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Présidente du jury : Rodolphe Vuilleumier École Normale Superieure, Paris
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Abstract

Atomistic computer simulations of rare events have three paramount goals: predicting de-
tailed mechanisms, free energy landscapes, and kinetic rates of transformation processes like
phase transitions, chemical reactions, biomolecular folding or association. In real-life appli-
cations, all of these tasks are cumbersome and require intensive human and computer effort,
especially the calculation of rates. The difficulty resides in the gap between the long time
scale associated to such processes, also known as rare events, and the short time scale that
is accessible by molecular dynamics simulations. Enhanced sampling techniques can accel-
erate the exploration of high-free energy regions, adding external forces to the system to
pull it out of free energy basins or focusing sampling on the transition region and efficiently
exploring transition paths. These techniques allow to reconstruct mechanisms and free en-
ergy landscapes for a wide range of activated processes in physics, chemistry and biology.
Methods aimed at accurate kinetic rates are at present less mature and still require large
computational effort and/or rely on ideal collective variables.

We developed two efficient methodologies for the prediction of transition rates from molec-
ular dynamics simulations in combination with enhanced sampling techniques. Both strate-
gies only require sets of short simulations, which allows exploiting the parallel capabilities
of current supercomputers. On one side, we use metadynamics, a widely used enhanced
sampling technique that adds a time-dependent bias potential to the system, disrupting its
dynamics. We overcome this limitation by developing a method based on Kramers’ theory
for calculating the barrier-crossing rate when a time-dependent bias is added to the system.
We tested this method in a benchmark system and apply it to complex all-atoms simulations,
showing that we are able to extract the rate and measure at the same time the quality of the
collective variables for processes where Kramers’ theory holds. On the other side, transition
path sampling trajectories are the golden standard to access mechanistic information: we
demonstrate that they also encode accurate thermodynamic and kinetic information, that
can be extracted by training a data-driven overdamped Langevin model of the dynamics
projected on a collective variable. We also tested this method over benchmark systems to
establish a validation criteria for the accurate time resolutions that yields markovian behav-
ior and apply it to complex all-atoms simulations to recover free energies, position-dependent
diffusion coefficients, and rates. Overall, these new theoretical tools that can be freely down-
loaded from GitHub make efficient use of computing resources providing simple procedures
to accurately predict kinetic rates and could be suitable for applications far beyond the field
of biomolecular association.
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1
Résumé

Nous avons décidé d’écrire cette thèse en anglais, car tous les membres du jury ne sont pas
francophones, mais aussi par soucis d’accessibilité au plus grand nombre. Ce choix est rendu
possible par le règlement de l’école doctorale 397, sous réserve qu’un “résumé substantiel
5-10 pages” soit écrit en français. C’est ce résumé qui est présenté dans les pages suivantes,
en suivant la structure du texte principal en anglais.

We chose to write this thesis in English as some of the jury’s members are not francophone,
and to make it accessible to a greater number. This choice is possible in accordance to the
doctoral school 397, if a substantial french summary of 5-10 pages is provided. This summary
is presented in the following, keeping the same structure as the main text in English.

La prédiction des vitesses cinétiques est essentielle pour comprendre les phénomènes
physico-chimiques. Des processus tels que les transitions de phase, les réactions chimiques ou
les interactions biomoléculaires et les changements de conformation sont caractérisés par un
réseau d’états métastables souvent séparés par des barrières d’énergie libre élevées. Chaque
état métastable correspond à un minimum local dans une surface d’énergie libre (FES) qui
piège la dynamique du système pendant un temps long devant le temps intrinsèque des vi-
brations de liaison jusqu’à ce que le système puisse s’échapper via des fluctuations aléatoires
vers un autre état métastable. Une barrière d’énergie libre élevée séparant deux états génère
un goulot d’étranglement dynamique entre eux, rendant une transition entre bassins moins
probable, par conséquent, ces transitions sont présentées comme des événements rares.

Les événements rares présentent une cinétique lente. Dans les exemples de processus
physico-chimiques mentionné ci-dessus, une transition typique entre deux états intéressants,
par exemple, la transition de la phase liquide à la phase solide, la conversion d’un réactif en
produit, l’association protéine-ligand ou changement de conformation d’une protéine peut
prendre des échelles de temps allant de quelques microsecondes à quelques secondes et au-
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delà. L’estimation des taux de transition (c’est-à-dire l’inverse du temps de transition)
nous permet de prédire les échelles de temps de ces événements, comprendre les mécanismes
moléculaires et à un niveau plus pratique, prendre des décisions éclairées en fonction des
propriétés cinétiques du système.

Puisque cette dynamique lente est typique des événements rares, l’importance de la
cinétique ne se limite pas à la découverte de médicaments. Entre autres exemples, la
prédiction des constantes de vitesse pour les transitions de phase des matériaux inorganiques
joue un rôle clé dans la conception de nouveaux dispositifs avec des applications tech-
nologiques. Dans le domaine de la biologie moléculaire, l’étude des interactions protéines-
protéines (PPI), le repliement des protéines et la cinétique d’agrégation des protéines aident
à élucider les causes des maladies et créer des alternatives pour les traiter et les prévenir.
Par conséquent, les méthodes permettant la prédiction précise des taux cinétiques ont une
utilité large allant de la conception de matériaux à la thérapeutique. Dans ce qui suit, nous
présenterons les méthodologies actuelles utilisées pour estimer les vitesses de réaction in
silico.

Les simulations informatiques atomistiques d’événements rares ont trois objectifs primor-
diaux : prédire le mécanisme détaillé, calculer le paysage d’énergie libre et les taux de
réaction. Toutes ces tâches sont, dans de nombreux cas, lourdes et nécessitent un effort
humain et informatique intensif, le calcul des taux de réactions étant le plus difficile. Le défi
du calcul des taux est donné par la complexité de simuler l’évolution d’un système dans le
temps. Les propriétés dépendant du temps ne sont donc pas accessibles avec la plupart des
méthodes de simulations informatiques atomistiques disponibles. Néanmoins, la dynamique
moléculaire (MD) permet de suivre le comportement en fonction du temps d’un système
en propageant les positions et les vitesses de tous les atomes du système à travers le solu-
tion des équations du mouvement. Les simulations MD ont été largement utilisées car elles
permettent d’étudier à la fois le comportement thermodynamique et cinétique d’un système
moléculaire.

Les simulations de dynamique moléculaire prédisent comment chaque atome d’un système
moléculaire se déplacera dans le temps par intégration numérique des équations du mou-
vement. Positions et vitesses de les atomes sont prédits selon un modèle d’interactions
interatomiques, le champ de force. Les forces dans le système sont échantillonnées à chaque
pas de temps en évaluant le champ de force sur le positions actuelles des atomes. Pour
assurer la stabilité numérique dans l’intégration des équations de mouvement, un très petit
pas de temps doit être utilisé (égal ou inférieur au temps caractéristique de la vibration
la plus rapide). Puisque les simulations MD évaluent la position des atomes à chaque pas
de temps, cette technique est un outil puissant pour élucider le mécanisme moléculaire à
des résolutions atomiques et à des échelles de temps courte difficilement accessibles par des
techniques expérimentales. Le résultat des simulations MD est une collection de positions
et de vitesses d’atomes dans le temps. Afin d’étudier en détail les mécanismes moléculaires,
on peut se focaliser sur un ou quelques degrés de liberté du système. Par conséquent, on
peut utiliser une variable collective (CV), c’est-à-dire un descripteur qui peut identifier les
mouvements collectifs du système au cours du processus de transformation.
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Puisque les CV permettent de suivre la progression du processus de transformation, avec
les simulations MD, on pourrait estimer directement les taux cinétiques en mesurant le temps
moyen que le système passe dans un certain état dans la limite d’un temps d’échantillonnage
infini. D’autres approches théoriques visent à estimer la cinétique à partir de simulations MD
en utilisant différents cadres mathématiques. D’un côté, la dynamique complète du système
peut être projetée sur des CV de faible dimension conduisant à des équations différentielles
stochastiques de Langevin. D’autre part, l’espace de configuration peut être partitionné
en états discrets et les transition entre les états peuvent être comptés pour construire des
modèles d’états de Markov (MSM).

Bien que les simulations MD semblent être une voie naturelle pour étudier le comportement
cinétique d’un système moléculaire, comme expliqué ci-dessus, les événements rares sont
présents dans de nombreux processus moléculaires intéressants. Par conséquent, l’estimation
des propriétés thermodynamiques et cinétiques à l’aide de MD implique l’évaluation des
équations de mouvement des millions ou des milliards de fois. Cela conduit à un écart
entre les échelles de temps des événements rares décrites précédemment et celles accessibles
avec MD, même en utilisant de puissants supercalculateurs. Les méthodes d’échantillonnage
avancées sont devenues des alternatives utiles pour accélérer l’échantillonnage en MD. Celles-
ci ont été développées pour accélérer l’échantillonnage de l’espace conformationnel, qui se
caractérise par des paysages accidentés avec de hautes barrières d’énergie libre.

Les méthodes d’échantillonnage avancées en combinaison avec les simulations MD sont
devenues des alternatives utiles pour étudier les événements qui se produisent à de longues
échelles de temps. Ces méthodes ont été développées pour accélérer l’échantillonnage de
l’espace conformationnel des processus impliquant des événements rares, généralement car-
actérisés par des paysages accidentés et des barrières à haute énergie. D’une manière générale,
les méthodes d’échantillonnage avancées peuvent être regroupées en trois catégories :

• Les méthodes qui ajoutent une force artificielle externe (biais) au système, de sorte
que l’exploration des régions à haute énergie libre est favorisée, poussant le système à
explorer l’espace conformationnel plus rapidement.

• Les méthodes qui concentrent l’échantillonnage sur la région de transition (la barrière
d’énergie libre région), explorant un ensemble de chemins de transition au lieu d’explorer
des conformations spécifiques.

• Les méthodes qui explorent l’hamiltonien à différentes températures où, compte tenu
de la distribution de Boltzmann, l’occupation des barrières d’énergie par rapport aux
minima augmente avec la température, donc l’échantillonnage est plus efficace.

Dans ce travail, nous nous concentrons sur les deux premières stratégies répertoriées. Les
méthodes qui entrent dans la première catégorie nécessitent l’utilisation d’une ou des CV
pour ajouter un potentiel baisé fonction des CV à l’énergie potentielle du système. Ces CV
doivent décrire les degrés de liberté considérés comme les plus pertinents pour le mécanisme
de transition. Dans ces méthodes, le potentiel de biais peut être constant ou dépendant
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du temps. Le biais ajouté à l’énergie potentielle étant connu, on peut en principe recon-
struire les profils d’énergie libre projetés sur les CV biaisés directement ou au moyen de
méthodes de pondération. Parmi ces méthodes, la métadynamique (MetaD) est une tech-
nique d’échantillonnage avancée où la recherche conformationnelle est accélérée en ajoutant
au champ de force un potentiel baisé dépendant de l’histoire d’une ou de quelques CV. La
métadynamique a l’avantage que, pour une simulation convergée et des CV appropriés, il
est possible de récupérer directement le profil d’énergie libre du système à partir du biais
ajouté par la métadynamique. Cependant, la métadynamique, ainsi que d’autres méthodes
d’échantillonnage avancées similaires ont comme inconvénients que à cause de l’accélération
de l’échantillonnage les informations sur la dynamique du système simulé sont corrompues.
Plusieurs méthodes ont été développées pour estimer les coefficients de vitesse à partir des
simulations de métadynamique, certaines impliquent le calcul de coefficients de diffusion et
la construction de modèles d’états de Markov ; d’autres méthodes redéfinissent la notion
de facteur d’accélération pour l’appliquer aux simulations de métadynamique. Bien que ces
méthodes aient été appliquées avec succès dans certains cas, certaines d’entre elles sont inca-
pables de reproduire la cinétique des transitions plus rapide que le temps de décalage utilisé
pour le calcul du coefficient de diffusion, tandis que d’autres nécessitent des CV idéales pour
éviter la corruption de la dynamique dans l’état de transition (TS).

La deuxième catégorie des méthodes d’échantillonnage avancées décrites ci-dessus sont
celles qui se concentrent sur l’exploration d’un grand nombre de chemins de transition re-
liant deux états prédéfinis. La définition des états nécessite une connaissance préalable du
processus de transformation. Parmi ces approches, la plus utilisée est le Transition Path
Sampling (TPS). Dans cette méthode, une collection de trajectoires réactives est générée à
partir d’un chemin réactif unique. Le chemin initial peut être obtenu, par exemple, en util-
isant une autre méthode d’échantillonnage avancée comme la métadynamique. Un avantage
du TPS est qu’il exploite le fait que le temps de chemin de transition est plus rapide que le
temps caractéristique dans les états, par conséquent, l’échantillonnage est plus efficace. En
utilisant le TPS, plusieurs méthodes permettent l’estimation des taux cinétiques à partir de
la dynamique d’équilibre, par exemple, l’échantillonnage d’interface de transition (TIS) et la
dynamique de non-équilibre, par exemple, l’échantillonnage de flux direct (FFS). Bien qu’en
théorie le TPS permette un accès direct aux informations cinétiques du système, en pra-
tique ces techniques nécessitent un échantillonnage poussé pour que l’estimation de vitesse
atteigne la convergence, ce qui la rend inaccessible en termes de coût de calcul.

Compte tenu de cela, il existe des questions ouvertes dans le domaine : une compréhension
complète d’un processus physico-chimique comprend un compte rendu détaillé de la cinétique.
Étant donné que la thermodynamique peut être obtenue à partir de la cinétique, mais
pas l’inverse, des stratégies simples et efficaces capables d’extraire la cinétique des simu-
lations informatiques atomistiques sont toujours nécessaires. Outre la précision intrinsèque
du champ de force interatomique (un domaine très actif, qui dépasse cependant le cadre de
la présente thèse), l’échantillonnage extensif requis pour la prédiction des taux cinétiques
à partir de simulations MD reste l’un des principaux défis actuels, en dépit de l’avancée
des capacités informatiques actuelles. Les méthodes capables d’extraire des informations
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thermodynamiques et cinétiques fiables à partir de trajectoires d’échantillonnage avancées
font l’objet de recherches intenses. De plus, afin d’exploiter de manière efficace les super-
calculateurs actuels, les méthodes qui peuvent utiliser des ensembles de trajectoires courtes
obtenues en parallèle sont plus optimales que celles qui nécessitent de longues trajectoires
d’équilibre.

Dans le même temps, les CV sont essentiels pour comprendre les mécanismes moléculaires
des événements rares. Ils sont utilisés dans l’échantillonnage avancé, soit comme directions
de biais, soit comme indicateurs de l’état actuel du système. De nos jours, la prédiction
des taux cinétiques repose souvent sur l’hypothèse que les CV utilisés sont idéales. Dans
les versions de base du TPS comme l’aimless shooting où le but est d’échantillonner les
chemins de transition, la dynamique n’étant pas biaisée, différentes CV peuvent être définis
a posteriori pour l’analyse. D’autre part, les méthodes de TPS avancées telles que TIS et
FFS permettent de calculer la cinétique, au prix du choix a priori d’une CV idéale. Dans ces
dernières techniques, ainsi comme dans la métadynamique et les approches d’échantillonnage
biaisées associées, un mauvais choix de CV entrâıne une sous-estimation ou une surestimation
grave du taux cinétique et peut également conduire à échantillonner des chemins de transition
défavorables.

De plus, améliorer les CV dans le but d’avoir une meilleure estimation du taux de transition
nécessiterait alors d’exécuter un nouvel ensemble de simulations de TPS et de métadynamique.
Par conséquent, les méthodes capables d’estimer la cinétique via une analyse post-traitement
et qui permettent soit de comparer efficacement des ensembles de CV soit de corriger l’effet
de mauvaises directions de biais seront utiles.

En résumé, dans ce manuscrit, nous tentons de répondre aux questions suivantes : Pouvons-
nous développer des méthodologies efficaces pour le calcul des taux cinétiques d’événements
rares à l’aide de trajectoires des méthodes d’échantillonnage avancées ? Ces méthodes
permettent-elles d’évaluer la qualité des CV a posteriori évitant d’avoir à lancer de nouvelles
simulations lorsqu’une mauvaise CV est utilisé au premier abord? Pouvons-nous établir des
critères pour tester la qualité de nos résultats lorsque la cinétique exacte n’est pas disponible
pour la comparaison?

Dans cette thèse nous contribuons à avancer l’état de l’art dans le développement de
méthodes pour l’estimation des vitesses de réaction à partir de méthodes liées à la dynamique
moléculaire. Les plus grands défis dans ce domaine sont entre autres: (i) la limitation
des échelles de temps accessibles avec les simulations MD qui rendent difficile l’étude des
événements rares, (ii) le besoin des méthodes d’échantillonnage avancé d’avoir une CV idéal
pour le calcul des constantes de réactions, et (iii) la nécessité des critères pour diagnostiquer
la fiabilité des prédictions. Afin de remédier à ces problèmes, nous proposons ici deux
nouvelles méthodes alternatives pour prédire les taux de transition. Ces méthodes théoriques
ont été conçues à partir de la compréhension fondamentale de la dynamique modélisée via
la dynamique moléculaire et des simulations d’échantillonnage avancée. L’analyse post-
traitement permet alors de récupérer les statistiques de franchissement de la barrière en
utilisant des trajectoires d’équilibre ou hors d’équilibre. Elles permet également d’exploiter
les capacités de calcul parallèle des ordinateurs actuels favorisant l’utilisation d’ensembles
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relativement petits de simulations courtes (par rapport aux échelles de temps des événements
rares) au lieu de longues trajectoires ergodiques.

Dans le chapitre 6, nous avons développé une nouvelle méthodologie basée sur la théorie
de Kramers pour estimer les taux de transition à partir d’un ensemble de simulations courtes
soumis à un biais dépendant du temps. Nous nous sommes inspirés des méthodes utilisées
par la communauté des forces spectroscopie qui étudie les expériences de molécules uniques,
et nous améliorons considérablement une approche similaire la métadynamique infréquente.

Nos résultats à la fois sur des systèmes de référence (chapitre 6) et sur des simulations
MD (chapitre 7) indiquent que la nouvelle approche fournit simultanément à la fois les
taux de transition (même quand des CV non idéales sont utilisés) à partir de simulations
plusieurs ordres de grandeur plus courtes que le temps moyen de transition des processus,
ainsi qu’une estimation quantitative de la qualité d’une CV. Ce dernier résultat ouvre une
perspective intéressante d’optimisation automatique des CV en utilisant, par exemple, les
approches d’apprentissage automatique avec le paramètre de qualité de CV comme fonction
d’optimisation.

Nous avons utilisé des exemples de simulations de métadynamique, cependant, la méthode
KTR que nous avons développée est utilisable pour toute simulation biaisée par des CV
dépendante du temps, comme entre autres la force de polarisation adaptative ou MD à biais
adaptatif. Les méthodes limitant le niveau de remplissage du biais pourraient également être
utilisées dans le cadre de notre méthode. Ce qui aurait l’avantage de simplifier le calcul du
potentiel biaisé et de la probabilité de survie. De plus, notre méthode propose une nouvelle
mesure de l’efficacité du biais ajouté pour accélérer la transition (liée à l’efficacité des CV).
Cela surmonte plusieurs limitations sévères rencontrées avec les approches précédentes où le
biais devait être déposé très rarement sur des CV idéales. Plusieurs aspects de la théorie
KTR peuvent être améliorés dans le futur. Des méthodes automatisées pour déterminer
quand le franchissement de barrière se produit pourraient être utiles. Aussi, il serait utile
d’extrapoler la théorie KTR aux cas de non-équilibre, en effet comme nous l’avons montré
la théorie de Kramers et l’hypothèse quasi-adiabatique que nous prenons ne sont plus valide
dans ce cas.

Enfin, la principale limite de notre approche actuelle, au delà l’imprécision du champ de
force, semble être l’approximation implicite consistant à considérer le processus de transi-
tion comme l’échappement d’un seul puits de ”réactifs” vers un seul puits de ”produits”:
une généralisation à plusieurs bassins et dimensions, comme cela a été fait pour la spectro-
scopie de force pour prendre explicitement en compte un réseau de chemins de transition
éventuellement multiples à travers plusieurs états métastables serait très pratique pour tenir
compte de la dynamique multi-états dans des simulations complexes.

Dans le chapitre 8, nous développons et appliquons un deuxième cadre méthodologique
visant à l’estimation précise des paysages d’énergie libre, des taux cinétiques ainsi que
l’optimisation automatique des coordonnées de réaction. Nous adoptons un schéma basé
sur les équations de Langevin modélisant la dynamique projetée sur une CV : ces équations
apportent une interprétation physique en termes de force moyenne et de bruit qui fait défaut
dans des approches plus abstraites axées sur les données comme les modèles d’état de Markov
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ou les prédicteurs basés sur l’apprentissage automatique.
Comme premier résultat important, notre travail démontre la possibilité d’obtenir simul-

tanément les énergies libres et les taux cinétiques d’une manière conceptuellement simple, en
optimisant un modèles de Langevin par maximum de vraisemblance à partir d’une centaine
de trajectoires, cela quelle que soit la hauteur de la barrière. Remarquons que deux tests
sont également présentés qui permettent d’identifier la résolution temporelle optimale pour
la construction du modèle stochastique : c’est un point crucial pour permettre l’application
robuste à des systèmes dont le comportement n’est pas connu à l’avance.

Les modèles de Langevin suramortis reproduisent bien les propriétés thermodynamiques
et dynamiques quantitatives du système original, y compris les taux cinétiques précis, malgré
un écart de plusieurs ordres de grandeur en temps par rapport aux trajectoires MD courtes
utilisées pour l’entrâınement. Incidemment, nous notons que notre approche ne se limite
pas à l’échantillonnage des chemins de transition : Les modèles de Langevin peuvent être
optimisés à partir de n’importe quel ensemble de trajectoires non biaisées explorant la région
de transition.

Dans des travaux futurs, cette approche d’optimisation des modèles de Langevin pourra
être généralisée à différents types d’équations de Langevin (généralisées ou standard) per-
mettant d’étendre son utilisation à des applications telles que les réactions chimiques en
solution. Jusqu’à présent, l’approche se limite à des modèles de Langevin unidimensionnels
: compte tenu de la complexité des processus physico-chimiques et de la difficulté de trou-
ver une CV qui les décrit, une extension de l’approche à plus de dimensions, qui permet
l’utilisation simultanée de plusieurs CV, pourrait également être utile.

Ayant ouvert la possibilité d’obtenir des modèles Langevin proches de la dynamique pro-
jetée le long de CV différentes, une direction naturelle de recherche, que nous avons poursuivie
au chapitre 10, consiste à effectuer une variation systématique de la définition de la CV
pour obtenir une coordonnée de réaction optimale. Comme principe variationnel guidant
l’algorithme d’optimisation, nous avons systématiquement réduit le taux de transition :
l’estimation directe de ce dernier par quadrature numérique est une ingrédient important
pour l’efficacité numérique.

Considérant un CV d’essai formé par une combinaison linéaire d’un ensemble de CV
putatifs, comme une preuve de concept, nous démontrons que la coordonnée de réaction
idéale est rapidement et de manière fiable récupérée dans un simple système de benchmark
2D. Remarquablement, nos résultats montrent qu’un modèle de Langevin à maximum de
vraisemblance le long d’un CV non idéal tend à sous-estimer la vraie barrière d’énergie libre
dans la même direction : ce phénomène ne limite cependant pas l’efficacité de l’algorithme
d’optimisation du CV, puisqu’il préserve le principe variationnel. Une première application
à la dissociation d’un dimère de fullerène dans l’eau confirme la capacité de la nouvelle
méthode à obtenir en même temps une coordonnée de réaction optimale et une estimation
précise du taux de transition. Cependant, des travaux sont en cours pour étendre l’étude à un
ensemble plus large de CV putatifs (dont la construction est un problème intéressant en soi)
et à différents systèmes. Une autre amélioration importante pourrait être l’inclusion de la
non-linéarité dans le combinaison de CV grâce à l’intelligence artificielle et à l’amélioration du
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calcul efficacité des codes numériques utilisés pour l’optimisation des modèles de Langevin.
Nous avons fourni ici un résumé des avancées théoriques les plus importantes et des

résultats de cette thèse. Les deux méthodes sont des voies alternatives avec un objectif
commun : la prédiction des cinétique de réaction. La possibilité d’aborder le problème de
la cinétique sous différents angles montre sa complexité. L’utilisation de l’une des méthodes
proposées ou de l’autre dépendent des données disponibles et de l’application voulue. Cette
thèse ouvre une pléthore de possibilités pour l’exploitation de l’information disponible dans
d’échantillonnage de chemin de transitions, ou la possibilité de récupérer des informations
utiles à partir de simulations de métadynamique avec biais sur des CV non idéales, à
l’utilisation de ces approches dans l’optimisation de variables collectives. Alors que la com-
munauté de la simulation informatique atomistique progresse et plus loin dans l’étude de
la cinétique, nous attendons avec impatience toutes les améliorations et applications que
peuvent avoir nos nouvelles approches.
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2
Introduction

2.1 On the importance of kinetic rates estimation

The prediction of kinetic rates is key for understanding physical-chemical phenomena. Pro-
cesses like phase transitions, chemical reactions, or biomolecular interactions, and conforma-
tional changes are characterized by a network of metastable states often separated by high
free energy barriers.1 Each metastable state corresponds to a local minimum in the Free
Energy Surface (FES) which traps the system’s dynamics for a time much longer than the
intrinsic time of fast bond vibrations until the system can escape via random fluctuations
to another metastable state. A high free energy barrier separating two states generates
a dynamical bottleneck between them, making a transition between basins less probable,
therefore, these transitions are rare events.2

Rare events display a slow kinetics. In the examples of physicochemical processes men-
tioned above, a typical transition between two interesting states, e.g., liquid to solid phase
transition, reactant to product conversion, protein-ligand association, or unfolded to folded
conformational change can feature timescales from microseconds to seconds and beyond.1,2

The estimation of the transition rates (i.e. the inverse of transition time) allows us to predict
the timescales of these events, understand molecular mechanisms, and on a more practical
level, make informed decisions based on the kinetic properties of the system.

One remarkable example of the importance of rare events kinetics is the field of drug
discovery. Due to the high cost of experimental trials, computer-assisted methods have
gained relevance in recent decades in the prediction of drug candidates.3–6 During decades,
efforts in drug discovery were directed to the estimation of affinities of small molecules to
protein targets. However, promising compounds in the early stages of affinity-based drug
screening are often discarded in clinical trials due to a lack of in vivo efficacy.7 Recently,
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kinetic rates have been shown to correlate better with drug efficacy than affinities. That is,
in in vivo complexes, non-equilibrium interactions make drug residence time more important
than in vitro equilibrium binding affinity.7–9 This finding has shifted the paradigm in drug
discovery towards the accurate prediction of kinetic rates.7,10

In the latter example, the drug residence time is quantified by means of its reciprocal,
the dissociation rate constant koff . Clinically relevant off-rates of drug candidates range
from 100 − 10−5 s−1, i.e., residence times from seconds to hours.7 In this context, being able
to predict off-rates opens up the possibility of finding better drug candidates. Therefore,
the prediction of these kinetic rates must involve the accurate characterization of long-time
dynamics.

Since this slow dynamics is typical of rare events, examples of the importance of kinetics
are not restricted to drug discovery. Among other examples, the prediction of rate con-
stants for phase transitions of inorganic materials plays a key role in the design of new
devices with technological applications. Also, in the field of molecular biology, the study of
Protein-Protein Interactions (PPI), protein folding, and protein aggregation kinetics helps to
elucidate the causes of diseases and creates alternatives to treat and prevent them. Therefore,
methods allowing the accurate prediction of kinetic rates could be useful in broad applica-
tions from material design to therapeutics. In the following, we will introduce the current
methodologies used to estimate kinetic rates in silico.

2.2 Kinetic rates from atomistic computer simulations

Atomistic computer simulations of rare events have three paramount goals: predicting de-
tailed mechanisms, free energy landscapes, and kinetic rates. All of these tasks are, in many
cases, cumbersome and require intensive human and computer effort, the calculation of rates
being the most difficult.1,2 The challenge of calculating rates is given by the complexity of
simulating the evolution of a system over time. Time-dependent properties are therefore
not accessible with most of the atomistic computer simulation methods available. Neverthe-
less, all-atom Molecular Dynamics (MD) allows following the time-dependent behavior of a
system by propagating the positions and velocities of all atoms in the system through the
solution of equations of motion. MD simulations have been widely used because they allow
studying both the thermodynamic and kinetic behavior of a molecular system.11,12

2.2.1 Molecular dynamics

Molecular Dynamics simulations predict how each atom in a molecular system will move
over time by numerical integration of the equations of motion. Positions and velocities of
the atoms are predicted according to a model of interatomic interactions: the force field.
The forces in the system are sampled at each time step by evaluating the force field on the
current atoms’ positions.13 To ensure numerical stability in the integration of the equations
of motion, a very small time step has to be used (shorter than the fastest bond vibrations).
Since MD simulations evaluate the position of the atoms at each time step, this technique is
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a powerful tool to elucidate molecular mechanisms at atomic resolutions and short timescales
that are barely accessible through experimental techniques.11

The result of MD simulations is a collection of positions and velocities of the atoms over
time. In order to study in detail molecular mechanisms one can focus on one or a few degrees
of freedom of the system. Therefore, one can use a Collective Variable (CV), i.e., a descriptor
that can identify collective movements of the system over the transformation process.14 Since
CVs allow us to follow the progress of the transformation process, with MD simulations one
could directly estimate kinetic rates in the infinite sampling limit, by measuring the average
time that the system spends in a certain state. Other theoretical approaches aim to estimate
kinetics from MD simulations making use of different mathematical frameworks.2 On one
side, the full dynamics of the system can be projected onto low-dimensional CVs leading to
Langevin stochastic differential equations.15–17 On the other hand, the configuration space
can be partitioned into discrete states and the transitions between states can be counted to
construct Markov State Models (MSM).18,19

Although MD simulations seem like a natural path to study the kinetic behavior of a
molecular system11,12,20, as explained above, many interesting molecular processes present
rare events, therefore, the estimation of meaningful thermodynamic and kinetic properties
using MD involves the evaluation of the equations of motion more than billions of times.11

This leads to a gap between the timescales of rare events described before and those accessible
with MD, even using powerful supercomputers.21–23 Therefore, enhanced sampling methods
have become useful alternatives to speed up the sampling in MD.

2.2.2 Enhanced sampling methods

In combination with MD simulations, enhanced sampling methods have become useful al-
ternatives for studying events that occur at long timescales.1 These methods have been
developed to accelerate the sampling of the conformational space of processes involving rare
events, typically characterized by rugged landscapes and high free energy barriers.24 Broadly
speaking, enhanced sampling methods can be grouped into three categories:1

• Methods that add an external artificial force (bias) to the system, so that the explo-
ration of the regions with high free energy is favored, pushing the system to sample
the conformational space faster.

• Methods that focus the sampling on the transition region (the free energy barrier
region), exploring an ensemble of transition paths instead of exploring specific confor-
mations.

• Methods that explore the Hamiltonian at different temperatures where, given the Boltz-
mann distribution, the population of energy barriers relative to minima increases with
temperature, hence sampling is more effective.

Note that in this work we focus on the first two strategies listed above, so we will elaborate
further on them.

The methods that fall into the first category require the use of CVs to add a bias potential
to the potential energy of the system as a function of them. These CVs should describe
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the degrees of freedom considered most relevant to the transition mechanism.25 In these
methods, the bias potential can be constant or time-dependent. Since the bias added to the
potential energy is known, in principle, one can reconstruct the free energy profiles projected
on the biased CVs directly or by means of re-weighting methods. Among these methods,
Metadynamics (MetaD)26, is an enhanced sampling technique where the conformational
search is accelerated by adding a history-dependent bias potential to the force field as a
function of one or few CVs.

