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Abstract

This thesis addresses the coded modulation (CM) scheme based on quadrature
amplitude modulation (QAM) signaling and low-density parity-check (LDPC)
channel coding. It also focuses on time-invariant non-uniform signaling in
combination with probabilistic amplitude shaping (PAS) and circular QAM
(CQAM) modulations.

First, the thesis describes the main transmission components from the transmit-
ter to the receiver over the physical channel. Then, some notions used as metrics
for performance evaluation are analyzed, and we typically note the mutual in-
formation (MI). Also, relevant background materials on shaping techniques and
LDPC codes are presented.

Second, the thesis focuses on optical networks’ polarization-dependent loss
(PDL) channels. Two previous precoding techniques, SB and NSB, are re-
vised and analyzed for the CM and bit-interleaved CM (BICM) capacities. We
also investigate the combination of the precoded PDL channel and probabilistic
shaping (PS) encoding to enhance the system’s performance. Furthermore, two
new approaches based on non-binary information processing have been tested;
the design of protograph non-binary codes under the NSB framework and the
creation of a symbol interleaved CM (SICM) based on non-binary protograph
LDPC codes.

Then, the thesis analyses existing geometric shaping (GS) schemes on the com-
plex plane. We propose the construction of (c, p) CQAM constellations with
equiprobable signaling that can approach the Gaussian capacity. In addition,
we design simple non-binary protograph LDPC codes for GS constellations to
show that we can operate close to the channel capacity. Finally, deploying the
new CQAM constellations design, we offer how to combine non-binary LDPC
codes with PAS. Compared to uniform signaling, significant performance gains
are achieved on the AWGN channel for short block lengths.
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Résumé

Cette thèse aborde le schéma de modulation codée (CM) basé sur la signali-
sation de modulation d’amplitude en quadrature (QAM) et le codage de canal
à contrôle de parité à faible densité (LDPC). Il se concentre également sur la
signalisation non uniforme invariante dans le temps en combinaison avec la mise
en forme d’amplitude probabiliste (PAS) et les modulations QAM circulaires
(CQAM).

Tout d’abord, la thèse décrit les principaux composants de transmission de
l’émetteur au récepteur sur le canal physique. Ensuite, certaines notions util-
isées comme métriques pour l’évaluation des performances sont analysées, et
on note typiquement l’information mutuelle (IM). En outre, des documents de
référence pertinents sur les techniques de mise en forme et les codes LDPC sont
présentés.

Deuxièmement, la thèse porte sur les canaux de perte dépendant de la polari-
sation (PDL) des réseaux optiques. Deux techniques de précodage précédentes,
SB et NSB, sont révisées et analysées pour les capacités CM et CM entrelacées
de bits (BICM). Nous étudions également la combinaison du canal PDL précodé
et du codage de mise en forme probabiliste (PS) pour améliorer les performances
du système. Par ailleurs, deux nouvelles approches basées sur le traitement de
l’information non binaire ont été testées ; la conception de codes protographes
non binaires dans le cadre du NSB et la création d’un CM entrelacé de symboles
(SICM) basé sur des codes LDPC protographes non binaires.

Ensuite, la thèse analyse les schémas de mise en forme géométrique (GS) ex-
istants sur le plan complexe. Nous proposons la construction de constellations
CQAM (c, p) avec une signalisation équiprobable pouvant approcher la capac-
ité gaussienne. De plus, nous concevons des codes LDPC de protographe non
binaires simples pour les constellations GS afin de montrer que nous pouvons
opérer à proximité de la capacité du canal. Enfin, en déployant la nouvelle
conception des constellations CQAM, nous proposons comment combiner des
codes LDPC non binaires avec PAS. Par rapport à la signalisation uniforme,
des gains de performances significatifs sont obtenus sur le canal AWGN pour
les longueurs de bloc courtes.
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Chapter 1

Introduction

Modern communication and storage systems attempt to achieve reliable and
efficient transmission/storage. Forward error correction (FEC) is among the
most potent techniques to improve reliability. By adding some redundancy to
the information bits, FEC reduces the number of transmission errors, extends
the operating range, and reduces the power requirements for communication
systems [1]. In 1948, Shannon demonstrated that error-free transmission could
be realized for every noisy channel through FEC codes with any code rate up
to the channel capacity. This is called the Shannon theory [2]. Thus, the
channel capacity determines the maximum amount of redundancy that is used
to guarantee error-free decoding. The Hamming code was the first FEC code,
invented in 1950 [3]. Then, the low-density parity check (LDPC) code was
proposed by Gallager in his doctoral dissertation [4]. However, researchers
ignored LDPC codes and their variants in the subsequent 35 years because they
needed to be more practical to implement.

In 1993, the turbo code was invented by Berrou et al. [5]. It shows an error
performance approaching the channel capacity over the additive white Gaussian
noise (AWGN) channel. After the notable success of turbo codes, LDPC codes
have been revised by Mackay et al. [6–8] and attracted significant attention over
the past two decades. They have been shown to reach low bit-error rates (BERs)
or frame error rates (FERs) at signal-to-noise ratios (SNRs) very close to the
Shannon limits on many engaging channels and applications such as wireless
communication systems [9], optical communication systems [10], and magnetic
recording systems [11]. Moreover, they outperform turbo codes when the block
length of the code is enormous, even though the decoder complexity can be
less than that of turbo codes. LDPC codes are widely spread in communication
studies such as digital video broadcasting (DVB), 5G, WiFi, and WiMAX. They
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are among the three most potent error-correcting code families (turbo, polar,
and LDPC).

The present thesis addresses the coded modulation (CM) schemes based on
high-order modulation (e.g., quadrature amplitude modulation, QAM) signal-
ing and LDPC channel coding. This is one of the most studied wireless and
optical communication schemes. In this perspective, the bit-interleaved coded
modulation (BICM) is among well-known bandwidth-efficient CM [12,13]. The
encoded bits in BICM are interleaved and mapped to a particular constella-
tion using some binary labeling/mapping, usually Gray mapping. The BICM
does not achieve the highest AWGN capacity but can operate very close to
the CM capacity for some coding rates or when using geometric shaping (GS)
or probabilistic shaping (PS) [14–16]. The latter has received the most atten-
tion from the optical community thanks to its performance gains in spectral
efficiency. Different shaping methods involving multi-dimensional geometric
considerations have been conceived in the past, and we note, for example, shell
mapping [17], and trellis CM [18] for wire-line communications. This thesis fo-
cuses on time-invariant non-uniform signaling in combination with probabilistic
amplitude shaping (PAS) [14,19] and circular QAM (CQAM) modulations [16].
Moreover, this thesis addresses the symbol-interleaved coded modulation (SICM)
framework [20]. The motivation for the SICM scheme within this thesis stems
from the fact that non-binary coding systems are better for vector channels,
i.e., for channels where symbols carry vectors of bits such as QAM and MIMO.
In recent years, the interest has focused on using LDPC codes over non-binary
alphabets thanks to their excellent performance compared to their binary coun-
terparts at finite lengths and in the context of vector channels. Non-binary
LDPC codes are believed to be a suitable solution for transmission scenarios
that require high spectral efficiency and low error rates. Some exciting designs
based on non-binary codes have been proposed; see, for instance, [21–23].

The contents and contributions of the thesis chapters are summarized as follows.

Chapter 2 discusses the fundamentals of wireless or wired communication sys-
tems. First, it describes the main transmission components over the physical
channel from the transmitter to the receiver side. Next, some notions used as
metrics for performance evaluation are analyzed, and we typically note the mu-
tual information (MI). Afterward, relevant background materials on geometric
and probabilistic shaping techniques are presented. The last part of Chapter
2 focuses on the LDPC codes and their asymptotic analysis before concluding
with an application concerning the SICM scheme combined with the non-binary
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LDPC code. The presented background in this chapter helps develop the coded
modulation (CM) schemes in the following chapters.

Chapter 3 focuses on the polarization-dependent loss (PDL) channel in optical
networks. A 2× 2 optical MIMO system is considered with two polarization
inputs and two polarization outputs. An optical scheme is qualified as one that
maximizes the MI in the worst case, or equivalently the throughput, on all pos-
sible unitary methods. Two previous precoding techniques, SB and NSB, which
improve the worst case, are revisited and analyzed for the CM and BICM capac-
ities. More detail about the optimization over the two schemes is provided next
in Chapter 3. Furthermore, the chapter investigates the combination of the pre-
coded PDL channel and PS encoding to enhance the system’s performance. In
the last part of the chapter, two new approaches based on non-binary informa-
tion processing have been tested : (i) the design of protograph non-binary codes
under the NSB framework and (ii) the design of a SICM based on non-binary
protograph LDPC codes.

After studying and designing some schemes in the optical MIMO channel, Chap-
ter 4 focuses on analyzing and designing shaped modulation schemes on the
complex plane. First, we propose the construction of (c, p) CQAM constel-
lations with equiprobable signaling that can approach the Gaussian capacity.
Then, we design simple non-binary protographs for GS constellations to show
that we can operate close to the capacity of the underlying modulations.

Chapter 5 proposes combining non-binary LDPC codes with PAS when de-
ploying the CQAM constellations. In this context, we discuss when PS using
non-binary LDPC codes can bring extra performance improvement. Our pro-
posed scheme achieves significant performance gains on the AWGN channel for
short block lengths compared to uniform signaling.

Finally, Chapter 6 summarizes the main results and states possible directions
for future research.
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Chapter 2

Fundamentals

In this chapter, we review at first some essential concepts about the achievable
information rates over single and multiple antennas and the different CM de-
signs, such as the BICM and the SICM schemes. Secondly, we overview the
shaping techniques, GS and PS, which are the key technologies to approach
the Shannon limit. Then, we discuss the design of LDPC codes that have at-
tracted much attention over the past two decades since they can asymptotically
approach the Shannon capacity in various data transmission and storage sce-
narios. Finally, we end up applying the SICM scheme with non-binary LDPC
codes.

2.1 Coded Modulations: System Model

2.1.1 System Model at the Emitter

Most wireless communication systems incorporate FEC codes, often combined
with multiple antennas and link adaptation. In information theory and coding
theory, FEC is widely used to control errors in data transmission over noisy
or unreliable communication channels. Shannon’s central theme was that if
the signaling rate of the system is less than the channel capacity, reliable com-
munication can be achieved if one chooses convenient encoding and decoding
techniques.

For transmission over the physical channel, Fig. 2.1 shows a simplified model of
a coded system. Let Fq = {0, · · · , q− 1} denote the Galois finite field (GF) of
order q. The raw information data is represented as a message sequence u ∈ FK

q ,
of length K, which consists of bits if q = 2 or symbols if q > 2. By adding
redundant data, the FEC encoder maps the message u into a codeword c ∈ FN

q

of length N > K. In this perspective, we should mention two structurally
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Figure 2.1: Simplified model of a coded transmission system
over the additive Gaussian noise channel.

different FEC codes commonly used nowadays: block and convolutional. In
this thesis, we mainly consider a block structure. The ratio R = K/N is called
the code rate. We talk here about either binary FEC if c consists of bits or
non-binary FEC if c consists of non-binary symbols. The codeword c is passed
via a bit or a symbol-wise interleaver to obtain the message c. Before entering
the noisy or unreliable channel, the message c has to be mapped, for example,
to M -ary symbols, where M is a power of two, for example, M ∈ {4, 16} for
4-QAM and 16-QAM.

In the general case, we can define a bijective mapping that maps m1 code bits
or symbols to m2 M -ary symbols such that qm1 = Mm2 . We denote the M -
ary alphabet by X ⊂ C, and the mapping function by µ : Fm1

q → Xm2 . For
example, in a BICM scheme based on M -QAM, we have q = 2, m1 = log2(M),
and m2 = 1. Let c = [c0, · · · , cNs−1], where Ns = N/m1 and we assume that
m1|N . Then, ∀n ∈ J0, Ns − 1K, we can define cn = (cn

1 , . . . , . . . , cn
m1). These

q-ary m1-tuples are finally mapped to a vector of M -ary symbols,

xn = (xn
1 , xn

2 , . . . , xn
m2)

T = µ(cn) ∈ Xm2 . (2.1)

In this thesis, we will employ LDPC codes, a class of highly efficient linear
block codes. Using an iterated soft-decision decoding approach, they can keep
performance close to the theoretical limit given by the channel capacity. More
details about the LDPC codes are reviewed in section 2.3.
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2.1.2 Transmission over Multiple Antennas

This thesis will mainly consider single-input single-output (SISO) systems and
multiple-input multiple-output (MIMO) systems over the memoryless additive
white Gaussian noise (AWGN) channel. Thus, we will consider the following
generic model with nT transmit, and nR receive antennas given by

yn = Hxn + wn, (2.2)

where wn ∼ CN (0, N0InR) is the complex circular AWGN noise signal, and
H ∈ CnR×nT is the channel matrix, which will be considered constant for a
given codeword in our context. Moreover, as we will see in the next chapter,
we will have nT = nR and by construction m2 = nT . The transmit power per
antenna is Es = E[|xi|2], and hence the SNR is given by SNR = nT Es

N0
.

At the receiver, the soft demapper computes the a posteriori probability (APP)
log-likelihood values (L-values), which constitute a sufficient statistic of the
received signal yn and form the input of the FEC decoder. This allows to
compute ∀n ∈ J0, Ns − 1K and ∀i ∈ J1, m1K, the corresponding APP L-vector
L(cn

i ), whose components are given by

Ln
k,i ≜ ln

(
P [cn

i = k|yn]

P [cn
i = 0|yn]

)
, (2.3)

for k ∈ Fq \ {0}. The L-vector for binary codes reduces to a scalar L-value.
In our work, we consider the setting where nT = nR = 2. This means that
xn ∈ X 2 contains 2 M -ary symbols. Besides, we consider the following two
scenarios:

• 1st scenario (q = M): In this case, the Galois field (GF) order is adapted
to the size of the constellation X . Thus, we have m1 = m2 = 2. Using
Bayes’ theorem and exploiting the independence of xn

1 , xn
2 , we can write

the soft output value in (2.3) as

Ln
i,k = ln

(∑
x∈X 2:µ−1

i (x)=k P (yn|xn)∑
x∈X 2:µ−1

i (x)=0 P (yn|xn)

)
i = {1, 2}, k ∈ Fq \ {0}, (2.4)

where µ−1
i (.) is the inverse mapping function that gives the component

cn
i = µ−1

i (xn) and P (y|x) ∝ exp
(
− ∥y−x∥2

N0

)
.

• 2nd scenario (q = M2): In this case, the GF order is adapted to the
size of X 2, i.e., the number of all possible transmitting symbol vectors in
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the MIMO system. Thus, we have m1 = 1 and m2 = 2. The soft output
value in (2.3) can be written as

Ln
k = ln

(
p(yn|xn = µ(cn = k))

p(yn|xn = µ(cn = 0))

)
, (2.5)

for k ∈ FM2 \ {0}.

