A T is thesis proposes to set up a ow and a methodology of ISO certi cation for system-type integrated circuits on a digital chip dedicated to driving. These circuits are generally composed of several Intellectual Properties, IPs, dedicated to di erent functions such as communication or processing of information from sensors (camera, lidar ...), real-time system, vision and imaging, system management (operating system), security. The ISO methodology requires the extraction of a number of metrics related to the resilience of the system to single and multiple faults as well as the e ectiveness of countermeasures (detection, reporting and correction of errors) and failure modes. The extraction of failure metrics from fault trees is a method known and documented in the literature. Nevertheless, its application has often been limited to macroscopic electromechanical systems such as a car, actuator or sensor chains. On the other hand, these methods are rarely applied in the eld of automotive SoCs where the extraction of metrics is still largely manual (usually using a spreadsheet) and dependent on an expert, and where the veri cation of the e ectiveness of countermeasures is best done by targeted fault injection on a few sub-parts of the complete system or irradiation under a particle beam. This thesis proposes to develop a reliability metrics extraction methodology based on fault injection per block as well as composition methods to obtain the metrics at the level of the complete system. The rst part of the thesis will be devoted to the study of the bibliography on the construction of fault trees, the ISO standard and the declination of the di erent reliability metrics in the case of a digital SoCs type system. The extraction of metrics at the block level will be based on di erent methods, one analytical based on probabilities, the other experimental based on fault injection. The aim is not to develop new probability codes or fault injection tools but to develop a methodology to use them in the context of a SoC to obtain the desired data. The second part of the thesis will concern the composition of the data obtained at the functional block level in order to obtain the ISO metrics at the system level (SoC). It will be a matter of developing a composition method adapted in particular to the characteristics of SoCs (communicating system, performing calculations that must react in real time, ...) and to the fault models that characterize them or imposed by the ISO standard. The third part of the thesis concerns the application of the developments described in the previous paragraph to an SoC-type system and the veri cation of the results obtained.

French Translation Cette thèse propose de mettre en place un ux et une méthodologie de certi cation ISO pour les circuits intégrés de type système sur une puce numérique dédiée à la conduite. Ces circuits sont généralement composés de plusieurs propriétés intellectuelles, IP, dédiées à di érentes fonctions telles que la communication ou le traitement d'informations provenant de capteurs (caméra, lidar...), le système en temps réel, la vision et l'imagerie, la gestion du système (système d'exploitation), la sécurité. La méthodologie ISO nécessite l'extraction d'un certain nombre de métriques liées à la résilience du système face aux pannes simples et multiples, ainsi qu'à l'e cacité des contre-mesures (détection, signalement et correction des erreurs) et modes de défaillance. L'extraction des métriques d'échec à partir des arbres de défaillance est une méthode connue et documentée dans la littérature. Néanmoins, son application a souvent été limitée aux systèmes électromécaniques macroscopiques tels qu'une voiture, un actionneur ou des chaînes de capteurs. D'autre part, ces méthodes sont rarement appliquées dans le domaine des SoC automobiles où l'extraction des métriques est encore largement manuelle (généralement à l'aide d'un tableur) et dépendante d'un expert, et où la véri cation de l'e cacité des contre-mesures est mieux e ectuée par injection de fautes ciblée sur quelques sous-parties du système complet ou par irradiation sous un faisceau de particules. Cette thèse propose de développer une méthodologie d'extraction de métriques de abilité basée sur l'injection de fautes par bloc ainsi que des méthodes de composition pour obtenir les métriques au niveau du système complet. La première partie de la thèse sera consacrée à l'étude de la bibliographie sur la construction d'arbres de défaillance, la norme ISO et la déclinaison des di érentes métriques de abilité dans le cas d'un système SoCs numérique. L'extraction des métriques au niveau du bloc sera basée sur deux méthodes di érentes, l'une analytique basée sur les probabilités, l'autre expérimentale basée sur l'injection de fautes. L'objectif n'est pas de développer de nouveaux codes de probabilité ou des outils d'injection de fautes, mais de développer une méthodologie pour les utiliser dans le contexte d'un SoC a n d'obtenir les données souhaitées. La deuxième partie de la thèse concernera la composition des données obtenues au niveau du bloc fonctionnel a n d'obtenir les métriques ISO au niveau du système (SoC). Il s'agira de développer une méthode de composition adaptée en particulier aux caractéristiques des SoCs (système de communication, e ectuant des calculs devant réagir en temps réel, ...) et aux modèles de défaillance qui les caractérisent ou imposés par la norme ISO . 

D

La decisiona di intraprendere un percorso di studi aggiuntivo a cio' che la maggior parte degli ingegneri intraprende e' qualcosa su cui si si ette molto. Sono anni tolti alla carriera, anni di instabilita' prolungata oltre a quello che normalmente ci si protrebbe aspettare. In fondo pero' la prolungazione dello status da studente piu' che per i normali anni del liceo, e per alcuni, gli anni dell'universita', non e' un piacere che apprezzano in molti, ed e' impossibile ignorare il fatto che se questa distinzione esiste, e se si sente di far part edi quel tipo di personalita', puo' solo che essere un peccato ignorare che esiste una comunita' di scienziati-ingegneri-medici-letterati che condivide l'amore per la propria materia allo stesso modo e merita quanto meno di essere esplorata e conosciuta, puntando eventualmentea unircisi e tentare di farne parte. v A 

. The Space Environment

The Earth and its immediate surroundings are protected by the atmosphere, which acts as a semi-permeable shield letting through light and heat while stopping radiation and UV's; because no such protection is available in space, human beings and electronics (onboard Earth orbiting satellites, space shuttles, space probes) must be able to cope with the resulting set of constraints. Based on several tens of years of this space era, a detailed analysis of the problems on satellites shows that the part due to the radiation environment is signi cant. It appears that the malfunctions are due to problems linked to the space environment ( to %), electronic problems ( to %), design problems ( to %), quality problems ( to %), other problems ( to %) and problems that are still unexplained ( to %) [ ]. It is clear that the unexplained problems are either problems linked to the space environment, to the electronics, to the design, or otherwise but the information collected on the ground is generally not su cient to de ne the origin of the problem. The space environment is largely responsible for about % of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles.

So the study of the space environment and its couses started, in all its great variety of environments depending on di erent orbital levels and electromagnetic forces involved. The degradations and disturbances induced by space radiation in the materials and the electronic components are phenomena that have been studied for many years.[ ] It resulted in a basic classi cation of damages, either for Humans and for Electronics that can be easly divided into two groups each:

For Electronics

. Cumulative such as the degradation of thermal control coatings, optics and electronics and the erosion of materials;

. Sporadic such as noises in the detectors and optics, single event e ects in highly integrated electronic circuits and electrostatic discharges.

while for humans . Immediate, permanent or delayed non stochastic e ects (destruction or modi cation of cells), the speed with which the symptoms appear and their seriousness increase in proportion to the exposure to the radiation;

. Stocastic associated with the modi cations to the cells whose probability of appearing in the long term increases in proportion to the irradiation (cancers, leukemia, (SET) Program. genetic e ects).

. . Solar Activity

Sun is either a source and modulator of space radiation, its activity can be described using a cyclical model. Each cycle has approximately is years long. In this time span the Sun has years of maximum activity and at its minimum, the transition is considered sharp even though it is indeed continuos. Moreover every years cycle the Sun reverse its magnetic polarity, this leads to an actual years period between two equal con gurations.

Usually two main indicators are used to describe the solar activity:

. F . -. cm radiation ux

. Sunspots count -The numbering of sunspot cycles began in and it is currently near the end of solar cycle . The record of F . began part way through solar cycle in the year 

. . Cosmic Rays

With Galactic Cosmic Rays (GCR) it is indended all those higly-charged particles that have been generated outside our solar system, even thought their precise origin is unknown, scienti c community believes that Supernovas explosions may be the rst source. Some general characteristics of GCR are listed in the following table

Hadron Compositoin Energy

Flux up to Uranium are present in GCR although there is a steep drop-o for atomic numbers higher than iron (Z= ). Their source isn't the only unknown feature of GCR. We saw that they can reach energies up to 10 11 GeV , but the couses behind such acceleration are still to be comprehended. On the other hand their ux is really small, limited to a few cm -2 s -1 . Typical GCR energies and uxes are shown in Fig. GCR can cause, the main Result of impact is a Single Event E ects (SEE) and the metric to usually utilized to describe the heavy ion induced SEE is the Linear Energy Transfer (LET) which can be de ned as the energy lost by the ionizing particle per unit of path lenght in the sensitive section of the device. So it is possible to convert Fig. . into the spectrum per LET, integrating we can see the di erence between the minimum and maximum activity level of the Sun. In the following image all the contributes from all the elements, starting from protons up to uranium, have been considered. The ordinate gives the Flux of particles having a LET above the corresponding abscissa.

The LET Metric can be applied in GEO and Interplanetary missions, in absence of geomagnetic attenuation. For instance, due to basic interaction between charged particles and Earth magnetic eld they tend to follow the geomagnetic lines and so parallel to the plant surface at the equator. Thus the energy is mostly de ected away. The E ect of the Geomagnetic eld on the incident GCR-LET spectrum during solar minimum is discussed for various orbits in [ ]

. . Radiation Belts

Earth is relatively well protected against external in uences such as radiation coming from outern space. In these terms we can imagine the Earth Magnetosphere as the natural cavity in the interplanetary medium that serve to the cause. It is compressed on the solar side and highly extended on the anti-solar side. Poles represent the only space o ered to the interplanetary particles to penetrate into the upper atmosphere. Meanwhile the charged particles close to Earth can be trapped by the magnetic eld and form the Radiation Belts. As shown in Fig: . the radiation belts only occupy a limited internal region of the whole magnetosphere. Starting from the closest section to Earth it's possible to identify the upper atmosphere, constant over time. On the opposite end, we cannot really de ne a boundary due to its strong dependence on solar wind and magnetic eld.

In the Earth Magnetosphere we can de ne the magnetic eld as the sum of two contributes:

. Main Component -This term is based on the convection motion in the core of the planet . External Origin -This includes all the permanent magnets of the terrestrial crust.

In a zero order approximation the eld can be considered bipolar. However it is way more accurate to take an o -centered and tilted dipolar magnetic eld 

Dynamics of the charged particles

In order to better understand and describe the dynamics of the charged particle in the magnetosphere, we can de ne a reference system and its coordinates.

• r is the distance from the center of the dipole

• λ is the latitude with θ its colatitude (θ = π 2 -λ) • φ its magnetic longitude All charged particles subject to an electromagnetic eld will be subject to the Lorentz force

F = q(v ∧ B + E) ( . )
Under these conditions, the movement of the high-energy particles can be generally broken down into three basic periodic movements.

Gyration All the charged particles in a magnetic eld will rotate around the line of eld. This is called Gyration and we can de ne this movement . the Larmor radius r L = mv 2 qB . the relativistic magnetic moment µ = mv 2 2B Bounce If a particle only has a component of its velocity parallel to the magnetic eld, then it will move along the eld lines. In their motion they keep the magnetic moment µ constant. Since the magnetic moment has to stay constant, while moving from the equator towards the poles, it is possible to notice a strongly increasing magnetic eld. It is necessary that the perpendicular component of the speed should increase in order for p to remain constant.[ ] Drift in order to simplify the problem, we place ourselves on the magnetic equator. Since the magnetic eld of the planets has a radial gradient, the gyration cannot take place in a constant Larmor radius. Indeed, the magnetic eld along a gyration becomes stronger if the particle approaches the planet, the Larmor radius is then smaller and therefore the radius of the trajectory's curve is also smaller. The particle will thus be able to move away from the planet, the magnetic eld will be weaker and therefore the Larmor radius and the radius of the trajectory's curve will be greater. The particle therefore does not go through a simple circle but along a more complex trajectory. This movement breaks down into a simple gyration (circular) and a rotation movement around the planet: this is the drift movement. s. The disparity between the periods is very great, a factor of the order of should be noted between each of them going from the gyration movement to the drift movement.

Due to the magnetic eld in proximity of Earth make all the relativistic charged particles to remain trapped in a quasi periodic movement. These conditions are perfect to start an increasing high energy charged particles ensables, creating the so called radiation Belts. Given the previously presented trajectories, the Radiation Belts assume a toroidal shape surrounding the Earth. The atmosphere is the lower bound while the outern limit is not well de ned and may be time variable.

During the rst space missions, J. Van Allen has discovered that mostly all the trapped particles are Protons and Electrons, having an Energy range between come KeV and hundreds of MeV. Below there is a representation of the Proton belt (Fig. . ), pretty stable and constant in time, with energies from some MeV to hundreds of MeV.

On the other hand, the electron belt is more complex (Fig. . ) and has two maximums respectively corresponding to the internal and external zones:the rst one centered on L = . extends up to L = . ; the electron populations are relatively stable there and can reach maximum energy levels of the order of or even MeV; -the second one, centered on L = , extends from L = . to L = ; the electron ows there are much more variable and the energy levels can be as high as MeV. 

. The Earth Environment

Since the , the existence and impact of atmospheric neutrons has been predicted. They can cause Single Event Upset in the electronics, the rst actually measured was in . After that several hundreds have been observed. As we can see in Fig. . Cosmic rays cover a large spectrum of energies, with a comparatively high ux in the MeV to GeV range and a peak around MeV; cosmic particles collide with the nuclei of atoms making up the Earth atmosphere and initiate the so-called air showers, producing particles such as neutrons, protons, muons, pions, electrons and gamma-rays. Moreover, even though the scheme reported in Fig. . seems to be a top down shower, the neutron ux is, in fact, isotropic.

