
HAL Id: tel-04206753
https://theses.hal.science/tel-04206753

Submitted on 14 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Qualification methodology for ISO 26262 certification of
automotive SoCsystems

Tiziano Fiorucci

To cite this version:
Tiziano Fiorucci. Qualification methodology for ISO 26262 certification of automotive SoCsystems.
Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2023. English.
�NNT : 2023GRALT035�. �tel-04206753�

https://theses.hal.science/tel-04206753
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : EEATS - Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Spécialité : Nano électronique et Nano technologies
Unité de recherche : Techniques de l'Informatique et de la Microélectronique pour l'Architecture des
systèmes intégrés

Méthodologie de qualification pour la certification ISO26262 des
systèmes-sur-puce pour l'automobile

Qualification methodology for ISO26262 certification of automotive
SoC systems

Présentée par :

Tiziano FIORUCCI
Direction de thèse :

Giorgio DI NATALE
DIRECTEUR DE RECHERCHE, Université Grenoble Alpes

Directeur de thèse

Jean-Marc DAVEAU
 STMicroelectronics

Co-encadrant de thèse

Rapporteurs :
Alberto BOSIO
PROFESSEUR DES UNIVERSITES, ECOLE CENTRALE LYON
Stefano DI CARLO
PROFESSEUR, Politecnico di Torino

Thèse soutenue publiquement le 6 juin 2023, devant le jury composé de :
Giorgio DI NATALE
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES

Directeur de thèse

Vincent BEROULLE
PROFESSEUR DES UNIVERSITES, GRENOBLE INP

Président

Pascal BENOIT
MAITRE DE CONFERENCES HDR, UNIVERSITE DE MONTPELLIER

Examinateur

Alberto BOSIO
PROFESSEUR DES UNIVERSITES, ECOLE CENTRALE LYON

Rapporteur

Stefano DI CARLO
PROFESSEUR, Politecnico di Torino

Rapporteur

Invités :
Jean-Marc Daveau
INGENIEUR DOCTEUR, ST Microelectronics

Qualification methodology for
ISO26262 certification of
automotive SoC systems

by

Tiziano Fiorucci
(Under the Direction of Giorgio di Natale)

Abstract

This thesis proposes to set up a �ow and a methodology of ISO26262
certi�cation for system-type integrated circuits on a digital chip
dedicated to driving. These circuits are generally composed of sev-
eral Intellectual Properties, IPs, dedicated to di�erent functions

such as communication or processing of information from sensors (camera, li-
dar ...), real-time system, vision and imaging, system management (operating
system), security. The ISO26262 methodology requires the extraction of a num-
ber of metrics related to the resilience of the system to single and multiple faults
as well as the e�ectiveness of countermeasures (detection, reporting and correc-
tion of errors) and failure modes. The extraction of failure metrics from fault
trees is a method known and documented in the literature. Nevertheless, its
application has often been limited to macroscopic electromechanical systems
such as a car, actuator or sensor chains. On the other hand, these methods are
rarely applied in the �eld of automotive SoCs where the extraction of metrics
is still largely manual (usually using a spreadsheet) and dependent on an ex-
pert, and where the veri�cation of the e�ectiveness of countermeasures is best
done by targeted fault injection on a few sub-parts of the complete system or
irradiation under a particle beam. This thesis proposes to develop a reliability
metrics extraction methodology based on fault injection per block as well as
composition methods to obtain the metrics at the level of the complete system.
The �rst part of the thesis will be devoted to the study of the bibliography on
the construction of fault trees, the ISO26262 standard and the declination of
the di�erent reliability metrics in the case of a digital SoCs type system. The
extraction of metrics at the block level will be based on 2 di�erent methods, one
analytical based on probabilities, the other experimental based on fault injec-
tion. The aim is not to develop new probability codes or fault injection tools

but to develop a methodology to use them in the context of a SoC to obtain the
desired data. The second part of the thesis will concern the composition of the
data obtained at the functional block level in order to obtain the ISO26262 met-
rics at the system level (SoC). It will be a matter of developing a composition
method adapted in particular to the characteristics of SoCs (communicating
system, performing calculations that must react in real time, ...) and to the fault
models that characterize them or imposed by the ISO26262 standard. The third
part of the thesis concerns the application of the developments described in the
previous paragraph to an SoC-type system and the veri�cation of the results
obtained.

French Translation Cette thèse propose de mettre en place un �ux et une
méthodologie de certi�cation ISO26262 pour les circuits intégrés de type sys-
tème sur une puce numérique dédiée à la conduite. Ces circuits sont générale-
ment composés de plusieurs propriétés intellectuelles, IP, dédiées à di�érentes
fonctions telles que la communication ou le traitement d’informations provenant
de capteurs (caméra, lidar...), le système en temps réel, la vision et l’imagerie,
la gestion du système (système d’exploitation), la sécurité. La méthodologie
ISO26262 nécessite l’extraction d’un certain nombre de métriques liées à la
résilience du système face aux pannes simples et multiples, ainsi qu’à l’e�cacité
des contre-mesures (détection, signalement et correction des erreurs) et modes
de défaillance. L’extraction des métriques d’échec à partir des arbres de dé-
faillance est une méthode connue et documentée dans la littérature. Néan-
moins, son application a souvent été limitée aux systèmes électromécaniques
macroscopiques tels qu’une voiture, un actionneur ou des chaînes de capteurs.
D’autre part, ces méthodes sont rarement appliquées dans le domaine des SoC
automobiles où l’extraction des métriques est encore largement manuelle (générale-
ment à l’aide d’un tableur) et dépendante d’un expert, et où la véri�cation de
l’e�cacité des contre-mesures est mieux e�ectuée par injection de fautes ciblée
sur quelques sous-parties du système complet ou par irradiation sous un faisceau
de particules. Cette thèse propose de développer une méthodologie d’extraction
de métriques de �abilité basée sur l’injection de fautes par bloc ainsi que des
méthodes de composition pour obtenir les métriques au niveau du système com-
plet. La première partie de la thèse sera consacrée à l’étude de la bibliographie
sur la construction d’arbres de défaillance, la norme ISO26262 et la déclinaison
des di�érentes métriques de �abilité dans le cas d’un système SoCs numérique.
L’extraction des métriques au niveau du bloc sera basée sur deux méthodes
di�érentes, l’une analytique basée sur les probabilités, l’autre expérimentale
basée sur l’injection de fautes. L’objectif n’est pas de développer de nouveaux

2

codes de probabilité ou des outils d’injection de fautes, mais de développer une
méthodologie pour les utiliser dans le contexte d’un SoC a�n d’obtenir les don-
nées souhaitées. La deuxième partie de la thèse concernera la composition des
données obtenues au niveau du bloc fonctionnel a�n d’obtenir les métriques
ISO26262 au niveau du système (SoC). Il s’agira de développer une méthode
de composition adaptée en particulier aux caractéristiques des SoCs (système
de communication, e�ectuant des calculs devant réagir en temps réel, ...) et aux
modèles de défaillance qui les caractérisent ou imposés par la norme ISO26262.

Index words: [FMEA, ISO26262, System on Chip, Reliability,
Functional Safety]

Qualification methodology for ISO26262
certification of automotive SoC systems

by

Tiziano Fiorucci

B.S., University of Rome "Tor Vergata", 2018
B.Sc., University of Rome "Tor Vergata", 2016

A Dissertation Submitted to the Graduate Faculty of the
University of Grenoble Alpes.

Doctor of Philosophy of Nano Electronics and Nano
Technologies

Grenoble, France

2023

©2023
Tiziano Fiorucci

All Rights Reserved

Qualification methodology for ISO26262
certification of automotive SoC systems

by

Tiziano Fiorucci

Major Professor: Giorgio di Natale

Industrial Advisor: Jean Marc Daveau

Committee: Alberto Bosio
Stefano di Carlo
Pascal Benoit
Vincent Berouille

Electronic Version Approved

I am Me.

iv

Dedica

La decisiona di intraprendere un percorso di studi aggiuntivo a cio’ che la
maggior parte degli ingegneri intraprende e’ qualcosa su cui si si�ette molto.
Sono anni tolti alla carriera, anni di instabilita’ prolungata oltre a quello che
normalmente ci si protrebbe aspettare. In fondo pero’ la prolungazione dello
status da studente piu’ che per i normali anni del liceo, e per alcuni, gli anni
dell’universita’, non e’ un piacere che apprezzano in molti, ed e’ impossibile ig-
norare il fatto che se questa distinzione esiste, e se si sente di far part edi quel tipo
di personalita’, puo’ solo che essere un peccato ignorare che esiste una comu-
nita’ di scienziati-ingegneri-medici-letterati che condivide l’amore per la propria
materia allo stesso modo e merita quanto meno di essere esplorata e conosciuta,
puntando eventualmentea unircisi e tentare di farne parte.

v

Acknowledgments

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed
vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget
odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo
eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare
ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc
dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam.
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula
eu, lacus.

THIS PAGE IS OPTIONAL

vi

Contents

Acknowledgments vi

List of Figures viii

List of Tables xi

1 Problem and its Background 1
1.1 The Space Environment . 2
1.2 The Earth Environment . 13
1.3 Military Environment . 15
1.4 Radiation E�ects on COTS Components 16
1.5 Types of redundant architectures 21

2 Failure Mode and E�ect Analysis FMEA 28
2.1 Introduction . 28
2.2 Procedure . 30
2.3 Analysis . 32

3 Hardware Contribution 37
3.1 Introduction . 37
3.2 State-of-the-Art . 39
3.3 Modeling Digital Systems for MBSA 41
3.4 Methodology . 42
3.5 Application: I2C to AHB bridge 46
3.6 Results . 54
3.7 Discussion and Future Work 55

4 Footnotes and Sidenotes 56
4.1 Introduction . 56
4.2 State of the Art . 58
4.3 Methodology . 59

vii

4.4 Test Case and Application 64
4.5 Results and Future Work 66

5 Technical Analysis 68
5.1 LHC Detectors at CERN 68
5.2 Radiation E�ects on CMOS Electronics 73
5.3 Radiation-Tolerant Design 75
5.4 Universal Veri�cation Methodology 77
5.5 Physical Implementation of Digital ICs 79
5.6 The PicoRV32: System on Chip 83

6 Enter Title Here 89

7 Conclusion 90

Appendices 91

A 91

Bibliography 92

viii

List of Figures

1.1 The observed record of yearly averaged sunspot numbers [10] . 3
1.2 Measured values of solar 10.7 cm radio �ux [10] 3
1.3 Abundances of GCR up through Z = 28 5
1.4 GCR energy spectra for protons, helium, oxygen and iron dur-

ing solar maximum and solar minimum conditions 6
1.5 Integral LET spectra for GCR during solar maximum and so-

lar minimum . 6
1.6 Magnetosphere with respect to Radiation Belts [10] 8
1.7 Dipolar magnetic �eld tilted and o�-center with respect to

Earth. [10] . 9
1.8 Composition of a charged particle’s three periodic movements:

gyration, bounce and drift. The particle then follows a torus
surface called a drift shell. [10] 10

1.9 Proton radiation belt [10] 11
1.10 Electron radiation belt. [10] 12
1.11 Changes in the proton �uxes at low altitudes (bottom), in the

cosmic radiation (middle) and atmospheric densities (top) as
a function of the solar cycle. [10] 13

1.12 Electron �uxes at geostationary orbit as a function of the solar
cycle. [10] . 14

1.13 Example of Proton Scattering [40] 14
1.14 Radiaton-Induced energy 18
1.15 Latch-up Diagram . 21
1.16 Cold Standby scheme . 22
1.17 Hot Standby Schema . 23
1.18 DMR scheme . 24
1.19 TMR Schema . 24
1.20 Example of Proton Scattering [40] 25

2.1 Criticality Grid . 35
2.2 FMEA Criticality Matrix 36

ix

3.1 Altarica Data�ow Model 40
3.2 Altarica Dysfunctional Model 45
3.3 Completeness of the Extraction 45
3.4 I2C to AHB System Block Diagram 47
3.5 I2C/AHB System Model 47
3.6 I2C Gold Automaton . 48
3.7 I2C Complete Automaton 48
3.8 I2C Complete Automaton Clusterized 49
3.9 AHB Complete Automaton Clusterized 50
3.10 Extracted FSM for the I2C Block 51
3.11 I2C to AHB System Model 52
3.12 I2C Block Model . 53
3.13 AHB Block Model . 53

4.1 Block Diagram of the Entire SW Product 61
4.2 Block Diagram of the Entire SW Product 61
4.3 Block Diagram of the Entire SW Product 66

5.1 Shows the complete network of used accelerators at CERN
(Courtesy of [32]). 69

5.2 Shows the layout of the CMS detector [17]. 71
5.3 Shows the movement of di�erent particles in the CMS detec-

tor [5]. 72
5.4 Shows expected total ionizing dose in Gy during a 10-year op-

eration period of the CMS. This is simulated using FLUKA.
[21] . 72

5.5 Shows a spatial radiation hardening technique using triple
module redundancy. 75

5.6 Shows a temporal radiation hardening technique where clock
signals are delayed. 76

5.7 Shows the complete hierarchy of the UVM structure laid out
by Accellera. 77

5.8 Shows the UVM components in a UVM agent and its connec-
tion to other components. 78

5.9 Shows the post-synthesis power and area comparison of an
Ibex, Rocket, and PicoRV32 core. 84

5.10 Shows the state of the PicoRV32 SoC at the beginning of this
project. 85

5.11 Table of signals in the APB protocol (Courtesy of ARM [3]). . 87

x

5.12 Shows the basic transfers of the APB protocol with no wait
cycles (Courtesy of ARM [3]). 87

xi

List of Tables

3.1 IMC Coverage Figures (%) 48
3.2 RTL Fault Injection Vs Altarica Model Failures 54

4.1 Result of Fault Injection on basic blocks 65
4.2 Comparison of Fault Injection data vs Recomposed data on

Entire Software . 65
4.3 Control Flow Driven Errors 65

5.1 NMI signal descriptions . 86

xii

Chapter 1

Problem and its
Background

Semiconductor devices and integrated circuits are nowadays operated in a
number of hostile environments, therefore it worth to analyze all of them in
order to determine what threat show up. Moreover in this chapter it will shown
the most common e�ects on MOSFET based devices as well as the possible ar-
chitectural solution of the state of the art

1

1.1 The Space Environment
The Earth and its immediate surroundings are protected by the atmosphere,
which acts as a semi-permeable shield letting through light and heat while stop-
ping radiation and UV’s; because no such protection is available in space, hu-
man beings and electronics (onboard Earth orbiting satellites, space shuttles,
space probes) must be able to cope with the resulting set of constraints. Based
on several tens of years of this space era, a detailed analysis of the problems on
satellites shows that the part due to the radiation environment is signi�cant.
It appears that the malfunctions are due to problems linked to the space en-
vironment (9 to 21%), electronic problems (6 to 16%), design problems (1 1 to
25%), quality problems (1 to 8%), other problems (11 to 33%) and problems that
are still unexplained (19 to 53%) [10]. It is clear that the unexplained problems
are either problems linked to the space environment, to the electronics, to the
design, or otherwise but the information collected on the ground is generally
not su�cient to de�ne the origin of the problem. The space environment is
largely responsible for about 20% of the anomalies occurring on satellites and a
better knowledge of that environment could only increase the average lifetime
of space vehicles.

So the study of the space environment and its couses started, in all its great va-
riety of environments depending on di�erent orbital levels and electromagnetic
forces involved. The degradations and disturbances induced by space radiation
in the materials and the electronic components are phenomena that have been
studied for many years.[10] It resulted in a basic classi�cation of damages, either
for Humans and for Electronics that can be easly divided into two groups each:

For Electronics

1. Cumulative such as the degradation of thermal control coatings, optics
and electronics and the erosion of materials;

2. Sporadic such as noises in the detectors and optics, single event e�ects
in highly integrated electronic circuits and electrostatic discharges.

while for humans

1. Immediate, permanent or delayed non stochastic e�ects (destruction or
modi�cation of cells), the speed with which the symptoms appear and
their seriousness increase in proportion to the exposure to the radiation;

2. Stocastic associated with the modi�cations to the cells whose probability
of appearing in the long term increases in proportion to the irradiation
(cancers, leukemia, (SET) Program. genetic e�ects).

2

1.1.1 Solar Activity
Sun is either a source and modulator of space radiation, its activity can be de-
scribed using a cyclical model. Each cycle has approximately is 11 years long. In
this time span the Sun has 7 years of maximum activity and 4 at its minimum,
the transition is considered sharp even though it is indeed continuos. Moreover
every 11 years cycle the Sun reverse its magnetic polarity, this leads to an actual
22 years period between two equal con�gurations.

Usually two main indicators are used to describe the solar activity:

1. F10.7 - 10.7 cm radiation �ux

2. Sunspots count - The numbering of sunspot cycles began in 1749 and it
is currently near the end of solar cycle 23. The record of F10.7 began part
way through solar cycle 18 in the year 1947

Figure 1.1: The observed record of yearly averaged sunspot numbers [10]

Figure 1.2: Measured values of solar 10.7 cm radio �ux [10]

3

Large solar particle events are known to occur with greater frequency during
the declining phase of solar maximum [3]. Trapped electron �uxes also tend to
be higher during the declining phase [4]. Trapped proton �uxes in low earth
orbit (LEO) reach their maximum during solar minimum but exactly when
this peak is reached depends on the particular location [5]. Galactic cosmic ray
�uxes are also at a maximum during solar minimum but in addition depend on
the magnetic polarity of the sun [6].

4

1.1.2 Cosmic Rays
With Galactic Cosmic Rays (GCR) it is indended all those higly-charged parti-
cles that have been generated outside our solar system, even thought their precise
origin is unknown, scienti�c community believes that Supernovas explosions
may be the �rst source. Some general characteristics of GCR are listed in the
following table

Hadron Compositoin Energy Flux Radiation E�ects Metric

87% Protons
12% Alpha
1% Heavy Ions

up to 10^11 GeV 1 to 10 cm^{-2} s^{-1} SEE LET

But it is possible to have a deeper look at the relative abundances in 1.3.

Figure 1.3: Abundances of GCR up through Z = 28

All the elements in the Periodic Table up to Uranium are present in GCR
although there is a steep drop-o� for atomic numbers higher than iron (Z=26).
Their source isn’t the only unknown feature of GCR. We saw that they can
reach energies up to 1011GeV , but the couses behind such acceleration are still
to be comprehended. On the other hand their �ux is really small, limited to a
few cm−2s−1. Typical GCR energies and �uxes are shown in Fig. 1.4.

5

Figure 1.4: GCR energy spectra for protons, helium, oxygen and iron during
solar maximum and solar minimum conditions

The peak around 1GeV is due to the moderation e�ect of the solar wind
and solar magnetic �eld, still another expanation for the inverse proportionality
of GCR Flux and solar activity. Speaking about the Radiation E�ects that these

Figure 1.5: Integral LET spectra for GCR during solar maximum and solar
minimum

6

GCR can cause, the main Result of impact is a Single Event E�ects (SEE) and
the metric to usually utilized to describe the heavy ion induced SEE is the Linear
Energy Transfer (LET) which can be de�ned as the energy lost by the ionizing
particle per unit of path lenght in the sensitive section of the device. So it is
possible to convert Fig. 1.4 into the spectrum per LET, integrating we can see
the di�erence between the minimum and maximum activity level of the Sun.
In the following image all the contributes from all the elements, starting from
protons up to uranium, have been considered. The ordinate gives the Flux of
particles having a LET above the corresponding abscissa.