MetaD has the advantage that for a converged simulation and appropriate CVs27, it is
possible to directly recover the free energy profile of the system from the MetaD bias.28

However, a disadvantage of MetaD, as well as other related enhanced sampling methods,
is that information about the dynamics of the simulated system is corrupted, due to the
sampling acceleration.27 Several methods have been developed for estimating the rate coef-
ficients from MetaD simulations22, some involve the calculation of diffusion coefficients29,30

and the construction of Markov State Models;31 other methods redefine the concept of the
acceleration factor to apply it to MetaD simulations.32 Although these methods have been
successfully applied in some cases33–35, some of them are unable to reproduce the kinetics of
transitions faster than the lag time assigned for the calculation of the diffusion coefficient29,
while others, require ideal CVs to avoid the corruption of the dynamics over the Transition
State (TS).32

Among the second category of enhanced sampling methods described above are those that
focus on the exploration of a large number of transition pathways connecting two predefined
states.1 The definition of the states requires some prior knowledge of the transformation pro-
cess. Among these approaches, the most widely used is Transition Path Sampling (TPS).36

In this method, a collection of reactive trajectories is generated starting from a single reactive
pathway. The initial pathway can be obtained, for instance, using a bias-based enhanced
sampling method.

An advantage of TPS is that it exploits the fact that the transition path time is faster
than the waiting time, therefore, the sampling is more efficient. Within the TPS framework37

several methods allow the estimation of kinetic rates for instance, Transition Interface Sam-
pling (TIS)38 and Forward Flux Sampling (FFS).39,40 Although in theory TPS allows direct
access to the kinetic information of the system, in practice these techniques are complex to
apply and require extensive sampling for the rate estimate to reach convergence, making it
very expensive in terms of computational and human time.

2.3 Open challenges

A complete understanding of a physicochemical process includes a detailed account of ki-
netics. Since thermodynamics can be obtained from kinetics, but not vice versa, simple and
efficient strategies that are able to extract kinetics from atomistic computer simulations are
still needed. Apart from the intrinsic accuracy of the interatomic force field (a very active
field, which however is beyond the scope of the present thesis), the extensive sampling re-
quired for the prediction of kinetic rates from MD simulations remains one of the major open
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challenges, notwithstanding the advance in current computer capabilities. Methods capable
of extracting reliable thermodynamic and kinetic information from enhanced sampling tra-
jectories are highly desirable and are the focus of intense research. Additionally, in order to
exploit in an efficient way current supercomputers, methods that can use ensembles of short
trajectories obtained in parallel are more desirable than those that require long equilibrium
trajectories.

At the same time, CVs are key to understanding molecular mechanisms of rare events.
They are used in enhanced sampling either as biasing directions or as indicators of the
current state of the system. Nowadays the prediction of kinetic rates often relies on the use
of optimal CVs. In basic versions of TPS like aimless shooting where the aim is to sample
transition paths, since the dynamics is unbiased, different CVs can be defined a posteriori
for the purpose of analysis.

On the other hand, advanced TPS methods like TIS and FFS allow computing kinetic
rates, at the price of a careful a priori choice of a CV. In these latter techniques, as well as
in MetaD and related biased sampling approaches, a poor CV choice yields severe under- or
overestimation of the kinetic rate and it can also lead to sample unfavorable pathways. As a
consequence, improving the CV to improve the kinetic rate would require running new sets
of simulations in both TPS and MetaD.41 Therefore, methods that are able to estimate the
kinetics in post-processing analysis and that allow either to efficiently screen pools of CVs
or to correct the effect of poor biasing directions will be useful.

In summary, in this manuscript we attempt to answer the following questions: Can we
develop efficient methodologies for the calculation of kinetic rates of rare events using short
trajectories from enhanced sampling methods? Can these methods assess the quality of the
CV a posteriori avoiding the need to run new simulations when a poor CV is used in the
first place? Can we establish criteria to test the quality of our results when the exact kinetic
rate is not available for comparison?

2.4 Our proposal

To answer the questions above we propose two strategies: i) Estimation of transition rates
from MetaD trajectories using Kramers’ theory, assessing and correcting simultaneously the
efficacy of the CVs. ii) Optimization of Langevin models to access transition rates, free
energy, and diffusion profiles from unbiased MD and TPS trajectories. Both strategies are
used in post-processing mode and only require small sets of short trajectories (compared to
the waiting time of the respective rare event) that can be obtained in parallel, reducing the
wall-clock time needed for computation.

This thesis is organized as follows: First, we show an overview of rate theory and current
computational methods used to estimate kinetic rates in the methods section. Then, we
introduce in detail the theory, validation, and applications of the methods proposed. Finally,
we present the conclusions and perspectives for applications and extensions of our proposed
methods. A summary of the dissemination of research results (publications, presentations
at conferences, etc.) completed during the time of the Ph.D. can be found in Appendix C.
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Part II

Theory and Methods
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3
Kinetic rates estimation

3.1 Macroscopic perspective

Transitions between metastable states in rare events, that is, transitions between regions of
configuration space with low free energy (high probability), separated by interface regions
of high free energy —barriers— (low probability) are stochastic processes:1 the time needed
for a transition is different for multiple samples of the system prepared in exactly the same
macroscopic conditions.42 The average time needed to see a transition is related to the
transition rate k via

⟨t⟩ =
1

k
. (3.1)

At the macroscopic level, the kinetics of rare events is well captured by the kinetic equa-
tions. Let us take as an example of a rare event a molecule in solution with two different
conformations, in which the transformation of one conformation or reactant (A) to another
conformation or product (B) requires overcoming a sizeable barrier or activation energy.
The kinetic equations describe the time evolution of the populations (concentrations) in the
reactant and product states. The concentrations for each conformation cA and cB evolve in
time following the expressions

dcA(t)

dt
= −kA→BcA(t) + kA←BcB(t) ,

dcB(t)

dt
= −kA←BcB(t) + kA→BcA(t) ,

(3.2)

30



where kA→B and kA←B are the forward and backward rate constants or transition rates
for the reaction A ⇌ B, respectively. The equations above assume that the number of
transitions per unit time from A to B is proportional to the concentration (population) in
A and vice versa, with a proportionality constant given by the rate constant. We remark
that these equations are general for any two-state system, i.e., a system that can exist in
two different states.

Equilibrium is reached when the concentrations of the two states do not change with time.
Under these conditions, the ratio of the concentrations is equal to the ratio of the backward
and forward rate constants:

⟨cA⟩
⟨cB⟩

=
kA←B

kA→B

, (3.3)

where the angular brackets ⟨· · · ⟩ refer to the equilibrium concentration of each species.
In computer simulations, one way to determine transition rates is by preparing the sys-

tem in one state and monitoring its transformation or decay to the other state over time.
For example, starting from state A, the concentrations relax to equilibrium following the
equations

cA(t) = ⟨cA⟩ + [cA(0) − ⟨cA⟩] exp(−[kA→B + kA←B]t) ,

cB(t) = ⟨cB⟩ + [1 − exp(−[kA→B + kA←B]t) .
(3.4)

Therefore, for a reversible reaction, i.e. where the system can constantly fluctuate between
states A and B, the inverse of the reaction time τ can be written as

τ−1 = kA→B + kA←B = kA→B
⟨cA⟩ + ⟨cB⟩

⟨cB⟩
. (3.5)

On the other hand, in the case of irreversible transitions, the evolution of the concentra-
tions is determined only by the forward rate kA→B, as the backward rate kA←B effectively
vanishes

cA(t) = cA(0) exp(−kA→Bt) ,

cB(t) = cA(0)[1 − exp(−kA→Bt)] .
(3.6)

Therefore, the reaction time corresponds to the average waiting time (Eq. 3.1) for the
decay of the initial state

τ = k−1A→B . (3.7)

In principle, we can use computational experiments to calculate transition rate constants.
For this purpose, in the next sections, we will introduce the basics to calculate the forward
rate constant kA→B, keeping in mind that the same procedure can be used to compute the
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backward rate kA←B.

3.2 Direct calculation of the rate constant

If one can follow the evolution of a system over time by means of atomistic computer sim-
ulations, for example, by using MD simulations, a way to estimate the rate constant is
by analyzing a long simulation. If the free energy barriers between the two states can be
overcome in much less time than the total simulation time, then the system will be able
to go back and forth between the two metastable states A and B within the simulation
time. Therefore, it is possible to count the number of transitions (jumps) from one state to
another and the time the system spends in each state. With this information and following
the definition of the rate constant, it can be estimated as

kA→B =
nA→B

tA
, (3.8)

where nA→B is the number of jumps out of state A and tA is the total time spent in the
state A. As mentioned above, Eq. 3.8 can only be applied in practice if it is possible to
observe enough transitions between the states, that is, if the free energy barriers are not very
large. Therefore, transition rates on rare events cannot generally be calculated in this way
by means of conventional MD simulations. The details of this limitation in MD simulations
and methods aimed to speed up the sampling, i.e., enhanced sampling methods are discussed
in Chapters 4 and 5, respectively.

3.3 Estimation of the mean first-passage time

The Mean-First Passage Time (MFPT) is the time it takes for the system starting from
state A to first arrive at state B.43 In the following sections, we will define two methods to
calculate the MFPT from atomistic computer simulations.

3.3.1 The Kramers’ problem

Imagine the escape of a Brownian particle from a free energy well. In 1940 Kramers44,45

introduced the idea of viewing chemical reactions as diffusion processes by proposing a model
to estimate the escape rate of the particle from the bottom of a well. The position of the
particle is described by a variable q. The particle moves diffusively in a free energy surface
F (q) with a position-dependent coefficient D(q). The motion of the particle is described by
the overdamped Langevin equation:17,46

q̇ = −βD(q)
∂F (q)

∂q
+

∂D(q)

∂q
+
√

2D(q) η(t) , (3.9)

where η(t) is a Gaussian white noise. The Langevin equations are discussed in detail
in Chapter 8, section 8.2.1. Following the model, the probability density ρ of the particle
position q moving on the free energy F (q) evolves according to the Smoluchowski equation:47
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∂

∂t
ρ =

∂

∂q

(
βD(q)

∂F (q)

∂q
ρ− ∂D(q)

∂q
ρ

)
+

∂2

∂q2
(D(q)ρ) (3.10)

By analogy, we can model the transition of the system from a metastable state A to a
metastable state B as the escape of this Brownian particle.

Now, consider the MFPT τ(q∗) to reach the top of the barrier, q∗. The barrier top q∗ is the
location of the TS, where the probability to advance towards the product state B is equal
to the probability to return to the reactant state A, therefore, the reaction rate constant is
given by

kA→B =
1

2
τ(q∗)−1 (3.11)

Using the Smoluchowski equation, one can arrive at a general expression for the MFPT
τ(q) to reach any point q starting from any point q0

16

τ(q, q0) =

∫ q

q0

dy
1

D(y)
exp(βF (q))

∫ y

a

dz exp(−βF (z)) , (3.12)

where a is a reflective wall located at the left of the free energy well (see Fig. 3.1a). Under
this framework, if the relaxation time in the well is fast compared to the escape time, starting
from any initial point q0 at the bottom of the well, the MFPT to reach a point q near the
barrier is the same. Assuming that the shape of the barrier is close to parabolic near its top
(the potential energy can be expanded around q∗ and truncated after the quadratic term),
the MFPT for q values near to the barrier-top are given by42

τ(q) =
τj
2

[1 + erf([q − q∗]c)] , (3.13)

where erf(z) = (1/
√
π)
∫ z

0
exp(−y2)dy is the error function and c =

√
β|U ′′(q∗)|/2 is the

respective local curvature. In practice, Eq. 3.13 is useful to estimate the MFTP when the
free energy barrier is not very high. For that, several simulations can be launched from
different configurations at the bottom of well A and follow them until the barrier is crossed
with τj defined as this jump time, i.e., the simulation time needed to jump to state B. Then
one can fit the Eq. 3.13 to the simulation data with τj, q

∗, and c as variational parameters.
Finally, the rate constant is given by

kA→B = τ−1j . (3.14)

3.3.2 Mean lifetime method

The direct observation method48 or mean lifetime method49 allows estimating the MFPT
with the advantage that it does not rely on the exact definition of the transition state50. In
this method it is assumed that the times to reach a particular state are Poisson distributed,
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Figure 3.1: Schematic illustration of the Kramers and Bennett-Chandler approaches. (a) Kramers approach:
the system diffuses in a free energy potential F (q) along a coordinate q within a reflective boundary a and a
moving absorbing boundary b. The transition rate is inversely proportional to twice the mean time required
to escape through b = q∗ when starting at q0, see Eq. 3.11. In the high barrier limit, the MFPT can be
estimated with Eq. 3.13. (b) Bennett-Chandler approach: the rate constant is given by the time derivative
of the correlation function. On short time scales t < τmol, correlated recrossings of the dividing surface may
occur, effectively reducing the flux out of A. kTST

A→B overestimates the rate by neglecting those recrossings.
The Bennett-Chandler approach corrects the rate for such recrossings, kTST−BC

A→B . Adapted from Ref. 42.

therefore, the probability of observing a transition to state B in a given time interval is fitted
to the distribution

H(t|q ∈ B) = gt exp(−ht) , (3.15)

where g and h are fitting parameters. Here, the rate constant is given by h

kA→B = h . (3.16)

To estimate the rate constant with this method, different simulations must be launched
from state A with random velocities drawn from a Boltzmann distribution and initial config-
urations at the bottom of the well. These simulations can be stopped once they reach state
B and the simulation times are used to make the fit in Eq. 3.16. A more detailed discussion
of this method can be found in the Chapter 6.

In comparison to the method presented in section 3.2 where a single long MD simulation is
used, the methods presented in this section use multiple shorter MD simulations. However,
these MFPT estimation methods are still limited to small free energy barriers, where at least
one transition can be observed in a simulation time achievable through MD simulations.
When the location of the TS is known, one possibility to deal with this issue is to use other
methods as shown below.
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3.4 Transition state theory

An alternative view to the problem of estimating the rate constant is given by the Transition
State Theory (TST)51–53, which was developed almost in parallel with Kramers’ theory. The
central concept in the TST is the existence of the transition state (TS), which is character-
ized by a saddle point in the Potential Energy Surface (PES). This activated state has a
single imaginary frequency or negative curvature in only one degree of freedom: the reaction
coordinate. The TS does not correspond to a single configuration of the system, in fact, all
the configurations that fall within the surface perpendicular to the direction of the reaction
coordinate, here called dividing surface, belong to the Transition State Ensemble (TSE).

In TST, the reaction rate is given by

kTST
A→B = κ⟨q̇∗⟩Z

∗

ZA

, (3.17)

where ⟨q̇∗⟩ is the average velocity with which the activated complex slides across the
dividing surface, Z∗ is the probability density in the TS,

Z∗ = exp(−βF (q∗)) , (3.18)

and ZA is the partition function of the initial state,

ZA =

∫ q∗

−∞
exp(−βF (q))dq . (3.19)

Finally, κ is a prefactor that can account for the possibility of recrossings of the dividing
surface. In the TST formulation κ is set to 1. Note that in Eq. 3.17 only trajectories that
successfully cross the dividing surface and transition to state B are considered.

In practice, the estimation of the TST rate involves two sets of simulations that are
performed separately: (i) the free energy profile as a function of coordinate q is estimated
using MD or enhanced sampling methods (see Chapters 4 and 5), thus allowing the estimation
of the ratio of the partition functions. (ii) the average velocity of the activated complex is
calculated from a set of multiple simulations launched from configurations at the top of the
barrier belonging to the TSE. The expression used for the numerical estimate of the rate
constant becomes

kTST
A→B =

1

2
⟨|q̇|⟩q=q∗

exp(−βF (q∗))∫ q∗

−∞ exp(−βF (q))dq
. (3.20)

The main drawback of TST is the non-recrossings assumption, i.e., assuming that all
trajectories coming from the reactant state A and passing through the dividing surface relax
into the product state B. In reality, the system can fluctuate over the barrier and cross back
to the reactant state, increasing the average transition time. Therefore, TST overestimates
the rate, being kTST

A→B the maximum possible rate (see Fig. 3.1b). An accurate estimation of
the rate constant requires considering recrossings, which has been the main motivation for
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the development of the strategy explained in the next section.

3.5 Bennett-Chandler method

A computational method that allows the accurate estimation of the transition rate is the
Bennett-Chandler approach (TST-BC)54,55, also called the reactive flux method. Given a
reaction coordinate q, the characteristic functions that indicate the state where the system
is can be defined as

hA(q) = θ(q∗ − q) =

{
1, if q < q∗ ,

0, else ,

hB(q) = θ(q − q∗) = 1 − hA(q) ,

(3.21)

where θ(q) is the Heaviside theta function. The dividing surface is located at q = q∗,
therefore, the functions hA and hB indicate whether a configuration q is in state A or B.
The conditional probability of finding the system in state B at time t given that the system
was at state A at time 0 is given by the time correlation function C(t)

C(t) =
⟨hA[q(0)]hB[q(t)]⟩

⟨hA⟩
, (3.22)

where ⟨hA⟩ = ⟨cA⟩/(⟨cA⟩ + ⟨cB⟩) connects to the fraction of equilibrium concentrations
in A (Eq. 3.3). Hence, the time evolution of the product concentration for a system where
cB(0) = 0 can be written in terms of the correlation function as

cB(t) = (⟨cA⟩ + ⟨cB⟩)C(t) . (3.23)

Now, let us call the typical time scale of molecular fluctuations τmol. For time scales larger
than τmol the populations evolve following Eqs. 3.4. Thus, the combination of Eq. 3.4 and
Eq. 3.23 leads to

C(t) = ⟨hB⟩[1 − exp(−[kA→B + kA←B)t] . (3.24)

The latter expression can be reduced when taking any time t in the time interval τmol <
t << τ , with τ = (kA→B + kA←B)−1

C(t) ≈ kA→Bt . (3.25)

Therefore, for t > tmol, after all the correlated recrossings have occurred, the rate constant
is given by the derivative of the correlation function:

kTST−BC
A→B =

dC(t)

dt

∣∣∣∣∣
t>tmol

. (3.26)

36



The crucial difference from the TST is encoded in Eq. 3.26, since in this framework
recrossings are explicitly taken into account, while in the TST they are ignored (see Fig.
3.1b). It is possible to rewrite the TST rate kTST

A→B in this framework using the procedure
below.

The correlation function is time translational invariant, as a consequence, one can use the
definition in Eq. 3.22 to express Ċ(t) as

dC(t)

dt
=

⟨q̇(0)δ[q(0) − q∗]hB[q(t)]⟩
⟨hA⟩

. (3.27)

Since in TST the recrossings are neglected, one can take the limit t → 0 in the last equation
by assuming that all the passages through the dividing surface become uncorrelated in time.
Thus, the time dependency is eliminated as the difference in hB[q(t)] = θ(q(t)−q∗) is replaced
by θ[q̇(0)],

kTST
A→B =

⟨q̇(0)δ[q(0) − q∗]θ[q̇(0)]⟩
⟨θ(q∗ − q)⟩

. (3.28)

The analogy with the Eq. 3.20 can be clearly seen by multiplying the equation above by
the factor δ(q∗ − q).

kTST
A→B =

⟨q̇(0)δ[q(0) − q∗]θ[q̇(0)]⟩
⟨δ(q∗ − q)⟩

× ⟨δ(q∗ − q)⟩
⟨θ(q∗ − q)⟩

. (3.29)

With this transformation we can again calculate the rate from equilibrium averages since
the first factor on the right-hand side corresponds to the expectation value of the positive
velocity and the second term is the conditional probability of finding the system at q∗.
Finally, we can measure the effect of ignoring recrossings and the deviation of the rate from
TST with respect to the rate with the Bennett-Chandler approach (i.e., the exact rate up
to statistical errors) with the transmission coefficient κ,

κ =
kTST−BC
A→B

kTST
A→B

, (3.30)

where κ is a number between 0 and 1. Roughly, κ measures the fraction of crossings of
the dividing surface that lead to successful transitions from reactants to products. A larger
number of recrossing leads to a smaller value of κ. Let us remember that in the TST κ
is always set to 1 (see Eq. 3.17). Therefore, TST always overestimates the reaction rate
constant.

The procedure used for the practical application of the Bennett-Chandler/reactive flux
method is described in the Chapter 8, section 8.2.5. Although the Bennett-Chandler ap-
proach discussed in this section allows, in theory, the precise calculation of the rate con-
stant, in practice it is computationally very expensive because large amounts of trajectories
are required for the estimation of the correlation functions (see chapter 8, section 8.2.5).
Additionally, it relies on the use of a good reaction coordinate capable of describing the
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progress of the transition. Finding a good reaction coordinate is an open challenge even
today.42 Therefore, this method cannot be easily used in applications to complex systems.

In this chapter, we have discussed the different statistical methods available for the com-
putational estimation of rate constants. In addition, we mention some of the challenges
(without going into details) that have stopped the extensive application of these methods,
such as (i) the computational cost associated with carrying out long simulations and (ii)
the difficulty in finding a coordinate of reaction that describes the transition process. In
the following chapters of the methods part we will explain in depth where these challenges
arise from. Then, in the chapters of the results part we will introduce the strategies that we
propose to tackle these difficulties.
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4
Atomistic computer simulations

4.1 Background

The detailed study of physicochemical transformation processes requires a thorough under-
standing of the motion of all atoms in a system over time, in particular, when the objective
is to measure the kinetic properties of a system and study the mechanism of the process.
Currently, even the most advanced experimental techniques (with few exceptions in devel-
opment such as ultrafast X-ray Diffraction56,57) lack the time resolution needed to study
transformation mechanisms at the atomistic level. Therefore, Molecular Dynamics (MD)
simulations emerged as an alternative to elucidate the behavior of a molecular system on
spatial and temporal scales that experiments cannot access.

MD simulations are numerical experiments that aim to predict how every atom in a molec-
ular system moves over time. These predictions are based on a general model, so-called Force
Field (FF), describing the interatomic interactions.13 Thus, we can think on MD simulations
as a high-resolution numerical microscope. However, just as the accuracy of the experiments
is given by the quality of the instruments and subject to systematic and statistical errors, the
accuracy of the MD predictions is given by the quality of the FF and limited by numerical
errors which we will discuss later.

Nowadays, MD simulations are increasingly used to understand molecular mechanisms in
combination with a wide variety of experimental techniques such as X-ray crystallography,
cryo-electron microscopy (cryo-EM), nuclear magnetic resonance (NMR), electron paramag-
netic resonance (EPR), and Förster resonance energy transfer (FRET).11 Therefore, we will
focus on classical MD simulations to develop methods that allow us to obtain insights also
on thermodynamics (free energies) and kinetics (diffusion coefficients and transition rates)
in addition to the study of the transformation mechanisms.
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4.2 Classical molecular dynamics simulations

By construction, MD simulations model the time-dependent behavior of a system, thus, given
a pressure and a temperature, they are ideal to study the mechanisms, thermodynamics,
and kinetics of transformation processes.1 In a nutshell, we can describe the idea behind
molecular dynamics as follows: Starting from an initial configuration of the system, given
by the positions of all the atoms, we estimate the force experienced by each atom given the
interaction with the other atoms. The spatial position of the atoms can be predicted by
solving numerically the equations of motion as a function of time, using small time steps to
propagate the motion. Once the positions are updated, the forces are recomputed and the
procedure is repeated. The result of this repetitive operation is a three-dimensional movie
or trajectory containing the positions of all the atoms at each time step.11 The following is
a detailed description of the process to follow the time evolution of the system.

4.2.1 Time evolution and statistical principles

Phase space

In classical MD simulations, a molecular system is made up of point-like particles representing
each atom. The dynamics of the system is given by the motion of these particles in space.
Therefore, to reconstruct a particle’s trajectory we need its position r(t) and momentum
p(t) at each time. We can define the phase space of the system at each time t, as the set
of coordinates xi(t), yi(t), zi(t), and momenta pxi

(t), pyi(t) and pzi(t), for each particle i.
For a system composed of N particles we then get a 6N dimensional space. The system’s
dynamics is described by the collection of positions in this phase space, i.e., by the trajectory
in abstract space. The microscopical state of the system is then defined by the position at
each point of the phase space. On the other hand, the system’s macroscopic equilibrium
state is given by an average over the microscopical states accessible by the system, as we
will describe below, but first, we will focus on monitoring the dynamics of the system by
tracking the time evolution of r(t) and p(t).

Time evolution

The time evolution of the particles in a system can be followed by solving the equations of
motion. The analytical solution of these equations is only possible for very simple exam-
ples, therefore, for real systems, it is necessary to solve them using approximate numerical
methods. One of these methods is MD.

Consider an isolated system (constant energy E) with a fixed number of N particles in
a box of constant volume V , i.e., a system in the micro-canonical or NV E ensemble. The
Lagrangian of the system is defined as the sum of the kinetic energy given by the movement
of each atom and the potential energy due to the interaction between particles

40



L =
N∑
i=1

1

2
miv

2
i − U(r1, r2, · · · , rN) , (4.1)

where m, r, and v are the mass, the position, and the velocity of each particle in the
system, respectively. The first term on the left-hand side of Eq. 4.1 represents the kinetic
energy of our system and the second term represents the potential energy due to interaction
between the particles. The Legendre transformation allows to go from the Lagrangian to the
Hamiltonian (L(r,v, t) → H(r,p, t)), given the momentum pk = ∂vk

L

H =
N∑
i=1

pi

( ∂L
∂vi

)
− L . (4.2)

By applying the least action principle to the Lagrangian, we can deduce the Euler-Lagrange
equation

d

dt

( ∂L
∂vi

)
=

∂L
∂ri

. (4.3)

Finally, from the last expression, we can write the equation of motion

Fi = mi
dvi

dt
= −∂U

∂ri
, (4.4)

where Fi is the force that acts on the particle i. The potential energy U is a complex func-
tion that is currently approximated by using force fields (see next section). The analytical
solution of Eq. 4.4 is not possible. To find the positions of the atoms in time, Eq. 4.4 must
be solved numerically, discretizing time in small intervals, i.e., using a time step ∆t. Then,
at each iteration after one ∆t, we calculate F by means of the derivative of U, and from
this, we use the equation of motion to update the positions and velocities of the atoms. To
accurately preserve the dynamics of the system, ∆t must be small enough so that the force
can be considered constant between two-time steps. This is achieved by using a ∆t equal
to or smaller than the fastest motion of the system (usually linked to fast bond vibrations).
The need for such a small time step becomes a limitation for MD simulations, since, as we
will see below, in order to directly estimate equilibrium properties using MD it is necessary
to sample the system for large enough time, the extension depending on the phenomenon
under study (ergodic principle, see below). These long-time scales are unachievable in prac-
tice since they require the solution of the equation of motion such a large number of times
that it is impossible even using current supercomputers.23 Now we will describe the ergodic
hypothesis and the most common algorithms used to integrate the equation of motion, i.e.,
to update numerically the velocities and positions in a system.
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Ergodic principle

Understanding the usefulness of MD simulations involves understanding the statistical ideas
behind them. The most important is the ergodic hypothesis which grants access to ensemble
averages in phase space by means of time averages. The ergodic hypothesis ensures that a
macroscopical state of a system can be measured by either of these two routes: (i) by taking
one sample and measuring its states over a long period of time or, (ii) by measuring the
states of a large number of samples of the system from the same initial conditions. Now,
if we want to estimate a physical quantity A, following route (i) we can compute the time
average as

A =
1

N

∑
k

AkNk , (4.5)

where k is the observed microscopical state and Nk is the number of times we have mea-
sured the microscopical state Ak.

On the other hand, following route (ii)

⟨A⟩ =
∑

Akpk , (4.6)

where pk is the probability of being in a microscopic state Ak according to statistical
mechanics. In the canonical ensemble (NV T ), pk is proportional to the Boltzmann factor
pk ∝ exp(−U/kBT ), with kB and T as the Boltzmann constant and temperature, respec-
tively.

At large N we have

lim
N→+∞

Nk

N
= pk . (4.7)

As a consequence, the ergodic principle is constructed, i.e., the average over a long period
of time is equal to the ensemble average: ⟨A⟩ = A

This result is central to MD since it tells us that we can reconstruct the macroscopic
properties of any system by simulating a long enough trajectory. Now, let’s go to the more
technical aspects of MD describing the algorithms behind it, defining the potential energy
function, and the description of temperature and pressure in MD.

4.2.2 Integration of equation of motion

In MD the integration of the equation of motion is achieved numerically. Here we will
briefly describe the most commonly used algorithms for this task: the Verlet and leap-
frog algorithms. These algorithms display the most important properties required for an
integrator to grant ergodicity:58 conservation of the phase space volume, the energy and
total momentum, and time reversibility.

Verlet and leap-frog are equivalent algorithms based on a second-order Taylor expansion
of the position (note that for simplicity we omit the sub-index i, but each expression is acting
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over each particle)

r(t + ∆t) = r(t) +
dr(t)

dt
∆t +

1

2

d2r(t)

dt2
∆t2 + O(∆t3) . (4.8)

Let us take the same expansion for (r)(t− ∆t) and sum the two expressions

r(t + ∆t) = 2r(t) − r(t− ∆t) +
d2r(t)

dt2
∆t2 + O(∆t3) . (4.9)

This leads to two ways of defining the velocities. The first gives rise to the Verlet algorithm:

v(t) =
r(t + ∆t) − r(t− ∆t)

2∆t
+ O(∆t2) . (4.10)

The second defines the leap-frog algorithm:

v
(
t− 1

2
∆t
)

=
r(t) − r(t− ∆t)

2∆t
+ O(∆t2) (4.11)

For instance, by combining the leap-from algorithm and the equation of motion, Eq. 4.4,
we obtain

v
(
t +

1

2
∆t
)

= v
(
t− 1

2
∆t
)

+
1

m
F(t)∆t + O(∆t2) , (4.12)

r(t + ∆t) = r(t) + v
(
t +

1

2
∆t
)

∆t + O(∆t2) . (4.13)

Therefore, after initialization, in MD the position of the particle i is computed at time
t + ∆t from its velocity at time t + 1/2∆t.

4.2.3 Force fields

In MD simulations the true potential of a system is modeled through a Force Field (FF).
Force fields are mathematical functions describing the dependence of the energy of a system
on the coordinates of its particles and seek to reproduce the properties of a system. These
models try to maintain the trade-off between simplicity to allow fast computation of the
equations and a good level of detail to reproduce the intricate properties of the system. In
these models, molecules are defined as sets of atoms that are held together by elastic forces
corresponding to the different interactions between the atoms. The FFs then correspond
to the analytical form of the interatomic potential U(r1, r2, · · · , rN) with some parameters
integrated into this form. The FF parameters are usually obtained either through compu-
tations (ab initio and semiempirical potentials) or by means of experiments such as X-ray,
NMR, infrared, etc. Currently, there are many FFs reported in the literature and available
in MD packages that vary in complexity and in the way of obtaining the parameters, but in
general, they are based on this type of equation59
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U =
∑
bonds

1

2
kb(r − r0)

2 +
∑
angles

1

2
ka(θ − θ0)

2 +
∑

torsions

Vn

2
[1 + cos(nϕ− δ)]

+
∑

impropers

Vimp +
∑
LJ

4ϵij

((
σij

rij

)12

−
(
σij

rij

)6
)

+
∑
elec

qiqj
rij

.

(4.14)

In Eq. 4.14 the first four terms refer to intramolecular interactions: bond stretching, angle
bending, dihedral torsions, and improper torsions, while the last two terms refer to repul-
sive and Van der Waals interactions (the Lennard-Jones (LJ) potential) and the Coulombic
interactions. A schematic representation of these terms is shown in Fig. 4.1. Below we will
briefly describe these terms.

Figure 4.1: Schematic representation of the terms involved in the force field, Eq. 4.14.

Intramolecular terms

The bond stretching is typically represented with a simple harmonic function (see first term
in Eq. 4.14). This function controls the length of the covalent bond in the molecule. The
spring constant kb is usually parameterized with ab initio calculations or infrared and Raman
experiments while r0 is typically taken from X-ray experiments. For instance, considering
common FFs for biomolecular simulations, one of the major limitations of MD lies in the
description of the bonds by means of a harmonic function as it implies that bonds cannot be
broken and therefore physicochemical processes involving bond breaking cannot be studied
with classical MD simulations. Methods devised to overcome this limitation are beyond the
scope of this manuscript.