. Military Environment

In case of an explosion occurring above the Earth atmosphere, two possible scenarios may be considered • Aerospace systems operating at altitudes higher than -km will be directly submitted to the radiation emitted by the weapon; hard X-rays, gamma-rays and neutrons all have a signi cant impact on the electronic systems onboard satellites • The main indirect e ect to be considered is that related to trapping by the Earth magnetic eld lines of electrons from ssion debris, resulting in the formation of highly stable, arti cial radiation belts which can deliver much higher radiation doses to satellites than natural belts; the rst satellite failure due to radiation e ects dates back to , to the Star sh test (a . Mton thermonuclear bomb detonated at an altitude of km); the test produced an intense radiation belt destroying seven satellites over seven months, primarily because of dose e ects on their solar panels; the TELSTAR satellite, launched on July , , broke down in February A nuclear explosion in the Earth atmosphere, besides a variety of mechanical e ects, is responsible for di erent purely radioactive e ects, which can be split into two main categories • Initial nuclear radiation (INR) is that released within less than a minute after detonation; X-rays are quickly stopped (at about m above sea) so that gamma-rays (responsible for ionizing dose e ects) and neutrons remain

• Residual nuclear radiation (RNR) features several radiation sources; ssion products, radioactivity of debris (neutron-activated weapon materials), that of un ssioned uranium and/or plutonium and activation of the environment; a further distinction can be made between local fallout, occurring less than hours after explosion, with a resulting signi cant level of ground radiation, and worldwide fallout, which can take place at signi cant distances from the place of explosion .

Radiation E ects on COTS Components . . Basic Damage Mechanism in Semiconductor Devices

Even if we take into consideration the great diversity of particles and their interaction with di erent technologies, it is possible to distinguish just two main categories of damaging mechanism for semiconductor devices . Ionization Damage . Displacement Damage

Ionization Damage

The ionization takes place when energy deposited in a semiconductor or in insulating layers, chie y SiO , frees charge carriers (electron-hole pairs), which di use or drift to other locations where they may get trapped, leading to unintended concentrations of charge and parasitic elds; this kind of damage is the primary e ect of exposure to X-and gamma-rays and charged particles; it a ects mainly devices based on surface conduction (e.g. MOSFETs)[ ]. Directly ionizing radiation consists of charged particles. Such particles include energetic electrons (sometimes called negatrons), positrons, protons, alpha particles, charged mesons, muons and heavy ions (ionized atoms). This type of ionizing radiation interacts with matter primarily through the Coulomb force, repelling or attracting electrons from atoms and molecules by virtue of their charges. Indirectly ionizing radiation consists of uncharged particles. The most common kinds of indirectly ionizing radiation are photons above keV (x rays and gamma rays) and all neutrons. X-ray and gamma-ray photons interact with matter and cause ionization in at least three di erent ways:

• Lower-energy photons interact mostly via the photoelectric e ect, in which the photon gives all of its energy to an electron, which then leaves the atom or molecule. The photon disappears.

• Intermediate-energy photons mostly interact through the Compton effect, in which the photon and an electron essentially collide as particles.

The photon continues in a new direction with reduced energy while the released electron goes o with the remainder of the incoming energy (less the electron's binding energy to the atom or molecule).

• Pair production is possible only for photons with energy in excess of . MeV. However, near . MeV, the Compton e ect still dominates: pair production dominates at higher energies. The photon disappears and an electron-positron pair appears in its place (this occurs only in the vicinity of a nucleus because of conservation of momentum and energy considerations). The total kinetic energy of the electron-positron pair is equal to the energy of the photon less the sum of the rest-mass energies of the electron and positron ( . MeV). These energetic electrons and positrons then proceed as directly ionizing radiation. As it loses kinetic energy, a positron will eventually encounter an electron, and the particles will annihilate each other. Two (usually) . MeV photons are then emitted from the annihilation site at degrees from each other. For a given photon any of these can occur, except that pair production is possible only for photons with energy greater than .

MeV. The energy of the photon and the material with which it interacts determine which interaction is the most likely to occur[ ].

About indirect ionization, we can say that light particles such as protons and neutrons could have not enough LET to cause upset, but they can cause nuclear reactions that in turn create heavier particles that can cause upsets by direct ionization. Secondary reaction products have much higher LET but shorter ranges and lower energies[ ].

Displacement Damage

Incident radiation dislodges atoms from their lattice site, the resulting defects altering the electronic properties of the crystal; this is the primary mechanism of device degradation for high energy neutron irradiation, although a certain amount of atomic displacement may be determined by charged particles (including Compton secondary electrons); Displacement Damage mainly a ects devices based on bulk conduction (e.g. BJTs, diodes, JFETs) [ ]. Displacement damage occurs when su cient energy is transferred from an incident energetic particle to a lattice atom to dislodge it from its normal location. Using Si as an example, the Si atom initially displaced by an incoming particle is known as the primary knock-on atom (PKA) or the primary recoil.The PKA, or recoil, carries a net charge that depends on its kinetic energy. Displacement damage occurs through the interaction of incident particles with Si atoms by any of the following three processes:

• Rutherford (i.e., Coulomb) scattering • Nuclear elastic scattering • Nuclear inelastic scattering Once any of those basic interaction processes produces a PKA, that ion subsequently can introduce further displacement damage by Rutherford and nuclear scattering. Lattice defects are produced by PKAs and any later-generation energetic recoils that they create. When defects produced by incident radiation are relatively far apart, they are known as isolated, or point, defects. As an example, isolated defects are created by MeV electrons incident on Si. Radiationinduced defects may also be created closely together and form local regions of disorder known as defect clusters. For example, incident MeV neutrons produce both isolated and clustered defects in Si. In general, energetic particles incident on semiconductors create either isolated and clustered defects or solely isolated defects, depending on the mass and energy of the incident particles. Nearly all the e ects of displacement damage on the electrical and optical properties of semiconductor materials and devices can be understood in terms of energy levels introduced in the bandgap. Those radiation-induced levels result in the following e ects: recombination lifetime and di usion length are reduced; generation lifetime decreases; majority and minority-carrier trapping increase; majority carrier concentration changes; thermal generation of electron-hole pairs is enhanced in the presence of a su ciently high electric eld; tunnelling at junctions is enabled. In addition, radiation-induced defects reduce the carrier mobility and can exhibit metastable con gurations [bib ]. 

. . Radiation E ects in Electronics

As previously stated, the e ects of radiation on semiconductor devices can be divided into two broad classes. Previously the Total Dose e ects have been explained, now the focus will be moved to Single Event E ects.

Single Event E ect

These e ects are due to the deposition of charge by a single particle that goes through a sensitive region of the device. This can lead to a desctructive or non destructive damage of the device. Moreover it is possible to identify a couple of di erences between Total Dose e ects and Single Event E ects:

• Single Event E ects are Stocastical, while TID e ects are cumulative and may occur after the device has been exposed to radiation for a long time

• TID are related to Long Term response, while SEE to Short term Response

• Only a very limited portion of the device is a ected by SEE, while TID a ects uniformly the entire device, this is due to the number of particles hitting the device and their distribution.

• While for TID the main gure is the drift of the main device parameters, concerning SEE the most important gure is the Rate of Occurrence.

We can so de ne this e ects some of the SEE as "Soft" in case they do not induce any physical damage to the device, but just an information loss. Otherwise they are categorized as "hard" in case the impact of a heavy ion is followed by the rupture of the gate oxide. Here there is a list of the major Soft e ects and Hard e ects

Main Classes of Soft E ects

• Single Event Upset (SEU) -the corruption of a single bit in a memory array

• Multiple Bit Upset (MBU) -the corruption of multiple bits due to a single particle the Cross Sections varies as function of the LET of the particle hitting the device, observable only if higher than the threshold LET. The charged released by the particle hitting the transistor is collected via the so called Funneling mechanism. Most of the charge is sucked in at the struck junction through a deformation of the junction potential, while the remaining charge di uses in the substrate and may be collected or not at the same junction[ ] The aim of these thesis is to focus on Soft E ects, in the next section the most common SEE will be analyzed in details.

Radiation E ects in MOSFETs

Single Event Upset It is obvious that in order to cause disturbance in any circuit the charge generated by a particle hitting the device must be in a sensitive node; in particular reverse biased PN junctions are the most a ected by collected charge, having a larger deplation reagion and stronger electric eld. Taking into account the case of an SRAM cell, may be the case of a particle hitting the Drain of the o NMOSFET. If that is the case the released charge is collected by the reverse-biased drain, the voltage at the struck node tends to decrease, turning the radiation-induced current in to a voltage transient. The curren decreases the potential at the node, and it may go as low as below the switching voltage, changing the initial state.

These e ects are function of the LET of the impinging particle and the incident angle θ Multiple Bit Upset Single events e ects have become more complex to study as the new technologies are released. In particular the minimum lentgh that can be obtained while creating CMOS devices in lithography has gone below the micron realm. Nowadays the size of the path of the hitting particle has become comparable to the size of modern chips. Therefore that in the past may have involved a single point in the circuit now involve multiple nodes and charge sharing may occur. It follows that the rate of occurrence of Multiple Bit Upset is strongly bound to rise as fabrication process evolve.

Radiation Induce Latch-Up A latch-up is a type of short circuit which can occur in an integrated circuit. More speci cally it is the inadvertent creation of a low-impedance path between the power supply rails of a MOSFET circuit, triggering a parasitic structure which disrupts proper functioning of the part, possibly even leading to its destruction due to overcurrent. A power cycle is required to correct this situation.

Single event latch-up is a latch-up caused by a single event upset, typically heavy ions or protons from cosmic rays or solar ares. The parasitic structure is usually equivalent to a thyristor (or SCR), a PNPN structure which acts as a PNP and an NPN transistor stacked next to each other. During a latchup when one of the transistors is conducting, the other one begins conducting too. They both keep each other in saturation for as long as the structure is forward-biased and some current ows through it -which usually means until a power-down. The SCR parasitic structure is formed as a part of the totem-pole PMOS and NMOS transistor pair on the output drivers of the gates.

. Types of redundant architectures

While there are various methods to implement redundant architectures, techniques and terminologies, the following section wants to represent the most common ones used in the industry.

. . Standby Redundancy

Standby redundancy, also known as Backup Redundancy is when you have an identical secondary unit to back up the primary unit. The secondary unit typically does not monitor the system, but is there just as a spare. The standby unit is not usually kept in sync with the primary unit, so it must reconcile its input and output signals on takeover of the Device Under Control (DUC). This approach does lend itself to give a "bump" on transfer, meaning the secondary may send control signals to the DUC that are not in sync with the last control signals that came from the primary unit. You also need a third party to be the watchdog, which monitors the system to decide when a switchover condition is met and command the system to switch control to the standby unit and a voter, which is the component that decides when to switch over and which unit is given control of the DUC. The system cost increase for this type of redundancy is usually about X or less depending on your software development costs. In Standby redundancy there are two basic types, Cold Standby and Hot Standby.

[bib ]

Cold Standby Redundancy

In cold standby, the secondary unit is powered o , this is preserving the reliability of the unit. The drawback with respect to the hot standby is the longer downtime needed to switch from one unit to the secondary one. this makes it more challenging from the synchronization issues point of view.

Figure . : Cold Standby scheme

Hot Standby Redundancy

In hot standby instead, the secondary unit is always powered on and can eventually monitor the DUC. If the secondary unit is used as watchdog or voter to decide when to switch over, it is possible to eliminate the need for a third party unit to perform these operations. It is also possible to notice that some versions of the Hot standby are similar to the Dual Modular Redundancy (DMR) or Parallel Redundancy. 

. . N-Modular Redundancy

N Modular Redundancy, also known as Parallel Redundancy, refers to the approach of having multiply units running in parallel. All units are highly synchronized and receive the same input information at the same time. Their output values are then compared and a voter decides which output values should be used. This model easily provides bumpless switchovers. This model typically has faster switchover times than Hot Standby models, thus the system availability is very high, but because all the units are powered up and actively engaged with the DUC, the system is at more risk of encountering a common mode failure across all the units.

Deciding which unit is correct can be challenging if you only have two units. Sometimes you just have to choose which one you are going to trust the most and it can get complicated. If you have more than two units the problem is simpler, usually the majority wins or the two that agree win. In N Modular Redundancy, there are three main typologies: Dual Modular Redundancy, Triple Modular Redundancy, and Quadruple Redundancy.

Dual Modular Redundancy

Dual Modular Redundancy or DMR uses two identical and so functional equivalent units, both of them able to control the DUC. The most challenging side of this con guration is the switching decision between the two units. Since both of them are monitoring the DUC there is the need for a routine in case of mismatch between the two units. In is possible to create a tiebraker ore even designate the second as default winner, assuming it is more trustworty than the primary unit. The average cost increase of a DMR system is about twice that of a non-redundant system, factoring in the cost of the additional hardware and the extra software development time.

Figure . : DMR scheme

Triple Modular Redundancy

Triple Modular Redundancy (TMR) uses three functionally equivalent units to provide redundant backup. This approach is very common in aerospace applications where the cost of failure is extremely high.

TMR is more reliable than DMR due to two main features. The most immediate is that there are two "standby" units instead of a single one. The second is that in TMR it common to see the so called diversity platforms or diversity programming techniques applied. in these techniques it is possible to notice the use of di erent hardware or software platforms.

Figure . : TMR Schema

Quadruple

Quadruple Modular Redundancy (QMR) is fundamentally similar to TMR but using four units instead of three to increase the reliability. The obvious drawback is the X increase in system cost.

. . :N Redundancy

This design technique is used in case the system has a single backup for multiple modules and this backup is able to act as any of the single ones. This technique o ers a redundancy at much lower costs than the others. This approach only works well when the primary units all have very similar functions, thus allowing the standby to back up any of the primary units if one of them fails.

Other drawbacks of this approach are the added complexity of deciding when to switch and of a switch matrix that can reroute the signals correctly and e ciently. 

. . Redundancy Improves Reliability

Reliability is de ned as the probability of not failing in a particular environment for a particular mission time. Reliability is a statistical probability and there are no absolutes or guarantees. The goal is to increase the odds of success as much as you can within reason.