The LET Metric can be applied in GEO and Interplanetary missions, in
absence of geomagnetic attenuation. For instance, due to basic interaction be-
tween charged particles and Earth magnetic �eld they tend to follow the ge-
omagnetic lines and so parallel to the plant surface at the equator. Thus the
energy is mostly de�ected away. The E�ect of the Geomagnetic �eld on the
incident GCR-LET spectrum during solar minimum is discussed for various
orbits in [12]

1.1.3 Radiation Belts
Earth is relatively well protected against external in�uences such as radiation
coming from outern space. In these terms we can imagine the Earth Magne-
tosphere as the natural cavity in the interplanetary medium that serve to the
cause. It is compressed on the solar side and highly extended on the anti-solar
side. Poles represent the only space o�ered to the interplanetary particles to
penetrate into the upper atmosphere. Meanwhile the charged particles close to
Earth can be trapped by the magnetic �eld and form the Radiation Belts. As
shown in Fig: 1.6 the radiation belts only occupy a limited internal region of the
whole magnetosphere. Starting from the closest section to Earth it’s possible to
identify the upper atmosphere, constant over time. On the opposite end, we
cannot really de�ne a boundary due to its strong dependence on solar wind and
magnetic �eld.

In the Earth Magnetosphere we can de�ne the magnetic �eld as the sum of
two contributes:

1. Main Component - This term is based on the convection motion in the
core of the planet

2. External Origin - This includes all the permanent magnets of the ter-
restrial crust.

In a zero order approximation the �eld can be considered bipolar. However
it is way more accurate to take an o�-centered and tilted dipolar magnetic �eld

7

Figure 1.6: Magnetosphere with respect to Radiation Belts [10]

as approximation. This gives us a Dipole not centered in the center of Earth
and having its axis not parallel to the earth one. This geometry leads to an
anomaly in the magnetic �eld, a region in which the �eld is weaker, called the
South Atlantic Anomaly, as shown in Fig. 1.7. It is important to observe that
the magnetic �eld on Earth is evolving on a long term basis (secular drift), in
particular the South Atlantic Anomaly, which is drifting south-eastwards. As
the present time we note:

• a decrease in the intensity of 27 nT
year

(0.05 % a year) [10]

• a drift of the axis, resulting in a westward rotation of the southern end
of the dipole (0.014deg a year) and an increase in the shift towards the
West Paci�c close to 3 km a year. [10]

Dynamics of the charged particles In order to better understand and de-
scribe the dynamics of the charged particle in the magnetosphere, we can de�ne
a reference system and its coordinates.

• r is the distance from the center of the dipole

• λ is the latitude with θ its colatitude (θ = π
2
− λ)

• φ its magnetic longitude

8

Figure 1.7: Dipolar magnetic �eld tilted and o�-center with respect to Earth.
[10]

Last we need to describe the Field lines or force line by the McIlwain pa-
rameter L, roughly equal to the distance from the center of the planet to the
intersetion point of that force line with the magnetic equatorial plane. So a
single point in the �eld is called B, modulus of the magnetic �eld.

All charged particles subject to an electromagnetic �eld will be subject to
the Lorentz force

F = q(v ∧B + E) (1.1)

Under these conditions, the movement of the high-energy particles can be
generally broken down into three basic periodic movements.

Gyration All the charged particles in a magnetic �eld will rotate around the
line of �eld. This is called Gyration and we can de�ne this movement

1. the Larmor radius rL = mv2

qB

2. the relativistic magnetic moment µ = mv2

2B

Bounce If a particle only has a component of its velocity parallel to the mag-
netic �eld, then it will move along the �eld lines. In their motion they keep
the magnetic moment µ constant. Since the magnetic moment has to stay con-
stant, while moving from the equator towards the poles, it is possible to notice
a strongly increasing magnetic �eld. It is necessary that the perpendicular com-
ponent of the speed should increase in order for p to remain constant.[10]

9

Drift in order to simplify the problem, we place ourselves on the magnetic
equator. Since the magnetic �eld of the planets has a radial gradient, the gyra-
tion cannot take place in a constant Larmor radius. Indeed, the magnetic �eld
along a gyration becomes stronger if the particle approaches the planet, the
Larmor radius is then smaller and therefore the radius of the trajectory’s curve
is also smaller. The particle will thus be able to move away from the planet,
the magnetic �eld will be weaker and therefore the Larmor radius and the ra-
dius of the trajectory’s curve will be greater. The particle therefore does not go
through a simple circle but along a more complex trajectory. This movement
breaks down into a simple gyration (circular) and a rotation movement around
the planet: this is the drift movement.

Figure 1.8: Composition of a charged particle’s three periodic movements: gy-
ration, bounce and drift. The particle then follows a torus surface called a drift
shell. [10]

A charged particle submitted to these three basic [81] and periodic move-
ments then moves through torus shaped surfaces around the Earth, which are
commonly called drift shells Fig 1.8. The periods associated with each of these
basic movements for a 3 MeV electron at L=3 are respectively 2.1410−4 s, 0.19
s and 504 s. The disparity between the periods is very great, a factor of the or-
der of 1000 should be noted between each of them going from the gyration
movement to the drift movement.

Due to the magnetic �eld in proximity of Earth make all the relativistic
charged particles to remain trapped in a quasi periodic movement. These con-
ditions are perfect to start an increasing high energy charged particles ensables,

10

creating the so called radiation Belts. Given the previously presented trajecto-
ries, the Radiation Belts assume a toroidal shape surrounding the Earth. The
atmosphere is the lower bound while the outern limit is not well de�ned and
may be time variable.

During the �rst space missions, J. Van Allen has discovered that mostly all
the trapped particles are Protons and Electrons, having an Energy range between
come KeV and hundreds of MeV. Below there is a representation of the Proton
belt (Fig.1.9), pretty stable and constant in time, with energies from some MeV
to hundreds of MeV.

On the other hand, the electron belt is more complex (Fig. 1.10) and has
two maximums respectively corresponding to the internal and external zones: -
the �rst one centered on L = 1.4 extends up to L = 2.8; the electron populations
are relatively stable there and can reach maximum energy levels of the order of
10 or even 30 MeV; - the second one, centered on L = 5, extends from L = 2.8
to L = 10; the electron �ows there are much more variable and the energy levels
can be as high as 7 MeV.

Figure 1.9: Proton radiation belt [10]

Dynamic of the radition Belts Starting from the 1990s the American satel-
lite CRRES has shown te extreme dynamics of protons and electrons trapped
in the radiation belts. In fact the population of these particles is strongly depen-
dent on two factors:

11

Figure 1.10: Electron radiation belt. [10]

1. The Sources - injections from the tail of the magnetosphere and creations
by nuclear reactions

2. The Losses - Precipitations in the upper atmosphere or by charge ex-
change with particles from the Exosphere.

Dynamics on the scale of the Solar cycle-Protons The radiation belt of
protons having high energies, more than 10 MeV varies slowly as function of the
solar cycle, as shown in Fig:1.11. The �ux levels oscillates around its maximum at
the minimum activity of the Sun and vice versa. This is the actual result of two
di�erent phenomena, the absorbtion of the protons by the upper atmosphere
and the modulation of CRAND (Cosmic Ray Albedo Neutron Decay) source.
This balance is shown in Fig:1.11.

Dynamics on the scale of the Solar Cycle-Electrons As well as for the
proton cycle, the electrons, especially in the geostationary orbit, follow a similar
trend. Inversely proportional to the Sun activity cycle, as shown in Fig:1.12

12

Figure 1.11: Changes in the proton �uxes at low altitudes (bottom), in the cosmic
radiation (middle) and atmospheric densities (top) as a function of the solar
cycle. [10]

1.2 The Earth Environment
Since the 1984, the existence and impact of atmospheric neutrons has been
predicted. They can cause Single Event Upset in the electronics, the �rst actually
measured was in 1992. After that several hundreds have been observed. As
we can see in Fig. 1.13 Cosmic rays cover a large spectrum of energies, with a
comparatively high �ux in the 100 MeV to 10 GeV range and a peak around
500 MeV; cosmic particles collide with the nuclei of atoms making up the Earth
atmosphere and initiate the so-called air showers, producing particles such as
neutrons, protons, muons, pions, electrons and gamma-rays.

13

Figure 1.12: Electron �uxes at geostationary orbit as a function of the solar cycle.
[10]

Figure 1.13: Example of Proton Scattering [40]

A deeper analysis of the particles at commercial �ight level shows a great
majority of neutrons, while protons play a minor role in the Single Event Upset
at those altitudes.

Moreover, even though the scheme reported in Fig. 1.13 seems to be a top
down shower, the neutron �ux is, in fact, isotropic.

14

1.3 Military Environment
In case of an explosion occurring above the Earth atmosphere, two possible
scenarios may be considered

• Aerospace systems operating at altitudes higher than 50-100 km will be
directly submitted to the radiation emitted by the weapon; hard X-rays,
gamma-rays and neutrons all have a signi�cant impact on the electronic
systems onboard satellites

• The main indirect e�ect to be considered is that related to trapping by
the Earth magnetic �eld lines of electrons from �ssion debris, resulting in
the formation of highly stable, arti�cial radiation belts which can deliver
much higher radiation doses to satellites than natural belts; the �rst satel-
lite failure due to radiation e�ects dates back to 1963, to the Star�sh test
(a 1.4 Mton thermonuclear bomb detonated at an altitude of 400 km);
the test produced an intense radiation belt destroying seven satellites over
seven months, primarily because of dose e�ects on their solar panels; the
TELSTAR satellite, launched on July 10, 1962, broke down in February
1963

A nuclear explosion in the Earth atmosphere, besides a variety of mechanical
e�ects, is responsible for di�erent purely radioactive e�ects, which can be split
into two main categories

• Initial nuclear radiation (INR) is that released within less than a minute
after detonation; X-rays are quickly stopped (at about 500 m above sea)
so that gamma-rays (responsible for ionizing dose e�ects) and neutrons
remain

• Residual nuclear radiation (RNR) features several radiation sources;
�ssion products, radioactivity of debris (neutron-activated weapon ma-
terials), that of un�ssioned uranium and/or plutonium and activation of
the environment; a further distinction can be made between local fallout,
occurring less than 24 hours after explosion, with a resulting signi�cant
level of ground radiation, and worldwide fallout, which can take place at
signi�cant distances from the place of explosion

15

1.4 Radiation E�ects on COTS Components

1.4.1 Basic Damage Mechanism in Semiconductor Devices
Even if we take into consideration the great diversity of particles and their in-
teraction with di�erent technologies, it is possible to distinguish just two main
categories of damaging mechanism for semiconductor devices

1. Ionization Damage

2. Displacement Damage

Ionization Damage

The ionization takes place when energy deposited in a semiconductor or in in-
sulating layers, chie�y SiO2, frees charge carriers (electron-hole pairs), which
di�use or drift to other locations where they may get trapped, leading to un-
intended concentrations of charge and parasitic �elds; this kind of damage is
the primary e�ect of exposure to X- and gamma-rays and charged particles; it
a�ects mainly devices based on surface conduction (e.g. MOSFETs)[40]. Di-
rectly ionizing radiation consists of charged particles. Such particles include
energetic electrons (sometimes called negatrons), positrons, protons, alpha par-
ticles, charged mesons, muons and heavy ions (ionized atoms). This type of
ionizing radiation interacts with matter primarily through the Coulomb force,
repelling or attracting electrons from atoms and molecules by virtue of their
charges. Indirectly ionizing radiation consists of uncharged particles. The most
common kinds of indirectly ionizing radiation are photons above 10 keV (x rays
and gamma rays) and all neutrons. X-ray and gamma-ray photons interact with
matter and cause ionization in at least three di�erent ways:

• Lower-energy photons interact mostly via the photoelectric e�ect, in
which the photon gives all of its energy to an electron, which then leaves
the atom or molecule. The photon disappears.

• Intermediate-energy photons mostly interact through the Compton ef-
fect, in which the photon and an electron essentially collide as particles.
The photon continues in a new direction with reduced energy while the
released electron goes o� with the remainder of the incoming energy (less
the electron’s binding energy to the atom or molecule).

• Pair production is possible only for photons with energy in excess of 1.02
MeV. However, near 1.02 MeV, the Compton e�ect still dominates: pair

16

production dominates at higher energies. The photon disappears and an
electron-positron pair appears in its place (this occurs only in the vicinity
of a nucleus because of conservation of momentum and energy consider-
ations). The total kinetic energy of the electron-positron pair is equal to
the energy of the photon less the sum of the rest-mass energies of the elec-
tron and positron (1.02 MeV). These energetic electrons and positrons
then proceed as directly ionizing radiation. As it loses kinetic energy, a
positron will eventually encounter an electron, and the particles will an-
nihilate each other. Two (usually) 0.511 MeV photons are then emitted
from the annihilation site at 180 degrees from each other. For a given
photon any of these can occur, except that pair production is possible
only for photons with energy greater than 1.022 MeV. The energy of
the photon and the material with which it interacts determine which
interaction is the most likely to occur[55].

About indirect ionization, we can say that light particles such as protons and
neutrons could have not enough LET to cause upset, but they can cause nuclear
reactions that in turn create heavier particles that can cause upsets by direct
ionization. Secondary reaction products have much higher LET but shorter
ranges and lower energies[56].

Displacement Damage

Incident radiation dislodges atoms from their lattice site, the resulting defects
altering the electronic properties of the crystal; this is the primary mechanism
of device degradation for high energy neutron irradiation, although a certain
amount of atomic displacement may be determined by charged particles (in-
cluding Compton secondary electrons); Displacement Damage mainly a�ects
devices based on bulk conduction (e.g. BJTs, diodes, JFETs) [40]. Displacement
damage occurs when su�cient energy is transferred from an incident energetic
particle to a lattice atom to dislodge it from its normal location. Using Si as
an example, the Si atom initially displaced by an incoming particle is known as
the primary knock-on atom (PKA) or the primary recoil.The PKA, or recoil,
carries a net charge that depends on its kinetic energy. Displacement damage
occurs through the interaction of incident particles with Si atoms by any of the
following three processes:

• Rutherford (i.e., Coulomb) scattering

• Nuclear elastic scattering

• Nuclear inelastic scattering

17

Once any of those basic interaction processes produces a PKA, that ion subse-
quently can introduce further displacement damage by Rutherford and nuclear
scattering. Lattice defects are produced by PKAs and any later-generation ener-
getic recoils that they create. When defects produced by incident radiation are
relatively far apart, they are known as isolated, or point, defects. As an exam-
ple, isolated defects are created by 1 MeV electrons incident on Si. Radiation-
induced defects may also be created closely together and form local regions of
disorder known as defect clusters. For example, incident 1 MeV neutrons pro-
duce both isolated and clustered defects in Si. In general, energetic particles
incident on semiconductors create either isolated and clustered defects or solely
isolated defects, depending on the mass and energy of the incident particles.
Nearly all the e�ects of displacement damage on the electrical and optical prop-
erties of semiconductor materials and devices can be understood in terms of en-
ergy levels introduced in the bandgap. Those radiation-induced levels result in
the following e�ects: recombination lifetime and di�usion length are reduced;
generation lifetime decreases; majority and minority-carrier trapping increase;
majority carrier concentration changes; thermal generation of electron-hole
pairs is enhanced in the presence of a su�ciently high electric �eld; tunnelling
at junctions is enabled. In addition, radiation-induced defects reduce the carrier
mobility and can exhibit metastable con�gurations[bib10].

Figure 1.14: Radiaton-Induced energy

Figure 1.14 illustrates radiation-induced energy levels in the Si bandgap that
give rise to the following processes: (a) enhanced thermal generation; (b) en-
hanced recombination; (c) enhanced temporary trapping; (d) reduced carrier
concentration due, in this example, to the introduction of centers that compen-
sate for donors (carrier removal).

18

1.4.2 Radiation E�ects in Electronics
As previously stated, the e�ects of radiation on semiconductor devices can be
divided into two broad classes. Previously the Total Dose e�ects have been
explained, now the focus will be moved to Single Event E�ects.

Single Event E�ect

These e�ects are due to the deposition of charge by a single particle that goes
through a sensitive region of the device. This can lead to a desctructive or non
destructive damage of the device. Moreover it is possible to identify a couple of
di�erences between Total Dose e�ects and Single Event E�ects:

• Single Event E�ects are Stocastical, while TID e�ects are cumulative and
may occur after the device has been exposed to radiation for a long time

• TID are related to Long Term response, while SEE to Short term Re-
sponse

• Only a very limited portion of the device is a�ected by SEE, while TID
a�ects uniformly the entire device, this is due to the number of particles
hitting the device and their distribution.

• While for TID the main �gure is the drift of the main device parameters,
concerning SEE the most important �gure is the Rate of Occurrence.

We can so de�ne this e�ects some of the SEE as "Soft" in case they do not
induce any physical damage to the device, but just an information loss. Other-
wise they are categorized as "hard" in case the impact of a heavy ion is followed
by the rupture of the gate oxide. Here there is a list of the major Soft e�ects and
Hard e�ects

Main Classes of Soft E�ects

• Single Event Upset (SEU) - the corruption of a single bit in a memory
array

• Multiple Bit Upset (MBU) - the corruption of multiple bits due to a
single particle

• Single Event Transient (SET) - a transient signal induced by an ionizing
particle in a combinatorial or analog part of a circuit

19

Main classes of hard e�ects

• Single Event Gate Rupture (SEGR) - rupture of gate oxide occurring
especially in power MOSFETs

• Single Event Burnout (SEB) - burnout of a power device

• Single Event Latch-Up (SEL) - the activation of parasitic bipolar struc-
tures, leading to a sudden increase of the supply current

Usually in order to evaluate the occurrence of SEE the cross section of the
device is used. It is de�ned as follow:

σSEE =
NumberOfEvents

ParticleF luence
(1.2)

the Cross Sections varies as function of the LET of the particle hitting the
device, observable only if higher than the threshold LET. The charged released
by the particle hitting the transistor is collected via the so called Funneling mech-
anism. Most of the charge is sucked in at the struck junction through a defor-
mation of the junction potential, while the remaining charge di�uses in the
substrate and may be collected or not at the same junction[40]

The aim of these thesis is to focus on Soft E�ects, in the next section the
most common SEE will be analyzed in details.

Radiation E�ects in MOSFETs

Single Event Upset It is obvious that in order to cause disturbance in any
circuit the charge generated by a particle hitting the device must be in a sensitive
node; in particular reverse biased PN junctions are the most a�ected by collected
charge, having a larger deplation reagion and stronger electric �eld. Taking into
account the case of an SRAM cell, may be the case of a particle hitting the Drain
of the o� NMOSFET. If that is the case the released charge is collected by the
reverse-biased drain, the voltage at the struck node tends to decrease, turning
the radiation-induced current in to a voltage transient. The curren decreases
the potential at the node, and it may go as low as below the switching voltage,
changing the initial state.

