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Résumé

L'ESRF (European Synchrotron Radiation Facility pour Institut Européen de Rayonnement Synchrotron en français) est une source de rayonnement synchrotron [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Bartolini | Synchrotron Radiation[END_REF][START_REF] Walker | Synchrotron Radiation[END_REF] installée à Grenoble [START_REF] Andrault | [END_REF][START_REF] Raimondi | ESRF-EBS: The Extremely Brilliant Source Project[END_REF][START_REF] Carmignani | ESRF Course on Particle Accelerators I[END_REF][START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF]. Cette source, basée sur un accélérateur de particules de type anneau de stockage (storage ring en anglais) [START_REF] Andrault | [END_REF][START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF][START_REF]7-GeV Advanced Photon Source Conceptual[END_REF], produit des rayons X durs en déviant des électrons ultra-relativistes à l'aide de structures magnétiques périodiques : les ondulateurs [START_REF] Brown | Wiggler and Undulator Magnets -A Review[END_REF][START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Tatchyn | Transverse Undulator Spectra and Polarization Profiles[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF]. La production de rayonnement synchrotron à haute énergie [START_REF] Holzer | Lattice Design in High-Energy Particle Accelerators[END_REF][START_REF] Hofmann | Characteristics of Synchrotron Radiation[END_REF][START_REF]CAS-CERN Accelerator School: Synchrotron Radiation and Free Electron Lasers[END_REF], dans la gamme 50 -100 keV (≈ 0.02 -0.01 nm), est un axe de recherche et développement important. Générer un flux satisfaisant de photons à ces énergies implique d'utiliser des ondulateurs à courte période [START_REF] Ingold | Fabrication of a High-Field Short-Period Superconducting Undulator[END_REF][START_REF] Bahrdt | Pushing the Limits of Short Period Permanent Magnet Undulators[END_REF][START_REF] Bahrdt | Pushing the Limits of Short Period Permanent Magnet Undulators[END_REF][START_REF] Hinton | Design of a Short Period Helical Superconducting Undulator[END_REF][START_REF] O'shea | Short Period, High Field Cryogenic Undulator for Extreme Performance X-Ray Free Electron Lasers[END_REF]. L'installation d'ondulateurs à aimants permanents sous vide, refroidis à basse température (cryogénique), a permis de réduire la période à 14 mm environ [START_REF] O'shea | Short Period, High Field Cryogenic Undulator for Extreme Performance X-Ray Free Electron Lasers[END_REF][START_REF] Chavanne | Cryogenic Permanent Magnet Undulators[END_REF][START_REF] Benabderrahmane | Development and Operation of a Pr2Fe14B Based Cryogenic Permanent Magnet Undulator for a High Spatial Resolution X-Ray Beamline[END_REF][START_REF] Huang | Development of Cryogenic Permanent Magnet Undulators at NSRRC[END_REF][START_REF] Alekseev | Basics of Low-Temperature Refrigeration[END_REF][START_REF] Chavanne | First Operational Experience with a Cryogenic Permanent Magnet Undulator at the ESRF[END_REF][START_REF] Bahrdt | Cryogenic Permanent Magnet and Superconducting Undulators[END_REF][START_REF] Huang | Challenges of In-Vacuum and Cryogenic Permanent Magnet Undulator Technologies[END_REF].

Des ondulateurs à période plus courte pourraient être réalisés avec des solénoïdes chargés de pôles magnétiques régulièrement espacés [START_REF] O'shea | Short Period, High Field Cryogenic Undulator for Extreme Performance X-Ray Free Electron Lasers[END_REF][START_REF] Sasaki | The Possibility for a Short-Period Hybrid Staggered Undulator[END_REF][START_REF] Royer | Solenoidal Optics[END_REF][START_REF] Ho | A Solenoid-Derived Wiggler[END_REF][START_REF] Montgomery | Solenoid Magnet Design[END_REF][START_REF] Gupta | High Temperature Superconductor (HTS) Solenoid[END_REF][START_REF] Knoepfel | Magnetic Fields : A Comprehensive Theoretical Treatise for Practical Use[END_REF][START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Brunelle | Application of an Emittance Adapter to Increase Photon Flux Density on a Synchrotron Radiation Beam Line[END_REF][START_REF] Brunelle | Application of the Emittance Adapter to SOLEIL and MAX IV[END_REF][START_REF] Raimondi | Horizontal-Vertical Emittance Exchange Schemes in a Ring[END_REF]. Ces ondulateurs sont connus sous le nom de "staggered undulator" [START_REF] Chen | A New Modified Staggered Array Undulator[END_REF][START_REF] Kitagaki | A Design Study on Electron Beam Confinement in a Staggered Array Undulator Based on a 3d Code[END_REF][START_REF] Masuda | A Design Study of a Staggered Array Undulator for High Longitudinal Uniformity of Undulator Peak Fields by Use of a 2-D Code[END_REF][START_REF] Chang | Circular Polarization with Rotatable Magnetic Fields in Crossed Staggered Undulator[END_REF][START_REF] Chang | Design of a Helical Staggered Undulator[END_REF][START_REF] Chang | Design of a Revolving Helical Staggered Undulator[END_REF], de l'anglais "staggered" pouvant se traduire en français par le terme "échelonné" pour faire référence à la séquence périodique de pôles produite de cette façon-ci. Si de tels systèmes magnétiques ont été imaginés dès les années 1990 pour des lasers à électrons libres [START_REF] Robb | The Quantum Free-Electron Laser[END_REF][START_REF] Shintake | The SACLA X-Ray Free-Electron Laser Based on Normal-Conducting C-Band Technology[END_REF][START_REF] Kim | Temporal Coherence of Radiation from a Collection of Electrons[END_REF][START_REF] Elleaume | Undulators for Free Electron Lasers[END_REF], ils n'ont jamais été optimisés pour des sources de lumière telles que l'ESRF en raison des effets indésirables que créerait un solénoïde sur le faisceau d'électrons stocké [START_REF] Ho | A Solenoid-Derived Wiggler[END_REF][START_REF] Raimondi | Horizontal-Vertical Emittance Exchange Schemes in a Ring[END_REF][START_REF] Kitagaki | A Design Study on Electron Beam Confinement in a Staggered Array Undulator Based on a 3d Code[END_REF][START_REF] Huang | Performance Characterization of a Far-Infrared, Staggered Wiggler[END_REF][START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF]. Une source de nouvelle génération, l'EBS (Extremely Brilliant Source pour Source Extrêmement Brillante en français), est construite aujourd'hui sur le site de l'ESRF. Cette nouvelle source été mise en opération à la fin de l'année 2019. Le produit taille par divergence horizontales du faisceau d'électrons (caractérisant le paramètre d'émittance correspondante du faisceau défini plus bas) étant réduit par un facteur 30 environ, celui-ci sera moins sensible aux perturbations liées à l'installation de solénoïdes, dû au faisceau d'électron plus compacte qui résulte de cette réduction, et les ondulateurs staggered deviennent une réelle option pour les lignes de lumière (beamline en anglais) [START_REF] Bachrach | The SSRL Insertion Device Beam Line 'Wunder[END_REF] fonctionnant à haute énergie [4-6, 17, 52, 54-56].

Les synchrotrons sont des installations d'accélérateurs circulaires à grande échelle. Ils sont utilisés comme moyen d'accélération de particules à des énergies élevées de l'ordre de plusieurs centaines de GeV dans des collisionneurs ou comme anneaux de stockage dans lesquels des espèces de particules circulent à une énergie fixe de quelques GeV dans une chambre à vide pour la production de rayonnement synchrotron. [START_REF] Bartolini | Synchrotron Radiation[END_REF][START_REF] Walker | Synchrotron Radiation[END_REF][START_REF] Hofmann | Characteristics of Synchrotron Radiation[END_REF][START_REF]CAS-CERN Accelerator School: Synchrotron Radiation and Free Electron Lasers[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Ropert | Low Emittance Lattices[END_REF]. Un synchrotron est composé d'un enchaînement, appelé maille (lattice en anglais), périodique d'aimants utilisés pour définir et confiner un faisceau d'électrons sur une orbite périodique plus ou moins circulaire [START_REF] Holzer | Introduction to Transverse Beam Dynamics[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Brandt | CAS-CERN Accelerator School: Course on Synchrotron Radiation and Free-Electron Lasers[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF]. Ces aimants génèrent une disposition de composantes multipolaires spécifiques de champ magnétique via des arrangements pôle-bobine prédéterminés autour d'une ouverture centrale pour le passage de la chambre à vide entourant le faisceau d'électrons [START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Holzer | Transverse beam dynamics[END_REF][START_REF] Streun | Lattices for light sources[END_REF][START_REF] Ropert | Lattices and Emittances[END_REF][START_REF] Wolski | Dynamical Maps for "Linear" Elements[END_REF][START_REF] Wolski | s Equations for Magnets Part I[END_REF][START_REF] Wolski | s Equations for Magnets Part Ii: Realistic Fields[END_REF][START_REF] Kersevan | Twostep Vacuum Design of Light Sources[END_REF]. Ces composantes multipolaires de champ magnétique ⃗ B agissent sur le faisceau de particules qui traverse l'ouverture des aimants correspondants au moyen de la force magnétique de Laplace résultante [START_REF] Knoepfel | Magnetic Fields : A Comprehensive Theoretical Treatise for Practical Use[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF]. L'ensemble ordonné desdits aimants constituent ce que l'on appelle couramment la maille magnétique de l'accélérateur qui est alors l'arrangement en séquence longitudinale spécifique de ses aimants d'un point de vue d'optique de faisceau électronique résultante de cet agencement particulier. Par exemple, la courbure du trajet du faisceau d'électrons pour l'établissement d'une trajectoire fermée se fait par des aimants dits de courbure (dipôle) [START_REF] Wolski | Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity[END_REF], la focalisation de la distribution d'électrons autour de l'orbite de référence par des aimants quadrupolaires, etc. [START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF][START_REF] Wolski | Linear Optics in Periodic, Uncoupled Beamlines[END_REF][START_REF] Herr | CAS Course on Optics Design[END_REF][START_REF] Holzer | Introduction to Transverse Beam Optics II Particle Trajectories, Beams and Bunch[END_REF]. Avant d'être contraints de cette manière sur une orbite fermée les électrons composant le faisceau électronique sont produits par une source de particules et accélérés par un sous-système de booster et/ou linac [START_REF] Wangler | RF Linear Accelerators[END_REF] (de linear accelerator pour "accélérateur linéaire" en anglais).

Les anneaux de stockage sont utilisés pour la génération de faisceaux de photons de haute énergie de l'ordre de plusieurs keV ou plus (domaine des rayons X situé approximativement de 100 eV à 100 keV) [START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Paolasini | Large Scale Facilities: Synchrotrons[END_REF][START_REF] Paolasini | Synchrotron Radiation Sources and Properties[END_REF]. Le faisceau de photons est produit par l'émission tangente de rayonnement synchrotron du faisceau d'électrons circulant d'énergie ultrarelativiste typique de l'ordre de plusieurs GeV (6 GeV à l'ESRF) et est utilisé dans de multiples techniques pour sonder la matière à l'échelle de la taille d'un atome ou au-delà [START_REF] Wolski | Synchrotron Light Machines[END_REF][START_REF] Wolski | Low-Emittance Storage Rings[END_REF]. Le rayonnement synchrotron est le rayonnement électromagnétique émis par des particules chargées subissant une accélération qui leur est conférée par un champ magnétique, comme stipulé par les lois de la théorie électromagnétique [START_REF] Hofmann | Characteristics of Synchrotron Radiation[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Paolasini | Synchrotron Radiation Sources and Properties[END_REF][START_REF] Born | Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF]. L'accélération (centripète) peut être mise à contribution par un changement dans la direction de déplacement des particules sous la direction d'un champ magnétique (perpendiculaire) tel que celui des aimants dipôles définissant l'orbite de référence courbée dans un anneau de stockage [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Paolasini | Large Scale Facilities: Synchrotrons[END_REF]. La première génération de synchrotrons étaient des machines dans lesquelles le rayonnement était considéré comme un résultat secondaire, la deuxième génération qui suivait en utilisant principalement le rayonnement généré par les dipôles de manière dédiée [START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Paolasini | Large Scale Facilities: Synchrotrons[END_REF][START_REF] Paolasini | Synchrotron Radiation Sources and Properties[END_REF]. Les installations de sources synchrotron de troisième génération qui dominent actuellement en nombre la communauté scientifique s'appuient principalement sur des dispositifs magnétiques spécialisés appelés insertions magnétiques ou éléments d'insertion (insertion devices en anglais) [START_REF] Walker | Insertion Devices: Undulators and Wigglers[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Bahrdt | Insertion Devices[END_REF][START_REF] Elleaume | Insertion Devices[END_REF] qui sont des ondulateurs et wigglers installées dans des sections droites incorporées à cet effet dans les mailles magnétiques des accélérateurs [START_REF] Brunelle | Application of an Emittance Adapter to Increase Photon Flux Density on a Synchrotron Radiation Beam Line[END_REF][START_REF] Zhao | Storage Ring Light Sources[END_REF][START_REF] Prat | Synchrotron Light Sources and X-ray Free-Electron-Lasers[END_REF][START_REF] Bahrdt | Shaping Photon Beams with Undulators and Wigglers[END_REF].

Les éléments d'insertions sont des types spéciaux d'aimants d'accélérateur composés de structures magnétiques s'appuyant sur une série périodique d'éléments (blocs) magnétiques qui alternent audessus et au-dessous de la trajectoire du faisceau d'électrons le long de la section droite d'installation de manière à constituer un espace magnétique désigné par l'anglicisme "gap" (signifiant entrefer ) dans le plan vertical transversal par rapport à l'orbite de référence de la machine [START_REF] Brown | Wiggler and Undulator Magnets -A Review[END_REF][START_REF] Bahrdt | Shaping Photon Beams with Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF]. Dans ce gap magnétique, une composante transverse de champ magnétique longitudinalement périodique de forme sinusoïdale est dérivée de la disposition de blocs magnétiques comme montré dans la figure 1 [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Levichev | Undulators and Other Insertion Devices[END_REF]. Cette série d'aimants a une longueur L u typique de l'ordre du mètre (L u ∼ O(1 m)) pour une opération en anneau de stockage et peut aller jusqu'à quelques dizaine de mètres (L u ∼ O(10 m)) dans des lasers à électrons libres (Free Electron Laser en anglais ou FEL en abrégé) [START_REF] Elleaume | Undulators for Free Electron Lasers[END_REF][START_REF] Li | Undulator System Tolerance Analysis for the European X-Ray Free-Electron Laser[END_REF][START_REF] Huang | Compact Far-IR FEL Design[END_REF][START_REF] Divall | Lasers in FEL Facilities[END_REF][START_REF] Couprie | Historical Survey of Free Electron Lasers[END_REF]. Le dispositif magnétique constitué par la série d'aimants communique une trajectoire oscillatoire au faisceau d'électrons passant à travers le gap magnétique du dispositif dans le plan horizontal perpendiculaire [START_REF] Reiche | Motion in the Undulator[END_REF] comme illustré dans la figure 1, en vertu des forces de Laplace mentionnées plus haut qui résultent de la configuration du champ magnétique dans le gap [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Pflueger | Undulator Technology[END_REF].

Les oscillations successives du faisceau électronique génèrent une émission de rayonnement de la part de point sources le long de la trajectoire du faisceau, avec une structure émissive résultante en multiples cônes d'ouverture angulaire naturelle θ nat ≈ 1/γ [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Prat | Synchrotron Light Sources and X-ray Free-Electron-Lasers[END_REF], où γ est le facteur relativiste de Lorentz [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Elleaume | Introduction to Insertion Devices[END_REF][START_REF] Wille | Introduction to insertion devices[END_REF][START_REF] Herr | Short Theory of Special Relativity and Invariant Formulation of Electrodynamics[END_REF]. γ est le rapport de l'énergie totale de l'électron E à l'énergie de masse de celui-ci, E m0 = m e0 c 2 = 0.511 MeV par [START_REF] Herr | Short Theory of Special Relativity and Invariant Formulation of Electrodynamics[END_REF][START_REF] Tsamparlis | Special Relativity[END_REF][START_REF] Wilson | CAS-CERN Accelerator School: Synchrotron Radiation and Free-Electron Lasers[END_REF][START_REF] Landau | Chapter 2-relativistic mechanics[END_REF][START_REF] Landau | Chapter 1-the principle of relativity[END_REF][START_REF] Lahanas | CAS-CERN Accelerator School: Basic Course on General Accelerator Physics[END_REF] :

γ = E E m0 (1) 
Les oscillations multiples du faisceau le long de la trajectoire de celui-ci servent alors à augmenter l'intensité du flux de photons synchrotron émis par des effets d'interférence entre les cônes d'émission des points source, et ceci typiquement à plusieurs ordres de grandeur par rapport à l'émission émanant de la courbure de trajectoire unique des aimants de courbure [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Streun | Lattices for light sources[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Bahrdt | Shaping Photon Beams with Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Elleaume | Introduction to Insertion Devices[END_REF]. Dans la figure 1 l'angle d'excursion maximale de la trajectoire du faisceau est K/γ où K est le paramètre de déflexion de l'ondulateur défini dans le cas du champ sinusoïdal de la figure 1 par [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Reiche | Motion in the Undulator[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF] :

K ≈ 0.0934B p [T]λ u [mm]. (2) 
Les dispositifs d'insertion sont subdivisés en ondulateurs et wigglers [START_REF] Walker | CAS-CERN Accelerator School: 5th Advanced Accelerator Physics Course[END_REF] (de l'anglais wiggle faisant référence à la trajectoire oscillante résultante du faisceau d'électrons en passage) [START_REF] Reiche | Motion in the Undulator[END_REF]. Cette subdivision est opérée par rapport à la valeur maximale K max du paramètre de déflexion K atteignable par le design de l'élément d'insertion considéré. En effet, celle-ci détermine le degré d'importance de l'interférence entre les points source de la figure 1 [START_REF] Walker | Insertion Devices: Undulators and Wigglers[END_REF][START_REF] Walker | Interference Effects in Undulator and Wiggler Radiation Sources[END_REF]. Plus particulièrement, dans le cas d'un régime d'émission ondulateur, l'angle maximal de déviation horizontale de la trajectoire électronique est comparable ou inférieur à l'ouverture angulaire d'émission spontanée θ nat , ce qui facilite l'interférence et vice versa dans le cas du régime wiggler. En termes de valeur de paramètre de déflexion K, les deux régimes pourraient alors s'identifier formellement par K ⪅ 1 (ondulateur) et K > 1 (wiggler) [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF], le seuil pratique étant plus élevé. En conséquence, ceci amène à ce que les deux catégories se distinguent par les propriétés spectrales de leur rayonnement synchrotron. Les ondulateurs ont tendance à exploiter plus amplement les effets d'interférence et à concentrer le flux de photons émis autour de fréquences harmoniques particulières dans le domaine spectral avec des valeurs d'intensité supérieures de plusieurs ordres de grandeur à celles obtenues par les wigglers sur une gamme spectrale plus large. L'énérgie E m de la m-ième harmonique émise aux angles d'observation transverse θ x , θ z est donnée en fonction de l'énergie du faisceau électronique E circulant dans l'anneau de stockage et des paramètres de l'élément d'insertion introduits à l'aide de la figure 1 comme :

E m [keV] ≈ 9.5mE 2 [GeV] λ u [mm] 1 + K 2 2 + γ 2 θ 2 x + γ 2 θ 2 z . (3) 
Les anneaux de stockage sont caractérisés entre autres paramètres par les valeurs les plus basses obtenues pour les émittances ϵ x, z dans les deux plans transverses, horizontal Oxy et vertical Oxz, lors du stockage du faisceau d'électrons (pendant un temps de plusieurs heures jusqu'à environ un jour) [START_REF] Liuzzo | Lattice Design and Beam Dynamics for Synchrotron Light Sources[END_REF].

L'émittance ϵ q donne l'occupation des électrons du faisceau (taille du faisceau) dans l'espace de phase du plan respectif (q, p q ) [START_REF] Buon | Beam Phase Space and Emittance[END_REF] où q = {x, z} et p q est la composante transversale de quantité de mouvement de la particule dans ledit plan. Toutes les machines circulaires planes sont courbées horizontalement et, en tant que telles, elles fonctionnent avec des faisceaux d'électrons plats donnés par ϵ z ≪ ϵ x pour la raison mentionnée ci-dessus [START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF]. Dans l'hypothèse idéale d'absence de couplage entre les mouvements du faisceau électronique dans les deux plans transverses orthogonaux Oyx et Oxz, la taille du faisceau dans le plan Oyq avec q = {x, z} σ q est donnée par : σ q (y) = ϵ q β q (y) + η 2 q (y)σ 2 E ,

où β q (y) est la fonction bétatronique de l'anneau de stockage évaluée à la coordonnée longitudinale y le long de celui-ci, η q est la fonction de dispersion et σ E est l'écart relatif RMS en énergie du faisceau par rapport à son énergie nominale E 0 [START_REF] Holzer | Transverse beam dynamics[END_REF][START_REF] Wilson | Transverse Beam Dynamics[END_REF]. La valeur minimale de l'émittance verticale est conditionnée par l'émission de photons et est normalement inférieure à l'émittance dite limitée par diffraction [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Franchi | Vertical Emittance Reduction and Preservation in Electron Storage Rings Via Resonance Driving Terms Correction[END_REF][START_REF] Born | Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF][START_REF] Born | Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF] qui caractérise le faisceau photonique issu de l'émission de rayonnement monoélectronique de la part de l'ondulateur. Les erreurs de champ magnétique dans les aimants peuvent néanmoins contribuer à l'augmentation de l'émittance verticale ϵ z [START_REF] Raimondi | Horizontal-Vertical Emittance Exchange Schemes in a Ring[END_REF][START_REF] Franchi | Vertical Emittance Reduction and Preservation in Electron Storage Rings Via Resonance Driving Terms Correction[END_REF][START_REF] Chavanne | Reducing Coupling and Vertical Emittance in the Storage Ring[END_REF].

La petitesse des émittances du faisceau d'électrons est importante car la brillance du rayonnement synchrotron généré à l'énergie harmonique E m , B m , varie de manière inversement proportionnelle avec ϵ x, z [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Brunelle | Application of an Emittance Adapter to Increase Photon Flux Density on a Synchrotron Radiation Beam Line[END_REF]. Plus précisément, B m s'exprime pour les calculs pratiques comme :

B m ≈ F m Σ 0 m x Σ 0 m z Σ ′ 0 m x Σ ′ 0 m z . ( 5 
)
Dans l'équation (5) F m est le flux spectral intégré en angle de la m-ième harmonique E m sur l'axe intégré en angle qui se mesure en unités de nombre de photons émis par seconde par largeur relative de bande passante [ph/s/0.1 % bw] autour de l'énergie d'émission en question E m . Σ 0 m x et Σ 0 m z sont les tailles RMS du faisceau photonique, produit par le passage dans l'élément d'insertion d'un faisceau multiélectronique [START_REF] Wolski | Bunches of Many Particles[END_REF], prises sur l'axe de l'ondulateur dans les deux plans transverses respectifs Oxy et Ozy, à la position longitudinale y 0 du rayon de pincement dit "waist" donnant la taille minimale du faisceau photonique [START_REF] Taillet | Dictionnaire De Physique[END_REF][START_REF] Basu | Dictionary of Pure and Applied Physics[END_REF][START_REF] Basu | Dictionary of Material Science and High Energy Physics[END_REF]. Le waist du faisceau photonique a lieu au centre de l'ondulateur si ce dernier est installé au centre de la section droite. Σ ′ 0 m x , Σ ′ 0 m z sont les divergences transverses RMS sur l'axe correspondantes du faisceau photonique. Les tailles et divergences RMS photoniques Σ 0 m q et Σ ′ 0 m q produites par le faisceau multiélectronique d"émittance non-nulle peuvent être exprimées en fonction des tailles et divergences de ce dernier σ q , σ ′ q et de celles Σ ′ γ 0 m q avec q = {x, z} du faisceau photonique intrinsèque. Ce dernier serait produit par un faisceau filamentaire monoélectronique d'émittance nulle et caractérise ainsi l'émission naturelle de l'ondulateur donnée par l'émittance limitée par diffraction. Les taille et divergence du faisceau photonique multiélectronique dans le plan transverse Oqy sont données par :

Σ 0 m q ≈ σ 2 q (y 0 ) + Σ 2 γ 0 m q , (6) 
Σ ′ 0 m q ≈ σ ′2 q (y 0 ) + Σ ′2 γ 0 m q .

En vertu de l'équation [START_REF] Raimondi | ESRF-EBS: The Extremely Brilliant Source Project[END_REF], la brillance B m est alors une grandeur qui caractérise la densité de flux de photons en l'espace de phase correspondant aux dimensions typiques du faisceau photonique, ainsi que la cohérence des sources de rayonnement synchrotron telles que les éléments d'insertion [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Carmignani | Principles of Synchrotron Radiation[END_REF]. Pour cette raison, elle constitue le principal paramètre d'indication pour la qualité du rayonnement produit. Aussi s'efforce t-on d'augmenter la valeur de B m par tous les moyens disponibles pour ceci [START_REF] Wolski | Synchrotron Light Machines[END_REF][START_REF] Zhao | Storage Ring Light Sources[END_REF], notamment par des tentatives de diminution des taille et divergence du faisceau multiélectronique en horizontal, σ x et σ ′

x , et donc de l'émittance horizontale correspondante ϵ x en vertu de l'équation [START_REF] Andrault | [END_REF]. Pour un anneau de stockage qui impose une orbite de référence par des dipoles qui courbent la trajectoire du faisceau électronique en horizontal, ϵ x présente toujours une marge pratique de réduction avant d'atteindre la limite donnée par la valeur de l'émittance limitée par diffraction du faisceau photonique intrinsèque (monoélectronique). Les machines de troisième génération ont un ϵ x de l'ordre de quelques nm.rad [START_REF] Liuzzo | Lattice Design and Beam Dynamics for Synchrotron Light Sources[END_REF][START_REF] Zelenika | Mechanical Aspects of the Design of Third-Generation Synchrotron-Light Sources[END_REF][START_REF] Owen | Diamond Synchrotron Light Source: Report of the Design Specification (Green Book)[END_REF]. Par exemple, l'ancien anneau de stockage de l'ESRF avait une émittance horizontale ϵ x = 4 nm.rad. Plusieurs anneaux de stockage à faible émittance (low-emittance storage rings en anglais) adaptés de machines de 3 e génération précédentes ou construits en tant que nouveaux projets entreront progressivement en service, déjà menés par l'Extremely Brilliant Source (EBS) de l'ESRF, mis en service avec succès au début de l'année 2020 avec le premier mode utilisateur exploité à l'été de l'année mentionnée [START_REF] Brunelle | Application of an Emittance Adapter to Increase Photon Flux Density on a Synchrotron Radiation Beam Line[END_REF][START_REF] Brunelle | Application of the Emittance Adapter to SOLEIL and MAX IV[END_REF]. Le nouveau EBS a été reconstruit suite au démantèlement de l'ancien anneau ESRF, avec un nouveau modèle de faisceau qui voit un passage de l'unité cellule dite achromat à double courbure (Double Bend Achromat ou DBA abrégé en anglais) à celle nouvelle d'achromat à sept courbures (cellule de Raimondi) [START_REF] Raimondi | ESRF-EBS: The Extremely Brilliant Source Project[END_REF][START_REF] Carmignani | ESRF Course on Particle Accelerators I[END_REF][START_REF] Liuzzo | Lattice Design and Beam Dynamics for Synchrotron Light Sources[END_REF][START_REF] Franchi | Introduction to Particle Accelerators[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF]. Cette nouvelle configuration magnétique permet de réduire l'émittance horizontale de la valeur susmentionnée de ϵ x = 4 nm.rad pour l'ancienne machine ESRF de troisième génération à ϵ x = 132 pm.rad. Cela représente un facteur d'amélioration d'environ 30 qui se traduit alors également dans la valeur finale de la brillance photonique [START_REF] Andrault | [END_REF][START_REF] Carmignani | ESRF Course on Particle Accelerators I[END_REF][START_REF] Liuzzo | Lattice Design and Beam Dynamics for Synchrotron Light Sources[END_REF][START_REF] Franchi | Introduction to Particle Accelerators[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF]. La faisabilité d'un ondulateur basé sur un arrangement magnétique de type staggered défini nécessite donc l'étude de la dynamique du faisceau dans le solénoïde constitutif de l'ondulateur en termes des effets de focalisation et de couplage transverse [START_REF] Chavanne | Reducing Coupling and Vertical Emittance in the Storage Ring[END_REF][START_REF] Sagan | Linear Analysis of Coupled Lattices[END_REF] de ce dernier sur le faisceau d'électrons. Cette étude détermine les conditions et/ou les moyens de mise en oeuvre potentielle du solénoïde dans une ligne de transport périodique stable telle qu'un anneau de stockage sans perturbation majeure du fonctionnement de ce dernier.

Les ondulateurs staggered sont une catégorie d'éléments d'insertion ("insertion devices" ou ID en anglais) [82-85, 118, 120] relativement exotiques de type électromagnétique [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Halbach | Some Concepts to Improve the Performance of Dc Electromagnetic Wigglers[END_REF][START_REF] Elleaume | Variable Polarisation and Other Exotic Insertion Devices[END_REF][START_REF] Moog | Novel Insertion Devices[END_REF], initialement proposés et construits dans les années 1980 et 1990 pour les sources de type FEL [START_REF] Ho | A Solenoid-Derived Wiggler[END_REF][START_REF] Huang | Performance Characterization of a Far-Infrared, Staggered Wiggler[END_REF][START_REF] Huang | Compact Far-IR FEL Design[END_REF] et plus tard envisagés comme une source possible de rayonnement synchrotron sur anneau de stockage au début des années 2000 [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF].

Contrairement aux ondulateurs électromagnétiques classiques qui sont basés sur un fil normal ou supraconducteur enroulé en bobinages alternants [START_REF] Ivanyushenkov | Development and Operating Experience of a 1.1-M-Long Superconducting Undulator at the Advanced Photon Source[END_REF][START_REF] Kubsky | Superconductive Mini-Gap Undulators -a New Way to High Energy Photons: Latest News[END_REF][START_REF] Wollmann | Induction Shimming: A New Shimming Concept for Superconductive Undulators[END_REF][START_REF] Seidel | Applied Superconductivity Handbook on Devices and Applications[END_REF][START_REF] Chiggiato | Vacuum Technology for Superconducting Devices[END_REF][START_REF] Flükiger | Superconductivity for Magnets[END_REF][START_REF] Sharma | [END_REF][START_REF] Wilson | Superconducting Magnets for Accelerators[END_REF][START_REF] Wilson | Superconducting Magnets[END_REF][START_REF] Russenschuck | Superconducting Magnets[END_REF][START_REF] Schmüser | Superconducting Accelerator Magnets[END_REF][START_REF] Wolff | Superconducting Accelerator Magnet Design[END_REF] ou à des dispositifs basés sur la technologie des blocs d'aimants permanents [START_REF] Bahrdt | Pushing the Limits of Short Period Permanent Magnet Undulators[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Halbach | Permanent Magnet Undulators[END_REF][START_REF] Chavanne | Nonlinear Numerical Simulation of Permanent Magnets[END_REF][START_REF] Sagawa | Magnetic Properties of Rare-Earth-Iron-Boron Permanent Magnet Materials[END_REF][START_REF] Park | Tapered Helical Undulator System for High Efficiency Energy Extraction from a High Brightness Electron Beam[END_REF][START_REF] Davidyuk | Magnetic and Mechanical Design of Large-Aperture Variable-Period Permanent Magnet Undulator[END_REF], l'ondulateur staggered utilise un arrangement de pièces magnétiques polaires (pôles) en matériau ferromagnétique doux de disposition verticale alternée par rapport à l'axe longitudinal du dispositif [START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Chen | A New Modified Staggered Array Undulator[END_REF][START_REF] Kitagaki | A Design Study on Electron Beam Confinement in a Staggered Array Undulator Based on a 3d Code[END_REF][START_REF] Masuda | A Design Study of a Staggered Array Undulator for High Longitudinal Uniformity of Undulator Peak Fields by Use of a 2-D Code[END_REF][START_REF] Huang | Performance Characterization of a Far-Infrared, Staggered Wiggler[END_REF]. L'arrangement périodique de période λ u de pôles de longueur l p et hauteur h p est installé dans l'ouverture d'un solénoïde porteur de courant (densité de courant ⃗ j orthoradiale par rapport à l'axe de la bobine) produisant un champ magnétique longitudinal central (champ solénoïdal) B sol , comme indiqué sommairement dans la figure 2 2 : Vue latérale en longitudinal selon une demi-coupe verticale de l'arrangement staggered de pôles en ferromagnétique doux (trait plein) montrant schématiquement la disposition des pôles assise dans le bobinage du solénoïde pour aimantation par le champ de ce dernier ⃗ B sol . Le champ ⃗ B sol est imposé par induction de la part de la densité de courant ⃗ j sol qui parcourt le filament de la bobine du solénoïde. L'aimantation des pôles résulte en l'instauration d'un champ périodique vertical sur l'axe du dispositif dans le gap g de celui-ci, c'est le champ ondulateur B z , de période λ u égale à celle de l'arrangement pôlaire de l'ondulateur. Aussi montrées en trait en pointillé soient deux plaques horizontales de support mécanique de mâchoire pour les deux mâchoires de haut et de bas.

La fonction du solénoïde est de magnétiser le matériau ferromagnétique doux choisi pour les pôles de l'arrangement ondulateur staggered pour ainsi dériver géométriquement un champ ondulateur vertical périodique B z (x = 0, y, z = 0) = B z (y) sur l'axe comme suggéré schématiquement par les lignes de flux magnétique représentatives indiquées dans la figure 2. Dans ladite figure, l'arrangement polaire est illustré avec deux plaques horizontales ferromagnétiques de haut et de bas de hauteur h s pour le soutient et le positionnement mécaniques des mâchoires de pôles respectives des deux côtés du gap magnétiques g.

Le champ ondulateur pic B p sur l'axe de l'ondulateur staggered (composante de champ principale) peut être exprimé en fonction des paramètres structurels et fonctionnels du dispositif. Ce sont le champ solénoïdal au centre de la bobine ⃗ B sol (0, 0, 0) = B sol , le gap g, la période λ u et le rapport f = d p /λ u entre l'espacement inter-pôle d p indiqué dans la figure 2 et la période λ u . Le champ pic susdit B p (B sol , g, λ u , f ) est donné par :

B p = 2B sol sinh πg λu sin πf πf . (8) 
Le modèle de champ pic décrit par l'équation [START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF] est valide pour des périodes relativement courtes et sous-entend notamment une invariance du champ B z avec la coordonnée transverse horizontale x, ce qui équivaudrait à avoir des pièces polaires infinies selon Ox. Les valeurs de champ crête (champ pic) typiques pouvant être obtenues dans un ondulateur staggered sont inférieures à celles établies dans les dispositifs sous vide conventionnels. Pour des matériaux de blocs polaires de performance suffisamment élevée les valeurs de champ du staggered sont cependant similaires à celles d'un ondulateur à blocs d'aimant permanent de matériau incorporant des éléments de la catégorie des terre rares comme le Néodyme-Fer-Bore (NdFeB). Ceci tient de validité accrue dans la gamme de courtes périodes λ u [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Ho | A Solenoid-Derived Wiggler[END_REF][START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF].

Il en résulte de la petitesse relative des champs crête staggered des valeurs atteignables de paramètre de déflexion K inférieures pour ce type d'ondulateurs, en particulier pour des valeurs de champ crête B p à courte période λ u puisque K ∝ B p (λ u )λ u et que B p (λ u ) diminue de manière monotone avec la période λ u . La valeur maximale K max de K atteignable par un élément d'insertion lors de son réglage en champ crête B p détermine le contenu spectral du rayonnement synchrotron produit. Une valeur petite de K max donne lieu à spectre de rayonnement quasi-monochromatique dominé par le pic de première harmonique (fondamentale), de haute énergie E 1 pour une courte période λ u en vertu de l'équation [START_REF] Walker | Synchrotron Radiation[END_REF], avec peu d'émission de flux sur les harmoniques supérieures de E m pour m > 1 et une plage de réglage en énergie très limitée [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF]Accelerators as photon sources[END_REF].

Le projet de doctorat de 3 ans décrit dans ce manuscrit a été mené au laboratoire IDM (Insertion Devices and Magnets, Laboratoire d'Eléments d'Insertion et Aimants) de l'ASD (Accelerator and Source Division) de l'ESRF. Le projet porte sur la conception d'un ondulateur staggered multipériodes pour une source lumineuse d'anneau de stockage à faible émittance [START_REF] Ropert | Low Emittance Lattices[END_REF][START_REF] Ropert | Lattices and Emittances[END_REF][START_REF] Wolski | Low-Emittance Storage Rings[END_REF][START_REF] Wolski | Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation[END_REF].

La structure de l'ondulateur staggered est considérée comme appropriée pour l'implémentation de la possibilité de réglage de l'énergie harmonique d'émission pour un ondulateur par variation de la période λ u de celui-ci [START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF][START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF][START_REF] Davidyuk | Magnetic and Mechanical Design of Large-Aperture Variable-Period Permanent Magnet Undulator[END_REF][START_REF] Grau | First Experimental Demonstration of Period Length Switching for Superconducting Insertion Devices[END_REF][START_REF] Vinokurov | Variable-Period Permanent Magnet Undulators[END_REF][START_REF] Vagin | Variable Period Undulator with Tunable Polarization[END_REF][START_REF] Mun | Variable-period permanent-magnet helical undulator[END_REF][START_REF] Davidyuk | Results of Test of Prototype of Variable Period Undulator[END_REF][START_REF] Davidyuk | Modeling and Designing of Variable-Period and Variable-Pole-Number Undulator[END_REF]. Ceci est envisagé via la spécification d'un assemblage ondulateur staggered à période variable (assemblage multi-périodes) fonctionnant sur une plage de valeurs de relativement courte période λ u n . Ces dernières sont difficiles à réaliser techniquement avec d'autres solutions technologiques pour la conception d'ondulateurs telles que celles basées sur des aimants permanents (Permanent-Magnet ou PM undulator en anglais) [24-26, 28-30, 89, 136] pour des raisons de complexité structurelle et de problèmes de blocs magnétiques rencontrés aux dimensions globales réduites correspondant à des courtes λ u . Des designs d'ondulateurs à période variable basés sur des aimants permanents et des arrangements de pôles staggered ont été proposés, le premier étant poussé au stade de prototype. [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF][START_REF] Davidyuk | Magnetic and Mechanical Design of Large-Aperture Variable-Period Permanent Magnet Undulator[END_REF][START_REF] Vinokurov | Variable-Period Permanent Magnet Undulators[END_REF][START_REF] Mun | Variable-period permanent-magnet helical undulator[END_REF][START_REF] Davidyuk | Results of Test of Prototype of Variable Period Undulator[END_REF][START_REF] Davidyuk | Modeling and Designing of Variable-Period and Variable-Pole-Number Undulator[END_REF]. Dans ces designs, un seul ondulateur voit sa période λ u varier continuellement, soit par l'exploitation des forces répulsives entre blocs magnétiques permanents le long de l'axe longitudinal Oy du dispositif dans le premier cas, soit par un système de pantographe mécanique plutôt complexe dans le cas staggered. Contrairement à cette approche de variation continue de période de mono-ondulateur, la variation de période dans le concept d'ondulateur staggered à période variable proposé dans ce manuscrit de thèse est réalisé en assemblant plusieurs ondulateurs de différentes périodes dans la gorge d'un même solénoïde.

La variation de la période λ u dans l'assemblage staggered multi-périodes est obtenue en assemblant plusieurs ondulateurs (arrangements de pôles en ferromagnétique doux) individuels de périodes différentes dans l'ouverture du solénoïde. L'assemblage global résultant est alors soumis dans son ensemble mécanique à une translation transversale horizontale par rapport aux axes longitudinaux des arrangements de pôles individuels. Cette opération permet d'obtenir la commutation (accordage) de l'assemblage staggered à une valeur de période particulière λ u n = λ u (n) via le placement de l'arrangement polaire correspondant n sur l'axe longitudinal du solénoïde, donc défini comme celui du dispositif (élément d'insertion) staggered global. la figure 3 montre une vue de haut des mâchoires de pôles de haut d'une tranche symétrique (plan de symétrie σ center ) d'un tel assemblage multi-périodes qui est répétable en longitudinal en tant que module unité pour la constitution d'un assemblage modulaire (opération de symétrie de miroir par rapport aux plans de symétrie σ gauche et σ droite ), avec les définitions des paramètres de base. L'idée principale derrière cet assemblage est discuté plus en détails plus bas. Figure 3 : Vue de dessus dans le plan horizontal Oxy montrant une tranche transversale le long des plans verticaux latéraux marqués en rouge σ gauche et σ droite du motif de distribution de pôles dans les mâchoires supérieures des arrangements polaires staggered individuels. Cette distribution donne l'allure du module symétrique unitaire défini en tant que tel par les trois plans de symétrie de miroir σ gauche , σ centre , σ droite pour l'ondulateur multi-périodes proposé, après retrait de la plaque de support correspondante pour les besoins de visualisation de ladite distribution. Au sein de cette dernière, les pôles sont représentés en vert clair jaunâtre et les espaces entre pôles successifs en bleu foncé. Comme indiqué le module multi-périodes opère la variation de période par translation dans la direction horizontale donné par le vecteur unitaire ⃗ u x dans le bore du solénoïde. Ce dernier est représenté sommairement par un filament de bobinage en demi-coupe horizontale donné en bleu clair et parcouru par la densité de courant ⃗ j sol donnant au lieu au champ solénoïdal ⃗ B y sol . Visibles sont les valeurs séquentiellement croissantes de la période d'ondulateur λ u n dans la direction positive de l'axe Ox pour le cas des arrangements ondulateur staggered en nombre de N = 9.

Le solénoïde est, en lien avec ce qui est dit plus haut, conçu alors pour une capacité mécanique et électromagnétique suffisante, cette dernière se manifestant dans le domaine de valeurs de densité de courant j sol supraconducteur. Le premier point sur le coté mécanique implique que le solénoïde doit être capable de loger adéquatement l'ensemble des arrangements ondulateurs individuels et d'assurer l'espace nécessaire à la translation horizontale monolithique de l'ensemble ondulateur staggered multi-période dans l'alésage de la bobine, comme suggéré dans la figure 3 par la distance (variable) d s entre le bord latéral de l'ondulateur N 1 en position horizontale extrémale au sein de l'assemblage staggered multi-périodes et la paroi interne du bore du solénoïde, la composition de laquelle est décrite en détails plus bas.

En ce qui concerne la performance du point de vue de la tenue électromagnétique du filament de bobinage supraconducteur, celle-ci est assurée par le fait que le solénoïde est capable de fonctionner dans un régime de stabilité cryogénique évitant une transition du matériau supraconducteur (se manifestant par une perte des propriétés supraconductrices de ce dernier), phénomène désigné par l'anglicisme quench signifiant "extinction", lors du maintien de densités de courant de transport j sol suffisantes pour atteindre la saturation du matériau polaire afin de maximiser le champ crête et le paramètre de déflexion K n de l'arrangement staggered individuel n accordé (commuté) sur l'axe, pour tout n.

Le quench qui est caractérisé par la perte de la supraconductivité du fil du bobinage constitue un danger technologique pour le système de l'assemblage ondulateur multi-périodes. Ceci est dû au fait qu'il est opéré via le moyen d'une transition vers un état résistif pour ledit fil, celle-ci étant accompagnée d'un dégagement de l'énergie électromagnétique stocké par le champ d'induction ⃗ B sol du bobinage du solénoïde sous forme de chaleur. Cette dernière est susceptible d'endommager les composants du système, en plus de la perte de l'aimantation des arrangements polaires nécessaire pour le fonctionnement de l'assemblage ondulateur.

Une autre caractéristique distinctive majeure d'un ondulateur staggered par rapport aux autres éléments d'insertion est la présence inhérente de la composante longitudinale du champ solénoïdal en plus de la composante ondulateur verticale dérivée de la part de l'arrangement polaire. Cette caractéristique est normalement considérée comme problématique pour la réalisation d'un ondulateur staggered pour un fonctionnement sur un anneau de stockage. Cependant, l'intérêt pour ce dernier est d'une viabilité renouvelée dans le contexte des sources lumineuses synchrotron à anneau de stockage à faible émission de 4 e génération. La nouvelle génération de synchrotrons devrait être plus robuste à l'intégration d'un solénoïde pour ondulateur staggered. En effet, une émittance plus faible implique une distribution plus compacte du faisceau d'électrons dans l'espace de phase transverse. Une telle distribution a des coordonnées RMS en position et angle plus petits par rapport à l'axe de référence (axe du solénoïde) et se trouve dans des conditions paraxiales améliorées, voyant des forces plus faibles des composantes du champ radial et longitudinal à l'entrée et à l'intérieur du solénoïde respectivement.

Le modèle conceptuel proposé pour un ondulateur staggered multi-périodes comprend alors en résumé deux composants principaux d'un point de vue du fonctionnement du dispositif : un solénoïde supraconducteur de longueur L sol = 2.5 m et un assemblage translatable en horizontal d'arrangements staggered de pôles rectangulaires en matériau ferromagnétique doux de longueur L u ≈ 2 m incorporé dans le bore du solénoïde. L'ondulateur staggered multi-périodes ainsi constitué serait installé centré dans une section droite de longueur L ss = 5 m disponible dans l'anneau de stockage EBS. Pour la gamme de période accessible pour opération de la part du dispositif, l'accent est mis sur les valeurs à courte période λ u n dans la plage λ u n ∈ [8 mm, 16 mm] pour les énergies harmoniques fondamentales élevées résultantes E 1 n où n désigne l'un des nombreux arrangements individuels staggered qui composent l'ondulateur. L'intervalle approximatif attendu d'énergie de rayonnement fondamentale sur l'axe pour l'intervalle de période susmentionné est 11 keV ⪅ E 1 ⪅ 42 keV, résultant de l'application de l'équation [START_REF] Walker | Synchrotron Radiation[END_REF].

L'étude du dispositif est menée selon trois axes principaux qui sont sa conception et son fonctionnement magnétostatiques, son potentiel d'émission de rayonnement et son intégrabilité dans une maille d'anneau de stockage du type exploité par l'anneau EBS à l'ESRF de Grenoble, en France. Divers outils analytiques et numériques ont été utilisés dans l'étude, dont les plus importants sont les codes Radia [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Chubar | A Three-Dimensional Magnetostatics Computer Code for Insertion Devices[END_REF][START_REF] Chubar | Accurate and efficient computation of synchrotron radiation in the near field region[END_REF][START_REF] Elleaume | Computing 3D Magnetic Fields from Insertion Devices[END_REF], SRW (Synchrotron Radiation Workshop) [START_REF] Chubar | Wavefront Propagation Simulations for Beamlines and Experiments with "Synchrotron Radiation Workshop[END_REF][START_REF] Bowler | Wavefront Propagation[END_REF][START_REF] Chubar | Wavefront Calculations[END_REF][START_REF] Samoylova | Cross-Platform Wave Optics Software for XFEL Applications[END_REF], B2E [START_REF] Esrf | B2E A Software to Compute Synchrotron Radiation from Magnetic Field Data Version 1[END_REF] et MADX (Methodological Accelerator Design X ) [START_REF] Herr | Introduction to MAD-X[END_REF][START_REF] Sterbini | Introduction to MAD-X[END_REF][START_REF] Watts | Introduction to MAD-X for Beamlines[END_REF][START_REF] Iselin | The MAD Program[END_REF].

L'assemblage multi-périodes staggered réconcilie deux caractéristiques déterminantes : la possibilité de variation de période et d'aimantation des pôles des ondulateurs staggered par le champ solénoïdal B sol pour la génération du champs ondulateurs B z sur l'axe de ceux-ci. Ces deux capacités opérationnelles peuvent donc servir de mécanismes de réglage de l'énergie pour l'assemblage multi-périodes staggered. D'un point de vue opérationnel, une variation discrète de la valeur de période d'ondulateur est obtenue par une translation mécanique globale de l'ensemble de l'assemblage multi-périodes dans l'alésage du solénoïde le long de la direction horizontale transversale. Au cours de ce processus, l'arrangement polaire d'ondulateur staggered individuel n + 1 de période λ u n+1 est placé sur l'axe longitudinal du solénoïde et celui n de la période λ u n est simultanément retiré dudit axe et déplacé sur le côté. De cette façon, la période de l'assemblage multi-périodes staggered est réglée de la valeur λ u n à celle λ u n+1 par un incrément qui est le pas de période correspondante δλ u n = λ u n+1 -λ u n .

La possibilité de faire varier la période de l'ondulateur λ u remédie à l'accordabilité intrinsèquement faible des arrangements staggered individuels par rapport à celle présentée par des dispositifs à aimants permanents à période fixe λ u = const. [21, 24-26, 28-30, 89, 136, 161]. La faible accordabilité des ondulateurs staggered individuels est conditionnée par les champs de crête faibles B p n et les courtes périodes λ u n qui caractérisent l'assemblage multi-périodes staggered proposé. À cet égard, la séquence suivante de valeurs de champ crête optimisées B p opt n est obtenue pour des arrangements de pôles staggered individuels de valeurs entières de période correspondantes dans la plage λ u n ∈ [8 mm, 16 mm] après une optimisation multivariée : 0.41 [T] ⪅ B p opt n ⪅ 0.87 [T]. Ce dernier intervalle est atteint pour la plage du champ solénoïdal 0.70 [T] ⪅ B sol opt n ⪅ 0.87 [T] et détermine les paramètres géométriques optimaux communs aux distincts arrangements staggered de pièces polaires. Une valeur de gap g = 4 mm pour les ondulateurs staggered permet d'atténuer partiellement la petitesse relative des champs pic à courte période des arrangements staggered de pôles en ferromagnétique doux. Pour l'ondulateur n = 0 de période la plus courte parmi les valeurs de λ u considérées pour l'assemblage staggered multi-périodes, de λ u 0 = 8 mm, le champ crête B p devrait être théoriquement inférieur de 40.3 % par rapport à celui d'un ondulateur cryogénique à aimant permanent (Cryogenic Permanet Magnet Undulator, abrégé en CPMU en anglais) [START_REF] Chavanne | First Operational Experience with a Cryogenic Permanent Magnet Undulator at the ESRF[END_REF] fonctionnant à un gap minimal g cpmu min = 5 mm, avec des blocs magnétiques d'aimant permanent en composé de terre rare Praséodyme-Fer-Bore de champ rémanent B r = 1.39 T pris à température ambiante T = 273.15 K. Dans le même cadre, le champ de l'ondulateur staggered est attendu être inférieur de 48.14 % en considérant B r = 1.6 T pour le CPMU à sa température de fonctionnement cryogénique d'azote liquide LHe T LHe = 80 K.

En ce qui concerne la question de l'accordabilité adéquate, un critère en termes de séquençage en période entre ondulateurs individuels adjacents n, n + 1 de périodes respectives λ u n , λ u n+1 pour un accord ajusté continu inter-période de la première énergie harmonique sur l'axe E 1 est déterminé. Le critère prend en compte les performances magnétostatiques des ondulateurs individuels en termes de potentiel de champ crête du matériau polaire du staggered. Le matériau en question est le composé ternaire magnétiquement isotrope Vanadium Permendur (Fer-Cobalt-Vanadium), désigné FeCoV, de composition chimique 49Fe-49Co-2V. Du point de vue de son intérêt magnétique pour une structure d'ondulateur, ce matériau est un ferromagnétique doux d'induction magnétique de saturation dans la gamme de B sat ≈ 2.3 -2.4 T.

Pour la spécification du critère d'accordage inter-période (inter-arrangement de pôles staggered) continu en énergie fondamentale, les ondulateurs staggered individuels sont optimisés au préalable en termes de paramètres géométriques et électromagnétiques solénoïdaux (champ au centre du solénoïde B sol ) pour repousser au maximum la limite du champ crête atteignable B p n (λ u n ). Suite à l'application du critère d'accordage, un module unitaire symétrique multi-périodes staggered d'une séquence de période non triviale spécifique {λ u n=0, 1,..., 8 } dans l'intervalle 8 [mm] ≤ λ u n ≤ 16 [mm] et de longueur L tot ≈ 237 mm est spécifié. La commutation de période entre les valeurs de la séquence {λ u n }, combinée à l'accord du champ crête via le champ solénoïdal B p n (B sol n ) jusqu'à la valeur maximale optimisée du champ crête B p opt n pour chaque arrangement staggered, permet de construire une plage d'accord continu pour l'énergie de la première harmonique sur l'axe E 1 de 11.54 keV à 42.72 keV pour une énergie nominale de faisceau d'électrons E 0 = 6 GeV. Les courbes d'accordage (réglage) de brillance sont cependant modifiées à la suite de l'application du champ solénoïdal B sol . Ceci est dû aux variations en résultantes des tailles et divergences des faisceaux de photons Σ 0 m q et Σ ′ 0 m q respectivement. Il est observé que l'assemblage staggered multi-périodes peut atteindre une brillance plus élevée jusqu'à une augmentation maximale de 28.9 % pour l'ondulateur n = 6 de période λ u 6 ≈ 10.9 mm réglé pour fonctionner à son champ crête maximal (optimisé) correspondant [B p 6 ] max ≈ 0.61T pour un paramètre de déflexion résultant K 6 max ≈ 0.63 et énergie harmonique fondamentale sur l'axe [E 1 6 ] min = 26.256 keV. La comparaison sous-jacente est faite avec la brillance maximale atteinte par un ondulateur hybride à aimant permanent sous vide (CPMU) [START_REF] Sasaki | The Possibility for a Short-Period Hybrid Staggered Undulator[END_REF][START_REF] Zhou | Magnetic Field Optimization of a Novel Hybrid Permanent Undulator[END_REF][START_REF] Chang | Magnetic Design for a Staggered Hybrid Undulator[END_REF] de λ u CP M U = 17 mm fonctionnant à B p CP M U ≈ 1.18 T, K CP M U ≈ 1.89, [E 3 CP M U ] min = 21.827 keV. Ce gain de brillance est obtenu pour une densité de surface de puissance crête intégrée en énergie [dP/dS] 6 max ≈ 304.75 W/mm 2 , soit environ 29.4 % inférieure à celle de l'CPMU à 30 m du point source. Les brillances maximales pour les ondulateurs staggered de périodes extrémales λ u 0 = 8 mm, λ u 8 = 16 mm sont obtenues respectivement pour B p 0 max ≈ 0.41 T, E 1 0 min ≈ 40.82 keV et B p 8 ≈ 0.77 T, E 1 8 ≈ 12.89 keV et s'élèvent respectivement à ≈ 74.3 % et ≈ 77.2 % de la brillance maximale CPMU citée pour des densités de puissance crête relatives de ≈ 44.3 % et ≈ 76.9 % par rapport à celle de ce dernier.

Trois sous-variantes d'un assemblage ondulateur staggered à période variable sont considérées et présentées. Les deux premiers sont des dispositifs multi-ondulateurs (-périodes) composés respectivement de N = 9 (multi-période) et N = 2 (bi-période) arrangements de λ u n distincts avec n ∈ [0, N -1] dans la plage de période susmentionnée. Parmi les trois structures à période variable examinées, celle de N = 9 porte l'objet principal de l'étude, son module unitaire représentatif est donné dans la figure 3. Il illustre l'approche utilisée pour déterminer une séquence de périodes permettant la conception d'un assemblage staggered multi-période qui est continûment accordable sur une large plage de valeurs de première énergie harmonique E 1 . Il sert également à illustrer la performance en matière d'émission de rayonnement que l'on peut attendre d'un tel ondulateur.

Le second assemblage , bi-périodes avec N = 2, est dérivé du premier mais ne contient que seulement deux arrangements de pôles staggered, de deux valeurs correspondantes de période extrémales λ u 0 = 8 mm et λ u 1 ≈ 23.7 mm. Cet assemblage est considéré comme une alternative de structure staggered à l'ondulateur classique de châssis mécanique de type revolver [START_REF] Isoyama | Construction of a Multiundulator, Revolver No. 19, at the Photon Factory[END_REF][START_REF] Bizen | Development of in-vacuum revolver undulator[END_REF]. En tant que tel, il est destiné à fonctionner dans deux régimes radiatifs complémentaires : l'un d'une émission de rayonnement à haute énergie relativement monochromatique de faible accordabilité lorsque l'assemblage ondulateur staggered est accordé sur la courte période et l'autre d'une émission plus large en spectre et plus accordable de photons de basse énergie lorsque l'assemblage est ajusté sur la longue période. En lien avec ceci, cette dernière est spécifiée pour produire un paramètre de déflexion maximale correspondante K 1 max ≈ 2.2, choisie pour avoir un accordage en énergie de rayonnement adéquat entre les premières et troisième harmoniques.

Deux solénoïdes principaux distincts sont spécifiés pour les deux assemblages de N = {9, 2} ondulateurs, d'ouvertures transverses correspondantes large de rayon interne r int ≈ 160 mm pour N = 9 et r int ≈ 75 mm pour N = 2, pour une épaisseur radiale ∆r = r ext -r int = 3 mm dans les deux cas avec r ext le rayon externe des bobines. Les deux solénoïdes sont spécifiés en termes de performance électromagnétique selon le même schéma décrit en détails plus bas dans le cas du solénoïde large pour l'assemblage staggered de N = 9.

Le troisième schéma d'ondulateur staggered à période variable étudié en termes de génération de séquence discrète de période variable {λ u n } est considéré dans le cadre de l'ondulateur à gap inhomogène segmenté. Dans ce cadre, un seul arrangement polaire sur l'axe du solénoïde est envisagé pour fonctionner à une énergie fixe de première harmonique E 1 pour des segments ondulateurs individuels de différentes périodes λ u n assemblés l'un après l'autre le long dudit axe. La constance de l'énergie de la première harmonique parmi les segments qui génèrent la séquence de période {λ u n } le long de l'axe longitudinal du dispositif est alors conditionnée par le profil longitudinal de gap prédéterminé g(y) ̸ = const. Ce dernier est adapté à la forme symétrique parabolique de la fonction bêta verticale le long de la section droite β z (y) et de là à la taille verticale locale du faisceau électronique en y, σ z (y). Ainsi, le profil de gap se traduit en une séquence discrète de gap variable correspondante {g u n } qui évolue conjointement avec λ u n le long dudit axe du segment n au segment n + 1 de manière à assurer

E 1 n = E 1 n+1 .
L'enroulement de fil pour le bobinage du solénoïde principal qui est envisagé pour l'assemblage staggered multi-périodes doit être en filament de fils supraconducteurs de basse température de type 2 (Low-Temperature Superconductor, abrégé en LTS en anglais) d'alliage binaire ductile Niobyome-Titane (NbTi) [START_REF] Godeke | Interlaboratory Comparisons of NbTi Critical Current Measurements[END_REF][START_REF] Wilson | Superconducting Materials for Magnets[END_REF] de seconde (haute) valeur de champ critique B c 2 ≈ 14.5 T [START_REF] Bottura | A Practical Fit for the Critical Surface of NbTi[END_REF]. En tant que tel, il est envisagé de fonctionner dans un environnement cryogénique à hélium liquide (LHe) de point d'ébullition T = 4.2 K.

Le solénoïde principal est spécifié être de rayons externe et interne respectifs r ext ≈ 163 mm, r int ≈ 160 mm pour l'épaisseur de bobine résultante mentionnée plus haut ∆r = r ext -r int = 3 mm. Les tolérances sur les rayons du solénoïde sont déterminées par l'impact des erreurs localisées de valeur de rayon (erreurs radiales) sur l'erreur de phase RMS [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF][START_REF] Park | Tapered Helical Undulator System for High Efficiency Energy Extraction from a High Brightness Electron Beam[END_REF][START_REF] Tanaka | Universal Representation of Undulator Phase Errors[END_REF] σ ϕ nominale (d'arrière-plan) de l'ondulateur staggered de λ u n=8 = 16 mm. σ ϕ est définie par l'équation [START_REF]7-GeV Advanced Photon Source Conceptual[END_REF] :

σ ϕ = 1 N pole N pole r=1 (rπ -ϕ(y r )) 2 , (9) 
où N pole est le nombre des blocs magnétiques de l'élément d'insertion, ϕ(y) est la phase optique évaluée aux positions longitudinales y r , repérées par l'indice r, des centres des blocs magnétiques de l'ondulateur, la figure 1. La méthodologie de la considération de l'erreur de phase RMS est utilisée pour représenter des erreurs de champ ondulateur B z indésirables de nature aléatoire qui pourraient provenir par exemple de variations d'espacement ou d'orientation des périodes individuels de l'élément d'insertion et/ou de magnitude des vecteurs d'aimantation des éléments générateurs de champ (blocs magnétiques représentés par des pôles magnétisés ou aimants permanents). L'impact de l'erreur de phase RMS σ ϕ sur la qualité du rayonnement émis par l'élément d'insertion est quantifié par la réduction d'un facteur de exp -m 2 σ 2 ϕ du flux spectral angulaire Φ m de l'harmonique m. Cet impact est jugé négligeable au vue de la valeur de σ ϕ obtenue, σ ϕ ⪅ 0.02 • , sous l'application d'erreurs radiales sur le solénoïde principal dans une plage relative symétrique de 1.5 % autour de la valeur nominale des rayons considérés. L'exigence numérique pour σ ϕ dépend de l'opération (nombre harmonique n comme illustré) mais est généralement considérable au voisinage de σ ϕ < 3 • . La petitesse de la valeur de σ ϕ est interprétée comme étant plus indicative du bruit numérique que significative d'un point de vue physique. Par conséquent, la dépendance de l'erreur de phase aux imperfections géométriques du solénoïde est considérée comme négligeable. L'erreur relative correspondante sur le champ solénoïdal central par rapport au champ de la bobine d'enroulement parfait est inférieure à 0.02 % pour l'erreur radiale maximale considérée δr/r = 1.5 % au niveau des deux rayons du solénoïde, interne r int et externe r ext .

Les dimensions transversales du solénoïde spécifiées offrent suffisamment d'espace pour les neuf ondulateurs individuels de l'assemblage staggered multi-périodes, ce qui permet leur translation pour le réglage de l'énergie par commutation de période. Aussi pour la réalisation de ce procédé est prévue une marge de sécurité en espacement transversal minimal d s min = 10 mm comme indiqué dans la figure 4.
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Figure 4 : Vue de face de la structure fonctionnelle principale du concept de l'assemblage multipériodes d'ondulateur staggered à période variable proposé montrant deux ondulateurs individuels d'arrangements polaires en bleu clair et violet parmi plusieurs installés dans le bore du bobinage du solénoïde schématisé en bleu clair (les plaques de support pour les ondulateurs sont retirées), avec les principaux paramètres définis dans le texte. La surface périphérique de celui-ci s'appuie radialement de manière successive dans un sens dirigé vers le centre du solénoïde sur les éléments de support mécanique, vide cryogénique et écrantage thermique schématisés.

La borne inférieure d s min de l'espacement variable d s ∈ {d s min , d s min + w tot /2} indiqué dans les figures 3 and 4 est naturellement définie comme la séparation entre le côté externe de l'arrangement polaire staggered externe (premier ou dernier de numéro n = {0, N -1} dans un sens horizontal au sein de la séquence {n, n ∈ [0, N -1]} dans l'assemblage multi-périodes) et la surface interne du bobinage du solénoïde principal en position de commutation latérale maximale de l'assemblage staggered multi-périodes, quand celui-ci est accordé en période 4, cette marge serait assurée après la provision au niveau de la paroi interne du solénoïde principal d'espace supplémentaire qui serait occupé en circonférence par des couches fonctionnelles d'ingénierie de solénoïde supraconducteur. Ces dernières sont des couches de vide cryogénique, de blindage thermique et de support mécanique interne du bobinage, en acier inoxydable comme indiqué dans la figure 4. Pour la spécification finale du rayon interne r int du solénoïde principal dont la valeur prend en compte les épaisseurs radiales de ces éléments, ces dernières sont choisies comme 10 mm pour les compartiments de vide cryogénique ainsi que le support interne en inox du solénoïde et 5 mm pour l'écran thermique venant s'intercaler entre les deux sections de vide, la figure 4. Ces couches servent à répondre à des exigences techniques typiques de solénoïdes et ondulateurs supraconducteurs qui s'expriment notamment en termes d'un enjeu d'atténuation des risques de transition (quench) supraconducteur pour assurer la stabilité opérationnelle des filaments supraconducteurs du fil de bobinage par rapport à la capacité du matériau du fil en termes de paramètres critiques (champ et densité de courant critiques B crit et J crit ).

λ u n à la valeur extrémale correspondante, c-à-d λ u n = {λ u 0 , λ u N -1 } = {[λ u n ] min , [λ u n ] max }. Comme indiqué dans la figure
Dans les simulations le solénoïde principal spécifié avec les paramètres discutés plus haut est démontré comme étant en mesure de fournir l'intervalle de valeurs de champ solénoïdal requise pour l'aimantation des individuels ondulateurs staggered en pôles de FeCoV et la génération conséquente des champs ondulateurs sur l'axe B z n . La marge de sécurité opérationnelle en valeur de courant est de 30 % définie par rapport à la courbe de densité de courant critique J crit du supraconducteur NbTi en fonction du champ solénoïdal au niveau de la surface interne du bobinage B y srf , J crit (B y srf , T = 4.2 K). L'hélium liquide est considéré comme le fluide cryogénique pour l'environnement d'opération de la bobine solénoïdale.

Les composants supplémentaires visant à améliorer des aspects magnétiques de l'assemblage staggered multi-périodes liés à la fonctionnalité et à l'intégrabilité de l'ondulateur sont discutés et évalués à différents niveaux de détails. Ces composants comprennent des moyens électromagnétiques actifs que sont des bobines solénoïdales de compensation (correcteurs ou trim coils en anglais) et magnétique passif qui se présente sous la forme d'un circuit de blindage magnétique.

Les bobines de compensation correctrices sont au nombre de deux et sont disposées symétriquement de part et d'autre du centre longitudinal du solénoïde principal et concentriquement avec celui ci, aux extrémités longitudinales de ce dernier. Ces correcteurs sont spécifiés en tant que résultat du travail d'un algorithme d'optimisation fonctionnelle multivariée en fonction de paramètres géométriques et électromagnétiques (densité de courant j). Ceci mène à la maximisation de l'homogénéité longitudinale du champ longitudinal du solénoïde relative à la valeur du champ central B sol . En guise d'exemple d'illustration de la performance des correcteurs, l'homogénéisation du champ est faite par rapport à la valeur de champ solénoïdal optimal B sol = 0.87 T qui maximise le champ pic B p 0 de l'ondulateur staggered de période minimale (n = 0) de λ u n=0 = 8 mm.

En ce qui concerne le circuit de blindage magnétique, celui-ci est spécifié dans l'environnement de simulation en matériau ferromagnétique. Il est présenté sommairement en termes d'effet de compensation du champ de fuite (stray field en anglais) du solénoïde principal qui se présente aux extrémités de celui-ci. Le champ de fuite est plus précisément considéré comme étant le champ qui est établi en dehors du bord longitudinal du solénoïde sur une certaine étendue longitudinale et étant en tant que tel dans le voisinage éventuel d'équipements (aimants) adjacents de la maille magnétique de l'accélérateur en amont et en aval de la section droite d'installation de l'ondulateur staggered. Cette disposition relative présente alors un possible risque d'interférence ou diaphonie magnétique sur le fonctionnement de ces équipements (crosstalk en anglais) à mitiger. Un matériau ferromagnétique adéquat d'un point de vue pratique pour la fabrication du circuit de blindage magnétique en termes de coût serait le fer doux. Ce dernier est en fait un type d'acier doux en termes de composition chimique.

Le résultat précis de la recherche sur les moyens d'homogénéisation du champ solénoïdal pour l'exemple mentionné plus haut est une paire de bobines correctrices fonctionnant comme le solénoïde principal dans un domaine de valeurs de courants j supraconducteurs avec des paramètres géométriques pour la bobine individuelle de longueur L corr ≈ 52.45 mm et une épaisseur radiale δr corr ≈ 11.11 mm ≈ 3.7∆ r , en termes de celle du solénoïde principal qui fournit l'aimantation des arrangements polaires ∆r. Une homogénéité longitudinale de champ solénoïdal résultante de σ δBy /B sol ≈ 1.10 -2 est obtenue suite à la spécification des correcteurs pour les paramètres susdits. Celle-ci représente une amélioration d'un facteur approximatif de 11.9 par rapport à l'implémentation seule du solénoïde principal sans correcteurs, sur une plage longitudinale correspondant à la longueur approximative moyenne projetée L u ≈ 2 m des arrangements polaires individuels qui constituent l'assemblage ondulateur staggered.

Le circuit de blindage magnétique quant à lui est composé d'un corps cylindrique creux disposé en longitudinal et partiellement fermé de part et d'autre par des plaques circulaires (ou disques) d'extrémité qui sont pourvues d'ouvertures transversales centrées sur l'axe, de surface rectangulaire, prévues pour le passage physique en entrée et sortie du faisceau d'électrons à travers l'assemblage staggered multi-périodes. Le blindage ainsi constitué renferme radialement et en longitudinal l'ensemble de bobinages prévus pour la magnétisation des arrangements polaires et l'homogénéisation du champ solénoïdal nécessaire , l'ensemble en question étant constitué par le solénoïde principal équipé de ses deux bobines correctrices concentriques par rapport à ce dernier dont les paramètres respectifs sont discutés plus haut. L'effet bénéfique du circuit magnétique sur le confinement du champ errant parasite solénoïdal est démontré à titre d'exemple pour un ensemble de paramètres dimensionnels dont les principaux sont la longueur l m c ≈ 2853.22 mm, les rayons interne r m c 1 = 195.56 mm et externe r m c 2 = 209.66 mm ainsi que l'épaisseur longitudinale de plaque d'extrémité l ′ m c = 56.42 mm. Ce choix de paramètres est inspiré de la valeur de l'espacement transverse minimal d s min = 10 mm définie dans la figure 4 entre le module d'arrangements polaires et le solénoïdal principal car il donne lieu au même espacement radial entre la surface interne du blindage magnétique et celle externe des bobines correctrices. Le choix des paramètres du blindage magnétique permet d'obtenir une première réduction prometteuse de la valeur RMS dudit champ de fuite longitudinal d'environ 64.7 % sur une étendue en dehors du bord du circuit de blindage égal à 10 % de la longueur de celui-ci.