The following equation is the most common to calculate reliability, and it assumes that the system has a constant failure rate λ R(t) = e -λt ( . )

in which:

• R(t) is the probability of success • t is the mission time or the time the system has to execute without an outage

• λ is the constant failure rate over time (N Failures per hour)

• 1 λ is the MTTF or mean time to failure

In fact one way to calculate reliability is to take the probability equation and instead solve for the mean time to failure (MTTF) of the system:

R(t) = e -λt = e -t M T T F ( . ) solving for MTTF M T T F = - Å t ln [R(t)] ã ( . )
For example, if your application had a mission time of hours a day, days a week, for one year ( / / ) and you experienced a success rate of %: . ) in case redundancy has been added to the system we can, for istance, increase the success rate to % for the same mission time and therefore:

M T T F = - Å 1yr ln[.90] ã = 9.49years ( 
M T T F = - Å 1yr ln[.99] ã = 99.50years ( . )
These equations e ectively demonstrate the vast improvement in reliability that redundancy can bring to any system.

In particular, it is usefull for this thesis to better understand the real andvantages of TMR over the Simplex model. First we have to set some assumptions:

. TMR only works if there are at least working modules . R m is the Reliability of the single module . R v is the Reliability of the Voter That said, it is possible to calculate the Reliability of a TMR system as follow:

R T M R = R v 3 i=2 Ç 3 i å R i m (1 -R m ) 3-i ( . )
and so

R v [R 3 m + 3R 2 m (1 -R m )] = R v (3R 2 m -2R 3 m ) ( . )
from which it is possible to evaluate the MTTF for the same system as:

M T T F T M R = ∞ 0 R T M R dt = ∞ 0 R v (3R 2 m -2R 3 m )dt ( . ) ∞ 0 e -λvt 3e -2λmt -2e -3λmt dt = 3 2λ m + λ v - 3 3λ m + λ v ( . )
It is possible to neglect the failure rate of the voter since it is usually designed to be way lower than the module one.

Now comparing the M T T F T M R with the Simplex solution we obtain:

M T T F T M R = 3 2λ m - 2 3λ m = Å 5 6 ã Å 1 λ m ã = 5 6 M T T F Simplex ( . ) C F M E A FMEA . Introduction . . General
FMEA and FMECA are important techniques for a reliability assurance programme.They can be applied to a wide range of problems which may occur in technical systems, and can be carried out in varying degrees of depth, or modi ed, to suit a particular purpose. The analysis is carried out in a limited way during the conception, planning, and de nition phases and more fully in the design and development phase. It is however important to remember that the FMEA is only part of a reliability and maintainability programme which requires many di erent tasks and activities. FMEA is an inductive method of performing a qualitative system reliability or safety analysis from a low to a high level. A thorough understanding of the system under analysis is essential prior to undertaking FMEA. Functional diagrams and other system drawings are normally necessary for this understanding. Reliability block diagrams, fault trees and/or state diagrams are then usually derived from these in order to carry out the analysis. In many instances the block diagram descriptions and block diagram failure descriptions are included in the FMEA format. Separate diagrarns will be needed for the following:

. The way in which di erent criteria for system faiulre are determined;

. Degradation of function or reduction in assurance of function;

. Alternative operational phases

. . Purpose of the Analysis

The reasons for undertaking FMEA (or FMECA) may include the following:

• to identify those failures which have unwanted e ects on system operation, e.g. safety critical failures;

• to satisfy contractual conditions that an FMEA should be completed;

• where appropriate, to quantify the reliability and/or safety of the system;

• to allow improvements of the system's reliability and/or safety (e.g. by design or quality assurance action)

• to produce aids to fault diagnosis;

• to allow improvement of the system's maintâinability (by highlighting areas of risk or non-conformance for maintainability).

ln view of these reasons the objectives of an FMEA (or FMECA) may include the following:

. a comprehensive identi cation and evaluation of all the unwanted effects within the de ned boundaries of the system being analysed, and the sequences of events brought about by each identi ed item failure mode, from whatever cause, at various levels of the system's functional hierarchy;

. the determination of the signi cance (or criticality) of each failure mode with respect to the system's correct function or performance and the impact on the reliability and/or safety of the process concerned;

. a classi cation of identi ed failure modes according to relevant characteristics, including detectability, diagnosability, testability, item replaceability, compensating and operating provisions (repair, maintenance, logistics, etp.);

. an estimation of measures of the signi cance and probability of failure.

. . Basic Principles of FMEA

The following concepts are essential to FMEA:

. breakdown of the system into 'elements';

. a diagram of the system's functional structure and identi cation of the various data which are needed to perform the FMEA;

. the failure mode concept (a part may have several failure modes or a failure mode may involve several parts);

. identi cation of new physical features or new requirements;

. the criticality concept and the measure to be used (if criticality analysis is required).

Further, it is essential to specify the existing links between the FMEA (and the FMECA) and other qualitative (and quantitative) analytical methods within the overall reliability programme. Very few designs are wholly new. Most are to some extent developments of old designs. FMEA should use the information on existing systems and draw attention to the need for tests, etc. for the new parts.

. Procedure . . General

The wide variation in complexity of system designs and applications may require the development of highly individualized FMEA procedures consistent with the information available. Traditionally, there have been wide variations in the manner in which FMEA is conducted and presented. However, the analysis is usually done in a standard manner and presented on a worksheet that contains a core of essential information which can be developed and extended to suit the particular system or project to which it is applied. A typical example of a worksheet is shown in Figure .

The procedure consists of the following four main stages:

. Preparatory de nition of the system including the design, functional, operational, maintenance, and environmental requirements;

. Establishment of the basic principles and purposes of the FMEA and the form of its presentation;

. Carrying out the FMEA using the appropriate worksheet designed according to (a) and (b);

. Reporting of the complete analysis including any conclusions and recommendations made.

A more detailed consideration of the information needed is given in Section . . .

. . Preparation

At the commencement of an analysis, the following preparations should be made:

. The analyst should have available the information listed in Section . . . to . . . that clearly de nes the system to be analyzed.

. It will usually be necessary for the analyst to translate the information into some form of functional, hierarchical, or reliability block diagrams. An example of a functional diagram is shown in Figure . This diagram shows how the failure e ects at the part level form the failure modes at the module level, the failure e ects at the module level form the failure modes at the subsystem level, and so on. Such a representation of the system should explicitly identify the system's functional structure, the system boundary, and the inputs and outputs crossing that boundary. Further information is given in Section . . . to . . . .

. . FMEA principles

The following principles should be applied:

. De ne clearly the purposes and uses of the FMEA as indicated in Section . . .

. Establish and de ne the relationships with other forms of reliability analysis with which the FMEA may subsequently be integrated. (See Section . . .)

. De ne the scope of the FMEA in relation to the functional structure and hierarchical structure of the system as described by the block diagrams referred to in Section . . . . It is essential to de ne the lowest level in the system's hierarchical structure at which the analysis will start. The guidance given in Sections . . , . . , and . . . is especially important for this task.

. De ne the format of the FMEA worksheet to suit the project requirements. The core information considered essential is as follows:

. The name of the item in the system being analyzed;

. Function performed by the item;

. Identi cation number of the item;

. Failure modes of the item;

. Failure causes;

. Failure e ects on the system;

. Failure detection methods;

. Compensating provisions;

. Severity of e ects;

. Remarks.

Other information required for the particular system and project needs to be de ned by the analyst according to the purposes of the

. Analysis

It is worth to underline that, even though the scope of this thesis is to establish a new methodologyfor automated FMEA in both hardware and software systems, there is the absolute need to comply with what is today the state of the art for FMEA and the guidelines to be followed to bring the metrics extracted during the analysis to certi cation. It is for this reason that the following section will present the traditional method applied today to all the electromechanical systems under evaluation. Bare in mind that the totality of the procedure described below is man driven. The usual requirement and purpose of an FMEA isto identify the e ect of oJl failure modes of allconstituent items at the lowest level in the system.Tb achieve this the worksheet should be used inthe following manner:

. Identify all items in the system or subsystem,each of which is to have its failure modes ande ects analysed. The system of identi cation byname and number should be such that no itemswill be omitted.

. Select the rst item for analysis and enter theitem name and identi cation number in theappropriate columns of the worksheet.Determine the function of that item in thesystem and enter that on the worksheet.

. Deduce all the possible failure modes of theitem due to any possible cause and individuallyenter these modes on the worksheet . Postulate the most likely failure causes foreach failure mode of the item and enter these onthe worksheet. It will usually not be possible to consider allpossible causes because the range is so vast, butthe most signicant with regard to the item, thefailure mode and the application should beidenti ed.

. Deduce the e ects of the failure on thesubsystem and system, as determined by thescope of the FMEA . Complete the remaining columns of theworksheet for the rst failure mode of the rstitem.

. Repeat to for all failure moides of the rst item

. Repeat to for all other items

. . Multiple Stages

If the FMEA is to be done in stages that eachrelate to separate Ievels in the system's hierarchicalstructure, the failure e ects from the lower level become the failure modes at the next level up. The analysis should then proceed as follows.

. Identify the lower level FMEAs that areappropriate for the next stage in the systemFMEA according to the system's hierarchicalstructure de ned by the block or functionaldiagrams (see . , (b)). Where appropriate alsoinclude items de ned as being at the lowest levelin that part of the system structure . Perform the FMEA for each failure of eachitem at this higtrer level in the system stmctureas given in the previous section.

. repeat the two above steps for any further higher levels in the system structure.

. . Worksheet reccomendations

The last worksheet entry should give any pertinent remarks to clarify other entries. Possible future actions such as recommendations for design improvements may be recorded and then ampli ed in the report. This column may also include the following:

(a) any unusual conditions;

(b) e ects of redundant element failures;

(c) recognition of specially critical design features;

(d) any remarks to amplify the entry;

(e) references to other entries for sequential failure analysis;

(f) signi cant maintenance requirements;

(g) dominant failure causes;

(h) dominant failure e ects;

(i) decisions taken, e.g. at design review.

The report on the FMEA (or FMECA) may be included in a wider study or may stand alone. In neither case, the report should include a summary and a detailed record of the analysis and the block or functional diagrams which de ne the system structure. The report should also contain a list of the drawings (including issue status) on which the FMEA is based.

The summary should contain a brief description of the method of analysis and the level to which it was conducted, the assumptions and the ground rules. In addition, it should include listings of the following:

. recommendations for the attention of designers, maintenance sta , planners, and users;

. failures which, when initially occurring alone, result in serious e ects;

. failures which have no e ect;

. design changes which have already been incorporated as a result of the FMEA (or FMECA). . Introduction

In the context of new applications for autonomous mobility, digital components a required to reach high levels of functional safety performances. This level of assurance is necessary to supply safely the computational power and advanced processing required by those applications. It is therefore necessary for digital SoCs safety engineers to be able to demonstrate thru advanced provable methods the achieved reliability of their system and counter measures.

Similarly to complex electomecanical systems, it is di cult to predict the failure modes of a complex SoC which exhibits an almost in nite state space (in the order of 2 n , n is the number of sequential elements, reaching ten's of thousands easily) and distributed-systems characteristics: numerous independents sub-systems operating and communicating asynchronously.

Digital systems are subject to two kind of errors, permanent which are created by destructive or aging e ects, and transient [ ] created by particle impacts such as thermal neutrons at ground level or solar wind in low and high earth orbits [ ][ ]. Permanent e ects shows in the form of a permanent stuck to an electrical value (' ' or ' ' logic value) and can occurs on any digital element (combinational logic, i.e. logic gate or sequential element, i.e. flip-flops). So do transient faults, also called soft errors, but with di erent, non-permanent, e ects on logic or sequential elements. Transient faults on logic gates are called Single Event Transient (SET) [ ] and are particularly dangerous on clock trees and reset trees (which distributes the clock and reset signals through the chip using trees of bu ers) of SoCs as their e ect, that has the form of a glitch, is to reset or desynchronize the sequencing of a sub-part of the system. Transient faults on sequential elements (memories or ip-ops) only invert the value of the element which will retain the faulty value until overwritten by a new value.

They are called Single Event Upset (SEU) and are the main cause of safety goals violations in digital SoCs [ ].

However, digital system exhibit a natural resistance to soft errors and most of them have no functional e ect while a small proportion of them (≈ 10% of them in a standard -stages processor [ , ]) will lead to system execution failure. FMEDA analysis [ ], targeting goals such as ISO automotive safety norm [ ] certi cation will consist in quantifying those failure modes, proving the e ectiveness of counter measures and absence of safety goals violation. An e ective solution consists in submitting the system to faults, by simulation or under radiation beam, therefore stressing it and provoking intentionally dysfunctional behaviors. Those 'out of trajectory' behaviors can then be recorded, analysed and used for FMEDA analysis in the certi cation process. However, both methods are costly both in term of engineering setup needed and cost: fault injection of a full SoC requires a complex setup, test suite and costly hardware emulator while radiation test requires an acquisition system, a test setup and access to costly and constrained radiation facilities, Both have the disadvantage to require, the full SoC gate netlist (fault injection [ ]) or silicon (irradiation [ ]). Also, both methods can be classi ed as experimental as it is a veri cation 'by observation' of the resilience of the system to faults. No proof, except statistical con dence is made on the extracted faults metrics.

In this work, we aim to assess the capability of Model-Based Safety Assessment methods to build the dysfunctional model of a digital SoC from its subsystems and perform the currently hand-made FMEDA of the full system automatically. We expect the methods to be able to quantify globally the system safety metrics more accurately than with hand-made spreadsheets which only basically multiply probabilities. Automatic failure analysis such as fault trees extraction, fault sequences leading to unwanted events are also expected to be of great help during the certi cation process. The problem to solve is then to extract and build the required dysfunctional models of the di erent subsystems of the SoC and to properly expose the failure modes in the constructed models to be able to use existing model composition frameworks.

The document is organized as follow: we rst present the system used as example and how fault injection is used to expose dysfunctional behaviors and extract a model. The chosen approach is then detailed reminding generic principles before explaining speci c mechanisms put in place to model digital system. Finally, the document details fault injection campaign post-processing methods and obtained results. We compare composition results with fault injection performed on the full system used as a reference. 