2.1.3 Information Rate for Coded Modulations

We first consider the memoryless single-input single-output AWGN case. For
the sake of clarity, the time index is omitted here. Let X denote the random
variable associated with emitted symbols x and Y the random variable associ-
ated with the observation y. The average mutual information (MI) between a
sent symbol X and a received symbol Y is denoted by I(X; Y ), and it is defined
as

I(X; Y ) = H(X)−H(X|Y )

= −
∑
x∈X

PX(x) log2 PX(x)

+
∑
x∈X

PX(x)
∫

PY |X(y|x)× log2
PY |X(y|x)PX(x)∑

x′∈X PY |X(y|x′)PX(x′)
dy,

(2.6)

where PX(x) is the probability of the discrete channel input and x ∈ X . This
quantity operationally corresponds to the so-called CM information rate CCM =∆

I(X; Y ), which represents the maximum rate at which we can communicate. For
practical systems, we may operationally refer to the achievable rate associated
with the conventional estimation of the representation letter, which can be either
a bit or a symbol. This quantity corresponding to bit or symbol maximum a
posteriori (MAP) estimation coincides with the classical BICM framework [12,
13,24–26] or with the SICM, and is a particular case of generalized MI [27,28].
We first consider the case of a BICM scheme. For such a scheme, assuming that
each symbol is equivalently represented by a binary tuple (B1, . . . , Bℓ), with
ℓ = log2(|X |), the BICM information rate is then given as

CBICM =∆ H(B1, . . . , Bℓ)−
ℓ∑

i=1
H(Bi|Y )

=
ℓ∑

i=1
I(Bi; Y ),

(2.7)
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where the last equality holds when the Bi are independent. This can be gener-
alized to a symbol vector representation for which the symbol X can be equiv-
alently represented by a vector of symbols (S1, . . . , Sm), where ∀i = J1, mK,
Si ∈ Si ⊂N and with the constraint that ∏i |Si| = |X |. As a simple example,
we can consider the decomposition of a M -QAM modulation as the Cartesian
product of two independent

√
(M)-PAM constellations. The SICM information

rate is then given as

CSICM =∆ H(S1, . . . , Sm)−
m∑

i=1
H(Si|Y )

=
m∑

i=1
I(Si; Y ),

(2.8)

where again, the last equality holds when the Si are independent. In practice,
simple Riemann-based or Monte-Carlo integration methods compute the differ-
ent information rates. Using the chain rule, and because conditioning reduces
entropy, it is quite straightforward to see that

CCM ≥ CSICM ≥ CBICM. (2.9)

For an ergodic MIMO channel (i.e., the channel varies from one MIMO symbol
to another), and assuming the knowledge of the probability distribution of H,
the so-called ergodic channel capacity is defined as

CH = EH

[
log2

(
det

(
InR +

SNR
nT

HHH

))]
, (2.10)

where .H holds for the conjugate and transpose operator. The above expression
holds for transmitting signals that are complex Gaussian distributed. When the
channel remains constant over the transmission (i.e., a quasi-static channel), this
expression reduces to

C(H) = log2

(
det

(
InR +

SNR
nT

HHH

))
. (2.11)

In our case, we deal mainly with constant channels over the transmission. We
will also consider symbols that independently sampled belong from a constel-
lation X of size M , i.e., ∈ XNt . Let us denote by Rq = log2(M) the number
of bits per M -ary symbol. So, the number of transmitted bits per channel use,
denoted by R0, equals R0 = nT Rq. Hence we define the set XM of all possible
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transmit vectors, of cardinality |XM | = 2R0 . The CM capacity is then given
by [26,29,30]

CCM = R0 −Ex,y

 log2

∑
z∈XM

p(y|z)
p(y|x)

. (2.12)

In contrast, the BICM capacity holds for binary processing. If we define with
{XM}jk ⊂ XM the subset that contains all the transmit vectors whose corre-
spondent binary vectors has the value j ∈ {0, 1} in its kth position, the BICM
capacity is given by [26,29,30]

CBICM = R0 −
R0∑

k=1
Ex,j,y

 log2

∑
z∈XM

p(y|z)∑
z∈{XM }j

k
p(y|z)

. (2.13)

From Eq. 2.12 and Eq. 2.13, we should mention that only the BICM capacity
but not the CM capacity depends on the labeling. We can also define the SICM
scheme as another CM design at this stage. If we define with {XM}sk ⊂ XM the
subset that contains all the transmitting vectors whose correspondent QAM
symbol vectors has the value s ∈ {0, 1, . . . , M − 1} in its kth position (k =

1, . . . , nT ), the SICM capacity is given by

CSICM = R0 −
nT∑

k=1
Ex,s,y

 log2

∑
z∈XM

p(y|z)∑
z∈{XM }s

k
p(y|z)

. (2.14)

2.2 Geometric and Probabilistic Shaping

Although uniform QAM formats are usually deployed for the ease of generation
and detection, there is an asymptotic loss of πe/6 ≈ 1.53 dB towards the
Shannon limit, as shown in Fig. 2.2. According to information theory, this
loss can be reduced by the shaping gain if the modulation format gives up a
Gaussian distribution. It is worth catching that both coding and shaping are
the leading solutions to approach the Shannon limit. However, they perform
operationally differently. Coding aims to maximize the distance between the
code vectors. In contrast, shaping intends to minimize the average symbol
energy and obtain a more considerable Euclidean distance among constellation
points at the same power level. As a result, GS or PS can realize shaping gain.
The constellation points for the standard QAM formats are located on a uniform
Cartesian grid and sent with equal probabilities. In contrast, GS-QAM grants
a non-equidistant constellation distribution, while the constellation points in a
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Figure 2.2: Capacity of uniform M-QAM formats.

PS-QAM are sent with different probabilities. Although the GS and PS schemes
play different roles, they both intend to simulate a quantized sampled Gaussian
distribution. Also, they can provide performance closer to the Shannon limit
within finite dimensions.

2.2.1 Geometric Shaping

The optimal GS constellation depends on the optimization criterion and the
SNR. For example, we can adopt the following strategies; minimizing the av-
erage symbol error probability, maximizing the MI, or minimizing the mean-
square error of Gaussian source representation [31, 32]. Typically, the constel-
lation points with lower amplitude are spaced closer than the outside points.
Several works concerning GS-QAM formats, like a generalized cross constel-
lation [33], were proposed in the literature to achieve the shaping gain. Re-
cently, practical GS implementations have been proposed, and we can mention,
for example, iterative polar modulation [34], generalized MI-optimized QAM
formats [35], and multidimensional constellations with the multi-sphere distri-
bution [36]. Furthermore, in [37], authors show that GS achieves the capacity
of the AWGN channel if the number of constellations points tends to infinity.
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In [38], authors investigate the achievable rate of GS when symbol-metric de-
coding (SMD) and bit-metric decoding (BMD) are applied to one-dimensional
constellations.

The best constellation depends on the decoding metric used and the SNR. Con-
sider that E[|x|2] = P so that the SNR equals P /E[|w|2]. The GS optimization
problem summarizes as follows

max
X

R{SMD,BMD}(SNR),

s.t. E[|x|2] ≤ P ,
|X | = M ,

(2.15)

where RSMD(PX ,SNR) = I(X; Y ) is the information rate when we typically use
SMD, and RBMD(PX ,SNR) denotes the BMD achievable rate which is given by

RBMD =
[
H(B)−

m∑
i=1

H(Bi|Yi)
]+

, (2.16)

where [.]+ = max(0, .). The BMD achievable rate in Eq. 2.16 can be given as
RBMD =

∑m
i=1 I(Bi; Y ), which is the BICM capacity. The optimization prob-

lem in 2.15 is non-convex in X . Some works in [38, 39] have used constrained
non-linear optimization algorithms to find solutions. Authors in [40] have used
simulated annealing to optimize amplitude phase shift keying (APSK) constel-
lations.

2.2.2 Probabilistic Shaping

PS Principle

In an AWGN channel, the constellation with PS generally follows a Maxwell-
Boltzmann (MB) distribution. Indeed, the latter shows relative performance to
the optimal distribution with optimized parameters. Fundamentally, the con-
stellation points within high energy are transmitted with a lower probability.
As a consequence, the average symbol power can be reduced. For example,
Fig. 2.3 shows the constellation of PS-16QAM with an entropy loss of 0.25
bits/symbol. PS was started with Gallager’s many-to-one mapping scheme.
Several PS schemes have been proposed, and we note, for example, trellis shap-
ing [32] and shell mapping [17]. In addition, an arithmetic coding-based con-
stant composition distribution matcher (CCDM) has been proposed in [15].
Later, the CCDM-based PAS was presented by Böcherer et al. in [14].
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Figure 2.3: The constellation diagram of PS-16QAM.

Probabilistic Amplitude Shaping (PAS)

The invention of PAS was an important achievement in making PS efficient.
PAS is a method devised in [14, 41] to implement non-uniform signaling [42].
The generated version no longer refers to modulating “amplitudes” as such,
but its original name is conserved for simplicity. Let us instantiate with the
real-valued-output channel such as the 2m-pulse amplitude modulation (PAM)
AWGN channel, and set x = ∆x̃ where x̃ ∈ {±1,±3, . . . ,±(2m− 1)}, and ∆ is a
positive real-value parameter that denotes the spacing between the constellation
points. The matching optimization problem summarizes as follows

max
PX ,∆>0

R{SMD,BMD}(PX , SNR),

s.t. E[|∆x̃|2] ≤ SNR.
(2.17)

RSMD is convex in PX for fixed ∆ [43]. The following nested approach is em-
ployed;

1. ∆ is optimized by using a simple line search,

2. For each fixed ∆, PX is optimized by using efficient and universal opti-
mization algorithms such as the Blahut-Arimoto [44] and the Cutting-
Plane [45] approaches.

We can use the mentioned approach for BDM, but RBMD is not convex in PX .
However, we can overcome this problem by optimizing over the MB distributions
[42].
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PAS is compatible with legacy systems because it can be built around a stan-
dard (or pre-existing) FEC coding engine (e.g., an LDPC-based system [14]).
PAS first focuses on shaping the distribution of points inside the entire region
using the DM. To exemplify this, let us operate the binary case q = 2. The
distribution of the 2m-PAM amplitudes is shaped to allow the distribution of
the whole constellation to behave like the capacity achieving Gaussian [42]. If
the standard PAM modulation rate is RM = m, then PAS modulates the signal
amplitudes at the DM output at rate RAM = m− 1. PAS uses (up to very
few operational changes) a conventional coding and modulation chain. After
the DM, the information sequence is parsed to modulate the point amplitudes
while the parity bits encode the sign of the PAM amplitudes. In the generalized
PAS version, the concatenation chain is divided into three main layers and en-
coding operations are done sequentially. The block diagram PAS is represented
in Fig. 2.4.

1. First, a fraction of the information stream is encoded into a sequence with
a given distribution. Hence, uniform independent identically distributed
(iid) symbols are encoded into a symbol sequence that labels the modu-
lated regions at rate RAM . The rate RAM equals the number of symbols
in an alphabet needed to label a region.

2. Second, a sequence of redundant symbols generally obtained from a lin-
ear combination of information symbols is generated by a linear channel
encoder. Dense linear combinations of symbols make the resulting sum
symbols asymptotically uniform.

3. Third, the final encoding layer modulates symbols in X by selecting a pair
composed of a point in the entire region according to the label sequence.

We now study the rates at which we can achieve reliable transmission. In [15],
a reliable communication at a rate R is achievable only if

R <

∑n
i=1 I(Xi; Yi)

n
= I(X; Y ). (2.18)

As Sn represents the data; the transmission rate is given as

R =
H(Sn)

n
= H(S)

[
bits

channel use

]
. (2.19)

Thus, condition 2.18 can be rewritten as

H(S) < I(X; Y ). (2.20)
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Figure 2.4: Block diagram of PAS.

The PAS scheme can sometimes be extended to use code rates higher than
(m− 1)/m on 2m-PAM constellations. This is achieved by using some signs
from a data source that generates uniformly distributed bits. This extension of
the PAS scheme is illustrated in Fig. 2.4. Let γn denote the number of signs
used for data bits. The γn bits and the (m− 1)n bits from the amplitude labels
are encoded together by the parity matrix of a coding rate Rc. This encoding
generates the remaining (1− γ)n sign labels. Rc can be expressed in terms of
m and γ as

Rc =
m− 1 + γ

m
, (2.21)

and so the fraction gamma is given by

γ = 1− (1−Rc)m. (2.22)

Now, the transmission rate of the extended PAS can be expressed as

R = H(S) + γ. (2.23)

The optimal operating point is then determined by crossing the rate curve
H(S) + γ and the MI rate. To better understand, we take as an example the
8-ASK modulation. In this case, m = 3 is the number of bits per symbol,
and the amplitude alphabet is S = {1, 3, 5, 7} where each amplitude symbol
is represented by 2 bits. Hence, Rc = (2 + γ)/3. In Fig. 2.5, we display for
8-ASK the optimal operating points for Rc = 2/3 and Rc = 3/4.
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Figure 2.5: Optimal operating points of 8-ASK for PAS (Rc =
2/3) and extended PAS (Rc = 3/4).
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Non-uniform CCDM

This section describes the principle of CCDM that we will employ in this thesis.
We consider a distribution matcher (DM) that maps a binary input b(k) ∈
{0, 1}(k) to a shaped output sequence s(n) = (s1, . . . , sn) of length n. The
DM mapping function creates an invertible mapping fDM : b(k) → s(n). The
sequence s(n) consists of different output amplitudes that are taken from the
alphabet A = {a1, . . . , am}. The CCDM output sequence is said to have the
composition C = {n1, . . . , nm} where ni denotes the number of times the ith
amplitude ai occurs, i.e.,

ni = |j : sj = ai|, (2.24)

where i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. Thus, the relative frequency PA of ai

is PA(ai) =
ni
n . The number of input bits k of the DM depends on the number

of different output sequences, which is given by the multinomial coefficient

M(C) =

(
n

n1, n2, . . . , nm

)
=

(
∑m

i=1 ni)!∏m
i=1(ni!)

. (2.25)

Thus, the input length k is k = log2 ⌊M(C)⌋2 where ⌊.⌋2 denotes rounding
down to the closest power of two. The rate loss of a DM is then defined as

Rloss = H(A)− k

n
, (2.26)

where H(A) represents the entropy of the amplitudes A with the quantized
distribution PA. Such a quantization is essential in many finite-length cases.

2.3 LDPC Codes

2.3.1 Binary LDPC Codes

Binary LDPC codes are a class of linear error-correcting codes over F2 defined
by a very sparse parity check matrix H(N−K)×N . We further assume that
H(N−K)×N is full rank. The related coding rate of the LDPC is defined as
Rc = K/N . An LDPC code can also be associated with a bipartite graph
[46], which consists of bit nodes, check nodes, and a certain number of edges.
Each bit/variable node represents one bit of the codeword. Each check node
is associated with one parity check of the code. An edge exists between the
ith check node and the jth variable node if the entry H(i, j) = 1. From a
Tanner graph point of view, the columns match the variable nodes, whereas
the rows match the check nodes. The variable node degree corresponds to the
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number of edges connecting the variable node to the check nodes, and the check
node degree corresponds to the number of edges connecting the check node
to the variable nodes. An irregular LDPC code can be specified by either a
degree distribution pair (λ, ρ) [46] or, equivalently, its corresponding generating
functions

λ(x) =
dvmax∑

i=2
λix

i−1 and ρ(x) =
dcmax∑
j=2

ρjx
j−1, (2.27)

where λi is the fraction of edges connected with a variable node of degree i, ρj

is the fraction of edges connected with a check node of degree j, dvmax is the
maximal bit degree of any edge, and dcmax is the maximal check degree of any
edge. A regular LDPC code has λ(x) = xdv−1 and ρ(x) = xdc−1. Gallager
presented a decoding algorithm and a detailed performance analysis on regular
LDPC codes in his dissertation in 1963 [4].

