peut construire son bulletin de manière malveillante, ce qui est restrictif. Dans [DPP22b], une version modifiée de la définition de Chaidos et al. a été proposée, où le protocole d'inscription n'est plus pertinent. Cela a été fait dans le but d'atteindre l'absence de reçu (presque) indépendamment du reste du protocole, ce qui permet une analyse de sécurité plus modulaire et rend le système de vote plus adaptable.

Table 1 :

 1 The typical trust assumptions in electronic voting

	Participants	Trust assumption
	Voter	Not trusted
	Voting Device	Trusted / not trusted for individual verifiability Trusted for privacy
	Registrars	

Table 3 :

 3 Cost of ShuffleRow, ShuffleColumn and ShuffleMatrix, with n rows and m columns

	Proof	Prover (# exp.)	Verifier (# exp.)	Transcript (×256 bits)
	ShuffleRow	4nm + 6n + m + 3 4nm + 5n + m + 3	2nm + 7n + 3m + 6
	ShuffleColumn 4nm + 6m + n + 3 4nm + 5m + n + 3	2nm + 7m + 3n + 6
	ShuffleMatrix	8n 2 + 13n + 6	8n 2 + 12n + 4	4n 2 + 19n + 12

 which will cause the latter to output blame(j) as in the simulation. Finally, if a honest participant i outputs m ′ 1 || • • • ||m ′ n in the simulation, the simulator uses the router of the ideal process to deliver to i the initial message m 1

	message except for i,	
	3	(no other message can be delivered
		between two of those messages,
		but the order in which they are
		delivered is still up to the
		adversary)

all j and S; 10 else wait; 11 State q f : 12 On message from i: 13 Send blame(i) to all j; Algorithm 29: F B 1 On message m from participant i: 2 Send i, m to all j ̸ = i;

 e, Y i and a ZKP π i that they are well formed (see Algorithm 41) ; Each authority verifies the proof of the other authorities (see Algorithm 42) ; 9 They collectively rerandomize X n T and Y n T into X ′ and Y ′ (see Algorithm 40) ; 10 They collectively decrypt Y ′ into y n T (see Algorithm 18);

8

Table 5 :

 5 Complexity estimate for the CSZ in a group G of order q and the Mul protocol with the public key n, where n T is the number of participants. This is more difficult because several factors can be relevant, such as the communication delay, the uploading / downloading speed and even the available memory.

		# exponentiations per participant # synchronization steps transcript size (# bits)
	Mul	9n T + 4	2	17n T |n|
	CSZ	33n T	n T + 2	34n T |q|
	communication complexity.		

Table 6 :

 6 Estimated number of exponentiation per second in the Paillier and ElGamal setting

		Paillier Elliptic curve ElGamal
	Server-side	200	10 000
	Voter-side	2	5 000

 α);Query F RO with (pk||X||U i ||c u); Query F SB with U i , c u , a u ;10 On message (U j , π j) n T j=1 from F SB :

	6	
	7	Wait for the answer d;
	8	a u ←-α + r 1 d;
	15	

9 11 for j = 1 to n T do 12 c uj , a uj ←-π j ; 13 Verify the PoK: 14 Query F RO with (pk||X||U j ||c uj);

 for all j then

	6	Check that the received (g, h),
	7	(h j) n T j=1 are all the same

8 if not then abort; 9 if there exists j 1 , j 2 s.t. 10 Y j 1 ̸ = Y j 2 then abort; 11 Decrypt Y 1 into y; 12 Send y to all participants and S; 13 else wait;

 e, Y i , π) to all;

	30 State Waiting 2:
	31	On A, B, C, e, D, π) from j> i:
	35	pr j x ← A; pr j y ← B;
	52	
	else wait;	

32

if X j = ⊥ then 33 X j ← C, e j ← e; 34 Y j ← D; π j ← π; 36 Ignore all future messages from j;

37 if X k ̸ = ⊥ for all k> i then 38 for j = i + 1 to n T do 39 if X j-1 ̸ = pr j x or Y j-1 ̸ = pr j y 40 then Output ⊥;

41 Check all the PoK:

for j = 1 to n T do 42 if Ver-CSZ(pk, X i-1 , Y i-1 , X i , Y i ,

e, π i) = 0 then Output ⊥; 43 Change state to Decrypt; 44 Send (g, h), X to F rerand ; 45 else wait; 46 State Decrypt: 47 On ⊥ from F rerand Output ⊥; 48 On message X ′ from F rerand : 49 Send (g, h), (h k) k , s i , Y n T to F Dec ; 50 On ⊥ from F Dec Output ⊥; 51 On message g y from F Dec :

Table 7 :

 7 Leading terms and estimated run time for the cost of the MPC primitives of Ordinos and our toolbox; n T is the number of participants, ℓ is the bit-length of the operands. The precomputable part can be evaluated before the tally; the run time is estimated for n T = 3 and ℓ = 10; all logarithms are in base 2 and the key sizes are |q| = 256 in the ElGamal setting and |n| = 3072 in the Paillier setting.

	Functionality Protocol	# exp.	time (s) Synch. locks Transcript size
	Addition	-Add	0 66ℓn T	-0.20	0 2ℓn T	0 68ℓn T |q|
	Multiplication	Mul Mult	9n T 99ℓ 2 n T	0.14 3.0	2 2ℓ 2 n T	17n T |n| 102ℓ 2 n T |q|
			precomp.		precomp.	
	Equality	EQH	39n T ℓ comp.	6.1	O(n T) comp.	69n T ℓ|n|
			19n T		4	
		Eq	66ℓn T	0.20	log ℓn T	68ℓn T |q|
			precomp.		precomp.	
	Comparison	GTH	43n T ℓ comp.	6.5	O(n T) comp.	89n T ℓ|n|
			33n T		7 log ℓ	
		Lt	66ℓn T	0.20	2ℓn T	68ℓn T |q|

 Contents 6.4.2 A new algorithm for cleartext Majority Judgment 150 6.4.3 Adaptation to the Paillier setting 150 6.4.4 An adaptation to the ElGamal setting 156 Universal verifiability . 165 6.6.2 Privacy . 165 6.7 Lessons learned . 169

	6.4.5 Comparison with [CPST18] . 159
	6.5 Single choice voting . 159
	6.5.1 Basic single choice voting . 161
	6.5.2 List voting: computing the D'Hondt method in MPC 161
	6.6 Security of the toolbox in the context of electronic voting . . . 163
	6.6.1

Table 9 :

 9 Alice's choice when ranking the five candidates

	Candidate Ape Beaver Capybara Dolphin Elephant
	Number	1	2	3	4	5
	Rank	3	3	1	3	2
	σ	3	4	1	5	2
	σ -1	3	5	1	2	4

Table 10 :

 10 The vector b that corresponds to Alice's choice

	i 1 2 3 4
	b

Table 11 :

 11 Complexity of the proof of validity of the ballot matrix, where n C is the number of candidates

	Prover (# exp.) Verifier (# exp.) Transcript (×256 bits)
	11.5n C	2	11.5n C	2	8.5n C	2

Table 13 :

 13 Leading terms of the cost of various solutions for Condorcet-Schulze. n V is the number of voters, n C is the number of candidates, n T is the number of talliers. The unit of the transcript size is the key size, which is 256 bits in the ElGamal setting and 3072 bits in the Paillier setting.

	Version	Voters # exp.	# exp.	Authorities # synch. locks	Transcript size
	[HPT19]				

 Finally, we can update b i,j using If and c. Overall, since we need to do this for the O(n C 2) edges, it means that the cost of the second step is O(n C 4 log n C CSZ) in terms of computation, and O(n C 2 log n C) in terms of synchronization steps. Finally, finding the sources of the graph can be done by exhaustive search on the final B, which cost O(n C 2 CSZ). The whole process can be performed in O(n C 4 log n C)CSZ in terms of computation and transcript size,

b s,i and b j,t for all s, t. For this purpose, we can use equality tests and the Select protocol, which accounts for a total of 4n C 2 log n C CSZ in terms of computation and 2 log n C CSZ in terms of synchronization steps. The edge will create a cycle if and only if b ′ s,t = b ′ t,s = 1 for some (s, t), hence we compute the encryption of the boolean c = ∨ s̸ =t (b ′ s,t ∧ b ′ t,s).

Table 17 :

 17 Estimated probability that the majority gauge fails to determine the MJ winner(s).

	# voters	10	100	1000
	uniform distribution over 5 candidates	0.384 0.220 0.080

Table 18 :

 18 Leading terms of the cost of computing the Majority Judgment in MPC; n V is the number of voters, n C is the number of candidates and n G is the number of grades

	bit-wise decryption *);
	return c

Table 19 :

 19 Leading terms of the cost of different MPC solutions for single choice voting; n V is the number of voters, n C the number of candidates, s the number of seats, n T the number of talliers

	Version	# exp.	# synch. steps	transcript
		precomp.	precomp.	
	[KLM + 20] (fixed)			

Table 21 :