. . Formal Methods in Digital Systems Safety

Formal methods [ , ] are mostly used on unitary blocks or functionalities to prove assertions (i.e. properties) expressed in linear [ ] or branching [ ] timing logic. When applied to safety, it comes to proving absence of safety goals violations that are expressed as assertions on outputs in the presence of faults. Tools like [ ][ ] are able to compute, given a nelist of logic gates and ip-ops and an initial state, the cone of in uence of ip-ops or gates and whether a fault in such elements can propagate to a given output. Such structural analysis can perform Out-of-Cone-of-Influence (COI) fault analysis allowing to classify a fault as safe when it cannot reach a given output. Activation analysis determine whether a fault injected on a speci c node can be activated. Propagatability analysis determine if an activated fault in a COI can propagate to a strobed output and detection analysis determines if a fault will (always) be propagated and detected at the checker output. Such analysis can reveal what logic is covered by a safety mechanism or not. However, no formal methods is able to address such safety properties at SoC level.

. . Altarica

Functional safety objective is to identify the most probable failure combinations leading to a feared event. Model-Based Safety Analysis performs safety analysis by building dysfunctional models for each block of the considered system and using formal methods to combine and extract failure modes at the system level [ ]. MBSA introduces the use of high level modeling languages dedicated to functional safety analysis [ ] [ ] [ ]. It allows extending classical methods such as FMEA or fault trees. These languages help capture system dynamics and how failures propagate inside it. Moreover, models support structural modeling allowing identifying and locating induced e ects of a failure inside the architecture.

Altarica Data ow (Fig. . ) is an event-driven asynchronous language that implements discrete variables with a nite number of values, leading to a nite number of combinations of state values and propagated ows, allowing theoretically to cover the entire system state space. AltaRica Data ow is at the core of several Reliability, Availability, Maintainability and Safety (RAMS) environments: Cecilia OCAS (Dassault Aviation), Sim aNeo (Airbus Protect), and Safety Designer (Dassault Systèmes) nite set of values called its domain. Variable de nition inside its domain is free. The variable can represent for example functional modes, dysfunctional status, message types .... Inside MBSA models, state variables are generally used to represent dysfunctional status with a default value as nominal behavior and a value for each degraded mode reached from any failure mode. Flow variables are generally to describe the type of data exchanged between components. This type can represent a functional value (e.g. instruction value) or a dysfunctional value (e.g. message status). It depends of the model level of detail. As ows are used to propagate failures, they can be described either by sending a status or a faulty value.

• Transitions: Transitions describe possible states changing values. Transitions are guarded by a condition allowing the transition to become reable when true. A transition is associated with a triggering event and is red when the event is triggered and the guard is true. In MBSA modeling, triggering events are used to represent failure modes. AltaRica allows to assign a probability law to an event, modeling the behavior of random failures or deterministic actions. The transition completion describes the e ect of the failure mode on the component state. Guards can be enriched to restrict to describe conditional failures. For example, in a cold redundancy, some failures can't happen when the component is o . 

. Modeling Digital Systems for MBSA

Digital systems, by essence, lend themselves well to nite state machines representation making the use of languages and formalism such as Altarica very suitable for their modelling. However, dysfunctional modeling requires extracting the faulty behaviour of the blocks composing the system. Such task is usually carried out by a Failure Mode and E ect Analysis (FMEA) to identify possible malfunction of the individual blocks. In digital system, such task can be performed automatically by simulation with fault injection[ ] and possibly formal methods [ ].

The main issue in modelling digital systems for MBSA is choosing the adequate level of abstraction avoiding a direct 1 ⇔ 1 translation of Hardware Description Languages (HDL) modeling concepts into Altarica. When extracting a safety model from a digital block three points must be addressed:

• Structural hierarchy: Because Altarica support hierarchy [ ], translating hierarchy with adequate granularity can be straightforward, especially as natural design hierarchy is usually a good candidate.

• Behavioral modelling: Faulty behavioral aspects requires extraction of failure modes which can be performed manually, based on design knowledge or automatically using fault injection or formal approaches. Fault injection is well suited to such analysis, especially in the world of digital design which rely heavily on HDL simulators and digital fault injection driven by ISO requirements. In this work we will exclusively focus on fault injection.

• Faults propagation: Blocks in a SoCs are usually connected though buses with well de ned protocols and their failures modes (unaligned access ...) are known. The issue comes in the granularity of the modelling that, if too low will lead to too numerous events ( HDL signal → ow variable) while a too high abstraction may prevent catching of some protocol failures.

Fault injection campaigns are used to characterize the behavior of the system from its output pins point of view which are the 'vectors' for faults propagation between blocks. Also, knowing the functionality of each of these pins, it is possible to attach some possible consequences to the failure to such (group of) output(s). Such semantic labelling is, however, still manual and based on safety engineers knowledge and experience.

. Methodology

On top of any explicit nite state machine or control code encoding the user speci ed behaviour, a more complete state exist that includes the totality of the signals belonging to the control path of a design, such as data states implicitly exposed in controls states, or implicitly coded control states. These signals compose a more complete and larger state machine exposing new states and transitions that are implicitly speci ed, for example resulting from Cartesian product of automatons. Those are, technically, the signals driving transitions conditions.

Combinations of these signals in those states can lead to a subtle set of fault states, di cult to identify from the HDL description as the encoding in this state machine is sparse due to correlations. Such argument comes from the fact that even for a small (>≈ ) number of ip-ops, the complete state space (2 50 ) cannot be traversed in a reasonable time. Therefore a non-negligible proportion of these states are what we call illegal states i.e. unreachable under normal behaviour, potentially leading to undesired and unspeci ed behavior when the block is exposed to those states though faults.

In order to build a failure model from a nominal behavioral Register Transfer Model (RTL) in Verilog or VHDL, behaviour of the system under faults must be analyzed and faulty behavior as well as failure modes must be extracted. We proceed using the following steps:

. Identification and Extraction of State Signals: Starting from the functional description, the set of ip-ops, belonging to both the control and possibly data) paths composing what we name as the state, has to be identi ed and extracted. This set, composed by all the ip-ops composing the control path and possibly the datapath which maintain the control state of the block, correspond to possible fault injection sites.

. Testbench Setup : A standalone testbench is set up with care given to coverage and testbench representability as the states traversed during this golden execution will serve as non-faulty reference behavior. Tools like Incisive Metrics Coverage (IMC) [ ] or Certitude [ ] can be used to assess testbench coverage. A rst reference run is performed to allow extraction of golden functional states that will be used later in the process to be di erentiated from non-functional ones under fault injection.

. Fault Injection Campaign: Fault injection is the mean by which the misbehavior and faulty execution is exposed on purposes. Probes (i.e., observation points) are de ned during the setup of the fault injection campaign. They are set on the outputs of all blocks in order to identify failures that propagates to other blocks. Probes monitor and compare the probed signal value at each clock cycle with the golden reference and report any di erence. They have been set to stop simulation when a fault reaches an output of the design. This step is the core of our analysis aimed at extracting faulty behaviour, modes and e ects though exploration of the faulty states by fault injection.

. Extraction of Faulty Behavior: Once the faulty runs have completed, nonfunctional (i.e. faulty) states and behavior are extracted by subtracting functional (golden) states taken from the golden run state dictionary to the faulty run states, leaving only newly discovered faulty states and transitions.

. Construction of the Faulty Model: The newly discovered states and transitions are used to augment the functional models with faulty behavior.

Transitions from a functional to a non-functional state are labeled with the responsible faults so are states responsible for an incorrect output. This model serves as a base for the translation into the Altarica language.

Currently, the method is limited in the e ect analysis of the FMEA. E ect such as loss of power cannot be attached automatically to a faulty state as it would requires an inference and abstraction process out the reach of the tool currently. Thus, such labelling is performed manually by attaching e ects to outputs and then back-propagating them into the states and faults responsible for the given outputs corruptions.

. . Faulty Behavior Model Construction

Once the faulty behavior has been extracted from faulty runs, the faulty model can be constructed using graph analysis algorithms. The rst step in the model construction is collapsing states that are not meaningful for the dysfunctional model. We proceed currently with the following rules:

• Any component (connected subgraph) comprising only legal states and legal transitions are collapsed into one single functional state.

• Legal states with illegal transitions or incorrect outputs (outputs values do di ers from reference in these states) are kept and illegal transition probabilities are attached.

• Any component comprising only nodes not propagating any faults to outputs are collapsed into one single faulty state. Probabilities to enter this state can be extracted from transitions leading to the collapsed states.

• Faulty nodes propagating faults to outputs are kept and transitions probabilities are attached to allow computing incorrect outputs probabilities.

• E ect attached to output pins are back propagated in the state graph faulty states where output corruptions occurs.

However additional rules may be added like to remove faulty nodes and transitions from masked faults for example, especially those not leading to any latent faults (execution is correct with no faults propagated to outputs and internal state doesn't di ers from reference one at some point, i.e. fault has vanished). We ultimately target discrete-time Markov chains [ ] for our dysfunctional behaviour modelling (Fig. . ).

. . Completeness of Extraction

The main risk in state identi cation is to under or overestimate the state which would lead to uncovered faulty states (fault not injected in a ip-op misidenti ed as not control) or over estimate the state leading to classi cation of what 

. . Altarica Modeling

Such an automaton representation is adequate for Altarica modelling as described below. When performing translation to Altarica, two elements shall be extracted:

. The internal state machine corresponding to failures.

. The assertion part corresponding to the propagation failure probability from input to one or more output of element.

Base modelling must include at least four states (Fig. . ): a nominal state where no failure occurs, a failure state corresponding to a bit-ip error injection and an illegal state corresponding to propagation of the failure to one or more outputs. The legal state correspond to failures leading to legals transitions, without failure propagation to outputs. Assertions on outputs are conditioned by the internal state machine and inputs of the block. Every time internal state machine is in the illegal state, outputs values are updated. In same way, if one input of the block is set in the failed state, outputs are updated. Probabilities to generate a faulty output or to propagate failures from inputs to outputs are extracted from fault injection campaigns (Table ??). Currently, all illegal states are collapsed into a single one, but di erent non-functional states corresponding to di erent failure modes can be extracted as well, such as represented on Fig. . where two illegal states are identi ed whether or not a simulation timeout ( % of golden execution time) occurs. Criteria for re ned dysfunctional automaton extraction are not yet addressed as well as construction and reduction rules from fault injection data for such an automaton.

. Application: I C to AHB bridge

In order to exercise the methodology presented in Section . , we use a test case composed of blocks: an I C slave [ ] connected to an AHB [ ] bus master interface (Fig. . ). Commands (read or write) along with parameters (address and data) are received on the serial line and transformed into a series of AHB read and write transactions. Such a system, composed of two interconnected blocks, is humanely understandable so are its dysfunctional modes, while being complex enough to detail thoroughly the methodology.

The I C slave, taken from [ ], receives read or write commands followed by an address byte and an optional data byte. On an I C read, the byte returned from the AHB read transaction is returned. chronogramm for the read and 

. . I C Block Modeling

The testbench is composed of a series of read and write random transactions.

The coverage evaluation of the design has been carried out, results are presented in Table . . Having considered the results of the coverage evaluations su cient for the demonstration, application of the method presented in section . have been performed. The list of all injection sites, reported by Cadence Xcelium Fault Simulator (FSV) [ ] fault injection tool are considered for state including ones containing data as the serial nature of the I C protocol, which mixes control and data frames on the same signals thought time-multiplexing, doesn't allow di erentiation. However, the small size of data considered ( -bit) only induce a low ( ) superset of the real control states. All outputs are probed so that any mismatch with the reference run will stop the simulation and report the fault as Detected. State ( ip-op value, i.e. ' ' or ' ') is simply extracted at each clock cycle and printed in the simulation logs to be post-processed. Fault injection traces are then processed following rules described in section . . extracting transitions probabilities between the connected subgraphs: • Nominal 2 -Subgraph made of legal states only, part of the nominal execution.

• Faulty 1 -Illegal state Subgraph, leading to a propagation of the fault to the output. 

. . AHB Block Modeling

The AHB bus interface is taken from the GRLIB [ ] library with added custom logic to connect it to the master parallel interface of the I C. The added logic comprise an interpreter for the command received by the I C and the glue logic interface to the AHB master side. A veri cation IP is connected to the AHB slave interface side to respond to transactions and check protocol. Coverage for AHB block is low and can be explained as only a limited use of the AHB protocol is made:

. only byte accesses are performed.

. only single (SINGLE) non-sequential (NONSEQ) transfers are performed.

. the VIP has not been programmed to insert HREADY wait states in the transaction.

. the VIP has not be programmed to generate HRESP transaction response error.

The low coverage obtained here doesn't restrict the generality of the methodology but may prevents some failure modes to be identi ed in this speci c case.

. . Complete System Test Case

The complete system is composed of both the I C slave and AHB master along with VIPs at both ends. As previously mentioned, probes are placed on all outputs of the complete system, leaving this time, faults freely propagating internally between the I C and the AHB without being reported by FSV nor the simulation to be stopped. The main di erence of this testbench regarding the two standalone previous ones is that faults injected in one block will be able to propagate to the other one (I C → AHB, for example) and back-propagate to the rst block (AHB → I C) as simulation will not be stopped when the fault will output from the rst (i.e. I C), and later second (i.e. AHB), block. Such "fault loop" (I C AHB or AHB I C) are expected to be the main possible source of faulty states di erences between the standalone and full system faulty states extraction. However, as faults are injected on the inputs in both approach (standalone and full system), we expect to capture, at least a part of theses "fault loops" induced faulty states in the standalone extractions, if such case exist. The AltaRica structural model architecture follows the natural hierarchy of the system. As shown on The rst element is the functional state machine of the module. In case of internal or external fault, this state machine will dispatch the fault to the impacted outputs. This state machine only model the internal faults propagation and do not generate any random failure on its own. The second element is the internal failure state machine. This state machine generate internal random failures and provide to the functional state machine the outputs impacted by it. In addition, the AHB module include an additional glue-logic block that Depending on the methodology, two types of metrics can be extracted. The rst one is the probability to propagate internal failure to one or more outputs of the system. From the test results, this probability has been extracted by considering all faults injected in the studied system. The probability to propagate internal faults to an output of the system is then equal to the ratio between the faults detected by the output probe and the total number of faults injected. The second metrics is the probability to propagate a failure from an input of the system to one or more output of the system. For this metric, only fault injected on inputs have been taken into account. This probability is the ratio of the input faults leading to an erroneous output over the total number of input faults injected.

