
HAL Id: tel-04206455
https://theses.hal.science/tel-04206455

Submitted on 13 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Securing workflows : on the use of microservices and
metagraphs to prevent data exposures

Loïc Miller

To cite this version:
Loïc Miller. Securing workflows : on the use of microservices and metagraphs to prevent data ex-
posures. Cryptography and Security [cs.CR]. Université de Strasbourg, 2022. English. �NNT :
2022STRAD054�. �tel-04206455�

https://theses.hal.science/tel-04206455
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE STRASBOURG

ÉCOLE DOCTORALE MATHÉMATIQUES, SCIENCES DE 

L’INFORMATION ET DE L’INGÉNIEUR

Laboratoire Icube –  UMR7357

THÈSE  présentée par :

Loïc Miller

soutenue le 22 avril 2022

pour obtenir le grade de : Docteur de l’université de Strasbourg 
Discipline/ Spécialité : Informatique

Securing Workflows: On the Use of
Microservices and Metagraphs to

Prevent Data Exposures

THÈSE dirigée par :
Mme. PELSSER Cristel Professeure, Université de Strasbourg
M. GALLAIS Antoine Professeur, INSA Hauts-de-France

THÈSE co-encadrée par :
M. MERINDOL Pascal Maître de conférences, Université de Strasbourg

RAPPORTEURS :
M. RIVIERE Etienne Professeur, Université Catholique de Louvain
Mme. TEXIER Géraldine Professeure, Université de Rennes 1

AUTRES MEMBRES DU JURY :
M. BLANC Gregory Maître de conférences, Télécom SudParis
M. TIXEUIL Sébastien Professeur, Sorbonne Université LIP6

INVITE :
M. ROUGHAN Matthew Professeur, Université d’Adelaide





Abstracts

Résumé

Cette thèse traite du sujet des fuites et des violations de données dans les workflows. Les workflows sont

utilisés partout et par tout le monde, les workflows multi-organisations en particulier étant nécessaires

chaque fois qu’il y a une collaboration entre deux ou plusieurs organisations. Les fuites et les violations de

données sont généralisées, résultent régulièrement des vulnérabilités les plus critiques et se produisent de

plus en plus. Le passage au cloud et aux approches modulaires a augmenté les surfaces d’attaque et apporté

de nouveaux risques de sécurité qui n’existaient pas auparavant.

Compte tenu de cette situation, voyant de grandes entreprises stockant leurs données dans le cloud sans

chiffrement pour établir leurs workflows multi-organisations, il existe un fort besoin d’une solution capable

de déployer ces workflows en toute sécurité et d’éviter les fuites de données. Cette thèse porte donc sur la

prévention des fuites et violations de données, notamment dans les workflows. Notre objectif est de permettre

l’utilisation de workflows multi-organisations sécurisés et d’atténuer le risque de fuites de données.

Dans un premier axe, nous construisons une infrastructure utilisant les microservices qui permet l’exécution

de workflows dans le cloud et empêche les fuites de données. Une des limitations de notre infrastructure est

le fait que les politiques de sécurité doivent être correctes pour bénéficier de leur sécurité. Dans un deuxième

axe, nous répondons à cette limitation en expliquant comment vérifier que la spécification d’une politique de

sécurité corresponde à sa traduction en implémentation. Dans ce but, nous utilisons une construction qui

généralise le graphe simple, les métagraphes. Dans le troisième axe, nous abordons le domaine adjacent de

l’analysis de politiques, pour garantir que les spécifications de celles-ci sont correctes. En particulier, nous

abordons le problème de la recherche de redondances dans la spécification d’une politique.

Mots clés: fuites de données, workflows, microservices, autorisation, contrôle d’accès, vérification de

politiques, métagraphs, yawl, rego, hypergraphes, hypernetworks, complexité, NP-complétude

Abstract

This thesis deals with the topic of data leaks and breaches in workflows. Workflows are used everywhere and

by everyone, multi-party workflows in particular being needed whenever there is a collaboration between

two or more organizations. Data leaks and breaches are widespread, regular outcomes of the most critical

vulnerabilities, and happening continuously more. The shift to the cloud and modular approaches has

increased attack surfaces and brought new security risks that did not exist before.

Considering this situation, with major companies storing their data unencrypted in the cloud to enable

their multi-party workflows, there is a strong need for a solution that can enable those workflows securely

and prevent exposures. This thesis therefore focuses on the prevention of data exposures, in workflows in

particular. Our goal is to enable secure multi-party workflows and mitigate the risk of data exposures.

In a first axis, we build an infrastructure using microservices that allows the execution of workflows in the

cloud and prevents data leaks. One of the limitations of our infrastructure is the fact that security policies must

be free from errors to benefit from their security. In a second axis, we deal with this limitation by explaining

how to verify that the specification of a policy corresponds to its translation into a policy implementation.

For this purpose, we use a construct that generalizes the simple graph, metagraphs. In the third axis, we

address the adjacent area of policy analysis, to ensure that policy specifications are correct. In particular, we

tackle the problem of finding redundancies in the specification of a policy.

Keywords: data leak, workflows, microservices, authorization, access control, policy verification, metagraphs,

yawl, rego, hypergraphs, hypernetworks, complexity, NP-completeness





Copyright

cb This book is released into the public domain using the CC-BY 4.0 code.

To view a copy of the CC-BY 4.0 code, visit:

https://creativecommons.org/licenses/by/4.0/

Colophon

This document was typeset with the help of KOMA-Script and LAT
E
X using the kaobook

class.

The source code of this book is available at:

https://github.com/fmarotta/kaobook

https://creativecommons.org/licenses/by/4.0/
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/
https://github.com/fmarotta/kaobook


Acknowledgments

A journey of more than three years is drawing to a close. Over those years, I been blessed

with many encounters, and in this preface, I want to take the time to thank all the people

who supported me and tagged along. This preface will never do justice to the immense

gratitude I feel towards each and everyone of you, but I will nonetheless try my best.

First of all, I want to thank the members of the jury who accepted to evaluate my thesis.

Many thanks to Etienne Rivière, Géraldine Texier, Gregory Blanc and Sébastien Tixeuil.

Thank you to Matthew Roughan in particular. It really is a pleasure to exchange with you,

and I hope we can continue to do so in the future. Thanks again to the members of the

jury for reviewing this thesis, I hope it is an enjoyable read.

Next, I want to thank my supervisors. Thank you to Pascal Mérindol. You were the one

that introduced me to the world of research, and I can’t help but smile when I think back

on the D-CART internship and our path combinatorics. Thank you for being there all

those years, and for being as passionate as you are when discussing complexity and

algo-related problems. I don’t think I will ever get tired of our discussions, whether

they are academic or not. I wish you the very best for your Habilitation à Diriger des

Recherches, I’m sure you will succeed in your endeavors whatever they may be.

Thank you to Cristel Pelsser. From our BGP blackjacks to workflows, you were always

supportive and willing. Thank you for being a great supervisor, and for all the effort you

put in and continue to put in. You were always available when I needed you, and for that,

I feel very grateful. Thanks as well for giving me the opportunity to present my works

abroad, whether in Luxembourg, or in Italy for summer schools, or even for participating

in the organization of IMC. Finally, I can’t thank you for helping me find my path forward

in research. Thank you for everything you taught me, it really means the world to me.

Thank you to Antoine Gallais. From our initial discussions to the present, your support

has been invaluable. I regret that we could not meet more often with you being remote,

but want to express my gratitude for all the advice you gave me over the years.

I also want to take some time to the other permanent members of the Network Research

Team. Thank you to Quentin Bramas, Stéphane Cateloin, Pierre David, Anissa Lamani,

Julien Montavont, Thomas Noel, Guillaume Schreiner and Fabrice Theoleyre, for the

moments we shared and discussions we had. I extend my gratitude to Quentin Bramas

in particular, for always putting up with my complexity problems, showing interest

and always taking the time to explain things. Thank you to Fabrice Theoleyre for being

a model when it comes to research. Your rigorousness and the extensiveness of your

knowledge have always amazed me.



Thanks as well to the many PhD students of the lab. Thank you to Jean-Philippe for always

bringing a good mood to the lab. Even if you support ACMilan, I still look forward to our

chess games, as well as your next SDPP presentation of course. Thank you to Jean-Romain,

for all our discussions and our collaborations. Thank you for always being there to help,

and always being chill, even in the most dire circumstances (RIP mini-internet). Thank

you to Thomas A. for your sense of humor and authenticity. Thank you to Thomas H. for

our discussions and our bouldering sessions. Talking about research and other topics

with you is always a pleasure. Thank you to Renato, for being the bedrock of the PhD

student room and always helping those in need. Thank you to Farzad. I wish you all the

best of luck for what the future holds.

Thanks as well to the former PhD students of the lab. Thank you to Amine for sometimes

letting me win at chess, and being enthusiastic about new projects. I’m sure you will get

that FIDE title, and I wish you the best for your space endeavors. Thank you to Julian, as

well as Rodrigo, Odnan and Sebastian. You guys always brought positive vibes along

with you.

Thank you toMax. From our initial exchanges to our weekly meetings, it is a joy to interact

with you. Your insights have been invaluable, and I’m sure you will prevail in whatever

you put your mind to. Thank you to Reynaldo. I can’t thank you enough for coming to

talk to me after that presentation at FOSAD. I really appreciate that you took the time to

help me with those reductions. You transmitted your passion for this field to me, and for

that, you have my deepest gratitude. I look forward to seeing you, Adrien, Tullio, and the

guys again. Working with you both is a real pleasure, and I look forward very much to

our continued collaboration. Though I would say most of our work is still unpublished, I

have high hopes it will be in the future.

I now step away from the academic world for a few moments to thank all the people

outside of it who supported me.

Thank you to Brandon. From the time we were doing our masters, we never were apart

for too long. I look forward to hearing your adventures at a certain company. I wish you

all the best for the future; I’m sure you’ll find what you’re looking for.

Many thanks as well to the usual gang. We’ve all known each other for more than 10

years. Thank you to Antoine, my New Zealander and associate against creatures made

of clay. Thank you to Jordan, especially when he arm-wrestles. Thank you to Adrian. I

want you to know it’s okay to support the wrong reds; you’ll come around eventually.

See you soon at Papa Lisa for your favorite dish. Thank you to Quentin, who is always

ready for another Holiday Special. Thank you to Rémy, whether we’re in Jarny, Colmar

or somewhere else. With you, I could start over at the yellows as many times as it takes.

Thank you to Guillaume, and his (sketchy?) PT advice. Thank you to Léa, especially when

you sing along Linkin Park. Thank you Luc, simply for being you. We’ve known each

other since high school and I wouldn’t change the world for it.



Thank you to Ugo. It’s always a pleasure when you come visit, particularly when we get

to play (buy?) a certain
=C30 game. Thank you to Val and Doris. We don’t see each other

that often, but you’re in my heart nonetheless.

I also want to extend my thanks to family members.

Thank you to my uncle, Philippe, for always sharing his enthusiasm and knowledge

about the blue and whites.

Thank you to Emma, my sister, even when she’s invaded by her landlord.

Thank you to Sylvie, my mother, for always being supportive no matter what. You’re

perhaps the kindest person I know.

Finally, thank you to Daniel, my father. You showed and continue to show me what it

means to be someone with integrity and values, and I couldn’t be more thankful for

that.



Contents

Abstracts iii

Acknowledgments vi

Contents ix

Résumé 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Contributions de cette thèse . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Une infrastructure sécurisée pour empêcher les compromissions de données 5

4 Vérification de politiques à l’aide de métagraphes . . . . . . . . . . . . . . 8

5 Analyse de politiques pour l’identification de redondances . . . . . . . . . 9

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Introduction 1

1.1 Businesses and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Data exposures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 A change of paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Authentication and authorization . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 List of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background and Related Works 15

2.1 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Informally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Formally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Policy analysis, refinement and verification . . . . . . . . . . . . . . . . . . 23

2.3.1 Archetypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Metagraphs and Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Definitions - Metagraphs . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Definitions - Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Metagraphs, Hypergraphs and policies . . . . . . . . . . . . . . . . 30

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 A Secure Infrastructure to Prevent Data Exposures 33

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Threat and security model . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Properties and threat model . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Actors and environment . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Attackers and malicious agents . . . . . . . . . . . . . . . . . . . . 35

3.3 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



3.4 Proof of concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 The overhead of security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 Request time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Verifying Policies Using Metagraphs 47

4.1 Metagraphs and workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Verifying policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Specification to metagraph . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Implementation to metagraph . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Analyzing Policies to Find Redundancies 61

5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Current solution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Proof of NP-Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Metagraphs vs. Hypergraphs . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 Problem definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Finding (s,d)-hypernetworks in the general case . . . . . . . . . . . . . . . 69

5.5 Finding (s,d)-hypernetworks in acyclic F-hypergraphs . . . . . . . . . . . . 71

5.6 A SAT formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Towards a more efficient approach . . . . . . . . . . . . . . . . . . . . . . . 80

5.7.1 The case of Hasse diagrams . . . . . . . . . . . . . . . . . . . . . . 80

5.7.2 Prefix trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7.3 Pascal’s triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.8.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.8.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion and Research Directions 89

6.1 Summary of our works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Takeaways from this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Perspectives and future works . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix 95

A Complementary Materials for Chapter 3 97

A.1 Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.2 Identity and authentication bootstrap . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 103



List of Figures

1 Workflow simple représentant la commande d’un client. . . . . . . . . . . . . 1

2 Nombre de compromissions signalées chaque année de 2013 à 2020 [14]. . . . 3

3 Quantité de données compromises chaque année (enmillions) de 2013 à 2020 [14]. 3

4 Exemple de workflow de film. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Infrastructure sécurisée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Vérification de politiques à l’aide de métagraphes. . . . . . . . . . . . . . . . . 8

7 Temps d’exécution de différents algorithmes d’analyse de politiques. . . . . . 10

1.1 Simple workflow representing a customer order. . . . . . . . . . . . . . . . . . 1

1.2 OWASP Top 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Number of exposures reported each year from 2013 to 2020 [14]. . . . . . . . . 4

1.4 Number of records lost each year (in millions) from 2013 to 2020 [14]. . . . . . 4

1.5 Monolithic approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Modular approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Traditional way to secure an application. . . . . . . . . . . . . . . . . . . . . . 6

1.8 Application security under the zero-trust model. . . . . . . . . . . . . . . . . . 6

2.1 Movie workflow example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Simple process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Same process, but more detailed with a composite task. . . . . . . . . . . . . . 17

2.4 Process with an AND-split and an AND-join. . . . . . . . . . . . . . . . . . . . 18

2.5 Process with an OR-split and an OR-join. . . . . . . . . . . . . . . . . . . . . 18

2.6 Process with a XOR-split and a XOR-join. . . . . . . . . . . . . . . . . . . . . 18

2.7 Film production process represented in YAWL. . . . . . . . . . . . . . . . . . . 19

2.8 A container and its namespaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 An orchestrator and its workers. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 A Pod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 A service mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.12 Mandatory Access Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.13 Discretionary Access Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.14 Role-Based Access Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.15 Attribute-Based Access Control. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.16 A simple metagraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.17 A conditional metagraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.18 Metagraph dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.19 A hypergraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.20 Types of hyperedges in a hypergraph . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Movie workflow example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Secure infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Representative subset of the secure infrastructure control plane. . . . . . . . . 37

3.4 Detailed view of pods and the communication flow. . . . . . . . . . . . . . . . 39

3.5 Distribution of startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Spread of request duration for intra and inter-region communications by policy

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



4.1 Film production process represented in YAWL. Only the start of the YAWL

process is represented for brevity (Figure 2.7). . . . . . . . . . . . . . . . . . . 48

4.2 Film production process represented with a metagraph. . . . . . . . . . . . . . 48

4.3 Enabling policy verification using metagraphs. . . . . . . . . . . . . . . . . . . 50

4.4 Flowchart of transformations from YAWL to a metagraph. . . . . . . . . . . . . 52

4.5 Movie workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Specification metagraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Execution time of our matching algorithm. . . . . . . . . . . . . . . . . . . . . 57

4.8 Log regression of the execution time according to the number of edges. . . . . 58

5.1 A metagraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 The RHEP is equivalent to the FHEP, which is equivalent to the SDHP. . . . . 68

5.3 An example of our 2-VDPP construction. . . . . . . . . . . . . . . . . . . . . . 70

5.4 An example of our acyclic F-hypergraph construction. . . . . . . . . . . . . . . 72

5.5 A simple example of a metagraph. . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Hasse diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Prefix tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 Pascal’s triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 Distribution of generation times for SAT instances. . . . . . . . . . . . . . . . . 85

5.10 Distribution of generation times for SAT instances, filtered. . . . . . . . . . . . 85

5.11 Execution times of different policy analysis algorithms. . . . . . . . . . . . . . 85

A.1 Kubernetes TLS bootstrap communications. . . . . . . . . . . . . . . . . . . . . 100

A.2 Istio key distribution via Node Agent: step A. . . . . . . . . . . . . . . . . . . . 100

A.3 Istio key distribution via Node Agent: step B. . . . . . . . . . . . . . . . . . . . 101

A.4 Istio key distribution via Node Agent: step C. . . . . . . . . . . . . . . . . . . . 101

List of Tables

1 Résumé de nos contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Résumé de nos outils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Summary of contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Summary of tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Proof of Concept policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Complexity summary for finding a hyperpath. . . . . . . . . . . . . . . . . . . 69

5.2 Complexity summary for finding a hyperpath, revised. . . . . . . . . . . . . . 75



Check purchase
order

Ship products

Invoice customer

Send reject
notification

Accept Reject

Figure 1:Workflow simple représentant la

commande d’un client.

Résumé

1 Introduction . . . . . . . . . . . 1

2 Contributions de cette thèse . 3

3 Une infrastructure sécurisée

pour empêcher les compromissions

de données . . . . . . . . . . . . . . 5

4 Vérification de politiques à l’aide

de métagraphes . . . . . . . . . . . 8

5 Analyse de politiques pour

l’identification de redondances . 9

6 Conclusion . . . . . . . . . . . 10

1 Introduction

Dans le monde industrialisé d’aujourd’hui, la plupart des organisations

ont besoin de l’exécution de workflows pour atteindre leur buts. Des

sociétés de trading à haute fréquence jusqu’aux organisations à but non

lucratif, ces groupes suivent des ensembles de tâches, qu’un workflow

soit explicitement défini ou non. Ces tâches représentent des actions

telles que l’expédition de produits (Figure 1), la mise à jour de bilans ou

toute autre action imaginable.

La plupart des workflows de ces organisations contiennent de nom-

breuses parties en mouvement. De plus, ces workflows impliquent le

plus souvent d’autres organisations, ce qui entraîne la création de work-

flows multipartis. Les workflows multipartis surviennent dans plusieurs

scénarios, qu’il s’agisse de plusieurs entreprises collaborant vers un

objectif commun, d’une entreprise engageant d’autres entreprises pour

effectuer des tâches spécifiques, oumême d’entreprises virtuelles [1]

[1]: Polyantchikov et al. (2017), ‘Virtual

enterprise formation in the context of a

sustainable partner network’

. Une

entreprise virtuelle [2, 3] représente un cluster d’acteurs économiques,

qui collaborent, partagent des compétences et des ressources afin de

répondre rapidement aux changements du marché pour exploiter des

opportunités commerciales [4].

Les workflows multipartis représentent l’un des plus grands défis pour

les entreprises actuelles. Une organisation dans un telworkflowpeut avoir

besoin de communiquer avec des acteurs à la fois internes et externes

et peut ne pas avoir un accès direct à toutes les ressources et données

nécessaires à l’exécution de ses tâches. Cela pose des complications

évidentes du côté de la communication et de la gestion, et surtout du

côté de la sécurité.

Workflows et pratiques de sécurité

La construction d’un workflow multipartis est très différente de la

constructiond’unworkflowsimple restant au seind’une organisation.Ces

premiers permettent à plusieurs organisations de participer à l’exécution

des tâches dans le workflow.

Dans les workflows simples, les tâches et les processus sont construits

autour de l’organisation qui le définit. Malheureusement, cela fait qu’au

moment de créer un workflow multipartis, il en résulte souvent que ces

tâches et processus sont toujours utilisés, avec par dessus un moyen

supplémentaire de transférer des données entre les partis. Certaines

entreprises utilisent le courrier électronique à cette fin, d’autres partagent

des données via le cloud ou sur des marchés prévus à cet effet [5] [5]: European Commission et al. (2018),

Study on data sharing between companies in

Europe

.

Dans l’industrie cinématographique en particulier, les entreprises réal-

isant un film emploieront des sous-traitants pour effectuer des opérations



de post-production sur les séquences du film. Ceux-ci incluent, sans s’y

limiter, les effets spéciaux, la maîtrise du son et l’ajout de la technologie

HighDynamic Range (HDR). Pour partager les séquences de film avec ces

sous-traitants, l’entreprise possédant ces séquences stocke les données

non chiffrées dans le cloud dans la grande majorité des cas [6][6]: Lifar et al. (2017), Data Leak Prevention . Il s’agit

évidemment d’une mauvaise pratique de sécurité, et pourrait expliquer

en partie pourquoi les compromissions de données continuent de se

produire.

Compromissions de données

Les compromissions de données font référence à des incidents où des

données sensibles censées être protégées sont consultées par une entité

non autorisée. Les exemples de compromissions de données vont de

simples erreurs révélant les données à quiconque les cherche [7][7]: Krebs (2019), First American Financial

Corp. Leaked Hundreds of Millions of Title

Insurance Records

, à

des attaquants exploitant des failles dans la sécurité d’un système pour

accéder aux données [8]

[8]: Stempel et al. (2017), Yahoo says all three

billion accounts hacked in 2013 data theft

.

Les compromissions de données peuvent être scindées en deux catégories

: les fuites de données et les violations de données. Même si dans ces

deux cas les données sont consultées par des entités non autorisées, la

manière dont ces données sont compromises est différente.

Les violations de données font référence à l’accès non autorisé aux

données en exploitant des failles de sécurité du système compromis. Ces

évènements peuvent se produire sur des données au repos [8] ou en

transport [9].

Les fuites de données font référence à la compromission de données

appartenant à une organisation, en raison de la manière dont ces données

sont traitées par cette organisation. Elles peuvent seproduirepar erreur [7]

ou par l’activité malveillante d’un(e) initié(e) [10].

Les compromissions de données sont critiques

La compromission de données est l’un des problèmes les plus critiques

aujourd’hui. L’Open Web Application Security Project (OWASP), une

fondation dédiée à l’amélioration de la sécurité des logiciels [11], dresse

une liste des principales vulnérabilités affectant les applications Web

aujourd’hui. Le OWASP Top 10 [11] est basé sur un consensus d’experts

en sécurité du monde entier, et est mis à jour tous les deux ou trois ans

en fonction des évolutions de la sécurité des applications.

Arrivant en tête de cette liste comme la vulnérabilité la plus critique, le

contrôle d’accès imparfait est passé de la cinquième place du Top 10 OWASP

2017 à la première dans l’itération la plus récente de la liste [12].

Les vulnérabilités courantes du contrôle d’accès incluent :

I La violation des principes de least privilege et de deny by default.

I Le contournement des vérifications de contrôle d’accès.

I L’élévation de privilèges, la manipulation ou l’exploitation d’une

mauvaise configuration pour obtenir un accès qui aurait autrement

été non autorisé.



1: La quantité de données se mesure en

nombre d’entrées dans une base de don-

nées

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0
1000
2000
3000
4000
5000
6000
7000

Nu
m

be
r o

f e
xp

os
ur

es

2.6K

3.3K

4.4K 4.2K

6.8K
7.1K

7.6K

3.9K

Figure 2:Nombre de compromissions sig-

nalées chaque année de 2013 à 2020 [14].

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0
5000

10000
15000
20000
25000
30000
35000

Nu
m

be
r o

f r
ec

or
ds

 (i
n 

m
illi

on
s)

1.1K 1.1K 0.8K

6.4K
8.0K

5.3K

15.4K

37.2K

Figure 3: Quantité de données compro-

mises chaque année (en millions) de 2013

à 2020 [14].

Nous proposons des moyens d’améliorer le contrôle d’accès dans le

Chapitre 4 et le Chapitre 5. Plus particulièrement, nous montrons com-

ment vérifier que l’implémentation d’une politique correspond à sa

spécification dans le Chapitre 4, et essayons de trouver et d’éliminer les

redondances dans les spécifications de politiques dans le Chapitre 5.

Le deuxième de la liste OWASP, les défaillances cryptographiques, sont

également très pertinentes pour nous. Cette catégorie traite des défail-

lances cryptographiques, qui conduisent souvent à la compromission

de données sensibles. Les vulnérabilités courantes des défaillances cryp-

tographiques incluent la transmission de données sans chiffrement,

l’utilisation de protocoles cryptographiques obsolètes ou faibles, ou bien

encore la réutilisation de clés.

Nous proposons des moyens d’atténuer ce type de vulnérabilités dans le

Chapitre 3.

Les compromissions de données se produisent de plus en plus

Nous pouvons malheureusement observer que les fuites et les violations

de données se produisent de plus en plus. Le nombre de compromissions

et la quantité de données compromises ont tous deux suivi une tendance

à la hausse [13–15] (Figure 2 et Figure 3). La quantité de données com-

promises
1
était de plus de 40 milliards en 2021 [13], contre 37,2 milliards

pour 3 932 incidents en 2020 [14] et 15,4 milliards pour 7 553 incidents

en 2019 [15]. C’est bien plus qu’il n’y en avait une décennie plus tôt, où

le nombre de compromissions était de 2 644 et la quantité de données

compromises était de 267 millions [16]. Risk Based Security précise dans

son rapport de 2020 [14] que le piratage a été responsable de la plupart

des incidents, mais que la compromission accidentelle de données sur In-

ternet (par exemple, des bases de données, des sauvegardes, des services

mal configurés) a mis le plus de données en danger.

Le nombre de violations de données en particulier est important et affecte

un grand nombre d’organisations telles que les agences gouvernemen-

tales, les commerces, les agences de crédit, les studios de cinéma et bien

d’autres [6].

La prévention des deux formes de compromission de données est un prob-

lème difficile à résoudre, car comme nous l’avons vu, une compromission

peut se produire dans de multiples circonstances, causée par un piratage,

des bases de données mal configurées, des initiés malveillants, etc. Notez

que ces compromissions sont perçues comme d’énormes pertes d’argent

pour des entreprises comme celles de l’industrie cinématographique [17]

[17]: Byers et al. (2003), ‘Analysis of

security vulnerabilities in the movie

production and distribution process’

, et comme une perte de confidentialité pour les applications traitant des

données utilisateur [18].

2 Contributions de cette thèse

Dans la section précédente, nous avons dressé un portrait succint de

la situation actuelle. Les workflows sont utilisés partout et par tout le

monde, les workflows multipartis étant nécessaires chaque fois qu’il y a

une collaboration entre deux organisations ou plus.



Les fuites et les violations de données sont généralisées, résultent des

vulnérabilités les plus critiques et se produisent de plus en plus. De plus,

le passage au cloud et aux approches modulaires a augmenté les surfaces

d’attaque et apporté de nouveaux risques de sécurité qui n’existaient pas

auparavant.

Compte tenu de cette situation, avec de grandes entreprises stockant

leurs données non chiffrées dans le cloud pour exécuter leurs workflows

multipartis, il y un besoin fort pour solution capable d’exécuter ces

workflows en toute sécurité et d’éviter les compromissions de données.

Cette thèse porte donc sur la prévention des compromissions de don-

nées, notamment dans les workflows. Notre objectif est de permettre

l’exécution de workflows multipartis sécurisés et d’atténuer le risque de

compromissions de données.

Les vulnérabilités les plus critiques à l’origine des compromissions de

données sont le contrôle d’accès imparfait et les défaillances cryptographiques.

Conformément à ce fait, nous avons structuré cette thèse autour de trois

axes qui tentent d’atténuer ces vulnérabilités.

Dans le Chapitre 3, nous proposons une infrastructure utilisant des

microservices pour permettre des workflows multipartis sécurisés et

gérer les compromissions de données. Nous réalisons une preuve de

concept de cette infrastructure, et la déployons surGoogleCloudPlatform.

Ce chapitre se concentre davantage sur les défaillances cryptographiques,

car nous donnons des moyens de sécuriser les données au repos ainsi

qu’en transport.

I RQ1: Comment pouvons-nous construire un workflow multipartis sans

fuite ?

Le Chapitre 4 et le Chapitre 5 s’occupent du contrôle d’accès imparfait.

Étant donné que les systèmes à sécuriser par contrôle d’accès peuvent être

très complexes, les administrateurs s’appuient souvent sur une gestion

du contrôle d’accès basée sur des politiques. Les politiques définissent

le comportement souhaité d’un système d’un point de vue de haut

niveau. Par conséquent, cette forme de gestion permet de séparer le

problème de spécification, c’est-à-dire la définition du comportement

souhaité du système, du problème de l’implémentation, c’est-à-dire

l’application du comportement souhaité du système. Cela rend la gestion

du contrôle d’accès plus facile et plus flexible. Pour donner un exemple,

une spécification de politique peut consister en une matrice de contrôle

d’accès, un graphe de privilèges ou un document YAWL, tandis qu’une

implémentation de politique peut être une liste de contrôle d’accès, un

document XACML ou encore un document Rego.

Dans le Chapitre 4, nous nous sommes intéressés à la vérification de

politiques de sécurité déployées. Nous étudions la gestion du contrôle

d’accès basé sur des politiques, et plus spécifiquement les moyens de

vérifier qu’une spécification de politique correspond à son implémenta-

tion. Nous développons un outil permettant la vérification des politiques

à l’aide de métagraphes, une structure théorique généralisée des graphes.

Les implémentations ne sont généralement pas exemptes d’erreurs, et un

mécanisme de vérification peut atténuer le risque d’échec du contrôle

d’accès.



I RQ2: Comment vérifier qu’une spécification de politique correspond à

son implémentation déployée ?

Dans leChapitre 5, nous traitons de l’analyse des politiques. Enparticulier,

nous analysons les spécifications de politiques pour détecter et éliminer

les redondances potentielles. Nous proposons un moyen de détecter

les redondances, et développons un outil pour le faire. En supprimant

l’encombrement des spécifications de politique, nous espérons donner

aux administrateurs de politique une vue plus claire de celle-ci. De cette

façon, nous pouvons les aider à faire moins d’erreurs lorsqu’ils traitent

une spécification, et donc à terme réduire le risque d’erreur au niveau

du contrôle d’accès.

I RQ3: Comment vérifier qu’une spécification ne contient aucune redon-

dance ?

Nous résumons nos contributions dans la Table 1.

Chapitre Sujet Publication

Chapitre 3 Infrastructure sécurisée [19, 20]

Chapitre 4 Vérification de politiques [20, 21]

Chapitre 5 Elimination de redondances [22]

Table 1: Résumé de nos contributions.

Nous avons également développé plusieurs outils propres à chaque

contribution. Nous résumons les outils que nous avons développés dans

la Table 2.

Table 2: Résumé de nos outils.

Chapitre Outil Dépôt

Chapitre 3 Preuve de Concept https://github.com/loicmiller/secure-workflow
Chapitre 4 Vérification de politiques https://github.com/loicmiller/policy-verification
Chapitre 4 MGToolkit pour Python 3 https://github.com/loicmiller/mgtoolkit
Chapitre 5 Elimination de redondances https://github.com/loicmiller/policy-analysis
Chapitre 5 Formulation SAT https://github.com/loicmiller/fhep-sat-formulation

3 Une infrastructure sécurisée pour empêcher

les compromissions de données

Pour atténuer le risque de compromission des données, nous proposons

dans le Chapitre 3 une infrastructure utilisant l’architecturemicroservices.

Plus particulièrement, nous fournissons des moyens de sécuriser les

données au repos et en transport, ainsi qu’un moyen pour le gestionnaire

du workflow d’appliquer une politique de sécurité.

Énoncé du problème

Dans le cadre d’un workflow, le système que l’on souhaite réaliser doit

permettre l’échange sécurisé des données et sa sécurité au repos tout en

évitant les fuites.

https://github.com/loicmiller/secure-workflow
https://github.com/loicmiller/policy-verification
https://github.com/loicmiller/mgtoolkit
https://github.com/loicmiller/policy-analysis
https://github.com/loicmiller/fhep-sat-formulation


Movie

VFX

Color Sound
Master


HDR

C1

C2 C4

C3

O

Figure 4: Exemple de workflow de film.

Les flèches modélisent le workflow spéci-

fié et représentent ainsi le flux de commu-

nication de notre exemple. Le propriétaire

($) envoie ses données au premier sous-

traitant (�1), pour le traitement des effets

spéciaux. �1 envoie ensuite les données

modifiées tout au long du workflow, pour

le traitement des couleurs (�2), HDR (�3)

et du son (�4). Les données résultantes

sont ensuite renvoyées au propriétaire.

Nous définissons un workflow comme une séquence de tâches à effectuer

par un ensemble d’acteurs indépendants. Le propriétaire des données

(c’est-à-dire l’instigateur du workflow) interagit avec les sous-traitants

pour réaliser une telle séquence. Leworkflow est défini par le propriétaire,

qui définit comment et par qui les données qu’il possède doivent être

traitées. Il précise également les différentes étapes nécessaires pour

atteindre son objectif. Ces tâches sont réalisées par des sous-traitants, qui

exécutent la tâche qui leur a été confiée, sur les données qui leur ont été

fournies. Le propriétaire et le sous-traitant ont tous deux des agents qui

traitent les données, où les agents peuvent représenter soit un employé

soit un service automatique.

Prenons le cas d’un workflow, où un propriétaire en phase de post-

production d’un film souhaite employer d’autres sociétés pour éditer les

composants vidéo et audio du film [17]. Plus précisément, imaginons que,

par exemple, le propriétaire souhaite ajouter des effets spéciaux, régler

les couleurs, configurer la technologieHigh Dynamic Range (HDR) et faire

un mastering de l’audio. En particulier, il souhaite d’abord l’application

des effets spéciaux, puis le réglage des couleurs et, enfin, le HDR en

parallèle avec le mastering du son.

L’intention du propriétaire peut être modélisée sous la forme d’un

workflow, c’est-à-dire d’un graphe orienté acyclique tel que représenté

sur la Figure 4. Le propriétaire ($) envoie d’abord ses données à la société

responsable des effets spéciaux (�1). �1 applique des effets spéciaux

aux séquences de films que le propriétaire lui a envoyées, puis envoie le

résultat à la société responsable de la coloration (�2) ainsi qu’à une autre

pour le mastering du son (�4). �2 envoie ensuite son résultat à l’agent en

charge du High Dynamic Range (HDR) (�3). Enfin, �3 et �4 renvoient

leur sortie au propriétaire, qui rassemble les données pour obtenir le

produit final..

Le but de notre solution est de permettre à ce workflow de se dérouler,

le film transitant du propriétaire ($) en passant par les sous-traitants

(�1 , �2 , �3 , �4) jusqu’au propriétaire, tout en garantissant la sécurité

des données au repos et en transport. Avec notre proposition, nous

empêchons les communications indésirables au niveau de la couche

réseau et applicative.

Description générale de l’infrastructure

Comme nous avons besoin d’unmoyen d’empêcher les fuites de données,

nous devons contrôler les communications auxquelles un agent peut

s’engager. Pour y parvenir, nous devons contrôler les environnements

que les agents utiliseront, pour nous assurer que toutes les actions

d’un agent suivent une politique appliquée par le propriétaire. Nous

avons choisi de le faire en utilisant l’architecture microservice, pour les

avantages accordés par celle-ci. En outre, les microservices sont déjà

couramment déployés et fournissent de nombreux services comme le

passage à l’échelle et l’isolation.

Dans cette infrastructure, les agents de notre workflow sont mappés

sur des conteneurs, qui sont ensuite utilisés conjointement avec un

orchestrateur, un service mesh et des policy engines pour appliquer la

politique du propriétaire.



Movie

O

VFX_2

Proxy

C1_1

Policy

HTTP

HTTP
VFX_1

Proxy

C1_0

Policy

HTTP

HTTP

VFX_3

Proxy

C1_2

Policy

HTTP

HTTP

m
TLS

mTLS

mTLS

m
TLS

(2)

(3)

(4)

(5)

mTLS
(1)

HDR

C3

Color

C2

Sound
Master

C4

mTLS
(6)

mTLS
(7)

m
TLS
(8)

Figure 5: Infrastructure sécurisée. Chaque boîte représente un agent. C’est un pod avec les conteneurs appropriés. Le conteneur de la

couleur de l’acteur représente le service. Les conteneurs violets représentent les proxys du service mesh et les conteneurs bleus représentent

les sidecars de politiques. Les flèches précisent si les communications sont sécurisées (mTLS) ou non (HTTP).

La Figure 5 montre le workflow que nous avons défini dans la Figure Fig-

ure 4, chaque acteur ayant son propre espace de déploiement représenté

par le nuage entourant les boîtes qui représentent les agents de ces acteurs

(par exemple, la boîte �1_1 représente un agent de l’entrepreneur �1).

Les politiques d’accès d’un service sont poussées dans le sidecar de

politiques associé au service.

La Figure 5 illustre également comment nous utilisons les éléments de

l’architecture microservice. Chaque agent est un pod contenant le service

(c’est-à-dire l’environnement que l’agent utilisera), un proxy et un sidecar

de politiques. Le sidecar proxy interceptera tout le trafic provenant et

allant vers son service. Le proxy va alors vérifier grâceau sidecar de

politiques si la requête est autorisée ou non. Si la demande est autorisée,

elle est transmise en conséquence, et la demande est rejetée dans le cas

contraire.

Preuve de concept

Nousavons réaliséunepreuvede concept, en implémentant l’infrastructure

décrite. Nous reproduisons le workflow de la Figure 5, avec des services

du workflow recevant et envoyant des données arbitraires pour représen-

ter les données du propriétaire. Nous utilisons Docker [23] pour nos

conteneurs, Kubernetes [24] pour notre couche d’orchestration, Istio [25]

comme service mesh, en utilisant Envoy [26] pour les sidecars proxy

et Open Policy Agent [27] (OPA) pour les sidecars de politiques. Nous

utilisons également Kubernetes pour donner aux services des volumes

chiffrés. Cette infrastructure a été déployée sur Google Cloud Platform

(GCP), en utilisant un cluster pour chaque acteur du workflow, pour un

total de cinq clusters.

Evaluation de performances

Enmesurant le coût des mécanismes de contrôle d’accès, nous constatons

que les pods avec Open Policy Agent ont une augmentation substantielle

de leur temps de démarrage de près de deux secondes en moyenne



(32,72%). En mesurant le délai pour une requête en fonction de la taille

de la politique, nous constatons que la taille de la politique représente

65% de la variance des communications intra-régionales alors qu’elle ne

représente que 7% de la variance des communications interrégionales.

Ce travail a conduit à deux publications [19, 20] et au développement

d’une Preuve de Concept accessible publiquement.

Notre infrastructure suppose que la spécification de la politique cor-

respond à son implémentation. En réalité, cela peut être erroné et

pourrait conduire à des attaques potentielles exploitant une politique

défectueuse.