L'optimisation des intégrales première I 1 z et seconde I 2 z du champ ondulateur sur l'axe B z (y) définies par les équations [START_REF] Brown | Wiggler and Undulator Magnets -A Review[END_REF] and [START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF] respectivement comme :

I 1 z = B z (y)dy, (10) 
et :

I 2 z = y -∞ B z (ỹd)ỹ dy, (11) 
est réalisée sur l'arrangement staggered de période maximale λ u 8 = 16 mm fonctionnant à champ pic B p 8 max = 0.87 T. Cette procédure aboutit à un rapport de longueur de pôle externe sur période α p ext opt = 0.298 et des densités de courant de bobine correctrice J 1 corr , J 2 corr = ±298.791. La minimisation desdites intégrales de champ pour un arrangement polaire staggered de courte longueur de 25 périodes de période λ u 8 = 16 mm entraîne une réduction du décalage en coordonnée de sortie horizontale (offset en anglais) de ≈ 56.13 % par rapport à la valeur correspondante initiale obtenue avec le cité arrangement staggered au préalable de l'application (taillage) de pièces polaires externes, alimentation de bobines correctrices et fourniture de blindage magnétique. Ce décalage se présenterait comme l'identifié principal défi pour la stabilité en position de la trajectoire du faisceau électronique, les décalages en position verticale et en angle dans les deux plans étant bien dans les tolérances calculées pour les paramètres de faisceau opérationnels envisagés. En vue de la satisfaction partielle du résultat obtenu, une correction supplémentaire du résidu de décalage devrait être probablement assurée par une architecture de correcteurs plus compliquée que l'étudiée paire de bobines concentriques singulières positionnées aux deux extrémités du solénoïde principal. Une variante d'ondulateur hybride staggered utilisant des blocs rectangulaires d'aimants permanents en NdFeB de champ rémanent B r = 1.2 T est considérée comme étant peu réaliste d'un point de vue technologique. L'indication principale pour ceci est la valeur typique calculée de l'excitation magnétique longitudinale H y due au champ solénoïdal B y sol . H y , de sens opposé à l'aimantation de l'aimant M y , est étudiée dans la partie centrale de l'aimant central du dispositif. En effet, la valeur du champ magnétique longitudinal H y est évaluée à ≈ 76.3 % de la coercitivité intrinsèque H i caractéristique du matériau de terre rare constitutif des aimants permanents utilisés pour les CPMU de l'ESRF. Une seconde indication pourrait être observée avec précaution par connaissance du logiciel pour conclure sur la perspective magnétique défavorable d'un modèle d'ondulateur staggered hybride. Celle-ci est la valeur δM y /M y 0 = 8.5 % de la démagnétisation relative obtenue dans la simulation dudit aimant d'étude par rapport à la valeur nominale (rémanente) M y 0 = M r = 1.2 T. Cette valeur de δM y /M y 0 s'avère être sous-estimée de manière trompeuse en raison de la courbe d'aimantation du matériau d'aimant qui est implémentée et utilisée dans le logiciel. La courbe en question est en fait linéarisée par extrapolation en dehors de sa propre région linéaire et en tant que telle elle est employée en dehors de sa plage de validité formelle dans la simulation.

La mise en oeuvre d'un solénoïde de longueur L sol = 2.5 m à champ (central) B sol élevé, implémenté dans une cellule de l'EBS au centre d'une section droite de longueur L ss = 5 m, a été simulée avec l'outil de dynamique faisceau MADX [START_REF] Herr | Introduction to MAD-X[END_REF][START_REF] Sterbini | Introduction to MAD-X[END_REF][START_REF] Watts | Introduction to MAD-X for Beamlines[END_REF][START_REF] Iselin | The MAD Program[END_REF][START_REF] Grote | MAD-X-an Upgrade from MAD8[END_REF] et en particulier la librairie de suivi de particules PTC (Particle Tracking Code) [START_REF] Herr | CAS Course on Optics Design[END_REF][START_REF] Herr | A MAD-X primer[END_REF][START_REF] Herr | A MAD-X Primer[END_REF] dans le cadre d'un modèle numérique réaliste de la maille magnétique de l'anneau de stockage. Les valeurs de B sol considérées sont comprises dans un intervalle de 1 T à environ 10 T. Celui-ci correspond à un intervalle de valeurs du paramètre de force caractéristique de la focalisation du solénoïde ou champ de solénoïde normalisé k [rad.m -1 ] de 0.025 à 0.25. k correspond à l'inverse de la fonction bétatronique de Larmor [START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF] et sa norme est définie par :

k = qB sol 2p 0 . ( 12 
)
Dans l'équation [START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF] q = e est le module de la charge de l'électron et p 0 la quantité de mouvement (longitudinale) de la particule de référence, d'énergie égale à celle nominale du faisceau électronique E 0 , avec la relation suivante entre les deux grandeurs :

p 0 = 1 - 1 γ 2 y0 E 0 c , (13) 
où c est la célérité de la lumière et γ y0 le facteur de Lorentz correspondant pour le mouvement longitudinal défini plus haut, reliant la particule de référence et l'observateur. D'un point de vue physique, la focalisation du solénoïde est due à la variation radiale linéaire en premier ordre du champ radial B r aux extrémités longitudinales du dispositif (fringe field en anglais) qui dans l'approximation sous-jacente s'exprime comme :

B r = - r 2 
dB y dy . (14) 
Dans l'environnement de simulation le solénoïde est pris en charge en tant qu'élément magnétique pour inclusion dans la maille à travers les paramètres de longueur L sol = 2.5 m et de force k de l'équation [START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF]. Ceci est fait dans le cadre d'un modèle magnétique linéaire prenant en compte le champ radial B r de l'équation [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF] aux extremités du solénoïde ainsi que le champ longitudinal dans l'ouverture de celui-ci sous la forme uniforme en longitudinal B y (y) = B sol . Ce modèle est opéré dans l'approximation dite de hard edge en anglais. Celle-ci considère la région d'application du champ B r comme étant confinée sur une étendue longitudinale infinitésimale aux extrémités d'entrée et sortie du solénoïde. Suite à l'intégration de ce dernier dans la maille EBS, un schéma technique correctif adéquat a été défini pour adresser les effets de focalisation et de couplage transverse que le champ B sol du solénoïde intégré exerce sur le faisceau d'électrons, lesquels effets peuvent compromettre la stabilité du stockage de ce dernier dans l'anneau.

Le procédé pour compenser l'influence décrite du solénoïde fait appel à l'exploitation d'une vingtaine d'électroaimants existants dans la maille qui sont situées dans les parties amont et aval de la cellule d'installation du solénoïde par rapport à la section droite abritant ce-dernier (prévue pour l'ondulateur staggered multi-périodes). Ces aimants sont des quadrupôles de focalisation/défocalisation normaux qui sont utilisés de manière conjointe avec des composantes de champ magnétique quadrupolaires tournées (skew quadrupole en anglais) fournies par des bobines correctrices installées sur des aimants sextupolaires (sextupôles). Les aimants sont répartis en deux groupes de six éléments (aimants) normaux et quatre éléments (composantes de champ) tournés en amont et en aval de la section droite avec le solénoïde. La plage de réglage sur les gradients quadrupolaires normaux est maintenue dans les spécifications techniques à 5 % et à 20 % de leurs valeurs nominales pour l'adaptation bêtatronique (beta-matching en anglais) du solénoïde à la maille de l'anneau et la compensation du couplage bêtatronique induit par le solénoïde sur le faisceau électronique.

La perturbation finale sur l'optique faisceau en termes de battement bêtatronique (beta-beating en anglais) est maintenue inférieure au battement RMS nominal de la maille autour de l'anneau qui est de 1 %. En ce qui concerne l'effet de la fuite résiduelle des fonctions bétatroniques croisées β 12 , β 21 caractérisant le couplage et de la fonction de dispersion verticale η z à l'extérieur de l'insertion du solénoïde dans l'anneau, celui-ci s'exprime dans une augmentation de l'émittance d'équilibre verticale ϵ z allant de 0.039 pm.rad à 1.520 pm.rad par rapport à celle générée par la distribution nominale d'erreurs en composantes quadrupolaires tournées du modèle d'erreurs de couplage de la maille EBS (sans solénoïde intégré) pour des champs solénoïdaux compris dans un intervalle de valeurs de 1 à 10 T.

Le projet exposé de design conceptuel d'ondulateur staggered à multi-périodes pour un anneau de stockage à faible émittance ouvre la perspective à diverses recherches supplémentaires sur la conception de celui-ci qui se rapportent à la caractérisation plus complète de ce dispositif et aux améliorations possibles de la conception. Une première perspective serait la recherche de valeurs de champs crête d'ondulateurs plus élevés B p à courte période λ u pour une valeur plus élevée de paramètre de déflexion K, ce qui serait un atout pour un meilleur accordage de l'énergie d'émission de rayonnement synchrotron par variation du champ crête B p . Cette perspective pourrait se réaliser par l'utilisation de matériaux magnétiques complémentaires qui seraient compatibles pour la constitution d'arrangements staggered hybrides avec des blocs de supraconducteurs à haute température critique. Par exemple, l'utilisation de tels matériaux fonctionnant sur le principe du piégeage de champ (field trapping en anglais) résulterait en un fonctionnement potentiel en l'ainsi dénommé mode persistant, sans besoin de champ solénoïdal B sol appliqué constamment pour le maintien du champ ondulateur B z , une fois le champ B sol piégé dans les blocs supraconducteurs et utilisé pour l'ajustement du champ crête B p à la valeur souhaitée.

Une seconde perspective serait d'étudier l'influence de la petitesse du gap ondulateur sur l'impédance de celui-ci et les implications pour le faisceau d'électrons. Ceci est un exemple de voie d'attaque qui permettrait de mieux évaluer les avantages et les défis de la mise en service d'un tel dispositif d'insertion. Une phase de prototypage est une perspective majeure visant à construire une première version, probablement de courte longueur de plusieurs périodes ou modules unitaires de périodes λ u n de l'ondulateur staggered multi-périodes. Cette phase nécessiterait naturellement en premier lieu l'acquisition d'un solénoïde supraconducteur avec une paire de bobines correctrices supraconductrices en Niobyome-Titane (NbTi) et l'équipement cryogénique annexe, nécessaire pour maintenir effectivement le matériau supraconducteur du fil des bobinages en régime supraconducteur, selon les spécifications de conception élaborées. D'un point de vue budgétaire, cela devrait être la principale contribution au coût du projet de prototypage en raison de la complexité d'ingénierie impliquée par l'opération en milieu cryogénique.

Une fois le matériel et équipements nécessaires pour la construction du prototype procurés, le travail en laboratoire doit viser à spécifier la méthode d'assemblage la plus adéquate pour la structure de l'assemblage modulaire de pôles à l'intérieur du solénoïde ainsi qu'à identifier une configuration mécanique appropriée pour la translation de l'assemblage multi-périodes dans l'alésage du solénoïde, ce qui est fondamental pour le dispositif d'un point de vue fonctionnel car permettant d'obtenir le principal avantage opérationnel de l'accordabilité augmentée de l'énergie fondamentale E 1 par la variation de période λ u n . En lien avec ceci, pour la fabrication du motif structurel de distribution polaire pour le module proposé d'ondulateur staggered multi-périodes en transverse, l'emploi de technologies d'impression 3D pourrait être envisagé [START_REF] Bickel | Welcome to Computational Aspects of Digital Fabrication 3D Printing[END_REF][START_REF] André | From Additive Manufacturing to 3d/4d Printing Breakthrough Innovations-Programmable Material[END_REF]. De cette façon, les pôles pourraient être fabriqués dans leurs positions respectives au sein du module ondulateur de manière additive où les couches de matériaux successives sont agrégées en vertical par opposition à tout processus de soustraction de matériau impliquant la coupe ou d'autres procédures similaires. Le prototype aiderait également à déterminer la configuration ou système de mesure de champ magnétique appropriée et à effectuer avec le système des mesures sur les performances magnétiques de l'ondulateur [START_REF] Elleaume | Specificity of Magnetic Measurement for Insertion Devices[END_REF] en termes de champ crête, distribution détaillée des champs ondulateur et solénoïdal, corrections des intégrales et compensation du champ de fuite par les moyens spécifiés.

Chapitre 1

Introduction

Synchrotrons are large-scale circular-accelerator facilities. They are used for the acceleration of particles to high energies of the order of several hundred GeV in colliders or as storage rings in which the particle species circulates at a fixed energy in a vacuum chamber. A synchrotron is composed of a periodic array of magnet types which can be electromagnets or permanent magnets as in the case of the Extremely Brilliant Source (EBS) at the ESRF. The array of magnets sets and confines an electron beam on a more or less circular (toroidal) periodic orbit. These electromagnets generate a specific multipolar magnetic-field pattern via a predetermined magnetic pole-coil disposition around a central aperture for the passage of the vacuum chamber carrying the circulating electron beam. These field patterns act on the particle beam that traverses the aperture of the corresponding magnets by means of the resulting Laplace magnetic force. The magnets make up the so-called magnetic lattice of the accelerator which is its magnetic arrangement from a beam-optics perspective. For example, the bending of the electron beam's path for the establishment of the closed circular trajectory of beam is done by so-called bending (dipole) magnets, the focusing of the electron distribution around the reference (design) orbit for maintaining it in a predefined envelope in the vacuum chamber by quadrupole magnets, etc. Prior to being constrained in this manner on a multi-turn closed orbit, the electrons comprising the electron beam are produced by a particle source and accelerated by a booster and/or linac (linear accelerator) sub-accelerator system.

Storage rings are used for the generation of high-energy photon beams of the order of several keV or more (X-ray domain situated roughly from 100 eV to 100 keV). The photon beams are produced via the tangent emission of synchrotron radiation from the circulating electron beams of typical ultrarelativistic energies of the order of several GeV (6 GeV at the ESRF) and are used in multiple techniques for the probing of matter at the atom-size scale or beyond. Synchrotron radiation is the electromagnetic radiation emitted by charged particles experiencing acceleration imparted to them by a magnetic field, as stipulated by the laws of electromagnetic theory. The (centripetal) acceleration can be brought to bear by a change in the particles' travel direction under the guidance of a (perpendicular) magnetic field such as that of dipole magnets defining the curved reference orbit in a storage ring.

The first generation of synchrotrons were machines in which the radiation was considered as a side result, the second generation that followed using mainly the radiation generated by dipoles in a dedicated manner. The third-generation synchrotron sources facilities currently dominating in numbers the scientific community rely mostly on specialized magnetic devices called insertion devices installed in straight sections incorporated for the purpose in the magnetic lattices of the accelerators.

Insertion devices are special types of magnetic devices composed of a periodic series of identical magnetic elements of periodically alternating field direction [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Bahrdt | Insertion Devices[END_REF]. These elements are typically permanent magnet blocks or electromagnetic coils wound around soft ferromagnetic poles [START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF].

They alternate above and below the electron beam's trajectory along the straight section so as to constitute a magnetic gap in the transverse vertical plane with respect to the design orbit of the machine. In this gap a longitudinally periodic transverse magnetic field component of sinusoidal form results from the periodic magnetic assembly of the insertion device along the longitudinal axis of the device [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Bahrdt | Insertion Devices[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF]. Such a series of magnetic elements spans a typical length L u on the order of the meter (L u ∼ O(1 m)) along which it communicates an oscillatory trajectory in the transverse horizontal plane to the electron beam passing through the magnetic gap of the device [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Elleaume | Undulators for Free Electron Lasers[END_REF][START_REF] Levichev | Undulators and Other Insertion Devices[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF]. The successive oscillations of the beam then serve to enhance the intensity of the emitted synchrotron photon flux to multiple orders of magnitude with respect to the single trajectory curve of bending magnets [1, 7, 13-15, 57, 88, 90]. Insertion devices are conditionally subdivided into undulators and wigglers. The two categories are distinguished by the spectral properties of their synchrotron radiation output. Undulators tend to exploit interference effects more amply and concentrate the photon flux emitted around particular harmonic frequencies in the spectral domain with intensity values higher by several orders of magnitude than those achieved by wigglers over a wider spectral range.

Storage rings are characterized among other parameters by the lowest values achieved for the (equilibrium) emittances ϵ x z in the two transverse planes, horizontal and vertical, during successful storage of the electron beam (from several hours upto a day). The emittance gives the occupancy of the beam electrons (beam size) in the respective plane's phase space (q, p q ) where q = {x, z} and p q is the particle's transverse momentum component in the given plane. All planar circular machines are horizontally bending and as such they operate with flat electron beams given by ϵ z ≪ ϵ x for the reason mentioned in the preceding paragraph. The minimum vertical emittance value is dictated by the photon emission and is normally inferiour to the so-called diffraction-limited emittance of single-electron radiation emission. Field errors in magnets can nonetheless contribute to the increase (blow-up) of vertical emittance ϵ z .

The brilliance is a quantity that characterizes the photon flux density and coherence of synchrotron radiation sources such as insertion devices, hence the quality of the radiation output, and which one thus endeavors to increase by all means readily available to the task. Third-generation machines have ϵ x of the order of some nm.rad. For example the old ESRF ring had a horizontal emittance ϵ x = 4 nm.rad. In this respect, the smallness of the electron beam emittances and in particular that achieved for the horizontal one ϵ x , due to its major room for reduction in a horizontal-orbit storage ring by improved ring lattice cell design before reaching the limit given by the diffraction-limited emittance, is important since the brilliance of the generated synchrotron radiation is inversely proportional to ϵ x z .

Multiple low-emittance storage rings either adapted from previous 3rd-generation machines or constructed as new (green-field) projects are to come into play progressively, already spearheaded by the ESRF EBS, successfully commissioned in the beginning of 2020 with the first user mode operated in the summer of the mentioned year. The new EBS has been reconstructed following the dismantling of the now former ESRF ring, with a new lattice model, passing from the so-called double-bend achromat (DBA) cell to the new seven-bend one (Raimondi cell). This new magnetic configuration permits the reduction of the horizontal emittance from the given value ϵ x = 4 nm.rad for the old ESRF third-generation machine to ϵ x = 132 pm.rad. This represents an improvement factor of about 30 which is also translated in the final brilliance value. The feasibility of an undulator based on a staggered-array design defined in the next paragraph thus requires the study of the beam dynamics in the undulator's constituent solenoid in terms of its focusing and transverse-coupling effect on the electron beam. This study determines the conditions and/or means for the solenoid's potential implementation in a stable periodic beam transport line such as storage ring without major perturbation to its operation.

Staggered undulators are a category of relatively exotic insertion devices (ID) of the electromagnetic type, initially proposed and built in the 1980s and 90s for FEL environments and later envisaged as a possible storage ring synchrotron radiation source in the early 2000s. Unlike classical electromagnetic undulators based on wound normal or superconducting wire or devices based on permanent-magnet technology, the staggered undulator employs a soft-ferromagnetic array of pole pieces of alternating disposition with respect to the longitudinal axis of the device. The pole array is embedded in the bore of a current-carrying solenoid as illustrated in Fig. 1.1. The solenoid can be either normal-or super-conducting. The solenoid's function is to magnetize the soft pole material of choice for the staggered array and from there geometrically derive an on-axis periodic undulator field. Typical peak field values attainable in a staggered undulator, although similar in the short-period range to those of an NdFeB permanent-magnet undulator for pole-block materials of sufficiently high performance, remain lower than the ones established in conventional in-vacuum devices. This results in a lower deflection parameter K particularly at short-period values λ u since K ∝ B p (λ u )λ u and B p (λ u ) decreases monotonously with the period λ u . This predisposes one to expect a (monochromatic) radiation spectrum dominated by a high-energy first (fundamental) harmonic peak with little flux production on higher harmonics.

The staggered-array structure is considered suitable for the specification of a variable-period undulator assembly operating on a range of short-period values λ u n . Short periods are difficult to implement technically with other technological solutions for undulator design such as those based on the permanent-magnet paradigm for reasons of relative structural complexity and magnet-block issues encountered at the reduced overall dimensions corresponding to short λ u . Variable-period undulator designs based on permanent magnets and staggered poles have been put forward with the former one being pushed to a prototype stage [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF][START_REF] Davidyuk | Magnetic and Mechanical Design of Large-Aperture Variable-Period Permanent Magnet Undulator[END_REF][START_REF] Vinokurov | Variable-Period Permanent Magnet Undulators[END_REF][START_REF] Mun | Variable-period permanent-magnet helical undulator[END_REF][START_REF] Davidyuk | Results of Test of Prototype of Variable Period Undulator[END_REF][START_REF] Davidyuk | Modeling and Designing of Variable-Period and Variable-Pole-Number Undulator[END_REF]. In these designs a single undulator array sees its period value λ u vary continuously, either via exploitation of the repulsive forces between permanent magnet blocks along the longitudinal axis Oy of the device in the first case or by a rather complex mechanical pantograph system in the staggered one. In contrast to this single-array approach for a continuous variation of the period value, period variation in the variable-period staggered-array undulator design proposed in this manuscript is achieved by assembling multiple arrays of different periods in the same solenoid bore. The resulting assembly is then subject as a whole to a horizontal transverse translation with respect to the arrays' longitudinal axes. This operation achieves the switching (tuning) of the staggered-array assembly to a particular period value λ u n via the placement of the corresponding array n on the solenoid's longitudinal axis, hence defined as that of the insertion device. The solenoid is therefore designed for sufficient mechanical and electromagnetic capacity in the superconducting current domain. The former implies the solenoid is to be able to adequately house the whole of the individual arrays and assure the necessary space for the monolithic horizontal translation of the constituted multi-period (array) staggered undulator assembly in the coil bore. The superconducting capability is assured by the solenoid's capability to function in a regime of cryogenic stability avoiding a quench when carrying current densities j sol sufficient to reach pole material saturation for maximizing the peak field and deflection parameter K n of the array n tuned (switched) on-axis, for all n.

Another major distinctive feature of a staggered-array undulator with respect to other insertion devices is the inherent presence of the longitudinal solenoid field component in addition to the derived vertical undulator component of the staggered array. This feature is normally considered problematic to the realization of a storage-ring operated staggered undulator. However the interest in the staggered-array design is of renewed viability in the context of low-emittance storage ring synchrotron light sources of the 4th generation. The new generation of synchrotrons are expected to be more robust to the integration of the staggered-array solenoid needed for the undulator to function in a straight section provided in the ring's magnetic lattice. This is due to the fact that lower emittance implies a more compact electron beam distribution in transverse phase space. Such a distribution has smaller RMS coordinate and angular offsets with respect to the reference (solenoid) axis and is in improved paraxial conditions, seeing smaller forces from the radial and longitudinal field components on entry and inside the solenoid respectively.

The 3-year PhD project described in this manuscript was conducted at the IDM (Insertion Devices and Magnets) laboratory of the ASD (Accelerator and Source Division) at the ESRF. The project deals with the conceptual design of a multi-period staggered array undulator for a low-emittance storage ring light source.

This PhD manuscript is organized as follows: Chap. 2 introduces the basic physics of synchrotron radiation and insertion devices used for its production. Insertion devices are treated from the standpoint of the basic parameters that characterize and quantify ID performance in terms of magnetostatic and radiation quality such as deflection parameter K, first and second field integrals I 1 , I 2 , phase error σ ϕ , on-axis angle-integrated flux [Φ ′ m /(δλ/λ)] and brilliance B m . Chapter 3 presents the multi-period approach for period variation as applied to the staggeredundulator structure. The requirement on the array-period switching for an adjusted continuous tuning range in on-axis first-harmonic energy is formulated with individual-array geometric and electromagnetic parameters treated as input parameters for the study, as they are acquired through simulation of the basic array model in Chap. 4. The implications of the need for a multi-array structure and its envisaged mode of functioning on the structural parameters of the main solenoid are analyzed. Chapter 4 details the magnetostatic design of the individual basic staggered array in terms of the final optimized geometry for exploiting the full ferromagnetic potential of the soft-pole structure with maximum accessible peak field and individual tunability before detailing the design of the main solenoid. The dimensional specification tolerances on the solenoid are determined via the radial error influence on the phase error for the maximum-period array of λ u n=8 = 16 mm. Corrective means for the field performance of the solenoid in terms of longitudinal homogeneity are proposed under the form of corrector coils. A structure of a magnetic shielding circuit for stray field reduction is specified and its effect on the field leakage of the undulator array in the solenoid is demonstrated. An optimization of the field integrals of the device in terms of extremity pole piece length and corrector coil current at maximum period (16 mm) is demonstrated together with its effect on the electron trajectory in the device.

Chapter 5 deals with the simulated radiation emission of individual staggered arrays according to the structural scheme resulting from the specification of the adjusted period sequence for continuous first-harmonic tunability. The EBS electron beam parameters are taken as input for the computation of the achieved on-axis angle-integrated flux [Φ ′ m /(δλ/λ)] and brilliance B m for a typical basic slit/sample setup at an ESRF beamline. The influence on the flux and brilliance of the staggered arrays of the longitudinal solenoid field linear component that is present in the multi-period staggered array assembly due to its embedding in the coil bore is characterized. The radiation emission of the multi-period staggered-array assembly in terms of on-axis brilliance B m is put against that of a in-vacuum hybrid permanent-magnet undulator (IVHPMU) model representative of the standard high-performance insertion device employed at the moment in the ESRF storage ring straight sections.

Chapter 6 analyzes the integrability of a high-field solenoid representative of the superconducting one projected as a pole-magnetization source for the multi-period staggered-array undulator in the ESRF EBS storage ring magnetic lattice. The compensation of the perturbatory solenoid-field effects of focusing and transverse-degree coupling is studied via the coupling Resonant Driving Term (RDT) formalism. It is simulated for two models of the magnetic lattice, with and without a quadrupole-coupling noise error set in order to assess the gravity of the solenoid installation in the ring with respect to the nominal coupling errors in the accelerator arising from magnet misalignments and errors. An economic and technically viable matching and coupling-compensation scheme is proposed based on magnetic elements already at disposal and part of the EBS lattice, hence eliminating the need to consider the procurement of additional corrector equipment and cutting down on the final cost of the multi-period staggered-array undulator assembly installation in the storage ring.

The manuscript is concluded by a summary of the design specifications and predicted-performance findings of prime importance which also opens on prospects of some deepening technical studies prior to undertaking prototyping for tests and measurements in view of a real-length device being assembled and tuned. These should complement the proposition of the multi-period staggered array undulator as a capable candidate for high-brilliance monochromatic synchrotron radiation source on a low-emittance storage ring.

Chapter 2

Generalities

Introduction

This chapter serves as a general introduction to insertion devices. The basic underlying physics and related parameters characterizing the operation of undulators and wigglers are presented. A panoramic view on different technologies, mature as well as in development, involved in the engineering design of such devices is given. In particular, the discussion includes a short review of the staggered-undulator concept at the end of the chapter. This prepares the ground for the thorough discussion in subsequent chapters on the staggered-array's strong and weak points as applied to the design of a multi-period undulator.

Principles of insertion devices

Radiated electric field from an accelerated particle. Far-field approximation

Insertion devices serve as sources of intense synchrotron radiation in a frequency range spanning from infrared (rough interval 1 THz -100 THz) to hard X-ray (above 10 19 Hz) [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Paolasini | Large Scale Facilities: Synchrotrons[END_REF][START_REF] Paolasini | Synchrotron Radiation Sources and Properties[END_REF][START_REF] Prat | Synchrotron Light Sources and X-ray Free-Electron-Lasers[END_REF][START_REF] Hofmann | Tune Shifts from Self-Fields and Images[END_REF]. Radiation emission is achieved by magnetically enforcing an oscillatory orbit deviation on an incoming relativistic electron beam [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Brown | Wiggler and Undulator Magnets -A Review[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF]. This is done by means of a periodic magnetic field configuration established in the device along the beam trajectory. The force hence experienced by the particle (electron of charge -e) follows from the magnetic component F mag of the general Lorentz force stemming from an electromagnetic field defined by electric and magnetic-induction components ⃗ E and ⃗ B respectively [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Dragt | Lie methods for nonlinear dynamics with applications to accelerator physics[END_REF][START_REF] Gömöry | Superconductor Dynamics[END_REF][START_REF] Wolski | Review of Hamiltonian Mechanics[END_REF]:

⃗ F = (-e) ⃗ E + (-e)⃗ v × ⃗ B ⃗ Fmag . (2.1) 
In Eq. (2.1) ⃗ F is the force acting on an electron (of charge e) resulting from the presence in space of the external induction ⃗ B [START_REF] Royer | Solenoidal Optics[END_REF][START_REF] Knoepfel | Magnetic Fields : A Comprehensive Theoretical Treatise for Practical Use[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF]. Emission occurs when the electrons are subjected to accelerated motion, for example when constrained to a curved trajectory, and is predicted in the framework of classical electromagnetic theory [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Hecht | [END_REF]. Equation (2.2) illustrates the phenomenon by giving the far-field approximation for the radiated electric field or radiation field ⃗ E f f of an electron in the time domain, Fig. 2.1 [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Myers | Particle Physics Reference Library[END_REF]:

⃗ E f f (t) = e 4πϵ 0 (⃗ n × (⃗ n × ⃗ a) cR ret , (2.2) 
where the "re" subscript indicates that the right-hand expression is evaluated at the retarded, emission or electron time τ , given by:

t = τ + R(τ ) c . (2.3) In Eq. (2.2) ⃗ a = d 2 ⃗ D/dτ 2 = d 2 ⃗
R/dτ 2 is the electron acceleration which can be extracted from Eq. (2.1) and ⃗ n is the unit vector parallel to the observation direction defined by the observer/detector and the electron and pointing from the former to the latter, Fig. 2.1. c is the speed of light in vacuum and ϵ 0 is the dielectric constant of free space (vacuum permittivity). ⃗ E f f is also called acceleration field since it is zero for ⃗ a = 0 [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF]. Equation (2.2) is extracted as the second right-hand term of the more general expression for the emitted electric radiation field ⃗ E(t):

⃗ E(⃗ r, t) = e 4πϵ 0 (⃗ n -⃗ β) γ 2 (1 -⃗ β⃗ n 3 )R 2 ret velocity (Coulomb) field + e 4πϵ 0 ⃗ n × (⃗ n -⃗ β × ⃗ a) (1 -⃗ β⃗ n) 3 R ret acceleration field , (2.4) 
after application of the following vector identity to it and considering ⃗ n as constant over the time of reception of the radiation signal at the point of observation [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]:

⃗ n -⃗ β = ⃗ n × (⃗ n × ⃗ β) + ⃗ n(1 -⃗ n ⃗ β). (2.5) 
This corresponds to a distant observation of the emitted radiation. The Lorentz factor γ in Eq. (2.4) gives the electron's total energy E normalized to its rest-mass energy E 0 = m e0 c 2 = 0.511 MeV [START_REF] Tsamparlis | Special Relativity[END_REF][START_REF] Landau | Chapter 2-relativistic mechanics[END_REF][START_REF] Landau | Chapter 1-the principle of relativity[END_REF] where m e0 = 9.10938 × 10 -31 kg is the electron rest mass [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Knoepfel | Magnetic Fields : A Comprehensive Theoretical Treatise for Practical Use[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Dragt | Lie methods for nonlinear dynamics with applications to accelerator physics[END_REF][START_REF]CERN Accelerator School: Intermediate Accelerator Physics[END_REF][START_REF]Vacuum in Accelerators[END_REF][START_REF] Minty | Beam Techniques-Beam Control and Manipulation[END_REF][START_REF] Wolski | The Accelerator Hamiltonian in a Straight Coordinate System[END_REF]:

γ = E E 0 = E m e0 c 2 = 1 1 -β 2 .
(2.6)

The first velocity or Coulomb field term in Eq. (2.4) decreases rapidly at large observation distances R due to its being proportional to R -2 , leaving only the second acceleration-field term proportional to R -1 relevant to consider. In Eqs. (2.4) to (2.6) and Fig. 2.1 β = ∥ ⃗ β∥ is the electron velocity v = ∥⃗ v∥ normalized to the speed of light c, β = v/c. Equation (2.6) is often exploited in the practical form of Eq. (2.7) [START_REF] Paolasini | Synchrotron Radiation Sources and Properties[END_REF]:

γ ≈ 1957E[GeV]
(2.7)

As can be seen for the far-field case from Eq. (2.2) the acceleration field ⃗ E f f is orthogonal to both ⃗ n and the plane defined by ⃗ n and ⃗ a. In Eqs. (2.2) to (2.4) t is the observer time and R = ∥ ⃗ R∥ is the distance between the emitting electron e -and the observer with ⃗ R = ⃗ D -⃗ r where ⃗ D and ⃗ r give the electron and observer's positions relative to the coordinate origin O. By deriving the observer time t given by Eq. (2.3) with respect to the emission time τ one has:

dt dτ = 1 + ⃗ n(τ )⃗ v(τ ) = 1 -v cos θ, (2.8) 
where θ is the angle between the direction of observation given by ⃗ n and the electron velocity ⃗ v as defined in Fig. 2.1. By making use of an inverted Eqs. (2.6) and (2.8) can be expressed as:

dt dτ = 1 -1 - 1 γ 2 cos θ ≈ 1 2 1 γ 2 + θ 2 , (2.9) 
where the last step follows from considering a small observation angle θ ⪅ 1 γ . Thus, from Eqs. (2.7) and (2.9) it is seen that for multi-GeV electrons or beams such as those typically operated by storage ring synchrotron sources emitting at small angles towards the point of observation there is a strong time-compression effect. This results in an evolution of observer time t slower than that of the electron time τ by as much as nine orders of magnitude [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Hofmann | Characteristics of Synchrotron Radiation[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF]. As a result periodicity of a given frequency in electron trajectory is recovered in the composition of the emitted radiation field with a correspondingly increased frequency [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Hofmann | Characteristics of Synchrotron Radiation[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF]. This effect is responsible for undulator emission which is further discussed in detail as well as the condition θ ⪅ 1 γ . The far-field approximation for the radiation field ⃗ E f f proves valid in a wide range of practical situations related to synchrotron sources [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF].

⃗ E f f (t) is thus obtained in the observer frame of reference of time t. Its expression through the right-hand side of Eq. (2.2) is however evaluated at the retarded time τ in the inertial reference frame travelling at the corresponding instantaneous velocity of the electron ⃗ v(τ ) (in which the electron is instantaneously at rest). [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Herr | Short Theory of Special Relativity and Invariant Formulation of Electrodynamics[END_REF][START_REF] Tsamparlis | Special Relativity[END_REF] In this frame the particle thus experiences a sudden acceleration ⃗ a(τ ) after initially being in uniform motion as illustrated by Fig. 2.1. An acceleration transverse to the observation direction proves most adequate for generating intense radiation such as that exploited in synchrotron beamlines since it yields the maximum electric field amplitude through the vector product of Eq. (2.2). For an observer positioned in line with the instantaneous velocity vector ⃗ v this would be a centripetal acceleration like the one following from the presence of an orthogonal plane magnetic field on the particle path [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Hofmann | Characteristics of Synchrotron Radiation[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Wolski | Synchrotron Light Machines[END_REF][START_REF] Holzer | Introduction to Transverse Beam Dynamics the Ideal World I[END_REF].

Concept of insertion device for storage ring synchrotron light production

Insertion devices are so called due to their requirement to be installed (inserted ) in sufficiently long dedicated straight sections of several meters for operation in electron storage rings. Historically this setup sees large development and implementation in so-called third-generation synchrotron light sources [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Paolasini | Large Scale Facilities: Synchrotrons[END_REF][START_REF] Paolasini | Synchrotron Radiation Sources and Properties[END_REF][START_REF] Zelenika | Mechanical Aspects of the Design of Third-Generation Synchrotron-Light Sources[END_REF]. Usual device lengths for storage rings roughly cover the range from several tens of centimeters for short demonstrators to 10 m for installed commissioned devices. Insertion devices also find usage in electron colliders for the purpose of reducing the final electron beam emittance ϵ. Longer undulator systems which can be several tens of meters long are used in X-ray free electron lasers (X-FELs) functioning in the self-amplified spontaneous emission (SASE) regime [START_REF] Robb | The Quantum Free-Electron Laser[END_REF][START_REF] Elleaume | Undulators for Free Electron Lasers[END_REF][START_REF] Divall | Lasers in FEL Facilities[END_REF][START_REF] Couprie | Historical Survey of Free Electron Lasers[END_REF][START_REF] Chubar | Time-Dependent FEL Wavefront Propagation Calculations: Fourier Optics Approach[END_REF][START_REF] Elleaume | Design considerations for a 1Å SASE undulator[END_REF][START_REF] Schreiber | Soft and Hard X-Ray SASE Free Electron Lasers[END_REF][START_REF] Rosenzweig | Advanced Undulator Concepts for Future Free-Electron Lasers[END_REF].

The structure of an insertion device is defined by a series of magnetic elements of identical dimensions and properties but of periodically alternating polarity along the longitudinal axis of the device [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Walker | Insertion Devices: Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Elleaume | Introduction to Insertion Devices[END_REF][START_REF] Wille | Introduction to insertion devices[END_REF]. This structural design applies to both insertion device categories of undulators and wigglers. These two categories differ in their value range for certain physical and operational parameters which has an impact on the properties of the resulting radiation as later discussed. In most of the following the terms "undulator", "insertion device" and "ID" are used interchangeably, except in the context of comparing an undulator to a wiggler [START_REF] Walker | Insertion Devices: Undulators and Wigglers[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Walker | CAS-CERN Accelerator School: 5th Advanced Accelerator Physics Course[END_REF].

A single period of an undulator array made of magnetic blocks is sketched in Fig. 2.2. The drawing also defines the coordinate system of the laboratory reference frame. This trajectory modulation gives rise to synchrotron emission in radiation cones of typical angular width θ nat = 1/γ from individual source points observed at θ x, z .

Basic parameters characterizing insertion devices. Undulators and wigglers

The example of Fig. 2.2 depicts a planar undulator, with ⃗ B being idealistically contained in a single plane (B x = B y = 0). This is the most widely considered magnetic field configuration. Such a field imposes a wiggling trajectory on an incoming electron beam in the transverse horizontal plane xy. This leads to the emission of synchrotron radiation due to the accelerated nature of the electron motion along the curved oscillating path. In Fig. 2.2 the longitudinal axis of the device is given by the y-axis passing through the middle of the magnetic gap g and the trajectory of an electron entering the system on-axis is portrayed. In the vertical direction the magnetic elements create a periodic on-axis induction field B z (0, y, 0) = B z with a main component of period equal to the physical one of the structure, λ u . A preliminary analysis gives a sufficiently good precision for field-dependant trajectory parameters characteristizing the undulator if B z is considered purely sinusoidal:

B z = B p sin 2π y λ u , (2.10) 
where B p is the peak field of the undulator (insertion device). In the small angle hypothesis dx/dy, dz/dy ≪ 1, the equations of motion for the electron's horizontal and vertical excursions x(y), z(y) in a general magnetic field ⃗ B of cartesian components B x , B y , B z are [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF] after applying Newton's law in the case of a Lorentz force of sole magnetic component, Eq. (2.1): The maximum deflection angle is deduced from Eq. (2.15) as:

d 2 x dy 2 = e γm e0 c (B z - dz dy B y ), (2.11 
dx dy max = x ′ max ≈ θ x max = B p e γm e0 c λ u 2π , (2.16) 
where the first approximation stems from the condition of small angles outlined. Based upon Eq. (2.16) one defined the dimensionless quantity termed deflection parameter K of the ID as:

K = eλ u B p 2πm e0 c , (2.17) 
in the case of the simple purely sinusoidal field form given by Eq. (2.10). For practical calculations one often uses the following numerical expression:

K ≈ 0.0934B p [T]λ u [mm]. (2.18) 
The maximum deflection angle θ x max from Eq. (2.16) then becomes with Eq. (2.17):

θ x max = K γ . (2.19)
The deflection parameter quantifies the electron's angular deviation due to the presence of the undulator field B z along its path in the undulator. This angular excursion is linked to a longitudinal velocity decrease since the magnetic field preserves the total kinetic energy of the particle by only redistributing it along transverse degrees of freedom as suggested by the orthogonality of the Lorentz force ⃗ F with respect to the electron velocity ⃗ v in Eq. (2.1). In terms of the deflection parameter K the angular excursion along the longitudinal axis y is rewritten as:

x ′ = K γ cos 2πy λ u . (2.20) 
Thus K also indicates the transverse velocity oscillation amplitude for a given undulator period λ u in units of 1/γ [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. The amplitude A of the transverse sinusoidal electron oscillation discussed in Fig. 2.2 is expressed in terms of the deflection parameter K by:

A = λ u K 2πγ .
(2.21)

A numerical example given in [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Elleaume | Introduction to Insertion Devices[END_REF] for trajectory parameter values is the case of an ESRF insertion device of λ u = 35 mm and B p = 0.7 T operating on a 6 GeV beam, resulting in K = 2.3, K/γ = 200 µrad and A = 1.1 µm. A more precise analysis considers the non-fundamental component contributions in the undulator field spectrum. These depend on design details in the particular technology employed such as period and gap values and sizes of field-generating parts [START_REF] Pflueger | Undulator Technology[END_REF]. In Fig. 2.2 the periodic deviation of the electron's excursion leads to instantaneous or natural emission by individual source points. The emitted radiation is strongly collimated in the forward direction, concentrated in a spatial cone centered on the trajectory tangent and subtending an approximate opening angle given by:

θ nat ≈ 1/γ. (2.22)
Thus, in Eq. (2.22) θ nat is the natural opening angle of synchrotron radiation emission. Interference effects among separate cones result in a final radiative distribution of wavelength λ at angles θ x , θ z [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]190].

The expressions for K and A (Eq. (2.17) and Eq. (2.21)) are obtained within the implicit assumption of an ultrarelativistic electron beam, for which θ nat ≪ 1 or equivalently in terms of electron velocity components

(v x , v z , v y ) = ⃗ v: v x , v z ≪ βc = v 2 y + v 2 x .
(2.23)

The relation given by Eq. (2.23) is also one of the possible expressions of the small-angle approximation. In such a case γ ≫ 1, for example E = 6 GeV (nominal ESRF beam energy) gives γ =11820.

The distinction between an undulator and a wiggler in terms of radiative properties is roughly given by the respective value of K. In terms of either the peak deviation angle x ′ max or K the wiggler regime of functioning for an insertion device is then specified by one of the two equivalent conditions [START_REF] Tatchyn | Transverse Undulator Spectra and Polarization Profiles[END_REF][START_REF]Vacuum in Accelerators[END_REF]:

x ′ max ≫ θ nat , (2.24) 
or K ≫ 1.

(2.25)

The relations given by Eq. (2.24) and Eq. (2.25) indicate the case of a maximum excursion angle largely superior to θ nat . Such a configuration implies that there is relatively weak global overlapping between individual radiative spatial distributions produced by successive periods that would be apparent to an observer at a fixed distance from the device. This is schematically shown in b)) operational regimes in the case of an on-axis sensory entity (observer or detector) situated at a fixed distance given by y obs . Wigglers are defined by a large excursion angle x ′ max with respect to the natural angle of spontaneous emission θ nat (Eq. (2.24) and Eq. (2.25)), producing predominantly incoherent radiation with a smoothed-out interference pattern in the final spectrum. This is not the case for undulators (Eq. (2.26) and Eq. (2.27)).

In the case of the undulator regime the maximum horizontal deflection angle of the electron trajectory is comparable or inferior to the spontaneous emission angular opening:

x ′ max ⪅ θ nat , (2.26) 
which translates in terms of deflection parameter:

K ⪅ 1. (2.27)
For a given observation direction, there is hence a negligible interference structure established for the wiggler emission by the phase-incoherent elementary emission centres given by the magnetic piece source points. This is particularly true for the high-energy part of the spectrum, with a residual interference peak aspect present at lower frequencies. The final intensity pattern of wiggler radiation then globally resembles that of a bending magnet, with the possibility to operate the device in an "undulator regime" described later, at low energies. Thus, the wiggler radiation flux distribution is of a predominantly smooth spectrum, enhanced proportionally to the number of periods N p with respect to that of a simple bending magnet of field equal to the wiggler peak field B p [START_REF] Bartolini | Synchrotron Radiation[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF]CERN Accelerator School: Intermediate Accelerator Physics[END_REF]. This is due to the mostly incoherent superposition of individual source point intensities. One way to qualitatively understand the smoothing-out mechanism responsible for the form of the wiggler spectrum is to acknowledge that the relatively high K-value put into play distorts the sinusoidality of the electron motion in the device. The radiated electric field profile in the time domain is determined by the detailed form of the electron trajectory. Thus, the emitted radiation undergoes a modification which in the frequency domain translates into the induced presence of a large number of additional high order harmonics.

As shown further below in the discussion on undulators, relative harmonic width δω m /ω m decreases with harmonic number m, leading to tightly packed high energy harmonic peaks that tend to get mutually blurred. This finally establishes the globally smooth high frequency part of the wiggler spectral profile [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. Figure 2.4 illustrates schematically the comparison among the profiles of the spectral photon flux density Φ/ [(δλ/λ) dS] produced from the three types of synchrotron radiation sources: bending magnet, wiggler and undulator IDs. The flux density Φ/ [(δλ/λ) dS] is measured in the number of emitted photons per second over a 0.1% relative energy bandwidth per unit surface [photon/s/0.1%/mm 2 ] considering that in the given bandwidth the flux does not vary [START_REF] Suller | Introduction to Current and Brightness Limits[END_REF]. A far-field example that illustrates more precisely the dependence of the spectral characteristic of undulator radiation on the deflection parameter K is given in Figs. 2.5 and 2.6. These are obtained with the B2E software package [START_REF] Esrf | B2E A Software to Compute Synchrotron Radiation from Magnetic Field Data Version 1[END_REF] for the case of a 6-GeV electron beam of 200-mA current in line with the nominal parameters of the EBS. In Fig. 2.5 the case of a low-K undulator is depicted with the on-axis longitudinal field profile B z (x = 0, y, z = 0) depicted in the top pane. This field has a period λ u = 17 mm and peak field B p = 0.35 T. The resulting deflection parameter is K ≈ 0.56. It produces the on-axis electric field impulse E x given in the center pane of Fig. 2.5 in units of kV after multiplication of the standard electric-field units [kV/m] by the observation distance [START_REF] Esrf | B2E A Software to Compute Synchrotron Radiation from Magnetic Field Data Version 1[END_REF]. The lower pane gives the FFT transform of the synchrotron electric pulse of the center pane yielding the resulting angular spectral flux Φ/[dΩ(dλ/λ)] in photons/s/0.1%/mrad 2 . Figure 2.6 gives the corresponding result for a higher-K field of λ u wglr = 35 mm, B p wglr = 0.74 T, K ≈ 2.42 in the upper pane. From Figs. 2.5 and 2.6 one sees the defining influence of the deflection parameter K's value on the form of the resulting electric pulse E x in the figures' center panes and hence on the harmonic content of the emitted radiation in the lower ones. With increasing K the shape of the electric field pulse loses its sinusoidal aspect, Fig. 2.5, which translates in the frequency (energy) as a loss in degree of monochromaticity and hence the appearance of multiple harmonic peaks of substantial flux amounts in comparison to that of the fundamental harmonic, Fig. 2.6.

Energy [keV]

Undulator field quality

The radiation from the individual periods of an undulator is thus subject to a strong interference effect. The radiation wavelength λ m (θ x , θ z ) = 2πc/[ω m (θ x , θ z ))] hence produced at θ x , θ z , Fig. 2.2, seen in the laboratory frame is a function of m, the undulator parameters λ u and K as well as the electron beam energy E. It is given by the resonance condition taking into account the relativistic Doppler shift for the emitted radiation between the laboratory and β -frames, where β is the electron average longitudinal velocity [START_REF] Tsamparlis | Special Relativity[END_REF][START_REF] Wilson | CAS-CERN Accelerator School: Synchrotron Radiation and Free-Electron Lasers[END_REF][START_REF] Landau | Chapter 2-relativistic mechanics[END_REF][START_REF] Landau | Chapter 1-the principle of relativity[END_REF]. Due to the velocity-orthogonal nature of the Lorentz force discussed in Subsec. 2.2.1 the total velocity of an electron in an undulator βc is preserved if one neglects the energy lost to radiation emission. This allows to express the longitudinal velocity component v y through:

v y = β 2 c 2 -v 2
x .

(2.28)

For relatively small excursions one can develop Eq. (2.28) into:

v y ≈ βc 1 - v 2 x 2β 2 c 2 . (2.

29)

The ratio of horizontal to total velocities v x /βc in Eq. (2.29) is the trajectory angle x ′ of the electron with respect to the y-axis. For the sinusoidal field given by Eq. (2.10) it depends on the deflection parameter K through:

x ′ = K γ cos 2π λ u y . (2.30) 
Making use of Eq. (2.30) in Eq. (2.29) and some trigonometry gives:

v y ≈ βc 1 - K 2 4γ 2 - K 2 4γ 2 cos 4π λ u y .
(2.31) Equation (2.31) enables one to identify terms corresponding respectively to the average electron longitudinal velocity effectively reduced by the transverse oscillations (accounted for by K) and given by:

β y = β 1 - K 2 4γ 2 , (2.32) 
and an additional oscillatory component given by the cosine term responsible for the Doppler effect on radiation emission [START_REF] Wille | Introduction to insertion devices[END_REF].

The resonance condition yields for λ m (θ x , θ z ) = 2πc/ω m (θ x , θ z ):

λ m (θ x , θ z ) = λ u 2nγ 2 1 + K 2 2 + γ 2 θ 2 x + γ 2 θ 2 z . (2.33) 
An equivalent photon energy form of Eq. (2.33) is:

E m [keV] ≈ 9.5mE 2 [GeV] λ u [mm] 1 + K 2 2 + γ 2 θ 2 x + γ 2 θ 2 z , (2.34) 
where E is the energy of the circulating electron beam. One defines the slippage δ slip (λ u ) for a single undulator period as:

δ slip (λ u ) = λ u (1 -β y ) = λ u 2γ 2 1 + K 2 2 = λ E1 (0, 0), (2.35) 
where the electron's average longitudinal velocity is given by Eq. (2.32). From Eq. (2.35) it is seen that the slippage for a single period is simply the on-axis fundamental resonant wavelength λ E1 (0, 0). The slippage arises from the difference between the average travel velocities of the emitted photon (c = const.) and the electron along the undulator axis (β y c). This difference is schematically illustrated in Fig. 2.7. As as result from the slippage there is a difference between the times taken respectively by the particle t e -= λ u / β z c and the radiated photon t ph = λ u /c to cover a single period which leads to a lag in space between the two particles as shown in Fig. 2.7. A more general expression for the overall slippage in a 1D region with boundaries y 0 and y permeated by a magnetic field is:

δ(y) = y y0 (c -v y (y ′ ))dy ′ .
(2.36) Equation (2.36) is used to define the optical phase ϕ(y) [START_REF] Walker | Phase Errors and Their Effect on Undulator Radiation Properties[END_REF] as:

ϕ(y) = 2π δ(y) λ E1 (0, 0) . (2.37) 
In the horizontal Oxy plane of a vertical-field planar undulator the two velocities v y and v x are linked by Eq. (2.28) stemming from energy conservation as mentioned earlier in the discussion on the deflection parameter K. By using Eqs. (2.28), (2.36) and (2.37) one can write for the optical phase ϕ in terms of the magnetic field B z (y):

ϕ(y) = 2π λ u 1 + K 2 2   y γ 2 + e γm e0 c 2 y -∞ y ′′ -∞ B z (y ′ )dy ′ 2 dy ′′   = 2 λ u 1 + K 2 2 1/λ E1 (0, 0) π y γ 2 + e γm e0 c 2 I ph (y) .
(2.38)

The integral I ph (y) in the second line of Eq. (2.38) is the phase integral of the insertion device at the longitudinal coordinate y:

I ph (y) = y -∞ y ′′ -∞ B z (y ′ )dy ′ 2 dy ′′ .
(2.39) Equation (2.38) for the optical phase ϕ(y) can thus be finally rewritten more succinctly:

ϕ(y) = π λ E1 (0, 0) y γ 2 + e γm e0 c 2 I ph (y) .
(2.40)

The optical phase ϕ(y r ) evaluated at the longitudinal pole positions y r (corresponding to the radiation source points of the undulator) is used as an insertion device figure of merit [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Bahrdt | Cryogenic Permanent Magnet and Superconducting Undulators[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF][START_REF] Tanaka | Universal Representation of Undulator Phase Errors[END_REF][START_REF] Elleaume | Technology of Insertion Devices[END_REF]. This is done by means of the RMS phase error parameter σ ϕ which is specified in the production requirements and/or is measured for quality control before ID installation in a storage ring straight section. The phase error σ ϕ is defined as:

σ ϕ = 1 N pole N pole r=1 (rπ -ϕ(y r )) 2
(2.41)

In Eq. (2.41) N pole is the number of magnetic poles and r is a summation index designating the longitudinal center positions y r of the ID's magnetic poles.

As can be seen from Eq. (2.41) the RMS error is given by the differences between the ideal phases at the radiation source points (equal to integer multiples of π) and the actual phase values ϕ(y r ). These can be obtained with different magnetic measurement techniques applicable to insertion devices. Phase errors are used to represent unwanted undulator field errors of random nature, which could originate for example from variations in period spacing or orientation and/or magnitude of the magnetization vectors of the field generating elements (blocks). This is because field errors give rise to fluctuations in electron transverse velocity and hence in the longitudinal one as communicated by Eq. (2.28). The link in this respect between velocities given by Eq. (2.28) stems from the constancy of the electron's velocity magnitude along its trajectory such as in the case of a particle confined to a horizontal plane of oscillation under the influence of a vertical undulator field. The fluctuation in longitudinal velocity v y finally leads to alterations in the desired phase advance value of 2π per undulator period λ u . This in turn perturbs the relative phase condition between successive emitting periods necessary for constructive interference between individual radiative source points. Thus the quality of the resulting undulator radiation is deteriorated. This is quantified by a factor of exp -m 2 σ 2 ϕ for the expression of the angular spectral flux Φ m of the m-th harmonic taking into account the reduction from random phase errors [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. It is thus clear that the emission on high-harmonic numbers m is more severely impacted.

The phase error methodology has the advantage of avoiding meaningless over-specification of undulator peak field errors. The numerical requirement for σ ϕ depends on the operation (harmonic number m as mentioned) but is typically σ ϕ < 3 • [START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF].

By making use of Eq. (2.23) the following general expression for the deflection angle of the electron trajectory can be derived as:

x ′ (y) = v x (y) βc = - e γm e0 c y -∞ B z (s)ds.
(2.42) Integrating Eq. (2.42) after insertion of the expression for the sinusoidal vertical field of a planar undulator given by Eq. (2.10) yields the transverse horizontal normalized velocity x ′ :

x ′ = K γ cos 2π y λ u . (2.43) 
The undulator field integral in Eq. (2.42) is called the first field integral I 1 z :

I 1 z (y) = y -∞ B z (s)ds. (2.44)
The further integration of Eq. (2.42) along y yields the trajectory function of the electron in the oscillation plane xy:

x(y) = - e γm e0 c y -∞ s -∞ B z (s)ds ds = - e γm e0 c I 2 z , (2.45) 
where the second field integral I 2 z is defined as:

I 2 z (y) = y -∞ s -∞ B z (s)ds ds. (2.46)
The results given by Eq. (2.17) and Eq. (2.21) are obtained through Eq. (2.42) and Eq. (2.45) respectively for the case of the planar sinusoidal field defined by Eq. (2.10). For the case of a periodic but non-sinusoidal field the following more general expression for K should be used [START_REF] Pflueger | Undulator Technology[END_REF]:

K = e m e0 c I 1 z max (2.47)
Field integral control and minimization during design and final assembly is particularly important at the extremities of an insertion device where the structural symmetry is ruptured. The aim is to avoid as much as possible unwanted closed orbit distortion for the electron beam both in position and angle induced by the systematic field errors of the insertion device at the undulator ends during the ID's operation [START_REF] Reiche | Motion in the Undulator[END_REF][START_REF] Wille | Introduction to insertion devices[END_REF][START_REF] Elleaume | Effects of Insertion Devices on the Electron Beam[END_REF][START_REF] Chubar | Observation and Interpretation of Dynamic Focusing Effects Introduced by Apple-II Undulators on Electron Beam at SOLEIL[END_REF]. Tolerances on field integral values are usually defined in terms of small percentages of the electron beam sizes σ x z and divergences σ x ′ z ′ in each plane [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Wolski | Synchrotron Light Machines[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF].

Techniques such as pairing and shimming [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF][START_REF] Elleaume | Technology of Insertion Devices[END_REF][START_REF] Russenschuck | Field Computation for Accelerator Magnets[END_REF] are employed to passively correct to different degrees residual field integral errors in insertion devices [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Wollmann | Induction Shimming: A New Shimming Concept for Superconductive Undulators[END_REF][START_REF] Elleaume | Technology of Insertion Devices[END_REF]. Such errors could come into play during different fabrication or assembly phases such as machining, magnetisation or positioning of the magnetic elements.

Pairing consists in optimising the sequence of individual magnetic elements to minimize periodto-period peak field variations following preliminary magnetization measurements on the elements [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF]. Shimming gives a more localized field correction. It can be either mechanical whereby one acts on the positioning of magnetic blocks or magnetic where thin iron plates are added to the blocks' surfaces [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF][START_REF] Elleaume | Technology of Insertion Devices[END_REF]. In some undulator structures one may also need to implement means for active correction whereby one can compensate for integral error sources that evolve during operation or in some less expected manner due to surrounding stray fields in the storage ring [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF]. Such a controlled correction scheme is realized through installation of current coils at the ends of the insertion device [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF].

One can compare Eq. (2.34) to the expression for the critical energy ϵ c of a bending magnet given in function of the storage ring bending radius ρ (electron beam trajectory radius of curvature, Fig. 2.8) and the Lorentz factor γ for the electron beam reference energy as [START_REF] Hofmann | Characteristics of Synchrotron Radiation[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Carmignani | Principles of Synchrotron Radiation[END_REF]:

ϵ c = 3 2 ℏc ρ γ 3 , (2.48) 
with ℏ = h/2π the reduced Planck constant (h ≈ 4.1357 × 10 -15 eV.s) and c the speed of light. ϵ c is also given in practical units for a bending magnet field B p and electron beam energy E as:

ϵ c [keV] = 0.665B p [T]E 2 [GeV]. (2.49) 
Hence one evaluates the harmonic number m corresponding to a given wavelength λ m : The critical energy ϵ c is the energy dividing the emitted radiation power in two equal (integrated) spectral halves [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Carmignani | Principles of Synchrotron Radiation[END_REF][START_REF]Vacuum in Accelerators[END_REF]. Calculating m in Eq. (2.50) for λ m = λ c one can evaluate the number of harmonics in the ID spectrum [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] as shown for several values of the deflection parameter K in Tab. 2.1. Table 2.1: Resulting evaluation of the harmonic number m for different values of the deflection parameter K at the critical wavelength λ m = λ c from [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] according to Eq. (2.50).

m ≈ 3 4 K 1 + K 2 2 λm λc , ( 2 
In relation to this, the wiggler spectral smoothing at high frequency discussed is considered to appear for a high enough number of harmonics and a frequency sufficiently distant from the fundamental one ω 1 . In [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] these two conditions are respectively taken as K ≥ 5 and m ≥ 10. Other factors such as undulator field errors and angular/wavelength acceptance of the slit/monochromator used in the operation of the ID can also contribute to the smoothing of the radiation spectrum. The field quality is responsible for the "constructiveness" of the interference mechanism with a greater influence on high harmonics as further discussed [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. The impact of the angular acceptance comes through the angular dependence of the radiation wavelength λ m (θ x , θ z ), Eq. (2.33), because of a possible overlapping of higher off-axis and lower on-axis harmonics. This is conditioned by the relation between the corresponding observation angle θ and m [13]:

γ 2 θ 2 ≥ 1 + K 2 2 m . (2.51)
The wavelength acceptance is given by the monochromator bandwidth with respect to the relative (natural) harmonic energy width δ Em /E m ≈ 1/ (N p m) for the intrinsic photon beam further broadened by the non-zero emittance of the multi-electron beam and the observation slit size (inhomogenous broadening) [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF].

Electron beam parameters also influence the final spectral profile of undulator radiation as shown in Subsec. 2.2.6. For example electron beam divergence σ ′ imparts a particular entrance angle θ on an electron in the undulator thus also displacing the profile of the emitted radiation off-axis by θ [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF].

Transverse electron beam dynamics in a storage ring in relation to insertion devices

A storage ring is divided into separate segments composed of dedicated magnetic structures (dipole, quadrupole magnets, etc.). The magnets in the segments are disposed in regular fashion along the ring so as to produce periodicity in beam properties through the constitution of so called lattice cells [START_REF] Holzer | Lattice Design in High-Energy Particle Accelerators[END_REF][START_REF] Liuzzo | Lattice Design and Beam Dynamics for Synchrotron Light Sources[END_REF][START_REF] Streun | Lattices for light sources[END_REF][START_REF] Ropert | Lattices and Emittances[END_REF][START_REF] Wilson | Small Ring Lattice Problems[END_REF] identical to one another along the ring circumference. In addition to this, dedicated locations in the ring have to be provided for radiofrequency resonator (RF cavity) systems to be installed in order to accelerate and provide longitudinal focusing to the particles in the beam [54, 58, 64-66, 119, 196, 197], compensating for their energy loss due to the emission of synchrotron radiation [START_REF] Holzer | Lattice Design in High-Energy Particle Accelerators[END_REF][START_REF] Liuzzo | Lattice Design and Beam Dynamics for Synchrotron Light Sources[END_REF][START_REF] Wolski | Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation[END_REF][START_REF] Holzer | Introduction to Longitudinal Beam Dynamics[END_REF][START_REF] Tecker | Longitudinal Beam Dynamics[END_REF][START_REF] Pirkl | Longitudinal Beam Dynamics[END_REF][START_REF] Wolski | Including Longitudinal Dynamics[END_REF] in bending magnets and insertion devices (undulators and wigglers). As mentioned earlier, insertion devices are installed in straight sections also provided along the ring. Figure 2.9 shows the typical main structure of a synchrotron accelerator complex such as that of the ESRF. A linear accelerator (linac) is used to provide a first stage of acceleration up to ultrarelativistic energy to the electrons which are produced downstream of the linac by an electron gun. The linac also gives the electron beam its specified bunch structure. After the linac the electron bunches are transferred to the booster (synchrotron) [START_REF] Liuzzo | Lattice Design and Beam Dynamics for Synchrotron Light Sources[END_REF][START_REF] Paolasini | Large Scale Facilities: Synchrotrons[END_REF]. It is there that by means of thousands of revolutions they acquire through progressive acceleration their nominal beam energy at which the storage ring is operated. This happens in a typical lapse of several tens of milliseconds. After that the electrons are transferred to the storage ring which is of larger circumference than the booster. A typical ultra-vacuum of 10 -9 mbar reigns in the storage ring where the particles circulate at a velocity approaching the speed of light, v ≈ c [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF].

On its path, the electron beam traverses magnetic-lattice elements that guide, focus and manipulate the beam such as dipoles, quadrupoles, sextupoles and others. The beam also crosses insertion devices where it looses energy under the form of the emission of synchrotron radiation (as well as in dipoles) due to the transverse acceleration seen by the electrons in these elements, as discussed in Subsecs. 2.2.1 and 2.2.2.

Distinct magnet types achieve distinct lattice optics functions like trajectory curving (bending) such as produced by a dipole (magnet), manipulation of transverse beam distribution through focusing or defocusing, provided by quadrupole magnets, etc. [START_REF] Holzer | Transverse beam dynamics[END_REF][START_REF] Russenschuck | Design of Accelerator Magnets[END_REF][START_REF] Russenschuck | Electromagnetic Design of Accelerator Magnets[END_REF]. These functions are thus normally split per magnet type [START_REF] De Rijk | Introduction for Magnets[END_REF][START_REF] De Rijk | High-Field Accelerator Magnets[END_REF], for example as already stated a quadrupole is exlusively required for beam-focusing purposes although some (combined-function magnets can combine separate functions like bending and focusing in a dipole with field index [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. [START_REF] Soleil | Un Synchrotron National Dans Un Environnement Scientifique et Industriel Privilégié[END_REF] of the main parts of a typical synchrotron storage-ring accelerator complex that are the linac, booster and properly the storage ring. The geometry of the ring is defined by the bending magnets which together with the undulators produce synchrotron radiation from the circulating electron beam stored in the storage ring. Also shown is the typical composition of a beamline exploiting the radiation for scientific studies.

The synchrotron radiation emitted by undulators and bending magnets is recovered tangentially in the beamlines installed around the storage ring where the photon flux is manipulated in dedicated optical, experimental and control hutches. Fig. 2.10 gives in summary the typical relative dimensions of the main parts of a synchrotron involved in the production of high-intensity synchrotron light. These are the storage ring, insertion device (undulator or wiggler) installed in a straight section of the ring's magnet lattice, followed by the beamline that exploits the radiation for research purposes. The basic setup of a beamline's optical hutch includes a monochromator, a focusing device and a spectrometer as illustrated in Fig. 2.10. Notably, the monochromator serves to select a relatively narrow bandwidth of interest from the synchrotron emission of the undulator, before passing it downstream to the focusing device. Figure 2.10: Typical order-of-magnitude relative dimensions of a synchrotron storage ring, an undulator insertion device and an optical hutch setup of a beamline from [START_REF] Bartolini | Synchrotron Radiation[END_REF].

For the description of transverse beam dynamics in a storage ring several simplifying assumptions can be made. These are: small transverse deviations x, z from the reference trajectory; small transverse velocities v x, z with respect to the longitudinal one v y [START_REF] Wolski | Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity[END_REF]; momentum p of the study particle close in value to that of the reference one p 0 ; no acceleration communicated from RF or deceleration due to synchrotron radiation emission.

Storage rings typically exhibit symmetry with respect to the horizontal mid-plane. This configuration leads to anti-symmetry of the magnetic fields in the machine, a condition which translates mathematically for the individual field components as [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]:

B x (x, z, s) = -B x (x, -z, s) (2.52) B z (x, z, s) = B z (x, -z, s) (2.53) B s (x, z, s) = -B s (x, -z, s) (2.54)
For these conditions on transverse particle velocities and field topology the basic (normal) multipole field components derivable from iron-dominated magnet structures of classical current-carrying ferromagnetic pole windings [START_REF] Wolski | s Equations for Magnets Part Ii: Realistic Fields[END_REF] can be written as the corresponding extracted terms of the Taylor series of the field. Hence in proximity to the reference trajectory up to a certain order of interest this is done by expressing the series' coefficients h, k, m... as normalized field and field derivative quantities (e/p 0 ) ∂ i-1 B z /∂x i-1 to be identified as the proper i-th-order (i = 1, 2, 3 ...) multipolar (2i-polar) terms :

h = e p 0 B z h , (2.55) 
k = e p 0 ∂B z ∂x , (2.56) 
m = 1 2 e p 0 ∂ 2 B z ∂x 2 . (2.57)
where e is the charge of the electron in absolute value. The normalization referred to in Eqs. (2.55) to (2.57) is done with respect to the beam rigidity p 0 /e discussed below. In Eq. (2.55) h is the dipole term of uniform field B z h sketched in Fig. 2.11 which is produced by a perfect bending magnet such as the one shown in Fig. 2.11 (side view) and Fig. 2.8 (top view, assuming a straight magnet with no pole curvature along the reference trajectory) of idealized longitudinally uniform field with no varying fringe components (hard-edge approximation) as sketched in Figs. 2.11 and 2.12. Similarly to h in Eq. (2.55), k and m in Eqs. (2.56) to (2.57) respectively are the normalized quadrupole field gradient (strength) and sextupole strength. Figure 2.13 shows a quadrupole field profile in the bore of the corresponding magnet through which the cross section of the vacuum chamber (red) carrying the propagating electron beam passes. An ideal quadrupole creates a field pattern such as the one shown in the left-hand side of Fig. 2.13 which has linearly evolving horizontal and vertical field components B x z that rise towards the pole pieces of the magnet in the respective transverse perpendicular mid-planes:

B z = gx, B x = gz, (2.58) 
with g the quadrupole gradient given by: g = 2µ 0 N I/r 2 0 .

(2.59)

In Eq. (2.59) N I is the number of ampere-turns per coil of the magnet and r 0 the radius of the circle inscribable in the quadrupole bore that gives the radial separation of the pole tip from the center O of the magnet. The linear transverse motion of an electron in a storage ring given by either of the transverse coordinates q(s) where q = {x, z} expressed in function of the particle location along the ring (orthoradial longitudinal coordinate) s, Fig. 2.14, can be represented by:

q(s) = q c. o. (s) 0 +q β (s) + η(s)δ p .
(2.60)

In Eq. (2.60) q c. o. (s) = 0 is the solution for the component of the particle motion corresponding to the equilibrium closed orbit defined by the reference trajectory. Hence in the frame of reference of the reference particle it is naturally zero as indicated. q β (s) gives the transverse betatron oscillation of the trajectory and the last term η(s)δ p stands for the modification of the reference orbit due to the momentum offset δ p = (p -p 0 )/p 0 of the particle of momentum p with respect to the reference one p 0 and the dispersion function η(s) [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Holzer | Introduction to Transverse Beam Dynamics[END_REF][START_REF] Holzer | Transverse beam dynamics[END_REF][START_REF] Holzer | Introduction to Transverse Beam Optics II Particle Trajectories, Beams and Bunch[END_REF][START_REF] Wilson | Transverse Beam Dynamics[END_REF][START_REF] Holzer | Introduction to Transverse Beam Dynamics the Ideal World I[END_REF][START_REF] Holzer | Introduction to Transverse Beam Dynamics. The "Not So Ideal World[END_REF][START_REF] Wilson | CAS-CERN Accelerator School: Course on Synchrotron Radiation and Free-Electron Lasers[END_REF].

ρ e - ref ϑ x β (s) s 𝑢 𝑧 e - 𝑢 𝑥 z β (s) 𝜂(𝑠)𝛿 𝑝 Figure 2
.14: Schematic definition of the the reference and individual-particle trajectories for Eq. (2.60) along a storage ring with a location around the circumference parameterized by the variable s. Shown are cases for on-and off-momentum particles in red and green respectively. By virtue of the definition of the reference trajectory the reference particle of (reference) momentum p 0 initially set to travel on the reference trajectory maintains its course along it, provided there are no perturbations to its orbit due for example to magnetic field errors along its course [START_REF] Wolski | Effects of Linear Imperfections[END_REF].