Sim aNeo allows to perform Monte-Carlo simulation. In this type of simulation, a large number of failure scenarios are generated to assess the mean behavior of the system under random failure scenarios. The rst possible assessment randomly injected one failure by failure scenario inside the system while the outputs are monitored. If at least one output triggers a faulty state, the error is accounted to have been propagated outside of the system. With this methodology, it's possible to estimate the probability to have a failure propagation from the I C+AHB system to the I C or AHB external signals. The second possible assessment randomly injected one failure by failure scenario in a link module and monitored the other link module. If the opposite link module triggers a faulty state, the error is accounted to have been propagated from one end to another. With this methodology, it is possible to estimate the probability to have a failure propagation from AHB or I C back to the other link.

. Results

Result of composition obtained by Sim aNeo are compared to fault injection performed on the full system with probes set only on external outputs of the system on table . for the I C and AHB side signal. Because the system is simple and faults propagate only forward, it came to simple probability multiplication explaining exact matching of model and system fault injection. No back-propagating faults were observed.

.

Discussion and Future Work

In this work, we have proposed and experimented the use of Model-Based Safety Assessment on digital system for safety analysis. We have addressed the construction of dysfunctional model for digital system using simulation and have been able to build a simple, but functional dysfunctional model in Altarica. Ongoing work include automatic dysfunctional models reduction to more than one state and the application to a small RISCV SoC and software reliability[ ].

C F S . Introduction

In the last years the density of integration in VLSI systems and microprocessors performances have continuously increased, thanks to the relentless technology scaling. Even though this trend can only continue on its path, several constraints may obstruct the way (power, energy, performance), in particular reliability (or cross-layer resilience) can become the more relevant. Hardware redundancy can be used to manage errors at the hardware architecture layer, and eventually even software implemented error detection and correction mechanisms can manage those errors that escalated from the lower layers of the stack [ ] [ ]. Overall, the goal is to determine the resilience of a particular system in determined conditions, meeting the requirements considering its sensitivity to hardware faults.

It is also true that software failures are not only caused by software implemented faults, as it has been shown [ ] the propagation of hardware faults plays a central role, eventually catastrophic. Base on what literature reports on hardware faults evaluation reports [ ] [ ] it is possible to observe that the percentage of software failure that are caused by pure hardware faults average around % [ ]. The most famous example is surely the crash of the Mars Polar Lander [ ], which cause was established to be dependant on hardware faults resulting in software failure. In that case the lander was not able to settle the legs into their deployed position, which is an hardware fault, and the software gave a wrong order to turn o the engines in the air of Mars, which is a software fault. The system crashed and the entire mission failed.

This paper not only wants to furthermore analyse the behaviour of software failure due to hardware propagated fault but parallely to the main research [ ] path that applies these new methodology to Hardware design in order to simplify the reliability assessment, the idea of applying the same method in the scope of the assessment of the reliability of software has never been tested. In order to do so, there is the need to specify the main characteristic that Software Products have, fundamental to lay the basis for the described work. Every software can be divided into basic block, atomic chunks of software having the following proprieties:

• One entry point, meaning no code within it is the destination of a jump instruction anywhere in the program.

• One exit point, meaning only the last instruction can cause the program to begin executing code in a di erent basic block.

Under these circumstances, whenever the rst instruction in a basic block is executed, the rest of the instructions are necessarily executed exactly once, in order. The code may be source code, assembly code, or some other sequence of instructions. More formally, a sequence of instructions forms a basic block if:

• The instruction in each position dominates, or always executes before, all those in later positions.

• No other instruction executes between two instructions in the sequence. This de nition is more general than the intuitive one in some ways. For example, it allows unconditional jumps to labels not targeted by other jumps. This de nition embodies the properties that make basic blocks easy to work with when constructing an algorithm.

The blocks to which control may transfer after reaching the end of a block are called that block's successors, while the blocks from which control may have come when entering a block are called that block's predecessors. The start of a basic block may be jumped to from more than one location. Laid these basis, if, as we'll show in this paper, the reliability metrics extracted for each basic block can be recomposed just knowing the sequence of block required to execute a precise operation, the need for a fault injection campaign on the entire software product doesn't stand anymore.

This paper is organised as follows: the current state of the art is summarised in section II; section III describes the proposed methodology, including its setup, the fault injection procedure and the re-composition of the results from each basic block; a test case is provided in Section IV, while Section V presents the obtained results and sketches some perspectives.

. State of the Art

The rush to develop a methodology to assess the reliability and availability of electronic systems has speed up together with the increasing complexity of the microelectronic systems and the miniaturization of such devices. In particular an eye has been keep onto the propagation of faults throughout the entire stack of layers that compose the system as whole, starting from the technological layer all the way up to the software/application layer passing through hardware. In particular the extraction of reliability metrics for software has been the focus of a consistent thread of research [ ][ ][ ] that aimed to verify:

. whether the software respects the speci cation requirements, . the improvement of the software quality and, . the reliability of the software Tools to verify the reliability of software, de ned as the probability of the correct software performances for speci c period of time on speci c environments, have been already developed. In particular the SyRA [ ] Cross-Layer Soft Error Resilience evaluation framework proposes a solid method to move from the industrial level Cross-Layer evaluation techniques that are still mainly guided by the sole experience of the designers [ ]. These methods are all based on the use of fault injection tools, and they all produce satisfying results in their elds. Nevertheless they have limitation, the description of the Software Fault Models have always been based on the simulation of propagation from the hardware architecture up to software routines, assessing their impact in the correctness of the computation as in [ ][ ][ ]. Moreover no attention has been given to the enormous e ort that this type of campaign require, in terms of time, licences for tools and computational power, for an assessment that is limited to the hardware the application is running on and most importantly on the inputs the software receives to perform its calculation. This makes the assessment completely not re-usable in the future requiring a completely new set of campaigns.

Here the focus will be, instead, put on how the software computation reacts to the vulnerable hardware underneath and most importantly to the de development of a methodology like there are no other example in the related research, the possibility of decomposing the software products to abstract the single basic blocks and perform a reliability assessment on the single, apparently meaningless blocks to then recompose them obtaining the reliability assessment with a huge time and computational power advantage with respect to the existing methods.

. Methodology

The Classical reliability assesment of Hardware as well as Software is Fault Injection driven. The extensive usage of commercial fault injection tools like the ones provided by Cadence [ ] or Synopsys [ ] guarantees the proper exploration of the behaviour of the DUT when subject to SEU or other types of faults. This allows the Veri cation Engineers to have an idea of the behavior of their design without the need to move onto practical testing in radiation environments, which require a dedicate setup [ ] and an expensive and not widely available infrastructure.

These advantages come at two main costs, time and Computational Power, which are comsumed in great quantities by the above mentioned simulators. Attempts of Optimization and Parallelization have been put in practice before, but they are not tackling the bigger overhead that we need to take care of every time we simulate a design. Let us assume that, as shown in Fig: . there is the need to test and entire Software Product composed of n basic blocks, this simulation will last as long as the time to initialize T init plus the time of the checker/footer to be executed T f oot plus the sum of the duration of all basic blocks multiplied by their multiplicity through the program m n • T bbn . All multiplied by the number of runs that the simulator has to perform to achieve the desired number of injections I, resulting in:

T campaign = I • T init + T f oot + N 0 m n • T bbn ( . )
In which the entire program is executed every time entirely, the method proposed by this paper consist in a fragmented study of the basic blocks composing the software, extracting the same metrics that would be extracted by the same fault injection campaing on the whole Software. In this case, in the same way we did before, it is possible to calculate the time needed to carry out the fault injection campaign as we have de ned it now, on separate basic blocks, each of them having their random initialization and checker to ensure functionality.

I • T init + T f oot + N 0 T bbn ( . )
In this way we have drastically reduced the amount of time needed to perform the same amount of fault injections, just focusing on the single blocks. Moreover, the di erence between the two previously calculated timings, will give us the bene t of studying the blocks singularly, as follow:

I • N 0 m n • T bbn -I • N 0 T bbn = = I • N 0 m n T bbn - N 0 T bbn = = I • N 0 T bbn • (m n -1) ( . )
which means that we save the time needed for the execution of each basic block multiplied by its multiplicity, minus one that we still have to execute. Clearly this saved time increases with the length of the Software and therefore the multiplicity of the blocks. In particular, the length of the Fault injection campaign on the entire software is linear with respect to the increasing of multiplicity of the basic blocks, for example due to a larger data input, whereas the solution proposed in this paper is linear with respect to the overall number of unique basic blocks, which remain the same regardless of the data.

. . Setup

The rst step towards the application of the method described in the previous section, is the identi cation and of the di erent basic block that compose the Software Product under analysis. This can be easily carried out automatically by a simple parser. Basic Block at Assembly level are easy to identify and parse thanks to their intrinsic de nition of linear chunks of code. It is therefore trivial to identify in the code all those instructions that modify the ow of the program, tearing down the hypothesis of linearity that de nes the blocks themselves. For instance, all the jumping and branching point de ne the end of a block, as well as the beginning of the following one. Labels in the code also identify starting point of basic block, as they are frequently arrival points for the above mentioned jump and branch operations.

Although having the set of basic blocks divided in single le may seem sufcient, there still the need to initialize all the resources that both the processor and the basic block itself need to run properly, as well as a control logic to ensure that the functionalities of the basic block are preserved (or not) throughout the course of the fault injection campaign. As Shown in g: a random initialization is included in the header for the basic block, ensuring the non dependability of the reliability metrics extracted on the input data, together with a footer that checks the functionalities of the block itself. Notice that in in this case, contrary 

. . Fault Injection on Randomly Initialized Resources

Fault injection is the mean by which the misbehavior and faulty execution is provoked on purpose on digital systems. In the past, especially on hardware, fault injection was aimed to functionally verify the designs under test. Those DUT were analysed, their functions (data dependent) extracted and inputs were selected in order to exercise those functions. Later on the fault injection had the role of determining whether those functions were preserved in cases of fault or how eventually they were modi ed. Today this is still the state of the art for software veri cation.

With time a second approach on hardware was presented, testing moved from functional to structural, where the integrity of the device is evaluated, regardless of the function (and therefore of data), verifying solely the implemented boolean function.

The methodology introduced in this paper presents the novelty of applying this structural approach to software. To abstract the basic block as much as possible from its link to data, every resource utilized has been randomized before each fault injection. The probability of failure and propagation probabilities are therefore extracted independently of their data input.

Probes (i.e., observation points) are de ned during the setup of the fault injection campaign. It is the role of the Footer/Checker (out of the scope of the fault injection) to redirect the output of the block function into a reserved portion of the memory to be probed. Probes are set on those reserved memory location on all blocks, not probing the correctness of the data with respect to the golden run, but solely if the basic function included in that portion of code has been a ected by the fault injection.

. . Re-Composition of the basic blocks

Once the fault injection campaigns are over, it is time to re-compose the information that have been extracted on the single blocks into a complete description of the original Software Product. To perform the re-composition there is the need run the software once and record the trace, this will allow us to know exactly the sequence in which the basic blocks have been executed during the nominal run.

We distinguish two main branches of the re-composition, the ones containing fault that do not modity the program flow and those that lead to a modified program flow

Not modi ed Program Flow

First we nee to de ne the probability of being executing a precise basic block in time during the execution of the program. Assuming a deterministic duration per executed instruction, without nested or hidden operation, we can de ne the probability of executing BB n as

P in-bbn = instructions -in -BB n total -instruction -in -exe ( . )
Next step is to de ne the probability of a fault happening in BB n being able to become an error in the same block. This has been deduced from fault injection and must be di erentiated per every register in which we inject faults and it represented as: P Am gBBn ( . )

Last probability to de ne is the probability of a block to receive a wrong input and propagate it to its output. De ned as:

P Am pBBn ( . )
which is related to the "time of life" of the variables, de ned as the number of basic block between the last time a variable has been read and the rst time it gets overwritten. Once these probabilities ha been de ned we can describe the worst possible case, in which a fault is injected in BB n and gets propagated throughout the whole program. 

P in-bbn

P tot = [P in-bb-x * P p-bbx ] + [P p-bbx+1 * P p-bbx+1 ] . . . ( . )

Modi ed Program Flow

Regarding the possibility of having a fault injected on a register while the program is executing a precise Basic Block that requires a branching operation at the end, we cannot consider them while recomposing the metrics as in the previous subsection. These blocks contribute instead to the composition of a particular subset of runs (diverse behaviour of the program) which include all those runs in which the program simulation has reached the end in a time that di ers from the nom-inal one. In particular, it can be shortened due to a premature jump to the conclusive part of the program as well as delayed due to an incorrect loop that sends the machine into a non-necessary series of states from which it will eventually recover. In the case in which the machine would not be able to recover, we categorize those runs as Timeouts (when longer than % of nominal time). It worth to point out that, due to the nature of the injections, which focus on the Register file, with one SEU per run, these cases are reduced to the minimum, if not nonexistent. Give these assumptions, taking into account this second section of Basic Blocks, it is possible to assume that most, if not all of these runs will generate a failure in the functionalities of the program itself. therefore the recomposition, that was missing a good half of what was neded, now nds the missing cases in all those blocks that led to a modi cation in the ow.

In particular, considering the possibility that this blocks have not to propagate (to mask) a fault occurring in the course of their routine, the event of ow corruption has probability 1 -P masking , then the probability of these fault becoming a funcional error is 100% and it does not propagate. In this case the recomposition technique is slightly di erent than the previous section, as the case of a missed branch or jump leads directly to an error. So de ned the multiplicity of the same critical block in the nominal sequence m, the probability of having a functinoal failure is described by: P err + P msk * P err + (P msk ) 2 * P err • • • + (P msk ) m * P err ( . )

Taking into accoun the approximation due to the algorithm intrinsic ability to recover from a ow error.

. Test Case and Application . . The Software

The Software of choice for the Proof of Concept of this methodology is the Bubble Sort Algoritm, in its Assembler for RISC-V Version. Bubble sort is an O(n 2 ) sorting algorithm. A simple sorting algorithm that performs a oneway comparison of two adjacent records from the head to tail of the disordered part in each sort trip. Of course, the direction can also be the contrary, oneway comparison from the tail to head of the disordered part. This will form gradually an ordered table at the head of the disordered table, and the basic idea of the algorithm has no di erence with the foregoing [ ]. 