4 Vérification de politiques à l’aide de

métagraphes

Pour abandonner cette supposition, nous nous sommes occupés dans

le Chapitre 4 de la vérification des politiques. Dans ce chapitre, nous

détaillons un moyen de vérifier que les politiques déployées dans notre

infrastructure correspondent bien à leur spécification initiale.

Dans ce but, nous utilisons les métagraphes. Les métagraphes sont

un outil de spécification efficace pour modéliser les processus et leurs

workflows.

Nous pouvons pleinement exprimer YAWL, un langage de spécification

de workflows, avec des métagraphes. Nous pouvons en d’autres termes

exprimer comment chaque tâche, condition et opérateur peut être converti

en une représentation métagraphique, soutenant la richesse du langage

YAWL. Nous utilisons YAWL et Rego comme langages de référence

respectivement pour la spécification et l’implémentation de la politique.

Nous définissons une méthode permettant la vérification des politiques

à l’aide de métagraphes.

En modélisant sous forme de métagraphes la spécification de la politique

haut niveau, ainsi que l’implémentation de la politique traduite, non

seulement nous pouvons rechercher des conflits et des redondances

Figure 6:Vérification de politiques à l’aide

de métagraphes. Lors de la conception de

la politique, un administrateur de poli-

tique peut soit choisir de créer sa spéci-

fication de politique en représentant vi-

suellement la politique sous la forme d’un

métagraphe conditionnel, soit choisir de

spécifier la politique dans un autre for-

mat. Si les métagraphes de spécification et

d’implémentation sont égaux, nous con-

cluons que l’implémentation de la poli-

tique correspond à la spécification de la

politique. Ils ne correspondent pas si les

métagraphes sont différents : nous en con-

cluons que des erreurs de déploiement se

produisent. De plus, et de par sa concep-

tion, le métagraphe de spécification peut

être utilisé pour vérifier les redondances

et les conflits dans la politique aux deux

niveaux (spécification de haut niveau et

déploiement).

Policy
specification

Policy
implementation

Specification
metagraph

Implementation
metagraphEquality?

Refinement

Random spec
generator

Conflict/Redundancy
checking

Policy
design

1

2

3

4

5

2
3
4
5

1 RandomWorkflowSpecGenerator
YawlToMetagraph

RegoToMetagraph
SpecImplEquivalence

Tools

SpecToRego

https://github.com/loicmiller/secure-workflow


aux deux niveaux [28], mais nous pouvons également comparer les

deux afin de suivre le déploiement les erreurs. Si les métagraphes de

spécification et d’implémentation sont égaux, ils correspondent alors

(l’implémentation de la politique correspond à la spécification de la

politique) et aucune erreur ne se produit,mais lorsqu’ils ne correspondent

pas, lesmétagraphes ne sont pas équivalents – cela signifie que des erreurs

se sont produites lors du raffinement et /ou déploiement. La Figure 6

résume notre construction globale, ainsi que les outils que nous avons

développés pour réaliser la vérification.

Nous avons évalué notre méthode de vérification et constaté qu’elle

s’exécutait dans un délai très raisonnable, même avec des politiques

relativement importantes.

Ce travail a donné lieu à deux publications [20, 21], le développement

d’une Version Python 3 de MGToolkit et le développement d’un frame-

work de vérification des politiques. Ces outils sont accessibles publique-

ment.

Notreméthodede vérification comportait également certaines hypothèses.

À savoir, nous supposons que la spécification de la politique est exempte

d’erreurs et de redondances. C’est loin d’être toujours le cas. Notre

méthode de vérification ne peut que conclure que l’implémentation d’une

politique correspond à sa spécification, mais ne permet pas de détecter

les erreurs et les redondances dans la spécification uniquement.

5 Analyse de politiques pour l’identification de

redondances

C’est pourquoi dans le Chapitre 5, nous avons abordé le problème de la

recherche de redondances dans une politique. Nous avons montré que la

solution actuelle est inadéquate et prouvé que trouver des redondances

dans un métagraphe est NP-difficile. Pour ce faire, nous avons utilisé des

concepts venant de la littérature sur les hypergraphes. Sur la base de cette

découverte, nous avons formulé notre problème comme un problème

SAT pour avoir un moyen plus efficace de trouver des redondances, mais

nous avons trouvé cette méthode inefficace.

Comme alternative, nous avons proposé un algorithme exhaustif utilisant

le triangle de Pascal pour trouver les redondances, qui est plus efficace

que la solution précédente. Pour confirmer ce résultat, nous avons mené

une analyse de performance afin de comparer ces différentes méthodes

de recherche de redondances. Comme prévu, notre méthode est plus

rapide et plus évolutive que les autres. La Figure 5.11 décrit les temps

d’exécution des algorithmes d’analyse de politique mesurés, en fonction

du nombre d’arêtes dans la spécification duworkflow. Globalement, nous

constatons que l’algorithme utilisant le triangle de Pascal est bien le plus

efficace des algorithmes testés, puisqu’il détecte les redondances, a une

plus grande capacité en termes de taille de métagraphe, et de meilleurs

temps d’exécution que les algorithmes d’énumération et SAT.

Une partie de ce travail, la preuve de complexité sur les F-hypergraphes

acycliques, est actuellement en cours de soumission [22]. Nous avons

https://github.com/loicmiller/mgtoolkit
 https://github.com/loicmiller/policy-verification
 https://github.com/loicmiller/policy-verification


Figure 7: Temps d’exécution de différents

algorithmes d’analyse de politiques. En

particulier, nous comparons Ranathunga

et al. [28], l’algorithme énumérant tous

les métachemins, l’algorithme SAT et

l’algorithme utilisant le triangle de Pas-

cal.

5 10 15 20 25 30
Number of edges

0

500

1000

1500

2000

2500

3000

3500

Ex
ec

ut
io

n 
tim

e 
(s

)

Algorithm
Ranathunga et al.
Enumeration
Pascal's triangle
SAT

2: L’algorithme de Ranathunga et

al., l’algorithme d’énumération et

l’algorithme utilisant le triangle de Pascal.

également développé des outils accessibles au public, à savoir la formu-

lation SAT et un framework d’analyse de politiques contenant les autres

méthodes de détection de redondances présentées dans ce chapitre
2
. Le

code pour générer des workflows, le code pour effectuer les mesures et

autres fonctionnalités associées sont également disponibles.

6 Conclusion

Les principales conclusions de cette thèse sont les suivantes :

I L’architecture microservice peut être utilisée pour construire un

workflow multipartis sans fuites.

Nous montrons comment utiliser l’architecture microservice

pour sécuriser les workflows. Nous définissons une infrastructure

sécurisée et la déployons sur Google Cloud Platform dans une

preuve de concept accessible publiquement. Avec cette infrastruc-

ture, nous espérons atténuer les compromissions de données en

traitant les défaillances cryptographiques et en fournissant un

moyen d’appliquer une politique de sécurité. Notre infrastructure

ne protège cependant pas contre toutes les attaques, et a besoin

de quelques hypothèses. Nous supposons en particulier que la

spécification de la politique est correcte et correspond à son implé-

mentation.

I Les métagraphes sont une structure utile pour modéliser les

politiques de workflow et peuvent être utilisés pour effectuer de

la vérification de politiques.

A notre connaissance, c’est la première fois que quelqu’un

montre comment vérifier des politiques à l’aide de métagraphes.

Les métagraphes sont un moyen pertinent et efficace de modéliser,

gérer et vérifier les politiques déployées, notamment les politiques

de workflow. Nous avons montré que nous pouvons pleinement

exprimer YAWL avec des métagraphes, profitant ainsi la richesse

de ce langage en métagraphes. En vérifiant que la spécification

correspond à l’implémentation, nous espérons réduire le nombre

d’implémentations erronées et ainsi atténuer les expositions aux

données dues à un contrôle d’accès imparfait.

https://github.com/loicmiller/fhep-sat-formulation
https://github.com/loicmiller/fhep-sat-formulation
https://github.com/loicmiller/policy- analyse


I Les métagraphes sont une structure utile pour analyser les poli-

tiques, en particulier pour identifier et supprimer les redon-

dances.

La façon actuelle de détecter les redondances avec les méta-

graphes présente quelques problèmes. Nous avons montré que

l’analyse d’une politique pour trouver des redondances est NP-

difficile dans le cas général, et présenté un algorithme utilisant le

triangle de Pascal. Nous soutenons qu’il s’agit d’une solution effi-

cace à ce problème et confirmons que cette méthode est meilleure

que d’autres moyens de trouver des redondances en procédant à

une évaluation des performances. Nous espérons qu’en fournissant

des moyens d’identifier les redondances, nous pourrons réduire

davantage le risque de contrôle d’accès imparfait dans les politiques

déployées.

Tous les outils, les données, le code permettant de générer des mesures,

les résultats ainsi qu’un tutoriel, sont accessibles publiquement dans leur

dépôt associé. Les liens vers ceux-ci peuvent être trouvés dans la Table ??.

Les données pour les mesures du Chapitre 4 prennent trop de place pour

un dépôt git et peuvent être trouvées ici à la place.

Perspectives et futurs travaux

Pour le Chapitre 3, les travaux futurs incluent l’étude de l’impact des

modifications du workflow sur la sécurité de notre infrastructure, ou la

suppression de certaines hypothèses sur la confiance accordée à certaines

entités. Une piste possible pour réduire ou supprimer ces hypothèses

serait d’utiliser des Trusted Execution Environments (TEE), qui sont une

zone sécurisée à l’intérieur d’un processeur.

Concernant le Chapitre 4, les travaux futurs possibles incluent l’extension

des types de politiques que notre vérificateur peut gérer. Pour étendre le

domaine des politiques que nous sommes enmesure de vérifier, une piste

possible est d’étudier des solutions de correspondance de symboles afin

de fournir une manière plus générale d’interpréter les identifiants dans

ces politiques. Une autre piste importante est la construction d’un ensem-

ble représentatif de données politiques accessibles publiquement.

En ce qui concerne le Chapitre 5, les travaux futurs possibles incluent

la recherche d’une formulation SAT du problème différente, qui n’a

pas besoin d’un nombre exponentiel de clauses. Une piste à essayer

est l’application manuelle des lois de De Morgan, qui devrait réduire

le temps de conversion des clauses en leur forme normale conjonctive.

De plus, la complexité de notre solution actuelle utilisant le triangle de

Pascal est malheureusement encore exponentielle. Pour atténuer cela

et améliorer notre algorithme, nous pourrions utiliser une version de

l’algorithme de Tarjan adaptée aux métagraphes afin de ne considérer

que les arêtes sur un chemin de la source à la destination, puisque les

autres arêtes ne feront pas partie d’un métachemin dominant. Dans

un métagraphe, nous définissons une composante fortement connexe

(SCC) comme un sous-ensemble de variables où chaque variable du

sous-ensemble peut atteindre d’autres variables du sous-ensemble en

utilisant un chemin simple. Pour trouver facilement des arêtes sur un

chemin de la source à la destination, nous pourrions ajouter une arête

https://zenodo.org/record/4912289


virtuelle de la destination vers la source, puis exécuter l’algorithme de

Tarjan pour trouver les SCC. La SCC contenant la source et la destination

contiendra les arêtes à considérer lors de l’exécution de l’algorithme du

triangle de Pascal. Étant donné que la SCC contiendra moins d’arêtes que

le métagraphe complet, nous pouvons probablement gagner un peu de

performance de cette façon. Alternativement, nous pourrions également

effectuer un parcours en profondeur à partir de la source pour trouver

les nœuds accessibles à partir de la source, et un parcours en profondeur

à partir de la destination dans le métagraphe transposé pour trouver les

nœuds accessibles à partir de la destination. Ensuite, l’intersection de ces

deux ensembles donne les nœuds sur un chemin allant de la source à la

destination.

D’autres travaux futurs possibles incluent l’utilisation de métagraph-

es/hypergraphes pour d’autres problèmes d’analyse des politiques. De

nombreuses propriétés n’ont pas encore été explorées avec ces construc-

tions, comme la separation of duties ou le principle of least privilege. Un autre

de ces aspects est la détection de l’incomplétude de la politique, où l’on

essaie d’identifier les requêtes qui n’ont pas de décision explicite.

Dans l’ensemble, nos objectifs à court terme incluent la recherche d’autres

moyens de modéliser le problème d’analyse de politiques en tant que

SAT/ILP.Nous avons seulement prouvé que ce problème étaitNP-difficile,

mais il pourrait appartenir à une classe de complexité supérieure dans

la hiérarchie, il pourrait donc y avoir une autre preuve à écrire dans

ce but. Les objectifs à moyen terme incluent la recherche de l’impact

de plusieurs patterns de workflow sur nos contributions. L’annulation

de tâche en particulier semble être un modèle intéressant à étudier.

Nous prévoyons également de continuer à explorer les résultats de

complexité dans les métagraphes et les hypergraphes. Par exemple, nous

pensons que le problème connexe de trouver des B-hyperréseaux peut

être résolu plus rapidement pour certains types d’hypergraphes, et la

complexité de cette procédure doit encore être déterminée pour d’autres

types d’hypergraphes. Enfin, les objectifs à plus long terme incluent

la constitution d’un ensemble représentatif de politiques accessibles

publiquement. Nous ne sommes pas les seuls à penser qu’il s’agit d’une

partiemanquante cruciale du corpus de recherche actuel.Nous prévoyons

également d’enquêter davantage sur les problèmes liés aux politiques

et d’essayer de les résoudre à l’aide de métagraphes. Cela inclut des

propriétés depolitiques telles que la vérificationde la separation of duties ou

la détection d’incomplétude dans les politiques. Un aspect qui mériterait

également une enquête plus approfondie est l’influence des patterns

de workflows, comme l’annulation, sur nos différentes contributions.

À l’avenir, nous espérons que le nombre croissant de travaux sur les

politiques, les workflows et les métagraphes sera une incitation suffisante

pour les administrateurs de politiques à les utiliser dans la pratique.







Check purchase
order

Ship products

Invoice customer

Send reject
notification

Accept Reject

Figure 1.1: Simple workflow representing

a customer order.

Introduction 1

1.1 Businesses and operations . . 1

1.2 Data exposures . . . . . . . . . 2

1.3 A change of paradigm . . . . . 5

1.4 Authentication and authoriza-

tion . . . . . . . . . . . . . . . . . . . 6

1.5 Contributions of this thesis . 8

1.6 Outline . . . . . . . . . . . . . . 9

1.7 List of contributions . . . . . 12

Publications . . . . . . . . . . 12

Tools . . . . . . . . . . . . . . . 13

1.1 Businesses and operations

In today’s industrialized world, most organizations require the execution

of workflows to attain their goal. From high-frequency trading firms all

the way to nonprofit organizations, those groups follow sets of tasks

whether a workflow is explicitly defined or not. Those tasks represent

actions like shipping products (Figure 1.1), updating balance sheets, or

any other action one can think of.

Most of those organizations’ workflows contain many moving parts.

Moreover, those workflows more often than not involve other organiza-

tions, resulting in multi-party workflows. Multi-party workflows arise

in multiple scenarios, be it multiple businesses collaborating towards

a common goal, one company hiring other businesses to perform spe-

cific tasks, or even virtual enterprises [1]

[1]: Polyantchikov et al. (2017), ‘Virtual

enterprise formation in the context of a

sustainable partner network’

. A virtual enterprise [2, 3]

represents a cluster of economic actors, which collaborate, share skills

and resources in order to respond rapidly to market changes to exploit

business opportunities [4].

Multi-party workflows are one of the greatest challenges for current

businesses. A single organization may need to communicate with actors

both on the inside and outside, and may not have direct access to all the

resources and data needed to perform their tasks. This poses obvious

complications on the side of communication and management, and most

of all on the side of security.

Workflows and security practices

Constructing a multi-party workflow is critically different than construct-

ing a workflow staying within an organization. They allow multiple

organizations to take part in the execution of tasks in the workflow.

In single-party workflows, tasks and processes are built around this

single party. Regrettably, this makes it so when the time to construct a

multi-party workflow comes, it often results in those single-party tasks

and processes still being in use, with an additional way to transfer data

between parties on top of it. Some companies use email to this end, some

others share data using the cloud or marketplaces [5]

[5]: European Commission et al. (2018),

Study on data sharing between companies in

Europe

.

In the movie industry most notably, businesses trying to make a movie

will employ contractors to realize post-production operations on the

movie footage. Those include but are not limited to special effects, sound

mastering and adding High Dynamic Range (HDR) technology. To share

the movie footage with those contractors, the business responsible for

the footage will store the data unencrypted within the cloud, in the vast

majority of cases [6] [6]: Lifar et al. (2017), Data Leak Prevention. This is of course a terrible security practice, and

might explain in part why data exposures keep happening.



2 1 Introduction

1.2 Data exposures

Data exposures refer to incidents where sensitive data meant to be pro-

tected is accessed by an unauthorized party. Example of data exposures

range from simple mistakes revealing the data to anyone that looks for

it [7][7]: Krebs (2019), First American Financial

Corp. Leaked Hundreds of Millions of Title

Insurance Records

to attackers exploiting flaws in the security of a system to access the

data [8]

[8]: Stempel et al. (2017), Yahoo says all three

billion accounts hacked in 2013 data theft

.

Data exposures belong to one of two categories of events: data leaks and

data breaches. Even though both data breaches and data leaks result

in data being exposed to unauthorized entities, the way these data are

exposed is different.

Data breaches

Data breaches refer to the unauthorized access of data by exploiting flaws

in the security of the breached system.

Data breaches can happenwith data at rest, where attackers exploit a flaw

to gain access to the data. One of the most well-known examples of this

is the 2013 Yahoo data theft [8]. Poor security practices at the company

combined with a phishing attack allowed the perpetrators to gain access

to the entirety of 3 billion Yahoo accounts. Namely, the attackers acquired

names, email addresses, phone numbers, birth dates as well as hashed

passwords and security questions and answers for all the accounts, which

were protected with outdated easy-to-crack encryption. The breach was

only reported by end of September 2016, and spawned multiple class

action lawsuits.

Data breaches can also happen with data in transport, where attackers

exploit a vulnerability to eavesdrop on traffic. For instance, consider the

2018 hĳack of MikroTik routers [9][9]: Seals (2018), Thousands of MikroTik

Routers Hĳacked for Eavesdropping

. Using vulnerability CVE-2018-14847,

attacks gained access to all data being forwarded by more than 7,500

MikroTik routers, with no need for authentication. Note that the affected

routers were part of core networks, and not simple home routers, so the

amount of information that passes through them is much greater.

Data leaks

Data leaks refer to the exposure of data belonging to an organization,

due to the way these data are processed by this organization.

Data leaks can happen by mistake. For example, the 2019 First American

Financial Corporation leak comes to mind [7]. First American Financial

Corporation is a financial services company providing title insurance

and settlement services to the real estate and mortgage industries. In

May 2019, a real estate developer in Washington reported FirstAm was

leaking hundreds of millions of records through its website. Anyone who

knew the URL for a valid document could access it by modifying the link,

giving them access to mortgage deals going back to 2003. The leaked

records included bank account numbers and statements, mortgage and

tax records, as well as Social Security numbers, wire transaction receipts

and drivers license images.

https://nvd.nist.gov/vuln/detail/CVE-2018-14847
https://investors.firstam.com/investors/overview/default.aspx


1.2 Data exposures 3

1: The severity is estimated based on the

incidence rate and impact of the vulnera-

bility.

A01 Broken Access Control

A02 Cryptographic Failures

A03 Injection

A04 Insecure Design

A05 Security Misconfiguration

A06 Vulnerable and
Outdated Components

A07 Identification and
Authentication Failures

A08 Software and Data
Integrity Failures

A09 Security Logging and
Monitoring Failures

A10 Server-Side Request
Forgery

Figure 1.2:OWASP Top 10 [11]. Vulnerabil-

ities ranked based on frequency, severity

and magnitude.

2: A category system for weaknesses and

vulnerabilities.

Data leaks can also be provoked by malicious behavior, where an insider

leaks information to the public or an unauthorized third party. One such

case happened in 2019 at Google, where an employee was reportedly

fired for providing names and personal information of other employees

to reporters [10] [10]: Lecher (2019), Google reportedly fires

staffer in media leak crackdown

.

Data exposures are critical

Data exposures are one of the most critical issues today. The Open Web

Application Security Project (OWASP), a foundation dedicated to im-

proving the security of software [11], keeps a list of the top vulnerabilities

affecting web applications today. The aptly named OWASP Top 10 [11] is

based on a consensus from security experts around the world, and is up-

dated every two or three years in accordance with changes in application

security. The vulnerabilities are ranked based on their incidence rate, the

potential impact they can have if exploited and their severity
1
.

The most recent OWASP Top 10 was finalized in 2021 (Figure 1.2), and

reflects the most critical vulnerabilities to date. Listed at the top as the

most critical vulnerability, Broken Access Control has moved up from the

2017 OWASP Top 10 from the fifth place to the first [12].

Common access control vulnerabilities include:

I Violation of least privilege or deny by default.

I Bypassing access control checks.

I Elevation of privilege, manipulation or misconfiguration to gain

access that would have otherwise been unauthorized.

Consider that 94% of applications were tested for some form of broken

access control with the average incidence rate of 3.81%. Most notable

Common Weakness Enumerations
2
(CWE) in Broken Access Control

include CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

and CWE-201: Exposure of Sensitive Information Through Sent Data, two

categories directly related to data exposures.

We propose ways to improve Broken Access Control in Chapter 4 and

Chapter 5. Namely, we show how to verify the implementation of a policy

corresponds to its specification in Chapter 4, and try to find and eliminate

policy redundancies in Chapter 5.

The second on the list, Cryptographic Failures, is also very relevant to us.

This vulnerability has moved up from third place to second place, and

was labeled Sensitive Data Exposure in previous editions of the OWASP

Top 10 [29]. This category deals with cryptographic failures, which often

lead to the exposure of sensitive data.

Common access control vulnerabilities include:

I Data transmitted in clear text.

I Old weak cryptographic algorithms or protocols.

I Deprecated or re-used keys and hash functions.

We propose ways to mitigate those vulnerabilities in Chapter 3.



4 1 Introduction

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0
1000
2000
3000
4000
5000
6000
7000

Nu
m

be
r o

f e
xp

os
ur

es

2.6K

3.3K

4.4K 4.2K

6.8K
7.1K

7.6K

3.9K

Figure 1.3:Number of exposures reported

each year from 2013 to 2020 [14].

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0
5000

10000
15000
20000
25000
30000
35000

Nu
m

be
r o

f r
ec

or
ds

 (i
n 

m
illi

on
s)

1.1K 1.1K 0.8K

6.4K
8.0K

5.3K

15.4K

37.2K

Figure 1.4: Number of records lost each

year (in millions) from 2013 to 2020 [14].

3: MED - Healthcare, Medical Providers

and Medical Insurance Services

4: BSO - Businesses (Other). Businesses

besides financial and insurance services

and retail.

5: BSR - Businesses (Retail/Merchant in-

cluding Online Retail).

6: GOV - Government and Military.

Data exposures are happening more and more

We can unfortunately observe that data leaks and breaches are increas-

ingly happening. Both the number of exposures and the number of

exposed records have been on an upward trend [13–15] (Figure 1.3 and

Figure 1.4). The number of exposed recordswas over 40 billion in 2021 [13],

up from 37.2 billion for 3,932 incidents in 2020 [14] and from 15.4 billion

for 7,553 incidents in 2019 [15]. This is a lot more than a decade ago

where the number of exposures was at 2,644 and the number of exposed

records was at 267 million [16]. Risk Based Security specify in their 2020

report [14] that hacking has been responsible for most incidents, but

accidental exposure of data on the Internet (e.g. misconfigured databases,

backups, end points, services) has put the most records at risk.

Indeed, the number of data breaches in particular is huge, and impact

a wide number of organizations such as government agencies, retail

businesses, credit agencies, movie studios and many more [6].

Other sources corroborate those findings. The Privacy Rights Clear-

inghouse provides access to a dataset containing a chronology of data

breaches [18]

[18]: Clearinghouse (2020), Data Breaches

. They rely on breach information published by government

agencies that receive notices directly from breached businesses as a result

of regulatory obligation. For each breach, they give the name of the

organization, the city, the type of breach, the type of organization and

the number of breached records. They also provide a description of each

incident.

As the time of writing, this dataset contains almost 10.4 billion breached

records coming from more than 9000 data breaches. An analysis of the

dataset done in 2016 [30] reveals that the main cause for data breaches

was hacking by an outside party or infected by malware. Looking at the

type of organization most affected, the MED
3
category has the highest

number of data breaches, followed closely by BSO
4
. The analysis also

found that the BSR
5
and BSO categories were the main target of hackers,

and that GOV
6
breaches were mainly due to unintended disclosure. In

the latter, sensitive information was posted publicly, mishandled or sent

to the wrong party via publishing online, sending in an email, sending

in a mailing or sending via fax.

Preventing both forms of data exposure is a challenging problem to tackle,

since as we have seen, an exposure can occur in multiple circumstances,

caused by hacking, misconfigured databases, malicious insiders, etc.

Note that those exposures are perceived as huge losses of money for

businesses such as the movie industry [17][17]: Byers et al. (2003), ‘Analysis of

security vulnerabilities in the movie

production and distribution process’

, and as a loss of user privacy

for applications dealing with user data [18].

The cloud has a part of responsibility

With more and more businesses using public clouds to process data [31]

and deploy their workflows [32][32]: Mehta et al. (2017), How Netflix Is

Solving Authorization Across Their Cloud

, and with data being frequently moved

around, exposures are more likely to happen than ever.

Indeed, the public cloud service market was valued at $371.4 billion in

2020 and is projected to reach $832.1 billion by 2025 [33]. An estimated

94% of organizations already use a cloud service, and 48% of businesses



1.3 A change of paradigm 5

7: 44 billion terabytes.

User Interface

Logic

Data Interface

Figure 1.5:Monolithic approach.

User Interface

Microservice Microservice Microservice

Figure 1.6: Modular approach.

store classified and important data in the cloud. Data stored in the

cloud has reached 44 zettabytes
7
in 2020 and is projected to reach 200+

zettabytes by 2025 [34], the entirety of which will require protection.

Human error is to blame for cloud data breaches in 88% of cases [33].

1.3 A change of paradigm

Over the years, the approach to creating and delivering software has

changed.We have evolved from amonolithic approach to amoremodular

approach, from local on-premise deployments to the cloud, and this has

had an effect on security risks.

From monolithic to modular

The traditional way applications are made involve a monolithic frame-

work. A monolithic application has a tightly coupled codebase, where

code is packaged together and makes assumptions about the other parts

of the code. Over the years, and with the emergence of the cloud, people

have increasingly turned to a modular approach when it was relevant

to the use case. Figure 1.5 is a typical representation of a monolithic

application.

With this modular approach, the codebase is loosely coupled, where the

code communicates with other parts of the code through standardized

interfaces. In this instance, code is more fragmented, usually leading to

better readability because it results in smaller single-purpose fragments

of code. The codebase is also more maintainable, because bugs can be

fixed and features can be added by simply modifying one or more of the

modules, as opposed to having to refactor the entire codebase.Modularity

makes the codebase more portable, once again because it is separated in

independent modules. In addition, it also makes it easier for individuals

to work independently on different parts of the code, which can lead to

faster development and time to market. Finally, the modular approach

helps with the scalability of applications, in particular if one part of

the codebase scales differently from the others. The modular approach

has recently been incarnated by microservices. Figure 1.6 illustrates this

approach.

Although arguments can be made for both approaches, with each one

having the possibility of being more fitting depending on the application,

the fact is that an increasing number of organizations use the modular

approach. In fact, a 2020 survey done by O’Reilly found that 28% of

respondents had been using microservices for at least three years, and

that 61% of the respondents had been using them for a year or more [35].

Further, only 23% of respondents said they were not currently using

microservices.

From on-premise to cloud

In the same way, application were traditionally deployed on the premises

of its company. In an on-premise deployment, applications are hosted



6 1 Introduction

Internet

Figure 1.7: Traditional way to secure an

application. The deployment is secured at

the border. Inside communications are not

protected.

Internet

Figure 1.8:Application security under the

zero-trust model. The deployment is se-

cured at the border, and inside communi-

cations are protected.

on the servers owned by the company, making them bear the cost of

hardware, power consumption and space.

Cloud computing, opposing the traditional on-premise deployment, has

grown in popularity over the years. In this case, the company deploys

its applications on the servers of a service provider, and only pays the

cost for the resources they use. This cuts a lot of costs, as the company no

longer needs to maintain its environment.

The zero-trust security model

The fact that nowadays more people use the cloud and that modular

approaches are generally preferred has led to a modification of several

aspects security-wise.

By deploying their applications to the cloud, businesses relinquish some

of the control to the cloud service provider. Their data is usually no

longer stored locally, but at one or more remote locations owned by the

service provider.

Furthermore, attacks were generally assumed to come from a location

external to the deployment via north-south traffic. The traditional way to

secure such a deployment against those attacks was to protect it at the

border via gateways, firewalls or programmable switches [36]

[36]: Jin et al. (2016), ‘Understanding

security group usage in a public iaas

cloud’

(Figure 1.7).

The rise of the cloud and microservices as a paradigm, as well as their

increased use in building large, cloud-based enterprise applications [37]

has increased the attack surface, meaning protecting the network border

is no longer sufficient.

To prevent data exposures in such an environment, one also needs to

consider exposures coming from inside the system. Those exposures can

either be leaks stemming from the way data is processed or breaches

caused by a malicious employee. The zero-trust security model [38]

[38]: Gilman et al. (2017), Zero Trust

Networks

,

where all traffic flows are required to be authenticated and authorized via

fine-grained policies, provides such protection (Figure 1.8). This model

embodies the “Never trust, always verify” principle. In zero-trust, users

need to always be given the least amount of privileges, and the system as

a whole needs to be monitored.

1.4 Authentication and authorization

With an increasing number of organizations moving to the cloud and

the security concerns this entails, as well as the always present risk of

exposures, the situation sure seems dire. However, researchers have come

up with ways to prevent or mitigate those risks, namely in the form

of authentication and authorization. Authentication is used to verify

whether a user is who he claims to be, whereas authorization is used to

define what users can access. This section broadly presents both those

mechanisms.



1.4 Authentication and authorization 7

Verifying one’s identity using authentication

The purpose of authentication is to identify users. Authentication is usu-

ally done before authorization, and relies on one (or more) mechanisms.

Those authentication solutions can in general be associated to one of

three categories. They either rely on (i) something in the possession of

the user, (ii) something the user knows, or are (iii) based on an inherent

characteristic of the user [39] [39]: Barkadehi et al. (2018), ‘Authenti-

cation systems: A literature review and

classification’

.

For example, ownership-based authentication includes physical keys,

Trusted PlatformModules (TPM), Public Key Infrastructures (PKI), certifi-

cates and tokens. Knowledge-based authentication includes passwords,

graphical passwords and challenge response quizzes. Lastly, inherent-

based authentication includes biometrics or even a user’s behavioral

data.

A good authentication solution needs some specific characteristics in

order to be considered useful [40] [40]: Bonneau et al. (2012), ‘The quest

to replace passwords: A framework

for comparative evaluation of web

authentication schemes’

. Overall, such a solution needs to

score well in several dimensions:

I Security

The solution needs to resist to attacks.

I Usability

The solution must be scalable and easy to learn. The solution

should provide an easy way to recover credentials. Having nothing

to carry is also considered a benefit from the point of view of

usability.

I Deployability

The solution should have a negligible cost per user to imple-

ment and should be compatible with the system it is deployed

in.

Depending on the specific use case, some additional constraints/require-

ments might arise. For example, an authentication solution that aims

to integrate well with workflows might need to deal with short-lived

identities and frequent changes in the userbase. A solution that aims

to integrate well with the cloud might need to be especially usable and

scalable.

As one can probably tell, there is no perfect solution, each will have

it’s own advantages and drawbacks in those different dimensions. For

instance, using passwords might be less secure that having a hardware

token, but the deployability and usability of hardware tokens is much

less than that of passwords.

Defining permissions using authorization

The term authorization is often used interchangeably with the term access

control. To be concise, authorization refers to the policy that defines what

users can access, whereas access control refers to the mechanisms used

in practice to enforce this policy.

Authorization is a principal aspect of security, regulating the interactions

taking place in a given system. Authorization controls how users in a

system can access resources, answering the question “Who is allowed to

do which action on which resource?”.



8 1 Introduction

Since the systems to be secured by authorization can be very complex,

administrators often rely on policy-based management of authoriza-

tion. Policies define the desired behavior of a system from a high-level

perspective. Hence, this form of management allows to separate the

problem of specification, i.e. defining the desired system behavior, from

the problem of implementation, that is the enforcement of the desired

system behavior. This makes authorization management easier and more

flexible. To give an example, a policy specification might consist of an

access matrix, a privilege graph or a YAWL document, while a policy

implementation might be an access control list, an XACML document or

a Rego document.

1.5 Contributions of this thesis

In previous sections, we have drafted a landscape of the current situation.

Workflows are used everywhere and by everyone, multi-party workflows

in particular being needed whenever there is a collaboration between two

or more organizations. Data leaks and breaches are widespread, regular

outcomes of themost critical vulnerabilities, and happening continuously

more. In addition, the shift to the cloud and modular approaches has

increased attack surfaces and brought new security risks that did not

exist before.

Considering this situation, with major companies storing their data

unencrypted in the cloud to enable their multi-party workflows, there

is a strong need for a solution that can enable those workflows securely

and prevent exposures.

This thesis therefore focuses on the prevention of data exposures, in work-

flows in particular. Our goal is to enable secure multi-party workflows

and mitigate the risk of data exposures.

The most critical vulnerabilities causing data exposures are Broken Ac-

cess Control and Cryptographic Failures. In accordance with this fact, we

have structured this thesis around three axes that try to mitigate those

vulnerabilities.

In Chapter 3, we propose an infrastructure using microservices to enable

secure multi-party workflows and deal with data exposures. We realize

a proof of concept of this infrastructure, and deploy it on Google Cloud

Platform. The focus of this chapter is more on cryptographic failures, as

we give ways to secure data at rest as well as in transport.

I RQ1: How can we construct a leak-free multi-party workflow?

Chapter 4 and Chapter 5 deal with broken access control. In the for-

mer, we took an interest in the verification of deployed security policies.

We investigate policy-based management of authorization, and more

specifically ways to verify that a policy specification matches its imple-

mentation. We develop a tool enabling policy verification with the help

of metagraphs, a generalized graph theoretic structure. Implementations

are not free of errors, and a verification mechanism can mitigate the risk

of having broken access control.



1.6 Outline 9

I RQ2: How do we verify a policy specification corresponds to its deployed

implementation?

In Chapter 5, we deal with policy analysis. In particular, we analyze

policy specifications to detect and eliminate potential redundancies. We

propose a way to detect redundancies, and develop a tool to do so.

By removing clutter from policy specifications, we hope to give policy

administrators a clearer view of the policy. In this way, we can help them

make less errors when they are handling specifications, and therefore

reduce the risk of broken access control.

I RQ3: How do we verify a policy specification contains no redundancies?

We summarize our contributions in Table 1.1.

Chapter Topic Publication

Chapter 3 Secure infrastructure [19, 20]

Chapter 4 Policy verification [20, 21]

Chapter 5 Policy redundancy elimination [22]

Table 1.1: Summary of contributions.

We also have developed several tools that pertain to each contribution.

We summarize the tools we developed in Table 1.2.

Table 1.2: Summary of tools.

Chapter Tool Repository

Chapter 3 Proof of Concept https://github.com/loicmiller/secure-workflow
Chapter 4 Policy verification with metagraphs https://github.com/loicmiller/policy-verification
Chapter 4 MGToolkit for Python 3 https://github.com/loicmiller/mgtoolkit
Chapter 5 Policy redundancy elimination https://github.com/loicmiller/policy-analysis
Chapter 5 SAT formulation https://github.com/loicmiller/fhep-sat-formulation

In this section, we have given a brief overview of the contents of this

document. More details about each contribution can be found in the

following outline, or in their corresponding chapter.

1.6 Outline

The remainder of this thesis is split into five chapters.

Workflows, the cloud and authorization

We have briefly presented in the previous sections a landscape of the

current situation. In particular, we have introduced numerous concepts,

namely workflows, the cloud, and security mechanisms surrounding

authorization. In Chapter 2, Background and Related Works, we will dive

into those concepts and more.

First, we develop the notion of workflows. While the idea of a work-

flow can evoke different images depending on the reader, we will give

workflows a working definition. We then present elements related to

https://github.com/loicmiller/secure-workflow
https://github.com/loicmiller/policy-verification
https://github.com/loicmiller/mgtoolkit
https://github.com/loicmiller/policy-analysis
https://github.com/loicmiller/fhep-sat-formulation


10 1 Introduction

workflows, and show how they are modeled by the use of a specification

language.

Next, we introduce concepts pertaining to the cloud. Technologies sur-

rounding the cloud have evolved quickly over the years, microservices

being one of the last iterations to date. We explain how microservices

work from the ground up, starting with the basic container, and then

explain how higher layers of themicroservice architecture are built on top

of them. Namely, we detail how orchestrators and service meshes work.

We also touch on related works pertaining to microservices, zero-trust

and formal analysis of leaks.

Then, we go deeper into research fields surrounding authorization, specif-

ically ones related to policy. We detail existing archetypes used to specify

a policy. We describe how policies go from their initial specification to

their implementation, as well as how they are analyzed and verified.

Lastly, we introduce two graph theoretical structures, metagraphs and

hypergraphs. Numerous structures have already been used to represent

policies.We argue that metagraphs, although underused for this purpose,

constitute one of the best ways to model policies. Those structures

will be used extensively to model, manage, verify and analyze policies

throughout Chapter 4 and Chapter 5.

A secure infrastructure to prevent data exposures

In Chapter 3, A Secure Infrastructure to Prevent Data Exposures, we propose

an infrastructure to deal with data exposures. This infrastructure makes

use of the aforementioned microservices, and provides ways to secure

data at rest and in transport.

First, we present our security model. This model is composed of a threat

model, where we consider threats from different points of view in the

workflow. It is also composed of a trust model, that specifies our trust

assumptions when it comes to workflow participants.

Second, we detail the construction of our infrastructure, and present

our proof of concept. We describe how each layer of the microservice

architecture is used, and what need they fulfill security-wise. We present

our proof of concept deployed on Google Cloud Platform (GCP), as well

as a basic policy verification mechanism.

Finally, we measure the overhead cost in terms of performance regarding

our infrastructure. More specifically, we measure startup times and

request delays, showing the overall cost to be manageable.

A way to verify policies using metagraphs

Although we argue the secure infrastructure of Chapter 3 is a good basis

to prevent both leaks and breaches, some attack vectors still remain. For

some of those, we unfortunately have little control over the situation.

Indeed, it is for example still possible to exploit a flaw in a service running

on our infrastructure. Since that service can be literally anything, there

is not much more we can do to prevent attacks. For some other attack

vectors however, there are some additional measures we can take.