 21 Number of exponentiations and transcript size in JCJ and CHide, with λ = 128.

	# voters	# exp.	estimated CPU time	transcript
	any	JCJ	CHide	JCJ	CHide	JCJ	CHide
	(Vote)	27	1.4k	5.4ms	0.28s	1.1kB	58kB
	10	JCJ	CHide	JCJ	CHide	JCJ	CHide
	(Tally)	4.26k	4.1M	0.43s	6.8min	170kB	65MB
	100	JCJ	CHide	JCJ	CHide	JCJ	CHide
	(Tally)	380k	120M	38s	3.3h	16.0MB 1, 9GB
	1000	JCJ	CHide	JCJ	CHide	JCJ	CHide
	(Tally)	37.5M 2.4G	1.0h	2.8d	1.59GB	39GB
	10000	JCJ	CHide	JCJ	CHide	JCJ	CHide
	(Tally)	3.75G	41G	4, 3d	48d	158GB 668GB
	100000	JCJ	CHide	JCJ	CHide	JCJ	CHide
	(Tally)	375G	658G	1.2y	2.1y	15.8TB 10.6TB
	1000000	JCJ	CHide	JCJ	CHide	JCJ	CHide
	(Tally)	37.5T	9.4T	1.2 × 10 2 y	30y	1.58PB 152TB

 possible outcome (-→ res, n R) with n H honest voters, we have

					D.3. Quantifying the coercion level in some specific cases
	n 1,1 , P 1,1		n 1,2 , P 1,2	n 2,1 , P 2,1			n 2,2 , P 2,2
	r e v o t e 1 p 1,1	r e v o t e	2 p 1,2		n 1,∅ , P 1,∅ r e v o t e 1 p 2,1	r e v o t e 2 p 2,2	n 2,∅ , P 2,∅
				r e v o t e s r 1	1 -r 1		r 2 r e v o t e s	1 -r 2
											2
							v o t e	p 1,∅	v o t e	p 2,∅
							1			
			n 0 , P 0							
				a b s t .	P 0		1 -P 0		
	Pr(-→ res, n R) =	H nr -→ res	n H ! k=1 n k,∅ ! C res 0 ! C ℓ=1 n ℓ,k !	P res 0 0	C k=1	P	n k,∅ k,∅	C ℓ=1	P	n ℓ,k ℓ,k ,	(29)

 Dans la littérature, de nombreux schémas ultérieurs ont été basés sur le paradigme du faux matériel de vote, et peuvent être considérés comme des itérations permettant d'améliorer certains points du protocole JCJ. L'exemple le plus connu est Civitas [CCM08], qui propose une phase d'enregistrement explicite. D'autres contributions, par exemple, se sont concentrées sur l'amélioration de la gestion du matériel de vote [CH11, NV12]. Enfin, de nombreuses propositions visent à améliorer l'efficacité du protocole : voir, par exemple, les schémas de Spycher et al. [SKHS11, SHKS11, SKHS12] et les schémas d'Araújo et al. [AFT08, ARR + 10, AT13, ABBT16].

We investigate the notion of receipt-freeness, and propose a solution which can be a practical first step towards coercion-resistance.In collaboration with Henri Devillez, Olivier Pereira and Thomas Peters, we propose a new definition of receipt-freeness, which does not make any assumption about the registration phase

q i ←-q i -a i,m+I + ; I + ←-I + + 1; return C;

Remerciements

We ran our software with various parameters. In order to compare to Ordinos [HHK + 21], we also considered 3 trustees (and no threshold). Our experimental setting is a single server hosting two 16-core AMD EPYC 7282 processors and 128 GB or RAM. Each of the 3 trustees runs 4 computing threads and a few scheduling and I/O threads. The communication between the trustees is emulated via the loopback network interface. Thus, all the network system calls are performed by the program, even though this is just a simulation. In Table 14, we summarize the cost in terms of wall-clock time and the size of the transcript, measured by the program.

This experiment demonstrates that the approach is sound and in the realm of practicability, for moderate-sized elections. By comparison, [HHK + 21] reports a computation time of more than 9 days and 10 hours for tallying a 20-candidates Condorcet-Schulze election, which does not account for the verification of the validity of the ballots. Since each ballot requires a cubic number of ZKP with respect to the number of candidates, verifying all the ballots may be more expensive than computing the tally in the Schulze setting, depending on the number of voters. In addition, the implementation of Ordinos, which is available at [Ord], does not account for the precomputation, i.e. the subprotocols of the equality test MPC protocol that are presented in Section 4.2.2. Yet, most of the computations in Ordinos are precomputations, so that it is not clear whether they can be disregarded. Typically, their solution would require a few months of precomputation time.

A possible adaptation for the ranked pairs variant

The Schulze method is not the only variant of Condorcet. Among them, Tideman's method, also known as ranked pairs [START_REF] Nicolaus | Independence of clones as a criterion for voting rules[END_REF], appears to be the second most popular. Compared to the Schulze method, it provides the same properties as a counting function: it is Condorcet-compliant, has resolvability and is resistant against strategical voting. For these reasons, we also explored the possibility to provide a fully tally-hiding protocol for ranked pairs, that we discuss below. In Ordinos [HHK + 21], other variants, namely plain Condorcet, weak Condorcet, and the Smith, Copeland and Minimax methods are discussed. The plain, weak, Smith and Copeland methods are considered for the sole purpose of comparison, and are not popular variants of the Condorcet method since they do not have the resolvability property, which means that they do not address the Condorcet paradox entirely. In practice, it is still possible to use them, but in conjunction with a tie-break method (typically, a voting method named instant runoff voting). As for the Minimax variant, the Schulze method was originally designed to address some of its shortcomings, as it was too vulnerable to strategical voting. It is still possible to prefer the Minimax variant for its greater simplicity, and we mention that it is easy to evaluate it with our MPC toolbox, using the Min and the Max protocols.

Algorithm 92: InitP

Requires: n G , the number of grades Inputs: G, the grade matrix Outputs: L, R, two vectors such that, for all i,

-R i is an encryption of i = m + 1.

An adaptation to the ElGamal setting

In the previous section, we gave an adaptation in MPC of the MJ counting function for the Paillier setting. However, we are interested in the ElGamal setting. Thankfully, most of Algorithm 93 is easy to adapt in the ElGamal setting thanks to the toolbox we provide. In this setting, the (encrypted) aggregated matrix must be encrypted in bit-encoding, so that obtaining the aggregated matrix from the list of encrypted ballots requires n G n C parallel calls to the Aggreg protocol, which is the main drawback of this approach. Even if those computations can be made on the fly while the voters submit their ballot, if n V is too large, the Paillier setting might be preferable as this phase would be too expensive.

A related difference is that in the Paillier setting, some procedures were performed "for free" thanks to the homomorphic property while they need the Add protocol in the ElGamal setting. As replacing each multiplication of two ciphertexts in Algorithm 93 by a call to Algorithm 58 might deteriorate the complexity too much, we made a few modifications listed below.

First, we give Algorithm 94 which allows to initialize p i , m - i , m + i and q i , just as Algorithm 90, but also initialize L and R as in Algorithm 92. Finally Algorithm 94 also initializes C as the indicator of the candidates whose median is the best median. On this occasion, recall that m bits is a (trivial) bitwise encryption of the integer m.

Algorithm 94 is a merger of Algorithms 89, 90 and 92. Merging all three algorithms together allows to exploit common intermediate computations. Note that at line 4, we compute ⌈n V /2⌉ > s i,j instead of n V > 2s i,j , so as to use one bit fewer. (See Lemma 15 which states that the two comparisons are equivalent.) Lemma 15. For all n, s ∈ Z, we have n > 2s if and only if ⌈n/2⌉ > s.

Proof. Let n, s be integers. If n > 2s, ⌈n/2⌉ ≥ n/2 > s. Conversely, suppose that ⌈n/2⌉ > s. We first consider the case where n is even. Then n/2 = ⌈n/2⌉ so n = 2 ⌈n/2⌉ > 2s. If n is odd, we have ⌈n/2⌉ = (n + 1)/2 so n + 1 > 2s, therefore n + 1 ≥ 2s + 1, hence n ≥ 2s. Since n is odd, n ̸ = 2s, thus n > 2s.

In Algorithm 93, we did not have to initialize C (see Lemma 11). However, as the variables could be negative, we decided to add a constant. This would not be that easy in the ElGamal setting since adding a constant to a bit-encoded encrypted integers requires a non-trivial operation. In this case, eliminating the candidates who do not have the best median right away so as

Security of the toolbox in the context of electronic voting

In Section 4.4, we proved the SUC-security of the conditional gate. Since our toolbox is only composed of conditional gates, it means that for every combination of protocols of our toolbox, the resulting protocol is as secure as if it was performed by some honest third party. Finally, in the context of electronic voting, it is usual that we require the talliers to actually decrypt something at some point; for instance, in the STV protocol, we decrypt the vector W of the winners. Since the threshold decryption itself is not SUC-secure, a risk is that we might lose the SUC-security because of this last step. For this reason, we give Theorem 6, which gives states that the SUC-security is not lost in our case. The intuition is that a conditional gate followed by a reencryption phase is the same as just a conditional gate. Hence, by Lemma 8, it follows that if the only elements that we decrypt are some outputs of a conditional gate, then the SUC-security is preserved. Note that the same result apply if we replace the conditional gate by, for instance, If, Or, Xor, And, Eq, Lt and their negations using Not. Indeed, since the CSZ protocol is SUC-secure, it is easy to show that they are also SUC-secure.

In Theorem 6, we use the following notations:

• We denote CS the counting function defined by the Condorcet-Schulze method and P CS the protocol that we provide in Section 6.2 to compute CS (see Algorithm 82). We denote F CS the trusted party that honestly evaluates P CS and returns the output of all the conditional gates as well as the result (i.e. the set of the winners).

• We denote STV the counting function defined by the STV method and P STV any of the two protocols that we provide in Section 6.3.4 to compute STV. We denote F STV the trusted party that honestly evaluates P STV and returns the output of all the conditional gates as well as the result (i.e. the set of the winners).

• We denote MJ the counting function defined by the Majority Judgment and P MJ the protocol that we provide in Section 6.4.4 to compute MJ (see Algorithm 95). We denote F MJ the trusted party that honestly evaluates P MJ and returns the output of all the conditional gates as well as the result (i.e. the set of the winners).

• We denote DH the counting function defined by the D'Hondt method and P DH any of the protocols that we provide in Section 6.5.2 to compute DH. We denote F DH the trusted party that honestly evaluates P DH and returns the output of all the conditional gates as well as the result (i.e. the set of the winners).