The nominal q c. o. (s) closed orbit imposed by the design reference trajectory is determined by a number of arcs and straight segments which form the global storage ring geometry, Fig. 2.14 [START_REF] Carmignani | ESRF Course on Particle Accelerators I[END_REF]. The arc radius ρ in turn defines the value of the main (dipole) component for the transverse vertical bending magnet field strength B z h (B p in Fig. 2.8) through:

B z h ρ = - p 0 e , (2.61) 
where the product B z h ρ is the magnetic or beam rigidity [START_REF] Wolski | Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity[END_REF][START_REF] Wolski | Low-Emittance Storage Rings[END_REF][START_REF] Holzer | Introduction to Longitudinal Beam Dynamics[END_REF][START_REF] Wolski | Including Longitudinal Dynamics[END_REF][START_REF] Russenschuck | Electromagnetic Design of Accelerator Magnets[END_REF][START_REF] Brüning | Linear Imperfections[END_REF][START_REF] Duff | Longitudinal Beam Dynamics in Circular Accelerators[END_REF] of the particle beam, Fig. 2.14, and e is the absolute value of the electric charge since the particles under consideration are electrons (hence the minus sign in the right-hand side in Eq. (2.61)). Equation (2.61) stems from the equality between the magnitude of the Lorentz force's magnetic component on the particle ∥ ⃗ F mag ∥ = F Lor due to the magnetic field induction B and that of the centrifugal inertial force ∥ ⃗ F cf ∥ = F cf experienced in the particle's reference frame for a velocity magnitude ∥⃗ v∥ = v and a trajectory radius ρ [START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Goldstein | Classical Mechanics[END_REF]:

F Lor = evB = F cf = γm e0 v 2 ρ . (2.62) 
Thus an electron in a region of constant transverse dipolar field B z h as in a bending magnet is subject to a constant bending force F Lor resulting in an arc trajectory segment of constant radius ρ (circular trajectory), Fig. 2.8 [START_REF] Holzer | Introduction to Transverse Beam Optics II Particle Trajectories, Beams and Bunch[END_REF]. The dipole's bending angle 2θ, Fig. 2.8, is given by [START_REF] Holzer | Introduction to Transverse Beam Dynamics. The "Not So Ideal World[END_REF]:

2θ = Bds B z h ρ , (2.63) 
where Bds is effectively the integrated field along the electron design orbit in the dipole. The importance of Bds from a lattice-design perspective [START_REF] Holzer | Lattice Design in High-Energy Particle Accelerators[END_REF][START_REF] Holzer | Transverse beam dynamics[END_REF] is that its knowledge determines the necessary B z h for the bending magnets as well as their number in the ring. The reason to use magnetic fields for trajectory-bending purposes rather than electric fields can be perceived from the Lorentz force equation, Eq. (2.1) [START_REF] Holzer | Introduction to Longitudinal Beam Dynamics[END_REF]. The electrostatic equivalent of a magnetic force due to a field B = 1 T acting on a ultra-relativistic particle of v ≈ c would require a field E = 300 MV/m which neatly exceeds accessible technical boundaries (about 3 MV/m in dry air [START_REF] Taillet | Dictionnaire De Physique[END_REF]) defined by insulating media breakdown and accompanying discharge phenomena. Thus it is much more rational to use magnetic fields where the particle velocity v approaches the speed of light c as in high-energy circular accelerators (storage rings). Electrostatic forces can nonetheless still be preferred in certain contexts, as in some cases implying low-energy heavier particles.

The second right-hand term in Eq. (2.60) q β (s) denotes the betatron oscillation of the electron with respect to q c. o. (s). The third term η(s)δ p gives the offset on the closed trajectory produced for a particle of relative momentum offset δ p = ∆p/p 0 = (p -p 0 ) /p 0 where p is its momentum and p 0 is the reference momentum for the electrons. When one has β → 1 for the normalized electron velocity β = v/c introduced in Subsec. 2.2.1 (not to be confused with the beta function β q with q = {x, z} defined below) which implies an ultrarelativistic electron beam, the momentum and energy offsets (spreads) are approximately equal, σ p ≈ σ E (= (E -E 0 )/E 0 ) where E 0 is the reference energy and E the one of the individual particle.

A convenient way to express the final trajectory coordinates of the electron after its passing through a succession of lattice (cell) elements such as that portrayed for the simple storagering structure given in Fig. 2.15 is provided by the transfer-matrix formalism of beam dynamics [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Holzer | Introduction to Transverse Beam Dynamics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Holzer | Transverse beam dynamics[END_REF][START_REF] Wolski | Dynamical Maps for "Linear" Elements[END_REF][START_REF] Wolski | Linear Optics in Periodic, Uncoupled Beamlines[END_REF][START_REF] Wilson | Transverse Beam Dynamics[END_REF][START_REF] Wolski | Coupled Optics[END_REF]. If M qf , M qd and M B denote respectively the transfer matrices of the (horizontally) focusing, defocusing quadrupole and bending magnet of the lattice cell illustrated in exploded view in Fig. 2.15, then an electron set on a course to enter the cell sees its trajectory modified at the exit of the cell according to the transformation given by the matrix M cell that is the product of the individual element matrices in inverse order M qf , M qd and M B , Fig. 2.16 gives in green an example of a single-electron horizontal trajectory over one turn along the length of a storage ring. The trajectory is the result of the passage of an electron through a succession of magnetic elements as formulated through the matrix formalism discussed [START_REF] Carmignani | ESRF Course on Particle Accelerators I[END_REF][START_REF] Holzer | Transverse beam dynamics[END_REF][START_REF] Franchi | Introduction to Particle Accelerators[END_REF]. Following many turns the individual trajectories of distinct electrons in the beam bunch overlap to give the beam its overall envelope in red in Figs. 2.16 and 2.17. The envelope is periodic along the ring due to the ring's periodic structure, composed of identical magnet-lattice cells which implies a subsequent periodicity in the lattice focusing properties [START_REF] Holzer | Lattice Design in High-Energy Particle Accelerators[END_REF][START_REF] Holzer | Transverse beam dynamics[END_REF][START_REF] Holzer | Introduction to Transverse Beam Optics II Particle Trajectories, Beams and Bunch[END_REF]. Moreover, circular accelerators are usually geometrically periodic over one full turn around the accelerator circumference. Periodicity in uncoupled storage ring transverse linear dynamics under the stated simplifying hypotheses is treated in the framework of Hill's differential equation. The assumption of the absence of coupling [START_REF] Chavanne | Reducing Coupling and Vertical Emittance in the Storage Ring[END_REF][START_REF] Wolski | Linear Optics in Periodic, Uncoupled Beamlines[END_REF][START_REF] Sagan | Linear Analysis of Coupled Lattices[END_REF][START_REF] Wolski | Coupled Optics[END_REF][START_REF] Edwards | Parametrization of Linear Coupled Motion in Periodic Systems[END_REF] simplifies the analysis by allowing to consider the motions in the two transverse planes Osx and Osz, as mutually independent [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Wolski | Dynamical Maps for "Linear" Elements[END_REF][START_REF] Wolski | Coupled Optics[END_REF][START_REF] Guignard | Betatron Coupling and Related Impact of Radiation[END_REF]. There is inevitably some degree of coupling in a real storage ring due either to errors in magnet strength parameters or positioning (unintentional tilt for a normal quadrupole around the longitudinal axis) or purposefully introduced for specific needs (skew quadrupole or solenoid). In this respect the effect of a solenoid such as that proposed for the magnetization of the multi-period staggered-array undulator poles is studied in detail in Chap. 6.

M cell = M qf M B M qd M B M qf .
Hill's equation is written for the horizontal betatron motion x(s) as [START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF]:

x ′′ + x 1 ρ 2 (s) -k(s) = 0, (2.64) 
with ρ(s) ̸ = const. and k(s) ̸ = const. in this case being periodic functions of the coordinate s along the ring, of minimum possible period equal to that of the storage ring circumference L strr , ρ(s) = ρ(s + L strr ), k(s) = k(s + L strr ). One solves Eq. (2.64) by applying Floquet's theorem [START_REF] Basu | Dictionary of Material Science and High Energy Physics[END_REF] to express the solution for the trajectory x(s) = q β (s) with q β = x from Eq. (2.60) as:

x(s) = ϵ x β x (s) cos (ϕ x (s) + ϕ 0 ). (2.65)
In Eq. (2.65) ϵ x = const. is the horizontal beam emittance [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Raimondi | Horizontal-Vertical Emittance Exchange Schemes in a Ring[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Ropert | Low Emittance Lattices[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Wolski | Bunches of Many Particles[END_REF], invariant along the ring, β x (s) is the horizontal beta(tron) function, not to be confused with the normalized particle velocity β = v/c, ϕ x (s) is the corresponding betatron phase, not to be mistaken with the optical phase discussed in Subsec. 2.2.4, and ϕ 0 is the (initial) value of the betatron phase at the coordinate s 0 , ϕ 0 = ϕ x (s = s 0 ). The maximum transverse oscillation amplitude from Eq. (2.65) at the location s along the ring is ϵ x β x (s), giving the beam envelope and, supposing a Gaussian electron density distribution, the beam size, indicated in red in Figs. 2.16 and 2.17.

The form of the solution and of the quantities derived therefrom are analogous in the vertical plane. The beta function β q (s) with q = {x, z} depends on the focusing characteristics of the magnetic lattice and is also periodic, reflecting the lattice properties, β q (s) = β q (s = L strr ). The phase advance ϕ q (s) is found after injection of Eq. (2.65) in Eq. (2.64) and subsequent rearrangement:

ϕ q (s) = s s0 1 β q (s)
ds.

(2.66)

Eq. (2.66) indicates a small phase advance ϕ q (s) at ring locations s of large beta function values β q (s) and, trajectory amplitude q(s) according to Eq. (2.65) and beam envelope (size), and inversely. The tune Q q is defined as the phase advance in units of 2π over one full turn of the ring lattice and is given by [START_REF] Holzer | Lattice Design in High-Energy Particle Accelerators[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Holzer | Transverse beam dynamics[END_REF]:

Q q = 1 2π 1 β q (s)
ds.

(2.67) One can express the trajectory angle x ′ (s) by derivation of Eq. (2.65):

s x(s)
x ′ (s) = - ϵ x β x (s) [α x (s) cos (ϕ x (s) + ϕ 0 ) + sin (ϕ x (s) + ϕ 0 )] (2.68)
Subsequently expressing the cosine term cos (ϕ x (s) + ϕ 0 ) via Eq. (2.65) and inserting into Eq. (2.68) yields the following expression for the emittance ϵ x :

ϵ x = -γ x (s)x 2 (s) + 2α x (s)x(s)x ′ (s) + β x (s)x ′2 (s) (2.69)
In Eq. (2.69) the two functions α(s) and γ(s), derived from the beta function β x (s), form with β x (s) the so-called Courant-Snyder or Twiss or optical (lattice) parameters/functions of the ring lattice [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Wolski | Linear Optics in Periodic, Uncoupled Beamlines[END_REF]. α q (s) and γ q (s), not to be mistaken for the relativistic (Lorentz) factor γ of Eq. (2.6), are given respectively by:

α q (s) = - 1 2 β ′ q (s), (2.70 
)

γ q (s) = 1 + α 2 q (s) β q (s)
.

(2.71)

In Eq. (2.69) the emittance invariant ϵ q is stressed as being a conserved quantity during the transportation of the particle beam (constant of motion) through the lattice [START_REF] Raimondi | Horizontal-Vertical Emittance Exchange Schemes in a Ring[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Holzer | Introduction to Transverse Beam Optics II Particle Trajectories, Beams and Bunch[END_REF][START_REF] Wolski | Bunches of Many Particles[END_REF]. This is stated by Liouville's theorem [START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Holzer | Introduction to Transverse Beam Dynamics[END_REF][START_REF] Taillet | Dictionnaire De Physique[END_REF] valid under the conservative forces considered, hence in the absence of dissipating effects such as inter-particle interaction in the beam bunch, radiation emission or collisions with residual gas molecules in the vacuum chamber [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Holzer | Introduction to Transverse Beam Dynamics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF]. ϵ q is reflective of the quality of the beam bunch in the sense that it quantifies the strength of the transverse oscillations that the electron beam undergoes [START_REF] Holzer | Introduction to Transverse Beam Dynamics[END_REF][START_REF] Holzer | Introduction to Transverse Beam Optics II Particle Trajectories, Beams and Bunch[END_REF][START_REF] Holzer | Introduction to Transverse Beam Dynamics the Ideal World I[END_REF][START_REF] Wolski | Including Longitudinal Dynamics[END_REF]. From Eq. (2.69) one sees that ϵ q parametrizes the trajectory of an ellipse plotted in the coordinate-angle phase space q-q ′ . This is portrayed in Fig. 2.18 at a given location s along the ring turn by turn (points on ellipse). The coordinates of some of the more notable points along the ellipse are given as function of the Twiss parameters α q (s), β q (s), γ q (s) and emittance ϵ q . These ultimately define the form and orientation of the ellipse. With respect to Fig. 2.18 Liouville's theorem translates into the constancy of the ellipse size A q = πϵ q . The number of oscillations in the Osq plane that the electron undertakes from turn to turn (point to point on the ellipse in Fig. 2.18) is equal to its tune Q q in the given plane of motion. The influence of beam optics on the emittance ellipse can be rendered explicit by injecting Eqs. (2.70) and (2.71) in Eq. (2.69) and solving for x ′ :

x ′ 1, 2 = -α x x ± ϵ x β x -x 2 β x (2.72)
Deriving and equating to zero x ′ of Eq. (2.72) gives the maximum trajectory angle

x ′ max = √ ϵ x γ x obtained at x = ±α x ϵ x /γ x .
The large number of overlapping electron trajectories depicted in Fig. 2.17 constitutes a charge distribution. It is frequently encountered under the form of a Gaussian transverse distribution of the electron ensemble. One can hence consider the emittance of an electron situated at σ x (one standard deviation) as illustrative of the whole electron beam. The (RMS) beam size in the plane Osq with q = {x, z} at the position s along the ring is hence taken as:

σ q (s) = ϵ q β q (s).
(2.73)

For the corresponding RMS beam divergence σ ′ q (s) one has:

σ ′ q = ϵ q γ q (s). (2.74) q' q ε 𝑞 β 𝑞 γ q ε q β 𝑞 ε q - α 𝑞 β 𝑞 ε 𝑞 γ 𝑞 Figure 2
.18: Electron beam phase-space ellipse resulting from the parametrization of the emittance ϵ q with the optical parameters α(s), β(s) and γ(s) at a given longitudinal position s along the ring circumference turn after turn showing the definition of relevant optical parameters.

For a non-monoenergetic beam of energy spread σ E ≈ σ p the homogenous equation Eq. (2.64) that is solved to obtain x(s) in Eq. (2.65) for the betatronic component of the motion q β (s) in Eq. (2.60) is modified. One then has an inhomogenous equation with the energy spread σ p in the right-hand term σ p /ρ:

x ′′ + x 1 ρ 2 (s) -k(s) = σ p ρ .
(2.75)

The dispersion function η q (s) of the last right-hand term in Eq. (2.60) is the solution to the inhomogenous equation Eq. (2.75). It represents the contribution to the global transverse oscillation amplitude q(s) in Eq. (2.60) in the magnet lattice imparted by the typical electron energy error taken as the energy spread of the bunch σ E [START_REF] Holzer | Introduction to Transverse Beam Dynamics[END_REF]. For individual lattice elements η q (s) can be obtained analytically but is otherwize usually acquired numerically from beam dynamics codes [START_REF] Holzer | Transverse beam dynamics[END_REF]. In high-energy machines η q (s) is of the order of meters as the beta function β q (s), η q (s), The electron beam energy spread σ E induces a spectral spread σ ω /ω in the frequency ω of each undulator harmonic according to [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]:

β q (s) ∼ O(1 m) in comparison to q(s) ∼ O(1 mm) [75, 185].
σ ω ω = 2 σ E E .
(2.76)

Characteristics of undulator radiation

In the case of a filament electron beam a particular frequency ω m (θ x , θ z )) or equivalently harmonic m is emitted over the circumference of a particular interference cone centered on the average direction of electron velocity. The cone diameter is proportional to 1/ √ n, Fig. 2.20. When projected on a screen perpendicular to the undulator axis, such a spatial distribution is viewed as a sharp ring pattern around a central spot produced by the central cone. Examples of such angular distributions computed for two different fixed frequencies ω(0, 0) = ω 1 (0, 0), 1.3ω 1 (0, 0) produced by a filament electron beam are shown in Fig. 2.20 [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. The parameters of the emitting undulator are K = 1.5 and N p = 50. The photon flux thus produced by the ID from a filament electron beam is distributed in narrow resonant peaks centered around particular harmonic frequencies ω m (θ x , θ z ) = mω 1 (θ x , θ z ), where m is the harmonic number, ω 1 is the fundamental frequency and ω m = 2π/λ m with λ m the m-th harmonic wavelength [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Elleaume | Introduction to Insertion Devices[END_REF][START_REF] Wille | Introduction to insertion devices[END_REF][START_REF] Walker | Interference Effects in Undulator and Wiggler Radiation Sources[END_REF][START_REF]CERN Accelerator School: Intermediate Accelerator Physics[END_REF]190]. The distribution of the harmonic spectral photon flux density Φ m collected through a pinhole is largely concentrated in a conical region of opening angle given by:

∆θ m ≈ 1 γ N p m , (2.77) 
where N p is the number of periods of the ID. The corresponding relative energy width in Fig. 2.4 is:

∆E m E m ≈ 1 N p m . (2.78) 
Moreover, one has a flux density Φ m for an undulator that is proportional to the square of the number of periods, Φ m ∝ N 2 p , instead of having simply Φ m ∝ N p in the wiggler case. For a monoenergetic filamentary electron beam the on-axis angular spectral flux Φ m /[δΩ (δλ/λ)](θ x = 0, θ z = 0, λ) for odd harmonics m, with δΩ the infinitesimal solid angle defined by the corresponding infinitesimal planar angles {δθ x , δθ z }, reads:

Φ m δΩ (δλ/λ) (θ x = 0, θ z = 0, λ) = c f. s. I e γ 2 N 2 p F m (K) for m odd. (2.79)
For even m the on-axis angular spectral flux Φ m /[δΩ (δλ/λ)](0, 0, λ) is zero for a filament electron beam and even harmonics are thus exclusively emitted off-axis. In the case of a finite-emittance beam however there is also an on-axis emission for even m [START_REF] Tischer | An Adaptive Scheme for Suppression of Higher Harmonics in an Undulator[END_REF]. In Eq. (2.79) c f. s. = e 2 /(2ϵ 0 hc) is the fine structure constant [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF] and F m (K), the angular on-axis energy distribution function is expressed as:

F m (K) = m 2 K 2 (1 + K 2 2 ) 2 J m-1 2 mK 2 4 + 2K 2 -J m+1 2 mK 2 4 + 2K 2 2 (2.80)
In Eq. (2.80) J m (x) is the Bessel function of order m. Figure 2.21 illustrates the evolution of F m (K) for several values of m. An alternative more practical form of Eq. (2.79) is given by Eq. (2.81):

0 1 2 3 4 5 
K [1] 0.0 0.1 0.2 0.3 0.4 F m [1] m = 1 m = 3 m = 5 m = 7
Φ m δθ x δθ z δλ/λ (0, 0) [photons/s/0.1%/mrad 2 ] ≈ 1.744 × 10 14 N 2 p E 2 [GeV]I[A]F m (K) (2.81)
The finite emittances ϵ x/z and electron energy spread σ E = δ E /E of a real (non-filament) stored electron beam lead to a reduction in photon flux and broadening of the harmonics. This translates into a blurring of the corresponding ring pattern as illustrated by Fig. m /[δλ/λ](0, 0) occurs at the detuned wavelength λ ′ m (0, 0). This wavelength corresponds to a frequency ω ′ m (0, 0) lower than the resonant one, ω ′ m (0, 0) < ω m (0, 0), and is given by:

λ ′ m (0, 0) = λ m (0, 0) 1 - 1 mNp .
(2.82)

The resulting Φ ′ m /[δλ/λ](0, 0) can be expressed as:

Φ ′ m δλ/λ (0, 0) = πc f. s. I e N p Q m (K) (2.83)
In Eq. (2.83) the function Q m (K) is the on-axis flux function, defined as:

Q m (K) = 1 + K 2 2 F m (K) m = mK 2 1 + K 2 2 J m-1 2 mK 2 4 + 2K 2 -J m+1 2 mK 2 4 + 2K 2 2 (2.84)
In a manner equivalent to Eq. (2.79), Eq. (2.83) can be used in the form: The maximum on-axis angle-integrated spectral flux

[Φ ′ m /(δλ/λ)](0, 0) [photons/s/0.1%] = 1.431 × 10 14 N p I[A]Q m (K). (2.85) Figure 2.23 illustrates the evolution of Q m (K) for several values of m. 0 1 2 3 4 5 K [1] 0.0 0.2 0.4 0.6 0.8 1.0 Q m [1] m = 1 m = 3 m = 5 m = 7
[Φ ′ m /(δλ/λ)](0, 0) obtained at the detuned frequency ω ′ m (0, 0) = ω m (0, 0) (1 -1/mN p ) is about twice the respective value at the resonant frequency ω m (0, 0): [Φ ′ m /(δλ/λ)](0, 0) ≈ 2[Φ m /(δλ/λ)](0, 0). The same relation holds for the corresponding photon beam RMS divergences Σ ′ m (0, 0) and Σ ′ m ′ (0, 0), Σ ′ m ′ ≈ 2Σ ′ m (0, 0) whereas the sizes Σ m ′ (0, 0), Σ m (0, 0) are roughly identical, Σ m ′ (0, 0) ≈ 0.9Σ m (0, 0).
The higher detuned (maximum) on-axis angle-integrated spectral flux [Φ ′ m /(δλ/λ)](0, 0) is emitted on the circumference of a hollow cone. It receives a contribution at the corresponding effective frequency ω ′ m (0, 0) for both relatively superiour and inferiour values of angular "radius" θ = θ 2

x + θ 2 z , in accordance with Eq. (2.33). This is not the case for the lower on-axis resonant flux [Φ m /(δλ/λ)](0, 0) which is of a solid-cone distribution. Hence it is accounted for only by relatively superiour θ in the manner described, receiving a relatively smaller contribution.

The on-axis source brilliance B m (y = y 0 , θ x = 0, θ z = 0) [photon/s/0.1%/mm 2 /mrad 2 ] at the harmonic frequency ω m of an undulator centered at the longitudinal source coordinate y 0 is used as a measure of the corresponding source photon flux density in 4D phase space [START_REF] Brandt | CAS-CERN Accelerator School: Course on Synchrotron Radiation and Free-Electron Lasers[END_REF]. As such it is approximated by the ratio of the angle-integrated spectral flux to the source volume in phase space.

Due to the invariance of brilliance with respect to a linear drift transformation given by y 1 → y 2 it is simply noted B m (θ x , θ z ). For odd harmonics m on axis one thus has:

B m (0, 0) ≈ [Φ m /(δλ/λ)](0, 0) Σ m x (y 0 , 0, 0)Σ m z (y 0 , 0, 0)Σ ′ m x (y 0 , 0, 0)Σ ′ m z (y 0 , 0, 0) , (2.86) 
where Σ m x (y 0 , 0, 0), Σ m z (y 0 , 0, 0), Σ ′ m x (y 0 , 0, 0), Σ ′ m z (y 0 , 0, 0) denote the respective RMS transverse sizes and divergences of the photon beam of the harmonic m at source coordinate y 0 due to a thick (finite-emittance) electron beam.

B m (0, 0) in Eq. (2.86) is an important parameter of discussion for synchrotron light sources since its maximization suggests performance requirements like high on-axis angle-integrated spectral flux [Φ m /(δλ/λ)](0, 0) and small electron beam sizes σ q (y 0 ) and divergences σ ′ q (y 0 ). σ q (y 0 ) and σ ′ q (y 0 ) contribute respectively to the photon-beam sizes Σ m q (y 0 , 0, 0) and divergences Σ ′ m q (y 0 , 0, 0) (noted respectively Σ 0 m q and Σ ′ 0 m q for shortness) produced by the multi-electron electron beam as discussed in App. A.

Undulator power load

The total angle-integrated power outputted by a general undulator with transverse field components B x (y) and B z (y) seeing a filament electron beam is expressed as:

P = e 2 4πϵ 0 2e 3m 2 c 2 γ 2 I ∞ -∞ (B 2 x + B 2 z ) ds, (2.87) 
or in useful units:

P [kW] = 1.266E 2 [GeV]I [A] ∞ -∞ B 2 x + B 2 z [T] ds [m], (2.88) 
where I is the circulating beam current in the storage ring. In the case of the planar sinusoidal undulator of sole vertical field profile B(z) given by Eqs. (2.10) and (2.87), Eq. (2.88) yields:

P [kW] = 0.633B 2 p [T]E 4 [GeV]I [A]L [m], (2.89) 
with B p and L the undulator peak field and length respectively. More generally, the power per unit solid angle Ω in the direction given by the vector ⃗ u rad , [dP/dΩ](⃗ u rad ) of the acceleration (far) field ⃗ E f f (⃗ r, t), Eqs. (2.2) and (2.4), in the time domain t at an observer position r = ∥⃗ r∥ generated by a filament electron beam of current I and radiated towards the observer in the direction -⃗ n is linked to the power density per unit surface dP/dS projected on a screen S at the corresponding electron-observer distance R = ∥ ⃗ R∥, with the geometry setup being that of Fig. 2.1:

dP dΩ (-⃗ n) = R dP dS = ϵ 0 c I e ∞ -∞ D 2 ∥ ⃗ E f f (⃗ r, t)∥dt (2.90)
Replacing the expression for the far-field component of the electric field ⃗ E f f from Eq. (2.4) in Eq. (2.90) and restricting to a linear polarization along the vector ⃗ p, the power per unit solid angle becomes [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]:

dP dΩ (-⃗ n, ⃗ m) = e 2 16π 2 ϵ 0 c I e ∞ -∞   (⃗ n × ((⃗ n -⃗ β × ⃗ a = d ⃗ β dτ ) ⃗ m 2 (1 -⃗ β⃗ n 5   ret dτ (2.91)
The angle-integrated power P can be related to the on-axis value of the power per unit solid angle [dP/dΩ](0, 0) through [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Elleaume | Insertion Devices[END_REF]:

dP dΩ (0, 0) = 21γ 2 16πK P G(K), (2.92) 
or also:

dP dΩ (0, 0) W mrad 2 = 10.84B p [T]E 4 [GeV]I [A]N p G(K), (2.93) 
where the function G(K) is defined as:

G(K) = 16K 7 π -π 1 -K 2 cos 2 (x) (1 + K 2 cos 2 (x)) 5 sin 2 (x)dx = K K 6 + 24 7 K 4 + 4K 2 + 16 7 (1 + K 2 ) 7 2
.

(2.94)

The graph of G(K) is given in Fig. 2.24. 
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Insertion device technology

Magnetic materials and fields for undulators

One of the main functional benefits of undulators is that the emitted radiation wavelength can be continuously tuned by acting on the value of a particular physical parameter [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF]. Depending on the technology used to generate the undulator field different parameters or sets of such independant from an operational point of view are available to do this [START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Elleaume | Introduction to Insertion Devices[END_REF][START_REF] Elleaume | Variable Polarisation and Other Exotic Insertion Devices[END_REF][START_REF] Elleaume | Technology of Insertion Devices[END_REF]. In this respect one strives to optimize the (maximum achievable) value of the deflection parameter(s) K ∝ B p λ u of Eqs. (2.17), (2.18) and (2.101) which is considered as an indicator of ID tunability [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF]. With this in mind insertion device design then aims to enable achieving the highest possible peak field B p during operation. There is a two-step process to this.

First, at the physics level, one can have some choice on the properties of the magnetic material used and/or its conditioning during device functioning (saturation of soft magnetic pieces for example). Secondly, at the engineering level, one then attempts to ensure that the variation of the operational parameter(s) (gap g for a conventional fixed-period undulator built with elements of remanent magnetization ⃗ M ) permits such an optimization. This is evaluated from the point of view of the analytical model used to describe the undulator field. This reasoning is valid for a particular fixed undulator period value λ u chosen during a preliminary design phase [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Elleaume | Technology of Insertion Devices[END_REF].

Some novel designs implement wavelength tunability through period variation as well according to Eqs. (2.17), (2.18) and (2.101) [START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF][START_REF] Davidyuk | Magnetic and Mechanical Design of Large-Aperture Variable-Period Permanent Magnet Undulator[END_REF][START_REF] Vinokurov | Variable-Period Permanent Magnet Undulators[END_REF][START_REF] Vagin | Variable Period Undulator with Tunable Polarization[END_REF][START_REF] Mun | Variable-period permanent-magnet helical undulator[END_REF][START_REF] Davidyuk | Results of Test of Prototype of Variable Period Undulator[END_REF][START_REF] Davidyuk | Modeling and Designing of Variable-Period and Variable-Pole-Number Undulator[END_REF] as discussed in more detail in Chap. 3. It is worth noting in this context that the undulator field itself depends on λ u . For devices of practical interest this dependance is usually modeled by a semi-analytical exponential expression whose general form is derivable from Maxwell's equations in 2D space [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF]. Such an expression is the one given by Eq. (2.95) for the on-axis peak field B p (x = 0, z = 0, y) [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF][START_REF] Tanaka | Utilization of Bulk High-Temperature Superconductors for Shorter-Period Synchrotron Radiation Sources[END_REF]:

B p x = 0, z = 0, g λ u [T] = B 0 exp -bπ g λ u (2.95)
where the physical contents behind the field constant B 0 depends on the undulator field generating technology considered, notable types of which are discussed in Subsec. 2.3.2. For example, Eq. (2.95) can be taken with B 0 = aB r with a = const. to consider the case of so called conventional (variablegap) undulators based on permanent magnet design with magnets of remanent magnetic field (induction) magnitude B r . In the case of electromagnetic insertion devices B 0 can equivalently be taken proportional to the current I in the coils, B 0 = aI. The expression given by Eq. (2.95) gives the peak field for the main (first) undulator field harmonic. In Eq. (2.95) B 0 (via the proportionality factor a discussed) and b are constants obtained from numerical fitting procedures carried on data from magnetic measurements or calculations for a given design or geometry type [START_REF] Pflueger | Undulator Technology[END_REF]. a for example can reflect three-dimensional effects and non-optimized magnetic element dimensions [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. The formula of Eq. (2.95) is encountered in various forms differing from one another in the values of a and b and/or the order of development of the exponential function's argument in terms of the gap-over-period ratio g/λ u (developed to first order in Eq. (2.95). The different versions of Eq. (2.95) result from 2d studies which consider an undulator field of the form ⃗ B(x, z, y) = (0, B z (z, y), B y (z, y)) and/or fits on data from different devices of a given type built at different facilities. Thus the transverse horizontal field component B x is not taken into account and so is not the transverse horizontal dependence of the undulator and longitudinal fields B z ( ¡ e x, z, y) and B y ( ¡ e x, z, y) respectively. This last assumption is equivalent to considering infinite magnet piece width w → ∞ in the horizontal x direction or restraining the analysis close to the undulator axis which is legitimate for a small enough beam size in the transverse plane Oxz [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF].

The longitudinal field profile predicted by the analytical (Halbach) formula given in [START_REF] Halbach | Permanent Magnet Undulators[END_REF][START_REF] Elleaume | Technology of Insertion Devices[END_REF] for the m-th on-axis field harmonic B m (y) of the pure permanent magnet (PPM) undulator portrayed in Fig. 2.29 (4 magnet blocks per period) of Subsec. 2.3.2 is [START_REF] Halbach | Permanent Magnet Undulators[END_REF][START_REF] Elleaume | Technology of Insertion Devices[END_REF]:

B m y, g λ u = 2B r sin m π 4 m π 4 exp -mπ g λ u 1 -exp -2mπ h λ u Bm p cos 2mπ y λ u , (2.96) 
where B m p is the corresponding peak field, h m is the magnet block height as indicated in Fig. 2.29 and m =∈ {1, 5, 9, ...}. Equation (2.96) assumes a magnet relative permeability µ r = 1.

Provided that the magnet blocks are uniformly magnetized possessing a magnetization vector ⃗ M , this implies that they can be looked at as equivalent surface current (current sheet) distributions of negligible sheet width (winding width or diameter) w s → 0 enveloping a void volume (vacuum) deprived of the bulk matter part of the block, Fig. 2.25. This is exploited for the purpose of practically modeling the magnetic block as an air coil of equal dimensions and a surface-flowing current density ⃗ j S (in amperes per unit length element tangent to the current-carrying surface and orthogonal to the current flow) with no internal volume current ⃗ j V = 0 (in amperes per unit surface normal to the current flow) [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF], Fig. 2.25.

… 𝑀 𝑗 𝑠 = 𝑀 x 𝑛 µ 𝑟 = 1 𝑗 𝑉 = 0 h µ 0 𝑛 . . … 𝑤 𝑠 → 0 𝑤 𝑦 𝑥 𝑧 Figure 2
.25: Equivalence between an ideal parallelepipedic PM block of uniform magnetization ⃗ M and unit relative permeability µ r = 1 and an air coil of identical rectangular cross section and equal height carrying a purely surface-flowing current density ⃗ j S .

In the notations of Fig. 2.25 the magnet block on the left-hand side is of uniform magnetization vector ⃗ M and relative permeability µ r = 1 and is considered as an equivalent rectangular crosssection air-core current-carrying coil (current sheet model despite depiction of individual windings for clarity) of width w and height h m equal to those of the magnet. The coil is excited by a surface current density ⃗ j S according to ⃗ j S = ⃗ M × ⃗ n where ⃗ n is a unit vector orthogonal to the PM block surface and pointing outwards from it. There is no bulk volume current in the coil core, ⃗ j V = ⃗ 0, which is hence assimilated to vacuum through the corresponding magnetic permeability µ 0 . Thus, in the absence of soft magnetic substances like soft iron (soft steel), mu-metal or Permalloy [START_REF] Taillet | Dictionnaire De Physique[END_REF] which become highly non-linear close to their saturation point, individual magnet fields of such current sheet equivalent blocks can be summed linearly which facilitates computational tasks.

The remanent field factor B r in Eqs. (2.95) and (2.96) is actually an approximation to the magnetic polarization factor µ 0 M/ exp -µ ∥ -1 /2 through:

µ 0 M ≈ B r exp - µ ∥ -1 2 .
(2.97)

The exponential term in Eq. (2.97) gives a deviation of about 3% for the remanent field B r with respect to the term on the right-hand side in the case of magnets made from NdFeB [START_REF] Sagawa | Magnetic Properties of Rare-Earth-Iron-Boron Permanent Magnet Materials[END_REF] material [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. This term, µ 0 M [T], is sometimes termed as the magnetic polarization or (intensity of ) magnetization of the PM material [START_REF] Taillet | Dictionnaire De Physique[END_REF][START_REF] Basu | Dictionary of Pure and Applied Physics[END_REF] with M = ∥ ⃗ M ∥ the material magnetization and µ ∥ = µ r ∥ µ 0 the magnetic permeability parallel to the easy axis where µ r ∥ is the relative permeability of the material parallel to the axis. One often neglects the percentage correction due to the µ r ∥ -term in Eq. (2.97) and then approximates the block's magnetic polarization µ 0 M due to its magnetization M by its remanent field B r :

µ 0 M ≈ B r .
(2.98)

The easy axis is the one along which the magnetic field imposed on the material production sample during the magnet fabrication process has been applied in order to align the individual magnetic dipole moments carried by the material's grains. The dipole moments are produced by preliminary grinding of the alloy in the direction of the field. This is done by exploiting the property of magnetocrystalline anisotropy in the material where the dipole moments present a preferred direction of alignment. In relation to this one defines the two (linear) relative permeabilities µ r ∥ and µ r ⊥ respectively parallel and perpendicular to the easy axis. These quantities are meaningful in a certain useful region of the applied magnetic excitation H-field's values [A/m -1 ] in which region the magnetic material under study can be regarded as having a linear magnetization characteristic M (H) (linear material). This is the case for permanent magnets [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. From Eq. (2.98) one can also express the magnitude of the equivalent current density in the current sheet model of Fig. 2.25 as ∥ ⃗ j S ∥ ≈ B r /µ 0 . Thus a permanent magnet remanent field B r = 1 T would correspond to a surface current density j S = 800 A/mm block height, Fig. 2.25 for the given block length [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]. For a single-array period equivalence a factor 2 is added due to the contribution from adjacent surfaces of two neighboring coils in the period of the electromagnetic undulator, ∥ ⃗ j S ∥ ≈ 2B r /µ 0 , as illustrated in the right-hand side of Fig. 

Technological solutions for undulator design

Three main technologies are used for generating magnetic fields in IDs, based on permanent magnets, electromagnetic (room-temperature/normal conducting) and superconducting solutions [START_REF] Kubsky | Superconductive Mini-Gap Undulators -a New Way to High Energy Photons: Latest News[END_REF][START_REF] Flükiger | Superconductivity for Magnets[END_REF]. The last two can be viewed as a single category. In this case when speaking of the superconducting category one naturally refers to current coil designs exploiting low-temperature [START_REF] Baudouy | Heat Transfer and Cooling Techniques at Low Temperature[END_REF] superconductors (LTS) of the so called type 2 [START_REF] Lévy | Savoirs actuels. Série Physique[END_REF]. This material type exhibits a lower and upper critical magnetic fields B c lw and B c up with one having typically B c up ≫ B c lw and perfect diamagnetism [START_REF] Duthil | Material Properties at Low Temperature[END_REF] leading to external field expelling for experienced fields in the range B < B c lw [START_REF] Seidel | Applied Superconductivity Handbook on Devices and Applications[END_REF][START_REF] Wolski | Theory of Electromagnetic Fields Part II: Standing Waves[END_REF].

Binary alloys Niobium Titanium (NbTi, ductile) [START_REF] Godeke | Interlaboratory Comparisons of NbTi Critical Current Measurements[END_REF] and Niobium Tin (Nb 3 Sn, brittle) [START_REF] Schoerling | Nb3sn Accelerator Magnets[END_REF] for relatively higher fields with respect to the former [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] are the two superconductingmaterial representatives of the LTS type-2 category that are used in the fabrication of insertion devices. As such their behavior with magnetic field is characterized by the existence of a critical surface in terms of the parameter triplet current density j sol , temperature T and magnetic field strength B [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Sharma | [END_REF][START_REF] Ferracin | Superconducting Magnets Section 1-4[END_REF][START_REF] Marken | 1-Fundamental Issues in High Temperature Superconductor (HTS) Materials Science and Engineering[END_REF][START_REF] Wesche | Physical Properties of High-Temperature Superconductors[END_REF][START_REF] Wesche | High-Temperature Superconductors: Materials, Properties, and Applications[END_REF] discriminating between functional regimes of desired operational superconducting state and to-be-avoided normal-conducting highly resistive (quenched ) states [START_REF] Ferracin | Superconducting Magnets Section 1-4[END_REF]. Notably NbTi [START_REF] Bottura | A Practical Fit for the Critical Surface of NbTi[END_REF] and Nb 3 Sn [START_REF] Schoerling | Nb3sn Accelerator Magnets[END_REF] can sustain upper critical magnetic fields of B c up ≈14.5 and 28 T respectively at j sol = 0 A/mm 2 , T =0 K before quenching and subsequent transitioning into normal resistive regime.

The remark on superconducting electromagnetic undulator technology is to be made since recent design and prototyping progress is reported on superconducting devices exploiting magnetized bulk superconductors of the H(C)TS type (High (Critical) Temperature Superconductor) [START_REF] Gupta | High Temperature Superconductor (HTS) Solenoid[END_REF][START_REF] Tanaka | Utilization of Bulk High-Temperature Superconductors for Shorter-Period Synchrotron Radiation Sources[END_REF][START_REF] Marken | 1-Fundamental Issues in High Temperature Superconductor (HTS) Materials Science and Engineering[END_REF][START_REF] Teshima | Recent Progress in HTS Bulk Technology and Performance at NSC[END_REF][START_REF] Coombs | 4-Bulk High Temperature Superconductor (HTS) Materials[END_REF][START_REF] Kii | Low-Temperature Operation of a Bulk HTSC Staggered Array Undulator[END_REF][START_REF] Kii | Conceptual Design of a Novel Insertion Device Using Bulk Superconducting Magnet[END_REF][START_REF] Kinjo | Design Study on a Short-Period Hybrid Staggered Array Undulator by Use of High-Tc Superconductor Bulk Magnets[END_REF][START_REF] Kinjo | Bulk High-Tc Superconductor Staggered Array Undulator[END_REF][START_REF] Deri | Design of HTSC Undulator Magnet Array Based on Simulation of Magnetization Process[END_REF][START_REF] Ghoshal | 6-Cryogenics for High Temperature Superconductor (HTS) Systems[END_REF][START_REF] Selvamanickam | 2-High Temperature Superconductor (HTS) Wires and Tapes[END_REF][START_REF] Jones | 5-High Temperature Superconductor (HTS) Magnets[END_REF][START_REF] Jones | 5-High Temperature Superconductor (HTS) Magnets[END_REF][START_REF] Zangenberg | 12-High Temperature Superconductors (HTS) in Accelerator Systems[END_REF][START_REF] Schlachter | 3-High Temperature Superconductor (HTS) Cables[END_REF][START_REF] Gömöry | 7-Electromagnetic Modeling of High Temperature Superconductor (HTS) Materials and Applications[END_REF][START_REF] Zhang | Fast and Efficient Critical State Modeling of Field-Cooled Bulk High-Temperature Superconductors Using a Backward Computation Method[END_REF][START_REF] Saxena | High-Temperature Superconductors[END_REF] where the HTS superconductor material is exploited under some sort of a block/unit form similar in a way to the permanent magnet case. Thus, bearing this in mind, normal-and superconducting electromagnetic undulators [START_REF] Kubsky | Superconductive Mini-Gap Undulators -a New Way to High Energy Photons: Latest News[END_REF] are based on current-carrying elements (coils) for current excitation (induction) of magnetic fields, in an iron-dominated configuration for the electromagnetic room-temperature concept and iron-dominated or not for the superconducting one [START_REF] Ingold | Fabrication of a High-Field Short-Period Superconducting Undulator[END_REF][START_REF] Ivanyushenkov | Development and Operating Experience of a 1.1-M-Long Superconducting Undulator at the Advanced Photon Source[END_REF][START_REF] Grau | First Experimental Demonstration of Period Length Switching for Superconducting Insertion Devices[END_REF][START_REF] Casalbuoni | A Review of Magnetic Field Measurements of Full Scale Conduction Cooled Superconducting Undulator Coils[END_REF], Fig. 2.27.

The iron-dominated structure makes use of soft ferromagnetic materials such as iron or alloys like iron cobalt vanadium (FeCoV). Such materials have a weak coercive field H c (⪅ 1000 A/m -1 ), reduced hysteresis cycle and high relative magnetic permeability µ r [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF] (10 4 -10 6 ), with ⃗ B = µ 0 µ r ⃗ H where ⃗ B is the induced field in the material by the applied excitation ⃗ H (defined by the coil current) and µ 0 = 4π10 -7 N.A -2 is the vacuum permeability [START_REF] Wolski | s Equations for Magnets Part I[END_REF]. This means that passive elements like yokes and/or pole pieces (not possessing their own magnetic moment/field) made from such ferromagnetic materials can be used to channel and progressively increase up to their saturation the magnetic flux established by the active elements of a design such as coils, Fig. 2.27 at the tolerable expense of low core losses [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. These losses are due to hysteresis-originating power dissipation under heat form during coil current ramping/cycling as well as induced eddy currents similar to the transformer core phenomenon (possible to be remedied by envisaging a sheeted or laminated core structure). Magnetic flux saturation ensures that the maximum physically allowed field is achieved in the device. Vanadium Permendur (FeCoV) material can attain values up to 2.3 T for example. The major obvious difference between the electromagnetic and superconducting (coil) technical approaches is the fabrication material and structure of the coil wire that assures the currentcarrying capacity of the coil. Thus the material can be either normal conducting (copper) or superconducting. A typical superconducting material layout in the accelerator magnet domain is µmm-scale diameter Niobium Titanium (NbTi) twisted fine filaments embedded in a normalconducting (copper) matrix for reasons of thermal and magnetic stability resulting in a typical wire diameter of approximately 1 mm bearing around 10 4 filaments [128, 130, 131, 131, 133-135, 166, 224, 224, 224, 224, 244, 245]. Superconducting devices can sustain much higher current densities and total currents than electromagnetic ones and outperform other technological categories in terms of reachable peak field, even for less optimized geometric parameters (λ u , g). Both room-temperature electromagnetic [START_REF] Deis | Electromagnetic Wiggler Technology Development at the Lawrence Livermore National Laboratory[END_REF] and superconducting IDs have a maximum limit on structurally acceptable current density j sol [A/mm 2 ] that they carry, about 10 A/mm 2 for the former and in excess of 1500 A/mm 2 for the latter [START_REF] Pflueger | Undulator Technology[END_REF]. They require a sufficiently large wire cross-section to operate at a given global current I [A]. Moreover, due to the scaling properties of current-carrying systems and because of the technical threshold on j sol , such systems cannot be rendered infinitely compact at will which undermines their practicality for short-period designs [START_REF] Halbach | Some Concepts to Improve the Performance of Dc Electromagnetic Wigglers[END_REF]. This is because the requirement to have a magnetic induction of equivalent magnitude following a geometrical operation of linear dimension down-scaling of numerical factor a>1 leads to an increase in corresponding current density j sol by the same multiplicative factor. Thus, due to the limitation on current-carrying capability, and not taking into account any preceding impact on cooling components [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Halbach | Permanent Magnet Undulators[END_REF], electromagnetic (normal conducting) undulators are of restricted beneficial usage to long-period applications that go as far as λ u = 200 mm and above [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF]. In this respect, superconducting undulator technology is well mastered for low-N p devices of several periods like wavelength-shifters and λ u ⪆ 40 mm, with fields of multiple Teslas readily available. Due to the necessary cryogenic equipment of a shielded cryostat with helium [START_REF] O'shea | Short Period, High Field Cryogenic Undulator for Extreme Performance X-Ray Free Electron Lasers[END_REF][START_REF] Benabderrahmane | Development and Operation of a Pr2Fe14B Based Cryogenic Permanent Magnet Undulator for a High Spatial Resolution X-Ray Beamline[END_REF][START_REF] Huang | Development of Cryogenic Permanent Magnet Undulators at NSRRC[END_REF][START_REF] Chavanne | First Operational Experience with a Cryogenic Permanent Magnet Undulator at the ESRF[END_REF][START_REF] Lebrun | Cooling with Superfluid Helium[END_REF][START_REF] Parma | Cryostat Design[END_REF][START_REF] Couprie | Advances in X-ray Free-Electron Lasers Instrumentation III[END_REF][START_REF] Jha | Cryogenic Technology and Applications[END_REF] and liquid nitrogen vessels as well as underlying engineering issues such as heat leak towards the room-temperature environment, superconducting devices are sensibly more complex to install and maintain than their electromagnetic counterparts. [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] outlining the basic engineering components of a cryostat used to maintain the depicted superconducting undulator coil to the cryotemperature necessary to assure its functioning in superconducting state by avoiding the quench phenomenon.

Superconducting coils

Fig. 2.28 shows a sketch of the basic components found in a typical cryostat applicable to a superconducting insertion device integrated in a storage ring. A LHe (liquid helium) environment [START_REF] Alekseev | Basics of Low-Temperature Refrigeration[END_REF][START_REF] Ekin | Experimental Techniques[END_REF] maintained at atmospheric pressure cools down the superconducting coils to the boiling point of LHe at T LHe boil = 4.2 K. A cryostat's quality is judged with respect to its capacity to limit the heat leak towards the helium vessel at cryogenic temperature and the exterior medium at room temperature of 300 K. Poor minimization of this leak comes at a typically high cost to pay in terms of socket efficiency presented by the liquefier element that is to compensate the consequent helium evaporation. [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] cites an estimate ratio of 1000 for the electric power delivered to the liquefier at room temperature to the restored heat leak at T LHe boil . Several technological illustrated in Fig. 2.28 means thus serve to isolate the LHe vessel housing the superconducting coil. At the trivial stage the vessel is leak tight. The material usually used for its fabrication is stainless steel [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. A first layer of isolation is provided by cryogenic vacuum [START_REF] Chiggiato | Vacuum Technology for Superconducting Devices[END_REF][START_REF] Jha | Cryogenic Technology and Applications[END_REF][START_REF] Baglin | Vacuum Systems Lecture 1-5[END_REF][START_REF] Mathewson | Vacuum System Design[END_REF] at a pressure of about 10 -6 -10 -7 mbars for suppression of residual gas conduction heat transfer [START_REF] Kersevan | Twostep Vacuum Design of Light Sources[END_REF][START_REF] Mathewson | Vacuum System Design[END_REF]. Next comes a copper shield positioned in the vacuum between the coil vessel and the outer tank wall. The shield is autonomously cooled by a liquid nitrogen vessel LN maintained at the corresponding room temperature at 77 T. The copper shield is meant to absorb black-body radiation coming from the outer tank wall and prevent it from impacting on the LHe vessel. Several such shields can be arranged in successive order to better this effect [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF].

The most employed undulator field implementation technology is the permanent magnet concept which is sketched in Fig. 2.29 [START_REF] Bahrdt | Pushing the Limits of Short Period Permanent Magnet Undulators[END_REF]. The figure depicts in particular the pure permanent magnet (PPM) array structure, historically known also as the Halbach type magnetic structure [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Rosenzweig | Advanced Undulator Concepts for Future Free-Electron Lasers[END_REF] It declines in two sub-variant approaches: the pure permanent magnet (PPM) approach sketched in Fig. 2.29 of Subsec. 2.3.2 and the hybrid permanent magnet one represented in Fig. 2.30 [START_REF] Zhou | Magnetic Field Optimization of a Novel Hybrid Permanent Undulator[END_REF]. The PPM employs an alternating magnetization (easy-axis) vector ⃗ M disposition of the kind shown in Fig. 2.29 for the magnet blocks where ⃗ M rotates by angle of π/2 in the vertical plane from the i-th to the (i + 1)-th magnet block. This disposition aims to have magnetizations ⃗ M from both upper and lower arrays parallel in the mid-plane of the undulator z = 0 so as to maximize the on-axis field B z and annihilate the longitudinal component B y . Both the pure permanent magnet (PPM) and hybrid permanent magnet sub-concepts make use of permanent magnet blocks of hard ferromagnetic anisotropic material characterized by a remanent field B r value, a large coercive field H c and low permeability µ r . Typical materials include steel, the aluminum-nickel-cobalt alloy AlNiCo and rare-earth cobalt examples like samarium-cobalt (SmCo 5 and Sm 2 Co 17 ) and neodymium-iron-boron (Nd 2 Fe 14 B) [START_REF] Lacheisserie | [END_REF]. The first can have a B r in the range from 0.85 to 1.05 T with Sm 2 Co 17 achieving higher fields and being more stable under radiation impact [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]. The second exhibits a B r of 1.1-1.4

T. An increase in B r can be made through cryogenic cooling of the magnets [START_REF] Benabderrahmane | Development and Operation of a Pr2Fe14B Based Cryogenic Permanent Magnet Undulator for a High Spatial Resolution X-Ray Beamline[END_REF][START_REF] Huang | Development of Cryogenic Permanent Magnet Undulators at NSRRC[END_REF][START_REF] Bahrdt | Cryogenic Permanent Magnet and Superconducting Undulators[END_REF][START_REF] Huang | Challenges of In-Vacuum and Cryogenic Permanent Magnet Undulator Technologies[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF] in a typical range from 80 K to 145 K [START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF] suitable for high-quality material [START_REF] Chavanne | Physics of Undulators[END_REF] such as NdFeB or PrFeB. This process takes place according to Curie-Weiss's temperature dependance law for the magnetic susceptibility χ(T) [START_REF] Taillet | Dictionnaire De Physique[END_REF][START_REF] Basu | Dictionary of Pure and Applied Physics[END_REF][START_REF] Basu | Dictionary of Material Science and High Energy Physics[END_REF]:

χ = 1 T -T c , (2.99) 
where T c is the Curie temperature which indicates the boundary of the ferromagnetic-paramagnetic phase transition. χ is a dimensionless quantity which characterizes a dielectric material and relates the magnetic induction ⃗ B induced in the material to its magnetization vector ⃗ M . In the case of an isotropic linear magnetic material it is constant and related to the proportionality factor between the two vectors [START_REF] Taillet | Dictionnaire De Physique[END_REF]:

⃗ M = χ µ 0 ⃗ B.
(2.100)

For paramagnetic and ferromagnetic substances χ is positive. For a non-linear material [START_REF] Chavanne | Nonlinear Numerical Simulation of Permanent Magnets[END_REF] χ is not constant but a function of the field ⃗ B, χ = χ ⃗ B . In an anisotropic material it becomes a tensor quantity [START_REF] Taillet | Dictionnaire De Physique[END_REF]. Use of cryogenics for enhanced field and radiation performance of permanent magnets in undulators defines the realm of CPMU insertion devices (Cryogenical Permanent Magnet Undulator) [START_REF] Couprie | Advances in X-ray Free-Electron Lasers Instrumentation III[END_REF][START_REF] Tanaka | In Situ Correction of Field Errors Induced by Temperature Gradient in Cryogenic Undulators[END_REF] which build on the planar in-vacuum undulator concept, Fig. 2.31. In comparison to an in-air device, an in-vacuum undulator (IVU) [START_REF] Bizen | Development of in-vacuum revolver undulator[END_REF] has its magnetic arrays placed inside the vacuum chamber so as to be able to profit from a smaller magnetic gap and hence higher peak field according to the various similar forms of the general Eq. (2.95) such as Eqs. (2.96) and (2.102) and Eq. (2.105). Thus the minimum operating gap can be lowered to approximately the value of the so called beam stay clear vertical clearance constraint for the electron beam defined by the inner wall of the vacuum chamber, lowering gap values down to approximately 4-6 mm in comparison to about 10 mm in the in-air case [START_REF] Chavanne | Physics of Undulators[END_REF]. Effects leading to beam lifetime reduction and losses then dictate the limit on minimum IVU gap value [START_REF] Chavanne | Physics of Undulators[END_REF]. Cryocooling is also beneficial for augmenting the magnetic material's coercitivity and hence its resistance to demagnetization provoked by heat deposit generated in the material from secondary particles brought to bear by the loss of electrons from the electron beam in nearby materials via bremsstrahlung [START_REF] Chavanne | Cryogenic Permanent Magnet Undulators[END_REF]. Powder sintering followed by temperature annealing is an established fabrication method for the magnet blocks of permanent magnet material.
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Bellow/Link rod gap gap beam stay clear Figure 2.31: Comparison between the positions of the magnet holders mounting the undulator magnet arrays relative to the vacuum chamber/vessel in an in-air undulator (left) and an in-vacuum device.

The magnetic configuration of the planar-field undulator amply discussed throughout this chapter can be put against that of an ellipsoidal one where the undulator field ⃗ B has two mutually orthogonal transverse periodic components, the second one being a horizontal B x in addition to the vertical B z of the planar-field undulator already discussed, Fig. 2.32. The principle of superposition being applicable to PPM devices allows one to combine fields originating from distinct magnet assemblies in order to achieve this [START_REF] Pflueger | Undulator Technology[END_REF]. The two fields have identical periods λ u x, z but in general different amplitude (peak field B p and phase φ x, z and thus two generally different deflection parameters K x and K z are defined thereupon. The ideal-case expression equivalent to Eq. (2.33) for the produced harmonic wavelength is:

λ m (θ x , θ z ) = λ u 2mγ 2 1 + K 2 x 2 + K 2 z 2 + γ 2 θ 2 x + γ 2 θ 2 z . (2.101) 
A particular and popular case of an ellipsoidal undulator is the helical one [START_REF] Hinton | Design of a Short Period Helical Superconducting Undulator[END_REF][START_REF] Park | Tapered Helical Undulator System for High Efficiency Energy Extraction from a High Brightness Electron Beam[END_REF][START_REF] Walker | Advanced Insertion Devices[END_REF] where B x and B z have identical amplitudes (peak fields B p x = B p z ) and a relative phase difference ∆φ = π/2. Such a field configuration allows for example to adjust the polarization state of the produced radiation [START_REF] Shirasawa | Development of multipolarization-mode undulator[END_REF] which is in general ellipsoidally polarized [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Elleaume | Variable Polarisation and Other Exotic Insertion Devices[END_REF][START_REF] Myers | Particle Physics Reference Library[END_REF]. Polarization depends on the observation direction and wavelength. The wavelength itself λ u of an ideal helical device does not depend on the relative phase difference ∆φ as is visible from Eq. (2.101). A helical configuration can be obtained by different structural schemes implementing multiple magnet arrays such as in a rectangular disposition with two undulators orthogonal to one another or a circular one [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Pflueger | Undulator Technology[END_REF]. In such configurations the arrays can be displaced longitudinally with respect to one another by ∆y giving rise to a relative phase difference ∆φ, Fig. 2.32 thus modifying the electron trajectory through the device and hence the polarization characteristic of the radiation emitted. For comparison, in the case of a planar undulator, the intrinsic photon beam is linearly polarized, the one generated by an electron beam of finite emittance ϵ and energy spread σ E = δ E E presenting a certain depolarization [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. The device sketch shown in Fig. 2.32 is that of the Advanced Polarized Light Emitter (APPLE) concept [START_REF] Chubar | Observation and Interpretation of Dynamic Focusing Effects Introduced by Apple-II Undulators on Electron Beam at SOLEIL[END_REF][START_REF] Walker | Advanced Insertion Devices[END_REF][START_REF] Bahrdt | In-Vacuum APPLE II Undulator with Force Compensation[END_REF][START_REF] Bahrdt | In-Vacuum APPLE II Undulator with Force Compensation[END_REF]. It is a type of PPM undulator consisting of two rows per array (upper and lower) able to move separately, As already mentioned the value of ∆φ governs the polarization of the emitted radiation [START_REF] Pflueger | Undulator Technology[END_REF]. If ∆φ is such as to impose the diagonal configuration depicted in Fig. 2.32 a horizontal magnetic field component B x is established conditioning elliptical polarization, for example ∆φ = ±λ u /4 results in emission of right/left helicity [START_REF] Pflueger | Undulator Technology[END_REF]. An identical shift for all four rows gives B x = 0 which is equivalent to a conventional PPM undulator. A particular advantage of the APPLE design is its planar gap which suits well the habitual storage ring requirement of large horizontal aperture [START_REF] Pflueger | Undulator Technology[END_REF]. Fig. 2.33 presents the two usual support structures on which magnetic-array jaws of planar devices such as PPMs and hybrid ones are mounted. These support frames are declined in the so called H-and C-shape variants having diverging strong and weak points relative to one another in terms of ease of lateral access for field measurements or array positioning stability. Fig. 2.35 presents a third type of undulator support frame adapted to the so-called revolver undulator type [START_REF] Isoyama | Construction of a Multiundulator, Revolver No. 19, at the Photon Factory[END_REF][START_REF] Chavanne | Upgrade of the Insertion Devices at the ESRF[END_REF]. In this configuration multiple magnetic arrays of different periods λ u 1 ̸ = λ u 2 are mounted on rotating girders. The synchronized rotation of the top and bottom girders allows to position a particular couple of top and bottom jaw arrays above and below the vacuum chamber and thus put into operation the undulator of the particular λ u -value.

Vac chamber

Upper and lower magnetic arrays for same undulator Revolving array support Providing for arbitrary per-period magnet number M per and inter-magnet air gap δ, conditioned by a packing factor ϵ relating magnet block length l m and undulator period λ u to M per via l m = ϵλ u /M per , the on-axis peak field of harmonic m for the Halbach configuration of Fig. 2.29 can be expressed as:

B m p g λ u = 2B r sin mϵ π Mper m π Mper exp -mπ g λ u .
(2.102)

The particular four-block-per-period array structure in Fig. 2.29 for M per = 4 is an approximation of the ideal limit in which M per → ∞ and δ = 0, a configuration in which the magnetization vector would rotate continuously from magnet to magnet along the longitudinal axis y with which the undulator axis coincides. In that case B z would only contain a single harmonic m = 1 and is estimated to be higher with about 10 % than the one generated by the four-block array of Fig. 2.29. In the general case of M per magnets per period the direction of the magnetization vector ⃗ M (volume density of magnetic dipole moments ⃗ µ, ⃗ M = d⃗ µ/dV ) of the permanent magnets (PM) changes from magnet to magnet by an angle of (2π/M per ) rad. In a practical design however, the multiplication of magnets of reduced dimension and air spaces in between would lead to a decrease in peak field B p [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] and a subsequent increase of construction expenses for the undulator. This is partly why M per = 4 is preferred in a pure permanent magnet (PPM) design. Such a choice gives good equilibrium among relative importance of higher/fundamental harmonic(s) (approximately 1 % in B p ) and ease of assembly [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]. In terms of relative block height dependance B m p reaches a limit as h/λ u → ∞. A choice of h = λ u /2 would decrease the peak field by 5 % with respect to the limit value. For a design with M per = 4 a popular decision is h = λ u /4 which permits to unify the dimensions of used blocks [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF].

In summary, the theoretical maximum on-axis peak field, which would be achievable for g/λ u → 0, M per → ∞ and h/λ u → ∞, Eqs. (2.96) and (2.102), would be 2B r [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]. Considering the idealization based on an infinite transverse horizontal dimension of magnet pieces given by their width w, Eqs. (2.95), (2.96) and (2.102) give a peak field result accurate within 1% of the true value for δ = 0 and h = λ u /2 if the conditions w/g ≥ 5 and λ u /g ≤ 5 are met [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF].

Fig. 2.36 gives the schematic sketch of the staggered-array undulator concept [START_REF] Ho | A Solenoid-Derived Wiggler[END_REF][START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Brunelle | Application of an Emittance Adapter to Increase Photon Flux Density on a Synchrotron Radiation Beam Line[END_REF][START_REF] Brunelle | Application of the Emittance Adapter to SOLEIL and MAX IV[END_REF][START_REF] Huang | Performance Characterization of a Far-Infrared, Staggered Wiggler[END_REF][START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF],92] studied and discussed in more detail in Chaps. 3 to 5 where the perspective of using this type of ID structure to specify a multi-array variable-period undulator is investigated. The structure is depicted in a longitudinal lateral view following a vertical mid-plane cut. Two basic components make up the staggered design. These are the solenoid coil, either normal (copper-) or superconducting, and the soft ferromagnetic pole-piece array that is installed in the bore of the solenoid, as depicted in Fig. 2.36.

The solenoid's winding is supplied with an orthoradial current density ⃗ j as shown in Fig. 2.36. The ⃗ j gives rise to a magnetic field ⃗ B sol which is uniform and oriented longitudinally at points close to the coil axis and center. The two top and bottom series of poles are dispositioned in a vertically symmetric fashion with respect to the horizontal mid-plane Oxy and are in the same time displaced horizontally with respect to one another by a half-period λ u /2. This structure constitutes the proper alternating pole placement of vertical (magnetic) gap g required to build a staggered-undulator array of period λ u as portrayed in Fig. 2.36. Thanks to the ferromagnetic properties of the pole material, the pole arrangement guides the solenoid field B sol through the poles that become magnetized in the process in a manner to establish a periodic predominantly sinusoidal vertical undulator field B z (x = 0, y, z = 0) = B z on the axis of the staggered-array insertion device.

Solving the two-dimensional Laplace equation for the staggered undulator field B z (y, z) under the hypothesis of infinite pole width w p → ∞ can be done for a judicious choice of boundary conditions via the following field expansion (valid close to the undulator axis for finite w p ) [START_REF] Ho | A Solenoid-Derived Wiggler[END_REF][START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF][START_REF] Huang | Compact Far-IR FEL Design[END_REF]:

B z (y, z) = m odd B m cosh 2πm λ u z sin 2πm λ u y + B m+1 sinh 2π (m + 1) λ u z sin 2π (m + 1) λ u y , (2.103) 
where the field component B m is expressed as:

B m =    -2B sol sinh ( πmg λu ) sin (πmf ) πmf , for m odd 2B sol cosh ( πmg λu ) sin (πmf ) πmf , for m even, (2.104) 
with B sol = ⃗ B sol (0, 0, 0) the central solenoid field, g the staggered array gap, λ u the period and f = d p /λ u the ratio of inter-pole distance d p to period λ u , Fig. 2.36. The on-axis peak field of the staggered undulator (main field component) B p can then be extracted from Eq. (2.104) for m = 1 to give:

B p = 2B sol sinh πg λu sin (πf ) πf .
(2.105) Fig. 2.37 shows a potential variation of the original staggered-undulator concept that gives a staggered hybrid array. This variant employs permanent magnet blocks positioned in the spacers between adjacent pole pieces in order to achieve an increased on-axis peak field for the undulator. The feasibility of this prospect by means of such a structure is discussed in more detail and studied in Chaps. 3 and4. Chapter 3

Multi-period undulator

Introduction

This chapter motivates the interest in considering the undulator period λ u as a variation parameter for the purpose of increased energy tunability, in particular for devices that are foreseen to operate at short periods and weak peak fields B p as is the case of the multi-period staggeredarray assembly proposed. In this context, some technical solutions investigated by ID groups for implementing period variation in permanent-magnet and staggered-array designs as a supplementary means of harmonic energy tuning in addition to the standard acting on the deflection parameter K via the peak field B p are presented. Following this, a transverse multi-period staggered array modular assembly is specified with period values in the range λ u ∈ [8 mm, 16 mm] for for continuously tunable first harmonic on-axis emission from E 1 ≈ 11.5 keV to E 1 ≈ 42.7 keV. A bi-period sub-variant of this assembly with λ u = {8 mm, 16 mm} for continuous tunability from first to third harmonic between staggered arrays is briefly presented at the end of the chapter. Finally the chapter concludes by evaluating the possibility of period variation by gap segmentation of the undulator array along the longitudinal axis of the device with the parameters of interest for the multi-period staggered assembly.

Period variability for a short-period staggered undulator

Prospect for increased performance

The interest for the concept of a multi(ple)-period staggered undulator has two main motivations. The first one relates to the possibility of exploiting the simple structure and associated ease of manufacture provided by the staggered-undulator scheme [START_REF] Chang | Design of a Helical Staggered Undulator[END_REF][START_REF] Chang | Design of a Revolving Helical Staggered Undulator[END_REF] for realization of devices operating at relatively short magnetic periods λ u [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Ho | A Solenoid-Derived Wiggler[END_REF][START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Kitagaki | A Design Study on Electron Beam Confinement in a Staggered Array Undulator Based on a 3d Code[END_REF][START_REF] Masuda | A Design Study of a Staggered Array Undulator for High Longitudinal Uniformity of Undulator Peak Fields by Use of a 2-D Code[END_REF][START_REF] Huang | Performance Characterization of a Far-Infrared, Staggered Wiggler[END_REF][START_REF] Huang | Compact Far-IR FEL Design[END_REF][START_REF] Moog | Novel Insertion Devices[END_REF] while still being able to put at disposal peak field values of practical interest [START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Chang | Circular Polarization with Rotatable Magnetic Fields in Crossed Staggered Undulator[END_REF]. This can allow one to have a reasonably exploitable tuning range [START_REF] Moog | Novel Insertion Devices[END_REF] at low λ u via the resulting value of the deflection parameter K ∝ λ u B p . In this context relatively short values of λ u can be roughly defined as upper bounded by the typical minimal period that is presently achieved from a technical standpoint for a cryogenic-permanent magnet undulator (CPMU) device [START_REF] Benabderrahmane | Development and Operation of a Pr2Fe14B Based Cryogenic Permanent Magnet Undulator for a High Spatial Resolution X-Ray Beamline[END_REF][START_REF] Huang | Development of Cryogenic Permanent Magnet Undulators at NSRRC[END_REF][START_REF] Bahrdt | Cryogenic Permanent Magnet and Superconducting Undulators[END_REF][START_REF] Huang | Challenges of In-Vacuum and Cryogenic Permanent Magnet Undulator Technologies[END_REF][START_REF] Couprie | Advances in X-ray Free-Electron Lasers Instrumentation III[END_REF][START_REF] Tanaka | In Situ Correction of Field Errors Induced by Temperature Gradient in Cryogenic Undulators[END_REF] in most synchrotron institutes, λ u ⪅ 12 mm (14.4 mm at the ESRF for example). More established types of undulator technologies have difficulties pushing λ u to lower values due to structural challenges seen by the magnetic field generating components. An example of such an issue is the fragility of rare-earth permanent magnet blocks of materials like neodymium-iron-boron (Nd 2 Fe 14 B) and samarium-cobalt (SmCo 5 , Sm 2 Co 17 ) [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF] with decreasing block dimensions and particularly longitudinal thickness when attempting to down-scale at shorter periods below λ u =10 mm, hence the conservative limit which can be defined by the practical minimal CPMU period. Small-gap devices with sub-centimeter period lengths λ u < 10 mm are under study [START_REF] Bahrdt | Pushing the Limits of Short Period Permanent Magnet Undulators[END_REF] in relation to this. (Another possible issue in connection to the challenge of short-period undulators in general regardless of the technological approach to the undulator field generation is the need to adapt existing magnetic measurement tools [START_REF] Bahrdt | Pushing the Limits of Short Period Permanent Magnet Undulators[END_REF]). The second principal motivation for finding a way of implementing period variability in a staggered undulator is that of having a supplementary and improved means for radiation wavelength tuning. This is achieved by the extension of the tunability range given by the conventional coil current variation capacity through the addition of period variation according to Eqs. (2.33), (2.34) and (2.101) of Sec. 2.2.

Period variation can be used for more sensitive harmonic energy tuning in the sense where a relatively smaller variation of the tuning parameter (period) δλ u can produce a given one in the target quantity (photon energy) δE m . This is because of the first (and m-th in general) harmonic energy E 1 's dependence on the ID period λ u being stronger than that on the peak field B p [START_REF] Levichev | Undulators and Other Insertion Devices[END_REF] alone, that is when B p is varied via means other than λ u available to a particular design. Such capability is thus complementary in terms of target value range with respect to the finer one permitted by the sole adjustment of the peak field through the other means at disposal that are the coil current I sol in the solenoid of a staggered undulator or the gap g in a variable-gap device Eqs. (2.95) and (2.105) [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF]. This is seen from the algebraic form of Eqs. (2.33), (2.34) and (2.101). The powers of the field and period terms in these expressions for the first-harmonic radiation energy/wavelength are respectively 2 for the peak field B p and 3 overall for the period λ u , by virtue of the power 2 of the deflection parameter term, K ∝ λ u B p . This comparison of the relative radiation wavelength dependencies on period λ u and peak field B p holds regardless of the consideration of the variation of peak field B p itself with undulator period λ u . B p (λ u ) is often expressed by the adopted general exponential expression given by Eq. (2.95) for the behavior of B p (λ u ) with λ u through the gap-to-period ratio (g/λ u ). For the case of the staggered undulator one of the possible analogous peak field approximating formulas can be used to exemplify the relation between B p and λ u , Eq. (2.105) [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF][START_REF] Huang | Compact Far-IR FEL Design[END_REF][START_REF] Pasour | Electron Drift in a Linear Magnetic Wiggler with an Axial Guide Field[END_REF].