These e�ects are function of the LET of the impinging particle and the
incident angle θ

Multiple Bit Upset Single events e�ects have become more complex to study
as the new technologies are released. In particular the minimum lentgh that can
be obtained while creating CMOS devices in lithography has gone below the

20

micron realm. Nowadays the size of the path of the hitting particle has become
comparable to the size of modern chips. Therefore that in the past may have
involved a single point in the circuit now involve multiple nodes and charge
sharing may occur. It follows that the rate of occurrence of Multiple Bit Upset
is strongly bound to rise as fabrication process evolve.

Radiation Induce Latch-Up A latch-up is a type of short circuit which can
occur in an integrated circuit. More speci�cally it is the inadvertent creation
of a low-impedance path between the power supply rails of a MOSFET circuit,
triggering a parasitic structure which disrupts proper functioning of the part,
possibly even leading to its destruction due to overcurrent. A power cycle is
required to correct this situation.

Single event latch-up is a latch-up caused by a single event upset, typ-
ically heavy ions or protons from cosmic rays or solar �ares. The parasitic

Figure 1.15: Latch-up Diagram

structure is usually equivalent to a thyristor (or SCR), a PNPN structure which
acts as a PNP and an NPN transistor stacked next to each other. During a latch-
up when one of the transistors is conducting, the other one begins conducting
too. They both keep each other in saturation for as long as the structure is
forward-biased and some current �ows through it - which usually means until a
power-down. The SCR parasitic structure is formed as a part of the totem-pole
PMOS and NMOS transistor pair on the output drivers of the gates.

1.5 Types of redundant architectures
While there are various methods to implement redundant architectures, tech-
niques and terminologies, the following section wants to represent the most
common ones used in the industry.

21

1.5.1 Standby Redundancy
Standby redundancy, also known as Backup Redundancy is when you have
an identical secondary unit to back up the primary unit. The secondary unit
typically does not monitor the system, but is there just as a spare. The standby
unit is not usually kept in sync with the primary unit, so it must reconcile its
input and output signals on takeover of the Device Under Control (DUC). This
approach does lend itself to give a "bump" on transfer, meaning the secondary
may send control signals to the DUC that are not in sync with the last control
signals that came from the primary unit. You also need a third party to be the
watchdog, which monitors the system to decide when a switchover condition is
met and command the system to switch control to the standby unit and a voter,
which is the component that decides when to switch over and which unit is
given control of the DUC. The system cost increase for this type of redundancy
is usually about 2X or less depending on your software development costs. In
Standby redundancy there are two basic types, Cold Standby and Hot Standby.
[bib12]

Cold Standby Redundancy

In cold standby, the secondary unit is powered o�, this is preserving the relia-
bility of the unit. The drawback with respect to the hot standby is the longer
downtime needed to switch from one unit to the secondary one. this makes it
more challenging from the synchronization issues point of view.

Figure 1.16: Cold Standby scheme

Hot Standby Redundancy

In hot standby instead, the secondary unit is always powered on and can even-
tually monitor the DUC. If the secondary unit is used as watchdog or voter to
decide when to switch over, it is possible to eliminate the need for a third party
unit to perform these operations. It is also possible to notice that some versions
of the Hot standby are similar to the Dual Modular Redundancy (DMR) or
Parallel Redundancy.

22

Figure 1.17: Hot Standby Schema

1.5.2 N-Modular Redundancy
N Modular Redundancy, also known as Parallel Redundancy, refers to the ap-
proach of having multiply units running in parallel. All units are highly synchro-
nized and receive the same input information at the same time. Their output
values are then compared and a voter decides which output values should be
used. This model easily provides bumpless switchovers. This model typically
has faster switchover times than Hot Standby models, thus the system availabil-
ity is very high, but because all the units are powered up and actively engaged
with the DUC, the system is at more risk of encountering a common mode
failure across all the units.

Deciding which unit is correct can be challenging if you only have two units.
Sometimes you just have to choose which one you are going to trust the most
and it can get complicated. If you have more than two units the problem is
simpler, usually the majority wins or the two that agree win. In N Modular Re-
dundancy, there are three main typologies: Dual Modular Redundancy, Triple
Modular Redundancy, and Quadruple Redundancy.

Dual Modular Redundancy

Dual Modular Redundancy or DMR uses two identical and so functional equiv-
alent units, both of them able to control the DUC. The most challenging side
of this con�guration is the switching decision between the two units. Since
both of them are monitoring the DUC there is the need for a routine in case
of mismatch between the two units. In is possible to create a tiebraker ore even
designate the second as default winner, assuming it is more trustworty than the
primary unit. The average cost increase of a DMR system is about twice that of
a non-redundant system, factoring in the cost of the additional hardware and
the extra software development time.

23

Figure 1.18: DMR scheme

Triple Modular Redundancy

Triple Modular Redundancy (TMR) uses three functionally equivalent units
to provide redundant backup. This approach is very common in aerospace
applications where the cost of failure is extremely high.

TMR is more reliable than DMR due to two main features. The most
immediate is that there are two "standby" units instead of a single one. The
second is that in TMR it common to see the so called diversity platforms or
diversity programming techniques applied. in these techniques it is possible to
notice the use of di�erent hardware or software platforms.

Figure 1.19: TMR Schema

Quadruple

Quadruple Modular Redundancy (QMR) is fundamentally similar to TMR
but using four units instead of three to increase the reliability. The obvious
drawback is the 4X increase in system cost.

1.5.3 1:N Redundancy
This design technique is used in case the system has a single backup for multiple
modules and this backup is able to act as any of the single ones. This technique
o�ers a redundancy at much lower costs than the others. This approach only
works well when the primary units all have very similar functions, thus allowing
the standby to back up any of the primary units if one of them fails.

24

Other drawbacks of this approach are the added complexity of deciding
when to switch and of a switch matrix that can reroute the signals correctly and
e�ciently.

Figure 1.20: Example of Proton Scattering [40]

1.5.4 Redundancy Improves Reliability
Reliability is de�ned as the probability of not failing in a particular environment
for a particular mission time. Reliability is a statistical probability and there are
no absolutes or guarantees. The goal is to increase the odds of success as much
as you can within reason.

The following equation is the most common to calculate reliability, and it
assumes that the system has a constant failure rate λ

R(t) = e−λt (1.3)

in which:

• R(t) is the probability of success

• t is the mission time or the time the system has to execute without an
outage

• λ is the constant failure rate over time (N Failures per hour)

• 1
λ

is the MTTF or mean time to failure

In fact one way to calculate reliability is to take the probability equation
and instead solve for the mean time to failure (MTTF) of the system:

R(t) = e−λt = e−
t

MTTF (1.4)

solving for MTTF

25

MTTF = −
Å

t

ln [R(t)]

ã
(1.5)

For example, if your application had a mission time of 24 hours a day, 7 days a
week, for one year (24/7/365) and you experienced a success rate of 90%:

MTTF = −
Å

1yr

ln[.90]

ã
= 9.49years (1.6)

in case redundancy has been added to the system we can, for istance, increase
the success rate to 99% for the same mission time and therefore:

MTTF = −
Å

1yr

ln[.99]

ã
= 99.50years (1.7)

These equations e�ectively demonstrate the vast improvement in reliability that
redundancy can bring to any system.

26

In particular, it is usefull for this thesis to better understand the real andvan-
tages of TMR over the Simplex model. First we have to set some assumptions:

1. TMR only works if there are at least 2 working modules

2. Rm is the Reliability of the single module

3. Rv is the Reliability of the Voter

That said, it is possible to calculate the Reliability of a TMR system as
follow:

RTMR = Rv

3∑
i=2

Ç
3

i

å
Ri
m(1−Rm)

3−i (1.8)

and so

Rv[R
3
m + 3R2

m(1−Rm)] = Rv(3R
2
m − 2R3

m) (1.9)

from which it is possible to evaluate the MTTF for the same system as:

MTTFTMR =

∫ ∞
0

RTMRdt =

∫ ∞
0

Rv(3R
2
m − 2R3

m)dt (1.10)

∫ ∞
0

e−λvt
(
3e−2λmt − 2e−3λmt

)
dt =

3

2λm + λv
− 3

3λm + λv
(1.11)

It is possible to neglect the failure rate of the voter since it is usually designed
to be way lower than the module one.

Now comparing theMTTFTMR with the Simplex solution we obtain:

MTTFTMR =
3

2λm
− 2

3λm
=

Å
5

6

ãÅ
1

λm

ã
=

5

6
MTTFSimplex (1.12)

27

Chapter 2

Failure Mode and Effect
Analysis FMEA

2.1 Introduction

2.1.1 General
FMEA and FMECA are important techniques for a reliability assurance pro-
gramme.They can be applied to a wide range of problems which may occur in
technical systems, and can be carried out in varying degrees of depth, or mod-
i�ed, to suit a particular purpose. The analysis is carried out in a limited way
during the conception, planning, and de�nition phases and more fully in the
design and development phase. It is however important to remember that the
FMEA is only part of a reliability and maintainability programme which re-
quires many di�erent tasks and activities. FMEA is an inductive method of
performing a qualitative system reliability or safety analysis from a low to a high
level. A thorough understanding of the system under analysis is essential prior
to undertaking FMEA. Functional diagrams and other system drawings are nor-
mally necessary for this understanding. Reliability block diagrams, fault trees
and/or state diagrams are then usually derived from these in order to carry out
the analysis. In many instances the block diagram descriptions and block dia-
gram failure descriptions are included in the FMEA format. Separate diagrarns
will be needed for the following:

1. The way in which di�erent criteria for system faiulre are determined;

2. Degradation of function or reduction in assurance of function;

3. Alternative operational phases

28

2.1.2 Purpose of the Analysis
The reasons for undertaking FMEA (or FMECA) may include the following:

• to identify those failures which have unwanted e�ects on system opera-
tion, e.g. safety critical failures;

• to satisfy contractual conditions that an FMEA should be completed;

• where appropriate, to quantify the reliability and/or safety of the system;

• to allow improvements of the system’s reliability and/or safety (e.g. by
design or quality assurance action)

• to produce aids to fault diagnosis;

• to allow improvement of the system’s maintâinability (by highlighting
areas of risk or non-conformance for maintainability).

ln view of these reasons the objectives of an FMEA (or FMECA) may in-
clude the following:

1. a comprehensive identi�cation and evaluation of all the unwanted ef-
fects within the de�ned boundaries of the system being analysed, and
the sequences of events brought about by each identi�ed item failure
mode, from whatever cause, at various levels of the system’s functional
hierarchy;

2. the determination of the signi�cance (or criticality) of each failure mode
with respect to the system’s correct function or performance and the
impact on the reliability and/or safety of the process concerned;

3. a classi�cation of identi�ed failure modes according to relevant charac-
teristics, including detectability, diagnosability, testability, item replace-
ability, compensating and operating provisions (repair, maintenance, lo-
gistics, etp.);

4. an estimation of measures of the signi�cance and probability of failure.

2.1.3 Basic Principles of FMEA
The following concepts are essential to FMEA:

1. breakdown of the system into ’elements’;

29

2. a diagram of the system’s functional structure and identi�cation of the
various data which are needed to perform the FMEA;

3. the failure mode concept (a part may have several failure modes or a failure
mode may involve several parts);

4. identi�cation of new physical features or new requirements;

5. the criticality concept and the measure to be used (if criticality analysis
is required).

Further, it is essential to specify the existing links between the FMEA (and
the FMECA) and other qualitative (and quantitative) analytical methods within
the overall reliability programme. Very few designs are wholly new. Most are to
some extent developments of old designs. FMEA should use the information
on existing systems and draw attention to the need for tests, etc. for the new
parts.

2.2 Procedure

2.2.1 General
The wide variation in complexity of system designs and applications may re-
quire the development of highly individualized FMEA procedures consistent
with the information available. Traditionally, there have been wide variations
in the manner in which FMEA is conducted and presented. However, the anal-
ysis is usually done in a standard manner and presented on a worksheet that
contains a core of essential information which can be developed and extended
to suit the particular system or project to which it is applied. A typical example
of a worksheet is shown in Figure 1.

The procedure consists of the following four main stages:

1. Preparatory de�nition of the system including the design, functional,
operational, maintenance, and environmental requirements;

2. Establishment of the basic principles and purposes of the FMEA and the
form of its presentation;

3. Carrying out the FMEA using the appropriate worksheet designed ac-
cording to (a) and (b);

4. Reporting of the complete analysis including any conclusions and rec-
ommendations made.

30

A more detailed consideration of the information needed is given in Section
2.4.2.

2.2.2 Preparation
At the commencement of an analysis, the following preparations should be
made:

1. The analyst should have available the information listed in Section 2.4.2.2
to 2.4.2.7 that clearly de�nes the system to be analyzed.

2. It will usually be necessary for the analyst to translate the information
into some form of functional, hierarchical, or reliability block diagrams.
An example of a functional diagram is shown in Figure 2. This diagram
shows how the failure e�ects at the part level form the failure modes at
the module level, the failure e�ects at the module level form the failure
modes at the subsystem level, and so on. Such a representation of the
system should explicitly identify the system’s functional structure, the
system boundary, and the inputs and outputs crossing that boundary.
Further information is given in Section 2.4.2.8 to 2.4.2.10.

2.2.3 FMEA principles
The following principles should be applied:

1. De�ne clearly the purposes and uses of the FMEA as indicated in Section
2.1.2.

2. Establish and de�ne the relationships with other forms of reliability anal-
ysis with which the FMEA may subsequently be integrated. (See Section
2.3.5.)

3. De�ne the scope of the FMEA in relation to the functional structure and
hierarchical structure of the system as described by the block diagrams
referred to in Section 2.4.2.10. It is essential to de�ne the lowest level in
the system’s hierarchical structure at which the analysis will start. The
guidance given in Sections 2.3.4, 2.4.1, and 2.4.2.8 is especially important
for this task.

4. De�ne the format of the FMEA worksheet to suit the project require-
ments. The core information considered essential is as follows:

1. The name of the item in the system being analyzed;

31

2. Function performed by the item;

3. Identi�cation number of the item;

4. Failure modes of the item;

5. Failure causes;

6. Failure e�ects on the system;

7. Failure detection methods;

8. Compensating provisions;

9. Severity of e�ects;

10. Remarks.

Other information required for the particular system and project needs to be
de�ned by the analyst according to the purposes of the

2.3 Analysis
It is worth to underline that, even though the scope of this thesis is to establish a
new methodologyfor automated FMEA in both hardware and software systems,
there is the absolute need to comply with what is today the state of the art for
FMEA and the guidelines to be followed to bring the metrics extracted during
the analysis to certi�cation. It is for this reason that the following section will
present the traditional method applied today to all the electromechanical sys-
tems under evaluation. Bare in mind that the totality of the procedure described
below is man driven.

The usual requirement and purpose of an FMEA isto identify the e�ect
of oJl failure modes of allconstituent items at the lowest level in the system.Tb
achieve this the worksheet should be used inthe following manner:

1. Identify all items in the system or subsystem,each of which is to have its
failure modes ande�ects analysed. The system of identi�cation byname
and number should be such that no itemswill be omitted.

2. Select the �rst item for analysis and enter theitem name and identi�ca-
tion number in theappropriate columns of the worksheet.Determine the
function of that item in thesystem and enter that on the worksheet.

32

3. Deduce all the possible failure modes of theitem due to any possible cause
and individuallyenter these modes on the worksheet

4. Postulate the most likely failure causes foreach failure mode of the item
and enter these onthe worksheet. It will usually not be possible to con-
sider allpossible causes because the range is so vast, butthe most signi�-
cant with regard to the item, thefailure mode and the application should
beidenti�ed.

5. Deduce the e�ects of the failure on thesubsystem and system, as deter-
mined by thescope of the FMEA

6. Complete the remaining columns of theworksheet for the �rst failure
mode of the �rstitem.

7. Repeat 3 to 5 for all failure moides of the �rst item

8. Repeat 2 to 6 for all other items

2.3.1 Multiple Stages
If the FMEA is to be done in stages that eachrelate to separate Ievels in the
system’s hierarchicalstructure, the failure e�ects from the lower level become
the failure modes at the next level up. The analysis should then proceed as
follows.

1. Identify the lower level FMEAs that areappropriate for the next stage in
the systemFMEA according to the system’s hierarchicalstructure de�ned
by the block or functionaldiagrams (see 2.2,2(b)). Where appropriate
alsoinclude items de�ned as being at the lowest levelin that part of the
system structure

2. Perform the FMEA for each failure of eachitem at this higtrer level in the
system stmctureas given in the previous section.

3. repeat the two above steps for any further higher levels in the system
structure.

2.3.2 Worksheet reccomendations
The last worksheet entry should give any pertinent remarks to clarify other
entries. Possible future actions such as recommendations for design improve-
ments may be recorded and then ampli�ed in the report. This column may also
include the following:

33

(a) any unusual conditions;

(b) e�ects of redundant element failures;

(c) recognition of specially critical design features;

(d) any remarks to amplify the entry;

(e) references to other entries for sequential failure analysis;

(f) signi�cant maintenance requirements;

(g) dominant failure causes;

(h) dominant failure e�ects;

(i) decisions taken, e.g. at design review.

The report on the FMEA (or FMECA) may be included in a wider study
or may stand alone. In neither case, the report should include a summary and
a detailed record of the analysis and the block or functional diagrams which
de�ne the system structure. The report should also contain a list of the drawings
(including issue status) on which the FMEA is based.

The summary should contain a brief description of the method of analysis
and the level to which it was conducted, the assumptions and the ground rules.
In addition, it should include listings of the following:

1. recommendations for the attention of designers, maintenance sta�, plan-
ners, and users;

2. failures which, when initially occurring alone, result in serious e�ects;

3. failures which have no e�ect;

4. design changes which have already been incorporated as a result of the
FMEA (or FMECA).

34

Figure 2.1: Criticality Grid

35

Figure 2.2: FMEA Criticality Matrix

36

Chapter 3

Hardware Contribution

3.1 Introduction
In the context of new applications for autonomous mobility, digital compo-
nents a required to reach high levels of functional safety performances. This
level of assurance is necessary to supply safely the computational power and
advanced processing required by those applications. It is therefore necessary for
digital SoCs safety engineers to be able to demonstrate thru advanced provable
methods the achieved reliability of their system and counter measures.

Similarly to complex electomecanical systems, it is di�cult to predict the
failure modes of a complex SoC which exhibits an almost in�nite state space (in
the order of 2n, n is the number of sequential elements, reaching ten’s of thou-
sands easily) and distributed-systems characteristics: numerous independents
sub-systems operating and communicating asynchronously.

Digital systems are subject to two kind of errors, permanent which are cre-
ated by destructive or aging e�ects, and transient [6] created by particle impacts
such as thermal neutrons at ground level or solar wind in low and high earth
orbits [71][51]. Permanent e�ects shows in the form of a permanent stuck to
an electrical value (’0’ or ’1’ logic value) and can occurs on any digital element
(combinational logic, i.e. logic gate or sequential element, i.e. flip-flops). So
do transient faults, also called soft errors, but with di�erent, non-permanent,
e�ects on logic or sequential elements. Transient faults on logic gates are called
Single Event Transient (SET) [37] and are particularly dangerous on clock trees
and reset trees (which distributes the clock and reset signals through the chip
using trees of bu�ers) of SoCs as their e�ect, that has the form of a glitch, is to
reset or desynchronize the sequencing of a sub-part of the system. Transient
faults on sequential elements (memories or �ip-�ops) only invert the value of
the element which will retain the faulty value until overwritten by a new value.