Theorem 6. Under the DDH assumption and if at least one participant is honest, for count ∈ {CS, STV, MJ, DH}, P count SUC-securely computes F count in the F RO , F B -hybrid model. (Recall that they model the ROM and the ideal broadcast channel.)

Proof. Let count ∈ {CS, STV, MJ, DH}. First, by Theorem 3, the conditional gate protocol SUC-securely realizes F CSZ in the F RO , F B -hybrid model. Therefore, we can replace every conditional subprotocol in P count by a call to the trusted party F CSZ and show that the resulting protocol SUC-securely computes F count in the F CSZ -hybrid model. This is a consequence of the composition theorem, stated in Lemma 5. Now, we construct a simulator S which interacts with the environment in the ideal process and simulates the hybrid process by simulating the honest participants and the F CSZ ideal functionality. First, by interacting with the ideal process, S gets the outputs of all the conditional gates, as well as the result r. Afterwards, S proceeds with the simulation of P count .

Exp verb (λ, n T , t, A)

13 A Ocast (i, PB, "end for");

Algorithm 97: Ideal Priv Requires: λ, n T , C t , n, n A , n C , B, A 1 ; 2 ; 3 ; 4 A ←-A(λ); 5 j, ν 0 , ν 1 ←-A(); 6 (* chooses the voter to observe *); our specific case, where the counting function does not have the partial tally property and where we want to consider some fully corrupted talliers. For this reason, we introduced Definition 9 in Section 1.3.4. To improve readability, we reproduce the corresponding experiments above and we recall that, to prove privacy, we need to prove that for all PPT adversary A 0 for the real game, there exists an adversary B for the ideal game such that, when interacting with A 0 , B wins the ideal game with the same probability as A 0 wins the real game (with up to a negligible difference). We now give Theorem 8, and conclude the section with a proof of this result.

Theorem 8. Assuming an ideal broadcast channel, under the DDH assumption an in the ROM, TH-voting has privacy as of Definition 9.

Proof. We proceed by game hops and construct a succession of games G 1 , • • • , G 4 where G 4 is the ideal game. For each of these games, we construct an adversary A i and we denote S i the probability that A i wins G i .

Game 1: In this game, the adversary A 1 is no longer able to take part in the tally process. Instead, we consider a trusted party F Tally which gets the shares of the participants and computes the result r of the tally as well as the output Π Z of each conditional gate, by running the protocol Tally itself, when all the participants are honest. At line 18, A 1 gets r, Π Z and must output its guess b ′ from this. Pr(R g |α). This gives a close formula for the coercion level which can be written as

where M α,β is the set of all possible results R g such that Pr(R g |β) ≥ Pr(R g |α).

In the remaining of this section, we compare δ Real and δ Ideal in two scenarios, where external events provoke many revotes. In these scenarios, we assume that there are two candidates A and B, no blank vote, but the possibility to abstain or to revote once. In Appendix D, we explain in more details how the different figures of this section were obtained.

The technical incident scenario

In general, we can expect revoting to be rare. This is something that is not allowed in classical paper-based elections, so that in a context where electronic voting is recent, voters will not be using this possibility. Even in a country such as Estonia, where revoting is available for Internet voters since 2005, a recent study revealed a revoting rate of about 2% [START_REF] Ehin | Internet voting in Estonia 2005-2019: Evidence from eleven elections[END_REF].

However, much more revotes could occur if an announcement reveals a suspicion of a technical incident, and encourages the voters to revote to be on the safe side. In this case, many voters could be inclined to revote with the same voting option, which would seem harmless if they are not aware of the weaknesses of JCJ. Note that the coercer could be the source of such an announcement, and spread fake news about the necessity to revote.

In Fig. 20, we consider this situation where a proportion of voters (who already voted) revote for the same voting option.

We plot the coercion level in both the real and ideal settings when the proportion x of revotes ranges from 0 to 1. When x = 0, both coercion levels are the same since there is no revote. However, when x = 1, there is no coercion-resistance in JCJ because the coerced voter would be the only one to cast a ballot without revoting. Note that the ideal coercion level remains constant since the overall probability to choose each voting option is unaffected by x.

Algorithm 99: Algorithm 101: Requires: A, λ, n V , n A , n C , B 1 ; 2 ; 3 ; 4 A ←-A(λ) (* corrupt voters *); 5 (j, α) ←-A(); 6 (* coerces j who has the intention α *);

4 (* coerce a voter j who has the intention α *);

Remove all (j, *) ∈ B but the last, which is replaced by (j, α) if α ̸ = ϕ and removed otherwise;

Chapter 8

CHide: a cleansing-hiding variant of JCJ

We propose a modification of JCJ that provides full coercion-resistance. During the tally phase, the trustees perform the same tasks of cleansing, mixing and decrypting as in JCJ, but in a hidden way, so that the coercer (or anyone) does not learn how many ballots were deleted because they correspond to revotes or to invalid credentials. For this purpose, we propose a new cleansing algorithm based on the tally-hiding toolbox.

Description of the protocol

We design CHide to be as close to the JCJ protocol as possible. In particular, we consider that the final result of the tally consists of the list of the voting options chosen by the voters, in some random order, which means that we do not consider Italian attacks. For the sake of the SUC security, we propose to use a UC-secure decryption mixnet instead of the Terelius-Wikström mixnet; see for instance [START_REF] Wikström | A Universally Composable Mix-Net[END_REF]. Alternatively, any other tally protocol can be applied. Also, we use the same trust assumptions as in JCJ.

Setup. The setup is the same as in JCJ.

Registration. Just as for JCJ, the registrars generate n V random credentials, where n V is the number of eligible voters. However, the credentials are generated bit by bit; in other words, for all 1 ≤ i ≤ n V , the registrars generates λ random bits (c i,1 , • • • , c i,λ) that constitute a valid credential c i . In addition, they generate the corresponding public encryptions

), which are added to the board as a part of the roaster Π R = (R i) n V i=1 . Apart from that, the registration is the same as in JCJ: we consider a perfect and untappable registration, where the registrars privately send one unique valid credential to each voter.

Voting phase. In order to cast a vote for the option ν (encoded as a group element), a voter computes C 1 , an encryption of ν and C 2 , a bitwise encryption of the credential. The neutral element 1 G (the encoding g 0 of the zero bit) should not represent any voting option as it will be used to encode the invalid voting options. The voter also produces a PoK π 1 that proves the knowledge of ν and c j for all j. To ensure a strong Fiat-Shamir transformation [START_REF] Bernhard | How Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios[END_REF], the computation of the challenge from the commitment of the Σ-protocol must include all public informations in the hash, such as g, pk, C 1 and C 2 . Finally, a ZKP π 2 that ν is a valid voting option and that c 1 , . . . , c λ are bits must be added to prevent forced-abstention attacks which use write-ins. The ballot (C 1 , C 2 , π 1 , π 2) = Vote pk (ν, c) is sent to the public board, using an anonymous channel. The voters check that their ballot is present on the board; this defines the Algorithm 104: 23 A Ocast (PB, "end for"); 24 X, Π ← Tally A (PB, pk,

17 Remove all (j, *) ∈ B but the last, which is replaced by (j, α) if α ̸ = ϕ and removed otherwise;

Game 4: In this game, we modify the sequence B so that the honest voters no longer revote. Instead, for all honest voter x, we replace all but the last occurrence of the form (x, ν) in B by an occurrence of the form (x, ν) which uses a fresh and unique x < 0. This way, the last vote remains the same but the previous votes are replaced by a vote with a fresh, random (and fake) credential. Note that this modification happens on the sequence B, before the voters actually cast their votes according to this sequence.

Let n R be the number of revotes. We set A 4 = A 3 and argue that |S 4 -S 3 | is negligible. For this purpose, we give a succession of hops H 0 , • • • , H n R such that in game H i , we replace the last i revotes as described above. This way, H 0 is Game 3 and H nr is Game 4. For each of these games, we denote W i the probability that A 4 wins this game. Now, let i be some index. We construct an adversary B for IND-PA0 as follows. First, B receives pk from the IND-PA0 game. It simulates game H i by giving this pk to A 4 and generating the credentials at random. It then gets (j, α) from H i and chooses b at random. Afterwards, B generates B from the distribution B, (j, α) and b. It then continues the simulation of H i by replacing the i last revotes as necessary. However, for the next remaining revote, it looks up for the previous vote (x, ν) with the same x and generates a random, fresh credential c. It plays (ν, c x), (ν, c) in the IND-PA0 game and gets an encrypted ballot C which it plays in the simulation of H i instead of a honestly generated ballot for (ν, c x) (therefore, C is added on the board). Finally, to compute the tally, B plays the concatenation of all the valid ballots sent by A 4 in the IND-PA0 game, which returns a decryption of these ballots. Remark that due to the nature of Valid which uses a form of weeding, a valid ballot is not already on the board. Therefore, none of the valid ballots sent by A 4 can be equal to C, so that the IND-PA0 will indeed accept to decrypt them. B computes the result of the tally from the plaintexts and gives it to A 4 which answers with some bit b ′ . This is possible because every valid ballot of the board has a valid ZKP π 2 , whose soundness guarantees that the corresponding plaintext (ν, c) is such that c is a λ-bit credential and ν a valid voting option. If b = b ′ , B states that the IND-PA0 game encrypted (c x , ν), and (c, ν) otherwise.