1.6 Outline 11

Specifically, we can perform some supplementary checks on the policy

used in our infrastructure. Recall that broken access control is the most

critical vulnerability right now, and that human error causes 88% of

cloud data breaches. In that spirit, we propose in Chapter 4, Verifying

Policies Using Metagraphs, a way to verify that the policies deployed in

our infrastructure actually match their initial specification, and that no

errors were introduced.

We do this by first showing how workflows can be modeled using

metagraphs. We go over the different elements composing workflows,

and show how they are translated in their metagraph counterpart.

Then, we explain how those metagraphmodels are used to verify policies.

In particular, we compare the metagraph modeling the specification of

the policy to the metagraph modeling the implementation of the policy.

Any difference in the metagraphs show that errors are present, be it by

human error or by some other way.

Last, we conduct a performance analysis of our verification process, and

show the method to be efficient. To obtain general and representative

results, we generate random workflows. We provide tools for each

of the previously presented steps, from generation to translation to

comparison.

Policies, redundancies, and complexity results

In Chapter 4, we devised a way to verify policies. Using this method,

we can make sure the implementation of a policy corresponds exactly

to its specification. However, if the specification itself has problems, our

verification method will fail to capture them. This is what Chapter 5,

Analyzing Policies to Find Redundancies, is dedicated to.

In this chapter, we tackle the question of redundancy elimination in a

policy. We study and improve a currently existing solution. We prove the

problem of finding redundancies is NP-hard in the general case.

In accordance with this result, we translate our problem to a SAT formu-

lation but find it is not efficient. Ultimately, we devise a more efficient

algorithm using Pascal’s triangle to find redundancies. We show our

algorithm is more efficient by conducting a performance analysis on the

methods detailed in this chapter, and comparing them.

Finally, we conclude with Chapter 6, Conclusion and Research Directions.

We summarize our propositions, and present the main takeaways from

this thesis. We discuss our solution in its different aspects, and examine

their limitations. We conclude by discussing research perspectives, and

outline possible future works.



12 1 Introduction

1.7 List of contributions

1.7.1 Publications

Journals

I Loïc Miller, Pascal Mérindol, Antoine Gallais, Cristel Pelsser. Se-

curing Workflows Using Microservices and Metagraphs. MDPI Special

Issue Advances in Communications Software and Services. Decem-

ber 2021.

Journal preprints

I Reynaldo Gil Pons, Max Ward and Loïc Miller. Finding (s,d)-

Hypernetworks in F-Hypergraphs is NP-Hard. arXiv preprint 2201.

04799. January 2022.

International conferences

I Loïc Miller, Pascal Mérindol, Antoine Gallais, Cristel Pelsser. To-

wards Secure and Leak-Free Workflows Using Microservice Isolation.

International Conference on High-Performance Switching and

Routing (HPSR). June 2021.

I Loïc Miller, Pascal Mérindol, Antoine Gallais, Cristel Pelsser. Verifi-

cation of Cloud Security Policies. International Conference on High-

Performance Switching and Routing (HPSR). June 2021.

National conferences

I Loïc Miller, Pascal Mérindol, Antoine Gallais, Cristel Pelsser. Protec-

tion contre les fuites de données: un environnementmicro-services sécurisé.

CORES 2021–6ème Rencontres Francophones sur la Conception de

Protocoles, l’Évaluation de Performance et l’Expérimentation des

Réseaux de Communication. September 2021.

I Loïc Miller, Pascal Mérindol, Antoine Gallais, Cristel Pelsser. De

l’Utilisation desMétagraphes pour la Vérification de Politiques de Sécurité.

ALGOTEL 2021—23èmes Rencontres Francophones sur les Aspects

Algorithmiques des Télécommunications. September 2021.



1.7 List of contributions 13

1.7.2 Tools

All tools listed are licensed under the MIT license.

A Secure Infrastructure to Prevent Data Exposures

I Proof ofConcept -https://github.com/loicmiller/secure-workflow.

Verifying Policies Using Metagraphs

I Policyverificationwithmetagraphs -https://github.com/loicmiller/

policy-verification.

I MGToolkit forPython3 -https://github.com/loicmiller/mgtoolkit.

Analyzing Policies to Find Redundancies

I Policy redundancy elimination -https://github.com/loicmiller/

policy-analysis.

I SAT formulation -https://github.com/loicmiller/fhep-sat-formulation.

https://github.com/loicmiller/secure-workflow
https://github.com/loicmiller/policy-verification
https://github.com/loicmiller/policy-verification
https://github.com/loicmiller/mgtoolkit
https://github.com/loicmiller/policy-analysis
https://github.com/loicmiller/policy-analysis
https://github.com/loicmiller/fhep-sat-formulation




Background and Related Works 2

2.1 Workflows . . . . . . . . . . . 15

Informally . . . . . . . . . . . 15

Formally . . . . . . . . . . . . . 16

2.2 Microservices . . . . . . . . . 19

Components . . . . . . . . . . 19

Related works . . . . . . . . . 22

2.3 Policy analysis, refinement and

verification . . . . . . . . . . . . . 23

Archetypes . . . . . . . . . . . 23

Related works . . . . . . . . . 24

2.4 Metagraphs and Hypergraphs25

Definitions - Metagraphs . . 25

Definitions - Hypergraphs . 28

Metagraphs, Hypergraphs and

policies . . . . . . . . . . . . . . . 30

2.5 Conclusion . . . . . . . . . . . . 31

In the introduction, we have broadly addressed the topics of workflows,

the cloud, and security mechanisms surrounding authorization. In Chap-

ter 2, we dive more into those concepts as their understanding is required

for the following chapters.

We first develop in Section 2.1 the notion of workflows. We give them

a working definition, and introduce Yet Another Workflow Language

(YAWL), a workflow language. We introduce elements of YAWL and

show how they are used.

Next, we introduce in Section 2.2 concepts pertaining to the cloud, namely

microservices. We explain level by level the different components of the

microservice architecture. We then present related works on this theme

and close to our contributions.

In Section 2.3, we go deeper into research fields surrounding authoriza-

tion, specifically ones related to policy. We detail the main archetypes

when it comes to authorization, and present related works in this field.

Lastly, we introduce in Section 2.4 two graph theoretical structures,

metagraphs and hypergraphs. We define those constructs as well as

concepts pertaining to them, and present related works. Those structures

will be used extensively in Chapter 4 and Chapter 5.

2.1 Workflows

2.1.1 Workflows, informally

The idea of a workflow can evoke different images depending on the

reader. Informally speaking, a workflow is a sequence of tasks that

processes data [41]. Some people will think of workflows where tasks

are predictable and repetitive. These are called process workflows. An

example of those are workflows handling customer orders. In this case,

every order follows the same workflow.

Others might think of case workflows, where the workflow depends on

dynamic data. A simple example are support and ticket systems, where

some inquiry is needed to process the data. Here, two tickets might

follow different workflows depending on their contents.

Finally, some people will think of project workflows, which are similar to

process workflows. The difference here is that project workflows are only

useful for the current project, and will probably not be reused for another

project. A typical example of this can be found in software development,

where the workflow might be different based on what the end goal is.

We define a workflow as a sequence of tasks to be performed by a set

of independent actors. The owner of the data (i.e., the instigator of the



16 2 Background and Related Works

Movie

VFX

Color Sound
Master


HDR

C1

C2 C4

C3

O

Figure 2.1:Movie workflow example. Ar-

rows model the specified workflow, and

thus represent the communication flow.

The owner ($) sends its data to the first

contractor (�1) for special effects process-

ing.�1 then sends themodified data along

theworkflow, for color (�2), HDR (�3) and

sound (�4) processing. The resulting data

is then sent back to the owner.

workflow) interacts with contractors to realize such a sequence. Both the

owner and the contractor have agents processing the data, where agents

can represent an employee or an automatic service.

Throughout this document, we use a recurring example pertaining to

the movie industry. Consider a simple workflow, where an owner in the

post-production stage of making a movie employs other companies to

edit the video and audio components [17]

[17]: Byers et al. (2003), ‘Analysis of

security vulnerabilities in the movie

production and distribution process’

.

Figure 2.1 is a representation of such a workflow. The owner ($) first

sends its data to the company responsible for special effects (�1). �1

applies special effects to the movie sequences the owner sent him, and

then sends the result to the company responsible for coloring (�2) as well

as another for sound mastering (�4). �2 then ships its result to the agent

in charge of High Dynamic Range (HDR) (�3). Finally, both �3 and �4

sends their output back to the owner, which puts the data together to

obtain the final product.

2.1.2 Workflows, formally

To formally represent aworkflow,we need away to specify them. The area

of Business Process Management (BPM) has received a lot of attention

over the years, and several languages that can represent processes and

workflows have been developed.

Initially, many BPM tools supported their own language [42]. There

has been attempts to define a standard, the XML Process Definition

Language [43] (XPDL) being one of the first. Defined by the Workflow

Management Coalition (WfMC), the language’s minimalist approach and

the fact that even basic constructs could be ambiguous and interpreted

in different ways ultimately made the language irrelevant [42]. 2003

saw the apparition of the Business Process Execution Language [44]

(BPEL). Developed as a combination of Microsoft’s XLANG and IBM’s

Web Services Flow Language (WSFL), the language was an improvement

over previous approaches [42][42]: Ter Hofstede et al. (2009), Modern

Business Process Automation: YAWL and its

support environment

. Unfortunately, having no graphical

representation and providing no support for the involvement of human

participants, it was quickly abandoned to the profit of Business Process

Model & Notation [45][45]: Business Process Model (2011),

‘Notation (bpmn) version 2.0’

(BPMN). With its first specification coming out in

2006, BPMN provided a graphical representation and more support of

workflow patterns [42]. However, BPMN still lacked some support for

the involvement of human participants, and the interpretation of some

of its concepts could vary. Nonetheless, it was partly adopted, and is still

in use to this day.

Another approach lies in Unified Modeling Language [46] (UML) with

their activity diagrams. Two versions are worth mentioning, the 1.4

version inspired by statecharts, and the 2.0 version inspired by Petri

nets [42]. Despite being modeled after Petri nets, some Petri net concepts

could not be mapped to UML 2.0. UML activity diagrams were not

intended for direct execution, and with no simple and clear semantics as

well as no formalization, BPMN was still preferred to specify business

processes [42].

After revisiting Petri nets, it was concluded that although many patterns

could be expressed in a simple way, some workflow patterns were



2.1 Workflows 17

OK?

Start

Process
order

End

Figure 2.2: Simple process with one task,

and a condition which asks if the task was

done correctly. The process also exhibits

start and end conditions.

OK?

Start End

Process
order

Ship
products

Start End

Invoice
customer

Figure 2.3: Same process, but more de-

tailed with a composite task.

not easily modeled with them [42]. This finding is what led to the

development of Yet Another Workflow Language [47] [47]: Van Der Aalst et al. (2005), ‘YAWL:

yet another workflow language’

(YAWL). YAWL

extends Petri nets, by adding formalisms to deal with patterns like

cancellation. When compared with previous languages, YAWL provides

stronger support for workflow patterns, making it easier to specify

complex workflows [48]. YAWL also has formal semantics, meaning

constructs are not subject to interpretation, and support for dynamic

workflows, granting more flexibility in specification. As opposed to the

other languages, YAWL models are executable, and YAWL provides a

graphical representation. All those qualities make YAWL the overall

better option when it comes to specifying workflows.

Distinction between processes and workflows

Although we have up until now used the term workflow extensively

to describe both processes and workflows, a distinction is to be made

between them. A process may contain information elements which are

not yet evaluated, whereas a workflow is an instantiation of a process

for a set of particular values. For example, one can specify a process for

handling customer orders, with many elements that are not evaluated

(e.g. the contents of the shopping cart). In one particular instance of this

process where a customer actually sets values to those elements, the

process is not a process anymore, it is a workflow. As such, a process can

result in multiple workflows.

A simple case

A process specification in YAWL represents a sequence of tasks, and has

a start and an end. Basic tasks are called atomic tasks, and represent

simple actions. The start and end states of the process are different from

atomic tasks, as they model states in the process. As such, these states

are not modeled by atomic tasks, but rather by conditions. YAWL also

uses conditions (besides the start and end), which represent a state the

workflow is in after finishing a task, but before starting a new one. Those

conditions are useful when users make some decisions on their own

and the workflow system cannot pre-determine their choices. Figure 2.2

displays a simple process with one task representing the processing of

an order, one condition which asks if the task was done correctly, as well

as the start and end conditions.

YAWL nets

More generally, a specification in YAWL is a set of extended workflow

nets which form a hierarchy [47]. Each of these nets represents a process

or a sub-process. The net at the top of the hierarchy is called the root net.

Tasks in a process can be either atomic or composite, where composite

tasks represent another net, but at one lower level in the hierarchy. As said

above, each net has one input condition and one output condition, which

represent the start and end points of the process. Figure 2.3 displays the

same process as in Figure 2.2, but with a composite task, that is another

net containing more detailed tasks.



18 2 Background and Related Works

Start AND-split

Task 1

Task 2

Task 3

AND-join End

Figure 2.4: Process with an AND-split
and an AND-join.

Start OR-split

Task 1

Task 2
OR-join End

Figure 2.5: Process with an OR-split and

an OR-join.

Start XOR-split

Task 1

Task 2
XOR-join End

Figure 2.6: Process with a XOR-split and

a XOR-join.

This separation in nets is useful when the process becomes too complex

to manage, and can be broken down in smaller pieces. For example, a

process for an online store might comprise a checkout task, but this

task can be comprised of multiple tasks such as choose shipping or

choose payment mode. To model this example in YAWL, the checkout

task would be the composite task in the root net, while the other tasks

are part of the checkout net at one lower level in the hierarchy.

Operators

There is the possibility to use operators, namely AND, OR, and XOR, which

control the flow of information between tasks of the process. Each of these

operators have a split and a join variation, which indicate the behavior of

the operator.

I An AND-split indicates the workflow executes all branches of the

split, whereas an AND-join indicates the tasks reaching the join

must all be completed for the next task to be executed. Figure 2.4

represents both variations of this operator.

I An OR-split indicates theworkflow executes one ormore branches

of the split, whereas an OR-join indicates at least one of the tasks

reaching the joinmust be completed for the next task to be executed.

Figure 2.5 represents both variations of this operator.

I A XOR-split indicates the workflow executes exactly one branch

of the split, whereas a XOR-join indicates exactly one of the tasks

reaching the join must all be completed for the next task to be

executed. Figure 2.6 represents both variations of this operator.

A real-world example

All those elements can be combined together to realize a process. For

example, let us consider the film production process represented in

Fig. 2.7, representing the chain of information processing realized along

the shooting of the movie [49][49]: Business Process Management (BPM)

Group (2010), YAWL4Film

. The film production process covers the

entire period dealing with the shooting of the movie. While the shooting

is taking place during the day, a designated crew collects the information

associated with the shooting via production forms (e.g. camera sheets,

sound sheets). All those forms are then gathered to produce the daily

progress report (DPR), which summarizes the shooting information to

keep track of progress and expenses. In addition to the generation of

the DPR, the crew monitors requirements for the next shooting days to

create the call sheet for the next day, which contains all the information

concerning logistics and necessities. A call sheet containing all the

information concerning logistics and necessities is also created. This

process is carried out on a daily basis.

This process taken from the YAWL foundation website was realized

in collaboration with the Australian Film Television and Radio School

(AFTRS), with the help of domain experts. As such, one can see how

YAWL elements are used in a realistic context. For example, a condition is

used with the Fill Out Sound Sheets task, indicating the need for this

information to be checked by the production manager before proceeding

to task Create DPR [49].



2.2 Microservices 19

Condition

Input
condition

Output
condition

Atomic
task

AND-join

AND-split

XOR-join

XOR-split

OR-join

OR-split

start
production

Welcome
to Start
Process

Input
Cast
List

Input
Crew
List

Input
Location

Notes

Input
Shooting
Schedule

Create
Call

Sheet

Revise
Shooting
Schedule

Update
Call

Sheet

Distribute
Call

Sheet

Distribute
DPR

Create
DPR

Start
Another
Shoot
Day

Fill Out
Continuity

Report

Fill Out
Continuity

Daily
Report

Fill Out
Sound
Sheets

Fill Out
Camera
Sheets

Fill Out
AD

Report

end
production

Figure 2.7: Film production process represented in YAWL. This case study represents the chain of information processing realized along the

shooting of the movie. While the shooting is taking place during the day, a designated crew collects the information associated with the

shooting via production forms, which are used to produce the daily progress report. A call sheet containing all the information concerning

logistics and necessities is also created.

2.2 Microservices

Technologies surrounding the cloud have evolved quickly over the years,

microservices being one of the last iterations to date. In recent years,

microservices have become the de-facto standard way of developing

cloud-native apps [37] [37]: Chandramouli et al. (2020), Building

Secure Microservices-based Applications

Using Service-Mesh Architecture

. Among the different ways microservices can be

deployed, service meshes have been characterized as the latest evolution

in software service design, development and delivery [50]

[50]: Jamshidi et al. (2018), ‘Microservices:

The journey so far and challenges ahead’

.

2.2.1 Components

Here, we show how microservices work from the ground up, starting

with the basic container, and then explaining how higher layers of the

microservice architecture are built on top of them. We see how service

meshes are built on top of orchestrators, which are themselves built on

top of containers. We will also detail the use of policy engines in service

meshes.



20 2 Background and Related Works

pid
user

net

process

service

mnt
uts

ipc

process

Figure 2.8: A container and its names-

paces. The namespaces give the service its

own view of certain resources.

Containers

Containers can be described as a standard unit of software packaging

application code, called a service, and its dependencies in an isolated

environment. They grant portability and a standardized environment

that enables easy adoption and scaling. Some examples of container

technology include Docker [23][23]: Docker (2022), Docker and Linux containers (LXC, LXD) [51].

In reality, a container corresponds to several defined namespaces which

gives the service its own view of certain resources. There are six names-

paces in total which contribute to the isolation, flexibility and standard-

ization of the container (Figure 2.8):

I mnt: The mnt namespace changes the processes’ view of the filesys-

tem.

I uts: The uts namespace isolates the hostname.

I pid: The pid namespace isolates PIDs.

I user: The user namespace isolates user IDs.

I ipc: The ipc namespace isolates IPC System V and SHM.

I net: The net namespace isolates networking.

Orchestrators

An orchestrator is a system used to automate the management of contain-

ers and their life cycles. The orchestrator does this by interacting with

workers running on physical machines, which control groups of contain-

ers called pods. Some examples of orchestrators include Kubernetes [24]

[24]: Kubernetes (2022), Kubernetes and Nomad [52].

Figure 2.9 represents an orchestrator and its workers. Each worker has its

own agent which instantiates the pods on the worker. The orchestrator

will instantiate pods according to the number of replicas needed as well

as a strategy, like load balancing services on workers.

In reality, a pod is also composed of several namespaces, which are the

same as the ones for the containers. The difference with the pod is that

the services existing in the pod share some of the namespaces.

Figure 2.9: An orchestrator and its work-

ers. Each worker has its own agent which

instantiates the pods on the worker.

Agent

P1R1 P2R1

worker

Agent

P1R2 P2R2

workerOrchestrator

Agent

P1R3 P3R1

worker

Pod x, Replica yPxRy



2.2 Microservices 21

process

service

mnt
uts

pid
user

net

process

service

mnt
uts

ipc

process

Figure 2.10: A Pod. Compared to contain-

ers, services existing in the pod share some

of the namespaces.

Figure 2.10 represents a pod and its services. As you can see, each service

has its own view of the filesystem (mnt) as well as its own view of the

hostname, but shares the view of all the other namespaces with the other

services inside the pod. Namely, they share the same view of the network

namespace. This has many benefits, including but not limited to isolation,

management of the pod lifecycle, management of communications.

Service meshes

A service mesh is a dedicated infrastructure layer used to automate the

communication, security and monitoring of containerized environments.

The deployment of distributed services using only orchestrators can

get complex as they grow in size. Such systems get harder to manage,

and some aspects like the communication between services and security

can become problematic. A service mesh addresses those problems, by

providing a simple way to secure and specify communications between

services.

There are multiple ways to deploy a service mesh. One can embed the

components in application code, couple them to the application code by

implementing them as libraries or implement them as service proxies

independent of the application code [37]. In the service proxy version,

the service mesh controller configures proxies for each environment,

which are added as a sidecar to the pod or embedded directly into the

services. Those proxies act as intermediaries between services to secure

and control their interactions. In other words, proxies intercept ingoing

and outgoing traffic to their associated agent. The service mesh controller

also provides the proxies with identities for services as well as a key

pair for them to interact securely via mutual TLS authentication (mTLS).

mTLS provides authentication and encryption. Some examples of service

meshes include Istio [25] [25]: Istio (2020), Istioand linkerd 2.0 [53].

Figure 2.11 represents a service mesh. A proxy is added to each pod as

a sidecar. Those proxies are then managed by a centralized controller,

which tells the proxies how to communicate with other services via their

respective proxies.

Service 1

Proxy

Pod 1
worker

Agent Controller

Service 2

Proxy

Pod 2
Service 3

Proxy

Pod 3

Figure 2.11:A service mesh. A central con-

trollermanages proxy sidecars in eachpod.

Those proxies are used as intermediaries

for communication.



22 2 Background and Related Works

Policy engines

A policy engine is a system answering policy-related queries according

to a policy configuration.

In the service mesh, every service can communicate with all the other

services by default. Adding a policy engine as a sidecar in each pod can

enforce a policy on communications. Each time a sidecar proxy intercepts

a request from its associated service, it checks with its policy sidecar if

the request is authorized or not. If the request is authorized, the request is

forwarded accordingly. If the request is not authorized, the proxy returns

an error message to the service.

Rules can be added to the policy to constrain the communications a

service can make. Additional rules can be used to enforce some other

constraints based on context, like a time period during which a given

communication is authorized to occur. A policy engine example is Open

Policy Agent (OPA) [27][27]: Open Policy Agent (2022), Open

Policy Agent

.

2.2.2 Related works

Microservices

Existing works provide guidance on overall security requirements and

strategies for microservices [54][54]: Chandramouli (2019), Security

Strategies for Microservices-based Application

Systems

, as well as guidance on more specific

microservice components such as service mesh [37, 55] or containers [56,

57]. Chandramouli [54] provides guidance on security strategies for im-

plementing core features of microservices, as well as countermeasures for

microservice-specific threats. El Malki and Zdun [55][55]: El Malki et al. (2019), ‘Guiding

Architectural Decision Making on Service

Mesh Based Microservice Architectures’

provide guidance

on service mesh-based microservice architecture decisions by studying

existing practices. Chandramouli and Butcher [37] give recommendations

for the deployment of service mesh components in the proxy sidecar

version of the microservice architecture.

Souppaya et al. [56] provide a listing of major security risks associated

with the use of containers, as well as recommendations to counter those

risks. Chandramouli [57] then analyzed different security solutions for

containers, to see if they were in accordance with recommendations

of [56].

Note that those guidelines and recommendations are not specific to work-

flows, but general good practices for microservices and microservice

components. In Chapter 3, we follow the guidelines and recommenda-

tions presented in these works. Contrary to those works, we propose a

complete infrastructure, accompanied by a real-world deployment, as

well as both a security and a performance evaluation of this deploy-

ment.

Zero-trust and security

Weever et al. [58][58]: Weever et al. (2020), ‘Zero Trust

Network Security Model in containerized

environments’

investigate operational control requirements for zero-

trust network security, and then implement zero-trust security in a

microservice environment to protect and regulate traffic between mi-

croservices. They focus on implementing deep visibility in the service



2.3 Policy analysis, refinement and verification 23

Users Unclassified

Top Secret Clearance

Confidential Clearance

Top Secret

Figure 2.12: Mandatory Access Control.

Group

Figure 2.13: Discretionary Access Control.

mesh, and do not propose a security or a performance evaluation. Hus-

sain et al. [59] propose and implement a security framework for the

creation of a secure API service mesh using Istio and Kubernetes. They

then use a machine learning-based model to automatically associate

new APIs to already existing categories of service mesh. Contrary to our

work, they use a central enterprise authorization server, in opposition

to policy sidecars. Zaheer et al. [60] [60]: Zaheer et al. (2019), ‘eZTrust:

Network-Independent Zero-Trust Perime-

terization for Microservices’

propose eZTrust, a policy-driven

parameterization access control system for containerized microservice

environments. They leverage eBPF to apply per-packet tagging depend-

ing on the security context, and then use those tags to enforce policy, in

opposition to our enforcement of policy which relies on policy sidecars

local to the services.

Formal analysis

On the side of formal analysis of data leaks in workflows, Accorsi and

Wonnemann [61] [61]: Accorsi et al. (2011), ‘Strong non-leak

guarantees for workflow models’

proposed a framework for the automated detection

of leaks based on static flow analysis by transforming workflows into

Petri nets. Khan et al. [62] propose a synthesis on data breach risks and

resolutions, identifying and classifying data breaches, locus and impact,

and then giving guidance on prevention, containment and recovery. Some

papers propose data leak protection, by screening data and comparing

fingerprints [63–69]. Segarra et al. [70] [70]: Segarra et al. (2019), ‘Using trusted

execution environments for secure stream

processing of medical data’

propose an architecture to securely

stream medical data using Trusted Execution Environments, while Zuo

et al. investigate data leakage in mobile applications interaction with

the cloud [71]. Liu et al. [72] and Bosu et al.[73] focus instead on leaks in

Android apps.

2.3 Policy analysis, refinement and verification

2.3.1 Policy archetypes

There are multiple ways to specify a policy. Over the years and according

to their requirements, researchers have come upwithmultiple archetypes

for authorization models. Those archetypes express different views on

how authorization should be done, and were designed with specific

use cases in mind. There are four main archetypes when it comes to

authorization models.

Mandatory Access Control [74, 75] (MAC) is a type of access control in

which each user is granted a clearance level, and each resource needs a

certain clearance in order to be accessed. Historically, it has been used to

protect access to classified information in the United States. Figure 2.12

represents a MAC system. One user has top secret clearance, and can as

such access both top secret and unclassified information. The other user

only has confidential clearance, and can

Discretionary Access Control [76] (DAC) is most associated with Linux

systems. Here, each user in the system can grant the permissions he

desires to other users or groups, but only for the resources he owns.

Figure 2.13 represents a DAC system.



24 2 Background and Related Works

Figure 2.14: Role-Based Access Control.

Identities
Resources

Roles
Users

Managers

Sales

Email
Employee
records
Customer
records

Figure 2.15: Attribute-Based Access Con-

trol.

Identities
Identity

Attributes Decision Resource
Attributes


Environment
Attributes

Access
Control
Rules

Resources

Role-Based Access Control [77, 78] (RBAC) works with identities, roles

and resources. Each user (identity) is associated with one or more roles,

and each role is then granted permissions. Figure 2.14 represents an

RBAC system.

Finally, Attribute-Based Access Control [79] (ABAC) works by assigning

attributes to users, resources and other environmental attributes. Access

Control rules then decide based on the attributes if a user has access to a

resource. Figure 2.15 represents an ABAC system.

A lot of other models exist, including hybrid models [80, 81].

2.3.2 Related works

Along with archetypes which help us find how to specify a policy, there

exists several works on policy analysis, refinement and verification in the

literature.

Policy analysis

Policy analysis deals with policy evaluation and anomaly analysis.

In anomaly analysis, checking for errors like incorrect policy specifications,

conflicts and sub-optimizations affecting either a single policy or a set

of policies [82]

[82]: Valenza et al. (2017), ‘Classification

and analysis of communication protection

policy anomalies’

is the primary research topic. Works in this area use

different techniques to achieve this goal, such as model checking [83,

84], binary decision diagrams [85][85]: Hu et al. (2013), ‘Discovery and

resolution of anomalies in web access

control policies’

, graph theory [86]

[86]: Koch et al. (2002), ‘Conflict detection

and resolution in access control policy

specifications’

, Deterministic

Finite State Automata (DFSA) [87], First Order Logic (FOL) [88]

[88]: Cheminod et al. (2018), ‘Toward

attribute-based access control policy in

industrial networked systems’

, geo-

metrical models [89], answer set programming [90], petri nets [91] and

metagraphs [28].

Policy evaluation instead deals with checking whether a request is satisfied

by a set of policies. It is typically used to verify the effective impact of



2.4 Metagraphs and Hypergraphs 25

x1 x3

x4

x2

x5
e3

e1

e2

Figure 2.16:A simplemetagraph. The gen-

erating set is - = {G1 , G2 , ..., G5} and the

set of edges is � = {41 , 42 , 43}.

modifying a policy. Works that deal with analyzing the impact of changes

in a policy usually model those policies and then analyze the obtained

representation for effective impact [92, 93].

Policy refinement

Policy refinement handles the translation from high-level policies into

low-level configurations [94] [94]: Moffett et al. (1993), ‘Policy

hierarchies for distributed systems

management’

, and has relatively not attracted much

efforts. The concept of refinement was introduced by Bandara et al. [95]

[95]: Bandara et al. (2004), ‘A goal-based

approach to policy refinement’

,

Rubio-Loyola et al. [96]

[96]: Rubio-Loyola et al. (2006), ‘A

methodological approach toward the

refinement problem in policy-based

management systems’

and Craven et al. [97]

[97]: Craven et al. (2010), ‘Decomposition

techniques for policy refinement’

. More recently, works in

software-defined networking and network function virtualization have

had an interest in policy refinement [98–100].

Policy verification

Finally, policy verification deals with checking whether a policy is

correctly enforced in a system. There exists only few works on policy

verification when compared to the large body of work dealing with policy

analysis. Hughes and Bultan [101] as well as Bera et al. [102] propose

automatic verification of access control policies against a set of properties.

In those papers, verification is achieved by translating the properties into

a boolean satisfiability problem and using a SAT solver.

In Chapter 4, and in opposition to those works, we use metagraphs

to perform the verification of policies. We handle workflow policies in

particular, and show how they can be modeled with metagraphs.

2.4 Metagraphs and Hypergraphs

We introduce two graph theoretical structures, metagraphs and hy-

pergraphs. Numerous structures have already been used to represent

policies.We argue that metagraphs, although underused for this purpose,

constitute one of the best to model policies. Those structures will be used

extensively to model, manage, verify and analyze policies throughout

Chapter 4 and Chapter 5.

2.4.1 Definitions - Metagraphs

A metagraph is a generalized graph theoretic structure, which can

be defined as a collection of directed set-to-set mappings [103]

[103]: Basu et al. (2007), Metagraphs and

their applications

. Each

set in the metagraph is a vertex, and directed edges represent the

relationship between sets. More formally, a metagraph can be defined as

follows:

Definition 2.4.1 (Metagraph) A metagraph ( = 〈-, �〉 is a graphical

construct specified by a generating set - and a set of edges � defined on the

generating set. A generating set is a set of elements - = {G1 , G2 , ..., G=},
which represent variables of interest. An edge 4 is a pair 4 = 〈+4 ,,4〉 ∈ �
consisting of two sets, an invertex +4 ⊂ - and an outvertex,4 ⊂ -.



26 2 Background and Related Works

Figure 2.16 depicts a metagraph. In this example, the generating set is

- = {G1 , G2 , ..., G5} and the set of edges is � = {41 , 42 , 43}. The edge 41
can be described by the pair 〈{G1}, {G2 , G3}〉, which are respectively the

invertex and outvertex of the edge.

A sequence of edges 〈41 , 42 , ..., 4=〉 from an element G to an element H

where G ∈ 8=E4AC4G(41), H ∈ >DCE4AC4G(4=) and for all 48 , 8 = 1, ..., = − 1,

>DCE4AC4G(48) ∩ 8=E4AC4G(48+1) ≠ ∅ is defined as a simple path. This

notion does not describe all the connectivity properties existing in a

metagraph. For example, in Figure 2.16, there are two simple paths

from {G1} to {G5}, 〈41 , 43〉 and 〈42 , 43〉. However, neither of them can

calculate G5 as they respectively do not reach either G3 or G4, which are

both necessary to calculate G5. Using the set consisting of all three edges

〈41 , 42 , 43〉 is necessary (and sufficient) to calculate G5, but it is not a

simple path: there does not exist a simple sequence of edges consisting

of these three. Such a set of edges 〈41 , 42 , 43〉 is called a metapath [103],

and is defined as follows:

Definition 2.4.2 (Metapath) Given a metagraph ( = 〈-, �〉, a metapath

"(�, �) from a source � ⊂ - to a target � ⊂ - is a set of edges �′ ⊆ �
such that every 4 ∈ �′ is on a simple path from some element in � to some

element in �. Moreover, by construction, we have:

(i) ∀4 = 〈+4 ,,4〉 ∈ �′,
⋃
4 +4 \

⋃
4,4 ⊆ �, i.e., the source should

include all pure inputs on the metapath;

(ii) � ⊆ ⋃
4,4 , i.e. the target is included in (a subset of) the union of

outvertices.

Reachability between the source and target sets in a metagraph is defined

by the existence of (valid) metapaths between the two — in particular

verifying the condition on the source that is sufficient by itself to reach

the target.

Conditional metagraphs

Metagraphs can be augmented by propositions, i.e. statements that can

either be true or false. We call metagraphs without propositions simple

metagraphs, and refer to metagraphs with propositions as conditional

metagraphs.Aproposition attached to an edge can equally be represented

as being part of the invertex of the edge, and it must be true in order for

the edge to be used in a metapath. Each edge may contain zero or more

propositions and each proposition may be used in multiple edges.

Definition 2.4.3 (Conditional Metagraph) A conditional metagraph is a

metagraph ( = 〈-, �〉 with - = -? ∪ -E where -? is a set of propositions
and -E is a set of variables. For each edge, at least one of the (in or out)

vertices is not empty, i.e., ∀4 ∈ �,+4 ∪,4 ≠ ∅. Second, the invertex and

outvertex of each edge must be disjoint. Finally, if the outvertex contains a

proposition, it contains only it and does not contain other elements (in -), i.e.,

with -E ∩ -? = ∅, we have ∀? ∈ -? ,∀4 ∈ �, if ? ∈,4 , then,4 = {?}.

Figure 2.17 depicts a conditional metagraph. Here, we show how they

can be used by representing the necessary tasks for employees to perform

a bank transfer. Employees (D1, D2) and tasks (2A40C4_ 5 >A<, 5 8;;_ 5 >A<,



2.4 Metagraphs and Hypergraphs 27

u1

u2
fill_form

review_form

create_form

transfer_money
e3

e1

e2

tenure > 2

tenure > 5

Figure 2.17: A simple example of conditional metagraph to model the following question: what are the necessary tasks for employees

to perform a bank transfer? The edge 43 models the fact that both 5 8;;_ 5 >A< and A4E84F_ 5 >A< need to be fulfilled to perform the last

operation CA0=B 5 4A_<>=4H.

A4E84F_ 5 >A<, CA0=B 5 4A_<>=4H) are put into relation by the edges (41,

42, 43) between sets of elements. Each edge contains an arbitrary number

of propositions (e.g. C4=DA4 > 2 attached to 41). If a proposition is set on

an edge, it must be true to consider its usage.

Both employees can 2A40C4_ 5 >A< and 5 8;;_ 5 >A< via 41 if they have

more than two years of experience, and A4E84F_ 5 >A< if they have more

than five years of experience via 42. The edge 43 models the fact that both

5 8;;_ 5 >A< and A4E84F_ 5 >A< need to be fulfilled to perform the final

operation, CA0=B 5 4A_<>=4H. Overall, the set of employees {D1 , D2} can
perform {CA0=B 5 4A_<>=4H} if all three edges of the metagraph are used.

Note that {41 , 42 , 43} is not a simple path, but a metapath.

Metagraph properties

Some properties and operations defined on a metagraph are helpful to

analyze policies in terms of reachability, redundancy and consistency.

For example, metagraphs have a property called dominance which can

be used to determine redundant components (edges or elements) [28] [28]: Ranathunga et al. (2020), ‘Verifiable

Policy-Defined Networking using

Metagraphs’

.

Once identified, those components can be safely removed from the

policies. A metapath is input-dominant if no proper subset of its source is

also a metapath to its target, edge-dominant if no proper subset of its edges

is also a metapath to its target, and dominant if it is both input-dominant

and edge-dominant [103].

Definition 2.4.4 (Input dominance) Given a metagraph ( = 〈-, �〉,
for any two sets of elements �, � ⊂ -, a metapath "(�, �) is said to be

input-dominant if there does not exist any metapath"′(�′, �) with �′ ⊂ �.

Definition 2.4.5 (Edge dominance) Given a metagraph ( = 〈-, �〉, for
any two sets of elements �, � ⊂ -, a metapath "(�, �) = �′ is said to

be edge-dominant if there does not exist any proper subset of edges from �′

forming a metapath from � to �.

Non-dominant metapaths indicate redundancies in a metagraph, as well

as in the underlying policies. Considering the example in Fig. 2.18, the

metapath "1({D1, D2}, {CA0=B 5 4A_<>=4H}) = {4′
1
, 4′

2
, 43} is not input-

dominant."2({D1}, {CA0=B 5 4A_<>=4H})= {41 , 42 , 43} is indeed ametap-

athwith {D1} a proper subset of {D1 , D2}. Similarly, the set of edges {41, 42,



28 2 Background and Related Works

Figure 2.18: This conditional metagraph

illustrates the notion of dominance

among metapaths. The metapath

"1({D1 , D2}, {CA0=B 5 4A_<>=4H}) =

{4′
1
, 4′

2
, 43} is not input-dominant be-

cause "2({D1}, {CA0=B 5 4A_<>=4H}) =
{41 , 42 , 43} is also a metapath with

{D1} a proper subset of {D1 , D2}. Simi-

larly, "3({D1}, {CA0=B 5 4A_<>=4H}) =

{41 , 42 , 43 , 44 , 45} is not an edge-

dominant metapath because

"4({D1}, {CA0=B 5 4A_<>=4H}) =

{41 , 42 , 44} exists, with {41 , 42 , 43} ⊂
{41 , 42 , 43 , 44 , 45}.

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

e1'

bypass
e4

e2' e5

tenure > 2

tenure > 2 &
user_is_employee

43, 44, 45} does not form an edge-dominantmetapath"3 for �= {D1},� =
{CA0=B 5 4A_<>=4H} because one of the dominant metapaths for this cou-

ple is"4({D1}, {CA0=B 5 4A_<>=4H}) = {41 , 42 , 43} ⊂ {41 , 42 , 43 , 44 , 45}.

2.4.2 Definitions - Hypergraphs

Hypergraphs are similar to metagraphs. They are also a generalization

of conventional graphs where sets of elements are connected by a single

hyperedge. We are concerned with directed hypergraphs and will thus

refer in the following to directed hypergraphs simply as hypergraphs.

Like with metagraphs, each edge in a hypergraph is a directed set-to-set

mapping, where the source set is called the tail of the edge and the target

set is called the head of the edge. More formally, a hypergraph can be

defined as follows:

Definition2.4.6 (Hypergraph) Adirected hypergraph is a pairH= (+, �),
where + = {E1 , E2 , . . . , E=} is the set of vertices, and � = {41 , 42 , . . . , 4<}
is the set of hyperedges.

