
HAL Id: tel-04208499
https://theses.hal.science/tel-04208499

Submitted on 15 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph-based neural networks for generation of
synthetically accessible molecular structures

Tagir Akhmetshin

To cite this version:
Tagir Akhmetshin. Graph-based neural networks for generation of synthetically accessible molecular
structures. Cheminformatics. Université de Strasbourg; Kazanskij gosudarstvennyj universitet im. V.
I. Ul�ânova (Kazan�), 2023. English. �NNT : 2023STRAF010�. �tel-04208499�

https://theses.hal.science/tel-04208499
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE STRASBOURG

ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES
Chimie de la matière complexe – UMR 7140

THÈSE présentée par :

Tagir AKHMETSHIN
soutenue le : 17 mars 2023

pour obtenir le grade de : Docteur de l’université de Strasbourg
Discipline/ Spécialité : Chimie / Chémoinformatique

THÈSE dirigée par :
M. VARNEK Alexandre Professeur, Université de Strasbourg

M. MADZHIDOV Timur Docteur, Elsevier Ltd.

RAPPORTEURS :
Mme. STOVEN Véronique Professeur, Mines-ParisTech
M. LEPAILLEUR Alban Maitre de Conférences, HDR, Université de Caen

Normandie

AUTRES MEMBRES DU JURY :
Mme. KELLENBERGER Esther Professeur, Université de Strasbourg

Réseaux neuronaux à base de graphes
pour la génération de structures

moléculaires synthétiquement accessibles

Acknowledgements

From childhood, I remember one of the most important phrases I learned almost immediately.
The closest translation would be "Better a hundred friends than a hundred rubles". In a way, it
became my credo, and I was lucky enough to make many friends while studying, travelling and
working. And all my friends and mentors have helped me along the difficult path to becoming
a scientist. If I were to list them all, I’m afraid there would not be enough space for my thesis.

Nevertheless, I can still single out people without whom I would not have been able to
reach such heights. First, I am very grateful to Dr Timur Madzhidov and Professor Alexandre
Varnek. You have guided me and given me a vocation as a chemoinformatician. Even though I
was always attracted by the idea of chemoinformatics, without you, I would not stand where
I am now. In addition, I would like to thank my mentors, Ramil Nugmanov and Arkadii Lin,
who taught me survival skills in the chemoinformatics jungles and were always helping with
both simple and complex questions.

As a child of Kazan and Strasbourg chemoinformatics labs, I would like to thank all my
teachers, colleagues and students I worked with. It is important to mention people without
whom this work would be impossible - Evgenii Ziaikin, Dmitrii Babadeev, Anna Pinigina
and Almaz Gilmullin. You are brilliant students, and I hope to see your success in the
future. Also, I would like to thank my collaborators Timur Gimadiev, Valentina Afonina,
Asima Rakhimbekova and Daniyar Mazitov for their help in the joint projects. Regarding the
Strasbourg side, everyone here became to me not only the best colleagues but also a family
with one nationality - chemoinformatians. I’m happy that I was able to be a part of this family
and grateful to Yuliana Zabolotna, Olga Klimchuck, Fanny Bonachera, Dragos Horvath, Gilles
Marcou, Karina Pikalyova, Shamkhal Baybekov, Regina Pikalyova, Maxim Shevelev, Helena
Perez Pena, Sai Prashanth Santhapuri, Polina Oleneva, Dmitrii Zankov, Pierre Llompart, Farah
Askerhanova and others.

I want to thank my friends from the master who are excellent researchers and the most
supportive and amazing people. To Masha Avstrikova, Ivan Reveguk, Julia Revillo, Louis Plyer,
Roman Lambert, Pablo Roseiro, Marie Meylacq, Antoine Danvin, Marie Gebelin, Alexandra
Hllx and many others.

I am deeply grateful to my family, mum and dad, who always support me, regardless of
where I am and where I plan to go.

And the special thanks go to my love - Marie, for her constant support even when I was
"impossible" and for our happy moments together.

Table of contents

1 Résumé en français 1
1.1 Introduction . 1
1.2 Resultats et discussions . 1
1.3 Conclusion generale . 16
1.4 Liste des presentation . 17
1.5 Liste des publication . 18

2 Introduction 19

3 Generation of molecular structures 23
3.1 Background of generative deep learning for inverse QSAR 24
3.2 Development of novel graph-based architectures 35

4 Self-learning-based synthesis planning 73
4.1 Reaction data curation . 75
4.2 Retrosynthetic planning . 94
4.3 Validation techniques for prediction of reaction rate constant in different condi-

tions . 131

5 Conclusions and perspectives 149

References 153

List of figures 167

List of tables 169

Chapter 1

Résumé en français

1.1 Introduction

Des réseaux neuronaux profonds (DNN) peuvent être utilisés pour générer des structures
moléculaires possédant des propriétés ciblées. Toutefois, ils sont souvent basés sur un codage
linéaire des structures chimiques, c’est-à-dire par des chaîne de caractères (par exemple
SMILES), qui induisent des problèmes techniques et conceptuels. En s’affranchissant de ces
codes, les architectures basées sur les graphes semblent être plus prometteuses. Cependant, les
réseaux de neurones artificiels basés sur les graphes (GNN) ne sont pas encore très utilisés car
ils restent chers en termes de ressources informatiques et ils sont difficiles à optimiser. L’objectif
de ce projet doctoral est d’améliorer des GNN existants pour (i) générer des molécules d’intérêt
et (ii) proposer des voies de synthèses chimiques.