37

They are called Single Event Upset (SEU) and are the main cause of safety goals
violations in digital SoCs [48].

However, digital system exhibit a natural resistance to soft errors and most
of them have no functional e�ect while a small proportion of them (≈ 10%

of them in a standard 5-stages processor [62, 49]) will lead to system execution
failure. FMEDA analysis [43], targeting goals such as ISO26262 automotive
safety norm [35] certi�cation will consist in quantifying those failure modes,
proving the e�ectiveness of counter measures and absence of safety goals vi-
olation. An e�ective solution consists in submitting the system to faults, by
simulation or under radiation beam, therefore stressing it and provoking inten-
tionally dysfunctional behaviors. Those ’out of trajectory’ behaviors can then
be recorded, analysed and used for FMEDA analysis in the certi�cation process.
However, both methods are costly both in term of engineering setup needed
and cost: fault injection of a full SoC requires a complex setup, test suite and
costly hardware emulator while radiation test requires an acquisition system, a
test setup and access to costly and constrained radiation facilities, Both have the
disadvantage to require, the full SoC gate netlist (fault injection [67]) or silicon
(irradiation [9]). Also, both methods can be classi�ed as experimental as it is a
veri�cation ’by observation’ of the resilience of the system to faults. No proof,
except statistical con�dence is made on the extracted faults metrics.

In this work, we aim to assess the capability of Model-Based Safety Assess-
ment methods to build the dysfunctional model of a digital SoC from its sub-
systems and perform the currently hand-made FMEDA of the full system au-
tomatically. We expect the methods to be able to quantify globally the system
safety metrics more accurately than with hand-made spreadsheets which only
basically multiply probabilities. Automatic failure analysis such as fault trees
extraction, fault sequences leading to unwanted events are also expected to be
of great help during the certi�cation process. The problem to solve is then to
extract and build the required dysfunctional models of the di�erent subsystems
of the SoC and to properly expose the failure modes in the constructed models
to be able to use existing model composition frameworks.

The document is organized as follow: we �rst present the system used as
example and how fault injection is used to expose dysfunctional behaviors and
extract a model. The chosen approach is then detailed reminding generic princi-
ples before explaining speci�c mechanisms put in place to model digital system.
Finally, the document details fault injection campaign post-processing meth-
ods and obtained results. We compare composition results with fault injection
performed on the full system used as a reference.

38

3.2 State-of-the-Art

3.2.1 Probabilistic Methods in Digital Systems Safety
Probabilistic methods [60] [61] have been developed to estimate propagation
and masking rates of errors in gate netlists. Such approaches, restricted to combi-
national logic provide an helper to estimate certain metrics (λspf , i.e. Dangerous
Undetected by a safety mechanism faults [36]) required in ISO26262, but are
far from being able to provide metrics even at the sequential block level. Like-
wise, industrial formal proof tools [22] [69] are able to compute such metrics
by using formal methods.

Methods like FIDES [44] [68] targets Commercial O�-the-Shelf (COTS)
based Electronic Control Unit (ECU), with components failure rates extracted
from available reliability databases. It takes into account systematic or aging
failures but not transient e�ects such as soft-errors.

3.2.2 Formal Methods in Digital Systems Safety
Formal methods [12, 13] are mostly used on unitary blocks or functionalities
to prove assertions (i.e. properties) expressed in linear [65] or branching [25]
timing logic. When applied to safety, it comes to proving absence of safety goals
violations that are expressed as assertions on outputs in the presence of faults.
Tools like [22][69] are able to compute, given a nelist of logic gates and �ip-�ops
and an initial state, the cone of in�uence of �ip-�ops or gates and whether a
fault in such elements can propagate to a given output. Such structural analysis
can perform Out-of-Cone-of-Influence (COI) fault analysis allowing to classify a
fault as safe when it cannot reach a given output. Activation analysis determine
whether a fault injected on a speci�c node can be activated. Propagatability
analysis determine if an activated fault in a COI can propagate to a strobed
output and detection analysis determines if a fault will (always) be propagated
and detected at the checker output. Such analysis can reveal what logic is covered
by a safety mechanism or not. However, no formal methods is able to address
such safety properties at SoC level.

3.2.3 Altarica
Functional safety objective is to identify the most probable failure combinations
leading to a feared event. Model-Based Safety Analysis performs safety analysis
by building dysfunctional models for each block of the considered system and
using formal methods to combine and extract failure modes at the system level

39

[47]. MBSA introduces the use of high level modeling languages dedicated to
functional safety analysis [53] [4] [11]. It allows extending classical methods such
as FMEA or fault trees. These languages help capture system dynamics and
how failures propagate inside it. Moreover, models support structural mod-
eling allowing identifying and locating induced e�ects of a failure inside the
architecture.

Altarica Data�ow (Fig. 3.1) is an event-driven asynchronous language that
implements discrete variables with a �nite number of values, leading to a �nite
number of combinations of state values and propagated �ows, allowing theo-
retically to cover the entire system state space. AltaRica Data�ow is at the core
of several Reliability, Availability, Maintainability and Safety (RAMS) environ-
ments: Cecilia OCAS (Dassault Aviation), Sim�aNeo (Airbus Protect), and
Safety Designer (Dassault Systèmes)

Assertion

States

BlockEvent

Entry
Connection

Exit
Connection

Transition

Architecture

Figure 3.1: Altarica Data�ow Model

• Variables: AltaRica variables are discrete and represents an enumerated
�nite set of values called its domain. Variable de�nition inside its do-
main is free. The variable can represent for example functional modes,
dysfunctional status, message types

Inside MBSA models, state variables are generally used to represent dys-
functional status with a default value as nominal behavior and a value for
each degraded mode reached from any failure mode. Flow variables are
generally to describe the type of data exchanged between components.
This type can represent a functional value (e.g. instruction value) or a
dysfunctional value (e.g. message status). It depends of the model level
of detail. As �ows are used to propagate failures, they can be described
either by sending a status or a faulty value.

• Transitions: Transitions describe possible states changing values. Tran-
sitions are guarded by a condition allowing the transition to become

40

�reable when true. A transition is associated with a triggering event and
is �red when the event is triggered and the guard is true. In MBSA model-
ing, triggering events are used to represent failure modes. AltaRica allows
to assign a probability law to an event, modeling the behavior of random
failures or deterministic actions. The transition completion describes
the e�ect of the failure mode on the component state. Guards can be
enriched to restrict to describe conditional failures. For example, in a
cold redundancy, some failures can’t happen when the component is o�.

• Assertions: Assertion is the mechanism used to set outputs values of a
node. Output values are a function of input values and internal state
values. Assertion can be interpreted as a logical function describing a
truth table assigning outputs according to each combination of inputs
and internal state values. Combinations are described through Boolean
expressions and imperative programming constructs such as if-then-else
or case.

Assertions are used to propagate failures from a faulty component to
other blocks. Fault injected on the internal state is propagated to its out-
put and then to others blocks. Depending of the granularity level of the
model, assertions are manipulating either functional values or states.

3.3 Modeling Digital Systems for MBSA
Digital systems, by essence, lend themselves well to �nite state machines rep-
resentation making the use of languages and formalism such as Altarica very
suitable for their modelling. However, dysfunctional modeling requires ex-
tracting the faulty behaviour of the blocks composing the system. Such task is
usually carried out by a Failure Mode and E�ect Analysis (FMEA) to identify
possible malfunction of the individual blocks. In digital system, such task can
be performed automatically by simulation with fault injection[38] and possibly
formal methods [54].

The main issue in modelling digital systems for MBSA is choosing the ad-
equate level of abstraction avoiding a direct 1 ⇔ 1 translation of Hardware
Description Languages (HDL) modeling concepts into Altarica. When extract-
ing a safety model from a digital block three points must be addressed:

• Structural hierarchy: Because Altarica support hierarchy [59], translating
hierarchy with adequate granularity can be straightforward, especially as
natural design hierarchy is usually a good candidate.

41

• Behavioral modelling: Faulty behavioral aspects requires extraction of
failure modes which can be performed manually, based on design knowl-
edge or automatically using fault injection or formal approaches. Fault
injection is well suited to such analysis, especially in the world of digital
design which rely heavily on HDL simulators and digital fault injection
driven by ISO26262 requirements. In this work we will exclusively focus
on fault injection.

• Faults propagation: Blocks in a SoCs are usually connected though buses
with well de�ned protocols and their failures modes (unaligned access
. . .) are known. The issue comes in the granularity of the modelling
that, if too low will lead to too numerous events (1 HDL signal→ 1
�ow variable) while a too high abstraction may prevent catching of some
protocol failures.

Fault injection campaigns are used to characterize the behavior of the system
from its output pins point of view which are the ’vectors’ for faults propagation
between blocks. Also, knowing the functionality of each of these pins, it is
possible to attach some possible consequences to the failure to such (group of)
output(s). Such semantic labelling is, however, still manual and based on safety
engineers knowledge and experience.

3.4 Methodology
On top of any explicit �nite state machine or control code encoding the user
speci�ed behaviour, a more complete state exist that includes the totality of
the signals belonging to the control path of a design, such as data states implic-
itly exposed in controls states, or implicitly coded control states. These signals
compose a more complete and larger state machine exposing new states and
transitions that are implicitly speci�ed, for example resulting from Cartesian
product of automatons. Those are, technically, the signals driving transitions
conditions.

Combinations of these signals in those states can lead to a subtle set of
fault states, di�cult to identify from the HDL description as the encoding in
this state machine is sparse due to correlations. Such argument comes from
the fact that even for a small (>≈50) number of �ip-�ops, the complete state
space (250) cannot be traversed in a reasonable time. Therefore a non-negligible
proportion of these states are what we call illegal states i.e. unreachable under
normal behaviour, potentially leading to undesired and unspeci�ed behavior
when the block is exposed to those states though faults.

42

In order to build a failure model from a nominal behavioral Register Trans-
fer Model (RTL) in Verilog or VHDL, behaviour of the system under faults
must be analyzed and faulty behavior as well as failure modes must be extracted.
We proceed using the following steps:

1. Identification and Extraction of State Signals: Starting from the func-
tional description, the set of �ip-�ops, belonging to both the control and
possibly data) paths composing what we name as the state, has to be iden-
ti�ed and extracted. This set, composed by all the �ip-�ops composing
the control path and possibly the datapath which maintain the control
state of the block, correspond to possible fault injection sites.

2. Testbench Setup : A standalone testbench is set up with care given to
coverage and testbench representability as the states traversed during this
golden execution will serve as non-faulty reference behavior. Tools like
Incisive Metrics Coverage (IMC) [14] or Certitude [57] can be used to
assess testbench coverage. A �rst reference run is performed to allow
extraction of golden functional states that will be used later in the process
to be di�erentiated from non-functional ones under fault injection.

3. Fault Injection Campaign: Fault injection is the mean by which the mis-
behavior and faulty execution is exposed on purposes. Probes (i.e., ob-
servation points) are de�ned during the setup of the fault injection cam-
paign. They are set on the outputs of all blocks in order to identify failures
that propagates to other blocks. Probes monitor and compare the probed
signal value at each clock cycle with the golden reference and report any
di�erence. They have been set to stop simulation when a fault reaches
an output of the design. This step is the core of our analysis aimed at
extracting faulty behaviour, modes and e�ects though exploration of the
faulty states by fault injection.

4. Extraction of Faulty Behavior: Once the faulty runs have completed, non-
functional (i.e. faulty) states and behavior are extracted by subtracting
functional (golden) states taken from the golden run state dictionary to
the faulty run states, leaving only newly discovered faulty states and tran-
sitions.

5. Construction of the Faulty Model: The newly discovered states and tran-
sitions are used to augment the functional models with faulty behavior.
Transitions from a functional to a non-functional state are labeled with
the responsible faults so are states responsible for an incorrect output.
This model serves as a base for the translation into the Altarica language.

43

Currently, the method is limited in the e�ect analysis of the FMEA. E�ect such
as loss of power cannot be attached automatically to a faulty state as it would
requires an inference and abstraction process out the reach of the tool currently.
Thus, such labelling is performed manually by attaching e�ects to outputs and
then back-propagating them into the states and faults responsible for the given
outputs corruptions.

3.4.1 Faulty Behavior Model Construction
Once the faulty behavior has been extracted from faulty runs, the faulty model
can be constructed using graph analysis algorithms. The �rst step in the model
construction is collapsing states that are not meaningful for the dysfunctional
model. We proceed currently with the following rules:

• Any component (connected subgraph) comprising only legal states and
legal transitions are collapsed into one single functional state.

• Legal states with illegal transitions or incorrect outputs (outputs values
do di�ers from reference in these states) are kept and illegal transition
probabilities are attached.

• Any component comprising only nodes not propagating any faults to
outputs are collapsed into one single faulty state. Probabilities to enter
this state can be extracted from transitions leading to the collapsed states.

• Faulty nodes propagating faults to outputs are kept and transitions prob-
abilities are attached to allow computing incorrect outputs probabilities.

• E�ect attached to output pins are back propagated in the state graph
faulty states where output corruptions occurs.

However additional rules may be added like to remove faulty nodes and transi-
tions from masked faults for example, especially those not leading to any latent
faults (execution is correct with no faults propagated to outputs and internal
state doesn’t di�ers from reference one at some point, i.e. fault has vanished).
We ultimately target discrete-time Markov chains [18] for our dysfunctional
behaviour modelling (Fig. 3.2).

3.4.2 Completeness of Extraction
The main risk in state identi�cation is to under or overestimate the state which
would lead to uncovered faulty states (fault not injected in a �ip-�op misiden-
ti�ed as not control) or over estimate the state leading to classi�cation of what

44

Figure 3.2: Altarica Dysfunctional Model

are, in fact, data state as control states. The latter can be easily identi�ed as
randomizing data in the golden or faulty state machine extraction step leads to
an increasing number of states with the number of runs. On Fig. 3.3, a correct
identi�cation leads to a saturating number of states (green curves) while an in-
correct one leads to a diverging number of states as the number of tests grows
(red curve).

Figure 3.3: Completeness of the Extraction

45

3.4.3 Altarica Modeling
Such an automaton representation is adequate for Altarica modelling as de-
scribed below. When performing translation to Altarica, two elements shall be
extracted:

1. The internal state machine corresponding to failures.

2. The assertion part corresponding to the propagation failure probability
from input to one or more output of element.

Base modelling must include at least four states (Fig. 3.10): a nominal state
where no failure occurs, a failure state corresponding to a bit-�ip error injection
and an illegal state corresponding to propagation of the failure to one or more
outputs. The legal state correspond to failures leading to legals transitions,
without failure propagation to outputs.

Assertions on outputs are conditioned by the internal state machine and
inputs of the block. Every time internal state machine is in the illegal state,
outputs values are updated. In same way, if one input of the block is set in the
failed state, outputs are updated. Probabilities to generate a faulty output or
to propagate failures from inputs to outputs are extracted from fault injection
campaigns (Table ??). Currently, all illegal states are collapsed into a single one,
but di�erent non-functional states corresponding to di�erent failure modes
can be extracted as well, such as represented on Fig. 3.10 where two illegal states
are identi�ed whether or not a simulation timeout (10% of golden execution
time) occurs. Criteria for re�ned dysfunctional automaton extraction are not
yet addressed as well as construction and reduction rules from fault injection
data for such an automaton.

3.5 Application: I2C to AHB bridge
In order to exercise the methodology presented in Section 4.3, we use a test case
composed of 2 blocks: an I2C slave [42] connected to an AHB [29] bus master
interface (Fig. 3.4). Commands (read or write) along with parameters (address
and data) are received on the serial line and transformed into a series of AHB
read and write transactions. Such a system, composed of two interconnected
blocks, is humanely understandable so are its dysfunctional modes, while being
complex enough to detail thoroughly the methodology.

The I2C slave, taken from [34], receives read or write commands followed
by an address byte and an optional data byte. On an I2C read, the byte returned
from the AHB read transaction is returned. chronogramm for the read and

46

write sequences are represented on Fig. 3.5. The system is represented on Fig. 3.4.
At both end of the system (I2C input and AHB output buses), I2C master and
AHB slave Veri�cation IPs (VIP) are attached to generate and verify correctness
of I2C and AHB transactions.

v
i
p
_
I
2
C

I
2
C
_
m
i
n
i
o
n

g
l
u
e
_
l
o
g
i
c

A
H
B
_
m
s
t

v
i
p
_
A
H
Bsda

scl

data_req

data_val

data_FM

data_TM

dmai

dmao

AHBO

AHBI

Figure 3.4: I2C to AHB System Block Diagram

Figure 3.5: I2C/AHB System Model

3.5.1 I2C Block Modeling
The testbench is composed of a series of read and write random transactions.
The coverage evaluation of the design has been carried out, results are presented
in Table 3.1. Having considered the results of the coverage evaluations su�cient
for the demonstration, application of the method presented in section 4.3 have
been performed. The list of all injection sites, reported by Cadence Xcelium
Fault Simulator (FSV) [14] fault injection tool are considered for state includ-
ing ones containing data as the serial nature of the I2C protocol, which mixes
control and data frames on the same signals thought time-multiplexing, doesn’t
allow di�erentiation. However, the small size of data considered (8-bit) only
induce a low (256) superset of the real control states. All outputs are probed so
that any mismatch with the reference run will stop the simulation and report
the fault as Detected. State (�ip-�op value, i.e. ’0’ or ’1’) is simply extracted at
each clock cycle and printed in the simulation logs to be post-processed.

Fault injection traces are then processed following rules described in section
3.4.1 extracting transitions probabilities between the connected subgraphs:

47

Figure 3.6: I2C Gold Automaton

Figure 3.7: I2C Complete Automaton

Table 3.1: IMC Coverage Figures (%)

I2C AHB
cov. tot. overall cov. tot. overall

Overall 352 410 93.8% 333 1057 61.3%
block 164 180 95.4% 51 68 85.55%
Expression 44 44 100% 7 17 41.18%
Toggle 112 148 75.68% 266 963 30.17%
FSM 32 38 83.36% 9 9 100%

48

Figure 3.8: I2C Complete Automaton Clusterized

49

Figure 3.9: AHB Complete Automaton Clusterized

50

• Nominal 1 - Subgraph made of legal states only, part of the nominal
execution.

• Nominal 2 - Subgraph made of legal states only, part of the nominal
execution.

• Faulty 1 - Illegal state Subgraph, leading to a propagation of the fault
to the output.

• Faulty 2 - Illegal state Subgraph, leading to a simulation timeout.

The resulting model is represented on Fig. 3.10.