Figure 2.19:Ahypergraph. Edges canhave

multiple sources (41), multiple targets (42)
or even both (43). Edges can also have

either an empty head or tail (44).

x4

x5

x6

x1

x3

x8

x9

x7

e1 e2

e3

e4
x2

Figure 2.19 represents a hypergraph. Edges can have multiple inputs

(41), multiple outputs (42) or even both (43). Edges can also have either

an empty head or tail (44). A directed hypergraph is a hypergraph with

directed hyperedges:

Definition 2.4.7 (Hyperedge) A directed hyperedge is an ordered pair

4 = ()4 , �4), where )4 ⊆ + is the tail of 4 and �4 ⊆ + \ )4 is its head. )4
and �4 can possibly be empty.

Gallo et al. [104] defines two different types of hyperedge. A backward

hyperedge (B-edge) is a hyperedge 4 = ()4 , �4), with |�4 | = 1. A forward



2.4 Metagraphs and Hypergraphs 29

x1

x2

x3

(a) A backward hyperedge (B-edge).

x1

x2

x3
(b) A forward hyperedge (F-edge).

Figure 2.20: Types of hyperedges in a hy-

pergraph

hyperedge (F-edge) is a hyperedge 4 = ()4 , �4), with |)4 | = 1. Figure 2.20

represents both a B-edge (Fig. 2.20a) and an F-edge (Fig. 2.20b).

It follows that a B-hypergraph is a hypergraph whose hyperedges are

B-edges. Similarly, an F-hypergraph is a hypergraph whose hyperedges

are F-edges. A BF-hypergraph is a hypergraph whose hyperedges are

either B-edges or F-edges.

Note that we do not need a special kind of hyperedge to represent a

relation from many sources to many destinations. A hyperedge like this

can be modeled using a B-edge from the sources to an intermediate

node, then an F-edge from the intermediate node to the destinations. A

BF-hypergraph is therefore the most general hypergraph required.

Definition 2.4.8 (Hypergraph simple path) A path %BC from B to C in

H is a sequence %BC = (E1 = B, 41 , E2 , 42 , . . . , 4@ , E@+1 = C), where B ∈ )41 ,
C ∈ �4@ and E8 ∈ {�48−1

} ∩ )48 , 8 = 2, . . . , @. We say that C is connected to

B if there is a path from B to C.

Gallo et al. [104] [104]: Gallo et al. (1993), ‘Directed

hypergraphs and applications’

gives the first widely accepted definition of a directed

hyperpath. Their definition is similar to the metapath definition we give

in Definition 2.4.2. Later, several closely related and often equivalent def-

initions of directed hyperpaths were published [105–107]. The definition

we give here is based on the of Ausiello et al. [105] [105]: Ausiello et al. (2005), ‘Partially

dynamic maintenance of minimum

weight hyperpaths’

.

Since we are interested in directed hyperpaths on directed hypergraphs,

when we say hyperpath, it should be assumed that it is a directed

hyperpath.

Definition 2.4.9 (Subhypergraph) A hypergraph H′ = (+′, �′) is a

subhypergraph of a hypergraph H= (+, �) if +′ ⊆ + , �′ ⊆ � and for any

edge 4 ∈ �′ it holds that �(4) ⊆ +′ and )(4) ⊆ +′.

Definition 2.4.10 (Hyperpath) Let H= (+, �) be a directed hypergraph
and let B, C ∈ +(�). A hyperpath from B to C inHis a minimal subhypergraph

(where minimality is with respect to deletion of vertices and edges) H′ ⊆
H. Further, the hyperedges comprising H′ can be ordered in a sequence

〈41 , 42 , . . . , 4:〉 such that for every edge 48 ∈ H it is the case that )(48) ⊆
{B} ∪ �(41) ∪ �(42) ∪ · · · ∪ �(48−1) and C ∈ �(4:).

Based on hyperpaths, hypernetworks were introduced by Volpentesta [4]

[4]: Volpentesta (2008), ‘Hypernetworks

in a directed hypergraph’

who presents two types of hypernetwork, the B-hypernetwork and the

(B, 3)-hypernetwork. Informally, the (B, 3)-hypernetwork is the subhyper-

graph composed of all elements in hyperpaths from a node B to a node

3.



30 2 Background and Related Works

Definition 2.4.11 ((B, 3)-hypernetwork) Consider a hypergraph H =

(+, �). Let B, 3 ∈ + and letΠB,3 be the set of hyperpaths from B to 3 in H.

The (B, 3)-hypernetwork inHis defined as the subhypergraphHB,3 = (+′, �′),
where �′ =

⋃
(V,E)∈Π(B,3)

Eand +′ =
⋃

(V,E)∈Π(B,3)
V.

The B-hypernetwork is the subhypergraph composed of all elements in

hyperpaths from a node B to any node.

Definition 2.4.12 (B-hypernetwork) The B-hypernetwork in H= (+, �)
is HB =

⋃
G∈+

HB,G .

2.4.3 Metagraphs, Hypergraphs and policies

The foundational text on metagraphs is the book Metagraphs and their

Applications by Basu and Blanning [103][103]: Basu et al. (2007), Metagraphs and

their applications

.

To the best of our knowledge, metagraphs belong to the rare appropriate

structures able to naturally model access control policies. This theoretical

construct guides the reasoning about interactions between policies [28]

[28]: Ranathunga et al. (2020), ‘Verifiable

Policy-Defined Networking using

Metagraphs’

, and we argue they are the best constructs to deal with. Policies are

generally modeled with sets (of, e.g., users, resources) and relations

between them, thus allowing for graph modeling. Basic directed graphs,

however, do not handle well sets of elements while more advanced

structures like simple hypergraphs do not have any sense of direction

of their edges. Other solutions like SAT solvers might have formal

foundations, but they lack a visual representation of the policy. Basu

et al. [103] discuss graphs as well as alternative structures such as petri

nets and higraphs, and consider their shortcomings when compared

to metagraphs. The closest structure to metagraphs is the directed

hypergraph: the main difference between the two lies in the purpose of

the analysis done with either [103].

Additionally, four main paradigms exist to model processes and their

workflows, and metagraphs can integrate three of them [103]. Informa-

tional modeling focuses on the informational entities involved in the

process, e.g. the inputs and outputs of tasks in the process. Functional

modeling is more concerned with the relationships between the different

tasks of the process, e.g. which outputs of a task serve as an input to

another task. Organizational modeling focuses on the agents/resources

related to the tasks, e.g. which agents are assigned to which tasks. Finally,

the focal point of transactional modeling is the issues of timing and

sequencing of the tasks, e.g if the tasks are realized in a sequence or

in parallel. Metagraphs can integrate the informational, functional and

organizational modeling paradigms in a single model. Furthermore,

some issues of timing and scheduling pertaining to the transactional

model can also be addressed using metagraphs.

Even though we argue metagraphs are one of the most suited tool for

representing and reasoning about policies, they are still underused with

only few existing works in the literature. Metagraphs have been used to

represent and verify business processes [108], to verify policy consistency



2.5 Conclusion 31

inMUDprofiles for IoT devices [109], to detect redundancies and conflicts

in network policies for distributed firewalls [28] [28]: Ranathunga et al. (2020), ‘Verifiable

Policy-Defined Networking using

Metagraphs’

, and even to reconcile

local E-health policies with the GDPR legislation to identify violations

and omissions [110]. In Chapter 4 and in opposition to those works, we

verify a policy implementation matches its specification, and evaluate

our method.

Ranathunga et al. [111] [111]: Ranathunga et al. (2017), ‘MGtoolkit:

A python package for implementing

metagraphs’

defined a toolkit in python to manipulate meta-

graphs. Hamza et al. [109, 112] use metagraphs to model policies in

IoT devices to generate and validate Manufacture Usage Descriptions

(MUD) profiles—MUD profiles can be used to define the access control

model and network functionality these devices need to properly function.

They also check compliance of those MUD profiles with different levels

of security policies, to determine where those devices are safe to be

deployed.

Directed hypergraphs have also been widely studied [104, 106, 113–116].

Basu and Blanning [103] mention that metagraphs are related to directed

hypergraphs, however this relationship does not appear to be explored

at any significant depth.

2.5 Conclusion

In this section, we first presented workflows. We gave workflows a

working definition, and showed how they were composed by explaining

the different elements one can use in the YAWL language. We also

presented components usually found in microservices. Namely, we

detailed containers, and showed how they were used in an orchestrator.

We explained how a service mesh works, and illustrated the use of

policy engines as sidecars. We introduced the main archetypes in use

when it comes to authorization. Finally, we presented metagraphs and

hypergraphs by defining them and explaining how theyworked. For each

of those themes,we presented relatedworks close to our contributions.





Movie

VFX

Color Sound
Master


HDR

C1

C2 C4

C3

O

Figure 3.1:Movie workflow example. Ar-

rows model the specified workflow, and

thus represent the communication flow

of our example. The owner ($) sends its

data to the first contractor (�1), for special

effects processing. �1 then sends the mod-

ified data along the workflow, for color

(�2), HDR (�3) and sound (�4) process-

ing. The resulting data is then sent back

to the owner.

A Secure Infrastructure to

Prevent Data Exposures 3

3.1 Problem statement . . . . . . 33

3.2 Threat and security model . 34

Properties and threat model 34

Actors and environment . . . 34

Attackers and malicious

agents . . . . . . . . . . . . . . . . 35

3.3 Infrastructure . . . . . . . . . 36

3.4 Proof of concept . . . . . . . . 38

3.5 The overhead of security . . 40

Startup time . . . . . . . . . . 40

Request time . . . . . . . . . . . 41

3.6 Discussion . . . . . . . . . . . 42

3.7 Conclusion . . . . . . . . . . . 44

In the last chapter, we reviewed concepts pertaining to our contribu-

tions.

This chapter is dedicated to our secure infrastructure, and will mainly

lean on the concepts of workflows and microservices. We first describe

the problem at hand, that is how to create an infrastructure that is able to

support our security requirements forworkflows.Wedetail the properties

we require, as well as our assumptions. Those assumptions constitute our

threat model, our trust model as well as our attacker model. Next, we

detail our designed overall infrastructure which meets our requirements.

We describe our Proof of Concept as well as a method to verify policies

are correctly enforced. We finish by detailing the overhead cost of the

security benefits of our infrastructure.

3.1 Problem statement

In the context of a workflow, the systemwewant to achieve should enable

the secure exchange of data and its security at rest while avoiding any

leak.

As a reminder, we define a workflow as a sequence of tasks to be

performed by a set of independent actors. The owner of the data (i.e., the

instigator of the workflow) interacts with contractors to realize such a

sequence. The workflow is defined by the owner, which defines how and

by whom the data he possesses should be processed and specifies the

different steps needed to achieve his objective. Those tasks are realized

by contractors, which perform the task they have been assigned to, on

the data they have been given. Both the owner and the contractor have

agents processing the data, where agents can represent an employee or

an automatic service. Contractors possess some business intelligence,

which we define as the tools and methods used to fulfill their task(s).

The owner has ownership over the data being processed: he does not

want his data to be leaked in any way. On the other hand, the contractors

do not want the other actors involved in the workflow, including the

owner, to learn about their business intelligence.

To illustrate, we use the same recurring example pertaining to the movie

industry (Chapter 2, Figure 2.1). Let us consider the case of a workflow,

where an owner in the post-production stage of making a movie wants to

employ other companies to edit the video and audio components of the

movie [17]. More specifically, let us imagine that for example the owner

wants to add special effects, tune colors, set up High Dynamic Range

(HDR) and master the audio. In particular, he wants the application of

the special effects first, and then the color tuning, and, finally, HDR in

parallel with the sound mastering.



34 3 A Secure Infrastructure to Prevent Data Exposures

The intent of the owner can be modeled under the form of a workflow,

that is a directed acyclic graph as depicted on Figure 3.1. The owner ($)

first sends its data to the company responsible for special effects (�1). �1

applies special effects to the movie sequences the owner sent him, and

then sends the result to the company responsible for coloring (�2) as well

as another for sound mastering (�4). �2 then ships its result to the agent

in charge of High Dynamic Range (HDR) (�3). Finally, both �3 and �4

sends their output back to the owner, which puts the data together to

obtain the final product.

The purpose of our solution is to allow this workflow to take place,

with the movie transiting from the owner ($) through the contractors

(�1 , �2 , �3 , �4) back to the owner, while guaranteeing data security at

rest and in transport. With our proposal, we prevent unwanted commu-

nications at the network and application level.

3.2 Threat and security model

3.2.1 Properties and threat model

With our solution, we want to guarantee the following properties.

I Data security at rest: Data within the workflow is stored encrypted

(confidentiality) to prevent malicious entities from reading the data.

Access to the data is restricted by isolation. This data cannot be

leaked outside of theworkflow, before, during or after theworkflow

is terminated.

I Data security in transport: Data is exchanged encrypted (confiden-

tiality) to prevent eavesdroppers from reading the data. The data is

also transmitted accurately and complete (integrity), with a verified

origin and destination (authentication). This data cannot be leaked

outside of the workflow, before, during or after the workflow is

terminated.

We consider a threat model from the point of view of each actor of the

workflow.

I Owner: The owner does notwant the data it sends to the contractors

involved in the workflow to be leaked. The threat here is that an

agent leaks the data of the owner to an unauthorized party, or that

the data is accessed by an unauthorized adversary.

I Contractor: The contractors do not want the other actors involved

in the workflow to learn about their business intelligence. The

threat in this case is that actors learn about the processes used by

a contractor. For example, actors might be able to guess the set of

actions applied on the data or the algorithms used to transform the

data.

3.2.2 Trust model: actors and environment

From the point of view of the data owner, trusting the contractors is one

thing, trusting its agents another. In other words, if the owner trusts

the organization of the contractor to not intently bypass our system,



3.2 Threat and security model 35

1: This can happen in very specific cases,

such as when a contractor receives its in-

put(s) and gives its output(s) to the same

actor. As data is encrypted in transport,

only the two ends of a communication see

the data. A solution would be to insert

the owner between contractors such as to

limit their learning of the workflow and

trust the owner not to reverse engineer the

actions of its contractors.

controlling the actions of the contractor’s agents is then possible for both

the owner and the contractors. If one does not trust the contractors to

deploy the infrastructure they are required to deploy, there is no easy

way to verify that the data is actually sent to the secure environment we

designed (Sec. 3.3), therefore removing any guarantee we might have

concerning data leaks. Removing this trust between actors has its own

drawbacks in a real world deployment.

In contrast, looking at a finer granularity, actors do not need to trust

their agents and the ones of the other actors. Even though agents are

deterred from engaging in malicious activities, due to the nature of

their relationship with their companies (internal rules, non-disclosure

agreements, ...), they can still put data and/or business intelligence at

risk through accidental exposure or malicious behavior. Actors are thus

assumed to be malicious. Our solution controls those agents to prevent

owner data and business intelligence leaks. This is consistent with our

need to trust the contractors, since business to business contracts have

the same deterrents, but with much higher stakes at play.

From the point of view of a contractor, we have the same trust issues as the

owner. Other actors, including the owner, might try to reverse engineer

the business intelligence of the contractor. This reverse engineering

process requires a lot more effort than simply having access to the data of

the owner, and might prove to be very hard or even impossible to do in

some cases
1
. In the sameway the owner needs to trust that contractors do

not intently bypass our system, the contractors need to trust that actors

sending them data do not tamper with it. Like the owner, contractors do

not trust the agents.

Finally, both the owner and the contractors need to trust the owners

of the environments involved in the workflow. While the environment

an actor is using can be owned by this actor, meaning the added trust

requirement is the same as trusting the actor, some actors can use a

third-party environment to fulfill their task(s) (e.g. a cloud provider).

Since this third-party provides (part of) the environment the workflow

will be deployed on and has admin rights to the machines supporting

the workloads, it can try to gain access to the data of the owners or

the business intelligence of the contractors. We would need to enhance

our solution with Trusted Execution Environments (TEEs) in order to

fully remove the need for trust in those third-parties. With the proposed

infrastructure, one needs to trust those potential third-parties. As such,

actors and environment providers are considered honest but curious.

To summarize, from the point of view of the owner or a contractor, we

trust everything but the agents. Actors are assumed to be honest but

curious, while agents are assumed to be malicious.

3.2.3 Attacker model: external attackers and malicious

Agents

Taking into account the assets to protect and the trust model, we consider

three types of attackers in our model. As our solution is in the form of

a deployed infrastructure, an attacker can be internal or external to the

modeled workflow. An external attacker can then either be co-located



36 3 A Secure Infrastructure to Prevent Data Exposures

with the deployed workflow (e.g. the attacker is located in a cloud

partially or fully hosting the workflow) or external, attacking from a

remote location.

I External attacker: External to the workflow and the location of

the infrastructure deployment. This highly motivated and often

technically skilled attacker tries to gain access to the data or the

business intelligence of the contractors from the outside.

I Co-located attacker: External to the workflow, but co-located at

the deployment (e.g. an attacker located in one of the clouds that

are part of the workflow deployment). This highly motivated and

often technically skilled attacker tries to gain access to the data

or business intelligence of the contractors, but from a co-located

position that opens more exploit possibilities.

I Malicious agent: Internal to the workflow, this attacker tries to leak

the data outside of the workflow.

Despite the fact our model already covers most cases, it does not deal

with the full range of possible attacks. Fully protecting against some

attacks (e.g. from a contractor or a third-party cloud provider) would

make the system less convenient and usable for contractors or the owner.

Protection from leaks resulting from physical attacks such as when an

employee takes a picture of his screen are not considered.

3.3 Overall description of the infrastructure

We now present the infrastructure we propose for protecting a workflow

execution from the threats expressed in Sec. 3.2. As we need a way to

prevent data leaks, we need to control the communications an agent

can engage in. To achieve this, we need to control the environments

the agents will be using, to make sure that all the actions of an agent

follow a policy enforced by the owner. We opted to do this using the

microservice architecture, for the benefits granted by the components

of the infrastructure listed below. Besides, they are already commonly

deployed to provide many services like automatic scaling and isolation.

In this infrastructure, agents of our workflow are mapped to containers,

which are then used in conjunction with an orchestrator, a service mesh

and policy engines to enforce the policy of the owner.

Figure 3.2 shows the workflow we defined in Figure 3.1, with each actor

having its own deployment space represented by the cloud surrounding

the boxes which represent the agents of those actors (e.g. the �1_1 box

represents an agent of contractor �1). The access policies of a service are

pushed in the policy sidecar associated with the service.

Figure 3.2 also illustrates how we use the elements of the microservice

architecture. Each agent is a pod, containing the service (i.e., the environ-

ment the agent will be using), a proxy and a policy sidecar. The proxy

sidecar will intercept all traffic coming from and going to its respective

service. The proxy will then check thanks to the policy sidecar if the

request is authorized or not. If the request is authorized, it is forwarded

accordingly, and the request is rejected otherwise.



3.3 Infrastructure 37

Movie

O

VFX_2

Proxy

C1_1

Policy

HTTP

HTTP
VFX_1

Proxy

C1_0

Policy

HTTP

HTTP

VFX_3

Proxy

C1_2

Policy

HTTP

HTTP

m
TLS

mTLS

mTLS

m
TLS

(2)

(3)

(4)

(5)

mTLS
(1)

HDR

C3

Color

C2

Sound
Master

C4

mTLS
(6)

mTLS
(7)

m
TLS
(8)

Figure 3.2: Secure infrastructure. Each box represents an agent. It is a pod with the appropriate containers. The container of the color of the

actor represents the service. Purple containers represent the proxies of the service mesh, and blue containers represent the policy sidecars.

The arrows stipulate whether the communications are secure (mTLS) or not (HTTP).

VFX_2

Proxy

C1_1

Policy

HTTP

HTTPVFX_1

Proxy

C1_0

Policy

HTTP

HTTP
VFX_3

Proxy

C1_2

Policy

HTTP

HTTP

Policy Store

Service Mesh
ControllerMovie

Proxy

O

Policy

HTTP

HTTP

Figure 3.3:Representative subset of the se-

cure infrastructure control plane (contrac-

tors �2 through �4 are not represented).

Proxies are configured by the servicemesh

controller, providing them with identities

and key pairs, as well as routing informa-

tion for them to initiate secure commu-

nications with other proxies in the mesh.

Policy changes are enabledwith periodical

pull on the policy sidecars (whose input

comes from a policy store).

Proxies are configured by the service mesh controller (Figure 3.3), pro-

viding them with identities and key pairs, as well as routing information

for them to initiate secure communications with other proxies in the

mesh. Policy is pulled periodically by the policy sidecars from a policy

store, which allows for policy changes. Since the service mesh controller

and the policy store are under the control of the owner, he is in control of

the system. Thus, the owner specifies the policy to be applied to enforce

the desired workflow, preventing data from leaking outside.

The data processed by the pods is stored on mounted Persistent Volumes

(PVs), which are encrypted with a key located in a key-value store of the

orchestrator, providing us with data security at rest. We generate a key

to encrypt each PV required by needs of the workflow. Since the keys are

all stored in the same key-value store, this does not really mitigate risks

against a technically skilled attacker gaining access to the key-value store,

but it can help to protect some of the data in case the attacker only gains

access to a subset of the keys through other means. Since the keys are

stored in the master components of the orchestrator, they are under the

control of the owner. To enforce the workflow and make sure the agents

cannot bypass it via the PVs, each agent must have its own personal PV.

Pods can also communicate according to the specified workflow and



38 3 A Secure Infrastructure to Prevent Data Exposures

2: See https://github.com/

loicmiller/secure-workflow.

policy via mTLS, providing uswith data security in transport as indicated

by the communications between the pods in Figure 3.2. Communications

inside a pod are not encrypted, but the isolation layers protect the data

against eavesdroppers.

Once a service has completed all the tasks he was assigned to do, the

associated pod is destroyed to make sure data cannot be leaked from

this service past this point in time. To provide data security in transport,

services in the service mesh are provided with an identity in the form of

a certificate, which is associated with a key pair. To make sure those are

safe to use, and that no attacker gained access to the keys or tampered

with them before they reach the appropriate service, we need to verify

the key distribution process is secure. In the case of the service mesh, this

is done automatically for us. Appendix A.2 summarizes this procedure,

and how it is secured. Thanks to this infrastructure, communications can

be constrained to follow a policy, giving us a streamlined way to prevent

data leaks. We show how a simple policy to prevent data leaks can be

defined.

3.4 Proof of concept

We realized a proof of concept, by implementing the infrastructure

described in Sec. 3.3. We reproduce the workflow of Figure 3.2, with

services of the workflow receiving and sending arbitrary data to rep-

resent the data of the owner. We use Docker [23] for our containers,

Kubernetes [24] for our orchestration layer, Istio [25] as our service mesh,

using Envoy [26] for the proxy sidecars and Open Policy Agent [27] (OPA)

for the policy sidecars. We also use Kubernetes to provide the services

with encrypted volumes. This infrastructure was deployed on Google

Cloud Platform (GCP), using one cluster for each actor of the workflow,

for a total of five clusters. Each cluster runs one n1-standard-2 node (2

vCPUs, 7.5 GB of memory), on version 1.14.10-gke.36, except the cluster

of the owner which runs two of them, since running the control plane

requires additional resources. The clusters for the owner, color and VFX

are located in us-central1-f whereas the clusters for HDR and sound are

located in us-west2-b.

The workflow we want to enforce is shown in Table 3.1, where each

row represents the source of a request, and each column a destination.

The full policy is not represented by this table, additional attributes

further constrain those permissions (see Listing A.1 for the full policy).

The agents can also send GET requests, but they are all denied by the

policy.

The complete data, code as well as guidance to realize this Proof of

Concept are publicly available
2
.

We also developed a test framework to check that:

I Traffic is either encrypted or protected inside a pod by the isolation

provided by the pods;

I The policy, allowing or denying communications between services,

is correctly enforced.

https://github.com/loicmiller/secure-workflow
https://github.com/loicmiller/secure-workflow


3.4 Proof of concept 39

Destination

Source owner +�-1 +�-2 +�-3 Color Sound HDR

owner - POST

+�-1 - POST POST

+�-2 - POST

+�-3 - POST

Color - POST

Sound POST -

HDR POST -

Table 3.1: Proof of Concept policy.

To do so, we capture traffic on every network interface in the service

mesh and perform each possible communication. In the general case,

considering we have # services and" types of request, we obtain the

number of possible communications with the formula:#(# −1)". Since

we capture on each interface, and services have a loopback as well as

an external interface, we obtain the total number of required captures:

#(# − 1)"(2#) = 2(#3 −#2)". The number of required captures thus

grows cubicly with the number of services and linearly with the number

of requests.

Considering our previous example in Sec. 3.4, we have seven services, two

possible requests (GET and POST), which gives us a total of 1176 captures.

Captures are obtained from a tcpdump container added to the service

pods as a sidecar. Since containers in the samepod share the samenetwork

namespace, capturing traffic from the tcpdump container on either the

loopback or the external interface allows us to see traffic from the other

containers in the pod. Figure 3.4 shows the path a communication takes

inside the service mesh, as well as whether traffic is encrypted or not.

The request is initiated by service A, and intercepted by its associated

proxy via the loopback interface. The proxy will then check thanks to

the policy sidecar if the request is authorized or not. If the request is

authorized, it is forwarded accordingly. The request is rejected otherwise.

In the case where the request is authorized, it is forwarded to the proxy of

service B by using mTLS. There, the proxy forwards the request to service

B, which replies by going through the same steps as earlier. Traffic going

to/coming from the loopback should be unencrypted, whereas traffic

going to/coming from the external interface should be encrypted. Our

captures show that this is indeed the case. Traffic does not need to be

encrypted on the loopbacks, as all the elements (i.e, the service and its

sidecars) that have access to this loopback are in the same trust zone. The

layers of isolation provided by the pods protect the loopback traffic from

being seen by unauthorized entities.

Service A

Proxy

Source

Policy

HTTP

lo

eth0

Request
Response

Service C

Proxy

Bystander

Policy

HTTP

HTTP

lo

eth0

Service B

Proxy

Destination

Policy

HTTP

lo

eth0

Figure 3.4: Detailed view of pods and

the communication flow. Traffic is unen-

crypted on the loopbacks, but encrypted

on the external interfaces.

Obviously, pods in the service mesh have one of three roles during a



40 3 A Secure Infrastructure to Prevent Data Exposures

3: See https://github.com/

loicmiller/secure-workflow.

communication. Either they are the source of the communication, the

destination of the communication, or simply a bystander that is not

involved in the communication. This is important, because the checks we

need to perform depend on where traffic was captured:

I Source/Destination loopback: We need to verify that a commu-

nication between the source and the destination is occurring (i.e.,

correct IP addresses and ports). We need to verify that the request

in the capture corresponds to the request we are testing for (GET

or POST). The response needs to be in accordance with the policy:

in this case, ’403 Forbidden’ if the policy was ’deny’ and ’200 OK’

(GET) or ’201 OK’ (POST) if the policy was ’allow’.

I Source/Destination external interface: We need to verify that a

communication between the source and the destination is occurring

(correct IP addresses and ports). We need to verify that the traffic

is encrypted by mTLS, and not passed in clear text.

I Bystander loopback and external interface: We need to verify

that no communication between the source and the destination is

occurring, whether encrypted or unencrypted.

We built a tool that automatically extracts the authorization policies from

the OPA policy configuration, generates and then tests an access control

matrix. For each possible communication in the service mesh, our tool

loads all the captures relevant to this communication, identifies them to

see what we should verify in each capture, and then proceeds to check

if captures are in accordance with the criteria above. It is then easy to

evaluate whether the system is compliant with the overall policy. The

complete code for the test framework is publicly available
3
.

3.5 The overhead of security

In this section, we analyze the performance overhead added by the policy

sidecar enforcing security. We measure the pod startup time, and the

request duration (between each couple of connected pods).

3.5.1 Startup time

We first evaluate the impact of having an additional container for OPA on

the startup time of pods. An independent-samples t-test was conducted to

compare startup times in a deployment of our PoC with or without OPA.

Our aim is to determinewhether these is a significant statistical difference

in startup time when OPA is instantiated. For that purpose, we test two

hypotheses. (�0) There is no statistically significant difference in the

startup times of the two deployments, and (�1), a statistically significant

difference exists between the startup times of the two deployments.

We gathered 130 observations per pod per deployment (# = 1820

total). We measure the startup time of pods by scraping the transition

timestamps between PodScheduled and Ready states of the pods.

Figure 3.5 allows to compare the distribution of startup times in the

deployments with and without OPA to measure the cost on the initial

deployment.

https://github.com/loicmiller/secure-workflow
https://github.com/loicmiller/secure-workflow


3.5 The overhead of security 41

4 5 6 7 8 9 10 11 12 14
Startup time (s)

0

50

100

150

200

250

300

350
Nu

m
be

r o
f o

bs
er

va
tio

ns
no OPA
M = 5.93, SD = 0.88
OPA
 M = 7.87, SD = 1.03

Figure 3.5: Distribution of startup time

in the deployment without OPA (stripes)

compared to the deployment with OPA

(full)

The 910 observations in the group with the OPA sidecar (" = 7.87, (� =

1.03), compared to the 910 observations in the group without the OPA

sidecar (" = 5.93, (� = 0.88), exhibit significantly higher startup times,

C(1818) = 43.19, ? < 0.001. The effect size for this analysis, 3 = 1.985,

was found to exceed Cohen’s convention for a large effect (3 = 0.80).

Running a post hoc power analysis also reveals a high statistical power,

1 − � > 0.999.

These results show that pods with OPA have a substantial increase in

startup time of almost two seconds on average. This corresponds to an

increase of 32.72% of the startup time. We ran the same analysis on a per

pod basis and found the results to be consistent with those results.

3.5.2 Request time

This second evaluation is about measuring the influence of the policy

size on communications, to test whether the policy is scalable for more

complex workflows. We analyze separately requests happening within

the same region (intra-region e.g. us-central1-f to us-central1-f) from

inter-region requests (e.g. us-central1-f to us-west2-b) as communication

times are significantly different in the two cases.

For each request duration between pairs of pods, we take into account

whether the authorized communication happened inside a region or

between regions (inter-region), since the duration of requests are different

for those types of communication, and thus the impact of policy size is

not the same.

A one-way between subjects ANOVA was conducted for each type of

communication (intra-region and inter-region) to compare the effect of

policy size on request duration in five levels of policy size: no opa, all

allow, minimal, +100 and +1000.

The no opa policy deployment corresponds to having no OPA container

at all. The all allow policy deployment corresponds to having no

rules and allowing all communications by default. The minimal policy

deployment corresponds to having the default minimal number of rules

to enforce the workflow of the PoC. The +100 and +1000 correspond to

the minimal policy being inflated respectively with 100 additional rules

(+147%) and 1000 additional rules (+1470%), with additional rules being

obligatorily evaluated by OPA.



42 3 A Secure Infrastructure to Prevent Data Exposures

Figure 3.6: Spread of request duration for

intra and inter-region communications by

policy size.
no OPA all allow minimal +100 +1000

0

20

40

60

80

100

120

Re
qu

es
t d

ur
at

io
n 

(m
s)

Intra-region
Inter-region

4: See https://github.com/

loicmiller/secure-workflow for

full data, code and statistical analysis in

the form of jupyter notebooks.

For each ANOVA, we gathered 40 observations per authorized commu-

nication per level of policy (# = 1600 in total). We measure request

duration by recording the elapsed time of requests between pairs of pods

via cURL.

Figure 3.6 shows the distribution of request duration for each policy

size. For intra-region communications, there is a significant difference

in request duration among the five scenarios of policy deployments,

�(4, 795) = 364.05, ? < 0.001, �2

? = 0.65. Post hoc comparisons using

Tukey’s HSD test indicated significant differences between the mean

scores of all policy deployments, e.g. no opa (" = 0.0049B, (� = 0.0010),

+1000 (" = 0.0136B, (� = 0.0028), except the all allow and minimal

deployments.

For inter-region communications there also exists a significant difference

(in request duration) among the five scenarios of policy deployments,

albeit with a lesser effect: �(4, 795) = 15.23, ? < 0.001, �2

? = 0.07. Post

hoc comparisons using Tukey’s HSD test indicated that the mean scores

for policies close in size were not significantly different (e.g. no opa and

all allow), whereas policies distant from each other in terms of size

were found significantly different (e.g. +100 and +1000)4 .

As expected, the impact of policy size is weaker in the inter-region

communications as those communications are naturally longer and

more subject to variations than intra-region communications. Policy size

accounts for 65% of the variance in intra-region communications whereas

it accounts only for 7% of the variance in inter-region communications.

Taken together, these results suggest that policy size does have a consid-

erable effect on request duration. While our results suggest that a higher

policy size increases request duration, it should be noted that the size

must be quite high in order to observe an effect, especially regarding

inter-region communications. With such communications, incremental

increases in policy size do not appear to have a significant effect on

request duration.

3.6 Discussion

In this chapter, we showed how to use the microservice architecture to

secure workflows. Our infrastructure enables the secure exchange of

data and its safety at rest while avoiding any leak. We defined our threat

https://github.com/loicmiller/secure-workflow
https://github.com/loicmiller/secure-workflow


3.6 Discussion 43

and security models, stating we want to guarantee data security at rest

and in transport. More specifically, in accordance with the principles of

zero-trust, we achieve a secure system that enables the exchange of data

between non-trusted agents while guaranteeing this data is secure at

rest, in transport and cannot be leaked by any agent in both cases, in the

context of a workflow. In our trust model, actors are assumed honest but

curious whereas agents are assumed to be malicious.

We then described our infrastructure, and detailed our proof of concept.

With our model and proof of concept, we provide data security at rest by

using encrypted volumes aswell asmultiple layers of isolation in the form

of pods and containers. We also provide data security in transport by

using mTLS for the communications that are exposed, which provides us

with encryption, authentication and integrity of the data being exchanged.

The workflow is defined by the owner and enforced using policy sidecars,

which controls the agents participating in the workflow.

Looking back at our attacker model, one can see how the elements of the

infrastructureprevent adversaries fromattaining their goal. Themalicious

agent cannot leak data outside of the workflow, since he is isolated in

a pod, and all requests emanating from the agent are intercepted and

submitted to the implemented policy, which prevents him from leaking

data. Communications the agent makes are encrypted, and can only be

performed with other authenticated agents, preventing eavesdropping

and impersonation. Since services are isolated and can only be reached by

going through the proxy (and its associated policy sidecar), an external

attacker cannot perform any data breach. The co-located attacker faces

the same issue, and system exploits may be prevented via the isolation

provided by pods and containers. Obviously, protection is only provided

if the trust model is respected, and the policy is defined and implemented

correctly. The owner has all the tools in hand to do so, since the service

mesh controller and the policy store are under its control.

Using our solution comes with other practical advantages. Our infrastruc-

ture is easy to use as each actor can opt for the environments of its choice

in order to deploy the workflow. The standardized environment grants

reduced complexity for security management, compared to monolithic

solutions. Changes to the workflow and the policy can be applied at the

centralized policy store, using a high-level policy language.

The business intelligence of the actors is separated from the infrastructure;

since our architecture model is modular, one can choose which solution

to use for each part of the infrastructure. A service mesh can be swapped

for another, same thing for the orchestrator and the container technology,

meaning there is no vendor lock-in, the solution is flexible.

The service mesh also provides fine-grained telemetry. This observability

feature (e.g. metrics, logs, tracing and service mesh visualizations) allows

to monitor actions of the agents in the pods. One can use numerous

addons to Istio to improve the monitoring of the system (e.g. Kiali, Jaeger,

Zipkin).

To the best of our knowledge, this is the first time someone showed

how to use the microservice architecture to secure workflows. Though

we manage to secure data at rest and in transport using elements of

the microservice architecture, some threats are still potent. First, using



44 3 A Secure Infrastructure to Prevent Data Exposures

our infrastructure does not prevent any attacks on the services that

are deployed in it. For example, someone using an unsecure outdated

version of apache within our infrastructure will be vulnerable to exploits

possible on this version of the service. Since the service inside our

infrastructure can be literally anything, there is little we can do to prevent

those attacks. Second, our infrastructure does not prevent any side-

channel attack. Third, we assume actors to be honest but curious, and

we trust the platform(s) the workflow is deployed on. This assumption

does not always hold, as the underlying platform or even actors can be

compromised or malicious.

Finally, our infrastructure assumes its policy specification to be correct,

and its implementation to be exact. However, this is not always the

case, so our infrastructure is open to attacks using the fact the policy

is not always correct. Indeed, a policy specification can contain errors

or redundancies, and it does not always match its implementation as

errors can be made in the translation process, whether by a faulty tool

or human error. To address this limitation, we propose in Chapter 4 a

way to verify that the policies deployed in our infrastructure actually

match their initial specification, and in Chapter 5 a way to verify the

initial specification does not contain any redundancies.

3.7 Conclusion

In this chapter, we set out to find how to use the microservice architecture

to secure workflows. We defined our threat and security models, stating

we want to guarantee data security at rest and in transport. We then

described our infrastructure, and detailed our proof of concept. Using

the Google Cloud Platform, we deploy a sample workflow and verify the

policy implementation is actually enforced via basic captures at crucial

locations in the infrastructure. We finally measured the overhead of

security by comparing startup times of containers with and without

Open Policy Agent, as well as comparing request times according to the

size of the deployed policy. The added security provided by the workflow

enforcement costs pods two seconds of startup time on average, and

either 7% or 65% of the variance in request duration.

This work has led to two publications [19, 20] and the development of a

publicly available Proof of Concept.

Overall, we recommend following the appropriate guidelines when

deploying a workflow using microservices, and advise to examine the

considerations laid out in this in this chapter when it comes to protecting

the data. Possible future works include studying how changes in the

workflow impact the security of our infrastructure, or trying to remove

some of the trust requirements. As we said, the underlying platform or

even actors can be compromised or malicious, and lowering our trust

requirements would make our overall infrastructure more secure. A

possible lead to lowering those requirements would be to use Trusted

Execution Environments (TEE), which are a secure area inside a processor.

Code executed inside a TEE is encrypted, and cannot be accessed even by

the underlying platform, providing confidentiality benefits. Using TEEs,

tasks running inside our workflow would be protected even from the

https://github.com/loicmiller/secure-workflow


3.7 Conclusion 45

cloud provider those tasks run on. Further works are needed to study

both the security and limitations of TEEs. For one, the paging system

of TEEs imposes a size limit, which might be prohibitive for workflows

exchanging large amounts of data.





Verifying Policies Using

Metagraphs 4

4.1 Metagraphs and workflows 47

4.2 Verifying policies . . . . . . . 50

Specification to metagraph . . 51

Implementation to metagraph54

Comparison . . . . . . . . . . 55

4.3 Performance analysis . . . . 55

Methodology . . . . . . . . . . 55

Evaluation . . . . . . . . . . . 57

4.4 Discussion . . . . . . . . . . . 58

4.5 Conclusion . . . . . . . . . . . 59

In the previous chapter, we reviewed how to secure data at rest and

in transport using our secure infrastructure. Here, we explain how to

perform policy verification using metagraphs.

To perform our policy verification, we propose to model policies with

a generic but rich enough structure, metagraphs. We use their formal

foundations to verify whether the implementation of a policy, its actual

deployment, matches its initial specification.