1.2 Resultats et discussions

1.2.1 Optimisation moléculaire

Grâce à une puissance de calcul accrue et au développement de la théorie de l’apprentissage
profond, il est désormais possible non seulement de prédire les propriétés des composés, mais
aussi de générer des analogues de molécules à partir de leur représentation vectorielle. A
cette fin, les autoencodeurs (AE) se montrent particulièrement intéressants. Il s’agit de deux
réseaux de neurones artificiels empilés : l’encodeur et le décodeur. L’encodeur transforme
les caractéristiques structurelles des molécules en une représentation vectorielle : un espace
chimique latent. Le décodeur reconstruit à partir des vecteurs de cet espace latent, les structures
chimiques correspondantes. Ces machines permettent ainsi de générer de nouvelles structures
chimiques.

2 Résumé en français

Les premiers AE génératifs étaient basés sur la représentation de structures moléculaires
par de chaînes de caractères (SMILES). Bien que ces approches aient montré de bonnes
performances, la position des molécules dans l’espace latent dépendait de l’ordre d’apparition
des atomes dans ces chaînes. La notation SMILES n’étant pas unique, la représentation
dans l’espace latent ne l’est pas non plus.[1] En conséquence, les performances des modèles
prédictifs basés sur ces vecteurs latents étaient réduites. Les AE à base de GNN ne souffrent
pas de tels biais.

Autoencodeur basé sur des graphes annotés par comptes d’hydrogène (HyFactor)

Comme mentionné ci-dessus, l’optimisation de GNNs nécessite de grandes ressources infor-
matiques. Normalement, ils exigent que chaque type de liaison soit traitée séparément ce
qui conduit à 4 graphes spécifiques pour les liaisons simples, doubles, triples et aromatiques.
Mais les architectures des encodeurs et décodeurs peuvent prendre en compte des annotations
sur les atomes et les liaisons. Par analogie avec la notation InChi, nous avons identifié que
le nombre d’hydrogènes sur chaque atome lourd de la structure améliore considérablement
l’optimisation d’autoencodeurs basés sur des graphes. Cette stratégie nous a conduit à une
nouvelle architecture baptisée HyFactor (Hydrogen-count labeled graph-based defactorization)
(Figure 1.2a). Celle-ci utilise efficacement les comptes d’atomes d’hydrogènes associés à
chaque nœud du graphe moléculaire - Hydrogen-count Labelled Graph (HLG) (Figure 1.1).
Avec la connectivité, cette information est suffisante pour reproduire la structure moléculaire
: la nature des liaisons chimiques est implicite. Les performances du nouveau modèle ont
été comparées à celles de l’architecture ReFactor(Figure 1.2b) qui représente un AE-GNN
conventionnel. Les deux architectures - HyFactor et ReFactor – sont comparables car elles ne
diffèrent que sur la gestion de la représentation des structures moléculaires.

Fig. 1.1 Représentation de 3-aminophenol par un graphe moléculaire conventionnel (gauche) et
par un graphe annoté par le compte d’hydrogènes (droite)

1.2 Resultats et discussions 3

Fig. 1.2 Une représentation schématique des architectures HyFactor (a) et ReFactor (b) où les
bloques en orange dépendent de la représentation des structures moléculaires.

Les HyFactor et ReFactor ont été comparés sur le jeu de données de référence ZINC 250K
avec des AE-GNN (TSGCD, DEFactor et JTVAE) publiés dans la littérature. La métrique
utilisée pour la comparaison était le taux de reconstruction qui mesure la fraction des structures
présentées à l’encodeur qui ont été reconstruites avec succès par le décodeur. Les résultats
montrent (Table 1.1) que HyFactor et ReFactor atteignent tous les deux une grande précision

4 Résumé en français

dans la tâche de reconstruction et, par conséquent, qu’ils intègrent bien les caractéristiques
structurelles des molécules.

Table 1.1 Résultats du benchmarking des autoencodeurs HyFactor et ReFactor sur le jeu de
données ZINC 250K.