Clearly, when the IND-PA0 game encrypts (ν, c x) (resp. (ν, c)), B plays a perfect simulation of game

Game 5: In this game, the adversary no longer has access to the roster Π R , which contains the encryptions of the valid credentials. We construct A 5 which interacts with A 4 by simulating Game 4. For this purpose, it generates n V λ ElGamal encryptions of random bits and uses it to simulate the roster. For the remaining of the game, it can play a perfect simulation since both games are identical. To argue that |S 5 -S 4 | is negligible, we construct a succession of hop H 0 , • • • , H n V such that in game H i , the last i elements of Π R are replaced by a random encryption. This way, H 0 is Game 4 and H n V is Game 5. For each of these games, we denote W i the probability that A 4 wins this game. Now, let i be some index. We construct an adversary B for IND-PA0 as follows. B gets pk from the IND-PA0 game and plays this pk to A 4 to simulate H i . It generates the credentials and replaces the last i elements of the roster by encryptions of random bits just as in H i . However, for the (n V -i)th element of Π R , it generates a second random credential c and plays the pair (ν, c n V -i), (ν, c) in the IND-PA0 game, where ν is some valid voting option. The IND-PA0 game answers with some encrypted ballot of the form (C 1 , C 2 , π). B retrieves the ElGamal bitwise

Ver

Inputs:

O vote (updates the tabulars HV and H)

O check (updates HV and H)

Figure 28: Definition of verifiability, λ is the security parameter, n T the number of talliers, t the threshold, C t the set of the corrupted talliers, n V the number of voters, n A the number of corrupted voters and n C the number of voting options (excluding abstention)

O voteLR (id, ν 0 , ν 1)

O tally ()

Figure 31: The receipt-free experiment and its oracles, where V is the set of the voting options.

Algorithm 106: Exp tcca (λ, A)

Another interesting property is the traceability, which states that given a honestly generated ciphertext, one cannot forge another ciphertext that shares the same trace but does not encrypt the same value. In the context of electronic voting, this property prevents the rerandomization server from modifying the votes.

Definition 28 (Traceability). A traceable encryption is traceable if, for all PPT adversary A, the probability Pr(Exp trace (λ, A) = 1) is negligible in λ, where Exp trace is defined in Algorithm 107.

Finally, the strong rerandomization means that a rerandomized ciphertext follows the same distribution as a fresh ciphertext output by LEnc. In other words, it means that the rerandomization process is not supposed to "add" some entropy: even with no rerandomization, the encryption scheme itself would be sementically secure, so that the rerandomization server does not have to be trusted for the purpose of privacy.

Definition 29 (Strong rerandomization). A traceable encryption is strongly rerandomizable if, for all plaintext m, for all link key lk, for all randomness r 0 , if C 0 = LEnc pk (lk, m, r 0) and if R is the uniform random variable over the randomness space, we have the following computational indistinguishability:

Rand pk (C 0 , R) ≈ LEnc pk (lk, m, R).

Building blocks

We now provide the building blocks that we used to construct a traceable encryption scheme that achieves all the desired properties. They are the same as the ones proposed in [START_REF] Devillez | Traceable receipt-free encryption[END_REF], where an instantiation based on bilinear maps is mentioned.

Bilinear pairings

Let G, Ĝ, G T be three groups of prime order q, and g (resp. ĝ) be a generator of G (resp. Ĝ). A pairing is a bilinear map e : G× Ĝ -→ G T , and we say that G, Ĝ are pairing-friendly if there exists a non-trivial, efficiently computable pairing. On this occasion, recall that we use a multiplicative notation, so that for all a, b ∈ G, ĉ ∈ Ĝ and α, β ∈ Z q , we have e(a α b β , ĉ) = e(a, ĉ) α e(b, ĉ) β . In addition, it is usual to denote ι : G → G 2 the injection that maps X ∈ G to ι(X) = (X, 1).

Respectively, we define the ι : Ĝ → Ĝ2 the injection that maps X ∈ Ĝ to ι(X) = (X, 1). Finally, in our construction, we rely on the SXDH assumption.

The SXDH assumption. The SXDH assumption is a classical computational assumption in pairings-friendly groups, defined, for instance, in [START_REF] Ballard | Correlation-Resistant Storage via Keyword-Searchable Encryption[END_REF]. Intuitively, it states that the DDH problem is hard in both G and Ĝ. Note that since there is an efficiently computable pairing, the SXDH assumption is not true if G = Ĝ or, alternatively, if there exists an efficiently computable group isomorphism from G to Ĝ (or the other way around).

Linearly Homomorphic Structure-Preserving Signatures

A central tool for our construction is the linearly homomorphic structure-preserving (LHSP) signature. The structure preserving property, defined, for instance, in [AFG + 10], allows to sign messages that respect a vector space structure. The additional linearly homomorphic feature, introduced in [LPJY13], allows to derive a signature on any linear combination of already signed vectors. In what follows, we describe the LHSP signature that we used in our construction.

Description of the LHSP scheme. Just as an encryption scheme, a signature scheme is defined by a tuple of algorithms, i.e. (Keygen, Sign, Verify). In the LHSP scheme that we consider, they are defined as follows.

• Keygen(pp, n). Given the dimension n of the vector space and the public parameters pp (here, pp contains two indepent group elements ĝ, ĥ ∈ Ĝ), the key generation algorithm picks (χ i , γ i) n i=1 ∈ Z q at random and computes ĝi = ĝχ i ĥγ i for i = 1 to n. It returns the pair (pk, sk), where the private key is sk = (χ i , γ i) n i=1 and the public key is pk = (ĝ i) n i=1 .

•

To verify that a signature σ = (Z, R) is valid with respect to a public key pk = (ĝ i) n i=1 , one checks the equality e(Z, ĝ)e(R, ĥ) =

Unforgeability. It is easy to check that the signature scheme is correct, i.e. that a honestly generated signature is considered valid by the Verify algorithm. A less trivial property is that of the unforgeability of linearly independent messages. More precisely, we give Definition 30 which is adapted from [START_REF] Libert | Linearly Homomorphic Structure-Preserving Signatures and Their Applications[END_REF]. In this definition, we consider some honestly generated public parameters pp and we let the adversary choose n ≥ 1, the dimension of the vector space. Then the adversary has access to a signing oracle that it can query to obtain valid signatures of some chosen messages. The signing oracle updates the set V of all the plaintexts that the adversary queried, and the goal of the adversary is to output a valid signature of a message M which is not in the vector space spanned by V , denoted < V >. In other words, M must be linearly independent from all the signed messages obtained by the adversary. Note that if

In particular, (1, 1) is a valid signature of (1, • • • , 1). Hence, the linear independence is required for the unforgeability. Definition 30. A LHSP scheme is secure if, for all PPT adversary A, the probability that A wins the experiment Exp lin-unf (defined in Figure 32) is negligible in λ.

Exp lin-unf (λ, A)

Requires: Setup, an algorithm that generates the public parameters We now prove that the above LHSP scheme is secure under the SXDH assumption. The proof is extremely similar to that of [START_REF] Libert | Linearly Homomorphic Structure-Preserving Signatures and Their Applications[END_REF].

Lemma 16. Under the SXDH assumption, the LHSP signature scheme presented in this section is secure.

Proof. Let A be an adversary for Exp lin-unf . We construct an adversary B against SXDH, that interacts with A as follows. The SXDH assumption states that the DDH problem is hard in both G and Ĝ. Hence, we only need to construct an adversary for the DDH game in Ĝ. First, B gets a challenge tuple in the DDH game, that we denote ĝ, ĥ, ĝ1 , ĥ1 ∈ Ĝ. It plays ĝ, ĥ in the unforgeability game, as the public parameters pp. Then, A chooses n and B picks a random secret key (χ i , γ i) n i=1 as well as the corresponding public key pk = (ĝ i) n i=1 , with ĝi = ĝχ i ĥγ i for all i.

B sends pk to A and uses sk to simulate the signing oracle. It also updates V , the set of the messages that it signs for A. At some point,

If A does not win the unforgeability game, B guesses at random. If A wins the unforgeability game, then σ = (Z, R) and σ ′ = (Z ′ , R ′) are two valid signatures for the same message

Hence, e(Z/Z ′ , ĝ) = e(R ′ /R, ĥ) and B can proceed as follows: if e(Z/Z ′ , ĝ1) = e(R ′ /R, ĥ1), it states that ĝ, ĥ, ĝ1 , ĥ1 was a DDH tuple. Otherwise, it states that it was a random tuple. Now, let E be the event in which A wins the unforgeability game and ε the probability that E occurs. When E occurs, (Z, R) and (Z ′ , R ′) are valid signatures so that e(Z/Z ′ , ĝ) = e(R ′ /R, ĥ). Hence, if (ĝ, ĥ, ĝ1 , ĥ1) is a DDH tuple, we also have e(Z/Z ′ , ĝ1) = e(R/R ′ , ĥ1) so that B wins the DDH game with probability 1. In addition, when E occurs, (M 1 , • • • , M n) ̸ ∈< V > so that we can obtain a basis of < V > of size at most n -1. Given V and the corresponding signatures, a computationally unbounded adversary has no more information about the secret key than that obtained by running Com and Prove follows the same distribution as the tuple C 2 , ⃗ π 2 , ⃗ π2 obtained by rerandomizing C and ⃗ π, ⃗ π.

Witness indistinguishability. Let ⃗ w 1 , ⃗ ŵ1 and ⃗ w 2 , ⃗ ŵ2 be some witnesses for the equation E, and let ⃗ u 1 , ⃗ u 2 and ⃗ v1 , ⃗ v2 the corresponding CRS. Let C 1 and C 2 be some honestly generated commitments on those witnesses (i.e. using the commitment algorithm with uniformly random r) and ⃗ π 1 , ⃗ π1 and ⃗ π 2 , ⃗ π2 two honestly generated Groth-Sahai proofs (i.e. using the proving algorithm with a uniformly random ρ). Then, unless ⃗ u 1 , ⃗ u 2 or ⃗ v1 , ⃗ v2 is a DDH tuple, the tuple C 1 , ⃗ π 1 , ⃗ π1 follows the same distribution as the tuple C 2 , ⃗ π 2 , ⃗ π2 . More precisely, they are uniformly distributed in the space of the tuples that satisfy the verification equation.