. . The Division in Basic Block

The processing of dividing the Software under test into basic block has been carried out automatically and returned di erent blocks, together with the list of resources that each and every basic blocks utilizes during its own functions. After a Nominal run without faults of the entire software, it was possible to trace the transition between the di erent basic blocks throughout the whole execution. These information, summarized in the scheme below, will be the key to predict the behaviour of the program starting from the behaviour of the basic blocks themselves.

. . The Platform

The choice of the platform on which the program has been run and tested fell on the SCR SOC. 

. . The Fault Injection Campaign

The next step in the methodology is fault injection. It is performed using Cadence fault injection tool FSV [ ]. Once fault injection sites are automatically identi ed from the RTL description, fault injection is performed and faults are injected per identi ed site using a custom pre-generated fault dictionary, including a random injection time. An in-house tool build on top of the GSL [ ] has been developed for this purpose. Such number is statistically significant enough [ ] without compromising fault injection campaign running time. Faults are injected on the integrity of the register le, mimic as well the possibility of faults propagated to the memory and back. Also, fault probes are set on non excerciced memory location to record which injected faults will cause a functional failure of the basic block. For each fault injection run, a logle is generated which reports the outcome of the run, later a custom made parsing tool will recollect the data from this log le and present the results to the re-composition tool.

. Results and Future Work

The results of the recomposition are based on Table : , which summarizes the result of the fault injection campaign that has been carried out on the single basic blocks. Each entry of the table enumerates the number of functional error on caused by each register in the register le, keeping in mind that every bit in the register has been a ected by faults randomized in time, for a total of faults per register. Once these table has been given to the recomposition tool, Table : is returned, including the benchmark fault injection campaign on the entire Software Product for validation of results together with the expected number of faults, calculated following the methodology described. Last, Table :  Reports the number of Errors that have been caused by an error in the ow of the program, which can be extracted by an equivalent of table number for ow errors caused by each register failing in each basic block and recomposed as in its dedicated section.

The last part of the methodology will be the focus of the work to come, as includes the implicit ability of the di erent algorithms to recover from ow errors, which understanding can lead to much more re ned results.

C T A

In this chapter, a description of one of the LHC detectors at CERN is given, as to give a better understanding of the environment and setting in which the SoC is planned to function. Following this, a theoretical outline is given for radiation and its e ects on CMOS electronics and how this can be mitigated by design choice. Following this, an method for extensive veri cation of individual block and system veri cation is presented. After this a description of the steps of physical implementation is given and nally the choice of CPU for the SoC is made, which is accompanied by a description of the state of the system at the beginning of the author's internship and the future plans for it.

.

LHC Detectors at CERN

There is a vast complex network of di erent accelerators and di erent detectors at CERN. The highest energy endpoint in this network is the LHC. The LHC is a 27 km counter-rotating accelerator. Using superconducting magnets, it is capable of accelerating protons up to a peak energy level of 7 TeV, which results in a peak collision energy of 14 TeV. To reach these energy levels, a network of several accelerators is used to initially accelerate the protons to 450 GeV before they are injected into the LHC. In the LHC the beams collide with a bunch spacing of 25 ns corresponding to a frequency of 40 MHz and is called the bunch-crossing (BX) rate. The entire network can be seen in gure . . More details can be read in the article: LHC Machine [ ]. There are four detectors placed on the LHC ring. These are A Large Ion Collider Experiment (ALICE), Compact Muon Solenoid (CMS), Large Hadron Collider Beauty (LCHb) and A Toroidal LHC ApparatuS (ATLAS). These experiments can be split into categories. CMS and ATLAS are generalpurpose onion detectors, which means they try to detect all particles created by the collision. These two are built in di erent ways by di erent independent teams such that they can be used to verify the results of each other. ALICE is an experiment focused on the collision of heavier ions, e.g. lead ions. LCHb is a detector focused on only detecting the particles created by collision, which moves in the beam direction. This makes it possible for them to make a specialized detector better suited for detecting the particles in that speci c direction. A majority of the particles created in this experiment are related to the beauty quark, which gives reason to its name. A detailed description of CMS, one of the general-purpose experiments, will now be given. This will lay the foundation for understanding the environment in which the electonics are expected to survie and give a reasoning to some of the design choices made later.

The CMS sits at one of the four collision points in LHC. Figure . shows the layout of the CMS detector. The particles generated in the collisions propagate radially, traversing the silicon tracker. The silicon tracker measures the particle trajectory and transverse momentum p T . The silicon tracker is com-posed of an all-silicon pixel and strip tracker [ ]. Next are the electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL). The calorimeters enable the evaluation of the particle energy. The ECAL uses lead tungstate scintillating crystals for this purpose [ ]. Scintillating crystals emit photons when ionizing particles pass through them. The light is then detected by silicon avalanche photodiodes (APD) in the barrel region and vacuum phototriodes (VPT) in the endcap region. The APD makes use of the avalanche e ect, where a single charged particle can knock multiple electrons out of their bond and thereby amplifying their electrical signature. The VPTs are single ampli cation stage photomultipliers. They have a photocathode at ground potential, a single dynode biased at 600 V, and an anode biased at 800 V. VPTs operate by a photon hitting the cathode which releases electrons. The released photoelectrons are accelerated towards the dynode, where each photoelectron releases multiple new photoelectrons. These are then accelerated towards the anode as it is at a higher potential. The anode then produces an ampli ed current.

After the ECAL, the particles enter a brass/scintillator HCAL [ ]. Here the scintillation light is collected by wavelength-shifting (WLS) bers embedded in the scintillator tiles. The WLS bers emit multiple low-energy photons for each high-energy photon strike. This light is channeled to photodiodes which amplify the signal. The aforementioned components are encapsulated by a 3.8 T superconducting solenoid. Outside the superconducting solenoid, the iron return yoke with muon chambers is placed. The iron return yoke connes the magnetic eld and stops all remaining particles except for muons and neutrinos. The muon system has functions: muon identi cation, momentum measurement, and triggering. In the barrel, region detection is done using drift tubes while in the end-cap region it is done using cathode strip chambers. Both of these systems are completed by a dedicated trigger system of resistive plate chambers.

In total, the CMS detector has a diameter of 15 m, a length of 28.7 m, and weighs 14 • 10 6 kg. The CMS is capable of detecting a wide range of particles using the collection of the data from each of its components. Di erent particles will follow a di erent path through the detector based on their charge, momentum, and trajectory. In gure . a path of the common particles can be seen. The superconducting solenoid enables the estimation of the charge and momentum of a particle. The charge can be determined by the bend direction of the trajectory because positively charged particles will bend opposite to negatively charged particles and neutral particles will not bend at all. The momentum can then be estimated by the degree of bending as faster-moving particles will bend less than slow-moving particles. The collision of charged particles in the LHC creates ionizing particles which over time will accumulate. The total ionizing dose (TID) expected after years of operation has been simulated using FLUKA, a tool for monte carlo simulation of particle movement and their interactions. The expected dose decreases with distance from the collision point. A complete map of the expected TID for the detector can be seen in gure . . The ionizing dose and charged particles passing through electronics can alter their behavior and a ect the output in unwanted ways. These e ects will now be discussed in detail.

. Radiation E ects on CMOS Electronics

It is necessary to discuss and understand the e ects of radiation on CMOS electronics due to the highly radioactive environment of the CERN accelerators. This understanding will lead to understanding the necessity and the methods for radiation hardening of the electronics. The radiation a ects the CMOS in two distinguishable ways. In the form of cumulative damages and single-event e ects (SEEs).

. . Cumulative Damages

Cumulative damages can be split into two subcategories. The rst is nonionizing processes, which come in the form of displacement of atoms in the lattice structure of the transistor. These are called displacement damages and are of little concern to CMOS technologies due to the high amount of doping [ ].

The second is damages induced by ionizing doses, i.e. TID e ects. MOS transistors can accumulate charges in the gate oxide, which creates a voltage di erence on the gate and leads to unwanted biasing. This e ect is dominant when the gate oxide is thick as it can contain a larger charge compared to the voltage threshold of the gate. Therefore, this e ect decreases with smaller technologies as the gate oxide becomes thinner. The smaller technologies are instead dominated by e ects like shallow trench isolation (STI) e ects, which come in the form of radiation-induced drain-to-source leakage current and radiation-induced narrow channel e ects (RINCE) [ ]. Radiation-induced drain-to-source leakage current is caused by the accumulation of positive charges in the STI, which opens parasitic channels between the source and drain. This leads to an increase in leakage current. Positive charges are far more likely to be trapped due to electrons moving fast enough to leave the STI, while electron holes do not. However, over time electrons are attracted and enough electrons can be attracted to invert this e ect. Therefore, initially, an increase in leakage current is observed, but as TID increases this e ect reaches a peak and begins to invert. Since only positive charges are initially trapped, this e ect does not increase the leakage current of pMOS. Instead, it repels the holes of the doped silicon increasing its threshold voltage and decreasing current ow. It is clear that increasing the length of the channel, decreases this e ect as more charge is to be trapped before a channel can be opened. Therefore this e ect is signi cant in smaller technologies with short gate lengths. However, this e ect can be mitigated by using enclosed layout transistors (ELT), where the channel does not face the STI.

The other e ect is RINCE, which is also due to the trapped charges in the STI. As positive charges are trapped in the STI, an electric eld is created. This electric eld leads to a decrease in threshold voltage for nMOS transistors and an increase in threshold voltage for pMOS transistors. However, as the width of the channel decrease, this e ect becomes more dominant as the number of trapped charges does not change. This leads to a proportionally larger electric eld, which signi es a dependency on channel width for this e ect. For nMOS transistors, this e ect is limited, as negative charges become trapped at the interface leading to the two canceling out similar to the inversion seen in radiation-induced drain-to-source leakage current at higher TID. However, for pMOS the trapped charges at the interface are also positive, leading to RINCE only increasing in potency with an increase in TID. As this e ect is also due to charges trapped in the STI, it can be mitigated by the use of ELT [ ]. However, these ELTs do use signi cantly more area compared to traditional designs.

. . Single-Event E ects

Single-Event e ects can be split into two categories, permanent single-event e ects, and single-event upsets (SEUs) (and transients (SETs)). A permanent single-event is the possible creation of parasitic transistor structures between two n-wells, i.e. between two transistors. This can potentially shorten VDD and ground, which can permanently damage the device. However, this e ect is limited due to highly doped substrates and the use of STI between wells [ ].

SEUs and transients are soft errors and not destructive to the die. Instead, they corrupt the information stored in digital logic circuits by ipping bits. SEUs become possible when the collected fraction of the charge liberated by an ionizing particle is larger than the electric charge stored on a sensitive node [ ]. This critical charge scales with the gate area of the design. As the gate area decreases, the amount of stored charge representing a logical value of information decreases. In general, SEU sensitivity is increased by the scaling down of technology as node capacitance and the supply voltage are both scaled down as well [ ].

A SET is an event, where a static combinatorial circuit is upset by a charged particle, leading to a glitch in the circuit. The time duration of SET is determined by the injected charge and the driving strength of the cell. If the output of this combinatorial circuit is sampled during the transient, a register can enter a metastable state, which can propagate through causing fatal errors [ ].

. Radiation-Tolerant Design

The goal of radiation-tolerant design is to limit the potential damage caused by radiation e ects as described in section . . Some of these e ects can only be limited by a careful layout of the die or by the intrinsic properties of the chosen CMOS technology. However, SEUs can be reduced and mitigated by a combination of digital design. The methods for radiation hardening are usually dependent on redundancy either in space or in time.

A common method is the use of triple module redundancy (TMR). In this method, each memory element (i.e. register) and the corresponding combinatorial logic are instantiated three times. The outputs from these three registers are then passed to a voting system, which outputs the majority vote. The voting system itself is also triplicated to minimize the chance of a SET upset. If a single voter is used and is sampled during the SET, an error will occur in the system, thus leading to a single-point of failure. To avoid the build-up of errors in the di erent paths, the feedback loop of a state machine should be taken from the voted result. An example of a TMR radiation hardening can be seen in gure . . This added redundancy would lose many of its radiation hardness bene ts if the triplicated registers are placed close together on the chip die as this would increase the chance of an SEU happening on multiple registers from the same charged particle. Therefore the placement of these registers is restricted in the physical layout such that a minimum distance is enforced. From this, it is clear that TMR increases radiation hardness by using space and power consumption (increased due to increase in hardware) as a trade-o . This increase in power and area is not cheap as the heat generated needs to be transported away from the detector and the space itself is limited inside the detector. Therefore to limit the disadvantages, the TMR is usually only done to the control path of a state machine. This is done as errors in the data path are limited in time, while an error in the control path can result in complete failure of the chip. At CERN, a tool has been developed for this method of radiation hardening named TMRG.

Another way of radiation hardening is the use of temporal spacing and is done by delaying the clock signal. The registers between combinatorial logic are triplicated, while the combinatorial logic is not. Instead, the clock signal for each of the three registers is delayed, such that the SEU has a high statistical probability of having passed. This results in the SEU only a ecting one register. It is then possible to use the same voting system as in TMR to achieve a corrected output. An example of this can be seen in gure . . This method does not have the same minimum distance requirement as the TMR hardening technique as the registers sample at di erent timestamps. Instead, there is a temporal spacing requirement. This method does not require a triplication of the combinatorial logic and therefore saves on space and power consumption. However, it does make the timing analysis and closure di cult and this only gets more problematic as the frequency increases.

Even though temporal radiation hardening has multiple advantages in the form of space and power consumption, the TMR is chosen due to its simpler implementation. This is due to the problematic nature of timing closure for the temporal radiation hardening, but also due to the existence of an alreadydeveloped tool for performing TMR.

. Universal Veri cation Methodology

The universal veri cation methodology (UVM) is an IEEE industry standard for the veri cation of design components [ ]. It is developed by the Accellera group and its members. The goal is to create a modular, scalable and reusable generic veri cation environment. For these reasons, this methodology will be used for the veri cation of the SoC and its components. A short description of UVM will now be given.