The decoding process of the binary LDPC codes is performed through the so-
called (SPA), also referred to as the belief propagation (BP) algorithm [46]. At
the receiver, the demapper outputs the scalar log-likelihood ratio (LLR) values
used by a variable node vi, ∀i = 0, · · · , N − 1. Then, the LDPC decoding pro-
cess is divided into two steps at a given iteration: the variable node update and
the check node update. A variable node vi of degree dvi has dvi edges connected
to check nodes and one edge connected to the demapper. The LLR informa-
tion, passing through the edge connecting variable node vi to its adjacent check
nodes, is noted {Lvi,cj}j∈Vi

where Vi denotes the set of check nodes adjacent
to vi. The LLR information carried by the channel to variable node vi is noted
Lchi,vi

. At a given iteration ℓ > 0, the variable node update for the variable
node vi, ∀i = 1 · · ·N − 1, is given by

Lℓ
vi,cj

= Lchi,vi
+

dvi∑
k=1,k ̸=j

Lℓ−1
ck,vi

, ∀j ∈ Vi, (2.28)

where Lℓ−1
cj ,vi

denotes the LLR coming from a check node cj , j ∈ Vi, to variable
node vj from the previous iteration. By convention, ∀i, we have L0

cj ,vi
= 0,∀cj ∈

Vi Similarly, a check node cj of degree dcj has dcj edges connected to variable
nodes. The LLR information, passing through the edge connecting check node
cj to its adjacent variable nodes, is noted {Lcj ,vi}i∈Cj

where Cj denotes the set
of variable nodes adjacent to cj . The check node update for the check node



2.3. LDPC Codes 21

cj , j = 0, · · · , N −K − 1, is given as follows

tanh
(Lℓ

cj ,vi

2

)
=

dcj∏
k=1,k ̸=i

tanh
(Lℓ

vi,cj

2

)
, ∀i ∈ Cj . (2.29)

2.3.2 Non-binary LDPC Codes

An alternative approach to conceiving non-binary codes starts with non-binary
LDPC codes. In [4], Gallager described arbitrary-alphabet LDPC codes using
modulo-q arithmetic. Also, Davey and Mackay considered non-binary LDPC
codes for binary input channels [47]. Their definition uses GF(q) arithmetic.
They have shown that these codes could perform excellently for moderate sizes
when the GF order is increased. These results were confirmed by [48], which
show that when the GF order grows up, good code profiles for decoding under
BP tend to be regular, of type (2, xx), often referenced to as “cycle” codes.
These codes offer good performance at short blocklengths at the expense of
high decoding complexity.

A non-binary LDPC code (in the broad sense) is defined by a sparse parity
matrix H of size (N −K)×N , whose non-zero elements are defined on a group,
a ring, or a field. Here, we will consider the LDPC codes whose elements are
defined on GF(q), particularly the binary extension fields q = 2p. In this
context, the non-zero elements hij of H are elements of GF (2p) (also noted
F2p) where q = 2p represents the order of the field. These elements belong to
the set S = {αk : k = 0 . . . q− 2} where α is the primitive element (generator)
of the field defined as the zero of the primitive polynomial P (x) associated with
the field. Similarly to the binary case, an LDPC code over GF(q) is defined by
all the codewords c = [c0, . . . , cN−1] ∈ FN

q satisfying HcT = 0, the operations
being carried out in Fq. Thus, by now noting MH = N −K, a codeword c
must satisfy the following constraint equations

∑
j:hij ̸=0

hijcj = 0, ∀i = 0, . . . , MH − 1. (2.30)

Similarly to binary LDPC codes, a family of non-binary LDPC codes is charac-
terized by their degree distributions. A code is considered regular if the number
of non-zero elements per row and column noted (dv, dc) is constant. Otherwise,
the code is irregular and will be represented by the edge perspective distribu-
tions λ(x) and ρ(x) analogously to the binary case.

For a code from a family, the matrix’s non-zero values are generally generated
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Figure 2.6: Bipartite graph of the family of regular non-binary
codes (2,3).

uniformly, a very useful assumption in particular for the asymptotic analysis
of non-binary LDPC codes. However, carefully selecting non-zero inputs can
improve performance for finite-size codes, as shown in [47]. This finite-size
optimization is crucial for "cyclic" codes. As in the binary case, we can also
associate a Tanner graph. The graph contains nodes of variables vj , which
are associated with the symbols of the codeword (column of H), and nodes of
constraints ci, which are associated with the constraints of the code (rows of
H). The variable node vj is connected to the constraint node cj by a branch of
the graph if hij is a non-zero element. With each branch, we also associate a
functional node, which we associate as label the coefficient hij . A representation
is given in Fig. 2.6 [49].

In the factor graph representation of an LDPC code in mathbbFq, if we con-
sider iterative decoding by BP based on the probabilities of the symbols, the
messages transiting on the graph are probability vectors of size q. We will note
the messages as follows: a message leaving a variable node will be denoted V.
A message leaving a constraint node will be denoted U. The probability vec-
tors after passing through the functional nodes associated with the branches
of the graph will be noted Ũ and Ṽ , respectively. These steps correspond to
the operations associated with the multiplications by the non-zero symbols hij .
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Figure 2.7: Tanner graph of the family of regular non-binary
codes (2,3).

Finally, the vectors of initial probability densities resulting from the channel ob-
servations will be noted V0. All messages represent discrete probability density
vectors of size q. By convention, we will consider that the probability vector is
ordered by increasing the power of the primitive element α. By convention, the
symbol 0 =∆ α∞. We will therefore consider that the messages will be of type

V =



p(v = 0)
p(v = 1)
p(v = α)

...
p(v = αq−2)


. (2.31)

The notations are summarized in Fig. 2.7 [49]. One voluntarily omits in writ-
ing these vectors of probabilities the conditioning compared to the messages
entering in the functional nodes to simplify the notations.



24 Chapter 2. Fundamentals

The non-binary BP algorithm on the factor graph generalizes the binary case.
We can then give the main steps of an iteration of this algorithm as follows:

• Calculation of initial messages: For a node of variable vj , the initial
message V0 corresponds to the APP vector of the transmitted symbol xj .
The probability vector V0 is given by

V0 =



p(cj = 0|yj)

p(cj = 1|yj)

p(cj = α|yj)
...

p(cj = αq−2|yj)


.

For a memoryless binary-input channel with identically distributed inputs,
we have

p(cj |yj) =
p(yj |cj)∑q−1

j=0 p(yj |cj)
.

• Update of variable nodes: For a variable node V of connection degree
d, the message emitted on the mth output branch V

(ℓ)
m at the ℓth iteration

corresponds to the multiplication of the probability vectors (component
by component) of the other branches arriving at this variable node. The
formal expression is given by

V (ℓ)
m = V0

d∏
k=0,k ̸=m

Ũ
(ℓ−1)
k .

By convention, we take Ũ
(0)
k = 1/q 1.

• Permutation of messages: Formally, the action of multiplication by a
non-binary symbol in the constraint equations results in a cyclic permu-
tation of the coordinates of the message, except for the first coordinate
corresponding to the null symbol. By noting Pm(.), the action of per-
mutation induced by the value αm = αk of the label on the considered
branch m, we can then give the relation between Ṽ ℓ

m and V ℓ
m as follows:

Ṽ ℓ
m = Pm(V ℓ

m).
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By noting

V (ℓ)
m =



p (vm = 0)
p (vm = 1)
p (vm = α)

· · ·
p
(
vm = αq−2

)


.

then it comes that

Ṽ (ℓ)
m =



p (vm = 0)
p
(
vm = αq−2−k+1

)
...

p
(
vm = αq−2

)
p (vm = 1)

...
p
(
vm = αq−2−k

)


.

• Update of check nodes: For a constraint node C, of connection degree
d, the calculation of the outgoing messages of the constraint nodes involves
the convolution of the incoming messages, which are vectors of discrete
probability densities of size q defined on GF(q). Formally, the vector U ℓ

k

is written in the direct domain as follows:

U
(ℓ)
k = ⊛d

m=1,m̸=kṼ (ℓ).
m (2.32)

We can have an efficient implementation of this convolution using the
Fourier transform defined on the finite abelian group G(2p) = (Zp

2,+)

which is the additive subgroup of F
p
2 (often referred to as Hadamard

Transform). By transforming equation (2.32) into the Fourier domain as
illustrated in Fig. 2.8, the convolution product becomes the component-
by-component product of the message transforms. The message update
equation using the Fourier domain is then written as

U
(ℓ)
k = F−1

 d∏
m=1,m̸=k

F
(
Ṽ (ℓ)

m

) .

• Reverse permutation of messages: This operation is the dual of the
previous operation. Considering the kth outgoing branch of a parity node
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Figure 2.8: Operations for parity check nodes in the Fourier
domain.

C, we will formally write the relation between Ũ ℓ
k and U ℓ

k as follows:

Ũ
(ℓ)
k = P−1

k

(
U
(ℓ)
k

)
.

where P−1
k represents the operation of inverse permutation of the proba-

bility vector U ℓ
k after passing through the functional node associated with

the label αk of the considered branch. Efficient implementation has been
covered, for example, by [50,51]. Reduced complexity algorithms have also
been proposed to reduce decoding complexity; see, for example, [51, 52]
and related references. Finally, the graph equivalent to the graph in Fig.
2.6 used for decoding is given in Fig. 2.9 [49].

2.3.3 Protograph-based LDPC Codes

In the last decade, the coding community has proposed more structured LDPC
codes, including protograph-based ones. Protograph codes were first introduced
in [53]. A protograph is defined using a small bipartite graph composed of np

variable node (VN) types and mp check node (CN) types connected by edges.
For this type of structured graph, degree one VN and multiple parallel edges
between a VN and a CN are allowed. The corresponding mp × np adjacency
matrix is given by HB = [hi,j ] where hi,j ∈N∗ ∪ {0}. A larger bipartite graph
associated with an LDPC code of size N = npL and MH = mpL is obtained
from a protograph by lifting (or expansion), where L is called lifting factor [54].
In the non-binary case, each edge of the expanded graph is further associated
with a non-zero element in the field Fq. The corresponding adjacency matrix
gives the sparse parity check matrix H associated with a binary or non-binary
LDPC code. Many conventional LDPC codes can be generated and represented
using protograph representations, e.g., the repeat-accumulate (RA) codes and
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Figure 2.9: Tanner graph of the family of regular non-binary
codes (2,3) with the update of the check nodes by Fourier.
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the regular LDPC codes. The design of these structured codes consists of search-
ing for good base matrices with good thresholds and/or asymptotic minimum
distance properties [55]. The following matrices represent two examples of non-
binary regular (2, 4) LDPC code and a regular RA code, respectively:

HB1 =

1 1 1 1
1 1 1 1

 , and

HB2 =

2 1 1 1
1 2 1 1

 .

2.4 Asymptotic Analysis of LDPC Codes using
EXIT Charts

The density evolution (DE) [46] and the extrinsic information transfer (EXIT)
[56] are two well-known tools employed to study the design and the convergence
behavior of sparse-graph codes. The DE tracks the probability density function
of LLR messages along the edges of the Tanner graph to compute the conver-
gence threshold. This threshold corresponds to the lowest SNR enabling reliable
iterative decoding for long blocklengths. However, the DE method requires high
computational complexity, especially when moving from binary to non-binary
settings, for which it becomes untractable unless operating some Monte Carlo-
based approximations. Thus, EXIT charts have been developed to study the
performance of codes under various modulation schemes [50,57,58].
The main idea is to compute the average MI rate between the output of a vari-
able node or a check node and the send symbol to evaluate the convergence
threshold. In the unstructured case, this enables the definition of the best set
of profiles (λ(x), ρ(x)). We first discuss the case of unstructured ensembles
and then the extension to the protograh case. We directly address the case of
non-binary LDPC codes as it is our main concern.

2.4.1 EXIT Charts for Unstructured Ensembles

The EXIT diagram method was introduced by Ten Brink in 2001 [56]. This
method was applied for the first time to optimize turbo-decoding algorithms
[59]. Later, this tool was adapted to iterative processes at the receive level,
notably for turbo-equalization in 2002 [60], and iterative MIMO systems in
2003 [61].
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We present here the general coset framework as proposed by [50]. The presented
method mixes method 1 and 2 from [50]. This presentation is adopted as
it is the method that has been developed in [62] to extend the non-binary
EXIT method of [50] to the protograph EXIT (PEXIT) framework. Non-binary
EXIT charts consist in tracking the evolution of the average extrinsic mutual
information between an extrinsic LLR message W = [W1, · · · , Wq−1]⊤ at the
output of a VN or CN and the related transmitted symbol C. Assuming some
uniform edge labeling (ensuring permutation invariance symmetry) and the use
of a random coset to handle the possible use of non-symmetric constellations
(message symmetry) [50], messages from check nodes to variable nodes are
modeled as a multidimensional Gaussian distribution with parameters

µ =


σ2/2
σ2/2

...
σ2/2


(q−1)×1

, and Σ =


σ2 σ2/2

σ2

. . .
σ2/2 σ2


(q−1)×(q−1)

,

that depend on a single scalar parameter σ.

Messages from variable nodes to check nodes are modeled as the sum of channel
initial LLR messages L and a Gaussian random vector X = [W1, · · · , Wq−1]⊤.
We note I(C; W) = 1−EW

{
logq

(
1 +∑q−1

i=1 e−Wi

)
| C = 0

}
. For a Gaussian

random LLR vector X with scalar parameter σ, we define

J (σ) = I(C; W = X).

At each iteration ℓ, the non-binary EXIT analysis steps can be summarized as
follows:

• Variable node update: The average mutual information (MI) between
the messages at the output of a variable node and a transmitted symbol
C is given by:

Iℓ
v→c =

∑
i

λiJR

(
σℓ−1

c→v(i)
)

, (2.33)

where

JR (σ) = I(C; W = X + L)

= 1−EX

logq

1 +
q−1∑
i=1

e−Xi−Li

 | C = 0
 .

X is a Gaussian random LLR vector with scalar parameter σ and L is a
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random vector associated to the observations. This latter function is an
implicit function of mapping sent symbols and the SNR. This dependence
is omitted for clarity of the presentation. σv→c(i) is the Gaussian variance
parameter associated with the average MI of messages coming from check
nodes to a variable node of degree i, given as

σv→c(i) =
√
(i− 1)J−1

(
Iℓ−1

c→v

)
. (2.34)

By convention, I0
c→v = 0.

• Check node update: Similarly, the average MI between the messages
at the output of a check node and a transmitted symbol C is given by

Iℓ
c→v = 1−

∑
j

ρjJ
(√

j − 1 · J−1
(
1− Iℓ

v→c

))
. (2.35)

By combining the two previous expressions, we can obtain the following
nonlinear recursion: Iℓ

v→c = F (Iℓ−1
v→c; λ(x), ρ(x), SNR). However, F (.)

can be shown to be linear to the parameters λi for a given ρ(x) and SNR.
This can be used to derive efficient methods to optimize unstructured
ensembles.

2.4.2 Protograph EXIT Charts for Structured Ensem-
bles

The preceding analysis further extends to the case of protograph-based non-
binary LDPC codes. Thus, to be as general as possible, the general coset frame-
work [50] is usually used for the analysis. The analysis and design will rely on a
classical non-binary Protograph EXIT analysis (PEXIT) [55], which generalizes
the PEXIT method as introduced by [63], capitalizing on the EXIT method ini-
tially introduced in [57]. PEXIT consists in tracking the evolution of extrinsic
mutual information between an extrinsic LLR message W = [W1, · · · , Wq−1]⊤

at the output of a VN or CN over each edge of protograph and the related
transmitted symbol C iteratively. Assuming uniform edge labeling (ensuring
permutation invariance symmetry) and the use of a random coset to handle
the possible use of non-symmetric constellations (message symmetry) [50], mes-
sages from check nodes to variable nodes are still modeled as a multidimensional
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Gaussian distribution with parameters

µ =


σ2/2
σ2/2

...
σ2/2


(q−1)×1

, and Σ =


σ2 σ2/2

σ2

. . .
σ2/2 σ2


(q−1)×(q−1)

,

that depend on a single scalar parameter σ.

As for the unstructured case, messages from variable nodes to check nodes
are modeled as the sum of the LLR message L and a random vector X =

[W1, · · · , Wq−1]⊤. At each iteration ℓ, the three steps of PEXIT analysis can be
summarized as follows:

• Variable node update: Let Nc(j) be the set of the check nodes con-
nected to the variable node j. The mutual information (MI) between the
message from the variable node j to the check node i and the transmitted
symbol cj is given by:

Iv→c(i, j) =

J (σv→c(i, j)) if node j is punctured

JR (σv→c(i, j)) otherwise.
(2.36)

By definition, we have

J (σ) = I(C; W = X), and

JR (σ) = I(C; W = X + L)

= 1−EX

logq

1 +
q−1∑
i=1

e−Xi−Li

 | C = 0


where X is a Gaussian random LLR vector with scalar parameter σ and
L is a random vector associated to the observations. Both functions are
usually obtained through Monte Carlo integrations.

Moreover, we can compute σv→c(i, j) as

σ2
v→c(i, j) =

∑
s∈Nc(j),s̸=i

hs,j
[
J−1 (Ic→v(s, j))

]2
+ (hi,j − 1)

[
J−1 (Ic→v(i, j))

]2
.