Figure 3.1 shows the plotted theoretical peak fields for a staggered undulator and four (C)PMU devices, two room-temperature PMUs at different gaps g pmu and two CPMUs taken at room and cryogenic temperatures T = 273.15 and T = 80 K. The peak field curves are graphed according to Eqs. (2.95) and (2.105). The following values for the fixed parameters of the four IDs are chosen, summarized in right-hand inset of Fig. 3.1. For the staggered undulator the central solenoid field is B sol = B sol (0, 0, 0) = 0.4 T and the pole-to-period ratio α p is α p = 0.5 with α p = 1-f where f = d p /λ u is given in Fig. 2.36. For the two PM undulators a rare-earth SmCo (Sm 2 Co 17 ) magnet material characteristic is chosen with a remanent field B r = 1.1 T and a = 1.9, b = 1 at gaps g pmu = 5 mm and g pmu = 11 mm. These values are the lower and upper boundaries of the gap variation range for in-vacuum and in-air insertion devices at the ESRF centered in the straight section. Finally, the CPMU is selected at the lower in-vacuum gap boundary g = 5 mm and is of a more performing rare-earth permanent magnet material, Praseodymium Iron Bore (PrFeB) ternary compound, taken in its room temperature and cryogenic state observed at T = 80 K. The staggered graph resulting from Eq. (2.105) is computed for a gap value of g stg = 4 mm and is put against the four field curves for the (C)PMU undulators pointing out its improved competitiveness around λ u = 8 mm. Details of the comparative peak field performance and the technological motivations behind the choice of gaps and PM materials are discussed in Sec. 4.2. Approximate exponential (C)PMU formula, Eq.(2.95) @ g pmu = 5 mm -//-@ g pmu = 11 mm -//-@ g cpmu = 5 mm, T=273.15 K -//-@ g cpmu = 5 mm, T=80 K Staggered "sinh" shortu formula, Eq.(2.103) @ g stg = 4 mm

Stagg. :

B sol = 0.4 T p = 0.5 (f = 0.5) It is important to stress that Eq. (2.105) is to be relied on with caution since it does not take into account the physical limitation on the attainable peak field B p value with the progressive increase of the solenoid field B sol up to a certain optimal value. This effect is officiously accounted for by the saturation of the soft ferromagnetic pole material.

PMU : SmCo

B r = 1.1 T a = 1.9 b = 1 CPMU : PrFeB B r = 1.39 T @ 273.15 K -//-1.6 T@ 80 K a = 1.9 b = 1
In the presented context it is interesting to mention that a nearly constant peak field B p (λ u ) during operational variation of λ u is reported in [START_REF] Davidyuk | Magnetic and Mechanical Design of Large-Aperture Variable-Period Permanent Magnet Undulator[END_REF][START_REF] Vinokurov | Variable-Period Permanent Magnet Undulators[END_REF][START_REF] Vagin | Variable Period Undulator with Tunable Polarization[END_REF][START_REF] Mun | Variable-period permanent-magnet helical undulator[END_REF][START_REF] Davidyuk | Results of Test of Prototype of Variable Period Undulator[END_REF][START_REF] Davidyuk | Modeling and Designing of Variable-Period and Variable-Pole-Number Undulator[END_REF] where studies and prototype tests on variable-period undulators based on permanent magnets with planar and helical layouts are discussed. The dependence of the harmonic photon energy E m on the period λ u is relatively stronger with respect to that on the peak field B p through the deflection parameter K ≈ 0.0934B p [T]λ u [mm] [START_REF] Brown | Wiggler and Undulator Magnets -A Review[END_REF][START_REF] Shintake | The SACLA X-Ray Free-Electron Laser Based on Normal-Conducting C-Band Technology[END_REF] as seen from Eq. (2.34) for the keV energy domain. The dependence on λ u can be exploited in consideration of period values in the whole-millimeter sub-range λ u ≥ 1 mm. This interval largely comprises common interest fixed-period values for third-generation storage ring variable-gap insertion devices such as those based on the leading-edge mature CPMU technology exemplified by the typical CPMU lower λ u limit discussed. A similar and inferior period sub-range can then be considered as a starting point for researching improved ID performance when making a preliminary choice of the potential operational parameter intervals of interest for devices which implement other technological approaches to the undulator field generation. The (fixed-gap) variable short-period staggered array design for fourth-generation facilities presents itself as a suitable candidate for pushing λ u below the CPMU limit.

A particularly intriguing prospect is that of being able to explore smaller λ u for pushing the energy of the produced radiation to a domain of harder X-ray as well as increasing brilliance. [START_REF] Tanaka | Utilization of Bulk High-Temperature Superconductors for Shorter-Period Synchrotron Radiation Sources[END_REF][START_REF] Kii | Low-Temperature Operation of a Bulk HTSC Staggered Array Undulator[END_REF][START_REF] Kinjo | Demonstration of a High-Field Short-Period Undulator Using Bulk High-Temperature Superconductor[END_REF][START_REF] Calvi | A GdBCO Bulk Staggered Array Undulator[END_REF]. Typically achieved staggered undulator peak field values are lower than those of permanent-magnet based devices at equal values of operational and structural parameters such as gap g and period λ u [START_REF] Moog | Novel Insertion Devices[END_REF]. The same then holds for the corresponding values of the deflection parameter K [START_REF] Sasaki | The Possibility for a Short-Period Hybrid Staggered Undulator[END_REF]. The lower K max attainable limits the tunability of a staggered array device compared to a conventional one [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF] as discussed in Chap. 2. This is a hindrance to the useful exploitation of a higher-energy range produced by lower B p values as indicated by Eqs. (2.33), (2.34) and (2.101) for other parameters such as those relevant to the accelerator machine environment kept fixed (notably the storage ring electron beam energy E ring ). One can augment the achievable maximum peak field B p in a staggered undulator by conceiving to implement permanent magnet material in the air gaps between the successive poles of the original purely electromagnetic staggered array depicted in Fig. 2.36. This option is illustrated with the sketch of Fig. 2.37.It enables to have a hybrid staggered undulator [START_REF] Chang | Magnetic Design for a Staggered Hybrid Undulator[END_REF] in analogy to the hybrid permanent magnet undulator [START_REF] Sasaki | The Possibility for a Short-Period Hybrid Staggered Undulator[END_REF][START_REF] Zhou | Magnetic Field Optimization of a Novel Hybrid Permanent Undulator[END_REF][START_REF] Chang | Magnetic Design for a Staggered Hybrid Undulator[END_REF][START_REF] Kinjo | Design Study on a Short-Period Hybrid Staggered Array Undulator by Use of High-Tc Superconductor Bulk Magnets[END_REF] at the expense of shifting the tunable E 1 -interval towards lower energies in accordance with Eqs. (2.33) and (2.101). A salient feature of the design shown in Fig. 2.37 is the relative disposition of the different field sources in which the permanent magnet blocks are placed so as to have their magnetization vector ⃗ M pointing opposite that of the central solenoid excitation field ⃗ B sol generated by the coil [START_REF] Sasaki | The Possibility for a Short-Period Hybrid Staggered Undulator[END_REF]. This relative arrangement of the excitation solenoid for the soft pole passive field sources and the permanent magnet active sources [START_REF] Russenschuck | Field Computation for Accelerator Magnets[END_REF] complicates the reliability of the staggered hybrid undulator due to the possible (partial) demagnetization of the permanent magnets under the influence of the external solenoid field. This is discussed and exemplified in more detail in Sec. 4.7.

A more novel concept under study is to reach higher values in peak field B p in the hybrid staggered undulator configuration by using blocks made not of rare-earth permanent magnet material but of bulk high (critical) temperature superconductor (H(C)TS) [START_REF] Gupta | High Temperature Superconductor (HTS) Solenoid[END_REF][START_REF] Sharma | [END_REF][START_REF] Russenschuck | Design of Accelerator Magnets[END_REF][START_REF] Tanaka | Utilization of Bulk High-Temperature Superconductors for Shorter-Period Synchrotron Radiation Sources[END_REF][START_REF] Marken | 1-Fundamental Issues in High Temperature Superconductor (HTS) Materials Science and Engineering[END_REF][START_REF] Wesche | Physical Properties of High-Temperature Superconductors[END_REF][START_REF] Wesche | High-Temperature Superconductors: Materials, Properties, and Applications[END_REF][START_REF] Teshima | Recent Progress in HTS Bulk Technology and Performance at NSC[END_REF][START_REF] Coombs | 4-Bulk High Temperature Superconductor (HTS) Materials[END_REF][START_REF] Kii | Low-Temperature Operation of a Bulk HTSC Staggered Array Undulator[END_REF][START_REF] Kinjo | Design Study on a Short-Period Hybrid Staggered Array Undulator by Use of High-Tc Superconductor Bulk Magnets[END_REF][START_REF] Kinjo | Bulk High-Tc Superconductor Staggered Array Undulator[END_REF][START_REF] Deri | Design of HTSC Undulator Magnet Array Based on Simulation of Magnetization Process[END_REF][START_REF] Ghoshal | 6-Cryogenics for High Temperature Superconductor (HTS) Systems[END_REF][START_REF] Selvamanickam | 2-High Temperature Superconductor (HTS) Wires and Tapes[END_REF][START_REF] Jones | 5-High Temperature Superconductor (HTS) Magnets[END_REF][START_REF] Zangenberg | 12-High Temperature Superconductors (HTS) in Accelerator Systems[END_REF][START_REF] Schlachter | 3-High Temperature Superconductor (HTS) Cables[END_REF][START_REF] Gömöry | 7-Electromagnetic Modeling of High Temperature Superconductor (HTS) Materials and Applications[END_REF][START_REF] Saxena | High-Temperature Superconductors[END_REF][START_REF] Kinjo | Magnetic Property of a Staggered-Array Undulator Using a Bulk High-Temperature Superconductor[END_REF]. A notable example of this category of materials is YBCO (Yttrium-Barium-Copper-Oxide) of general structural formula Y 1 Ba 2 Cu 3 O 7-δ [START_REF] Basu | Dictionary of Material Science and High Energy Physics[END_REF][START_REF] Sharma | [END_REF][START_REF] Marken | 1-Fundamental Issues in High Temperature Superconductor (HTS) Materials Science and Engineering[END_REF][START_REF] Wesche | High-Temperature Superconductors: Materials, Properties, and Applications[END_REF][START_REF] Kii | Low-Temperature Operation of a Bulk HTSC Staggered Array Undulator[END_REF][START_REF] Kii | Low-Temperature Operation of a Bulk HTSC Staggered Array Undulator[END_REF][START_REF] Kinjo | Design Study on a Short-Period Hybrid Staggered Array Undulator by Use of High-Tc Superconductor Bulk Magnets[END_REF][START_REF] Kinjo | Bulk High-Tc Superconductor Staggered Array Undulator[END_REF][START_REF] Zhang | Fast and Efficient Critical State Modeling of Field-Cooled Bulk High-Temperature Superconductors Using a Backward Computation Method[END_REF][START_REF] Kinjo | Magnetic Property of a Staggered-Array Undulator Using a Bulk High-Temperature Superconductor[END_REF]. As the name suggests HTS materials have a higher critical temperature T c in the 80-120 K range [START_REF] Ferracin | Superconducting Magnets Section 1-4[END_REF][START_REF] Wesche | Physical Properties of High-Temperature Superconductors[END_REF][START_REF] Jones | 5-High Temperature Superconductor (HTS) Magnets[END_REF] than the more established LTS (low critical temperature) materials. For example, T c ≈ 92 K [START_REF] Basu | Dictionary of Material Science and High Energy Physics[END_REF] for YBCO in comparison to general LTS material temperatures of T c ⪅ 10 K [START_REF] Basu | Dictionary of Pure and Applied Physics[END_REF] used for superconducting electromagnetic undulators [START_REF] Kubsky | Superconductive Mini-Gap Undulators -a New Way to High Energy Photons: Latest News[END_REF] such as NbTi [START_REF] Godeke | Interlaboratory Comparisons of NbTi Critical Current Measurements[END_REF][START_REF] Bottura | A Practical Fit for the Critical Surface of NbTi[END_REF][START_REF] Gömöry | Superconductor Dynamics[END_REF] and Nb 3 Sn [START_REF] Gömöry | Superconductor Dynamics[END_REF][START_REF] Schoerling | Nb3sn Accelerator Magnets[END_REF]. NbTi and Nb 3 Sn have respectively T c ≈ {9.2, 18} K (at zero magnetic field B and current density j sol ) [START_REF] Ferracin | Superconducting Magnets Section 1-4[END_REF].

Period variation at an ideally constant peak field B p = const. in an undulator is one of three possible operational means for variation of the harmonic energy E m (λ u , B p = const.) of the device in view of radiation tuning according to Eqs. (2.33), (2.34) and (2.101) [START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF][START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF][START_REF] Davidyuk | Magnetic and Mechanical Design of Large-Aperture Variable-Period Permanent Magnet Undulator[END_REF][START_REF] Vinokurov | Variable-Period Permanent Magnet Undulators[END_REF][START_REF] Vagin | Variable Period Undulator with Tunable Polarization[END_REF][START_REF] Mun | Variable-period permanent-magnet helical undulator[END_REF][START_REF] Davidyuk | Results of Test of Prototype of Variable Period Undulator[END_REF][START_REF] Davidyuk | Modeling and Designing of Variable-Period and Variable-Pole-Number Undulator[END_REF].

The second more conventional one is the peak-field-through-gap variation at constant period λ u = const., E m (B p (g)) in the case of pure/hybrid permanent magnet undulators ({P/H}PMs) or peak-field-through-coil-current variation for electromagnet ones [START_REF] Deis | Electromagnetic Wiggler Technology Development at the Lawrence Livermore National Laboratory[END_REF]. A third conceivable regime is one in which both peak field B p and period λ u are varied in a certain synchronous way such as to meet potential specific beamline needs in terms of radiation tunability properties. For example the parameter couple of peak field and undulator period {B p (B sol (j sol )), λ u }, with the former varied via the solenoid field B sol through the solenoid coil current density j sol , can be used in the case of a variable-period staggered undulator. A possible option presented in this respect in [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF] is that of a radiation tunability regime specified by λ u B 2 p = const. which yields constant total power output P tot with harmonic energy E m , P tot (E m ) = const. Alternatively one can imagine to have a constant deflection parameter K ∝ B p λ u = const., E m (B p , λ u , K = const.), Eqs. (2.17) and (2.18), [START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF][START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF] by mutually inverse variation of B p and λ u . As a result the production of flux Φ is constant with the energy E m of a given harmonic m, Φ(E m ) = const. This is visible from the expression for the function F m participating in the formula for the on-axis angular spectral flux Φ m /[δΩ (δλ/λ)] of the odd m-th harmonic, Eq. (2.79). The same goes for the maximum angle-integrated flux on-axis Φ ′ m /[δλ/λ](0, 0). Concerning the output in on-axis angular power density dP/dΩ (power per elementary solid angle dΩ) given in practical units by Eq. (2.93), constancy of K for a variable-period (staggered) undulator would theoretically imply E m ∝ B p . This can be seen from Eq. (2.34) through

E m ∝ (1/λ u ) ∝ (B p /K) (since K ∝ B p )
. Hence this leads notably to an on-axis power density [dP/dΩ](0, 0) proportional to the harmonic energy E m , [dP/dΩ](0, 0) ∝ E m , as can be seen from Eq. (2.93) where [dP/dΩ](0, 0) ∝ B p ( ∝ E m ). The same goes [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF] for the total power P given in practical form by Eq. (2.89), where the length of the insertion device L u can be rewritten through the period and number of periods as L u = λ u N p . This makes apparent the deflection parameter K ∝ λ u B p . K can then be used in Eq. (2.89) together with the resulting univariate dependence of E m on B p through Eq. (2.34) to argument the proportionality of the total power P on E m in the same manner as that for dP/dΩ of Eq. (2.93).

Another possibility for exploiting an undulator operational parameter space of dimension greater than one apart from explicitly coupling peak field and period variation as for a staggered array design is to implement a longitudinally varying gap g(y) through the length of the insertion device. This non-uniform gap is combined with a longitudinally variable period λ u (y) where the variations of the two parameters are conjugated so as to achieve an identical fundamental radiation harmonic E 1 amid the different periods of the undulator. With respect to the conventional case of a longitudinally uniform gap profile g(y) = const., such a feature permits above all a more precise conjugation of the value of the magnetic gap at a particular location y with that of the beam envelope between the magnet arrays given by the vertical beta function β z defined in Subsec. 2.2.5 at the same location. Resultingly, one obtains a longitudinally variable gap, hence peak-field profile in accordance with Eq. (2.95), adapted to that of the electron beam dimension along the ID straight section. This scheme is studied in the so-called segmented adaptive-gap undulator sketched in Fig. 3.13 of Subsec. 3.6.3. In this type of ID structure different longitudinal device segments n bear different period-gap couple values {λ u n , g n } conditioned by the identity for the harmonic radiation energy outputted. This allows the electron beam to be presented with an adapted non-uniform longitudinal gap profile g(y) ̸ = const. for a projected improvement of the spectral performance of the undulator source [START_REF] Tischer | An Adaptive Scheme for Suppression of Higher Harmonics in an Undulator[END_REF][START_REF] Chubar | Segmented Adaptive-Gap In-Vacuum Undulators -Potential Solution for Beamlines Requiring High Hard X-Ray Flux and Brightness in Medium Energy Synchrotron Sources[END_REF][START_REF] Chubar | Spectral Performance of Segmented Adaptive-Gap In-Vacuum Undulators for Storage Rings[END_REF][START_REF] Shea | Mechanical Systems of Segmented Adaptive-Gap In-Vacuum Undulator[END_REF].

Although the gap (standard longitudinally uniform motorized) variation scheme is most implemented in IDs for the purpose of peak field and hence energy tuning, its practical realization presents certain inherent technical challenges. Namely, in the conventional fixed-period variablefield-through-variable-gap undulator one needs to cope with a stringent precision requirement of the order of several µm on array positioning and movement in the course of the gap variation [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. This is necessary to ensure the precise energy tuning operation of the device through the variation of the gap between the upper and lower undulator jaws (arrays) whilst minimizing any non-intentional gap taper. The gap taper is a longitudinal linear variation in gap value between the two ID extremities. Such a demand in precision is usually met by a motorized gap control system equipping the undulator mechanical carriage and acting upon the mounting girders of the undulator arrays. In this system a set of leadscrews are utilized at both ends of the insertion device to vary the gap whose value is measured and read by means of an encoder component [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]. The gap motorization of the carriage girders is prone to gradually exhibiting a backlash phenomenon or a partial lack in the coordination for the motion of the two girders which can be due to a fault in the command software for example. Such a situation then gives rise to a longitudinal gap taper. Because of the taper's rupturing the parallelism between the two field-element arrays it affects the ID emission properties and output characteristics defined upon, such as the harmonic resonance condition that determines the resulting photon flux (intensity) Φ m , brilliance B m and harmonic width δω m /ω m [START_REF] Suller | Introduction to Current and Brightness Limits[END_REF]. This is why backlash corrections are applied. Effects of this nature are due to the alteration of the peak field B p value from peak to peak along the insertion device's axis and hence the harmonic frequency w m or relative phase among the individual undulator periods [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Tanaka | Universal Representation of Undulator Phase Errors[END_REF]. This leads to an increased harmonic width δω m /ω m and reduced brilliance B m through an increased photon source size Σ γ m (0, 0) and divergence Σ ′ γ m (0, 0). One should also address the related issue of segments of different periods λ u n ̸ = λ u n+1 emitting in phase for proper constructive interference among the segments.

The manipulation of the period value λ u in the case of the variable-period design presented in [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF] is realized through a dedicated mechanical scheme that ensures the capacity to vary the spacing between individual neighboring pole pairs of a single-undulator assembly. This extension of the pole spacer is achieved through a laterally mounted pantograph-like motorized system like the one schematically sketched in Fig. 3.2. This system provides the continuous period-value variation capability of the undulator and the subsequent increase (decrease) in final ID length L u with increase (decrease) of λ u , due to the number of periods N p being fixed, Staggered undulator layout with a portion of the period-variation system proposed in [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF] shown on two of the poles in thick black.

λ u L u (= λ u N p ) , N p = const.
It is evident that the main requirement for the proper operation of a system such as the one introduced in Fig. 3.2 is that it be able to assure the accurate coordinated and uniform separation of each iron pole pair [START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF]. This is to avoid introducing unwanted random variation in period value λ u along the length of the device. Non-uniformity in period λ u leads to modification of the optical phase value ϕ(y r ) given by Eq. (2.40) at the level of the r-th pole located at y r and possible increase in the RMS phase error expressed in Eq. (2.41): This is hence the cause for a reduction of the emitted spectral flux Φ m by a factor exp(-m 2 σ 2 ϕ ) where m stands for the harmonic number. Another single-array scheme is applied to the variable-period permanent magnet undulator design discussed in [START_REF] Davidyuk | Magnetic and Mechanical Design of Large-Aperture Variable-Period Permanent Magnet Undulator[END_REF][START_REF] Vinokurov | Variable-Period Permanent Magnet Undulators[END_REF][START_REF] Vagin | Variable Period Undulator with Tunable Polarization[END_REF][START_REF] Mun | Variable-period permanent-magnet helical undulator[END_REF][START_REF] Davidyuk | Results of Test of Prototype of Variable Period Undulator[END_REF][START_REF] Davidyuk | Modeling and Designing of Variable-Period and Variable-Pole-Number Undulator[END_REF]. In that concept one acts mechanically in a periodic shake-like manner upon the position of the end magnet piece of the device so as to alter the terminal value of the period λ u of the ID. This induces a variation of λ u throughout the undulator longitudinally via the mutual re-balancing of the repulsive forces between pairs of neighboring magnets modified from the initial perturbation acted on the end piece. A consequent redistribution in equilibrium position of the whole of the magnets is obtained which settles on the new period value λ ′ u . Satisfactory longitudinal uniformity in the new period value λ ′ u is found to be achieved via the specified movement procedure applied on the end magnet. Moreover a guiding rail system can possibly permit the insertion and extraction of supplementary magnets whilst keeping a fixed device length L u . This then permits to vary N p as well and hence augment the emitted photon flux according to Eqs. (2.79) and (2.83).

A major feasibility issue can be foreseen for the pantograph type of mechanical approach for a uniform period-value variation in the longitudinal direction along the device axis of a single-undulator structure. This is the question of its suitability to in-vacuum operation. Such an issue is expected from the necessity to maintain an adequate degree of lubrication for the moving elements of the inter-pole piece extension/retraction arms in order to assure the smooth longitudinal translation of the poles along the undulator axis. The viability of using a proper lubrication substance sufficiently merciful in terms of out-gassing to the quality requirement of the vacuum environment in a vacuum chamber can be evaluated as being rather low.

A concept developed for period variation in an undulator that is mechanically simpler than having a single array equipped with a dedicated system for mechanical actuation in the longitudinal direction is to have a kind of compacted multi-undulator system in which distinct horizontally neighboring undulators have distinct periods λ u [START_REF] Bachrach | The SSRL Insertion Device Beam Line 'Wunder[END_REF]. Thus the overall system presents a discrete variation in period λ u from one undulator of λ u n to the next one of λ u n+1 in the horizontal direction along Ox transverse to the longitudinal beam propagation along Oy in the gap g of the particular undulator set upon the beam. In this way the multi-undulator assembly is similar in a certain way to the revolver undulator discussed in Chap. 2 [START_REF] Isoyama | Construction of a Multiundulator, Revolver No. 19, at the Photon Factory[END_REF][START_REF] Bizen | Development of in-vacuum revolver undulator[END_REF][START_REF] Chavanne | Upgrade of the Insertion Devices at the ESRF[END_REF].

Variable discrete period scheme

Fig. 3.3 represents in perspective the basic conceptual layout of the proposed discrete variable period multi-array staggered undulator. Apart from its geometry, the solenoid is also characterized in working regime by the main operational parameter that is from a physics point of view the central longitudinal field B y sol (j sol ) with B y sol = B sol ( ⃗ O) where ⃗ O = (0, 0, 0). B y sol is imposed by the azimuthal current density ⃗ j sol [A/mm 2 ] flowing through the coil radial thickness along the orthoradial unit vector ⃗ u θ as illustrated in the rightmost bubble in Fig. 3.3.

The bore of the solenoid is intended to house multiple staggered-undulator ferromagnetic pole arrays totaling N in number and oriented in the longitudinal direction Oy as partially illustrated in Fig. 3.3 in the case of N = 2. The different undulators are to be of distinct period values comprising the sequence {λ u n } when observed in the positive transverse horizontal direction along the Ox axis. The undulator assembly is to be capable of transverse horizontal translation so as to change the array that falls on-axis along Ox and hence change the value of the magnetic period λ u seen by the electron beam entering on-axis or paraxially in the gap g of the array assembly by physically switching from λ u n to λ u n+1 . This constitutes the period variation capability of the multi-period staggered undulator envisaged as a means for harmonic energy tuning. The period sequence {λ u n } is given in terms of the sequential number n identifying the undulator considered amid the assembly starting at n = 0 with n max = N -1. Hence from the point of view of the integral assembly that is constituted in such a way this ordering of arrays in neighboring fashion thus enables a discrete variation in period value λ u n from the n-th staggered array to the (n + 1)-th one by a period step δλ u n = λ u n+1 -λ u n along the horizontal axis.

As discussed in Chap. 2, the vertical field profile B z n of the n-th array is produced from the wiggling effect that the staggered arrangement of poles in the ferromagnetic array imparts on the locally seen solenoid field (flux channeling) passing through the gap g of the considered array. Thus the solenoid field acts as an external excitation source for the high permeability pole material of the array n. The staggered disposition in the upper and lower sub-arrays (jaws) from one side and the other of the undulator longitudinal and electron beam reference axes is highlighted for a single period in the lower left insert of Fig. 3.3. The field B z n can be ideally treated to a first approximation by looking only at its main component and thus regarding the corresponding profile as sinusoidal of period λ u equal to the physical period of the considered undulator as discussed for the case of a general insertion device in Subsec. 2.2.3. The gap g is taken identical for the different arrays designated by the values of {n}, that is to say it does not vary in the transverse horizontal direction Ox, g(x) = const.

The upper and lower pole arrays of the individual undulators are to be mounted in mechanical contact on a pair of top and bottom supporting plates of rectangular cross section common to all arrays of the corresponding assembly jaw (upper or lower) as illustrated in a simplified version of the sketch from Fig. 3.3, shown in Fig. 3.5 (the upper support plate is rendered transparent for improved structural clarity). The plates are projected to be made of the same material as the undulator array poles, that is the soft ferromagnetic Vanadium Permendur of general formula FeCoV also known as iron cobalt steel of saturation magnetic induction in the range of B sat ≈ 2.3 -2.4 T. The magnetic properties of FeCoV that are of interest to insertion device design are discussed in more detail in Sec. 4.1. The support plates are to be characterized by their height h s in the vertical Oz-direction as shown in Fig. 3.5. They are omitted in Figs. 3.3 and 3.4 for ease of comprehension and discussion of the main functional part of the assembly that are the undulator arrays. The length of the solenoid is L sol = 2500 mm. That of the pole arrays is L u ≈ 2000 mm of the undulator system is defined as that of the smallest-period staggered undulator, λ u 0 = λ u n=0 = {λ u n } min . L sol is determined by the planned straight section for installation of the staggered variable-period multi-undulator. The transverse dimension of the undulator system (without the solenoid) is determined by the choices for the number of arrays N , their unit (pole) width w p On the other hand, the transverse dimension scales with the magnetic gap g, pole height h p and support height h s . The inner transverse radial dimension defining the solenoid bore and given by the coil's inner radius r int is determined ultimately by several parameters. These are the array dimensions, inter-array spacing d as well as the thicknesses of several functional-component layers for engineering purposes. These functional components are conditioned by solenoid operational requirements. Finally one also needs to add to the parameters mentioned the horizontal solenoid coil inner surface stay-clear distancing d s . The enumerated parameter definitions are summarized in Tab. 3.1. The schematic summary of the resulting transverse configuration of components is portrayed in Figs. Neatly visible from this perspective is the discrete variation in undulator period λ u n → λ u n + δλ u n = λ u n+1 with sequential array number n → n + 1, that is from undulator to undulator with increasing x. The solenoid stay-clear d s gives the transverse horizontal separation. Its minimal value d s min is defined with respect to the horizontal translation amplitude of the undulator assembly in the solenoid bore. At amplitude position the first or last arrays of n = {0, N -1} are tuned in by being centered on the solenoid axis for tuning of the radiation harmonic E 1 operation via the corresponding period swap from λ u n̸ ={0, N -1} to λ u n={0, N -1} . Thus d s is preemptive to an unwanted mechanical contact between the first solenoid engineering subsystem layer, when viewed horizontally outwards from inside the coil bore, and the pole block edges of the end arrays. The multi-array variable-period staggered undulator can most closely be associated to the CGU category, in a regime of operation without solenoid-field tuning. The graphs of Fig. 3.7 then present an approach to study the relative production of desired or useful harmonic power P 1 considering the first harmonic E 1 with respect to the total generated power of emitted radiation P tot . In this way the performance of insertion devices can be evaluated in terms of spurious non-useful emitted power for the classes defined. This results in unwanted heat load impact inflicted on the surrounding or neighboring environment of the undulator such as the vacuum chamber [START_REF] Chiggiato | Vacuum Technology for Superconducting Devices[END_REF][START_REF] Baglin | Vacuum Systems Lecture 1-5[END_REF][START_REF] Mathewson | Vacuum System Design[END_REF] or front-end and beamline components.

L tot = N p 0 λ u 0 + l p 0 σ left σ right d w p λ u n l p n • ○ σ center λ u n -l p n 2 n = 0 n = 1 … … … … … Ԧ j sol -Ԧ j sol
The study of the evolution of P 1 and P tot with first-harmonic energy E 1 can serve to pinpoint remarkable energy ranges of interest with respect to the optimization of the power parameters for some or other of the three classes of insertion devices. This methodology is largely based upon the works of R. Tatchyn et al. on the subject of optimal undulator classification presented in [START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF]. It is here applied to the context of interest in terms of the undulator and storage ring input parameter set that are namely short periods for corresponding high harmonic energies and the EBS magnetic lattice and electron beam parameters. The approach is adapted in the sense that the variable-period constant-field class (CFU) considered in [START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF] is substituted by that of the variable-period constant-gap one (CGU) with a gap g = 4 mm, magnet remanent field B r = 1.2 T, a = 1.9 and b = 1 from Eq. (2.95). With respect to the CFU the CGU still permits taking into account the variation of the peak field B p via the period λ u in virtue of Eq. (2.95). In the case of variable-period undulators this effect can be either considered as a form of intentional means for energy-through-field tuning that is unconventional with respect to the conventional gap closure/opening in standard fixed-period variable-gap undulators or rather as a consequence of Eq. (2.95) that is not really strived for and that one possibly desires to be able to control in some way for better tunability as demonstrated below. Among the three here established ID classes of CKU, CPU and CGU, the CGU is hence designated as representative of a possible scheme of harmonic energy tuning through period variation as can be envisaged in a staggered array undulator whose dependence of peak field B p (λ u ) on period λ u given by Eq. (2.105) closely resembles that of a permanent magnet undulator described by Eq. (2.95) and Fig. 3.1. Fig. 3.7 thus traces the three normalized power couples {P 1 , P tot } for the corresponding three distinguished undulator types as a function of the normalized on-axis first-harmonic energy E 1 /E 1 M where the normalization factor is given by the energy E 1 M calculated at E 1 M = 21.375 keV from the specific period λ u M = 8 mm. E 1 M is defined as the energy value at the particular deflectionparameter one K = √ 2 for the constant-period and constant-gap classes (CPU and CGU). For the sake of completeness of the discussion the three sets of plots are graphed over a rather wide theoretical range of relative energies E 1 /E 1 M that spans between two and three decades. It is to be noted however that typical practical undulator applications deal with relative first-harmonic energy tuning ranges ∆E 1 /E 1 of the order of several units, ∆E 1 /E 1 ∼ O(1). Hence from Eq. (2.34) for the first-harmonic on-axis with K= √ 2 by the definition of E 1 M stated one has for E 1 M :

E 1 M [keV] ≈ 9.5E 2 ring [GeV] 2λ u [mm] . (3.1) 
For input harmonic energy E 1 M and ring electron beam energy E ring Eq. (3.1) defines a corresponding characteristic λ u M through:

λ u M [mm] ≈ 9.5E 2 ring [GeV] 2E 1 M [keV] . (3.2)
By taking the ratio of the general expression for the on-axis first harmonic and E 1 M one then obtains for the case of the constant-deflection-parameter and constant-gap categories (CKU and CGU):

E 1 E 1 M ≈ 2 λ u M λ u 1 + K 2 2 -1 . (3.3)
For the particular case of the CPU one has λ u = λ u M and Eq. (3.3) reduces to:

E 1 E 1 M ≈ 2 1 + K 2 2 -1 . (3.4)
The choice for the definitions of E 1 M and λ u M in relation to the particular value of K at K = √ 2 becomes clear from the graph of Fig. 3.7. Applying Eq. (3.1) for the cited characteristic-period choice λ u = λ u M = 8 mm = λ u n=0 gives the mentioned corresponding characteristic on-axis fundamental harmonic energy E 1 M = 21.375 keV:

E 1 M (λ u M = 8 mm, E ring = 6 GeV) ≈ 21.375 keV, (3.5) 
The ordinate axis is given in units of the dimensionless quantity

ϵ E = (1.6E 1 M [eV]/E ring [GeV]) 2 
based on the ratio between the particular undulator on-axis fundamental energy E 1 M and the energy of the storage ring beam E ring . For example in the case of the parameter values implicated in the graph that is presented in Fig. 3.7 this ratio equals approximately:

ϵ E = 1.6E 1 M [eV] E ring [GeV] 2 ≈ 3.249 × 10 7 for E 1 M = 21375 eV, E ring = 6 GeV, (3.6) 
as indicated in the figure. The ratio in Eq. (3.6) originates from the equivalence between the angle-integrated spectral flux units of ph/s/0.1 % and W/eV according to:

1 ph/s/0.1 % = 1.6 × 10 -16 W/eV. (3.7) 
Visibly from Fig. 3.7, E 1 M appears to be the optimum first harmonic energy value for which the useful harmonic power, considered to be here as in the usual case that of the fundamental harmonic P 1 , of the conventional constant-period (variable-field) CPU undulator reaches its peak. The normalized total power [P tot / (L u E ring )] CP U of the CPU plotted in Fig. 3.7 is expressed in terms of the introduced energy E 1 M through Eqs. (2.89) and (3.2) and the definition of the deflection parameter K ∝ λ u B p as:

[P tot / (L u E ring )] CP U = 0.01289 E 1 M E ring 2 E 1 M E 1 -0.5 . (3.8) 
Several other characteristics for the three highlighted undulator classes can be extracted from the power curves of Fig. 3.7. The CKU class presents a linear evolution of power parameters P tot and P 1 and hence a ratio of fundamental to total power P 1 /P tot that is constant with harmonic energy E1/E 1 M , [P 1 /P tot ](E1/E 1 M ) = const. This is also predictable from the relation between total and first harmonic powers P tot and P 1 [START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF][START_REF] Tatchyn | Transverse Undulator Spectra and Polarization Profiles[END_REF]:

P 1 = P tot 1 + K 2 2 -1
.

(3.9)

In the case of Fig. 3.7 where the CKU curve is graphed for the particular choice of K = √ 2, one has P 1 /P tot = 4 from Eq. (3.9) and the curve naturally intersects with the peak of the CPU group attained for the value of B p for which K CP U = √ 2 as already highlighted. Namely in the region of interest around E 1 /E 1 M = 1 for E 1 > E 1 M CKU devices dominate CPUs in terms of P 1 while emission from CPUs starts to fall off increasingly upto a certain upper boundary in harmonic energy E 1 /E 1 M beyond which they do not radiate. The CGU category exhibits overall the most interesting power ratio P 1 /P tot for efficient generation of fundamental harmonic radiation given by (P 1 /P tot ) CGU > {(P 1 /P tot ) CP U , (P 1 /P tot ) CKU }, over a certain extent of energies around E 1 /E 1 M = 1. It proves however inferiour to both the CPU and CKU in the same energy interval in terms of both generated absolute and fundamental useful power levels P tot and P 1 respectively for the chosen parameter set. In spite of the operating range of the CGU being extended towards some higher energies with respect to the upper limit of emission of the CPU, this hence comes at the expense of a significantly lower radiation emission around E 1 = 21.375 keV. Fig. 3.8 is based on the same philosophy as Fig. 3.7 but is obtained for λ u M = λ u n=8 = 16 mm, the 8-th staggered-array period chosen this time as the target (characteristic) period value. This yields a CPU-optimal first harmonic energy of E 1 M = 10.688 keV. It is seen that for this largerinput λ u M and hence lower E 1 M the situation of the CGU around E 1 /E 1 M = 1 is improved with approximately equal or superior radiation emission efficiency to that of the CPU and CKU given by [P 1 /P tot ] CGU ⪆ [P 1 /P tot ] C(P/K)U . but this time also boasts an absolute fundamentalharmonic power P 1 CGU that is dominant with respect to P 1 CP U of the CPU around E 1 /E 1 M = 1, P 1 CGU > P 1 CP U , and with respect to P 1 CKU of the CKU for the lower-energy interval around

E 1 /E 1 M = 1, P 1 CGU ≥ P 1 CKU , the equality holding at E 1 /E 1 M = 1, P 1 CGU (E 1 /E 1 M = 1) = P 1 CKU (E 1 /E 1 M = 1)
. For E 1 /E 1 M > 1 the performance of the CGU with respect to that of the CKU is improved in terms of the power ratio P 1 /P tot , [P 1 /P tot ] CGU > [P 1 /P tot ] CKU but has a degraded absolute fundamental-power output, P 1 CGU < P 1 CKU . It is interesting to compare the results of Figs. 3.7 and 3.8 relating to the CGU with the ones resulting from the application of the original classification in [START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF] in which a constant-field (CFU) variable-period undulator type is studied in lieu of the constant-gap variable-period CGU. With this aim one refers to Fig. 3.9 which plots the three original classes CFU, CPU and CKU this time for an input characteristic fundamental harmonic energy E 1 M = 40 keV resulting in a characteristic period λ u M = 4.275 mm. As given by Eq. (2.89) the total CFU power P tot CF U in Fig. 3.9 is constant with harmonic (normalized) energy E 1 (E 1 /E 1 M ), P tot (E 1 ) = const. In analogy to Eq. (3.8) for the total CPU power normalized to the ring electron beam energy and undulator length, P tot CF U can be expressed in terms of E 1 M as [START_REF] Tatchyn | A Universal Classification of Optimal Undulator Types and Parameters for Arbitrary Storage Ring Environments[END_REF][START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF]:

P tot CF U = 0.0064 E 1 M E ring 2 , (3.10) 
whereas the fundamental component is given in the limit E 1 ≪ E 1 M by:

P 1 CF U = 0.00253 E 1 M E ring 2 E 1 E 1 M 4/3 . (3.11) 
Equation (3.11) is plotted out of its formal validity range over the entire energy interval in Fig. 3.9 hence violating the convergence of P 1 towards P tot towards the highest observed energies. Nevertheless Fig. 3.9 validly serves to illustrate the superiority of P 1 CF U over both P 1 CP U and P 1 CKU , P 1 CF U > {P 1 CP U , P 1 CKU }, the same relation also holding for the respective power ratios P 1 /P tot CF U > {P 1 /P tot CP U , P 1 /P tot CKU } in an energy interval comprising the defined optimal from a useful-power point of view CPU first harmonic energy E 1 M . This is not the case for the corresponding result of the CGU undulator class depicted for The potential interest of being able to maintain a fixed peak field B p = const. during variation of λ u in variable-period undulators for optimized power performance of such devices superior over energies of peak competition from conventional CPUs is hence highlighted through the comparisons in Figs. 3.7 to 3.9.

Parameters influenced by operational context

The length of the envisaged ID straight section for the installation of the proposed multi-array variable-period staggered assembly is L ss = 5 m. This length conditions in broad sense the length of the main solenoid L sol which is chosen to be half of that value, L sol = 2.5 m. L sol is then itself used as the starting point for specifying the main solenoid in terms of its other dimensional and electromagnetic requirements that are respectively the two radii, internal r int and external r ext defining the coil thickness ∆r = r ext -r int , and possible physical or technological constraints on field B sol and current density j sol .

Solenoid coil size

The transverse dimension of the coil is defined by the two radii r int and r ext with r ext > r int . r int is the parameter that gives the winding bore of the solenoid equal to 2r int . On a first level, the bore and thus ultimately r int are to be specified in foremost adequacy with the need of housing the undulator arrays, Figs. 3.3 and 3.5. The housing capacity in itself is naturally defined by the overall transverse size of the multi-array undulator and can be more properly referred to in a particular predefined off-tuned configuration of the assembly in which no array is positioned on axis so that the electron beam sees ideally no undulator field, hence no trajectory oscillation is produced and no radiation is emitted. Depending on the particular design of the assembly this position can be either a center of one of the inter-array gaps given by d in Figs. 3.3 and 3.5 for d ̸ = 0 or a fitted supplementary one. The choice of this is then related to the desire for vertical mid-plane symmetry of the multi-undulator with respect to the center of the gap, hence coincidence of solenoid and variable-period multi-array center horizontal coordinates, bearing in mind that the solenoid is centered on the local coordinate system and the design orbit (reference particle trajectory) of the storage ring, Fig. 2.14. This on its turn is linked to the parity of the number of arrays in the assembly N . The multi-array device can be considered to be switched off in a certain sense in such a position in the hypothesis of zero transverse horizontal undulator field leakage outside the pole array gaps, that is for B z n = 0 in the inter-array gaps. This is because a priori one does not have to proceed to the annihilation of the pole array undulator fields B z n through that of the solenoid one B sol by turning off the dedicated power supply which drives the current in the coil given by j sol . This configuration can thus be regarded as a sort of possible idle position for the ID from an operation point of view. One nevertheless expects some field leakage in which case the definition of this switched-off state is nuanced and one has to intervene to operate to a certain extent on the solenoid field via the current density j sol . Another motivation for having an idle position is to have a position at which a larger vertical aperture can be exploited, for purposes of commissioning for example. Straightforward related on a second level to the issue of multi-array containment and idle centering is the crucial consideration of the translation capability of the arrays along the Ox-axis for the discrete period switching λ u n → λ u n+1 in full amplitude from n = 0 through to n = N-2 and consequent full-range harmonic radiation energy tuning adds up to the required solenoid bore diameter, Figs. 3.3 and 3.5. On a third level one needs to provide supplementary available bore to be able to integrate means of coping with possible and/or expected engineering issues related to the secure functioning of the solenoid coil and the particular physics of the winding material (superconducting [START_REF] Flükiger | Superconductivity for Magnets[END_REF]). Such roles are foreseen to be fulfilled by the different functional layers illustrated in Fig. 3.3.

Coil performance

The field and current performance of the coil are in direct relation to the established necessary type of the coil winding material. Strictly speaking the winding material is determined by the upper boundary j max of the necessary sustainable range of current density j sol to be driven in the coil. From the operational point of view some form of technology-dependent operational current safety margin with regards to the raw determined maximum current density j max is to be implemented. The j sol -range fixes the choice for either a normal-conducting (eg. copper) or superconducting filament/wire/cable current-carrying technology for the fabrication of the main solenoid and correspondingly its overall degree of engineering complexity. Prior to this the knowledge of j sol stems from the electromagnetic requirement of the variable-period multi-array staggered undulator assembly on the global operational range for the excitation field B sol . The interval of values for B sol explorable during current excursion is to reflect the desire for optimality of the undulator field tuning range of the individual pole arrays achieved rather through the longitudinal alignment of pole magnetization vectors than the ordinarily presumed magnetic saturation effect [START_REF] Russenschuck | Electromagnetic Design of Accelerator Magnets[END_REF] on the ferromagnetic pole material [START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF]. The overall current density range of interest that is to be supplied to the coil for operating the variable-period multi-array undulator then results directly from the chosen set of dimensions for the solenoid.

Target range of periods -radiative requirements

The preliminary target range of λ u for the multi-array variable-period staggered undulator is identified as [START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF] [mm]. This interval is in part coherent with the discussion in Subsec. 3.2.1 on short period values defined with respect to those implemented in other design types that are operational and whose practical potential for realizing shorter λ u is thought exhausted. Also the upper limit of the interval at λ u = 16 mm is fixed by the period value λ u = 17 mm of the present workhorse PPM and hybrid permanent magnet undulators installed at the ESRF. These serve as an inspiration for the fixed parameter values in Fig. 3.1 comparing the theoretical PM and staggered array peak fields as in Subsec. 3.2.1. They are properly presented in Sec. 4.2 where they are also considered in terms of the simulated magnetic field tuning performance and resulting first harmonic energy output with respect to those of the basic staggered array for the multi-period undulator. Also the application of Eq. (2.34) with λ u = 8 mm, B p opt (λ u ) = 0.41 T from Sec. 4.2 for m = {1, 3} one obtains for the first and possibly third harmonics on-axis if the latter be of sufficient flux Φ m=3 respectively E 1 ≈ 40.86 keV, E 3 ≈ 122 keV.

Undulator variants studied for different needs/operating regimes

Multi-period assembly symmetric module

This section presents the formal approach leading to the specification of a model multi-array multi-period staggered undulator unit module providing continuous global first harmonic energy tunability at a fixed magnetic gap g = const. and pole-to-period ratio α p = l p /λ u . The end result is an upper-jaw array pole distribution of the type illustrated in Fig. 3.6.

As mentioned in Sec. 3.3 the variation of the period from λ u n to λ u n+1 comes in addition to the variation of K ∝ λ u B p through the on-axis peak field B p n at fixed λ u n . The peak field B p n is on its turn adjustable via the solenoidal field B sol and is created from B sol by the soft ferromagnetic pole arrangement, the elements of which find themselves magnetized by permeation from B sol . The solenoidal field B sol is ultimately imposed by the current in the solenoid coil winding as reflected by Biot-Savart's law for the elementary magnetic-field contribution of an infinitesimal line current element [START_REF] Knoepfel | Magnetic Fields : A Comprehensive Theoretical Treatise for Practical Use[END_REF]. As detailed in Sec. 3.3 a way to obtain period variation in the device is to laterally put together fixed-period undulator arrays parallel to one another along the transverse horizontal Ox axis. The arrays are to be of different λ u n and are to constitute in this manner a global assembly of transversely varying discretized period λ u n (x), x ∈ ∪ [n(w p + d), ((n + 1)w p + nd)] for n = {0, 1, 2, ..., N } as illustrated in Fig. 3.3, where w p is the array pole width, d the spacing between adjacent undulators and N the total number of arrays. In this way the properties of the radiation emitted by the global staggered assembly are a function of the x coordinate of the beam passage through the resulting multi-period undulator. One could also imagine a structure of a continuously varying period λ u (x) obtained in the limit of an infinite number of undulator arrays in mechanical contact (n → ∞ and d = 0). This however is hardly conceivable from a practical point of view due to the resulting manufacturing complexity. Thus the preference for a discretized period scheme justifies itself.

Applying the general resonant fundamental wavelength expression given by Eq. (2.33) in the case of on-axis emission defined by {θ x , θ z } = {0, 0} to the n-th optimized staggered undulator array in a multi-array variable-period assembly of optimized peak field B p o n and period λ u n for a resulting deflection parameter K o n as given by Eq. (2.17):

K o n = eB p o n λ u n 2πm e0 c 2 , (3.12) 
one gets: 

λ E1 n max = λ u n 2γ 2 1 + e 2 B 2 p o n λ 2 u n 8π 2 m 2 e0 c 2 . ( 3 
λ E1 n+1 min = λ u n+1 2γ 2 1 + e 2 B 2 p min n+1 λ 2 u n+1 8π 2 m 2 e0 c 2 = λ u n+1 2γ 2 1 + e 2 γ 2 B B 2 p o (n+1) λ 2 u n+1 8π 2 m 2 e0 c 2
B p n = B p o ∞ exp -πg λ u n , (3.15 
λ E1 n max = λ u n 2γ 2 ×   1 + e 2 B 2 p o ∞ exp -2πg λu n λ 2 u n 8π 2 m 2 e0 c 2   , (3.16) 
and: [START_REF] Chubar | A Three-Dimensional Magnetostatics Computer Code for Insertion Devices[END_REF][START_REF] Elleaume | Computing 3D Magnetic Fields from Insertion Devices[END_REF] at different staggered array undulator period values λ u ranging in λ u = [START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF] [mm] fitted according to Eq. (3.15) at a gap value g = 4 mm to obtain B p o ∞ = 1.93 used for the derivation of the period-step criterion for inter-array tuning continuity in Eq. (3.20).

λ E1 n+1 min = λ u n+1 2γ 2 ×   1 + e 2 γ 2 B B 2 p o ∞ exp -2πg λu n+1 λ 2 u n+1 8π 2 m 2 e0 c 2   ( 
In order for one to have continuity in the value of the on-axis first harmonic energy E 1 (θ x = 0, θ z = 0) when varying the period λ u of the variable-period multi-array staggered undulator by switching from λ u n of array n to λ u,n+1 of the one n + 1, the following condition on the corresponding extremal emission wavelengths for the two tuning ranges of the arrays, λ E1 n max , λ E1 n+1 min , imposes itself:

λ E1 n max ≥ λ E1 n+1 min (3.18)
The discrete period step or difference δλ u n between the two arrays realized during the energy tuning operation from λ E1 n max to λ E1 n+1 min being simply:

δλ u n = λ u n+1 -λ u n , (3.19) 
one can formulate after some algebraic rearrangements the following E 1 -radiative adjustment criterion for the n-th and (n + 1)-th arrays assuring the continuity in energy-value tunability during the transverse shift from one undulator to the other in the staggered multi-array assembly as sketched in Fig. 3.6 and the subsequent on-axis passage from period λ u n to λ u n+1 : 

δλ u n ≤ e 2 B 2 p o ∞ 8π 2 m 2 e0 c 2 λ 3 u n exp - 2πg λ u n -γ 2 B λ 3 u n+1 exp - 2πg λ u n+1
C(γ B , λ u n , λ u n+1 ) = C 2 e -B 2 p o ∞ λ 3 u n exp - 2πg λ u n - γ 2 B λ 3 u n+1 exp - 2πg λ u n+1 (3.22) 
leading to the concise form of the constraint on the period step δλ u n in Eq. (3.20): It can be seen from each of the set of three curves that for the λ u n, n+1 -doublets under consideration there are γ B -intervals where the adjustment criterion given by the function C(γ B ) is not satisfied by the respective period values. Particularly, the first two couples do not satisfy it anywhere along the γ B -axis as the respective blue and orange curves find themselves entirely below the red horizontal line traced at the δλ u n = λ u n+1 -λ u n =1 mm ordinate value of the physical period increment. Hence no continuity of energy tuning in first harmonic via variation of the peak field B p down to the lower one specified by γ B can be envisaged for the arrays of the corresponding relatively lower-value period couples. One has to approach the two arrays in λ u so that δλ u n drops in order for one to be able to accord the arrays continuously sacrificing in the process the span of the global energy coverage interval resulting from all arrays. For the green line traced by the {10, 11} -mm period array neighbors there is a region of possible continuous energy adjustment extending from below γ B = 0.382 as marked by the black vertical line. Negative-value regions for C do not apparently have any particular physical meaning in this case.

δλ u n ≤ C(γ B , λ u n , λ u n+1 ) = δλ u n max (γ B , λ u n ) (3.23) 0.0 0.2 0.4 0.6 0.8 1.0 B [1] 0.5 0.0 0.5 1.0 C( B ) [mm] 0.3817 uphys (n n + 1) [mm] = 1 @ { u (n), u (n + 1)} [mm] = {10.0, 11.0} @ { u (n), u (n + 1)} [mm] = {9.0, 10.0} @ { u (n), u (n + 1)} [mm] = {8.0, 9.0} g = 4 mm B 0 = 1.9329 T
Of course, the relations defined in Eqs. (3.20) and (3.22) can also be reformulated into an equation by taking the case of equality and solving iteratively for λ u n+1 in terms of λ u n for a given initial λ u 0 and γ B . This serves to generate a variable period sequence in a given interval by taking the maximum allowed period step as δλ u n max = C(γ B , λ u n , λ u n+1 ) from λ u n to λ u n+1 at each n in terms of first harmonic energy adjustment period. Fig. 3.11 illustrates the evolution of the so-defined maximum allowed period step for first harmonic adjustment in function of the period δλ u n max (λ u n ) for the three cases of γ B =0.091, 0.5, 0.8 and the corresponding adjusted period sequences λ u n generated and put to display in Tab. [START_REF] Walker | Synchrotron Radiation[END_REF] As expected, it is clear from Tab. 3.3 and Fig. 3.11 that lower γ B and hence broader operational range for peak field variation facilitates achieving a given approximate range of energy tuning interval with a lesser number of individual undulator arrays, respectively seven, nine and twenty one for γ B = {0.091, 0.5, 0.8} shown in Tab. 3.3, with possible higher successive period increments for the discrete period variation. This is because the linkage between E 1 n min and E 1 n+1 max for an individual neighbouring-undulator pair at a fixed period difference δλ u n is more readily achieved at lower γ B as depicted in Fig. 3.10.

Figure 3.12 shows graphically the resulting typical pattern in the horizontal plane for the distribution of the individual arrays' upper-jaw poles with a discrete period sequence as obtainable from Eqs. (3.20) and (3.22) which is established in the Ox -direction by the λ u n of the undulators in the assembly. Although Fig. 3.12 loosely resembles the variable-period pattern of Fig. 3.6 it is neither symmetric nor repeatable with in one or both senses of the longitudinal direction with separate-array periodicity preservation. This is however the case of the multi-array pole distribution of Fig. 3.6 and can be achieved at both longitudinal extremities of the assembly through a mirror-symmetry operation or equivalent rotation depending on the preferred geometric formalism with respect to the two symmetry planes or axes respectively that are given by σ lef t/right . The specification of such a unit module tuned for a continuous energy range of emission throughout its period sequence {λ u n } in accordance to the condition formulated via Eqs. (3.20) and (3.22) is detailed below. To this purpose γ B = 0.091 is chosen as a suitable working value for specifying the period sequence for the envisaged modular symmetric variable-period multi-array staggered undulator as appears clear through the process. ) in the sequence {λ ′ u n } while assuring simultaneous unitarity as defined in terms of the preservation of array period values through the interfaces between the module at hand and its repeated copy that is constructed by symmetry. To achieve this one can start in the following way. The first step is to express the actual, in the sense of assuredly belonging to the set of strictly positive entire (natural) numbers Z + (N), number of periods N ′ p 0 of the first undulator n = 0 as a function of given α p , λ u 0 and an intended module total length L tot taken as the total length of the first array n = 0 as defined in Fig. 3.6. If N ′ p 0 is initially known and taken as a direct input parameter then there is no need to reason in terms of α p and L tot . This means that these two quantities do not have an actual influence on the final output of the calculation procedure. They are rather discussed introductively as possible initial "dummy" parameters for the sake of completeness of the exposition and the physical discussion of the method for the specification of a tuned variable-period multi-array unit module. Hence one can write Eq. (3.24) for N ′ p 0 where x → ⌊x⌉ is used to designate the rounding function that behaves in the lines of the floor and ceiling functions such that for example ⌊3⌉ → 3, ⌊3.2⌉ → 3, ⌊3.5⌉ → 4, ⌊3.6⌉ → 4.

N ′ p 0 = N p 0 = (L tot -α p λ u 0 ) λ u 0 . (3.24) 
Equation (3.24) then allows to express the module's resulting actual total length:

L ′ tot = λ u 0 N ′ p 0 + α p λ u 0 = λ u 0 (N ′ p 0 + α p ) = λ u 0 (l -α p λ u 0 ) λ u 0 + α p . (3.25) 
L ′ tot is then considered in the necessary geometric relation that can be deduced from Fig. 3.6 which links it to the total length of the n-th array, L n tot , obtained for the known calculated general maximum admissible period value λ u n+1 = λ u n+1 max = λ u n + δλ u n max :

L ′ tot + λ u 0 (1 -α p ) = λ u 0 (N ′ p 0 + 1) = L n tot + λ u n (1 -α p ) = λ u n (N p n + α p ) + λ u n (1 -α p ) = λ u n (N p n + 1).
(3.26) Equation (3.25) makes use of L ′ tot = λ u 0 (N ′ p 0 + α p ) from Eq. (3.24) and gives the first "brute" (̸ ∈ Z + ) n-th number of periods N p n :

N p n = λ u 0 N ′ p 0 + 1 -λ u n λ u n . (3.27)
Applying the ceiling function ⌈x⌉ to the "brute" number of periods N p n given by Eq. (3.27), the corresponding actual number of periods N ′ p n is defined as:

N ′ p n = ⌈N p n ⌉ = λ u 0 N ′ p 0 + 1 -λ u n λ u n , (3.28) 
or, equivalently, making use of Eq. (3.24) to replace N ′ p 0 in Eq. (3.27):

N ′ p n =     λ u 0 (Ltot-αpλu 0) λu 0 + 1 -λ u n λ u n     . (3.29) 
Writing afterwards analogously to Eq. (3.25) the relation between the actual total module length L ′ tot and the resulting one for the n-th array L ′ n tot given by L ′ n tot =λ ′ u n (N ′ p n + α p ):

L ′ tot + λ u 0 (1 -α p ) = λ u 0 (N ′ p 0 + 1) = L ′ n tot + λ ′ u n (1 -α p ) = λ ′ u n (N ′ p n + α p ) + λ ′ u n (1 -α p ) = λ ′ u n (N ′ p n + 1), (3.30) 
one can express the new period value λ ′ u n of the symmetrized n-th array of interest. λ ′ u n is a function of the initial-array period λ u 0 and a form of ratio between the final corresponding number of periods N ′ p 0 and that of the n-th array, N ′ p n :

λ ′ u n = f (λ u 0 , N ′ p 0 , N ′ p n ) = λ u 0 (N ′ p 0 + 1) (N ′ p n + 1) . ( 3.31) 
Expanding Eq. (3.31) by replacing N ′ p 0 and N ′ p n with the respective results given by Eqs. (3.24) and (3.28) yields the following equation for the period λ ′ u n of the symmetrized n-th array as a function of the initial periods λ u 0 , λ u n and the alternative dummy parameters that are the pole length ratio α p and the intended total length L tot :

λ ′ u n = f (λ u 0 , λ u n , α p , L tot ) = λ u 0 (Ltot-αpλu 0) λu 0 + 1      λu 0 (L tot -αp λ u 0 ) λ u 0 +1 -λu n λu n      + 1 (3.32)
Provided that n ̸ = 0, Eq. (3.32) gives the final period value for the n-th undulator of the unitary symmetric module. The next logical step in specifying the module is to obtain the corresponding geometric and dimensional parameters λ ′ u n+1 , N ′ p n+1 of the (n + 1)-th array. Obviously this inequality relation on resulting λ ′ u n s of neighboring arrays previously stated through Eq. (3.23)). Thus N ′ 0 min for specific λ u 0 and α p characterize the first (smallest or primitive) successful module built. The resulting main specification set {λ ′ u n , N ′ p n , L tot , N , L ′ n tot } of distinct functionally legitimate modules is obtained for a fixed-value set of the other generating parameters that are {λ u 0 , N p 0 , B p o ∞ , g, γ B }.

Tab. 3.4 presents the final non-primitive assembly unit array results retained as a choice for the Radia environment simulation stage presented Chap. 4. Accompanying are the corresponding initial parameter values in the topmost row. It is legitimate to simplify the λ ′ u n and N ′ p n notations to λ u n and N p n respectively at the end of a successful building operation as is done in Tab. 3.4 and Fig. 3.6. The particular choice of module specification is dictated by the a priori fortuitously obtained final period value λ ′ u n=N -1 = 16 mm which matches the upper boundary of the studied period interval of interest, [8 16] mm. This is not the case for example for the primitive module corresponding to the same set of generating parameters, of L tot min =188.57 mm, obtained with N thr =8 arrays compared to N =9 of Tab. 3.4 for the period interval in question. This point is important in terms of superior extended first harmonic adjusted coverage range in favor of the chosen module. A rudimentary but insightful manner to approach module specification based on the definitions of Fig. 3.6 is to consider it purely geometrically by means of Eq. (3.31) without addressing the need of harmonic energy adjustment. For given λ u 0 and N p 0 one can explore the obtainable λ u n by varying N p n in diminishing order starting from N p 0 . Thus it can be seen once again that the resulting λ u n and N p n do not practically depend on α p . α p is introduced from a design-reasoning perspective where one calculates module specifications from the starting point of an intended total length L tot as undertaken in Eq. (3.24). This explains why λ u n = 29 yielding N p 8 =14 at λ u 8 = 16 mm = 2λ u 0 .

γ B =0.091, N =9, α p =0.
In such a way one can predict probable valid period values for a given module size. Fig. 3.6 can be generated with the help of adequate periodized gate or trigonometric functions. This allows for the mapping of the corresponding individual undulator array patterns taking into account the necessary symmetry and boundary conditions. Numerically such an approach implies the application of a binary-value color-coding convention specifying the presence or absence of one of the colors (the pole-designating one). The one used in Fig. 3.6 (and Fig. 3.12) assigns a value of 1 for pole surfaces and 0 for empty spaces corresponding to the inter-pole and inter-array distances in the module, the two values being represented respectively by light green and dark blue colors. With an initial set of λ u 0 and N p 0 one compact analytical expression for the upper row pole distribution of the (λ u n , N p n )-undulators shown in Fig. 3.6 with the specified coordinate origin choice is the following: For the fabrication of a staggered-array undulator-module pattern such as the one depicted in Fig. 3.6 one is tempted to investigate the possibility of using 3D printing technologies [START_REF] André | From Additive Manufacturing to 3d/4d Printing Breakthrough Innovations-Programmable Material[END_REF]. In this way the poles could be manufactured in their respective positions in the structure of the array module in an additive fashion [START_REF] Bickel | Welcome to Computational Aspects of Digital Fabrication 3D Printing[END_REF] where subsequent material layers are vertically aggregated in opposition to any subtraction process involving cutting our or other procedures.

Extremal bi-period assemblies for revolver-type undulator

In the case where one would want to specify a sort of staggered variable-period two-array undulator of periods of sensibly different (extremal) values, λ u n, (n+1) , λ u n ̸ = λ u n+1 a functionality similar to that provided by a typical revolver undulator as briefly introduced in Subsec. 2.3.2 could be achieved. In this regime the smaller-period ID array, say that of λ u n , is exploited for its higher energy of radiation in a relatively monochromatic regime of emission around its fundamental harmonic with energy tunability.

In parallel, the alternative second operating mode for such a bi-period multi-array undulator, that of larger period λ u n+1 , complements the mode of shorter λ u n by presenting a radiation flux of potential interest distributed over a wider range of emission able to comprise multiple harmonics. In this respect one can be tempted to use Fig. 4.13 in an effort to estimate the evolution of the polynomial-fitted resulting optimal deflection parameter K opt with period λ u , K opt [∝ B p opt λ u [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF]](λ u [mm]) ≈ aλ u + bλ u + cλ u for a ≈ 0.03, b ≈ 0.01, c ≈ 0.00 given in magenta for the staggered arrays subjected to optimization of the on-axis peak field B p in Sec. 4.2. For this, one bears in mind the connection between the magnitude of the deflection parameter K for improved tunability and related increased harmonic content in the on-axis undulator field, hence resultingly in the radiation spectrum. This is relayed by the harmonic-number estimate of Eq. (2.50) and Tab. 2.1 in function of K at a fixed harmonic energy (wavelength) λ m equal to the bending-magnet critical wavelength λ c , λ m = λ c , defined in Eqs. (2.48) and (2.49). To rationalize this one can also refer to the distinctive undulator/wiggler energy spectra of Figs. 2.5 and 2.6 and the evolution of the on-axis angular power density with deflection parameter K from Eqs. (2.92) to (2.94) and Fig. 2.24.

A judicious goal for the sufficient overlapping of the flux Φ 1, 3 and brilliance B 1, 3 from harmonics 1 and 3 in terms of deflection-parameter K value can be set as K ⪆ 2.2 [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. The precise theoretical value for the pin-point linkage of the two harmonics can be found from Eq. (2.34) by equating the extremal values of the corresponding on-axis harmonic energies, E 1 max (K = 0) and E 3 min (K max = K opt ), according to:

E 1 max = E 3 min ⇒ K opt = 2.
(3.39)

The calculated inverse-fit function

K -1 opt (λ u ) = λ u (K opt ) [mm] ≈ 32.59K opt -30.75K 2 opt + 11.73K 3 opt
giving the necessary long-period λ u for the bi-period revolver staggered assembly can be evaluated by extrapolation to give: needed for practical overlapping of harmonics 1 and 3. The constraint on K is relaxed for pin-point overlapping higher harmonic numbers such as 3 and 5. in this case equating E 3 max (K = 0) and E 3 min (K max = K opt ) gives:

K -1 opt (λ u ) = λ u (K opt = 2.
E 3 max = E 5 min ⇒ K opt ≈ 1.15. (3.41) 
This value of K opt is already within the tunability reach of staggered array 8 of λ u 8 = 16 mm, K opt (λ u 8 = 16 mm) ≈ 1.31. Another approach to a multi-harmonic functionality that is in a sense a particular case of the previous one presented can be to reconsider the idea behind the condition given by Eqs. (3.22) and (3.23) to exploit in a slightly different manner the possibility of continuous tunability. This can be undertaken in the case of such a bi-period assembly with initially known periods λ u n , λ u n+1 , case which can hence be studied in terms of the possibility for flux linkage between a given lower, most likely being the fundamental, harmonic of the short-period array and a higher harmonic of the long-period one, as a function of the magnetic parameters of the undulators. This is done below to express the condition on the lower boundary of the magnetic field variation range γ B for the continuous emission of a bi-period multi-array assembly built upon the connection between the first and immediately neighboring third harmonic of the λ u n -and λ u n+1 -arrays respectively with period values equal to the minimum and maximum ones for the variable-period multi-array assembly discussed in Subsec. 3.6.1, that is λ u n = 8 mm and λ u n+1 = 16 mm of the outer arrays designated by the sequential numbers n = {0, 8} identifying them in terms of their position amid the other arrays of the assembly treated in Subsec. 3.6.1. Writing down the expression for the maximum fundamental harmonic wavelength λ E m=1 corresponding to the minimum harmonic energy for the first array n = 0:

λ E (m=1) (n=0) max = λ u 0 2 × (m = 1)γ 2 1 + e 2 B 2 p o 0 λ 2 u 0 8π 2 m 2 e 0 c 2 = λ u 0 2γ 2 1 + e 2 γ 2 B B 2 p o 0 λ 2 u 0 8π 2 m 2 e 0 c 2 , (3.42) 
and the expression for the minimum wavelength (maximum energy) of the third-harmonic for the second array λ E (m=3) (n=1) min redesignated from n = 8 in the variable-period multi-array undulator of Subsec. 3.6.1 to n = 1 in the bi-period one:

λ E (m=3) (n=1) min = λ u 1 2 × (m = 3)γ 2 1 + e 2 γ 2 B B 2 p o 1 λ 2 u 1 8π 2 m 2 e 0 c 2 = λ u 1 6γ 2 1 + e 2 γ 2 B B 2 p o 1 λ 2 u 1 8π 2 m 2 e 0 c 2 , (3.43) 
one equates the two expressions for the wavelengths to end up with:

λ E 3 (n=1) min = λ E 1 (n=0) max ⇒ λ u 1 6γ 2 1 + e 2 γ 2 B B 2 p o 1 λ 2 u 1 8π 2 m 2 e 0 c 2 = λ u 0 2γ 2 1 + e 2 γ 2 B B 2 p o 0 λ 2 u 0 8π 2 m 2 e 0 c 2 ⇒ 1 + e 2 γ 2 B B 2 p o 1 λ 2 u 1 8π 2 m 2 e 0 c 2 = 3 λ u 0 λ u 1 1 + e 2 γ 2 B B 2 p o 0 λ 2 u 0 8π 2 m 2 e 0 c 2 ⇒ γ 2 B = 24λ u 0 π 2 m 2 e 0 c 2 λ 3 u 1 e 2 B 2 p o 1 + 3λ 3 u 0 B 2 p o 0 λ 3 u 1 B 2 p o 1 ⇒ γ B = 1 B p o 1 e 3e 2 B 2 p o 0 λ 3 u 0 + 24π 2 m 2 e 0 c 2 λ u 0 λ 3 u 1 = γ B (λ u 0 , λ u 1 , B p o 0 , B p o 1 ), (3.44)
providing the detailed algebraic steps. By injecting the exponential expression for the peak field B p given by Eq. (2.95) with B p o ∞ ≡ aB r and b = 1 into Eq. (3.44) one finally obtains for the lower boundary γ B of the peak field variation range as a function of the period couple {λ u 0 , λ u 1 }, the optimum peak field-over-period fit constant B p o ∞ valid for the two staggered arrays and their gap g:

γ B = exp πg λu 1 B p o ∞ e 3e 2 B 2 p o ∞ exp -2πg λu 0 λ 3 u 0 + 24π 2 m 2 e 0 c 2 λ u 0 λ 3 u 1 = γ B (λ u 0 , λ u 1 , B p o ∞ , g) (3.45)
In the particular case of λ u 0 = 8 mm and λ u 1 = 16 mm implying λ u 1 = 2λ u 0 Eq. (3.45) becomes:

γ B (λ u 0 , λ u 1 = 2λ u 0 , B p o ∞ , g) = γ B (λ u 0 , B p o ∞ , g) = exp πg 2λu 0 B p o ∞ e 3e 2 B 2 p o ∞ exp -2πg λu 0 λg 32 u 0 + 24π 2 m 2 e 0 c 2r r λ u 0 1 8λg 32 u 0 exp πg 2λu 0 B p o ∞ e 3e 2 B 2 p o ∞ exp -2πg λu 0 λ 2 u 0 + 24π 2 m 2 e 0 c 2 8λ 2 u 0 (3.46)
For the bi-period multi-array staggered undulator parameters g = 4 mm, λ u 0 = 8 mm, B p o ∞ = 1.93 Eq. (3.46) yields γ B = 0.2792.