In similarity to the bond stretching, angle bending (second term in Eq. 4.14) is also
typically represented with a harmonic potential where the spring constant ka is commonly
parameterized from ab initio calculations or less frequently with experiments that allow to
obtain the vibrational spectra. In addition to the bonds and angles between atoms, for
molecules with more than four atoms in a row, it is also necessary to include dihedrals and
torsion terms. These terms are responsible for modeling the degree of rigidity of a molecule
and are therefore essential for describing conformational changes.
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The torsional energy is typically represented by a cosine function (third term in Eq. 4.14)
where ϕ is the torsional angle, δ is the phase, n defines the number of minima or maxima
between 0 and 2π, and Vn determines the height of the potential barrier. Usually, two or
more torsional terms with different n can be combined to improve the description of complex
systems allowing having minima with different depths.

The last term of the intramolecular interactions (fourth term in Eq. 4.14) is related to
improper angles, accounting for the planarity of functional groups such as aromatic rings,
sp2 hybridized carbons, etc. A typical expression to describe improper torsion is

Uimp =
∑

impropers

kimp

2
(ω − ω0)

2 , (4.15)

where ω is the improper angle describing the deviation from planarity.

Intermolecular terms

The 12-6 LJ potential is often used to represent van der Waals interactions (second last term
in Eq. 4.14). Van der Waals forces can act between any pair of atoms belonging to different
molecules (or to the same molecule if they are sufficiently separated). These forces result
from the balance between repulsive interactions given by the overlap of the electron clouds
of both atoms and attractive forces due to the interaction between induced dipoles.

The last term in Eq. 4.14 corresponds to the electrostatic interactions. The simulation of
the electronic density in classical MD is typically approached by assigning a partial atomic
charge to each atom, and then the electrostatic contribution to the total energy is computed
using Coulomb’s law. The partial charges are typically derived from ab initio calculations.
Note that van der Waals and electrostatic interactions are long-ranged, therefore, they have
to be computed for any pair of atoms of the system. The direct implication of this com-
putation is a performance issue. In section 4.2.6 we show how to deal with these terms to
maintain a good balance between accuracy and performance. We will now briefly mention
the FFs most commonly used in practice.

Popular force fields

The first FFs appeared in the 1960s around the development of the molecular mechanics
method. Since then force fields have been improved and generalized for application to large
groups of materials. For example, some of the most popular families of FFs for the simulation
of biomolecules have been CHARMM60, AMBER61, GROMOS62, while other FFs such as
OPLS63 and COMPASS64 are used for condensed matter simulations. These FFs have been
improved over the years, leading to different versions of them.

There are also some FFs designed to describe particular systems. For instance, often when
we simulate biomolecules in water, we typically use two different FFs, one for the biomolecule
and another one for the water. A large number of water models have been proposed over the
years. In this manuscript, we use some of the rigid non-polarizable water potentials65,66 such

45



as TIP3P, TIP4P, TIP5P, SPC and SPC/E. In addition, another type of FFs has emerged:
machine learning potentials.67,68 Maching Learning (ML)-based FFs aim to reduce the gap
between the accuracy of ab initio methods and the efficiency of classical FFs. However, they
lack the generality and transferability of classical FFs, and their applicability is restricted
to the particular type of systems on which they are trained.

Going back to the theory behind MD, so far we have been talking about the NV E en-
semble, however, if we want to compare our MD measurements with experiments we need to
go beyond and introduce control over the temperature and the pressure of the system. The
next two sections focus on that.

4.2.4 Temperature coupling

The temperature of a system of N particles is given by its kinetic energy,

Ek =
1

2

N∑
i=1

miv
2
i , (4.16)

where m are the masses and v the velocities of each particle i. One can also write the
kinetic energy in terms of the degrees of freedom of the system

Ek =
1

2
KBTNdf , (4.17)

where kB is the Boltzmann constant and Ndf is the number of degrees of freedom: Ndf =
3N −Nc −Ncom, determined by the number of constraints imposed over the system Nc, and
the number of translational and rotational degree of freedom accessible by the center of mass
Ndf .

The temperature in MD simulation is fixed by coupling the system with a thermostat at
constant temperature T . This setup leads us to the NV T ensemble. We will now describe
two of the most commonly used thermostats.

Berendsen thermostat

To keep a fixed temperature, the Berendsen thermostat works in trying to suppress the fluc-
tuation of the kinetic energy.69 Note that this leads to a regime outside the NVT ensemble
where the sampling is not correct: the distributions of the kinetic energy and other fluctu-
ation properties are incorrect. However, the error scales as 1/N so for large systems this
effect is negligible.

The kinetic energy is scaled every time step with a time-dependent factor λ as

∆Ek = (λ− 1)Ek , (4.18)

where the scaling factor λ is given by
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λ =

[
1 +

∆t

τT

(
T0

T (t− 1/2∆t)
− 1

)]1/2
, (4.19)

and the parameter τT is directly related to the time constant of the temperature coupling
τc

τc = 2Cv
τT

NdfkB
, (4.20)

where Cv is the total heat capacity of the system. As a consequence, when the velocity is
rescaled, the energy difference is distributed between the kinetic and the potential energy.69

The deviation of the system’s temperature T from the thermostat temperature T0 is cor-
rected slowly by

dT

dt
=

T0 − T

τc
, (4.21)

which means that the deviation between the two temperatures decays exponentially with
the time constant τc. Therefore, the strength of the coupling can be defined through τc. In
practice, one talks about short coupling time for τc ≈ 0.05 ps and long coupling time for
τc ≥ 2.0 ps.

Stochastic velocity-rescaling thermostat

The velocity-rescale thermostat uses the same principle that the Berendsen thermostat,
adding a random term to ensure a correct energy distribution70

dEk = (E0
k − Ek)

dt

τT
+ 2

(
EkE

0
k

Ndf

)1/2
dW
√
τT

. (4.22)

In the last equation, E0
k corresponds to the thermostat kinetic energy, and dW corresponds

to a Wiener process (Brownian motion), i.e., a continuous random process with Gaussian
distribution and no memory. In contrast to the Berendsen thermostat, the velocity-rescale
thermostat preserves the correct NVT ensemble.71

4.2.5 Pressure coupling

Another useful ensemble to compare with experiments is the NPT ensemble, where the
number of particles N , the temperature T , and the pressure P are fixed. Following analogous
ideas to those used for the temperature, to set the pressure we couple our system to a
barostat.

To set up a barostat, first, we define an expression for the pressure. In a simulated system
the pressure P can be calculated in terms of the kinetic energy and the internal pair potential
using the virial theorem
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P =
2

3V
(Ek − Ξ) , (4.23)

where Ξ is the virial of the system

Ξ = −1

2

∑
i<j

Fij(ri − rj) , (4.24)

with Fij being the force on particle i due to particle j. As we did for thermostats, we now
describe two of the most used barostats.

Berendsen barostat

As the pressure is defined in terms of the virial, the latter can be modified to fix the pressure.
Therefore, in the Berendsen barostat, the interparticle distance is scaled at every step.69 The
scaling is anisotropic leading to a scaling matrix µ

µij =

[
δij −

∆t

3τP
βij(P

0
ij − Pij(t))

]1/3
. (4.25)

Here β is the isothermal compressibility of the system (for water β = 4.6×10−5 bar−1, at 1
atm and 300 K) and P0 the fixed pressure of the barostat. The Berendsen barostat adds an
extra term to the equations of motion which affects the pressure change, therefore, the energy
has to be corrected by the work that the barostat applies over the system. Consequently,
this barostat leads to large oscillations of the pressure and volume.

The equation of motion followed by the system is then

dP

dt
=

P0 −P

τP
, (4.26)

where P0 is the reference pressure. The relaxation time τP can be set for a short or long
time of relaxation, as for the thermostat explained above. Note that by construction, this
barostat does not yield a true NPT ensemble because we are rescaling positions and not
adding them to the hamiltonian71, therefore more accurate barostats are required, as the
one explained below.

Parrinello-Rahman barostat

In contrast to the Berendsen barostat, the Parrinello-Rahman barostat uses a new Hamilto-
nian yielding a correct NPT ensemble72

H =
N∑
i=1

P2
i

2mi

+ U(ri) +
∑
i

PiiV +
1

2

∑
ij

Wij

(dbij
dt

)2
. (4.27)

Giving the equation of motion
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d2ri
dt2

=
Fi

mi

−M
dri
dt

, (4.28)

where,

W = b−1

(
b

db′

dt
+

db

dt
b′

)
b

′−1 . (4.29)

Here the matrix parameter W determines the strength of the coupling, V is the volume
of the box, and b is the box vector represented as a matrix.

d2b

dt2
= VW−1b

′−1(P−P0) . (4.30)

This barostat displays oscillations during the relaxation towards the reference pressure.
As a consequence, if the current pressure is too far away from the reference temperature, the
box may oscillate a lot, leading to the crash of the simulation. Therefore, in practice one can
start by balancing with the Berendsen barostat to prevent the simulation from collapsing,
and then in production one can use the Parrinello-Rahman barostat.

4.2.6 Other practical considerations

In this section, we describe other key ingredients for accurate and efficient MD simulations.

Periodic boundary conditions

The molecular systems we are often interested in are composed of large numbers of atoms.
For example, if we want to model water, one gram of water has about 3 × 1022 molecules,
i.e., 3×3×1022 atoms. Modeling this large number of particles is, even today, very difficult.
However, a realistic modeling of these molecular systems requires taking into consideration
their large size. Since molecular systems are extremely large and expensive to simulate using
MD, one can apply Periodic Boundary Conditions (PBC). The PBC enable us to mimic an
infinite-size system by modeling a relatively small part of it. For this purpose, in MD the
molecular system of finite size is modeled in a simulation box (unit cell) that is replicated
in adjacent cells in all directions. During the simulation, all the particles are free to move
in the original (central) cell. At the same time, their periodic images of the adjacent cells
move in an identical way. For instance, for a cubic box of size L = (Lx, Ly, Lz), an atom
located on r = (x, y, z) has a periodic image in r = (x + nxLx + y + nyLy + z + nzLz), with
n = (nx, ny, nz) ∈ N3. Therefore, any particle that crosses one boundary of the cell, will
reappear on the opposite side of this cell.

Although this scheme eliminates the edge effects that would be present when simulating
the finite-size system, other unwanted artifacts are introduced. For example, in systems that
are non-periodic in nature such as particles immersed in liquids (e.g., proteins in water), the
periodicity will cause errors due to the un-physical nature of the replication. These artifacts
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are reduced with increasing box size and are generally less severe than those caused by edge
effects.

Long and short-range terms

As explained in section 4.2.3, the interaction between the atoms of the system is modeled
through a FF that corresponds to the potential energy as a function of the positions of the
atoms U(r1, r2, · · · , rN). This potential is composed of terms involving pair and multiple
particle interactions. Furthermore, we can classify these interactions into short and long-
range interactions. Short-range interactions are those that decay faster than 1/r3 and long-
range interactions are all other interactions with slower decay.

To improve performance one may require that these interactions are not calculated for all
pairs of atoms but for the closest pairs, as follows: for short-range terms, we define a cutoff
radius after which the interaction is zero. For particles farther away than this cutoff radius
these interactions are not calculated, which reduces the computational time by reducing the
number of calculations required. The minimum image convention is also used: only the
closest particles, whether image or real, will be considered. In practice, it should be noted
that the cutoff radius used to truncate short-range interactions cannot exceed half of the
shortest box vector, or else there would be more than one image within the cutoff distance
of the potential.

In contrast, long-range terms should not be cut. For the long-range terms, we use the
Ewald summation scheme73, in which the long-range interaction sum is decomposed to
achieve faster convergence

Elong−range =
∑
n

N∑
i,j

ϕ(rij,n) = Edir + Erec + E0 , (4.31)

where ϕ represents the long-range term, Edir is a sum in real space that contains screened
short-range interactions, and Erec is a sum in reciprocal space that contains the long-range
interactions. The Fourier transform is used to communicate between the real and the re-
ciprocal space. In this scheme, the sum term in reciprocal space scales with the square of
the number of particles N2, therefore, for a large molecular system this term represents a
limiting factor in terms of performance. The Particle-Mesh Ewald (PME) scheme74 allows
for improving the performance of the computation of the reciprocal term. To do so, the
charge of the particles is assigned to a grid. Then, the Fourier transformation of the grid
is computed and the reciprocal energy term is obtained by a single sum over the grid. The
forces on each atom are obtained by performing the inverse transformation of the potential
at the grid points. We highlight that this scheme is more suitable for large systems as it
scales with N log(N).

So far we have discussed the technical details of MD simulations and how to obtain tra-
jectories of the time evolution of a system. However, these trajectories are collections of
atomic positions that, by themselves, do not provide much information about the system.

50



To interpret these trajectories and obtain the thermodynamic and kinetic information we
are interested in, we often have to reduce their dimensionality, as we explain below.

4.3 Following transformations in reduced dimensionality

Classical MD simulations sample the phase space of the system and provide trajectories that
describe the positions r ∈ R3N of all the atoms in the system. In principle, at the long-time
limit, this collection of coordinates encodes all the properties of the system. However, the
analysis of a high-dimensional phase space is intrinsically difficult. Therefore to allow inter-
pretability of the data, we often aim to reduce the dimensionality of the problem. Working
on an appropriate low-dimensional phase space allows us to gain insights into the mecha-
nisms of the transformation processes, as well as to compute thermodynamic and kinetic
properties.

These low-dimensional projections of the phase space are especially important in the study
of rare events, i.e., processes that involve transitions between metastable states separated by
sizeable free energy barriers, not only for the analysis but also to improve the sampling of
transitions between metastable states.75 Details about using CVs to improve sampling are
discussed in the Chapter 5. In the following, we will define these projections by introducing
the difference between Collective Variables (CVs), Order Parameter (OP), and Reaction
Coordinate (RC). In addition, we will give some examples of the CVs typically used for the
study of processes such as conformational changes, protein folding, nucleation, molecular
association, and dissociation, etc., including the definition of the ideal CV: the committor.

4.3.1 Collective variables, order parameters, and reaction coordinate

As explained above, the number of degrees of freedom in an MD simulation is extremely
large. Therefore, defining a few CVs is useful to understand the transition mechanisms and
to control and accelerate the phase space sampling.14 Following the definitions adapted by
Peters76 and Rogal75, we define any function of the full phase space coordinates as a collective
variable CV. However, a useful CV is a low-dimensional projection able to identify interesting
collective phenomena over long timescales.14 On the other hand, an order parameter OP
is a CV or combination of CVs able to distinguish between different metastable states of
the system. Finally, a reaction coordinate RC is a function of atomic coordinates able to
accurately capture the progress of a transition between two metastable states, i.e., the RC
is a CV that simultaneously allows to separate two metastable states and captures the slow
degrees of freedom of the transition between them.

4.3.2 Quality of collective variables

The choice of the CV to study the transitions between states has a great impact on the
interpretation of the mechanisms and on the accuracy of the estimated free energies and
transition rates. For instance, for fixed P and T we can estimate the free energy profile as
a function of a CV q, as the marginal of the equilibrium probabilities,
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F (q) = −kBT log(ρ(q)) = −kBT log

(∫
dxρ(x)δ(q − q(x))

)
. (4.32)

A free energy profile computed with Eq. 4.32 is simpler to analyze than the complex
high-dimensional PES, however, depending on the quality of the CV the insights we gain
from the interpretation of this profile are more or less useful. On the other hand, the kinetic
estimates also depend crucially on the use of a good CV, as reaction-rate theories often rely
on the identification of a suitable RC able to give good estimates of the free energy barrier
and the progress of the transition.75

To identify how good a CV is, let us take as an example the double-well potentials in Fig.
4.2. If we want to study the transition between A and B, depending on the coordinate we
choose to project the free energy we will be able or not to discriminate between the two states
through the free energy profile. In Fig. 4.2a, q2 represents a bad reaction coordinate as it
is not able to distinguish between the two states, while q1 clearly separates both states and
preserves the true height of the free energy barrier. On the other hand, in Fig. 4.2b, we show
how even if the CV is able to properly distinguish the two states, two different landscapes
can yield the same free energy profile. However, only the CV q1 on the left in Fig. 4.2b
represents a good RC as the configurations with q1 = q∗ are representative of the transition
state, while on the right, configurations with q1 = q∗ and small values of q2 are committed
to state A and configurations with q1 = q∗ and large values of q2 are committed to state
B. As configurations at q∗ on the right in 4.2b do not necessarily belong to the transition
state ensemble, q1, in this case, is a poor CV that will not catch the proper dynamics of the
system.

Figure 4.2: Schematic illustration of the CV quality. A schematic 2D double-well potentials illustrating
different projections of the free energy landscape over a CV q. (a) 2D double-well free energy landscape
and its projections over q1 and q2. (b) Schematic representation of two free energy landscapes yielding the
same free energy profile.

With this in mind, we ask ourselves: What is a good CV? A suitable RC to describe the
progress of a transition between two states follows three main criteria proposed in ref. 76

• The RC is a function of only the instantaneous point in configuration space (velocities
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are not included in the definition).

• The value of the RC should change monotonically between two states and the corre-
sponding isosurfaces yield a set of non-intersecting dividing surfaces in configuration
space.

• A free energy profile can be projected along the RC and the reduced dynamics along
this RC are still consistent with the dynamics in the full phase space.

These criteria are generally independent of the type of dynamics75 (ranging from over-
damped to inertial dynamics). In practice, defining a proper CV can be tricky. Tradi-
tionally, CVs based on physical intuition have been mostly used because of their ease of
interpretation.14 However, physics-motivated CVs may not capture all relevant degrees of
freedom for the transition between states. On the other hand, an RC derived mathemati-
cally by construction encodes the dynamics of the process and is very accurate in describing
the transition but can be difficult to interpret.75 A combination of both approaches that
maintain a trade-off between interpretability and accuracy may be useful. Different types of
CVs are described below with some representative examples.

4.3.3 The committor

For tracking the transition between two states A and B, the CV defined as the ideal RC is the
committor.77 Also called commitment probability or pfold (in the protein folding context),
the committor pB(r) is defined as the probability that trajectories started from a given
configuration r will reach state B before reaching state A. Therefore, the committor provides
a measure of the progress of the transition between states taking values from 0 (configurations
are fully committed to A) to 1 (configurations are fully committed to B). For instance, the
configurations with pB(r) = 0.5 belong to the TSE, as they have an equal probability to
reach state A or B.

In principle, the committor fulfills all the criteria of an optimal RC presented in the
previous section.75 However, in practice this ideal RC poses some challenges: (i) From a
computational point of view, the committor is computationally expensive. Its estimation
requires running a large number of MD simulations starting from each configuration r. (ii)
By definition, the committor is almost always identical to 0 and 1 except in a region spanning
few kBT from the barrier top. This poses a major problem in its estimation except in the
case of small barriers. (iii) It is difficult to interpret since it is not directly linked to any
observable. These drawbacks limit their routine use and therefore, other types of CVs are
defined.

4.3.4 Heuristic collective variables

Since we are usually interested not only in obtaining accurate results of thermodynamic and
kinetic properties but also in being able to interpret them mechanistically, heuristic or CVs
based on previous knowledge of the system/process (here also called physically motivated
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CVs) serve as a first approximation to the description of the transition. Intuition-based CVs
have the advantage of being usually simply defined and easy to interpret. They can be defined
by prior knowledge of the system or by similarity with other processes. For example, in the
study of interactions between protein complexes, one may be interested in their interpretation
through interatomic distances, angles between groups of atoms, formation of specific contacts
between amino acids, etc.14 In the case of protein folding some physically motivated CVs may
be the dihedral angles, the number of native contacts, or the Root Mean Square Deviation
(RMSD). On the other hand, while nucleation can be described by the cluster sizes, the
description of transformations in solids is better described by changes in symmetry or local
coordination.75 In short, this type of CV depends entirely on the process under study.

It is important to mention another relevant aspect when choosing a CV: In addition to
being used for trajectory analysis, collective variables are often used to accelerate sampling
through enhanced sampling methods. This will be the subject of the next chapter. For now,
we can advance that the derivation of intuition-based CVs for enhanced sampling methods
requires that the CVs are differentiable with respect to the atom positions. Therefore, both
the differentiability of the CVs as well as the computational cost of obtaining these derivatives
play an essential role in its choice.75

4.3.5 Path collective variables

Another interesting group of CVs are the path collective variables.78 The basic idea behind
path CVs is to start from a sequence of n reference configurations, representing a path
connecting A and B by means of equally spaced configurations across the transition. Then
the progress along the path and the distance to the path can be tracked from the CVs S(r)
and Z(r), respectively. The path CV S(r) represents the progress along the reference path:
S(r) = 0 indicates that the current configuration is in state A, while S(r) = 1 means that
the current configuration is in state B. The S path CV is defined as

S(r) =
1

n− 1

∑n
i=1(i− 1) exp(−λD(ri, r))∑n

i=1 exp(−λD(ri, r))
, (4.33)

where D(ri, r)) is a distance metric between the reference configuration ri and the instan-
taneous configuration r. On the other hand, Z(r) measures the cumulative distance from
the reference path. The reference path is not necessarily the minimum free energy path, so
the trajectory can move outside this path if another path is more favorable. Large values
of Z(r) mean that the system is moving away from the reference path. The Z path CV is
defined as

Z(r) = −1

λ
log

( n∑
i=1

exp
(
−λD(ri, r)

))
. (4.34)

In both cases, λ is a parameter that controls the shape of the CV space, enlarging or
reducing the width of the space along S when studying the transition process. In practice,
a general rule of thumb is to choose it such that λD(ri, ri+1) ≈ 2.3. Different distance
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D metrics can be used depending on the problem under study such as the mean square
displacement or the Permutation Invariant Vector (PIV).

4.3.6 Dimensionality reduction and machine learning based classification

Since the use of CVs implies a projection of the high-dimensional phase space in a low-
dimensional one, the problem of finding a good CV is essentially a problem of dimensionality
reduction. Therefore, dimensionality reduction schemes can be applied to identify CVs. The
simplest dimensionality reduction method is Principle Component Analysis (PCA), in which
the target CV is the linear combination of coordinates that best captures the variance of the
dataset. Other dimensionality reduction techniques used to find CVs are: multidimensional
scaling79, kernel PCA80, Isomap81, Sketch-maps82, diffusion maps83, among others, which
are based on different distance spaces or introduce non-linearity.75 These schemes usually
require MD data spanning over all the transition. However, the availability of a large dataset
is not always guaranteed. To overcome this disadvantage, some ML methods have been
developed.

Some ML-based approaches take as training data only the sampling performed in metastable
states. Normally, doing MD simulations at these free energy minima is easier than sampling
the transition. From this data, the ML algorithms can learn to classify the two states and
give clues as to how to go from one state to another. These classifiers can be used as CVs.
Although these approaches are flexible in the type of structures that can be used for learn-
ing84, e.g., support vector machines, logistic regression, and neural networks; the trajectory
data still has to be initially projected into a set of descriptors that can be more general and
easier to define than a CV but still require some prior knowledge of the system. The CVs
resulting from these ML-based methods are usually not optimal because they are trained
only with data from the metastable states, however, they can be a good starting point for
enhanced sampling strategies.

Although the CVs discussed in this section are well defined, they lack physical inter-
pretability. This shows that the problem of finding optimal CVs is still open. Our strategy
to optimize CVs that preserve the dynamics of the system and allow physical interpretation
of the transition mechanism will be discussed in Chapter 10.
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5
Enhanced sampling methods

5.1 Background

The characterization of transitions in rare events poses a challenge for MD simulations. As
we explained in the previous chapter, the sampling of the phase space in MD is achieved
through the integration of the equations of motion at each time step. This operation is
computationally expensive, limiting the time scales accessible with MD.12,21 In Fig. 5.1
we show approximately how time scales change with the height of the free energy barrier.
Let us make an approximate example of the computational effort needed to see a transition
between metastable states separated by a free energy barrier of 30 kBT (a rare event). Doing
a back of envelope calculation using the TST, at room temperature would take an average
transition time of the order of seconds. Using a typical time step of 2 fs it translates to 1014

integration steps. Furthermore, typical events of our interest occur on even longer timescales
(see Fig. 5.1). In practice, classical all-atom MD simulations are limited to the microsecond
time scale.1

Enhanced sampling methods have been developed to overcome this limitation. In general,
depending on the enhanced sampling method used, it is possible to access three different
features, the last one being the most complex: (i) Quick exploration of the configurations
corresponding to metastable states; (ii) reconstruction of free energy landscapes by recovering
the original statistical ensembles; (iii) characterization of rates and transition times.

The exploration of the phase space and in particular the reconstruction of the free energy
profiles can be achieved with methods such as: Adaptive Biasing Force87,88, Umbrella Sam-
pling89, Metadynamics26, among others. A recent review with details on these methods can
be found in Ref. 90. Methods aimed at the last feature, i.e., accurate estimation of kinetic
rates are at present not routinely used due to their complexity.2 Among them are MSM18,19
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Figure 5.1: Schematic illustration of the time scale issue in MD simulation. (a) Approximate average time
scale needed to simulate as a function of the height of the free energy barrier (adapted from Ref. 85).
The red square indicates the time scales reachable with classical MD simulations. (b) Examples of time
scales of typical interesting events compared with the time required to simulate with MD them in a desktop
computer. Adapted from Refs. 23,86.

and TPS-based methods such as: TIS38 and FFS.39,40

In the following sections we focus on the methods used in this thesis. We divided them
into two classes: the enhanced sampling methods that add bias on a CV, section 5.2; and
unbiased enhanced sampling methods focused on the sampling of transition paths, section
5.3.

5.2 Biased enhanced sampling methods

In section 4.3.2 we defined the free energy landscape F (q), Eq. 4.32, as a function of q(x)
with x ∈ R3N . For a suitable RC, the free energy landscape features the regions of CV space
that are least likely to be explored (regions with high free energy as the barrier). Therefore,
starting from the notion of F (q) one can develop methods to enhance the sampling in poorly
populated regions at the equilibrium: an external potential energy or bias VB(q) can be
added to the free energy landscape to increase the probability of sampling high free energy
configurations. As a result of the addition of the bias potential, a force −dVB(q)/dq acts on
the system counteracting the average force −dF (q)/dq. The aim is that the trajectory over
the new artificial potential F (q) + VB(q) behaves like a random walk in a flat FES.

In theory, this procedure would result in a uniform sampling of the entire FES in a shorter
computation time (since there is no need to overcome large free energy barriers). However,
in practice the implementation of biased enhanced sampling methods is more complicated
because the shape of the free energy landscape F (q) is not known in advance. Therefore,
different strategies have been developed to build bias potentials that effectively counteract
F (q). These enhanced sampling methods are divided into two categories: methods with
static bias potential and methods where the bias potential is built on-the-fly. In this thesis
we use a method from each of these categories, as explained below.
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5.2.1 Umbrella sampling

Umbrella Sampling (US)89 is an enhanced sampling method where the bias potential is
constant during the MD simulation. In US a quadratic potential (umbrella) is often used
to restrict a trajectory in a predefined region of configuration space. The bias potential is
defined as

Vi(q) =
ku
2

(q − qi)
2 . (5.1)

For strong ku, the trajectory will be forced to sample only a small region (window) centered
around qi. Therefore, several MD simulations are launched spanning the q space to ensure
proper sampling. A representation of the US potential and a trajectory restricted to a
window i is shown in Fig. 5.2a. The sampled distribution in window i is then

ρi(q) =
ρ(q) exp(−Vi(q)/kBT )∫

dq′ρ(q′) exp(−Vi(q′)/kBT )
. (5.2)

The combination of the distributions ρi for all windows allows to recover the underlying un-
biased distribution ρ, yielding F (q). A popular method used to combined the US distribution
and reconstruct free energy profiles is Weighted Histogram Analysis Method (WHAM)91. In
WHAM a self-consistent estimator of the free energy is build based on the sampled distri-
butions ρi. We will not go into the details behind WHAM since in this thesis, we use US
for the estimation of diffusion coefficients (see section 9.2.2), instead of using it to estimate
free energy profiles. For the latter purpose, we use metadynamics as explained in the next
section.

Figure 5.2: Schematic representation of the umbrella sampling and the metadynamics methods. (a)
Representation of the umbrella sampling bias potential over a 1D free energy landscape. Each color represents
a quadratic potential (umbrella) that restrains the system into a region of the CV phase space (window). An
illustration of a typical trajectory in one window i is also shown. (b) Representation of the metadynamics
bias potential over the same 2D free energy potential as in (a). The bias potential is built on-the-fly as
a sum of Gaussian functions. Each color represents a different Gaussian added to F (q). An schematic
illustration of the position of the system after the addition of a new Gaussian is also shown. Figures are
adapted from Ref. 85.
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5.2.2 Metadynamics

Metadynamics26 (MetaD), is an enhanced sampling method where the sampling is acceler-
ated by adding a history-dependent bias potential to the force-field as a function of one or
few CVs26,92. The bias potential corresponds to a sum of Gaussians added to the positions
of the CVs at regular intervals of time (td, 2td, ..., ntd), i.e., for a CV q and a bias deposition
time td, a Gaussian function of height ω and width σq is added to the system every td time
units (Fig. 5.2b). Each Gaussian is centered a the current position of the system q(t = jtd),
as described by the following equation

V (q, t) = ω

n∑
j=1

exp

(
−(q − q(jtd))

2

2σ2
q

)
. (5.3)

The bias potential in Eq. 5.3 progressively builds a potential that fills or counteracts
the underlying unbiased potential. As a consequence, the system can escape from the local
minima and overcome free energy barriers in a computationally efficient manner. In the long
time limit for a converged simulation and appropriate CVs27, it is possible to recover the
free energy of the system within fluctuations (that can be reduced by time averaging the VB

profiles in a time interval at convergence)93 by changing the sign of the MetaD bias.94

F (q) = −VB(q, t) + C , (5.4)

where C is a constant resulting for the accumulation of bias over time. A key test to asses
convergence in MetaD simulations consists in detecting whether the q histograms are flat
in different time intervals after the filling. In general, convergence in MetaD is not assured
in a finite and affordable simulation time, as it depends on the choice of the CVs and on
the detailed features of the process. Moreover, the time required for convergence increases
exponentially with the number of relevant degrees of freedom of the system.28 Therefore,
variants to the standard MetaD (fixed Gaussian height and width) have been developed.
The most widely used is explained in the next section.

Well-tempered metadynamics

In Well-Tempered Metadynamics (WT-MetaD)95 the Gaussian height ω is reduced as the
simulation progresses

ω = ω0 exp

(
−VB(q, t)

kB∆T

)
, (5.5)

where ω0 is the initial Gaussian height provided by the user. The parameter ∆T controls
the scaling of the Gaussian height. For ∆T → 0 the sampling is equivalent to unbiased
MD, while ∆T → ∞ corresponds to standard MetaD, i.e., fixed Gaussian height. With
WT-MetaD, at convergence, the bias potential stops fluctuating and the free energy multi-
plied by the bias factor ∆T/(T + ∆T ) can be recovered after checking that the q histogram
is flat in proper time intervals.
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Practical considerations

Regardless of whether we use MetaD or WT-MetaD, in practice, no one can predict if a
given simulation will converge, and in fact, often MetaD simulations do not converge for
several reasons: (i) Depending on the CVs used, the estimation of their derivatives can be
more or less complex, this being a limiting factor for the time scales accessible with MetaD.
(ii) Although one might be tempted to use a small deposition time (adding Gaussians very
frequently) to speed up the exploration, td must be large enough to allow relaxation of the
system between two bias depositions. (iii) The height and width of the Gaussians cannot
be increased indefinitely either to speed up the convergence, since the resolution of the
reconstructed free energy landscape depends on these parameters. (iv) The extra step of
adding the bias potential and estimating the forces associated with it has the consequence
that the computational performance per time step is always less than that of pure MD
simulations. (v) Above all, any sampling and estimation in MetaD depends on the CVs
used. When a poor CV is used, that is, a variable in directions orthogonal to the transition
we want to model, the added bias does not help speed up the transition (see Chapter 6 for
a detailed discussion) and artificial hysteresis can be observed, as a consequence of lack of
convergence.

In addition to the convergence problem in MetaD, although static information like equi-
librium populations can be easily recovered in post-processing, time-related information like
transition rates is not directly available. In MetaD, the dynamic information of the system
is corrupted due to the added bias, since the system explores an artificial potential. Given
the difficulty of achieving convergence in MetaD simulations and in recovering the dynamical
information of the system, methods that are capable of extracting kinetic information from
short non-converged MetaD simulations are useful. To advance the state of the art in this
direction, in Chapter 6 we present a novel method for this purpose.