We rely on this structure since, by design, it providesmeans to correct con-

flicts and avoid redundancies [28]

[28]: Ranathunga et al. (2020), ‘Verifiable

Policy-Defined Networking using

Metagraphs’

, as well as a more efficient verification

process than with other structures (e.g. usual graphs). We will expand

on how metagraphs can be used to detect redundancies in Chapter 5.

More general than simple graphs, metagraphs are especially indicated to

model workflow policies [103] [103]: Basu et al. (2007), Metagraphs and

their applications

.

We specifically demonstrate their benefits in the case of workflows. AS

discussed in Chapter 2, processes and their workflows are commonly

modeled using one of fourmodeling paradigms, each of them focusing on

one specific dimension of the workflow, while metagraphs can integrate

three of those paradigms within a single model. Metagraphs can also

model the scheduling of time-critical workflows, which are handled by

the propositions of the conditional metagraph.

First, we will describe the advantages as well as how to use a metagraph

to model workflows and processes. Then, we will explain how we use

metagraphs to verify policies, and we will go through the transforma-

tions we need prior to the verification process. Finally, we will show a

performance analysis of our method and conclude.

4.1 Metagraphs as a model for workflows

Metagraphs are an efficient specification tool to model processes and

their workflows. They integrate all the informational, functional and

organizational modeling paradigms within a single model. Considering

Yet Another Workflow Language [47] [47]: Van Der Aalst et al. (2005), ‘YAWL:

yet another workflow language’

as the most representative tool

to specify, analyze and execute workflows today, we will show how

to transform any of its modeling components (e.g. composite tasks,

conditions) into a metagraph representation. To help explaining this

translation, let us consider the film production process we presented in

Figure 2.7. We remind the reader this case study represents the chain

of information processing realized along the shooting of the movie [49].

Without a loss of generality and for simplicity purposes, we only consider

the start of the process, represented in Figure 4.1. Figure 4.2 shows the

same part of the process, translated to a metagraph.



48 4 Verifying Policies Using Metagraphs

Figure 4.1: Film production process rep-

resented in YAWL. Only the start of the

YAWL process is represented for brevity

(Figure 2.7).

start
production

Welcome
to Start
Process

Input
Cast
List

Input
Crew
List

Input
Location

Notes

Input
Shooting
Schedule

Input_Crew
_List

Welcome_to_
Start_Process

placeholder_1 production

castInfo

crewInfo

crewMember

locationInfo

Inpu
t_C

ast_
List

Input_Location_Notes

Input_Cast_List_completed

Input_Crew_List_completed

Input_Location_Notes_completed

shootingSchedule

originalTiming

totalPageTime
totalScenes

shootingSchedule

production

crewInfo

Input_Shooting
_Schedule

Figure 4.2: Film production process represented with a metagraph. The task Input Cast List does not share variables with its next task,

Input Shooting Schedule, thus we add a proposition indicating the completion of the task.

Tasks and nets

In a metagraph, we can model tasks as edges of the metagraph, where

the inputs (outputs) of a task correspond to the invertex (outvertex) of

the edge. Using metagraphs, we can model atomic tasks as edges, and

composite tasks can be edges representing the composite tasks, with

each composite task being its own sub-metagraph, mirroring the nets in

YAWL.

Processes and workflows

A process may contain information elements which are not yet evaluated.

A workflow is an instantiation of a process for a set of particular values.

Thus, a process can result in multiple workflows. Taking into account

this definition, a process can be modeled by a conditional metagraph,

with all of its propositions still not evaluated. A metagraph with no

propositions, i.e. a simple metagraph, can represent a workflow, i.e. one

particular instantiation of the process [103].

Roadblocks in the modeling

In YAWL, a task can have any input and any output, or can even have

no input or output at all. At first glance, this seems to limit our model

in two ways. First, since we model tasks as edges, tasks with no input

(output) have no invertex (outvertex). To overcome this limitation, we

add placeholder variables to empty vertices, which have no effect, but

extend our modeling abilities to include such tasks. Conditions are also

modeled using placeholder variables since they do not have any input or

output.



4.1 Metagraphs and workflows 49

Second, in YAWL, two tasks taking place sequentially in the process are

not necessarily linked by their variables. In other words, the outputs

of the first task do not necessarily correspond exactly to the inputs

of the second task. This may look troublesome, since our metagraph

representation relies on those links to retain the information of the

workflow (i.e. which task should be performed next?), and makes use of

paths and metapaths in its analysis. To enforce the sequence of tasks, we

need to add propositions to the metagraph in certain cases.

There are two possibilities when considering two tasks chained sequen-

tially, regarding the outputs of the first, and the inputs of the second. The

first possibility is that the outputs of the first task correspond at least

partially to the inputs of the second task, that is at least one variable is

common to the two sets. In this case, no propositions need to be added

since we have at least one shared variable, modeling the link between

those two tasks. The second possibility is that there is no correspondence

between the outputs of the first task and the inputs of the second task –

the tasks are disjoint. For example, this occurs when the outputs of the

first task are not necessary to perform the second task, but we still want

the tasks to be executed in this specific order, like the Input Shooting

Schedule task of Figure 4.1. In this case, we need to create a new edge

from the outputs of the first task to a proposition signifying the first task

has been completed. Once this is done, we can add this proposition to

the input of the second task, to preserve the link between the tasks. This

is shown in Figure 4.2, where the task Input Cast List does not share

variables with its next task, Input Shooting Schedule. If the proposi-

tion is true, the task has been completed and the second task can start –

the task becomes unavailable otherwise. Thus, the proposition clarifies

the fact that Input Cast List needs to be completed in order to proceed

to the Input Shooting Schedule task.

Operators

The AND-split, OR-split and XOR-split elements are handled naturally in a

metagraph. Since each task is represented by an edge, a split simply corre-

sponds to multiple edges sharing the same invertex. However, modeling

the AND-join, OR-join and XOR-join elements is a bit more complex.

With join operations, we cannot say it simply corresponds to multiple

edges which share the same outvertex, since, depending on the operator,

we might want all or only some of the tasks preceding the join to have

been executed. The OR-join requires at least one of the preceding tasks is

executed, so no additional measures need to be taken. An AND-join on the

other hand requires all tasks preceding the join to be executed, whereas

a XOR-join requires only one of them is. To model this intent, we add

completion propositions to the metagraph, in the same way we did for

disjoint tasks. Those propositions are illustrated in Figure 4.2, where the

tasks Input Cast List, Input Crew List and Input Location Notes

are AND-joined in the next task, Input Shooting Schedule. It follows

that the AND-join needs all propositions to be true, whereas the XOR-

join needs exactly one of them to be true. To check for the fact all other

propositions are false in the case of the XOR-join,we create non-completion

propositions in addition to completion propositions. A non-completion

proposition is true if the task has not been executed, and false otherwise.



50 4 Verifying Policies Using Metagraphs

Using this metagraph representation brings us many advantages. First

of all, it is easier to identify and analyze workflows associated with

a process, via the evaluation of the propositions in the conditional

metagraph representing the process. This representation can also help

us analyze the independence of decomposed subprocesses, as well as

the redundancy and full connectivity of composite processes via the

union of metagraphs [103]. We can also identify more easily interactions

between/among informational elements and/or tasks. For example, we

can simply analyze how do informational elements relate to each other

through tasks, how do tasks relate to each other, and even which tasks

might be disabled if a resource becomes unavailable.

Note that start (end) conditions are not necessary in a metagraph since

any invertex (outvertex) can serve as a potential start (end). Even though

we include start and end conditions, we can perform the analysis of a

process, where any invertex (outvertex) can serve as a potential start (end).

This enables us to represent multiple processes in a single metagraph,

which can be useful to get a holistic view of all the processes existing in a

single environment/company.

4.2 Verifying policies

In this section, we show how we use the metagraphs to achieve workflow

policy verification. When a policy administrator defines the policy to be

deployed for a given system, they will first model the behavior of the

system at a high level, by writing a policy specification. The administrator

then refines the policy specification into a policy implementation (to

enforce the policy on the system).

By modeling as metagraphs the high-level policy specification, as well as

the translated policy implementation, not only can we look for conflicts

and redundancies at both levels [28], but we can also compare the two in

order to track deployment errors. If the specification and implementation

metagraphs are equal, they then match (the policy implementation

corresponds to the policy specification) and no error occurs, but when

they do not match, the metagraphs are not equivalent – it means that

errors occurred during the refinement and/or deployment. Figure 4.3

Figure 4.3: Enabling policy verification

using metagraphs. When designing the

policy, a policy administrator can either

choose to create their policy specifica-

tion by visually representing the policy

in the form of a conditional metagraph, or

choose to specify the policy in another

format. If the specification and imple-

mentation metagraphs are equal, we con-

clude that the policy implementation cor-

responds to the policy specification. They

do not match if the metagraphs are differ-

ent: we conclude that deployment errors

occur. In addition, and by design, the spec-

ification metagraph can be used to check

for redundancies and conflicts in the pol-

icy at both levels (high level specification

and ground deployment).

Policy
specification

Policy
implementation

Specification
metagraph

Implementation
metagraphEquality?

Refinement

Random spec
generator

Conflict/Redundancy
checking

Policy
design

1

2

3

4

5

2
3
4
5

1 RandomWorkflowSpecGenerator
YawlToMetagraph

RegoToMetagraph
SpecImplEquivalence

Tools

SpecToRego



4.2 Verifying policies 51

summarizes our overall construction, as well as the tools we developed

to achieve verification.

Our idea is generally applicable to any type of policy specification and any

kind of policy implementation, provided that both can be converted into

metagraphs (e.gUML [117] [117]: Rumbaugh et al. (1999), ‘The unified

modeling language’

).Weprovide support for YAWLspecifications,

but also support a more general policy format in the form of 〈B>DA24,
34BC8=0C8>=, ?>;82H〉 triples.

To implement the policies, we consider Rego, a high-level declarative

language built for expressing complex policies. Rego is the native query

language of the Open Policy Agent (OPA) [27] project. OPA is an open

source, general-purpose policy engine, i.e. a system answering policy-

related queries according to a policy configuration. OPA is used by

companies like Netflix [32], Atlassian, Plex [118] and many others to

enforce access control in their release processes and service meshes.

4.2.1 Policy specification into a conditional metagraph –

as denoted 2 in Figure 4.3

From YAWL to metagraph

To transform this process into a conditional metagraph, we need to define

the variables set, the propositions set and the edges set defining the

conditional metagraph. To this end, we parse the YAWL file defining

the process. A YAWL file is an XML file, from which we can extract

relevant information, such as the name of tasks, their inputs and outputs,

predicates used for flow control, etc.

The union of elements in the inputs and outputs of each task make up

the variables set of the conditional metagraph. The union of predicates of

each task make up the propositions set. We complete the edges set of the

metagraph by iterating on all the tasks of the process. We summarize the

conditions and actions to take in Figure 4.4. For each task, irrespective of

their order in the YAWLprocess, relevant elements of the YAWL language

are identified. The inputs (outputs) of a task correspond to the invertex

(outvertex) of the edge, whereas predicates correspond to propositions in

the invertex of the edge. The join code indicates the join operation of the

currently processed task, and is used to determine the specific actions in

each possible case (AND, OR, XOR), which were defined in Section 2.4.

The (non-)completion edge refer to the creation of a new edge from the

outputs of the previous task to a proposition signifying the current task

has (not) been completed, like we explained earlier with disjoint tasks.

Figure 4.2 represents a part of the transformation of our example –

the film production process (Figure 4.1) is translated into a conditional

metagraph. Edges represent the tasks of the process, where the invertex

(outvertex) represents the inputs (outputs) of the task. As explained in

the last section, propositions are added (_completed suffix) to make sure

that we retain the information of the workflow.



52 4 Verifying Policies Using Metagraphs

for each task

predicates propositions

starting mappings

completed
mappings

invertex

outvertex

join
code?

previous_task

and

or

xor

previous
task

disjoint?

completion edge

create task
edge

yes

no

Add proposition
to propositions

propositions_set

completion edgeyes

no

create task
edge

Add proposition
to propositions

completion edge

 completion
proposition

non-completion
proposition

completion edge

non-completion
edge

Add completion proposition
for previous task and non-
completion propositions for

other previous tasks to
propositions

create task
edge

edges_set

previous
task

disjoint?

Get YAWL
elements

Convert to
metagraph elements

Figure 4.4: Flowchart of transformations from YAWL to a metagraph. For each task, relevant elements of the YAWL language are identified,

and converted to metagraph elements. The join code indicates the join operation of the currently processed task, which is then used to

determine the actions to perform in each possible case (AND, OR, XOR).

Figure 4.5: Movie workflow: special ef-

fects apply before color tuning and sound

mastering. HDR is set up last.

C3

Sound

Master

C4

HDR

C2

Color
Owner

Movie

C1

VFX

POST

POST AND

(user.tenure > 10

OR 8 < time < 17)

POST AND

(time < 8 OR

time > 17)

POST AND 8 <

time < 17

POST AND

(time < 8 OR

time > 17)

From a metagraph-like format to metagraph

In addition to the YAWL format which specifies workflows, we have also

added thepossibility of specifying aworkflowdirectly in ametagraph-like

format, which is more generic and applicable to other forms of high-

level representations. This form of policy specification can be generically

expressed as a list of rules: each describing an edge of the metagraph, as

a triplet of the form 〈source, destination, policy〉.

To transform this kindof policy specification into a conditionalmetagraph,

we also need to define the variables set, the propositions set and the

edges set. To this end, we parse the triplets of the policy specification file.

A proposition attached to an edge must be true for the edge to be used in

a metapath, thus, an OR in a proposition can be viewed as separate edges

from the same source to the same destination, with each part of the OR

becoming a sub-proposition attached to one of the newly created edges.

Likewise, the AND in a proposition means both parts need to be true in

order for the edge to be used, so the proposition can’t be separated. Those

rules will serve as a basis to determine vertices in the metagraph.

In a logical formula, propositions ANDed together are part of the same

metagraph edge,whereas propositionsORed together are eachpart of their

own metagraph edge. That is the way conditional metagraphs handle

connectivity when considering propositions. A proposition attached

to an edge must be true for the edge to be used in a metapath, thus,

an OR in a proposition can be viewed as separate edges from the same

source to the same destination, with each part of the OR becoming a sub-

proposition attached to one of the newly created edges. Considering the

proposition betweenColor andHDR in Figure 4.5, “%$() �#� (C8<4 <



4.2 Verifying policies 53

POST

user.tenure > 10

8 < time < 17

Color

Sound
time > 17

VFX

HDR

Movie

POST

POST

POST

POST

8 < time < 17

time > 17

time < 8

time < 8

Figure 4.6: Specification metagraph. Ele-

ments of the variables set are identified by

filled rectangles, and nodes of the meta-

graph by unfilled rectangles. Propositions

being on the edges or in the invertices are

equivalent when dealing with conditional

metagraphs.

8 $' C8<4 > 17)”, we can see the OR that separates C8<4 < 8 and

C8<4 > 17 is responsible for two different edges when we refine the

metagraph representation in Figure 4.6. Likewise, the AND in a proposition

means both parts need to be true in order for the edge to be used, so

the proposition can’t be separated. Considering again the proposition

between Color and HDR in Figure 4.5, we can see the ANDmeans that the

POST component of the proposition is a part of both split edges when we

refine the metagraph representation in Figure 4.6.

In order to fill our propositions set as well as the edges set in our con-

ditional metagraph, we need to turn a given logical formula into its

Disjunctive Normal Form (DNF). In DNF, a logical formula is composed

of ANDed propositions ORed together, i.e. smaller logical formulas sepa-

rated by ORs. We can then see that our smaller logical formulas directly

correspond to different edges in our metagraph. Take for example the

logical formula from Color to HDR in Figure 4.5: %$() �#� (C8<4 < 8

$' C8<4 > 17). We can transform this expression into its DNF, obtaining

(%$() �#� C8<4 < 8) $' (%$() �#� C8<4 > 17). The smaller

formulas inside the parentheses correspond to the sub-propositions

attached to two edges we obtain in our metagraph (Figure 4.6).

Then, since each of our smaller logical formulas are either singular atomic

propositions or atomic propositions ANDed together, we gather the set of

atomic propositions for each edge. Each edge in the conditional meta-

graph is then generated in the form of a triplet 〈source, destination, policy〉,
where the policy component corresponds to one of the smaller logical

formulas obtained earlier. We complete the edges set of the metagraph

by iterating on all the triplets of the raw specification. The propositions

set is simply composed of the union of all atomic propositions, with the

generating set being the union of the variables set and the propositions

set.

Figure 4.6 represents the transformation of our example: the movie work-

flow specification (Figure 4.5) is translated into a conditional metagraph.

Elements of the variables set are identified by filled rectangles, and nodes

of the metagraph by unfilled rectangles. Note that, as suggested in the

formal definition of conditional metagraphs, we moved the proposi-

tions from the edges of the simple workflow graph to the invertices of

the metagraph for a correct and clearer representation on which ad-

vanced verification (e.g. checking for conflicts and redundancies) is also

possible.



54 4 Verifying Policies Using Metagraphs

4.2.2 Policy implementation (i.e. Rego) into a conditional

metagraph – 4 in Figure 4.3

To transform our policy implementation (i.e. Rego) into a conditional

metagraph, we rely on the following approach. We use ANTLR4 [119][119]: Parr (2013), The definitive ANTLR 4

reference

,

Another Tool for Language Recognition, which is a parser generator used

for translating structured files. After constructing our lexer rules and

parser grammar for Rego, we were able to generate the Abstract Syntax

Tree (AST) for any Rego policy file.

Listing 4.1 represents the policy for the Input Shooting Schedule task in

Figure 4.2. As indicated in themetagraph, all "_completed" propositions

must be true in order for the task to be performed, in addition to

resources production and shootingSchedule being available. Indeed,

rules in Rego come in the form AD;4_ℎ403 {4G?A1, 4G?A2, ..., 4G?A=}.
The expressions inside the body of the rule are ANDed together when

evaluating the rule. All those expressions must be true in order for the

rule to be true. Multiple rules defined with the same AD;4_ℎ403 are ORed

together – at least one of them must be true for the rule to be true.

Listing 4.1: This is the implementation

of the Input_Shooting_Schedule task

represented in Figure 4.2.

1 allow {
2 input == ["production", "shootingSchedule"]
3 output == ["originalTiming", "shootingSchedule", "totalScenes", "totalPageTime"

]
4

5 Input\_Cast\_List\_completed
6 Input\_Crew\_List\_completed
7 Input\_Location\_Notes\_completed
8 }

As expressions ANDed together are part of the same metagraph node,

whereas propositions ORed together are each part of their ownmetagraph

node, we can perform the transformation of the implementation to the

metagraphby looking for this behavior inRego rules. Thus, bywalking the

previously obtained AST, one is easily able to generate a metagraph from

the policy implementation file. We generated the conditional metagraph

for the Rego policy corresponding to Figure 4.1 using ANTLR.

Note that a slight transformation of the implementationmetagraphmight

be necessary. Indeed, the generated implementation metagraph does not

have exactly the same structure as the specification metagraph. To finally

enable the comparison of metagraphs in this case, we need to apply

transformations on the implementation metagraph to make it directly

comparable to the specification metagraph. Those operations are defined

based on the attributes encountered in the metagraph and dependent of

the underlying domain specific language. For example, the POST requests

in the specification metagraph correspond to the proposition http_-

request.method == "POST" of the implementation metagraph. In the

same way, the implementation metagraph proposition user_name ==

"color" corresponds to an element of the invertex of an edge in the

specification metagraph, so it is translated accordingly. Likewise, other

propositions and variables of the generating set require transformations,

we only need to specify the translation process for each element once

(according to the domain specific language). The resulting metagraph

should be the same as the one obtained with the specification, provided

that the implementation is error-free.



4.3 Performance analysis 55

4.2.3 Comparing metagraphs – see 5

Once the Rego rules are transformed into an implementation metagraph,

we can now compare it to the specificationmetagraph. To do so,we simply

match edges in one metagraph to edges in the other metagraph. The two

metagraphs are labeled the same way and are each sorted for efficiency.

Once a match is found, we remove, or simply tag, the corresponding

respective edges from the two initial set of edges and continue. If both

sets are empty (are entirely tagged) after the comparison concludes, the

metagraphs match perfectly. The metagraphs are different otherwise,

with edges remaining in the sets being the ones that are left unmatched.

Those edges are errors/mistakes in the implemented policies, singled

out by our comparison. In other words, a non-matching edge indicates an

error in the translation process, which can be used to identify which part

of the implementation policy has be mistakenly translated or corrupted.

Thus, this error identification process pinpoints errors.

In the next section, we measure the performance of our comparison

technique to verify the performance of our policy verification method.

4.3 Performance analysis

To profile our policy verification algorithm, wemeasure the time required

to compare the specification and implementation metagraphs.

4.3.1 Methodology

We perform such comparisons by varying different elements, namely

the number of elements in the workflow, the number of edges in the

workflow, the size of the policy on each edge, and the error rate in the

implemented policies. Since our verification method compares edges,

we measure the computation time as a function of the edges on the

metagraph. Note that the number of propositions on the edges and the

number of edges in the workflow determines the number of edges in the

resulting metagraphs.

To obtain general and representative resultswhen profiling our algorithm,

we chose to generate random workflows (instead of relying on few small

real cases). This allows us to get a general idea of how efficient is our

algorithm under various conditions. Since the generation is random for

most of the variables defining a metagraph, the generated workflows

should not exhibit specific structures or policies that may favor or not

the comparison. We thus generate random workflows in YAWL.

In practice, we generate the random workflows by varying these sets of

parameters:

I Size of the workflow, i.e., number of elements in the generating

set: 10, 20, 30, 50 or 100. Those correspond to variables which can

be used in the input and output of tasks.

I Policy size, i.e., number of conditional propositions on each edge

for the policy: 2 or 4.



56 4 Verifying Policies Using Metagraphs

The number of tasks in the workflow, i.e. the number of edges in the

metagraph is a multiple of the number of elements in the generating set,

as motivated in the following paragraphs.

Hadwe used simple graphs, we also would have varied the probability of

having edges between any two nodes in the graph (i.e. the graph density),

as is customary for Erdős-Rényi random graphs. However, the equivalent

density property in metagraphs would be to vary the probability of

having edges between any two pairs of possible subsets of the generating

set: this leads to a combinatorial explosion of the possible number of

edges.

This does not sound neither reasonable nor realistic if we compare it with

common policy density found in research papers [28, 120] or in GitHub

projects. Instead, we use the same (static) ratio between the number of

nodes and edges that Ranathunga et al. [28] found when they modeled

their real-world network policies as a metagraph. They have 1.5 times

more edges than the number of elements in the generating set and so

do we (to generate our set of workflows). Overall, we generate thirty

random conditional metagraphs for each combination of the generation

parameters, i.e. the number of elements in the workflow and the policy

size, creating 300 different workflow specifications in total (5 generating

set sizes, 2 policy sizes, 30 repetitions).

Now that workflow specifications are generated, we need to turn them

into theirworkflow implementation counterparts (i.e. in Rego). As already

stated, translating workflow specifications to their real implementations

is error prone. We model this by relying on a given percentage of the

elements/propositions in the specification randomly changed to another

existing element/proposition. To do so, we consider a last parameter:

I Error rate, i.e., fraction of errors in propositions of the metagraph.

A value of 0.4 means that 40% of the elements/propositions of

the metagraph will be changed to erroneous ones; we consider the

following error rates: 0.0, 0.2 and 0.4.

We generate errors randomly, resulting in thirty different Rego files for

each workflow specification and for each error rate. We obtain ninety

different Rego files per workflow specification in total.

Translation is done by iterating over edges of the conditional metagraph

generated from the specification (see Section 4.2), which will generate

the necessary Rego code. Finally and overall, we obtain 27,000 different

policy implementations (300 specifications, 3 error rates, 30 repetitions).

The Lines of Code (LoC) of those policy implementations are between 214

and 24729, which is in line with research papers that model real-world

policies in terms of LoC size; for example, Ranathunga et al. [28] are citing

5043 for one switch configuration in their case study and researchers

in [120] are giving an average LoC size between 125 and 1360.

Now that we have the policy implementations, we can translate those into

metagraphs to finally perform the comparison. This is achieved using

ANTLR and by following the procedure already described in Section

4.2.

Once both specification and implementation metagraphs are generated,

we launch our matching algorithm. This algorithm simply compares



4.3 Performance analysis 57

Figure 4.7:Execution time of ourmatching

algorithm according to several different

parameters. The error rate has almost no

effect on the execution time, while it in-

creases as expected with the number of

elements in the generating set.

both metagraphs as two lists of edges. First, for enabling an efficient

comparison, we sort both lists by source and destination as respectively

the first and second key. Then we try to match edges by iterating through

both sorted lists. If both sets are empty after the matching is done, the

metagraphs match perfectly. The metagraphs are different otherwise,

with the edges remaining in the sets being the ones that are unmatched

and the result of errors.

4.3.2 Evaluation

To avoid being subject to the bias effects of peak machine load on the cpu

time, for each of the 27,000 scenarios, we measure the cumulative time of

both sorting and matching for 30 runs. We then end up with a total of

810,000 measures. We ran our measurements on a laptop, equipped with

an Intel Core CPU 3.5-GHz, 16GB of RAM and running Ubuntu 18.04.

Among the thirty repetitions, we have a few extreme values. We checked

they are due to peak machine load and consequently removed these

outliers (i.e. all values with a Z-score superior to three); that leads to

remove 9619 values out of 810000 (1.19%).

Figure 4.7 represents the time required by our algorithm to detect errors

according to the set of parameters in use. As we can see, the error rate has

a negligible effect on the duration of the algorithm. On the contrary, as

anticipated, the execution time increases with the number of elements in

the generating set. The number of elements in the generating set increases

the number of edges in the metagraph, by the effect of the 1.5 factor

applied on edges. This can be verified in a correlation matrix, which

indicates a correlation coefficient of 0.945 between the number of edges

and the execution time, and a correlation coefficient of 0.004 between the

error rate and the execution time.

The effect of the number of edges on the algorithm time is shown more

clearly when looking at Figure 4.8. It plots the execution time against the

number of edges in the metagraphs. The dots represent the mean value

for a given number of edges and the red line represents the ordinary least

squares regression for the nonlinear function H = 
 + � · < · ;>6(<). We

rely on this function as the average time complexity of our sorting (and

matching) algorithm is given by $(< · ;>6(<)), with < the number of

edges. That is the complexity is dominated by the sorting pre-processing

(relying on a binary heap for worst cases or using a quicksort like



58 4 Verifying Policies Using Metagraphs

Figure 4.8: Log regression of the execu-

tion time according to the number of

edges. When the algorithm time is pre-

dicted, we found that the number of edges

(� = 0.0020; ? < 0.001) is a significant

predictor.

0 50 100 150 200 250 300

Number of edges

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n 
tim

e 
(m

s)

1: See https://zenodo.org/record/

4912289.

algorithm for improving average performances). This stage is applied

before the actual matching that is then simply linear in the number of

edges. When the algorithm time is predicted, we found that the number

of edges (� = 0.0020; ? < 0.001) is a significant predictor. Indeed, the

overallmodel fit is:'2

039
= 0.898,with the post hoc power analysis indicating

a power greater than .999.

In summary, we can argue that our policy verification method can be

efficiently implemented as long as the number of propositions in the

policy is reasonable. The complete data, code to generate the measures

and results, as well as some guidance are publicly available
1
.

4.4 Discussion

In this chapter, we described how to perform the verification of policies

using metagraphs. Using YAWL as a common model of workflows, we

showed how metagraphs could accurately represent them by translating

YAWL elements to metagraph elements. Thereby, we argue metagraphs

are suitable forms of policy modeling. In addition, we state their formal

but intuitive and graphical foundations can greatly help reasoning about

those policies, and guide policy administrators when designing them.

This in turn enables us tomaintainmore secureworkflows. This can prove

especially useful in the case of multi-party workflows where networking

devices belong to distinct domains and clouds and require complex

interactions.

Our thorough performance evaluation has highlighted both the relevance

and efficiency of metagraph comparison to verify that deployed policies

match their specification in avery reasonable time, even for a largenumber

of rules. To obtain general results, we generated random workflows

according to various parameters, and repeated the measures a large

number of times. Considering our reduction (� = 0.0020; ? < 0.001)

and model fit ('2

039
= 0.898), as well as our post hoc power analysis

(1 − � > 0.999), we feel confident that our results are representative.

To the best of our knowledge, this is the first time someone has shown

how to verify policies using metagraphs. However, some limitations still

exist in our verification scheme. First, we assumed in this contribution

for the sake of simplicity that both the policy specification and its Rego

implementation relied on the same identifiers, although Rego uses some

https://zenodo.org/record/4912289
https://zenodo.org/record/4912289


4.5 Conclusion 59

domain specific keywords. This is not always the case, as sometimes the

specification and implementation of a policy are not correlated in this

way. Some mapping can exist between identifiers in the specification and

identifiers in the implementation, but this is not done automatically. One

would need to consider the use of pattern matching to realize such a

mapping.

Second, even though we are confident our results are representative for

the reasons above, we think this could be done better. More specifically,

we deplore that there is not any representative policy dataset existing

online. To elaborate, most policies we found were either contained in

articles, or in the wild in public GitHub repositories. However, the vast

majority of papers dealing with policies do not disclose them, as they

are either private or currently in use. To the best of our knowledge,

there isn’t any publicly available policy dataset, which contain policies

representative enough to conduct analysis on them. Such a dataset would

be of enormous help, as different solutions in the policy verification and

analysis literature could then be benchmarked and compared against

the same set of relevant policies. We also realize however the difficulty

of constructing a policy dataset which would be representative enough

for such comparisons to take place. This dataset would in theory need

to encompass the full extent of the policy language it used, and also

represent policies used in real-life scenarios. Those policies being rarely

divulged, and the many ways a policy language can be used, makes it

difficult to build this dataset.

4.5 Conclusion

In this chapter, we detailed to what extent metagraphs are the most

appropriate structures to naturally model workflow policies. We showed

we can fully express YAWL with metagraphs, and how each task, con-

dition and operator can be converted into a metagraph representation.

We therefore argue the richness of the YAWL language is supported by

metagraphs.We then showed how to usemetagraphs for workflow policy

verification to pinpoint errors in a policy. In particular, we introduced

a method to verify YAWL specifications. For this, we relied on a policy

implementation based on Rego, a high-level declarative language built

for expressing complex policies. We finally evaluate the performance of

our verification method, and find that we can check policies in a very

reasonable time, even when the policy is large.

Thisworkhas led to twopublications [20, 21], thedevelopment of a Python

3 version of MGToolkit and the development of a policy verification

framework. Those tools are publicly available.

Overall, we highly recommend the use of metagraphs to represent, verify

and analyze workflow and security policies alike. Possible future works

include broadening the types of policies our verificator can handle. We

can currently deal with workflow and security policies, but assume both

specification and implementation use the same identifiers. To extend the

domain of policies we are able to verify, a possible lead is to investigate

pattern matching solutions in order to provide a more general way of

https://github.com/loicmiller/mgtoolkit
https://github.com/loicmiller/mgtoolkit
https://github.com/loicmiller/policy-verification
https://github.com/loicmiller/policy-verification


60 4 Verifying Policies Using Metagraphs

interpreting identifiers. Namely, we could rely on the work done by

Clifton et al. [121] or Kim et al. [122] in this area.



Analyzing Policies to Find

Redundancies 5

5.1 Problem statement . . . . . . 62

5.2 Current solution problems . 63

5.3 Proof of NP-Hardness . . . . 65

Metagraphs vs. Hypergraphs 66

Problem definitions . . . . . 67

5.4 Finding (s,d)-hypernetworks in

the general case . . . . . . . . . . 69

5.5 Finding (s,d)-hypernetworks in

acyclic F-hypergraphs . . . . . . . 71

5.6 A SAT formulation . . . . . . 75

5.7 Towards a more efficient ap-

proach . . . . . . . . . . . . . . . . 80

The case of Hasse diagrams 80

Prefix trees . . . . . . . . . . . . 81

Pascal’s triangle . . . . . . . . . 81

5.8 Performance analysis . . . . 83

Methodology . . . . . . . . . . 83

Evaluation . . . . . . . . . . . 84

5.9 Discussion . . . . . . . . . . . 86

5.10 Conclusion . . . . . . . . . . . 88

Chapter 3 allowed us to deploy a workflow securely using the microser-

vices infrastructure. We can also check if the implementation of the policy

is correctly enforced. Chapter 4 then explained how potential shortcom-

ings in the policy could be avoided, by comparing its specification to its

implementation. Therefore, we can be sure that the policy specification

matches its implementation, and that it is then enforced correctly.

However, a problem arises if the initial specification itself is incorrect. The

policy specification must represent the intent of the policy administrator.

Making sure the intent of the policy administrator is appropriately

translated into the specification is hard. Indeed, a policy specification

can contain conflicts and redundancies.

Nevertheless, we can take some measures to acquire guarantees over the

policy specification, to make sure it contains no conflicts or redundancies.

In this chapter, we are specifically concerned with redundancies in the

policy.

Besides correctness, one might want to remove redundancies for per-

formance reasons, since redundancies can still be evaluated by a policy

engine, but never impact the final access control decision. Another ad-

vantage is that it removes clutter from policy specifications. Policies can

get quite large and messy, so any removed redundancy helps clear the

policy and eases its management. As a lot of data exposures are caused

by human error, having a clearer policy will surely help policy adminis-

trators to make less errors when handling them. All those factors point

to the elimination of redundancies as a way to improve a sub-optimal

policy.

We propose to use metagraphs in order to achieve this goal of policy

analysis. As in Chapter 4, metagraphs are a good representation for

policies, and can also be used in the case of analysis. Ranathunga et

al. [28] have already described a procedure using metagraphs to find

both conflicts and redundancies inside a policy, but their method has

shortcomings, as further detailed in Section 5.2.

Note that we do not treat conflicts here. Ranathunga et al. [28] find

conflicts by keeping a list of properties conflicting with each other. Then,

they look at properties contained in a metapath. If conflicting properties

appear in the same metapath, they apply domain-specific knowledge to

determine if the conflict is valid. This approach works great when the

number of metapaths is limited, but suffers from the same shortcomings

as the method to detect redundancies, as we will see next.



62 5 Analyzing Policies to Find Redundancies

Figure 5.1: A metagraph.

u1

u2

fill_form

review_form

create_form

transfer_money
e3

e1

e2

e1'

e2'

5.1 An approach to policy analysis: problem

statement

We focus specifically on the identification and removal of redundancies.

Modeling a policy as a metagraph helps us identify redundancies. Con-

sider a policy with a set of users and a set of resources. When modeled

as a metagraph, permissions of users to access resources are translated

as metapaths. Moreover, dominant metapaths from the users to the

resources correspond to the minimal set of elements in order to achieve

connectivity, i.e. to model the policy. Therefore, all elements that are not

on a dominant metapath correspond to redundancies in the policy.

Note that the notion of redundancy is always in reference to a specific

point of view. In this case, redundancies are in reference to the users

that want to access resources. We need this point of reference, otherwise

the notion of redundancy would be restricted to cases like policy rules

appearing twice. This restricted definition is much less useful, and those

cases can usually be solved with a simpler method. This can be illustrated

quite clearly in a metagraph. Since every edge is a dominant metapath

from its invertex to its outvertex, no element of the metagraph can be

removed.

Consider Figure 5.1, which represents a metagraph. The edge 41 is a dom-

inant metapath from its invertex, {D1}, to its outvertex, {2A40C4_ 5 >A<,

5 8;;_ 5 >A<}. This means 41 can never be removed. We can say the same

thing about every edge in the metagraph, so we need some context to

discriminate elements into the relevant and redundant categories.

For example, if we consider redundancies in the context of user {D1}want-

ing to access {CA0=B 5 4A_<>=4H}, suddenly edges 4′
1
and 4′

2
are redun-

dant, since themetapath"1({D1 , D2}, {CA0=B 5 4A_<>=4H}) = 〈4′
1
, 4′

2
, 43〉

is not dominant. Indeed, the metapath "2({D1}, {CA0=B 5 4A_<>=4H}) =
〈41 , 42 , 43〉 is a metapath and has a subset of the input of"1. We can thus

remove edges 4′
1
and 4′

2
.

More generally, we want to remove redundancies with regard to a set of

source/destination couples. Those couples represent elements of interest

for the policy administrator, with one of its objectives when analyzing

the policy being making sure connectivity between those elements is not

redundant, while preserving said connectivity.

To find those redundant elements, we cannot just consider any ordered

pair of sets of elements as source and target for a metapath, since an

element can be redundant with regard to a certain source/target pair,

but not to another.



5.2 Current solution problems 63

Without losing generality, we can reduce the problem to finding redun-

dancies for a single source/target pair. Finding redundancies for multiple

pairs is then simple, since we only need to apply the solution for a single

pair to all pairs, and eliminate common redundant elements.

A straightforward method to find redundant elements is to find all

dominant metapaths between the source and the target. The union of

elements of these metapaths, i.e. the union of all variables in the vertices,

the union of all propositions in the vertices as well as the union of edges,

can then be compared respectively to the variables set, the propositions

set and the edges set used to construct the metagraph. Elements present

in the sets used to construct the metagraph but not present in the union

of elements of the dominant metapaths can be removed, as they are

not part of any dominant metapath. This method can be generalized

to multiple source/destination couples by considering the union of all

dominant metapaths of those couples.

Looking again at Figure 5.1, we can determine that in this simple meta-

graph, the only dominant metapath from {D1} to {CA0=B 5 4A_<>=4H}
is "({D1}, {CA0=B 5 4A_<>=4H}) = 〈41 , 42 , 43〉. If we consider the union

of elements and edges used in the metapath, we get {D1, 2A40C4_ 5 >A<,

5 8;;_ 5 >A<, A4E84F_ 5 >A<, CA0=B 5 4A_<>=4H} for the elements and

{41 , 42 , 43} for the edges. When comparing this to the variables set

and edges set of the metagraph, the remaining elements are D2, 4
′
1
and 4′

2
.

Those elements can thus be deleted.

Ranathunga et al. [28] [28]: Ranathunga et al. (2020), ‘Verifiable

Policy-Defined Networking using

Metagraphs’

, the only ones in the literature describing how touse

metagraphs to detect redundancies, also use metapaths. Unfortunately,

shortcomings of their method render it unusable in practice.

5.2 Shortcomings of the currently existing

method

Similarly to the straightforward method described above, Ranathunga et

al. [28] make use of metapaths to find redundancies. The algorithm they

use can be found in Algorithm 1.

They advise to “...simply check all feasible metapaths in a policy meta-

graph for edge and input dominance, if either fails, the policy includes

redundancies”. This however poses three main issues, which we go over

in more detail below.

Computing �∗ takes too long.

To check all feasible metapaths in a policy metagraph for edge and input

dominance, Ranathunga et al. first need to find all feasible metapaths.

To do so, they make use of the procedure described in the Basu and

Blanning book [103] [103]: Basu et al. (2007), Metagraphs and

their applications

.