Functional contribution of a longitudinally variable gap (parabolic)

As mentioned in Subsec. 3.2.1 another variable multi-period undulator scheme that can be studied is that of the adaptive-gap segmented undulator. This design scheme exploits the specification of a longitudinally-variable (non-uniform) gap along y for a better following of the vertical beam envelope given by the the corresponding optical beta function for the vertical betatron function β z . The discretized non-uniform gap value in the different parts (segments) of the insertion device then implies a correspondingly non-uniform discrete period value in the segments as portrayed in Fig. 3.13 for the synchronous tuning of the individual emitting portions of the undulator on an identical harmonic energy E m during the passage of the electron beam through the gap of the insertion device. 

λ u n {g 0 , λ u 0 } g N-1 = g 0 λ u N-1 = λ u 0 {g n , λ u n } {g N-1 , λ u N-1 } = {g 0 , λ u 0 } h p l p 0 l p n d p 0 d p n d p n = = d p N-1 e - y 0 , β z (𝑦 0 ) σ z (y) ∝ β z (𝑦) y 0 y 1 y n y n+1 y N-1 y N g n l p N-1 = l p 0 Figure 3
.13: Sketch of a longitudinal section for a segmented variable-gap pole array symmetric with respect to the vertical half-plane in the straight section, with three segments shown out of a total of N segments identified by the period-gap couple values {λ u 0 , g 0 } = {λ u n , g n }, {λ u N -1 , g N -1} = {λ u 0 , g 0 }.

As discussed in Subsec. 2.2.6 the beta function profile in a straight section is typically symmetric and of parabolic dependance on the longitudinal coordinate y outwards from the straight section center as sketched in Fig. 3.13. To this end the center of the straight section is beforehand judiciously chosen at a symmetry point of the lattice. Hence β q (y) in the ID straight section is described by Eq. (A.8):

β q (y) = β q0 1 + (y -y 0 ) 2 β 2 q 0 , (3.47) 
with q = x, z where β q 0 is the respective horizontal/vertical beta function in the center of the straight section whose longitudinal coordinate is given by y 0 . From Eq. (3.47) the RMS beam size can be deduced through Eq. (A.9) as:

σ q (y) = ϵ q β q (y) + η 2 q (y)σ 2 E , (3.48) 
where ϵ q is the beam emittance in the corresponding plane Oyq, η q is the dispersion function (η z = 0) and σ E is the energy dispersion of the beam as discussed in Subsec. 2.2.5. The symmetric parabolic profile of the vertical beta function β z is to be rechecked in the case of a straight section for a staggered undulator under the installation of the constituent solenoid in the section. For this one refers to the results of Subsec. 6.3.3, for example for a central solenoid field B y 0 = 1 T, a value that is of the order of the typical operational range for the solenoid field for the needs of the staggered multi-period undulator's functioning and close to one of the boundaries of the defined range as presented in Sec. 4.2.

In order to find the condition for uniform inter-segment first harmonic emission via synchronous variation in gap and period values for a segmented adaptive-gap undulator one starts by expressing the radiation wavelengths for two successive segments of the ID, of respective period-gap couples {λ u n , g n }, {λ u n+1 , g n+1 }. Thus one is led to the implied necessary equality between the radiation wavelengths λ E n , λ E n+1 corresponding to {λ u n , g n }, {λ u n+1 , g n+1 }: 

λ E n = λ E n+1 ⇒ λ u n 2γ 2 1 + e 2 B 2 p n λ 2 u n 8π 2 m 2 e0 c 2 = λ u n+1 2γ 2 1 + e 2 B 2 p n+1 λ 2 u n+1 8π 2 m 2 e0 c 2 . ( 3 
λ E n = λ E n+1 ⇒ λ u n 2γ 2   1 + e 2 B 2 p ∞ exp -2bπ gn λu n λ 2 u n 8π 2 m 2 e0 c 2   = λ u n+1 2γ 2   1 + e 2 B 2 p ∞ exp -2bπ gn+1 λu n+1 λ 2 u n+1 8π 2 m 2 e0 c 2   .
(3.50)

Envisaging that the longitudinal gap profile g(y) follows the vertical RMS beam size according to some proportionality relation between the two g(y) = P σ σ z (y) as in [START_REF] Chubar | Segmented Adaptive-Gap In-Vacuum Undulators -Potential Solution for Beamlines Requiring High Hard X-Ray Flux and Brightness in Medium Energy Synchrotron Sources[END_REF][START_REF] Chubar | Spectral Performance of Segmented Adaptive-Gap In-Vacuum Undulators for Storage Rings[END_REF] where P σ is a factor that takes into account stay-clear and/or impedance constraints, the gap g is then from Eq. (3.48) with η q=z σ E = 0 and q = z for the on-axis monoenergetic beam:

g(y) = P σ σ z (y) = P σ ϵ z β z0 1 + (y -y 0 ) 2 β 2 z 0 . (3.51)
Inversely, the P σ factor in Eq. (3.51) can be deduced if the gap value is known in some way in advance during the design stage at a certain point somewhere along the straight section as a sort of initial condition for specifying the final gap profile. This approach is undertaken below choosing to have g 0 = 4 mm in the middle of the straight section at y 0 in concordance with the uniform gap value choice for the multi-array variable-period staggered undulator in Subsec. 3.2.1.

g 0 = g(y 0 ) = P σ ϵ z β z0 → P σ = g 0 √ ϵ z β z0 . (3.52) 
Replacing P σ in Eq. (3.51) with its expression given by Eq. (3.52) one obtains:

g(y) = g 0 √ ϵ z β z0 ϵ z β z0 1 + (y -y 0 ) 2 β 2 z 0 = g 0 1 + (y -y 0 ) 2 β 2 z 0 . (3.53)
Considering that a particular uniform gap segment measuring {λ u n , g n } spans longitudinally from y n to y n+1 , where y n, n+1 are the extremity pole piece center coordinates as defined in Fig. 3.13, Eq. (3.53) can be readily discretized as valid for the segment under the form:

g n (y(∈ [y n , y n+1 ])) = g 0 1 + (y n -y 0 ) 2 β 2 z 0 . (3.54) 
Injecting Eq. (3.54) in Eq. (3.50) in yields:

λ u n   1 + e 2 B 2 p ∞ exp -2bπg0 λu n 1 + (yn-y0) 2 β 2 z 0 λ 2 u n 8π 2 m 2 e0 c 2   = λ u n+1   1 + e 2 B 2 p ∞ exp -2bπg0 λu n+1 1 + (yn+1-y0) 2 β 2 z 0 λ 2 u n+1 8π 2 m 2 e0 c 2   (3.55)
For known starting values of λ u n , y n and fixed values of g 0 and y n+1 Eq. (3.55) can be solved numerically in an iterative fashion to yield a solution for λ u n+1 (λ u n , y n , y n+1 , g 0 ) at each "step" n valid for g n+1 obtained beforehand with Eq. Fig. 3.14 is plotted over the half-straight section along the positive y-axis and shows the established discrete sequences for the gaps g n and periods λ u n on the left of the graph that produce a fixed tuned first-harmonic on-axis energy of emission E 1 = 40.907 keV from segment to segment. In the case presented in Fig. 3.14 and formulated according to Eq. (3.55) each segment is actually a half-period λ u n /2 as in the sketch of Fig. 3.13. This is to say that each successive discrete-variation step δy n in the longitudinal coordinate y for implementing the computation of the n-th gap-period couple {g n , λ u n } is simply the center-separation between successive upper-and lower-jaw pole pieces. This automatically results in the most compact possible undulator of such functionality in accordance to the chosen primitivity definition for a symmetric staggered multi-undulator (array) unit module as the longitudinally shortest one functional in terms of continuous inter-array E 1 tunability according to Eqs. (3.22) and (3.23). In opposition to the multi-array module there is no symmetrization concern since symmetry with respect to the Oxz mid-plane is assured by construction of Fig. 3.13. This is due to the plane being perpendicular and not parallel to the axis of variation for the parameter of interest λ u (and g n ) as in the case of the multi-array assembly of Fig. 3.6. As expected from Eq. (3.50) the period λ u n and parabolic gap g n vary in the same increasing direction outwards from the undulator array center towards the array extremity to assure that the device is longitudinally tuned throughout to the same fundamental harmonic E 1 . In the same time the resulting peak field B p n and deflection parameter K n are observed to drop in value towards the end of the undulator.

One can also linearize Eq. (3.55) by expanding the square root in the argument of the exponential function on the condition that (y n -y 0 ) ≪ β q 0 . This condition is readily satisfied in practice for longitudinal coordinates y n situated not too far from the center of the straight section and ID at y 0 and more so in the case of short-period values considered since one naturally has y n+1 -y n = δy n ∼ O(mm) = λ u n /2 ≪ β z 0 ∼ O(m). Hence, bearing in mind the numerical values at hand, δy n can be up to three, assuredly two, orders of magnitude inferior with respect to the beta function in the middle of the straight section. If one then is interested in computing the gap-period couples in a longitudinal region of limited extent around the straight section center, then the root-expansion in Eq. (3.55) can be done to yield:

(1 + x) a ≈ 1 + αx, (3.56) 
when truncating Eq. (3.56) to first order in x, taken as x = y n+1 -y 0 and ∥ x ∥ < 1. In the case of Eq. (3.55) the square-root term is approximated according to Eq. (3.56) as:

1 + (y n+1 -y 0 ) 2 β 2 z 0 ≈ 1 + (y n+1 -y 0 ) 2 2β 2 z 0 . (3.57)
The requirement ∥ x ∥ < 1 proves fulfilled by the values of the longitudinal increment δy n and vertical beta function at the middle of the straight section β z 0 not too far from the ID center with x = (y n -y 0 )/β z 0 . Then injecting Eq. (3.57) in Eq. (3.55) gives:

λ u n   1 + e 2 B 2 p ∞ exp -2bπg0 λu n 1 + (yn-y0) 2 2β 2 z 0 λ 2 u n 8π 2 m 2 e0 c 2   = λ u n+1   1 + e 2 B 2 p ∞ exp -2bπg0 λu n+1 1 + (yn+1-y0) 2 2β 2 z 0 λ 2 u n+1 8π 2 m 2 e0 c 2   (3.58)
It is to be noted again nevertheless that Eq. (3.58) is probably of limited interest with respect to the exact form of Eq. (3.55) for the study of real-length segmented adaptive-gap undulators of several meters along the lines of Fig. 3.13.

Conclusion

The proposed conceptual design for a multi-period staggered-array undulator consists of two main components: a superconducting solenoid of length L sol = 2.5 m and a soft ferromagnetic rectangular-pole array of length L u ≈ 2 m. The focus is on short period values λ u n in the range λ u n ∈ [8 mm, 16 mm] for resulting high fundamental-harmonic energies E 1 n where n denotes one of the several individual staggered arrays that make up the undulator. The expected approximate radiation energy interval output for the period interval of interest is 11 keV ⪅ E 1 ⪅ 42 keV.

The staggered-array multi-period assembly reconciles two defining characteristics: the possibility for period variation and the staggered-defining magnetization of the pole arrays by the solenoid field B sol for the generation of the undulator field B z on-axis. Both of these operational capacities are to serve as energy-tuning mechanisms for the multi-period staggered-array assembly.

A discrete variation in undulator period value is achieved by a global mechanical translation of the assembly in the bore of the solenoid along the transverse horizontal direction. During this process the individual staggered array n + 1 of period λ u n+1 is placed on the solenoid axis and the array n of period λ u n is concurrently removed from the axis and displaced to the side. In this process the staggered-array assembly has its period tuned from λ u n to λ u n+1 by the discrete period steps δλ u n = λ u n+1 -λ u n .

The ability to vary the period remedies the inherently low tunability of the individual staggered arrays relative to that presented by permanent-magnet devices. The low tunability of the individual staggered arrays is conditioned by the low peak fields B p n and short periods λ u n that characterize the staggered-array assembly.

Related to the issue of adequate tunability, a criterion for an adjusted inter-period continuous tuning of the first harmonic on-axis energy is determined. The criterion takes into account the magnetostatic performance of the individual arrays in terms of peak field potential of the staggeredarray pole material Vanadium Permendur (FeCoV) of saturation induction B sat = 2.3 -2.4 T. To this end, the separate arrays are optimized beforehand in terms of geometric and solenoid parameters for pushing the limit of the attainable peak field B p (λ u n ) as studied in Chap. [START_REF] Andrault | [END_REF].

Following the application of this criterion a symmetric unitary staggered-array module of a specific array-period sequence {λ u n=0, 1, ...8 } = {8, 8.28, 8.57, 8.89, 9.23, 10, 10.91, 12.63, 16} [mm] and length L tot = 236.57 mm. Period switching among the values in {λ u n=0, 1, ...8 } combined with peak-field tuning via the solenoid field B p n (B sol n ) up to the optimized maximum peak field value for each staggered array permits to construct a continuous tuning range for the on-axis first-harmonic energy E1(θ x = 0, θ z = 0) from 11.54 keV to 42.72 keV.

Three sub-variants of a variable-period staggered-array assembly are considered and presented. The first two are the multi-array (-period) devices composed respectively of N = 9 (multi-period) and N = 2 (bi-period) staggered arrays of distinct λ u n with n ∈ [0, N -1] in the given period range.

Among the three variable-period structures examined the multi-period one of N = 9 bears the main focus of the study. It illustrates the approach used to determine a period sequence enabling the design of a multi-array staggered assembly that is continuously tunable over a wide range in first harmonic energy E 1 . It also serves in Chap. 5 to evaluate the performance in radiation emission one can expect from such an undulator-array assembly.

The second multi-array one, bi-period with N = 2, is derived from the first but is a two-array one of two extremal period values λ u 0 = 8 mm and λ u 1 ≈ 23.7 mm considered as a revolver-undulator alternative. As such it is meant to operate in two complementary regimes: one of a relatively monochromatic high-energy radiation emission of low tunability when tuned on the shorter period and a spectrally wider tunable low-energy photon output when switched on the larger period. Respectively two different solenoids for the two multi-array assemblies are specified.

The third variable-period staggered undulator scheme studied in terms of variable-period discrete-sequence generation {λ u n } is considered in the frame of the segmented adaptive-gap undulator. In this frame a single pole array on the axis of the solenoid is envisioned for operation at a fixed first-harmonic energy E 1 among individual undulator segments of different periods λ u n assembled one after the other along the axis. The constancy of the first-harmonic energy among the segments that generate the period sequence {λ u n } along the longitudinal axis of the device is then conditioned by the predetermined longitudinal gap profile g(y) ̸ = const.. The g(y) is adapted to the vertical beta function's symmetric parabolic form β z (y) along the straight section, hence the local electron-size at y. Thus the gap profile is translated in a corresponding variable-gap discrete sequence {g u n }. which evolves in conjunction with λ u n along the axis from segment n to segment n + 1 in a manner to assure E 1 n = E 1 n+1 .

Chapter 4

Magnetostatic design

The Radia magnetostatic code. Computational principle

Radia is a three-dimensional magnetostatics computer code whose focus is put on the simulation and optimization of insertion device geometries and the computation and study of their magnetic characteristics and performance [START_REF] Elleaume | Computing 3D Magnetic Fields from Insertion Devices[END_REF]. It falls in the Boundary Integral Method (BIM) [START_REF] Elleaume | Computing 3D Magnetic Fields from Insertion Devices[END_REF][START_REF] Tortschanoff | Survey of numerical methods in field calculations[END_REF] subcategory of the Boundary Element Method (BEM) category for computational electromagnetic codes as opposed to the other large one of the more amply used FEM (Finite Element Method)-based codes [START_REF] Elleaume | Computing 3D Magnetic Fields from Insertion Devices[END_REF][START_REF] Sheng | Essentials of Computational Electromagnetics[END_REF][START_REF] Meunier | The Finite Element Method for Electromagnetic Modeling[END_REF][START_REF] Özgün | Matlab-Based Finite Element Programming in Electromagnetic Modeling[END_REF][START_REF] Ferreira | Matlab Codes for Finite Element Analysis[END_REF]. Tools that can be cited in the FEM group are the 2D code Poisson as well as the 3D representatives Flux3D [START_REF] Elleaume | Computing 3D Magnetic Fields from Insertion Devices[END_REF] and Opera [START_REF]Vector Fields Limited[END_REF]. This distinction is made with respect to the method of spatial computation employed for the magnetic fields generated by different types of elements. A finite-element software package employs numerical techniques (finite element schemes) to solve partial-derivative equations formulated beforehand into a suitable form for the computation of fields and other related quantities such as straight-line field integrals. In comparison to this, Radia is based mainly on analytical expressions for the solutions of the these equations built around such magnetic quantities of interest. Boundary conditions are specified through mirroring [START_REF] Moog | Novel Insertion Devices[END_REF].

Basic common types of magnetic field sources represented in the Radia universe are active and passive ones. Active are electromagnetic and magnetized volumes of the permanent magnet type or iron elements. In the code environment those electromagnetic can only abstractly be subdivided into normal-or superconducting current-carrying components (coils) [128-131, 133-135, 165-167, 177, 202, 223, 224, 224, 224, 224, 244, 245] based on the inputted value of their current density parameter j. Coils are of straight or curved geometry and polygonal cross section. Magnetized volumes can be polyhedrons which are volumes delimited by planar polygonal faces possessing uniform magnetization. An object of more complex magnetization can be built from smaller ones with different individual magnetizations. Passive elements are soft substances from a ferromagnetic point of view as discussed in Chap. 2. Hard substances, such as the rare-earth permanent magnets discussed in relation to PM undulators in Chaps. 2 and 3 yield a permanent magnetization vector in the absence of external field sources with respect to the material element itself. This is achieved once the material is properly magnetized during its production phase along the so-called easy axis of preferred magnetic moment alignment as discussed in Chap. 2.

A longitudinal section of the U46 undulator is depicted in Fig. 4.1 acquired with the 3D graphical rendering engine of the Radia magnetostatics software. It boasts permanent magnet blocks (cyan) of a Neodymium Iron Bore (NdFeB) [START_REF] Sagawa | Magnetic Properties of Rare-Earth-Iron-Boron Permanent Magnet Materials[END_REF] material sample which illustrates the point made on the permanent magnetization vector by its non-zero value of µ 0 M at zero µ 0 H as shown in Fig. 4.2. Objects with magnetic properties in Radia can be specified to possess various degrees of subdivision in the longitudinal direction. This is visible from the longitudinal portion of the hybrid device shown in Fig. 4.1 at the level of its permanent magnet blocks and pole pieces shown respectively in cyan and light violet. Together with a segmentation of the element surface in the orthogonal plane this generates a number of sub-objects which are the subject to a relaxation procedure whereby the final magnetization vectors and field distributions after application of the respective magnetic properties for the elementary objects become established and computable analytically. The original object's fields are then obtained through summation over those of the elementary ones. Computational accuracy is exclusively dependant on the degree of segmentation. In particular field integral computation is not influenced by the sampling scheme applied to the magnetic field profile neither on the chosen boundary condition. This is in major contrast to FEM-based electromagnetic codes [START_REF] Russenschuck | Field Computation for Accelerator Magnets[END_REF] and beneficial to relatively fast optimization of insertion device extremities. Fig. 4.3 testifies of the anisotropic nature of NdFeB by exhibiting the relatively low magnetization acquired throughout an extended practical range of values for the applied magnetic excitation field µ 0 H in a direction perpendicular to the easy axis. Over this range NdFeB also appears to be a linear material in terms of its magnetization curve M (H). Ultimately this feature allows one to apply the superposition principle for PPM [START_REF] Benabderrahmane | Development and Operation of a Pr2Fe14B Based Cryogenic Permanent Magnet Undulator for a High Spatial Resolution X-Ray Beamline[END_REF] (Halbach-type) structures in typical design situations in opposition to the case of soft non-linear material [START_REF] De Rijk | Introduction for Magnets[END_REF][START_REF] De Rijk | High-Field Accelerator Magnets[END_REF]. In this respect Radia takes into account the real non-linear nature of magnetic materials [START_REF] Chavanne | Nonlinear Numerical Simulation of Permanent Magnets[END_REF]. Figure 4.4 shows the strongly non-linear magnetic behavior of the iron-cobalt-vanadium alloy Vanadium Permendur type 49Fe-49Co-2V, designated more simply as FeCoV later on, traced by the first magnetization curve. This curve occurs during the first half-cycle of H when H diminishes from maximum positive to maximum negative values, before the hysteresis phenomenon manifests itself when later the return half-cycle is operated on the H-field in the opposite sense of variation. FeCoV is used as pole material for the 46 mm -period U46 undulator of Fig. 4.1. Visible is the saturation tendency [START_REF] Russenschuck | Electromagnetic Design of Accelerator Magnets[END_REF] of its magnetization µ o M with increasing absolute value of the applied external excitation field µ 0 H. The magnetic flux at saturation B sat for FeCoV samples is in the 2.3 -2.4 T range and is the highest for soft ferromagnetics. The non-linear asymptotically saturating behavior of the soft ferromagnetic FeCoV's polarization M µ 0 (µ 0 H) with the magnetic excitation field is evident in Fig. 4.4. Such soft magnetic materials are characterized by a nearly zero remanent field B r ≈ 0 and rather important susceptibility [START_REF] Lacheisserie | [END_REF]. These conditions the ability of such substances to guide in a concentrated fashion the source flux to a given location. Contrary to the behavior of hard ferromagnets, soft ones such as pole materials exploited in hybrid permanent magnet designs like the U46 of Fig. 4.1 and possibly staggered ones necessitate an exterior magnetic excitation ⃗ H in order to be able to sustain a useful amount of magnetic (induction) flux ⃗ B through concentrating of ⃗ H and are highly non-linear in typical intervals of interest for the magnetic excitation ⃗ H. Another distinguishing feature of magnetically soft substances with respect to hard ones is the largely isotropic nature of their magnetization characteristic M (H) with respect to the anisotropic one of materials of the hard category. It is worth noting that hysteresis is not modeled in the Radia magnetostatic environment. The hysteresis phenomenon is defined by the typical non-bijective nature of B(H) and M (B) for real magnetic materials where B = ∥ ⃗ B∥, H = ∥ ⃗ H∥, M = ∥ ⃗ M ∥ are respectively the magnitudes of the magnetic flux induction, the magnetic excitation and the magnetization of the material.

Geometric peak field optimization for different periods -Tunability conditioned by deflection parameter K

As discussed in Subsec. 2.3.1 a main design interest during undulator specification is the achieved value(s) of the deflection parameter K which is an indicator of the energy tunability of the device [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Shintake | The SACLA X-Ray Free-Electron Laser Based on Normal-Conducting C-Band Technology[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF]. This can be interpreted with the help of Eq. (2.50) from which it is clear that a higher K implicates a higher number of harmonics m.

In conventional fixed-period devices the upper limit on K ∝ B p λ u is determined straightforward by the one on the peak field B p itself imposed by the minimum gap g min which is the energy-tuning parameter for this type of undulators. Closing the gap increases the peak field B p and through there the deflection parameter K in virtue of Eq. (2.95). Variation of B p then tunes the (on-axis) first harmonic energy according to Eq. (2.34) picked up again below:

E m [keV] ≈ 9.5mE 2 [GeV] λ u [mm] 1 + K 2 2 + γ 2 θ 2 x + γ 2 θ 2 z , (4.1) 
with K ∝ B p λ u [START_REF] Brown | Wiggler and Undulator Magnets -A Review[END_REF] the deflection parameter of the undulators, m = 1 the harmonic number for the fundamental energy, γ the Lorentz factor and θ x , θ z =0 the on-axis values for the horizontal and vertical observation angles. The minimum gap g min and hence maximum peak field B p and K leading to the lower limit of the energy tuning range can be constrained by different considerations depending on the type of ID with respect to the positioning of its magnetic arrays relative to the vacuum chamber (VC).

In the case of in-air devices where the arrays are outside the VC g min is determined by the outer radius of the vacuum chamber plus some clearance distance of the order of a millimeter to prevent the magnets from striking the surface of the VC. At the ESRF for example VC parameters in relation to determining g min of an in-air undulator are taken as 8 mm for the inner vertical dimension and 1 mm for the circumferential surface thickness which bring g min to 8 + 2 × 1 = 10 mm.

For in-vacuum undulators more complex considerations come into play. An example can be the deposition of heat power through induced image currents on the part of the electron beam along the highly resistive magnet arrays [START_REF] Hara | Spring-8 In-Vacuum Undulator Beam Test at the ESRF[END_REF]. The phenomenon can also be regarded as radiation damage arising from the neutron intensity of the corresponding photon impact and can lead to magnet degradation, precisely loss of magnetization of the magnets in the arrays, if adequate measures are not taken. [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Chavanne | Cryogenic Permanent Magnet Undulators[END_REF]. This is one of the reasons why a highly conductive thin copper sheets of about 50 µm is attached magnetically to the arrays via a nickel coating. The sheets provide an effective evacuation path of sufficient conductivity for the image currents mitigating the risk described [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]. The main reason for the sheet implementation however, highly predominant with respect to the heat stake mentioned, is to tackle impedance issues. Conversely, the undesired potential prospect of ultra-high vacuum quality degradation from surface outgassing of the array magnets can be one of the factors able to provoke beam lifetime reduction. This imposes a certain condition of low outgassing rates on candidate magnet materials such as rare-earth substances of the likes of NdFeB and SmCo [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF] which need the application of special coatings for the purpose [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF].

Vacuum suitability also requires preliminary high-temperature baking of materials above 100 • [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Chiggiato | Vacuum Technology for Superconducting Devices[END_REF]. In the case of magnet substances this can again cause demagnetization to some irreversible extent whose particular acceptability thus needs evaluation in relation to the planned undulator performance.

Theoretical staggered-array short-period peak field expectation. Comparison to PMUs

The structure of the multi-period staggered-undulator design variants described in Chap. 3 is considered relatively more robust in terms of exposure to the effects of beam current power deposition and neutron demagnetization from the incident photon impact. This is due to the absence of permanent magnets, decided and motivated in Sec. 4.7, hence the sole employment of soft ferromagnetic poles in the magnetic arrays of the multi-period staggered assembly. Also in this respect cryogenically cooled permanent magnet undulators (CPMUs) [START_REF] Huang | Development of Cryogenic Permanent Magnet Undulators at NSRRC[END_REF][START_REF] Huang | Challenges of In-Vacuum and Cryogenic Permanent Magnet Undulator Technologies[END_REF] mentioned in Subsecs. 2.3.2 and 3.2.1 present higher resistance to radiation-induced heat load and consequent demagnetization due to the foreseen cryogenic cooling capability of the permanent-magnet arrays [START_REF] Bahrdt | Cryogenic Permanent Magnet and Superconducting Undulators[END_REF]. The operational gap is then determined with respect to the minimum gap for the tuning range of the ESRF workhorse PPM and hybrid permanent magnet (HPM) in-vacuum undulators discussed in Subsec. 3.2.1. In the case of an ID positioned in the middle of the straight section, this minimum gap is g pm =5 mm used in Fig. 3.1, picked up again in Fig. 4.5, for comparing the theoretical peak fields achieved with parameters inspired to a certain extent from those of current ESRF devices. These are an in-vacuum PMU with magnet blocks of SmCo material and a PrFeB-magnet CPMU device, the fields for which are plotted according to Eq. (2.95).

The PMU is observed at room temperature and g pm = {5, 11} mm and the CPMU at g cpmu = 5 mm and T = {273.15, 80}K (room and cryogenic operating temperatures). The field of the staggered pole array is taken at a gap fixed at g stg = 4 mm and is graphed according to Eq. (2.105). As mentioned in Subsec. 3.2.1, Fig. 4.5 serves as an element of justification for the choice of a staggered undulator fixed-gap value at g = g stg = 4 mm.

As illustrated in Fig. 4.5, g stg = 4 mm at an example solenoid field of B sol = 0.4 T proves of relevant interest in terms of the achieved theoretical peak field B p at different short period λ u values. The staggered undulator field curve lies among those attained by the conventional minimum-gap in-air (g = g pmu =11 mm) as well as analogous minimum-gap in-vacuum (g pmu =5 mm) PMs both of magnet material SmCo with B r = 1.1 T and the CPMU representative of PrFeB rare-earth material with B r = {1.39, 1.6} T at T = {273.15, 80} K respectively [START_REF] Chavanne | Upgrade of the Insertion Devices at the ESRF[END_REF]. This chosen value of g stg is respectively 80 % of the in-vacuum (C)PMU minimum gap value and approximately 45.5 % of the in-air PMU one. In terms of relative peak field difference δB p /B p (c)pmu , δB p = B p stg -B p (c)pmu , with respect to the (C)PMU peak fields, the staggered-array performance is predicted to be improved in a certain short-period range, hence presenting a more viable design alternative as regards the resulting tunability at small λ u . As an example, for λ u = 8 mm one has in descending order of apparition in the legend of Fig. Approximate exponential (C)PMU formula, Eq.(2.95) @ g pmu = 5 mm -//-@ g pmu = 11 mm -//-@ g cpmu = 5 mm, T=273.15 K -//-@ g cpmu = 5 mm, T=80 K Staggered "sinh" shortu formula, Eq.(2.103) @ g stg = 4 mm

Stagg. :

B sol = 0.4 T p = 0.5 (f = 0.5) From Fig. 4.6a it is seen that the field performance for the conventional insertion devices there studied is dominated as expected by the cryogenic in-vacuum hybrid permanent magnet undulator. The peak field B p of this undulator reaches its summit at a value of B p = 1.1833 T at the lower gap boundary of g min = 5 mm. In terms of first harmonic energy E 1 tunability this translates into a tuning range ∆E 1 from 20.106 keV at g = 30 mm to 7.276 keV at g = 5 mm, as illustrated in Fig. 4.6b.

PMU :

SmCo B r = 1.1 T a = 1.9 b = 1 CPMU : PrFeB B r = 1.39 T @ 273.15 K -//-1.6 T@ 80 K a = 1.9 b = 1

Radia simulated peak field optimized performance and energy tunability

Figure 4.9 presents the graphically rendered main Radia model of the ferromagnetic pole staggered array in its central part without the extremities specified. This is the basic array structure for the multi-period staggered array undulator from an operational point of view. On top of it a support height of height h s is specified at a later stage, in identical FeCoV ferromagnetic material as illustrated in cyan in Fig. 4.10. Beforehand the support-less staggered-pole array is subjected to a multi-parameter optimization of the produced on-axis peak field B p (x = 0, z = 0) = B p , in function of the basic geometric parameters of the undulator array and the particular operational electromagnetic parameter defining the staggered undulator type which is the solenoid field. This is done in line with the established interest for being able to exploit the full structural and physical potential of the ferromagnetic material in terms of saturation/magnetization for yielding maximized peak field and hence deflection parameter K -output. This goal is targeted in view of the search for optimal single-array energy tunability as is motivated earlier and in Sec. 2.3 and Subsecs. 3.2.1 and 3.6.1. To this end the array is simulated in Radia and positioned in the bore of a preliminary test "tight" solenoid of length L sol = 2500 mm internal radius r int = 25 mm and r ext = 30 mm, as visually rendered in Fig. 4.11.

Figure 4.12 gives the absolute and normalized radial variations of the test solenoid's longitudinal field B sol (r, y = 0, z = 0) = B y (r, y = 0, z = 0) = B y (r, 0, 0) from the center value B sol (0, 0, 0) = B sol towards the periphery of the solenoid serving to characterize the transverse field homogeneity for the chosen coil parameters. For the purpose of exploiting the homogeneous field region of the solenoid field B sol (x, y, z) as established from Fig. 4.12 enabling to consider simply the coil's field at the center, ⃗ O = (0, 0, 0), B sol as the proper electromagnetic variable parameter, the undulator segment of N p = 20 periods is centrally positioned inside the coil.

The geometric parameters considered for the optimization of B p are the pole width w p and the pole-to-period ratio α p , the sole electromagnetic one being the central solenoid field B sol . The optimization algorithm found to be most suitable to the particular task is the non-linear Nelder-Mead also known as downhill simplex [START_REF] Press | Numerical Recipes 3rd Edition: The Art of Scientific Computing[END_REF][START_REF] Previato | Dictionary of Applied Math for Engineers and Scientists[END_REF]. It is of the direct-search category of algorithms that rely on comparing function values at different points. As such it is used in treating multivariate functions which do not necessarily provide derivative information and hence do not readily lend themselves as objective input to gradient algorithms. The results of the optimization procedure are summarized in Tab. 4.9 in terms of the geometric parameters w p (pole width) and α p (pole-to-period length ratio) as well as solenoid center field B sol for values of undulator period λ u ranging in λ u = [START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF] [mm] at a pole height h p = 20 mm. Fig. 4.13 plots the evolution with staggered-array period λ u of the optimized peak field B p values listed in Tab. 4.2. This data-point set is fitted with the exponential expression for the peak field as a function of the gap-to-period ratio g/λ u of Eq. (2.95) discussed in Secs. 3.3 and 4.2 and Subsecs. 2.3.1, 3.2.1 and 3.6.1 to 3.6.3. An equivalent optimal peak-field fitting constant B p 0 is produced in this manner and assimilated to the product aB r of the factor for 3D effects in magnet blocks a and the permanent-magnet remanent field B r introduced in Subsec. 2.3.1. One has B p 0 = 1.933 T for a choice of b = 1 in the exponential function's argument as indicated in Fig. 4.13. The fitting constant B p 0 participates extensively in the derivation of the criteria for inter-array(period) continuity in first-harmonic energy adjustment for a multi-array staggered assembly and the analogous inter-segment adjustment for a longitudinally variable segmentedgap undulator array. The two criteria are derived and discussed in Sec. 3.6 and Subsec. 3.6.2 and Subsec. 3.6.3 respectively. The evolution with period of the consequent staggered-undulator theoretical and optimized individual deflection parameter noted K sinh and K opt respectively is also given. This evolution is fitted with a cubic polynomial expression in function of the period λ u yielding aλ u +bλ 2 u +cλ 3 u with a = 0.033 mm -1 , b = 0.010 mm -2 , c = 0.000 mm -3 . This fit is notably used in Subsec. 3.6.2 for evaluating values of λ u producing an optimized K for a revolver-type undulator functionality. One is tempted from the plot to conclude that longer-period staggered arrays tend to saturate more efficiently than shorter-period ones in the sense that they achieve higher optimum peak field values B p opt for lower optimal values of the magnetizing solenoid central field B sol opt . This effect is nonetheless in the end due to reasons of a purely geometric nature. It can be illustrated with the analogy to a PM device in which for the same fixed field source meaning the same fixed surface magnetic field of the magnets the resulting on-axis peak field B p is weaker for shorter periods as suggested by Eq. (2.95). This highlights the useful variation range of the solenoid central field B sol from 0 to B sol opt for the purpose of tuning the peak field B p and on-axis harmonic energy E 1 .

K[1] B p [T] u [mm]

K opt = 0.0934B popt [T] u [mm] K opt fit a u + b 2 u + c
One can compare the field-tuning curve B p (B sol ) of the staggered array of Fig. 4.15a with the one for B p (g) of the λ u =17-mm period in-vacuum hybrid (cryogenic) permanent magnet undulator of Fig. 4.8 and distinguish the operational mechanisms of the two device types. It is notably evident that one is constraint to have an asymptotic behavior of the field variation with gap manipulation in a (C)PMU as can be also illustrated with the theoretical exponential dependence of gap-variable field given by Eq. (2.95). This means that one cannot have a precisely zero peak field B p on-axis for a reasonable finite gap value g ̸ = ∞ as B p can only tend towards zero eventually with increasing g, Fig. 4.6a. It can be seen for example in the figure that the range of useful values for B p is acquired in the respective gap variation intervals for the two PM devices with an upper gap boundary given by that of the in-vacuum undulators, both PM and hybrid PM, at g max in-vac = 30 mm. At this gap the peak fields B p are between the orders of 10 -2 and 10 -3 T.

Similarly observing the inverse sense of peak-field variation with decreasing gap g one has in the theoretical limit B p → ∞. Although this idealistically eliminates any tunability issues linked to smallness of the field-dependent deflection parameter K practically one is limited in the minimum gap limit for reasons of physical and technological order such as those presented. The staggered array on the other hand functions at a constant gap. For a given set of geometric parameters such as period λ u and pole length l p and susceptibility of the soft ferromagnetic pole material, its peak field B p is determined by the solenoid one B sol , itself imposed by the coil current J. This renders B p accessible from exactly zero for zero J up to B p opt at the point of considered ferromagnet saturation, albeit with values inferior to those of the variable-gap undulator peak field for the same structural parameters [START_REF] Moog | Novel Insertion Devices[END_REF].

It is seen from Fig. 4.15b that over the B sol -interval from 0 to 0.695 T the staggered array of λ u = 16 mm boasts an on-axis energy tuning interval ∆E 1 = 7.72 keV spanning from 12.50 keV to 20.21 KeV. In comparison to this the E 1 -tunability example for the 17-mm period in-vacuum hybrid permanent magnet undulator of Fig. 4.8 presents ∆E 1 = 12.830 keV from 7.276 keV to 20.106 keV along the whole gap scan range g ∈ [START_REF] Raimondi | ESRF-EBS: The Extremely Brilliant Source Project[END_REF][START_REF] Huang | Challenges of In-Vacuum and Cryogenic Permanent Magnet Undulator Technologies[END_REF] mm. Hence the staggered array taken at the maximum period λ u max = 16 mm for the proposed multi-period staggered array undulator assembly has an E 1 -tuning range that is approximately 39.83 % lower than that of the in-vacuum HPMU (IVHPMU) due to the inferiour maximum (optimum) K-parameter of the staggered array at K stg opt (λ u = 16 mm) ≈ 1.30 from Fig. 4.13 compared to K IV HP M U (g = 5 mm) ≈ 1.89. Thus the staggered array cedes in tunability with respect to the variable-gap PM hybrid device when the two are weighed against each other in terms of this criterion. This suggests that one may want to augment the E 1 variation range of the singular staggered array by envisaging to acquire a new variation parameter for the tuning of E 1 .

From the expression for the first harmonic energy E 1 given in Eq. (4.1) it seems that the only candidate parameter to be used as an operational means from the ID point of view supplementary to the peak field B p is the period λ u . The other parameters determining the ID output E 1 in Eq. (4.1) do not relate to the insertion device itself but rather to the identity and observation direction of the harmonic of interest (harmonic number m and horizontal and vertical angles θ x , θ z ) or the machine environment (storage ring beam energy E). Thus one is lead to consider implementing a period-variation capability for improved energy tunability as discussed in detail in Sec. 3.2.

Also, as evident from Fig. 4.15a, the staggered array peak field B p variation with solenoid field B sol is quite linear which is expected from the theoretical expression of Eq. (2.105) both before and after attaining B p opt in contrast to the variation of B p with g in Fig. 4 The larger K and resulting tunability of the IVHPMU with respect to the staggered arrays throughout the period range λ u ∈ [START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF] [mm] also relates to the neat presence of higher harmonics of radiation in the spectrum of the IVHPMU. This is perceptible from Eq. (4.1) for fixed on-axis harmonic and beam energies {E m (θ x = 0, θ z = 0), E} = const. by varying K which then implies a variation of m in the same sense. Thus a higher K for example results in a given energy E m being produced on a higher harmonic number m hence giving a non-monochromatic radiation spectrum of increased harmonic content. 

Choice of pole piece and support dimensions

The results of Tab. 4.2 are obtained for a pole height h p = 20 mm. In relation to this Figs. 4.17 and 4.18 present the evolution of the optimized peak fields listed in Tab. 4.2 at the corresponding optimal parameters taken as fixed in the insets with pole height h p in absolute value and normalized to that h HP M = 18 mm of the hybrid permanent-magnet undulator presented in Fig. 4.8. The apparent noise in the data plots for the pole height dependencies in Figs. 4.17 and 4.18 can be attributed to the possible alteration induced in the effective subdivision of the pole face surface during variation of h p which can impact the final values of the parameters that determine the positivity of the outcome of the relaxation mechanism in Radia described in Sec. 4.1. This is not seen as demanding to be further dwelled upon. Instead the particular value h p = 20 mm is verified apart as being validly outputted from the code. This is done by employing a finer meshing for the pole face surface and judging the stability of the obtained field value following this procedure during subsequent reruns of the simulation. Since h p = 20 mm proves in this manner unperturbed

Solenoid design for multi-period assembly

The multi-period staggered modular assembly's conceptual layout is introduced and discussed in detail in Sec. 3.3 together with the values of choice for some of the parameters considered global to the undulator module. Such parameters fall into one of three possible categories:

• A parameter which relates to the individual n-th staggered pole array of corresponding period λ u (n) in the array assembly and which is chosen of identical value for all distinct arrays for ease of fabrication of the array assembly. Examples of such parameters are the pole width w p and height h p discussed in Sec. 3.4.

• A parameter relating to elements of the staggered assembly other than the undulator arrays proper such as the support plates or magnetic circuit, described respectively in Secs. 3.4 and 4.6.

• A parameter relating to the specification of the main solenoid or one of the solenoid subsystems or components considered for the proper functioning of the coil.

It is worth noting that among parameters falling in one of these three categories there can also be made the distinction between those that are (at least more or less depending on the stage of specification) a function of design choice or rigorously imposed by initial requirements or constraints stemming from the operational environment provided by the storage ring as exposed in Sec. 3.4. This can be the case for example for the length L sol of the main solenoid which is to be determined in part by the constraint from the length of the foreseen available straight section for installation of the variable-period multi-array staggered undulator, Sec. 3.4. The straight section length L ss is fixed at L ss = 5 m, a standard at the ESRF, whereas the solenoid length is chosen as half of this value: L sol = 2500 mm. This leaves room for provision in the longitudinal direction along the straight section down(up)stream for additional components whose function is centered around the task of improving the main solenoid's performance as discussed in detail below. L sol is uppermost the basic input parameter for the specification process of the main solenoid.

The complete set of chosen final parameter values for a variable-period multi-array staggered undulator unit module adjusted for continuous tuning range operation at the on-axis fundamental harmonic radiation wavelength are summarized in Tab. 4.3. For this one steps on the globalparameter values discussed in more detail in Sec. 3.4 as well as the individual-array parameters of common value among distinct arrays.

The parameter specification is done for the two types of staggered array undulator tuning schemes presented in Subsecs. 3.6.1 and 3.6.2 that are the multi-undulator variant with 9 arrays, N = 9, λ u (n = {0, ...8}) = {8, ...16} mm discussed in Subsec. 3.6.1 and the bi-period revolver-type one with N = 2 and λ u (n = {0, 1}) = {8, 16} mm proposed in Subsec. 3.6.2. The corresponding parameter sets for the two modules given in Tab. 4.3 are regarded as example sets enabling integral prototype manufacturing specifications to be passed to the manufacturers of final choice for the solenoid and staggered assembly subsystems. The particular choice of d = 0 results in transversely compacted modules of horizontally collated arrangements which allows for a smaller solenoid bore diameter if one maintains the other parameters defined in Figs. 3.3, 3.5 and 3.6. The module Table 4.3: Global parameter sets for the multi-period (first row) and bi-period (second row) staggered undulators with N -number of arrays, w p -common individual pole width, d -interarray distance, w tot -total module width, d s min -minimum stay clear for the module's far-most array lateral edge with respect to the solenoid's internal winding surface when switching the module to a horizontally extremal array n = {0, N -1} (period switching to {λ u n , λ u n+1 }), g -common individual undulator vertical gap and h p -common individual pole height as defined in Fig. 3.3, h s -support plate height, Fig. 3.5

. specifications for the two sub-variants listed in Tab. 4.3 are used to specify the internal radius r int for the main solenoid in the two cases of the large nine-array module detailed in terms of its adjusted first-harmonic period sequence {λ u n } in Subsec. 3.6.1 and a smaller two-array extremal bi-period one such as the one discussed in Subsec. 3.6.2.

N [1] w p [mm] d [mm] w tot [mm] d s min [mm] g [mm] h p [mm] h s [mm]

4.3.1

Current density and surface field study. Self-force estimation.

For the specification of the internal radius r int one leans on Fig. 4.21 which illustrates the evolution of several defined solenoid azimuthal current densities J θ as well as the longitudinal surface field B y srf at the level of the coil winding inner surface in absolute and relative terms normalized to the central solenoid field B sol for the large-module solenoid as a function of the solenoid coil thickness ∆r = r ext -r int . Equivalent variation parameters for the solenoid are also given. These are the external resulting radius r ext to determine from the graph as the final specification parameter of the main solenoid's body and the radial aspect ratio α sol = r ext /r int . r int is beforehand determined through the dimensional considerations based on Tab. 4.3. To the parameters of the table necessary for the determination of the main solenoid's inner radius r int one needs to add the radial thicknesses for the conceptualized cryogenic, thermal screening and support layers, introduced in Sec. 3.3 and Subsec. 3.4.1 and sketched in Figs. 3.3 and 3.4. These thicknesses are respectively provisioned to contribute to the final value of r int as 10 mm for the two cryovacuum interfaces, 5 mm for the thermal screen sandwiched between these two and 10 mm for the stainless-steel support, Figs. 3.3 and 3.4.

For consistency, the particular module parameters used from Tab. 4.3 are recalled in the upper center inset as well as the resulting solenoid internal radius r int complemented by other relevant fixed-value parameters for the coil such as its length L sol . Among these is the central solenoid field B sol (0, 0, 0) = B sol which is fixed here at the optimized value for the λ u = 8 mm -period staggered array of Tab. 4.2: B sol = 0.872 T. This choice is taken as representative of the maximum operating value for the practically useful solenoid-field variation range in terms of the requirement to be able to tune in harmonic energy all constituent staggered arrays of λ u ∈ [START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF] mm in the multi-period staggered undulator assembly. Thus the electromagnetic feasibility of the inter-period energy tuning operation of the multi-array assembly described in Subsec. 3.6.1 is assured. This is justified with the help of Tab. 4.2 and Figs. 4.15a, 4.15b, 4.16a and 4.16b from which it can be deduced that all arrays of λ u n > λ u n=0 = λ u min = 8 mm possess peak-field variation and hence first-harmonic tuning ranges over the corresponding solenoid-field operating intervals B sol n ∈ [0, B sol opt n ] where B sol n and B sol opt n are respectively the instantaneous and optimum solenoid field of the n-th array in the staggered assembly.

Along with the engineering superconducting density J θ eng , two superconducting ones J θ supr which are wire-and coil-specific are considered in the case of a wire of the type 2 superconductor NbTi material of critical temperature T c = 9 K at zero magnetic field and current density B = 0 T, J = 0 A/mm 2 for the normal to superconducting state transition, introduced in Subsec. 2.3.2. NbTi is here chosen for the study of the main solenoid feasibility at the stage of the final specification of the external coil radius r ext in terms of resulting superconducting quench stability.

Quench avoidability is judged in terms of the ability of the solenoid to generate the specified central bore field B sol while the superconductor material of the winding remains properly in the superconducting state. Thus the resulting superconducting current density J θ supr in the winding and the field at the inner winding surface B y (0, 0, r int ) need to be below the critical surface of NbTi mentioned in Subsec. 2.3.2 which is defined the phase space of current, field and temperature {J θ supr , B, T }. This assures that the solenoid does not go into quench in operating conditions. Practically B and J θ supr are to be at a sufficient distance from the critical surface which implies a certain operational margin in terms of the maximum supplied J θ supr for the security reason invoked.

The choice of NbTi is a relatively economic one for a superconducting winding wire material with respect to other possible superconductor alloy such as Nb 3 Sn which performs at higher critical current densities and fields [START_REF] Wilson | Superconducting Magnets for Accelerators[END_REF][START_REF] Wilson | Superconducting Materials for Magnets[END_REF][START_REF] Wilson | Fundamentals of Superconducting Magnets[END_REF] but is mechanically more complex to handle [START_REF] Wilson | Superconducting Magnets for Accelerators[END_REF][START_REF] Wilson | Superconducting Materials for Magnets[END_REF][START_REF] Wilson | Fundamentals of Superconducting Magnets[END_REF]. These give two respective distinct coil winding configurations characterized each by the parameter-couple that constitute the wire and winding fill factors λ wir and λ wind . The engineering superconducting density J θ eng is the one that is important from an electromagnetic standpoint for the magnetic-field performance of the coil. In opposition to the superconducting current density J θ supr it is in dependent of the technological details of the considered wire and is the one treated for the relevant computations with Radia.

For J θ supr , the wire fill factor λ wir is defined as the ratio of the overall effective superconducting current-carrying filament cross section to that of the integral wire since superconducting wires consist of a group of superconducting fine filaments embedded in a composite matrix consisting of a good normal-conducting material such as copper complemented by a second, insulating material as mentioned in Subsec. 2.3.2. This structural scheme is motivated by electromagnetic stability considerations in terms of the protection against the consequences of a quench phenomenon and hence loss of superconductivity in the superconducting filaments [START_REF] Sasaki | The Possibility for a Short-Period Hybrid Staggered Undulator[END_REF][START_REF] Wilson | Superconducting Magnets for Accelerators[END_REF][START_REF] Grau | First Experimental Demonstration of Period Length Switching for Superconducting Insertion Devices[END_REF][START_REF] Wilson | Superconducting Materials for Magnets[END_REF][START_REF] Ferracin | Superconducting Magnets Section 1-4[END_REF][START_REF] Wilson | Fundamentals of Superconducting Magnets[END_REF]. The copper conductor serves to avoid any power dissipation accompanying the quench and hence interdict heat damage to the superconductor part of the wire which in normal non-superconducting state is a poor ohmic conductor [START_REF] Ferracin | Superconducting Magnets Section 1-4[END_REF]. With the definition of the engineering current density J θ eng as the global current density, that is the current transported by the wire I wir over its cross-section, A wir , J θ eng = I wir /A wir , and the wire fill factor λ wir as λ wir = 1/(1 + m s ) where m s is the occupancy ratio of matrix to superconductor material in the wire, one has the following relation between superconducting and engineering current densities:

J θ eng = J θ supr λ wir λ wind . (4.2) 
Typical dimensions are of the order of several µm to several tens of µm for the diameter of an individual filament and of several tenths of mm to 1 mm for the wire. The winding fill factor λ wind is representative at the level of the winding of the space allocated to components or such as channels for cooling, insulators and reinforcing mechanical elements. The value sets for the fill factors considered for the two NbTi configurations in Fig. 4.21 are at the two typical extremes for the chosen material being {λ wir , λ wind } = {0.25, 0.7} and {0.4, 0.8} yielding respectively J θ eng /J θ supr = 17.5% and 32 %. The critical surface J c (B, T ) of a superconductor at a fixed temperature T = const. reduces to a curve of current versus field J c (B). This allows one to also plot, apart from the engineering and superconducting current densities J θ eng , J θ supr Fig. 4.21, the evolution of the critical current density J θ crit (∆r) with coil radial thickness and the corresponding variation for the inner-coilsurface longitudinal field B y srf (0, 0, r int ) at the cryogenic temperature T = 4.2 K which marks the boiling point of liquid helium (LHe) [START_REF] Alekseev | Basics of Low-Temperature Refrigeration[END_REF][START_REF] Taillet | Dictionnaire De Physique[END_REF][START_REF] Basu | Dictionary of Pure and Applied Physics[END_REF][START_REF] Basu | Dictionary of Material Science and High Energy Physics[END_REF]. LHe is envisaged here as the cryogen for maintaining the NbTi coil in its superconducting state as is common practice in most superconducting magnets [START_REF] Ingold | Fabrication of a High-Field Short-Period Superconducting Undulator[END_REF][START_REF] Hinton | Design of a Short Period Helical Superconducting Undulator[END_REF][START_REF] Bahrdt | Cryogenic Permanent Magnet and Superconducting Undulators[END_REF][START_REF] Ivanyushenkov | Development and Operating Experience of a 1.1-M-Long Superconducting Undulator at the Advanced Photon Source[END_REF][START_REF] Wilson | Superconducting Magnets for Accelerators[END_REF][START_REF] Wilson | Superconducting Materials for Magnets[END_REF][START_REF] Casalbuoni | A Review of Magnetic Field Measurements of Full Scale Conduction Cooled Superconducting Undulator Coils[END_REF][START_REF] Wilson | Fundamentals of Superconducting Magnets[END_REF][START_REF] Buschow | Concise Encyclopedia of Magnetic and Superconducting Materials[END_REF] J eng J supr @ wind = 0.7, NbTi = 0.25 for Jeng/Jsupr [%] = 17.5 J supr @ wind = 0.8, NbTi = 0.4 for Jeng/Jsupr [%] = 32.0 J crit @ T = 4.2 K from LHC dipole NbTi fit (Bottura) J marg @ 30.0 % margin wrt J crit The curve from the data-point set for J θ crit in Fig. 4.21 is calculated according to the parameterization curve for the critical surface J c (B, T ) of NbTi given by the Bottura formula for the temperature-field dependence of the superconductor's critical current density J θ crit (B, T ) [START_REF] Bottura | A Practical Fit for the Critical Surface of NbTi[END_REF][START_REF] Ferracin | Mini-Workshop on Superconducting Magnets[END_REF]:

J θ crit (B, T ) J θ crit ref = C NbTi B B B c 2 (T ) β NbTi 1 - B B c 2 (T ) β NbTi 1 - T T c 0 1.7 γ NbTi . (4.3) 
In Eq. (4.3) J θ crit ref = 3000 A/mm 2 is a reference value of the critical current density at B =5 T and

T = 4.2 K, that is J θ crit (B = 5 T, T = 4.2 K) = J θ crit ref and C N bT i = 27 T, α N bT i = 0.63, β N bT i = 1, γ N bT i = 2.
3 are fitting constants. B c 2 is the type 2 superconductor upper critical field discussed in Subsec. 2.3.2 and given by Lubell's upper critical field formula [START_REF] Ferracin | Mini-Workshop on Superconducting Magnets[END_REF]:

B c 2 (T) = B c 2 0 1 - T T c 0 1.7 . (4.4) 
In Eq. (4.4) B c 2 0 = 14.5 T is the upper critical field [START_REF] Seidel | Applied Superconductivity Handbook on Devices and Applications[END_REF] at T = 0 K, B c 2 0 = B c 2 (0 K), and T c 0 = 9.2 K, also present in Eq. (4.3), is the critical temperature at zero field, T c 0 = T c (B = 0), where T c (B) is given by Lubell's critical temperature formula [START_REF] Ferracin | Mini-Workshop on Superconducting Magnets[END_REF]:

T c (B) 1/1.7 = T c 0 1 - B B c 2 0 1/1.7 . (4.5) 
The final quantity of the current density set plotted in Fig. 4.21 is the safety-margin current density for operation of the solenoid J θ marg taken to give a 30-percent margin of security with respect to the critical current density J θ crit , that is J θ marg = 0.7J θ crit . Also shown in Fig. 4.21 is the horizontal line for the chosen superconductor field margin at B y = 6 T for the winding wire's NbTi filament at the level of the inner coil surface. This value is to put against that of the upper critical field [START_REF] Seidel | Applied Superconductivity Handbook on Devices and Applications[END_REF] at the LHe cryogenic operating temperature T = 4.2 K, B c 2 (T = 4.2 K) = 6.5 T from Eq. (4.4).

The summary of the results of Fig. 4.21 deem the proposed upto here main solenoid parameter set operational from the point of view of superconductive stability over the entire range of coil thicknesses ∆r and equivalently coil external radii r ext . This is the case since both superconducting current densities J θ supr find themselves well within the current margin set by J θ marg for the NbTi superconductor filament. The same conclusion holds for the surface coil field B y srf with respect to the field margin B y = 6 T when operating at a (central) solenoid field B sol (0, 0, 0) = B sol = 0.87 T as recalled in the rightmost upper inset to Fig. 4.21 and traced in the plot thereof. The same solenoid field B sol being accessible for reciprocally varying coil width ∆r and current densities J supr one has a choice to make for the final coil width, hence external radius r ext , and particular operating current density J supr between fatter, consequently heavier, lower-current solenoids and thinner, higher current ones. The decision is made at this step for the studies to follow to consider the second option. Thus the coil width is fixed at ∆r = 3 mm, the minimum value of the study range for Fig. 4.21 yielding r ext = r int + ∆r ≈ 159.68 mm + 3 mm = 162.68 mm. With a mass density of the Nb-47 % Ti compound ρ N b-47 % T i = 6520 kg/m 3 [START_REF] Seidel | Applied Superconductivity Handbook on Devices and Applications[END_REF] for ∆r = 3 mm with r int ≈ 159.68 mm, L sol = 2500 mm and λ wind = 0.8 one ends with a main solenoid superconducting winding mass m sol wind = 39.64 kg. Increasing the coil width to ∆r = 5 mm gives m sol wind = 66.24 kg due to the increased coil winding volume by a factor 1.67, maintaining other parameters fixed.

For the choice of coil width ∆r one can also inspect Fig. 4.22. This figure shows the evolution of the resulting volumic radial Laplace self-force ⃗

F srf (x = 0, y = 0, z = r int ) [N/mm 3 ] = ⃗ J supr × ⃗ B(x = 0, y = 0, z = r int ) ⃗
F srf acting on the inner surface of the coil of width ∆r for the two superconductor winding configurations. ⃗ F srf is here considered not too close to the solenoid extremities where the field lines depart from the longitudinal direction for the orthogonality of ⃗ J θ supr and ⃗ B to be assured. From the Laplace vector product ⃗ F srf is determined to be directed radially outwards thus tending to explode the solenoid in that longitudinal region. From Fig. 4.22 it is seen that a thinner solenoid winding experiences higher ⃗ F srf and thus needs to be considered more carefully in terms of mechanical stability under operation. The force ratio between the two extremal coil widths for the example studied in the case of the green data-point set for the lesser-J θ supr configuration is ⃗ F srf (∆r min )/ ⃗ F srf (∆r max ) ≈ 1475.16/181.75 ≈ 8.12 over a corresponding coil width ratio ∆r min /∆r max = 3/15 = 0.2. and4.22 for the current densities, inner coil surface tangential field and radial volumic forces in the case of a solenoid of a smaller bore diameter for a respectively smaller two-array staggered undulator assembly such as the one discussed in Subsec. 3.6.3. The final solenoid specifications with operational-parameter values for a solenoid field B sol ≈ 0.872 T, coil-thickness ∆r = 3 mm, fill-factor couple {λ wir , λ wind } = {0.25, 0.7} and zero inter-array distance d = 0 (collated arrays) for the two multi-array assemblies, large nine-array one and small two-array, are summarized in Tab. 4.4. For comparison Tab. 4.5 gives the corresponding specification set for a larger radial coil width ∆r = 5 mm. The second solenoid manifests neatly inferiour engineering and superconducting current densities, e.g. J θ supr (∆r = 5 mm) = 800.06 A/mm 2 < J θ supr (∆r = 3 mm) = 1333.30 A/mm 2 for the large module, as seen from Tabs. 4.4 and 4.5, first row, second column for the values. J eng J supr @ wind = 0.7, NbTi = 0.25 for Jeng/Jsupra [%] = 17.5 J supr @ wind = 0.8, NbTi = 0.4 for Jeng/Jsupra [%] = 32.0 J crit @ T = 4.2 K from LHC dipole NbTi fit (Bottura) J marg @ 30.0 % margin wrt J crit 

F r srf (x = 0, y = 0, z = r int ) with ⃗ F = ⃗ J supr × ⃗ B(x = 0, y = 0, z = r int )
acting on the level of the solenoid coil inner surface for the fixed two-array module and solenoid parameters given in the two insets on top of the graph.Two extremal in terms of resulting superconducting current density J θ supr superconductor winding configurations detailed in the figure legend are presented. Variation with absolute and normalized-to-internal-radius radial distance r from solenoid center (r = 0) up to coil periphery (r → r int ) of the absolute (left-hand blue ordinate) and normalized-to-central-field (right-hand red ordinate) longitudinal solenoid fields B sol (r, 0, 0), B sol (r, 0, 0)/(B sol (0, 0, 0) = B sol ) for the solenoid parameters defined for the multi-array variable period undulator and B sol = 0.8724 T, J sol = 233.327 A/mm 2 .

The particular adequacy of the value of the lateral security distance d s = 10 mm from Tabs. 4.4 and 4.5 between the pole piece faces of the first/last arrays of the multi-array staggered undulator of sequential numbers n = {0, 8} and the solenoid subsystems inner surface sketched in Figs. 3.3 and 3.4 is to be judged with respect to transverse horizontal drop-off of the respective arrays' peak fields B p n={0, 8} . This is because one can reason to use the horizontal margin provided by d s to push further to the inner surface the array assembly, hence evacuating any (the final) array from the axis of the solenoid. One can use this configuration as a sort of idle operational position for the multi-array staggered undulator as discussed in Subsec. 3.4.1 so that the electron beam ideally sees no undulator field on-axis B z n={0, 8} without one having to cut the current to the solenoid through the power supply to cancel the undulator field. As suggested in Subsec. 3.4.1 such a position can permit easier access to the solenoid bore when such is required. In this respect one can investigate the transverse variation with x of the on-axis peak field B p n (x, y = 0, z = 0) for the arrays of n = 8, λ u n=8 = 16 mm in Fig. 4.26 and of n = 0, λ u n=0 = 8 mm in Fig. 4.27. Extrapolating due to the limited range of the graph 10 mm away from the pole faces marked by the vertical black lines at ±w p one can expect some possible residual field B z 8 (± (w p /2 + 10 mm)) mm in the case of λ u 8 = 16 mm from Fig. 4.26 while for λ u 0 = 8 mm in Fig. 4.27 one rather has B z 0 (± (w p /2 + 10 mm)) ≈ 0 T. 4.28 presents the sketch of the envisaged corrector (trim) coil scheme for the improvement of the solenoid longitudinal field homogeneity with y over the length of the multi-array staggered assembly L u = 2 m. The effort for improved homogeneity of the solenoid field is motivated by the desire to have identical magnetization conditions for all pole pieces that constitute the staggered array. This is directly beneficial to the longitudinal regularity of the generated undulator field profile B z , perceivable in terms of peak-to-peak difference for example, hence improving the final undulator field quality. An effort is undertaken to achieve satisfactory field correction with only a single pair of trim coils to have a relatively simple system to operate and maintain with respect to a would-be more complex concentric multi-corrector scheme. The configuration of the corrector setup is symmetric with respect to the vertical transverse central plane of symmetry Oxz of the main solenoid as portrayed in Fig. 4.28. The two coils are thus to be positioned at the two opposite longitudinal extremities of the main solenoid concentric to it so as to influence the longitudinal field B y at the extremities where B y starts dropping off noticeably from the central value B sol = B y (0, 0, 0) due to the solenoid geometry. With the set convention of Fig. 4.28 a multi-parameter optimization is undertaken for the geometric parameters of the corrector which are the corrector length L corr , external and internal radii r corr ext , r corr int and longitudinal center position y corr cntr as well as for the current density J sol corr for a main solenoid field test value B sol (0, 0, 0) = B sol = 0.872 T. With respect to the main solenoid field value a first optimization objective set is to obtain an RMS homogeneity error σ δBy /B y corr = 1 × 10 -4 where δB y (y) = B y corr (y) -B sol and B y corr (y) is the final achieved corrected field value at the coordinate y. The cited value of σ δBy /B y corr is typically encountered in requirements for field quality of accelerator magnets [START_REF] Zangenberg | 12-High Temperature Superconductors (HTS) in Accelerator Systems[END_REF]. The RMS value is defined over the longitudinal coordinate range from the coordinate at which the field B y of the sole main solenoid deviates from the central field B sol by the RMS error value upto the end of the main solenoid. In the case of the determined main solenoid parameter set of L sol = 2500 mm, r int = 159.68 mm, r ext = 162.68 mm and B sol = 0.872 T the averaging range is approximately [-L sol /2, -80] mm=[-1250, -80] mm, considering the negative y half-axis. Achieving the initially defined σ δBy /B y corr = 1 × 10 -4 proves difficult during preliminary optimization trials and one subsequently relaxes the requirement to σ δBy /B y corr = 1 × 10 -2 . This still gives an improvement of over an order of magnitude with respect to the initial value for the sole solenoid with corrector computed along the convened scheme σ δBy /B y no corr = 0.119. Furthermore the new specified value σ δBy /B y corr = 1 × 10 -2 is lower than that found for similar studies for staggered undulators of about a factor 2 [START_REF] Masuda | A Design Study of a Staggered Array Undulator for High Longitudinal Uniformity of Undulator Peak Fields by Use of a 2-D Code[END_REF]. Hence it is chosen as legitimate and its successful achievement is demonstrated in Fig. 4 In Fig. 4.30 the longitudinal center and extremities of the specified left-hand corrector are indicated by vertical magenta lines, continuous and dashed respectively, relatively to the main solenoid end given in cyan and the center of the last magnetic piece of the projected staggered multi-array undulator in green. The uncorrected and corrected longitudinal field on-axis profile are traced in continuous and dashed in absolute terms and relative to B sol . Figure 4.30: Absolute longitudinal solenoid field (blue axis) with (dashed line) and without (continuous line) corrector coil added and its relative percentage difference normalized with respect to the central solenoid field B sol for the region y ∈ [-L sol /2 = -1250, -80] mm (red ordinate). Shown in vertical traces are the left edges of the solenoid and undulator (cyan and green) and the center and edges of the corrector (purple continuous and dashed). Input main solenoid parameters and corrector coil with its resulting optimized ones for the initial and output final RMS field difference values in the y-region of interest are given Tab. 4.6.

Solenoid dimensional tolerances for phase error requirement

Figs. 4.31a and 4.31b show the chosen setup for the study of the fabrication tolerances and hence workable specifications of the main solenoid defined in terms of an acceptable resulting phase error σ Φ on the central part of the undulator arrays. The longest-period optimized array with n = 8, λ u n=8 = 16 mm yielding the highest peak field of Tab. 4.2 at B p n=8 = 0.8733 T is selected for this study. The phase error is computed over some twenty inner periods out of a thirty centered on-axis in the solenoid. This is done in order to account only for undulator field B z (0, y, 0) variations influencing σ Φ that come from the central array part and not the extremities where the peak field B p loses longitudinal uniformity with y. The tolerances taken into account are those on the external and internal radii r ext and r int , respectively δr ext and δr int or equivalently δr ext /r ext and δr int /r int . A localized radial error of one of the two types impacting the main solenoid body is used to take into account the effect of a possible local fabrication error in the winding manufacturing procedure of the real solenoid or some sort of degradation of the winding geometry with time. the The fabrication error model considered on the solenoid body for the generation of local solenoid and hence undulator peak field errors δB sol err /B sol and δB p err /B p where δB sol err = B sol err -B sol and δB p err = B p err -B p is the following with two cases presented:

• An error on the value of the external radius of the solenoid taken over a given longitudinal section of the solenoid of length w err . This error section or ring is hence concentric with the rest of the (ideal) solenoid and value of w err is chosen such that one has w err ≪ L sol as illustrated in Fig. 4.31a.

• An analogous type of error this time on the value of the internal radius of the solenoid taken again over a given longitudinal section of the solenoid of the same length w err . Again, this results in an error section or ring concentric with the rest of the (ideal) solenoid and one imposes w err ≪ L sol as illustrated in Fig. ) radius errors impact on the phase error σ ϕ . The error ring of length w err ≪ L sol is a section of the solenoid centered over one of the peaks of the undulator field, hence over the center of a pole piece close to the undulator array center. As indicated by the equation below each sketch, the variation in internal radius δr int at the level of the error ring implies a variation in the local current density from j sol in the main solenoid to j err in the ring in order to respect the conservation of the integrated current density (current) I sol = I err .

With L sol = 2500 mm the length of the local error ring section is taken as w err = 10 mm to satisfy the condition on ideal-to-errored solenoid main body length ratio w err ≪ L sol . given graphically by the established slope for the evolution of the data-point set. This is estimated to facilitate the characterization of the ultimate phase error dependance on the radial error σ Φ (δr err ) according to the causal sequence δ err ⇒ δ B sol ⇒ δB p ⇒ δ σΦ . Figure 4.34b gives thus the initial on-axis longitudinal undulator field profile B z (y) in its central portion limited to several tens of periods with the peak field B p = 0.509 T before applying the local radial error on the solenoid body. The resulting modified B z profile is given by Fig. 4.34c in absolute and relative terms with respect to the initial one after applying a relative internal radius error δr err int /r sol int = 1.125 %. The consequent relative error on the solenoid field produced in this way is δB err sol /B sol ≈ -0.02 % as indicated in the left-hand inset of Fig. 4.34c.

Tab. 4.7 gives the resulting evolution of the RMS phase error σ Φ defined in Subsec. 2.2.4 via Eq. (2.41). σ ϕ is computed with the B2E in-house ESRF software package [START_REF] Esrf | B2E A Software to Compute Synchrotron Radiation from Magnetic Field Data Version 1[END_REF] as a function of the relative radius errors for the external radius δ rel r ext = δr ext /r ext and for the internal one δ rel r int = δr int /r int in the range [-1.5 %, 1.5 %]. A pronounced smallness and stability is observed in this radius error range implying a priori that one can be tempted to permit oneself relaxing the relative fabrication tolerances on r int and r ext to ±1.5% or in absolute terms r int ≈ 159.68±2.39 mm and r ext ≈ 162.68 ± 2.44 mm. It is thus expected from Tab. 4.7 that the representative natural non-corrected phase error σ ϕ for the central section of the multi-array staggered undulator is two orders of magnitude inferiour to the typical target for the corrected phase error of about 2 • -3 • in conventional devices [START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF]. 

δ rel r int/ext [%] RMS σ Φ [ • ] -1.5 0.0191 -1.125 - -0.75 - -0.375 - 0 - 0.375 - 0.75 - 1.125 - 1.5 - Table 4.