I
N
I
T

f
a
u
l
t
_
t
o
_
o
u
t
p
u
t

nominal_termination

nominal
1

faulty
2nominal

2

faulty
1

simulation_timeout

99.89%

0.005%

0.006% 0.1%

0.006%

0.005%

50.8%

0.7
5%

48.45%

Figure 3.10: Extracted FSM for the I2C Block

3.5.2 AHB Block Modeling
The AHB bus interface is taken from the GRLIB [30] library with added cus-
tom logic to connect it to the master parallel interface of the I2C. The added
logic comprise an interpreter for the command received by the I2C and the glue
logic interface to the AHB master side. A veri�cation IP is connected to the
AHB slave interface side to respond to transactions and check protocol. Fig. 3.5
represents the translation of I2C signals into an AHB transaction by the system.
Coverage for AHB block is low and can be explained as only a limited use of
the AHB protocol is made:

1. only byte accesses are performed.

2. only single (SINGLE) non-sequential (NONSEQ) transfers are performed.

3. the VIP has not been programmed to insert HREADY wait states in the
transaction.

4. the VIP has not be programmed to generate HRESP transaction response
error.

51

The low coverage obtained here doesn’t restrict the generality of the methodol-
ogy but may prevents some failure modes to be identi�ed in this speci�c case.

3.5.3 Complete System Test Case
The complete system is composed of both the I2C slave and AHB master along
with VIPs at both ends. As previously mentioned, probes are placed on all
outputs of the complete system, leaving this time, faults freely propagating
internally between the I2C and the AHB without being reported by FSV nor
the simulation to be stopped. The main di�erence of this testbench regarding
the two standalone previous ones is that faults injected in one block will be able
to propagate to the other one (I2C→AHB, for example) and back-propagate
to the �rst block (AHB→ I2C) as simulation will not be stopped when the fault
will output from the �rst (i.e. I2C), and later second (i.e. AHB), block. Such
"fault loop" (I2C 	 AHB or AHB 	 I2C) are expected to be the main possible
source of faulty states di�erences between the standalone and full system faulty
states extraction. However, as faults are injected on the inputs in both approach
(standalone and full system), we expect to capture, at least a part of theses "fault
loops" induced faulty states in the standalone extractions, if such case exist.

The AltaRica structural model architecture follows the natural hierarchy
of the system. As shown on Fig. 3.11, the AltaRica models includes the exact
same blocks with the same interconnections between blocks as the functional
model. The main I2C and AHB modules are composed of two sub-elements,
shown respectively in Fig. 3.12 and Fig. 3.13.

Figure 3.11: I2C to AHB System Model

The �rst element is the functional state machine of the module. In case of
internal or external fault, this state machine will dispatch the fault to the im-
pacted outputs. This state machine only model the internal faults propagation
and do not generate any random failure on its own. The second element is the
internal failure state machine. This state machine generate internal random
failures and provide to the functional state machine the outputs impacted by
it. In addition, the AHB module include an additional glue-logic block that
converts I2C output signals to AHB bridge input signals. No internal failure

52

Figure 3.12: I2C Block Model

Figure 3.13: AHB Block Model

are generated by this element. At both end of the I2C and AHB blocks, links
module have been added to model the faults coming from outside of the system.
To model the behavior of the I2C and AHB system, only standalone block fault
injection test results have been used.

Depending on the methodology, two types of metrics can be extracted. The
�rst one is the probability to propagate internal failure to one or more outputs
of the system. From the test results, this probability has been extracted by con-
sidering all faults injected in the studied system. The probability to propagate
internal faults to an output of the system is then equal to the ratio between the
faults detected by the output probe and the total number of faults injected.

53

Table 3.2: RTL Fault Injection Vs Altarica Model Failures

AHB I2C+AHB Altarica I2C I2C+AHB Altarica
Failure RTL Model Failure RTL Model

haddr 0.00551 0.00551 SDA 0.00338 0.00339
hwdata 0.00382 0.00382 Read req 0.00254 0.00255
hsize 0.00068 0.00068 Data 0.00580 0.00581
hbusreq 0.00026 0.00026 Data valid 0.00322 0.00323
hwrite 0.00022 0.00022

The second metrics is the probability to propagate a failure from an input
of the system to one or more output of the system. For this metric, only fault
injected on inputs have been taken into account. This probability is the ratio of
the input faults leading to an erroneous output over the total number of input
faults injected.

Sim�aNeo allows to perform Monte-Carlo simulation. In this type of sim-
ulation, a large number of failure scenarios are generated to assess the mean
behavior of the system under random failure scenarios. The �rst possible assess-
ment randomly injected one failure by failure scenario inside the system while
the outputs are monitored. If at least one output triggers a faulty state, the error
is accounted to have been propagated outside of the system. With this method-
ology, it’s possible to estimate the probability to have a failure propagation from
the I2C+AHB system to the I2C or AHB external signals. The second possible
assessment randomly injected one failure by failure scenario in a link module
and monitored the other link module. If the opposite link module triggers a
faulty state, the error is accounted to have been propagated from one end to
another. With this methodology, it is possible to estimate the probability to
have a failure propagation from AHB or I2C back to the other link.

3.6 Results
Result of composition obtained by Sim�aNeo are compared to fault injection
performed on the full system with probes set only on external outputs of the
system on table 3.2 for the I2C and AHB side signal. Because the system is
simple and faults propagate only forward, it came to simple probability multi-
plication explaining exact matching of model and system fault injection. No
back-propagating faults were observed.

54

3.7 Discussion and Future Work
In this work, we have proposed and experimented the use of Model-Based Safety
Assessment on digital system for safety analysis. We have addressed the construc-
tion of dysfunctional model for digital system using simulation and have been
able to build a simple, but functional dysfunctional model in Altarica. Ongo-
ing work include automatic dysfunctional models reduction to more than one
state and the application to a small RISCV SoC and software reliability[28].

55

Chapter 4

Footnotes and Sidenotes

4.1 Introduction
In the last years the density of integration in VLSI systems and microprocessors
performances have continuously increased, thanks to the relentless technology
scaling. Even though this trend can only continue on its path, several constraints
may obstruct the way (power, energy, performance), in particular reliability (or
cross-layer resilience) can become the more relevant. Hardware redundancy can
be used to manage errors at the hardware architecture layer, and eventually even
software implemented error detection and correction mechanisms can manage
those errors that escalated from the lower layers of the stack [19] [33]. Over-
all, the goal is to determine the resilience of a particular system in determined
conditions, meeting the requirements considering its sensitivity to hardware
faults.

It is also true that software failures are not only caused by software imple-
mented faults, as it has been shown [52] the propagation of hardware faults
plays a central role, eventually catastrophic. Base on what literature reports on
hardware faults evaluation reports [23] [24] it is possible to observe that the
percentage of software failure that are caused by pure hardware faults average
around 10% [39]. The most famous example is surely the crash of the Mars Polar
Lander [7], which cause was established to be dependant on hardware faults
resulting in software failure. In that case the lander was not able to settle the
legs into their deployed position, which is an hardware fault, and the software
gave a wrong order to turn o� the engines in the air of Mars, which is a software
fault. The system crashed and the entire mission failed.

This paper not only wants to furthermore analyse the behaviour of soft-
ware failure due to hardware propagated fault but parallely to the main research
[27] path that applies these new methodology to Hardware design in order to

56

simplify the reliability assessment, the idea of applying the same method in the
scope of the assessment of the reliability of software has never been tested. In
order to do so, there is the need to specify the main characteristic that Soft-
ware Products have, fundamental to lay the basis for the described work. Every
software can be divided into basic block, atomic chunks of software having the
following proprieties:

• One entry point, meaning no code within it is the destination of a jump
instruction anywhere in the program.

• One exit point, meaning only the last instruction can cause the program
to begin executing code in a di�erent basic block.

Under these circumstances, whenever the �rst instruction in a basic block is
executed, the rest of the instructions are necessarily executed exactly once, in
order. The code may be source code, assembly code, or some other sequence of
instructions. More formally, a sequence of instructions forms a basic block if:

• The instruction in each position dominates, or always executes before,
all those in later positions.

• No other instruction executes between two instructions in the sequence.
This de�nition is more general than the intuitive one in some ways. For
example, it allows unconditional jumps to labels not targeted by other
jumps. This de�nition embodies the properties that make basic blocks
easy to work with when constructing an algorithm.

The blocks to which control may transfer after reaching the end of a block
are called that block’s successors, while the blocks from which control may have
come when entering a block are called that block’s predecessors. The start of a
basic block may be jumped to from more than one location. Laid these basis, if,
as we’ll show in this paper, the reliability metrics extracted for each basic block
can be recomposed just knowing the sequence of block required to execute a
precise operation, the need for a fault injection campaign on the entire software
product doesn’t stand anymore.

This paper is organised as follows: the current state of the art is summarised
in section II; section III describes the proposed methodology, including its
setup, the fault injection procedure and the re-composition of the results from
each basic block; a test case is provided in Section IV, while Section V presents
the obtained results and sketches some perspectives.

57

4.2 State of the Art
The rush to develop a methodology to assess the reliability and availability of
electronic systems has speed up together with the increasing complexity of the
microelectronic systems and the miniaturization of such devices. In particular
an eye has been keep onto the propagation of faults throughout the entire stack
of layers that compose the system as whole, starting from the technological layer
all the way up to the software/application layer passing through hardware. In
particular the extraction of reliability metrics for software has been the focus
of a consistent thread of research [39][38][63] that aimed to verify:

1. whether the software respects the speci�cation requirements,

2. the improvement of the software quality and,

3. the reliability of the software

Tools to verify the reliability of software, de�ned as the probability of the
correct software performances for speci�c period of time on speci�c environ-
ments, have been already developed. In particular the SyRA [64] Cross-Layer
Soft Error Resilience evaluation framework proposes a solid method to move
from the industrial level Cross-Layer evaluation techniques that are still mainly
guided by the sole experience of the designers [19]. These methods are all based
on the use of fault injection tools, and they all produce satisfying results in
their �elds. Nevertheless they have limitation, the description of the Software
Fault Models have always been based on the simulation of propagation from
the hardware architecture up to software routines, assessing their impact in the
correctness of the computation as in [50][66][46]. Moreover no attention has
been given to the enormous e�ort that this type of campaign require, in terms
of time, licences for tools and computational power, for an assessment that is
limited to the hardware the application is running on and most importantly
on the inputs the software receives to perform its calculation. This makes the
assessment completely not re-usable in the future requiring a completely new
set of campaigns.

Here the focus will be, instead, put on how the software computation reacts
to the vulnerable hardware underneath and most importantly to the de develop-
ment of a methodology like there are no other example in the related research,
the possibility of decomposing the software products to abstract the single basic
blocks and perform a reliability assessment on the single, apparently meaning-
less blocks to then recompose them obtaining the reliability assessment with
a huge time and computational power advantage with respect to the existing
methods.

58

4.3 Methodology
The Classical reliability assesment of Hardware as well as Software is Fault In-
jection driven. The extensive usage of commercial fault injection tools like the
ones provided by Cadence [15] or Synopsys [58] guarantees the proper explo-
ration of the behaviour of the DUT when subject to SEU or other types of
faults. This allows the Veri�cation Engineers to have an idea of the behavior of
their design without the need to move onto practical testing in radiation envi-
ronments, which require a dedicate setup [51] and an expensive and not widely
available infrastructure.

These advantages come at two main costs, time and Computational Power,
which are comsumed in great quantities by the above mentioned simulators.
Attempts of Optimization and Parallelization have been put in practice before,
but they are not tackling the bigger overhead that we need to take care of every
time we simulate a design. Let us assume that, as shown in Fig:4.3 there is
the need to test and entire Software Product composed of n basic blocks, this
simulation will last as long as the time to initialize Tinit plus the time of the
checker/footer to be executed Tfoot plus the sum of the duration of all basic
blocks multiplied by their multiplicity through the program mn · Tbbn . All
multiplied by the number of runs that the simulator has to perform to achieve
the desired number of injections I , resulting in:

Tcampaign = I ·

[
Tinit + Tfoot +

N∑
0

mn · Tbbn

]
(4.1)

In which the entire program is executed every time entirely, the method pro-
posed by this paper consist in a fragmented study of the basic blocks composing
the software, extracting the same metrics that would be extracted by the same
fault injection campaing on the whole Software. In this case, in the same way
we did before, it is possible to calculate the time needed to carry out the fault
injection campaign as we have de�ned it now, on separate basic blocks, each of
them having their random initialization and checker to ensure functionality.

I ·

[
Tinit + Tfoot +

N∑
0

Tbbn

]
(4.2)

In this way we have drastically reduced the amount of time needed to per-
form the same amount of fault injections, just focusing on the single blocks.
Moreover, the di�erence between the two previously calculated timings, will
give us the bene�t of studying the blocks singularly, as follow:

59

I ·

[
N∑
0

mn · Tbbn

]
− I ·

N∑
0

Tbbn =

= I ·

[
N∑
0

mnTbbn −
N∑
0

Tbbn

]
=

= I ·
N∑
0

Tbbn · (mn − 1)

(4.3)

which means that we save the time needed for the execution of each basic block
multiplied by its multiplicity, minus one that we still have to execute. Clearly
this saved time increases with the length of the Software and therefore the mul-
tiplicity of the blocks. In particular, the length of the Fault injection campaign
on the entire software is linear with respect to the increasing of multiplicity of
the basic blocks, for example due to a larger data input, whereas the solution
proposed in this paper is linear with respect to the overall number of unique
basic blocks, which remain the same regardless of the data.

4.3.1 Setup
The �rst step towards the application of the method described in the previous
section, is the identi�cation and of the di�erent basic block that compose the
Software Product under analysis. This can be easily carried out automatically
by a simple parser. Basic Block at Assembly level are easy to identify and parse
thanks to their intrinsic de�nition of linear chunks of code. It is therefore trivial
to identify in the code all those instructions that modify the �ow of the program,
tearing down the hypothesis of linearity that de�nes the blocks themselves. For
instance, all the jumping and branching point de�ne the end of a block, as
well as the beginning of the following one. Labels in the code also identify
starting point of basic block, as they are frequently arrival points for the above
mentioned jump and branch operations.

Although having the set of basic blocks divided in single �le may seem suf-
�cient, there still the need to initialize all the resources that both the processor
and the basic block itself need to run properly, as well as a control logic to ensure
that the functionalities of the basic block are preserved (or not) throughout the
course of the fault injection campaign. As Shown in �g:2 a random initializa-
tion is included in the header for the basic block, ensuring the non dependability
of the reliability metrics extracted on the input data, together with a footer that
checks the functionalities of the block itself. Notice that in in this case, contrary

60

Standalone
Basic Block

Test
BB#n Init

branch
BB#n

Random
Init
of

ResourcesScope of
Fault
Inj.

Footer/Checker

Figure 4.1: Block Diagram of the Entire SW Product

of what is done in the Hardware methodology, there is no physical probing of
the circuit on which the program or the testbench is running. In this study only
the functional aspect of the Software Product under test is observed.

Software Product
BB#1 Init

branch
BB#1

branch
BB#n-1

branch
BB#n

Random
Init
of

Resources
Scope of
Fault
Inj.

Footer/Checker

Figure 4.2: Block Diagram of the Entire SW Product

4.3.2 Fault Injection on Randomly Initialized Resources
Fault injection is the mean by which the misbehavior and faulty execution is
provoked on purpose on digital systems. In the past, especially on hardware,
fault injection was aimed to functionally verify the designs under test. Those
DUT were analysed, their functions (data dependent) extracted and inputs

61

were selected in order to exercise those functions. Later on the fault injection
had the role of determining whether those functions were preserved in cases of
fault or how eventually they were modi�ed. Today this is still the state of the
art for software veri�cation.

With time a second approach on hardware was presented, testing moved
from functional to structural, where the integrity of the device is evaluated,
regardless of the function (and therefore of data), verifying solely the imple-
mented boolean function.

The methodology introduced in this paper presents the novelty of apply-
ing this structural approach to software. To abstract the basic block as much
as possible from its link to data, every resource utilized has been random-
ized before each fault injection. The probability of failure and propagation
probabilities are therefore extracted independently of their data input.

Probes (i.e., observation points) are de�ned during the setup of the fault
injection campaign. It is the role of the Footer/Checker (out of the scope of
the fault injection) to redirect the output of the block function into a reserved
portion of the memory to be probed. Probes are set on those reserved memory
location on all blocks, not probing the correctness of the data with respect to
the golden run, but solely if the basic function included in that portion of code
has been a�ected by the fault injection.

4.3.3 Re-Composition of the basic blocks
Once the fault injection campaigns are over, it is time to re-compose the infor-
mation that have been extracted on the single blocks into a complete description
of the original Software Product. To perform the re-composition there is the
need run the software once and record the trace, this will allow us to know
exactly the sequence in which the basic blocks have been executed during the
nominal run.

We distinguish two main branches of the re-composition, the ones contain-
ing fault that do not modity the program flow and those that lead to a modified
program flow

Not modi�ed Program Flow

First we nee to de�ne the probability of being executing a precise basic block in
time during the execution of the program. Assuming a deterministic duration
per executed instruction, without nested or hidden operation, we can de�ne

62

the probability of executingBBn as

Pin−bbn =
instructions− in−BBn

total − instruction− in− exe
(4.4)

Next step is to de�ne the probability of a fault happening inBBn being able to
become an error in the same block. This has been deduced from fault injection
and must be di�erentiated per every register in which we inject faults and it
represented as:

PAm
gBBn

(4.5)

Last probability to de�ne is the probability of a block to receive a wrong input
and propagate it to its output. De�ned as:

PAm
pBBn

(4.6)

which is related to the "time of life" of the variables, de�ned as the number of
basic block between the last time a variable has been read and the �rst time it
gets overwritten.

Once these probabilities ha been de�ned we can describe the worst possible
case, in which a fault is injected in BBn and gets propagated throughout the
whole program.

Pin−bbn ∗ PAm
gBBn

∗
î
PAm
pBBn+1

. . . PAm
pBBf

ó
+

+ Pin−bbn+1 ∗ PAm
gBBn+1

∗
î
PAm
pBBn+2

. . . PAm
pBBf

ó
. . .

(4.7)

which summarizes, per every registerAm as:

N∑
n=0

Pin−bbn ∗ PAm
gBBn

∗

[
N∏
i=n

î
PAm
pBBi+1

ó]
(4.8)

Ptot = [Pin−bb−x ∗ Pp−bbx] + [Pp−bbx+1 ∗ Pp−bbx+1] . . . (4.9)

Modi�ed Program Flow

Regarding the possibility of having a fault injected on a register while the pro-
gram is executing a precise Basic Block that requires a branching operation at the
end, we cannot consider them while recomposing the metrics as in the previous
subsection.

These blocks contribute instead to the composition of a particular subset of
runs (diverse behaviour of the program) which include all those runs in which
the program simulation has reached the end in a time that di�ers from the nom-

63

inal one. In particular, it can be shortened due to a premature jump to the
conclusive part of the program as well as delayed due to an incorrect loop that
sends the machine into a non-necessary series of states from which it will even-
tually recover. In the case in which the machine would not be able to recover,
we categorize those runs as Timeouts (when longer than 150% of nominal time).
It worth to point out that, due to the nature of the injections, which focus on the
Register file, with one SEU per run, these cases are reduced to the minimum, if
not nonexistent. Give these assumptions, taking into account this second sec-
tion of Basic Blocks, it is possible to assume that most, if not all of these runs
will generate a failure in the functionalities of the program itself. therefore the
recomposition, that was missing a good half of what was neded, now �nds the
missing cases in all those blocks that led to a modi�cation in the �ow.