This procedure is based on the computation of the transitive closure of the

adjacency matrix of the metagraph, �∗. As a reminder, �∗ = � + �2 + ...
represents all simple paths of any length in themetagraph. The complexity

of computing the�∗matrix is thus$(=3)< ,with = the number of elements



64 5 Analyzing Policies to Find Redundancies

Algorithm 1 Detect policy redundancies and conflicts using Metagraph

algebras [28]. The policy metagraph is pmg.

1: procedure DetectPolicyInconsistencies(pmg)

2: '1 ← dict()

3: '2 ← dict()

4: processed← []

5: redundancies← []

6: conflicts← []

7: for all 41 ∈ pmg.edges do

8: for all 42 ∈ pmg.edges do

9: if 41 ≠ 42 and (42 , 41) ∉ processed then

10: 81 ← 41.invertex ∩ 42.invertex
11: 82 ← 41.outvertex ∩ 42.outvertex
12: 83 ← 41.propositions ∩ 42.propositions
13: if len(81) > 0 and len(83) > 0 then '1[41].append(42)
14: if len(82) > 0 and len(83) > 0 then '2[41].append(42)

processed.append((41 , 42))
15: for all 41 , E1 ∈ '1 do

16: BA2 ← 41.invertex
17: for all 42 ∈ '1[41] do
18: BA2 ← BA2 ∪ 42.invertex
19: for all 43 , E3 ∈ '2 do

20: C0A64C ← 43.invertex
21: 84 ← 41.propositions ∩ 43.propositions
22: if len(84) > 0 then

23: <?B ← GetMetapaths(BA2, C0A64C)
24: for all <? ∈ <?B do
25: if not IsDominantMetapath(<?) then
26: redundancies.append(<?)

27: if PropositionsConflict(<?) and
IsValidConflict(<?) then

28: conflicts.append(<?)
return (redundancies, conflicts)

1: In other words, edges whose invertices

share elements.

in the metagraph and < the length of the longest path in the metagraph.

This is a major issue, since the computation of this matrix is feasible only

for very small metagraphs, and infeasible for most.

Only some redundancies are detected

Ranathunga et al. propose to filter potential sources to try alleviating

some of the computational load of the entire method. They state that only

overlapping invertices
1
can cause redundancies. They get faster results,

but they only detect some of the redundancies. In this case, note that

redundancies are in reference to metapaths starting with overlapping

vertices.

This is a concern as well, since the method might not be efficient. Note

that even if they reduce the load, the computation of the �∗matrix is still

required beforehand.



5.3 Proof of NP-Hardness 65

Amanual check is required

Let us assume we find all feasible metapaths anyway, and check them for

edge and input dominance. Once those redundancies are found, a check

with the policy administrator is still necessary to fix the policy.

Here, the reference frame of redundancies here is metapaths starting

with overlapping vertices instead of actual users and resources or other

contextualising elements. As such, the policy administrator needs to

approve the deletion of redundancies beforehand, in the case elements

found by the procedure are indeed redundant. An automatic redundancy

deletion method is therefore desired, since the redundancies found can

sometimes be difficult to check, and the policy administrator can make

some mistakes.

Computation times in practice

Using the method described by Ranathunga et al., it took a full hour

to process metagraphs of 13 elements at most, and we missed most

of the redundancies. As a comparison, we implemented the algorithm

enumerating all metapaths, which took a full hour to process metagraphs

of 7 elements at most, but gave us all redundancies.

We therefore need to find another way to identify redundancies. Instead

of trying to build all dominant metapaths, another approach would be

to determine, for each edge, if it belongs to any dominant metapath or

not. If it does, the edge is not a redundancy, otherwise it is. We prove in

the next section that this problem is NP-Hard.

5.3 Proof of NP-Hardness

Since we could not find any algorithm that can identify redundancies in

polynomial time, we made sure there exists no such algorithm. Before

describing our efficient exhaustive algorithm to find redundancies, we

need a proof of complexity.

This is where hypergraphs come into play. Like it was explained in

Chapter 2, metagraphs and hypergraphs are both graph theoretic struc-

tures that generalize the classical graph. Here, we exploit the fact that a

problem fundamental to hypergraphs, finding hypernetworks, is related

to our problem of finding redundancies in a metagraph.

Although metagraphs and hypergraphs have been studied separately,

they are similar. Before describing how finding hypernetworks is related

to the problem of finding redundancies, we explicit the relation between

metagraphs and hypergraphs. Note that we are concerned with directed

hypergraphs, and thus will refer to directed hypergraphs simply as

hypergraphs.



66 5 Analyzing Policies to Find Redundancies

5.3.1 Metagraphs and Hypergraphs: a comparison

Here, we point out the similarities and differences between metagraphs

and hypergraphs. Where the two differ, we integrate concepts from

metagraphs into hypergraphs to create a more general and expressive

hypergraph definition that includes metagraphs.

Vertices and edges

Metagraphs and hypergraphs are based on relationships between sub-

sets of elements. In metagraphs we call the universe of elements the

generating set. In hypergraphs we call it the vertex set. The relationships

in metagraphs are called edges. In hypergraphs, we have hyperedges,

which can be B-edges and F-edges.

All these concepts have clear equivalencies. The generating set and

vertex set are semantically equivalent. A metagraph edge describes a

hyperedge. Note that we use vertex and hypervertex when describing

a hypergraph interchangeably. Likewise, edge and hyperedge are used

interchangeably.

Metapaths and hyperpaths

It is natural to assume that metapaths and hyperpaths are natural analogs.

For the most part, this is true. However, there are some subtle differences

which we seek to resolve.

The definition of a metapath (Definition 2.4.2) does not stipulate an

ordering on the edges comprising the metapath. However, the definition

of a hyperpath does (Definition 2.4.10). These parts of the definition are

actually inconsequential. The original definition of a hyperpath given by

Gallo et al. does not stipulate an edge order. Any unordered hyperpath

can be given an ordering (using the visit order from [104][104]: Gallo et al. (1993), ‘Directed

hypergraphs and applications’

), and any

ordered hyperpath can be converted to an unordered set of edges.

We suggest that the terms ordered hyperpath and unordered hyperpath be

used to refer to these two variants. Sometimes an ordering is preferred,

since it gives a more path-like sequence of steps to follow. As such, when

we say hyperpath, assume we mean an ordered hyperpath.

Metapaths go from a source set of elements to a target set of elements.

Hyperpaths go from a source vertex B to a target vertex C. Gallo et al. [104]

note that set-to-set hyperpaths can be modelled by adding a new F-edge

and B-edge for the source and target sets respectively. We recall that

hyperpaths are defined as such:

Definition 5.3.1 (Hyperpath) Let H = (+, �) be a directed hypergraph

and let B, C ∈ +(�). A hyperpath from B to C inHis a minimal subhypergraph

(where minimality is with respect to deletion of vertices and edges) H′ ⊆
H. Further, the hyperedges comprising H′ can be ordered in a sequence

〈41 , 42 , . . . , 4:〉 such that for every edge 48 ∈ H it is the case that )(48) ⊆
{B} ∪ �(41) ∪ �(42) ∪ · · · ∪ �(48−1) and C ∈ �(4:).



5.3 Proof of NP-Hardness 67

We give a modified version of Definition 2.4.10 to work with a source set

of vertices Sand target set of vertices T:

Definition 5.3.2 (Hyperpath Between Sets) Let H= (+, �) be a directed
hypergraph and let S,T ⊆ +(�). A hyperpath from S to T in H is a

minimal subhypergraph (where minimality is with respect to deletion of

vertices and edges) H′ ⊆ H. Further, the hyperedges comprising H′ can
be ordered in a sequence 〈41 , 42 , . . . , 4:〉 such that for every edge 48 ∈ H′

it is the case that )(48) ⊆ S∪ �(41) ∪ �(42) ∪ · · · ∪ �(48−1) and T ⊆
S∪ �(41) ∪ �(42) ∪ · · · ∪ �(4:).

Input dominance and edge dominance

A metapath can be input-dominant (Definition 2.4.4) or edge-dominant

(Definition 2.4.5). These mean minimal with respect to source vertex

deletion (input dominance) or edge deletion (edge dominance).

These concepts have never been defined for hyperpaths. We observe that

existing definitions, including the ones we give, enforce that a hyperpath

be edge-dominant, as it must be a minimal subhypergraph. Metapaths,

in contrary, do not need to be edge-dominant. To introduce this concept

to hypergraphs, we define an edge-redundant hyperpath as a hyperpath

that is not minimal with respect to edge deletion. Hyperpaths being

edge-dominant is an important property we use in our proofs.

Input dominance does not make sense for the vertex-to-vertex definition

of hyperpaths, since they proceed from a single source vertex. However,

under Definition 5.3.2 the idea of input dominance can be adopted from

metagraphs. We define an input-dominant hyperpath as a hyperpath from

a source set S to a target set T if there exists no hyperpath from S′ ⊂ S

to T.

5.3.2 Problem definitions and relations

Redundancy and forced edges

We now explain how hypernetworks relate to the problem of finding

redundancies. We first define our problem, which is to find all redundant

edges in a hypergraph, in definition 5.3.3.

Definition 5.3.3 (Redundant Hypergraph Edge Problem) An edge 4

in a hypergraph H = (+, �) (or equivalently a metagraph) is redundant

with respect to a given source set S ⊆ + and target set T ⊆ + if there

is no input-dominant hyperpath H′ from S to T such that 4 ∈ H′. The
Redundant Hypergraph Edge Problem (RHEP) is to find all redundant

edges given H, S, and T.

The Redundant Hypergraph Edge Problem (RHEP) is equivalent with

respect to computational complexity up to polynomial factors to the

Forced Hyperpath Edge Problem (FHEP), which we define below.



68 5 Analyzing Policies to Find Redundancies

Redundant
Hyperpath Edge

Problem

Forced Hyperpath
Edge Problem

(s,d)-Hypernetwork
Problem

Figure 5.2: The RHEP is equivalent to the

FHEP, which is equivalent to the SDHP.

Definition 5.3.4 (Forced Hyperpath Edge Problem) The Forced Hy-

perpath Edge Problem (FHEP) is a decision problem in which we decide if

there exists any input-dominant hyperpath H′ in a hypergraph H= (+, �)
between a source set Sand a target set T that must contain an edge 4 ∈ �.

We informally prove the equivalence of the RHEP and FHEP by doing

a reduction in either direction such that the reduction requires only

polynomial time.

The RHEP can be reduced to the FHEP by observing that we can try

forcing each possible edge in the hypergraph by calling a solution to the

FHEP. Any edge that cannot be forced is redundant.

The FHEP can be reduced to the RHEP by observing that any redundant

edge cannot be forced, and any non-redundant edge can be forced. As

such, we can say that the FHEP is the decision version of the RHEP

problem.

Next, we show that the FHEP is equivalent to the problem of computing

an (B, 3)-hypernetwork (Figure 5.2).

Forced edges and (s,d)-hypernetworks

Definition 5.3.5 ((B, 3)-Hypernetwork Problem) The (B, 3)-Hypernet-

work Problem (SDHP) is to find the (B, 3)-hypernetwork HB,3 given a

hypergraph H.

We also informally prove the equivalence of the FHEP and SDHP by

doing a reduction in either direction such that the reduction requires

only polynomial time.

We can reduce any FHEP instance to a SDHP instance in polynomial

time. The FHEP is defined between a source B and destination 3 on a

hypergraph H. Suppose we could solve the SDHP between B and 3 on

H. Any edge in the (B, 3)-hypernetwork is forcible in the FHEP sense

because there must be a hyperpath using it. Conversely, any edge not in

the (B, 3)-hypernetwork cannot be forcible in the FHEP sense because

there must be no hyperpath using it. Thus, the FHEP is reducible to the

SDHP.

In the same way, we can reduce any SDHP instance to a instance in

polynomial time. The SDHP is defined between a source B and destination

3 on a hypergraphH= (+, �). Supposewe could solve the FHEPbetween

B and 3 on H, for each edge 4 ∈ �. Any edge that can be forced will be in

the (B, 3)-hypernetwork since there is a hyperpath using it. Likewise, any

edge that cannot be forced will not be in the (B, 3)-hypernetwork because

there is no hyperpath using it.

In summary, theRHEP is equivalent to the FHEP,which is itself equivalent

to the SDHP.

This is useful to us, since existing complexity results on the SDHP can

help us unveil more about the complexity of the FHEP and RHEP. Volpen-

testa [4][4]: Volpentesta (2008), ‘Hypernetworks

in a directed hypergraph’

describes polynomial algorithms for finding B-hypernetworks,

and more importantly for finding (B, 3)-hypernetworks in acyclic B-

hypergraphs. Later, Pretolani [123][123]: Pretolani (2013), ‘Finding hypernet-

works in directed hypergraphs’

clarified the findings and terminology



5.4 Finding (s,d)-hypernetworks in the general case 69

*: Find the B-hypernetwork, prune edges.

†: Find the B-hypernetwork. Repeat with

a subset of the input until done.

‡: Find the B-hypernetwork. Repeat with

a subset of the input until done. Prune

edges.

of Volpentesta and provided a linear time solution to finding (B, 3)-
hypernetworks in acyclic B-hypergraphs.

Here, we give a table of current complexity classes for finding a hyperpath

in the literature. The found hyperpath can either be normal (regular) or

with a forced edge. The hypergraph in which we need to find a hyperpath

can either be an B, F, or BF-hypergraph, and can be cyclic or acyclic.

Finally, the found hyperpath either requires edge-dominance
2

2: A hyperpath is minimal, so edge-

dominant.

, input

dominance
3

3: In this case, edge dominance does not

hold so it can be an edge-redundant hy-

perpath.or both.

Edge-dom Input-dom Dom

Regular Cyclic B P (linear)
∗

P (linear)
†

P
‡

F P
∗

P
†

P
‡

BF P
∗

P
†

P
‡

Acyclic B P (linear)
∗

P
†

P
‡

F P
∗

P
†

P
‡

BF P
∗

P
†

P
‡

Forced Edge Cyclic B NP-Hard [4] ? ?

F NP-Hard [4] ? ?

BF NP-Hard [4] ? ?

Acyclic B P (linear) [4] ? ?

F ? ? ?

BF ? ? ?

Table 5.1: Complexity summary for find-

ing a hyperpath.

Note that computing an (B, 3)-hypernetwork is NP-hard if cycles are

permitted. Volpentesta hints that the problem in the general case can

be reduced to the well known problem of finding two pairwise disjoint

paths between two pairs of nodes [4]. Indeed, since the 2-disjoint paths

problem is NP-complete [124], the problem of deciding whether a given

edge belongs to the (B, 3)-network in a directed graph is NP-complete as

well. However, they do not give the proof of the reduction in the paper,

so we give it in the next section.

5.4 Finding (s,d)-hypernetworks in the general

case

We show that the FHEP in B, F, and BF-hypergraph is NP-Complete

even if input dominance is relaxed. Our proof is by reduction from an

analogous problem in classical graphs, which hypergraphs naturally

generalize.

Let us formulate a classical directed graph version of the FHEP. A path

in a graph is a sequence of one or more vertices such that consecutive

vertices in the path are connected by edges. A simple path in a graph is a

path containing no repeated vertices or edges. Suppose we have a source

vertex B and a target vertex C. The Forced Path Edge Problem (FPEP) is

to decide if there exists a simple path from B to C using a forced edge 4.

To prove the FPEP is NP-Complete, we use a reduction from the 2-Vertex

Disjoint Path Problem (2-VDPP) which is known to be NP-Hard [125].

The 2-VDPP problem consists of deciding if there exist two vertex disjoint



70 5 Analyzing Policies to Find Redundancies

Figure 5.3: An example of our 2-VDPP

construction.

s1

x3

s2

x4

t1

t2
x5

x6

x7

e1

e2

e3

e4

e6

e7

e8
e5

e9

(a) A graph � with two disjoint paths

?(B1 , C1) and ?(B2 , C2).

s1

x3

s2

x4

t1

t2
x5

x6

x7

e1

e2

e3

e4

e6

e7

e8
e5

e9

(b) The corresponding graph construc-

tion �′, a path ?(B1 , C2) with a single

forced edge (C1 , B2).

simple paths, one from vertex B1 to vertex C1 and the other from B2 to

C2.

Suppose we have an instance of a 2-VDPP problem on a digraph � =

(+, �)with a vertex set + and an edge set �. Let B1 , C1 , B2 , C2 ∈ + be the

terminals. In our construction, we create a modified version of � called

�′ in which we add an edge 4′ = (C1 , B2) from C1 to B2 if it does not already

exist in �.

Figure 5.3 shows an instance of the 2-VDPP problem on a graph �, and

the corresponding construction �′.

Lemma 5.4.1 A simple path from B1 to C2 that forces the edge 4′ in the

construction �′ represents a solution to the corresponding 2-VDPP problem.

Proof. We can prove Theorem 5.4.1 by choosing 4′ as the single forced
edge. A solution to a FPEP is a simple path from B1 to C2 via 4′. Such
a path in �′ could be split into two parts, the part from B1 up to and

including C1, then the part from B2 to C2. These two parts must be vertex

disjoint, or the path would not be a simple path. Further, we could delete

4′ and the two parts would become two simple paths that correspond to

a solution to the 2-VDPP instance.

Lemma 5.4.2 The forced path edge problem is NP-Complete.

Proof. This follows from Lemma 5.4.1. By reduction, the FPEP must be at

least as hard as the 2-VDPP.

Theorem 5.4.3 The forced hyperpath edge problem is NP-Complete.

Proof. Any classical graph � can be embedded in a hypergraph H. Each

vertex in � can be represented by a vertex in H. Each edge in � can

be represented by a hypergraph edge between singleton sets in H. A

hyperpath in Hcorresponds to a simple path in �.

Because hypergraphs (B, F, and BF) generalize classical graphs this way, a

reduction from the FPEP to the FHEP can be achieved by embedding the

FPEP in a hypergraph. Since the FPEP is NP-Complete (Lemma 5.4.2), so

must the FHEP.



5.5 Finding (s,d)-hypernetworks in acyclic F-hypergraphs 71

Computing the (B, 3)-hypernetwork is thus possible in linear time in

acyclic B-hypergraphs, and NP-Hard in the general case. The remaining

case to explore is acyclic F-hypergraphs,whichwedo in the next section.

5.5 Finding (s,d)-hypernetworks in acyclic

F-hypergraphs

Here, we explore the complexity of finding (B, 3)-hypernetworks in

acyclic F-hypergraphs. It may surprise the reader to see that we prove

the problem becomes NP-hard, despite that fact that F-hypergraphs are

symmetric to B-hypergraphs.

In the previous section, we showed that the FHEP is reducible to the

SDHP. This means that if we can prove the FHEP is NP-complete, the

SDHP is therefore NP-hard.

Theorem 5.5.1 If the FHEP is NP-complete, then the SDHP is NP-hard.

We prove the FHEP is NP-complete.

Our proof involves a reduction from 3-SAT, which is the Boolean satisfi-

ability problem restricted to exactly 3 variables per clause. It is widely

known to be NP-complete [126] [126]: Cook (1971), ‘The complexity of

theorem-proving procedures’

.

The reduction is achieved by taking an instance of the 3-SAT problem

and constructing a corresponding acyclic F-hypergraph such that any

found hyperpath with a forced edge would imply a solution to the 3-SAT

problem.

Our acyclic F-hypergraph construction

Assume a 3-SAT instancewith variables E1 , . . . , E= and clauses 21 , . . . , 2< .

Our corresponding acyclic F-hypergraph construction contains a vertex

and a pair of edges for each variable, and three vertices and three edges

for each clause.

We start with an initial vertex ?0 which is the source of our hyperpath.

We also create a vertex @0 that will be used to force the single must-use

edge of our hyperpath, and a node 5 which is the target of the hyperpath

we need to find. For each variable E8 , we create a node ?8 . Then for

each clause 28 , we create three nodes @8 ,1 , @8 ,2 , @8 ,3 which correspond

respectively to the three literals of each clause.

A variable E8 appears in its positive form in a set of 0 clauses G1 , G2 , . . . G0 .

For each such clause, E8 appears as either the first, second, or third

literal, denoted by H1 ∈ {1, 2, 3}, H2 ∈ {1, 2, 3}, . . . , H0 ∈ {1, 2, 3}. A
variable E8 appears in negated form (¬E8) in 1 clauses. Call the cor-

responding clauses and literals G′
1
, G′

2
, . . . G′

1
and H′

1
∈ {1, 2, 3}, H′

2
∈

{1, 2, 3}, . . . , H′
1
∈ {1, 2, 3} respectively.

In our construction, for each variable E8 we have a vertex ?8 and two

hypergraph edges. The first edge is of the form ({?8−1}, {?8 , @G1 ,H1
,

@G2 ,H2
, . . . , @G0 ,H0 }), and it corresponds to assigning variable E8 to false,

thus blocking the clauses in the edge. The second edge is of the form



72 5 Analyzing Policies to Find Redundancies

Figure 5.4: An example of our acyclic F-

hypergraph construction, corresponding

to the following 3-SAT instance: (E1 ∨ E2 ∨
¬E4) ∧ (E1 ∨ ¬E2 ∨ ¬E3). Red hyperedges

and nodes indicate a valid hyperpath with

the forced edge ({?4}, {@0}).

p0 p1 p2 p3 p4 fq0

q1,1

q1,2

q1,3

q2,1

q2,2

q2,3

({?8−1}, {?8 , @G′
1
,H′

1

, @G′
2
,H′

2

, . . . , @G′
1
,H′
1
}), and it corresponds to assigning

variable E8 to true.

For each clause 28 we construct three vertices @8 ,1 , @8 ,2 , @8 ,3 and three

edges. Each of the three edges corresponds to one of the three vertices.

The 9-th such edge has the form ({@8 , 9}, {@8+1,1 , @8+1,2 , @8+1,3}). Since 2<
is the last clause we construct it differently. We have ({@<,9}, { 5 }) for
9 ∈ {1, 2, 3}.

Now, we must connect the ? vertices to the @ vertices. This is done

by adding edges ({?=}, {@0}) and ({@0}, {@1,1 , @1,2 , @1,3}). Note that

({?=}, {@0}) is particularly important since it is the forced edge. We

aim to find a hyperpath from ?0 to 5 that must include ({?=}, {@0}).

To illustrate our construction, we consider the following 3-SAT instance:

(E1 ∨ E2 ∨ ¬E4) ∧ (E1 ∨ ¬E2 ∨ ¬E3). The F-hypergraph construction

stemming from this instance can be found in Figure 5.4. This instance

is composed of four variables, E1 , E2 , E3 , E4 and two clauses, which

correspond respectively to vertices ?1 , ?2 , ?3 , ?4 for the variables, vertices

@1,1 , @1,2 , @1,3 for clause 1, and vertices @2,1 , @2,2 , @2,3 for clause 2.

Let us call our hypergraph construction �()) for a 3-SAT instance ). To
prove that finding a hyperpath in �())with the forced edge ({?=}, {@0})
is equivalent to a valid variable assignment in ) we must first prove

some lemmas.

Lemma 5.5.2 �()) is an acyclic F-hypergraph.

Proof. Each edge in �()) has a tail containing a single vertex and is

therefore an F-edge. It follows from the definition of F-hypergraph that

�()) is an F-hypergraph as it contains only F-edges.

Each edge in �()) progresses from the previous layer to the next. There-

fore it is acyclic.

Lemma 5.5.3 A hyperpath H′ from B to 3 in an F-hypergraph H contains

exactly one path %B,3.

Proof. We say that a path is contained in a hyperpath if the path is

comprised of only vertices and edges in the hyperpath.

There is only one edge 4 in H′ such that 3 ∈ �(4), because a hyperpath is

minimal. Since H is an F-hypergraph, the tail of 4 contains a single vertex

)(4) = {E}. We can apply the same reasoning to E recursively. That is,

remove 3 and 4 from H′ and treat E as the target, then repeat. Eventually,



5.5 Finding (s,d)-hypernetworks in acyclic F-hypergraphs 73

we will remove all the vertices from H′ except B. The vertices and edges

we removed must be the only path from B to 3.

Lemma 5.5.4 A hyperpath H in �()) that uses the edge ({?=}, {@0}) will
contain contain exactly one edge 4E8 ∈ H for each variable in E8 ∈ ) and

exactly one edge 428 ∈ H for each clause 28 ∈ ).

Proof. Lemma 5.5.3 implies that H contains a single path from ?0 to 5 .

Since we force the edge ({?=}, {@0}), there must also be a single path

from ?0 to @0. The only way to get to @0 is through ?0 . . . ?= . For any

?8 where 8 < = there are two edges to choose from, and we must pick

exactly one of them on the path to @0 because hyperpaths are minimal

with respect to edge deletion. By construction, ?8 corresponds to E8 , and

we must pick a single edge 4E8 from ?8−1 to ?8 . Therefore, each E8 has a

single edge in H.

Similarly, the only way to get from @0 to the target, 5 , is through the @

vertices. Since Hcontains a single path from ?0 to 5 , and since we force

the edge ({?=}, {@0}), there must be a single path from @0 to 5 . The three

vertices @8 ,1 , @8 ,2 , @8 ,3 only have edges to @8+1 or 5 . Therefore, we must

pass through exactly one @8 vertex for each 8 = 1 . . . <. By construction,

the three @8 vertices correspond to the clause 28 and wemust pick a single

edge 428 from @8−1 to @8 . Therefore, each 28 has a single edge in H.

Lemma 5.5.5 A hyperpath H in �()) corresponds to a variable assignment

that satisfies ).

Proof. Lemma 5.5.4 says we pick a single edge 4E8 for each variable E8 . By

construction, �()) contains two edges for each E8 . Exactly one of these

edges corresponds to assigning E8 to true, and is connected to all the

clauses where E8 appears in negated ¬E8 form. The other of these edges

corresponds to assigning E8 to false, and is connected to all the clauses

where E8 appears in positive form.

If we pick the edge that corresponds to assigning E8 to true, then all the

clauses in which ¬E8 appears cannot be satisfied by our assignment to

E8 . They must be satisfied by at least one of the other two literals in the

clause. Similarly, if we assign E8 to false, it cannot satisfy clauses where

E8 appears in positive form.

Each edge 428 ∈ H is the single edge we pick for a clause 28 (Lemma 5.5.4).

This edge corresponds to deciding which of the three literals satisfies 28 .

If there is some literal that satisfies a clause under a variable assignment,

then there is some valid choice for 428 .

If there existed a valid hyperpath solution in �()), then we could assign

the variables in ) the corresponding values to 4E8 for each E8 . Then, each

clause 28 would be satisfied by the literal 428 . This would be a variable

assignment that satisfies ).



74 5 Analyzing Policies to Find Redundancies

Lemma 5.5.6 A hyperpath H in �()) that corresponds to a variable assign-
ment that satisfies ) exists if and only if there is a solution to ).

Proof. Lemma 5.5.5 shows that if we have a solution to �()), then we

have a solution to ). We now show that if there is a solution to ), then
there is a solution to �()).

Suppose there is a variable assignment satisfying ) that has no valid

hyperpath solution in �()). Since variables are assigned a value, it still

holds that we have exactly one edge 4E8 ∈ H for each variable E8 ∈ ),
that corresponds to a true or false assignment of the variable. A variable

assignment satisfying ) that has no valid hyperpath solution in �())
then means that for at least one clause 28 , there is no valid choice for 428
as the literal which satisfies the clause.

However, if the variable assignment satisfies ), then there must be at

least one literal per clause which we can use to satisfy the clause. For

each clause, we can therefore pick the edge that corresponds to the literal

we use to satisfy the clause to create a valid hyperpath solution. This

contradicts our initial supposition.

Theorem 5.5.7 The FHEP in acyclic F-hypergraphs is NP-complete.

Proof. Our construction �()) is an acyclic F-hypergraph (Lemma 5.5.2).

Lemma 5.5.6 implies a hyperpath H in �()) from ?0 to 5 that must use

({?=}, {@0}) exists if and only if a solution to 3-SAT instance ) exists. We

can construct �()) for any 3-SAT instance ) in polynomial time, thus

3-SAT is polynomial time reducible to FHEP on an acyclic F-hypergraph.

The 3-SAT problem is NP-complete. Therefore, the FHEP in acyclic

F-hypergraphs is NP-complete via our reduction.

Theorem 5.5.7 and Theorem 5.5.1 together imply that the SDHP in acyclic

F-hypergraphs is NP-hard. Note that the problem is already known to be

NP-hard when cycles are permitted [4]. Thus, the SDHP is NP-hard in

F-hypergraphs in general.

Note that this implies the problem is also hard for acyclic BF-hypergraphs

since they include acyclic F-hypergraphs.

One may be surprised that B-hypergraphs and F-hypergraphs have

different complexity results. It seems intuitive that they are symmetrical:

the directions of each edge could be reflected and B and 3 could be

swapped. However, there is one subtle asymmetry that breaks this

construction.

Hyperpaths are minimal with respect to edge deletion. So, in a hyperpath

from B to 3, there is only a single edge 4 such that 3 ∈ �(4). However,

they may be more than one edge B ∈ )(4′). This asymmetry means that

finding a hyperpath in a reversed F-hypergraphmay not be valid. Further,

this property is sufficient tomake the problem tractable in B-hypergraphs.

Future research may find that this property is powerful enough to solve

other algorithmic problems on B-hypergraphs.



5.6 A SAT formulation 75

*: Find the B-hypernetwork, prune edges.

†: Find the B-hypernetwork. Repeat with

a subset of the input until done.

‡: Find the B-hypernetwork. Repeat with

a subset of the input until done. Prune

edges.

x1 x3

x4

x2

x5
e3

e1

e2

Figure 5.5: A simple example of a meta-

graph.

To summarize, we find that computing the (B, 3)-hypernetwork is NP-

Hard in all cases, except for acyclic B-hypergraphs where it is solved in

linear time. We summarize those findings by completing Table 5.1.

Edge-dom Input-dom Dom

Regular Cyclic B P (linear)
∗

P (linear)
†

P
‡

F P
∗

P
†

P
‡

BF P
∗

P
†

P
‡

Acyclic B P (linear)
∗

P
†

P
‡

F P
∗

P
†

P
‡

BF P
∗

P
†

P
‡

Forced Edge Cyclic B NP-Hard [4] ? ?

F NP-Hard [4] ? ?

BF NP-Hard [4] ? ?

Acyclic B P (linear) [4] ? ?

F NP-Hard [22] ? ?

BF NP-Hard [22] ? ?

Table 5.2: Complexity summary for find-

ing a hyperpath, revised.

This brings us to the next section, where we formulate our redundancy

problem as a SAT problem in order to try to solve it efficiently.

5.6 A SAT formulation of the redundancy

problem

Consider the metagraph ( = 〈-, �〉 in Fig. 5.5 and let’s say we want to

find a dominant metapath from � = {G1} to � = {G5}, while forcing the

metapath to use edge 43.We canwrite this problem as"3><({G1}, {G5})∧
43. This will be the example illustrating our SAT formulation throughout

the entire section. Note that this formulation consists in reality of SAT

integer programming, where we try to minimize the number of edges in

the metapath. As such, it pertains more to integer linear optimization

than traditional SAT. More generally, the problem can be written as

follows; Given a metagraph �, find"3><((, )) ∧ 4G .

Representing variables and edges of the metagraph

First, we need a way to describe the variables and edges of the metagraph.

For each of the edges and variables of the metagraph, we create a SAT

variable.

Moreover, we introduce the notion of time steps. Time steps are chrono-

logically ordered moments in time. We need this notion of time since

we need to mimic the construction of a hyperpath in the graph. A for-

mulation with no discrete time steps fails at building valid hyperpaths

with a forced edge. Since we cannot use more than all the edges of the

metagraph to build a metapath, the number of time steps is limited to

the number of edges |� |.

Therefore, every SAT variable exists at every time step. Each variable

G8 is instanced for each time step: -8 = {G8 ,0 , G8 ,1 , ..., G8 ,|� |−1
}. Since



76 5 Analyzing Policies to Find Redundancies

Figure 5.5 contains three edges, each SAT variable E exists at three times:

{E8 ,0 , E8 ,1 , E82}.

Each variable is unlocked only once

When building a metapath, an edge cannot be used more than once. We

represent this fact by adding constraints saying that every SAT variable

can only be used at a single time step, or is not used at all.

More formally, for each set of variables + = {E8 ,0 , E8 ,1 , E8 ,2}, only one of

them must be true, or the variable must not be used: (E8 ,0 ⊕ E8 ,1 ⊕ E8 ,2) ∨
(¬E8 ,0 ∧ ¬E8 ,1 ∧ ¬E8 ,2). Algorithm 2 details the procedure to obtain this

clause for each variable and edge in the metagraph.

Algorithm 2 Each variable is unlocked only once. The metagraph is <6.

1: procedure UnlockVariablesOnce(<6)
2: C8<4BC4?B ← len(<6.4364B)
3: for E0A in <6.E0A801;4B do
4: E0A_2;0DB4_?0ACB ← [] ⊲ Parts of clause for E0A
5: for C in range(0, C 8<4BC4?B) do
6: E0A_>=24 ← [] ⊲ E0A used once

7: for C′ in range(0, C 8<4BC4?B) do
8: if C == C′ then
9: E0A_>=24.append(E0A_C′)
10: else

11: E0A_>=24.append(¬E0A_C′)
12: 2;0DB4_?0AC ← " ∧ ".join(E0A_>=24)
13: E0A_2;0DB4_?0ACB.append("(2;0DB4_?0AC)")

14:

15: E0A_D=DB43← [] ⊲ E0A unused
16: for C in range(0, C 8<4BC4?B) do
17: E0A_D=DB43.append(¬E0A_C)
18: 2;0DB4_?0AC ← " ∧ ".join(E0A_D=DB43)
19: E0A_2;0DB4_?0ACB.append("(2;0DB4_?0AC)")
20:

21: E0A_2;0DB4 ← " ∨ ".join(E0A_2;0DB4_?0ACB) ⊲ Final clause
for E0A

22: constraints.append(E0A_2;0DB4)
23:

24: for 4364 in <6.4364B do ⊲ Do the same for edges

25: ...

Since SAT does not support the XOR operator, we need to convert each

of those clauses: (G8 ,0 ∧ ¬G8 ,1 ∧ ¬G8 ,2) ∨ (¬G8 ,0 ∧ G8 ,1 ∧ ¬G8 ,2) ∨ (¬G8 ,0 ∧
¬G8 ,1 ∧ G8 ,2) ∨ (¬G8 ,0 ∧ ¬G8 ,1 ∧ G8 ,2) ∨ (¬G8 ,0 ∧ ¬G8 ,1 ∧ ¬G8 ,2).

Unlocking variables and edges

Having determined each variable is used only once, we now tackle the

problem of unlocking edges and variables. Indeed, we cannot allow

the SAT solver to pick edges however it wants, we need to enforce the

condition that using an edge requires the elements in its invertex to be

reached by the source prior to the edge being used. Likewise, using a



5.6 A SAT formulation 77

variable requires it to be reached by an edge prior to using this variable.

This behavior can be found in the definition of the hyperpath, which we

remind below.

Definition 5.6.1 (Hyperpath) LetH= (+, �) be a directed hypergraph and
let B, C ∈ + . A hyperpath from B to C in H is a minimal subhypergraph (where

minimality is with respect to deletion of vertices and edges) H′ ⊆ H. Further,

the hyperedges comprising H′ can be ordered in a sequence 〈41 , 42 , . . . , 4:〉
such that for every edge 48 ∈ H′ it is the case that )(48) ⊆ {B} ∪ �(41) ∪
�(42) ∪ · · · ∪ �(48−1) and C ∈ �(4:).

An alternative way of understanding Definition 5.6.1 is to think about

hyperedges unlocking vertices. We say that a hyperedge 48 in a hyperpath

unlocks a variable E ∉ ( if:

(i) E ∈ �(48) and there is no hyperedge 4 9 that came before (8 > 9)

such that E ∈ �(4 9).
(ii) For each hyperpath edge, there must be some unlocked variable

E ≠ ( such that E ∈ ); or
(iii) E is utilized by some later hyperedge, i.e. there exists 4H (8 < H)

such that E ∈ )(4H); and
(iv) there is no 4G (8 < G < H) such that E ∈ �(4G).

In other words, ∀48 , �(48) = {G1 , . . . , G:}, 48 unlocks G ∈ �(48) iff.

@4 9(9 < 8), E ∈ �(4 9) ; and
(G ∈ ) ; or

∃4H(8 < H), E ∈ )(4H) ; and
@4G(8 < G < H), E ∈ �(4G))

(5.1)

Those conditions can each be expressed in SAT as well. Algorithm 3 show

how to express those constraints.

Clauses set to True

Some of the variables in the FHEP are already known at the start. This is

the case of the source of the metapath (, the target of the metapath )

and the forced edge 4G .

Since a solution to the FHEP requires elements in the source to be true, we

can set them as True from the start: ∀G8 ∈ (, G8 ,0 = 1. Note that elements

in the source are True at the first possible time step, since they are the

start of the metapath.

The forced edge must also be True, but only at some point in time. More

formally, 4G,0 ∨ 4G,1 ∨ ... ∨ 4G,|� |−1
= 1

Same thing for elements in the target, they only need to be True at some

point in time: ∀G8 ∈ ), G8 ,0 ∨ G8 ,1 ∨ ... ∨ G8 ,|� |−1
= 1

In the illustrating example, this would correspond respectively to G1,0 = 1,

43,0 ∨ 43,1 ∨ 43,2 = 1 and G5,0 ∨ G5,1 ∨ G5,2 = 1.



78 5 Analyzing Policies to Find Redundancies

Algorithm 3 Generate clauses to unlock variables and edges. The meta-

graph is <6. B>DA24 and C0A64C are respectively � and �.

1: procedure UnlockVariablesEdges(<6, B>DA24, C0A64C)
2: C8<4BC4?B ← len(<6.4364B)
3: for 48 in <6.4364B do
4: for D in range(0, C 8<4BC4?B) do
5: 2>=3_8_;8BC ← [] ⊲ Condition (i)

6: for E0A in 48 .>DCE4AC4G do

7: if E0A ∉ B>DA24 then
8: for 4 9 in <6.4364B do
9: if 48 ≠ 4 9 and E0A ∈ 4 9 .>DCE4AC4G then

10: =>_4364_14 5 >A4 ← []

11: for E in range(0, D) do ⊲ E < D
12: =>_4364_14 5 >A4.append(¬4 9_E)
13: if =>_4364_14 5 >A4 is empty then ⊲ D == 0

14: =>_4364_14 5 >A4 ← ["True"]

15: 2;0DB4_?0AC ← " ∧ ".join(=>_4364_14 5 >A4)
16: 2>=3_8_;8BC.append("(2;0DB4_?0AC)")

17: 2>=3_8 ← " ∨ ".join(2>=3_8_;8BC)
18: if 2>=3_8 then
19: constraints.append(48 ,D =⇒ 2>=3_8)

Clauses set to False

In the same way some elements can be set to True, other elements can be

set to False. This is the case for unreachable variables and edges.

To obtain those, we simply run a linear time algorithm that explores

the metagraph from the source. Each element that was not reached

is by definition unreachable from the source, so we can set them to

False. More formally, considering the set of unreachable elements U,

∀G8 ∈ U, G8 = 0.