(2.37)
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• Check node update: Let Nv(i) be the set of the variable nodes con-
nected to the check node i. Similarly to the previous step, the MI between
the message from the check node i to the variable node j and the trans-
mitted symbol cj is given by

Ic→v(i, j) = 1− J (σc→v(i, j)) ,

where

σ2
c→v(i, j) =

∑
s∈Nv(i),s̸=j

hi,s
[
J−1 (1− Iv→c(i, s))

]2
+

(hi,j − 1)
[
J−1 (1− Iv→c(i, j))

]2
.

(2.38)

• A posteriori update and stopping decision: Finally, the MI between
the a posteriori (AP) message and the transmitted symbol cj is given by

IAP (j) =

J (σAP (j)) if node j is punctured

JR (σAP (j)) otherwise.

with
σ2

AP (j) =
∑

s∈N(j)

hsj

[
J−1 (Ic→v(s, j))

]2
.

The PEXIT analysis procedure stops if ∀j ∈ [[0, nh−1 · · · ]], IAP (j) = 1 (asymp-
totic iterative decoding succeeds) or the maximum number of iterations is
reached (asymptotic iterative decoding fails). The asymptotic iterative decod-
ing threshold is the minimum SNR for which reliable iterative decoding can be
achieved for a given protograph code ensemble.

2.5 Application: SICM with Non-binary LDPC

We study here the case of single input, single output AWGN case. The SICM
scheme is given by the serial concatenation of an LDPC code over GF(q) of
coding rate Rc = K/N , and a QAM modulation of order M = 2m separated by
a symbol interleaver as depicted in Fig. 2.10. Consider the q2-QAM modulation
where q =

√
M . Whatever the mapping used for each of the two dimensions,

the classical symbol labeling of q2-QAM modulations is such that both halves
of the labeling are assigned to one constellation dimension. Let c = [c1, c2] be
the resulting non-binary partitioning of the symbol labeling. Let us denote by
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QAM mappingInterleaverLDPC encoder
u c c x

Figure 2.10: SICM model based on q-ary LDPC code and M-
QAM.

Cck
= I(y; ck) the equivalent non-binary channel associated with the non-binary

label ck. The SICM capacity is then given by

CSICM = Cc1 + Cc2 . (2.39)

This partitioning strategy is, in fact, optimal. It can be shown that the CM
capacity, in this case, is evenly spread over each dimension, and we have the
following equalities:

CCM = I(y; c1) + I(y; c2|c1)

= I(y; c1) + I(y; c2) = CSICM.
(2.40)

Note that the second equality is due to the orthogonal non-binary signaling.
From Eq. (2.39), one deduces that it is possible to design good non-binary
q2-QAM modulation schemes when taking an alphabet of order q =

√
M . In

other words, using M -ary coding schemes for q2-QAM modulations is an un-
necessarily complex solution. Two identical q-ary codes, when put together
into non-binary multi-level coding (MLC) scheme, are also asymptotically op-
timal. Moreover, in the SICM case, two-channel codes of codelength N can be
replaced by one single-channel code of codelength 2N , simplifying the scheme
and enabling better performance at finite codelengths. Note that, even for finite
codelengths, considering non-binary labelings matched to the order of one sig-
nal dimension makes the design asymptotically independent from the possible
binary or non-binary labeling of the symbols. Fig. 2.11 illustrated capacities of
q2-PAM modulations when natural binary and binary reflected Gray mappings
are used. As we can see, CSICM are naturally equal to CCM for all considered
mappings. The BICM capacity is also reported, thus showing the impact of the
binary labeling of the constellation symbols. Remind that there is no influence
when non-binary mapping is used for q2-PAM modulations.

When the order q of the non-binary component codes is less than
√

M , the
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Figure 2.11: CM, SICM and BICM capacities for q2-QAM
with natural binary and binary Reflected Gray mappings.

Figure 2.12: CM, SICM and BICM capacities for 64-QAM
using Binary Reflected Gray mapping and channel codes over

GF(4).
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SICM scheme is no longer optimal, and some performance loss is expected. Fig.
2.12 illustrates capacities for 64-QAM using some channel codes over GF(4).
The SICM outperforms BICM only for low capacity rates; gains up to 0.5 dB
can be obtained for the Gray mapping, and a substantial gain is observed for the
natural binary mapping. We obtain similar results for 256-QAM modulations.

Let us consider the SICM scheme for another family of QAM modulation, which
is QAM modulation built by superposition [64, 65], sometimes referred hierar-
chical modulation. This type of QAM signal is generated based on the linear
superposition in the signal space of 4-QAM modulations, following some rules
when adding a layer to another to ensure final Gray labeling. Fig. 2.13a shows
an example diagram of the hierarchical 16-QAM modulation. While generated
quite differently in the signal space, QAM modulations built by superposition
and orthogonal modulations perform the same when used in a BICM context.
Indeed, it can be shown that bit channels are equivalent to a permutation of the
bit labeling when binary-reflected Gray mapping is used. Thus, they are equiv-
alent in terms of performance. However, it is no anymore the case for the SICM
scheme. Fig. 2.14 compares the CM, SICM, and BICM capacities for various
modulation orders for channel codes over GF(4) based on the LTE standard’s
modulations. Fig. 2.13b shows an example LTE 16-QAM modulation diagram.
These constellations are Gray QAM modulations that can be interpreted as
superposed QAM modulations. Fig. 2.14 also gives rates of respective layers
for the non-binary MLC scheme. It appears that the SICM behaves similarly
to the BICM. Only the non-binary MLC scheme can achieve the CM capacity
as it benefits from the design by superposition. This example shows that the
construction of the modulation matters for SICM schemes. For 64-QAM and
256-QAM modulations with codes defined on GF(8) and GF(16), we obtain the
same type of results as in Fig. 2.12.
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(a) Hierarchical 16-QAM (b) LTE 16-QAM

Figure 2.13: Examples of studied QAM constellation dia-
grams.

Figure 2.14: CM, SICM, and BICM capacities for 16, 64, and
256-QAM constellations built by superposition.
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Chapter 3

Precoding and Non-binary
Coding for Optical MIMO

3.1 Introduction

Nowadays, the increasing number of connected people and devices operated
by 5G and the high data-consuming applications necessitate considerable com-
munication prospects. Optical networks that represent the foundation of the
high data exchange are expected to fulfill this tremendous rate demand. They
have been developed in history to answer massive throughput requests. In the
1980s, new materials were invented for constructing optical fibers, the elemen-
tal medium of optical communications. This has the advantage of reducing the
propagation loss in the fiber and increasing the throughput for a given range.
Then, in the late 1990s, the Erbium-Doped Fiber-Amplifier technology came
to give access to wavelength division multiplexing (WDM), enabling two or-
ders of magnitude in the bit-rate when exploiting the frequency dimension [66].
After 2005, the last significant development was the capability to recover the
phase of the electromagnetic field, allowing the coherent technology [67–69] and
the use of polarization division multiplexing (PDM). Therefore, it was possible
to quadruple the data sent by implementing multi-amplitude and phase mod-
ulation schemes and using a MIMO optical channel. Advanced digital signal
processing could then be applied to the receiver to mitigate impairments and
channel noise.

In coherent optical networks, PDL is a linear non-unitary impairment expected
to have a powerful impact on next-generation systems [70]. Indeed, it reduces
the benefit of multiplexing in polarization. Even though the throughput, in
theory, is doubled by using both polarizations, PDL can reduce one of the
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streams and removes the benefit of having two parallel channels. In this per-
spective, our work considers a 2× 2 optical MIMO system as proposed in [71].
At the emission, the signal can be multiplexed on 2 polarizations correspond-
ing to the multiple inputs. At the receiver, it is received on 2 polarizations,
corresponding to the multiple outputs. In [72], authors proposed a 2-parameter
optimization, referred to as NSB, that allows maximizing the minimal informa-
tion rate achieved by discrete Pol-Mux QAM transmissions. They compared
its performance in CM capacity to a previously proposed scheme called SB.
In this chapter, we will present the two mentioned techniques, SB and NSB,
and analyze whether these polarizations are optimal when evaluating the BICM
and SICM capacities instead of the CM capacity. In addition, we generate an
optimized non-uniform distribution of information QAM symbols for the op-
tical MIMO. Simulation results show that the non-uniform distribution of the
transmit sequence allows for increasing the throughput of the already deployed
fiber schemes, such as the SB and the NSB modulation designs. Besides, we in-
vestigate two new approaches based on non-binary information processing that
have been tested : (i) the design of protograph non-binary codes under the
NSB framework and (ii) the design of a SICM based on non-binary protograph
LDPC codes.

3.2 PDL Channel Model

3.2.1 The Lumped PDL Channel

This work focuses on polarization-multiplexed systems exploiting amplitude/time
and phase. So, we consider a 2× 2 MIMO system with two polarization inputs
and two polarization outputs. Typically, we model the system output with
a transfer matrix H ∈ C2×2 where its entry hij captures how the jth input
polarization sent by the transmitter evolves and is received in the ith output
polarization at the receiver side. In the remainder, we will always consider that
we deal with a single channel hence omitting the wavelength dimension. Indeed,
it is reasonable to consider that PDL is flat on one WDM channel; thus, we will
study PDL in only one channel.

With Nt = 2 polarization inputs and Nr = 2 polarization outputs, the associ-
ated communication model is given by

y = Hx + n, (3.1)



3.2. PDL Channel Model 39

where y = (y1, y2)T ∈ C2 is the received signal, x = (x1, x2)T ∈ C2 is the
data symbol vector whose elements belong to an M -QAM modulation X , of
size M , x1 and x2 are the modulated symbols. n ∼ CN (0, N0I2) is an AWGN
signal. The SNR can be defined as SNR = NtEs

N0
, where Es = E

[
|xi|2

]
. The

PDL matrix H depends on (α, β, γ) parameters; it decomposes as

H(α, β, γ) = DγRαBβ, (3.2)

where Rα is a real-valued rotation matrix representing the input incident angle
α ∈ [0, 2π), Dγ denotes the real-valued eigenvalues {

√
1 + γ,

√
1− γ} with gain

imbalance Λ = 10 log((1 + γ)/(1− γ)) in dB, and Bβ = diag
{
eiβ, e−iβ

}
is

the birefringence or retardance matrix with β ∈ [0, 2π). A frequency-flat model
is assumed with lumped noise at the receiver side. The instantaneous MIMO
channel capacity solely depends on γ; thus, we assume γ to be constant over
a whole transmission, while the two angles α and β vary from one codeword
to another. However, to remove the dependency in β, an approximation of the
PDL channel can be considered; the phase retardance matrix is taken to be
Bβ = I2. Consequently, the PDL channel depends, in this case, on only one
angle parameter

H(α, γ) = DγRα, (3.3)

that we call the simple PDL channel. Such simplification is often used in op-
tical communication literature. It can be justified as the MI between X and
Y strongly depends on the incident angle α and, to a less extent, on β [72].
Nevertheless, when applicable, it should be remembered that this is not the
complete model of the lumped channel. In particular, the negligible variation
in β may not hold for a high value of PDL or when changing the input mod-
ulation. Therefore, optimum unitary precoding can be applied to the QAM
modulation scheme states to offer resilience to PDL, focusing on increasing the
worst rate over all channels. In the sequel, we present these precoding tech-
niques, proposed initially by [72] to improve this worst case.

3.2.2 The Spatially Balance Signalling

The simple PDL channel gave insight into the construction of PDL-resilient
signaling. In this subsection, we present the spatially balanced (SB) signaling
that leverages the performance of square M-QAM-based modulation by im-
proving the worst-case capacity [72]. The approach is based on information
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rate considerations, and the optimal configuration is based on Euclidean dis-
tance observations. We study H(α, γ) as a real-valued system, and so we obtain
two independent channels as follows

y = Hx + n =∆
 ℜ(y) = DγRαℜ(x) +ℜ(n),
ℑ(y) = DγRαℑ(x) +ℑ(n).

(3.4)

where ℜ(A) and ℑ(A) represent the respective real and imaginary parts of A.
Thus, both polarization streams of the standard DP-QAM modulation scheme
(without precoder) are sent in the PDL channel with the same incident angle
α. SB signaling was proposed to avoid the worst angle configurations. Given
that the two channels are independent, a rotation is performed by an angle η. If
fη represents the SB encoding function rotating the imaginary parts, Eq. (3.4)
becomes

y = Hfη(x) + n =∆
 ℜ(y) = DγRαℜ(x) +ℜ(n),
ℑ(y) = DγRαRηℑ(x) +ℑ(n).

(3.5)

In Fig. 3.1, we present, at 11 dB SNR, the rate profile of the SB-QPSK and the
DP-QPSK modulations for the simple PDL channel, i.e., β = 0. For the DP-
QPSK scheme, the maximum is attained at π/4, so taking an offset angle of α =

π/4 is relevant. Regarding SB signaling, when one complex part experiences a
lower achievable rate, the other part experiences a better channel. We observe
in Fig. 3.1 that the SB-QPSK worst rate increases to the middle value from the
minimum and maximum values of DP-QAM. As balancing signaling, the rate
fluctuations to α are reduced by construction. These two observations are valid
for the entire SNR region, and the worst-case increase is the most significant in
the SNR regions where the DP-QAM attains its maximum rate amplitudes.

In the end, we can say that, in general, SB encoding can be defined by rotating
both the real and imaginary parts of the DP-QAM constellation to get an
equivalently divided offset η between the two rotated M-QAM-like squares on
each complex part. In other words, instead of sending x that belongs to M -
QAM it can be encoded as R−η/2ℜ(x) + Rη/2ℑ(x).

3.2.3 The New Spatially Balance Signalling

The 4-D diagrams are favored candidates for implementation in optical net-
works, using the actual 4 symbol dimensions, which are the two polarizations’
in-phase and quadrature components. Insights into optically relevant physical
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Figure 3.1: SB-QPSK rate as a function of α at an SNR of 11
dB and for Λ = 6 dB compared to the one of DP-QPSK.

Figure 3.2: DP-QPSK rate as a function of the two angles α
and β for Λ = 6 dB at an SNR of 11 dB.
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and non-physical four-dimensional rotations are first found in [73, 74]. Hence,
orthogonal transformations in R4 are investigated. Whence simplifying trans-
formations applied over an M -QAM2 symbol vector x, it can be written as eiθ

fη,ν(x), where fη,ν(·) is the unitary precoding function defined as

fη,v(x) =

cos(η)x + sin(η)eiν

 0 −1
1 0

x∗

 , (3.6)

where x∗ is the conjugate of x and the Euler angles (η, ν) ∈ [0, 2π)× [0, 2π).
Note that this precoding is a unitary transformation preserving signal energy.
The factor eiθ is a scalar phase rotation common to both polarization tributaries
and cannot offer any PDL resilience; hence it is omitted in the sequel. The
channel model in (3.1) becomes

y = DγRαBβfη,v(x) + n. (3.7)

3.2.4 Zero Outage Capacity for DP and NSB

The optical fiber MIMO channel is, in essence, a quasi-static channel, i.e., the
channel matrix H remains constant over a frame or codeword and may vary over
time. As no precoding strategy can be used to study the asymptotic achievable
rate, the zero-outage capacity (ZOC) of CM [75] is of particular interest. We
define the ZOC as the maximum transmission rate to transmit without any
outages. Let H(α, β, γ) be a particular instance of the MIMO channel H.
For a given precoding strategy (η, ν), the achievable information rate for this
particular realization of the channel is given by

Rα,β(η, ν) = I(x; y|H = H(α, β, γ), fη,ν(.)), (3.8)

where I(x; y) is the MI between variable x and y. The parameters η and ν are
optimized in [72] to maximize the minimum of the MI between x and y for any
pair (α, β), that is

(ηopt, νopt) = arg max
η,ν min

α,β
Rα,β(η, ν). (3.9)
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Note that in the particular case where ν = 0, Eq. (3.6) enables to construct the
SB signal,

fη,ν=0(x) = cos η

 x1

x2

+ sin η

 −x∗
2

x∗
1

 ,

=

 cos η − sin η

sin η cos η

 ℜ(x1)

ℜ(x2)

+

 cos η sin η

− sin η cos η

 iℑ(x1)

iℑ(x2)

 ,

= Rηℜ(x) + iR−ηℑ(x).
(3.10)

This encoding leads to an offset angle of 2η between the two complex parts
of x. Section 3.2.2 shows that the optimal value is 2η = π/4 for low values
of PDL or another value for higher gain imbalance regimes. Now, we consider
all possible (η, ν) pairs and conduct a numerical evaluation of I(X; Y ) using
Monte-Carlo simulations. We restrict to the channel model in Eq. (3.7) for
which we take a PDL value of 6 dB and use a state-of-polarization (SOP) grid
with a step of up to π/64. In Fig. 3.3, we plot the minα,β I(X; Y ) when using
QPSK2 encoded with fη,ν as defined in Eq. (3.6), at 11 dB SNR (corresponding
to a rate of about 0.85). A coarse (η, ν) grid with a π/32 step is used for
(η, ν) ∈ [0, π/4]× [0, π/4] and a finer step of π/64 is considered for (η, ν) ∈
[π/8, 3π/16]× [3π/16, π/4]. The study is restricted to this range because the
worst rate profile is π/2-periodic to η and ν.