In particular, considering the possibility that this blocks have not to propa-
gate (to mask) a fault occurring in the course of their routine, the event of �ow
corruption has probability 1 − Pmasking, then the probability of these fault
becoming a funcional error is 100% and it does not propagate. In this case the
recomposition technique is slightly di�erent than the previous section, as the
case of a missed branch or jump leads directly to an error. So de�ned the multi-
plicity of the same critical block in the nominal sequencem, the probability of
having a functinoal failure is described by:

Perr + Pmsk ∗ Perr + (Pmsk)
2 ∗ Perr · · ·+ (Pmsk)

m ∗ Perr (4.10)

Taking into accoun the approximation due to the algorithm intrinsic ability
to recover from a �ow error.

4.4 Test Case and Application

4.4.1 The Software
The Software of choice for the Proof of Concept of this methodology is the
Bubble Sort Algoritm, in its Assembler for RISC-V Version. Bubble sort is
an O(n2) sorting algorithm. A simple sorting algorithm that performs a one-
way comparison of two adjacent records from the head to tail of the disordered
part in each sort trip. Of course, the direction can also be the contrary, one-
way comparison from the tail to head of the disordered part. This will form
gradually an ordered table at the head of the disordered table, and the basic idea
of the algorithm has no di�erence with the foregoing [45].

64

Table 4.1: Result of Fault Injection on basic blocks

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x31
bb_0 0 0 139 0 0 0 0 0 379 0 0 0 0 0 0 162 0 ... 0
bb_1 0 0 0 0 0 0 0 0 500 0 0 0 0 0 0 0 0 ... 0
bb_2 0 0 0 0 0 0 0 0 269 0 0 0 0 28 14 38 0 ... 0
bb_3 0 0 0 0 0 0 0 0 500 0 0 0 0 16 131 244 0 ... 0
bb_4 0 0 0 0 0 0 0 0 495 0 0 0 0 0 0 62 0 ... 0
bb_5 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 ... 0
bb_6 0 0 0 0 0 0 0 0 494 0 0 0 0 0 0 41 0 ... 0
bb_7 0 0 0 0 0 0 0 0 466 0 0 0 0 0 0 0 0 ... 0

Table 4.2: Comparison of Fault Injection data vs Recomposed data on Entire Software

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x31
FI 0 0 4 0 0 0 0 0 221 0 0 0 0 15 41 90 0 ... 0
Reco 0 0 5 0 0 0 0 0 228 0 0 0 0 13 44 98 0 ... 0

Table 4.3: Control Flow Driven Errors

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x31
FI 0 0 0 0 0 0 0 0 198 0 0 0 0 4 77 90 0 ... 0

4.4.2 The Division in Basic Block
The processing of dividing the Software under test into basic block has been
carried out automatically and returned 8 di�erent blocks, together with the list
of resources that each and every basic blocks utilizes during its own functions.
After a Nominal run without faults of the entire software, it was possible to
trace the transition between the di�erent basic blocks throughout the whole
execution. These information, summarized in the scheme below, will be the
key to predict the behaviour of the program starting from the behaviour of the
basic blocks themselves.

4.4.3 The Platform
The choice of the platform on which the program has been run and tested fell
on the SCR1SOC. SCR1 is an open-source and free to use RISC-V compatible
MCU-class core, designed and maintained by Syntacore. It is industry-grade
and silicon-proven (including full-wafer production), works out of the box in

65

BB_0

BB_1

BB_3

BB_4
BB_5

BB_6
BB_7

BB_2

Figure 4.3: Block Diagram of the Entire SW Product

all major EDA �ows and Verilator, and comes with extensive collateral and doc-
umentation []. This choice had mostly been driven by the larger and larger
usage of these kind of RISCV based cores in the academic community. Any
test based on these platforms is and added value to their development.

4.4.4 The Fault Injection Campaign
The next step in the methodology is fault injection. It is performed using Ca-
dence fault injection tool FSV [15]. Once fault injection sites are automatically
identi�ed from the RTL description, fault injection is performed and 20 faults
are injected per identi�ed site using a custom pre-generated fault dictionary,
including a random injection time. An in-house tool build on top of the GSL
[31] has been developed for this purpose. Such number is statistically signif-
icant enough [41] without compromising fault injection campaign running
time. Faults are injected on the integrity of the register �le, mimic as well the
possibility of faults propagated to the memory and back. Also, fault probes
are set on non excerciced memory location to record which injected faults will
cause a functional failure of the basic block. For each fault injection run, a log-
�le is generated which reports the outcome of the run, later a custom made
parsing tool will recollect the data from this log�le and present the results to
the re-composition tool.

4.5 Results and Future Work
The results of the recomposition are based on Table:1, which summarizes the
result of the fault injection campaign that has been carried out on the single

66

basic blocks. Each entry of the table enumerates the number of functional
error on caused by each register in the register �le, keeping in mind that every
bit in the register has been a�ected by 20 faults randomized in time, for a total
of 640 faults per register. Once these table has been given to the recomposition
tool, Table:2 is returned, including the benchmark fault injection campaign on
the entire Software Product for validation of results together with the expected
number of faults, calculated following the methodology described. Last, Table:3
Reports the number of Errors that have been caused by an error in the �ow of
the program, which can be extracted by an equivalent of table number 1 for �ow
errors caused by each register failing in each basic block and recomposed as in
its dedicated section.

The last part of the methodology will be the focus of the work to come,
as includes the implicit ability of the di�erent algorithms to recover from �ow
errors, which understanding can lead to much more re�ned results.

67

Chapter 5

Technical Analysis

In this chapter, a description of one of the LHC detectors at CERN is given,
as to give a better understanding of the environment and setting in which the
SoC is planned to function. Following this, a theoretical outline is given for
radiation and its e�ects on CMOS electronics and how this can be mitigated by
design choice. Following this, an method for extensive veri�cation of individual
block and system veri�cation is presented. After this a description of the steps
of physical implementation is given and �nally the choice of CPU for the SoC
is made, which is accompanied by a description of the state of the system at the
beginning of the author’s internship and the future plans for it.

5.1 LHC Detectors at CERN
There is a vast complex network of di�erent accelerators and di�erent detectors
at CERN. The highest energy endpoint in this network is the LHC. The LHC
is a 27 km counter-rotating accelerator. Using superconducting magnets, it is
capable of accelerating protons up to a peak energy level of7TeV, which results
in a peak collision energy of 14TeV. To reach these energy levels, a network of
several accelerators is used to initially accelerate the protons to 450GeV before
they are injected into the LHC. In the LHC the beams collide with a bunch
spacing of 25 ns corresponding to a frequency of 40MHz and is called the
bunch-crossing (BX) rate. The entire network can be seen in �gure 5.1. More
details can be read in the article: LHC Machine [26].

68

Figure 5.1: Shows the complete network of used accelerators at CERN (Cour-
tesy of [32]).

There are four detectors placed on the LHC ring. These are A Large Ion
Collider Experiment (ALICE), Compact Muon Solenoid (CMS), Large Hadron
Collider Beauty (LCHb) and A Toroidal LHC ApparatuS (ATLAS). These
4 experiments can be split into 3 categories. CMS and ATLAS are general-
purpose onion detectors, which means they try to detect all particles created
by the collision. These two are built in di�erent ways by di�erent independent
teams such that they can be used to verify the results of each other. ALICE is
an experiment focused on the collision of heavier ions, e.g. lead ions. LCHb
is a detector focused on only detecting the particles created by collision, which
moves in the beam direction. This makes it possible for them to make a special-
ized detector better suited for detecting the particles in that speci�c direction.
A majority of the particles created in this experiment are related to the beauty
quark, which gives reason to its name. A detailed description of CMS, one of
the general-purpose experiments, will now be given. This will lay the founda-
tion for understanding the environment in which the electonics are expected
to survie and give a reasoning to some of the design choices made later.

The CMS sits at one of the four collision points in LHC. Figure 5.2 shows
the layout of the CMS detector. The particles generated in the collisions prop-
agate radially, traversing the silicon tracker. The silicon tracker measures the
particle trajectory and transverse momentum pT . The silicon tracker is com-

69

posed of an all-silicon pixel and strip tracker [20]. Next are the electromagnetic
calorimeter (ECAL) and the hadron calorimeter (HCAL). The calorimeters
enable the evaluation of the particle energy. The ECAL uses lead tungstate
scintillating crystals for this purpose [20]. Scintillating crystals emit photons
when ionizing particles pass through them. The light is then detected by silicon
avalanche photodiodes (APD) in the barrel region and vacuum phototriodes
(VPT) in the endcap region. The APD makes use of the avalanche e�ect, where
a single charged particle can knock multiple electrons out of their bond and
thereby amplifying their electrical signature. The VPTs are single ampli�cation
stage photomultipliers. They have a photocathode at ground potential, a single
dynode biased at 600V, and an anode biased at 800V. VPTs operate by a pho-
ton hitting the cathode which releases electrons. The released photoelectrons
are accelerated towards the dynode, where each photoelectron releases multiple
new photoelectrons. These are then accelerated towards the anode as it is at a
higher potential. The anode then produces an ampli�ed current.

After the ECAL, the particles enter a brass/scintillator HCAL [20]. Here
the scintillation light is collected by wavelength-shifting (WLS) �bers embed-
ded in the scintillator tiles. The WLS �bers emit multiple low-energy photons
for each high-energy photon strike. This light is channeled to photodiodes
which amplify the signal. The aforementioned components are encapsulated
by a 3.8T superconducting solenoid. Outside the superconducting solenoid,
the iron return yoke with muon chambers is placed. The iron return yoke con-
�nes the magnetic �eld and stops all remaining particles except for muons and
neutrinos. The muon system has 3 functions: muon identi�cation, momen-
tum measurement, and triggering. In the barrel, region detection is done using
drift tubes while in the end-cap region it is done using cathode strip chambers.
Both of these systems are completed by a dedicated trigger system of resistive
plate chambers.

In total, the CMS detector has a diameter of 15m, a length of 28.7m, and
weighs 14 · 106 kg.

70

Figure 5.2: Shows the layout of the CMS detector [17].

The CMS is capable of detecting a wide range of particles using the collec-
tion of the data from each of its components. Di�erent particles will follow
a di�erent path through the detector based on their charge, momentum, and
trajectory. In �gure 5.3 a path of the common particles can be seen. The super-
conducting solenoid enables the estimation of the charge and momentum of a
particle. The charge can be determined by the bend direction of the trajectory
because positively charged particles will bend opposite to negatively charged
particles and neutral particles will not bend at all. The momentum can then
be estimated by the degree of bending as faster-moving particles will bend less
than slow-moving particles.

71

Figure 5.3: Shows the movement of di�erent particles in the CMS detector [5].

The collision of charged particles in the LHC creates ionizing particles
which over time will accumulate. The total ionizing dose (TID) expected after
10 years of operation has been simulated using FLUKA, a tool for monte carlo
simulation of particle movement and their interactions. The expected dose de-
creases with distance from the collision point. A complete map of the expected
TID for the detector can be seen in �gure 5.4.

Figure 5.4: Shows expected total ionizing dose in Gy during a 10-year operation
period of the CMS. This is simulated using FLUKA. [21]

The ionizing dose and charged particles passing through electronics can
alter their behavior and a�ect the output in unwanted ways. These e�ects will
now be discussed in detail.

72

5.2 Radiation E�ects on CMOS Electronics
It is necessary to discuss and understand the e�ects of radiation on CMOS
electronics due to the highly radioactive environment of the CERN accelerators.
This understanding will lead to understanding the necessity and the methods
for radiation hardening of the electronics. The radiation a�ects the CMOS in
two distinguishable ways. In the form of cumulative damages and single-event
e�ects (SEEs).

5.2.1 Cumulative Damages
Cumulative damages can be split into two subcategories. The �rst is non-
ionizing processes, which come in the form of displacement of atoms in the
lattice structure of the transistor. These are called displacement damages and are
of little concern to CMOS technologies due to the high amount of doping [8].
The second is damages induced by ionizing doses, i.e. TID e�ects. MOS transis-
tors can accumulate charges in the gate oxide, which creates a voltage di�erence
on the gate and leads to unwanted biasing. This e�ect is dominant when the
gate oxide is thick as it can contain a larger charge compared to the voltage thresh-
old of the gate. Therefore, this e�ect decreases with smaller technologies as the
gate oxide becomes thinner. The smaller technologies are instead dominated
by e�ects like shallow trench isolation (STI) e�ects, which come in the form of
radiation-induced drain-to-source leakage current and radiation-induced nar-
row channel e�ects (RINCE) [8]. Radiation-induced drain-to-source leakage
current is caused by the accumulation of positive charges in the STI, which
opens parasitic channels between the source and drain. This leads to an in-
crease in leakage current. Positive charges are far more likely to be trapped
due to electrons moving fast enough to leave the STI, while electron holes do
not. However, over time electrons are attracted and enough electrons can be
attracted to invert this e�ect. Therefore, initially, an increase in leakage current
is observed, but as TID increases this e�ect reaches a peak and begins to invert.
Since only positive charges are initially trapped, this e�ect does not increase
the leakage current of pMOS. Instead, it repels the holes of the doped silicon
increasing its threshold voltage and decreasing current �ow. It is clear that in-
creasing the length of the channel, decreases this e�ect as more charge is to be
trapped before a channel can be opened. Therefore this e�ect is signi�cant in
smaller technologies with short gate lengths. However, this e�ect can be miti-
gated by using enclosed layout transistors (ELT), where the channel does not
face the STI.

73

The other e�ect is RINCE, which is also due to the trapped charges in the
STI. As positive charges are trapped in the STI, an electric �eld is created. This
electric �eld leads to a decrease in threshold voltage for nMOS transistors and
an increase in threshold voltage for pMOS transistors. However, as the width
of the channel decrease, this e�ect becomes more dominant as the number of
trapped charges does not change. This leads to a proportionally larger elec-
tric �eld, which signi�es a dependency on channel width for this e�ect. For
nMOS transistors, this e�ect is limited, as negative charges become trapped at
the interface leading to the two canceling out similar to the inversion seen in
radiation-induced drain-to-source leakage current at higher TID. However, for
pMOS the trapped charges at the interface are also positive, leading to RINCE
only increasing in potency with an increase in TID. As this e�ect is also due to
charges trapped in the STI, it can be mitigated by the use of ELT [8]. However,
these ELTs do use signi�cantly more area compared to traditional designs.

5.2.2 Single-Event E�ects
Single-Event e�ects can be split into two categories, permanent single-event
e�ects, and single-event upsets (SEUs) (and transients (SETs)). A permanent
single-event is the possible creation of parasitic transistor structures between
two n-wells, i.e. between two transistors. This can potentially shorten VDD
and ground, which can permanently damage the device. However, this e�ect is
limited due to highly doped substrates and the use of STI between wells [16].

SEUs and transients are soft errors and not destructive to the die. Instead,
they corrupt the information stored in digital logic circuits by �ipping bits.
SEUs become possible when the collected fraction of the charge liberated by
an ionizing particle is larger than the electric charge stored on a sensitive node
[16]. This critical charge scales with the gate area of the design. As the gate area
decreases, the amount of stored charge representing a logical value of informa-
tion decreases. In general, SEU sensitivity is increased by the scaling down of
technology as node capacitance and the supply voltage are both scaled down as
well [16].

A SET is an event, where a static combinatorial circuit is upset by a charged
particle, leading to a glitch in the circuit. The time duration of SET is deter-
mined by the injected charge and the driving strength of the cell. If the output
of this combinatorial circuit is sampled during the transient, a register can enter
a metastable state, which can propagate through causing fatal errors [16].

74

5.3 Radiation-Tolerant Design
The goal of radiation-tolerant design is to limit the potential damage caused
by radiation e�ects as described in section 5.2. Some of these e�ects can only
be limited by a careful layout of the die or by the intrinsic properties of the
chosen CMOS technology. However, SEUs can be reduced and mitigated by a
combination of digital design. The methods for radiation hardening are usually
dependent on redundancy either in space or in time.

A common method is the use of triple module redundancy (TMR). In this
method, each memory element (i.e. register) and the corresponding combina-
torial logic are instantiated three times. The outputs from these three registers
are then passed to a voting system, which outputs the majority vote. The voting
system itself is also triplicated to minimize the chance of a SET upset. If a single
voter is used and is sampled during the SET, an error will occur in the system,
thus leading to a single-point of failure. To avoid the build-up of errors in the 3
di�erent paths, the feedback loop of a state machine should be taken from the
voted result. An example of a TMR radiation hardening can be seen in �gure
5.5.

Combinatorial
logic Reg Voter

Combinatorial
logic Reg Voter

Combinatorial
logic Reg Voter

Output B

Output A

Output C

Input B

Input C

Input A

Figure 5.5: Shows a spatial radiation hardening technique using triple module
redundancy.

This added redundancy would lose many of its radiation hardness bene�ts
if the triplicated registers are placed close together on the chip die as this would
increase the chance of an SEU happening on multiple registers from the same
charged particle. Therefore the placement of these registers is restricted in the
physical layout such that a minimum distance is enforced. From this, it is clear
that TMR increases radiation hardness by using space and power consumption
(increased due to increase in hardware) as a trade-o�. This increase in power
and area is not cheap as the heat generated needs to be transported away from

75

the detector and the space itself is limited inside the detector. Therefore to limit
the disadvantages, the TMR is usually only done to the control path of a state
machine. This is done as errors in the data path are limited in time, while an
error in the control path can result in complete failure of the chip. At CERN, a
tool has been developed for this method of radiation hardening named TMRG.

Another way of radiation hardening is the use of temporal spacing and is
done by delaying the clock signal. The registers between combinatorial logic
are triplicated, while the combinatorial logic itself, is not. Instead, the clock
signal for each of the three registers is delayed, such that the SEU has a high
statistical probability of having passed. This results in the SEU only a�ecting
one register. It is then possible to use the same voting system as in TMR to
achieve a corrected output. An example of this can be seen in �gure 5.5.

Combinatorial
logic Reg Voter

Reg Voter

Reg Voter

Output B

Output A

Output C

n-sec
delay

Input

Clk

2n-sec
delay

Figure 5.6: Shows a temporal radiation hardening technique where clock signals
are delayed.

This method does not have the same minimum distance requirement as
the TMR hardening technique as the registers sample at di�erent timestamps.
Instead, there is a temporal spacing requirement. This method does not require
a triplication of the combinatorial logic and therefore saves on space and power
consumption. However, it does make the timing analysis and closure di�cult
and this only gets more problematic as the frequency increases.

Even though temporal radiation hardening has multiple advantages in the
form of space and power consumption, the TMR is chosen due to its simpler
implementation. This is due to the problematic nature of timing closure for
the temporal radiation hardening, but also due to the existence of an already-
developed tool for performing TMR.