Extractability. Suppose that there exists τ and τ such that ⃗ u τ 1 = ⃗ u 2 and ⃗ vτ 1 = ⃗ v2 (i.e. ⃗ u 1 , ⃗ u 2 and ⃗ v1 , ⃗ v2 are two DDH tuples). Then, for all product pairing equation E and from any tuple C, ⃗ π, ⃗ π such that ⃗ π, ⃗ π is valid, it is possible to efficiently extract (using τ and τ) some witnesses ⃗ w, ⃗ ŵ that verify the equation E.

Construction of a traceable encryption scheme

In [START_REF] Devillez | Traceable receipt-free encryption[END_REF], a construction of a traceable encryption scheme is proposed, and achieves verifiability, TCCA-security, traceability and strong rerandomization. However, the verifiability of the encryption scheme is limited as the plaintext space is large, which can be a problem in electronic voting. Indeed, to apply the usual homomorphic tally, it is often necessary that the plaintexts have a specific form, which is enforced with 0/1 proofs. By contrast, when any group element is a valid plaintext, it is often required that the tally relies on a mixnet, which may be too restrictive, leak more information than a homomorphic tally and enable, among others, forced abstention attacks based on specific write-ins. Although we do not consider forced abstention attacks in receipt freeness (nor any attack based on an information available in the result, such as Italian attacks), we consider that it is interesting to provide an alternative encryption scheme, which supports 0/1 proofs. This way, the protocol designer can decide whether they want to use a homomorphic tally or a mixnet, and use either our construction or that of [START_REF] Devillez | Traceable receipt-free encryption[END_REF].

Another advantage of our construction is that the key generation algorithm is public coin: in other words, the CRS required can be derived from the hash of some public elements (for instance, the group specification or the public key), which was not the case in the construction of [START_REF] Devillez | Traceable receipt-free encryption[END_REF]. This is extremely interesting in the context of electronic voting, since this means that we need fewer trust assumptions.

• Gen(λ, ℓ) : Given the security parameter λ and the dimension ℓ, the key generation algorithm proceeds as follows:

1. Generate g, h, (g i) ℓ i=1 , S, T ∈ G and ĝ, ĥ ∈ Ĝ at random.

For

The private key consists of sk = (α i , β i) ℓ i=1 and the public key pk ∈ G 12+2ℓ × Ĝ6 is pk = g, ĝ, h, ĥ, S, T, zero knowledge property of the Σ-protocol used to prove the knowledge of the link key. The trust assumptions of our voting system are given in Table 22; in Section 9.7, we discuss about how to provide cast-as-intended verification against a malicious device. The proof of receipt-freeness is given in Section 9.6.3.

• Setup(λ, n T , t) : Recall that the public key has the form pk = (g, ĝ, h, ĥ, S, T,

To proceed with the setup, choose some pairing-friendly groups G, Ĝ, G T of prime order q > 2 2λ calibrated for the security parameter λ, and choose g, ĝ at random, for instance by deriving them from a specification of G, Ĝ and the name of the protocol. Similarly, pick h, ĥ, (g i) ℓ i=1 , S, T as provably random group elements, as well as crs and crs ′ . Finally, use a DKG protocol to generate (f i) ℓ i=1 , distribute the shares of the secret key among the n T talliers with the threshold t and generate the corresponding commitments on the secret shares.

• Vote(id, ν, RS, PB) : the vote protocol is done in interaction between the voter id, the rerandomizing server RS and the public board PB. It is illustrated in Fig. 36. First, the voter chooses a random link key lk using the LGen algorithm. Using this link key, the voter encrypts the desired voting option ν with the LEnc algorithm, yielding the valid ciphertext CT. In parallel, the voter computes a random commitment for interactively proving the knowledge of lk in zero-knowledge, using the commitment algorithm of the Σ-protocol.

(Namely, in our scheme, the voter samples six random r 1 , r 2 , r 3 , r ′ 1 , r ′ 2 , r ′ 3 ∈ Z q , computes l′ 1 = ĝr 1 ĥr ′ 1 , l′ 2 = ĝr 2 ĥr ′ 2 and l′ 3 = ĝr 3 ĥr ′ 3 and uses (l1 , l2 , l3) as a commitment.) The voter sends (id, CT, C) to the server, where C is the commitment.

The server computes a random challenge d $ ←-[0, 2 λ -1] and sends it to the voter.

The voter answer to this challenge using the Ans algorithm of the Σ-protocol.

The server verifies the proof. If it is valid, it rerandomizes CT into CT ′ using Rand, checks that CT ′ is valid and that the answer of the voter to the challenge was valid. Finally, it checks that no other ciphertext in the public board use the same trace as CT ′ . If all the verifications succeed, it adds an entry B ′ = (id, CT ′) to the public board.

• Check(ν, id, B, PB) : To check that the ballot B = (id, CT) was correctly processed, the voter checks that the last entry of the public board of the form (id, CT ′) is such that Trace pk (CT) = Trace pk (CT ′).

• Valid(B, PB) : to check that a ballot B = (id, CT ′) is valid with respect to the public board, we check that Ver pk (CT ′) = 1 and that no entry of the public board contains a ballot of the form (id ′ , CT) with Trace pk (CT) = Trace pk (CT ′).

• Tally(PB, {s i }) : Let B 1 , • • • , B n be the list of valid ballots obtained from PB by keeping the last valid ballot for each voter. For all i, we denote c i 1 , c i 2 , (d i j) ℓ j=1 the CPA part of the ballot. The first step of the tally protocol is to aggregate the CPA parts to obtain

Check that the last a valid entry of the form (id, CT ′) is such that Trace pk (CT ′) = Trace pk (CT)

Figure 36: The Vote protocol c 1 , c 2 , (d i j) ℓ j=1 as the product of all the c i 1 , c i 2 , (d i j) ℓ j=1 's. Then, the second part is to compute

for all j, using a threshold decryption protocol. This protocol also returns a transcript Π, which is used for the verifiability. Finally, the tally protocol outputs (r i) ℓ i=1 , Π, where r i = log g i (R i) is the number of voters that set the ith bit to 1.

• Verify(PB, Π, r) : From PB and Π, recomputes the result of the tally r ′ and check that r = r ′ . Also, check that the transcript Π is valid with respect to PB.

Implementation

We provide a Python implementation in [tre], which evaluates the time to encrypt a ballot for various values of ℓ. Using this implementation, we compare the performance of our scheme to that of BeleniosRF. We conducted our experiments on a laptop with a 1.8Ghz Intel i7 processor and 16GB of RAM running Ubuntu 20.04 LTS and Python 3.7.9. We used the Charm framework [AGM + 13] with pbc-0.5.14 and OpenSSL-1.0.1. We used a 159-bits MNT pairing curve. All our results are averaged over 100 runs. We see in Table 23 that, for a 32-choices race, the encryption time of is a couple of seconds. Looking at the literature, one of the best alternative to our scheme is the one proposed in Exp s-cons (λ, A)

Figure 37: The strong correctness and strong consistency experiments BeleniosRF [START_REF] Chaidos | Bele-niosRF: A Non-interactive Receipt-Free Electronic Voting Scheme[END_REF], which would be faster than ours. However, the BeleniosRF scheme has several drawbacks; the most notable one is that the bitlength ℓ is limited to some small value, as the decryption algorithm requires an exponential number of group operations. By contrast, our scheme scales linearly with respect to ℓ.

Receipt-freeness

We now show that our TREnc voting scheme has receipt-freeness. Note that our definition of receipt-freeness is close to the BPRIV definition [BCG + 15b] (see Definition 7) for privacy: the main difference is that, in privacy, the rerandomization server is not trusted. However, thanks to the strong rerandomization property, it is easy to adapt the proof of receipt-freeness to obtain privacy. For this reason, we do not give a separate proof of privacy.

Interestingly, the resulting proof is very modular so that it would be possible to adapt our result to another scheme that uses a verifiable, traceable, strongly rerandomizable and TCCAsecure traceable encryption scheme.

To begin with, we perform a necessary sanity check and argue that TREnc has strong correctness and strong consistency (the corresponding experiments are reproduced in Fig. 37).

Strong consistency. We define the Extract algorithm with the decryption algorithm: Extract sk (id, CT) = (id, Dec sk (CT)). Thanks to the correctness of the traceable encryption scheme, using Extract on a honestly generated ballot from voter id for the voting option ν ∈ {0, 1} ℓ indeed returns (id, ν). Also, the verifiability of the traceable encryption scheme and the homomorphic property of the Tally protocol guarantees that no adversary can win the strong consistency experiment with a non-negligible probability.

Strong correctness. The strong-correctness comes from the correctness of the traceable encryption scheme, and the fact that LGen outputs a link key chosen randomly from a superpolynomial space.

Theorem 15. Assume that the Σ-protocol used during the Vote protocol to prove the knowledge of lk has the special soundness property, is zero knowledge and has the correctness property.

O voteLR (id, ν 0 , ν 1)

O receiptLR (id, I, ν)

O tally ()

Figure 38: The receipt-free experiment and its oracles, where V is the set of the voting options.

Assume that the tally protocol is zero knowledge in a sense that there exists a simulator SimProof such that, for all (r, PB), if (r ′ , Π) is the output of Tally, then SimProof(PB, r, τ) is computationally indistinguishable from Π, where τ is a trapdoor generated by SimSetup.

Then, under the SXDH assumption and in the random oracle model, TREnc has receiptfreeness as of Definition 24.

To improve readability, we reproduce the receipt-freeness experiment in Fig. 38.

Proof. First, we explicit the deceiving strategy D. For this purpose, recall that we only consider non-restrictive adversaries. Therefore, at each call to O receiptLR with input (I, ν), I is a compatible instruction (i.e. a Turing machine that takes as input (id, PB) and returns a valid ciphertext CT 0 with respect to PB, as well as a commitment C. It then takes as input a challenge d and returns a valid answer a, a ′ , as well as a receipt s.)