5.3 Unbiased enhanced sampling methods

5.3.1 Transition path sampling

In the previous section, we introduced examples of enhanced sampling methods that increase
the probability of sampling high free energy regions by adding a bias that modifies the shape
of the sampled potential. Now we present a different class of methods, that focus on sampling
and collecting a large number of transition paths, i.e., trajectories connecting an initial state
A with a final state B. Specifically, in this section, we will talk about Transition Path
Sampling (TPS)36 which is the most widely used method for sampling transition pathways.1

The basic principle of TPS is to concentrate the sampling in the transition region. Usually,
in a conventional MD simulation, most of the time the system remains stuck in the minima.
From time to time (with a frequency that decreases with increasing barrier size), the system
may jump to another state. In rare events, the average waiting time in the minima is much
larger than the transition time. Therefore, the exploration of transition path ensembles only
requires obtaining short transition paths which is cheaper than extensively sampling the
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entire phase space.
The general a TPS algorithm works as follows: starting from an initial reactive trajectory

(a trajectory that goes from A to B), a configuration within this trajectory is chosen. From
this configuration, two new trajectories (shootings) are initiated with equal velocities but in
opposite directions, i.e., one trajectory is propagated backward and the other forward in time.
The initial velocities for these new trajectories are obtained by making small perturbations
of the velocity in the previous trajectory or are randomly generated from a Boltzmann
distribution. If by joining these two new trajectories, the resulting trajectory connects states
A and B, then it is accepted, otherwise, it is rejected, and the procedure is iterated, see
Fig. 5.3. A transition path ensemble can be generated through a simple Monte Carlo (MC)
scheme in path space in which new shooting points are randomly generated. At convergence,
the resulting Transition Path Ensemble (TPE) is meant to correspond to the equilibrium
one. Therefore it contains information about the mechanism and dynamics of the activated
process. In this wealth of information lies the usefulness of TPS.

In practice, there are several considerations to take into account to implement TPS. It
is evident that the algorithm needs a preliminary definition of states A and B: although
in principle, TPS is not a CV-based method, for the definition of the metastable states
some notion of a low-dimensional space is needed. Additionally, as explained above, an
input reactive trajectory is required for the initialization of the algorithm: usually other
FES exploration techniques such as those explained in section 5.2 are required to obtain it.
Moreover, in TPS it is not trivial how to improve the computational efficiency and assess
the convergence. In the next section, we describe in detail the specific TPS algorithm used
in this work to generate collections of transition paths. Other TPS algorithms are reviewed
in Ref. 37.

Figure 5.3: Schematic representation of the transition path sampling method. (a) Initial reactive trajectory
generated with other sampling methods. This trajectory connects states A and B previously defined by the
user. (b) Illustration of the general TPS algorithm. The initial trajectory is discretized (black arrow) and
a shooting point is chosen (green dot). Two trajectories are propagated backward and forward from the
shooting point. If the trajectories connect A and B, they are accepted (green arrows). A new shooting point
is chosen from the last accepted trajectory (purple dot) and the process is repeated. If trajectories fall into
the same state they are rejected (purple arrows).
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Aimless shooting algorithm

Aimless Shooting (AS)96,97 is a procedure for the automatic generation of transition path
trajectories. In AS, a trial shooting point is drawn from the vicinity of the last accepted
point, leading to one of the biggest advantages of AS: it is able to find new shooting points
without needing to use an order parameter to describe the transition region. Also, one of
its biggest disadvantages: in some systems the generated transition path sequence tends to
pass through a narrow region, therefore, usually a large number of iterations are needed to
reach decorrelation of the sampled transition paths.

The AS algorithm starts from an initial reactive trajectory of length ttotal and follows an
iteration of the next steps:

1. The initial (or the last accepted trajectory) is discretized in a series of candidate
shooting points with a separation in time ∆t << ttotal.

2. From the last shooting point, frame i, select randomly as a new shooting point with
equal probability the frame i + ∆t or i− ∆t.

3. From the new shooting point, propagate the system backward and forward in time,
with momenta drawn from a Boltzmann distribution. The trajectories run until they
reach state A or B or until they reach a predefined maximum duration.

4. Accept the new trajectory (combination of the backward and forward shootings) if it
connects states A and B.

The acceptance rate in this algorithm is correlated with ∆t. For ∆t → 0, the acceptance
rate r goes to 100%, as the same region of the TSE as in the initial trajectory is being
sampled. In contrast, when ∆t → ttotal, r → 0 as the trajectories are mostly committed to
the final state where the initial trajectory ends up. Therefore ∆t should be chosen aiming for
the acceptance rate that yields the largest sampling of decorrelated paths for a fixed amount
of computational time.

Improvements to the AS algorithm to achieve faster decorrelation have been proposed. For
example, aimless shooting within a range98 that aims to reach decorrelation more quickly,
while maintaining a high acceptance rate. The biggest difference of the latter algorithm
with respect to traditional AS is that the new shooting point is chosen from a range of
points close to the last accepted shooting point. The range is defined from the values of a
CV that describes the transition, this being the greatest drawback of the algorithm since it
assumes prior knowledge of the RC. Then the new trajectory is accepted with probability
pacc = min(1, n/n′). Where n and n′ are the number of shooting points that are within
the shooting range, for the new and the old trajectory, respectively. The efficiency of this
algorithm depends on the size of the chosen range. A scheme with the comparison of the
algorithms to choose new sampling points is shown in Fig. 5.4.

We remark that the TPS techniques presented here are valuable in providing unbiased
transition paths. However, to obtain free energies and rates using TPS other more sophis-
ticated TPS-based algorithms such as TIS or FFS are required. These algorithms are not
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Figure 5.4: Comparison between aimless shooting algorithms. Green dots represent the last accepted
shooting point, while purple dots represent the new possible shooting points (a) Schematic representation
of the AS algorithm. Only frames i + ∆t or i − ∆t can be taken as new shooting points (b) Schematic
representation of the AS within a range algorithm. All frames inside the predefined range (white pattern)
can be chosen as new shooting points.

trivial to use, require large amounts of computational time, and often resort to CVs. There-
fore, methods that are capable of extracting thermodynamic and kinetic information from
transition paths generated with, for instance, AS, are desirable.

In this chapter, we explored the enhanced sampling methods used in this thesis to effec-
tively sample the FES. Despite their usefulness, directly accessing the kinetic information of
activated processes through these enhanced sampling methods is still a challenge. In the fol-
lowing chapters, we will show the state-of-the-art methods to estimate transition rates from
these enhanced sampling techniques and their drawbacks, as well as the two new methods
we propose to overcome those flaws and extract the dynamic information from MetaD and
TPS.
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Part III

Results and Discussion
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6
Transition Rates and Efficiency of Collective

Variables from Time-dependent Biased
Simulations

6.1 Introduction

Simulations with an adaptive time-dependent bias, such as metadynamics, enable an efficient
exploration of the conformational space of a system. However, the dynamic information of
the system is altered by the bias. Infrequent Metadynamics (iMetaD) allows to recover
the transition rate of crossing a barrier by rescaling the simulation transition times with an
acceleration factor accounting for the bias speed up and comparing the average time of escape
from a fit to a Poisson distribution. iMetaD is based on TST, therefore it requires the use
of ideal collective variables and no bias deposition near the transition state. Unfortunately,
for simulations of complex molecules, these conditions are not always fulfilled. To overcome
these limitations, and inspired by single-molecule force spectroscopy, in this chapter, we
introduce a method that we recently developed based on Kramers’ theory for calculating
the barrier-crossing rate when a time-dependent bias is added to the system. We assess
the efficiency of the collective variables parameter by measuring how efficiently the bias
accelerates the transitions compared to ideal behavior. We present approximate analytical
expressions of the survival probability that accurately reproduce the barrier-crossing time
statistics and enable the extraction of the unbiased transition rate even for challenging cases,
where previous methods fail.
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6.1.1 Kinetic rate estimation from time-dependent biased simulations

Kinetic rate constants are of fundamental importance by quantifying the speed of inter-
conversion between metastable states in the description of physical phenomena. However,
their estimation is not a trivial task. Computer-assisted methods, in particular MD simu-
lations, have gained relevance in recent decades for the prediction of thermodynamic and
kinetic properties of complex processes such as protein folding or ligand binding.10–12,20,99–102

However, MD has the limitation that many interesting events occur at long timescales (rare
events) not accessible by standard simulations, even using powerful supercomputers.23

Enhanced sampling methods such as metadynamics26 in combination with MD simulations
have become useful alternatives for studying rare events.1 MetaD accelerates the conforma-
tional sampling by adding a history-dependent bias potential to the force field. The biasing
potential is a function of CV s chosen to describe the degrees of freedom considered most
relevant to the transition mechanism.26,92 For converged simulations and appropriate CVs,
MetaD allows the direct estimation of the free-energy profile of the system using the MetaD
bias.92 A disadvantage of MetaD, as well as other enhanced sampling methods, is that in-
formation about the dynamics of the simulated system is corrupted due to the sampling
acceleration.27 Therefore, the estimation of the rate coefficients from biased simulations is a
difficult target.

Several methods have been developed to estimate rate coefficients from enhanced-sampling
simulations.2,22,103,104 Some involve the calculation of diffusion coefficients and the construc-
tion of Markov State Models.29–32,105–111

6.1.2 Transition rates from MetaD and current limitations

In the MetaD framework, infrequent metadynamics32 (iMetaD), has been widely used in
recent years.34,112–117 iMetaD aims to recover the escape time by rescaling the simulation
time with an acceleration factor.32,118,119 This method requires a slow biasing frequency and
a small set of CVs that determine the relevant states and pathways of the system.22 When
these conditions are satisfied, the distribution of escape times follows a Poisson behavior.120

Despite its usefulness, a major limitation of iMetaD is to rely on ideal CVs, where the bias
potential is zero at all the dividing surfaces.121,122 For example, some iMetaD tests failed
for MD simulations of the biotin-streptavidin complex for biases along non-ideal CVs at
different pulling forces.117 Modifications of iMetaD have thus been proposed.123,124 However,
these rescaling-based methods do not directly compute the time-dependent rate or barrier-
crossing survival probably due to the bias.

6.1.3 Our proposal

Here we introduce our recently published method125, in which we take inspiration from
dynamic force-spectroscopy experiments, where a force is ramped up with time similar to the
simulations with a dynamic bias. For these experiments, accurate kinetic predictions of the
force-dependent rates and transition probabilities have been derived.126–129 By considering
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Figure 6.1: Kramers time-dependent rate for biased simulations and assessment of the efficiency of the
CVs. (a) Schematic representation of the escape from a bottom-well with a time-dependent bias. γVMB(t)
measures the effective contribution of the added bias-height toward lowering the effective barrier. (b)
Examples of VMB(t) for frequent and infrequent bias-deposition times. The results are, for the double-well
potential example, VMB(t) along y with bias-deposition times td = 1 (orange), 5 (green), and 20 (blue)
(×103) steps within the first 3× 105 steps.

the biasing potential analogous to an external force, we introduce a physical model of barrier-
crossing events in time-dependent biased simulations for computing directly the transition
statistics. The major advantages are that one can extract the unbiased rate and, at the same
time, assess the efficiency of the CVs in terms of their contribution to the bias acceleration.
This chapter is organized as follows: i) We describe in detail our barrier-crossing model and
our adaptation of Kramers’ theory to metadynamics simulations, ii) we explain the technical
details and simulations methods, and iii) we test the method on a 2D potential that allows
studying the effect of the quality of the CV, finding transition rates with equal or better
accuracy than those extracted from iMetaD and gaining insights about the quality of the
CV at the same time.

6.2 Theoretical methods

6.2.1 Kramers time-dependent rate

For diffusive dynamics, and high barriers, Kramers’ theory44,45 is used to calculate the rate
(i.e., inverse of the mean residence time) to cross a barrier along a coordinate

k0 = kpree
−β∆F ‡

0 , (6.1)

where ∆F ‡0 is the barrier height (Fig. 6.1a), β = 1/kBT is the inverse temperature, and kpre is
the pre-exponential factor that depends on the diffusion coefficient, shape of the bottom-well
and barrier-top.

In MetaD short-range repulsive functions are deposited at regular time intervals within
a low-dimensional CV space. Over time, the bias fills the well. This reduces the effective
barrier experienced by the system which is thus crossed more rapidly. To describe this
reduction of the barrier height, we use the time-dependent maximum bias (MB) averaged
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over multiple runs

VMB(t) =
1

R

∑
r

max
t′∈[0,t]

V r
B(t′) , (6.2)

where V r
B(t) is the instantaneous bias at time t for simulation run r, and R is the total

number of runs. VMB(t) is the average maximum height of the biasing potential (i.e., the
level of bias added to the bottom-well) up to time t. In the case of an ideal CV, ∆F ‡0−VMB(t)
would be the effective time-dependent barrier experienced by the biased system.

VMB(t) depends on the shape of the potential surface, the bias-deposition time (td), and
bias-deposition height, among others. In Fig. 6.1b, we present some examples of VMB(t) for
several td. The blue line shows the case for which iMetaD is valid. We will compute directly
the statistics for barrier-crossing times from biased simulations, covering a wider range of
VMB(t), by explicitly taking into account their time dependence.

Assuming a quasi-adiabatic bias deposition, we apply Kramers’ theory over the potential
presented in Fig. 6.1a, to calculate the time-dependent rate of escape due to the bias
acceleration

k(t) = kpree
−β∆F ‡

0+βγVMB(t) = k0 e
βγVMB(t) , (6.3)

where k0 is the intrinsic rate (Eq. 6.1), and we are assuming that kpre does not change due
to the bias. We introduce γ ∈ [0, 1] as an additional parameter that measures how much of
the bias contributes to the acceleration. For ideal CVs, i.e., where the added bias acts along
the direction of the true transition and helps to lower the effective barrier, we expect γ = 1.
By contrast, we expect γ ≈ 0 for poorly chosen CVs, i.e., where the bias acts in directions
orthogonal to the transition.

6.2.2 Rate-acceleration factor: efficiency of CVs

We illustrate that γ is related to a physical parameter, which controls the efficiency of the
CV, for a cusp-like harmonic double-well potential (see Eq. 6.4).

Consider the diffusive escape from a 2D double-well potential over a cusp-like barrier. The
potential is given by

V (x, y) =

{
y2

2
+ (x−ay)2

2
, for y ≤ 1 ,

−∞, for y > 1 ,
(6.4)

where parameter a controls the separation between the wells along x (see Fig. 6.2). The
bottom-minimum is at x = y = 0, and the barrier for escape is at x = a and y = 1.
The barrier height is ∆F ‡0 = 1

2
. Fig. 6.2 shows examples of the potential for a = 0.5 and

a = 1 × 10−5. We consider diffusion on this potential with a uniform and isotropic diffusion
coefficient at an inverse temperature β ≫ 1, i.e., in the high-barrier limit. Then, for a ≈ 0,
y is a good CV because it reports on the approach to the barrier, whereas x is a poor CV
because it reports on motions orthogonal to the escape over the barrier.

Now, consider that metadynamics is performed with x as the chosen CV. We assume
that bias deposition is very slow such that we have quasi-equilibrium conditions. Then,
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metadynamics flattens the potential of mean force (PMF) along x up to a preset level ∆F .
The PMF along x is defined as

e−βF (x) =

∫ 1

−∞
dye−βV (x,y) , (6.5)

up to an additive constant, chosen such that the minimum is at a PMF value of zero. For
small a and x, the PMF along x can be approximated as

F (x) ≈ x2

2(1 + a2)
. (6.6)

For a given metadynamics bias level ∆F , the bias acts on the range |x| <
√

2(1 + a2)∆F .
The combined potential including the metadynamics bias is then

U(x, y|∆F ) =

{
V (x, y) − F (x), for |x| <

√
2(1 + a2)∆F ,

V (x, y) − ∆F, otherwise .
(6.7)

The potential U(x, y) has a minimum in the bound well for |a| < 1/
√

2∆F − 1. The
minimum is located at x =

√
2(1 + a2)∆F and y = a

√
2∆F/(1 + a2). The lowest energy

barrier to escape on the combined potential is located at x =
√

2(1 + a2)∆F and y = 1.
For |a| < 1/

√
2∆F − 1, the height of the barrier on the potential U(x, y) including the

metadynamics bias is

∆F ‡ =
1 + a[a−

√
8(1 + a2)∆F + 2a∆F ]

2
. (6.8)

Figure 6.2: Cusp-like harmonic double-well potential. The potential is given in Eq. 6.4 where a is a physical
parameter that controls the quality of coordinate x. Examples for a = 0.5 (left) and 1 × 10−5 (right) are
shown. If the bias is along y, we show that γy = 1 for all a. However, if the bias is along x and a → 0, we
derive γx → 0.
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Now if metadynamics has reached a level of ∆F = ∆F ‡0 = 1/2, i.e., the level of the
barrier in the potential V (x, y), the potential well is nominally filled. However, as the
above calculation shows, for |a| < 1/

√
2∆F − 1 a barrier ∆F ‡0 remains. For small a and

∆F = ∆F ‡0 = 1/2, the height of this remaining barrier is

∆F ‡ ≈ 1

2
− a . (6.9)

If one now uses the Kramers’ approximation for the rate of escape from the potential well
without bias (Eq. 6.1), and with a bias potential filled up along x to a height of ∆F = ∆F ‡0 ,
then the rate accelerates to

kMetaD = kpree
−β∆F ‡ ≈ kpree

−β∆F ‡
0 (1−2a) . (6.10)

This means that we have not gotten the full boost from metadynamics. In this work, we
correct for this reduced boost by the factor γ. For the problem here, this factor is obtained
from

kMetaD ≈ kpree
−β∆F ‡

0 (1−2a) = kpree
−β∆F ‡

0 (1−γ) . (6.11)

Therefore, for the escape from this double well and a ≈ 0, the efficiency of the CV is thus

γ ≈ 2a . (6.12)

In other words, for a → 0, when x is orthogonal to the escape flux, we have no acceleration
from metadynamics, and from 0 < a ≪ 1, we have only a much smaller acceleration than
what would be achieved by biasing along a well-chosen CV.

If instead y is chosen as the CV, metadynamics flattens the PMF along y. The PMF along
y is given, up to a constant, by

F (y) =
y2

2
. (6.13)

The combined potential is

U(x, y|∆F ) =

{
V (x, y) − F (y), for |y| <

√
2∆F

V (x, y) − ∆F, otherwise .
(6.14)

For ∆F = ∆F ‡0 = 1/2, the barrier to the exit at x = a and y = 1 vanishes. Therefore, the
choice of y as a CV results in a boost factor γ = 1 for all values of a.

In conclusion, if a ≈ 0, x is a poor coordinate because the wells are not separated when
projecting along this direction. For this case, if we bias along x, we demonstrate that γ ≈ 2a
(and therefore γ → 0). In contrast, when biasing along the good CV (y), γ = 1 is derived
for any a. These results show that γ is not simply an ad hoc bias factor, but it measures a
physical property that can be related to the efficiency of the CV.

This can be further exemplified for a 2D double-well potential, exp(−F (x, y)) = exp(−(y2 + x2)/2)+
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exp(−((y − 2)2 + x2)/2), and biasing a collective variable z = x cos(φ) + y sin(φ) that de-
pends on an angle φ between x and y (Fig. 6.3a). Note that φ = 0 (π/2) is a poor (ideal)
CV that biases along x (y, respectively). In Fig. 6.3a, we present examples of the effective
potential surface (true potential plus VMB) at different filling levels (solid surface in Fig.
6.3a) VMB = 0.05, 0.15, 0.3 kbT for φ = 0, π/10, π/2. Comparing these biasing directions
at the same filling level, we find that the effective barriers are different and that there is
φ-dependent fraction of the bias (directly related to γ) which is effectively filling the well
(Fig. 6.3b).

Figure 6.3: Illustration of the efficiency of the CVs on 2D double-well potential. (a) 2D double-well
potential, exp(−F (x, y)) = exp

(
−(y2 + x2)/2

)
+exp

(
−((y − 2)2 + x2)/2

)
, with MetaD bias added over a

collective variable z = x cos(φ)+y sin(φ) that depends on an angle φ between x and y for φ = 0, π/10, π/2
at different MetaD filling levels VMB = 0.05, 0.15, 0.30 kBT (solid surface). The green arrow in the first

panel indicates the transition under study. (b) Effective barrier ∆F ‡ = ∆F ‡
0 − γVMB as a function of the

filling level VMB for φ = 0, π/10, π/2.

6.2.3 Survival probability from metadynamics simulations

Using Kramers’ Time-dependent Rate (KTR), from Eq. 6.3, we calculate the survival prob-
ability by adapting the methods used for the analysis of single-molecule force spectroscopy
experiments126,

S(t) = exp

(
−
∫ t

0

k(t′)dt′
)

= exp

(
−k0

∫ t

0

eβγVMB(t
′)dt′

)
. (6.15)

The survival probability depends on VMB(t), which we can fit numerically, or analyti-
cally (see Appendix A, section A), and use it to calculate S(t) (Eq. 6.15). Note that the
Cumulative Distribution Function (CDF) of the escape times is 1 − S(t).
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6.2.4 Maximization of the likelihood function

Let us assume there are M + N independent biased simulations that start from the well
bottom where M cross the barrier and N remain in the basin. The optimal transition rate
k0 and γ can be extracted by maximizing the likelihood function130 (i.e. given our model,
maximizing the probability to observe M events at times ti and N non-events up to time
tj),

L =
M∏

i∈events

−dS(t)

dt

∣∣∣
t=ti

N∏
j∈non−events

S(tj) , (6.16)

where i and j account for events and non-events, respectively, and tj is the total simulation
time for run j that did not transition. In practice, we first numerically fit VMB(t) using a
spline representation with a time grid that spans the original time range.

From Eq. 6.16, we obtain an analytical expression of the rate in terms of γ and VMB(t)
that maximizes it, as follows:

For a general survival model, the likelihood is given by the product of the probability of

transition at time ti, −dS(t)
dt

∣∣∣
t=ti

, and the probability of not having transitioned at final time

tj, S(tj)
130.

Combining the expressions of the likelihood from Eq. 6.16 and the survival function from
Eq. 6.15, we obtain an expression for the log-likelihood

lnL(k0, γ) = −k0

M+N∑
i

∫ ti

0

eβγVMB(t
′)dt′

+M ln k0 +
M∑

i∈events

βγVMB(ti) , (6.17)

where M is the number of events and N the number of non-events. Our aim is to extract
parameters k∗0 and γ∗ that maximize this function. The derivative with respect to k0 of the
log-likelihood is

∂

∂k0
lnL(k0, γ) = −

M+N∑
i

∫ ti

0

eβγVMB(t
′)dt′ +

M

k0
. (6.18)

To solve for the optimal intrinsic rate, we set the previous derivative to zero, and find it
as a function of γ

k∗0(γ) =
M∑M+N

i

∫ ti
0
eβγVMB(t′)dt′

. (6.19)

Using this function, we search for the optimal parameters γ∗ and k∗0 = k∗0(γ∗) through
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numerical maximization of lnL(k∗0(γ), γ). The code in our github repository (see below)
uses the Brent method for bounded optimization.

Using this expression and the numerical fit, we numerically search for the optimal γ.
Because one only has to run a 1D numerical optimization over γ, we note that this is more
stable and robust than a 2D numerical fit directly of S(t) using both k0 and γ. To validate
the statistics of the simulation barrier-crossing times, bootstrap analysis and Kolmogorov-
Smirnov test (KS-test) can be performed.

6.2.5 Practical considerations

Cumulative distribution function and Kolmogorov-Smirnov test:

The KS-test131,132 is a non-parametric test that enables comparing the similarity between
one-dimensional distribution functions. This test compares the Empirical Cumulative Dis-
tribution Function (ECDF) to the Theoretical Cumulative Distribution Function (TCDF).
The ECDF is given by a step function that jumps by 1/(N +M) at each ti of the M events,
which takes care of the non-event data N points. On the other hand, the TCDF is related
to the survival function via 1 − S(t), where the survival function S(t) is computed from
Eq. 6.15, using a spline representation of VMB(t) and fitted parameters k∗0, γ

∗ (as described
above). One can perform the KS-test using the TCDF, comparing it to the ECDF (calcu-
lated using the simulation-jump times), and extracting a p-value that indicates if the KS-test
passed or not. A p-value threshold of 0.05 is typically used.

Bootstrap analysis:

To estimate the errors of the extracted parameters, we performed a bootstrapping analysis.
The number of bootstrapping samples is 100 for the 2D double-well potential. We use the
samples that pass the KS-test and calculate the distribution for each parameter. From these,
we can estimate the standard deviation or the percentile error, for example, by taking the
values at the 30, 50, and 70 percentiles of the distribution.

Code and data availability:

The codes to obtain the parameters from likelihood maximization, compute cumulative dis-
tribution function, and perform the KS-tests are available on GitHub: https://github.

com/kpalaciorodr/KTR.

6.2.6 Simulation setup for the 2D double-well potential

To analyze the dependence of the results on the efficiency of the CVs, we used a 2D double-
well potential U(x, y) = −kBT ln[e(−20·(x−0.2)

2−100·(y−0.2)2) + e(−20·(x−0.8)
2−100·(y−0.8)2)] (similar

to that in ref. 133). For this potential, the projection of the free energy surface along
the x coordinate leads to an underestimation of the barrier between the wells, while the
projection along the y coordinate represents faithfully the underlying 2D barrier of around
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8 kBT . The MC step was performed randomly from a uniform distribution for each CV
in the range [-0.005, 0.005] around the current point inside a grid between -0.4 and 1.4 for
x and y. These trial moves were accepted according to the Metropolis criterion. A bias
height of 0.04 and a bias width of 0.04 were used. To assess the effect of the CV, the
simulations were performed adding bias only along a single coordinate (i.e., either the x
or y coordinate, in independent simulations). The bias-deposition time was varied and 100
simulations were launched for each CV. To obtain the reference rate coefficient kunbiased

0 for
the double-well potential, we performed 1000 unbiased runs with 3 × 107 MC steps. We
calculated kunbias

0 = M/(
∑

i ti +
∑

j tj) where M is the total number of events, ti is the
escape time observed in run i, and tj is the total simulation time for run j that did not have
a transition (for the unbiased case around 30% of non-events).

6.2.7 Rate from infrequent metadynamics

iMetaD32, is a simple and commonly applied approach that starts by repeating a series
of identical MetaD simulations where Gaussians are deposited relatively slowly, in order
to reduce the probability of biasing the transition state region. Under these conditions,
ideas from Grubmüller118 and Voter119 based on TST are exploited to recover the unbiased
dynamics of the system by rescaling the simulation time with an acceleration factor correcting
for the bias. In practice, we rescale the times from MetaD by113

tres =
Nt∑
i=1

dt eβV
B
i , (6.20)

where dt is the stride to print the MetaD bias, which should be no greater than the bias
deposition time td and no less than the MD time step, i is the step number, Nt is the total
number of steps until an event occurred or the simulation stopped, V B

i is the instantaneous
MetaD biasing potential at step i and β = 1/(kBT ) with kB the Boltzmann’s constant and
T the absolute temperature.

In iMetaD, the reliability of the rescaled escape (residence) times is quantitatively assessed
by comparing their ECDF to the TCDF of a homogeneous Poisson process using a two-sample
KS test120. A p-value threshold of 0.05 is typically used120. The ECDF is fitted to the TCDF
of a homogeneous Poisson process, P (t) = 1−exp(−t/τ). Following ref. 120, a TCDF is built
from a large number of sample times (e.g., 106) randomly generated according to P (t). Then,
a two-sample KS test is applied to assess the similarity between ECDF and TCDF, with the
null hypothesis that the two sampled distributions share the same underlying distribution.
If the p-value from the KS-test is higher than 0.05, ignoring the fact that τ has been fitted,
then the null hypothesis is accepted and a Poissonian process is considered appropriate to
describe the statistics of the process. The rate coefficient is then calculated as the inverse of
the average time from the fit of the ECDF, kiMetaD = 1/τ .

We adapted a Matlab code provided in ref. 120 to python3.6 for the calculation of τ using
iMetaD and the KS-test (for both methods, iMetaD and KTR). The histograms of the CDFs
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are built using the number of bins equal to the total number of simulations (this was tested
empirically to obtain the best fits of the CDF for the 2D system). We use a logarithmic
scale to create the histograms for iMetaD and a linear scale for KTR.

6.3 Results and discussion

6.3.1 Benchmark system: 2D double-well potential

Figure 6.4: MetaD Monte Carlo simulations on a 2D double-well potential. (a) Two dimensional free-
energy surface F (x, y), where the bias is deposited along a poor (x) or good (y) CV with exp(−βF (x, y)) =
exp
(
(−20 · (x− 0.2)2 − 100 · (y − 0.2)2)

)
+exp

(
(−20 · (x− 0.8)2 − 100 · (y − 0.8)2)

)
and β = 1/kBT =

1. White regions have values > 20 kBT . Free energy profiles F (x) and F (y) are also shown. (b) Maximum
likelihood extracted intrinsic rate (k0) normalized by the true rate (calculated from unbiased simulations)
as a function of the bias-deposition time (td × 103 steps) for the KTR (black) and iMetaD (red) methods
for biases along x (squares) and y (circles). Empty squares indicate cases where the KS-test failed for more
than 50% of the bootstrap trials. (c) Maximum likelihood extracted efficiency of the CV (γ) as a function
of the bias-deposition time for biases along x (squares) and y (circles) using the KTR method. Error bars
show the standard deviation using the distribution from bootstrap analysis (see section 6.2.5).

To study the effect of the CVs, we tested the theory on a 2D double-well potential (Fig.
6.4a). The free energy profile projected along the “x” coordinate shows that it is a poor
coordinate because it underestimates the real barrier (see profile at the bottom in Fig. 6.4a.).
However, when projecting the free energy along the “y” coordinate the true barrier is well
determined (see profile at the left in Fig. 6.4a). For the transition rate estimation, an
important parameter in the MetaD setup is the bias-deposition time. The bias-deposition
time corresponds to the inverse of the frequency to update the bias potential, i.e., to add a
new Gaussian function. In iMetaD, the bias-deposition time is large (compared to a standard
MetaD setup), to avoid adding bias over the TS region. In our KTR formalism we also expect
to recover better results at large deposition times as it will allow the system to equilibrate
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better and will avoid overbiasing (we will discuss this topic in depth in the next chapter).
We ran MetaD Monte Carlo simulations over y or x CV (see section 6.2.6). We estimated the
rate (k0) and CV efficiency (γ) for setups with different bias-deposition times. We started
100 simulations from the lower well and counted a transition when the system reached the
top well (y ≥ 0.8). Fig. 6.1b shows examples of the average VMB(t) over the runs biased
along y.

6.3.2 Escape rates from Kramers Time-dependent Rate vs Infrequent Meta-
dynamics

In Fig. 6.4b, we present the extracted rates from numerical integration of Eq. 6.15 with
maximum likelihood (Eq. 6.16) and compare them to those extracted with iMetaD by
rescaling the times using the bias acceleration (Eq. 6.20). We find that the KTR method
estimates accurate unbiased rates, even for the challenging cases of fast deposition times and
poor reaction coordinates. We note that for some of these cases (empty squares in Fig. 6.4b)
the iMetaD KS-test fails, indicating that the iMetaD estimate should not be used.

6.3.3 Cumulative distribution functions

In Fig. 6.5-left, we show the CDFs for the simulation-jump times and their fits using 1−S(t)
(from Eq. 6.15) for both coordinates and the different bias-deposition times. These results
show that x is a poor coordinate because it does not accelerate as much the barrier-crossing
events. However, in all cases, there is good agreement between the theoretical and empirical
CDFs. In Fig. 6.5-right, we show the CDFs for the rescaled times using iMetaD (see section
6.2.7 for details) together with their theoretical fits. We find that along the good CV (y) this
method works well. However, along the poor CV (x) with frequent bias-deposition times
the KS-test fails, and therefore iMetaD fails120. By adding bias along the poor CV, we are
accumulating bias along the wrong direction, so the system is not aided to transition and
spends more time than necessary in the reactant state, resulting in an overestimation of
residence times and a non-Poissonian distribution. Additionally, at low deposition times, we
are adding bias over the TS (see Appendix A, Fig. A1), so the underlying assumptions of
the iMetaD do not hold.