76

5.4 Universal Veri�cation Methodology
The universal veri�cation methodology (UVM) is an IEEE industry standard
for the veri�cation of design components [2]. It is developed by the Accellera
group and its members. The goal is to create a modular, scalable and reusable
generic veri�cation environment. For these reasons, this methodology will be
used for the veri�cation of the SoC and its components. A short description of
UVM will now be given.

UVM is based upon a hierarchy structure laid out by Accellera. This speci-
�es guidelines for the creation of a veri�cation environment and gives the sup-
port structure for this development. It does this by supplying a framework, for
the designers to build on top of. This framework has the most general and es-
sential features (Reporting, handshake mechanisms etc.), such that they do not
need to be redeveloped for each project. This also ensures uniformity in test-
bench creation across many di�erent work groups. The framework hierarchy is
seen in �gure 5.7 as it is laid out by Accellera [1]. Here the UVM agent can be ex-
panded as it contains a sequencer, a driver, and a monitor. The expanded UVM
agent can be seen in �gure 5.8. Even though this is the recommended structure
and should �t the most common use cases, the framework can be customized.

UVM Testbench

UVM Test

Design Under Test

UVM Environment

UVM AgentUVM Agent

SequencesUVM Factory

UVM Environment

Scoreboard UVM Sequencer

Figure 5.7: Shows the complete hierarchy of the UVM structure laid out by
Accellera.

77

UVM Driver

UVM Monitor

UVM
SequencerSequence

Design
Under Test

UVM Agent

Figure 5.8: Shows the UVM components in a UVM agent and its connection
to other components.

The communication between components is based on transaction-level
modeling (TLM) and UVM items. The items are designed to �t the speci�c
device under test (DUT). It contains the information necessary to create stimuli
to the DUT and updating scoreboard and reference module. The item is sent
between components using TLM.

Each of the hierarchy levels has a base class associated with them. It is on top
of these base classes that the project-relevant components will be built. Each of
these classes and their functionality is described below [1].

• Testbench: is the root class and container for all that needs to be simu-
lated and tested. Typically this instantiates the DUT and the connections
between the test and the DUT.

• Test: is the top-level UVM component. It has 3 main functions. To
instantiate the test environment, con�gure the environment via a con-
�guration database or factory overrides and apply stimulus to the DUT
via the UVM sequences. This enables the designer to not have multiple
instances of the same environment with di�erent con�gurations for dif-
ferent test cases. Instead, the environment can be con�gured from this
top-level UVM component to perform those test cases without repeating
code.

• Environment: is a UVM component that instantiates and contains other
reusable veri�cation components such as agents, scoreboards, and other
environments. It is also here the di�erent components are connected and
con�gured for default use.

• Scoreboard: is the veri�cation component that compares the DUT to
an implemented reference module. The scoreboard does this by receiving
UVM items from the DUT via the UVM agent using TLM ports. It can
then use the reference module as a predictor and compare that to the
DUT.

78

• Agent: is a hierarchical component that contains other UVM compo-
nents. These are typically a sequencer, a driver, and a monitor. The agent
can either be active or inactive. An agent is active when it can drive stim-
uli to the DUT, which requires the use of a driver and sequencer. An
inactive agent only contains a monitor.

– Sequencer: controls the �ow of sequence items from the multi-
ple sequences to the driver, i.e. queues di�erent sequence items
according to a set of given parameters.

– Driver: receives sequence items from the sequencer and converts
them from transaction-level stimuli into pin-level stimuli for the
DUT. For example, it can take a parallel data packet and transmit
it via input pins to the DUT using a speci�ed protocol.

– Monitor: samples the DUT interface to convert data from pin-
level stimuli into transaction-level stimuli. This data is then broad-
cast to the rest of the UVM testbench. The monitor can perform
some levels of processing internally. For example, it can receive pin-
level stimuli and decipher them according to a chosen protocol. So
instead of broadcasting all pin-level activity, it �rst converts it into
a speci�ed UVM item and then broadcasts that using TLM.

• Sequence: makes up the core stimuli of the veri�cation plan. A sequence
can be made of multiple data items which can be used to create the sce-
narios for testing the DUT extensively. The items are eventually sent to
a sequencer which will then queue it and send it to the driver. Multiple
sequences can be connected to the same sequencer. The randomization
tools in UVM are commonly used in creating data items such that there is
a higher chance of discovering bugs. A sequence is not part of the compo-
nent hierarchy. A sequence can contain other sequences, called a parent
or virtual sequence.

A UVM environment can be developed either in SystemVerilog or SystemC,
most commonly SystemVerilog. The SystemC variant is still under develop-
ment but is in working condition. In this project, it has been chosen to use
SystemC.

5.5 Physical Implementation of Digital ICs
The PicoRV32 SoC will be implemented in a physical design. Therefore, a
description of the steps from a digital design to a physical implementation will

79

be given. The steps of physical implementation can in general be split into two
categories: synthesis and implementation. Doing synthesis a Verilog design is
converted from behavioral modeling into a gate-level description using only
basic components supplied by a library. In the implementation, the gate-level
description is converted into a physical implementation on a die with power
distribution, a clock tree, and non-ideal components. Doing most steps, setup
and hold conditions are checked for violations using di�erent conditions. These
are commonly referred to as corners. Corners are on-chip variations that alter
the expected behavior of digital circuits and commonly include process, voltage,
and temperature (PVT). The process variations are often summed and split into
3 categories slow (S), typical (T), and fast (F) for nMOS and pMOS transistors.
5 combinations (TT, SS, FF, SF, FS) of these corners can be evaluated to ensure
that system works given variations and uncertainties. Setup and hold are tested
in these corners, to ensure that the system behaves correctly even given on-chip
variations. At CERN, radiation is included as an additional variation parameter.
The TID e�ects are also evaluated in corners, using models developed at CERN
for the behavior of chips doing radiation.

5.5.1 Synthesis
Synthesis is split into 3 steps: synthesis, mapping, and optimization. Doing
synthesis a netlist is created from the supplied behavioral HDL model. For
example, the always blocks in Verilog are converted into a basic set of compo-
nents, e.g. �ip-�op, AND-gate, NAND-gate. This step requires a list of con-
straints supplied by the designer. These constraints can be the clock period,
output load capacitance, the maximum transition time of components, and
setup/hold uncertainty on the clock. When this step is done, the Verilog code
has been converted into a gate-level netlist that implements the same logic.

The next step is mapping. Doing mapping a gate-level netlist is converted
from using generic components to using components given by a library called
standard cells. This library contains detailed descriptions of common cells in
an implementation technology. The technology used in this project is 28 nm.
Many libraries exist for the same technology, but with di�erent characteristics,
e.g. track number, cell width, and gate length. The number of tracks refers to
the height of each cell. The cell width is the number of which each cell width
has to be a multiple of. Three libraries will be used as the default for physi-
cal implementation. The libraries will be 9 tracks high, a multiple of 140 µm
wide, and have a gate length of 35 nm. The three libraries will have di�erent
threshold voltages. One will have a standard threshold, one will have an ultra-
high threshold voltage and one will have a low-threshold voltage. The threshold

80

voltage controls the voltage needed for the transistor to switch state. This is
controlled by the amount of dopping on the source and drain of the transistor.
However, lowering the threshold voltage increases the leakage current of the
transistor. Di�erent threshold voltages are therefore a trade-o� between speed
and power consumption. By including multiple libraries, the algorithms are
given more options for optimization, such that speed requirements can be met
by using low-threshold transistors or power consumption can be reduced by
using ultra-high threshold transistors. The libraries contain a description of the
physical layout of the cell, a timing model describing the delay from input to
output, and noise models. After mapping the gate-level netlist described using
generic components has been converted into a gate-level netlist with standard
cell components from a speci�c library.

After mapping, the last step of synthesis is optimization. Doing this step,
di�erent optimizations of the gate-level netlist are performed. This can be the
removal of grounded circuits, removal of registers containing constants, or re-
location of registers to reduce the amount needed. After all the steps have been
completed estimates of certain parameters can be given for the digital design.
This is things such as worst negative slack, power consumption, number of cells
needed, and size of the complete design.

5.5.2 Implementation
Implementation is the next step after synthesis. The implementation converts
the gate-level netlist into a physical layout on a die. The steps of this are �oorplan,
place, clock tree synthesis, route, design �nishing, and veri�cation.

Doing �oorplanning, the die layout is designed. One of these variables is the
die size. A rule of thumb is that the estimate at the end of synthesis should be
60% of the �nal size. However, this does not account for the size of the power
rings. These are chosen to be 10 µm wide for both ground and VDD. This
results in a spacing of 25 µm of every side from the edge to the area in which
standard cells can be placed (Extra space is needed to allow spacing between
GND and VDD rings). Power rings are used to ensure a uniform distribution
of power to all parts of the chip and to reduce the e�ect of IR drops. As the
height of a standard cell is given by the library, the die is divided into rows with
that height. The top and bottom of these rows can then be connected to the
power by having wires going across from side to side. This creates a power mesh
that supplies all the rows of standard cells with VDD and ground connections.
On large designs, these lines can become long. Therefore, to minimize IR drop
vertical and horizontal larger stripes are used to connect these tracks at multiple
points. In the �oorplanning, the height of the die is also given in metal tracks.

81

For this project 9 metal (M1-M9) layers will be used. These do not have the same
width. Instead, the top layer M1, has the highest routing width, M2 - M6 has
the same width but is lower than M1, and M7-9 all decrease in routing width as
the metal layer number goes up. M1 and M2 will be used for power distribution
as these layers have the largest routing width and therefore the lowest resistance
in the wires. M9 is used for the placement of standard cells and wiring. Usually,
it is preferred to use the lower layers for wiring between standard cells as these
signals do not draw signi�cant current and the resistance is therefore not of
concern. After this I/O ports are placed and if it is a top-level design, pads are
also placed.

The next step is placement. Here the standard cells are placed in the rows.
This is with the goal of achieving minimal congestion and the best foundation
for timing closure. This is typically done by keeping connecting cells close
together. The tool also has to do the placement with the minimum distance
between triplicated registers.

The next step is clock tree synthesis. In this step, all the relevant components
are connected to the clock signal. However, this is not a straightforward process.
If the clock was just connected to all components without bu�ering, the clock
edge would arrive at slightly di�erent times depending on the placement of
the component. Therefore the clock signal is continuously bu�ered to increase
driving strength on long wires, but also to introduce delay in short wires, so that
they arrive at nearly the same time, with the goal of not violating setup and hold
time. This creates a tree-like structure. However, there is also a disadvantage to
having all �ip-�ops latch at the same point in time, as this creates a large current
spike which might cause IR drops and cause faults. Therefore if there is room
in the setup and hold time, it is also an advantage to space out the latching in
time, so that the current spike is limited.

After clock tree synthesis, the next step is routing. This is done after clock
tree synthesis because swapping these two steps would mean that the clock tree
would have suboptimal wiring due to possible high congestion by routing. In
the routing step all the connections speci�ed by the gate-level netlist are estab-
lished. If these wires are long, bu�ers are inserted to increase driving strength.

The design has now been placed and routed. Power and clock distribution
have been established and in theory, the physical implementation process is
�nished. However, a few steps still remain to verify the design and ensure man-
ufacturing is possible. For example, metal is �lled into empty areas of the die.
Without this sinkholes would be created and uneven metal layers would be laid
on top, this would only get worse as more and more layers are added if nothing
is routed or placed in that region. Therefore, metal is placed to create an even

82

surface on which the metal can be laid. Next, design rule checks (DRC) and
layout vs schematic (LVS) are performed. DRCs are manufacturing rules and
safety protocols to ensure that the layout can actually be manufactured by the
foundry. It can be simple things such as wire proximity checks, no short circuits,
etc. However, there are also many complex rules. Things such as the area of a
wire on a speci�c metal layer might be so big that it collects enough charge doing
manufacturing that it destroys the connected component (Antenna e�ect). An-
other example is the concept of electromigration. When current is transported
through a wire, it will slowly move material around. This e�ect increase with
the amount of current. If this e�ect is too large, it means that some parts of the
wire might become shallow and thereby increase resistance changing the behav-
ior of a sensitive circuit. It can also short-circuit to a nearby wire if it gets too
wide at places. It, therefore, checks if a wire is in danger of changing properties
over a given lifetime. LVS checks whether the resulting layout at the end of the
physical implementation is equivalent to the digital description from which it
was derived.

With the physical implementation complete, we can generate an SDF �le.
This �le contains all the propagation delays, clock arrivals, and such for the
gate-level netlist. This can be used in combination with a testbench and the
circuit can be veri�ed to ensure that even given non-ideal clock signals and
propagation delays, it still behaves as expected. Using this testbench and SDF
�le, a more accurate estimate of the switching activity of each transistor can
be derived. This can be used in a dynamic power analysis to obtain a far more
accurate estimation of power consumption. Before this, the tool just assumed
that all transistor switches with a 20% probability on each clock edge. This is
the �nal step of physical implementation. All of this can then be collected in
a set of �les to establish a library for the implemented block. This can now be
manufactured or used as a component in a larger design.

5.6 The PicoRV32: System on Chip
The goal of this project is to make a simple demonstrator SoC, with a CPU,
memory blocks, and standardized interconnect bus with a basic set of periph-
erals. This demonstrator chip will then be used to test whether it is possible to
create a radiation-tolerant SoC with a reasonable amount of area and power us-
age. Computing power is not of concern as its use case is targeted toward control
and monitoring. RISC-V is an open-source instruction set architecture (ISA)
that perfectly �ts this application. Many di�erent open-source SoC founda-
tions have been considered and 3 stood out as candidates. Those are the Rocket

83

Chip from UC Berkeley, the PicoSoC, and the Pulpissimo by ETH Zurich. The
Rocket chip is a promising chip-building framework in Chisel. The PicoSoC is
simple and written in pure Verilog, making it easier to understand. The Pulpis-
simo is made by ETH which has been collaborating with CERN before and
therefore enables more direct communication with the designers. These three
have been compared on their power and area usage during post-synthesis. The
result of this can be seen in �gure 5.9. Based on this comparison, the PicoSoC
is chosen for the demonstrator chip.

(a) (b)

Figure 5.9: Shows the post-synthesis power and area comparison of an Ibex,
Rocket, and PicoRV32 core.

The PicoRV32 SoC is based upon the RISC-V open-source CPU: PicoRV32.
This core is meant to be used as a size-optimized auxiliary CPU in an FPGA or
ASIC design. It does not have high computational power, but it is small and
simple. Due to its simplicity, it is also easier to debug and develop extra features.

RISC-V is an open-source instruction set architecture (ISA). Its architec-
ture is developed on Reduced Instruction Set Computer (RISC) principles.
This is in contrast to the Complex Instruction Set Computer (CISC), to which
the commonly known family of x86 ISAs belongs. The two design topologies
di�er because a CISC instruction often executes several lower-level instructions,
while a RISC architecture does not. RISC-V employs a base set of the most
needed instruction, while several extensions are available to expand the instruc-
tion set. The PicoRV32 is con�gurable [70]. Its instruction base can be based
on either RV32I (32-bit, base integer instruction set) or RV32E (32-bit, base
integer embedded instruction set). The RV32I is capable of having two exten-
sions added: multiplication (M) and the compressed instruction set (C). There
is also an optional built-in interrupts controller. However, this is not based
upon the RISC-V standard and is instead custom-built for the PicoRV32. This
design choice was made because the RISC-V interrupt handle was extensive

84

and comprehensive, so a simpler IRQ handling with less hardware overhead is
available.

At the start of this project, several things were already implemented: The
core, two buses, a bridge connecting the two busses, and a temporary memory
block. A Native Memory Interface (NMI) connects the core and memory. The
NMI is connected to a bridge that is connected to an Advanced Peripheral Bus
(APB) interface. Peripherals will be connected to SoC using the APB interface.
The state of the SoC at the beginning of this project is visualized in �gure 5.10.

PicoRV32 Flip-Flop
Memory

NMI

NMI-to-APB
Bridge

APB

Figure 5.10: Shows the state of the PicoRV32 SoC at the beginning of this
project.

A detailed description of the two interfaces used on the buses is now given.

5.6.1 Native Memory Interface
The NMI is an interface de�ned by the PicoRV32 [70]. It is a simple valid-ready
interface bus. It requires �ve outputs from the PicoRV32 core and two outputs
from the slave, which is receiving the transfer. These signals and their functions
are described in table 5.1. This bus is only used to connect the most essential
and critical blocks to the core, e.g., memory and bootloader.

85

Table 5.1: NMI signal descriptions

Signal Source Description
CLK Clock source Clock. The transfer is completed on the rising edge.

VALID PicoRV32 core Valid. The core uses the valid signal to initiate a
transfer. All core outputs are stable while valid is high.

INSTR PicoRV32 core Instruction fetch. Used by the core to indicate if the
memory transfer is an instruction fetch

READY Slave interface Ready. Asserted by the slave when the read data is
available and used to acknowledge a write transfer.

ADDR PicoRV32 core Address. The core supplies the address which is used by
the slave to read or write to the requested cell.

WDATA PicoRV32 core Write data. If a write transfer is being performed, the
core supplies the data to be written using this bus

WSTRB PicoRV32 core

Write strobe. If the write strobe is 0, it indicates a read
transfer, while it being non-zero indicates a write
operation. The write strobe signal is used to write
speci�c bytes of the wdata. It is possible to write 32 bits,
the upper 16 bits, the lower 16 bits, or 8 bits.

RDATA Slave interface
Read data. In the case of read transfer, this is the data
read from the speci�ed address. When rdata is available,
ready is asserted.

This bus is fully triplicated to achieve radiation hardening. This is decided
due to it being critical infrastructure and also the length of this bus being limited
since peripheral devices are not connected to this bus.

5.6.2 AMBA APB Interface
The APB is designed by ARM and is part of the Advanced Microcontroller Bus
Architecture (AMBA) protocol family. This protocol has been chosen for the
SoC since it is designed for minimal power consumption and reduced interface
complexity [3], which aligns with the goals of the project. The list of signals in
the protocol can be seen in �gure 5.11.

86

Figure 5.11: Table of signals in the APB protocol (Courtesy of ARM [3]).

The protocol contains two individual buses for read and write operations.
However, only one of these transfers can be executed at a time. The read and
write transfer using the APB protocol with no wait cycles can be seen in �gure
5.12.

(a) Write transfer (b) Read transfer

Figure 5.12: Shows the basic transfers of the APB protocol with no wait cycles
(Courtesy of ARM [3]).

87

Wait cycles can be introduced if the slave does not assert the PREADY signal.
However, the way the APB protocol is connected to the CPU will cause stalling
of the entire CPU until the PREADY is asserted and the transfer is completed.
A timeout could partially solve this by limiting the stalling period, but this does
not �x the problem but only reduces it. Therefore it is chosen that the IP block
as a general rule should always have PREADY asserted, as to ensure no stalling of
the system. Instead in the case of a bad transfer due to no data available or similar
situations, the PSLVERR signal is utilized and the IP block will then assert this
signal to indicate that the transfer has failed. This introduces problems as this
signal does not indicate why the transfer failed. However, it does remove the
stalling. Therefore, this method is chosen.

The APB bus will not be triplicated as this will connect all peripherals to
the core and the length can therefore be quite signi�cant, which will result in a
larger area used and more complex routing. Instead, an encoding approach is
used. Every byte of the bus is encoded using Hamming codes, which are capable
of single error correction and double error detection. This approach uses the
same logic developed later for radiation-tolerant memories.