In this setting, D creates three copies of I and runs them in parallel. For the first copy, it inputs a random challenge d 1 ; for the second copy, it inputs a random challenge d 2 ̸ = d 1 . This allows to extract the secret link key osk which corresponds to the produced ballot CT, using the special soundness property. Then D uses this link key to produce another ciphertext CT 1 with the desired voting option ν, and computes the commitment c ′ honestly. The RS answers to (id, CT 1 , c ′) with some random challenge d that D plays in the third copy of I to get the receipt s.

To prove receipt-freeness, we give a succession of games H 0 , • • • , H 5 such that H 0 corresponds to the experiment Exp rf-0 while H 5 corresponds to the experiment Exp rf-1 . For each of these games, we denote S i the probability that H i outputs 1.

Cast procedure

Check that (id, CT ′) is added to the board Audit procedure Voter (id, "audit")

Voting Device RS

is the list of previously spoiled ballots. θ and θ ′ are respectively the randomnesses used to encrypt and rerandomize a ballot.

Appendix A

ZK-TCPA security of the ElGamal threshold encryption scheme

In this Section, we prove Theorem 1 that states that the ElGamal threshold encryption scheme is ZK-TCPA under the DDH assumption. To ease the readability, we reproduce the ZK-TCPA game here, as well as the simulator.

4 w 0 ←-y/m; 5 for i ∈ A do w i ←-x s i ;

Exp ZK-TCPA (λ, A)

Theorem 1. The threshold ElGamal encryption scheme is ZK-TCPA in the ROM and under the DDH assumption.

To establish this result, we consider Shamir's secret sharing scheme, with a threshold t and n T participants. This way, the Setup algorithm consists of the following:

• Pick a random generator g;

• Pick a random polynomial f ∈ Z q [X] of degree t;

• For all i ∈ [1, n T], set s i = f (i) and h i = g s i ;

• Set sk = f (0), h = g sk and pk = (g, h);

wins with probability 1 -p i . Overall B's advantage in the DDH game is 1 2 |p i+1 -p i |, so that |p i+1 -p i | is negligible.

Conclusion. By the triangular inequality, for all i ∈ [0, t] and for all A i , A i 's advantage is bounded by (t -i)ε DDH , where ε DDH is some negligible function. Now, if we consider an adversary A in the ZK-TCPA game, A must corrupt i participants for some i ∈ [0, t], therefore A's probability to win (say, p) is some barycenter of A's probability to win in each H i . Consequently, A's advantage, which can be interpreted geometrically as the distance between the barycenter p and 1/2, is bounded by the largest of those distances, and therefore is negligible (since they are all negligible). Overall, A's advantage in the ZK-TCPA game is bounded by tε DDH , where ε DDH is the advantage of some PPT adversary in the DDH game.

Appendix B

The hybrid argument

The hybrid argument is a fundamental proof strategy in cryptography, that allows to prove the indistinguishaiblity of two distributions. In this thesis, however, we do not want to prove the indistinguishability of two distributions, but rather the equivalence of two games. For this reason, we adapted the statement of [MF21, Theorem 3.17] into Theorem 2, which gives a game-based version of the hybid lemma. A game is an ITM which, in interaction with an adversary, may give it a view which can be considered as a random variable sampled from a specific distribution. Since the view depends on the interactions with the adversary, the game-based version of the hybrid argument is intuitively more expressive than the distribution-based version, and it is not clear that the former is a consequence of the latter. For this reason, we prove Theorem 2 (restated below) in this appendix.

The goal of Theorem 2 is to give a list of easy-to-check conditions that matches the natural proof strategy in game-based definitions. Nevertheless, it is remarkable that, in the statement of the theorem, the succession of hybrids (H i) N is constructed in the reverse order: H 0 corresponds to G 2 and, when n grows larger, H n gets closer to G 1 . It may be possible that someone may want to construct the succession (H i) N in the natural order: from G 1 to G 2 . For this reason, we give another version of the hybrid lemma, which is Theorem 17, and we prove that this version is also valid.

Due to space and time limitations, it is common that the hybrid lemma is not properly stated or used in the litterature. Thanks to Theorem 2 and 17, it is now not longer to properly use the hybrid lemma.

Theorem 2 (The hybrid lemma). Let G 1 and G 2 two games. We consider a sequence of games (H i) i∈N which are hybrids between G 1 and G 2 . With these notations, assume that the following conditions are met:

1. For all PPT A, for all security parameter λ, Pr(G 2 (λ, A) = 1) = Pr(H 0 (λ, A) = 1).

For all PPT

A for game G 1 , there exists a polynomial n A such that, for all λ ∈ N,

3. There exists a polynomial P and two transformation T and T ′ such that, given any PPT adversary A i+1 (resp. A i) for game H i+1 (resp.

is an adversary for game H i (resp. H i+1) which makes at most P (λ) additional transitions.

4. There exists a game G which depends on a parameter b ∈ {0, 1} such that, for all PPT adversary B, ε B = 2| Pr(G(λ, B) = 1) -1/2| is negligible in λ.

5.

There exists a PPT B such that, for all i ∈ N and all PPT A i+1 for game H i+1 (which in turns defines a PPT A i for H i), we have Pr(G(λ,

Then, for all PPT A 1 , there exists a PPT A 2 and a PPT B such that

Proof. Let A 1 be a PPT adversary for G 1 . From condition 3, and the polynomial n A 1 from condition 2, we construct a succession of adversaries (Ãi) i∈N s.t. for all i, Ãi is an adversary for the hybrid

more transitions than A 1 , and is indeed a PPT adversary. We define A 2 as Ã0 , which makes at most n A 1 P additional transitions from A 1 . Remark that, for all λ ∈ N, conditions 1 and 2 give

Now, we denote B the PPT from condition 5. We construct a PPT B from the game G (from condition 4) as follows: B chooses a random i ∈ [0, n A 1 (λ) -1] and interacts with à i+1 , using B(i)'s algorithm. This way, we have

By condition 4, ε B is negligible. In addition, by condition 5, we have

Theorem 17. Let G 1 and G 2 two games. We consider a sequence of games (H i) i∈N which are hybrids between G 1 and G 2 . With these notations, assume that the following conditions are met:

1. For all PPT A, for all security parameter λ, Pr(G 1 (λ, A) = 1) = Pr(H 0 (λ, A) = 1).

2. There exists a polynomial P and a transformation T such that, given any PPT adversary A i for game H i , A i+1 = T (A i) is an adversary for game H i+1 which makes at most P (λ) additional transitions.

For all PPT

A for game G 1 , there exists a polynomial n A such that, for all λ ∈ N,

4. There exists a game G which depends on a parameter b ∈ {0, 1} such that, for all PPT adversary B, ε B = 2| Pr(G(λ, B) = 1) -1/2| is negligible in λ.

5. There exists a PPT B such that, for all i ∈ N and all PPT A i for game H i (which in turns defines a PPT A i+1 for H i+1), we have Pr(G(λ,

and Pr(G(λ,

Then, for all PPT A 1 , there exists a PPT A 2 and a PPT B such that

Proof. Let A 1 be a PPT for G 1 . Bys condition 1, we can interpret A 1 as an adversary Ã0 for game H 0 . From condition 2, we construct a succession of adversaries (Ãi) N such that, for all i, Ãi = T i (A) is a PPT adversary for H i which makes at most iP more transitions than A. From condition 3, we define the polynomial n A 1 , and the PPT A 2 that, given λ, computes n A 1 (λ) and runs Ãn A 1 (λ) 's algorithm. This way, for all λ ∈ N,

Now, let B be the PPT from condition 5 and G the game from condition 4. We define B, a PPT for game G, that picks a random i ∈ [0, n A 1 (λ) -1] and runs B(i)'s simulation to Ãi . This way,

By condition 4, ε B is negligible. In addition, by condition 5, we have

Appendix C

Proof of correctness for the Majority Judgment algorithm

This appendix is dedicated to the proof of Theorem 4, that we restate below. For convenience, we also reproduced Algorithm 88 in Fig. 40.

Theorem 4. Algorithm 88 returns the set of maxima according to ≤ maj in O(n C n G) comparisons between grades, where n C is the number of candidates and n G the number of grades.

To prove this theorem, we define the median sequence in Definition 31 and remark that ≤ maj is the lexicographic order for the median sequences. Hence, it is important to describe the behavior of the median sequence, which is done in Lemma 17.

Definition 31 (The median sequence). The median sequence of a sorted n-tuple u, denoted m(u) is the sequence formed by med(u) followed by m(û).

Lemma 17. Let u be a sorted n-tuple. For k ∈ [1, n], the k th element of the median sequence of u is the element of index m + (-1) k+n ⌊k/2⌋, where m = n 2 . Proof. We distinguish the cases where n is even or odd and give a recurrence in k.

Case 1: n is even. The first element of the median sequence is u m by definition. Let k ≥ 1. Suppose that for i ∈ [1, k], the i th element of the median sequence is u m+(-1) i ⌊i/2⌋ . By definition, the (k + 1) th element of the median sequence is the element of index n-k 2 of some (n -k)-tuple, obtained by removing the first k elements of the median sequence of u.

If k is even, by recurrence hypothesis, the removed elements have indexes m, m

As n and k are even, n-k 2 = m -k/2. Therefore, the (k + 1) th element of the median sequence is u m-k/2 , and since k is even, m -k/2 = m + (-1) k+1 k+1

2 . If k is odd, by recurrence hypothesis, the removed elements have indexes m

Since n is even while k odd, n-k 2 = m -(k -1)/2, so the (k + 1) th element of the median sequence is the one following u m-(k+1)/2 in the above list, namely u m+(k+1)/2 , with m+(k+1)/2 = m + (-1) k+1 k+1 2 .