Following the rate optimization of the encoding parameters in [72], we denote
with

C0
CM = min

α,β
Rα,β(0, 0), and (3.11)

C0
CM,NSB = min

α,β
Rα,β(5π/32, π/4), (3.12)

the ZOCs of the non-precoded and the NSB schemes, respectively. Classically,
transmission systems usually consider BICM schemes [12, 26], which consist
of a serial concatenation of a binary error-correcting code and a high-order
modulation separated by an interleaver. In this context, we define the BICM
ZOC in the non-precoded and the NSB schemes as follows

C0
BICM = min

α,β

∑
i

I

(
Bi; y|H = H(α, β, γ), fη=0,ν=0(.)

)
, (3.13)

C0
BICM,NSB = min

α,β

∑
i

I

(
Bi; y|H = H(α, β, γ), fη=5π/32,ν=π/4(.)

)
, (3.14)

where Bi is the ith bit random variable carried by the sent symbol vector. As
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Figure 3.3: Numerical evaluation of worst rate overall channel
SOPs (α, β) for DP-QPSK encoded with the f(η,ν) function for

a PDL Λ = 6 dB at an SNR of 11 dB.

shown in Fig. 3.4, there is an inherent loss of performance for BICM MIMO
systems when comparing BICM and CM ZOCs, i.e., when using the same en-
coding parameters that are optimal for the CM capacity. This motivates the
study of non-binary error-correcting codes that can operate closer to the CM
ZOC. Therefore, we will also investigate the SICM capacity, particularly the
SICM ZOC in the non-precoded and the NSB schemes,

C0
SICM = min

α,β

∑
i

I

(
Si; y|H = H(α, β, γ), fη=0,ν=0(.)

)
, (3.15)

C0
SICM,NSB = min

α,β

∑
i

I

(
Si; y|H = H(α, β, γ), fη=5π/32,ν=π/4(.)

)
, (3.16)

where Si is the ith symbol RV carried by the transmitted symbol vector.

3.3 Optimization over SB and NSB Schemes

The two optimization techniques, SB and NSB, previously proposed in [72],
aim to maximize the minimal achieved CM capacity. As a result, two optimal
parameters, η, and ν, are identified for each scheme. However, this differs for
the BICM and SICM capacities, which are not evaluated with these techniques.
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Figure 3.4: ZOCs of the non-precoded and NSB QPSK
schemes vs. SNR for Λ = 6 dB (where the SICM scheme coding

is defined over a field of order Q = M).

We aim to investigate their optimization and see whether the found parameters
are still optimal.

3.3.1 Worst BICM and SICM Optimization in the SB

As shown in Fig. 3.1, the worst CM rate is reached for α = 0 modulo π/2
and β = 0. We show by simulations that the minimum and the maximum
of the worst BICM rate of the SB signaling are obtained for the same angles
α and β compared to the CM capacity. Fig. 3.5 shows that for a high SNR
value equal to 11 dB. This result is explained by the fact that since the encoded
bits are mapped using the Gray mapping for a high SNR range, the bits are
independent, and the BICM scheme behaves as the CM scheme. This is also
confirmed for the SICM capacity from Fig. 3.5. Its behavior is similar to that
of the CM scheme at a high SNR level. Indeed, its SB’s worst rate corresponds
to the pair (α, β) that minimizes the maximum of the SB’s CM rate.

Conversely, for a low SNR range, the correlation between bits occurs, which
explains the difference in behavior between the BICM and the CM schemes.
Fig. 3.6 shows, for a low SNR value equal to 6 dB, that the two pairs (α, β) =

(0, 0) and (α, β) = (π/4, π/8) do not correspond to the worst and best cases,
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Figure 3.5: SB-QPSK CM, BICM and SICM as a function of
the two angles α and β for Λ = 6 dB at an SNR of 11 dB.

respectively, for the SB BICM. Although the behavior of the CM and BICM
rates is the same function of α and β at 11 dB, it changes entirely at 6 dB, i.e.,
for low rates. We observe in Fig. 3.6 that the minimum of the SB’s worst BICM
rate corresponds to the maximum of the SB’s worst CM rate for the same pair
(α, β). However, Fig. 3.6 shows the same behavior between the CM and SICM
capacities for low SNRs, as shown at 6 dB. This confirms that the optimal SB
polarization is well-founded for the SICM scheme at the entire SNR region.

We plot in Fig. 3.7 the minimum of the SB-QPSK CM, SB-QPSK BICM, and
DP-QPSK BICM rates as a function of the SNR by averaging on the angles α

and β. We can figure out that using the SB encoding function fη,ν at low SNR
ranges is unnecessary. Besides, we find, for high rates, the maximum of the SB
worst BICM does not evaluate to η, i.e., the optimal value of η that maximizes
the minimum of the SB BICM rate is almost π/8 modulo π/4, which is the
same angle for the CM rate. In Fig. 3.8, we observe that the SB’s worst BICM
is much flatter than the SB’s worst CM. Unlike the CM rate, the variation
between the minimum and the maximum of SB’s worst BICM is insignificant
for low-to-moderate SNRs.
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Figure 3.6: SB-QPSK CM, BICM and SICM as a function of
the two angles α and β for Λ = 6 dB at an SNR of 6 dB.
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3.3.2 Worst BICM and SICM Optimization in the NSB

We study the variation of the QPSK-CM, QPSK-BICM, and QPSK-SICM rates
for the NSB scheme where we take ν = π/4, η ∈ [0, π/2] with a π/64 precision
and (α, β) ∈ [0, π]× [0, π] with a π/32 precision. We can see from Fig. 3.9 that
the minimum and the maximum of the QPSK-CM rate correspond to the pairs
(α, β) = (0, 0) and (α, β) = (π/4, π/8), respectively. This indicates that the
CM, BICM, and SICM have identical optimal parameters for NSB polarization.
However, at low rates, for example, at 6 dB SNR, as shown in Fig. 3.10, the
pairs (α, β) for the minimum and the maximum, are not the same compared
to the CM scheme, for both the BICM and SICM capacities. This difference
in behavior between the CM, BICM, and SICM rates lies in the fact that bit
correlations occur at low rates due to the employed mapping.

Moreover, like the SB signaling, the NSB’s worst BICM rate is not better than
that of the non-precoded case (DP) for low SNR ranges, as shown by Fig. 3.11.
Hence, considering the encoding function fη,ν for those ranges is unnecessary.

In Fig. 3.12, we compare the behavior of the CM and BICM rates as a function
of η and ν, at 6 dB SNR, with taking (η, ν) ∈ [0, π/4]× [0, π/4]. As a result,
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Figure 3.9: NSB-QPSK CM, BICM and SICM as a function
of the two angles α and β for Λ = 6 dB at an SNR of 11 dB.

Figure 3.10: NSB-QPSK CM, BICM and SICM as a function
of the two angles α and β for Λ = 6 dB at an SNR of 6 dB.
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Figure 3.11: Worst CM and BICM rates for the NSB and DP
schemes as a function of SNR for Λ = 6 dB.

we can see that the optimal pair (ηopt, νopt) that maximizes the NSB’s worst
BICM rate is not the same for the NSB’s worst CM rate. This is because there
are two optimal pairs for the BICM scheme, whereas only one is for the CM
scheme. Also, it is well-observed in Fig. 3.12 that there is not a significant
evolution of the NSB’s worst BICM rate as a function of η. Consequently, we
think that whatever the chosen value of the angle η, we have to choose precisely
the value of the angle ν.

All the obtained performance is evaluated on the QPSK modulation format, but
the work is also well-founded for M-QAM modulation formats. For example,
Fig. 3.13 shows that significant SNR variations are observed as a function
of the incident angle α for 16-QAM where β = 0. In Fig. 3.14, we see the
equivalent variation in α for SNR = 18 dB. Also, it is well-observed that the SB
scheme improves the worst MI of the non-precoded scheme, which is realized
for α ∈ {0, π/2, π}. Before concluding this chapter, we should mention that
the same results concerning the CM, BICM, and SICM capacities are obtained
for the 16-QAM, like the QPSK modulation format.
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3.4 Binary PAS for the Optical Channel

QAM modulations are usually deployed in modern optical transport networks.
However, an asymptotic loss of almost 1.53 dB can be observed towards the
Shannon limit [76]. Such a gap can be closed in information theory by shaping
when the modulation format follows a Gaussian distribution. In recent years,
several works concerning optical transmissions have successfully implemented
different shaping techniques, from many-to-one and geometrically-shaped for-
mats to PS [14–16, 77, 78]. In this context, many transmission demonstra-
tions and record experiments with shaped modulations have been reported,
e.g., in [19, 79–85]. This section considers the optical 2× 2 MIMO channel as
described earlier. We aim to generate an optimized non-uniform distribution
of information symbols for QAM modulations to be transmitted using binary
LDPC encoding. Associating the information symbols (amplitudes) with the
parity bits creates the desired symbols to be sent via the optical MIMO chan-
nel. The communication system is depicted in Fig. 3.15, which combines binary
PAS and binary channel encoding. We employ QAM modulations representing
the constellations of choice in various communication systems. QAM enables
natural Gray labeling of the information bits, which increases performance at
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Figure 3.15: Optical communication system with binary PAS.

mid-to-large SNRs.

We consider binary LDPC encoding for simulations to generate uniformly dis-
tributed parity bits, representing the sign bits described in [14]. In this context,
a DM converts the binary data to symbols representing the amplitudes the bi-
nary LDPC encoder will encode. The parity bits after encoding are distributed
uniformly, although the input bits to the LDPC encoder follow a non-uniform
distribution. At last, the final transmit signal is obtained after associating the
information amplitudes with the parity bits generated by the binary LDPC en-
coding. Then, the transmission is realized over the PDL channel. Finally, the
received signals are demodulated at the receiver to form binary probabilities fed
to the binary LDPC decoder.

We evaluate the performance of the PS scheme by Monte Carlo simulations. The
system performance depends on the considered transmission scheme. Therefore,
we have tested the implementation of the following schemes:

• DP uniform: there is no precoding applied (η, ν) = (0, 0), and the
transmit symbols are uniformly distributed;

• DP PS: there is no precoding applied (η, ν) = (0, 0), and for each SNR,
we search the distribution PA

∗ that maximizes the outage capacity;

• SB uniform: we fix ν equal to zero and we consider η ∈ [0, π/2] with a
π/64 precision. Then, for each SNR, we search the optimal value η∗ that
maximizes the outage capacity;
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• SB PS : we fix η∗ to the found value in the SB uniform; then we search
for each SNR the distribution PA

∗ that maximizes the outage capacity
=⇒ non-joint optimization for the SB non-uniform;

• NSB uniform: we consider (η, ν) ∈ [0, π/2] × [0, π/2] with a π/64
precision, then, for each SNR, we search the optimal pair (η∗, ν∗) that
maximizes the outage capacity;

• NSB PS : we fix η∗ and ν∗ to the found values in the NSB uniform; then
for each SNR, we search the distribution PA

∗ that maximizes the outage
capacity =⇒ non-joint optimization for the NSB non-uniform;

The precoding process is performed first for all schemes, i.e., before the shaping
optimization. Hence, no joint processing is applied, which has the advantage of
reducing the greedy procedure complexity.

The simulation results show that the non-uniform distribution of the transmit
sequence allows for increasing the throughput of the already deployed fiber
schemes, DP, SB, and NSB. We plot in Fig. 3.16 the achievable CM capacity
of the different schemes when employing the 64-QAM modulation. It is well
observed that PS achieves relative performance in all schemes. What is clear
is that the performance of non-uniform schemes is always better than that of
uniform designs. For instance, in the NSB scheme, the gain is almost 0.5 dB
for high SNRs (corresponding to rates between 0.8 and 0.85). Besides, we can
see the advantage of integrating the precoding and the PS to enhance capacity.
For instance, we can see almost 1.5 dB gain achieved by the NSB PS over the
uniform DP. However, it is well-observed that precoding does not bring profits
at low-to-moderate SNRs. By comparing the uniform DP and the uniform SB
and NSB schemes, we observe that their performances are almost similar when
the SNR regions are upper-bounded by 16 dB. In contrast, PS improves the
capacity, which indicates that PS is more competent than precoding, especially
for low-to-moderate SNRs. For example, we can see that the DP PS achieves the
best performance compared to the uniform SB and NSB schemes when the SNR
is less than 20 dB. We briefly summarize the analysis above and list in Table 3.1
the optimal schemes in specific SNR regions. The hatched cells indicate that
the corresponding designs are not included for comparison. We can conclude
from the Table results that the precoding process does not improve performance
for some SNR regions and is only effective at high SNR levels. Conversely, PS
always enhances the system performance even at low SNRs, showing that it is
more beneficial at some target rates.
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Figure 3.16: CM performance of different schemes when using
QAM signals.

We may refer to the SICM that represents the achievable rate associated with
the conventional estimation of the representative symbol for practical systems.
Fig. 3.17 shows the achievable SICM capacities of the different schemes when
employing the 64-QAM modulation. Results illustrate again the advantage
yielded by applying PS. Also, it is displayed that the DP scheme with PS
is efficient at low-to-moderate SNRs, and the NSB scheme with PS achieves
almost 0.5 dB gain for high SNRs compared to the DP scheme with uniform
distribution.

3.5 Non-binary Coding for Optical MIMO

This section deals with the optical 2× 2 MIMO channel, as described in detail in
the preceding sections. Two new approaches based on non-binary information
processing have been tested : (i) the design of protograph non-binary codes
under the NSB framework and (ii) the design of a SICM based on non-binary
protograph LDPC codes.
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Table 3.1: Optimal shaping schemes in the PDL channel.

SNR (dB)

uniform PS uniform PS uniform PS

✗ ✓

∀ values ✗ ✓

✗ ✓

< 20 ✗ ✓ ✗ ✗

DP SB NSB

3.5.1 CM Schemes

The first scheme to be considered is a CM scheme based on non-binary LDPC
codes for which the field order is directly mapped to the MIMO symbol di-
mension. Non-binary LDPC codes have been widely studied for high-order
modulation in the AWGN channel with optical signals. [22, 81, 86–89]. Our
work investigates the design of non-binary protograph LDPC codes suited for
the multi-dimensional mapping naturally induced by the NSB precoding. As-
sume q = MNt where M is the constellation size, and Nt is the number of
transmitting antennas. We consider a simple CM scheme using a q-ary LDPC
error correcting code, i.e., a code defined using a sparse parity-check matrix
whose non-zero coefficients belong to the GF of order q, denoted GF(q). For
this scheme, an information sequence u consisting of K symbols is encoded first
into a codeword vector c of length N , defining a code of design rate R = K/N .
Then, each code symbol cn, n ∈ {1, · · · , N}, is mapped into xn = [xn,1, xn,2]

T .
Here, we consider a multi-dimensional mapping where each code symbol cn is
first converted into its binary representation of length log2(q) bits. Then, each
successive log2(q)/2-tuples of bits is used to assign an M -QAM symbol on each
dimension of the MIMO symbol. In this context, a Gray mapping rule is con-
sidered for a fair comparison with the BICM case. Finally, the obtained code
symbol xn is precoded into x̃n = fη,ν(xn) and sent over the optical MIMO
channel. At the receiver, observation vectors are used to compute likelihood
functions that will feed the soft input of the non-binary LDPC decoder. We
use the fast-Fourier transform (FFT) based belief propagation (BP) decoding
assuming L decoding iterations [51,90].