88

Chapter 6

Enter Title Here

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed
vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget
odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo
eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare
ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc
dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam.
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula
eu, lacus.

89

Chapter 7

Conclusion

This is where your Conclusion will go

90

Appendix A

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed
vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget
odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo
eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare
ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc
dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam.
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula
eu, lacus.

91

Bibliography

[1] accellera. UVM 1.2 User Guide. 2015. url: https://www.accellera.
org/downloads/standards/uvm (visited on 10/11/2022).

[2] accellera. Universal Verification Methodology (UVM) Working Group.
url: https://www.accellera.org/activities/working-
groups/uvm/ (visited on 10/11/2022).

[3] ARM. AMBA APB Protocol Specification. 2010. url: https : / /
developer.arm.com/documentation/ihi0024/c/Introduction/
About-the-APB-protocol.

[4] André Arnold et al. “The AltaRica Formalism for Describing Concur-
rent Systems”. In: Fundam. Inf. 40.2–3 (1999).

[5] David Barney. “CMS Detector Slice”. CMS Collection. 2016. url:
https://cds.cern.ch/record/2120661.

[6] R. Baumann. “Radiation-induced soft errors in advanced semiconduc-
tor technologies”. In: Device and Materials Reliability, IEEE Transac-
tions on 5 (Oct. 2005), pp. 305–316.

[7] M. Blackburn et al. “Mars Polar Lander fault identi�cation using model-
based testing”. In: Eighth IEEE International Conference on Engineer-
ing of Complex Computer Systems, 2002. Proceedings. 2002, pp. 163–169.
doi: 10.1109/ICECCS.2002.1181509.

[8] Giulio Borghello. “Ionizing Radiation E�ects in Nanoscale CMOS
Technologies Exposed to Ultra-High Doses”. 2018.

[9] C. Bottoni et al. “Heavy ions test result on a 65nm Sparc-V8 radiation-
hard microprocessor”. In: 2014 IEEE International Reliability Physics
Symposium. 2014.

[10] Sebastien Bourdarie and Michael Xapsos. “The Near-Earth Space Ra-
diation Environment”. In: IEEE Transactions on Nuclear Science 55.4
(2008), pp. 1810–1832. doi: 10.1109/TNS.2008.2001409.

92

https://www.accellera.org/downloads/standards/uvm
https://www.accellera.org/downloads/standards/uvm
https://www.accellera.org/activities/working-groups/uvm/
https://www.accellera.org/activities/working-groups/uvm/
https://developer.arm.com/documentation/ihi0024/c/Introduction/About-the-APB-protocol
https://developer.arm.com/documentation/ihi0024/c/Introduction/About-the-APB-protocol
https://developer.arm.com/documentation/ihi0024/c/Introduction/About-the-APB-protocol
https://cds.cern.ch/record/2120661
https://doi.org/10.1109/ICECCS.2002.1181509
https://doi.org/10.1109/TNS.2008.2001409

[11] Marco Bozzano et al. “Statistical fault injection: Quanti�ed error and
con�dence”. In: Proceedings of the 10th International Workshop on Au-
tomated Verification of Critical Systems. 2010.

[12] Robert Brayton et al. “VIS : A System for Veri�cation and Synthesis”.
In: (Aug. 2000).

[13] Robert K. Brayton and Alan Mishchenko. “ABC: An Academic Industrial-
Strength Veri�cation Tool”. In: CAV. 2010.

[14] Cadence. url: https://www.cadence.com/en_US/home.html.

[15] Cadence. https://www.cadence.com/en_US/home.html.

[16] Alessandro Caratelli. “Research and development of an intelligent par-
ticle tracker detector electronic system”. 2019.

[17] CMS CERN. “Detector: About CMS”. In: (). url: https://cms.
cern/detector (visited on 12/08/2022).

[18] Yen-Chi Chen. Discrete-Time Markov Chain. 2018. url: http://
faculty . washington . edu / yenchic / 18A _ stat516 / Lec3 _
DTMC_p1.pdf.

[19] Eric Cheng et al. “CLEAR: Cross-layer exploration for architecting re-
silience: Combining hardware and software techniques to tolerate soft
errors in processor cores”. In: 2016 53nd ACM/EDAC/IEEE Design Au-
tomation Conference (DAC). 2016, pp. 1–6. doi: 10.1145/2897937.
2897996.

[20] CMS collaboration et al. “The CMS experiment at the CERN LHC”.
In: Jinst 3 (2008), S08004.

[21] CMS tracker collaboration et al. The Phase-2 Upgrade of the CMS Tracker.
Tech. rep. CERN-LHCC-2017-009. CMS-TDR-014. Geneva: CERN,
June 2017. url: https://cds.cern.ch/record/2272264.

[22] Keerthikumara Devarajegowda et al. “A Mutually-Exclusive Deploy-
ment of Formal and Simulation Techniques Using Proof-Core Analy-
sis”. In: Oct. 2017.

[23] Mojtaba Ebrahimi et al. “A fast, �exible, and easy-to-develop FPGA-
based fault injection technique”. In: Microelectronics Reliability 54.5
(2014), pp. 1000–1008. issn: 0026-2714. doi: https://doi.org/
10.1016/j.microrel.2014.01.002. url: https://www.
sciencedirect.com/science/article/pii/S0026271414000067.

93

https://www.cadence.com/en_US/home.html
https://www.cadence.com/en_US/home.html
https://cms.cern/detector
https://cms.cern/detector
http://faculty.washington.edu/yenchic/18A_stat516/Lec3_DTMC_p1.pdf
http://faculty.washington.edu/yenchic/18A_stat516/Lec3_DTMC_p1.pdf
http://faculty.washington.edu/yenchic/18A_stat516/Lec3_DTMC_p1.pdf
https://doi.org/10.1145/2897937.2897996
https://doi.org/10.1145/2897937.2897996
https://cds.cern.ch/record/2272264
https://doi.org/https://doi.org/10.1016/j.microrel.2014.01.002
https://doi.org/https://doi.org/10.1016/j.microrel.2014.01.002
https://www.sciencedirect.com/science/article/pii/S0026271414000067
https://www.sciencedirect.com/science/article/pii/S0026271414000067

[24] Mojtaba Ebrahimi et al. “Revisiting software-based soft error mitigation
techniques via accurate error generation and propagation models”. In:
2016 IEEE 22nd International Symposium on On-Line Testing and Ro-
bust System Design (IOLTS). 2016, pp. 66–71. doi: 10.1109/IOLTS.
2016.7604674.

[25] E. Allen Emerson. “Temporal and Modal Logic”. In: Handbook of The-
oretical Computer Science. Vol. B: Formal Models and Sematics. 1990.

[26] Lydon Evans and Philip Bryant. “LHC Machine”. In: (2008). LHC
description. url: https://iopscience.iop.org/article/10.
1088/1748-0221/3/08/S08001/pdf.

[27] Tiziano Fiorucci et al. “Automated Dysfunctional Model Extraction
for Model Based Safety Assessment of Digital Systems”. In: 2021 IEEE
27th International Symposium on On-Line Testing and Robust System
Design (IOLTS). 2021, pp. 1–6. doi: 10.1109/IOLTS52814.2021.
9486705.

[28] Tiziano Fiorucci et al. “Software Product Reliability Based on Basic-
Block Metrics Recomposition”. In: IEEE International Symposium on
On-Line Testing (2023, To appear in).

[29] P. Giridhar and P. Choudhury. “Design and Veri�cation of AMBA
AHB”. In: 2019 1st International Conference on Advanced Technologies
in Intelligent Control, Environment, Computing Communication Engi-
neering (ICATIECE). 2019, pp. 310–315. doi: 10.1109/ICATIECE45860.
2019.9063856.

[30] GRLIB. https://www.gaisler.com/products/grlib/grlib-
gpl-2020.4-b4261.tar.gz.

[31] GSL, GNU Scientific Library. https://www.gnu.org/software/
gsl/.

[32] Julie Ha�ner. “The CERN accelerator complex. Complexe des accéléra-
teurs du CERN”. In: (2013). General Photo. url: https://cds.
cern.ch/record/1621894.

[33] Jörg Henkel et al. “Reliable on-chip systems in the nano-era: Lessons
learnt and future trends”. In: 2013 50th ACM/EDAC/IEEE Design Au-
tomation Conference (DAC). 2013, pp. 1–10. doi: 10.1145/2463209.
2488857.

[34] I2c Minion Repository. https://github.com/oetr/FPGA-I2C-
Minion.

94

https://doi.org/10.1109/IOLTS.2016.7604674
https://doi.org/10.1109/IOLTS.2016.7604674
https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08001/pdf
https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08001/pdf
https://doi.org/10.1109/IOLTS52814.2021.9486705
https://doi.org/10.1109/IOLTS52814.2021.9486705
https://doi.org/10.1109/ICATIECE45860.2019.9063856
https://doi.org/10.1109/ICATIECE45860.2019.9063856
https://www.gaisler.com/products/grlib/grlib-gpl-2020.4-b4261.tar.gz
https://www.gaisler.com/products/grlib/grlib-gpl-2020.4-b4261.tar.gz
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
https://cds.cern.ch/record/1621894
https://cds.cern.ch/record/1621894
https://doi.org/10.1145/2463209.2488857
https://doi.org/10.1145/2463209.2488857
https://github.com/oetr/FPGA-I2C-Minion
https://github.com/oetr/FPGA-I2C-Minion

[35] ISO26262. Road vehicles – Functional safety. 2018. url: https://
www.iso.org.

[36] ISO26262. Acronyms and abbreviations. url: https://www.arteris.
com/blog/top-35-iso-26262-acronyms-and-abbreviations/.

[37] Tanay Karnik, Peter Hazucha, and Jagdish Patel. “Characterization of
soft errors caused by single event upsets in CMOS processes”. In: IEEE
Transactions on Dependable and Secure Computing 1 (2004).

[38] Maha Kooli and Giorgio Di Natale. “A survey on simulation-based fault
injection tools for complex systems”. In: 2014 9th IEEE International
Conference on Design Technology of Integrated Systems in Nanoscale Era
(DTIS). 2014, pp. 1–6. doi: 10.1109/DTIS.2014.6850649.

[39] Maha Kooli et al. “Computing reliability: On the di�erences between
software testing and software fault injection techniques”. In: Micropro-
cessors and Microsystems: Embedded Hardware Design (MICPRO) 50
(May 2017), pp. 102–112. doi: 10.1016/j.micpro.2017.02.007.
url: https://hal-lirmm.ccsd.cnrs.fr/lirmm-01693156.

[40] L. Ratti. Ionizing Radiation E�ects in Electronic Devices and Circuits.
Accessed: 2018-12-06. 2017.

[41] R. Leveugle et al. “Statistical fault injection: Quanti�ed error and con�-
dence”. In: 2009 Design, Automation Test in Europe Conference Exhibi-
tion. 2009, pp. 502–506. doi: 10.1109/DATE.2009.5090716.

[42] Jayant Mankar et al. “Review of I2C protocol”. In: International Jour-
nal of Research in Advent Technology 2.1 (2014).

[43] R. Mariani, G. Boschi, and F. Colucci. “Using an innovative SoC-level
FMEA methodology to design in compliance with IEC61508”. In: 2007
Design, Automation Test in Europe Conference Exhibition. 2007, pp. 1–
6. doi: 10.1109/DATE.2007.364641.

[44] J.J. Marin and R.W. Pollard. “Experience report on the FIDES reliabil-
ity prediction method”. In: Annual Reliability and Maintainability
Symposium, 2005. Proceedings. 2005.

[45] Wang Min. “Analysis on Bubble Sort Algorithm Optimization”. In:
2010 International Forum on Information Technology and Applications.
Vol. 1. 2010, pp. 208–211. doi: 10.1109/IFITA.2010.9.

[46] S. Mirkhani, M. Lavasani, and Z. Navabi. “Hierarchical fault simulation
using behavioral and gate level hardware models”. In: Proceedings of
the 11th Asian Test Symposium, 2002. (ATS ’02). 2002, pp. 374–379. doi:
10.1109/ATS.2002.1181740.

95

https://www.iso.org
https://www.iso.org
https://www.arteris.com/blog/top-35-iso-26262-acronyms-and-abbreviations/
https://www.arteris.com/blog/top-35-iso-26262-acronyms-and-abbreviations/
https://doi.org/10.1109/DTIS.2014.6850649
https://doi.org/10.1016/j.micpro.2017.02.007
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01693156
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/DATE.2007.364641
https://doi.org/10.1109/IFITA.2010.9
https://doi.org/10.1109/ATS.2002.1181740

[47] Hala Mortada, Tatiana Prosvirnova, and Antoine Rauzy. “Safety Assess-
ment of an Electrical System with AltaRica 3.0”. In: 4th International
Symposium on Model-Based Safety Assessment. Munich, Germany, Oct.
2014.

[48] S.S. Mukherjee, Joel Emer, and S.K. Reinhardt. “The Soft Error Prob-
lem: An Architectural Perspective”. In: Mar. 2005.

[49] Shubhendu S. Mukherjee et al. “A systematic methodology to compute
the architectural vulnerability factors for a high-performance micropro-
cessor”. In: 2003.

[50] Shubu Mukherjee. Architecture Design for Soft Errors. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2008. isbn: 9780080558325.

[51] Marco Ottavi et al. “Setup and experimental results analysis of COTS
Camera and SRAMs at the ISIS neutron facility”. In: 2018 13th In-
ternational Conference on Design Technology of Integrated Systems In
Nanoscale Era (DTIS). 2018, pp. 1–4. doi: 10.1109/DTIS.2018.
8368564.

[52] Jinhee Park et al. “An Embedded Software Reliability Model with Con-
sideration of Hardware Related Software Failures”. In: 2012 IEEE Sixth
International Conference on Software Security and Reliability. 2012, pp. 207–
214. doi: 10.1109/SERE.2012.10.

[53] T. Prosvirnova. “AltaRica 3.0: a Model-Based approach for Safety Anal-
yses”. In: Thèse de doctorat de l’ecole Polytechnique, 2014 ().

[54] Sergio Ramírez and Camilo Rocha. “Formal veri�cation of safety prop-
erties for a cache coherence protocol”. In: 2015 10th Computing Colom-
bian Conference (10CCC). 2015.

[55] Robert N. Cherry. Encyclopaedia of Occupational Health and Safety
4th Edition-Chapter 48.

[56] S. di Mascio. Low-Energy Proton Test of Safety-Critical Microcontrollers
for Space Applications.

[57] Synopsys Certitude. https://www.synopsys.com/verification/
simulation/certitude.html.

[58] Synopsys Zo1x. https://www.synopsys.com/verification/
simulation/z01x-functional-safety.html.

[59] T. Prosvirnova and A. Rauzy. “The structural constructions of AltaRica
3.0”. In: Actes du congrès LambdaMu’19. IMdR, Oct. 2014.

96

https://doi.org/10.1109/DTIS.2018.8368564
https://doi.org/10.1109/DTIS.2018.8368564
https://doi.org/10.1109/SERE.2012.10
https://www.synopsys.com/verification/simulation/certitude.html
https://www.synopsys.com/verification/simulation/certitude.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html

[60] Josep Torras Flaquer et al. “Handling reconvergent paths using condi-
tional probabilities in combinatorial logic netlist reliability estimation”.
In: 2010 17th IEEE International Conference on Electronics, Circuits and
Systems. 2010.

[61] J. Torras-Flaquer. “Méthodes probabilistes pour l’estimation de la �-
abilité dans la logique combinatoire”. In: Thèse de Doctorat de l’école
doctorale TELECOM Paristech, 2011 ().

[62] Emmanuel Touloupis et al. “Study of the E�ects of SEU-Induced Faults
on a Pipeline Protected Microprocessor”. In: IEEE Transactions on
Computers 56.12 (2007).

[63] A. Vallero et al. “Cross-layer reliability evaluation, moving from the hard-
ware architecture to the system level: A EU project overview”. In: Micro-
processors and Microsystems 39.8 (2015), pp. 1204–1214. issn: 0141-9331.

[64] A. Vallero et al. “SyRA: Early System Reliability Analysis for Cross-
Layer Soft Errors Resilience in Memory Arrays of Microprocessor Sys-
tems”. In: IEEE Transactions on Computers 68.5 (2019), pp. 765–783.
doi: 10.1109/TC.2018.2887225.

[65] S. Venkataramanan, A. Kumari, and L. Piper. SystemVerilog Assertions
Handbook. CreateSpace Independent Publishing Platform, 2015.

[66] N.J. Wang and S.J. Patel. “ReStore: Symptom-Based Soft Error Detec-
tion in Microprocessors”. In: IEEE Transactions on Dependable and Se-
cure Computing 3.3 (2006), pp. 188–201. doi: 10.1109/TDSC.2006.
40.

[67] Nicholas Wang, Aqeel Mahesri, and Sanjay Patel. “Examining ACE anal-
ysis reliability estimates using fault-injection”. In: vol. 35. June 2007.

[68] Nataliya Yakymets and Morayo Adedjouma. “Model-based Quantita-
tive Fault Tree Analysis based on FIDES Reliability Prediction”. In:
IEEE International Symposium on Software Reliability Engineering Work-
shops. 2020.

[69] Ping Yeung, Doug Smith, and Abdelouahab Ayari. “Whose Fault Is It
Formally? Formal Techniques for Optimizing ISO 26262 Fault Analy-
sis”. In: Feb. 2018.

[70] YosysHQ. PicoRV32 Native Memory Interface. url: https://github.
com/YosysHQ/picorv32#picorv32-native-memory-interface
(visited on 12/02/2022).

[71] James F. Ziegler and G. R. Srinivasan. “IBM Journal of Research and
Development”. In: IBM J. Res. Dev. 40.1 (1996), p. 2.

97

https://doi.org/10.1109/TC.2018.2887225
https://doi.org/10.1109/TDSC.2006.40
https://doi.org/10.1109/TDSC.2006.40
https://github.com/YosysHQ/picorv32#picorv32-native-memory-interface
https://github.com/YosysHQ/picorv32#picorv32-native-memory-interface

	couverture_these
	FIORUCCI_2023_archivage
	Acknowledgments
	List of Figures
	List of Tables
	Problem and its Background
	The Space Environment
	The Earth Environment
	Military Environment
	Radiation Effects on COTS Components
	Types of redundant architectures

	Failure Mode and Effect Analysis FMEA
	Introduction
	Procedure
	Analysis

	Hardware Contribution
	Introduction
	State-of-the-Art
	Modeling Digital Systems for MBSA
	Methodology
	Application: I2C to AHB bridge
	Results
	Discussion and Future Work

	Footnotes and Sidenotes
	Introduction
	State of the Art
	Methodology
	Test Case and Application
	Results and Future Work

	Technical Analysis
	LHC Detectors at CERN
	Radiation Effects on CMOS Electronics
	Radiation-Tolerant Design
	Universal Verification Methodology
	Physical Implementation of Digital ICs
	The PicoRV32: System on Chip

	Enter Title Here
	Conclusion
	Appendices
	
	Bibliography