6.3.4 Collective variable efficiency

Importantly, the KTR theory enables extracting information about the efficiency of the
biased CVs. Fig. 6.4c shows the extracted γ as a function of the bias-deposition time for
both coordinates. As expected, biasing along the poor (x) CV leads to a lower γ, while using
a good (y) biasing direction yields γ closer to 1. We note that for y, γ is not exactly equal
to 1 because y despite being a better CV than x is still not perfect. Nonetheless, it describes
accurately the transition between the two basins and the barrier region.
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Figure 6.5: CDFs of simulation and rescaled jump times and fits to theoretical distributions for the 2D
double-well simulations. Left: Cumulative distribution function (CDFs) of the simulation barrier-crossing
(jump) times from KTR. Runs with bias along x (top) or y (bottom) for different bias-deposition times
(td). Fits to the respective theoretical cumulative distribution function are shown as solid lines. Right:
CDFs of the rescaled jump times from iMetaD. Runs with bias along x (top) or y (bottom) for different
bias-deposition times (td). Fits to the respective Poisson distribution are shown as solid lines.120 Red to
blue points go from frequent to infrequent td.

6.4 Conclusions and outlook

Inspired by the methods from the force spectroscopy community126–129 that calculate barrier-
crossing rates induced by forces acting on single molecules, in this chapter, we used Kramers’
theory to calculate the time-dependent transition rates and survival probabilities from time-
dependent biased simulations. These results indicate that the KTR method is able to extract
accurate unbiased rates and assess the efficiency of a CV along non-ideal biasing directions.

We have used examples from MetaD simulations, however, the KTR method is general
for any time-dependent biased simulation along some CVs, such as adaptive biasing force134

or adaptively biased MD135, among others. Methods restricting the bias filling level136,137

could also be used within the KTR framework, which would have the advantage of simplifying
bookkeeping of the bias potential and survival probability. We highlight our method enables
estimating the unbiased intrinsic rate even if the biasing direction is poor. Moreover, it
provides a novel measure for the effectiveness of the added bias to accelerate the transition
(related to the efficiency of the CVs). This overcomes severe limitations encountered with
previous approaches where the bias had to be deposited very infrequently over ideal CVs.

In the next chapter, we will investigate in detail the limitations of the method and the
regime of bias-deposition times where the method is valid through its application to all-atoms
MD-MetaD simulations of more complex systems.
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7
Kinetic rates from metadynamics: Applications

7.1 Introduction

After benchmarking our KTR method in a double-well potential, we now apply the KTR
theory to study three challenging systems using all-atom MD simulations. Initially, we
explore the limits of our method and provide convergence criteria to assess its validity through
its application to the dissociation of the fullerene C240 dimer in water solution. Then, we
apply the method to a more complex process: the unbinding of the ligand CS3 from Cyclin-
Dependent Kinase 2 (CDK2) protein. Overall, these applications show the robustness of the
method and the points that could be improved in the future.

7.2 Interaction of fullerene C240 dimer in water solution

7.2.1 Description of the system

Fullerenes are allotropes of carbon that are characterized by having a closed spherical mesh
of carbon atoms. They have attracted the attention of the scientific community since their
discovery in the 1980s.138 These carbon structures have unique properties that make them
interesting for diverse applications. Their use has been proposed in biomedical areas due to
their ability to trap metals and small molecules, as well as their ability to permeate biological
membranes and their antioxidant properties.139 Also, in the area of new materials, fullerenes
offer great opportunities due to the possibility of surface functionalization and encapsulation
of various molecules for applications in catalysis, photovoltaics, photodetection.140

We studied the dissociation of a fullerene C240 dimer in water solution, see Fig. 7.1a.
In water, the associated state of the dimer is more favorable since fullerene molecules are
hydrophobic. Despite the simplicity of the process: the symmetry of the fullerene molecules
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makes different binding conformations of the dimer indistinguishable, it still retains the
complexity of the interaction with water molecules and a large free energy barrier separating
the associated and dissociated states (see Fig. 7.1b). In the following, we describe the
simulation methods used to study fullerene dimer dissociation, as well as the procedure used
to estimate the dissociation rate using the KTR method.

Figure 7.1: Fullerene dimer system’s representation and free energy profile. (a) Representative snapshot
of the associated C240 fullerene dimer complex. We use as CV the distance between the center of mass (d)
of each fullerene molecule. (b) Free-energy profile as a function of the distance between the center of mass
of the C240 molecules.

7.2.2 Simulation methods

To simulate the interaction of a C240 fullerene dimer in a water solution, the dimer is solvated
with 5375 water molecules in a simulation box of 5.22×5.22×5.22 nm with periodic boundary
conditions. MD simulations are carried out using GROMACS v2019.4141,142 patched with
PLUMED 2.5.3.143 We adopted the SPC water model and the OPLS-AA force field for
carbon. Geometry minimization exploited the steepest descent algorithm, stopped when the
maximum force was ≤ 50 kJ/mol · nm. We used the leapfrog algorithm to propagate the
equations of motion and the nonbonding interactions were calculated using a PME scheme
with a 1.2 nm cutoff for the part in real space. We performed a 100 ps equilibration in an
NVT ensemble with a stochastic velocity rescaling scheme followed by a 100 ps equilibration
in an NPT ensemble using the Parrinello-Rahman barostat with a time step of 1 fs. We
generated MD production trajectories without restraints, with a time step of 1 fs in the
NPT ensemble at 298 K and 1 atm.

We estimated the free energy profile in Fig. 7.1b using WT-MetaD95, adding bias over the
distance between the center of mass (d) of each fullerene with an initial Gaussian height of
1.0 kJ/mol and width of 0.01 nm. The bias factor was set to 8, and Gaussians were deposited
every 1 ps. 5 replicas of 500 ns each were simulated. The average and standard deviation of
the free energy profiles was estimated using these replicas.

To compute the dissociation rate using the KTR method, we performed WT-MetaD sim-
ulations adding bias over d with an initial Gaussian height of 1.0 kJ/mol and width of 0.01
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nm. The bias factor was set to 8. We used bias deposition times td between 0.5 to 30 ps.
For each td we started 50 trajectories from the associated state (d ≈ 1.68 nm) with different
initial velocities and stopped them when they reached the barrier (d = 1.93 nm).

To estimate the errors of the extracted parameters, we performed a bootstrapping analysis.
The number of bootstrapping samples is 50 for the fullerene. We use the samples that pass
the KS-test and calculate the distribution for each parameter. From these, we can estimate
the standard deviation or the percentile error, for example, by taking the values at the 30,
50, and 70 percentiles of the distribution.

7.2.3 Results and discussion

We assessed the dissociation rate of a C240 fullerene dimer in water solution (Fig. 7.1a). The
free-energy profile as a function of the distance between the centers of mass (d) estimated
using WT-MetaD (Fig. 7.1b) shows a large activation barrier of around 14.5 kBT . The free
energy landscape is characterized by a deep single-well free energy minimum corresponding
to the associated state and an almost flat dissociated state with some bumps corresponding
to solvation layers. The shape of the free energy landscape makes this fullerene dissociation
process an ideal target to test our method to compute escape rates. Since we know the
reference free energy barrier, we can explore extreme biasing conditions, e.g. fast deposition
times, and study their effect on the accuracy of the estimated rate.

To obtain k0 and γ, we performed 50 WT-MetaD simulations starting from the bound state
for a wide range of td. Fig. 7.2a shows VMB(t/td) as a function of the time normalized by
the bias-deposition time t/td (i.e., the number of Gaussians added in the MetaD simulation).
For td ≤ 5 ps the cumulative bias is much larger than the barrier and therefore we observe
overbiasing. Interestingly, for this reduced time scale, all curves collapse, showing that the
shape of the filling potential should be the same regardless of this parameter.

In Fig. 7.2c and Fig. 7.2d, we present the extracted k0 and γ as a function of td, respec-
tively. We find that for the simulations where the accumulated bias is much larger than the
barrier, i.e. the shaded region, the rate is overestimated, and γ is underestimated. The KTR
theory fails for this overbiasing regime because the exponent in Eq. 6.3 should be strictly
negative, and to compensate for the exceeding bias γ is artificially lowered. The plateau in
Figs. 7.2c and 7.2d shows that, in the converged regime, k0 and γ should not be dependent
on the bias-deposition time (nor on other biasing conditions). Next, we plot γVMB(t/td) as
a function of t/td (Fig. 7.2b). In this case, only curves where γ is not artificially lowered
collapse, as happens (within error) for the 2D double-well system along both coordinates
(see Appendix A, Fig. A2). Note that, in Fig. 7.2d, if the converged γ ∼ 0.83 were used
for the td = 0.5 ps case, then the effective bias would be larger than the true barrier at
long times. These results led us to establish two convergence criteria: i) VMB(t/td) and
γVMB(t/td) curves should collapse, and ii) the extracted k0 and γ should be within error for
different setups.
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Figure 7.2: Fullerene dimer dissociation biased simulations. (a) VMB as a function of the time normalized
by the bias deposition time (t/td) for the different simulation setups, resulting in a collapse of the curves.
(b) VMB scaled by γ as a function of the time normalized by the bias deposition time (t/td) for the different
simulation setups. (c) Maximum likelihood extracted intrinsic rate (k0). Error bars show the 30 and 70
percentiles from a bootstrap analysis that pass the KS-test. (d) Efficiency of the CV (γ) as a function of
the bias-deposition time. Error bars show the 30 and 70 percentiles from a bootstrap analysis that pass the
KS-test.

7.3 Protein-ligand unbinding: CDK2 protein-CS3 ligand

7.3.1 Description of the system

Cyclin-Dependent Kinases (CDKs) are a family of protein kinases first discovered for their
role in regulating the eukaryotic cell cycle, Fig. 7.3a. They are present in all known eu-
karyotes.144 To date, 13 CDK family members (CDK1–CDK13) have been identified.145 In
this section, the biological protein target CDK2 is used as test system. CDK2 is one of the
kinases with more structural and pharmacological information available.146 This biological
target is involved in the cycle, where, when bound to cyclin proteins (cyclin E and cyclin
A, respectively) facilitates the transition between G1/S phases and the progression of the S
phase of the cell cycle147,148, see Fig. 7.3a, i.e., it is necessary to move from DNA synthesis
to replication. CDK2 is also involved in regulating transcription, mRNA processing, and
the differentiation of nerve cells. Due to its important role in the cell cycle, CDK2 has been
considered a target for anticancer drugs.149–151

CDKs are kinases, namely, enzymes that phosphorylate (attach phosphate groups to)
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Figure 7.3: (a) Representation of cyclin-dependent kinases and their cyclin regulatory subunits. CDK-cyclin
complexes have direct functions in regulating the cell cycle. The biological function of CDK2 in the step
from stage G1 to S in the cell cycle. Adapted from ref. 152 (b) Representation of the structure for the
complex CDK2/Cyclin A. Adapted from ref. 144.

specific target proteins. The attached phosphate group acts like a switch, making the target
protein more or less active. The regulation of its activity is given by the location of the
T-loop, see Fig. 7.3b, because this loop opens and closes the entrance to the active site.
Furthermore is well known that monomeric CDK2 lacks regulatory activity, for this reason,
it needs to be activated by its positive regulators, cyclins A and E, or be phosphorylated
on the catalytic segment of the protein.145,153 There are various Cyclin-dependent kinase
inhibitors that interact by hydrophobic interactions and by making hydrogen bonds with
the kinase, especially with the backbone of Glu 81 and Leu 83 in the structure of the
apoenzyme.154 Other residues where hydrogen bonds can be formed are Asp 86 and Hys
84.150 Lys 33 and Asp 145 residues display a bimodal distribution, between two predominant
side-chain conformations so they can interact with different ligands.155 Recently, the CDK2-
ligand unbinding of ligands with Protein Data Bank (PDB) IDs 18K and 62K has been
studied with machine learning transition state analysis by simultaneously obtaining free
energy profiles and rates.156 Here, we use an alternative approach to estimate the unbinding
rate of the CDK2-CS3 complex, PDB structure 4EK5 (see Fig. 7.4a). This system allows us
to evaluate the performance of the KTR method in studying an unbinding event. The CS3
is a 3-aminopyrazole inhibitor with PDB ID: 03K (see Fig. 7.4b). In the binding pose, this
ligand interacts with the residues Glu 81, Leu 83, and Gln 85, see Fig. 7.4c. In the following,
we describe the simulation methods used to study the unbinding of the CS3 ligand to the
CDK2 protein, as well as the results of the application of the KTR method on this process.

7.3.2 Simulation methods

WT-MetaD simulations were carried out using the GROMACS v2019.4 program patched
with PLUMED 2.5.3. The complex was solvated with a cubic water box, centered at the
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Figure 7.4: (a) Global view of the protein and of the binding pocket. We highlight the residues and water
molecules that interact with the ligand inside the binding pocket. (b) Structure of the ligand 03K. (c) Main
interaction between the ligand (03K) and the target (CDK2). The residues involved in this interaction are
labeled.

geometric center of the complex with at least 2.0 nm between any two periodic images.
The AMBER99SB-ILDN157 force field was used to model the system with the TIP3P water
model.158 The ligand was parameterized using antechamber159 with GAFF160. The param-
eters found were converted into GROMACS format using ACPYPE.161 A minimization was
done with the steepest descent algorithm and stopped when the maximum force was ≤ 1000
kJ/mol·nm. Periodic boundary conditions were considered. We used the leapfrog algorithm
to propagate the equations of motion and the nonbonding interactions were calculated using
a PME scheme with a 1.0 nm cutoff for the part in real space. We performed a 100 ps
equilibration in an NVT ensemble using the velocity rescaling thermostat70 followed by a
100 ps equilibration in an NPT ensemble using Parrinello-Rahman barostat72 with a time
step of 2 fs. The MD production was performed without restrains, with a time step of 2 fs
in an NPT ensemble at 300.15 K and 1 atm.

We chose two CVs for the WT-MetaD simulations. The first CV was the solvation state
of the ligand (w), calculated as the coordination number between two groups

w =
∑
i∈A

∑
j∈B

wij, (7.1)

with

wij =
1 −

(
rij−d0

r0

)n
1 −

(
rij−d0

r0

)m , (7.2)

where d0 = 0, r0 = 0.3, n = 6 and m = 10. In the sum of Eq. 7.1, group A is the center
of mass (COM) of the ligand, and group B are the oxygen atoms of all water molecules at
a distance shorter than 5 Å from the pocket. The second CV was the distance between the
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binding pocket and the ligand (d). We define d as the distance between the COM of the
heavy atoms in the ligand and the COM of the α-carbons in the binding pocket, i.e., at a
distance of 5 Å from the ligand in the binding pose.

WT-MetaD is performed with an initial Gaussian height of 1.5 kJ/mol. The width (σ) of
the Gaussians was σw = 0.13 and σd = 0.02 nm, for the w and d CVs, respectively. We used
a bias factor of 15. We performed independent simulations where Gaussians were deposited
every 1, 10, 100, and 500 ps with a total simulation time of 10, 40, 300, and up to 1500 ns,
respectively. 50 simulations per Gaussian deposition time were performed.

To monitor the escape of the ligand from the binding pocket, we followed (without biasing
it) the evolution of an additional CV, the crystallographic contacts (c). With c we can easily
distinguish between the bound and unbound state of the ligand. Analogous to w, the number
of crystallographic contacts is defined as c =

∑
i∈A
∑

j∈B cij. We use Eq. 7.2 replacing wij

by cij with the same parameters and with atoms groups responsible for the main interactions
between the ligand and the binding pocket, i.e., group A are the nitrogen atoms of the ligand
that form hydrogen bonds – in the binding pose – with the atoms in the group B: O-Glu81,
O-Leu83 and O-Gln85. These interactions are shown in Fig. 7.4c.

7.3.3 Results and discussion

The unbinding of a ligand from a protein-ligand complex is an important field in drug
discovery. In particular, the calculation of the unbinding rates and residence times have
taken especial relevance in recent years162,163, due to their better correlation with the drug
efficacy of a molecule in in vivo assays compared to affinity energies.104 We studied the
unbinding of the ligand CS3 to the CDK2 protein using WT-MetaD. A global view of
the protein-ligand complex and its interactions is shown in Fig. 7.4. We ran four sets of
WT-MetaD simulations starting from the bound conformation with 50 replicas each of 10,
40, 300, and up to 1500 ns and bias-deposition time of 1, 10, 100, and 500 ps, respectively.
We biased two CVs that caused the ligand to unbind during the simulations in most cases.
CV1 (d) is the distance between the center of mass of the ligand and the pocket and CV2
(w) tracks the solvation state of the ligand (see Fig. 7.5 and section 7.3.2).

When monitoring the solvation state of the ligand, Fig. 7.5b, we found that the corre-
sponding CV has a lower value when the ligand is inside the binding pocket than when the
ligand is outside the pocket, as expected. However, the fluctuations of the CV complicate
the identification of the states. A similar situation is found when monitoring the distance
between the ligand and the pocket (Fig. 7.5a). When the distance begins to increase, there
is no simple way to define when the ligand breaks its main interaction with the pocket.
Therefore, as an alternative to clearly identify the unbound state, we monitor an additional
CV: the number of crystallographic contacts, c, (i.e., the coordination number between the
atoms that made contact in the crystal structure) without adding bias to it (Fig. 7.5c). CV
c approaches zero when the interactions between the ligand and the pocket are broken and
the ligand reaches the unbound state.

We note that the unbinding of the ligand from CDK2 involves several metastable states
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Figure 7.5: CDK2-ligand CVs as a function of time. (a) and (b) Five example trajectories of the biasing
CVs for td = 10 ps. Each color represents a different trajectory: (a) the distance between the center of mass
of the ligand and the center of mass of the binding pocket d and (b) the solvation state of the ligand w are
shown as a function of time. (c) Global view of the protein, binding pocket, and representative snapshots
of metastable states. We highlight the residues that interact with the ligand inside the binding pocket.
Example of the CV measuring the crystallographic contacts between the ligand and the binding pocket (c)
as a function of time. There are several metastable states explored before the ligand reaches the unbound
state where it is fully solvated with no interactions inside the binding site. For our analysis, we defined the
unbound state when the crystallographic contacts c is < 0.01.

before the unbound state is reached. A representation of the different states found according
to the value of the collective variable is shown in Fig. 7.5c. In the crystallographic pose,
the ligand interacts primarily through hydrogen bonds with the pocket residues Glu 81, Leu
83, and Gln 85. Then, when the ligand begins to leave the active site, it adopts another
conformation interacting with the binding pocket residues through a stacking interaction with
Phe 82 and H-bond with Leu 83. Before completely leaving the binding site, a hydrophobic
contact with Leu 134 and an H-bond with Leu 83 are formed. At the same time, the solvation
of the ligand increases. Finally, when the crystallographic contacts go to zero, the ligand
is in a fully solvated, unbound state, or diffusing elsewhere on the protein surface far from
the active site. Therefore, we defined a transition on the final dissociation event when CV
c is less than 0.01. We also found some simulations where the system spends some time in
some on and off-pathway metastable state before jumping back to the bound state, followed
by the dissociation transition (Fig. 7.6a). This situation violates the assumption of an

86



ever-increasing maximum bias until escape (see Fig. 7.6b), therefore, we discarded these
simulations from further analysis.

Figure 7.6: Multi-state dynamics in the CDK2 simulations. Example of two trajectories where the system
spends some time in an on- or off-pathway metastable state before jumping back to the bound state from the
td = 500 ps setup. (top) Number of crystallographic contacts CV (c) as a function of the time. The system
jumps out and then back to the bound state. (bottom) Running-average of the bias as a function of time.
The window average was 50 time-strides. When the system jumps out of the bound state there is a drastic
fall in the bias. In practice, we defined a transition back to a metastable state when the running-average
bias went below 5 kBT , the VMB did not change for X time, and after that, the system jumped back to
the bound state. X=0.2, 2, 30, and 90ns for the td=1, 10, 100 and 500 ps setups, respectively. Because
the well is partially filled when a transition back to a metastable state occurs, and the KTR theory does not
take this into account, trajectories that presented this kind of transitions were discarded from the CDK2
analysis (∼ 50% for all setups).

We monitored VMB as a function of t/td (Fig. 7.7a), and noted that, for the 1 and 10 ps
setups, the curves do not collapse as for the systems studied above. These results show that
for these setups, the system does not have enough time to locally-equilibrate on the biased
free-energy landscape; instead, it is surfing on the biasing potential, conveying that they are
in the overbiasing regime and that the rates will be overestimated. Therefore, we discard
these simulations from further analysis.

In Fig. 7.7b, we show the empirical CDFs using the simulation barrier-crossing times
with fits of the KTR formalism for the 100 and 500 ps setups that are in the converged
regime. The estimated γ and k0 and their errors are also shown. Note that the errors are
extracted from a bootstrap analysis of the passed KS-trials, using the same procedure as
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for the fullerene dimer in section 7.2.2. Importantly, both setups have extracted parameters
within error: log(k0[s

−1]) ≈ log(8.4) ± log(5.1) and log(9.5) ± log(5.6); and γ = 0.65 ± 0.09
and 0.64 ± 0.11 for the td = 100 and 500 ps setups, respectively.

In comparison to the experimental rate log(kexp[s−1]) ≈ log(0.26)164 (see details in Ap-
pendix A, section A), the extracted median rate is around one order of magnitude larger
than the experiment. This is probably because we are not taking into account the multi-
well dynamics and force-field inaccuracy.2 Nonetheless, this is a promising result since we
are using simulations of length many orders of magnitude shorter than the estimate of sec-
onds. Moreover, the KTR method proves valuable when predicting the underlying statistics
of barrier-crossing times in comparison to attempted CDF-fits using the iMetaD rescaled
times, where more than 74% of the bootstrap samples failed the KS-test, therefore iMetaD
results are not valid in this case120 (see Appendix A, Fig. A3).

Figure 7.7: CDK2-ligand unbinding biased simulations. (a) VMB as a function of the time normalized by
the bias deposition time (t/td) for the different simulation setups. Note that the td = 1 and 10 ps curves
do not collapse. (b) CDF of the simulation barrier-crossing (jump) times for the WTMetaD simulations for
the converged setups: 100 (green) and 500 ps (blue). The solid lines show the fits of the KTR method
using the numerical S(t) and LM formalism to estimate the optimal parameters. The extracted rate k0 and
efficiency of CV γ are within error (shown with the same color scheme), and > 90% of KS-tests pass for
these setups. Errors were estimated from the range of the 30 and 70 percentiles of bootstrap samples.

7.4 Conclusions and outlook

In this chapter, we demonstrated that the KTR method works for cases where the system
has enough time to equilibrate between bias depositions. The applications presented here
also allow us to show the limits of our method and provide convergence criteria to assess its
validity. There are several points of the KTR theory that can be improved in future work.
Automatized methods to determine when the barrier-crossing occurs might be helpful. γ
could be used in iterative approaches to refine the biasing direction for the cases where the
barrier-crossing events are too slow along an initial poor CV. We have shown that Kramers’
theory and the quasi-adiabatic assumption breakdown in the overbiasing regime; therefore,
it would be useful to extrapolate the theory to non-equilibrium conditions.165 The main
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limitation of the current approach, besides force-field inaccuracy, appears to be the implicit
approximation of considering the transition process as the escape from a single “reactants”
well to a single “products” well: future work will focus on extending the methodology to
take explicitly into account a network of possibly multiple transition pathways across several
metastable states, yielding improved accuracy for complex systems.
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8
Free energy landscapes, diffusion coefficients
and kinetic rates from data-driven Langevin

models

8.1 Introduction

In this chapter, we address the problem of constructing accurate mathematical models of the
dynamics of complex systems projected on a collective variable. To this aim, we introduce
a conceptually simple yet effective algorithm for estimating the parameters of Langevin and
Fokker-Planck equations from a set of short, possibly out-of-equilibrium molecular dynamics
trajectories, obtained for instance from transition path sampling or as relaxation from high
free-energy configurations. The approach maximizes the model likelihood based on any ex-
plicit expression of the short-time propagator, hence it can be applied to different evolution
equations. Here we demonstrate the numerical efficiency and robustness of the algorithm
in a set of double-well potentials used as benchmark systems. Our methodology allows re-
constructing the accurate thermodynamics and kinetics of activated processes, namely free
energy landscapes, diffusion coefficients, and kinetic rates. Compared to existing enhanced
sampling methods, we directly exploit short unbiased trajectories, at a competitive compu-
tational cost.

Projecting the dynamics of the system on one (or a few) CV q leads to a theoretical
framework describing equilibrium thermodynamics through free energy landscapes, and ki-
netics (including out-of-equilibrium relaxation) through Langevin and Fokker-Planck equa-
tions.16,166 Depending on the nature of the physical system, and on the observational time
resolution τ , three main types of Langevin equations appear in the literature. In the non-
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Markovian case, a generalized Langevin equation is customarily employed, including a de-
terministic force (the gradient of the free energy −dF/dq) and time-correlated friction and
noise, connected by the fluctuation-dissipation theorem.16,167 Such time correlation, or mem-
ory effects can be significant for the short-time dynamics of small solutes immersed in a liquid
bath.168–170

However, in many applications in physics, chemistry, or biology an observational time
resolution τ coarser than the memory timescale is pertinent so that a Markovian Langevin
equation accurately describes the projected dynamics. Depending on the intensity of the
friction, or, in other words, on the extent of its characteristic time compared to τ , which
depends on the physical process and on the choice of CVs, a second-order underdamped
Langevin equation featuring inertia (and reminiscent of Hamilton’s equations) or a first-
order overdamped equation are appropriate.17,46,171

8.1.1 Langevin models from MD trajectories

A number of algorithms aim at parametrizing Langevin models starting from trajectories
of many-particle systems.169,170,172–199 More in detail, non-Markovian friction (the so-called
memory kernel) can be reconstructed in different ways, for instance, based on a set of time-
correlation functions and Volterra integral equations (see, e.g., Refs. 169,170,173), or via
likelihood maximization.199 In the case of Markovian (overdamped) Langevin equations,
the latter approach178,183,185, together with a direct estimation of Kramers-Moyal coeffi-
cients185,191 have been employed.

Often, only friction is addressed, assuming that the free-energy profile is known in advance,
or that it can be directly estimated from the histogram of the CV based on long equilibrium
trajectories reversibly sampling all relevant states (see, e.g., Refs. 170,180,183). Clearly, this
severely limits the scope of the techniques, given that ergodic molecular dynamics (MD)
trajectories can be affordably generated only in the case of low kinetic barriers (a few kBT ).

In the case of rare events, some approaches are able to exploit enhanced sampling simu-
lations, like umbrella sampling, to alleviate the timescale problem177,185,192, even though the
cost of such simulations to estimate free-energy and diffusion profiles remains considerable
in presence of high barriers. Moreover, such acceleration techniques usually rely on an initial
guess of CVs to be biased: a bad choice can lead to poor convergence and to explore unfavor-
able transition mechanisms compared to brute force MD, while a change of CVs requires in
general to generate new biased trajectories, multiplying the costs. At variance with previous
attempts, in this work we address this issue by basing our Langevin optimization approach
on unbiased TPS-like36 trajectories, spontaneously relaxing from barrier tops, and faithfully
reproducing brute force transitions thanks to the reliability of TPS techniques. In our case,
the choice of the CV is performed a posteriori, and multiple CVs can be tested at negligible
computational cost since no new MD trajectories are required.
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8.1.2 Challenges in modeling real-systems dynamics with the Langevin equa-
tion

Whether the projected dynamics of a given system can be accurately modeled by a specific
flavor of Langevin equation depends upon two main observational choices: the CV q and the
time resolution τ of the trajectory. In particular, it is expected that memory effects decrease
when CVs become similar to the committor function.112,171,177 For a fixed CV, too small τ
can render visible non-Markovian effects. Albeit acknowledged in the literature, these prin-
ciples have seldom been applied to critically assess how accurately a given Langevin model
reproduces the original dynamics for different CVs and different time resolutions.183,191,196

In many cases a single system is studied and Langevin predictions at fixed time resolution
are compared with independent estimates of free energies and rates. We also remark on a
further important point: τ cannot be freely increased to enhance Markovian behavior, since
too large values rarefy the sampled trajectory to the point of lacking information on barrier
regions.

As a result of all the previous concerns and difficulties, to date CV-based Langevin equa-
tions have been used sporadically and most often heuristically, and are not systematically
applied to access the thermodynamics and kinetics of a wide range of complex physicochemi-
cal processes. It is our aim to improve the state of the art in this respect, with particular care
to the assessment of time resolution effects on the accuracy of the reduced-dimensionality
model, as detailed below.

8.1.3 Our proposal

Here we discuss our recently published method200, a conceptually simple and computation-
ally efficient method to construct data-driven Langevin models of rare events in complex
systems. Since equilibrium MD data is not necessary for training, the method can be ap-
plied irrespective of the height of the barriers separating metastable states. We also provide
an explicit procedure to assess the optimal resolution τ leading to accurate Langevin models
and to predict their reliability. The chapter is organized as follows: first, we describe the
algorithm used to optimize the models and the computational details of the MD simulations,
then, we test the algorithm on a double-well potential with known free energy, diffusion pro-
files, and kinetic rates. Finally, we discuss the scope of the method, its limitations, and
future application perspectives.

8.2 Theoretical methods

8.2.1 Mathematical models of projected dynamics

Langevin equations can be obtained from Hamilton’s equations of motion by projecting
the high-dimensional deterministic dynamics on a subset of the phase-space variables16,199.
When a single generalized coordinate q and its conjugated momentum p = mq̇ are considered,
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the Generalized Langevin Equation (GLE) is customarily obtained:

mq̈ ≡ ṗ = −∂F (q)

∂q
−
∫ ∞
0

dt′ Γ(t′) p(t− t′) + R(t) , (8.1)

where F (q) = −kBT log ρeq(q) is the free-energy landscape (potential of mean force) cor-
responding to the stationary distribution ρeq(q), and the fluctuation-dissipation theorem
⟨R(0)R(t)⟩ = kBT mΓ(t) connects the friction Γ(t) and the random force R(t) to guarantee
thermal equilibrium in the long-time limit201,202. There are two restrictive hypotheses behind
Eq. 8.1, often tacitly assumed: 1) q is a linear function of Cartesian coordinates, hence the
mass m is q-independent180, and 2) the projected-out bath coordinates are linearly coupled
to the q coordinate, hence Γ(t) is q-independent47,203,204. In many applications, Eq. 8.1 is
further simplified by assuming a fast decay of the memory function Γ(t) (where ”fast” refers
to the observational timescale of interest), so that

−
∫ ∞
0

dt′ Γ(t′) p(t− t′) ≈ −p(t)

∫ ∞
0

dt′ Γ(t′) = −γp(t) , (8.2)

leading to the memory-less Standard Langevin Equation (SLE)

ṗ = −∂F (q)

∂q
− γp +

√
2kBTmγ η(t) , (8.3)

where the fluctuation-dissipation theorem simplifies to ⟨R(0)R(t)⟩ = 2kBTmγ δ(t), with η(t)
a Gaussian white noise: ⟨η(t)⟩ = 0, ⟨η(0)η(t)⟩ = δ(t).