For the optimization, we consider non-binary protograph LDPC codes [55, 58,
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Figure 3.17: SICM performance of different schemes when us-
ing QAM signals.

91]. The protographs are small structured bipartite graphs with possible mul-
tiple edges connecting variable and parity check nodes. Their optimization
consists of optimizing the connections of the protograph, usually by selecting
the coefficients of the associated adjacency matrix referred to as base matrix,
whose elements lie in N∗ ∪ {0}. By selecting the coefficients, we often aim to
optimize the asymptotic convergence threshold to operate close to the capacity.
This is usually done using PEXIT [58]. In our context, we have extended the
approaches proposed in [50, 55, 58] to the case of a complex multi-dimensional
mapping. The goal is to generate PEXITs considering the precoding function,
especially for the unpunctured variable nodes. As the MIMO channel is time-
varying and quasi-static, optimizing a particular channel is not very pertinent,
even in the worst case. We instead consider the optimization for the complex
multi-dimensional mapping over the AWGN channel given by the observation
model ỹ = fη,ν(x) + n. By doing so, for a design rate R = 0.8 and QPSK
modulation, we found that

HB1 =

6 1 2 1 1 1 1 1 1 1
6 2 1 1 1 1 1 1 1 1

 (3.17)
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allows operating at 0.03 dB from the precoded multi-dimensional AWGN chan-
nel capacity. When considering punctured/precoded graphs, we found that

HB2 =


2 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 0
2 1 0 0 0 0 0 0 0 0 1

 (3.18)

gives a threshold only within 0.01 dB from the capacity. The first column corre-
sponds to the variable punctured nodes. As often for non-binary coding schemes
operating close to the capacity, the corresponding capacity-approaching graphs
tend to have many variable nodes of 2 degrees. This can be detrimental to finite
length performance if no optimization of non-binary coefficients is performed.
However, a denser graph with better graph properties can generally perform far
away from the capacity, which can cancel the benefit of a non-binary scheme
over the BICM one. For example, for R = 0.8, regular (3, 15) protograph codes
and irregular repeat accumulate (IRA) based protograph codes following DVB-
S2 profile [92] have a threshold of 0.44 dB and 0.39 dB respectively away from
the capacity for codes over GF(16).

3.5.2 BICM/SICM Schemes

The second scheme is a generalization of the BICM scheme to higher field or-
ders, referred to as SICM. It is a different sub-optimal approach to reducing the
CM complexity. Several SICM schemes can be considered by assigning different
values to q such that 1 ≤ log2 q ≤ m, with M = 2m, m ∈ N, and q divides m.
The SICM transmitter involves a serial concatenation of a q-ary LDPC code, a
symbol interleaver, and an M -ary QAM mapper. An LDPC code over GF(q),
of a rate R = K/N encodes an information sequence u of K symbols into
a codeword c. The coded symbols are then interleaved using a symbol inter-
leaver and grouped into l-tuples of symbols over GF(q) where l = m/ log2 q.
We note with ck =

[
ck,1, ck,2, · · · , ck,l

]
the sequence of non-binary l-tuples for

1 ≤ k ≤ N/l. Finally, the mapper associates to each l-tuple ck a complex
symbol x. Here, we consider q = M and a Gray mapping based on the binary
representation of the coded symbols. The resulting M -QAM symbols are then
demultiplexed and precoded before being sent through the optical MIMO chan-
nel. The SICM receiver, in turn, involves a serial concatenation of a soft MIMO
detector/demapper, a symbol desinterleaver, and a soft-input q-ary FFT-BP
decoder. By applying the same methodology as for the CM case, considering
the symbol-based marginalization, we have optimized non-binary protograph
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Figure 3.18: BER versus SNR for protograph based codes
using HB1 and H̃B1 .

LDPC codes. For example, considering QPSK modulation and a code defined
over GF(4), we obtain the following unpunctured protograph code,

H̃B1 =
[
6 3 2 2 2

]
. (3.19)

For the punctured case, we obtain

H̃B2 =


3 1 1 2 1 2 1 1 1 1 0
1 1 2 1 2 1 1 1 1 1 0
2 1 0 0 0 0 0 0 0 0 1

 , (3.20)

which is 0.08 away from capacity. The first column corresponds to the punctured
variable nodes.

In Fig. 3.18, we give some BER results for the worst-case MIMO channel for the
two described schemes (CM and SICM) for codewords of length 61440 bits. We
can operate close to the CM ZOC for the CM scheme, while the SICM scheme
operates only close to the SICM ZOC.
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3.6 Conclusion

In this chapter, we have presented studied PDL-resilient signaling. An optimal
four-dimensional modulation is developed in the literature. We first tested the
SB signaling with a single PDL element to observe the performance. The latter
showed an increase in the worst encountered rate. Also, we have tested the NSB
signaling that offered rate increases. However, the optimization techniques are
only performed to maximize the minimal CM capacity. Therefore, we have
optimized the BICM and SICM capacities to find the optimal parameters that
maximize their minimal capacities. We have found that the behaviors of BICM
and CM capacities are different in low-to-moderate SNR regions but are similar
in high SNR levels. However, we have noticed that CM and SICM capacities
behaviors are the same in the entire SNR region.
Furthermore, we have shown the advantage yielded by PS when employed in the
optical channel. It outperforms the precoding process for low-to-moderate SNRs
and significantly increases the performance in terms of achievable rates. We
have also studied the design of non-binary protograph LDPC codes for precoded
optical MIMO transmissions. Results show that we can design satisfying codes
operating close to the zero-outage capacities. Finally, for perspectives, we can
consider the design of efficient non-binary spatially-coupled schemes enabling
both good finite-length performance and suitable thresholds for the MIMO case.
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Chapter 4

Circular QAM Signals and
Non-binary Coding

4.1 Introduction

Commonly QAM constellations are usually deployed in modern transport net-
works thanks to their efficiency of generation and detection. However, these
modulations realize an asymptotic loss of almost 1.53 dB towards the Shannon
limit [76]. Such a 1.53 dB gap can be closed using constellation shaping, which
is becoming the last resort to approach channel capacity since channel coding
has reached its maturity [93]. Two strategies can be used to achieve that goal;
PS or GS techniques [17,33,41,43,94]. Compared to regular modulation formats
(with equal probability), the constellation points with PS are sent with different
probabilities, usually following an MB distribution [42] that intends to maxi-
mize the shaping gain. The invention of PAS was an important achievement for
making PS efficient [14]. On the other hand, more classical GS techniques allow
non-equidistant constellation distribution over Euclidean space. Although PS
and GS differ, they usually mimic a quantized sampled Gaussian distribution
to approach the Shannon limit with finite dimensions.

Many approaches to building a capacity-approaching codebook exist in the lit-
erature. For instance, authors in [37] proposed a non-uniform constellation on
the real line with a uniform probability distribution. Méric brought their ap-
proach to the complex plane in [95]. Also, authors in [96] built a codebook
which is a real geometrically non-uniform Gaussian-like constellation, and it
achieves channel capacity when the number of points goes to infinity. Another
recent approach in [16] consisted of building p2-CQAM constellations that allow
to directly generalize PAS to finite fields Fp = {0, 1, . . . , p− 1}. PS shows a
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small gap in the capacity; however, a complex DM, e.g., [15, 97], is required to
modify the source distribution.

In this work, inspired by the analysis of existing GS techniques on the com-
plex plane, we propose the construction of (c, p) CQAM constellations with
equiprobable signaling that can approach the Gaussian capacity. The constel-
lation design splits the points into c circles, each containing p points uniformly
distributed. Compared to existing approaches where c = p, we can find pa-
rameters allowing us to get closer to the capacity for uniform inputs. For the
proposed GS design, we propose non-binary protograph LDPC codes to opti-
mize the asymptotic convergence threshold and operate so close to the channel
capacity.

4.2 From Gaussian Shaping to CQAM Signals

In this section, we compare Gaussian-shaped constellations that are proved
efficient as the order of the constellation tends to infinity. If several approaches
have been proposed, we intend to link these strategies and provide some links to
the newly introduced CQAM [16]. For Gaussian shaping, we can mainly adopt
two approaches. The first is to build a two-dimensional M -ary constellation
as the Cartesian product of two Gaussian-shaped

√
M -ary PAM constellations.

Hence, we refer to these constellations as GS-QAM. The second is to consider the
extension of the Gaussian shaping directly in the complex plane, which results
mainly in APSK-like modulations. Hence, we refer to these constellations as
GS-APSK. Finally, we link existing GS-APSK constellations to the more general
family of circular QAMs.

4.2.1 GS-QAM Signals

GS-PAM signals have often been studied in the literature, e.g., [37, 50, 96].
In [96], Boutros et al. propose a real geometrically non-uniform Gaussian-like
constellation G, referred to as GS-PAM, associated to q-ary codes defined over
the ring Zq. When the constellation cardinality is equal to q =

√
M , the

construction can be summarized as follows:

• Let U be a discrete set of q equidistant points in the interval [0, 1] such
that U = {u0, u1, . . . , uq−1}, and we have ui =

1
2q +

i
q , for i = 0 . . . q− 1;

• We denote by s ∈ Zq = {0, 1, 2, . . . , q − 1} the symbol from the uniform
q-ary information input. At first, the symbol s is mapped into a point
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Figure 4.1: Three different GS-QAM.

given by
u(s) =

1
2q

+
(s + ⌊q/2⌋) mod q

q
. (4.1)

Then, the point u(s) is mapped into a point x(s) = ϕ−1(u(s)) ∈ G
where ϕ−1(u) is the inverse of the well-known distribution function of a
zero-mean unit-variance real Gaussian random variable.

Authors have proved that their discrete codebook G achieves the channel ca-
pacity when the number of points q tends to infinity. One can bring their
approach to the complex plane to get the two-dimensional (2D) constellation
of size M = q× q. As the constellation of the M-QAM can be expressed as the
Cartesian product of two PAM constellations, we can construct the GS-QAM
constellation from the discrete codebook G. For example, the coordinates of the
obtained GS-QAM points are illustrated in Fig. 4.1 for different constellation
sizes M = 64, 256, and 1024.

4.2.2 GS-APSK Signals

APSK constellations are an important family of constellations. For instance,
some practical systems, such as the DVB standards, implement APSK constel-
lations with large cardinality, up to 256 [92]. In this context, [95] presents a
2D generalization of [37] building GS-APSK constellations that can achieve the
Gaussian capacity as the constellation size goes to infinity. It is based on the
same sampling as in [96] but applied to the complex plane. By considering two
random variables Um and Vm, m ≥ 1, uniformly distributed on{

1
2m

+
k

m
| 0 ⩽ k ⩽ m− 1

}
, (4.2)
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Figure 4.2: Three different GS-APSK.

and the following mapping φ : (0, 1)2 → R2 defined as

φ(x, y) =
(√
−P loge x cos(2πy),

√
−P loge x sin(2πy)

)
, (4.3)

the vector Wm = φ(Um, Vm) is a random vector uniformly distributed on a set
Cm of m2 points in R2. Thus, it consists of splitting the points on c = m circles
where each circle contains p = m points uniformly distributed. This scheme
will be referred to as (c = m, p = m) GS-APSK of size M = m2. However,
a better construction is achieved by considering a slightly different sampling
strategy [95]. In this latter case, m being a power of 2, Um and Vm are the two
sets defined as

Um =

{
1
m

+
2k

m
| 0 ⩽ k ⩽

m

2 − 1
}

, (4.4)

and
Vm =

{
1

4m
+

k

2m
| 0 ⩽ k ⩽ 2m− 1

}
. (4.5)

The resulting shaping involves c = m/2 circles, and each circle has p = 2m

points uniformly spaced. This scheme will be called (c = m/2, p = 2m) GS-
APSK scheme. An illustration of different GS-APSK constellation points is
shown in Fig. 4.2. For instance, note that the (c = 4, p = 16) GS-APSK can be
further extended to design a constellation with parameters (c = 16, p = 4). This
configuration is not reported here, as it does not lead to an exciting modulation
in achievable capacity. However, these parameters will enable the design of
efficient CQAM modulations.

4.2.3 Achievable Capacities

As an illustration, we compare the different CM capacities for constellation
sizes M = 64 and M = 256. As shown in Fig. 4.3, GS-APSK constellations
can achieve better CM capacity than GS-QAM modulations for some range of
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Figure 4.3: Comparison between the GS-QAM and GS-APSK

SNRs. For instance, the GS-APSK achieves almost 0.3 and 0.4 dB gains for
M = 64 and M = 256, respectively. However, GS-QAM signals have the advan-
tage of having independent real and imaginary parts, which enables achieving
the corresponding CM capacity by considering non-binary coding schemes de-
fined on an alphabet of order

√
M . This is not the case for APSK signals, and

careful constellation labeling should be chosen to limit the loss. We compare
the different CM capacities [20, 98] of the GS-QAM and the (4, 16) GS-APSK
following a mapping as suggested by [92]. Despite the loss of information in-
duced by marginalization over a smaller alphabet, it shows that there is still an
advantage of GS-APSK over the GS-QAM. Note that we can fill the GS-APSK
CM capacity gap by considering iterative detection and decoding at the price
of increased decoding complexity.

4.2.4 Link to Existing Shaping Strategies

We can link the GS-APSK to the newly introduced CQAM [16]. Indeed, GS-
APSK signals can be viewed as STAR-like constellations, i.e., rotated GS-PAM
signals. For example, the (4, 16) GS-APSK can be described as an 8-ary ro-
tated GS-PAM. The (8, 8) GS-APSK constellation is a particular instance of
the (8, 8) CQAM, viewed as a 16-ary rotated GS-PAM. It is always the same in-
terpretation for a higher modulation order. For instance, the (8, 32) GS-APSK
can be defined as a 16-ary rotated GS-PAM, and the (16, 16) GS-APSK is a
particular case of the (16, 16) CQAM, observed as a 32-ary rotated GS-PAM.
Fig. 4.4 illustrates the above analysis for two different GS-APSK constellations:
(c = 4, p = 16) and (c = 8, p = 32). However, it is interesting to note that
the resulting Gaussian shapings of the underlying PAMs do not lead to the one
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Figure 4.4: GS-APSK observed as rotated GS-PAM.

given by [96] due to the different sampling strategies. It has been shown in [98]
for the (p, p) case that careful design of the CQAM can lead to improved per-
formance. These observations show that some capacity gains can be obtained
in the case of the uniform input by generalizing the (p, p) CQAM approach to
a (c, p) CQAM for a given order of modulation M = c× p. This is the pur-
pose of the next section. We will also address the question of possible further
improvements by applying PS with these new configurations.