Termination design

Field integral and trajectory offset tolerances from storage ring parameters

The demonstrated approach to the termination design at the level of the staggered undulator arrays serves two main purposes. The first one is to correct the trajectory offset in horizontal position x(y) and angle x ′ = dx/dy accumulated by the electron beam during its excursion in the undulator field. As discussed in the most instructive case of a planar undulator in Subsec. 2.2.6 the trajectory offset in terms of the final resulting transverse displacement x(y exit ) and angular kick x ′ (y exit ) at the exit of the insertion device considered at a longitudinal coordinate y exit are characterized by the first (single) and second (double) field integrals of the undulator field I 1 z (y) of Eq. (2.44) and I 2 z (y) of Eq. (2.46) respectively picked up again below. I 1 z and I 2 z are thus calculated from more or less the level of the entrance to the undulator gap upto an identical level downstream of the exit of the device so as to have an integration range spanning along the entire extent of the undulator field B z (y), from an estimated zero undulator-field region to a similar one bounding the trajectory of the electron beam in the field of the ID:

I 1 z (y exit ) = yexit -∞ B z (y)dy, (4.6) 
I 2 z (y exit ) = yexit -∞ y -∞ B z (ỹ)dỹ dy. (4.7) 
That can lead to closed orbit distortion in the storage ring for the electron beam which can impact can be imparted on the electron beam by the insertion device when the beam traverses ID's gap. The tolerances on the first and second integrals I 1 z tol and I 2 z tol can be taken as:

I 1 z tol [T.mm] ≤ 0.03E [GeV] ϵ x [nm] β x [m] sin (πq x ), (4.8) 
I 2 z tol = [T.mm 2 ] ≤ 3 × 10 2 E [GeV] ϵ x [nm] β x [m] sin (πq x ), (4.9) 
where E is the nominal electron beam energy, ϵ x is the horizontal emittance of the electron beam, β x is the horizontal betatron function in the middle of the undulator and q x is the horizontal betatron tune of the storage ring, the latter three quantities being introduced in Subsec. 2.2.5 [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. Equations (4.8) and (4.9) are valid for an insertion device installed in a straight section with its center occupying a symmetry point of the lattice [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. The definitions for the tolerances of Eqs. (4.8) and (4.9) originate from a constraint on the admissible RMS closed orbit distortion the electron beam be submitted to by the insertion device to one tenth of the RMS beam size [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. The horizontal angular excursion x ′ (y) and trajectory x(y) at the longitudinal coordinate y expressed in terms of the first and second field integrals are respectively from Eqs. (2.42) and (2.45):

x ′ (y) = - e γmc I 1 z (y), (4.10) 
x(y) = - e γmc I 2 z (y), (4.11) 
Using the integral tolerances given by Eqs. (4.8) and (4.9) in Eqs. (4.10) and (4.11) produces the tolerances defining the maximum admissible horizontal angular offset δx ′ tol (y exit ) and displacement δx for the beam at the exit of the undulator y exit :

δx ′ tol (y exit ) = - e γmc I 1 z tol (y exit ), (4.12 
)

δx tol (y exit ) = - e γmc I 2 z tol (y exit ), (4.13) 
For vertical plane the analogous tolerances on the angular offset and orbit displacement δz ′ tol (y exit ) and δz tol (y exit ) are deduced from the corresponding horizontal field integrals I 1 x tol , I 2 x tol defined in analogy to Eqs. (4.6) and (4.7) by exchange of the x-and z-indices in Eqs. (4.8) to (4.13). In an ideal undulator I 1 x tol and I 2 x tol are expected to be zero.

Compliance to field integral conditions related to beam orbit distortion

Figs. 4.35, 4.36a, 4.36b, 4.37a and 4.37b illustrate the results of several optimization procedures for the minimization of the first and second undulator-field integrals I 1 z and I 2 z of Eqs. (4.6) and (4.7) and hence the study of the resulting conformity to the orbit distortion tolerances set by Eqs. (4.8) and (4.9). This is done in Fig. 4.35 via plotting of the final on-axis undulator field B z (x = 0, y, z = 0) of the staggered array number n = 8 of λ u 8 = 16 mm in a short-sample version with N p 8 = 25 periods for a resulting array length L u = λ u 8 N p 8 = 400 mm. The length of this short sample is down-scaled by a factor 5 with respect to that of the projected real-length staggered array L u = 2000 m for reasons pertaining to the adequacy of computational efforts with resources at hand. In Fig. 4.35 subsequent modified undulator field profiles are acquired following the progressive addition of auxiliary components to the basic staggered-array configuration of the sole pole array in the main solenoid with pole pieces identical throughout the array. The impact of these profiles on the trajectory of an incoming on-axis electron of nominal EBS-beam energy E = 6 GeV launched in the main solenoid downstream of the undulator array is given in Figs. [START_REF] Andrault | [END_REF].36a, 4.36b, 4.37a and 4.37b. For consistency the additional components are down-scaled in their longitudinal dimensions (lengths and separations from one another) by the same factor as that for the the short-sample staggered pole array. The resulting physical dimensions together with the rest of the parameters for the study are given in Tab. 4.8.

Four sub-variants in total of the mentioned single-array setup are thus presented for comparison of the achievable staggered-array degrees of transparency with respect to the passage of the electron beam in the undulator gap. These are in order of complexity:

• The simple undulator array inserted in the solenoid.

• The modifying of the array with the extremity pole piece length tailored through optimization of the ratio α p ext = l p 8 ext /λ u 8 of the end pole length l p ext to the period λ u 8 .

• The addition of the pair of corrector coils discussed and specified in Subsec. 4.4.1 with the re-optimization of the current densities J 1 corr and J 2 corr supplied to them with respect for example to the value found to remedy the issue of the solenoid field's longitudinal homogeneity treated in that section.

• The final addition of a magnetic shield (circuit) of the type proposed in Sec. 4.6.

From these four points it is clear that the two parameters α p ext for the terminal pole piece and J 1 corr , J 2 corr for the corrector currents are acted upon for the minimization of I 1 z and I 2 z . The final optimized values of these variation parameters are given in bold in Tab. 4.8 with α p ext = 0.298 and J 1 corr , J 2 corr = ±298.791 A/mm 2 . Indicated in Figs. 4.35 to 4.37 are the longitudinal positions of the staggered-array section's extremities with and without optimized external pole pieces as well as the corresponding positions for the extremities of the main solenoid, corrector coils, magnetic shield and the integration boundaries for the two field integrals. The example discussed in Figs. 4.35 to 4.37 considers the solenoid being matched to the EBS lattice for a central solenoid field B sol = 1 T as indicated in Tab. 4.8 and discussed in Subsec. 6.3.3. For the selected value of B sol this yields a horizontal/vertical beta(tron) lattice function value in the middle of the solenoid straight section β x /β z ≈ 7.50/4.15 m (Tab. 4.8). The corresponding apparent emittance E x of the electron beam is E x = 133.74 pm. E x is not constant longitudinally due to the presence of the solenoid, hence it is taken averaged over the length of the straight section to yield the cited value. E x is of relevance for input in Eqs. (4.8) and (4.9) in equivalence to the longitudinally invariant (equilibrium) emittance ϵ x in the right-hand side of the equations, introduced for uncoupled lattices in Eq. (2.65). The apparent emittance E q , with q = {x, z}, is rigorously defined in Subsec. 6.3.2, as well as the other emittance parameters relevant to the the case of coupling present in a lattice such as that brought by a solenoid that is considered in the present section. The lattice horizontal tune q x for the computation of of the first-and second-integral tolerances I 1 z tol and I 2 z tol according to Eqs. (4.8) and (4.9) respectively is q x = 0.196, defined together with the corresponding horizontal beta function β x in Subsec. 2.2.5.

With the cited resulting EBS parameter-value set for input into the right-hand side of Eqs. (4.8) and (4.9) and the nominal EBS electron-beam energy E = 6 GeV, the first-and second-integral tolerances are I 1 z tol = 0.014 T.mm and I 2 z tol = 103.063 T.mm 2 . These are indicated at the end of Tab. 4.8. The corresponding tolerances for the horizontal trajectory angular offset and displacement As indicated in Fig. 4.35 for the set of field-profile graphs of the short-length staggered arrays the first field integral I 1 z is already well within the established corresponding integral tolerance I 1 z tol prior to any modification of the external pole piece ratio α p ext , application of corrector coil currents J 1 corr , J 2 corr or consideration of the auxiliary magnetic shielding. In relation to the expression for I 1 in Eq. (4.6), this is interpreted as being due to the anti-symmetry of the field profile with respect to the origin of the coordinate system, resulting from the particular staggered-array scheme employed according to the pole arrangement of Fig. 2.36 (uneven number of poles regardless of the parity of the number of periods N p ) [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]. Unfortunately in this case there is no such compensation effect for the second field integral I 2 which, although significantly improved in value following the application of α p ext , J 1 corr and J 2 corr and the magnetic shield of Figs. 4.39 and 4.40, fails to meet the respective tolerance requirement given by I 1 2 tol . Ultimately this is mainly attributed to an observed unease for the optimization procedure to achieve variations of the corrector currents J 1 corr and J 2 corr over a sufficiently large relative range with respect to the initial input values in a reasonable time delay. This unsatisfactory outcome of events can be inspected in the legend of Fig. 4. [START_REF] Gupta | High Temperature Superconductor (HTS) Solenoid[END_REF] where one sees that the final value of I 2 z with correctors applied (green curve) is actually higher than beforehand with only external poles specified. On the other hand the shield acts beneficially by neatly reducing I 2 (brown curve). Figure 4.35: Resulting on-axis undulator field profiles B z (x = 0, y, z = 0) for λ u = 16 mm at different incremental equipment-addition stages for the correction of the first and second undulatorfield integrals I 1 z and I 2 z (external pole piece, corrector coil and magnetic circuit addition) for the short-sample staggered array of 25 periods centered on-axis in the main solenoid. Optimized beforehand structural and solenoid array parameters from Tab. 4.2 are used, indicated in the inset on the right, as well as the integral tolerances I 1 z tol and I 2 z tol calculated in the bottom of the inset according to Eqs. (4.8) and (4.9). The optimal values of the variation parameters for the extremity pole piece and corrector coil α p ext and J corr are given in bold. Resulting minimized integral values for different progressive corrective-element configurations are given in the legend above the graph. Indicated by colored vertical lines are the longitudinal coordinates ±L tot ext /2 and ±L tot /2 of the end-pole external-surface boundaries of the end-pole configurations respectively with and without a dedicated end pole piece, as well as the considered integration boundaries given by the orange label "intgrtn bndr". These mark a distance of three periods λ u from the respective extremity pole centers.

The corresponding trajectories and angular excursions q, q ′ with q = {x, z} undertaken by an on-axis electron in the staggered-array fields of Fig. 4.35 traveling parallel to the undulator array (solenoid) axis are given in Figs. [START_REF] Andrault | [END_REF].36 and 4.37. From Fig. 4.36a the values of relative reduction in horizontal offset at the exit coordinate x(y = y exit ) of the electron trajectory with respect to the initial offset of the non-corrected trajectory (blue curves) are respectively 45.57 %, 45.05 % and 56.13 % in descending order of successively added element in the legend (external pole, corrector and magnetic shielding). As expected from the systemic smallness of the values of the first integral I 1 given in Fig. 4.35 the horizontal angular offsets of the staggered array illustrated in Fig. 4.37a are perceived to be negligible at the considered exit coordinate. This is verified to be indeed the case in terms of the final offset values which are well within the corresponding tolerance δx ′ tol (y exit ) given by Eq. (4.12). As depicted in Figs. 4.36b and 4.37b this is also the case for the final vertical offsets in position z(y = y exit ) and angle z ′ (y = y exit ). 

Magnetic circuit for stray field compensation

A magnetic circuit is envisaged for further improving the field configuration of the staggered array undulator at its extremities in supplement to the corrector coil pair discussed in Subsec. 4.4.1 for extending the homogeneity range of B sol towards the extremity. The magnetic circuit is suggested as a means for having a shielding effect on the field of the solenoid-corrector set at its extremities so as to impede the field from reaching out too far longitudinally in the straight section. Hence the quality of the shielding is judged by the imposed limit on the longitudinal extent of the coil-corrector set magnetic field outward from the coils. The potential danger if this is not assured is that this stray field influences neighboring beamline optical components and/or magnets downstream and upstream of the staggered multi-array undulator. In order to be able to act as a shield the proposed magnetic circuit layout depicted in Fig. 4.38 needs to be of ferromagnetic material to guide and confine conveniently the stray-field flux. In the simulations, FeCoV is hence chosen for the task to provide the expected shielding ability, identical to the choice for the staggered-array assembly pole material of the multi-undulator. One should nevertheless note that a more suitable real-life choice would be to use soft iron which is of similar magnetic performance but typically comes at a lower price.

As shown schematically in Fig. 4.38 the proposed circuit design consists in its center part of a hollow cylindrical body of length l m c and of a certain radial thickness given by the radii r m c 1 and r m c 2 . The circuit is separated (opened) in two longitudinal halves in Fig. 4.38 for illustrative needs. This body is to be bounded as shown by two disk-shaped faces of longitudinal thickness l ′ m c . These provide a basic rectangular aperture of half-width l ′′ m c and half-height h m c , greatly exaggerated in Fig. 4.38a again for the purpose of illustration. If a more realistic aperture is to be considered, then an elliptical shape of the latter with a horizontal half-axis greater than the vertical one comes into mind in relation to the typical vacuum chamber cross-section.

The circuit dimensions have to be such so as to provide a rather minimal but sufficient space for the insertion of the solenoid-corrector coil set as illustrated progressively from left to right in Fig. 4.39. After insertion of the main solenoid and the trim coils the two circuit halves are to be closed as finally depicted in Fig. 4.40. The shielding effect of the FeCoV-material circuit is considered in terms of its influence on the longitudinal on-axis magnetic field component B y (x = 0, y, z = 0) = B y at the ends of the solenoid-corrector set. In this respect Fig. 4.41 shows the results for the initial and final field components B y in the left-hand end field region before and after addition of the magnetic circuit of total length l m c ≈ 2853.2 mm to the corrected solenoid. The length l m c takes into account the distance separating the corrector coil from the shielding end disk's interior surface, chosen to be 40 mm, which is comparable to the longitudinal separation between the corrector and main solenoid edges, approximately 80.19 mm as stated in Subsec. 4.4.1 for the acquisition of the result on the solenoid field's homogeneity illustrated in Fig. 4.30. The structural parameters for the three elements, main solenoid, corrector set and magnetic circuit are given in the right-hand inset of Fig. 4.41.

Most of the dimensions for the magnetic circuit are chosen in a minimalist fashion with respect to the housing requirement on the circuit for the solenoid and correctors. A minimum space inspired more or less from the value of the safety distance d s = 10 mm of Tabs. 4.4 and 4.5 and Figs. 3.3 and 3.4 is provided between the coils and the inner circuit surfaces, with the exception of the end disk surface. This globally yields a magnetic circuit of relatively thin cylindrical body and thick end disks, with little separation between the disks and the coil correctors, the values for the circuit parameters being given in the "Mag. circuit" section in the inset of Fig. 4.41. The parameter definitions are summarized in Tab. 4.9. Table 4.9: Basic definitions and corresponding symbol notations for the structural parameters of magnetic circuit depicted in Fig. 4 There is a relative reduction in the longitudinal field B y leaked outside of the aperture of the magnetic circuit (left of the circuit edge given by the vertical magenta line marked -l m c /2) with respect to that of the corrector-equipped main solenoid prior to the inclusion of the circuit. This is clearly visible from the behavior of the green and red curves in the y-region of interest in Fig. 4.41. The circuit's effect is better in the latter figure with respect to the former. Ultimately one would require to have a nullified field B y outside of the circuit (zero leakage). Achieving this can be a dedicated subject in itself in terms of a more detailed circuit design. From Fig. 4.41 one evaluates the relative efficiency of the magnetic shield in a manner similar to the treatment of the solenoid field homogeneity in Subsec. 4.4.1. This is done via the inspection of the relative reduction in the RMS field value taken in the region outside of the magnetic shield obtained with and without it, σ By corr m c and σ By corr respectively. Denoting the relative difference δσ By /σ By corr with δσ By = σ By corr -σ By corr m c , one has For the magnetic shield employed in Fig. 4.41 one has σ By corr ≈ 0.256 T, σ By corr m c ≈ 0.09 T for δσ By /σ By corr ≈ 64.7 %. Namely in this version of the staggered array the air gaps that constitute the inter-spaces between successive FeCoV poles in the pure staggered array of Fig. 4.11 are fully occupied by rare earth permanent magnets of NdFeB material of nominal (remanent) magnetization along the easy axis Oy µ 0 M r = 1.2 T (≈ B r according to Eq. (2.98)). The modeled magnetization characteristic of the magnet material in terms of easy-axis and perpendicular-to-easy-axis magnetization is that of Figs. 4.2 and 4.3. As illustrated in Fig. 4.42 and pointed out in Subsecs. 2.3.2 and 3.2.1 and Fig. 2.37 the permanent-magnet pieces (light green) have magnetization vectors pointing in a direction opposite to that of the main solenoid field [START_REF] Sasaki | The Possibility for a Short-Period Hybrid Staggered Undulator[END_REF][START_REF] Chang | Magnetic Design for a Staggered Hybrid Undulator[END_REF]. Due to this the question of the possible demagnetization influence, irreversible or not, of the main solenoid field B sol on the permanent magnets and hence the consistency of the hybrid staggered design is to be addressed. In order to evaluate the effect of the hybrid staggered undulator's solenoid field on the PM's magnetization one formally needs to study the demagnetization curve of a magnet that is part of the staggered array while under the solenoid field B sol . The magnet that is chosen for this purpose here is the one that is closest to the undulator array's longitudinal center y = 0. The y -center of this magnet either coincides with the array center y = 0 in the case of an array of odd number of periods N p or is else closest to the array center and in both cases sees a solenoid field component closest in value to the central solenoid field value B sol . The demagnetization curve is defined formally as the evolution of the magnet's magnetization M y (H y ) along the easy axis, defined in Sec. As stressed for Figs. 4.2 and 4.3 permanent magnet materials in Radia are reflected only in the linear part of their demagnetization curves. This linear part is a valid representation of the magnet material's performance over a region of H-values that is situated around the remanent (nominal) magnetization point at M y (H y = 0) = M r = M y 0 , Fig. 4.2, and relatively far from the material's intrinsic coercitivity value H i . H i is defined as the value of magnetic excitation H y that annihilates the material's magnetization M y : M y (H i ) = 0 [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]. For sintered NdFeB materials in use for undulator permanent magnets H i is situated in the 1000-3000 kA/m range and B r in the 1 -1.4 T one [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. One can consider the value of H i ≈ 1900 kA/m indicated by the vertical orange line in Fig. 4.43 for the current ESRF CPMU magnets. In this context Fig. 4.43 serves as an underestimate of the permanent magnet (PM)'s demagnetization in an operating-field range of the solenoid relevant to the functioning of the multi-period staggered array assembly. From Fig. 4.43 it is seen that for λ u 8 = 16 mm at B sol opt (λ u 8 ) = 0.695 T the PM would lose theoretically at the very best around 8.5 % of its nominal remanent magnetization M r for an excitation field H ≈ 1450 kA/m ≈ 76.3% of the cited value of H i . This relative proximity of the excitation field to H i is in the end the rigorous indicator sufficient to discard any possibility for the magnet block to function effectively under the discussed operational conditions in a hybrid staggered undulator design. This is the case even if one's judgment is to be based on the misleadingly optimistic result for the loss in M r rather than on the field H experienced by the magnet block. To illustrate this, a comparison can be made to the baking procedure that permanent magnets undergo before assembly and installation of a PM ID, the heat treatment being conducted at about 100 -120 • Celsius (80 • for CPMU magnets at facilities that bake them) to eliminate any out-gassing danger for the vacuum-chamber environment. From a magnetic point of view which is of interest here, this heat process also serves as a thermal stabilizer for the magnetic properties of the magnet block as it suppresses the portion of its magnetization susceptible to be lost. At the end of the procedure the NdFeB material sees an irreversible magnetization reduction. For in-vacuum undulators a loss of about 2 % is found tolerable by insertion-device communities [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF]. This is several times less than the predicted magnetization loss of the NdFeB magnet studied in Fig. 4.43 for the hybrid staggered undulator array of Fig. 4.42. Hence this variant is deemed magnetically unwise to accomplish.

Alternative PM staggered model

Conclusion

The ability to vary the period remedies the inherently low tunability of the individual staggered arrays relative to that presented by permanent-magnet devices, as shown in Chaps. 3 and 5. The low tunability of the individual staggered arrays is conditioned by the low peak fields B p n and short periods λ u n that characterize the multi-period staggered-array assembly. The necessity of maximizing the magnetostatic performance of the individual arrays to the limit physically admissible by the array pole piece material's properties hence imposes itself. In this respect the following monotonously increasing sequence of optimized peak-field values B p opt n is obtained for the individual arrays, identified by n ∈ {0, 8} and the corresponding integer-period values in the range λ u n ∈ [8 mm, 16 mm], after a multivariate optimization: B p opt n = {0.41, 0.49, 0.56, 0.62, 0.68, 0.74, 0.79, 0.83, 0.87} [T]. The pole material selected for the staggered-undulator arrays achieving this result is the isotropic ternary soft ferromagnetic Vanadium Permendur compound FeCoV of chemical formula 49Fe-49Co-2V and saturation magnetic induction in the range of B sat ≈ 2.3 -2.4 T. The peak-field sequence is achieved for the corresponding monotonous sequence of optimal solenoid-field values B sol opt n = {0.87, 0.84, 0.82, 0.81, 0.77, 0.75, 0.73, 0.71, 0.70} [T] and determines the optimal geometric parameters common to the individual arrays. These are the pole width w p = 13.625 mm and height h p = 20 mm. The individual-array pole lengths l p n are defined by the optimal polelength-to-period ratio α p opt n taken at λ u n=0 = 8 mm for all n, α p = α p opt n=0 = 0.5708. An array-individual pole support is chosen with a support height h s = 5 mm. The choice of an undulator gap g = 4 mm for the staggered arrays permits to partially mitigate the relative smallness of the soft-pole arrangements' peak field at short periods λ u . In illustration of this, at λ u n=0 = 8 mm, B p n=0 is predicted theoretically to be 40.3 % weaker vis-a-vis that of a cryogenic permanent magnet undulator (CPMU) operated at minimum gap [g cpmu ] min = 5 mm of Praseodymium Iron Bore (PrFeB) permanent-magnet material boasting a remanent field B r = 1.39 T at room temperature T = 273.15 K. This relative percentage decrease amounts to 48.14 % when the CPMU is taken at B r = 1.6 T, the increased remanent field occurring at a cryogenic liquid-nitrogen operating temperature T = 80 K).

Two different main solenoids, large and small one, for the two different multi-array assemblies, multi-period, composed of N = 9 arrays, and bi-period of N = 2 arrays, studied in Chap. 3 are specified, with the major attention being given to the large one.

The main solenoid winding for the multi-period staggered array assembly is to be of LTS (lowtemperature superconductor) type-2 NbTi-filament of critical temperature T c = 9 K at zero magnetic field and current density B = 0 T, J = 0 A/mm 2 . As such the solenoid is envisaged to be operating in a liquid-helium (LHe) cryogenic environment of boiling point T = 4.2 K. It is to be of external and internal radii r ext ≈ 163 mm, r int ≈ 160 mm for a resulting coil thickness δr = r ext -r int ≈ 3 mm. The tolerances on the solenoid radii are determined by the impact of localized radius-value errors on the nominal (background) RMS phase error σ ϕ of the maximum-period array of λ u n=8 = 16 mm in the staggered assembly. This impact is found to be negligible under application of radial errors on the main solenoid in a symmetric relative range of 1.5 % around the nominal value of the considered radius, with σ ϕ ⪅ 0.0.2 • . The smallness of the value of σ ϕ is interpreted as being more indicative of numerical noise than meaningful from a physics standpoint. Hence the phase error's dependance on solenoid geometric imperfections is concluded as being negligible. The corresponding relative error on the central solenoid field with respect to that of the perfect coil winding is less than 0.02 % at the maximum considered radial error [δr/r] max = 1.5 % for both internal and external radii r int and r ext respectively.

The specified transverse solenoid dimensions provide sufficient space for the nine staggered arrays of the multi-period staggered assembly allowing their translation for energy tuning through period switching with provision of transverse safety margin as well as cryogenic-vacuum and thermal screening layers. These serve to meet the typical engineering requirements of super-conducting solenoids and undulators in terms of quench risk mitigation for superconductor filament operational stability. The main solenoid is shown in simulation to be able to provide the required solenoid field range for the magnetization of the staggered FeCoV arrays and generation of the on-axis undulator fields B z n (y) well within the 30-percent margin range for operation with respect to the NbTi wire superconductor's critical current density curve J crit (T = 4.2 K) at the boiling point of LHe.

The main solenoid is complemented by two corrector coils symmetrically dispositioned at the longitudinal ends of the main coil and a shielding magnetic circuit specified in the pole array material FeCoV for solenoid stray field compensation.

The correctors are designed via a multivariate geometric and magnetic optimization for the maximization of relative solenoid longitudinal field homogeneity with respect to B sol opt n=0 = 0.87 T. The result is a superconducting-current domain corrector coil of geometric parameters length L corr ≈ 52.45 mm, internal radius r corr int ≈ 173.45 mm, external radius r corr ext ≈ 184.56 mm for a corrector coil width δr corr = 11.11 mm ≈ 3.7∆ r ,in terms of that of the main solenoid ∆r. A longitudinal field homogeneity of σ δBy /B sol ≈ 1.10 -2 is achieved which presents an improvement of a factor 11.9 with respect to the sole solenoid without correctors.

The magnetic circuit is composed of a hollow cylinder closed by disk plates with transverse apertures provided for the electron beam passage. It encloses the solenoid equipped with the two trim coils and is put forward in a first proposition for its basic dimensions of length l mc ≈ 2853.22 mm, internal radius r mc 1 ≈ 194.56 mm, external radius r mc 2 ≈ 208.66 mm. The beneficial effect of the magnetic shield on the solenoid stray field confinement is demonstrated with a resulting RMS reduction in the stray field of approximately 64.7 %.

The optimization of the first and second undulator field integrals I 1 z and I 2 z carried on the maximum-period staggered array of λ u 8 = 16 mm operating at maximum peak field B p 8 ≈ 0.87 T yields an external-pole-piece-to-period ratio α p ext opt = 0.298 and current densities J corr = ±298.791 A/mm 2 for the corrector coil pair. The minimization of I 1 z and I 2 z for a short 25-period staggered array of λ u 8 = 16 mm via the presented means augmented by a magnetic shield results in a relative reduction of 56.13 % of the horizontal trajectory coordinate offset at the exit of the staggered array. This offset would present itself as the main issue of orbit distortion induced by the staggered array on the electron beam. Additional correction of the implied residual offset up to the specified tolerance is to be potentially provided by a more complex corrector coil architecture or operational setup than the studied scheme of a pair of single concentric coils at each end of the main solenoid.

A hybrid staggered-array variant employing NdFeB permanent magnets of remanent field B r = 1.2 T is rebuked following a computed value for the magnetic excitation H in the central part of the center magnet of approximately 76.3 % of that of the intrinsic coercitivity H i for employed ESRF CPMU-device permanent magnets. Reasoning in terms of the obtained corresponding relative demagnetization value on the magnet of δM y /M y 0 = 8.5 % with respect to the nominal (remanent) value M y 0 = M r = 1.2 T can also be employed to deliberated technically intolerable for sustainable device operation. The cited value for δM y /M y 0 is noted however to be misleadingly underestimated due to the linearized magnetization curve of the magnet used outside of its formal validity range in the simulation. produced by bending magnets, insertion devices of various configurations and FELs [START_REF] Shintake | The SACLA X-Ray Free-Electron Laser Based on Normal-Conducting C-Band Technology[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF][START_REF] Ghaith | Tunable High Spatio-Spectral Purity Undulator Radiation from a Transported Laser Plasma Accelerated Electron Beam[END_REF] with an accent on the far-field regime implementation [START_REF] Chubar | Accurate and Efficient Computation of Synchrotron Radiation in the near Field Region[END_REF]. It also treats via the Fourier optics approach related wavefront propagation simulations through different optical schemes based on beamline optical components of the likes of mirrors, crystals, monochromators, interferometers and others for purposes of focusing, diffracting, etc. [START_REF] Brunelle | Application of an Emittance Adapter to Increase Photon Flux Density on a Synchrotron Radiation Beam Line[END_REF][START_REF] Brunelle | Application of the Emittance Adapter to SOLEIL and MAX IV[END_REF][START_REF]Accelerators as photon sources[END_REF][START_REF] Chubar | A Three-Dimensional Magnetostatics Computer Code for Insertion Devices[END_REF][START_REF] Chubar | Accurate and efficient computation of synchrotron radiation in the near field region[END_REF][START_REF] Chubar | Wavefront Propagation Simulations for Beamlines and Experiments with "Synchrotron Radiation Workshop[END_REF][START_REF] Chubar | Wavefront Calculations[END_REF][START_REF] Samoylova | Cross-Platform Wave Optics Software for XFEL Applications[END_REF][START_REF] Chubar | Time-Dependent FEL Wavefront Propagation Calculations: Fourier Optics Approach[END_REF][START_REF] Casalbuoni | A Review of Magnetic Field Measurements of Full Scale Conduction Cooled Superconducting Undulator Coils[END_REF][START_REF] Chubar | Segmented Adaptive-Gap In-Vacuum Undulators -Potential Solution for Beamlines Requiring High Hard X-Ray Flux and Brightness in Medium Energy Synchrotron Sources[END_REF][START_REF] Chubar | Spectral Performance of Segmented Adaptive-Gap In-Vacuum Undulators for Storage Rings[END_REF][START_REF] Chubar | Physical Optics Computer Code Optimized for Synchrotron Radiation[END_REF][START_REF] Chubar | [END_REF].

Magnetic field configurations of various synchrotron radiation sources [START_REF] Kersevan | Twostep Vacuum Design of Light Sources[END_REF][START_REF] Prat | Synchrotron Light Sources and X-ray Free-Electron-Lasers[END_REF] such as wigglers, undulators and bending magnets can be taken into account for computing the characteristics of the spatial and angular distribution in intensity of the corresponding emitted radiation such as angle-integrated spectral flux through slits/apertures, brilliance and power density as well as properties of interest for particular scientific applications like polarization and phase [START_REF] Chubar | Accurate and efficient computation of synchrotron radiation in the near field region[END_REF]. Wavelengths from the far infrared (≈ 20-100 µm) [START_REF] Taillet | Dictionnaire De Physique[END_REF] to the hard X-ray (≈ 5.10 -12 m) produced by filament or finite-emittance electron beams can be simulated. The finite-emittance category of beams can be taken into account in two manners. The first one is by executing a convolution of the natural-undulator emission result for the characteristics of the produced radiation with a two-dimensional Gaussian function over the transverse-coordinate distribution of the "thick" electron bunch phase space [START_REF] Chubar | Accurate and efficient computation of synchrotron radiation in the near field region[END_REF][START_REF] Chubar | Physical Optics Computer Code Optimized for Synchrotron Radiation[END_REF]. As mentioned in Subsec. 2.2.6 it is legitimate to operate the convolution in the case of an undulator field that is transverse-uniform in the vicinity of the radiation emission which implies an absence of transverse magnetic-field gradient in the emission region [START_REF] Chubar | Accurate and efficient computation of synchrotron radiation in the near field region[END_REF][START_REF] Chubar | Physical Optics Computer Code Optimized for Synchrotron Radiation[END_REF]. A second manner to treat thick electron beams is via a code-specific multi-electron method whose mathematical description is detailed in [START_REF] Chubar | Wavefront Calculations[END_REF]. Other synchrotron radiation codes that can compute synchrotron radiation characteristics from finite-emittance and energy-spread electron beams include XOP, SPECTRA, B2E, URGENT [START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Esrf | B2E A Software to Compute Synchrotron Radiation from Magnetic Field Data Version 1[END_REF][START_REF] Del Rio | A New Version of the X-ray Optics Software Toolkit[END_REF][START_REF] Tanaka | SPECTRA: A Synchrotron Radiation Calculation Code[END_REF].

Photon source potential of individual staggered arrays

This section treats the results obtained from the radiations computations with the SRW code presented in Sec. 5.2. The top pane of Fig. 5.1 illustrates graphically an example of the computed two-dimensional spatial transverse distribution of the first-harmonic intensity generated by the two extremal-period arrays of the multi-period staggered array undulator considered separated from the staggered array assembly described in Sec. 3.3. The arrays are hence of λ u n=0 = 8 mm, λ u n=8 = 16 mm. The plots of Fig. 5.1 are obtained by considering the sole fundamental components of the respective undulator fields that are respectively taken as the peak fields B p 0 = 0.41 T and B p 8 = 0.8733 T, obtained via the staggered-array optimization in Sec. 4.2. The transverse vertical peak field dependency B z (z) is taken into account by the usual adopted undulator field expression given by Halbach's formula B z (z) ∝ cosh (2πz/λ u ). The required corresponding solenoid fields B sol 0 = 0.8724 T and B sol 8 = 0.6954 T specified in Tab. 4.2 are not taken into account for the results of Fig. 5.1. The solenoid fields are to be considered at a subsequent stage via a linear solenoid field model in which a uniform longitudinal field component B y = B sol is imposed over an effective length L ef f = 2.5 m, value inspired from the physical length of the main solenoid for the multi-period staggered assembly discussed in Subsec. 3.4.2 and Sec. 4.3. This solenoid field is to be added in superposition to the vertical sinusoidal undulator field of the studied staggered array under consideration.

The nominal parameters of the EBS electron beam in terms of emittance, beta and dispersion function in each transverse plane Oqy with q = {x, z} as introduced in Subsec. 2.2.5 are used (the nominal vertical dispersion η z is considered practically zero). The values of the relevant parameters in the middle of the straight section are summarized in Tab. 5.1.

I [A] E [GeV] σ E [1] ϵ x [pm•rad] β x [m] η x [m] ϵ z [pm•rad] β z [m]
0.2 6 0.94 -3 132 6.9 0.00173 5 2.64 Table 5.1: Beam parameters for the EBS beam in the middle of the straight section used to simulate the radiation performance of staggered arrays.

The staggered arrays are specified with a length L u = λ u n N p n = 2 m which results in the respective numbers of periods N p 0 = 250 and N p 8 = 125 as indicated in Fig. 5.1. The intensity of the m-th harmonic I m (x, z) treated in Fig. 5.1 is here defined as the angle-integrated spectral flux F m per elementary unit surface dS passing orthogonal to the observation direction through a collecting slit or other receiving/transmitting element. The slit is of width ∆x, height ∆z and surface S = ∆x∆z, that is I m = dF m /dS. m = 1 is the (fundamental) harmonic number considered. The center pane of Fig. 5.1 illustrates the corresponding horizontal profile half-cuts at z = 0 mm and the bottom one the vertical half-cut at x = 0 mm for the two-dimensional distributions of the top pane. For the results exposed in this chapter, the slit is positioned at a longitudinal distance L y = 30 m from the source point. This value of L y corresponds to the longitudinal position y = 30 m of the primary slit in ESRF beamlines with respect to the photon source point of the undulator taken at the center of the straight section y = 0 m. The primary slit is the first optical component of the beamline optics encountered downstream of the undulator by the radiation that is produced by the insertion device. The center of the straight-section center is a symmetry point of the lattice and hence defines the photon beam waist according to the discussion in Subsecs. 2.2.5 and 2.2.6 [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF]. As can be seen from Fig. 5.1 the spatial extent for the intensity distribution of the first-harmonic of the horizontally extremal staggered array in the multi-period assembly, that of n = 8 and λ u 8 = 16 mm shown in the right-hand part of the figure is dominant with respect to that of the opposite extremal array in the assembly, of n = 0 and λ u 0 = 8 mm. The corresponding larger opening angle is expected from Eq. (2.77) which expresses the angle as a function of the harmonic number m(= 1) and the number of undulator periods N p :

δθ 1 ≈ 1 γ N p . (5.4) 
From Eq. (5.4) it is seen that a higher N p helps to reduce δθ m . The two presented extremal undulator arrays happen to be of equal length L u (individual array lengths in the multi-array staggered design presented in Subsec. 3.6.1 are in general of L u n ≈ 2 m) and are of different periods λ u 0 < λ u 8 . This implies that N p 0 > N p 8 from where it follows that δθ 1 n=0 < δθ 1 n=8 . Another important contribution to this difference comes from the wavelength λ m as indicated in the Gaussian-beam formulas for the single-electron RMS photon beam size on axis Σ γ m q (0, 0), q = {x, z}, Eq. (A.6):

Σ γ m q (0, 0) ≈ λ m (0, 0)L 2π ≈ Σ γ m (0, 0). (5.5) 
One-dimensional profile cuts I 1 (x = 0, z), I 1 (x, z = 0) of the transverse fundamental-intensity distribution I 1 (x, z) such as those that are given in Fig. 5.1 serve to determine a suitable slit size for the acquisition of the arrays angle-integrated spectra such as those shown in Fig. 5.2. The intended result is to be able to select adequate ∆x and ∆z from intensity distribution results in an energy range from E 1 to E ′ 1 where E ′ 1 is the detuned first harmonic energy defined in Subsec. 2.2.2. The general detuned m-th harmonic energy is given on-axis by [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Wille | Introduction to insertion devices[END_REF]:

E ′ m (0, 0) = E ′ m = E m (0, 0) 1 - 1 mN p = E m 1 - 1 mN p . ( 5.6) 
The detuned energy E ′ m gives the maximum angle-integrated on-axis spectral flux at about twice the value of the one produced at the resonant energy E 1 :

F m max = F ′ m ≈ 2 F m . (5.7) 
The procedure of specifying ∆x and ∆z by looking at I 1 (x, z = 0),

I 1 (x = 0, z) for E m ∈ [E ′ 1 , E 1 
] is meant to serve as a means for sharpening the energy resolution of the harmonic peaks in the angle-integrated spectra of the radiation emitted by the undulator arrays. This is deemed feasible through the reduction of potential low-energy side spread or tail barely perceivable for example in the left-hand spectrum plot of Fig. 5.2. Practically one attempts to select as much as reasonably possible only the resonant first harmonic contribution F 1 to the angle-integrated spectral flux F intercepted by the aperture via cutting down the contributions to F of the other energies in the range [E ′

1 , E 1 ]. This is done manually by limiting the aperture sizes ∆x, ∆ z of the initial (guessed) aperture used to acquire a first version of Fig. 5.1 to the majority portion of flux contained around the peaks of I 1 (x, z = 0), I 1 (x = 0, z) in Fig. 5.1 in a spatial range bounded by the ends of the linear-like parts I 1 (x, z = 0), I 1 (x = 0, z). Following this the corresponding angle-integrated spectra F (E) for the staggered arrays of λ u 0 = 8 mm, B p 0 = 0.41 T and λ u 8 = 16 mm, B p 8 = 0.87 T, and undulator length L u = 2 m at L y = 30 m from the source point are obtained and displayed in Fig. 5.1. The slit width ∆x and height ∆z finally selected in the described manner from Fig. 5.1 to produce the spectra in Fig. 5.2 are respectively ∆x = 0.6 mm, ∆z = 0.33 mm for the flux intensity distribution I 1 of the staggered array of λ u 0 = 8 mm in the left-hand side of Fig. 5.2 and ∆x = 0.68 mm, ∆z =0.52 mm for the right-hand spectrum of array 8 of λ u 8 =16 mm. The remnant tail arguably perceivable on the lower-energy side of the fundamental peak F 1 of array 0 in the left-hand plot of Fig. 5.2 is considered attributable to the relativistic Doppler redshift effect [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF][START_REF] Hofmann | Characteristics of Synchrotron Radiation[END_REF][START_REF]CAS-CERN Accelerator School: Synchrotron Radiation and Free Electron Lasers[END_REF][START_REF] Brandt | CAS-CERN Accelerator School: Course on Synchrotron Radiation and Free-Electron Lasers[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Tsamparlis | Special Relativity[END_REF][START_REF] Landau | Chapter 2-relativistic mechanics[END_REF][START_REF] Landau | Chapter 1-the principle of relativity[END_REF][START_REF] Taillet | Dictionnaire De Physique[END_REF]. While an extremely high degree monochromaticity of the spectrum of array 0 of λ u 0 = 8 mm, B p 0 = 0.41 T can be readily established from the left-hand spectrum plot of Fig. 5.2, the spectrum of array 8 of λ u 8 =16 mm, B p 8 = 0.87 T situated opposite in the multi-period staggered-array assembly contains as expected higher on-axis odd harmonics practically up to about n = 7 with an interesting fraction of flux imputed to n = 3. As suggested in Subsec. 3.6.2 this feature can be exploited for the concept of a bi-period staggered-array assembly for a particular revolver-type undulator functionality. The right-hand spectrum in Fig. 5.2 for array 8 also indicates the presence of off-axis even harmonics intercepted by the aperture due to its finite transverse sizes ∆x, ∆z.

Φ/(δλ/λ) [ph/s/0.1%bw] E [eV] E [eV] B p = 0.41 T λ u = 8 mm N p = 250 B p = 0.8733 T λ u = 16 mm N p = 125
Figure 5.3 presents the tuning curves for the first-harmonic flux F 1 and brilliance B 1 of the optimized staggered arrays that constitute the multi-period nine-array module-unit assembly adjusted for continuous tunability in E 1 discussed in Subsec. 3.6.1. The final period sequence {λ u n } from λ u 0 = 8 mm to λ u 8 = 16 mm used is the one summarized in Tab. 3.4, obtained for a minimum-to-optimum peak-field parameter γ B = 0.091 identical for all arrays as chosen in Sec. 3.3. The period sequence is specified in accordance with the criterion function C constraint for the continuous first-harmonic energy E 1 tuning scheme among isolated arrays complemented by the subsequent array-module symmetrization. The two steps to period-sequence determination are the ones that are formally condensed in Eqs. (3.33) and (3.34). In the process of obtaining the period sequence {λ u n } in Subsec. 3.6.1 the effect of the symmetrization procedure that yields the unitary module pole distribution of Fig. The inter-array brilliance overlapping naturally reduces by the sum

N -2 i=0 ∆E i ,
where N is the number of arrays in the array assembly, the maximum overall tuning range of the multi-period staggered-array module. The maximum tuning range results at pin-point inter-array continuous tunability adjustment for zero inter-array overlapping at each array couple, ∆E n = 0, ∀ n). This situation is given by the case of equality in Eq. (3.23). However, individual inter-array overlapping assures that there be non-zero flux emission at the passage interface between two successive undulator arrays n and n + 1. This can be quantified by the brilliance percentage ratio [δB/B] n [%] at the n-th -array tuning curve (n denotes here the sequential identification number of a particular array in the array assembly). [δB/B] n gives the percentage fraction of brilliance of the n-th array with respect to the maximum brilliance of the (n + 1)-th one at which the two arrays n, n + 1 (period values λ u n , λ u n+1 ) are switched between one another, n → n + 1, λ u n → λ u n+1 :

[δB/B] n = B n B n+1 max , n → n + 1. (5.8) 
The resulting energy overlap intervals ∆E n and brilliance ratios [δB/B] n from Fig. 5.3 together with the peak-field values B p n opt and B p n+1 min relevant at the switching interface between arrays n and n + 1 of respective periods λ u n and λ u n+1 are summarized in Tab. 5.2: @ Ly = 30m from source Slit X, Z @ u(n) [mm]: 0.6, 0.33 @ 8.0 (0) 0.6, 0.33 @ 8.28 (1) 0.6, 0.33 @ 8.57 (2) 0.6, 0.33 @ 8.89 (3) 0.6, 0.33 @ 9.23 (4) 0.6, 0.33 @ 10.0 (5) 0.6, 0.33 @ 10.91 (6) 0.64, 0.37 @ 12.63 (7) 0.68, 0.52 @ 16.0 [START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF] Module array: 

n, n + 1 [1] λ u n , λ u n+1 [mm] B p n opt , B p n+1 min [T] ∆E n [keV] [δB/B] n [%] 0, 1 8 
B p = 2B sol sinh πg λu sin (πf ) πf , (5.9) 
where f is the ratio of non-magnetic spacer to magnetic period λ u of the staggered-array undulator discussed in Subsecs. 2.3.2 and 3.2.1 and illustrated in Fig. 2.36 and B sol is the central solenoid field.

The SRW results shown in Fig. 5.4 indicate no relative impact on the flux curves whatsoever from the specification of the array solenoid fields in the frame of the solenoid model implemented in SRW. This is verified at the level of the obtained numerical values. Hence one is lead to conclude prudently that in the SRW simulations the radiation flux F 1 is treated as transparent to the possible influence of a solenoid field component. There is an obvious impact on the brilliance tuning curves however, as seen from the red-colored data-point sets for [δB 1 sol /B 1 ](E 1 ) in Fig. 5.4. This is checked to be due to variations in the photon beam sizes and divergences Σ 0 n q and Σ ′ 0 n q following the application of B sol , in virtue of Eq. (5.1).

The relative loss in tuned brilliance value among the simulated individual magnetic arrays of the staggered-array multi-period assembly is observed from Fig. 5.4 to increase with increasing sequential number n of the undulator array (hence with undulator period λ u n ) and decreasing tuned first-harmonic energy E 1 . Thus the maximum brilliance loss [δB 1 sol /B 1 ] max (E 1 ) = 4.67 % from the application of the solenoid field arises for λ u n = [λ u n ] max = λ u 8 = 16 mm and minimum tuned energy for the array E 1 = [E 1 (λ u 8 )] min = 11.54 keV. @ Ly = 30m from source Slit X, Z @ u(n) [mm]: 0.6, 0.33 @ 8.0 (0) 0.6, 0.33 @ 8.28 (1) 0.6, 0.33 @ 8.57 (2) 0.6, 0.33 @ 8.89 (3) 0.6, 0.33 @ 9.23 (4) 0.6, 0.33 @ 10.0 (5) 0.6, 0.33 @ 10.91 (6) 0.64, 0.37 @ 12.63 (7) 0.68, 0.52 @ 16.0 [START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF] Module array: The difference in the harmonic flux distribution due to that in the deflection parameter K value is observable. In the case of the IVHPM in the left-hand side of Fig. 5.6 richer harmonic content is generated. This spectrum of the IVHPM is chosen to be the benchmark for that of the staggered array 8 of λ u 8 = 16 mm taken at its maximum peak field B p 8 = B p 8 max ≈ 0.87 T from the right-hand side of Fig. 5.2. From this comparison one sees that this staggered array presents a significantly higher portion of flux F 1 /F tot on its first harmonic than the hybrid permanent magnet undulator. Also the staggered array is observed to generate a higher fundamental flux than the IVHPM by a factor of approximately 1.49. 

I(x, z)

Power distribution at level of beamline optical components primary slit

The total output power density distributions dP tot /dS [W/mm 2 ] (integrated over all energies E m (ω m , θ x , θ z )) at L y = 30 m of the same two extremal separate staggered arrays discussed in Figs. 5.1 and 5.2 are shown in Fig. 5.8. The two-dimensional power distribution for array 0 of λ u 0 = 8 mm is given in the top-row left-hand side pane of Fig. 5.8 and in the right-hand one for array 8 of λ u 8 = 16 mm. The corresponding one-dimensional horizontal profile cuts [dP/dS](x, z = 0) are given in the center pane and those vertical [dP/dS](x = 0, z) in the bottom one. The analogous power density results of the mentioned IVHPM in the two extremal gap positions of g max = 30 mm (left) and g min = 5 mm (right) are given in Fig. 5.9. Comparing the two power sets for the staggered arrays of Fig. 5.8 and the IVHPMU of Fig. 5.9 one sees that the two extremal staggered arrays at their maximum (optimized) peak fields indicated generate significantly less maximum peak power density values, in the vicinity of respectively [dP/dS n=0 q ] max (0, 0) ≈ 190 W/mm 2 for array 0 (left-hand side in Fig. 5.8) and [dP/dS n=8 q ] max (0, 0) ≈ 331 W/mm 2 for array 8 (right-hand side in Fig. 5.8) where q = {x, z}. The device models are confronted at identical approximate length L u ≈ 2 m. At ring parameters (nominal beam energy E and current I) and undulator length L u kept fixed, such results are expected from Eq. (2.89) due to the variation of the total power P with B 2 p and the relatively lower peak field values B p n governing the operation of the staggered-array assembly with respect to B p IV HP M of the IVHPM. The lower global power output of the staggered arrays and the superiour fundamental intensity I 1 achieved by array 8 of λ u 8 = 16 mm suggests the improved efficiency of the device in generating high intensity monochromatic radiation with respect to a short-period conventional undulator.

As seen in Fig. 5.3, the brilliance B is maximized at maximum peak field [B p 0 ] max (E 1 0 min ≈ 40.82 keV) for array 0, but not for array 8 for which one has B max for a lower peak field B p 8 ≈ 0.77 (E 1 8 ≈ 12.89 keV) at which value the peak power density is found to drop from its maximum value of [dP/dS n=8 q ] max (0, 0) ≈ 331 W/mm 2 illustrated in Fig. 5.8 to [dP/dS n=8 q ](0, 0) ≈ 280 W/mm 2 . Array 6 of λ u 6 ≈ 10.9 mm is found to output the maximum brilliance among the staggered arrays in Fig. 5.3 at maximum peak field [B p 6 ] max ≈ 0.61T for minimal fundamental on-axis harmonic energy [E 1 6 ] min = 26.256 keV in resemblance to array 0 and resulting [dP/dS n=6 q ] max (0, 0) ≈ 304.75 W/mm 2 . From Fig. 5.7 one sees that the case is analogous for the IVHPM (maximum brilliance achieved at maximum peak field B p IV HP M max ≈ 1.18 T), resulting in a (maximum) peak power density [dP/dS IV HP M q ] max (0, 0) ≈ 430 W/mm 2 computed in the right-hand side of Fig. 5.9.

It is worthwhile outlining how the on-axis peak power densities [dP/dS n q ](0, 0) in maximumbrilliance configuration for the staggered arrays compare to that of the analogous IVHPM configuration for which the power density is [dP/dS IV HP M q ] max (0, 0) ≈ 430 W/mm 2 . For array 0 of λ u 0 = 8 mm one has approximately 44.3 % of the IVHPM's power density and about 76.9 % for array 8 of λ u 8 = 16 mm. In the case of array 6 of λ u 6 ≈ 10.9 mm which is expected to maximize the brilliance B of the multi-period staggered array assembly according to Fig. 5.4 there is a reduction of 29.4 % with respect to [dP/dS IV HP M q ] max (0, 0). 

[dP/dS](x, z) [W/mm 2 ] z [mm] [dP/dS](x, z) [W/mm 2 ] x [mm] B p ≈ 0.41 T λ u = 8 mm N p = 250 E 1 = 40.819 keV B p ≈ 0.87 T λ u = 16 mm N p = 125 E 1 = 11.543 keV [dP/dS](x, z = 0) [W/mm 2 ] x [mm] B p ≈ 0.

Conclusion

The proposed model for evaluating the performance that can be expected from the staggeredarray multi-period assembly is that of individual-array study. The evaluation is done in terms of the assembly's ability to generate a sufficient level of power-efficient radiation on the dominant first harmonic of its spectrum. In this respect the staggered-array assembly is deemed to outclass the prospect of proposing a conventional permanent-magnet based variable-gap design for meeting the cited requirement.

In this respect, the multi-array staggered undulator assembly is observed in simulation to be able to attain a higher brilliance up to a maximum increase of 28.9 % for array number n = 6 of λ u 6 ≈ 10.9 mm tuned to operate at its corresponding maximum (optimized) peak field [B p 6 ] max ≈ 0.61T for a resulting deflection parameter K 6 max ≈ 0.63 and fundamental on-axis harmonic energy [E 1 6 ] min = 26.256 keV. The underlying comparison is made to the maximum brilliance attained by an in-vacuum hybrid permanent-magnet undulator (IVHPM) of λ u IV HP M = 17 mm operating at B p IV HP M ≈ 1.18 T, K IV HP M ≈ 1.89, [E 3 IV HP M ] min = 21.827 keV. This gain in brilliance is achieved for an energy-integrated peak power surface density [dP/dS] 6 max ≈ 304.75 W/mm 2 , about 29.4 % lower than that of the IVHPM at 30 m from the source point. The maximum brilliances for the extremal-period staggered arrays of λ u 0 = 8 mm, λ u 8 = 16 mm are obtained respectively for B p 0 max ≈ 0.41 T, E 1 0 min ≈ 40.82 keV and B p 8 ≈ 0.77 T, E 1 8 ≈ 12.89 keV and scale correspondingly as 74.3 % and 77.2 % approximately of the cited maximum IVHPM brilliance for relative peak power densities of about 44.3 % and 76.9 % with respect to that of the latter.

No relative impact on the flux curves whatsoever from the specification of the array solenoid fields in the frame of the linear solenoid-field component model implemented in SRW is observed from the simulations. This is interpreted as an indication that in SRW the (first-harmonic) angleintegrated radiation flux F 1 is treated as transparent to the possible influence of the presence of such a magnetic component added to that of the undulator field B z . The brilliance tuning curves are however altered as a result of the application of the solenoid field, B sol . This is due to variations in the photon beam sizes and divergences Σ 0 n q and Σ ′ 0 n q respectively, with B sol applied. The observed relative loss in tuned brilliance value [δB 1 sol /B 1 ](E 1 ) among the simulated individual magnetic arrays of the staggered-array multi-period assembly increases with the staggeredarray sequential number n and hence by specification of the multi-period assembly also with the undulator period λ u n . [δB 1 sol /B 1 ](E 1 ) decreases with tuned first-harmonic energy E 1 . The maximum brilliance loss [δB 1 sol /B 1 ] max (E 1 ) = 4.67 % from the application of the solenoid field is found to arise for λ u n = [λ u n ] max = λ u 8 = 16 mm and minimum tuned energy for the array E 1 = [E 1 (λ u 8 )] min = 11.54 keV.

Chapter 6

Beam Dynamics

Introduction

As discussed in Chaps. 2 to 4, a key component in the staggered multi-period undulator is the solenoid [START_REF] Ho | A Solenoid-Derived Wiggler[END_REF][START_REF] Montgomery | Solenoid Magnet Design[END_REF][START_REF] Gupta | High Temperature Superconductor (HTS) Solenoid[END_REF]. It is the field source that is needed for the undulator field to be created in the gap of the undulator module. It also establishes the main difference of a staggered undulator with respect to a conventional one due to the presence of the solenoidal field whose effect on the stored electron beam is to be characterized.

In its most basic form a solenoid is an electromagnetic current-carrying device of cylindrical geometry used to produce a longitudinal magnetic induction field on-axis. Due to the geometry the global field structure itself presents a rotational symmetry along the longitudinal axis of the device in the plane orthogonal to that axis. This suggests that a suitable field description can be given in a cylindrical coordinate system Orϕ y of azimuthal, polar and longitudinal coordinates (ϕ, r, y), alongside the Cartesian system Oxyz. The second one however is naturally parallel to the main field component of interest B y . As such it is preferred for the study of particle dynamics under the influence of the magnetic field on the particle beam that passes through the bore of the device Fig. 6.2 [START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF]. This is also due to the fact that parallel-entering on-axis particles continue to travel parallel to the longitudinal field component B y in the solenoid. An on-axis particle of initial transverse coordinates x 0 , z 0 finds itself experiencing zero initial magnetic (Lorentz) force ⃗ F mag due to the vector-product of the Lorentz force equation Eq. (2.1):

⃗ F = (-e) ⃗ E + (-e)⃗ v × ⃗ B ⃗ Fmag , (6.1) 
where -e is the electron charge ⃗ E is the electric field acting on the charge, ⃗ v is the particle velocity and ⃗ B is the magnetic field. Solenoids are magnetic field elements that serve traditionally for the purposes of transverse focusing at low energies and downstream of particle sources [START_REF] Shintake | The SACLA X-Ray Free-Electron Laser Based on Normal-Conducting C-Band Technology[END_REF][START_REF] De Rijk | Introduction for Magnets[END_REF][START_REF] De Rijk | High-Field Accelerator Magnets[END_REF] and for large detectors in colliders [START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Wolski | Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity[END_REF]. One loosely defined possible element of distinction between a solenoid and a general coil is that of the longitudinal axis of the solenoid carrying its greatest dimension, the length L sol of the device being greater than its two diameters, inner d int and outer d ext , as depicted in Fig. 6.2. From the more technical viewpoint treated in detail in Chap. 4 a solenoid is in principle a wound multi-turn coil in which an azimuthal current (density) I ( ⃗ j) flow is driven by a power supply along the successive turns of the winding. This current establishes a magnetic field of orthogonal distribution having thus longitudinal and/or radial (transverse horizontal and vertical) components depending on the coordinate of study. In this respect salient solenoid features of interest for beam dynamics in an accelerator environment are the uniform longitudinal field B y (x, y, z ≈ 0) ≈ B y (0, 0, 0) = B y 0 in the center region of the coil away from the ends (an approximation facilitated by L sol > d 1, 2 as seen in the context of the critical field study for the superconducting coil in Chap. 4) and the fringe fields at both entry and exit ends of the solenoid. The fringe field region is where the longitudinal field component established inside the solenoid bore is transferred gradually away from the coil edge fully into the orthogonal plane along the radial direction given by the vector ⃗ r in Fig. 6.1 outwards before again giving back rise to a longitudinal component of opposite sign outside of the coil, Fig. 6.2, thus assuring the eventual closure in space (known as solenoidality condition [START_REF] Knoepfel | Magnetic Fields : A Comprehensive Theoretical Treatise for Practical Use[END_REF]) of the magnetic field lines. This is the case for a real solenoid of finite length L sol ̸ = ∞ (the approximation of an infinitely long solenoid intuitively presents a sole longitudinal component B y of infinite extent) and more precisely a courtesy of the Gauss-Maxwell theorem for the divergence of the magnetic (induction) field ⃗ B [START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Russenschuck | Field Computation for Accelerator Magnets[END_REF]:

∇ • ⃗ B = 0, (6.2) 
which can also be expressed as:

∇ • ⃗ H = 0, (6.3) 
where the magnetic induction ⃗ B is expressed in terms of the magnetic (field) intensity ⃗ H, ⃗ B = µ ⃗ H with µ = µ( ⃗ H) the magnetic permeability of the medium. Equations (6.2) and (6.3) are naturally valid independently of the presence or not of material medium other than that of the field-producing system under consideration in the region of interest. Thus their form is left unmodified by other charges, currents or magnetization vectors in the environment.

6.2 Solenoid effects on an electron's trajectory -focusing and transverse coupling

Basic features of interest of a solenoidal field

The main features of the magnetic field of a solenoid can be expressed and understood through the Maxwell-Gauss equation, Eq. (6.2), and the Maxwell-Ampère one:

∇ × ⃗ B = µ 0 ⃗ J + 1 c 2 ∂ ⃗ E ∂t , (6.4) 
where ⃗ J is the current density present in the region of interest in units of Amperes per square meter [A/m 2 ] cross section surface perpendicular to the current flow direction given by ⃗ J, c is the speed of light in vacuum and ⃗ E is the electric field in space. In analogy to Eq. ( 6.2) Eq. ( 6.4) can be expressed as:

∇ × ⃗ H = ⃗ J + ∂ ⃗ D ∂t , (6.5) 
where the electric displacement ⃗ D = ϵ ⃗ E is introduced with ϵ = ϵ( ⃗ E) the electric permittivity of the medium. In the bore of the solenoid ⃗ J = ⃗ 0 and provided no electric field be there induced, ∂ ⃗ E/∂t = ⃗ 0, Eq. (6.5) becomes [START_REF] Wolski | s Equations for Magnets Part I[END_REF]:

∇ × ⃗ B = ⃗ 0 (∇ × ⃗ H = ⃗ 0), field in solenoid bore. (6.6)
In view of the irrotational form of the magnetic field ⃗ B from Eq. (6.6) one can apply the Stokes theorem from vector calculus and write ⃗ B as the gradient of a scalar potential function Ψ [START_REF] Royer | Solenoidal Optics[END_REF][START_REF] Wolski | s Equations for Magnets Part I[END_REF][START_REF] Wolski | s Equations for Magnets Part Ii: Realistic Fields[END_REF]:

⃗ B = -∇Ψ. (6.7) 
Ψ can be shown to satisfy the Laplace equation through use of Eq. (6.7) in Eq. ( 6.2) and recalling that:

∇.∇ (divergence of gradient) = ∇ 2 = △, (6.8) 
to obtain [START_REF] Russenschuck | Field Computation for Accelerator Magnets[END_REF][START_REF] Russenschuck | Design of Accelerator Magnets[END_REF][START_REF] Russenschuck | Electromagnetic Design of Accelerator Magnets[END_REF]:

△Ψ = 0, (6.9) 
generally valid for accelerator magnets since these operate under the hypothesis of Eq. (6.6).

Adopting the cylindrical coordinate system Orϕ y suggested in Fig. 6.1 Eq. (6.9) can be rewritten as:

∂ 2 Ψ ∂r 2 + 1 r ∂Ψ ∂r + ∂ 2 Ψ ∂y 2 + & & & & 1 r 2 ∂ 2 Ψ ∂θ 2 0 = 0. (6.10) 
Due to the cylindrical symmetry of the solenoid the azimuthal derivative ∂ 2 Ψ/∂θ 2 of the last term in Eq. (6.10) is zero as indicated and Eq. (6.10) is simplified into:

∂ 2 Ψ ∂r 2 + 1 r ∂Ψ ∂r + ∂ 2 Ψ ∂y 2 = 0. (6.11) 
From Eq. (6.11) one is generally interested in obtaining an expression for the potential Ψ(r, y) as a function of the on-axis potential Ψ(r = 0, y) = Ψ(y) and the radial coordinate r. This allows then to deduce the magnetic field ⃗ B(r, y) through Eq. (6.8) in terms of the on-axis field ⃗ B(r = 0, y) = ⃗ B(y). The solution for the potential Ψ(r, y) can be sought under the form of a power series in terms of the radial coordinate r [START_REF] Royer | Solenoidal Optics[END_REF]:

Ψ = n c n (y)r n , (6.12) 
where the series coefficients c n (y) can be found after injection of Eq. (6.12) into Eq. (6.11):

c 2n = -1 n 2 2n (n!) 2 Ψ 2n (y) for n ≥ 2, c 2n+1 = 0, (6.13) 
with c 0 (y) = Ψ(y). Substituting Eq. (6.13) into Eq. (6.12) yields:

Ψ(r, y) = n (-1) n (n!) 2 r 2 2n Ψ (2n) (y), (6.14) 
where Ψ (2n) denotes the 2n-th-order derivative of Ψ with respect to y. The field components in the cylindrical coordinate system B r , B θ and B y of ⃗ B(r, y) are then deduced as a function of the on-axis field ⃗ B(y) from Eq. (6.14) which gives:

B r = ∞ 1 (-1) n (n!) 2 r 2 2n B (2n) (y), B θ = 0, B y = ∞ 0 (-1) n n!(n -1)! r 2 2n-1 B (2n-1) (y). (6.15)
As expected again from the symmetry of the system the azimuthal field component B θ is zero.

Focusing on the linear part of the expression for the radial component B r in Eq. (6.15) one highlights the following relation between B r and B y :

B r = - r 2 
dB y dy . (6.16) 
In Eq. (6.16) the appearance of the transverse radial field component B r through the variation of the longitudinal field B y along y is evident as quantitatively discussed earlier [START_REF] Royer | Solenoidal Optics[END_REF] for the fringe field at the solenoid extremities. The result of a linearly varying radial field B r in Eq. (6.16) serves to illustrate the focusing properties of solenoid fringe fields [START_REF] Wiedemann | Particle Accelerator Physics[END_REF].

Solenoid field impact on an electron

A particle approaching the solenoid bore with a velocity ⃗ v = v ⃗ u y parallel to the direction Oy of the coil axis upon crossing the fringe field region sees a radial field component B r which induces a time variation in the azimuthal component of the particle's momentum p θ according to:

dp θ dt = -ev y B r . (6.17) 
Equation (6.17) stems from the Lorentz force equation in its part for the magnetic force component acting on the electron of charge -e, Eq. (6.1), hence for no electric field present in the area of travel of the particle. Substituting the time derivative of the momentum dp θ /dt with its spatial one through dp/dt = (dy/dt) (dp/dy) = v y (dp/dy) and making use of B r from Eq. (6.16) in Eq. (6.17) yields:

∆p θ = er 2 ∆B y . (6.18) 
Due to the transverse azimuthal momentum kick of Eq. (6.18) experienced by an electron traversing the fringe field region of the solenoid off axis with a certain velocity component parallel to the axis of the coil, the particle is subject to an azimuthal force responsible for the electron's spiraling into a helical trajectory. For a particle set to enter the solenoid with an initial transverse coordinate vector ⃗ s 0 = (x 0 , x ′ 0 , z, z ′ 0 ) where q ′ = dq/dy with q = {x, z} one can consider the azimuthal momentum kick of Eq. (6.17) to act in a restricted longitudinal region exclusively at the very level of the solenoid entrance and exit. Such an approach is equivalent to the modeling of the real fringe field region with its progressive longitudinal transfer of the longitudinal field component B y into the transverse radial one B r according to Eq. (6.16) by a thin longitudinal slice ∆y in which B r is concentrated and abruptly established in the transverse vertical plane Oxz from the constant longitudinal field B y that reigns in the solenoid bore. This is the framework of the linear solenoid model which is employed here relates a lot to the hard-edge field model discussed in Subsec. 2.2.5 in relation to the fields of multipole magnets in a storage ring.

The exact hamiltonian H of a solenoid in canonical dynamical variables is given by [START_REF] Wolski | The Accelerator Hamiltonian in a Straight Coordinate System[END_REF]:

H = σ E β y 0 - σ E + 1 β y 0 2 -(p x + kz) 2 -(p z + kx) 2 - 1 β y 0 γ 2 y0 , (6.19) 
where σ E = (E -E 0 )/E 0 is the energy deviation of the particle, β y 0 = v y 0 /c is the normalized velocity of the reference particle, pq is the canonical momentum q-component with q = {x, z}. The canonical momentum unlike the mechanical one p q = γ q m e0 v q is preserved by construction under particle travel across a solenoid and is given by [START_REF] Wolski | The Accelerator Hamiltonian in a Straight Coordinate System[END_REF]:

pq = γ q m e0 v q pq +eA q , q = {x, z}, (6.20) 
with k rad.m -1 the solenoid strength parameter or normalized solenoid field (strength) defined in resemblance to the normalized dipole field and quadrupole strength discussed in Subsec. 2.2.5 as:

k = qB y 0 2p y0 . (6.21)
k is also the inverse of the betatron Larmor function of the solenoid [START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF].

The second-order expansion of Eq. (6.19) in the coordinate and momentum variables can be done in the paraxial approximation of quasi-parallel particle trajectories with respect to the solenoid axis yielding:

H ≈ p2 x 2 + p2 z 2 + σ 2 E 2β 2 y0 γ 2 y0 + k 2 2 x 2 + k 2 2 z 2 -kxp z + kz px . (6.22) 
Eq. (6.22) renders explicit the second-order dependence of the solenoid Hamiltonian on the coordinate variables for both transverse degrees of freedom x, z. In this respect the corresponding fourth and fifth coordinate terms of Eq. (6.22) in x 2 and z 2 translate into a transverse-focusing effect in both horizontal and vertical transverse planes Oxy and Oyz respectively [START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Wolski | Coupled Optics[END_REF]. Also readily identifiable in Eq. (6.22) are the last two coupled terms for the coordinate and momentum variables in the two transverse degrees of freedom as well as the independence of the Hamiltonian on the sign of the strength parameter k. The second point signifies that the focusing property of the solenoid is not influenced by the orientation of the magnetic field and hence ultimately of the direction of current density flowing in the coil. Solving Hamilton's equations [START_REF] Wolski | Review of Hamiltonian Mechanics[END_REF][START_REF] Montague | Basic Hamiltonian Mechanics[END_REF] one obtains the following transfer matrix T s sol giving the modified particle 6D-coordinate vector ⃗ s 1 = T s ⃗ s 0 after transport of the initial one ⃗ s 0 for a distance ∆y across a solenoid field (solenoid of length ∆y):

T s sol =         C 2 1 k SC SC 1 k S 2 0 0 -kSC C 2 -kS 2 SC 0 0 -SC -1 k S 2 C 2 1 k SC 0 0 kS 2 -SC -kSC C 2 0 0 0 0 0 0 1 ∆y β 2 y0 γ 2 y0 0 0 0 0 0 1         , (6.23) 
with C = cos (k∆y), S = sin (k∆y) [START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF]The MAD-X Program (Methodical Accelerator Design) Version 8.13 Physical Methods Manual[END_REF]. Remarkable in Eq. (6.23) are the non-zero terms T 13 , T 14 , T 23 and T 24 that provide the coupling between transverse orthogonal phase spaces xx ′ and zz ′ and the transverse focusing in both of the corresponding planes Oyx and Oyz, royalty of T 21 and T 43 respectively. The origin of the transfer matrix T s in the simpler 4D case neglecting longitudinal varibles y and σ E can be illustrated more instructively if one considers in standard non-canonical variables the product of three separate matrices, M entr , M ax and M exit respectively for the entry fringe field region, the central part in the solenoid of constant axial magnetic field B y 0 and the exit fringe field. Picturing the transverse plane Oxz with the projected helix trajectory on it for the segment of travel in the solenoid from position 1 to that 2 gives Fig. 6.3: The final transverse rotation given by the spiraling angle θ 1→2 that is experienced by the electron while traveling from point 1 to point 2 is simply the product of the Larmor angular frequency ω and the relevant time of flight t 1→2 with the former expressed as:

x z y ϑ 1 ϑ 2 v ϑ v ϑ ϑ 1→2 = ϑ 1 + ϑ 2 + π/2 1 2 r 0
ω = eB y 0 2πm e 0 , (6.24) 
giving:

θ 1→2 = ωt 1→2 = v θ r 0 ∆y 1→2 v y . (6.25) 
The last step in Eq. (6.25) follows from elementary cinematic considerations based on the definitions of Fig. 6.3 with ∆y 1→2 being the longitudinal distance traversed by the electron in going from position 1 to 2 assuming the constancy of the longitudinal velocity v y of the particle. The 4D transfer matrix T s cntrl for the central part of the electron trajectory inside the solenoid is finally formulated as:

T s cntrl =     1 py 0 eBy 0 sin θ 1→2 0 py 0 eBy 0 (1 -cos θ 1→2 ) 0 cos θ 1→2 0 sin θ 1→2 0 - py 0 eBy 0 (1 -cos θ 1→2 ) 1 py 0 eBy 0 sin θ 1→2 -sin θ 1→2 0 0 cos θ 1→2     , (6.26) 
where p y 0 is the mechanical longitudinal momentum of the electron in the paraxial approximation implying p y 0 ≈ p (total momentum). It can be shown with a coordinate transformation between polar (cylindrical) and Cartesian for the transverse space that the electron's angular coordinates are modified under the azimuthal momentum kick produced by the radial field B r [START_REF] Royer | Solenoidal Optics[END_REF]. Considering again the localization of this kick at the very entrance and exit of the solenoid one has the two following end-region fringe-field matrices:

T s entrnc =      1 0 0 0 0 1 eBy 0 2py 0 0 0 0 1 0 - eBy 0 2py 0 0 0 1      , (6.27) 
for the entrance and:

T s ext =      1 0 0 0 0 1 - eBy 0 2py 0 0 0 0 1 0 eBy 0 2py 0 0 0 1      , (6.28) 
for the exit. Calculating the product T s sol = T s ext T s cntrl T s entrnc for the particle's integral journey across the solenoid from downstream of the first (entrance) fringe field region to upstream of the second (exit) one gives:

T s sol =     C 2 1 k SC SC 1 k S 2 -kSC C 2 -kS 2 SC -SC -1 k S 2 C 2 1 k SC kS 2 -SC -kSC C 2     , (6.29) 
as given in Eq. (6.23) for the general off-reference-momentum 6D case with the definitions of k, S, C there given. With the help of the global matrix T s sol in Eq. (6.29) one can derive the modification of ⃗ s

0 = [x 0 , x ′ 0 , z 0 , z ′ 0 ] into ⃗ s 1 = [x 1 , x ′ 1 , z 1 , z ′ 1 ] according to ⃗ s 1 = T s sol ⃗ s 0 .
The focusing effect of a solenoid on the traversing particle's transverse trajectory can be understood more directly by considering to first order the equation of motion resulting from the linear solenoid field terms of the components derived in Eq. (6.15) for a particle of constant longitudinal velocity v y = const. Hence, adopting again the cylindrical coordinate system, for the linear component given by Eq. (6.16) of the radial field of Eq. (6.15) and the longitudinal field B y of Eq. (6.15) where dθ/dt can be obtained from the expression for the azimuthal canonical momentum pθ :

pθ = γm e0 r 2 dθ dt + qrA θ , (6.31) 
with A θ the azimuthal vector potential:

A θ = r 2 B y (y). (6.32) 
Replacing dθ/dt from Eq. (6.31) with Eq. (6.32) into Eq. (6.30) gives:

d (γdr/dt) dt = m e0 r dθ dt (m e0 γ dθ dt + eB y ) = p 2 θ γm 2 e0 r 3 - r 4γ eB y m e0 2 . ( 6 

.33)

To eliminate the time derivatives of Eq. (6.33) one can use the following relations valid for β y = v y /c:

dγ dt = γ ′ β y c, dr dt = r ′ β y c, d 2 r dt 2 = r ′′ (β y c) 2 , (6.34) 
with which Eq. (6.33) assumes the form:

r ′′ + eB y 2γm e0 β y c 2 r - pθ γ 2 m 2 e0 β 2 y c 2 r 3 = 0. (6.35) 
For pθ ̸ = 0 the last term in Eq. (6.35) acts to impede the electrons from traversing the solenoid axis. For a particle reaching the solenoid from outside with a velocity vector parallel to its axis one has A θ = 0, dθ/dt = 0, β y = β and thus pθ = 0 according to Eq. (6.31). In this situation the solenoid boasts a focusing effect with Eq. (6.35) narrowing down to the form of a harmonic oscillator in r with an equivalent focusing strength k given by:

k = eB y 2γm e0 β y c 2 , (6.36) 
identical to the strength parameter of Eq. (6.21) for a constant longitudinal field B y = B y 0 since one recognizes the expression for the relativistic mechanical momentum p y0 = γm e0 β y c. The corresponding focal length f is expressed as:

1 f = eB y 2p y dy. (6.37) 
The independence of f on θ again reveals the rotational symmetry of the solenoid's focusing action on the particle in distinction to that of a quadrupole magnet for example.