In the limit of strong friction, velocity fluctuations away from the equilibrium distribution
are quickly damped (where “quick”, once again, refers to the observational timescale of
interest), suggesting to assume ṗ ≈ 0 yielding the widely-employed Overdamped Langevin
Equation (OLE)17,46:

q̇ = − 1

mγ

∂F (q)

∂q
+

√
2kBT

mγ
η(t) ≡ −βD

∂F (q)

∂q
+
√

2Dη(t) , (8.4)

where we introduced the diffusion coefficient D = kBT/mγ = 1/βmγ, which allows us to
avoid the explicit appearance of the mass in the equation. Here η(t) is a Gaussian white
noise. As remarked above, a generic coupling between q and the bath coordinates leads to
position-dependent γ(q) and D(q), therefore a realistic description of the dynamics generally
requires a non-constant D(q)178, and the use of the overdamped equation can be formally
justified (for instance, it provides exact mean first passage times (MFPT)) when q is the
optimal CV, i.e., any monotonic one-to-one function of the committor171. It can be shown
that, as a consequence of position dependence in D, an additional force ∂D(q)/∂q must be
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included to recover the correct ρeq(q)205:

q̇ = −βD(q)
∂F (q)

∂q
+

∂D(q)

∂q
+
√

2D(q) η(t) , (8.5)

ρeq(q) =
C

D(q)
exp

[∫ q

dq′
d

dq′
(−βF + logD)

]
(8.6)

= C e−βF (q) . (8.7)

We illustrated the need to add this extra “D” force in the Appendix B, Fig. B1.
The corresponding Fokker-Planck equation is the Smoluchowski equation47, describing

the evolution of the probability density ρ(q, t) from an initial distribution ρ(q, 0) (typically
= δ(q − q0)) under given boundary conditions:

∂

∂t
ρ =

∂

∂q

(
βD

∂F

∂q
ρ− ∂D

∂q
ρ

)
+

∂2

∂q2
(Dρ)

=
∂

∂q

[
De−βF

∂

∂q

(
eβFρ

)]
.

(8.8)

The latter equation can be seen as a continuity equation ∂tρ(q, t) = −∂qJ(q, t), where ρeq(q)
is obtained by directly integrating the equation J = 0 (Eq. 8.6).

Even though a coordinate transformation from q to s(q) with ṡ = q̇/
√

2D(q) would allow
to work with a position-independent diffusion coefficient (see Ref. 166), we do not pursue
this route since we aim to build Langevin models for given physically-motivated coordinates
q.

8.2.2 Optimization of Langevin models (parameter estimation)

To construct an optimal model of the q-projected dynamics, we adopt an efficient algorithm
that maximizes the likelihood L(θ) to observe the trajectory {qi ≡ q(ti)}i=1,...,N , ti+1− ti = τ
given the Langevin model Eq. 8.5. The parameters θ encode the shape of F (q) and D(q).
To obtain an explicit form for the likelihood, we consider the formal solution of the Fokker-
Planck equation ∂tρ = Lρ (Eq. 8.8), calling L the Fokker-Planck operator (the adjoint of
the generator of the stochastic process)13,166:

p(q′, t + τ |q, t) = eLτδ(q′ − q)

=

[
1 + Lτ +

1

2
L2τ 2 + ...

]
δ(q′ − q) .

(8.9)

For small τ , the short-time transition probability density p, also called propagator, is an
ingredient of path-integral formulations of long-time transition probabilities, and, neglecting
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terms of the order of τ 2, can be explicitly obtained (using Fourier transforms166,185) in
Gaussian form:

p(q′, t + τ |q, t) ≈ 1√
2πµ

e−(q
′−q−ϕ)2/2µ , (8.10)

ϕ = aτ = (−βDF ′ + D′)τ , µ = 2Dτ , (8.11)

where the prime indicates d/dq, and a is the drift term in Eq. 8.5 (note that this propagator
is exact for any τ > 0 if F ′ and D are constant). A better approximation, still retaining
the Gaussian form Eq. 8.10, can be obtained by keeping terms up to order τ 2 in Eq. 8.9,
applying for instance Drozdov’s approach based on the cumulant-generating function:206

ϕ = aτ +
1

2
(aa′ + Da′′)τ 2 , µ = 2Dτ + (aD′ + 2a′D + DD′′)τ 2 . (8.12)

Armed with this explicit expression for the short-time propagator, it is possible to write
the likelihood of the observed trajectory {qi}i=1,...,N :

− logL(θ) =
N−1∑
i=1

1

2
log[2πµi(τ)] +

N−1∑
i=1

[qi+1 − qi − ϕi(τ)]2

2µi(τ)
, (8.13)

where ϕi(τ) ≡ ϕ(qi, τ), µi(τ) ≡ µ(qi, τ). The optimization of the Langevin model is
achieved by minimizing − logL(θ) as a function of the parameters, directly yielding the free
energy and diffusion profiles. Eq. 8.13 is minimized using a simple iterative stochastic algo-
rithm: starting from an initial guess for the free energy and diffusion profiles (represented on
a discrete grid of 1000 points), there are two types of trial moves (with probabilities 20% and
80%, respectively): i) adding to the profiles a Gaussian at a random position, with a random
width between (qmax − qmin)/20 and (qmax − qmin) and height between −kBT/2 and kBT/2
(with 20% probability to modify either profile, and 80% to modify both, at each optimization
step), or ii) scaling the profiles by a Gaussian-distributed random factor with mean 1 and
standard deviation 0.3. The moves are accepted or rejected on the basis of a Metropolis
criterion on (− logLnew + logLold)/T̃ . The effective temperature T̃ is automatically scaled
during the iterations to keep the acceptance close to a target value of 5%.

The algorithm we propose for the optimization of the likelihood function (Fig. 8.1) is
straightforward:

1. Start with trajectories q(t) from MD and with an initial guess for the free energy and
diffusion profiles.

2. Compute − logL(θ) for the initial data.

3. Make a random change of the free energy and diffusion profiles and compute the new
− logL(θ).

4. Use a Metropolis criterion to accept or reject the new parameters.

5. Repeat Niter times the procedure.
Note that alternatives to stochastic Monte Carlo optimization could be used, however, we
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appreciate the simplicity and generality of this approach, which does not require estimating
derivatives ∂L/∂θ.

Figure 8.1: Schematic illustration of the approach proposed to optimize Langevin models of projected
dynamics. The input data is formed by unbiased MD trajectories projected on a selected collective variable,
q(t). A likelihood function L(θ) is maximized (i.e., − logL(θ) is minimized) by randomly varying the
parameters encoding the free energy F (q) and diffusion profile D(q) of an overdamped Langevin equation,
until optimally modeling the original MD data. At each iteration, the new parameters are accepted or
rejected according to a Metropolis criterion. The optimal Langevin model corresponds to the last accepted
F (q) and D(q) profiles and is used for further estimation of kinetic rates (see Methods for details).

The initial guess of the parameters can facilitate the optimization of the likelihood func-
tion: without requiring any additional data besides the projected MD trajectories, an ap-
proximate value of D in a free-energy minimum can be estimated from the variance of q
divided by its autocorrelation time.178 As sketched in Fig. 8.1 the input trajectories q(t)
typically contain a final part fluctuating in the bottom of a well, that can be employed in
the latter formula. The profile D(q) is simply set equal to the constant estimated value. As
for the initial F (q), we found that the specific form is largely irrelevant. For the sake of
simplicity, we start from a flat profile F (q) = 0.

The code and input files are freely available on GitHub (https://github.com/physix-repo/
optLE).

8.2.3 Integration of the Langevin equation of motion

To generate input data for the benchmark systems, as well as to test the quality of the
approximate propagator used in the likelihood function (see previous section), we numerically
integrate Langevin trajectories using the Milstein algorithm, an order 1 strong Taylor scheme
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superior to Euler-Maruyama in the case of multiplicative noise (i.e., position-dependent
diffusion):207

∆q =

[
−βD(q)F ′(q) +

1

2
D′(q)

]
∆t

+
√

2D(q)∆tG +
1

2
D′(q)∆tG2 ,

(8.14)

where G is a Gaussian-distributed random number with zero mean and unit variance. The
integration timestep ∆t is chosen after testing the observed long-time histogram of q against
e−βF (q), where F (q) is the exact landscape used in the Langevin equation.

8.2.4 Optimal time resolution of the reduced model

The accuracy of the optimized Langevin model with respect to the original MD trajectory
q(t) crucially depends on the time resolution τ adopted, q(t) ≡ q(kτ), k = 1, ..., N . In fact, it
is expected that only for a sufficiently large τ the overdamped equation can model accurately
the MD data. To guide the choice of τ we introduce diagnostics able to predict what choices
lead to accurate models.

In general, for given profiles F (q) and D(q), a numerical Langevin integrator can be
“inverted” to estimate the value of an effective noise G(t) corresponding to each observed
displacement ∆q = q(t + τ) − q(t) in the input MD trajectory. The simplest formula corre-
sponds to the Euler-Maruyama integrator:

G =
∆q + (βDF ′ −D′)τ√

2Dτ
. (8.15)

Another option is to invert the Milstein integrator, Eq. 8.14:

G =
1

D′τ

(
−

√
2Dτ +

√
(2Dτ) − (2D′τ)

(
1

2
D′τ − βDF ′τ − ∆q

))
. (8.16)

If the resulting effective noise had been generated by the model, the G(t) trajectory would
be random, with zero mean, unit variance, and no time correlation: ⟨G(t)G(t′)⟩ = δt,t′
(the latter symbol indicating the Kronecker delta, since time is discretized). Therefore, to
estimate the expected accuracy of the optimal Langevin model it is possible to inspect the
mean, variance, and correlation time τnoise of the effective noise196. For the latter quantity, we
adopt here a simple operative definition, as the first time where the autocorrelation function
C(t) = ⟨G(0)G(t)⟩/⟨G2⟩ drops below 1/100. Note that in case of oscillatory behavior of C(t)
it is important to inspect the latter to assess if the estimate is acceptable. We find that the
expressions for the noise from Euler-Maruyama (Eq. 8.15) or Milstein (Eq. 8.16) integrators
yield similar results (see Appendix B, Fig. B2), therefore, for simplicity, in what follows we
use Eq. 8.15 to determine τnoise.
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As a second metric to diagnose problems in model accuracy, we generate (using the inte-
grator Eq. 8.14) M = 100 Langevin trajectories of duration τ and timestep ∆t ≪ τ start-
ing from each point of the input trajectory {qi}i=1,...,N . The resulting final displacements
q̃ki+1− qi (with k = 1, ...,M) are shifted and scaled according to the theoretical propagator of
the model, Eq. 8.10, by subtracting ϕi and dividing by

√
µi. In this way, their distribution

would be Gaussian with zero mean and unit variance if the propagator was exact, and an
average likelihood can be evaluated to estimate deviations from such ideal behavior:

−logLprop =
1

N − 1

N−1∑
i=1

1

M

M∑
k=1

1

2

[
log 2π +

(
q̃ki+1 − qi − ϕi√

µi

)2
]

, (8.17)

which yields 1
2
[log 2π + 1] ≈ 1.419 in the ideal case. For increasing τ , the propagator

becomes unreliable, reducing the likelihood and hence allowing us to predict, once again, the
quality of the model (see Fig. 8.4).

8.2.5 Kinetic rates

In general cases, the kinetic rate for a transition A→B can be computed by means of the re-
active flux (Bennett-Chandler) technique, which includes recrossing effects beyond transition
state theory42

k(t) =
⟨q̇(0) δ[q(0) − q∗]hB[q(t)]⟩

⟨hA⟩
,

where hA(q) and hB(q) are the indicator functions of metastable states A and B. Under the
hypothesis of rare transition events, there is a plateau in the values of k for a broad interval
of t values larger than the typical microscopic timescale (e.g., of molecular vibrations) and
smaller than the MFPT. q∗ is any point close to the separatrix: only efficiency is affected if
they differ significantly.

The rate can be computed numerically by shooting Ns MD simulations from q∗ with
random atomic velocities drawn for the Maxwell-Boltzmann distribution: for a given t, k(t)
is the product of the sum of initial velocities for trajectories ending up in B, divided by the
total number of shots Ns, and of a term containing information about the free energy barrier

k(t) =

∑Ns

j=1 q̇j(0)hB[qj(t)]

Ns

e−βF (q∗)∫
ΩA

dq e−βF (q)
. (8.18)

We remark that for rare transitions with overdamped one-dimensional dynamics, it is also
possible to compute the MFPT (the inverse of the rate) as an integral over the free energy
and diffusion landscapes:

k−1(q0) =

∫ b

q0

dy
eβF (y)

D(y)

∫ y

a

dze−βF (z) , (8.19)

where, in the typical case of the escape from a well (even though the formula is general),
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q0 is the initial position in the well, a is the position of a reflective boundary located on the
opposite side as the transition barrier and b is the position of an absorbing boundary located
beyond the barrier.42 In the following, we adopt as the location of the absorbing boundary
b the first minimum in d

dq
k−1 beyond the free energy barrier.

8.3 Results and discussion

In the new approach, the Langevin model is parameterized from unbiased MD trajectories
spanning the relevant CV region (transition region). Such trajectories can be easily obtained
as spontaneous out-of-equilibrium relaxation from initial high free-energy configurations, e.g.,
the top of a barrier. Several effective techniques are available to discover transition states
and reactive paths at a moderate computational cost26,36,98,208–210: although not trivial, this
task is generally much less involved than reconstructing accurate free energy profiles. In
the following, we use as input CV-projected MD trajectories q(t) obtained from TPS or by
shooting from the barrier top and relaxing into the minima. Note that such trajectories are
short, since in rare events the transition path time is typically very fast compared to the
waiting time in a minimum, i.e., the MFPT.

Initially, we will test our method on a simple test system: a 1D double-well potential.
Using this benchmark system we have full control over the dynamics of the system. In the
following, we vary the shape of the free energy and diffusion profiles to demonstrate the
applicability of the method independent of the shape of these profiles.

8.3.1 Langevin models from overdamped trajectories

As a first necessary test, we verified that our method yields Langevin models accurately
reproducing the correct F (q) and D(q) when using as input 50 ps long overdamped trajec-
tories relaxing from the barrier top of double-well landscapes. We vary the shape of the free
energy profile starting from symmetric or asymmetric profiles and also vary the height of
the free energy barrier as well as the shape of the diffusion profile. The Langevin dynamics
trajectories used as input are obtained using the overdamped integrator, Eq. 8.14, having as
initial configuration q = 0. We optimize Langevin models for different time resolutions. For
each system, we perform 10 independent optimizations to obtain the average and standard
error.

We show in Fig. 8.2 that the reconstructed free energy profile and position-dependent
diffusion coefficient deviate less than 1 kBT and 10%, respectively, from the reference exact
profiles, regardless of τ , within the time resolution where the quality of the approximate
propagator is acceptable. This test leaves us with two important conclusions: i) The op-
timization of overdamped Langevin models through Likelihood maximization, as expected,
leads to accurate free energy and diffusion profiles using overdamped trajectories as initial
data, i.e., the method is self-consistent. ii) When the input trajectories are Markovian, the
smaller the τ the more accurate the optimal Langevin model. When the time resolution is
large the propagator loses accuracy and the initial data set used for optimization is reduced,
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leading to models with more fluctuations compared to the reference profiles. However, even
for τ = 1 ps, the optimal Langevin models reproduce accurately the shape of the free energy
and diffusion profiles. With this result in mind, we will study in detail the importance of
time resolution in the next section.

Figure 8.2: Optimal overdamped Langevin models trained on overdamped Langevin trajectories. (a) Sym-
metric double-well potential with 10 kBT barrier and diffusion coefficient 0.003 ≤ D(q) ≤ 0.005 ps−1. (b)
Symmetric double-well potential with 15 kBT barrier and diffusion coefficient 0.0022 ≤ D(q) ≤ 0.0028 ps−1.
(c) Asymmetric double-well potential with 13 kBT barrier and diffusion coefficient 0.005 ≤ D(q) ≤
0.025 ps−1. Left: 100 input trajectories of 50 ps relaxing from the barrier top. Center: optimal free
energy profiles. Right: optimal diffusion profiles. The different time resolutions τ employed to optimize
the models are shown in colors. The exact profiles are shown with black lines. The thickness of the lines
corresponds to standard error over 10 independent stochastic optimization runs.

8.3.2 Langevin models from underdamped trajectories

As a second, more difficult benchmark we verify whether our method yields Langevin models
accurately reproducing the correct F (q) and D(q) starting from underdamped Langevin
trajectories. The input data is composed of 100 short underdamped Langevin trajectories
q(t), each one 20 ps long, relaxing from the barrier top of a double-well landscape (see Fig.
8.3). The exact free energy and diffusion profiles are shown in black in Fig. 8.4.

Since the initial trajectories are generated with an underdamped integrator, building the
overdamped model entails projecting out the momentum p conjugated to the CV position q.
As a result, a q-based Langevin model is expected to display memory (time correlation) in
the friction and noise for τ comparable to the integration timestep ∆t = 10−4 ps. Adopting
coarse-enough τ resolutions, on the other hand, should lead to memory-less behavior, well
reproduced by an overdamped model.
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Figure 8.3: 100 input trajectories generated with a non-overdamped Langevin integrator, using the standard

Langevin equation: ṗ = −∂F (q)
∂q −γp+

√
2kBTmγ η(t). The benchmark system is a symmetric double-well

free-energy landscape with 10 kBT barrier (m = 1 kBT · ps−2). 53% of the trajectories ended up in the
right basin and 47% in the left basin.

To test this hypothesis, in Fig. 8.4 we generate Langevin models using 0.01 ps ≤ τ ≤ 1 ps:
for the smallest τ value, the model strongly overestimates the barrier and underestimates the
diffusion coefficient. As τ increases the reconstructed model becomes more accurate (see Fig.
8.4) until at large values of τ the error increases again. We found that there is a relatively
narrow range of τ values for which the Langevin overdamped model is accurate: to identify

Figure 8.4: Optimal overdamped Langevin models (Eq. 8.5) for different resolutions τ starting from
underdamped trajectories on a double-well free-energy landscape. (a) F (q) and (b) D(q) profiles (exact
ones are shown with black lines); vertical bars correspond to standard error over 10 independent stochastic
optimizations. (c) Autocorrelation time of the effective noise τnoise (Eq. 8.16) normalized by τ (i.e., number
of correlated steps), and average likelihood quantifying the accuracy of the propagator (Eq. 8.17). The
black line represents the ideal values. Vertical bars are the standard deviation over all trajectory steps ∆q.
(d) MFPTs for the optimal overdamped Langevin models shown in (a) and (b), computed with Eq. 8.19:
the reference value in black is computed with reactive flux on the exact profiles in black in panels (a) and
(b). Vertical bars are the standard error over 10 independent Langevin models (hardly visible at this scale).
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the optimal range in real-world applications we propose two complementary tests that allow
identifying the upper and lower boundaries of τ bracketing high-quality Langevin models.

The lower acceptable τ is the smallest time displaying no memory effects, measured
through the autocorrelation of the effective Langevin noise, i.e., the noise extracted a pos-
teriori by analyzing the original trajectory with the optimal Langevin model, Eq. 8.16 (see
the Appendix B, Fig. B2 for details). The upper limit on τ corresponds to the onset of a sig-
nificant deviation between the approximate and the exact propagators (the latter estimated
from accurate numerical integration, see the Methods section 8.2.4 and Eq. 8.17). Both
diagnostics are reported in Fig. 8.4c, and together they predict that the Langevin model
should attain the best accuracy for τ values close to 0.5 ps: large enough to avoid memory,
but small enough for the short-time propagator to remain reliable.

Overall, when selecting τ based on the proposed diagnostics, models converge smoothly
and rapidly (< 106 Monte Carlo steps) to a good approximation of the exact results: as few as
100 reference trajectories are sufficient to reconstruct the free energy profile to within 1 kBT
and D(q) to within 15% error (we remark that fluctuations in D(q) appear converged with
respect to the different parameters used in the reconstruction of the models and irrespective
of the input trajectories). The same conclusions can be derived regardless of the shape of
the diffusion and free energy profiles (see the Appendix B, Fig. B3).

Besides estimating free energy and diffusion profiles, a key objective of the new method is
the accurate prediction of kinetic rates at a moderate computational cost. Fig. 8.4d shows
the MFPTs obtained with Eq. 8.19 using the optimal Langevin models. Too small values of
τ lead to strongly overestimated MFPT, as expected from the overestimated barriers, while
the rate becomes accurate for τ values within the predicted optimal window (Fig. 8.4c). On
the other hand, for τ larger than optimal, MFPTs in the same order of magnitude as the
reference value is still obtained. We highlight that the input trajectories for the optimization
of the Langevin models are 20 ps each (an aggregate time of 2 ns for the 100 trajectories),
while the MFPT is 0.14±0.08 µs, meaning that we can recover MFPTs orders of magnitude
larger than the input trajectories.

We note that, alternatively, we can compute the MFPT using the reactive flux tech-
nique55,211, free from transition state approximations. This traditionally requires two dis-
tinct sets of expensive simulations, one to compute the free energy barrier and another to
compute a correlation function accounting for recrossings (see the Methods section 8.2.4 and
Appendix B, Table B1). However, this technique becomes inexpensive if combined with our
approach, since the free energy barrier is directly obtained from likelihood optimization on
short trajectories while recrossing statistics can be accurately estimated from cheap synthetic
Langevin trajectories. We remark that the rates computed from Eq. 8.19 are similar to those
of reactive flux (see Table 8.1). Because Eq. 8.19 gives us the MFPT directly from the free
energy and diffusion profiles of the optimal Langevin models (without the need to launch
new synthetic trajectories) while being as accurate as reactive flux, we choose to estimate
the MFPT with this equation in the rest of this and the next chapters.
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τ MFPT (µs) from Eq. 8.19 MFPT (µs) from Eq. 8.18
0.02 1052 ± 51 1398 ± 11
0.05 4.6 ± 0.3 3.1 ± 0.3
0.10 1.1 ± 0.1 0.83 ± 0.02
0.50 0.27 ± 0.03 0.20 ± 0.05
1.00 0.10 ± 0.01 0.13 ± 0.01

Table 8.1: Comparison between MFPTs estimated from Eq. 8.19 and from reactive flux for the double-well
potential in Fig. 8.4. The brute force estimate is 0.14 ± 0.08 µs. The reactive flux estimate is obtained
with Eq. 8.18 and 10000 trajectories, each one 20 ps-long.

8.4 Conclusions and outlook

The calculation of free energy landscapes and kinetic rates are key tasks of computer simula-
tions of complex systems. Even though these two tasks are usually tackled using different ad
hoc techniques2, the main contribution of the present work consists in demonstrating that
they can be simultaneously achieved in a conceptually simple way, by estimating Langevin
models starting from a relatively inexpensive set of about one hundred TPS-like trajectories,
regardless of the barrier height. Likelihood maximization – an efficient parameter estima-
tion technique – is combined with a double test bracketing the time resolution τ , granting
control over the accuracy of the model. The choice of a suitable τ is especially important
for accurately estimating the free energy because the rate has an exponential dependence on
the barrier while only a linear dependence on D.

The resulting Markovian Langevin equations reproduce well the quantitative thermody-
namic and dynamic properties of the original benchmark system starting from both, over-
damped and underdamped Langevin dynamics trajectories, yielding accurate kinetic rates,
despite a gap of many orders of magnitude with respect to the short trajectories used for
training. We also remark that equilibrium properties are systematically recovered from out-
of-equilibrium data: standard transition path sampling trajectories are the golden standard
for the study of transformation mechanisms, however, since such a data set is a small subset
of all possible (reactive and non-reactive) pathways, lacking Boltzmann distribution of the
configurations, it cannot be used for the direct estimate of equilibrium histograms (i.e., free
energies) and rate matrices (e.g., in Markov state models) by simple averaging.37,212 Here we
show that the contrary is true, provided bare transition paths are employed to train a suit-
able stochastic model (see also Refs. 177,178,185,213–215 for related or alternative ideas).
Note that Langevin equations of motion, compared to other machine-learning tools, retain
a direct physical interpretation, with the separation between a systematic average force and
friction/noise effects describing the projected-out degrees of freedom (commonly referred to
as “the bath”).

In the next chapter, we will extend the application of this method to the analysis of
all-atoms MD simulations of complex systems. We will demonstrate that processes such
as association and dissociation of large molecules (compared to the size of the solvent),
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liquid-solid phase transition of inorganic materials, conformational changes of small proteins,
and protein-protein association, among others, can be accurately described by means of
Markovian Langevin models.

Then, we will introduce a second issue that concerns the effect of projecting the dynamics
on sub-optimal CVs, rather than on the ideal reaction coordinate, commonly identified
with the committor function76,171,216. In principle, the CV definition can be systematically
optimized with an iterative scheme, where a single initial set of MD trajectories can be
employed to build optimal Langevin models for progressively improving CVs. A related
idea was recently proposed in the case of discrete Markov state models.41,217 Therefore,
our new approach represents a starting point both for the systematic modeling of MD data
through physically-motivated stochastic equations as well as for machine-learning approaches
to reaction coordinate optimization.
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9
Kinetic rates from data-driven Langevin

models: Applications

9.1 Introduction

The double-well potentials in the previous chapter allowed us to benchmark the scope and
limitations of the method while having full control over the system. To assess the method
in realistic complex systems we study the interaction of the fullerene C60 and C240 dimer
in water solution. As explained in Chapter 7, the fullerene dimer has a simple enough free
energy landscape for benchmarking, while dissociation of the dimer remains a rare event.
In this chapter, we also show how the dynamics of various processes can be modeled by
means of the overdamped Langevin equation: from phase transitions in metal mixtures to
protein-protein interactions we extract free energies profiles and rates from limited MD data.
The diversity of these applications demonstrates the usefulness of our method and at the
same time allows us to determine its limitations and aspects to improve in the future.

9.2 Interaction of C60 and C240 fullerene dimer in water solution

9.2.1 Description of the system

In Chapter 7, section 7.2, we introduced the fullerene C240 dimer system in water solution.
In this section, we use both the fullerene C60 and the fullerene C240 dimer to benchmark
our method. Changes in the size of the fullerene molecule are reflected in a change in the
height of the free energy barrier to move from the associated state to the dissociated state.
In this particular case, the C60 dimer in water presents a dissociation free energy barrier
of around 7.0 kBT compared to a barrier of around 14.5 kBT for the C240 dimer. These
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systems then allow us to study the effect of the height of the free energy barrier (the higher
the barrier, the lower the transition rate), and illustrate the usefulness of our method in the
study of rare events. In the following, we show the characterization of the free energy and
diffusion profiles for these systems. Additionally, we diagnose the best τ resolution to study
the dissociation dynamics of the fullerene dimers and estimate the transition rates.

9.2.2 Simulation methods

Fullerene C60 dimer

We performed MD simulations to study the interaction between two fullerene C60 molecules
solvated by 2398 water molecules, in a simulation box of 3.607 × 3.607 × 3.607 nm with
periodic boundary conditions. The initial fullerene coordinates and topology are taken from
Ref. 139. MD simulations are carried out using GROMACS v2019.4141,142 patched with
PLUMED 2.5.3143. We adopted the SPC water model69 and the OPLS-AA force-field63 for
carbon. Geometry minimization exploited the steepest descent algorithm, stopped when the
maximum force was ≤ 50 kJ/mol·nm. We used the leapfrog algorithm to propagate the
equations of motion and the nonbonding interactions were calculated using a PME scheme
with a 1.2 nm cutoff for the part in real space. We performed a 100 ps equilibration in an NVT
ensemble with a stochastic velocity rescaling scheme218 followed by a 100 ps equilibration
in an NPT ensemble using the Parrinello-Rahman barostat72 with a time step of 1 fs. We
generated MD production trajectories without restrains, with a time step of 1 fs in the NPT
ensemble at 298 K and 1 atm. The reference free-energy profile of the association/dissociation
of the fullerene C60 dimer in water as a function of the distance between the centers of mass
(d) was computed from 5 unbiased simulations of 500 ns each, from the population histogram:
F (d) = −kBT log ρeq(d). We estimated the standard deviation of each histogram bin using
the 5 simulations. The resulting profile is consistent with the free-energy profile in Ref. 139.

The diffusion profile used for comparison was computed from umbrella sampling simula-
tions where we restrict d with a harmonic potential around a reference value di over different
windows i,

U(d; di) =
c

2
(d− di)

2 (9.1)

Then, the diffusion coefficient in the window i is estimated as the ratio between the
variance of the variable (σ2

di
) and the autocorrelation time of the variable itself (τ corr):178

D(di) =
σ2
i

τ corri

(9.2)

We set a window every 0.1 nm in a range of d between 1.0 and 1.8 nm. We performed
1 ns MD simulation for equilibration and 10 ns MD simulation production in each window
with a spring constant c = 1000 kJ

mol
. For each window, we split the 10 ns MD simulations in

10 independent blocks of 1 ns each. We estimated the variance of d and the autocorrelation
time in each block. Finally, we report the average D(di) value and its standard error over
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the blocks. We note that D(d) does not show large fluctuations with respect to the choice
of c (see Appendix B Fig. B4).

To generate the input trajectories for the construction of Langevin models, we employed
aimless-shooting (AS)96,97 simulations. We obtained a first reactive trajectory by shooting
from randomly picked configurations of the unbiased trajectories with d between 1.2 nm
and 1.3 nm. We then performed AS using a separation δt = 0.1 ps between successive
shooting points, and a total length of 20 ps for each trajectory. We obtained a total of
1110 accepted trajectories relaxing from the transition state region with an acceptance rate
of 14%. The script we developed to perform AS with GROMACS is publicly available at
https://github.com/physix-repo/aimless-shooting.

To estimate the dissociation rate we use the reactive flux formalism over 1000 aimless
shooting trajectories. We define the dissociated state as d ≥ 1.34 nm and the associated
state as d ≤ 1.17 nm (see Fig. 9.1a). The value of the MFPT obtained with reactive flux
was validated with the brute force estimate from 100 unbiased MD trajectories launched
from the bound state: 6.1 ± 1.2 ns versus 6.5 ± 0.6 ns, respectively. Finally, we estimated
the transmission coefficient as42:

κ =
kRF
A→B

kTST
A→B

, (9.3)

where kRF
A→B is the dissociation rate constant from reactive flux (Eq. 8.18), and kTST

A→B

is the dissociation rate constant from transition state theory. The estimated transmission
coefficient for the dissociation of the fullerene C60 dimer is 0.37, meaning that the number
of recrossings before relaxation is small.

Fullerene C240 dimer

The MD simulations were performed using the same protocol as in Chapter 7, section 7.2.
The description of the estimation of the reference free energy profile is also presented in sec-
tion 7. We obtained the diffusion profiles for comparison from umbrella sampling simulations
following the same procedure and with the same parameters used for C60 fullerene dimer.
We placed a window every 0.1 nm in a range of d from 1.6 to 2.6 nm. We performed AS
simulations following the same procedure used for C60 fullerenes. We obtained 1515 accepted
trajectories of 100 ps each, with an acceptance rate of 15%. We calculate the dissociation
rate using 1000 trajectories and reactive flux: 9.4±1.1 µs. We define the dissociated state as
d ≥ 2.01 nm and the associated state as d ≤ 1.9 nm. The estimated transmission coefficient
is 0.6.

9.2.3 Results and discussion

We modeled the dynamics of two fullerene molecules in explicit water, considering two dif-
ferent sizes C60 and C240 (Fig. 9.1). The free-energy landscape as a function of the distance
d between fullerenes’ centers of mass features a minimum for the bound complex (with dif-
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ferent depths for the two sizes) and a relatively flat region for the dissociated state, see black
lines in Fig. 9.3. The resulting rare dissociation events and diffusion-controlled association
events139,219–221 are analogous to other processes such as protein-protein interaction. We ob-
tained reference free-energy profiles using 2.5 µs-long brute-force MD trajectories for the C60

dimer, while we employed WT-MetaD95 for the C240 dimer due to its very low dissociation
rate. The diffusion profiles are obtained from sets of 10 ns umbrella sampling simulations
every 0.1 nm in distance between the center of mass (see section 9.2.2 for details).

Figure 9.1: (a) Characteristic atomic configurations for the C60 dimer in bulk water solution; only waters
distant less than 5 Å from carbon atoms are shown. The associated and dissociated states are defined in
terms of the distance d between the centers of mass of the fullerenes. (b) 100 MD trajectories (from aimless
shooting) starting from the transition state ensemble and featuring the association (blue) or dissociation
(orange) of the C60 dimer, and (c) of the C240 dimer, respectively.

We maximized the likelihood of Langevin models following the procedure presented in
Fig. 8.1, starting from short aimless shooting96 TPS trajectories (20/100 ps each, cumula-
tive duration 2/10 ns for C60/C240, see Fig. 9.1). Since the Langevin model optimization
is performed through a Monte Carlo procedure, we run 10 independent Langevin model op-
timizations per system. An example of the convergence of − logL(θ) as a function of the
number of iterations is shown in Fig. 9.2.