Clause for input dominance

The metapath that we need to find in this version of the FHEP is input-

dominant. Thus,we need to express this condition in SAT aswell. Another

way to think about input dominance besides the definition, is that each

variable of the source must be useful. In other words, each variable of the

source must have at least one of its outgoing edges using it at some point

in the metapath. More formally, ∀G ∈ (,∀4 ∈ �, G ∈ 4.8=E4AC4G, (40,0 ∨
40,1∨...∨40,|� |−1

)∨(41,0∨41,1∨...∨41,|� |−1
)∨...∨(4=,0∨4=,1∨...∨4=,|� |−1

).

Clause for edge dominance

To express edge dominance, we simply minimize the number of edges

used in the metapath.

<8=(
=∑
8=1

48) (5.2)



5.6 A SAT formulation 79

20:

21: for E0A in 48 .>DCE4AC4G do

22: if E0A ∉ B>DA24 then
23: if E0A ∈ C0A64C then ⊲ Condition (ii)

24: pass

25: else

26: 2>=3_888_;8BC ← []

27: for 4 9 in <6.4364B do
28: if 48 ≠ 4 9 and E0A ∈ 4 9 .>DCE4AC4G then

29: 2>=3_888_4 9_;8BC ← [] ⊲ Condition (iii)

30: for E in range(D + 1, C 8<4BC4?B) do ⊲
E > D

31: 2>=3_888_4 9_;8BC.append(4 9 ,E)

32: 2>=3_888_4 9 ← " ∨
".join(2>=3_888_4 9_;8BC)

33: if 2>=3_888_4 9 then
34: 2>=3_888_;8BC.append("(2>=3_888_4 9)")

35:

36: for E in range(D + 1, C 8<4BC4?B) do ⊲
Condition (iv)

37: 2>=3_8E_;8BC ← []

38: for 4: in <6.4364B do
39: if 48 ≠ 4: and 4 9 ≠ 4: and E0A ∈

4: .>DCE4AC4G then

40: 2>=3_8E_4:_;8BC ← []

41: for E in range(D+1, C 8<4BC4?B)
do ⊲ D < F < E

42: 2>=3_8E_4:_;8BC.append(4:,F)

43: 2>=3_8E_4: ← " ∧
".join(2>=3_8E_4:_;8BC)

44: if 2>=3_8E_4: then
45: 2>=3_8E_;8BC.append("(2>=3_8E_4:)")

46: 2>=3_8E ← " ∧ ".join(2>=3_8E_;8BC)
47: if 2>=3_8E ← then

48: 2>=3_8E += " ∧4 9 ,E"
49: if 2>=3_888_;8BC is empty then

50: continue

51: 2>=3_888 ← " ∨ ".join(2>=3_888_;8BC)
52:

53: if 2>=3_8E then

54: constraints.append(48 ,D =⇒ (2>=3_888 ∧
2>=3_8E))

55: else

56: constraints.append(48 ,D =⇒ 2>=3_888)



80 5 Analyzing Policies to Find Redundancies

Final steps

After generating all those clauses, we need to convert them all to their

Conjunctive Normal Form (CNF). This is because a SAT solver can only

work with this kind of clauses.

We coded this SAT formulation of the FHEP. Unfortunately for us, it

only worked on small instances of the problem. Larger metagraphs made

the generation of the clauses too long to be useful for policy analysis.

Namely, the conversion of formulas to their CNF form is the major hurdle

performance-wise. Having demonstrated the FHEP is NP-Hard, and that

the SAT formulation is not very efficient, we now present an algorithm

more efficient than both the SAT formulation and the existing solution in

the literature.

5.7 Towards a more efficient approach using

Pascal’s triangle

5.7.1 The case of Hasse diagrams

After considering initial leads, we tried to find a structure that could

best exploit the definition of dominant metapaths. By definition, once

you find a dominant metapath, all supersets of the edges composing

the dominant metapath will compose a redundant metapath, since the

added edges are not necessary for connectivity. This means that checking

all the supersets for dominance can be eluded. Hasse diagrams, used to

represent partially ordered sets seemed indicated. Fig. 5.6 represents the

power set of a 4-element set ordered by inclusion. Bit strings in nodes

represent a combination of elements of the set. For example, the 0000 bit

string represents the empty set, while the 1000 bit string represents the

set containing one of the elements of the set.

In the context of our problem, elements in a set represent edges of

the metagraph. It follows that, if a dominant metapath is found in the

diagram, all supersets are redundant metapaths. For example, if the

metapath consisting of an edge represented by the bit string 1000 is

dominant, there is no need to consider any superset of 1000, such as

1100, 1011, or 1111. Even though the complexity of the construction

of the power set is exponential in the number of edges, we hope that

finding dominant metapaths will prune the diagram enough so that the

computation time remains reasonable even for large graphs.

To construct a Hasse diagram, we start at the line of sets containing only

one edge, and construct levels on top iteratively, one by one. We iterate

over two sets of the level at a time, and combine them (with an union) to

form a set of the superior level. Every time a new set is created, if we did

not check it already before, we check if it is a dominant metapath. If it is

a dominant metapath, we add it to the list of found metapaths, otherwise

we add the newly created set to the list of sets considered for combination

in the next iteration/level of the Hasse diagram. Note that there is no

need to model the diagram as nodes and edges, we only need the sets

of a level to be able to find metapaths and build additional levels. This

method is not very efficient, which leads us to our proposed solutions.



5.7 Towards a more efficient approach 81

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Figure 5.6: Hasse diagram representing

the power set of a 4-element set ordered

by inclusion.

5.7.2 Proposed solution 1: prefix trees

Even though Hasse diagrams proved useful conceptually, there are some

optimizations we can make. It is wasteful to consider two elements

at a time when constructing a level of the Hasse diagram, since some

combinations yield the same resulting set, and some other combinations

give sets belonging to a level not directly above the one we are iterating

on. Conceptually, the resulting graphical representation is more akin to a

prefix tree, represented in Fig 5.7.

Here, we build additional levels by considering each set in the current

level, and then considering which edge we can add to the set. This is

indicated by the zeroes in the bit strings. For example, the set 1000 has

three zeroes and thus, we form the sets 1100, 1010 and 1001 by adding

an edge in those positions. Note that the next set in the level, 0100 also

builds 1100 which is a problem since we want to avoid repetitions. To

this end, we also add a bit mask when building new sets, which masks

bits up to the last 1 in the bit string, since those sets were already created

by the previous constructions. For example, the mask for bit string 0110

will be 1100, such that we only build 0111 and not 1110 which is already

built from 1100.

Like with the Hasse diagram method, we check sets for dominance, and

add them to the list of found dominant metapaths if they are, or add the

sets to the next level otherwise.

5.7.3 Proposed solution 2: Pascal’s triangle

In this alternative solution, we propose to use properties of Pascal’s

triangle to achieve better results. A problem with the prefix tree method

is that the construction is not balanced. It is easy to see on Fig. 5.7

that some sets prune more nodes than others if they are dominant. For

example, if the set 1000 is dominant, we can see that seven sets in superior

levels are not considered anymore. However, if the set 0010 is dominant,



82 5 Analyzing Policies to Find Redundancies

Figure 5.7: Prefix tree representing the

power set of a 4-element set ordered by

inclusion.
0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Figure 5.8: Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

#edges

6

5

4

3

2

1

0

only one set is not considered anymore. This is a product of the way we

build the prefix tree, and not a product of the sets since sets in a level

can only be linked to some, not all, of their supersets in the level directly

above, e.g. 0010 is not linked to either 1010 or 0110.

We might also consider sets which we do not need to consider. For

example, if set 0110 is dominant, we know set 1110 is not dominant, but

is still built by set 1100 and checked for dominance since 1100 comes first

in the list. Both those issues are problematic since we do not get the full

effect of finding a dominant metapath for some sets.

In this second solution, we solve this issue. Each level of Pascal’s triangle

(Fig. 5.8) corresponds to the number of sets of a specific size for a specific

number of elements. To give an example, the level of Pascal’s triangle

corresponding to four edges is 1, 4, 6, 4, 1, which corresponds to the

number of sets in each level of the prefix tree in Fig. 5.7.

We propose to build the sets in levels of Pascal’s triangle, starting with

one edge, and adding an edge at each iteration. We thus build power

sets for an increasing number of edges. To build the next level in Pascal’s

triangle, we perform an operation on sets of the previous level. In the

same way an element not on the edge of the triangle is created by adding

its two parents, we create a set by combining the parents of the set.



5.8 Performance analysis 83

More specifically, we add the edge of this level of Pascal’s triangle to

sets of the left member, and then add the sets of the right member:

=4F_B4C = (=4F_4364 ∗ ;4 5 C_<4<14A) + A86ℎC_<4<14A.

For example, imagine we have all the sets of the level consisting of four

edges, and want to build the fifth level by adding an edge. Let us define

the four initial edges as 0, 1, 2, 3 and the new edge we want to add as

4. We need to build the sets corresponding to the level with five edges:

1, 5, 10, 10, 5, 1. Sets at the edge of the triangle (1 on the left and 1 on

the right) correspond to respectively the empty set and the complete

set. Sets inside the triangle can be built from the previous level. For

example, the 10 on the left is built by combining the 4 and 6 of the level

with four edges. The 4 corresponds to sets {0}, {1}, {2}, {3}, and the 6

corresponds to sets {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}. To obtain

the 10 in level 5, we combine the new edge 4 with sets in 4. We obtain

{0, 4}, {1, 4}, {2, 4}, {3, 4}. Like with the other methods, those sets are

checked for dominance and only added to the level if they are not. Then,

we add the sets in 6 to obtain the sets of this particular element of Pascal’s

triangle.

In addition to this, we also optimize inside a level of Pascal’s triangle.

Like with the prefix tree method, if a dominant metapath is found in

the level, supersets do not need to be considered for dominance, so

we keep a memory of the bit strings representing dominant metapaths.

If a dominant metapath is found in the level, we compare newly the

intersection of created sets with found dominant metapaths. If the

intersection is equal to a found dominant metapath, the newly created

set is a superset, does not need to be checked for dominance and can be

removed from the level.

By doing the combination this way, we can make sure to maximize the

effect of finding a dominant metapath. In the previous example, if the set

{1, 4} was found dominant, it would simply not be added to the list of

sets, and thus will never be used in other combinations.

5.8 Performance analysis

This section is dedicated to the performance evaluation of the different

algorithms we have reviewed so far. Namely, wemeasure the speed of the

algorithm given in Ranathunga et al. [28], the algorithm enumerating all

metapaths, the algorithm using a SAT instance, and the algorithm using

Pascal’s triangle. The enumeration algorithm is evaluated as to have a

baseline when comparing the other algorithms. Wemodify the algorithm

given in Ranathunga et al. as well as the enumeration algorithm as to not

detect conflicts, only redundancies. This will put those algorithms on a

more equal footing as the algorithms using SAT and Pascal’s triangle do

not detect conflicts.

5.8.1 Methodology

We perform policy analysis to detect redundancies in YAWL policies. In

each case, we start with a metagraph and the same source and target,

respectively the start and the end of the workflow, as reference for



84 5 Analyzing Policies to Find Redundancies

the elimination of redundancies. Methods to detect redundancies vary.

Ranathunga et al. [28] algorithm and the enumeration algorithm are

given the metagraph. The algorithm using Pascal’s triangle is given the

metagraph, the source and the target. The SAT formulation is given all of

the above and a specific edge to force.

To obtain general and representative results, we generate random work-

flows. Like in Chapter 4, this allows us to get an idea of the efficiency

of the algorithms. Thus, the generated workflows should not display

specific features that would give an edge to one algorithm or the other.

We perform the analysis of those policies by varying the number of

elements in the workflow. In particular, we modulate the number of

elements we generate, by giving them values 5, 10 or 15. Those values

were chosen after empirical evaluation, where it was clear all algorithms

had shown their limits. Therefore, there is no use to adding more values

for the number of elements. In opposition to Chapter 4, we do not vary

the policy size, as it was shown in this chapter to have little impact on

execution time. The policy size here is thus set to 0, where we have one

conditional proposition on each edge. We also introduce no translation

error rate since there is no translation involved, only the analysis of the

YAWL specification.

Since we vary the number of elements we generate, this also varies

the number of edges in each specification. We use the same ratio as in

Chapter 4, 1.5 times more edges than the number of elements. Overall, we

generate thirty randomYAWL specifications for each size of theworkflow,

creating 90 different workflow specifications in total (3 generating set

sizes, 30 repetitions). We ran our measurements on a commodity desktop,

equipped with an Intel Core CPU 3.5-GHz, 16GB of RAM and running

Ubuntu 20.04.

Once those specifications are generated, each one can be turned into its

conditional metagraph representation, and we can run each algorithm

on them. The only exception is the SAT formulation. In this case, we first

need to transform the workflow specification into a SAT instance, and

then we can use a solver to find a solution to this instance.

5.8.2 Evaluation

SAT generation times

First, we give the generation times for instances of the SAT formulation.

The distribution of generation times can be found in Figure 5.9. As the

reader can notice, either generation times approach zero seconds, or 1800

seconds (30minutes). Empirically, we noticed that running the generation

for longer periods of time than those 30 minutes did not allow for the

generation of the SAT instance to be finalized. Therefore, we put in place

a timeout that would end the generation of the SAT instance should it go

over 30 minutes.

Concerning 5-element workflow SAT instances, 5 of them out of 30 were

unable to complete. In opposition, all 30 of the 10-element workflow SAT

instances could not be generated. As a result, we only kept generation

times of SAT instances for workflows with 5 or 10 elements, resulting



5.8 Performance analysis 85

0 250 500 750 1000 1250 1500 1750
Generation time (s)

0

5

10

15

20

25

30

35

Co
un

t

Figure 5.9: Distribution of generation

times for SAT instances.

0.0005 0.0010 0.0015 0.0020 0.0025
Generation time (s)

0

2

4

6

8

10

12

14

Co
un

t

Figure 5.10: Distribution of generation

times for SAT instances, minus the ones

exceeding the time limit.

in 60 generated SAT instances. As far as we can tell, the fact that some

generations were not able to be completed is due to their conversion to

Conjunctive Normal Form. Perhaps the conversion has a large middle,

with many terms, and struggles to complete the CNF. A potential way to

fix this issue would be to apply De Morgan’s laws manually.

Figure 5.10 gives a clearer view of the distribution times of Figure 5.9, by

excluding all the generations that timed out. Note that for SAT instances

that were able to finish, generation times are very low.

Redundancy detection: a comparison

Figure 5.11 depicts the execution times of the measured policy analysis

algorithms, according to the number of edges in the workflow specifi-

cation. Like with the generation times of the SAT instance, we tested

empirically that after one hour, there was no use in continuing to run

the algorithms. Therefore, we also set a timeout of one hour, which is

why the algorithms level off at the 3600 second mark. As we can see, the

Ranathunga et al. algorithm is in line with the enumeration algorithm in

terms of speed. Recall that the Ranathunga et al. algorithm does not detect

most redundancies. In opposition, the enumeration and Pascal triangle

algorithms detect all redundancies. We can see that if the specification

contains more than 10 edges, we cannot compute redundancies with

the Ranathunga et al. algorithm or the enumeration algorithm anymore

as they level off. In the same way, the algorithm using Pascal’s triangle

levels off after 28 edges, which grants us access to the computation of

redundancies on larger metagraphs, as well as better execution times

for metagraphs of the same size when compared to the enumeration

algorithm.

Concerning the SAT formulation,wewere able tomeasure its performance

on instances that we were able to generate. For the instances we were

not able to generate, we simply set their execution time to one hour, the

value of the timeout. We can observe the execution time for SAT levels

off faster than the enumeration algorithm. Note that for instances that

we were able to generate, the time to solve the SAT instance is very low.

If we could somehow find a way to find a solution to the problem that

prevents us from generating SAT instances for larger metagraphs, we

could potentially find that the execution time to solve SAT instances stays

low. As of now, the fact that SAT levels off after only 8 edges is simply

5 10 15 20 25 30
Number of edges

0

500

1000

1500

2000

2500

3000

3500

Ex
ec

ut
io

n 
tim

e 
(s

)

Algorithm
Ranathunga et al.
Enumeration
Pascal's triangle
SAT

Figure 5.11: Execution times of different

policy analysis algorithms. In particular,

we compare Ranathunga et al. [28], the

algorithm enumerating all metapaths, the

SAT algorithm and the algorithm using

Pascal’s triangle.



86 5 Analyzing Policies to Find Redundancies

4: See https://github.com/

loicmiller/policy-analysis.

due to the fact that instances with more edges were not generated, and

not due to the fact that the actual resolution of the instance takes a lot of

time.

Overall, we find that the algorithm using Pascal’s triangle is indeed the

most efficient out of the tested algorithms, since it detects redundancies,

has a larger capacity in termsofmetagraph size, andbetter execution times

than the enumeration and SAT algorithms. The limit of this algorithm

is that the number of edges on paths from the source to the target

should not exceed 28 edges. This should be enough when dealing with

security policies, as they will rarely have more than 28 relations between

sets of elements to evaluate for an access control decision, but could be

problematic for very largeworkflows. In the case of this YAWL foundation

case study[49][49]: Business Process Management (BPM)

Group (2010), YAWL4Film

for example, the workflow contains around 50 edges from

start to finish. The complete data, code to generate the measures and

results, as well as some guidance are publicly available
4
.

5.9 Discussion

In this chapter, we addressed the problem of finding redundancies in a

policy specification. Specifically, we investigated the currently existing

solution and showed it was inadequate because it was manual, partial,

and relied on computing the transitive closure of the adjacency matrix

which is O((=3)<), with n the number of metagraph variables and m the

length of the longest path.

From this result, and since we could not come up with an algorithm

that would find redundancies in a reasonable time, we extrapolated that

maybe our problem was NP-hard. We showed this was indeed the case,

by studying the equivalent problem of finding (B, 3)-hypernetworks in

the general case and in acyclic F-hypergraphs.

In the process of studying the complexity of those problems, we merge

the field of metagraphs and hypergraphs, bringing metagraph concepts

like edge dominance and input dominance into the realm of hypergraphs.

We hope that by bridging the gap between those constructs, we can

further both fields of research as elements of metagraphs can be used to

solve hypergraph problems and vice-versa. For example, since finding

(B, 3)-hypernetworks is a core problem, NP-hard in the general case and

polynomial only in acyclic B-hypergraphs, there might be some concrete

application of this complexity boundary.

The only case inwhichfinding redundancies is feasible in polynomial time

is in the case of acyclic B-hypergraphs.However, this is only a very specific

type of graphs and will not be able to model a large portion of policies.

Indeed, the B-hypergraph only contains B-edges, which represent many-

to-one relationships between elements. A B-hypergraph is not capable of

modeling one-to-many relationships in the way F-hypergraphs can, or

many-to-many relationships, like BF-hypergraphs can. As such, many

of the common relationships that can be found in policies cannot be

accurately represented in B-hypergraphs. On the contrary, we argue

most policies probably need to be represented using a BF-hypergraph.

Since finding redundancies is only feasible in polynomial time when the

B-hypergraph is acyclic, this means the policy we want to analyze cannot

https://github.com/loicmiller/policy-analysis
https://github.com/loicmiller/policy-analysis


5.9 Discussion 87

contain any cycles. This is limiting, as a policy analysis method using

metagraphs will in theory only be efficient in acyclic B-hypergraphs,

and in general a policy cannot be accurately represented using only a

B-hypergraph.

To find an efficient solution to our redundancy finding problem, we

formulated it as a SAT problem. By doing this, we hoped that a SAT

solver could find a solution efficiently inmost cases, and to be honest I feel

this is still probably the case. The problem lies is the number of clauses

we generate to formulate the problem as SAT, which is exponential.

In accordance with this intuition, cases where we could generate the

clauses were solved very efficiently, but we do not know the efficiency of

cases where we could not generate the clauses. One thing we could have

done differently was to formulate our problem as SAT without going

through the metagraph representation. We hoped that by going through

this representation first, we could come up with a simpler and more

effective way of finding redundancies. Another limitation is the fact that

potentially, multiple SAT formulations exist for our problem. Maybe our

current formulation is one of the less effective ones, and maybe another

way of tackling the problem would prove more efficient.

Finally, we propose an algorithm as an alternative to the existing one

of the literature and our SAT formulation. This algorithm uses Pascal’s

triangle, and takes the exhaustive approach. Since the algorithm works

on the subset of the metagraph that is relevant to the access request

being tested (e.g. attributes of the user, firewalls between the user and the

resource), this helps us reduce greatly the number of tested metapaths.

By measuring performance of the algorithm given in Ranathunga et

al. [28], the algorithm enumerating all metapaths, the algorithm using a

SAT instance, and the algorithm using Pascal’s triangle, we find that the

algorithm using Pascal’s triangle is the most efficient out of the tested

algorithms. Indeed, it detects redundancies, has a larger capacity in terms

of metagraph size, and better execution times than the enumeration and

SAT algorithms.

A limitation coming with the exhaustive approach when the problem

to solve is NP-hard, is that the algorithm will have non-polynomial

complexity. This is the case of our solution, which has exponential

complexity. We argue however that this is an efficient solution for the

exhaustive approach, as we do not need to calculate the �∗matrix, and

we test the least amount of edge combinations.

When testing our algorithm, we find that it can handle access control

policies well, but can struggle with workflows. Indeed, one limit of the

algorithm is that the number of edges on paths from the source to the

target should not exceed 28 edges. This should be enough when dealing

with security policies, as they will rarely have more than 28 relations

between sets of elements to evaluate for an access control decision, but

could be problematic for very large workflows. In the case of this YAWL

foundation case study[49] [49]: Business Process Management (BPM)

Group (2010), YAWL4Film

for example, the workflow contains around

50 edges from start to finish. Again, it is not the size of the policy that

matters when using our algorithm, but the number of edges relevant to

the access being tested.



88 5 Analyzing Policies to Find Redundancies

5.10 Conclusion

In this chapter, we addressed the problem of finding redundancies in a

policy. We showed how the currently existing solution was inadequate,

and proved the problem of finding redundancies in a policy is actually

NP-Hard in the general case. We fill the gap in the literature by studying

the equivalent problem of finding (B, 3)-hypernetworks in the general

case and in acyclic F-hypergraphs. Knowing this problem is NP-hard, we

tried to formulate our redundancy detection problem as a SAT problem,

with little success. In spite of this result, we proposed an alternative

method using Pascal’s triangle which still has exponential complexity,

but has the merit of being thorough and exhaustive. We then confirm the

efficiency of this algorithmbymeasuring and comparing the performance

of the algorithms described in this chapter.

A part of this work, the proof of hardness on acyclic F-hypergraphs,

is currently in submission [22]. We also developed publicly available

tools, namely the SAT formulation, and a policy analysis framework

containing the other redundancy detection methods introduced in this

chapter (the algorithm of Ranathunga et al., the enumeration algorithm,

and the algorithm using Pascal’s triangle), code to generate workflows,

code to perform the measurements and other related functionalities.

Overall, we argue that although metagraphs are fine when analyzing

a security policy, they might not be the best way to find redundancies

in a workflow. Possible future works include finding a different SAT

formulation of the problem, which does not need an exponential amount

of clauses. In particular, Algorithm 3 needs to be simpler and generate

less clauses, andAlgorithm 2 generates clauses that expand exponentially

when they are converted to their CNF. Other possible future works in-

clude using metagraphs/hypergraphs for other policy analysis problems.

Namely, one possible aspect which has not yet been explored is the detec-

tion of policy incompleteness using metagraphs. Policy incompleteness

has been studied with decision diagrams, but there may be a way to find

a more efficient method using metagraphs.

https://github.com/loicmiller/fhep-sat-formulation
https://github.com/loicmiller/policy-analysis


Conclusion and Research

Directions 6

6.1 Summary of our works . . . 89

6.2 Takeaways from this thesis . . 91

6.3 General discussion . . . . . . . 91

6.4 Perspectives and future works93

6.1 Summary of our works

In Chapter 1, we introduced workflow and concepts related to their

security. We explained that most, if not all organizations use workflows

in their daily operations, and that workflows can involve multiple orga-

nizations. Those multi-party workflows are complex to implement when

it comes to communication, management and security.

We showed how data exposures are increasing in numbers and severity,

and constitute a critical vulnerability. We explained that those exposures

are aggravated because of the shift in the way applications are currently

developed and deployed. Indeed, more and more organizations take

a modular rather than monolithic approach, and drop on-premise de-

ployments in favor of the cloud and microservices. This in turn has

led to a change in the way security must be envisioned, with models

like zero-trust being more adequate than the typical “protect the border”

approach. We briefly described typical countermeasures, that come in

the form of authentication and authorization.

Considering the current situation, with major companies storing their

data unencrypted in the cloud, we took interest to the security of work-

flows in such an environment. Our goal was to enable secure multi-party

workflows and mitigate the risk of data exposures. In accordance with

this goal, we structured this document around three axes.

An infrastructure to prevent exposures

To mitigate risks of exposures, we proposed an infrastructure using

microservices in Chapter 3. In particular, we provide ways to secure data

at rest and in transport, and a way for the workflow manager to enforce

a policy.

After going through the different mechanisms and explaining how

each of them tends to our goal, we deployed a Proof of Concept on

the Google Cloud Platform and verified our policy implementation is

actually enforced via captures made at central points in the infrastructure.

Measuring the cost of the added authorization, we find that pods with

Open Policy Agent have a substantial increase in startup time of almost

two seconds on average (32.72%). Measuring request time according to

the size of the policy, we find that policy size accounts for 65% of the

variance in intra-region communications whereas it accounts only for 7%

of the variance in inter-region communications. This work has led to two

publications [19, 20] and the development of a publicly available Proof of

Concept.

https://github.com/loicmiller/secure-workflow
https://github.com/loicmiller/secure-workflow


90 6 Conclusion and Research Directions

Our infrastructure assumes its policy specification to match its imple-

mentation. In reality, this can be erroneous, and might lead to potential

attacks exploiting a faulty policy.

Verifying policies

To drop this assumption, we dealt in Chapter 4 with the verification of

policies. In this chapter, we detailed a way to verify that the policies

deployed in our infrastructure actuallymatch their initial specification. To

this end, we introducedmetagraphs, and gave arguments as towhy it was

an appropriate way to model policies, workflow policies in particular. We

showed we can fully express YAWLwith metagraphs, and how each task,

condition and operator can be converted into a metagraph representation,

supporting the richness of the YAWL language. We used YAWL and

Rego as our go-to languages respectively for the policy specification

and implementation. We then introduced a method to enable policy

verification with the help of metagraphs. We evaluated our verification

method, and found it to run in a very reasonable time, evenwith relatively

large policies.

Thisworkhas led to twopublications [20, 21], thedevelopment of a Python

3 version of MGToolkit and the development of a policy verification

framework. Those tools are publicly available.

Our verification method also had assumptions. Namely, we assume the

policy specification to be free of errors and redundancies. This is far from

always being the case. Our verification method can only conclude that

the implementation of a policy matches its specification, but does not

allow for the detection of errors and redundancies in the specification

only.

Analyzing policies

This is why in Chapter 5, we addressed the problem of finding redun-

dancies in a policy. We showed that the current solution is inadequate,

and proved finding redundancies in a metagraph is NP-hard. Based on

this finding, we formulated our problem as a SAT problem to have a

more efficient way of finding redundancies, but found this method to be

inefficient. As an alternative, we proposed an exhaustive algorithm using

Pascal’s triangle to find redundancies, which is more efficient than the

previous solution. To confirm this finding, we conducted a performance

analysis to compare those different methods of finding redundancies.

As expected, our method is faster and more scalable than the others.

A part of this work, the proof of hardness on acyclic F-hypergraphs,

is currently in submission [22]. We also developed publicly available

tools, namely the SAT formulation, and a policy analysis framework

containing the other redundancy detection methods introduced in this

chapter (the algorithm of Ranathunga et al., the enumeration algorithm,

and the algorithm using Pascal’s triangle), code to generate workflows,

code to perform the measurements and other related functionalities.

https://github.com/loicmiller/mgtoolkit
https://github.com/loicmiller/mgtoolkit
https://github.com/loicmiller/policy-verification
https://github.com/loicmiller/policy-verification
https://github.com/loicmiller/fhep-sat-formulation
https://github.com/loicmiller/policy-analysis


6.2 Takeaways from this thesis 91

6.2 Takeaways from this thesis

The main takeaways of this thesis are as follows:

I The microservice architecture can be used to construct a leak-

free multi-party workflow.

We show how to use the microservice architecture to secure

workflows. We propose a secure infrastructure and deploy it on

Google Cloud Platform in a publicly available Proof of Concept.

With this infrastructure, we hope to mitigate data exposures by

dealingwith cryptographic failures, and providing away to enforce

a policy. Our infrastructure does not however protect against all

attacks, and has some assumptions. We assume in particular that

the policy specification is correct, and matches its implementation.

I Metagraphs are a useful structure to model workflow policies,

and can be used to perform policy verification.

To the best of our knowledge, this is the first time someone has

shown how to verify policies using metagraphs. Metagraphs are a

relevant and efficient way to model, manage and verify deployed

policies, workflow policies in particular. We showed we can fully

express YAWL with metagraphs, therefore supporting the richness

of the YAWL language inmetagraphs. By verifying the specification

matches the implementation, we hope to reduce the number of

erroneous implementations and thus mitigate data exposures due

to broken access control.

I Metagraphs are a useful structure to analyze policies, in partic-

ular to identify and remove redundancies.

The current way to detect redundancies with metagraphs has

some issues. We showed analyzing a policy to find redundancies

is NP-hard in the general case, and presented an algorithm using

Pascal’s triangle. We argue this is an efficient solution to this

problem, and confirm this method is better than other ways of

finding redundancies by conducting a performance evaluation.

We hope that by providing ways to identify redundancies, we

can further reduce the risk of broken access control in deployed

policies.

All the tools, as well as any data, code to generate measures, results and

guidance, are publicly available in their associated repository. Links to

those can be found in Table 1.2. Data for the measures of Chapter 4 takes

too much space for a git repository and can be found here instead.

6.3 General discussion

We discussed each of our contributions in their respective chapters. In

Chapter 3’s discussion, we looked back on our attacker model, and show

how each attacker is countered by mechanisms of our infrastructure. We

detailed other benefits of our infrastructure, such as its modularity or

reduced complexity compared to monolithic solutions. To the best of

our knowledge, this is the first time someone showed how to use the

microservice architecture to secure workflows. Some threats still remain,

https://zenodo.org/record/4912289


92 6 Conclusion and Research Directions

as someone using an unsecure outdated version of any service within

our infrastructure will be vulnerable to exploits possible on this version

of the service. Since the service inside our infrastructure can be literally

anything, there is little we can do to prevent those attacks. One of our

assumptions is that policy specification is correct, and its implementation

corresponds.

We dealt with this assumption in Chapter 4 by building a policy verifica-

tion method. We evaluated the performance of our solution, and come

to the conclusion that using metagraph comparison to verify deployed

policies match their specification can be performed in a very reasonable

time, even for a large number of rules. The main point to discuss here

is the nonexistence of any representative policy dataset existing online.

To reiterate, most policies we found were either contained in articles,

or in the wild in public GitHub repositories. The majority of papers

dealing with policies do not disclose them, as they are either private or

currently in use. There isn’t any publicly available policy dataset, which

contain policies representative enough to conduct analysis on them. The

assumption here is that the policy specification is correct.

This is dealt with in Chapter 5, wherewe detail ways to find redundancies

in a policy. A limitation coming with the exhaustive approach when

the problem to solve is NP-hard, is that the algorithm will have non-

polynomial complexity. We argue however that our solution is efficient

for the exhaustive approach, as we do not need to calculate the �∗matrix,

and we test the least amount of edge combinations. In our search for

eliminating redundancies, we also brought metagraph concepts like edge

dominance and input dominance into the realm of hypergraphs. We

hope that by bridging the gap between those constructs, we can further

both fields of research as elements of metagraphs can be used to solve

hypergraph problems and the other way around as well. To conclude on

the algorithm using Pascal’s triangle, we tested our algorithm and found

that it could handle access control policies well, but could struggle with

workflows. Restating one of our findings, one limit of the algorithm is

that the number of edges on paths from the source to the target should

not exceed 28 edges. This should be enough when dealing with security

policies, as they will rarely have more than 28 relations between sets

of elements to evaluate for an access control decision, but could be

problematic for very large workflows.

When considering the works realized in this document, we feel that there

is still a lot of progress to be made, but that it is nonetheless a step in

the right direction. When combined, we have a secure infrastructure

that mitigates the risk of data exposures, with a way to enforce a policy

implementation that can be verified, based on a policy specification

that can be analyzed. We feel strongly about the use of metagraphs to

represent policies, workflows in particular, and have argued why in this

document. Metagraphs are a great way to model policies, and the more

one can achieve with them, the more useful they become.

In ourworks,we also took avery inclusivedefinition ofworkflows. Indeed,

a lot of workflow patterns can be expressed using graphs, conditional

metagraphs in particular, so it seemed fitting. However, one aspect that

would merit further investigation is the influence of workflow patterns

on our different contributions. A conditional metagraph should be



6.4 Perspectives and future works 93

able to model those patterns, as they are general-purpose, but there

might be some important implications in the policy verification and

analysis processes which we could leverage to better verify and analyze

workflows.

Overall, we feel like the stronger part of our works are the ones presented

in Chapter 4 and Chapter 5. Looking back at the results presented in this

thesis, we should perhaps have dedicated a smaller part to the secure

infrastructure. In opposition to Chapter 4 and Chapter 5, Chapter 3 is

definitely more of an engineering problem than a research problem. A lot

of private companies use microservices, but there is little work on their

security guarantees, and the body of research around microservices is

not consequent even though their are ubiquitous. Those companies have

little incentive to publish their work, and it can be hard for a research

unit to compete with teams of engineers at major businesses.

6.4 Perspectives and future works

Future works for each contribution were addressed in their correspond-

ing chapter. For Chapter 3, possible future works include studying how

changes in the workflow impact the security of our infrastructure, or try-

ing to remove some of the trust requirements. A possible lead to lowering

those requirements would be to use Trusted Execution Environments

(TEE), which are a secure area inside a processor.

Concerning Chapter 4, possible future works include broadening the

types of policies our verifier can handle. To extend the domain of policies

we are able to verify, a possible lead is to investigate pattern matching

solutions in order to provide amore generalwayof interpreting identifiers.

Another important lead is the construction of a representative publicly

available policy dataset.

As for Chapter 5, possible future works include finding a different SAT

formulation of the problem, which does not need an exponential amount

of clauses. One thing we need to try is a manual application of De

Morgan’s laws, which should reduce the time to convert clauses to their

Conjunctive Normal Form. In addition, the complexity of our current

solution using Pascal’s triangle is unfortunately still exponential. To

mitigate this and improve our algorithm, we could use a version of

Tarjan’s algorithm adapted to metagraphs in order to consider only edges

on a path from the source to the destination, since other edges will not

be part of a dominant metapath. In a metagraph, we define a strongly

connected component (SCC) as a subset of variables where every variable

in the subset can reach other variables in the subset using a simple path.

To easily find edges on a path from the source to the destination, we

could add a virtual edge from the destination to the source, then run

Tarjan’s algorithm to find SCCs. The SCC containing the source and

destination will contain the edges to be considered when running the

algorithm Pascal’s triangle. Since the SCC will contain less edges than

the full metagraph, we can probably gain a little performance this way.

Alternatively, one could also perform a DFS from the source to find

nodes reachable from the source, and a DFS from the destination in the

transpose metagraph to find nodes reachable from the destination. Then,



94 6 Conclusion and Research Directions

the intersection of the nodes yields the nodes on a path from the source

to the destination.

Other possible future works include using metagraphs/hypergraphs

for other policy analysis problems. Many properties have not yet been

explored with those constructs, like the separation of duties or the

principle of least privilege. Another one of those aspects is the detection

of policy incompleteness, where one tries to identify policy requests that

have no explicit decision.

Overall, our short term goals include finding other ways to model the

policy analysis problemas SAT/ILP.We only proved this problemwasNP-

hard, but it might belong to a higher complexity class in the hierarchy, so

there might be something to do here. Midterm goals include researching

how several workflow patterns impact our contributions. Cancellation

in particular seems an interesting pattern to investigate. We also plan

to continue exploring complexity results occurring in metagraphs and

hypergraphs. For example, we think the related problem of finding B-

hypernetworks can be done quicker for certain types of hypergraphs, and

the complexity of this procedure has yet to be determined for other types

of hypergraphs. Finally, goals in the longer run include the constitution

of a representative publicly available policy dataset. We are not alone in

thinking this is a crucial missing part of the current body of research.

We also plan to investigate more policy-related issues, and try to tackle

them using metagraphs. This includes policy properties like verifying

separation of duty, or finding incompleteness in policies. One aspect that

would merit further investigation as well is the influence of workflow

patterns, like cancellation, on our different contributions. In the future,

we hope the growing body of work around policies, workflows and

metagraphs will be enough of an incentive for policy administrators to

use them in practice.



Appendix





A
Complementary Materials for Chapter 3

A.1 Listings

Listing A.1: Proof of concept access con-

trol policy. This policy implements the

permissions described in Table 3.1.