Majority Judgment

Requires: n C , the number of candidates n G , the number of grades n V , the number of voters Inputs: a, the aggregated grade matrix s.t.

a[i, j] is the number of voters who gave the rank j to the candidate i

Case 2: n is odd. The first element of the median sequence is u m by definition. Let k ≥ 1. Suppose that for i ∈ [1, k], the i th element of the median sequence is u m-(-1) i ⌊i/2⌋ . By definition, the (k + 1) th element of the median sequence is the element of index n-k 2 of some (n -k)-tuple, obtained by removing the first k elements of the median sequence of u.

If k is even, by recurrence hypothesis, the removed elements have indexes m, m -1, m + 1, • • • , m + (k/2 -1), m -k/2 so the remaining elements are

As n is odd and k even, n-k 2 = m-k/2. Therefore the (k +1) th element of the median sequence is the one following u m-k/2-1 in the above list, namely u m+k/2 with m+k/2 = m-(-1) k+1 k+1

2 . If k is odd, by recurrence hypothesis, the removed elements have indexes m, m -

As n and k are odds, n-k

2 . We now exhibit a collection of loop invariants, where a sum indexed with the empty set is 0 and g i,1 , • • • , g i,n V denote the list of grades received by candidate i, sorted in decreasing order. Note that m is used to denote the best median, and not n V 2 as in the previous lemma.

Lemma 18. In Algorithm 88, the following loop invariants hold at the beginning (line 10) and at the end (line 27) of the while loop.

1. For all i ∈ C, p i + m - i = m + i + q i , and this value is the same for all i.

2. For all i ∈ C, m + i ≥ 0 and m - i ≥ 0.

For all

The n V -L first elements of the median sequence are identical for all i ∈ C.

For all

7. C contains all the MJ winners.

Proof. Initialization. First of all, we verify that the loop invariants are true after line 7.

Invariants 1 to 4:

We have p i + m - i = ⌊n V /2⌋ = m + i + q i . Moreover p i is the number of grades strictly greater than the median, so by definition of the median,

Similarly, q i is the number of grades strictly worse than the median, so by definition of the median, q i ≤ ⌊n V /2⌋ hence m + i = ⌊n V /2⌋-q i ≥ 0. Finally, Equalities 3 and 4 are true with I -= I + = 1.

As the first element of the median sequence is the median, the n V -L first elements are the same for all candidates in C after line 9.

Invariant 6: After line 7, p i is the number of grades strictly greater than the median for candidate i so, for all j ≥ 1, g i,p i +j ≥ m. Moreover m - i is lower than the number of grades equal to the median received by i. So for all j ≤ m - i , g i,p i +j ≤ m. Hence, for all j ∈ [1, m - i], g i,p i +j = m. Similarly, for all j ∈ [1, m + i], g i,n-q i -j+1 = m. Invariant 7: After line 9, C contains the candidates who have the best median, thus contains the winners.

Heredity. Assume that the loop invariants are verified at the beginning of the loop, we show that they are preserved at the end of the loop.

We first show the following result, which is a consequence of loop invariants 1 to 4. Sub-lemma. For all candidates i, s i ≥ 0 if and only if m - i ≤ m + i . Let i be a candidate. Suppose s i ≥ 0 and m - i > m + i . Then 0 ≤ s i = -q i ≤ 0 so q i = 0 and as

To show that the loop invariants are preserved, we denote C 1 the set C at the beginning of the loop and C 2 the set C at the end of the loop. Let i ∈ C 2 . Let i ∈ C 2 , then i ∈ C 1 so the loop invariants hold at the beginning of the loop, for all i ∈ C 2 . We denote p 1 the value of p i at the beginning of the loop and p 2 at the end, and the same for all other variable m - i , m + i , q i , I -, I + and L.

Invariants 1 to 4:

Finally, line 20 together with line 21 and loop invariant 3 give p 2 = m-I - 2 j=1 a i,j , which shows that invariant 3 is preserved. (Invariant 4 is also preserved because q 2 = q 1 and I

Finally line 26 together with line 27 and loop invariant 4 give q 2 = c j=m+I + 2 a i,j , so that invariant 4 is preserved.

(Invariant 3 is also preserved because p 2 = p 1 and

Consequently, p 1 = s i = s and since p 1 + m - 1 is the same for all i, we deduce that m - 1 is the same for all i. In addition we have p 2 + m - 2 = p 1 (lines 19 and 20), m + 2 = m + 1 -m - 1 (line 18) and q 2 = q 1 , so

and since the n -L 1 first elements of the median sequence are the same for all candidates in C 1 , we only have to show that the 2m - 1 next elements are the same for all candidates in C 2 . For this purpose, we remark that loop invariant 1 implies that L 1 is even and we suppose m - 1 > 0. (If m - 1 = 0, our job is already done.) By Lemma 17, the elements of indexes n -L 1 + 1, • • • , n -L 1 + 2m - 1 of the median sequence are the elements

; which are also the elements

Since ⌈n/2⌉ = ⌊(n + 1)/2⌋ and ⌈n/2⌉ + ⌊n/2⌋ = n for all n, we can rewrite them as

In what follows, we prove that for all j ∈ [1,

, which allows to prove our claim by invariant 6. In addition, g i,p 1 +j = m -I - 1 + 1 for all j ∈ [1, m - 1] by invariant 6, so the elements listed above are equal to m -

1 -1 and therefore are the same for all i ∈ C 2 , which shows that invariant 5 is preserved.

If s < 0, m - 1 > m + 1 . Consequently, q 1 = -s i = -s and since m + 1 + q 1 is the same for all i, so is m + 1 . Moreover m + 2 + q 2 = q 1 (lines 25 and 26), m - 2 = m - 1 -m + 1 (line 24) and p 2 = p 1 so

and since the n -L 1 first elements of the median sequence are the same for all candidates in C 1 , we only have to show that the 2m + 1 next elements are the same for all candidates in C 2 . For this purpose, we remark that invariant 1 implies that L 1 is even and we suppose that m + 1 > 0. (If m + 1 = 0, our job is done.) By Lemma 17, the elements of indexes n -

; which are also the elements

Since ⌈n/2⌉ = ⌊(n + 1)/2⌋ et ⌈n/2⌉ + ⌊n/2⌋ = n for all n, we can rewrite them as

We now show that for all j ∈ [1,

, which allows to prove our claim by invariant 6.

In addition, g i,n-q 1 -j+1 = m + I + 1 -1 for all j ∈ [1, m + 1] by invariant 6, so the elements listed above are equal to m -

1 -1 and therefore are the same for all i ∈ C 2 , which shows that invariant 5 is preserved.

Invariant 6:

is exactly the number of grades strictly greater than m -I - 1 + 1 received by i so by definition of a i,m-I - 1 , p 2 is the number of grades strictly greater than m -I - 1 . Therefore g i,p 2 +1 is lower than m -I - 1 and as there are a i,m-I -

is exactly the number of grades strictly worse than m + I + 1 -1 so by definition of a i,m+I + 1 , q 2 is the number of grades strictly worse than m + I + 1 . Therefore g i,n-q 2 is greater than m + I + 1 and as there are a i,m+I + 1 = m + 2 grades equal to m + I + 1 , we deduce that g i,n-q 2 -j+1 = m + I + 1 = m+(I + +1)-1 = m+I + 2 -1 for all j ∈ [1, m + 2]. In addition, for all j ∈ [1, m - 1], g i,p 1 +j = m-I - 1 +1 so, a fortiori, for all j ∈ [1, m + 1 -m - 1], g i,p 1 +j = m -I - 2 + 1. Invariant 7: Let b ∈ C 2 , (namely b ∈ C 1 such that s b = s). We show that for all a ∈ C 1 \C 2 , (namely for all a ∈ C 1 such that s a < s), a < maj b.

Positive case. Suppose that s ≥ 0. Let a ∈ C 1 such that s a < s.

Positive-negative case. We first assume that s a < 0. Therefore s a < 0 ≤ s = s b . By the sub-lemma, we have m

With the same reasoning as in the proof of invariant 6, we show that the elements of indexes 1 to n -L + 2m + a of the median sequence of a and b are the same. Since m - a > m + a , by Lemma 17 and loop invariant 1 and 6, the n -L + 2m + a + 1 th elements of the median sequence of a and b are respectively

However, the n -L + 2m + a + 2 th element of the median sequence of a is

(1-P β -P α) x , where N x = n H -x+1 and T x =

Proof. First, we partition M α,β into n H x=0 M x α,β , where M x α,β is the subset of all results in M α,β where the options other than α and β received exactly x votes. Then, we further partition M x α,β into subsets where res β = y (and, thus, res α = N x -y). Note that due to the condition from Lemma 19, res β P α ≥ res α P β hence y ranges from T x to N x . To express the formula from Lemma 19 using this partition, we assume that α and β are the last two voting options (otherwise we reorder them) and denote

With these notations, we have For this purpose, we first fix some N ≥ 0 and we proceed by backward iteration over T . First, it is true when T = N . Now, suppose that it is true for some 0 < T ≤ N ; we show that it is also true for T -1:

• If res β = 0, return 0, otherwise, do res β ← res β -1.

• Set N = n H -res 0 -n R , P r1 = P 1,1 + P 2,1 and P r2 = P 1,2 + P 2,2 . Return

Proof. As shown in Section D.2, Pr((res 0 , res 1 , res 2), n R |β) is given by Eq. (29). We explicit the sum over H n R -→ res . First, 0 ≤ n 2,∅ ≤ res 2 and n 1,∅ +n 2,∅ = n H -res 0 -n r and res 0 +res 1 +res 2 = n H , therefore

Considering all these inequalities, we have

. Now, res 1 -n 1,∅ is equal to the number of revotes for 1, so that res 1 -n 1,∅ ≤ n R . Therefore, the innermost summation is also on the full domain for n 1,2 . Hence,

where P r1 = P 1,1 + P 2,1 and P r2 = P 1,2 + P 2,2 . Note that this can be computed in O(n H) floating operations. Since we must range over all possibilities for res 0 , res 1 , res 2 , n r , the overall δ Real can be computed in O(n H 4) floating operations.