UVM is based upon a hierarchy structure laid out by Accellera. This species guidelines for the creation of a veri cation environment and gives the support structure for this development. It does this by supplying a framework, for the designers to build on top of. This framework has the most general and essential features (Reporting, handshake mechanisms etc.), such that they do not need to be redeveloped for each project. This also ensures uniformity in testbench creation across many di erent work groups. The framework hierarchy is seen in gure . as it is laid out by Accellera [ ]. Here the UVM agent can be expanded as it contains a sequencer, a driver, and a monitor. The expanded UVM agent can be seen in gure . . Even though this is the recommended structure and should t the most common use cases, the framework can be customized. The communication between components is based on transaction-level modeling (TLM) and UVM items. The items are designed to t the speci c device under test (DUT). It contains the information necessary to create stimuli to the DUT and scoreboard and reference module. The item is sent between components using TLM.

Each of the hierarchy levels has a base class associated with them. It is on top of these base classes that the project-relevant components will be built. Each of these classes and their functionality is described below [ ].

• Testbench: is the root class and container for all that needs to be simulated and tested. Typically this instantiates the DUT and the connections between the test and the DUT.

• Test: is the top-level UVM component. It has main functions. To instantiate the test environment, con gure the environment via a conguration database or factory overrides and apply stimulus to the DUT via the UVM sequences. This enables the designer to not have multiple instances of the same environment with di erent con gurations for different test cases. Instead, the environment can be con gured from this top-level UVM component to perform those test cases without repeating code.

• Environment: is a UVM component that instantiates and contains other reusable veri cation components such as agents, scoreboards, and other environments. It is also here the di erent components are connected and con gured for default use.

• Scoreboard: is the veri cation component that compares the DUT to an implemented reference module. The scoreboard does this by receiving UVM items from the DUT via the UVM agent using TLM ports. It can then use the reference module as a predictor and compare that to the DUT.

• Agent: is a hierarchical component that contains other UVM components. These are typically a sequencer, a driver, and a monitor. The agent can either be active or inactive. An agent is active when it can drive stimuli to the DUT, which requires the use of a driver and sequencer. An inactive agent only contains a monitor.

-Sequencer: controls the ow sequence items from the multiple sequences to the driver, i.e. queues di erent sequence items according to a set of given parameters.

-Driver: receives sequence items from the sequencer and converts them from transaction-level stimuli into pin-level stimuli for the DUT. For example, it can take a parallel data packet and transmit it via input pins to the DUT using a speci ed protocol.

-Monitor: samples the DUT interface to convert data from pinlevel stimuli into transaction-level stimuli. This data is then broadcast to the rest of the UVM testbench. The monitor can perform some levels of processing internally. For example, it can receive pinlevel stimuli and decipher them according to a chosen protocol. So instead of broadcasting all pin-level activity, it rst converts it into a speci ed UVM item and then broadcasts that using TLM.

• Sequence: makes up the core stimuli of the veri cation plan. A sequence can be made of multiple data items which can be used to create the scenarios for testing the DUT extensively. The items are eventually sent to a sequencer which will then queue it and send it to the driver. Multiple sequences can be connected to the same sequencer. The randomization tools in UVM are commonly used in creating data items such that there is a higher chance of discovering bugs. A sequence is not part of the component hierarchy. A sequence can contain other sequences, called a parent or virtual sequence.

A UVM environment can be developed either in SystemVerilog or SystemC, most commonly SystemVerilog. The SystemC variant is still under development but is in working condition. In this project, it has been chosen to use SystemC.

. Physical Implementation of Digital ICs

The PicoRV SoC will be implemented in a physical design. Therefore, a description of the steps from a digital design to a physical implementation will be given. The steps of physical implementation can in general be split into two categories: synthesis and implementation. Doing synthesis a Verilog design is converted from behavioral modeling into a gate-level description using only basic components supplied by a library. In the implementation, gate-level description is converted into a physical implementation on a die with power distribution, a clock tree, and non-ideal components. Doing most steps, setup and hold conditions are checked for violations using di erent conditions. These are commonly referred to as corners. Corners are on-chip variations that alter the expected behavior of digital circuits and commonly include process, voltage, and temperature (PVT). The process variations are often summed and split into categories slow (S), typical (T), and fast (F) for nMOS and pMOS transistors. combinations (TT, SS, FF, SF, FS) of these corners can be evaluated to ensure that system works given variations and uncertainties. Setup and hold are tested in these corners, to ensure that the system behaves correctly even given on-chip variations. At CERN, radiation is included as an additional variation parameter.

The TID e ects are also evaluated in corners, using models developed at CERN for the behavior of chips doing radiation.

. . Synthesis

Synthesis is split into steps: synthesis, mapping, and optimization. Doing synthesis a netlist is created from the supplied behavioral HDL model. For example, the always blocks in Verilog are converted into a basic set of components, e.g. ip-op, AND-gate, NAND-gate. This step requires a list of constraints supplied by the designer. These constraints can be the clock period, output load capacitance, the maximum transition time of components, and setup/hold uncertainty on the clock. When this step is done, the Verilog code has been converted into a gate-level netlist that implements the same logic.

The next step is mapping. Doing mapping a gate-level netlist is converted from using generic components to using components given by a library called standard cells. This library contains detailed descriptions of common cells in an implementation technology. The technology used in this project is 28 nm. Many libraries exist for the same technology, but with di erent characteristics, e.g. track number, cell width, and gate length. The number of tracks refers to the height of each cell. The cell width is the number of which each cell width has to be a multiple of. Three libraries will be used as the default for physical implementation. The libraries will be tracks high, a multiple of 140 µm wide, and have a gate length of 35 nm. The three libraries will have di erent threshold voltages. One will have a standard threshold, one will have an ultrahigh threshold voltage and one will have a low-threshold voltage. The threshold voltage controls the voltage needed for the transistor to switch state. This is controlled by the amount of dopping on the source and drain of the transistor. However, lowering the threshold voltage increases the leakage current of the transistor. Di erent threshold voltages therefore a trade-o between speed and power consumption. By including multiple libraries, the algorithms are given more options for optimization, such that speed requirements can be met by using low-threshold transistors or power consumption can be reduced by using ultra-high threshold transistors. The libraries contain a description of the physical layout of the cell, a timing model describing the delay from input to output, and noise models. After mapping the gate-level netlist described using generic components has been converted into a gate-level netlist with standard cell components from a speci c library.

After mapping, the last step of synthesis is optimization. Doing this step, di erent optimizations of the gate-level netlist are performed. This can be the removal of grounded circuits, removal of registers containing constants, or relocation of registers to reduce the amount needed. After all the steps have been completed estimates of certain parameters can be given for the digital design. This is things such as worst negative slack, power consumption, number of cells needed, and size of the complete design.

. . Implementation

Implementation is the next step after synthesis. The implementation converts the gate-level netlist into a physical layout on a die. The steps of this are oorplan, place, clock tree synthesis, route, design nishing, and veri cation.

Doing oorplanning, the die layout is designed. One of these variables is the die size. A rule of thumb is that the estimate at the end of synthesis should be % of the nal size. However, this does not account for the size of the power rings. These are chosen to be 10 µm wide for both ground and VDD. This results in a spacing of 25 µm of every side from the edge to the area in which standard cells can be placed (Extra space is needed to allow spacing between GND and VDD rings). Power rings are used to ensure a uniform distribution of power to all parts of the chip and to reduce the e ect of IR drops. As the height of a standard cell is given by the library, the die is divided into rows with that height. The top and bottom of these rows can then be connected to the power by having wires going across from side to side. This creates a power mesh that supplies all the rows of standard cells with VDD and ground connections. On large designs, these lines can become long. Therefore, to minimize IR drop vertical and horizontal larger stripes are used to connect these tracks at multiple points. In the oorplanning, the height of the die is also given in metal tracks.

For this project metal (M -M ) layers will be used. These do not have the same width. Instead, the top layer M , has the highest routing width, M -M has the same width but is lower than M , and -all decrease in routing width as the metal layer number goes up. M and M will be used for power distribution as these layers have the largest routing width and therefore the lowest resistance in the wires. M is used for the placement of standard cells and wiring. Usually, it is preferred to use the lower layers for wiring between standard cells as these signals do not draw signi cant current and the resistance is therefore not of concern. After this I/O ports are placed and if it is a top-level design, pads are also placed.

The next step is placement. Here the standard cells are placed in the rows. This is with the goal of achieving minimal congestion and the best foundation for timing closure. This is typically done by keeping connecting cells close together. The tool also has to do the placement with the minimum distance between triplicated registers. The next step is clock tree synthesis. In this step, all the relevant components are connected to the clock signal. However, this is not a straightforward process. If the clock was just connected to all components without bu ering, the clock edge would arrive at slightly di erent times depending on the placement of the component. Therefore the clock signal is continuously bu ered to increase driving strength on long wires, but also to introduce delay in short wires, so that they arrive at nearly the same time, with the goal of not violating setup and hold time. This creates a tree-like structure. However, there is also a disadvantage to having all ip-ops latch at the same point in time, as this creates a large current spike which might cause IR drops and cause faults. Therefore if there is room in the setup and hold time, it is also an advantage to space out the latching in time, so that the current spike is limited.

After clock tree synthesis, the next step is routing. This is done after clock tree synthesis because swapping these two steps would mean that the clock tree would have suboptimal wiring due to possible high congestion by routing. In the routing step all the connections speci ed by the gate-level netlist are established. If these wires are long, bu ers are inserted to increase driving strength.

The design has now been placed and routed. Power and clock distribution have been established and in theory, the physical implementation process is nished. However, a few steps still remain to verify the design and ensure manufacturing is possible. For example, metal is lled into empty areas of the die. Without this sinkholes would be created and uneven metal layers would be laid on top, this would only get worse as more and more layers are added if nothing is routed or placed in that region. Therefore, metal is placed to create an even surface on which the metal can be laid. Next, design rule checks (DRC) and layout vs schematic (LVS) are performed. DRCs are manufacturing rules and safety protocols to ensure that the layout can actually be manufactured by the foundry. It can be simple such as wire proximity checks, no short circuits, etc. However, there are also many complex rules. Things such as the area of a wire on a speci c metal layer might be so big that it collects enough charge doing manufacturing that it destroys the connected component (Antenna e ect). Another example is the concept of electromigration. When current is transported through a wire, it will slowly move material around. This e ect increase with the amount of current. If this e ect is too large, it means that some parts of the wire might become shallow and thereby increase resistance changing the behavior of a sensitive circuit. It can also short-circuit to a nearby wire if it gets too wide at places. It, therefore, checks if a wire is in danger of changing properties over a given lifetime. LVS checks whether the resulting layout at the end of the physical implementation is equivalent to the digital description from which it was derived.

With the physical implementation complete, we can generate an SDF le. This le contains all the propagation delays, clock arrivals, and such for the gate-level netlist. This can be used in combination with a testbench and the circuit can be veri ed to ensure that even given non-ideal clock signals and propagation delays, it still behaves as expected. Using this testbench and SDF le, a more accurate estimate of the switching activity of each transistor can be derived. This can be used in a dynamic power analysis to obtain a far more accurate estimation of power consumption. Before this, the tool just assumed that all transistor switches with a % probability on each clock edge. This is the nal step of physical implementation. All of this can then be collected in a set of les to establish a library for the implemented block. This can now be manufactured or used as a component in a larger design.

. The PicoRV : System on Chip

The goal of this project is to make a simple demonstrator SoC, with a CPU, memory blocks, and standardized interconnect bus with a basic set of peripherals. This demonstrator chip will then be used to test whether it is possible to create a radiation-tolerant SoC with a reasonable amount of area and power usage. Computing power is not of concern as its use case is targeted toward control and monitoring. RISC-V is an open-source instruction set architecture (ISA) that perfectly ts this application. Many di erent open-source SoC foundations have been considered and stood out as candidates. Those are the Rocket Chip from UC Berkeley, the PicoSoC, and the Pulpissimo by ETH Zurich. The Rocket chip is a promising chip-building framework in Chisel. The PicoSoC is simple and written in pure Verilog, making it easier to understand. The Pulpissimo is made by ETH has been collaborating with CERN before and therefore enables more direct communication with the designers. These three have been compared on their power and area usage during post-synthesis. The result of this can be seen in gure . . Based on this comparison, the PicoSoC is chosen for the demonstrator chip. The PicoRV SoC is based upon the RISC-V open-source CPU: PicoRV . This core is meant to be used as a size-optimized auxiliary CPU in an FPGA or ASIC design. It does not have high computational power, but it is small and simple. Due to its simplicity, it is also easier to debug and develop extra features.

RISC-V is an open-source instruction set architecture (ISA). Its architecture is developed on Reduced Instruction Set Computer (RISC) principles. This is in contrast to the Complex Instruction Set Computer (CISC), to which the commonly known family of x ISAs belongs. The two design topologies di er because a CISC instruction often executes several lower-level instructions, while a RISC architecture does not. RISC-V employs a base set of the most needed instruction, while several extensions are available to expand the instruction set. The PicoRV is con gurable [ ]. Its instruction base can be based on either RV I ( -bit, base integer instruction set) or RV E ( -bit, base integer embedded instruction set). The RV I is capable of having two extensions added: multiplication (M) and the compressed instruction set (C). There is also an optional built-in interrupts controller. However, this is not based upon the RISC-V standard and is instead custom-built for the PicoRV . This design choice was made because the RISC-V interrupt handle was extensive and comprehensive, so a simpler IRQ handling with less hardware overhead is available.

At the start of this project, several things were already implemented: The core, two buses, a bridge connecting the two busses, and a temporary memory block. A Native Memory Interface connects the core and memory. The NMI is connected to a bridge that is connected to an Advanced Peripheral Bus (APB) interface. Peripherals will be connected to SoC using the APB interface. The state of the SoC at the beginning of this project is visualized in gure . . A detailed description of the two interfaces used on the buses is now given.