4.3 (c, p)-Circular QAM Signals

4.3.1 (p, p) CQAM

Boutros et al. propose in [16] a novel approach based on tiling triangles to make
a circular bi-dimensional constellation for both GS and PS, referred to as CQAM
constellation (see the extension in [99]). They define a p2-CQAM constellation
as a rotation-invariant circular QAM format in the I/Q plane. The p2-CQAM
is a two-dimensional constellation that includes p circles containing points of
the same amplitude, referred to as shells, with p points per shell. We can write

p2-CQAM ∝ ∪p−1
i=0 ei 2π

p

√
−1B, (4.6)

where B is a whole (connected or not) discrete set of p points with distinct
amplitudes. Based on the design criteria, many p2 CQAM constructions are pos-
sible, and different properties and performances are obtained. Fig. 4.5 shows
several CQAM like examples [98]. A construction criterion permits control spac-
ing and phase offset between shells. The selection of a particular criterion may
be motivated by geometric considerations. It may also be combined with the
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Figure 4.5: Types of CQAM-like constructions [98].

further optimization of the transceiver design at a given target SNR under non-
uniform signaling. The interest of these constellation formats is that they are
naturally adapted to p-ary PAS coding. The type of CQAM-like constructions
introduced in [16] is solely based on the minimum Euclidean distance. The
chosen criteria maximize the figure of merit or the ratio between |X |d2

min(X )
and ∑x∈X |x|2, where X denotes the constellation, and |X |d2

min is the minimum
squared Euclidean distance. The minimum distance of the power-normalized
constellation X is first maximized via a greedy procedure. Then, MB shaping
is performed such that, for a given SNR, the gap between the CM capacity and
the Shannon limit is minimized. The work in [98] shows that the combined
geometric-probabilistic CQAM leads to an exciting performance concerning the
CM capacity. This is illustrated by Fig. 4.6, which shows that the shaped (8, 8)
CQAM outperforms the 64-QAM regarding CM and SICM capacities.

4.3.2 New (c, p)-Circular QAM Signals

Based on our previous observations on improving capacity by enabling differ-
ent sampling/tilling strategies for a given modulation order, this section gives
insight into the generalization of CQAM signals using the different tools pre-
sented in [16]. Assume that the constellation cardinality equals M , and let c

(≤ M/2) an integer that divides M . Inspired by previous observations, our
approach looks at c shells with p = M/c points per shell instead of populating
p shells with p points [98]. In this context, and following the construction given
by [16], we build a (c, p) CQAM constellation depending on the design criteria,
e.g., the figure of merit (minimum distance), and we formulate the c shells as
follows:

1. For the first shell (i = 0), draw p points (x0 . . . xp−1), which are uni-
formly spaced on the unit circle. The coordinate of points are given by
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Figure 4.6: Information rate as a function of SNR over the
linear AWGN channel for a constellation size M = 64.

exp
(

iℓ
2π

p

)
, for ℓ = 0 . . . p− 1;

2. Assume that shells from 0 to i− 1 are already constructed. For the ith
shell, let xip = ρi exp(iΦi) be the first point. The remaining points are
expressed as xip+ℓ = ρi exp

(
i
(

Φi + ℓ
2π

p

))
, for ℓ = 1 . . . p− 1. Let d2

i

be the minimum distance between the first point of the ith shell and
all previously constructed shells. The radius ρi and the phase shift are
determined along these lines:

• Start with ρi = ρi−1 and increment by a step ∆ρ;

• At each radius update, vary Φi from π/p to −π/p by a step ∆Φ;

• Stop updating the radius ρi and the phase shift Φi when d2
i ≥

4 sin2
(

π

p

)
.

3. Repeat step 2 until reaching the c-th shell.

For a constellation size equal to M = 64, examples of (c, p) CQAM modulations
are shown for c = 4, c = 8, and c = 16 in Fig. 4.7a, Fig. 4.7b, and Fig. 4.8c,
respectively. For M = 256, Fig. 4.8 also shows the different studied CQAM
constellation diagrams, with c = 8, 16, and 32.
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Figure 4.7: The different studied 64-CQAM constellation dia-
grams.
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Figure 4.8: The different studied 256-CQAM constellation di-
agrams.

To increase the achievable MI, the radii of the CQAM constellation may be
adapted. To that end, we can adopt two main strategies. First, one may adopt
one of the two described GS approaches in sections 4.2.1 and 4.2.2 to get the
different radii values and match them to the CQAM constellation. In other
words, if the (c, p) CQAM construction produces the shells’ radii ρ0 . . . ρc−1,
and if one of the GS approaches has the radii ρ′

0 . . . ρ′
c−1 in the ascending order,

then
ρi ←− ρ′

i for i = 0 . . . c− 1. (4.7)

As we can see, this update of CQAM radii is deterministic as it is computed
directly by one of the two GS methods, GS-QAM or GS-APSK. In this context,
we can show that using the GS-APSK design as a deterministic approach to
revising the (c, p) CQAM radii leads to better performance than adopting radii
from GS-PAM. Second, to devise optimized constellations close to the Shannon
bound, we can perform a stretching step [98] to the CQAM radii instead of the
deterministic GS approach. In this perspective, the optimization procedure is
summarized as follows: the radius ρi of shell i, for i = 0 . . . c− 1, is taken to be

ρi = 1 + (ρmax − 1)(i/(c− 1))β, (4.8)
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Figure 4.9: CM capacity for the stretched (8× 8) CQAM at
11 dB SNR as a function of the stretching parameters.

where the outer radius ρmax and the profile exponent β are the parameters to
optimize. Fig. 4.9 illustrates the optimization procedure within a 3D plot that
shows the CM capacity as a function of the stretching parameters. We consider
the deterministic approach in the sequel to show the corresponding results.

4.3.3 Capacity Analysis

We numerically compare the CM capacity performance of the different CQAM
formats to the traditional (c = 8, p = 8) CQAM format with an optional
stretching as suggested in [98]. Fig. 4.10 shows the resulting CM performances
vs. SNR for a constellation size M = 64. We can see that the proposed
(c = 4, p = 16) and (c = 16, p = 4) CQAM signals approach the Gaussian
bound and consistently outperform uniformly stretched (8, 8) CQAM signals
for moderate SNRs (corresponding to coding rates around and slightly above
0.5). Around 4 bits/s/hz, we can see that the proposed (c = 4, p = 16) CQAM
achieves similar performance to the (c = 4, p = 16) GS-APSK. They reach a 0.2
dB gain compared to the traditional (c = 8, p = 8) CQAM and the proposed
(c = 16, p = 4) CQAM, which perform almost similarly. Fig. 4.11 shows results
for M = 256. We can see that the proposed (c = 8, p = 32) CQAM has the
best performance and achieves almost 0.05 dB and 0.35 dB gains compared to
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form 64-sized constellations.

the (c = 8, p = 32) GS-APSK, and the GS-QAM, respectively. In practical
systems, we may refer to the BICM or SICM information rates. To perform
well in practice, we should combine the geometry of the designed (c, p) CQAM
constellations with Gray mapping. Fig. 4.12 compares the SICM capacity
performance of the different constellations for M = 64. It is well observed that
our proposed design consistently outperforms the traditional (c = 8, p = 8)
CQAM with equiprobable signaling (H(X) = 6) for the entire SNR region. For
example, around 4 bits/s/hz, the (c = 4, p = 16) CQAM and the (c = 16, p =

4) CQAM achieve almost 0.8 dB and 0.5 dB gains, respectively. Despite their
use of PS, we can see that the proposed (c = 4, p = 16) CQAM with equal
probability is close to the traditional (c = 8, p = 8) CQAM performance.
This seems interesting since we have excellent performance without PS, which
requires a complex DM to reshape the source distribution. Fig. 4.13 shows
results for M = 256. We can see that the proposed (c = 8, p = 32) CQAM
has the best performance and achieves almost 0.8 dB gain compared to the
(c = 8, p = 32) GS-APSK.
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4.4 Design of Non-binary Protograph Codes
for Geometric Shaping

In this section, we intend firstly to investigate efficient non-binary protograph
codes for GS. These coding schemes are defined on Fq for GS-shaped constel-
lations X of even order M , with q ≤ M , assuming a uniform distribution of
the symbols in X . The coded symbols are transmitted over an additive mem-
oryless Gaussian channel. We design non-binary protograph codes defined on
Fq. For the optimization, we have considered non-binary protograph LDPC
codes [55,58]. The goal is to optimize the asymptotic convergence threshold to
operate close to the capacity. The optimization consists of selecting the coeffi-
cients of the associated adjacency matrix referred to as base matrix, noted HB,
whose elements lie in N+. This is usually done using PEXIT [58].

For GS-QAM signals, we have considered the approach from [55, 58], directly
inspired by [50], considering the obtained modulation as the Cartesian product
of two GS-PAMs. For GS-APSK modulations or CQAM signals with q = M , we
can easily generalize the estimation of EXIT functions of [50] by rewriting [50,
Lemma 12] directly for a complex codebook. Thus, for regular non-binary
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Table 4.1: SNR thresholds in dB for different non-binary con-
stellations over q = M = 64 and regular (2, dc) non-binary

protograph codes.

Rate Shannon (4, 16) CQAM (4, 16) GS-APSK 64 GS-QAM
1/3 4.77 5.15 5.15 5.22
1/2 8.45 8.81 8.78 8.88
2/3 11.75 12.25 12.25 12.34
3/4 13.35 14.03 14.04 14.18
4/5 14.29 15.16 15.20 15.37

protographs, we get the results given in Table 4.1. This shows that (4, 16)
CQAM and GS-APSK perform nearly the same with codes that operate close
to their modulation capacity. Non-binary codes with GS-QAM perform slightly
worse. At 4 bits/s/Hz, we found that

HB =


1 2 0 0 0 0 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1

 (4.9)

has a threshold of 12.13 dB and 12.15 dB for the 64-GS-APSK and the (4,16)-
CQAM, respectively (the second column corresponds to a punctured node).
This is close to their respective modulation capacity. For GS-APSK or CQAM
signals with q =

√
M , we extend the preceding methods by considering the

Monte Carlo evaluation. Initial non-binary log-likelihood messages are gener-
ated from MAP symbol estimation (symbol-wise marginalization). In this con-
text, we have compared the 64 GS-APSK with the 64-GS-QAM, for which we
can have good SICM capacities. In Table 4.2, we have compared several simple
protographs for a targeted rate of 4 bits/s/hz for codes defined on q = 8. This
shows that we can operate very close to the SICM capacity, which is very close
to the modulation capacity. Thus, efficient low-complexity non-binary coding
schemes can be designed to operate close to the capacity.

4.5 Conclusion

This work has investigated (c, p) CQAM constellations with equiprobable sig-
naling that can approach the Gaussian capacity. Compared to existing ap-
proaches where c = p, we can find parameters that allow us to get closer to
the uniform input capacity. Furthermore, we have designed simple non-binary
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Table 4.2: SNR thresholds in dB for 64-GS APSK and QAM
constellations over q =

√
M = 8 for different protographs. The

left column in blue corresponds to punctured variable nodes.

HB GS-APSK GS-QAM(
222

)
13.48 13.35(

322
)

12.61 12.62
1 1 1 1 1 1 0
1 1 1 1 1 1 0
2 1 0 0 0 0 1

 12.17 12.23

protographs for GS constellations, showing that we can operate close to the
capacity.
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Chapter 5

PAS with Non-binary LDPC
Codes for CQAM Signals

5.1 Introduction

The constellation points with PS are sent with different probabilities than stan-
dard modulation formats with equal probability. In this context, PS techniques
can be classified into two subgroups. On the first hand, the first group refers to
the direct approach that fixes a target distribution and finds an algorithm to
reach it [41]. In recent literature [100], the direct approach can also be called
DM. On the other hand, the other group refers to the indirect approach that
fixes a target rate and bounds the n-dimensional signal by a sphere, which we
call sphere shaping [94]. Recently, the invention of PAS was essential for mak-
ing PS efficient [14]. PAS concatenates a shaping outer code called a DM and
an FEC inner code. The DM is the enabling device that transforms uniform
input bits into arbitrarily shaped sequences. Many different DM schemes have
been proposed in the literature [15, 101–103]. Also, many FEC codes, such as
LDPC, turbo, or polar codes, can be employed. It was demonstrated that PAS
increases transmission reach by up to 40%.

This chapter shows how to combine non-binary LDPC codes over Fq with PS to
transmit CQAM signals over the AWGN channel. To this end, we extend our
previous chapter to CQAM modulations using PS. We first analyze the achiev-
able capacities for such schemes. Then, for short blocklengths, the objective
of shaping should be reformulated as achieving the most energy-efficient signal
space for a given rate rather than matching distributions. In this perspective,
sphere shaping is reviewed as an energy-efficient shaping technique. Deploying
the CQAM constellations design as proposed in [104], we present end-to-end
decoding performance simulation results. Compared to uniform signaling, up
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to 1.25 dB improvement in power efficiency is shown with sphere shaping at
blocklengths around 100.

The remainder of this chapter is organized as follows. Section 5.2 gives some
preliminaries about PS techniques. Section 5.3 shows how to combine non-
binary LDPC codes with PAS, particularly with sphere shaping. Section 5.4
provides numerical simulation results for short blocklength and compares the
uniform and shaping signaling. Finally, we conclude in section 5.5.

5.2 Preliminaries

5.2.1 Distribution Matching

A DM transforms input bits uniformly distributed into a sequence of output
symbols with the desired distribution. Fixed-to-fixed length, a DM maps k input
bits to n output symbols representing the shells of the CQAM constellation. The
mapping is invertible so that a low-complexity decoder can recover the input
from the output. The DM rate is equal to

Rs =
k

n

[
bits

output symbols

]
. (5.1)

The constant composition DM (CCDM) has been proposed in [15], and it was
used as the amplitude shaping architecture for PAS in [14]. With CCDM,
all matcher output sequences are permutations of a particular base sequence,
typically described by the composition C that states the number of occurrences
of each amplitude. All amplitude sequences have the same energy EO and are
located on the n-shell of squared radius EO.

5.2.2 Sphere Shaping

The sphere shaping algorithms target a certain rate, i.e., the number of unique
output sequences, rather than a probability mass function (PMF). For a given
set of amplitude alphabets S = {1, 3, . . . , 2m − 1}, n, and k, the maximum-
energy constraint Emax is selected as the minimum value such that |So| ≥ 2k

where So is defined as follows:

So =

{
s1, s2, . . . , sn

∣∣∣∣ n∑
i=1

s2
i ≤ Emax

}
, (5.2)
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i.e., it consists of all 2m-ASK amplitude lattice points on the surface of or inside
the n-dimensional sphere of square radius Emax. An algorithm for realizing
sphere shaping is enumerative sphere shaping (ESS). The latter starts from
the assumption that the energy-bounded amplitude sequences can be ordered
lexicographically. Therefore, the index of an amplitude sequence is defined as
the number of lexicographically smaller sequences. To represent n-amplitude
sequences inside a sphere, an energy-bounded enumerative amplitude trellis is
constructed as described in [105]. This can be implemented by considering the
path representing sn in the trellis and adding the number of paths that branch
off to lower nodes.

5.2.3 Comparison: Finite Length Rate Loss

The rate loss of a shaping set S∗ with average distribution PS(s) can be defined
as

Rloss = H(PS)− k/n. (5.3)

For asymptotically long blocklengths, the CCDM is known to generate the
target-achieving distribution. However, for small blocklengths, the resulting
rate loss diminishes the efficiency of CCDM. In this context, i.e., for short block-
lengths, the sphere shaping is shown to have the minimum rate loss amongst all.
Fig. 5.1 shows the rate loss versus the blocklength for CCDM and ESS. We fix
the target shaping rate Rs = 1.75, and for each n, we choose a target amplitude
composition #(s) ≈ nPS(s), s ∈ S, and Emax for CCDM and ESS, respectively,
such that these PS codes have at least 2k signal points, with k = ⌊nRs⌋. We use
the amplitude alphabet S = {1, 3, 5, 7} of 8-ASK. At n = 96, we observe that
the sphere shaping code has an almost five times lower rate than the CCDM
code. We note that n = 96 is the number of real dimensions in a single orthog-
onal frequency-division multiplexing (OFDM) symbol for one of the modes in
the IEEE 802.11 standard. As shown in Fig. 5.1, it is well-observed that the
spheres codes outperform the constant composition codes at small blocklenghts
for a fixed rate Rs. Therefore, we employ only the sphere codes in our work as
long as we deal with the finite length regime.

5.3 PAS with Non-binary Codes for CQAM

This section describes our proposed approach that combines the non-binary
LDPC codes over Fq with PAS. The combination of PAS and non-binary codes
is depicted in Fig. 5.2. All details about the two mapping functions β(.) and
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Figure 5.1: Comparison of constant composition and sphere
codes regarding rate loss. The target shaping rate is Rs = 1.75

bit/amp. with 8-ASK.