In Section 7.3, we used the formulas from Lemma 21 and 20 to evaluate the coercion levels. The only exceptions are Figures 46 and24, where the real coercion levels for 513 and 1025 voters were obtained with a Monte-Carlo estimates with 1000000 iterations, which gives a sufficiently small confidence interval for our purpose. The reason why is that evaluating the formula from Lemma 21 would be too long for such values of n V .

D.4 The impact of the parameters

We now give some relevant parameters and evaluate their impact on the real and ideal coercion levels. This analysis shows that the scenarios presented in Sections 7.3.2 and 7.3.3 are not the only plausible ones that might occur. In Lemma 21, we saw that δ Real only depends on P 0 , the probability of abstention, P r1 (resp. P r2), the probability to revote for option 1 (resp. 2) and P 1,∅ (resp. P 2,∅), the probability to vote for option 1 (resp. 2) without revoting. To give a better representation of these parameters, we define r = (P r1 + P r2)/(P r1 + P r2 + P 1,∅ + P 2,∅), which is the probability to revote (after voting), p 1 = P 1,∅ /(P 1,∅ + P 2,∅) and p 2 = P 2,∅ /(P 1,∅ + P 2,∅), which are the probabilities to vote for option 1 and option 2 when voting exactly once and r 1 = P r1 /(P r1 + P r2) and r 2 = P r2 /(P r1 + P r2), the probabilities to vote for option 1 and 2 when revoting (see Fig. 42 for an illustration).

A first important parameter is r, the probability of revoting. In Fig. 43, we let it vary from 0 to 1, and we plot the coercion level in JCJ and in the ideal protocol for various values of (p 1 , p 2) and (r 1 , r 2). As expected, since the leakage we detected comes from the revotes, both are the same when there is no revote. Note that when everyone revotes, there is no coercion resistance anymore. This is due to the considered evasion strategy, which instructs the voter to vote once (which is detected if they are the only one to do so). Now, an important point to notice is that, if (p 1 , p 2) and (r 1 , r 2) are close, the difference between the ideal and the real coercion level is small, unless there are a lot of revotes. On the other hand, if both distributions are opposite, the difference is noticeable, even with a reasonable proportion of revotes. Therefore, another interesting parameter to consider is the distance between (p 1 , p 2) and (r 1 , r 2), defined as 2|p 1 -r 1 |, which we call the bias. In Fig. 44, we let the bias vary from 0 to 2 and we plot the coercion level in the real and ideal protocols, for various probability of revoting. As expected, when the bias is maximal, there is no coercion resistance at all (this corresponds to the scenario of Section 7.2.1). Note, however, that the leakage is non-zero when there is no bias. This, once again, is due to the fact that the adversary can count the number of revotes, and therefore have a non-negligible advantage to decide whether the coerced voter voted or abstained. Another natural parameter to consider is the abstention rate. Until now, it was fixed at 0.3 in our experimentations. However, it can variate a lot in real-life elections. In Fig. 45, we plot the real and ideal coercion levels as a function of the abstention rate, with various probabilities of revoting and bias. As expected, when there is no abstention, the attacker can trivially break coercion-resistance with a forced-abstention attack. Similarly, when everyone but the coerced voter abstains, there is no coercion-resistance (both situations are captured by the ideal model).

Finally, the last parameter of interest is the number of honest voters. In Fig. 46, we plot the real and ideal coercion levels for 16, 32, 64, 128, 256, 512 and 1024 honest uncoerced voters, with various probabilities of revoting and bias. As expected, the coercion level decreases as n H grows for both the ideal and real game. Interestingly, the difference remains noticeable as long as there is enough revotes.

Proof of privacy for CHide

In this appendix, we provide a proof that CHide is private, as of Definition 9 (the corresponding real and ideal games are reproduced below). The proof is extremely similar to that of coercionresistance and some parts are reproduced verbatim, with some little tweaks to take into account the differences between Real CR and Real Priv . Just as for coercion-resistance, we make the same assumptions as in JCJ; however, we no longer assume an anonymous channels for voting.

Theorem 18. Under the DDH assumption and in the ROM, assuming a SUC-secure decryption mixnet, CHide is private.

Proof. We give a succession of games such that Game 0 is the real game and Game 9 is the ideal game. We consider a PPT A 0 for Game 0. For Game i, we construct a PPT adversary A i for this game and we denote S i the probability that A i wins this game. (To ease the notations, we drop the dependency in λ when the context is clear.) For all i, we show that |S i+1 -S i | is negligible, which proves that |S 0 -S 9 | is also negligible.

Game 1: In this game, the adversary no longer takes part into the whole tally process at line 17, but only in the decryption mixnet process. Instead, it is given the result of all the conditional gates, computed by a trusted party. With a similar argument as in Theorem 6, we can show that the cleansing phase up to the decryption mixnet is SUC-secure, so that there exists an adversary A 1 such that |S 1 -S 0 | is negligible.

Game 2: In this game, the adversary no longer takes part in the decryption mixnet and is instead given the result at line 18, computed by a trusted party. Since the decryption mixnet is supposed UC-secure, we can similarly construct an adversary A 2 such that |S 2 -S 1 | is negligible.

Game 3: In this game, the adversary is no longer given the output of the conditional gates. Just as in the transition to Game 2 in the proof of Theorem 8, under the DDH assumption and in the ROM, there exists A 3 such that |S 3 -S 2 | is negligible.

Game 4: In this game, we modify the sequence B so that the honest voters no longer revote. Instead, for all honest voter x, we replace all but the last occurrence of the form (x, ν) in B by an occurrence of the form (x → x, ν) where x is a fresh and unique negative number. Then, at line 12, when i is of the form x → x, we give x to the adversary but we add a ballot of the form Vote pk (c, ν) with a fresh random (fake) credential c.

Although this transition is slightly different from the transition to Game 4 in the proof of coercion resistance, the reduction argument is the same.

Algorithm 108: Real Priv

Requires: λ, n T , C t , n, n A , n C , B, A 1 pk, sk, (h i , s i) n T i=1 , Π S ← Setup(λ, n T , t); 2 (c i , π i), Π R ←-Register(pk, n); 3 PB ←-Π S ||Π R ; 4 A ←-A(pk, PB, {s i | i ∈ C t }); 5 j, ν 0 , ν 1 ←-A({c i | i ∈ A}); 6 (* chooses the voter to observe *); Game 5: In this game, the adversary no longer has access to the roster Π R at line 4.

Just as in the transition to Game 5 in the proof of coercion-resistance, we can construct A 5 which interacts with A 4 by simulating Game 4, so that |S 5 -S 4 | is negligible.

|S 5 -S 4 | ≤ 2n V ε PA0 .

Game 6: In this game, before computing the tally, we decrypt every valid ballot sent by the adversary at lines 11, 13 and 16. If one of these ballots uses the same credential as a ballot sent by a honest voter (i.e. a ballot added to the board at line 12 for some (i, ν i) with i ∈ [1, n V]\A), we abort the game and output a random bit. This is the same transition as the one to Game 6 in the proof of coercion-resistance. Using the same arguments, we can show that |S 6 -S 5 | is negligible.

Game 7: In this game, we remove lines 11 and 13 so that the adversary can no longer insert its own ballots between two honest ballots. In addition, we give I to the adversary at line 16.

This transition is very similar to the transition to Game 7 in the proof of coercion-resistance. Similarly, we construct A 7 which interacts with A 6 by simulating Game 6. For this purpose, A 7 gets PB and I at line 16 and creates a fake empty ballot box PB ′ . Then, in the kth iteration of the for loop, it gives the next entry of I to A 6 as i, as well as the current PB ′ . Then, A 6 casts some ballots and A 7 adds the valid ones to PB ′ . Finally, to simulate the vote of i, A 7 adds the next entry of PB to PB ′ . One the for loop has ended, A 7 can similarly simulate line 13.

Clearly, A 7 plays a perfect simulation of Game 6 if the result of the tally is the same. Besides, the latter can only differ if the credential of a ballot sent by A 6 is the same as the credential of a ballot sent by some honest voter. In this case, both games abort with a random output and A 7 's probability to win is the same as A 6 's in Game 6. Consequently, S 7 = S 6 .

Game 8: In this game, the adversary has no longer access to the ballot box PB at line 16 but is only given I. Using a similar argument as in the transition to Game 8 in the proof of coercion-resistance, we can show that |S 8 -S 7 | is negligible.

Game 9: The final game is the ideal game.

We construct an adversary A 9 which interacts with A 8 by simulating Game 8. For this purpose, A 9 runs the setup and the registration honestly, by generating the secret key and the credentials. This allows A 9 to get j, ν 0 , ν 1 from A 8 , that it plays in the ideal game. Then, when given I in the ideal game, it forwards it to A 8 which answers with a list of cast ballots M by interacting with the cast oracle. To deduce the corresponding voting options (ν i) i∈A , A 9 creates a hashmap with the keys {c i ; i ∈ A}, and values (ν i) i∈A (initially ϕ, for abstention). For each valid ballot cast by A 8 , A 9 decrypts the ballot using the secret key and deduces (ν, c). Since the ballot is valid, by the soundness of the ZKP, c consists of λ bits and ν is a valid voting option. If c is a key of the hashmap, A 9 changes the corresponding value to ν. (Otherwise, it ignores the ballot.) It plays the obtained values in Game 9 and receives the result of the tally which it forwards to A 8 . Finally, it outputs A 8 's output. Remark that A 9 played a perfect simulation of Game 8, so that S 9 = S 8 .