We adopted a range of time resolutions τ between 0.1 and 2 ps: for fast time scales, mem-
ory is expected to arise from the projection of the solvated fullerenes many-body dynamics
on a single CV. Sizable memory effects are evident in the effective noise (Eq. 8.16) for
τ < 0.5 ps (see also Appendix B, Fig. B2), severely affecting the accuracy of F (d). For
larger τ values, similarly to the case of the analytic double-well potential in Chapter 8, the
Langevin models become increasingly accurate: memory decays after about 0.5 ps for the
smaller fullerenes and after about 1.0 ps for the bigger ones. As for the diffusion profile,
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Figure 9.2: Example of the convergence of − logL(θ) as a function of the number of iterations for the C60

fullerene dimer in solution. Colors represent different independent optimizations. A similar behavior with a
smooth convergence is observed in all the Langevin models presented in this work.

all models show D(d) in the same order of magnitude, in good agreement with the diffu-
sion coefficients estimated from umbrella sampling178 (see section 9.2.2). We remark that
generating 100 short TPS trajectories for Langevin optimization can be computationally
faster than generating a sufficient amount of umbrella sampling trajectories to estimate the
diffusion profile.

On the other hand, the quality of the approximate short-time propagator Eq. 8.12 de-
creases as τ increases. Accurate results are clearly identified in the range of τ that minimizes
both non-Markovian behavior and error in the propagator (see Fig. 9.3). Moreover, the
short-time transition probability p(q′, t + τ |q, t) predicted by the optimal Langevin model
(Eq. 8.10) is in good agreement with a distribution collected from short MD shootings of
length τ (see example in Appendix B, Fig. B5). Interestingly, optimizing the models based
on 1000 reference trajectories instead of 100 yields minimal improvements (see Appendix B,
Fig. B6).

Finally, we assessed the accuracy of kinetic predictions given by the models. The disso-
ciation MFPT is on the nanosecond and microsecond scales, respectively, for C60 and C240

dimers, i.e., 2 and 5 orders of magnitude slower than the out-of-equilibrium MD trajectories
used for training. For each value of τ , we computed MFPTs using Eq. 8.19 on the optimal
models, yielding Fig. 9.4. We emphasize that the latter approach allows us to compute the
MFPT without generating any additional expensive MD trajectories.

For too small values of τ , the barrier is overestimated (see Fig. 9.3), leading to overesti-
mating the MFPTs by several orders of magnitude. For the C60 dimer the MFPT becomes
accurate (compared to the brute force result) for τ > 0.5 ps, while for the C240 dimer this
level of accuracy requires τ > 1 ps: once again, these are the optimal time resolutions pre-
dicted by the diagnostics in Fig. 9.3. Taken together, all these results demonstrate that
the approximations inherent in the Langevin models are under control, leading to accurate
predictions about the thermodynamics and kinetics of complex systems.

We emphasize that our approach is not restricted to transition path sampling: in principle,
any set of unbiased trajectories spanning the regions of interest could be used to train
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Figure 9.3: Optimal Langevin models for the interaction of C60 and C240 fullerene dimers in explicit
water, for different values of the time resolution τ . The input data set consists of 100 MD trajectories
(aimless shooting) relaxing from the transition state ensemble in Fig. 9.1. (a), (d) Free-energy profiles
F (q), compared to the reference ones in black: vertical bars correspond to standard deviations over 10
independent stochastic optimizations. (b), (e) Diffusion profiles D(q), compared to the umbrella sampling
ones in black: vertical bars correspond to standard deviations over 10 independent stochastic optimizations.
(c), (f) Autocorrelation time of the effective noise (Eq. 8.16) normalized by τ (i.e., number of correlated
steps), and average likelihood quantifying the accuracy of the propagator (Eq. 8.17). The black line
represents the ideal value for both quantities; vertical bars refer to the standard deviation over all trajectory
steps ∆q.

Figure 9.4: MFPTs computed from the optimal Langevin models generated with different time resolutions
τ , for the dissociation of fullerene (a) C60, and (b) C240 dimer, in water solution. MFPTs are estimated
from Eq. 8.19 (reference value in black). Vertical bars are the standard error over 10 independent Langevin
models.

the Langevin model. For example, in Fig. 9.5 we optimized Langevin models using input
trajectories that start from the fullerene C60 dimer dissociated state and reach the associated
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state. The C60 dimer association process presents a much lower free energy barrier than the
dissociation process, therefore obtaining trajectories that present an association event is less
computationally expensive than obtaining dissociation trajectories. We found accurate free
energy and diffusion profiles using only association trajectories at an appropriate τ . This
result is important because it means that our method can be applied in processes where one
direction of the transition is more favorable than another and therefore equilibrium properties
could be obtained from unidirectional trajectories. We will illustrate this advantage of the
method in the following sections.

Figure 9.5: Langevin models from association trajectories. (a) Examples of 100 association trajectories
used to optimize the (b) free energy and (c) diffusion profiles from 200 ps MD trajectories of the C60

fullerene dimer. The different time resolutions τ employed to optimize the models are shown in colors. The
reference free energy profile (computed from brute force MD) and diffusion profile (computed from umbrella
sampling) are shown with black lines. The thickness of the lines corresponds to standard error over 10
independent optimization runs.

Since the dynamics of various activated processes can be modeled with the overdamped
Langevin equation, in the following sections we will present some preliminary results in which
we optimize Langevin models to recover free energy profiles and rates in two important
processes: the crystallization of Germanium-Telluride and the interaction of the Barnase-
Barstar protein complex. We emphasize that although these applications of our method are
still work in progress, the results obtained so far are promising.

9.3 Crystallization of Germanium-Telluride

9.3.1 Description of the system

Phase change materials can display different optical and electrical properties depending
on the phase they are in. This characteristic makes fast crystallization materials of great
interest to the electronic and optical industry, especially for their use as active layers in
rewritable optical disks and in phase change memories.222,223 The crystallization rate is a
critical parameter of this type of material, as phase change memories made with materials of
crystallization rate < 10 ns become competitive in comparison with other kinds of memories
available in the market. One of these materials that has already been used in phase change
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memories is the pseudo-binary compound GeTe-Sb2Te3 (GST), as it displays rapid phase-
switching, low power consumption, high thermal stability, and long cyclability.222

Experimental evidence indicates that the presence of GeTe core network in GST promotes
fast crystallization.223,224 From a computational point of view, the fast phase-switching of
GeTe allows its study on time scales that can be achieved through ab initio MD with density
functional theory, but still limiting the size of the system to few hundreds of atoms. In order
to reproduce the experimentally observed bulk properties, the simulated system must have
a larger size (thousands of atoms). Machine learning potentials emerge as an alternative
to overcome this computational limitation. In particular, Lee, et al.222 developed a Neural
Network Potential (NNP) for the GeTe system that is able to reproduce the kinetics of the
crystallization in good agreement with experiments. Therefore, in the following, we study
the amorphous to crystalline phase transition of the GeTe alloy from MD simulation using
this NNP, see Fig. 9.6.

Figure 9.6: Amorphous to crystalline phase transition of the GeTe. Two representative frames corresponding
to (a) amorphous and (b) crystalline phase of GeTe compound, in a MD simulation box. Germanium and
Telluride atoms are represented in pink and cyan, respectively.

9.3.2 Simulation methods

In this section, we used as input data a set of 32 brute force MD simulations provided by
Julien Lam (Center for Materials Elaboration and Structural Studies, France). The MD
simulations were performed in LAMMPS225 using the NNP in Ref. 222. A cubic simulation
box was used with 1000 Germanium and 1000 Tellurium atoms. The simulations were
performed at temperature T = 600 K, which is in the middle of the relevant temperature
range (500 − 700 K) for the programming protocols of the electronic memories.223 The
simulations were started from the amorphous phase (see Fig. 9.6a). The total simulation
time was 4 ns for each trajectory.

Using this set of MD simulations we projected the trajectories on two different CVs: the
total potential energy (U) and the Parrinello entropy226 (S), see Fig. 9.7. Then, we optimize
10 independent overdamped Langevin models for each CV following the same procedure as
in the previous section. We performed 1 × 106 iterations in each optimization. The initial
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free energy profile to start the optimizations is set to F (q) = 0 kBT ; q = S, U , and the
initial diffusion profile is set to D(q) = 2 × 10−5 ps−1; q = S, U . The time resolution for the
optimization of the Langevin models was set to τ = 2 ps.

The reference crystallization rate was computed from the set of brute force trajectories
using the distribution of jump times and the mean lifetime method, explained in Chapter 3,
section 3.3.2.

Figure 9.7: Trajectories for the optimization of the Langevin models. (a) Total potential energy (U) and
(b) Parrinello entropy (S). We computed the CVs from the beginning of the trajectories that start at the
amorphous phase and stop when they reach the crystalline phase. A total of 32 unbiased MD trajectories
are presented.

9.3.3 Results and discussion

In many crystallization processes of inorganic materials, the transition path time scales
are long enough to allow its study with relatively long time resolutions. Therefore, an
overdamped regime is likely the appropriate description, and the method proposed in Chapter
8 for the optimization of Langevin models to access free energy, diffusion profiles, and kinetic
rates, could be an ideal candidate to study crystallization processes. In particular, the fast
crystallization of materials as GeTe offers an attractive playground for testing this method
in real-life applications.

In what follows, we study the crystallization process of GeTe, by optimizing Langevin
models from brute force MD simulations. The GeTe amorphous to crystalline phase transi-
tion has been studied both experimentally and computationally.222,223,227 Since our method
can also be used with trajectories going in only one direction, MD simulations that start
from the amorphous phase and reach the crystallized phase are, in principle, sufficient to
apply the method (see last part of section 9.2.3). To optimize the Langevin models we follow
this phase transition by means of two CVs: the total potential energy (U) and the Parrinello
entropy226 (S). Both CVs are in principle good order parameters since crystallization from
a disordered state is expected to decrease U and S. However, it is of course unclear how
closely such CVs approximate the ideal reaction coordinate or the committor. Although
each MD trajectory has a total duration of 4 ns, we only take for analysis the part of the
trajectories until it reaches the crystalline state (S < −2.2eV/K) (see Fig. 9.7). Using these
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trajectories as input data, we optimize 10 independent Langevin models for each CV. The
resulting free energy and diffusion profiles are presented in Fig. 9.8.

Figure 9.8: Optimal Langevin models for the Parrinello entropy S (left) and the total potential energy U
(right). (a) and (b) optimal free energy profiles for S and U , respectively. (c) and (d) optimal diffusion
profiles for S and U , respectively. The thickness of the lines corresponds to standard error over 10 indepen-
dent optimization runs.

In Fig. 9.8a and Fig. 9.8b, the free energy minimum on the right corresponds to the amor-
phous phase. Both free energy profiles display a typical landscape with two minima separated
by a free energy barrier. As explained in Chapter 4, the height of the free energy barrier
in the free energy profile depends on the CV used for the projection. In this case, the free
energy barrier for each CV is ∆F (S) = 2.58 ± 0.03 kBT and ∆F (U) = 2.066 ± 0.008 kBT .
We also note that the diffusion coefficient is higher for the variable S than for U .

Given these optimal Langevin models, we can estimate the rate for the transition from
amorphous state to crystalline state using Eq. 8.19. For this purpose, we invert the free
energy and diffusion profiles (in order to continue integrating from left to right in Eq. 8.19),
using as absorbing boundary a the minimum value of the respective CV, q0 is the position
of the minimum in the amorphous state, and b is the position of the minimum after the free
energy barrier. The crystallization rates obtained with this method are shown in Table 9.1.

We note that both the rate from brute force MD simulations and the rate obtained from
the optimal Langevin models are in good agreement. We note that the rates are also in good
agreement with those reported by Bruns, et al.227 for a 20-nm thick GeTe layer in a phase
change. However, current devices use phase change memories where the GeTe has a different
density and a crystallization time of about 30 ns (see Ref. 222), therefore the direct value of
comparison for our Langevin models is the brute force rate instead the experimental value.
Based on these results we conclude that both U and S represent good approximations of the
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Method MFPT (ns)
Experimental227 ∼ 1

Brute force 1.3 ± 0.1
Langevin models S 0.9 ± 0.1
Langevin models U 1.1 ± 0.1

Table 9.1: Brute force vs Langevin model-based estimated of the MFPT for the GeTe crystallization. The
experimental value corresponds to a crystallization rate for a phase change memory with 20-nm thick GeTe
reported in Ref. 227. The brute force estimate is obtained from the distribution of jump times in brute force
trajectories. The MFPT from the Langevin models is estimated using Eq. 8.19.

ideal reaction coordinate, at least at the conditions investigated.
The results of the GeTe fast crystallization study presented in this section are promis-

ing, however, they represent a preliminary test, the main interest of our approach being
the estimation of slower nucleation rates, in a regime where brute force MD simulations are
expensive. We will work to validate in-depth and extend the results in the near future as
follows: (i) expanding the range of temperatures studied, doing more MD simulations for
temperatures between 500 K to 700 K (to mimic experimental conditions); (ii) for those
temperatures where it is not possible to observe phase transitions in a reasonable compu-
tational time we plan to use AS and optimize Langevin models from these trajectories as
done for the fullerenes; (iii) possibly we will also study the system at other densities to
assess the effect of density on the crystallization rate. Furthermore, in the same spirit, we
plan to extend the applications of our Langevin models to estimate the kinetics of the phase
transitions in the following systems: liquid-solid phase transition in Binary Lennard-Jones
liquids228 and water nucleation using the mW water model.229

9.4 Protein-protein interactions in barnase-barstar complex

9.4.1 Description of the system

Despite the paramount importance of PPI in controlling most biological functions, including
pathological processes from cancer to Alzheimer, today it is routinely impossible to pre-
dict with accuracy whether two proteins bind together, the corresponding free energy gain,
and the association/dissociation rate constants. Some experimental techniques allow us to
characterize the most stable structures, association kinetics, and binding affinities. How-
ever, the experimental study of the interaction mechanism is still limited only to certain
types of proteins that exhibit, for example, paramagnetic properties, allowing the use of spe-
cific experimental techniques, such as double mutation cycles and paramagnetic relaxation
enhancement.230 Therefore, all-atoms MD simulations combined with data-driven Langevin
models could emerge as a useful tool to reveal complete mechanisms and predict free energies
and rates.

In this section, we study a prototypical example of protein-protein association: the bac-
terial ribonuclease barnase with its inhibitor barstar (see Fig. 9.9). The bacterium Bacil-
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lus amyloliquefaciens synthesizes the barstart protein to inhibit the ribonuclease activity
of its binding partner barnase. The Barnase-Barstar (BB) complex bounds tightly allow-
ing the retention of barnase until its secretion.231,232 This complex presents a diffusion-
limited association well-characterized experimentally with a binding free energy of ∆Gb =
−19.0 ± 0.2 kcal ·mol−1, a kon = 6.0 × 108 s−1 ·M−1 and a koff = 8.0 × 10−6 s−1.233,234

Figure 9.9: Crystallographic structure of the barnase-barstar complex. PDB code: 1BRS.235 Barnase (blue)
and barstar (orange) are shown in cartoon representation. Terminal C and N tails are also shown.

From the computational point of view, binding free energies for this complex have been
computed from atomistic simulations starting from the bound pose and using a Potential
of Mean Force (PMF)-based enhanced sampling method.236 Also, the binding free energy
landscape has been reconstructed using metadynamics.237 Regarding kinetics, the estimation
of the association rate requires expensive sets of MD simulations. Plattner, et al.100 built
a kinetic model of BB association using MSM with an aggregate simulation time of 1.7
milliseconds. On the other hand, Pan, et al.230 estimated the association kon and koff rate
for the BB complex combining unbiased MD simulations and the tempered binding enhanced
sampling method, with aggregate simulation times on the order of hundreds of microseconds.

In what follows, we will use Langevin models to study the association of the BB complex.
This process entails a high complexity given the number of intermediate states and the
different interactions that these proteins can present. In particular, we will focus on the
issue of finding the CV that best describes the process, since we will show that the accuracy
of Langevin models crucially depends on the CV quality.

9.4.2 Simulation methods

Molecular dynamics simulations

In this section, we used as input data a set of unbiased MD simulations provided by D. E.
Shaw Research. The details of the MD simulations are reported in the methods section in
ref. 230. The data set consisted of 61 MD trajectories (including 28 successful association
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events) with an average length of 5 µs each, and an aggregated simulation time of 212.7 µs
(see Table 1, condition BB 2 in ref. 230). Each trajectory contains the positions of all the
atoms of the complex in frames printed every 180 ps. No water molecules were provided
inside the trajectories.

Collective variable definitions

Starting from the raw MD data, we projected the dynamics of the system in a set of simple
CVs to be able to distinguish the associated and dissociated state and to optimize Langevin
models. All the CVs values from the trajectories were computed using PLUMED 2.5.3143.
Below we describe each CV in detail.

Native contacts: We defined the total native contacts as the contacts between the α-
carbon atoms (Cα) at the protein-protein interface. The protein-protein interface is defined
as any pair of Cα atoms, one from each protein monomer, within 10 Å of each other in
the experimentally determined complex (PDB code: 1BRS). Then, the native contacts were
calculated as the coordination number between two groups

c =
∑
i∈A

∑
j∈B

cij , (9.4)

with

cij =
1 −

(
rij−d0

r0

)n
1 −

(
rij−d0

r0

)m , (9.5)

where d0 = 0, r0 = 0.3 nm, n = 6 and m = 8. In the sum of Eq. 9.4, group A are the Cα

atoms at the interface of barnase, while the group B are the Cα atoms at the interface of
barstar.

Pair contacts: the pair contacts are defined in the same way as the total native contacts
(using Eq. 9.4) but instead of computing the sum for all the atoms in the group, we computed
the sum by pairs of atoms. The parameters d0, r0, n, and m stay the same as for the total
native contacts.

Interface RMSD: We define the interface RMSD as the distance RMSD of the Cα atoms
at the protein-protein interface of the complex with respect to the same atoms in the ex-
perimental structure. The distance RMSD between two structures XA and XB is calculated
as:

d(XA,XB) =

√
1

N(N − 1)

∑
i ̸=j

[d(xa
i ,x

a
j ) − d(xb

i ,x
b
j)]

2 , (9.6)

where N is the number of Cα atoms at the protein-protein interface of the experimental
complex and d(xi,xj) represents the distance between atoms i and j.
S Path CV: Using the interface RMSD, we defined a RMSD-based path CV. For a detailed
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explanation of path CVs see Chapter 4, section 4.3.2. For this purpose, we take 14 reference
frames from one of the trajectories, spanning from the dissociated complex to the complex
in the associated state. The frames were equidistant in the RMSD. The distance RMSD
between the reference frames was 4 Å.

To recall the equation in section 4.3.2, the S path CV is defined as

S(X) =
1

n− 1

∑n
i=1(i− 1) exp(−λD(Xi,X))∑n

i=1 exp(−λD(Xi,X))
(9.7)

Using as distance metric D(Xi,X) the interface RMSD. Here, λ was set to 5.6 Å−1, such
that λD(Xi,X) = 2.3.

Langevin models optimization

Using the set of MD simulations with successful association events we optimize 10 inde-
pendent overdamped Langevin models for each CV following the same procedure as in the
previous section. We performed 1× 105 iterations in each optimization. The time resolution
for the optimization of the Langevin models was set to τ = 180 ps.

9.4.3 Results and discussion

The experimental dissociation rate constant for the barnase-barstar complex is koff = 8.0×
10−6 s−1.233 Therefore, starting from the associated complex, the dissociation would take an
average time of 125000 s, or approximately 1.5 days. This time scale is well beyond what
is achievable today with MD simulations. Therefore, simulating the dissociation of the BB
complex starting from the associated state is not possible with standard MD, as it involves
overcoming high free energy barriers. However, the association process of the complex is
much more favorable, as it mainly is a down-hill process, so if you have good computational
resources (like D. E. Shaw Research has with Anton supercomputer) it is possible to collect
an ensemble of association trajectories starting from the dissociated state in time scales of
hundreds of µs. Taking into account that our method allows optimizing Langevin models
from unidirectional trajectories, e.g., association trajectories, we characterize the association
of the BB complex using the unbiased MD trajectories obtained by Pan, et al.230 These
trajectories start from the dissociated state and end up in the associated complex, see Fig.
9.10.

The process of association of a protein complex can involve many intermediate states,
since different interactions between amino acids can occur, leading to encounter complexes
in non-native poses, dissociation, and subsequent association (to the native state or to other
metastable states). The trajectories analyzed in this section are a clear example of this.
Most of these trajectories present complex pathways with one or more events where the
two proteins encounter each other in different metastable states before dissociating and re-
associating to the native complex.230 Therefore, finding a one-dimensional CV to describe
the dissociation process and optimizing the Langevin models is not a trivial task. We follow
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Figure 9.10: Initial and final frames for each trajectory of the Barnase-Barstar simulations. The barnase
(blue) and barstar (orange) proteins are shown in cartoon representation. 28 association events are registered
starting from (a) dissociated state and ending up in (b) associated complex.

a set of CVs composed of native contacts, pair contacts, interface RMSD, and a path CV.
To easily compare the free energy profiles, we normalized these CVs between 0 and 1 (see
Fig. 9.11).

Figure 9.11: Barnase-barstar association trajectories projected over different CVs: (a) native contacts, (b)
pair contacts, (c) interface RMSD, and (d) S path CV. The CVs are normalized between 0 and 1 to facilitate
the comparison of the free energy profiles below. Different colors represent different MD trajectories.

In Fig. 9.11 we reduced the complexity of the trajectories by concentrating only on the
part of the MD simulation that leads to a successful association with the native complex.
Once arriving at the native complex we also follow projected trajectories up to 1 µs of the
MD simulation within this state. Even with these considerations, in Fig. 9.11 we can see
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that all trajectories display metastable states between the dissociated state (CV → 1) and
the associated state (CV → 0).

Figure 9.12: Free energy profiles from optimal Langevin models using as CVs (a) native contacts, (b) pair
contacts, (c) interface RMSD, and (d) path CV. The thickness of the lines corresponds to standard error
over 10 independent optimization runs.

We use the trajectories in Fig. 9.11 as input data to optimize Langevin models and
obtain free energy profiles (see Fig. 9.12). We remark that the input set contains only 28
association trajectories with a coarse time resolution between frames τ = 180 ps. Therefore,
we are pushing our optimization machinery to the limit to make the most out of the limited
data. As mentioned above, typical protein complex dissociation processes are characterized
by rough up-hill free energy landscapes with possible metastable states. Hence, it is difficult
to pinpoint exactly where the free energy barrier between the associated and dissociated state
is located. The experimental binding free energy is about −19.0 kcal ·mol−1 ≈ 32 kBT . In
our Langevin model, however, simple variables like native and pair contacts display free
energy barriers of less than 3 kBT . A slightly more specific variable, the interface RMSD
displays a barrier of about 13 kBT . Finally, the path CV which was designed from reference
frames to follow the dissociation process presents a free energy barrier of about 25 kBT .

In previous chapters, we have shown how depending on the CV in which the FES is pro-
jected, the free energy profile can be different and as sup-optimal CVs tend to underestimate
the height of the free energy barrier. The results in Fig. 9.12 indicate that the same is true
for the BB Langevin models. Regarding the shape of the free energy profiles, all of them
seem to indicate the presence of metastable states between the associated and dissociated
state (also visible from the trajectories in Fig. 9.11) that we have not yet characterized.

Finally, in Table 9.2 we show the dissociation rates from the different Langevin models
obtained using Eq. 8.19. Here, we set the absorbing boundary a = 0, q0 = 0 and b = 1.
We expect the FF to give a rate relatively close to the experimental one, even though
the trajectories provided by D.E. Shaw do not have an estimated rate in the article; such
an estimate is available for a slightly modified FF.230 Again, a trend with a slower rate is
observed when improving the definition of the CV from total contacts to path CV. Although
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Method koff (s−1)
Experimental 8 × 10−6

Path CV 5.4 × 10−2 ± 1.2 × 10−2

Interface RMSD 2.8 × 102 ± 1.1 × 102

Pair contacts 8.1 × 105 ± 2.9 × 105

Total contacts 2.9 × 106 ± 7.9 × 106

Table 9.2: Langevin model-based estimated of the dissociation rate: Barnase-barstar interaction. The
experimental value is reported in Ref. 233. The MFPT from the Langevin models suing the different CVs
is estimated using Eq. 8.19.

we are still far from the experimental value, these preliminary results indicate that the
Langevin models are consistent and show a solid trend: increasing accuracy of the CV in
tracing the detailed unbinding process corresponds to smaller rates, approaching closer and
closer the expected value.

We are not surprised by the underestimation of the free energy barrier and the overes-
timation of the rate, considering the limited amount of input data and its nature (only
association trajectories). On the contrary, we find very encouraging the fact that just by
making an effort to improve the definition of CVs we are improving our thermodynamic and
kinetic predictions by orders of magnitude. Therefore, our method to optimize Langevin
models is emerging as a promising tool for post-analysis CV optimization, as we will discuss
in Chapter 10.

In the near future, we are working on several ways to improve the results presented in
this section: (i) we are going to characterize the different intermediate metastable states via
cluster analysis and define the different association pathways followed by the trajectories.
Isolation of the different pathways will allow us to improve the reaction coordinate used to
study the process. (ii) We will try to include the role of water, as it likely gives an important
contribution to the binding/unbinding kinetics.238 by generating more MD simulations of
spontaneous association with a shorter time resolution to increase the input data set. (iii)
As we are aware of the complexity of the PPI, in parallel we will work on the validation of the
method in a smaller system but still challenging process, the tryptophan-cage folding. The
last system is attractive since we have TPS trajectories provided by Peter Bolhuis (University
of Amsterdam, Netherlands) and we can also easily generate MD trajectories of the entire
folding process.

9.5 Conclusions and outlook

Our results on different systems indicate that, whenever sufficient trajectory data is available
together with a good definition of the reaction coordinate, overdamped Langevin models
reproduce well the quantitative thermodynamic and dynamic properties of the original many-
body system, including accurate kinetic rates, despite a gap of many orders of magnitude
with respect to the short MD trajectories used for training. Incidentally, we note that our

121



approach is not restricted to transition path sampling: Langevin models can be optimized
from any set of unbiased trajectories exploring the transition region (see example in Fig. 9.5
and Fig. 9.8).

In future applications of the new approach, two main issues have to be taken into consid-
eration. First, different kinds of Langevin equations (generalized, standard, or overdamped)
can be necessary to faithfully reproduce the projected dynamics of a complex system, de-
pending on the physical process, the choice of the CV, and the observational timescale. For
chemical reactions in water, the memory timescale could be comparable to the transition
path time, requiring a non-Markovian equation, whereas for crystal nucleation or protein
folding Markovian models are customarily invoked.

Finally, it should be noted that the last application in this thesis shows that the over-
damped Langevin models for the study of complex processes require the optimization of a
good collective variable. However, obtaining a good CV in general is difficult. To address
this issue, in the next chapter, we will focus on that challenge.
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10
Collective variable optimization using

data-driven Langevin models

10.1 Introduction

While collective variables (CVs) are ubiquitously used to model physicochemical transfor-
mations, finding optimal reaction coordinates (RCs) that yield accurate thermodynamic and
kinetic properties is a fundamental challenge in the field of atomistic simulations. As shown
in the last two chapters, the dynamics of a system projected on a CV can be modeled
through Langevin equations. We demonstrated that accurate free energies and rates can
be extracted from transition path sampling trajectories projected on a good RC by opti-
mizing overdamped Langevin models via likelihood maximization.200 However, in the last
chapter we showed that the quality of the reaction coordinate defines how accurately the
Langevin model can reproduce the original dynamics. Here, we are proposing a computa-
tionally affordable method to optimize RCs in post-processing analysis. The approach is
based on a variational principle stating that the dynamics projected on a CV yields a kinetic
rate greater or equal to that from the full dynamics.239 Therefore, minimizing the kinetic
rate of the effective dynamics from Langevin models yields the optimal RCs. Having as
input a set of short molecular dynamics trajectories from aimless-shooting transition path
sampling96, we project the dynamics on a trial CV obtained as a linear combination of a
pool of physically based CVs. We optimize the RC via kinetic rate minimization using a
Monte Carlo-Metropolis procedure. We test the validity of the algorithm on a benchmark
two-dimensional double well potential. Then, we apply the method on the same system that
we used for the validation of the methods presented in previous chapters: the interaction of a
C60 and C240 fullerene dimer in water. We find optimal reaction coordinates simultaneously
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with accurate kinetic rates for both systems.
This chapter is organized as follows: (i) we explain the algorithm developed to optimize

the CVs and the theory behind it. (ii) We test the validity of the model by applying it to
a 2D double-well potential with known free energy and diffusion coefficient. (iii) We apply
the algorithm to a system of fullerene dimers in water. (iv) Finally, the conclusions and
perspectives of this work in progress are presented.

10.2 Theory and methods

10.2.1 Variational principle for rate minimization

Consider two states A and B whose full dynamics is reversible. The transition rate from
state A to B is denoted by kA→B. The reaction rate of the effective dynamics between states
Ã and B̃, defined in a lower dimensional space corresponding to a coordinate q, is k̃Ã→B̃.
Zhang, et al.239 proved that the transition rate of the full dynamics is always less than or
equal to the one computed using effective dynamics. In other words, the optimal reaction
coordinate yields a minimal rate,

kA→B ≤ k̃Ã→B̃ (10.1)

Here, we make use of this variational principle in Eq. 10.1 to optimize a RC based on the
kinetic rate. This optimal RC is generally defined as a monotonic one-to-one function of the
committor. We remark that using the committor we expect the dynamics to be successfully
described by overdamped equation.171 Moreover, when using the committor as RC, the rate
constant is preserved by the effective dynamics:239

kA→B = k̃Ã→B̃ (10.2)

However, as explained in chapter 4 estimating the committor is very computationally
expensive. Some approaches have been proposed for CV optimization aiming at committor
optimization96, even some recent approaches that use artificial intelligence.240 However, its
cost remains prohibitive. Therefore, in our algorithm, we propose an alternative procedure
to committor optimization, based on the effective dynamics in a Langevin model, as we will
explain below.

10.2.2 Algorithm for collective variable optimization

The main idea of the algorithm is to minimize the effective rate computed from optimal
Langevin models as follows: starting from a set N of potentially relevant collective variables
q(t)={q1(t), q2(t)...qN(t)}, one generates a random linear combination of the set with differ-
ent weights qinitial = w1q1(t) + w2q2(t) + ... + wNqN(t) with w⃗ = {w1, w2...wN}. The weights
of the linear combination are normalized such that ||w⃗|| = 1. The optimization is done using
a Metropolis-Monte Carlo-based algorithm. Thus, a trial move is proposed by adding small
increments δ⃗w = {δw1, δw2...δw3} such that qtrial = (w1+δw1)q1(t)...+(wN +δwN)qN(t). The
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increments are randomly drawn from a uniform distribution between [−0.05, 0.05]. Then,
one computes the free energy and the diffusion profiles from the likelihood maximization as
well as the kinetic rate (Eq. 8.19) using the same procedure as in the last two chapters.200

If the rate is reduced (knew < kold), the trial move is accepted and the increments are added
to the initial weights.

Next, new increments are generated and new trial moves are tested until the process
is repeated for a total number of iterations set by the user. Trial move configurations are
rejected if they yield a larger rate, but some could be accepted based on a metropolis criterion,

P = (
kold
knew

)α × τnoise old

τnoise new

, (10.3)

τnoise is the characteristic time of the auto-correlation function of the effective noise (see
Chapter 8, section 8.2.4). If P is less than a random number r uniform between 0 and 1, the
move is rejected and the configuration is discarded and a new one is tested. In a nutshell,
the algorithm does the following:

1. Read the input transition path trajectories
2. Construct an initial RC as a sum of the CVs with random weights
3. Randomly change the weight of the CV and find the free energy and diffusion profiles of

the configuration from the optimal Langevin models using the likelihood maximization
4. Calculate the MFPT using the integral in equation 8.19.
5. Accept the configuration based on a Metropolis criterion
6. Repeat until N iterations are reached

The integration limits in Eq. 8.19 are automatically estimated: a is the minimum value
of CV q, q0 is the average value of CV q for all trajectories ending in the left basin, and b is
the average value of CV q for all trajectories ending in the basin on the right. The biggest
advantage of this algorithm is that the optimization of the CVs is done in post-analysis: the
pool of CVs is flexible since new CVs can be extracted from the trajectories without the
need to run new expensive MD simulations.