. . Native Memory Interface

The NMI is an interface de ned by the PicoRV [ ]. It is a simple valid-ready interface bus. It requires ve outputs from the PicoRV core and two outputs from the slave, which is receiving the transfer. These signals and their functions are described in table . . This bus is only used to connect the most essential and critical blocks to the core, e.g., memory and bootloader. The write strobe signal is used to write speci c bytes of the wdata. It is possible to write bits, the upper bits, the lower bits, or bits.

RDATA Slave interface

Read data. In the case of read transfer, this is the data read from the speci ed address. When rdata is available, ready is asserted.

This bus is fully triplicated to achieve radiation hardening. This is decided due to it being critical infrastructure and also the length of this bus being limited since peripheral devices are not connected to this bus.

. . AMBA APB Interface

The APB is designed by ARM and is part of the Advanced Microcontroller Bus Architecture (AMBA) protocol family. This protocol has been chosen for the SoC since it is designed for minimal power consumption and reduced interface complexity [ ], which aligns with the goals of the project. The list of signals in the protocol can be seen in gure . . The protocol contains two individual buses for read and write operations. However, only of these transfers can be executed at a time. The read and write transfer using the APB protocol with no wait cycles can be seen in gure . . Wait cycles can be introduced if the slave does not assert the PREADY signal. However, the way the APB protocol is connected to the CPU will cause stalling of the entire CPU until the PREADY is asserted and the transfer is completed. A timeout could partially solve this by limiting the stalling period, but this does not x the problem but only reduces it. Therefore it is chosen that the IP block as a general rule should always have PREADY asserted, as to ensure no stalling of the system. Instead in the case of a bad transfer due to no data available or similar situations, the PSLVERR signal is utilized and the IP block will then assert this signal to indicate that the transfer has failed. This introduces problems as this signal does not indicate why the transfer failed. However, it does remove the stalling. Therefore, this method is chosen.

The APB bus will not be triplicated as this will connect all peripherals to the core and the length can therefore be quite signi cant, which will result in a larger area used and more complex routing. Instead, an encoding approach is used. Every byte of the bus is encoded using Hamming codes, which are capable of single error correction and double error detection. This approach uses the same logic developed later for radiation-tolerant memories. 
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. State-of-the-Art . . Probabilistic Methods in Digital Systems Safety Probabilistic

  methods [ ] [ ] have been developed to estimate propagation and masking rates of errors in gate netlists. Such approaches, restricted to combinational logic provide an helper to estimate certain metrics (λ spf , i.e. Dangerous Undetected by a safety mechanism faults [ ]) required in ISO , but are far from being able to provide metrics even at the sequential block level. Likewise, industrial formal proof tools [ ] [ ] are able to compute such metrics by using formal methods. Methods like FIDES [ ] [ ] targets Commercial O -the-Shelf (COTS) based Electronic Control Unit (ECU), with components failure rates extracted from available reliability databases. It takes into account systematic or aging failures but not transient e ects such as soft-errors.

•

  Assertions: Assertion is the mechanism used to set outputs values of a node. Output values are a function of values and internal state values. Assertion can be interpreted as a logical function describing a truth table assigning outputs according to each combination of inputs and internal state values. Combinations are described through Boolean expressions and imperative programming constructs such as if-then-else or case.Assertions are used to propagate failures from a faulty component to other blocks. Fault injected on the internal state is propagated to its output and then to others blocks. Depending of the granularity level of the model, assertions are manipulating either functional values or states.
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 . IMC Coverage Figures (%) 

	I C	AHB	
	cov. tot. overall cov. tot.	overall
	Overall	. %	. %
	block	. %	. %
	Expression	%	. %
	Toggle	. %	. %
	FSM	. %	%

•

  Faulty 2 -Illegal state Subgraph, leading to a simulation timeout. The resulting model is represented on Fig. . .

			simulation_timeout	
	INIT	1 nominal 2 nominal 99.89%	0. 00 5% 0. 00 6% 0. 00 6% 0. 00 5%	faulty 2 0. 1% 50.8% faulty 1 0 . 7 5 %	fault_to_output
		48.45%	nominal_termination

Table . :

 . RTL Fault Injection Vs Altarica Model Failures

	AHB	I C+AHB Altarica	I C	I C+AHB Altarica
	Failure	RTL	Model	Failure	RTL	Model
	haddr	.	.	SDA	.	.
	hwdata	.	.	Read req	.	.
	hsize	.	.	Data	.	.
	hbusreq	.	.	Data valid	.	.
	hwrite	.	.			

  Figure . : Block Diagram of the Entire SW Productof what is done in the Hardware methodology, there is no physical probing of the circuit on which the program or the testbench is running. In this study only the functional aspect of the Software Product under test is observed.
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	Figure . : Block Diagram of the Entire SW Product

Table . :

 . Result of Fault Injection on basic blocks

	x	x x	x x	x x	x x	x x	x	x	x	x	x	x	x
	bb_											...	
	bb_											...	
	bb_											...	
	bb_											...	
	bb_											...	
	bb_											...	
	bb_											...	
	bb_											...	

Table . :

 . Comparison of Fault Injection data vs Recomposed data on Entire Software

	x	x x x x	x x	x x	x x	x	x	x	x	x	x	x
	FI											...
	Reco											...
	Table . : Control Flow Driven Errors									
	x	x x x x	x x	x x	x x	x	x	x	x	x	x	x
	FI										...	

Table . :

 . NMI signal descriptions The uses the valid signal to initiate a transfer. All core outputs are stable while valid is high. Asserted by the slave when the read data is available and used to acknowledge a write transfer.ADDRPicoRV core Address. The core supplies the address which is used by the slave to read or write to the requested cell.WDATAPicoRV core Write data. If a write transfer is being performed, the core supplies the data to be written using this bus WSTRB PicoRV core Write strobe. If the write strobe is , it indicates a read transfer, while it being non-zero indicates a write operation.

	Signal	Source	Description
	CLK	Clock source	Clock. The transfer is completed on the rising edge.
	VALID Valid. INSTR PicoRV core Instruction fetch. Used by the core to indicate if the PicoRV core memory transfer is an instruction fetch
	READY	Slave interface	Ready.

  Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus. Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus. Universal Verification Methodology (UVM) Working Group. : https : / / www . accellera . org / activities / workinggroups/uvm/ (visited on / / ). [ ] ARM. AMBA APB Protocol Specification. . : https : / / developer.arm.com/documentation/ihi0024/c/Introduction/ About-the-APB-protocol. [ ] André Arnold et al. "The AltaRica Formalism for Describing Concurrent Systems". In: Fundam. Inf. . -( ). [ ] David Barney. "CMS Detector Slice". CMS Collection. . : https://cds.cern.ch/record/2120661. [ ] R. Baumann. "Radiation-induced soft errors in advanced semiconductor technologies". In: Device and Materials Reliability, IEEE Transactions on (Oct. ), pp. -. [ ] M. Blackburn et al. "Mars Polar Lander fault identi cation using modelbased testing". In: Eighth IEEE International Conference on Engineering of Complex Computer Systems, . Proceedings. , pp. -. : 10.1109/ICECCS.2002.1181509. [ ] Giulio Borghello. "Ionizing Radiation E ects in Nanoscale CMOS Technologies Exposed to Ultra-High Doses". . [ ] C. Bottoni et al. "Heavy ions test result on a nm Sparc-V radiationhard microprocessor". In: ] Marco Bozzano et al. "Statistical fault injection: Quanti ed error and con dence". In: Proceedings of the th International Workshop on Automated Verification of Critical Systems. . [ ] Robert Brayton et al. "VIS : A System for Veri cation and Synthesis". Robert K. Brayton and Alan Mishchenko. "ABC: An Academic Industrial-Strength Veri cation Tool". In: CAV. . [ ] Cadence. : https://www.cadence.com/en_US/home.html. [ ] Cadence. https://www.cadence.com/en_US/home.html. [ ] Alessandro Caratelli. "Research and development of an intelligent particle tracker detector electronic system". . [ ] CMS CERN. "Detector: About CMS". In: (). : https://cms. cern/detector (visited on / / ). [ ] Yen-Chi Chen. Discrete-Time Markov Chain. . : http:// faculty . washington . edu / yenchic / 18A _ stat516 / Lec3 _ DTMC_p1.pdf. [ ] Eric Cheng et al. "CLEAR: Cross-layer exploration for architecting resilience: Combining hardware and software techniques to tolerate soft errors in processor cores". In: ] Mojtaba Ebrahimi et al. "Revisiting software-based soft error mitigation techniques via accurate error generation and propagation models". In: IEEE nd International Symposium on On-Line Testing and Robust System Design (IOLTS). , pp. -. : 10.1109/IOLTS. 2016.7604674. [ ] E. Allen Emerson. "Temporal and Modal Logic". In: Handbook of Theoretical Computer Science. Vol. B: Formal Models and Sematics. . [ ] Lydon Evans and Philip Bryant. "LHC Machine". In: ( ). LHC description. : https://iopscience.iop.org/article/10. 1088/1748-0221/3/08/S08001/pdf. [ ] Tiziano Fiorucci et al. "Automated Dysfunctional Model Extraction for Model Based Safety Assessment of Digital Systems". In: IEEE th International Symposium on On-Line Testing and Robust System Design (IOLTS). , pp. -. : 10.1109/IOLTS52814.2021. 9486705. [ ] Tiziano Fiorucci et al. "Software Product Reliability Based on Basic-Block Metrics Recomposition". In: IEEE International Symposium on On-Line Testing ( , To appear in). GRLIB. https://www.gaisler.com/products/grlib/grlibgpl-2020.4-b4261.tar.gz. [ ] GSL, GNU Scientific Library. https://www.gnu.org/software/ gsl/. [ ] Julie Ha ner. "The CERN accelerator complex. Complexe des accélérateurs du CERN". In: ( ). General Photo. : https://cds. cern.ch/record/1621894. [ ] Jörg Henkel et al. "Reliable on-chip systems in the nano-era: Lessons learnt and future trends". In: Minion Repository. https://github.com/oetr/FPGA-I2C-Minion. Acronyms and abbreviations. : https://www.arteris. com/blog/top-35-iso-26262-acronyms-and-abbreviations/. [ ] Tanay Karnik, Peter Hazucha, and Jagdish Patel. "Characterization of soft errors caused by single event upsets in CMOS processes". In: IEEE Transactions on Dependable and Secure Computing ( ). [ ] Maha Kooli and Giorgio Di Natale. "A survey on simulation-based fault injection tools for complex systems". In: th IEEE International Conference on Design Technology of Integrated Systems in Nanoscale Era (DTIS). , pp. -. : 10.1109/DTIS.2014.6850649. [ ] Maha Kooli et al. "Computing reliability: On the di erences between software testing and software fault injection techniques". In: Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) (May ), pp. -. : 10.1016/j.micpro.2017.02.007. : https://hal-lirmm.ccsd.cnrs.fr/lirmm-01693156. [ ] L. Ratti. Ionizing Radiation E ects in Electronic Devices and Circuits. ] R. Mariani, G. Boschi, and F. Colucci. "Using an innovative SoC-level FMEA methodology to design in compliance with IEC ". In: Design, Automation Test in Europe Conference Exhibition. , pp. -. : 10.1109/DATE.2007.364641. [ ] J.J. Marin and R.W. Pollard. "Experience report on the FIDES reliability prediction method". In: Annual Reliability and Maintainability Symposium, . Proceedings. . [ ] Wang Min. "Analysis on Bubble Sort Algorithm Optimization". In: International Forum on Information Technology and Applications.

	C This is where your Conclusion will go T H C C A A B [ ] accellera. UVM . User Guide. org/downloads/standards/uvm (visited on / / . : https://www.accellera. ). [ ] accellera. IEEE International Reliability Physics Symposium. . [ ] Sebastien Bourdarie and Michael Xapsos. "The Near-Earth Space Ra-diation Environment". In: IEEE Transactions on Nuclear Science . ( ), pp. -. : 10.1109/TNS.2008.2001409. ). [ ] nd ACM/EDAC/IEEE Design Au-E In: (Aug. tomation Conference (DAC). , pp. -. : 10.1145/2897937. 2897996. [ ] CMS collaboration et al. "The CMS experiment at the CERN LHC". In: Jinst ( ), S . Tech. rep. CERN-LHCC--. CMS-TDR-. Geneva: CERN, June . : https://cds.cern.ch/record/2272264. [ ] Keerthikumara Devarajegowda et al. "A Mutually-Exclusive Deploy-ment of Formal and Simulation Techniques Using Proof-Core Analy-sis". In: Oct. . [ ] Mojtaba Ebrahimi et al. "A fast, exible, and easy-to-develop FPGA-based fault injection technique". In: Microelectronics Reliability . ( ), pp. -. : -. : https://doi.org/ 10 . 1016 / j . microrel . 2014 . 01 . 002. : https : / / www . sciencedirect.com/science/article/pii/S0026271414000067. [ ] P. Giridhar and P. Choudhury. "Design and Veri cation of AMBA AHB". In: st International Conference on Advanced Technologies in Intelligent Control, Environment, Computing Communication Engi-neering (ICATIECE). , pp. -. : 10.1109/ICATIECE45860. 2019.9063856. th ACM/EDAC/IEEE Design Au-tomation Conference (DAC). , pp. -. : 10.1145/2463209. 2488857. . Road vehicles -Functional safety. . : https:// www.iso.org. [ ] ISO . Accessed: --. . [ ] R. Leveugle et al. "Statistical fault injection: Quanti ed error and con -dence". In: Design, Automation Test in Europe Conference Exhibi-tion. , pp. -. : 10.1109/DATE.2009.5090716. Vol. . , pp. -. : 10.1109/IFITA.2010.9. [ ] S. Mirkhani, M. Lavasani, and Z. Navabi. "Hierarchical fault simulation using behavioral and gate level hardware models". In: Proceedings of [ ] I c [ ] ISO the th Asian Test Symposium, . (ATS ' ). , pp. -. :
	10.1109/ATS.2002.1181740.

[ [ ] CMS tracker collaboration et al. The Phase-Upgrade of the CMS Tracker. [ [ ] [ ] Jayant Mankar et al. "Review of I C protocol". In: International Journal of Research in Advent Technology . ( ).

[