Integration of a solenoid into the EBS lattice in MADX

As discussed in Subsec. 2.2.5, a storage ring comprises magnets that, on top of the pseudocircular orbit provided by dipole magnets, shall keep the beam stable in the transverse plane. This is achieved by means of normal quadrupole magnets, which push the beam towards the central orbit whenever the electrons cross the magnets off-axis. This results in a magnetic lattice optics that in turn defines longitudinally dependent electron beam optics quantities such as the beam sizes σ q and divergences σ ′ q as well as invariant parameters like the emittances ϵ q of Subsec. 2.2.5 with q = {x, z}.

In an ideal machine, the two transverse orthogonal planes Oxy and Oxz are decoupled, as the impact of normal quadrupole magnets on one plane is independent upon the coordinates in the other. Moreover, only horizontal dipole magnets are used to generate a planar, horizontal curvilinear orbit. The horizontal orbit depends on the energy of each electron: more energetic electrons will be bent less because of their higher rigidity, whereas less energetic particles will be bent more, thus resulting in a relatively larger or smaller individual circular orbit depending on the energy of the particle. This concerns the horizontal orbit only, as ideally no vertical orbit is present in the machine and thus no dependence of it exists upon the energy deviation with respect to the nominal beam energy.

As discussed in the previous section, the solenoid will introduce both additional transverse focusing and coupling [38-40, 55, 56, 62, 108, 119, 208, 210, 213, 216, 287-289]. If not controlled and/or corrected or compensated, these can alter the electron beam optics (beta beating) with detrimental effects on the beam parameters (larger vertical emittance). Coupling does not only entangle horizontal and vertical motion [38-40, 55, 56, 72, 108, 119, 208, 213, 216, 287-289], but transfers some of the horizontal orbit dependence upon the energy deviation in the vertical orbit too (vertical dispersion) [START_REF] Holzer | Lattice Design in High-Energy Particle Accelerators[END_REF].

The scope of this study is then to evaluate the perturbation introduced by the solenoid on the beam optics and parameters and to design a compensation scheme to limit it as much as possible.

MADX tracking code

The Methodical Accelerator Design X (MADX) [START_REF] Appleby | The Science and Technology of Particle Accelerators[END_REF][START_REF] Herr | CAS Course on Optics Design[END_REF][START_REF] Herr | Introduction to MAD-X[END_REF][START_REF] Sterbini | Introduction to MAD-X[END_REF][START_REF] Watts | Introduction to MAD-X for Beamlines[END_REF][START_REF] Iselin | The MAD Program[END_REF][START_REF] Grote | MAD-X-an Upgrade from MAD8[END_REF][START_REF] Herr | A MAD-X primer[END_REF][START_REF] Herr | A MAD-X primer[END_REF][START_REF] Herr | A MAD-X Primer[END_REF][START_REF] Herr | A MAD-X Primer[END_REF][START_REF]The MAD-X Program (Methodical Accelerator Design) Version 8.13 Physical Methods Manual[END_REF][START_REF] Ziemann | MAD-X and Optics Examples[END_REF][START_REF] Herr | Particle tracking with MAD-X including LHC beam-beam interactions[END_REF] program is used to simulate the Extremely Brilliant Source (EBS) lattice for studying the storagering integrability of a potentially strong solenoid. It is a general tool used in lattice specifications and accelerator studies in medium and large-scale circular machines and linacs and beamlines. These can be the computation of optics parameters for a given lattice description, matching of properties of various elements to the machine periodicity, correction of lattice imperfections and studies of beam dynamics in the specified lattice. A major part of MADX that stands out in functionality with respect to other concurrent software packages is the Polymorphic Tracking Code (PTC) library [START_REF]The MAD-X Program (Methodical Accelerator Design) Version 8.13 Physical Methods Manual[END_REF][START_REF] Schmidt | Introduction to the polymorphic tracking code: Fibre bundles, polymorphic Taylor types and "Exact tracking[END_REF]. PTC is based on the symplectic integrator kick map formalism able to take in charge full Hamiltonians in addition to expanded ones. As such this library permits to track particles with arbitrary level of precision limited in the end by the resources at disposal to the user. This library is used for the coupling studies presented in Subsec. 6.3.3. The data input in MADX is done in the code's own dedicated language with its proper syntax and grammar rules. The input consists of commands for specifying the lattice elements with their characteristics such as length, strength and others in their sequence of appearance in the machine. The code uses a local coordinate system of the kind defined in Fig. 2.14.

Coupling formalism

Betatron coupling leads to non-zero vertical dispersion η z ̸ = 0 and ultimately vertical emittance ϵ z ̸ = 0. One way to describe the transverse coupling effect due for example to errors in magnet alignment or tilt is through the resonant-driving term (RDT) formalism [START_REF] Franchi | Vertical Emittance Reduction and Preservation in Electron Storage Rings Via Resonance Driving Terms Correction[END_REF][START_REF] Franchi | Analytic formulas for the rapid evaluation of the orbit response matrix and chromatic functions from lattice parameters in circular accelerators[END_REF][START_REF] Franchi | Error Analysis of Linear Optics Measurements Via Turn-By-Turn Beam Position Data in Circular Accelerators[END_REF]. In its framework this is done by means of the lattice functions of the ideal uncoupled lattice and an approach to the modeling of the magnet errors along the ring by local integrated strengths of skew quadrupole elements.

In a situation of coupling the definition of beam emittance proves no longer rigorous and one necessitates to specify the particular quantity referred to among three separate ones that are the apparent emittances E x, z , the projected ones ϵ x, z and the equilibrium or eigen-emittances E x, z . The apparent emittances E x, z are the ones that are experimentally measurable:

E u = σ 2 u β u = ⟨u 2 ⟩ -(σ E η u ) 2 β u , u = {x, z}, (6.38) 
where σ u are the RMS beam sizes of the transverse beam distribution hence in the horizontal and vertical planes, σ E is the RMS energy deviation and η u is the dispersion functions for each plane. The dispersion can be approximately expressed in the case of betatron coupling at a location k along the storage ring as: The dispersion functions η m, u are evaluated at the magnet locations m where they are imposed by horizontal and vertical bending magnets with K m, 0 and J m, 0 being their respective horizontal and vertical dipolar kicks and J m, 1 the integrated skew quadrupole gradient. The projected emittances ϵ u with u = {x, z} describe the respective phase space surface occupancies of the beam cross section and are derived from the beam's RMS statistical and cross moments σ u and σ pu according to: ϵ u = σ u (y)σ pu (y) -σ 2 upu (y), u = {x, z}. (6.43)

η x (k) ≈ β k, x 2 
The equilibrium or eigenemittances E u are invariant in time and along the ring. The apparent emittances E x, z are given in terms of the invariant eigenemittances according to:

E x = C 2 E u + S 2 -+ S 2 + -2S -S + cos (q + + q -) E v , (6.44) 
E z = C 2 E v + (S 2 -+ S 2 + -2S -S + cos (q + + q -))E u , (6.45) 
with the constituent quantities on the right-hand side being given in order of apparition by: where P is given by: P = -∥f 1001 ∥ 2 + ∥f 1010 ∥ 2 , (6.49) and q ∓ by: q -= arg (f 1001 ), q + = arg (f 1010 ), (6.50) finally via the difference and sum coupling RDTs f 1001 , f 1010 proposed as part of a set of figures of merit for betatron coupling together with the vertical dispersion η z in [START_REF] Franchi | Vertical Emittance Reduction and Preservation in Electron Storage Rings Via Resonance Driving Terms Correction[END_REF]:

C = cosh (2P), (6.46 
f 1001 1010 (k) =
N j=1 J j, 1 β j, x β j, z exp i (∆ϕ j,k, x ∓ ∆ϕ j,k, z ) 4(1 -exp (2πi (Q x ∓ Q z ))) , (6.51)

In Eq. (6.51) J J, 1 [m -1 ] is the integrated strength for each skew quadrupole produced by sources such as quadrupole tilts, sextupole misalignments or dedicated skew quadrupoles. Again there Q x, z are the eigen-tunes of the machine related to the measurable tunes Q x, z by Q u, v = Q x, z + O(J 2 j, 1 ), β j, x , β j, z are the uncoupled-lattice beta function values at the level of the skew quadrupole error and ∆ϕ j, k, x , ∆ϕ j, k, z are the corresponding phase advances relative to the measurement or computation location of the RDTs f 1001 , f 1010 . In the absence of coupling the eigen-emittance invariants of the lattice are given by [START_REF] Franchi | Vertical Emittance Reduction and Preservation in Electron Storage Rings Via Resonance Driving Terms Correction[END_REF]:

E u = 1 2
{H 2 x (y)d(y)} dy {b rf (y) -η x (y)b δx (y)}dy , (6.52)

E v = 1 2
{H 2 z (y)d(y)} dy {b rf (y) -η z (y)b δz (y)}dy , (

where it can be seen that for zero vertical dispersion η z (y) = 0 along the ring the vertical equilibrium emittance vanishes, E v = 0. This is the case of an ideal uncoupled lattice with independent motions in the two transverse horizontal and vertical planes Osx, Osz, that is a lattice bearing no magnet errors sources of coupling. Several other terms in need of clarification intervene in Eqs. (6.52) and (6.53). There encountered d(y) is the diffusion coefficient along the storage ring: In the expression for the horizontal damping coefficient b δx (y) Eq. (6.57) P γ is the instantaneous radiation power which is zero outside of dipole magnets:

P γ = e 2 c 3 C γ 2π E 0 B 2 z : (6.58)
The coefficient C γ in Eq. (6.58) is given by: As pertains to the RMS projected emittances ϵ x, z yielded in the framework of the RDT formalism, these are given as a function of the equilibrium ones E x, z by:

ϵ z = (C 2 E v + (S 2 -+ S 2 + )E u ) 2 -(2S + S -E u ) 2 , (6.63 
) 

ϵ x = (C 2 E u + (S 2 -+ S 2 + )E v ) 2 -(2S + S -E v ) 2 . ( 6 
β 11 = β x C 2 , (6.68) 
β 12 = β x (S 2 -+ S 2 + -2S -S + cos (q + + q -)), (6.69) 
β 21 = β z (S 2 -+ S 2 + -2S -S + cos (q + + q -)), (6.70)

β 22 = β z C 2 , (6.71) 
α 11 = α x C 2 , (6.72) α 12 = α x (S 2 -+ S 2 + -2S -S + cos (q + + q -)) -2S -S + sin (q + + q -), (6.73) α 21 = α z (S 2 -+ S 2 + -2S -S + cos (q + -q -)) -2S -S + sin (q + + q -), (6.74)

α 22 = α z C 2 , (6.75) 
γ 11 = γ x C 2 , (6.76)

γ 12 = γ x S 2 -+ S 2 + + 1 -α 2 x 1 + α 2
x 2S -S + cos (q + + q -) -4α x 1 + α 2 x S -S + sin (q + + q -) , (6.77)

γ 21 = γ z S 2 -+ S 2 + + 1 -α 2 z 1 + α 2 z
2S -S + cos (q + + q -) -4α z 1 + α 2 z S -S + sin (q + + q -) , (6.78)

γ 22 = γ z C 2 . (6.79)
From the set of Eqs. (6.68) to (6.79) it can be seen that in an uncoupled lattice the crossed parameters designated by sets of distinct individual indexes "12" or "21" become zero in which case those identified by "11" and "22" are assimilated respectively to the horizontal and vertical Twiss functions of uncoupled optics.

Optical matching and coupling correction for a potentially highfield solenoid in the EBS

A study is conducted of the final impact of solenoid installation in the ESRF Extremely Brilliant Source (EBS) lattice in terms of optical distortion (beta-beating) and coupling (vertical emittance and dispersion).

For this purpose the solenoid is modeled in MADX in the linear fringe-field regime given by Eq. (6.16) with a constant longitudinal field B y = B y 0 . It is specified with a length L sol = 2.5 m as the one envisaged for the main solenoid for the multi-array staggered undulator and for a range of values of B y 0 upto 10 T. In the code the solenoid is parameterized by its strength parameter k defined in Eq. (6.21) rather than the corresponding field B y 0 . The EBS beam nominal is energy E 0 = 6 GeV.

Two lattice models of the EBS storage ring are used for the implementation of the said solenoid model. The first one is referred to as the ideal lattice model since it does not include the typical coupling errors in the ring due to unavoidable lattice imperfections generated by quadrupole tilts or dipole misalignments for example. The second, referred to as the error lattice, does include more sources of error. The first one serves to assess the quality of the matching and coupling correction compared to the lattice without solenoid in terms of the final beta beating and vertical dispersion and the confinement of any non-zero amplitude of the coupled (crossed) beta functions to the straight section of the solenoid insertion. Beta-beating ∆β = β prtrb u -β ideal u is the difference (error) in the beta function's value between the lattice with and without quadrupole sources of errors and is regarded as the main figure of merit for the characterization of the focusing errors. The beating at a given location k to first order in integrated normal quadrupole strength errors δK w, 1 indexed along the ring by w can be expressed as:

∆β x k = β x k 2 sin (2πQ x ) W w β ideal
x, w δK w, 1 cos 2 ∆ϕ ideal x, w k -2πQ x , (6.80)

∆β z k = β z k 2 sin (2πQ z ) W w β ideal
z, w δK w, 1 cos 2 ∆ϕ ideal z, w k -2πQ z . (

The main interest of the second, errored, lattice is to compare the residual solenoid-induced coupling perturbation with the applied correction to that of the nominal one implemented in the error model. This model is based upon fitted coupling error measurements from the EBS ring. The correction scheme applied for the optical matching and coupling compensation procedure is with magnets that are already present in the EBS lattice so no additional equipment is needed. Two sets of six normal focusing and defocusing and four skew quadrupole elements are tuned upstream and downstream of the solenoid insertion. The skew field components are provided by corrector coils installed in sextupole magnets of the cell. The strength of the normal quadrupoles are varied within 5% or 20% of their nominal values depending on the magnet family, so to respect their specifications. Figs. 6.4 to 6.9 display results obtained with the ideal lattice model for two solenoid field values B y 0 =1 T and 10 T (k = 0.025 and 0.25 rad.m -1 ) in the left-and right-hand side respectively at the end of the corrective optimization. s designates the longitudinal curvilinear coordinate along the ring lattice circumference. Figure 6.4 shows the difference in horizontal, vertical and coupled beta-functions β 11 , β 22 , β 12 , β 21 along the ring as derived in Subsec. 6.3.2 with respect to the ideal lattice without solenoid. In the bottom panes the horizontal and vertical dispersion η x and η z are also displayed. All perturbations are confined in the region of the solenoid insertion and are successfully kept to zero outside. The solenoid is thus successfully matched to the lattice. Figure 6.5 shows the horizontal and vertical optical beta functions β 11 (≈ β x ), β 22 (≈ β y ) around the solenoid, while the coupling ones β 12 , β 21 are displayed in Fig. 6.6. Finally for the ideal lattice model the resulting beam statistical moments after matching are given in Fig. 6.8 for the RMS beam horizontal and vertical beam sizes σ xx and σ zz in red and black respectively and in Fig. 6.9 for the RMS divergences σ px and σ pz . Figs. 6.10 to 6.13 display the same results for B y 0 = 1 and 10 T (k = 0.025 and 0.25 rad.m -1 ) in the left-and right-hand side sub-figures respectively, this time using as reference not the ideal perfect lattice model, but rather the one with errors inferred from beam-based measurements. From Fig. 6.10 we can see how non-zero residual beta and dispersion is present outside the solenoid insertion. Figure 6.11 gives the final relative impact of the solenoid induced perturbation with respect to the nominal coupling error-set in terms of percentage beta-beating and solenoidal/nonsolenoidal lattice differences in coupling and dispersions outside the solenoid region, s ∈ [100, 840] m. The beta beating is well below the residual operational beating of 2 % peak-to-peak (1% RMS). Figures 6.12 and 6.13 show also the weak leakage of the coupled beta functions (β 12 , β 21 ) and of the vertical dispersion η z outside the solenoid insertion. The local values within the insertion and the residual ones outside will generate vertical emittance. Table 6.1 gives the evolution of the final equilibrium (eigen)-emittances E q in the horizontal and vertical planes qq ′ = {xx ′ , zz ′ } as a function of the applied solenoid field B y0 (and corresponding strength parameter k) for the background-error lattice with the optical corrective scheme applied (corrected lattice). Tab. 6.2 gives the equivalent results for the same lattice model this time prior to the application of corrective means (non-corrected lattice). The values given are those of the algebraic differences ∆E q = E q -E q 0 with respect to the initial ones E q 0 at k = 0 rad.m -1 (no solenoid installed in the lattice). These are respectively E x 0 = 132 pm.rad and E z 0 = 10 pm.rad. The value for the vertical emittance E z 0 = 10 pm.rad is the operational value which comes from the artificial blowing up of the emittance via excitation to preserve the electron beam lifetime in the storage ring. From a lattice-design standpoint the actual value of the vertical emittance is in the range E z 0 = 0.2-0.3 pm.rad. Thus for the purpose of evaluating the results for E q with q = {x, z} in Tabs. 6.1 and 6.2 one considers E x 0 = 132 pm.rad and E z 0 = 0.3 pm.rad with a tolerance limit for E z taken at 10 pm.rad, the blown-up operational lifetime value. Tables 6.1 and 6.2 effectively indicate that with a proper compensation set of quadrupolar elements the EBS lattice is practically transparent in terms of final equilibrium emittance evolution to the installation of a high-field solenoid demanding superconductor current densities [START_REF] Flükiger | Superconductivity for Magnets[END_REF][START_REF] Sharma | [END_REF][START_REF] Russenschuck | Superconducting Magnets[END_REF][START_REF] Godeke | Interlaboratory Comparisons of NbTi Critical Current Measurements[END_REF][START_REF] Bottura | A Practical Fit for the Critical Surface of NbTi[END_REF][START_REF] Gömöry | Superconductor Dynamics[END_REF][START_REF] Gömöry | Superconductor Dynamics[END_REF][START_REF] Schoerling | Nb3sn Accelerator Magnets[END_REF][START_REF] Marken | 1-Fundamental Issues in High Temperature Superconductor (HTS) Materials Science and Engineering[END_REF][START_REF] Buschow | Concise Encyclopedia of Magnetic and Superconducting Materials[END_REF]. In particular, the resulting vertical emittance change ∆E z can be accommodated in the margin given by the threshold of the operational value E z = 10 pm.rad for solenoid field values of upto B y 0 = 10 T. In view of the results of Tabs. 6.1 and 6.2 the matching procedure proves indeed necessary particularly at high enough solenoid field values to keep the final vertical equilibrium emittance E z in this margin.

B y 0 [T] k [rad.m -1 ] ∆E x [

Conclusion

The successful implementation of a high-field solenoid with central fields from 1 to 10 T in a realistic model of the EBS storage ring magnetic lattice was simulated and an adequate corrective scheme for the focusing and transverse coupling effects of the solenoid on the electron beam is defined. This scheme is based on exploiting some twenty existing magnets of the EBS lattice cell around the solenoid straight section. These magnets are normal focusing and defocusing quadrupoles as well as corrector coils installed in sextupole magnets which provide skew-quadrupole field components. The set of magnets is distributed in two groups consisting each of six normal and four skew elements positioned upstream and downstream of the solenoid strength section. The variation margins on the normal-quadrupole gradients are kept within their technical specifications to 5 % and 20 % of their nominal values for the purposes of beta-matching and coupling-compensating the solenoid with respect to the storage ring lattice. The final beta-beating perturbation of the ring optics due to the solenoid is kept inferior to the nominal RMS beating of the lattice which is about 1 %. The residual leakage after correction of the coupling beta and vertical-dispersion functions β 12 , β 21 , η z outside the solenoid insertion gives rise to a change ∆E z in the vertical equilibrium emittance E z from ∆E z = 0.039 pm.rad upto ∆E z = 1.520 pm.rad for the explored solenoid-field values in the range from 1 to 10 T with respect to the emittance E z 0 = 0.3 pm.rad generated by the nominal coupling-error model distribution of the EBS lattice. These changes are kept in the margin given by the operational threshold value of E z 0 = 10 pm.rad practiced in the EBS lattice for beam lifetime purposes.

Chapter 7

Conclusion

The proposed conceptual design for a multi-period staggered-array undulator consists of two main components: a superconducting solenoid of length L sol = 2.5 m and a soft ferromagnetic rectangular-pole array of length L u ≈ 2 m. The focus is on short period values λ u n in the range λ u n ∈ [8 mm, 16 mm] for resulting high fundamental-harmonic energies E 1 n where n denotes one of the several individual staggered arrays that make up the undulator. The expected approximate radiation energy interval output for the given period interval is 11 keV ⪅ E 1 ⪅ 42 keV.

The device study is conducted along three major axes that are its magnetostatic design and operation, radiation emission potential and the integrability in a storage ring lattice of the kind exploited by the EBS synchrotron ring at the ESRF in Grenoble, France. Various analytical and numerical tools were used in the study, the prominent ones of which are the codes Radia, SRW, B2E and MADX. The staggered-array multi-period assembly reconciles two defining characteristics: the possibility for period variation and the staggered-defining magnetization of the pole arrays by the solenoid field B sol for the generation of the undulator field B z on-axis. Both of these operational capacities are to serve as energy-tuning mechanisms for the multi-period staggered-array assembly.

The period variation is a discrete one achieved by a global mechanical translation of the assembly in the bore of the solenoid along the transverse horizontal direction. During this process the individual staggered array n + 1 of period λ u n+1 is placed on the solenoid axis and the array n of period λ u n is concurrently removed from the axis and displaced to the side. In this process the staggered-array assembly has its period tuned from λ u n to λ u n+1 by the discrete period steps δλ u n = λ u n+1 -λ u n . The ability to vary the period remedies the inherently low tunability of the individual staggered arrays relative to that presented by permanent-magnet devices. The low tunability of the individual staggered arrays is conditioned by the low peak fields B p n and short periods λ u n that characterize the staggered-array assembly. In this respect the following approximate optimized peak-field value range B p opt n is obtained by individual arrays of corresponding integer period values in the range λ u n ∈ [8 mm, 16 mm] after a multivariate optimization: 0.41 [T] ⪅ B p opt n ⪅ 0.87 [T]. This interval is achieved for the corresponding optimal solenoid-field inverse range 0.70 [T] ⪅ B sol opt n ⪅ 0.87 [T] and determine the optimal geometric parameters common to the pole-piece sets of the distinct arrays.

The array pole lengths l p n are defined by the optimal pole-length-to-period ratio α p opt n taken at λ u n=0 = 8 mm: α p opt n = 0.5708. A gap value g = 4 mm for the staggered arrays permits to partially mitigate the relative smallness of the soft-pole arrangements' peak field at short periods λ u . For the shortest-period array (n = 0) of λ u 0 = 8 mm, the staggered peak field B p is predicted in theory to be 40.3 % weaker vis-a-vis that of a cryogenic permanent-magnet undulator (CPMU) operated at a minimum gap g cpmu min = 5 mm with magnet blocks composed of rare-earth Praseodymium Iron Bore (PrFeB) ternary compound with a considered remanence of B r = 1.39 T at room temperature T = 273.15 K. The mentioned staggered field B p is expected to be 48.14 % lower if one takes the CPMU magnet material's enhanced remanence value B r = 1.6 T at the liquid-nitrogen operating temperature T = 150 K of the cryogenic undulator.

Related to the question of adequate tunability, a criterion for an adjusted inter-period continuous tuning of the first harmonic on-axis energy is determined. The criterion takes into account the magnetostatic performance of the individual arrays in terms of peak field potential of the array material. The selected material is the isotropic ternary soft ferromagnetic Vanadium Permendur compound FeCoV (49Fe-49Co-2V) of saturation magnetic induction in the range of B sat ≈ 2.3-2.4 T. first-harmonic energy E 1 among individual undulator segments of different periods λ u n assembled one after the other along the axis. The constancy of the first-harmonic energy among the segments that generate the period sequence {λ u n } along the longitudinal axis of the device is then conditioned by the predetermined longitudinal gap profile g(y) ̸ = const.. The gap profile is adapted to the vertical beta function's symmetric parabolic form β z (y) along the straight section, hence the local electron-size at y. Thus the gap profile is translated in a corresponding variable-gap discrete sequence {g u n }. which evolves in conjunction with λ u n along the axis from segment n to segment n + 1 in a manner to assure E 1 n = E 1 n+1 .

The main solenoid winding for the multi-period staggered array assembly is to be of LTS (low-temperature superconductor) type-2 NbTi filament. As such it is envisaged to be operating in a liquid-helium (LHe) cryogenic environment of boiling point T = 4.2 K. It is to be of external and internal radii r ext ≈ 163 mm, r int ≈ 160 mm for a coil thickness ∆r = r ext -r int = 3 mm. The tolerances on the solenoid radii are determined by the impact of localized radius-value errors on the nominal (background) RMS phase error σ ϕ of the array of λ u n=8 = 16 mm. This impact is found to be negligible since it results in σ ϕ ⪅ 0.02 • under application of radial errors on the main solenoid in a symmetric relative range of 1.5 % around the nominal value of the considered radii. The smallness of the value of σ ϕ is interpreted as being more indicative of numerical noise than meaningful from a physics standpoint. Hence the phase error's dependance on solenoid geometric imperfections is concluded as being negligible. The corresponding relative error on the central solenoid field with respect to that of the perfect coil winding is less than 0.02 % at the maximum considered radial error ∆r/r = 1.5 % for both internal and external radii, r int and r ext respectively.

The specified transverse solenoid dimensions provide sufficient space for the nine staggered arrays of the multi-period staggered assembly allowing their translation for energy tuning through period switching with provision of transverse safety margin as well as cryogenic-vacuum and thermalscreening layers. These layers serve to meet the typical engineering requirements of super-conducting solenoids and undulators in terms of quench risk mitigation for superconductor filament operational stability.

The main solenoid is shown in simulation to be able to provide the required solenoid field range for the magnetization of the staggered FeCoV arrays and generation of the on-axis undulator fields B z n well within the 30 % margin range for operation with respect to the NbTi wire superconductor's critical current density curve J crit (T = 4.2 K) at the boiling point of LHe. The potential of supplementary components for providing corrective action aimed at the improvement of aspects related to the undulator's functionality and integrability are discussed and assessed to different levels of detail. These include trim coils and a magnetic (shielding) circuit. The trim (corrector) coils are two in number and are symmetrically dispositioned concentrically with the main solenoid at its two longitudinal ends with respect to the vertical transverse half-cut plane of the solenoid. In addition a shielding magnetic circuit specified in the pole-array material FeCoV is observed in terms of its strayfield compensation effect. The correctors are designed via a multivariate geometric and magnetic optimization for the maximization of relative solenoid longitudinal field homogeneity with respect to the optimal solenoid field for the minimum-period staggered array (n = 0) of λ u n=0 = 8 mm, B sol = 0.87 T. The result is a corrector coil pair operating in the superconducting-current domain with coil parameters length L corr ≈ 52.45 mm and coil width δr corr ≈ 11.11 mm ≈ 3.7∆ r , in terms of that of the main solenoid ∆r. A longitudinal field homogeneity of σ δBy /B sol ≈ 1.10 -2 is achieved which presents an improvement of a factor of approximately 11.9 with respect to the sole solenoid without correctors over a longitudinal range corresponding to the projected length L u ≈ 2 m of the staggered-array undulator assembly. The magnetic shielding circuit is composed of a hollow cylinder closed by disk plates with transverse apertures provided for the electron beam passage. It encloses the solenoid equipped with the two trim coils. The beneficial effect of such a circuit on the solenoid stray field confinement is demonstrated for an example set of dimensional parameters permitting to achieve a first promising reduction of the RMS value of the stray field of approximately 64.7 %.

The considered minimization scheme for the undulator first and second field integrals I 1 z and I 2 z carried on the maximum-period staggered array of λ u 8 = 16 mm operating at maximum peak field B p 8 ≈ 0.87 T yields an external-pole-piece-to-period ratio α p ext opt = 0.298 and current densities J corr = ±298.791 A/mm 2 for the corrector coil pair. The minimization of the field integrals for a short 25-period staggered array of λ u 8 = 16 mm via the means mentioned augmented by a magnetic shield results in a relative reduction of 56.13 % of the horizontal trajectory coordinate offset at the exit of the staggered array. This offset would present itself as the main issue of orbit distortion induced by the staggered array on the electron beam. Additional correction of the implied residual offset up to the specified tolerance is to be potentially provided by a more complex corrector coil architecture or operational setup than the studied scheme of a pair of single concentric coils at each end of the main solenoid.

A hybrid staggered-array variant employing NdFeB permanent magnets of remanent field B r = 1.2 T is rebuked following a computed value for the magnetic excitation H in the central part of the center magnet of approximately 76.3 % of that of the intrinsic coercitivity H i for employed ESRF CPMU-device permanent magnets. Reasoning in terms of the obtained corresponding relative demagnetization value on the magnet of δM y /M y 0 = 8.5 % with respect to the nominal (remanent) value M y 0 = M r = 1.2 T can also be employed to deliberated technically intolerable for sustainable device operation. The cited value for δM y /M y 0 is noted however to be misleadingly underestimated due to the linearized magnetization curve of the magnet used outside of its formal validity range in the simulation. The successful implementation of a high-field solenoid with fields from 1 to 10 T in a realistic model of the EBS storage magnetic lattice was simulated and an adequate corrective scheme for the focusing and transverse coupling effects is defined. This scheme is based on exploiting some twenty existing magnets of the lattice cell around the solenoid straight section. These magnets are normal focusing/defocusing quadrupoles and skew quadrupole-field components of corrector coils installed in sextupole magnets. The magnets are distributed in two groups of six normal and four skew elements upstream and downstream of the solenoid strength section. The variation margin on the normal-quadrupole gradients are kept within their technical specifications to 5 % and 20 % of their nominal values for beta-matching and coupling-compensating the solenoid to the lattice. The final beta-beating perturbation is kept inferior to the nominal RMS beating of the lattice (1 %). Residual leakage of coupling beta and vertical-dispersion functions β 12 , β 21 , η z outside the solenoid insertion gives rise to a vertical equilibrium emittance increase from 0.039 pm.rad upto 1.520 pm.rad with respect to the one generated by the nominal coupling-error model distribution of the EBS lattice for solenoid fields in the range from 1 to 10 T.

The multi-period staggered array undulator project opens prospects to various furthering investigations on its design that relate to the more complete characterization of the device and possible design improvements. Such prospects are the quest for higher undulator fields B p at low periods λ u by use of novel complementary materials for the staggered arrays such as bulk high critical-temperature superconducting materials (BHCTS) and potential operation in persistent mode without solenoid field applied. The influence of the gap smallness on the impedance of the undulator and the implications for the electron beam are another example of an attack route for better weighing up the benefits and challenges of commissioning such an insertion device.

A prototyping phase is a major prospect aimed at building a first, probably short-sample version of several periods or modules of the staggered multi-period undulator. This phase requires the procurement of a superconducting solenoid with corrector coils and the necessary cryogenic equipment according to the design specifications elaborated. From a budget point of view this would predictedly be the major contribution to the prototyping project cost. Once built the prototype is to be aimed at specifying the most adequate assembly method for the pole-array structure inside the solenoid as well as identifying a suitable mechanical setup for the translation of the multi-period array assembly in the bore of the solenoid that enables achieving the main operational benefit of energy tunability through period variation. The prototype would also help determine the suitable magnetic-field measurement setup and conduct measurements on the magnetic performance of the device.

ω close to ω m corresponding to small observation angles θ x , θ z ≪ 1/γ in which case the flux distributions can be approximated as circular symmetric justifying their respective notations in terms of r and θ.

The Gaussian fit approach is usually preferred to the rigorous approach of obtaining Σ γ m, q (s) and Σ ′ γ m, q through the second-order centered moments (supposing {⟨q⟩, ⟨q ′ ⟩} = {0, 0}) of the respective distributions of q and q ′ which are:

⟨q 2 ⟩ = +∞ -∞

+∞

-∞ q 2 B(x, z, θ x , θ z , y, ω) dxdz +∞ -∞ +∞ -∞ B(x, z, θ x , θ z , y, ω) dxdzdθ x dθ z = Σ 2 γ q (y, θ x , θ z , ω), (A.11)

⟨q ′ 2 ⟩ = +∞ -∞

+∞

-∞ q ′ 2 B(x, z, θ x , θ z , y, ω) dxdz +∞ -∞ +∞ -∞ B(x, z, θ x , θ z , y, ω) dxdzdθ x dθ z = Σ ′ 2 γ q (θ x , θ z , ω), (A.12)

and evidently require the exact expression for the brilliance B(x, z, θ x , θ z , y, ω) which is not readily obtainable.

The RMS intrinsic photon beam sizes and divergences given by Eqs. (A.11) and (A.12) verify the Heisenberg uncertainty condition for photons:

Σ γ q (y, ω)Σ ′ γ q (ω) = ϵ γ ≥ λ 4π , (A.13)
the equality being established for a Gaussian beam at the waist, where Σ γ q (y, ω) is minimum. The value given on the right side of Eq. (A.13) is taken as the emittance of the intrinsic photon beam or diffraction-limited emittance ϵ γ estimated for a beam of Gaussian transverse flux distribution [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Prat | Synchrotron Light Sources and X-ray Free-Electron-Lasers[END_REF][START_REF] Bahrdt | Shaping Photon Beams with Undulators and Wigglers[END_REF].

A source having an emittance equal to ϵ γ in a given frequency range possesses the maximum achievable brightness (brilliance) B m (0, 0) in that range from a radiation standpoint. To achieve further increase of B m (0, 0) one has to vary operational parameters like the storage ring current for higher angular spectral flux Φ m /[(δΩ)(δλ/λ)](θ x = 0, θ z = 0, λ) as seen from Eqs. (2.79) and (2.86). Prior to this Eqs. (A.4) and (A.5) dictate one's interest in having the smallest possible electron beam emittances ϵ q = σ q σ ′ q to approach the limit ϵ γ set for the intrinsic photon emission (diffraction-limited source). Many synchrotron light sources have already done this in the vertical plane where ϵ z ≪ ϵ x by several orders of magnitude [START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Wolski | Synchrotron Light Machines[END_REF][START_REF] Zhao | Storage Ring Light Sources[END_REF][START_REF] Prat | Synchrotron Light Sources and X-ray Free-Electron-Lasers[END_REF].

For fixed emittances ϵ q optics tuning through matching of beta-functions β q at the source point is done to meet the needs of beamline users [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF]. If the electron beam emittance ϵ q is sensibly greater than the one giving the natural emission of the intrinsic photon beam (intrinsic photon beam emittance) ϵ γ , ϵ q ≫ ϵ γ , then the natural undulator emission produced of the intrinsic beam is negligible with respect to the multi-electron radiation generated by the thick-electron beam. In this situation a high beta function value β q (y 0 ) at the source location y 0 minimizes the corresponding beam divergence σ ′ q (y 0 ) through σ ′ q = ϵ q /β q0 . This leads to a minimized beam size σ q (D) on the experimental sample after propagation in a distance D and to a smaller harmonic width δω m . This effect can be interpreted with the help of Eq. (2.77) by noticing that a smaller σ ′ q is equivalent in a sense to a higher relativistic factor γ. If one has ϵ q ≈ ϵ γ then optical adjustments no longer influence the size of the beam spot. Then maximizing B m (0, 0) is a question of emittance matching between ϵ q and ϵ γ which implies small values for the beta functions at the source point [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Jaeschke | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Chavanne | Physics of Undulators[END_REF].

Using the approximations of Eq. (A.6) and Eq. (A.7) one can evaluate the intrinsic beta function of the undulator as:

β γ ≈ Σ γ m (y 0 ) Σ ′ γ m ⪅ L π , (A.14)
where equality is fulfilled for ω m (0, 0) (on-axis resonance). The value of β γ decreases when λ m (0, 0) increases up to the detuned value λ ′ m (0, 0). The photon beam phase space is from Eqs. (A.4) to (A.7) and Eqs. (A.9) and (A.10):

Σ m q (y 0 )Σ ′ m q (y 0 ) = σ 2 q (y 0 ) + Σ 2 γ m (y 0 ) σ ′2 q (y 0 ) + Σ ′2 γ m = ϵ q β q0 + λ m L 2π .15) 

ϵ q β q0 + λ m 2L , (A
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Figure 1 :

 1 Figure 1 : Schéma idéalisé d'une seule période d'ondulateur planaire de longueur λ u . La trajectoire d'un électron sur l'axe à travers le gap magnétique g est modulée sinusoïdale dans le plan Oxy par le champ ondulateur sur l'axe B z (0, y, 0) = B p sin (2π (y/λ u )) (non montré pour plus de clarté), où B p est le champ pic. Cette modulation de trajectoire donne lieu à une émission synchrotron dans des cônes de rayonnement de largeur angulaire typique θ nat = 1/γ à partir de points sources individuels observés à θ x, z .

Figure

  Figure2: Vue latérale en longitudinal selon une demi-coupe verticale de l'arrangement staggered de pôles en ferromagnétique doux (trait plein) montrant schématiquement la disposition des pôles assise dans le bobinage du solénoïde pour aimantation par le champ de ce dernier ⃗ B sol . Le champ ⃗ B sol est imposé par induction de la part de la densité de courant ⃗ j sol qui parcourt le filament de la bobine du solénoïde. L'aimantation des pôles résulte en l'instauration d'un champ périodique vertical sur l'axe du dispositif dans le gap g de celui-ci, c'est le champ ondulateur B z , de période λ u égale à celle de l'arrangement pôlaire de l'ondulateur. Aussi montrées en trait en pointillé soient deux plaques horizontales de support mécanique de mâchoire pour les deux mâchoires de haut et de bas.

  L tot = N p 0 λ u 0 + l p 0
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 11 Figure 1.1: Basic vertical half-cut longitudinal layout of the staggered-array soft pole layout schematically showing the arrangement of poles sitting in the solenoid for magnetization by its field B sol .
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 2 1 summarizes the geometry thus described:

Figure 2 . 1 :

 21 Figure 2.1: Geometric relation among electron-observer distance R given by unit vector ⃗ n, position ⃗ D of the emitting electron e -undergoing an acceleration ⃗ a along a trajectory described by the normalized instantaneous velocity ⃗ β and observer position ⃗ r at retarded time τ .
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 22 Figure 2.2: Idealized schematic of a single planar undulator period of length λ u . The trajectory of an on-axis electron through the magnetic gap g is modulated sinusoidally in the xy plane by the undulator field B z (0, y, 0) = B p sin (2π (y/λ u )) (not shown for clarity), where B p is the peak field. This trajectory modulation gives rise to synchrotron emission in radiation cones of typical angular width θ nat = 1/γ from individual source points observed at θ x, z .
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Figure 2 . 3 :

 23 Figure 2.3: Relative influence of the interference mechanism in radiation emission for the wiggler (top case a)) and undulator (bottomb)) operational regimes in the case of an on-axis sensory entity (observer or detector) situated at a fixed distance given by y obs . Wigglers are defined by a large excursion angle x ′ max with respect to the natural angle of spontaneous emission θ nat (Eq. (2.24) and Eq. (2.25)), producing predominantly incoherent radiation with a smoothed-out interference pattern in the final spectrum. This is not the case for undulators (Eq. (2.26) and Eq. (2.27)).

Figure 2 . 4 :

 24 Figure 2.4: Typical radiation flux density profiles for a bending magnet, wiggler and undulator. Encircled is the low-energy region in the wiggler case showing the unsmoothed interference peaks of relative harmonic energy width δ En /E m ≈ 1/(N p m).

Figure 2 . 5 :

 25 Figure 2.5: Top: Undulator magnetic field profile on-axis B z (x = 0, y, z = 0) of B p und = 0.35 T, λ u und = 17 mm, K = 0.56. Center: Generated on-axis synchrotron-radiation electric field pulse E x (θ x = 0, θ z = 0) [kV]. Bottom: Corresponding on-axis angular spectral flux Φ/[dΩ(dλ/λ)] in photons/s/0.1%/mrad 2 obtained by FFT from the electric field impulse from the center pane.

Figure 2 . 6 :

 26 Figure 2.6: Top: Wiggler magnetic field profile on-axis B z (x = 0, y, z = 0) of B p und = 0.74 T, λ u und = 35 mm, K = 2.42. Center: Generated on-axis synchrotron-radiation electric field pulse E x (θ x = 0, θ z = 0) [kV]. Bottom: Corresponding on-axis angular spectral flux Φ/[dΩ(dλ/λ)] in photons/s/0.1%/mrad 2 obtained by FFT from the electric field impulse from the center pane.
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 5028 Figure 2.8: Horizontal top view of a section of an electron beam circular trajectory of half-angle θ and radius ρ (rendered visible in orange) imposed by the vertical field of a storage ring rectangular bending magnet (upper pole visible in blue) equal to the considered undulator peak field B p ⃗ u z where ⃗ u i is the unit vector along the i-axis.
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 29 Figure2.9: Graphical sketch taken from[START_REF] Soleil | Un Synchrotron National Dans Un Environnement Scientifique et Industriel Privilégié[END_REF] of the main parts of a typical synchrotron storage-ring accelerator complex that are the linac, booster and properly the storage ring. The geometry of the ring is defined by the bending magnets which together with the undulators produce synchrotron radiation from the circulating electron beam stored in the storage ring. Also shown is the typical composition of a beamline exploiting the radiation for scientific studies.
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 211212 Figure 2.11: Lateral view along the longitudinal y-axis of electron beam propagation showing the vertical (normal) dipole field produced in the gap of an idealized iron-core bending electromagnet such as the one of the view depicted in Fig. 2.8. The magnetic field lines extend between the two magnetized iron pole shoes sketched in blue, with the magnetizing coils around the poles omitted.
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 213 Figure 2.13: Close-up showing the quadrupolar magnetic field lines distribution (right) with corresponding north/south (N/S) polarities resulting from the divergence/convergence of the magnetic field lines at the level of the quadrupole magnet pole pieces in the horizontal and vertical planes inside the magnet bore with the vacuum chamber (VC) in red. Sketch is not to scale and coils wound around poles are not shown.
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 215 Figure 2.15: Simplified technical drawing from [59,185,214] of a basic storage-ring periodic magnetic lattice composed of a series of cells with the indicated example shown in exploded view being made of bending magnets B, (horizontally) focusing and defocusing quadrupoles QF and QD.
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 216217 Figure 2.16: Example of a horizontal profile traced by a single-electron trajectory (green) over one turn of a storage ring, amid the beam envelope formed by the trajectories of the particle ensemble of the beam over multiple turns (red).

Figure 2 .

 2 [START_REF]CAS-CERN Accelerator School: Synchrotron Radiation and Free Electron Lasers[END_REF] shows the design evolution of the machine optics in terms of beta and dispersion functions between the old ESRF lattice cell, double-bend achromat (DBA) and the succeeding EBS hybrid multi-bend (HMBA) one. The performance improvement figure is a factor 30 in reduced horizontal emittance ϵ x with the new design.
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 219 Figure 2.19: Examples of beta and dispersion function profiles in the old ESRF ring DBA cell (left) and the EBS HMBA cell (right) [4].
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 220 Figure 2.20: Distributions of angular spectral photon flux [Φ m / (δθ x δθ z (δλ/λ))] (θ x , θ z ) in the angular space θ x θ z produced by a filament electron beam at frequencies ω(0, 0) = ω 1 (0, 0), 1.3ω 1 (0, 0) for K = 1.5 and N p = 50. The different rings observed correspond to different spectral harmonics. Example taken from [13, 83, 85, 96].
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 221 Figure 2.21: Graph of the function F m (K) given by Eq. (2.80) for different values of the harmonic number m.

  2.22 for an electron beam of energy E = 6 GeV and horizontal and vertical RMS divergences σ ′ x/z = 10/4 µrad [13].
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 222 Figure 2.22: Angular broadening of the distributions of Fig. 2.20 produced by the filament electron beam in the case of a 6 GeV finite-emittance beam with σ ′x/z = 10/4 µrad. Example taken from[START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Elleaume | Insertion Devices[END_REF][START_REF] Elleaume | Introduction to Insertion Devices[END_REF].
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 223 Figure 2.23: Graph of the function Q m (K) given by Eq. (2.84) for different values of the harmonic number m.
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 224 Figure 2.24: Graph of the function G(K) given by Eq. (2.94)

Figure 2 . 26 :

 226 Figure 2.26: Conceptual equivalence between a simple PPM array period made of three uniformly magnetized blocks of M, B r ≈ µ 0 M and the corresponding electromagnetic array period of stylized current-carrying coils of ∥ ⃗ j S ∥ ≈ 2B r /µ 0 , where individual elements and coordinate system are those of Fig. 2.25 rotated for the purpose of discussion.
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 227 Figure 2.27: Schematic of an electromagnetic undulator composed of a soft magnetic yoke and pairs of upper and lower row current coils used to generate an induction flux channeled by the polarized yoke.
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 228 Figure2.28: Sketch reproduced from[START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] outlining the basic engineering components of a cryostat used to maintain the depicted superconducting undulator coil to the cryotemperature necessary to assure its functioning in superconducting state by avoiding the quench phenomenon.

  Fig.2.28 shows a sketch of the basic components found in a typical cryostat applicable to a superconducting insertion device integrated in a storage ring. A LHe (liquid helium) environment[START_REF] Alekseev | Basics of Low-Temperature Refrigeration[END_REF][START_REF] Ekin | Experimental Techniques[END_REF] maintained at atmospheric pressure cools down the superconducting coils to the boiling point of LHe at T LHe boil = 4.2 K. A cryostat's quality is judged with respect to its capacity to limit the heat leak towards the helium vessel at cryogenic temperature and the exterior medium at room temperature of 300 K. Poor minimization of this leak comes at a typically high cost to pay in terms of socket efficiency presented by the liquefier element that is to compensate the consequent helium evaporation.[START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] cites an estimate ratio of 1000 for the electric power delivered to the liquefier at room temperature to the restored heat leak at T LHe boil . Several technological illustrated in Fig.2.28 means thus serve to isolate the LHe vessel housing the superconducting coil. At the trivial stage the vessel is leak tight. The material usually used for its fabrication is stainless steel[START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]. A first layer of isolation is provided by cryogenic vacuum[START_REF] Chiggiato | Vacuum Technology for Superconducting Devices[END_REF][START_REF] Jha | Cryogenic Technology and Applications[END_REF][START_REF] Baglin | Vacuum Systems Lecture 1-5[END_REF][START_REF] Mathewson | Vacuum System Design[END_REF] at a pressure of about 10 -6 -10 -7 mbars for suppression of residual gas conduction heat transfer[START_REF] Kersevan | Twostep Vacuum Design of Light Sources[END_REF][START_REF] Mathewson | Vacuum System Design[END_REF]. Next comes a copper shield positioned in the vacuum between the coil vessel and the outer tank wall. The shield is autonomously cooled by a liquid nitrogen vessel LN maintained at the corresponding room temperature at 77 T. The copper shield is meant to absorb black-body radiation coming from the outer tank wall and prevent it from impacting on the LHe vessel. Several such shields can be arranged in successive order to better this effect[START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF].The most employed undulator field implementation technology is the permanent magnet concept which is sketched in Fig.2.29[START_REF] Bahrdt | Pushing the Limits of Short Period Permanent Magnet Undulators[END_REF]. The figure depicts in particular the pure permanent magnet (PPM) array structure, historically known also as the Halbach type magnetic structure[START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF][START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Pflueger | Undulator Technology[END_REF][START_REF] Rosenzweig | Advanced Undulator Concepts for Future Free-Electron Lasers[END_REF].
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 229 Figure2.29: Sketch of a permanent magnet undulator built with anisotropically magnetized blocks having M = 4 blocks per period. The blocks are disposed in such a way that the direction of their magnetization vectors (along the easy axis) is alternating along the longitudinal axis in order to form the undulator field.
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 230 Figure 2.30: Schematic of a hybrid permanent magnet undulator. Poles of soft magnetic material increase and conduct the field created by the permanent magnets through high magnetic permeability becoming themselves polarized in the process as shown.
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 232 Figure 2.32: Sketch of a APPLE-type undulator showing the two orthogonal magnetic arrays producing the orthogonal fields B z (vertical as in a planar undulator) and B x (supplementary horizontal).
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 233 Figure 2.33: Sketch of the two basic types of supporting frames for planar conventional insertion devices with relative positions of magnet girders, arrays and vacuum chamber. Left: H-frame (closed), right: C-frame (open)

Figure 2 .

 2 Figure 2.34: 3D model representation in the SolidWorks [259] software environment of an ESRF 18 -mm pure permanent magnet array with individual magnet blocks depicted in white and installed in the magnet holder recreated in grey and marked with by a red 'X'. The magnet holder itself is mounted on one of the girders of the dedicated C-type carriage (supporting frame) shown in violet in the background, exemplifying the right-hand schematic of Fig. 2.33. Bubble shows the sketched zoom-in on the magnet polarization sequencing in a single undulator period which corresponds to the sequence shown in Fig. 2.29.
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 235 Figure 2.35: Conceptual sketch of a supporting frame for a revolver undulator Rotatable girders carry four arrays permitting to switch among four different period values in this example.

Figure 2 . 36 :

 236 Figure 2.36: Sketch of a staggered undulator design showing a longitudinal cut of the basic components. The solenoid bore houses the periodic arrangement of period λ u made of ferromagnetic poles of length l p and height h p used to deflect the longitudinal solenoidal field ⃗B sol in the gap g formed by the alternating vertical pole placement with respect to the longitudinal solenoid axis Oy. This establishes a periodic on-axis vertical undulator field B z in the gap g for the electron beam to see when entering the gap. A fraction of the magnetic flux lines channeled by the pole arrangement is schematically visualized by arrows.

Figure 2 . 37 :

 237 Figure2.37: Sketch of a hybrid staggered undulator[START_REF] Chang | Magnetic Design for a Staggered Hybrid Undulator[END_REF] design showing the added permanent magnet (PM) blocks filling the space between neighboring poles of the staggered array depicted in Fig.2.36. The magnet blocks serve to enhance the on-axis undulator field produced by the guidance of the solenoid field ⃗ B sol through the pole blocks. For this purpose the individual PM magnetization vectors ⃗ M point in a direction opposite to that of ⃗ B sol .
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 31 Figure 3.1: Purple violet: Graph of the analytical hyperbolic-trigonometric expression given by Eq. (2.105) for the on-axis staggered undulator main component (peak field) B p versus undulator period λ u at fixed gap g stg = 4 mm, central solenoid field B sol = 0.4 T and pole length-to-period ratio α p = 0.5. Blue, light orange: Corresponding graph of the exponential formula of Eq. (2.95) for the peak field of the Sm 2 Co 17 PMU of remanent field B r = 1.1 T at gaps g pm = 5 mm and g pm = 11 mm respectively. Green, red: Corresponding graphs of the exponential formula of Eq. (2.95) for the high remanence PrFeB CPMU of B p = 1.39 T at room temperature and of B p = 1.6 T at T = 80 K respectively, at gap g cpmu = 5 mm.
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 32 Figure3.2: Staggered undulator layout with a portion of the period-variation system proposed in[START_REF] Shenoy | Variable-Period Undulators As Synchrotron Radiation Sources[END_REF] shown on two of the poles in thick black.
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 3435 Figure 3.3: Schematic in perspective of the principle structure for the discrete variable-period multi-undulator staggered array proposed with its main parameters defined. Depicted in light blue is a longitudinal portion of the outer surface of the idealized cylindrical thick solenoid coil centered longitudinally at the origin O of the reference frame Oxyz. The geometry of the solenoid is characterized by its length L sol = 2500 mm (main excitation solenoid without corrector coils for end field homogeneity correction) and coil winding cross section inner and outer radii r int = ∥⃗ r int ∥, r ext = ∥⃗ r ext ∥ defining the coil thickness ∆r = r ext -r int . The solenoid is also characterized in working regime by its central longitudinal field B y sol (j sol ) with B y sol = B sol ( ⃗ O) where ⃗ O = (0, 0, 0). B y sol is imposed by the azimuthal current density ⃗ j sol [A/mm 2 ] driven through the coil. The solenoid bore accommodates the translatable assembly of multiple staggered pole arrays of length L u ≈ 2000 mm (examples in light blue with pole disposition given in left insert and purple violet)indexed by n, of period λ u n , resulting undulator peak field B p n , gap g, pole width w p , pole height h p , pole length l p n , inter-array separation d and safety distance d s between outer array and coil inner surface. The total width of the array assembly constituted is w tot which would determine the internal coil radius r int together with predictable elements such as those suggested in color for coil support, cryovacuum environment and thermal shielding. Each staggered array n derives its own local on-axis vertical field profile B z n of peak field B p n . This is illustrated for the case of the violet pole array with the planar on-axis vertical field profile B z n for the n-th array drawn in dashed red and the resulting orthogonal electron beam trajectory given in dashed green which lies in the horizontal Oxy-plane.

  3.3 and 3.4. The engineering layers are to meet needs related to the superconducting nature of the solenoid winding as discussed in Sec. 4.3. The horizontal solenoid coil inner surface stay-clear distancing d s is defined in Fig. 3.3 and also Fig. 3.6. Figure 3.6 complements Figs. 3.3 and 3.5 by displaying a top view in the horizontal xy-plane for a real-scale transverse slice of a two-dimensional distribution of pole pieces (light green) constitutive of upper staggered array jaws for a multi-period undulator of the type introduced in Figs. 3.3 and 3.5.

Figure 3 . 6 :Fig. 3 .

 363 Figure 3.6: Top view in the horizontal plane Oxy showing a transverse slice along the vertical planes σ lef t, right of a pole distribution in the staggered arrays' upper jaws after removal of the corresponding support plate for a variable-period multi-undulator of the kind proposed in Figs. 3.3 and 3.5. Poles are shown in light green and spacers between them in dark blue. Visible are the sequentially increasing values of λ u n in the positive x-direction for the case of N = 9 undulator arrays. The pole distribution slice constitutes a symmetric unit module pole distribution of symmetry plane σ center for the upper array jaws. Shown in blue is a horizontal longitudinal cut of the housing solenoid's coil winding carrying an azimuthal current density ⃗ j sol which permeates the multi-array undulator via the solenoid field B y, sol .
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 37 Figure 3.7: Output total and fundamental harmonic powers generated per ampere storage ring current per meter undulator length P tot /L u I ring , P 1 /L u I ring in comparison for the three insertion device classes defined -constant field variable period (CFU), conventional constant period variable field (CPU) and constant deflection parameter K = √ 2 (CKU) for EBS storage ring and undulator parameters shown in the inset. Input undulator parameters are the undulator length L u = 2 m and target period λ u M = 8 mm yielding E M 1 = 21.375 keV. Input ring parameters are the EBS average beam current I ring = 200 mA and beam energy E ring = 6 GeV.
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 38 Figure 3.8: Output total and fundamental harmonic powers generated per ampere storage ring current per meter undulator length P tot /L u I ring , P 1 /L u I ring in comparison for the three insertion device classes defined -constant field variable period (CFU), conventional constant period variable field (CPU) and constant deflection parameter K = √ 2 (CKU) for EBS storage ring and undulator parameters shown in the inset. Input undulator parameters are the undulator length L u = 2 m and target period λ u M = 16 mm yielding E M 1 = 10.688 keV. Input ring parameters are the EBS average beam current I ring = 200 mA and beam energy E ring = 6 GeV.
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 39 Figure 3.9: Output total and fundamental harmonic powers generated per ampere storage ring current per meter undulator length P tot / (L u I ring ), P 1 / (L u I ring ) in comparison for the three insertion device classes defined in the original classification -constant field variable period (CFU), conventional constant period variable field (CPU) and constant deflection parameter K = √ 2 (CKU) for EBS storage ring and undulator parameters shown in the inset. Input undulator parameters are the undulator length L u = 2 m and E M 1 = 40 keV yielding λ u M = 4.275 mm. Input ring parameters are the EBS average beam current I ring = 200 mA and beam energy E ring = 6 GeV.

. 13 )

 13 Writing down the analogous expression for the minimum wavelength λ E1 n+1 min produced by the horizontally neighboring staggered array n + 1 of period λ u n+1 operating at a specified minimum peak field B p min n+1 taken as B p min n+1 = γ B n B p o n+1 with γ B n a proportionality constant produces:

(3. 14 )

 14 B p o n and B p o (n+1) can be replaced respectively in Eqs. (3.13) and (3.14) by fitted staggeredundulator peak field expressions according to:

(3. 20 )

 20 Calculating the left-hand side numerical factor in Eq.(3.20) for B p o ∞ = 1.9329 T and designating for commodity the constant electron quantitye 2 B 2 p o ∞ / 8π 2 m 2 e0 c 2 = C 2 e -gives: C 2 e -B 2 p o ∞ ≈ 0.0163 (3.21)One can use the more compact function-wise notation C(γ B , λ u n , λ u n+1 ) for the left-hand side of Eq.(3.20). This highlights Eq. (3.20) as a sort of analytical criterion for the validity of the physical period increment (step) δλ u n in the right-hand side of Eq. (3.20) for continuous first-harmonic adjustment during period switching from λ u n to λ u n+1 when replacing array n with array n + 1 on-axis. Thus one has the identification:
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 310 Figure 3.10: Graph of the intersection of the curve given by C(γ B , {λ u n , λ u n+1 } = const.) of Eq. (3.22) for {λ u n , λ u n+1 } = {8, 9} , {9, 10} , {10, 11} with the horizontal line for the corresponding physical period increment δλ u n = 1 mm for the determination of the regions of validity of δλ u n in terms of the normalized peak field lower variation boundary γ B = B p min /B p o for continuous first harmonic adjustment between arrays n and n + 1 according to Eqs. (3.20), (3.22) and (3.23).

Fig. 3 .

 3 Fig.3.10 shows the plot of the evolution of the criterion function C given by Eq.(3.22) for continuous energy tuning through period variation in function of the normalized peak field lower variation boundary γ B = B p min /B p o for three different neighboring undulator-array fixed candidate period couples {λ u n , λ u n+1 } = {8, 9} , {9, 10} , {10, 11} [mm] in the range {8, 16}. It can be seen from each of the set of three curves that for the λ u n, n+1 -doublets under consideration there are γ B -intervals where the adjustment criterion given by the function C(γ B ) is not satisfied by the respective period values. Particularly, the first two couples do not satisfy it anywhere along the γ B -axis as the respective blue and orange curves find themselves entirely below the red horizontal line traced at the δλ u n = λ u n+1 -λ u n =1 mm ordinate value of the physical period increment. Hence no continuity of energy tuning in first harmonic via variation of the peak field B p down to the lower one specified by γ B can be envisaged for the arrays of the corresponding relatively lower-value period couples. One has to approach the two arrays in λ u so that δλ u n drops in order for one to be able to accord the arrays continuously sacrificing in the process the span of the global energy coverage interval resulting from all arrays. For the green line traced by the {10, 11} -mm period array neighbors there is a region of possible continuous energy adjustment extending from below γ B = 0.382 as marked by the black vertical line. Negative-value regions for C do not apparently have any particular physical meaning in this case.Of course, the relations defined in Eqs. (3.20) and(3.22) can also be reformulated into an equation by taking the case of equality and solving iteratively for λ u n+1 in terms of λ u n for a given initial λ u 0 and γ B . This serves to generate a variable period sequence in a given interval by taking the maximum allowed period step as δλ u n max = C(γ B , λ u n , λ u n+1 ) from λ u n to λ u n+1 at each n in terms of first harmonic energy adjustment period. Fig.3.11 illustrates the evolution of the so-defined maximum allowed period step for first harmonic adjustment in function of the period δλ u n max (λ u n ) for the three cases of γ B =0.091, 0.5, 0.8 and the corresponding adjusted period sequences λ u n generated and put to display in Tab.3.3. 
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 311 Figure 3.11: Resulting sequences of maximum allowed period steps {δλ u n max = λ u n+1 max -λ u n } deduced from Tab. 3.3 for continuous first harmonic adjustment between staggered arrays n and n + 1 according to Eqs. (3.20), (3.22) and (3.23) at the three cited values of γ B = {0.091, 0.5, 0.8}.
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 312 Figure 3.12: Typical two-dimensional top view in the horizontal Oxy -plane of an upper-pole distribution given for a set of horizontally neighboring arrays of different periods λ u n . The graphical pattern is acquired for a certain choice of inter-array-spacing d and pole width w p (n) = w p and pole-length-to-period ratio α p = l p (n)/λ u n common to the separate arrays n and individual numbers of periods N p (n) for an approximately identical final array length. The arrays' transverse disposition constitutes a discrete variable-period sequence along the positive Ox -direction.

M

  wp, d, Np 0, λu 0 (x, y) = {0, 1} = sign sin π 1+ wp -d wp +d sin 2π(x+d) (x/ (w p + d)) .

(3. 38 )

 38 In Eq.(3.38) sign a (x) stands for the signum function translated by the fixed-parameter value a: sign a (x) = (x -a) /|x-a|. The individual-array number n in the multi-array scheme of Eq. (3.38) is linked to the horizontal transverse coordinate x, the array pole width w p and inter-array separation d via the integer-part operation E(x) such that for example E(1.9) = 1, E(2.3) = 2.

  (3.54) for the undulator segment in the interval [y n+1 , y n+2 ]. Such a procedure assures the constancy in the on-axis (first) harmonic energy of emission with respect to the previous segment situated along[y n , y n+1 ], E 1 (∈ [y n+1 , y n+2 ]) = E 1 (∈ [y n , y n+1 ]) in accordance with the stated principle of the adaptive-gap segmented variableperiod undulator, generating the proper period sequence {λ u n } for the integral ID of N segments with n ∈ [0, N -1] as defined in Fig.3.13. For the parameters of interest for example, having B p ∞ = 1.93 T, g = 4 mm, b = 1, λ u 0 = 8 mm, y 0 = 0 mm, g 0 = 4 mm and β z 0 = 2.64 m in the case without the multi-array solenoid installed in the straight section of the lattice one obtains Fig.3.14 by plotting the evolution of the value of gap g, period λ u and extrapolated peak field B p .
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 314 Figure 3.14: Evolution of gap g n and period λ u n (left ordinate) as well as peak field B p n and deflection parameter K n along the positive-y half-straight section for a segmented adaptive gap array considered in line with Fig. 3.13 and tuned at E 1 = 40.907 keV. Starting gap and period values at the undulator array center y = 0 are g 0 = 4 mm and λ u 0 = 8 mm given in the inset on the right together with other input parameters.
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 41 Figure 4.1: Radia model of a longitudinal section of a U46 hybrid undulator. Permanent magnet material (cyan) is hard ferromagnet NdFeB of magnetization properties given by Figs. 4.2 and 4.3. Pole material (light violet) is soft ferromagnet 49Fe-49Co-2V (FeCoV) Vanadium Permendur of isotropic magnetization curve M (H) given in Fig. 4.4.

Figure 4 . 2 :

 42 Figure 4.2: Linear portion of the easy-axis magnetization characteristic of linear anisotropic hard ferromagnetic material Neodymium Iron Boron NdFeB µ 0 M (µ 0 H) for the magnets of U46 in Fig. 4.1 of remanent magnetization parallel to the easy axis µ 0 M r = 1.2 T.

Figure 4 . 3 :

 43 Figure 4.3: Linear portion of the magnetization characteristic of linear anisotropic hard ferromagnetic material Neodymium Iron Boron NdFeB µ 0 M (µ 0 H) for the magnets of U46 in Fig. 4.1 of remanent magnetization perpendicular to the easy axis µ 0 M r = 1.2 T.

  M vs H

Figure 4 . 4 :

 44 Figure 4.4: First magnetization curve characteristic of non-linear isotropic soft ferromagnetic material Vanadium Permendur FeCoV µ 0 M (µ 0 H) for the poles of U46 shown in Fig. 4.1 showing the two regions for positive and negative magnetization approaching the saturation value.

  4.5, for g pmu = 5 mm, g pmu = 11 mm and g cpmu = 5 mm at T = {273.15, 80} K correspondingly, δB p /B p (c)pmu = {-24.56 %, 795.92 %, -40.3 %, -48.14 %}.
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 45 Figure 4.5: Purple violet: Graph of the analytical hyperbolic-trigonometric expression given by Eq. (2.105) for the on-axis staggered undulator main component (peak field) B p versus undulator period λ u at fixed gap g stg = 4 mm, central solenoid field B sol = 0.4 T and pole length-to-period ratio α p = 0.5. Blue, light orange: Corresponding graph of the exponential formula of Eq. (2.95) for the peak field of the Sm 2 Co 17 PMU of remanent field B r = 1.1 T at gaps g pm = 5 mm and g pm = 11 mm respectively. Green, red: Corresponding graphs of the exponential formula of Eq. (2.95) for the high remanence PrFeB CPMU of B p = 1.39 T at room temperature and of B p = 1.6 T at T = 80 K respectively, at gap g cpmu = 5 mm.

Figure 4 .

 4 Figure 4.6a) shows in comparison the achieved peak field B p as a function of gap g for the ESRF PPM and hybrid model sections depicted in Figs. 4.7 and 4.8 with λ u = 17 mm and N = 8 in two sub-variants with respect to the variation range of the gap g: an in-air version with g ∈ [11, 250] [mm] and an in-vacuum one with g ∈ [5, 30] [mm]. The left-hand side of Fig. 4.6a) gives the absolute peak field value B p and the right-hand one the normalized difference of the B p with respect to the maximum value B p max at g min . Parameters related to magnet or pole piece dimension, material and others are given on the right and defined in Tab. 4.1.Figure 4.6b) illustrates the corresponding on-axis first harmonic energy scans of the two undulators (four sub-variants) produced by the
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 4 Figure 4.6a) shows in comparison the achieved peak field B p as a function of gap g for the ESRF PPM and hybrid model sections depicted in Figs. 4.7 and 4.8 with λ u = 17 mm and N = 8 in two sub-variants with respect to the variation range of the gap g: an in-air version with g ∈ [11, 250] [mm] and an in-vacuum one with g ∈ [5, 30] [mm]. The left-hand side of Fig. 4.6a) gives the absolute peak field value B p and the right-hand one the normalized difference of the B p with respect to the maximum value B p max at g min . Parameters related to magnet or pole piece dimension, material and others are given on the right and defined in Tab. 4.1.Figure 4.6b) illustrates the corresponding on-axis first harmonic energy scans of the two undulators (four sub-variants) produced by the
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 1 hm = 17.5 mm gm = 0.05 mm mmat : NdFeB Brh = 1.22 T Brv = 1.3 T Hyb. : wm = 38 mm hm = 23 mm wp = 25 mm hp = 18 mm rp/m = 0.5084 mmat : NdFeB Br =
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 464748 Figure 4.6: Variation of peak field B p and its relative percentage difference δB p /B p max with respect to the maximum peak field B p max (a)) as well as first harmonic on-axis energy E 1 and its relative percentage difference δE 1 /E 1 max with respect to the maximum value E 1 max (b)) versus gap g during full in-air and in-vacuum gap scans of respective ranges [11 mm -250 mm] and [5 mm -30 mm] for the ESRF PPM and hybrid undulator chunk models of Fig. 4.8. The main geometric and magnetic parameters for the PPM and hybrid devices are listed on the right-hand side of the graph. The corresponding parameter definitions are listed in Tab. 4.1.
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 49410411412 Figure 4.9: Radia model of a 20-period longitudinal section of a ferromagnetic-pole array for a staggered undulator without support. Pole material (cyan) is 49Fe-49Co-2V of isotropic magnetization curve M (H) given in Fig. 4.4. The main parameters specifying the structure in terms of its pole dimensions, periodicity and magnetic gap are in coherence with those of Figs. 2.36 and 3.3.