τ (.) will be described in sections 5.3.2 and 5.3.4, respectively. Here, we present
the non-binary PAS framework of the studied (c, p) CQAM constellations. For
instance, regarding the (c = 4, p = 16) CQAM, we consider at first a DM
that will generate a non-uniform sequence of 8-ary symbols. These symbols are
associated with a base "PAM"-like a constellation, and from which we can gen-
erate the whole CQAM constellation by applying 8 rotations. This sequence
is the input to the non-binary LDPC encoder over F8. The parity symbols,
which are uniformly distributed, determine the rotation angles relative to the
abscissa axis. The resulting shaping involves c = 4 circles, each containing
p = 16 points. Regarding the (c = 16, p = 4) CQAM constellation, we con-
sider a non-uniform 16-ary information source that generates symbols in the
set {0, 1, . . . , 15} associated with a shell, as classically done by [16]. Then, each
source symbol can be mapped to a vector of two symbols over F4. We can en-
code the resulting non-binary symbols with a non-binary LDPC code over F4.
The resulting parity symbols then help select a point within a shell associated
with a source symbol. In this way, the code rate constraint of the LDPC en-
coder is necessary such that Rc ≥ 2/3. Eventually, we should mention that, for
each (c, p) CQAM-based transmission system, we should devise non-uniform
signaling (PS) strategies specifically.
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Figure 5.2: System model of PAS with non-binary Fq codes.

Table 5.1: Gain in dB of PS for circular constellations: (8,8)-
CQAM, (4,16)-CQAM and (16,4)-CQAM.

Constellations Target Gap to Potential

Rate Capacity Gain

(8, 8)-CQAM 4 0.086 (1.259) 0.38 (0.818)

(4, 16)-CQAM 4 0.256 (1.159) 0 (0)

(16, 4)-CQAM 4 0.111 (0.959) 0.396 (0.564)

5.3.1 PS Performance

We provide some results for the PS of the proposed CQAMs. Table 5.1 in-
cludes results for 64-CQAM shaping concerning the CM and SICM capacity,
whose data occurs within parentheses. We see that PS does not always bring
performance improvements. If we only consider achievable rates for the SICM
capacity for that scheme, PS CQAMs do not seem to bring a serious advantage
compared to well-designed GS constellations. However, if iterative decoding is
performed, we could get closer to the achievable CM capacity at the price of
increased complexity. Table 5.2 shows results for 256-CQAM shaping. We can
see that PS improves only the performance of (16,16) CQAM constellations,
whereas poor gain is achieved for the other constellations.

5.3.2 CQAM with Non-binary Codes

Consider a non-binary LDPC code C which is defined as the nullspace of the
sparse parity-check matrix H of dimension mc × nc where the non-zero entries
hij of H are taken from the finite field Fq. Let Rc = kc/nc be the coding rate
of C, where nc is the code length and kc = nc −mc is the code dimension. For
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Table 5.2: Gain in dB of PS for circular constellations: (16,16)-
CQAM, (8,32)-CQAM and (32,8)-CQAM.

Constellations Target Gap to Potential

Rate Capacity Gain

(16, 16)-CQAM 6 0.15 (0.5) 0.325 (0.75)

(8, 32)-CQAM 6 0.4 (1) 0 (0)

(32, 8)-CQAM 6 0.5 (1.4) 0.06 (0.08)

shaping, we can consider two different techniques. The first technique we can
employ is the CCDM which transforms input bits uniformly distributed into
a sequence of output symbols with the desired distribution Rs. Fixed-to-fixed
length, a DM maps k input bits to n output symbols representing the shells of
the CQAM constellation. The mapping is invertible so that a low-complexity
decoder can recover the input from the output. On the other hand, we can
employ the ESS algorithm. It maps k = ⌊nRs⌋ input bits to n output symbols
representing the shells of the CQAM constellation.

Let s1, s2, . . . , sn be the amplitude sequence generated by shaping with a priori
probability distribution {πi}ci=1 where c also represents the size of the amplitude
alphabet S. Given the a priori distribution of amplitude symbols in the finite
field Fc, the non-binary LDPC code and the (c× p)-CQAM should be combined
as illustrated in Fig. 5.2. Each amplitude symbol requires log2(c) bits for
representation. When (c× p)-CQAM is combined with non-binary codes over
Fq, the amplitude symbols in Fc should be mapped to symbols in Fq. We
denote this mapping as

β : Fn
c → Fℓ

q, (5.4)

where the variable ℓ is defined as

ℓ = n log2 c/ log2 q.

5.3.3 Coding Rates Equal To log2 c/(log2 c + log2 p)

In the first setting, we suppose that the coding rates of the non-binary codes are
equal to Rc = log2 c/(log2 c + log2 p). The parameter γ in Fig. 5.2 defines the
fraction of extended bits to add to the proposed scheme. In this case, γ always
equals zero, so we will pay attention to it in the following setting. Therefore, the
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Figure 5.3: Illustration how the codeword symbols of a F4 code
are associated with amplitudes and parity symbols for (16× 4)

CQAM with PAS.

information symbols comprise ℓ non-uniformly distributed symbols belonging
to Fq. They are collected in a vector u ∈ Fℓ

q to represent the model input
to the non-binary LDPC code C. So, we can deduce in this setting that ℓ =

kc. Systematic encoding yields the parity part of (1−Rc)nc symbols that are
approximately uniformly distributed [16]. For instance, we illustrate the setting
for Rc = 2/3 codes and a (16× 4)-CQAM constellation in Fig 5.3. We consider
a code over F4 (q = 4) and a blocklength of three symbols. Then, the ℓ=2
symbols in the information part represent one shell of the 16 shells. The last
codeword symbol forms the parity part, representing one point of the 4 points in
the corresponding shell. This way, the constellation points are constructed and
transmitted through the channel. We should note that the PAS transmitter’s
overall transmission rate Rt equals the shaping rate Rs.

5.3.4 Coding Rates Bigger Than log2 c/(log2 c + log2 p)

In the second scheme, we consider coding rates strictly larger than log2 c/(log2 c+

log2 p). In this case, a binary source generates γn uniformly distributed bits that
are mapped by τ : {0, 1}γn → Fℓ′

q to be part of parity symbols of size equal to
ℓ′ = γn/ log2 q. Therefore, we have kc = ℓ + ℓ′. The code rate in this scheme
is Rc = (log2 c + γ)/(log2 c + log2 p); thus γ = (log2 c + log2 p)Rc − log2 c

specifies the number of extra data bits that will be transmitted per symbol. Its
derivation is shown in Appendix A. For instance, γ has the following expressions

γ(8×8) = 6Rc − 3, and γ(16×4) = 6Rc − 4, (5.5)

for the (8 × 8) CQAM and (16 × 4) CQAM, respectively. In this modified
structure, in addition to the (n log2 c) bit output of the sphere shaper, extra γn

information bits are fed to the LDPC code over Fq. The latter is now specified
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by the mc × nc parity-check matrix P where

kc = (log2 c + γ)n/ log2 q, and
nc = kc/Rc = (log2 c + log2 p)n/ log2 q.

(5.6)

The (nc − kc) log2 q bit parity output of the LDPC code is then multiplexed
with the γn uniform bits to form an n-symbol sequence in Fp that will select
the points in the shells. The transmission rate of the PAS transmitter is

Rt = Rs + γ. (5.7)

The considerable flexibility in supported spectral efficiencies is achieved using
different shaping rates Rs for the same LDPC code.

5.3.5 PAS Receiver

An iterative demapping and decoding architecture are used in our proposed
scheme. A soft demapper computes the LLRs at the receiver. Then, the LLRs
are processed by the turbo decoder at the same iteration to exploit all received
information iteratively. A maximum of 100 iterations are performed during
the belief propagation decoding. Since the decoding precedes the deshaping
algorithm in PAS, we do not require a soft-output deshaper which can involve
considerable complexity.

5.4 Finite Length Simulations

This section provides simulation results of the end-to-end decoding performance
for non-binary LDPC codes with short blocklenghts. PAS decoding performance
is evaluated after transmitting a 64-CQAM signal over the AWGN channel. Two
modulations are employed: the (8, 8) CQAM and the (16, 4) CQAM that show
performance improvements when applied with PAS architecture. We consider a
target transmission rate Rt = 4 and a blocklength n = 96 of non-binary LDPC
codes over Fq=64. For each SNR value, we run simulations until at least 100
frame errors are reached. We aim to compare the uniform and shaped signaling
techniques at the same transmission rate Rt, as it is the only fair comparison.

We ignore the ESS operation that produces non-uniformly distributed symbols
in uniform signaling. Instead, a k bit sequence uniformly distributed uk is
mapped to kc symbol sequence over Fq and encoded by an LDPC code of rate
Rc = kc/nc. Then, the coded sequence cnc is mapped into a sequence xn
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Figure 5.4: FER vs SNR for (8,8) CQAM at transmission rate
Rt=4 and shaping blocklength n = 96.

consisting of channel input symbols to be transmitted over the channel. The
transmission rate of this scheme is Rt = k/n. At this stage, we can compare the
uniform and shaped signaling at the same target transmission rate Rt. Fig. 5.4
shows the decoding performance with the non-binary LDPC codes over Fq=64

for ESS and uniform signaling at a transmission rate of Rt = 4 bits per channel
use for the (8, 8) CQAM constellation. For uniform signaling, the coding rate
equals Rc = 2/3 to guarantee Rt = 4. For the uniform shaping, we have tested
two different coding rates, Rc = 3/4 and Rc = 5/6. We have employed two
shaping rates, Rs = 2.5 and Rs = 2 for Rc = 3/4 and Rc = 5/6, respectively.
As shown in Fig. 5.4, both perform similarly and outperform uniform signaling.
For example, to achieve a FER of 10−3, shaping signaling requires 0.5 dB less
than uniform signaling.

In Fig. 5.5, we plot the FER vs. SNR for (16,4) CQAM at Rt = 4. This
time, we observe the difference between the two coding rates Rc = 3/4 and
Rc = 5/6 in shaping signaling. The shaping rate Rs = 3 corresponding to
Rc = 5/6 performs better than Rc = 3/4. Further, it outperforms the uniform
signaling and achieves a 1.25 dB SNR gain at a FER of 10−3. Someone wonders
how to choose the optimum coding rate Rc for (c, p) CQAM constellations.

If we assume that the input is constrained to follow a Maxwell-Boltzmann (MB)
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Figure 5.5: FER vs. SNR for (16,4) CQAM at transmission
rate Rt=4 and shaping blocklength n = 96.

distribution PS(s) ∼ e−λs2 , then H(X) = H(S) + log2 p can be used as a
design parameter to tune the balance between shaping and coding redundancies
at a fixed rate Rt. More precisely, the entropy H(S) is controlled by the MB
parameter λ, and the question is how to choose the optimum λ. Following [25],
we define the gap to capacity as follows:

∆SNR =
SNRSMD
2Rt − 1 , (5.8)

where SNRSMD is the SNR value at which RSMD = Rt for a given PX . The
denominator in (5.8) is the SNR value at which the capacity CAWGN = Rt.
Generally, the gap-to-capacity can be computed for any parametric family of
distributions. Here we only consider the MB distributions. When transmitting
the (c, p) CQAM, the rate of the LDPC code that should be employed in PAS
to obtain a transmission rate Rt for a given constellation entropy H(X) is given
by

Rc =
log2 c + γ

log2 c + log2 p
=

log2 c + Rt − (H(X)− log2 p)

log2 c + log2 p
. (5.9)

The deduction to be made from the last equations (5.9) is that we choose the
optimum point H(X) that minimizes the gap to capacity ∆SNR in (5.8) for a
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fixed Rt, and then we conclude the optimum Rc.

5.5 Conclusion

In this work, we have investigated c× p CQAM constellations with non-uniform
signaling that reach the Gaussian capacity. We have shown in a novel strat-
egy how to combine non-binary LDPC codes over Fq with PAS. Numerical
simulation results with high-order non-binary LDPC codes show the decoding
performance for the different CQAM constructions for short blocklenghts.
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Chapter 6

Conclusions and Perspectives

This thesis is dedicated to designing and evaluating the CM schemes based
on M -ary signalling and non-binary LDPC channel coding. Different schemes
have been tested to achieve performance approaching the channel capacity over
interesting channels.

We first studied the PDL-resilient signalling and an optimal four-dimensional
modulation developed in the literature. We first tested the SB signalling with a
single PDL element to evaluate the performance. The latter showed an increase
in the worst encountered rate. Also, we have tested the NSB signalling that
offered rate increases. We have noticed that the behaviours of CM and BICM
capacities are different in the active SNR region. Indeed, the performance
behaviour is conditioned by the initial geometric properties of the constellation.

Second, we have investigated the combination of precoding schemes, SB and
NSB, and the shaping constellations. This combination has shown a better
performance of up to 1.5 dB. Furthermore, we have concluded that precoding
is not efficient for low-to-moderate SNR regions. In contrast, PS usually im-
proves the performance of the whole SNR region. Finally, we have also studied
the design of non-binary protograph LDPC codes for precoded optical MIMO
transmissions. Results show that we can design satisfying codes that operate
close to the zero-outage capacities.

Third, we have investigated (c, p) CQAM constellations with equiprobable sig-
nalling that can approach the Gaussian capacity. We also have discussed how
PS with non-binary LDPC codes can enhance performance. Further, simple
non-binary protographs for GS constellations have been designed to show that
we can operate close to the capacity.

The last part of this thesis has shown how to combine non-binary LDPC codes
over Fq with PAS for the different CQAM constructions. Simulation results with
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high-order non-binary LDPC codes show the decoding performance for short
blocklengths and the advantage yielded by shaping compared to the uniform
signalling.

In the following, we give insight into possible research directions:

• For the optical channel, we can consider the design of efficient non-binary
spatially-coupled schemes enabling both good finite-length performance
and convenient thresholds for the MIMO case.

• Advanced shaping schemes such as combined geometric and probabilistic
CQAM could be designed and perform well. This may be key for the next
generation of communication systems.

• Since significant performance gains come from efficient channel coding and
particular constellation geometry, it is interesting to jointly design coding
and modulation schemes to approach the channel capacity.
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Appendix A

Extended PAS for (c, p) CQAM

We consider the proposed PAS scheme for (c, p) CQAM signals as proposed
in Chapter 5. We suppose that the coding rate Rc is strictly bigger than

log2 c
log2 c+log2 p . In general, Rc equals kc/nc where kc defines the length of in-
formation symbols, and nc is the code length.

We suppose that the non-uniformly sequence of information symbols generated
by the ESS algorithm is of length n in Fc. As we deal with non-binary LDPC
codes over Fq, these non-uniformly symbols are mapped to symbols in Fq of
length ℓ. In addition, extra γn uniformly distributed bits are also mapped to
symbols in Fq of length ℓ′ = γn

log2 q . Together, all these symbols in Fq constitute
the input of the LDPC encoder. Thus, we have

kc = ℓ + ℓ′

= n
log2 c

log2 q
+ γn

1
log2 q

=
n

log2 q
(log2 c + γ)

(A.1)

Suppose that the number of redundancy symbols in Fq added by the LDPC
encoder equals mc = nc − kc. We have

mc = (1−Rc)nc =
1−Rc

Rc
kc (A.2)

Based on the proposed (c, p) CQAM mapper, we should have the following
equality (

ℓ′ + mc

) log2 q

log2 p
= n (A.3)
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Substituting (A.2) in (A.3), we obtain
(

ℓ′ +
1−Rc

Rc
kc

) log2 q

log2 p
= n (A.4)

Replacing ℓ′ and kc in (A.4), we get the following equality
(

γn +
1−Rc

Rc
n(log2 c + γ)

) 1
log2 p

= n (A.5)

Finally, (A.5) leads to

γ +
1−Rc

Rc

(
log2 c + γ

)
= log2 p (A.6)

Thus; γ = (log2 c + log2 p)Rc − log2 c
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