1 package istio.authz
2 import input.attributes.request.http as http_request
3

4 default allow = false
5

6 # Get username from input
7 user_name = parsed {
8 [_, encoded] := split(http_request.headers.authorization, " ")
9 [parsed, _] := split(base64url.decode(encoded), ":")
10 }
11

12 # RBAC user-role assignments
13 user_roles = {
14 "owner": ["owner"],
15 "vfx-1": ["vfx-1"],
16 "vfx-2": ["vfx-2"],
17 "vfx-3": ["vfx-3"],
18 "color": ["color"],
19 "sound": ["sound"],
20 "hdr": ["hdr"]
21 }
22

23 # RBAC role-permissions assignments
24 role_permissions = {
25 "owner": [{"method": "POST", "path": "/api/vfx-1"}],
26 "vfx-1": [{"method": "POST", "path": "/api/vfx-2"},
27 {"method": "POST", "path": "/api/vfx-3"}],
28 "vfx-2": [{"method": "POST", "path": "/api/color"}],
29 "vfx-3": [{"method": "POST", "path": "/api/sound"}],
30 "color": [{"method": "POST", "path": "/api/hdr"}],
31 "hdr": [{"method": "POST", "path": "/api/owner"}],
32 "sound": [{"method": "POST", "path": "/api/owner"}]
33 }
34

35 # Logic that implements RBAC
36 rbac_logic {
37 # lookup the list of roles for the user
38 roles := user_roles[user_name]
39 # for each role in that list
40 r := roles[_]
41 # lookup the permissions list for role r
42 permissions := role_permissions[r]
43 # for each permission
44 p := permissions[_]
45 # check if the permission granted to r matches the user’s request
46 p == {"method": http_request.method, "path": http_request.path}
47 }
48

49

50 # ABAC user attributes (tenure)
51 user_attributes = {
52 "owner": {"tenure": 8},
53 "vfx-1": {"tenure": 3},
54 "vfx-2": {"tenure": 12},
55 "vfx-3": {"tenure": 7},
56 "color": {"tenure": 3},
57 "sound": {"tenure": 4},
58 "hdr": {"tenure": 5},
59 }



98 A Complementary Materials for Chapter 3

60

61

62

63 allow {
64 user_name == "owner"
65

66 # Match method and path (RBAC)
67 rbac_logic
68 }
69

70 allow {
71 user_name == "vfx-1"
72

73 # Match method and path (RBAC)
74 rbac_logic
75 }
76

77 allow {
78 user_name == "vfx-2"
79

80 # Match method and path (RBAC)
81 rbac_logic
82

83 # Match user attributes (ABAC)
84 user:=user_attributes[user_name]
85 user.tenure > 10
86 }
87

88 allow {
89 user_name == "vfx-2"
90

91 # Match method and path (RBAC)
92 rbac_logic
93

94 current_time := time.clock([time.now_ns(), "Europe/Paris"])
95 to_number(current_time[0]) >= 8
96 to_number(current_time[0]) <= 17
97 }
98

99 allow {
100 user_name == "vfx-3"
101

102 # Match method and path (RBAC)
103 rbac_logic
104

105 # Match user attributes (ABAC)
106 user:=user_attributes[user_name]
107 user.tenure > 10
108 }
109

110 allow {
111 user_name == "vfx-3"
112

113 # Match method and path (RBAC)
114 rbac_logic
115

116 current_time := time.clock([time.now_ns(), "Europe/Paris"])
117 to_number(current_time[0]) >= 8
118 to_number(current_time[0]) <= 17
119 }
120

121 allow {
122 user_name == "color"
123

124 # Match method and path (RBAC)
125 rbac_logic
126

127 current_time := time.clock([time.now_ns(), "Europe/Paris"])
128 to_number(current_time[0]) <= 8
129 to_number(current_time[0]) >= 17
130 }
131

132 allow {
133 user_name == "sound"
134

135 # Match method and path (RBAC)
136 rbac_logic
137

138 current_time := time.clock([time.now_ns(), "Europe/Paris"])
139 to_number(current_time[0]) <= 8



A.2 Identity and authentication bootstrap 99

140 to_number(current_time[0]) >= 17
141 }
142

143 allow {
144 user_name == "hdr"
145

146 # Match method and path (RBAC)
147 rbac_logic
148

149 current_time := time.clock([time.now_ns(), "Europe/Paris"])
150 to_number(current_time[0]) >= 8
151 to_number(current_time[0]) <= 17
152 }

A.2 Identity and authentication bootstrap

Since we use a service mesh, services are provided with an identity

(certificate) which is associated with a key pair. This identity and this key

pair are then used to provide data security at rest, and data security in

transport (authentication and encryption) via mTLS. Trust in this identity,

and the associated authentication mechanism is built on multiple layers,

from the service mesh level down to the platform our infrastructure is

deployed on. In other words, secure communications at the service mesh

level are securely bootstrapped by relying on secure communications at

the orchestrator level, which are themselves securely bootstrapped by

relying on secure communications at the platform level.

The first step towards trusting the identity and authentication mech-

anisms is the bootstrap of the orchestrator (Fig. A.1). In the case of

Kubernetes [24], processes called kubelets will start running on the

orchestrated machines. The kubelets are managed by the node controller.

The node controller runs inside the environment of the owner, whereas

the kubelets run on all the machines part of the workflow. First, the

kubelet will look for its configuration file containing a key pair and a

signed certificate. The key pair and signed certificate are subsequently

used to enable TLS communications from the kubelet to the node con-

troller. If the kubelet finds it, it can begin normal operation, but if the

configuration file does not exist, the kubelet will look for a bootstrap

file.

The bootstrap file contains the URL of the node controller, and a limited

usage token used to authenticate the kubelet with the node controller

(Step 1 of Fig. A.1). After authenticating to the API server with the token,

the kubelet obtains limited credentials (Step 2) to create a Certificate

Signing Request (CSR). The kubelet sends the CSR to the kube-controller-

manager (Step 3). The kube-controller-manager can then automatically

approve the CSR, or an outside process, possibly a person, can approve

the CSR via the Kubernetes API. Once the CSR is approved, a Certificate is

created and issued to the kubelet. The kube-controller-manager can then

send the created certificate to the kubelet (Step 4). The kubelet can then

create a proper configuration file with the key and signed certificate and

can begin normal operation. Optionally, the kubelet can automatically

request renewals of the certificate, which goes through the same process

as described above.

The orchestrator can now start running the pods on the workers. Kuber-

netes will use the previously established secure communication channel



100 A Complementary Materials for Chapter 3

Figure A.1: Kubernetes TLS bootstrap

communications. The kubelet uses a lim-

ited usage token to authenticate with the

API server (Step 1). After authenticating to

the API server with the token, the kubelet

obtains limited credentials (Step 2) to cre-

ate a Certificate Signing Request (CSR).

The kubelet sends the CSR to the kube-

controller-manager (Step 3). The kube-

controller-manager can then automatically

approve the CSR, or an outside process,

possibly a person, can approve the CSR via

the Kubernetes API. The kube-controller-

manager can then send the created certifi-

cate to the kubelet (Step 4), and the kubelet

can begin normal operation.

kube-apiserver

kube-controller-
manager

kubelet
1. Auth (token)
2. Credentials

3. CSR

4. Signed Certificate

Node Controller Worker

with the kubelet to give the kubelet the YAML configuration file of

the pods. The Container Runtime Interface (CRI) on each worker will

then make system calls to build the required namespaces until the PID

namespace. At this point, the Istio [25] web hook admission controller

adds the init containers and the proxy sidecars to the pods, and the

Open Policy Agent [27] web hook adds the policy sidecars. The created

container images are then started.

Now that kubelets can communicate securely with the node controller

and that the pods are running on the orchestrated machines, we need

to bootstrap the security of communications between the proxies of our

service mesh. The proxies need to setup their key pair and associated

certificate to start communicating in the service mesh via mTLS. To enable

this, a Node Agent running on each worker can receive identity requests

fromproxies. The proxy sends a JSONWeb Token (JWT) along the request

to authenticate it (Fig. A.2). When the Node Agent receives the request,

it generates a key pair and a CSR, and sends the CSR along with the

JWT to the Citadel module of Istio (Fig. A.3). Citadel then authenticates

the request and signs the CSR to generate the certificate. Once the Node

Agent receives the signed certificate, it sends it along with the key pair to

the proxy that requested the identity (Fig. A.4). To achieve certificate and

key rotation, this process repeats periodically.

FigureA.2: Istio key distribution viaNode

Agent: step A. The proxy sends a JWT

along an identity request to authenticate

it.

Proxy

Pod 1

Worker 1

Kubelet

Pod 2

Service 1 Node Agent

1. Key & Certificate
Request + JWT

Citadel

Mixer

Istio

Pilot

Additionally, for the proxies to know which Identity is authorized to run

which service, a secure naming information containing this mapping is

automatically created from the information retrieved at the Kubernetes

node controller. This is sent by the Pilot module of Istio to each proxy.

With this bootstrap, each proxy can communicate with the others proxies



A.2 Identity and authentication bootstrap 101

Proxy

Pod 1

Worker 1

Kubelet

Pod 2

Service 1 Node Agent
2.1. Generate

keys + certificate

2.2. CSR + JWT

2.4 Send Signed
Certificate

Citadel

Mixer

Istio

Pilot

2.3. Verify JWT,
Sign Certificate FigureA.3: Istio key distribution viaNode

Agent: step B. When the Node Agent re-

ceives the proxy’s request, it generates a

key pair and a CSR, and sends the CSR

along with the JWT to the Citadel module

of Istio. Citadel then authenticates the re-

quest and signs the CSR to generate the

certificate.

Proxy

Pod 1

Worker 1

Kubelet

Pod 2

Service 1 Node Agent

3. Key + Certificate

Citadel

Mixer

Istio

Pilot

FigureA.4: Istio key distribution viaNode

Agent: stepC. TheNodeAgent receives the

signed certificate and sends it along with

the key pair to the proxy that requested

the identity.

via mTLS, by using their keys to authenticate to each other, and encrypt

communications.





Bibliography

Here are the references in citation order.

[1] Igor Polyantchikov et al. ‘Virtual enterprise formation in the context of a sustainable partner network’.

In: Industrial management & data systems (2017) (cited on page 1).

[2] Luis M Camarinha-Matos. Virtual Enterprises and Collaborative Networks: IFIP 18th World Computer

Congress TC5/WG5. 5—5th Working Conference on Virtual Enterprises 22–27 August 2004 Toulouse, France.

Vol. 149. Springer Science & Business Media, 2004 (cited on page 1).

[3] Emilio Esposito and Pietro Evangelista. ‘Investigating virtual enterprise models: literature review and

empirical findings’. In: International Journal of Production Economics 148 (2014), pp. 145–157 (cited on

page 1).

[4] Antonio P Volpentesta. ‘Hypernetworks in a directed hypergraph’. In: European Journal of Operational

Research 188.2 (2008), pp. 390–405 (cited on pages 1, 29, 68, 69, 74, 75).

[5] European Commission et al. Study on data sharing between companies in Europe. Publications Office,

2018 (cited on page 1).

[6] Alena Lifar et al. Data Leak Prevention. 2017. url: https://datatracker.ietf.org/meeting/100/

materials/slides-100-hackathon-sessa-data-leak-prevention-00 (visited on 01/19/2022)

(cited on pages 2, 3, 1, 4).

[7] Brian Krebs. First American Financial Corp. Leaked Hundreds of Millions of Title Insurance Records. 2019. url:

https://krebsonsecurity.com/2019/05/first-american-financial-corp-leaked-hundreds-

of-millions-of-title-insurance-records/ (visited on 02/28/2020) (cited on page 2).

[8] Jonathan Stempel and Jim Finkle. Yahoo says all three billion accounts hacked in 2013 data theft. 2017.

url: https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-

accounts-hacked-in-2013-data-theft-idUSKCN1C82O1 (visited on 02/28/2020) (cited on page 2).

[9] Tara Seals. Thousands of MikroTik Routers Hĳacked for Eavesdropping. 2018. url: https://threatpost.

com/thousands- of- mikrotik- routers- hijacked- for- eavesdropping/137165/ (visited on

02/28/2020) (cited on page 2).

[10] Colin Lecher. Google reportedly fires staffer in media leak crackdown. 2019. url: https://www.theverge.

com / 2019 / 11 / 12 / 20962028 / google - staff - firing - media - leak - suspension - employee -

termination (visited on 01/15/2020) (cited on pages 2, 3).

[11] OWASP. OWASP Top Ten. 2021. url: https://owasp.org/www-project-top-ten/ (visited on

01/05/2022) (cited on pages 2, 3).

[12] OWASP. A01:2021 – Broken Access Control. 2021. url: https://owasp.org/Top10/A01_2021-

Broken_Access_Control/ (visited on 01/05/2022) (cited on pages 2, 3).

[13] Tenable Research. Tenable Research Reveals Over 40 Billion Records Were Exposed in 2021. Jan. 2022. url:

https://www.tenable.com/press-releases/tenable-research-reveals-over-40-billion-

records-were-exposed-in-2021 (visited on 01/20/2022) (cited on pages 3, 4).

[14] Risk Based Security. Data Breach Quickview 2020 Year End Report. 2021. url: https : / / pages .

riskbasedsecurity.com/en/en/2020- yearend- data- breach- quickview- report (visited on

01/20/2022) (cited on pages 3, 4).

[15] Risk Based Security. Data Breach Quickview 2019 Year End Report. 2020. url: https : / / pages .

riskbasedsecurity.com/2019-year-end-data-breach-quickview-report (visitedon01/20/2022)

(cited on pages 3, 4).

https://datatracker.ietf.org/meeting/100/materials/slides-100-hackathon-sessa-data-leak-prevention-00
https://datatracker.ietf.org/meeting/100/materials/slides-100-hackathon-sessa-data-leak-prevention-00
https://krebsonsecurity.com/2019/05/first-american-financial-corp-leaked-hundreds-of-millions-of-title-insurance-records/
https://krebsonsecurity.com/2019/05/first-american-financial-corp-leaked-hundreds-of-millions-of-title-insurance-records/
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://threatpost.com/thousands-of-mikrotik-routers-hijacked-for-eavesdropping/137165/
https://threatpost.com/thousands-of-mikrotik-routers-hijacked-for-eavesdropping/137165/
https://www.theverge.com/2019/11/12/20962028/google-staff-firing-media-leak-suspension-employee-termination
https://www.theverge.com/2019/11/12/20962028/google-staff-firing-media-leak-suspension-employee-termination
https://www.theverge.com/2019/11/12/20962028/google-staff-firing-media-leak-suspension-employee-termination
https://owasp.org/www-project-top-ten/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://www.tenable.com/press-releases/tenable-research-reveals-over-40-billion-records-were-exposed-in-2021
https://www.tenable.com/press-releases/tenable-research-reveals-over-40-billion-records-were-exposed-in-2021
https://pages.riskbasedsecurity.com/en/en/2020-yearend-data-breach-quickview-report
https://pages.riskbasedsecurity.com/en/en/2020-yearend-data-breach-quickview-report
https://pages.riskbasedsecurity.com/2019-year-end-data-breach-quickview-report
https://pages.riskbasedsecurity.com/2019-year-end-data-breach-quickview-report


[16] Risk Based Security. Data Breach Quickview Report: An Executive’s Guide to Data Breach Trends in

2012. 2013. url: https://www.riskbasedsecurity.com/reports/2012-DataBreachQuickView.pdf

(visited on 01/20/2022) (cited on pages 3, 4).

[17] Simon Byers et al. ‘Analysis of security vulnerabilities in the movie production and distribution

process’. In: Proceedings of the 3rd ACM workshop on Digital rights management. ACM. 2003, pp. 1–12

(cited on pages 3, 6, 4, 16, 33).

[18] Privacy Rights Clearinghouse. Data Breaches. 2020. url: https : / / privacyrights . org / data -

breaches (visited on 02/28/2020) (cited on pages 3, 4).

[19] Loïc Miller et al. ‘Towards Secure and Leak-Free Workflows Using Microservice Isolation’. In: 2021

IEEE 22nd International Conference on High Performance Switching and Routing (HPSR). IEEE. 2021,

pp. 1–5. doi: 10.1109/HPSR52026.2021.9481820 (cited on pages 5, 8, 9, 44, 89).

[20] Loïc Miller et al. ‘Securing Workflows Using Microservices and Metagraphs’. In: Electronics 10.24

(2021), p. 3087 (cited on pages 5, 8, 9, 44, 59, 89, 90).

[21] Loïc Miller et al. ‘Verification of Cloud Security Policies’. In: 2021 IEEE 22nd International Conference on

High Performance Switching and Routing (HPSR). IEEE. 2021, pp. 1–5. doi: 10.1109/HPSR52026.2021.

9481870 (cited on pages 5, 9, 59, 90).

[22] Reynaldo Gil Pons, MaxWard, and Loïc Miller. Finding (s,d)-Hypernetworks in F-Hypergraphs is NP-Hard.

2022 (cited on pages 5, 9, 75, 88, 90).

[23] Docker. Docker. 2022. url: https://www.docker.com/ (visited on 02/20/2022) (cited on pages 7, 20,

38).

[24] Kubernetes. Kubernetes. 2022. url: https://kubernetes.io/ (visited on 02/20/2022) (cited on

pages 7, 20, 38, 99).

[25] Istio. Istio. 2020. url: https://istio.io/ (visited on 02/28/2020) (cited on pages 7, 21, 38, 100).

[26] Envoy. Envoy. 2022. url: https://www.envoyproxy.io/ (visited on 02/20/2022) (cited on pages 7,

38).

[27] Open Policy Agent. Open Policy Agent. 2022. url: https://www.openpolicyagent.org/ (visited on

02/20/2022) (cited on pages 7, 22, 38, 51, 100).

[28] Dinesha Ranathunga, Matthew Roughan, and Hung Nguyen. ‘Verifiable Policy-Defined Networking

using Metagraphs’. In: IEEE Transactions on Dependable and Secure Computing (2020) (cited on pages 9,

10, 24, 27, 30, 31, 47, 50, 56, 61, 63, 64, 83–85, 87).

[29] OWASP. A02:2021 – Cryptographic Failures. 2021. url: https://owasp.org/Top10/A02_2021-

Cryptographic_Failures/ (visited on 01/05/2022) (cited on page 3).

[30] Isaac Manzanera. Privacy Rights Clearing House Analysis. Feb. 2016. url: https://rpubs.com/imanes/

168622 (visited on 02/28/2020) (cited on page 4).

[31] hostingtribunal. Cloud Adoption Statistics for 2021. Aug. 2021. url: https://hostingtribunal.com/

blog/cloud-adoption-statistics/ (visited on 01/20/2022) (cited on page 4).

[32] Manish Mehta and Torin Sandall. How Netflix Is Solving Authorization Across Their Cloud. https:

//www.youtube.com/watch?v=R6tUNpRpdnY. Dec. 2017 (cited on pages 4, 51).

[33] Vladimir Sumina. 26 Cloud Computing Statistics, Facts & Trends for 2022. Nov. 2021. url: https:

//www.cloudwards.net/cloud-computing-statistics/ (visited on 01/20/2022) (cited on pages 4,

5).

[34] Jacquelyn Bulao. HowMuch Data Is Created Every Day in 2021. Jan. 2022. url: https://techjury.net/

blog/how-much-data-is-created-every-day/ (visited on 01/20/2022) (cited on page 5).

[35] Mike Loukides and Steve Swoyer.Microservices Adoption in 2020. 2020. url: https://www.oreilly.

com/radar/microservices-adoption-in-2020/ (visited on 02/14/2022) (cited on page 5).

[36] Cheng Jin, Abhinav Srivastava, and Zhi-Li Zhang. ‘Understanding security group usage in a public

iaas cloud’. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer

Communications. IEEE. 2016, pp. 1–9 (cited on page 6).

https://www.riskbasedsecurity.com/reports/2012-DataBreachQuickView.pdf
https://privacyrights.org/data-breaches
https://privacyrights.org/data-breaches
https://doi.org/10.1109/HPSR52026.2021.9481820
https://doi.org/10.1109/HPSR52026.2021.9481870
https://doi.org/10.1109/HPSR52026.2021.9481870
https://www.docker.com/
https://kubernetes.io/
https://istio.io/
https://www.envoyproxy.io/
https://www.openpolicyagent.org/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://rpubs.com/imanes/168622
https://rpubs.com/imanes/168622
https://hostingtribunal.com/blog/cloud-adoption-statistics/
https://hostingtribunal.com/blog/cloud-adoption-statistics/
https://www.youtube.com/watch?v=R6tUNpRpdnY
https://www.youtube.com/watch?v=R6tUNpRpdnY
https://www.cloudwards.net/cloud-computing-statistics/
https://www.cloudwards.net/cloud-computing-statistics/
https://techjury.net/blog/how-much-data-is-created-every-day/
https://techjury.net/blog/how-much-data-is-created-every-day/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/


[37] Ramaswamy Chandramouli and Zack Butcher. Building Secure Microservices-based Applications Using

Service-Mesh Architecture. Tech. rep. National Institute of Standards and Technology, 2020 (cited on

pages 6, 19, 21, 22).

[38] Evan Gilman and Doug Barth. Zero Trust Networks. O’Reilly Media, Incorporated, 2017 (cited on

page 6).

[39] Mohammadreza Hazhirpasand Barkadehi et al. ‘Authentication systems: A literature review and

classification’. In: Telematics and Informatics (2018) (cited on page 7).

[40] Joseph Bonneau et al. ‘The quest to replace passwords: A framework for comparative evaluation of

web authentication schemes’. In: 2012 IEEE Symposium on Security and Privacy. IEEE. 2012, pp. 553–567

(cited on page 7).

[41] Jill Huettich. What is a workflow? Types, benefits, and examples. 2020. url: https://blog.mindmanager.

com/blog/2020/06/02/202006202005your-guide-to-the-different-types-of-workflows/

(visited on 02/14/2022) (cited on page 15).

[42] Arthur HM Ter Hofstede et al. Modern Business Process Automation: YAWL and its support environment.

Springer Science & Business Media, 2009 (cited on pages 16, 17).

[43] Wil MP van der Aalst et al. ‘Patterns and XPDL: A critical evaluation of the XML process definition

language’. In: BPM Center report BPM-03-09, BPMcenter. org (2003), pp. 1–30 (cited on page 16).

[44] OASIS. Web Services Business Process Execution Language Version 2.0. 2007. url: https://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (visited on 02/16/2022) (cited on page 16).

[45] Business Process Model. ‘Notation (bpmn) version 2.0’. In: OMG Specification, Object Management

Group (2011), pp. 22–31 (cited on page 16).

[46] Object Management Group. Unified Modeling Language. 2017. url: https://www.omg.org/spec/UML/

(visited on 02/16/2022) (cited on page 16).

[47] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. ‘YAWL: yet another workflow language’. In:

Information systems 30.4 (2005), pp. 245–275 (cited on pages 17, 47).

[48] YAWL Foundation. How does YAWL compare to BPMN, BPEL, UML and EPCs? 2022. url: http:

//www.yawlfoundation.org/pages/support/faq.html (visited on 02/16/2022) (cited on page 17).

[49] Business Process Management (BPM) Group. YAWL4Film. 2010. url: http://yawlfoundation.org/

pages/casestudies/yawl4film.html (visited on 04/14/2021) (cited on pages 18, 47, 86, 87).

[50] Pooyan Jamshidi et al. ‘Microservices: The journey so far and challenges ahead’. In: IEEE Software 35.3

(2018), pp. 24–35 (cited on page 19).

[51] Canonical. Linux containers. 2022. url: https://linuxcontainers.org/ (visited on 02/20/2022)

(cited on page 20).

[52] HashiCorp. Nomad. 2022. url: https://nomadproject.io/ (visited on 02/20/2022) (cited on

page 20).

[53] Buoyant. Linkerd. 2022. url: https://linkerd.io/ (visited on 02/20/2022) (cited on page 21).

[54] Ramaswamy Chandramouli. Security Strategies for Microservices-based Application Systems. Tech. rep.

2019 (cited on page 22).

[55] Amine El Malki and Uwe Zdun. ‘Guiding Architectural Decision Making on Service Mesh Based

Microservice Architectures’. In: European Conference on Software Architecture. Springer. 2019, pp. 3–19

(cited on page 22).

[56] Murugiah Souppaya, John Morello, and Karen Scarfone. Application Container Security Guide (2nd

Draft). Tech. rep. National Institute of Standards and Technology, 2017 (cited on page 22).

[57] Ramaswamy Chandramouli and Ramaswamy Chandramouli. Security assurance requirements for linux

application container deployments. US Department of Commerce, National Institute of Standards and

Technology, 2017 (cited on page 22).

[58] Catherine de Weever and Marios Andreou. ‘Zero Trust Network Security Model in containerized

environments’. In: (2020) (cited on page 22).

https://blog.mindmanager.com/blog/2020/06/02/202006202005your-guide-to-the-different-types-of-workflows/
https://blog.mindmanager.com/blog/2020/06/02/202006202005your-guide-to-the-different-types-of-workflows/
https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://www.omg.org/spec/UML/
http://www.yawlfoundation.org/pages/support/faq.html
http://www.yawlfoundation.org/pages/support/faq.html
http://yawlfoundation.org/pages/casestudies/yawl4film.html
http://yawlfoundation.org/pages/casestudies/yawl4film.html
https://linuxcontainers.org/
https://nomadproject.io/
https://linkerd.io/


[59] Fatima Hussain et al. ‘Intelligent Service Mesh Framework for API Security andManagement’. In: 2019

IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON).

IEEE. 2019, pp. 0735–0742 (cited on page 23).

[60] Zirak Zaheer et al. ‘eZTrust: Network-Independent Zero-Trust Perimeterization for Microservices’. In:

Proceedings of the 2019 ACM Symposium on SDN Research. 2019, pp. 49–61 (cited on page 23).

[61] Rafael Accorsi and Claus Wonnemann. ‘Strong non-leak guarantees for workflow models’. In:

Proceedings of the 2011 ACM Symposium on Applied Computing. 2011, pp. 308–314 (cited on page 23).

[62] Freeha S Khan et al. ‘Data Breach Risks and Resolutions: A Literature Synthesis’. In: (2019) (cited on

page 23).

[63] Xiaokui Shu and Danfeng Daphne Yao. ‘Data leak detection as a service’. In: International Conference

on Security and Privacy in Communication Systems. Springer. 2012, pp. 222–240 (cited on page 23).

[64] Mohammad Farhatullah. ‘ALP: An authentication and leak prediction model for Cloud Computing

privacy’. In: 2013 3rd IEEE International Advance Computing Conference (IACC). IEEE. 2013, pp. 48–51

(cited on page 23).

[65] Xiaokui Shu, Danfeng Yao, and Elisa Bertino. ‘Privacy-preserving detection of sensitive data exposure’.

In: IEEE transactions on Information Forensics and Security 10.5 (2015), pp. 1092–1103 (cited on page 23).

[66] FangLiu et al. ‘Privacy-preserving scanning of big content for sensitive data exposurewithMapReduce’.

In: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy. 2015, pp. 195–206

(cited on page 23).

[67] Xiaokui Shu et al. ‘Fast detection of transformed data leaks’. In: IEEE Transactions on Information

Forensics and Security 11.3 (2015), pp. 528–542 (cited on page 23).

[68] Xiaokui Shu et al. ‘Rapid screening of transformed data leaks with efficient algorithms and parallel

computing’. In: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy. 2015,

pp. 147–149 (cited on page 23).

[69] Thierry LeVasseur and Philippe Richard. Data leak protection system and processing methods thereof. US

Patent 9,754,217. Sept. 2017 (cited on page 23).

[70] Carlos Segarra et al. ‘Using trusted execution environments for secure stream processing of medical

data’. In: IFIP International Conference on Distributed Applications and Interoperable Systems. Springer.

2019, pp. 91–107 (cited on page 23).

[71] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. ‘Why does your data leak? Uncovering the data

leakage in cloud from mobile apps’. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019,

pp. 1296–1310 (cited on page 23).

[72] Xiangyu Liu et al. ‘An empirical study on android for saving non-shared data on public storage’. In:

IFIP International Information Security and Privacy Conference. Springer. 2015, pp. 542–556 (cited on

page 23).

[73] Amiangshu Bosu et al. ‘Collusive data leak and more: Large-scale threat analysis of inter-app

communications’. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications

Security. 2017, pp. 71–85 (cited on page 23).

[74] Dorothy E Denning. ‘A lattice model of secure information flow’. In: Communications of the ACM 19.5

(1976), pp. 236–243 (cited on page 23).

[75] Ravi S. Sandhu. ‘Lattice-based access control models’. In: Computer 26.11 (1993), pp. 9–19 (cited on

page 23).

[76] Ravi S Sandhu andPierangela Samarati. ‘Access control: principle andpractice’. In: IEEE communications

magazine 32.9 (1994), pp. 40–48 (cited on page 23).

[77] Ferraiolo David and Kuhn Richard. ‘Role-based access controls’. In: Proceedings of 15th NIST-NCSC

National Computer Security Conference. Vol. 563. Baltimore, Maryland: NIST-NCSC. 1992 (cited on

page 24).



[78] ANSI INCITS. ‘Incits 359-2012’. In: Information Technology-Role Based Access Control (2012) (cited on

page 24).

[79] Vincent C Hu et al. ‘Guide to attribute based access control (abac) definition and considerations

(draft)’. In: NIST special publication 800.162 (2013) (cited on page 24).

[80] D. R. Kuhn, E. J. Coyne, and T. R. Weil. ‘Adding Attributes to Role-Based Access Control’. In: Computer

43.6 (June 2010), pp. 79–81. doi: 10.1109/MC.2010.155 (cited on page 24).

[81] E. Coyne and T. R. Weil. ‘ABAC and RBAC: Scalable, Flexible, and Auditable Access Management’. In:

IT Professional 15.3 (May 2013), pp. 14–16. doi: 10.1109/MITP.2013.37 (cited on page 24).

[82] Fulvio Valenza et al. ‘Classification and analysis of communication protection policy anomalies’. In:

IEEE/ACM Transactions on Networking 25.5 (2017), pp. 2601–2614 (cited on page 24).

[83] Karthick Jayaraman et al. ‘Automatic error finding in access-control policies’. In: Proceedings of the 18th

ACM conference on Computer and communications security. 2011, pp. 163–174 (cited on page 24).

[84] Assadarat Khurat, Boontawee Suntisrivaraporn, and Dieter Gollmann. ‘Privacy policies verification in

composite services using OWL’. In: Computers & Security 67 (2017), pp. 122–141 (cited on page 24).

[85] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. ‘Discovery and resolution of anomalies in web

access control policies’. In: IEEE transactions on dependable and secure computing 10.6 (2013), pp. 341–354

(cited on page 24).

[86] Manuel Koch, Luigi V Mancini, and Francesco Parisi-Presicce. ‘Conflict detection and resolution in

access control policy specifications’. In: International Conference on Foundations of Software Science and

Computation Structures. Springer. 2002, pp. 223–238 (cited on page 24).

[87] Fred B Schneider. ‘Enforceable security policies’. In: ACM Transactions on Information and System

Security (TISSEC) 3.1 (2000), pp. 30–50 (cited on page 24).

[88] Manuel Cheminod et al. ‘Toward attribute-based access control policy in industrial networked systems’.

In: 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). IEEE. 2018, pp. 1–9

(cited on page 24).

[89] Cataldo Basile et al. ‘Assessing network authorization policies via reachability analysis’. In: Computers

& Electrical Engineering 64 (2017), pp. 110–131 (cited on page 24).

[90] Mohsen Rezvani et al. ‘Analyzing XACML policies using answer set programming’. In: International

Journal of Information Security 18.4 (2019), pp. 465–479 (cited on page 24).

[91] Hasiba Ben Attia et al. ‘Using Hierarchical Timed Coloured Petri Nets in the formal study of TRBAC

security policies’. In: International Journal of Information Security 19.2 (2020), pp. 163–187 (cited on

page 24).

[92] Alex X Liu et al. ‘Xengine: a fast and scalable XACML policy evaluation engine’. In:ACM SIGMETRICS

Performance Evaluation Review 36.1 (2008), pp. 265–276 (cited on page 25).

[93] Alex X Liu et al. ‘Designing fast and scalable XACML policy evaluation engines’. In: IEEE Transactions

on Computers 60.12 (2010), pp. 1802–1817 (cited on page 25).

[94] Jonathan D Moffett and Morris S Sloman. ‘Policy hierarchies for distributed systems management’. In:

IEEE Journal on Selected Areas in Communications 11.9 (1993), pp. 1404–1414 (cited on page 25).

[95] Arosha K Bandara et al. ‘A goal-based approach to policy refinement’. In: Proceedings. Fifth IEEE

International Workshop on Policies for Distributed Systems and Networks, 2004. POLICY 2004. IEEE. 2004,

pp. 229–239 (cited on page 25).

[96] Javier Rubio-Loyola et al. ‘A methodological approach toward the refinement problem in policy-based

management systems’. In: IEEE Communications Magazine 44.10 (2006), pp. 60–68 (cited on page 25).

[97] Robert Craven et al. ‘Decomposition techniques for policy refinement’. In: 2010 International Conference

on Network and Service Management. IEEE. 2010, pp. 72–79 (cited on page 25).

[98] Cristian Cleder Machado et al. ‘Towards SLA policy refinement for QoS management in software-

defined networking’. In: 2014 IEEE 28th International Conference on Advanced Information Networking and

Applications. IEEE. 2014, pp. 397–404 (cited on page 25).

https://doi.org/10.1109/MC.2010.155
https://doi.org/10.1109/MITP.2013.37


[99] Cataldo Basile et al. ‘A novel approach for integrating security policy enforcement with dynamic

network virtualization’. In: Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft).

IEEE. 2015, pp. 1–5 (cited on page 25).

[100] Fulvio Valenza et al. ‘A formal approach for network security policy validation.’ In: J. Wirel. Mob.

Networks Ubiquitous Comput. Dependable Appl. 8.1 (2017), pp. 79–100 (cited on page 25).

[101] Graham Hughes and Tevfik Bultan. ‘Automated verification of access control policies using a SAT

solver’. In: International journal on software tools for technology transfer 10.6 (2008), pp. 503–520 (cited on

page 25).

[102] Padmalochan Bera, Soumya Kanti Ghosh, and Pallab Dasgupta. ‘Policy based security analysis in

enterprise networks: A formal approach’. In: IEEE Transactions on Network and Service Management 7.4

(2010), pp. 231–243 (cited on page 25).

[103] Amit Basu and Robert W Blanning. Metagraphs and their applications. Vol. 15. Springer Science &

Business Media, 2007 (cited on pages 25–27, 30, 31, 47, 48, 50, 63).

[104] Giorgio Gallo et al. ‘Directed hypergraphs and applications’. In: Discrete applied mathematics 42.2-3

(1993), pp. 177–201 (cited on pages 28, 29, 31, 66).

[105] Giorgio Ausiello, Paolo Giulio Franciosa, and Daniele Frigioni. ‘Partially dynamic maintenance of

minimum weight hyperpaths’. In: Journal of Discrete Algorithms 3.1 (2005), pp. 27–46 (cited on page 29).

[106] Mayur Thakur and Rahul Tripathi. ‘Linear connectivity problems in directed hypergraphs’. In:

Theoretical Computer Science 410.27-29 (2009), pp. 2592–2618 (cited on pages 29, 31).

[107] Giorgio Ausiello, Giuseppe F Italiano, and Umberto Nanni. ‘Hypergraph traversal revisited: Cost

measures and dynamic algorithms’. In: International Symposium onMathematical Foundations of Computer

Science. Springer. 1998, pp. 1–16 (cited on page 29).

[108] Arindam Mukherjee, Anup Kumar Sen, and Amitava Bagchi. ‘The representation, analysis and

verification of business processes: a metagraph-based approach’. In: Information Technology and

Management 8.1 (2007), pp. 65–81 (cited on page 30).

[109] Ayyoob Hamza et al. ‘Verifying and monitoring iots network behavior using mud profiles’. In: IEEE

Transactions on Dependable and Secure Computing (2020) (cited on page 31).

[110] Dinesha Ranathunga, Matthew Roughan, and Hung Nguyen. ‘Mathematical reconciliation of medical

privacy policies’. In: ACM Transactions on Management Information Systems (TMIS) 12.1 (2020), pp. 1–18

(cited on page 31).

[111] D Ranathunga, H Nguyen, and M Roughan. ‘MGtoolkit: A python package for implementing

metagraphs’. In: SoftwareX 6 (2017), pp. 91–93 (cited on page 31).

[112] Ayyoob Hamza et al. ‘Clear as MUD: generating, validating and applying IoT behavioral profiles’. In:

Proceedings of the 2018 Workshop on IoT Security and Privacy. 2018, pp. 8–14 (cited on page 31).

[113] GiorgioAusiello and Luigi Laura. ‘Directed hypergraphs: Introduction and fundamental algorithms—–

a survey’. In: Theoretical Computer Science 658 (2017), pp. 293–306 (cited on page 31).

[114] Giorgio Ausielloyz et al. ‘Optimal traversal of directed hypergraphs’. In: ICSI, Berkeley, CA (1992)

(cited on page 31).

[115] Giorgio Ausiello, Paolo G Franciosa, and Daniele Frigioni. ‘Directed hypergraphs: Problems, algo-

rithmic results, and a novel decremental approach’. In: Italian conference on theoretical computer science.

Springer. 2001, pp. 312–328 (cited on page 31).

[116] Riccardo Cambini, Giorgio Gallo, and Maria Grazia Scutellà. ‘Flows on hypergraphs’. In:Mathematical

Programming 78.2 (1997), pp. 195–217 (cited on page 31).

[117] James Rumbaugh, Ivar Jacobson, and Grady Booch. ‘The unified modeling language’. In: Reference

manual (1999) (cited on page 51).

[118] Open Policy Agent. OPA Adopters. 2020. url: https://github.com/open-policy-agent/opa/blob/

master/ADOPTERS.md (visited on 11/11/2020) (cited on page 51).

[119] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013 (cited on page 54).

https://github.com/open-policy-agent/opa/blob/master/ADOPTERS.md
https://github.com/open-policy-agent/opa/blob/master/ADOPTERS.md


[120] Dinesha Ranathunga et al. ‘Case studies of scada firewall configurations and the implications for best

practices’. In: IEEE Transactions on Network and Service Management 13.4 (2016), pp. 871–884 (cited on

page 56).

[121] Chris Clifton, Ed Housman, and Arnon Rosenthal. ‘Experience with a combined approach to attribute-

matching across heterogeneous databases’. In: Data Mining and Reverse Engineering. Springer, 1998,

pp. 428–451 (cited on page 60).

[122] Seungryong Kim et al. ‘Semantic attribute matching networks’. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2019, pp. 12339–12348 (cited on page 60).

[123] Daniele Pretolani. ‘Finding hypernetworks in directed hypergraphs’. In: European Journal of Operational

Research 230.2 (2013), pp. 226–230 (cited on page 68).

[124] Y Shiloach and Y Perl. ‘Finding two disjoint paths between two pairs of vertices in a graph’. In: Journal

of the ACM (JACM) 25.1 (1978), pp. 1–9 (cited on page 69).

[125] Steven Fortune, John Hopcroft, and James Wyllie. ‘The directed subgraph homeomorphism problem’.

In: Theoretical Computer Science 10.2 (1980), pp. 111–121 (cited on page 69).

[126] Stephen A Cook. ‘The complexity of theorem-proving procedures’. In: Proceedings of the third annual

ACM symposium on Theory of computing. 1971, pp. 151–158 (cited on page 71).




	Abstracts
	Acknowledgments
	Contents
	Résumé
	Introduction
	Contributions de cette thèse
	Une infrastructure sécurisée pour empêcher les compromissions de données
	Vérification de politiques à l'aide de métagraphes
	Analyse de politiques pour l'identification de redondances
	Conclusion

	Introduction
	Businesses and operations
	Data exposures
	A change of paradigm
	Authentication and authorization
	Contributions of this thesis
	Outline
	List of contributions

	Background and Related Works
	Workflows
	Microservices
	Policy analysis, refinement and verification
	Metagraphs and Hypergraphs
	Conclusion

	A Secure Infrastructure to Prevent Data Exposures
	Problem statement
	Threat and security model
	Infrastructure
	Proof of concept
	The overhead of security
	Discussion
	Conclusion

	Verifying Policies Using Metagraphs
	Metagraphs and workflows
	Verifying policies
	Performance analysis
	Discussion
	Conclusion

	Analyzing Policies to Find Redundancies
	Problem statement
	Current solution problems
	Proof of NP-Hardness
	Finding (s,d)-hypernetworks in the general case
	Finding (s,d)-hypernetworks in acyclic F-hypergraphs
	A SAT formulation
	Towards a more efficient approach
	Performance analysis
	Discussion
	Conclusion

	Conclusion and Research Directions
	Summary of our works
	Takeaways from this thesis
	General discussion
	Perspectives and future works

	Appendix
	Complementary Materials for Chapter 3
	Listings
	Identity and authentication bootstrap


	Bibliography