  Radia data points for optimized staggered B p PM exp fit yielding B p0 ( = B r ) = 1.933 T assuming = 1 (as in B p B r e ( g u ) , Eq.1.2) Staggered "sinh" formula, Eq.1

  3 u yielding a = -0.0331 mm 1 , b = 0.0107 mm 2 , c = -0.0002 mm 3 K sinh = 0.0934B psinh [T] u [mm] Stagg. formula : p = 0.5708 (f = 0.429) PM fit : B r = 1.933 T = 1
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 413 Figure 4.13: Left-hand side: Evolution with period λ u of the theoretical peak field B p for a choice of α p = 0.5708 (at λ u = 8 mm in Tab. 4.2) according to the formula of Eq. (2.105) (green diamonds, left ordinate) and the optimized staggered arrays' B p (red diamonds, left ordinate) for the obtained individual array optimum parameter set of Tab. 4.2 fitted with Eq. (2.95). Right-hand side: Corresponding theoretical (gray dots, right ordinate) and optimized individual (black dots, right ordinate) deflection parameters K sinh ∝ B p sinh λ u , K opt ∝ B p opt λ u values.

Fig. 4 .

 4 Fig.4.14 traces the obtained optimum peak field B p of Tab. 4.2 in absolute values and normalized to the corresponding central optimal solenoid field B sol of Tab. 4.2 in function of B sol . One is tempted from the plot to conclude that longer-period staggered arrays tend to saturate more efficiently than shorter-period ones in the sense that they achieve higher optimum peak field values B p opt for lower optimal values of the magnetizing solenoid central field B sol opt . This effect is nonetheless in the end due to reasons of a purely geometric nature. It can be illustrated with the analogy to a PM device in which for the same fixed field source meaning the same fixed surface magnetic field of the magnets the resulting on-axis peak field B p is weaker for shorter periods as suggested by Eq. (2.95).
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 4144 Figure 4.14: Evolution of the optimized absolute peak field B p and the peak field normalized to the optimal solenoid excitation field at the solenoid center, B p /B sol , versus solenoid field at the center B sol for the set of optimized short-period individual staggered arrays with corresponding field values and parameters given in Tab. 4.2.

  wp = 13.625 mm p = 0.5714 hs = 5.0 mm Bsolopt(0, 0, 0) = 0.695 T rmin = 159.682 mm rmax = 162.682 mm Lsol = 2500.0 mm On solenoid axis array u = 16.0 mm g = 4 mm wp = 13.625 mm p = 0.5714 hs = 5.0 mm Bsolopt(0, 0, 0) = 0.6954 T rmin = 159.6817 mm rmax = 162.6817 mm Lsol = 2500.0 mm
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 415 Figure 4.15: Variation of peak field B p and its percentage difference δB p /B p opt with respect to the optimum value B p opt (a) as well as harmonic energy E 1 and its percentage difference δE 1 /E 1 min with respect to the minimum value E 1 min = E 1 (B sol opt ) (b) versus central solenoid field B sol , corresponding current density J sol and respective percentage differences with respect to the optima δB sol /B sol opt , δJ sol /J sol opt for the 16 mm -period staggered array of Fig. 4.9. The variation range of the current density J sol is [0.25J sol opt , 1.75J sol opt ]. Array and solenoid parameters are given in the inset on the right.

Figs. 4 .

 4 Figs.[START_REF] Andrault | [END_REF].16a and 4.16b show the corresponding staggered-array peak field and first-harmonic energy plots B p (B sol ) and E 1 (B sol ) in function of the solenoidal field B sol for λ u = 8 mm in Tab. 4.2, at the lower extreme boundary of the period interval λ u ∈[START_REF] Rossbach | Basic Course on Accelerator Optics[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF] [mm] envisaged for the multi-array staggered undulator as discussed in detail in Subsec. 3.6.1. The first harmonic on-axis emission range of this undulator array is confined in the relatively higher-energy shorter interval from E 1 =41.282 keV to E 1 =42.622 keV for ∆E 1 = 1.340 keV in comparison to ∆E 1 = 7.72 keV spanning from E 1 =12.50 keV to 20.21 KeV at λ u =16 mm. Thus, at the shortest period value λ u min = 8 mm for the multi-array staggered assembly with corresponding K min ≈ 0.31 one has the

  wp = 13.625 mm p = 0.5708 hs = 5.0 mm Bsolopt(0, 0, 0) = 0.872 T rmin = 159.682 mm rmax = 162.682 mm Lsol = 2500.0 mm (a)

  On solenoid axis arrayu = 8.0 mm g = 4 mm wp = 13.625 mm p = 0.5708 hs = 5.0 mm Bsolopt(0, 0, 0) = 0.8724 T rmin = 159.6817 mm rmax = 162.6817 mm Lsol = 2500.0 mm

Figure 4 . 16 :

 416 Figure 4.16: Variation of peak field B p and its percentage difference δB p /B p opt with respect to the optimum value B p opt (a) as well as harmonic energy E 1 and its percentage difference δE 1 /E 1 min with respect to the minimum value E 1 min = E 1 (B sol opt ) (b) versus central solenoid field B sol , corresponding current density J sol and respective percentage differences with respect to the optima δB sol /B sol opt , δJ sol /J sol opt for the 8 mm -period staggered array of Fig.4.9. Array and solenoid parameters are given in the inset on the right.

  p = 0.5714 wp = 13.625 mm hs = 0.0 mm hpHPM = 18 mm Bsol(0, 0, 0) = 0.695 T Jsol = 185.987 A/mm 2 rmin = 159.682 mm rmax = 162.682 mm Lsol = 2500.0 mm
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 417 Figure 4.17: Variation of peak field B p and normalized peak field change B p , δB p /B p (h p HP M ) with pole height h p and normalized pole height change δh p /h p HP M for the 16 mm -period staggered array of Fig. 4.9. The normalization is done with respect to the corresponding values for a pole height of h p = h p HP M = 18 mm of the ESRF hybrid permanent magnet undulator model of Fig. 4.8. Optimized array and solenoid parameters from Tab. 4.2 are used, picked up again in the inset on the right.

  p = 0.5708 wp = 13.625 mm hs = 0.0 mm hpHPM = 18 mm Bsol(0, 0, 0) = 0.872 T Jsol = 233.327 A/mm 2 rmin = 159.682 mm rmax = 162.682 mm Lsol = 2500.0 mm
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 418 Figure 4.18: Variation of peak field B p and normalized peak field change B p , δB p /B p (h p HP M ) with pole height h p and normalized pole height change δh p /h p HP M for the 8 mm -period staggered array of Fig. 4.9. The normalization is done with respect to the corresponding values for a pole height of h p = h p HP M = 18 mm which is the value for the ESRF hybrid permanent magnet undulator (HPM) model of Fig. 4.8. Optimized array and solenoid parameters from Tab. 4.2 are used, picked up again in the inset on the right.
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 421 Figure 4.21: Engineering, superconducting, critical and defined operating-safety-margin current densities J θ eng/supr/crit/marg (respectively dark blue/red/green/violet/aquatic blue diamond datapoint curves on the left ordinate) for a fixed central solenoid field B sol = 0.8724 T plotted on the left versus coil thickness ∆r and corresponding external solenoid radius r ext and radius ratio α sol = r ext /r int in the case of the large nine-array staggered multi-undulator module. Shown on the right are the dot-data-point curves for the absolute and normalized-to-central-field surface tangential field B y srf at the level of the coil inner radius r int . Fixed solenoid and module parameters are given in the two insets on the upper center and upper right.

Figure 4 . 22 :

 422 Figure 4.22: Evolution with solenoid radial thickness ∆r = r ext -r int and equivalent external radius r ext and radial aspect ratio α sol = r ext /r int of the outward radial Laplace self-force per unit volumeF r srf (x = 0, y = 0, z = r int ) with ⃗ F = ⃗ J supr × ⃗ B(x = 0, y = 0, z = r int )acting on the level of the solenoid coil inner surface for the fixed nine-array module and solenoid parameters given in the two insets on top of the graph. Two extremal in terms of resulting superconducting current density J θ supr superconductor winding configurations detailed in the figure legend are presented.
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 423 Figure 4.23:Engineering, superconducting and critical and defined operating-safety-margin current densities J θ eng/supr/crit/marg (respectively dark blue/red/green/violet/aquatic blue diamond datapoint curves on the left ordinate) for a fixed central solenoid field B sol = 0.8724 T plotted on the left versus coil thickness ∆r and corresponding external solenoid radius r ext and radius ratio α sol = r ext /r int in the case of the large two-array staggered multi-undulator module. Shown on the right are the dot-data-point curves for the absolute and normalized-to-central-field surface tangential field B y srf at the level of the coil inner radius r int . Fixed solenoid and module parameters are given in the two insets on the upper center and upper right.
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 424 Figure 4.24: Evolution with solenoid radial thickness ∆r = r ext -r int and equivalent external radius r ext and radial aspect ratio α sol = r ext /r int of the outward radial Laplace self-force per unit volumeF r srf (x = 0, y = 0, z = r int ) with ⃗ F = ⃗ J supr × ⃗ B(x = 0, y = 0, z = r int )acting on the level of the solenoid coil inner surface for the fixed two-array module and solenoid parameters given in the two insets on top of the graph.Two extremal in terms of resulting superconducting current density J θ supr superconductor winding configurations detailed in the figure legend are presented.
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 1241234567897444 Figure 4.25: Variation with absolute and normalized-to-internal-radius radial distance r from solenoid center (r = 0) up to coil periphery (r → r int ) of the absolute (left-hand blue ordinate) and normalized-to-central-field (right-hand red ordinate) longitudinal solenoid fields B sol (r, 0, 0), B sol (r, 0, 0)/(B sol (0, 0, 0) = B sol ) for the solenoid parameters defined for the multi-array variable period undulator and B sol = 0.8724 T, J sol = 233.327 A/mm 2 .
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 426 Figure 4.26: Variation with horizontal coordinate x of the transverse horizontal peak field profile B p (x, y cntr , z = 0) at mid-gap (z = 0) and longitudinal coordinate y cntr corresponding to the center of the first pole closest to the undulator center in the positive sense of the y-axis as defined on the abscissa of the plot for the optimized centered staggered array of λ u = 16 mm, Fig. 4.9. Solenoid and undulator parameters are given in the inset on the right.

  first pole of ycntr 0, z = 0) [mm] wp = 13.625 mm hs = 0.0 mm Bsol(0, 0, 0) = 0.872 T Jsol = 233.327 A/mm 2 rmin = 159.682 mm rmax = 162.682 mm Lsol = 2500.0 mm
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 427 Figure 4.27: Variation with horizontal coordinate x of the transverse horizontal peak field profile B p (x, y cntr , z = 0) at mid-gap (z = 0) and longitudinal coordinate y cntr corresponding to the center of the first pole closest to the undulator center in the positive sense of the y -axis as defined on the abscissa of the plot for the optimized centered staggered array of λ u = 8 mm, Fig. 4.9. Solenoid and undulator parameters are given in the inset on the right.

4. 4

 4 Solenoid-undulator integration4.4.1 Corrector solenoids for solenoid fringe field homogeneity

Fig.

  Fig.4.28 presents the sketch of the envisaged corrector (trim) coil scheme for the improvement of the solenoid longitudinal field homogeneity with y over the length of the multi-array staggered assembly L u = 2 m. The effort for improved homogeneity of the solenoid field is motivated by the desire to have identical magnetization conditions for all pole pieces that constitute the staggered array. This is directly beneficial to the longitudinal regularity of the generated undulator field profile B z , perceivable in terms of peak-to-peak difference for example, hence improving the final undulator field quality. An effort is undertaken to achieve satisfactory field correction with only a single pair of trim coils to have a relatively simple system to operate and maintain with respect to a would-be more

Figure 4 .

 4 [START_REF] Bahrdt | Cryogenic Permanent Magnet and Superconducting Undulators[END_REF] gives in front and side view the Radia model of the corrector setup of Fig.4.28 with only one of the correctors shown in orange.

Figure 4 . 28 :

 428 Figure 4.28: Sketch of the optimized corrector scheme for the main solenoid showing the two corrector coils (green) that are to be symmetrically positioned from both sides of the vertical transverse half-cut plane Oxz of the main solenoid (light blue). The graphical equivalent of the sketched corrector model rendered by Radia is shown with one of the two corrector coils depicted in Fig. 4.29. The on-axis longitudinal field profiles B y (x = 0, y, z = 0) of the main solenoid with and without the corrector coil specified are shown in Fig. 4.30 for the parameter set summarized in Tab. 4.6. Input parameters for the main coil and resulting optimized corrector parameters are given in the inset on the upper right.

Figure 4 .

 4 Figure 4.29: Left: Frontal view of the Radia model for the main solenoid of the multi-array variable-period undulator (red) with added one of two concentric extremity corrector coil (orange) according to the scheme of Fig. 4.28. Right: Longitudinal side view of the model.

  .30 with the final optimized corrector parameters mentioned in the right-hand inset. These are the corrector's length L corr = 52.45 mm, internal and external radius r corr int = 173.45 mm and r corr ext = 184.56 mm, longitudinal center coordinate y corr cntr = -1303.97 mm giving en edge separation between corrector and main solenoid coil of approximately 80.19 mm and J sol corr = 249.41 A/mm 2 . The input and resulting parameter values for Fig. 4.30 are summarized in Tab. 4.6. Table 4.6: Initial main solenoid and final corrector and field parameter values for the solenoid field homogeneity study presented in the graph of Fig. 4.30.
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 431 Figure 4.31: Set-up for the study of the external (a)) and internal (b)) radius errors impact on the phase error σ ϕ . The error ring of length w err ≪ L sol is a section of the solenoid centered over one of the peaks of the undulator field, hence over the center of a pole piece close to the undulator array center. As indicated by the equation below each sketch, the variation in internal radius δr int at the level of the error ring implies a variation in the local current density from j sol in the main solenoid to j err in the ring in order to respect the conservation of the integrated current density (current) I sol = I err .

  Figure 4.32 shows the corresponding models of the errored solenoid with the localized thin error ring section illustrated in pink with respect to the main body of the ideal solenoid in red in the case of an external-radius error δr ext on the left-hand side of the figure and an internal-radius one δr int on the right-hand one in accordance with Fig. 4.31a and Fig. 4.31b respectively.

Figure 4 .

 4 33 adds a centered undulator array to the example of the errored solenoid impacted on its external radius to complete the simulated setup of Fig.4.31a.

Figure 4 .

 4 Figure 4.32: Radia-rendered realizations of the localized external (left) and internal-radius (right) error models of Figs. 4.31a and 4.31b. The respective error ring sections of external radius r ext err and internal radius r int err implemented in the main solenoids in Figs. 4.31a and 4.31b are shown here in pink to distinguish them from the rest of the main solenoids, of respective nominal external and internal radii r ext, int .
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 433 Figure 4.33: Radia rendering of an inserted staggered array in an example of external-radius-error solenoid according to the phase-error solenoid impact model and convention of Figs. 4.31a, 4.31b and 4.32.

Figure 4 .

 4 Figure 4.34a picks up again from Fig. 4.15a the peak-versus-solenoid-field optimization curve of the considered staggered array of λ u 8 = 16 mm.Figure 4.34a indicates encircled the selected operating point for the solenoid field B sol = 0.382 T and hence resulting peak field B p = 0.509 T for the characterization of the fabrication-tolerance impacted phase error σ Φ . The interest in positioning oneself in the these conditions as visible from Fig. 4.15a is to maximize the variation of the peak field B p with that of B sol , [dB p /dB sol ] max ≈ [dB p /dB sol ](B sol = 0.382 T) given graphically by the established slope for the evolution of the data-point set. This is estimated to facilitate the characterization of the ultimate phase error dependance on the radial error σ Φ (δr err ) according to the causal sequence δ err ⇒ δ B sol ⇒ δB p ⇒ δ σΦ . Figure 4.34b gives thus the initial on-axis longitudinal undulator field profile B z (y) in its central portion limited to several tens of periods with the peak field B p = 0.509 T before applying the local radial error on the solenoid body. The resulting modified B z profile is given by Fig. 4.34c in absolute and relative terms with respect to the initial one after applying a relative internal radius error δr err int /r sol int = 1.125 %. The consequent relative error on the solenoid field produced in this way is δB err sol /B sol ≈ -0.02 % as indicated in the left-hand inset of Fig. 4.34c.Tab. 4.7 gives the resulting evolution of the RMS phase error σ Φ defined in Subsec. 2.2.4 via Eq. (2.41). σ ϕ is computed with the B2E in-house ESRF software package[START_REF] Esrf | B2E A Software to Compute Synchrotron Radiation from Magnetic Field Data Version 1[END_REF] as a function of the relative radius errors for the external radius δ rel r ext = δr ext /r ext and for the internal one δ rel r int = δr int /r int in the range [-1.5 %, 1.5 %]. A pronounced smallness and stability is observed in this radius error range implying a priori that one can be tempted to permit oneself relaxing the relative fabrication tolerances on r int and r ext to ±1.5% or in absolute terms r int ≈ 159.68±2.39 mm and r ext ≈ 162.68 ± 2.44 mm. It is thus expected from Tab. 4.7 that the representative natural non-corrected phase error σ ϕ for the central section of the multi-array staggered undulator is two orders of magnitude inferiour to the typical target for the corrected phase error of about 2 • -3 • in conventional devices[START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF].
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 4 Figure 4.34a picks up again from Fig. 4.15a the peak-versus-solenoid-field optimization curve of the considered staggered array of λ u 8 = 16 mm.Figure 4.34a indicates encircled the selected operating point for the solenoid field B sol = 0.382 T and hence resulting peak field B p = 0.509 T for the characterization of the fabrication-tolerance impacted phase error σ Φ . The interest in positioning oneself in the these conditions as visible from Fig. 4.15a is to maximize the variation of the peak field B p with that of B sol , [dB p /dB sol ] max ≈ [dB p /dB sol ](B sol = 0.382 T) given graphically by the established slope for the evolution of the data-point set. This is estimated to facilitate the characterization of the ultimate phase error dependance on the radial error σ Φ (δr err ) according to the causal sequence δ err ⇒ δ B sol ⇒ δB p ⇒ δ σΦ . Figure 4.34b gives thus the initial on-axis longitudinal undulator field profile B z (y) in its central portion limited to several tens of periods with the peak field B p = 0.509 T before applying the local radial error on the solenoid body. The resulting modified B z profile is given by Fig. 4.34c in absolute and relative terms with respect to the initial one after applying a relative internal radius error δr err int /r sol int = 1.125 %. The consequent relative error on the solenoid field produced in this way is δB err sol /B sol ≈ -0.02 % as indicated in the left-hand inset of Fig. 4.34c.Tab. 4.7 gives the resulting evolution of the RMS phase error σ Φ defined in Subsec. 2.2.4 via Eq. (2.41). σ ϕ is computed with the B2E in-house ESRF software package[START_REF] Esrf | B2E A Software to Compute Synchrotron Radiation from Magnetic Field Data Version 1[END_REF] as a function of the relative radius errors for the external radius δ rel r ext = δr ext /r ext and for the internal one δ rel r int = δr int /r int in the range [-1.5 %, 1.5 %]. A pronounced smallness and stability is observed in this radius error range implying a priori that one can be tempted to permit oneself relaxing the relative fabrication tolerances on r int and r ext to ±1.5% or in absolute terms r int ≈ 159.68±2.39 mm and r ext ≈ 162.68 ± 2.44 mm. It is thus expected from Tab. 4.7 that the representative natural non-corrected phase error σ ϕ for the central section of the multi-array staggered undulator is two orders of magnitude inferiour to the typical target for the corrected phase error of about 2 • -3 • in conventional devices[START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF].

7 :

 7 Resulting stability of the RMS phase error RMS σ Φ during independant variation of the external and internal solenoid radius errors δ rel r ext and δ rel r int for the corresponding error ring models of Figs. 4.31a and 4.31b with an example of the case of δ rel r ext shown simulated in Radia in Fig. 4.33.
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 436 Figure 4.36: Corresponding horizontal (a)) and vertical (b)) trajectories x(y) and z(y) undertaken by an on-axis electron, launched parallel to the undulator axis at the negative coordinate of the lower integration boundary marked by the orange vertical line labeled "intgrtn bndr", and resulting from the field integral corrections impacting the undulator field profile B z (y) via end-pole application and corrector tuning displayed in Fig.4.35. Also indicated by colored vertical lines are the longitudinal coordinates ±L tot ext /2 and ±L tot /2 of the end-pole external-surface boundaries of the end-pole configurations respectively with and without a dedicated end pole piece.

Figure 4 . 37 :

 437 Figure 4.37: Longitudinal evolution of the corresponding horizontal (a)) and vertical (b)) angular excursions x ′ (y) and z ′ (y) undertaken by an on-axis electron, launched parallel to the undulator axis at the negative coordinate of the lower integration boundary marked by the orange vertical line labeled "intgrtn bndr", and resulting from the field integral corrections impacting the undulator field profile B z (y) via end-pole application and corrector tuning displayed in Fig. 4.35. Also indicated by colored vertical lines are the longitudinal coordinates ±L tot ext /2 and ±L tot /2 of the end-pole external-surface boundaries of the end-pole configurations respectively with and without a dedicated end pole piece.

  .[START_REF] Brunelle | Application of an Emittance Adapter to Increase Photon Flux Density on a Synchrotron Radiation Beam Line[END_REF] for the multi-period staggered pole array assembly.

Figure 4 .

 4 Figure 4.38: a): Exploded front-view sketch in perspective of the magnetic circuit structure with its geometric parameters that is envisaged for undulator stray field compensation in the multi-array variable-period assembly. Circuit material is identical to that of the pole arrays, soft ferromagnetic 49Fe-49Co-2V. b): Side view along the longitudinal axis y of the magnetic circuit shown in a).

Figure 4 .

 4 Figure 4.39: Left: View of the Radia FeCov model for the exploded (open) magnetic circuit shown in Fig. 4.38. Center: Integration of the main solenoid (red) in the magnetic circuit. Right: Front view of the corrector-equipped solenoid integrated in the magnetic circuit with correctors shown in orange.

Figure 4 . 40 : 2

 4402 Figure 4.40: Front view of the final closed magnetic circuit of Fig. 4.38 with a realistic-size aperture of several mm in both dimensions barely distinguishable.

Figure 4 . 41 :

 441 Figure 4.41: Longitudinal profile of the on-axis longitudinal field created by the solenoid-correctorcircuit aggregate of Fig. 4.38b in the left half region of the figure for the three different stages of aggregation with left-most edges of the elements indicated by colored vertical lines. The magnetic circuit length is l m c ≈ 2853.2 mm.

Fig. 4 .

 4 Fig.4.42 presents the rendered Radia graphic of a hybrid staggered undulator array defined in analogy to the hybrid permanent magnet undulator scheme discussed in Subsecs. 2.3.2 and 3.2.1. Namely in this version of the staggered array the air gaps that constitute the inter-spaces between successive FeCoV poles in the pure staggered array of Fig.4.11 are fully occupied by rare earth permanent magnets of NdFeB material of nominal (remanent) magnetization along the easy axis Oy µ 0 M r = 1.2 T (≈ B r according to Eq. (2.98)). The modeled magnetization characteristic of

  𝑠𝑜𝑙 in 𝑢 y direction FeCoV pole

Figure 4 . 42 :

 442 Figure 4.42: Radia model of a longitudinal section of a hybrid permanent magnet -ferromagnetic pole array for a staggered undulator. Pole material (dark blue) is 49Fe-49Co-2V of isotropic magnetization curve M (H) given in Fig. 4.4. Permanent magnet material (light green) is NdFeB of absolute-value (horizontal) easy-axis remanent magnetization M r µ 0 = 1.2 T, Fig. 4.2.

  4.1, in function of the applied magnetic excitation H y [A/m] that is due to B sol at the level of the permanent magnet, as given in Figs. 4.2 and 4.4. Fig. 4.43 gives the absolute easy-axis magnetization (magnetic polarization) µ 0 M y [T] at the center of the chosen NdFeB permanent magnet used in the hybrid staggered array proposition of Fig. 4.42 in function of the magnetic excitation H y (B sol [T]) [A/m] imposed by the central solenoid field B sol as explicitly noted.

Figure 4 .

 4 43 also traces the relative percentage change in the magnet's magnetization [δM y /M y 0 ](H y ) [%] under H y with respect to the nominal value µ 0 M y 0 = µ 0 M y (H y = 0) = µ 0 M r = 1.2 T by virtue of Eq. (2.98), Fig. 4.2. The fixed staggered-array and solenoid parameters used in this study are recalled in Tab. 4.10.

Figure 4 . 43 :

 443 Figure 4.43: Radia output for the variation of absolute easy-axis magnetization value µ 0 M y [T] of the NdFeB permanent magnet employed in the hybrid staggered array concept depicted in Fig. 4.42 (blue left ordinate) and the relative percentage change with respect to the nominal value δM y /M y 0 [%] defined at zero excitation field M y 0 = M y (H = 0) versus H and the equivalent central solenoid field B sol for the 8 mm -period hybrid staggered array of Fig. 4.42. The optimum values referred to are those of the non-hybrid staggered undulator of Fig. 4.11. The variation range of the current density J sol is [0.25J sol opt , 1.75J sol opt ]. Array and solenoid parameters are given in Tab. 4.10.
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 12551 Figure 5.1: Top: Two-dimensional spatial transverse intensity distributions I 1 (x, z) for the on-axis first harmonic E 1 (θ x = 0, θ z = 0) produced by the two extremal undulator arrays of the multi-period staggered-array assembly at a distance L y = 30 m from source point. The arrays' periods are λ u n={0, 8} = {8, 16} mm (left-and right-hand side). The respective maximum (optimized) peak fields B p = 0.41 T and 0.8733 T and an array length L u = 2 m are used, with the arrays taken individually in isolation from the assembly. Center: Corresponding horizontal half-cut intensity profiles I 1 (x, z = 0) at z = 0. Bottom: Vertical half-cut intensity profiles I 1 (x = 0, z) at x = 0.

Figure 5 . 2 :

 52 Figure 5.2: Examples of angle-integrated flux spectra F (E) in the 6-130 keV energy range produced by the representative parameter sets for the optimized undulator arrays of sequential numbers n = 0 and n = 8 with corresponding periods λ u 0 = 8 mm, λ u 8 =16 mm and peak fields B p 0 = 0.41 T, B p 8 = 0.87 T from Tab. 4.2 (left, right). Visible in the given energy range are the solitary first harmonic peak of the 8 mm -period array at E 1 = 40.819 keV on the left and the first, third, fifth, etc. harmonics of the 16 mm -period array respectively at E 1 = 11.543 keV, E 3 = 34.629 keV and E 5 = 57.715 keV on the right. Also visible in the right-hand graph are remnants of even harmonics (second, fourth, sixth, etc.) generated off-axis and present in the spectrum due to the finite transverse sizes of the collecting aperture.

  3.6 is to render more compact the global inter-array first-harmonic energy tuning interval. This reassures the continuity of the interval formally conditioned by the criterion function C through Eqs. (3.22) and (3.23) by overlapping the individual array intervals as represented in Fig. 5.3. Thus the obtained assembly-global tunable energy interval for E 1 spans from E 1 min = 11.54 keV for the on-axis array of λ u n=8 = λ u max = 16 mm magnetized for optimum peak field B p n=8 = B p 8 opt = 0.873 T via a solenoidal input of B sol 8 opt = 0.695 T upto E 1 max = 42.72 keV when λ u n=0 = λ u min = 8 mm is centered on-axis at minimum peak field B p 0 min = γ B B p 0 opt ≈ 0.03 T for γ B = 0.091.

Figure 5 . 3 :

 53 Figure 5.3: SRW tuning curves for on-axis angle-integrated spectral flux F 1 (left blue ordinate) and brilliance B 1 (right red ordinate) over the resulting global continuous tuning range in on-axis first harmonic energy E 1 (θ x = 0, θ z = 0) from E 1 min = 11.54 keV to E 1 max = 42.72 keV for the module parameters given in the left-hand side inset and the period list in the right bottom one. Dashed vertical (black, magenta) and horizontal (green) lines delimit the energy overlap intervals ∆E n for each neighboring-array couple n, n + 1. Global staggered-array parameters are recalled in the left-hand inset. The EBS beam parameter values in the middle of the straight section without solenoidal field applied are used, given in the upper right-hand side inset. The lower right-hand inset summarizes the discretized-period sequence {λ u n }, used from Tab. 3.4. Both λ u n and the slit dimensions ∆x, ∆z are given in [mm].

Fig. 5 .

 5 Fig. 5.4 gives the relative differences in on-axis angle-integrated spectral flux [δF 1 sol /F 1 ] [%] and brilliance [δB 1 sol /B 1 ] [%] when applying the described solenoid field model to the array magnetic structures in SRW with respect to the case of no solenoid field component. The variation of the solenoid field corresponding to the tuning of the peak field B p n of the arrays for the establishment of the individual tuning curves is deduced by inverting the short-period staggered-undulator peak-field formula of Subsec. 2.3.2, Eq. (2.105), and Sec. 4.2 for B p (B sol ) [52]:

Figure 5 . 4 :

 54 Figure 5.4: SRW relative differences in on-axis angle-integrated spectral flux [δF 1 sol /F 1 ] [%] (left blue ordinate) and brilliance [δB 1 sol /B 1 ] [%] (right red ordinate) between the cases of included and neglected solenoid field over the resulting global continuous tuning range in on-axis first harmonic energy E 1 (θ x = 0, θ z = 0) from E 1 min = 11.54 keV to E 1 max = 42.72 keV. Global staggered-array parameters are recalled in the left-hand upper inset. The EBS beam parameter values in the middle of the straight section with solenoidal field applied according to Eq. (5.9) for the corresponding case are used, given in the upper right-hand side inset. The lower right-hand inset summarizes the discretized-period sequence {λ u n }, used from Tab. 3.4. Both λ u n and the slit dimensions are given in [mm].

Fig. 5 .

 5 Fig. 5.5 give the intensity distribution results for the in-vacuum pure and hybrid permanent magnet (IVPPM and IVHPM) undulators discussed in Sec. 4.2 of λ u HP M = 17 mm analogous to those of Fig. 5.1 for the two staggered arrays of λ u 0/8 =8/16 mm. The left-hand side plots of Fig. 5.5 are taken at the IVPPM's maximum peak field B p IV P P M max ≈ 0.87 T obtained at the in-vacuum range minimum gap g IV min = 5 mm. The right-hand side ones are taken at the corresponding HPM maximum peak field B p IV HP M max ≈ 1.18 T at the same closed gap. Fig. 5.5 is acquired for slit sizes ∆x = 0.24 mm and ∆z = 0.23 mm. The resulting flux spectra for the two undulators, IVPPM and IVHPM, are shown respectively in the left-and right-hand sides of Fig. 5.6.The difference in the harmonic flux distribution due to that in the deflection parameter K value is observable. In the case of the IVHPM in the left-hand side of Fig.5.6 richer harmonic content is generated. This spectrum of the IVHPM is chosen to be the benchmark for that of the staggered array 8 of λ u 8 = 16 mm taken at its maximum peak field B p 8 = B p 8 max ≈ 0.87 T from the right-hand side of Fig.5.2. From this comparison one sees that this staggered array presents a significantly higher portion of flux F 1 /F tot on its first harmonic than the hybrid permanent magnet undulator. Also the staggered array is observed to generate a higher fundamental flux than the IVHPM by a factor of approximately 1.49.
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 11855 Figure 5.5: Top: Two-dimensional spatial transverse intensity distributions I 1 (x, z) in [ph/s/0.1 % bw/mm 2 ] for the on-axis first harmonic E 1 (θ x = 0, θ z = 0) produced at L y = 30 m from source point by the in-vacuum PPM and HPM undulators discussed in Sec. 4.2 of period λ u HP M = 17 mm, length L u ≈ 2 m and peak fields B p IV P P M ≈ 0.87 T (left-hand side) and B p IV HP M ≈ 1.18 T (right-hand side), at minimum gap g min = 5 mm. Center: Corresponding horizontal half-cut at respectively z = 0 mm. Bottom: Corresponding vertical half-cut at respectively x = 0 mm.

Figure 5 . 8 :Figure 5 . 9 :

 5859 Figure 5.8: Top: Two-dimensional distributions for the total power density dP/dS output in [W/mm 2 ] at L y = 30 m of the source point produced by the two extremal undulator arrays of the multi-period staggered array assembly of periods λ u n=0, 8 = {8, 16} mm (top, bottom row) taken isolated at maximum (optimized) peak field, respectively B p 0 = 0.41 T and B p 8 = 0.8733 T. Center: Corresponding horizontal half-cut profiles at z = 0. Bottom: Corresponding vertical half-cut profiles at x = 0.
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 61 Figure 6.1: Cylindrical coordinate system Orϕy for the description of a filament current loop of current intensity I.

Figure 6 . 2 :

 62 Figure 6.2: Sketch of a vertical mid-plane longitudinal cut of a typical solenoid field disposition.

Figure 6 . 3 :

 63 Figure 6.3: Electron trajectory in the solenoid projected on the transverse Oxz-plane showing the arc of circle for the electron's spiraling from point 1 to 2.

  sin (πQ x ) M m=1 (K m, 0 + J m, 1 η m, z ) β m, x cos (τ x, mk ),(6.39)η z (k) ≈ β k, z 2 sin (πQ z ) M m=1 (J m, 0 -J m, 1 η m, x ) β m, z cos (τ z, mk ).(6.40)In Eqs. (6.39) and (6.40) τ u, mk with u = {x, z} is a shifted phase advance defined by: τ u, ab = ∆ϕ u, ab -πQ u , (6.41)with the phase advance ϕ u, ab between elements at positions a and b along the ring given by:∆ϕ u, ab = ϕ u, b -ϕ u, a for ϕ b > ϕ a ϕ u, b -ϕ u, a + 2πQ u for ϕ b < ϕ a . (6.42) 

  c f. s. the fine structure constant, γ the relativistic Lorentz factor, ρ(y) the ring's radius of curvature and ℏ = h/2π the reduced Planck's constant. H is the dispersion invariant defined in terms of the uncoupled ideal-lattice Twiss parameters β r , α r , γ r and dispersions η r discussed in Subsec. 2.2.5 where r stands for either x or z as:H = γ r η 2 r + 2α r η r η ′ r + β r η ′ 2 r . (6.55)b rf is the transverse damping coefficient for the radio-frequency (rf-) cavities in the lattice:b rf (y) = 1 cp y0 i U 0, i δ(y -y i, cav ). (6.56)In Eq. (6.56) U 0, i represent the energy loss between rf-cavities 0 and i pinpointed along the ring by means of Dirac distributions. U 0, i is related to the total loss U 0 by U 0 = i U 0, i . The effect of horizontal damping produced by dipole magnets in the ring is represented by the corresponding coefficient b δx (y) which reads:

C γ = 4πr e 3mc 2 3 = 8 . 85 ×

 3885 10 -5 m GeV 3 , (6.59)where r e stands for the classical electron radius. The case of bending magnets establishing vertical focusing is treated by the vertical damping coefficient b δz (y) defined in analogy to the horizontal one in Eq. (6.57), b δx (y):b δz (y) = P γ cE 0 1 B x (y) ∂B x ∂z . (6.60)In the case of coupling in the machine the expressions for the equilibrium emittances E u, v become:){C 2 H 2 x (y) + [S 2 -+ S 2 + ]H 2 z (y)} ds {b rf (y) -C 2 η z (y)b δz (y) -[S 2 --S 2 + ]η z (y)b δz (y)}ds . ){C 2 H 2 z (y) + [S 2 -+ S 2 + ]H 2 x (y)} dy {b rf (y) -C 2 η z (y)b δz (y) -[S 2--S 2 + ]η x (y)b δx (y)}dy . (6.62)

. 64 )

 64 For uncoupled motion one has f 1001 = f 1010 = 0, C = 0 and S -= S + = 0, and thus for the emittances cited:E u, v = E x, z = ϵ x, z . The RMS moments σ 2x, z , σ 2 px, pz , σ xpx,zpz used namely for the characterization of the beam size are in the coupled case a function of the two eigenemittances and are:σ 2 x = β 11 E u + β 12 E v , σ
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 64 Figure 6.4: Optical beta function β 11, 22 matching and coupling beta compensation with respect to the initial lattice for the solenoid at B y 0 =1 T (k = 0.025 rad.m -1 ), left, and B y 0 =10 T (k = 0.25 rad.m -1 ) for the ideal lattice, right.

Figure 6 . 5 :

 65 Figure 6.5: Evolution of the matched optical horizontal and vertical beta functions β 11, 22 around the solenoid straight section for B y 0 = 1 T (k = 0.025 rad.m -1 ), left and B y 0 = 10 T (k = 0.25 rad.m -1 ) in the ideal lattice, right.

Figure 6 . 6 :

 66 Figure 6.6: Annihilation of the coupling beta functions β 12, 21 for the rest of the ring outside the solenoid straight section for B y 0 = 1 T (k = 0.025 rad.m -1 ), left and B y 0 = 10 T (k = 0.25 rad.m -1 ) in the ideal lattice, right.
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 67 Figure 6.7: Matched vertical dispersion in the solenoid forB y 0 = 1 T (k = 0.025 rad.m -1 ),left and B y 0 = 10 T (k = 0.25 rad.m -1 ) in the ideal lattice.

Figure 6 . 8 :

 68 Figure 6.8: RMS beam horizontal (red) and vertical beam sizes (black) σ xx zz around the solenoid insertion for forB y 0 = 1 T (k = 0.025 rad.m -1 ),left and B y 0 = 10 T (k = 0.25 rad.m -1 ) in the ideal lattice.

Figure 6 . 9 :

 69 Figure 6.9: RMS horizontal (red) and vertical divergences (black) σ px, pz around the solenoid insertion for forB y 0 = 1 T (k = 0.025 rad.m -1 ),left and B y 0 = 10 T (k = 0.25 rad.m -1 ) in the ideal lattice.

Figure 6 . 10 :

 610 Figure 6.10: Optical beta function β 11, 22 matching and coupling beta compensation with respect to the initial lattice for the solenoid at B y 0 = 1 T (k = 0.025 rad.m -1 ),left and B y 0 = 10 T (k = 0.25 rad.m -1 ) for the error-modeled lattice.

Figure 6 . 11 :

 611 Figure 6.11: Relative impact of the solenoid induced perturbation with respect to that of the nominal coupling error-set (first pane), solenoidal/non-solenoidal lattice differences in coupling (second pane) and dispersions (third pane) at B y 0 = 1 T (k = 0.025 rad.m -1 ), left, and B y 0 = 10 T (k = 0.25 rad.m -1 ), right.

Figure 6 . 12 :

 612 Figure 6.12: Annihilation of the coupling beta functions β 12, 21 for the rest of the ring outside the solenoid straight section for B y 0 = 1 T (k = 0.025 rad.m -1 ), left and B y 0 = 10 T (k = 0.25 rad.m -1 ) in the error-model lattice.
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 613 Figure 6.13: Matched vertical dispersion in the solenoid forB y 0 = 1 T (k = 0.025 rad.m -1 ),left and B y 0 = 10 T (k = 0.25 rad.m -1 ) in the error-modeled lattice.
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Table 3 .

 3 1: Basic definitions and corresponding symbol notations for the structural parameters of the multi-period staggered pole array assembly and individual staggered array depicted in Figs.

	3.3

  ) which is an adapted variant of Eq. (2.95) with B p o ∞ = 1.9329 T. B p o ∞ is defined for the multi-array staggered variable-period undulator in equivalence to the remanent-field permanent magnet factor aB r (noted B p o ∞ ≡ aB r below) in Eq. (2.95). The expression is fitted with the staggered-array optimized peak field values of Tab. 3.2 to yield the cited value of B p o ∞ = 1.9329 T at g=4 mm in line with the motivated gap value choice in Subsec. 3.2.1. The details of the optimization of the peak field values for the staggered-undulator arrays in the cited period range of Tab. 3.2 are given in Sec. 4.2. Expressing B p o n and B p o (n+1) through Eq. (3.15) thus yields for the two wavelengths λ E1 n max , λ E1 n+1 min respectively:

Table 3 .

 3 2: Peak field B p o, n optimized with the Radia 3D magnetostatics code

	3.17)

  .3.

		γ B [1]	
	0.091	0.5	0.8
	{λ u n } ∈ [8, 16] [mm]
	8	8	8
	8.357	8.252	8.110
	8.821	8.552	8.228
	9.461	8.919	8.355
	10.417 9.380	8.493
	12.038 9.977	8.644
	15.464 10.783 8.807
	-	11.929 8.987
	-	13.650 9.185
	-	-	9.405
	-	-	9.649
	-	-	9.922
	-	-	10.229
	-	-	10.577
	-	-	10.974
	-	-	11.428
	-	-	11.951
	-	-	12.557
	-	-	13.262
	-	-	14.084
	-	-	15.045
	Table 3.3: Adjusted period-values sequences generated by iterative application of Eq. (3.22) in
	the case of γ		

B = 0.091, 0.5, 0.8 starting from λ u n=0 = 8 mm and fixing an upper boundary of λ u n=N -1 ≤16 mm where N is the resulting number of arrays corresponding to the distinct period values.

Table 3 .

 3 

			5708, L tot =236.57 mm
	n λ u n [mm]	N p n
	0	8	29
	1	8.28	28
	2	8.57	27
	3	8.89	26
	4	9.23	25
	5	10	23
	6	10.91	21
	7	12.63	18
	8	16	14

4: Individual array n values for period λ u n and number of periods N p n generated by the algorithmic application formalized in Eqs.

(3.33) 

and

(3.34) 

for the Radia candidate module schematically depicted in Fig.

3

.6. Primary input parameter values for the procedure are λ u 0 =8 mm, γ B =0.091 and α p =0.5708 (bold) with an upper boundary for the period interval of λ u n =16 mm resulting in N =9, the total number of arrays in the assembly. λ u 9-1=8 =16 mm is exactly attained in this particular case for the secondary parameter (underlined) value N p 0 =29 yielding L tot =236.5664 mm.

  optimal peak field for a staggered array of period λ u = 47.77 mm. This peak field value is easily surpassed by B p achieved by arrays of sensibly shorter periods λ u as seen in Fig.4.13 and Tab. 4.2. Hence one suggests that K = 2.2 can be attained for λ u < 47.77 mm. An indicator for this can be the standard ESRF in-air U35 undulator of λ u = 35 mm operating at minimum gap g u35 min = 11 mm which in this configuration is continuously tunable at the first-third harmonic interface. In this respect, in order for one to have K = 2.2 at λ u = 35 mm a peak field B p ≈ 0.67 T would be required. This field value is lower than the optimal peak fields boasted by the staggered arrays of integer periods λ u ∈[START_REF] Tatchyn | Variable-Period Electrostatic and Magnetostatic Undulator Designs for Generating Polarized Soft X Rays at PEP[END_REF][START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF] mm with corresponding B p ∈ ≈ [0.68, 0.87] T as illustrated in Fig. 4.13 and Tab. 4.2 with the maximum K-value being K(λ u = 16 mm, B p ≈ 0.87 T) ≈ 1.31. Hence one is oriented to search for the staggered array period λ u stg (K = 2.2) permitting to obtain K = 2.2 in the range λ u ∈ ≈ ]16, 35[ [mm]. Optimizing the peak field B p in Radia for λ u in the given interval yields B p opt ≈ 0.99 T at λ u = 23.67 mm for a resulting K opt (λ u = 23.67 mm) ≈ 2.20

2) ≈ 47.77 mm.

(3.40) 

If one is to give credence to the value yielded in Eq. (3.40) the corresponding optimized peak field B p opt from the inversion of Eq. (3.12) is B p opt (λ u = 47.77 mm) ≈ 0.493 T. Clearly this field cannot be the

  .49) By replacing the peak fields B p n, n+1 in Eq. (3.49) with their respective expressions according to Eq. (2.95) again with B p o ∞ ≡ aB r , Eq. (3.49) becomes:

Table 4 .
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	λ u	B sol opt	w p opt	α p opt	B p opt
	8 mm 0.8724 T 13.625 0.5708 0.4100 T
	9 mm 0.8400 T	-	0.5730 0.4854 T
	10 mm 0.8206 T	-	0.5728 0.5556 T
	11 mm 0.8136 T	-	0.5686 0.6203 T
	12 mm 0.7710 T	-	0.5733 0.6802 T
	13 mm 0.7502 T	-	0.5731 0.7350 T
	14 mm 0.7304 T	-	0.5728 0.7852 T
	15 mm 0.7082 T	-	0.5717 0.8312 T
	16 mm 0.6954 T	-	0.5714 0.8733 T

2: Nelder-Mead symplex optimization algorithm results for the support-less staggered undulator array displayed in Fig.

  .6a. Consequently from Eq. (4.1) the same comparative remark holds for the first-harmonic energy tuning curves of Figs. 4.6b and 4.15b.

		0.8							
		0.7							
	Bp [T]	0.6							
		0.5							
		0.4							
		0.3							
		0.2	0.2	0.4	0.6	Bsol [T]	0.8		1.0	1.2
		80	60	40	20	0 Bsol/Bsolopt [%]	20	40	60	80
			50	100	150		200 Jsol [A/mm 2 ]		250	300
		80	60	40	20		0 Jsol/Jsolopt [%]		20	40	60	80

  ].

	4		6	8 solenoid thickness r [mm] 10	12	14
	164	166	168 solenoid rext [mm] 170		172	174
	1.02	1.03	1.04	1.05 sol = rext/rint [1] 1.06	1.07	1.08	1.09

Table 4 .

 4 8: Parameters for the components of staggered array n = 8 studied in terms of field integral compensation in Figs. 4.36a, 4.36b, 4.37a and 4.37b, namely pole array, main solenoid, corrector coils and magnetic circuit, the definitions for the two being given by Figs. 4.28 and 4.38. δx ′ tol (y exit ) and δx tol (y exit ) at the exit y exit of the staggered array are calculated according to Eqs. (4.12) and (4.13) to be respectively δx ′ tol (y exit ) ≈ 6.83 × 10 -4 mrad and δx tol (y exit ) ≈ 5.15 × 10 -3 mm, given and traced in Figs. 4.36a and 4.37a. The analogous vertical angular offset and displacement δz ′ tol (y exit ) and δz tol (y exit ) indicated in Figs. 4.36b and 4.37b are δz ′ tol (y exit ) ≈ 3.97 × 10 -4 mrad and δz tol (y exit ) ≈ 1.59 × 10 -3 mm.

Table 4 .

 4 10: Summary of parameter definitions, notations and values for the structural parameters of the hybrid staggered pole array depicted in Fig.4.42 and studied in Fig.4.[START_REF] Masuda | A Design Study of a Staggered Array Undulator for High Longitudinal Uniformity of Undulator Peak Fields by Use of a 2-D Code[END_REF] 

		Definition	Notation & Value
		Pole and Permanent magnet width	w p ≈ 13.63 mm
		Pole and Permanent magnet height	h p = 20 mm
		Pole and Permanent magnet support height	h s = 0 mm
		Pole material	FeCoV
	.	Permanent magnet material Permanent magnet remanent field	NdFeB B r = 1.2 T (abs. value)
		array gap	g = 4 mm
		array period	λ u = 8 mm
		Main solenoid coil external radius	r ext = 162.68 mm
		Main solenoid coil internal radius	r int = 159.68 mm
		Main solenoid length	L sol = 2500 mm

Table 5 .

 5 2: Used peak field variation limits B p n opt , B p n+1 min [T] and resulting first harmonic energy overlap intervals ∆E n [keV], n-th -and (n + 1)-th -array brilliance percentage overlaps [δB/B] n [%] at neighboring-array couples {n, n + 1} [1] of corresponding period couples {λ u n , λ u n+1 } [mm] from the graph of Fig. 5.3.

		.000, 8.276	0.410, 0.044	0.4700	26.12
	1, 2	8.276, 8.571	0.485, 0.051	0.6540	32.57
	2, 3	8.571, 8.889	0.556, 0.056	0.9420	41.26
	3, 4	8.889, 9.231	0.620, 0.062	1.2681	48.70
	4, 5	9.231, 10.000	0.680, 0.067	0.2080	8.24
	5, 6	10.000, 10.910	0.735, 0.072	1.1561	31.00
	6, 7	10.910, 12.632	0.785, 0.076	0.7300	15.92
	7, 8	12.632, 16.000	0.831, 0.079	1.2481	19.53

  this translates into:

	m e0	d (γdr/dt) dt	-m e0 γr	dθ dt	2	= er	dθ dt	B y .	(6.30)

  )

	S -=	sinh (2P) P	∥f 1001 ∥,	(6.47)
	S + =	sinh (2P) P	∥f 1010 ∥,	(6.48)

  2 z = β 21 E u + β 22 E v ,(6.65)σ 2 px = γ 11 E u + γ 12 E v , σ 2 pz = γ 21 E u + γ 22 E v ,(6.66)σ xpx = -α 11 E u + -α 12 E v , σ zpz = -α 21 E u + -α 22 E v .(6.67)In Eqs. (6.65) to (6.67) the generalized coupled beta functions β 11, 22, 12, 21 are made to appear and their relation to the uncoupled optical functions reads:

Table 6 .

 6 pm.rad] ∆E z [pm.rad] 1: Equilibrium emittances evolution in the horizontal and vertical planes versus solenoid strength parameter k (solenoid field B y 0 ) for the corrected background-error lattice with respect to the nominal values of the non-solenoidal error-modeled lattice.B y 0 [T] k [rad.m -1 ] ∆E x [pm.rad] ∆E z [pm.rad]

	0	0	0.000	0.000
	1	0.025	0.332	0.039
	2.0014	0.05	-0.878	0.067
	4.0028	0.10	0.047	0.174
	6.0042	0.15	1.709	0.400
	8.0055	0.20	-0.972	0.804
	10.0069	0.25	1.394	1.520
	0	0	0.000	0.000
	1	0.025	-0.260	0.681
	2.0014	0.05	-0.943	2.504
	4.0028	0.10	-3.488	9.154
	6.0042	0.15	-7.371	18.802
	8.0055	0.20	-12.221	30.201
	10.0069	0.25	-17.633	42.432

Table 6 .

 6 2: Equilibrium emittance evolution in the horizontal and vertical planes versus solenoid strength parameter k (solenoid field B y 0 ) for the non-corrected lattice with respect to the nominal values of the non-solenoidal error-modeled lattice.
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operation has to take into account the necessary radiation adjustment condition formulated in Eqs. (3.20), (3.22) and (3.23) between the two neighboring arrays in question. To this end λ ′ u n serves as an input argument to an algorithmic procedure implementing a numerically solvable equation based on the criterion function C such as to yield λ u n+1 = λ ′ u n + δλ u n max (λ ′ u n ). On its turn, λ u n+1 is then inputted in place of λ u n in Eqs. (3.28) and (3.31) to produce respectively N ′ p n+1 and λ ′ u n+1 . Thus, the global construction scheme for the assembly unit is of an iterative kind. It can be summarized in the following synoptic relation, where G -→ (a, b) designates the set of equations (a) and (b) giving the final capped number of periods and corresponding "squeezed" period values respectively: The case of the initial step i = 0 is treated simply apart in the frame of the introduced formalism since λ u 0 = λ ′ u 0 is one of the input parameters for the proposed module specification method (together with N p 0 = N p 0 ′ or α p and L tot equivalently): Naturally the scheme's execution stops at a final period value λ ′ u n=N -1 inferior or equal to an upper boundary of a preliminary chosen λ u n work interval where N is the resulting total number of undulators in the undulator array assembly. The scheme's success in terms of first harmonic energy adjustment is guaranteed by use of the function ⌈x⌉ Eqs. (3.28) and (3.31) assuring λ ′ u n is within the adjustment range with respect to λ ′ u n-1 for all n: λ ′ u n -λ ′ u n-1 < [δλ u n max (λ ′ u n-1 )] (> 0), ∀n. It might be worth pointing out that if one rather works with α p and L tot then not every initial choice of L tot is suitable for the generation of the final module period and number of periods sequences, λ ′ u n and N ′ p n . More precisely, for a given set of λ u 0 , α p and form of criterion function C through B p o ∞ , g and γ B according to Eq. (3.22) there is a threshold region of values for L tot below which the scheme does not generate a meaningful λ ′ u n and hence N ′ p n sequences, namely such that λ ′ u i ̸ = λ ′ u j for i̸ =j, i, j in [0, N [. Due to the nature of the module specification method given by Eqs. (3.32) and (3.33) this condition translates more exactly into λ ′ u i ̸ = (<) λ ′ u i+1 , i in [0, N -1[. This condition is immediately verifiable on the first step for i=0. It is then up to the user of the algorithm to increase L tot before relaunching the procedure through the subsequent iteration via Eqs. (3.32) and (3.33). By definition of L tot the corresponding module length increment can logically only be in discrete multiples of the minimal (initial) period λ u 0 , that is δL tot = mλ u 0 where m ∈ Z + . Therefore Eqs. (3.24) and (3.28) and consequently Eq. (3.31) participating in the presented building scheme can be slightly modified to include the parameter m and become Eqs. (3.35) to (3.37) respectively:

m hence clearly gives the number of additional minimal periods for the equivalent increase of the desired module length L tot . As such it enables the user to sensibly "tune" the number of initial minimal periods (of the first undulator) N p 0 and thus corresponds to the exploration of effectively possible values of N p 0 and respective intended lengths L tot (due to α p being fixed). Precisely the tuning serves to ultimately identify the lower thresholds N p 0 min and L tot min onward from which useful modular structures can be built. In this context "useful" refers to those satisfying the by the detailed specifics of the meshing it is chosen as realistic for the staggered-array poles since it provides relatively high B p values in Figs. [START_REF] Andrault | [END_REF].17 and 4.18.

A somewhat similar but different situation holds as regards the evolution of B p this time with support height h s in the case of λ u = 8 mm as portrayed in Fig. 4.20. Although in this case there is practically no perturbation problem for the peak field values when the support height is varied a kind of oscillating behaviour of B p with h s is established from about the middle of the displayed support height range. This time, without entering into the most thorough of investigations, this is attributed to reached a smallness in the evolution of the value of B p comparable with the set precision of 1.10 -4 for the parameter of the relaxation procedure. From Figs. 4.17 and 4.18 it is observed that B p (h s ) → const. in the vicinity of h s =5 mm. This value of h s is esteemed to be able to provide sufficient mechanical stability for a pole array of h p =20 mm and is chosen for this reason as the value for the arrays' support height as well as for B p 's stability in with h s in the surrounding interval and the numerical workability of the resulting ratio h s /h p = 5/20 = 1/4. Error-less on-axis profile in the central part of the undulator field B z (x = 0, y, z = 0) of the staggered array for the input and resulting parameters summarized in the inset before applying the errored winding section in the case of an internal radius error δr int /r int . c): Errored on-axis profile in absolute (left-hand blue ordinate) and relative values with respect to those of the error-less profile (right-hand red ordinate) for the parameters given in the inset after applying the errored winding section.

Chapter 5

Radiation performance

Introduction

The main figure of merit for the performance of a synchrotron radiation source [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF] such as an insertion device is the apparent on-axis brightness or here preferred brilliance B m (0, 0) = B m at a given harmonic m. The brilliance is defined for practical needs in the case of an on-axis odd harmonic m by Eq. (2.86) [1, 7, 18, 71, 78-80, 86, 87]:

In Eq. ( 5.1) F m = Φ m /(δλ/λ)(0, 0) is the on-axis angle-integrated spectral flux in units of [ph/s/0.1 % bw], Σ 0 m q = Σ m q (y 0 , 0, 0) and Σ ′ 0 m q = Σ ′ m q (y 0 , 0, 0) with q = {x, z} are respectively the on-axis photon beam size and divergence in the Oqy plane determined at the source position y 0 and given by Eqs. (A.4) and (A.5):

Σ ′ 0 m q ≈ σ ′2 q (y 0 ) + Σ ′2 γ 0 m q .

(5.3)

In Eqs. (5.2) and (5.3) Σ γ 0 m q = Σ γ m q (y 0 ), Σ ′ γ 0 m q are respectively the intrinsic photon beam RMS size and divergence in the Oqy -plane introduced together with the dependent photon beam-related quantities in Subsec. 2.2.6. σ q (y 0 ) and σ ′ q (y 0 ) are the corresponding RMS size and divergence of the electron beam discussed in Subsec. 2.2.5. From Eq. (5.1) it is seen that B m presents itself as the ratio of the on-axis angle-integrated spectral flux of the m-th harmonic, F m , and the transverse phase space volume occupied by the photon beam, given in the denominator, observed on-axis at the position of the undulator's longitudinal center coordinate y 0 [START_REF] Brandt | CAS-CERN Accelerator School: Course on Synchrotron Radiation and Free-Electron Lasers[END_REF][START_REF] Suller | Introduction to Current and Brightness Limits[END_REF] in the case that the ID be installed in the center of the straight section housing it. It follows from this that B m is quantified by the number of photons received by the detector or "observer" per unit time per unit relative bandwidth δλ/λ around a given radiation wavelength λ(m) per unit solid surface orthogonal to the direction of incidence of the photon beam per unit solid angle. Hence the brilliance B m is measured in [photons/s/0.1%/mm 2 /mrad 2 ]. y 0 gives the position of the electron and photon beam waists for an idealized electron beam of zero energy spread and hence dispersion σ 2 E = 0, η 2 q (y) = 0 m as remarked in Subsec. 2.2.6. The photon source position is hence defined as that of the photon beam waist. As seen from Eq. (2.86) the phase space area of the photon beam source is the product of the horizontal and vertical transverse RMS photon beam sizes Σ 0 m q and divergences Σ ′ 0 m q as detailed in Subsec. 2.2.6.

SRW synchrotron radiation code

The Synchrotron Radiation Workshop (SRW) physical optics computer code [START_REF] Chubar | A Three-Dimensional Magnetostatics Computer Code for Insertion Devices[END_REF][START_REF] Chubar | Accurate and efficient computation of synchrotron radiation in the near field region[END_REF] is used in numerical studies of various degrees of detail of the photon source performance of the multi-array variable period staggered undulator. SRW is optimized for computations of synchrotron radiation produced from relativistic electrons [START_REF] Landau | Chapter 2-relativistic mechanics[END_REF][START_REF] Landau | Chapter 1-the principle of relativity[END_REF] in the near-and far-field domains such as the one The separate arrays are optimized for this beforehand in terms of geometric and solenoid parameters for pushing the limit of the attainable peak field B p n (λ u n ). Following the application of this criterion a symmetric staggered-array unit module of a specific non-trivial array-period sequence {λ u n=0, 1,..., 8 } in the interval 8 [mm] ≤ λ u n ≤ 16 [mm] and length L tot ≈ 237 mm. Period switching among the values in {λ u n } combined with peak-field tuning via the solenoid field B p n (B sol n ) up to the optimized maximum peak field value for each staggered array permits to construct a continuous tuning range for the on-axis first-harmonic energy E 1 from 11.54 keV to 42.72 keV at an electron beam energy E = 6 GeV.

No relative impact on the flux curves whatsoever from the specification of the array solenoid fields B sol n in the frame of the linear solenoid-field component model implemented in SRW is observed from the SRW simulations. This is interpreted as an indication that in the synchrotron radiation package the flux F 1 is treated as transparent to possible influence stemming from the presence of such a magnetic component which is added to that of the undulator field B z . The brilliance tuning curves are however altered as a result of the application of the solenoid field B sol . This is found to be due to variations in the subsequent photon beam sizes and divergences Σ 0 m q and Σ ′ 0 m q . The observed relative loss in tuned brilliance value [δB 1 sol /B 1 ](E 1 ) among the simulated individual arrays of the staggered-array multi-period assembly increases with the undulator-array sequential number n in the assembly and with the array period λ u n . [δB 1 sol /B 1 ](E 1 ) decreases with increasing tuned first-harmonic energy E 1 . The maximum brilliance loss [δB 1 sol /B 1 ] max (E 1 ) = 4.67 % from the application of the solenoid field B sol, n for array n is found to arise for λ u n = [λ u n ] max = λ u 8 = 16 mm (n = 8) and minimum tuned energy for that array

For the fabrication of the staggered-array undulator-module pole pattern one is tempted to investigate the possibility of using 3D printing technologies. In this way the poles could be manufactured in their respective positions in the structure of the array module in an additive fashion where subsequent material layers are vertically aggregated in opposition to any sustractive process involving cutting our or other procedures.

The multi-array staggered undulator assembly is observed to be able to attain a higher brilliance up to a maximum increase of 28.9 % for array number n = 6 of λ u 6 ≈ 10.9 mm tuned in to operate at its corresponding maximum (optimized) peak field [B p 6 ] max ≈ 0.61T for a resulting deflection parameter K 6 max ≈ 0.63 and fundamental on-axis harmonic energy [E 1 6 ] min = 26.256 keV. The underlying comparison is made to the maximum brilliance attained by an in-vacuum hybrid permanent-magnet undulator (IVHPM) of λ u IV HP M = 17 mm operating at B p IV HP M ≈ 1.18 T, K IV HP M ≈ 1.89, [E 3 IV HP M ] min = 21.827 keV. This gain in brilliance is achieved for an energyintegrated peak power surface density [dP/dS] 6 max ≈ 304.75 W/mm 2 , about 29.4 % lower than that of the IVHPM at 30 m from the source point. The maximum brilliances for the extremal-period staggered arrays of λ u 0 = 8 mm, λ u 8 = 16 mm are obtained respectively for B p 0 max ≈ 0.41 T, E 1 0 min ≈ 40.82 keV and B p 8 ≈ 0.77 T, E 1 8 ≈ 12.89 keV and scale correspondingly as 74.3 % and 77.2 % approximately of the cited maximum IVHPM brilliance for relative peak power densities of approximately 44.3 % and 76.9 % with respect to that of the IVHPM undulator.

Three sub-variants of a variable-period staggered-array assembly are considered and presented. The first two are the multi-array (-period) devices composed respectively of N = 9 (multi-period) and N = 2 (bi-period) staggered arrays of distinct λ u n with n ∈ [0, N -1] in the period range of interest. Among the three variable-period structures examined the multi-period one of N = 9 bears the main focus of the study. It illustrates the approach used to determine a period sequence enabling the design of a multi-array staggered assembly that is continuously tunable over a wide range in first harmonic energy E 1 . It also serves to illustrate the performance in radiation emission one can expect from such an undulator. The second multi-array one, bi-period with N = 2, is derived from the first but is a two-array one of two extremal period values λ u 0 = 8 mm and λ u 1 ≈ 23.7 mm considered as a revolver-undulator alternative. As such it is meant to operate in two complementary regimes: one of a relatively monochromatic high-energy radiation emission of low tunability when tuned on the shorter period and a spectrally wider tunable low-energy photon output when switched on the larger period. Respectively two different solenoids for the two multi-array assemblies are specified.

The third variable-period staggered undulator scheme studied in terms of variable-period discretesequence generation {λ u n } is considered in the frame of the segmented adaptive-gap undulator. In this frame a single pole array on the axis of the solenoid is envisioned for operation at a fixed Appendix A

Characteristics of undulator radiation

Equation (2.86) for the on-axis brilliance of the m-th harmonic B m (0, 0) is a preferred approximation to the summation approach towards the calculation of the photon brilliance generated by a finite-emittance electron beam via the convolution of the single-electron intrinsic brilliance over the transverse electron distribution in the electron beam bunch [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]:

In Eq. (A.1) B s. e. is the single-electron (natural emission) photon brilliance that is convoluted over the electronic density n e with respect to the transverse spatial and angular coordinates x, z, θ x , θ z of the electrons in the bunch at the harmonic frequency ω m for the polarization direction defined by the vector ⃗ p. The validity of the convolution method is subject to the condition of a zero transverse-gradient undulator field in which case the individual electrons of the bunch experience an identical field and hence acceleration independant of their transverse coordinates x, z. This condition is readily fulfilled in most insertion devices. In this case the individual electron brilliances add simply to one another and result in the convolution integral that gives the multi-electron (thick-beam) brilliance as stated by Eq. (A.1). If the center of the straight section lodging the ID is a symmetry point of the magnetic lattice then the electron density n e can be expressed through the optical lattice beta functions β x, z and beam emittances ϵ x, z discussed in Subsec. 2.2.5 as [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF]:

For an electron beam of relative energy spread σ E , implying an electron density distribution upon-dependent, n e = n e (X, Z, Θ x , Θ z , y, σ E ), Eq. (A.1) generalizes into:

The convolution approach does not reflect possible bunch-related coherent radiation effects dominant above a certain wavelength limit of the order of the typical bunch size [START_REF] Di Mitri | Coherent Synchrotron Radiation and Microbunching Instability[END_REF]. Such radiation can be generated on purpose with a bunch of longitudinally modulated electron density as in a free electron laser (FEL) [START_REF] Wiedemann | Synchrotron Light Sources and Free-Electron Lasers[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Shintake | The SACLA X-Ray Free-Electron Laser Based on Normal-Conducting C-Band Technology[END_REF][START_REF] Wiedemann | Particle Accelerator Physics[END_REF]. The source RMS dimensions for Eq. (2.86) given by its on-axis transverse sizes and divergences Σ m q (y 0 , 0, 0) and Σ ′ m q (y 0 , 0, 0) with q = {x, z} can be evaluated from the corresponding electron beam sizes and divergences σ q (y = y 0 ) and σ ′ q (y = y 0 ) at the source location y 0 and those of the intrinsic photon beam, Σ γ m q (y = y 0 , 0, 0) and Σ ′ γ m q (y = y 0 , 0, 0). On condition that the undulator be centered in the straight section, it can be shown that the minimum intrinsic or natural RMS size Σ γ m q (y, 0, 0) min occurs at the middle of the undulator (defined as the source location), Σ γ m q (y, 0, 0) min = Σ γ m q (y 0 , 0, 0) whereas the RMS divergences Σ ′ γ m q (y) are invariant in y, Σ ′ γ m q (y) = Σ ′ γ m q (y 0 ) = Σ ′ γ m q . Σ γ, m, q and Σ ′ γ m, q characterize the natural emission produced by a single electron or a filament monoenergetic electron beam. Thus the RMS photon source dimensions are evaluated as [START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Elleaume | Undulators for Free Electron Lasers[END_REF][START_REF] Chubar | Physical Optics Computer Code Optimized for Synchrotron Radiation[END_REF]:

In Eqs. (A.4) and (A.5) the intrinsic on-axis photon beam sizes and divergences can be approximated from numerical fits of relevant projections as:

with L u = N p λ u the undulator length no taking into account the length of the external magnetic pieces.

Provided the straight section housing the undulator is installed so as to have a local symmetry (minimum) point of the ring lattice optics in its center, the photon beam source resulting from Eqs. (A.4) and (A.5) has its waist (minimum size) at the corresponding longitudinal coordinate y 0 , Σ m q (y 0 ) = Σ m q min . This is the case for the majority of storage rings meaning that the symmetry point y 0 is a local minimum of the horizontal and vertical beta functions, β q min = β q0 = β q (y = y 0 ) with q = {x, z}. For a minimum β q0 occurring at s 0 where s this time redesignates y as the longitudinal curvilinear coordinate taken along the reference trajectory of the storage ring, Fig. 2.14, the beta functions β q (s) at the longitudinal location s in the straight section can be expressed as [START_REF] Wolski | Beam Dynamics in High Energy Particle Accelerators[END_REF][START_REF] Wolski | Synchrotron Light Machines[END_REF][START_REF] Wolski | Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation[END_REF]:

The betatronic part of the electron RMS beam size σ q with the addition of the energy-dispersion contribution is then given by: σ q (s) = ϵ q β q (s) + η 2 q (s)σ 2 E , (A.9)

The corresponding RMS beam divergence σ ′ q (s) in the straight section is found by deriving Eq. (A.8), injecting the result in Eq. (2.70) to express the Twiss parameter α q (s) and using in the expression for γ q (s) of Eq. (2.71) to obtain σ ′ q (s). This gives in the cited succession [START_REF] Chavanne | Physics of Undulators[END_REF]:

If the dispersive term in Eq. (A.9) η 2 q (s)σ 2 E due to the energy spread σ E and dispersion lattice function η q (s) in Eq. (A.9) is to be neglected, this equation indicates an electron beam waist σ q min = σ q (s 0 ) = ϵ q β q (s 0 ) = ϵ q β q0 occurring at the undulator center s 0 since β q0 = β q (s 0 ) = β q min . Equation (A.4) then shows that the source waist Σ m q min = Σ m q (s 0 ) is effectively attained at the center of the undulator (source location) s 0 if s 0 is in the middle of the straight section through the contribution of the electron beam waist σ q (s 0 ) = σ q min . Equations (A.6) and (A.7) are obtained as RMS values of Gaussian fits from spectral fluxes respectively per unit surface at source s 0 , [Φ m /(δxδz(δλ/λ))](r = √ x 2 + z 2 , ω, s 0 ), and per unit solid angle on central cone [Φ m /(δxδz(δλ/λ))](θ = θ 2

x + θ 2 z , ω). The fits are valid for frequencies Equation (A.15) can be rewritten under the form:

Σ m q (y 0 )Σ ′ m q (y 0 ) = λ m (0, 0) 2π (m ϵ q m β q + 1) m ϵ q m β q + 1 , (A. [START_REF] Potylitsyn | Electromagnetic Radiation of Electrons in Periodic Structures[END_REF] where the parameters m β q and m ϵ q are defined respectively as: m β q = β q0 β γ , (A.17) m ϵ q = ϵ q ϵ γ , (A.18)

and characterize the matching quality between the electron and intrinsic photon beams in terms of beta functions and emittances [START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Brunelle | Application of an Emittance Adapter to Increase Photon Flux Density on a Synchrotron Radiation Beam Line[END_REF][START_REF] Brunelle | Application of the Emittance Adapter to SOLEIL and MAX IV[END_REF].

The choice of a Gaussian distribution for the estimation of the diffraction-limited photon beam emittance stems from a comparison of the ID source to the approximate profile of the fundamental TEM 00 established in an optical cavity [START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Born | Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF][START_REF] Born | Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF]. In reality the intrinsic photon beam is not Gaussian but fully transversely (spatially) coherent [START_REF]7-GeV Advanced Photon Source Conceptual[END_REF][START_REF] Onuki | Undulators, Wigglers and Their Applications[END_REF][START_REF] Clarke | The Science and Technology of Undulators and Wigglers[END_REF][START_REF] Chavanne | Some Undulator Photon Beam Properties in a Flat to Round Electron Beam Insertion[END_REF][START_REF] Hofmann | The Physics of Synchrotron Radiation[END_REF][START_REF] Bahrdt | Shaping Photon Beams with Undulators and Wigglers[END_REF][START_REF] Versteegen | Insertion Devices for Synchrotron Light Production at ESRF[END_REF][START_REF]Accelerators as photon sources[END_REF]. Coherence is a measure for a source's ability to give rise to interference patterns in particular experimental setups and its level for a given light source is accounted for by the brilliance B n (0, 0) of the source [START_REF] Born | Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF][START_REF] Taillet | Dictionnaire De Physique[END_REF][START_REF] Basu | Dictionary of Pure and Applied Physics[END_REF][START_REF] Basu | Dictionary of Material Science and High Energy Physics[END_REF][START_REF] Hecht | [END_REF].