10.2.3 Simulation methods

2D double-well potential

The benchmark 2D double-well free energy surface is defined as the sum of two Gaussian
functions:

F (x, y) = Ae
−µ[ ((x+a)∗c−x0)

2

σ2
x

+
((y+a)∗c−y0)

2

σ2
y

]
+ Be

−µ[ ((x+a)∗c−x1)
2

σ2
x

+
((y+a)∗c−y1)

2

σ2
y

]
, (10.4)

where A and B are the respective heights of the Gaussian functions, A = B = −20 kBT .
x0 = 1.2 and y0 = 2.0, x1 = 2.8 and y1 = 2.0 are the coordinates of the Gaussian centers.
The width of the Gaussian is σx = σx = 0.5, and µ = 0.5. a = 0.28 and c = 2.6 are scaling
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factors, so that x ∈ [0, 1] and y ∈ [0, 1], see Fig. 10.1a. The diffusion coefficient in this case
was set to a constant value D(x, y) = [0.015, 0.015]

The MFPT was estimated from brute force simulations using the direct estimation method
(see Chapter 3, section 3.2). For this purpose, 10 long overdamped Langevin dynamics
simulations of 1 µs, with a time step ∆t = 1 × 10−4 ps each were performed. For the
aggregate simulation time (10 µs), 16039 jumps from state A to B where observed, then
we found a MFPT= 5600 ps. The transition rate kA→B was estimated as the inverse of the
MFPT, kA→B = 1.8 × 10−4 ps−1.

The input trajectories for the optimization of the CVs were obtained by shooting 100
overdamped Langevin trajectories from the barrier top (see Chapter 8, section 8.2.3). From
these trajectories, 51 relaxed to state A (left well) and 49 relaxed to state B (right well).

Fullerene C60 and C240 dimers

In the previous chapters, we have used the interaction between the fullerene dimer in water
solution to validate our methods. Here, we exploit the data already generated for these
systems to test the CV optimization protocol. The description of these systems and the
methodology used to generate the input trajectories can be found in section 9.2.2.

We used as input data the same set of 100 aimless shooting trajectories generated in the
previous chapter. These trajectories were projected on three different CVs: (i) the distance
between the centers of mass of the fullerene molecules, defined in previous chapters, (ii) the
carbon-carbon contacts (C-C contacts), and (iii) the water-carbon contacts (O-C contacts).

C-C contacts: the contacts between the carbon atoms of each fullerene were calculated as
the coordination number between two groups

c =
∑
i∈A

∑
j∈B

cij , (10.5)

with

cij =
1 −

(
rij−d0

r0

)n
1 −

(
rij−d0

r0

)m , (10.6)

where d0 = 0, r0 = 0.35 nm, n = 6 and m = 10. In the sum of Eq. 10.5, the carbon atoms
in one of the fullerene molecules of the dimer are group A, while the carbon atoms in the
other fullerene are group B.

O-C contacts: Analogous to c, the number of water-carbon contacts is defined as w =∑
i∈A
∑

j∈B wij. We use Eq. 10.6 replacing cij by wij with d0 = 0, r0 = 0.6 nm, n = 6 and
m = 10. Group A is the carbon atoms of the fullerene molecules while group B are the
oxygen atoms of the water molecules in the simulation box.

In all cases, for each putative CV, the optimal Langevin model was optimized for 1 × 106

iteration steps, with a time resolution τ = 1 ps, the latter was tested as sufficient to yield
time-decorrelated noise when using the dimer center-of-mass distance as CV.
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10.3 Results and discussion

10.3.1 Benchmark system: double-well potential

To test the validity of the algorithm, we applied it to a theoretical benchmark model: a 2D
double-well potential Eq. 10.4. We remark that in this case, the input simulations correspond
to overdamped Langevin dynamics. However the projected dynamics is not expected to be
strongly different from the original one, and for the optimal (x) coordinate we expected the
overdamped model to be a good one. The optimal collective variable is x while y could be
considered a bad variable as the projection on y, yields the wrong free energy landscape,
that is, a single well instead of a double well (see Fig. 10.1). Moreover, a projection in y
leads to trajectories that are not able to identify the state where the system ends up after
relaxation (see Fig. 10.1b). Linear combinations of x and y yield to sub-optimal CVs, as
shown in the central panels of Fig. 10.1.

Figure 10.1: 2D double-well benchmark system for CV optimization. (a) The 2D double-well free energy
landscape used for the simulations. (b) Trajectories projected in the CVs indicated by the respective black
arrows in panel (a). Trajectories ending up in state A (left basin) are colored in blue, while trajectories ending
up in state B (right basin) are colored in orange. (c) Dashed lines: exact free energy and diffusion profiles
for different CVs q. Solid lines: average free energy and diffusion profiles from 10 independent optimal
Langevin models optimized using the trajectories in panel (b). The width of the solid lines corresponds to
the standard error.

When the trajectories are projected into the ideal CV x, the free energy and diffusion
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profiles are accurately reconstructed by the optimal Langevin models, see the left-hand side
in Fig. 10.1. In contrast, when non-ideal CVs are used (center and right-hand sides in
Fig. 10.1), not only is the free energy barrier underestimated with respect to the exact one
of the ideal variable, but the free energy profiles of the optimal Langevin models tend to
underestimate this barrier even more. At the same time, the diffusion profile is overestimated.
We note that our Langevin model optimization method seeks to reproduce the dynamics of
the input trajectories, “no matter the cost”, even if it must lose precision in F (q) and D(q) to
do so. However, as the free energy barrier is still underestimated in this effective dynamics,
the variational principle still holds. Our in-depth understanding of this “compensation”
phenomenon between free energy and the projected diffusion is still in progress.

After showing the effect of projection on non-ideal CVs, we can use the CV optimization
algorithm. Starting from random linear combinations of the variables x and y, we optimize
Langevin models to calculate the transition rate and use the variational principle for the
MC optimization of the CV. We performed 10 CV optimizations of 300 MC iteration steps
each, see Fig. 10.2. We can see how at the beginning of the optimization, some of the
replicas start with a very high value of k, however, after about 150 iteration steps, all the
replicas converge to the reference k value (up to statistical error). This variation in orders
of magnitude shows the importance of using an optimal variable to accurately estimate the
rate. At the last iteration the average optimal CV is q = (0.98 ± 0.12)x + (0.07 ± 0.15)y.
This is a successful result, since the optimal CV corresponds well with the ideal CV 1x+ 0y.

Figure 10.2: Kinetic rate from CV optimization: 2D double well potential. Transition rate k as a function
of the number of optimization iterations. The dashed line corresponds to the reference rate estimated from
brute force simulations. Colored lines correspond to 10 different CV optimizations starting from different
random linear combinations of x and y.

Now we test the method on a set of all-atoms MD simulations, where, as explained in the
last chapter, memory effects are expected upon projection on 1D, and the original dimen-
sionality is ∼ 104. Hence a more complex system becomes a more interesting challenge for
CV optimization.
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10.3.2 Application: fullerene dimers

In previous chapters, we have already discussed the advantages that the interaction of a
fullerene dimer in water gives us to validate our methods. Here, we take as input data for
the CV optimization the same trajectories used in Chapter 9. We project these trajectories
into different CVs: the distance between the centers of mass of each fullerene, the carbon-
carbon contacts, and the water-carbon contacts, as shown in Fig. 10.3.

Figure 10.3: Application of CV optimization to fullerene dimers in water, using as an example the data of
the C240 fullerene dimer. (a), (b), and (c) Input trajectories for the CV optimization projected in the distance
between the centers of mass, the carbon-carbon contacts, and the water-carbon contacts, respectively. The
values of the CVs are normalized between 0 and 1. Trajectories ending up in the associated state are
colored in blue, and those ending up in the dissociated state are in orange. (d) Average free energy profiles
from optimal Langevin models using the trajectories in panels (a), (b), and (c). 10 independent Langevin
optimizations were performed. The standard error corresponds to the width of the lines.

These variables will be the pool of CVs used for the linear combinations in the CV op-
timization algorithm. In Chapter 9 we show that the distance between the centers of mass
captures well the dynamics of the dimer association and dissociation process. Here, we add
another variable that depends on the distances of the carbon atoms, but this time in the
form of a switching function: the number of C-C contacts between the two fullerenes. Addi-
tionally, since we are studying the interaction of fullerenes in water, one might think that a
variable involving the atoms of the water molecules may be useful to describe the solvation
shells between the two fullerene molecules that are involved in the association and dimer
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dissociation. For this purpose, we define the contacts between the oxygen molecules of the
water and the carbon atoms of the fullerenes (O-C contacts).

In Fig. 10.3 we take as an example the trajectories of the C240 fullerene dimer. The
variables related to the distance between the carbon atoms (distance between centers of mass
and C-C contacts) are able to distinguish between the associated and dissociated states.
However, when we use these variables separately to optimize Langevin models, the C-C
contacts display a lower free energy barrier, see Fig. 10.3d. On the other hand, the variable
contacts between water and carbon atoms is not a good order parameter since it is barely
capable of distinguishing between the two states, see Fig. 10.3c. This is reflected in the free
energy profile of the optimal Langevin model, which presents a single minimum (Fig. 10.3d).

This pool of three CVs was entered as input for CV optimization. We note that, since
Eq. 8.19 is written for a left-to-right transition, the values of the C-C contacts variable were
inverted to obtain a rate consistent with the others. However, Eq. 8.19 is general and a
simple modification to the integration limits allows the same equation to be used for inverse
transitions. In Fig. 10.4, we present the dissociation rate constant of the C60 and C240

fullerene dimers during the CV optimization process.

Figure 10.4: Kinetic rate from CV optimization: C60 and C240 fullerene dimers. Transition rate k as a
function of the number of optimization iterations for (a) C60 and (b) C240 fullerene dimer. The dashed
line corresponds to the reference rate estimated from brute force simulations (see Chapter 9). Colored lines
correspond to 5 different CV optimizations starting from (a) different random linear combinations of the
distance between the centers of mass, the carbon-carbon contacts, and the water-carbon contacts, (b) a
linear combination with the same weight for all variables.

When the CV formulation is changed there are three possible sources of rate reduction:
the first is the improvement of the CV towards an optimal RC, that we seek. The second,
however, is the spurious overestimation of the barrier height due to a worse CV having a
longer characteristic timescale for Markovianity (see fullerene results in chapter 9). The third
is the overestimation or underestimation of the barrier due to a non-converged optimization of
the Langevin model. We notice this effect when, to improve the computational performance
of the CV optimization, we optimize the Langevin models only for 1×105 iterations. Clearly,
we want to avoid the last two effects, to have a genuine optimization of the quality of the CV.
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We therefore monitor the auto-correlation time of the “observed noise” at each optimization
step, refusing CV changes that increase it and run longer optimizations of the Langevin
models (1 × 106 iterations) to ensure convergence of the free energy and diffusion profiles.

Once we had these factors under control, we found how starting the CV optimization
from different random linear combinations of the CVs or from a linear combination with the
same weight for all variables, at convergence the rate fluctuates around the reference rate,
showing that the algorithm is able to successfully optimize the transition rate and reaction
coordinate. Interestingly, we note that the variable that includes water, the O-C contacts, is
the CV that contributes the least to the optimal RC, while the distance between the centers
of mass is the variable that has the greatest weight. However, a more detailed analysis of
these results, as well as a more specific tuning of the algorithm is still needed in order to
reduce the large fluctuations that we currently see in the converged regime.

10.4 Conclusions and outlook

The reaction coordinate optimization problem is an open challenge in our field. Here, we in-
troduce a computationally simple method for the optimization of reaction coordinates based
on kinetic rate minimization from optimal Langevin models. We show that the algorithm can
successfully optimize the reaction coordinate based on an accurate estimate of the transition
rate in the 2D double-well potential benchmark system. In addition, we found promising
results for the C60 and C240 fullerene dimers in water. However, some improvements can still
be implemented. For example, considering that the current implementation of the algorithm
does not restrict the number of CVs to be used, a greater number of CVs can be introduced
in the pool to increase the probability of including the relevant degrees of freedom for the
transition process. Although we are initially testing physically motivated CVs, machine
learning-based CVs could also be included in the optimization, as done recently using pools
of CVs to optimize reaction coordinates in ligand-protein unbinding.156

Another important improvement could be the inclusion of non-linearity in the combination
of CVs through artificial intelligence. Regarding computational cost, although the algorithm
works in post-processing and does not require running new expensive MD simulations, the
current bottleneck is in the optimization of the Langevin models in each iteration of the
CV optimization. To improve the performance of this process and taking advantage of the
formulation of the likelihood function, a parallel implementation of the latter is devised. We
also want to investigate more in detail the relationship between the optimized CV from our
algorithm and the committor.

Finally, considering that the Langevin model framework can be applied to a wide variety
of physicochemical processes, as illustrated in chapter 9, the CV optimization algorithm
presented here could also be applied to different systems. Taking into account all these
possibilities, the improvement and extension of this reaction coordinate optimization algo-
rithm gave rise to a new Ph.D. project that will be carried out by Line Mouaffac under the
supervision of Fabio Pietrucci, at the Institut de Minéralogie, de Physique des Matériaux et
de Cosmochimie (IMPMC), Sorbonne Université.
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11
Conclusions and perspectives

In this thesis, we worked on moving forward the state of the art in the development of
methods for kinetic rate prediction from molecular dynamics-related methods. Among the
biggest challenges in this field are: (i) the limitation of the time scales accessible with MD
simulations that make it difficult to study rare events, (ii) the dependency of enhanced
sampling methods for the calculation of rate constants on ideal collective variables, and (iii)
the need for criteria to diagnose the reliability of the predictions. In order to address these
issues, here we propose two new alternative methods for predicting transition rates. These
theoretical methods were designed from the fundamental understanding of the dynamics
modeled through MD and enhanced sampling simulations to recover the statistics of barrier
crossing events from equilibrium or out-of-equilibrium trajectories in post-processing analysis
and thinking of exploiting the parallel calculation capabilities of current computers, favoring
the use of relatively small ensembles of short simulations (compared to the time scales of
rare events) instead of long ergodic trajectories.

In chapter 6 we developed a new methodology based on Kramers’ theory of activated bar-
rier crossing to estimate escape rates starting from an ensemble of short simulations subject
to a time-dependent bias. We took inspiration from the methods used by the force spec-
troscopy community that address single molecule experiments, and we significantly improved
over a related approach, infrequent metadynamics.

Our results both on benchmark systems (chapter 6) and on all-atom MD simulations
(chapter 7) indicate that the new approach simultaneously provides rates (even when sub-
optimal CVs are biased) from simulations orders of magnitude shorter than the average
waiting time of the processes, as well as a quantitative estimation of the quality of a CV.
This latter result opens an interesting perspective of automatic CV-optimization using, for
instance, machine learning approaches with the quality-of-CV parameter as a loss function.
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We have used examples from MetaD simulations, however, the KTR method is general
for any time-dependent biased simulation along some CVs, such as adaptive biasing force
or adaptively biased MD, among others. Methods restricting the bias filling level could
also be used within the KTR framework, which would have the advantage of simplifying
the bookkeeping of the bias potential and survival probability. Additionally, our method
provides a novel measure for the effectiveness of the added bias to accelerate the transition
(related to the efficiency of the CVs). This overcomes severe limitations encountered with
previous approaches where the bias had to be deposited very infrequently over ideal CVs.

There are several points of the KTR theory that can be improved in future work. Au-
tomatized methods to determine when the barrier-crossing occurs might be helpful. Also, it
would be useful to extrapolate the KTR theory to non-equilibrium conditions, as we have
shown that Kramers’ theory and the quasi-adiabatic assumption break down in the over-
biasing regime. Finally, the main limitation of the current approach, besides force field
inaccuracy, appears to be the implicit approximation of considering the transition process
as the escape from a single “reactants” well to a single “products” well: a generalization to
multiple-basins and dimensions, as was done for force-spectroscopy to take explicitly into
account a network of possibly multiple transition pathways across several metastable states
would be very convenient to account for the multi-state dynamics in complex simulations.

In chapter 8 we develop and apply a second methodological framework aimed at the
estimation of accurate free-energy landscapes, and kinetic rates, and also at the automatic
optimization of reaction coordinates. We adopt a scheme based on Langevin equations
modeling the dynamics projected on a CV: such equations bear a physical interpretation in
terms of average force and noise that is lacking in more abstract data-driven approaches like
Markov state models or machine learning-based predictors.

As a first important result, our work demonstrates the possibility to obtain simultaneously
free energies and kinetic rates in a conceptually simple way, by optimizing overdamped
Langevin models via maximum likelihood starting from about one hundred path sampling
trajectories, regardless of the barrier height. We remark that two tests are also presented
that allow us to identify the optimal time resolution for the construction of the stochastic
model: this is a crucial point to allow the robust application to systems whose behavior is
not known in advance.

Overdamped Langevin models reproduce well the quantitative thermodynamic and dy-
namic properties of the original many-body system, including accurate kinetic rates, despite
a gap of many orders of magnitude with respect to the short MD trajectories used for train-
ing. Incidentally, we note that our approach is not restricted to transition path sampling:
Langevin models can be optimized from any set of unbiased trajectories exploring the tran-
sition region.

In future work, this approach to optimize Langevin models may be generalized to different
kinds of Langevin equations (generalized or standard) allowing its use to be extended to
applications such as chemical reactions in solution. Until now, the approach is restricted to
one-dimensional Langevin models: taking into account the complexity of the physicochemical
processes and how difficult it is to find a RC that describes them, an extension of the approach
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to more dimensions, which allows the simultaneous use of several CVs, could also be useful.
Having opened the possibility to obtain faithful Langevin models of the projected dynamics

along different CVs, a natural direction of research, that we pursued in chapter 10, consists
in performing a systematic variation of the CV definition to obtain an optimal reaction
coordinate. As a variational principle guiding the optimization algorithm, we systematically
reduce the transition rate: direct estimation of the latter by numerical quadrature is an
important ingredient for numerical efficiency.

Considering a trial CV formed by a linear combination of a pool of putative CVs, as a
proof of concept we demonstrate that the ideal reaction coordinate is quickly and reliably
recovered in a simple 2D benchmark system. Remarkably, our results show that a maximum-
likelihood Langevin model along a non-ideal CV tends to underestimate the true free-energy
barrier along the same direction: this phenomenon does not limit the efficiency of the CV-
optimization algorithm, however, since it preserves the variational principle.

A first application to the dissociation of a fullerene dimer in water confirms the ability of
the new method to yield at the same time an optimal reaction coordinate and an accurate
estimation of the transition rate. However, work is in progress to extend the study to a large
pool of putative CVs (whose construction is an interesting problem per se) and to different
systems. Another important improvement could be the inclusion of non-linearity in the
combination of CVs through artificial intelligence and the improvement of the computational
efficiency of the numerical codes used for Langevin model optimization.

Here we have provided a summary of the most important theoretical advances and results
from this thesis. Both methods are alternative pathways with a common goal: kinetic rate
prediction. The possibility of approaching the problem of kinetics from different perspectives
demonstrates its complexity. The use of one of the methods proposed or the other will
depend on the available data and the application at hand. This thesis opens up a plethora
of possibilities from the exploitation of the wealth of information available in transition
path sampling trajectories, or the possibility of recovering useful information from MetaD
simulations with bias over non-ideal CVs, to the use of these approaches in the optimization
of CVs. As the atomistic computer simulation community moves further and further into
the study of kinetics, we are looking forward to any improvements and applications that our
new approaches may have.
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A
Supplementary information: kinetics from

metadynamics

Supplementary Text

Analytical S(t) for a logarithmic and linear time-dependent bias

If the bias presents a logarithmic time dependence, VMB(t) = a log(1 + b t) (e.g., orange line
in Fig. 1b), then the survival probability can be analytically calculated using Eq. 6.15

S(t) = exp

(
k0

b(βγa + 1)

(
1 − (1 + b t)βγa+1

))
. (A.1)

where γ and k0 are the efficiency of the CV and intrinsic transition rate, respectively. If
there is a linear time-dependence of the bias VMB(t) = a t, and using 6.15, the analytical
expression for the survival probability is

S(t) = exp

(
k

βγ a

(
1 − eβγ a t

))
. (A.2)

These analytic expressions of S(t) can be then used within the likelihood expression (Eq.
6.16) to extract the relevant parameters.

Experimental unbinding rate CDK2-CS3 complex

In the unbinding simulations of the CS3 ligand and the CDK2 protein, we use as a reference
value for comparison the experimental unbinding rate of this complex reported by Dunbar
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Jr, et al., in ref. 164. The authors measured separately the unbinding rate of the CS3
ligand from the protein CDK2 and from the CDK2-CyclinA complex. In the Supporting
Information of ref. 164 only the values of CDK2-CyclinA koff are reported, with the CS3
ligand having an off-rate of 0.061 s−1. However, they specify in the Main Text that all
the data is available in: http://www.csardock.org/ (see dataset 2: 2012 CSAR Exercise,
subfolder CDK2 data/CDK2 Master Kd sheet .xlsx). In this dataset, the CS3 ligand’s koff
from CDK2 (without CyclinA) is reported as 0.259 s−1. Because the MD simulations have
been performed only with CDK2 (no CyclinA), we compared our results with the latter
value.

Supplementary Figures

Figure A1: Average accumulated MetaD bias for simulations with different bias deposition times. a) MetaD
bias is added over the x coordinate; b) MetaD bias is added over the y coordinate. The position of the
TS corresponds to the gray dashed line. We observe that when bias is added along the x coordinate, a
large quantity of bias is deposited over the TS region. On the other hand, by depositing bias along the y
coordinate, no bias is deposited in the TS region.

Figure A2: γVMB as a function of the normalized time t/td for the 2D double-well simulations. γVMB as a
function of the time normalized by the bias deposition time (t/td) for the different simulation setups basing
the x-coordinate (left) and y-coordinate (right). Red to blue lines go from frequent to infrequent td.
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Figure A3: iMetaD results for the CDK2. Cumulative distribution function (CDF) of the iMetaD rescaled
times from the same CDK2 simulations as shown in the Main Text with td=100 and 500 ps. Attempted fits
using a Poisson distribution are shown as solid lines. 90% and 74%, respectively, of the bootstrap samples
failed the KS-test.
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B
Supplementary information: kinetics from

Langevin models

Supplementary Tables

Method N. trajs MFPT (ns)
Brute force 100 18.2 ± 0.1

Reactive flux

1000 90 ± 69
2000 25 ± 4
5000 27 ± 2
8000 20.8 ± 0.3
10000 19.1 ± 0.1
12000 19.07 ± 0.09
15000 18.24 ± 0.05
18000 18.17 ± 0.04
20000 18.20 ± 0.07

Table B1: Brute force vs reactive flux estimate of the MFPT. We used as a benchmark system a double-well
potential with a 7 kBT barrier and 50 ≤ γ(q) ≤ 150 ps. The brute force estimate is obtained as the average
escape time of 100 trajectories (at least 50 ns-long) starting from the minimum. Reactive flux estimate is
obtained with Eq. 8.18, and different number of trajectories. Each trajectory is 40 ps-long. We note that
at least 15000 trajectories are needed to converge the reactive flux estimate. We highlight that in practical
applications, the need of a large amount of trajectories to converge the correlation function of Eq. 8.18
restricts the use of reactive flux.
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Supplementary Figures

Figure B1: Effect of the inclusion of D(q) in the OLE. We performed long Langevin dynamics simulations
over a 1D double-well model with a 5 kBT free energy barrier (m = 1 kBT · ps−2), using Eq. 8.4,

i.e., ignoring the term ∂D(q)
∂q in Eq. 8.5. (left) Double-well with constant D(q). (right) Double-well with

q−dependent D(q) = (25(x+1)2(x− 1)2(x− 2)(x+2)+ 150)−1. (a), (b) Langevin dynamics trajectories
from double-well with and without constant D(q), respectively. (c), (d) Free energy profiles recover from
the population histogram for constant and non-constant D(q), respectively. The dashed lines correspond to
the exact double-well used to perform the Langevin dynamics simulations. The solid red lines correspond
to the population histogram. The blue line in panel (c) shows the exact result expected by neglecting the
q−dependent D(q) in Eq. 8.5. Since we miss the extra “D” force, the equilibrium distribution should be
ρ = C

D(q)e
−βF = D(q)−1e−βF , so the recovered F (q) is in this case −kT log ρ = F (q) − log

(
D(q)−1

)
.

Panel (d) illustrates the importance of including ∂D(q)
∂q in Eq. 8.5, without this term, in this case, the free

energy barrier is overestimated about 1 kBT .
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Figure B2: Autocorrelation function C(t) (left panels) and distribution of the effective noise G (right
panels) for optimal Langevin models of different systems. The expression used to estimate the noise is found
inverting the Euler-Maruyama, or the Milstein integrator, see the Methods section C, in the Main Text. (a)
Symmetric double-well potential (non-overdamped input trajectories) with 10 kBT barrier and diffusion
coefficient 0.01 ≤ D(q) ≤ 0.02 ps−1 (see Fig. 8.3 and Fig. 8.4). (b) C60 fullerene dimer in solution. (c)
C240 fullerene dimer in solution. The different time resolutions τ used to optimize the overdamped Langevin
models are shown in colors. The expected zero-mean, unit-variance Gaussian distribution of the noise is
shown in black lines on the right panels. Error bars correspond to standard error over all the trajectory
data-points.
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Figure B3: Optimal overdamped Langevin models, each one trained on 100 non-overdamped Langevin
trajectories of 50 ps relaxing from the barrier top. (a) Symmetric double-well potential with 10 kBT barrier
and diffusion coefficient 0.002 ≤ D(q) ≤ 0.005 ps−1. (b) Symmetric double-well potential with 15 kBT
barrier and diffusion coefficient 0.005 ≤ D(q) ≤ 0.01 ps−1. (c) Asymmetric double-well potential with
10 kBT barrier and diffusion coefficient 0.005 ≤ D(q) ≤ 0.03 ps−1. The different time resolutions τ
employed to optimize the models are shown in colors. The exact profiles are shown with black lines. The
thickness of the lines corresponds to standard error over 10 independent stochastic optimization runs.

Figure B4: Diffusion profiles from umbrella sampling. Trajectory on each window for (a) C60 fullerene dimer
and (b) C240 fullerene dimer using a spring constant c = 1000 kJ ·mol−1. Note that for the calculation
of the diffusion coefficient, we do not require converged umbrella sampling calculations. Diffusion profiles
D(d) for different values of the spring constant c for (c) C60 fullerene dimer and (d) C240 fullerene dimer.
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Figure B5: Propagator test. Comparison between p(q′, t+ τ |q, t) predicted by the optimal Langevin model
and a distribution of MD shootings trajectories for the C60 fullerene dimer. The time resolution was set
to τ = 1 ps. The optimized free energy and diffusion profiles (Fig. 9.3, orange profiles) were used to
estimate the short-time transition probability (Eq. 8.10 predicted by the Langevin model (solid lines). The
distribution from MD corresponds to the histograms of the displacement after 1 ps from sets of 500 shooting
trajectories (dashed lines). We use 5 shooting points extracted from a long unbiased trajectory for each
location: before the barrier (orange), at the barrier top (blue), and after the barrier (green).

Figure B6: Effect of the number of input trajectories. Optimal free energy and diffusion profiles recon-
structed from (a) 100 and (b) 1000 initial MD trajectories of 20 ps for the C60 fullerene dimer. The different
time resolutions τ employed to optimize the models are shown in colors. The reference free energy profile
(computed from brute force MD) and diffusion profile (computed from umbrella sampling) are shown with
black lines. The thickness of the lines corresponds to standard error over 10 independent optimization runs.
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C
Dissemination of research results

Published papers

• Palacio-Rodriguez, K., Vroylandt, H., Stelzl, L.S., Pietrucci, F., Hummer, G., Cossio,
P. Transition Rates and Efficiency of Collective Variables from Time-Dependent Biased
Simulations. The Journal of Physical Chemistry Letters. In press.
DOI: https://doi.org/10.1021/acs.jpclett.2c01807

• Palacio-Rodriguez, K. & Pietrucci, F. Free Energy Landscapes, Diffusion Coefficients,
and Kinetic Rates from Transition Paths. Journal of Chemical Theory and Compu-
tation. In press. DOI: https://doi.org/10.1021/acs.jctc.2c00324

Publications in preparation

• Mouaffac, L., Palacio-Rodriguez, K., & Pietrucci, F. Optimal reaction coordinates from
effective dynamics of transition paths. In prep.

• Palacio-Rodriguez, K., Brotzakis, F., Bolhuis, P., Barducci, A., & Pietrucci, F. As-
sessing free energy landscapes and kinetic rates for protein-protein interactions via
Langevin models. In prep.

• Lam, J., Palacio-Rodriguez, K., Dellago, C., & Pietrucci, F. Prediction of crystalliza-
tion rates from short molecular dynamics trajectories. In prep.

• Palacio-Rodriguez, K., Paloni, M., Barducci, A., & Pietrucci, F. Unraveling the in-
teraction between folded proteins and membraneless organelles with coarse-grained
dynamics. In prep.
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Publications in collaboration

• Ochoa, R., Palacio-Rodriguez, K., Clemente, C. M., & Adler, N. S. (2021). dockECR:
Open consensus docking and ranking protocol for virtual screening of small molecules.
Journal of Molecular Graphics and Modelling, 109, 108023.

• Giraldo-Barreto, J., Ortiz, S., Thiede, E. H., Palacio-Rodriguez, K., Carpenter, B.,
Barnett, A. H., & Cossio, P. (2021). A Bayesian approach to extracting free-energy
profiles from cryo-electron microscopy experiments. Scientific Reports, 11(1), 1-15.

• Lans, I., Palacio-Rodŕıguez, K., Cavasotto, C. N., & Cossio, P. (2020). Flexi-pharma:
a molecule-ranking strategy for virtual screening using pharmacophores from ligand-
free conformational ensembles. Journal of computer-aided molecular design, 34(10),
1063-1077.

• Lans, I., Anoz-Carbonell, E., Palacio-Rodŕıguez, K., Aı́nsa, J. A., Medina, M., & Cos-
sio, P. (2020). In silico discovery and biological validation of ligands of FAD synthase,
a promising new antimicrobial target. PLoS computational biology, 16(8), e1007898.

Participation to conferences

Invited talk

• Data-driven Langevin equations from transition path sampling trajectories. Memory
effects in dynamical processes. 23-25 June, (2021). CECAM-ESI, Online.

Contributed talk

• Transition rates and efficiency of collective variables from time-dependent biased sim-
ulations. 20 years of Metadynamics. 5-8 September, (2022). Lausanne, Switzerland.

• Development of predictive approaches for biomolecular association kinetics. Biophysics
at the Dawn of Exascale Computers. 16-20 May, (2022). Hamburg, Germany.

Poster

• Development of predictive approaches for molecular association kinetics. Gordon Re-
search Conference: Multiscale Modeling of Complex Systems: Methods and Applica-
tions. 17-22 July, (2022). Barcelona, Spain.

• Strategies to predict kinetic rates and quality of collective variables. Chasing CVs
using Machine Learning: from methods development to biophysical applications. 28-30
June, (2022). Paris, France. Poster Award Winner

• Data-driven Langevin equations from transition paths. Atomistic simulations of inter-
facial processes in energy materials. 13-15 June, (2022). Paris, France.
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• Free energy landscapes and kinetic rates from transition paths. Paris International
School on Advanced Computational Materials. 29 Aug-5 Sept, (2021). Paris, France.
Poster Award Winner

• Kinetic rates from time-dependent bias potentials. Summer School on Biomolecular
Simulations. 7-11 June, (2021). BioExcel, Online.

• Free energy landscapes, diffusion coefficients and kinetic rates from transition paths.
CECAM Mixed-Gen series, session 1 on activated events. 28 January, (2021). CE-
CAM, Online.

GitHub repositories

• Free Energy Landscapes, Diffusion Coefficients, and Kinetic Rates from Transition
Paths: https://github.com/physix-repo/optLE

• Transition Rates and Efficiency of Collective Variables from Time-dependent Biased
Simulations: https://github.com/kpalaciorodr/KTR
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