Architecture TSGCD DEFactor JTVAE ReFactor HyFactor

Taux de reconstruction, % 90.5 89.8 76.7 90.7 89.0

Afin d’évaluer la performance de l’architecture basée sur la représentation HLG (HyFactor)
par rapport à la représentation conventionnelle (ReFactor) les deux outils ont été entrainé
sur la base de données ChEMBL v.27 contenant 1,6 million de molécules composées de 10
à 50 atomes lourds. Le jeu de données a été divisé en un jeu d’entraînement et un jeu de
validation dans un rapport de 4 pour 1, respectivement. Les résultats résumés dans la Table 1.2
montrent que les deux outils ont des taux de reconstruction similaires mais HyFactor utilise
moins de paramètres à ajuster et par conséquent est environ 1.5 fois plus rapide que ReFactor.
Les graphes annotés HLG capturent donc les mêmes informations mais sont beaucoup plus
économiques que le graphe moléculaire non annotés où tous les types de liaisons chimiques
doivent être considérés explicitement.

Table 1.2 Résultats du benchmarking des autoencodeurs HyFactor et ReFactor sur le jeu de
données ZINC 250K.

Architecture
Nombre de paramètres
entraînables, M

Temps par
époque,
min

Jeu d’entraî-
nement

Jeu de vali-
dation

ReFactor 50 24.3 99.8 95.2
HyFactor 40 16.5 99.7 95.0

Autoencodeur de graphes quantifiés par vecteur

Une analyse poussée a révélé que HyFactor peut générer différents vecteurs latents si on change
la numérotation des atomes dans un graphe moléculaire. Cette propriété est indésirable car elle
dégrade la performance de modèles prédictifs basés sur les vecteurs latents.

Inspiré par les récentes avancées dans le domaine de la génération d’images à l’aide de
modèles d’apprentissage profond, un autoencodeur de graphes quantifiés par vecteur (Vector
Quantized Graph AutoEncoder - VQGAE) a été développé, dont la propriété est qu’il est
invariant vis-à-vis de la numérotation des atomes dans une structure chimique. Cette architecture

1.2 Resultats et discussions 5

repose sur une opération de quantification par vecteur qui consiste à compresser l’information
moléculaire (Figure 1.3). Pendant l’encodage, cette opération stocke dans des vecteurs des
informations sur chaque atome et leurs voisinages respectifs. L’architecture développée est la
première de son genre, capable d’apprendre l’espace des fragments moléculaires de manière
non supervisée.

Fig. 1.3 Schéma de l’autoencodeur de graphes quantifiés par vecteur (VQGAE).

Notons que le décodeur a quand même besoin d’une numérotation standard des nœuds du
graphe pour une reconstruction réussie. Comme celle-ci ne peut être dérivée directement du

6 Résumé en français

vecteur latent, nous avons développé un réseau dit "d’ordonnancement" qui place les fragments
dans un ordre canonique. Ce réseau est composé de 8 couches d’attention multi-têtes (MHA).
La performance est mesurée par le taux de reconstruction de l’ordre, qui estime le pourcentage
d’ordres de fragments correctement récupérés.

L’architecture VQGAE a été entraînée sur les données ChEMBL v.27 précédemment
normalisé, avec la même répartition entre un jeu d’entraînement et un jeu de validation en
proportion 4 :1, respectivement. Un taux de reconstruction élevé (94,6 %) sur le jeu de
validation a été atteint. Pour une analyse supplémentaire de l’espace latent, les vecteurs de
comptage de fragments VQGAE ont été utilisés comme descripteurs dans les modèles prédictifs
Random Forest entrainés sous 532 jeux de données extraits de ChEMBLE-27, dont chacun
correspond à une activité biologique. À des fins de comparaison, les fingerprints ECFP, les
descripteurs ISIDA, ainsi que les vecteurs latents des autoencoders HyFactor et LatentGAN
ont été utilisés.

Fig. 1.4 (a) Résultats du benchmarking QSAR. Ici, "med" fait référence à la précision médiane
équilibrée sur 532 cibles biologiques issues de ChEMBLv27.

Les résultats montrent (Figure 1.4) clairement que les modèles QSAR construits sur les
vecteurs latents VQGAE montrent de meilleures performances par rapport aux modèle HyFactor.

1.2 Resultats et discussions 7

En même temps, ses performances sont équivalentes à celles des descripteurs ISIDA bien connus
et qui sont une référence dans les approches QSAR.

1.2.2 Analyse de la faisabilité de la synthèse des molécules

Les modèles génératifs sont capables d’optimiser la structure en fonction des propriétés physico-
chimiques d’intérêt. Cependant, ils ne peuvent pas optimiser directement l’accessibilité syn-
thétique d’une molécule. Une façon d’estimer l’accessibilité synthétique consiste à effectuer
une recherche rétrosynthétique. Étant donné un ensemble de transformations chimiques,
l’algorithme divise les molécules cibles en précurseurs jusqu’au niveau de « blocs de con-
struction » (building blocks), les unités de base pour démarrer une synthèse. Cependant, le
nombre de voies de synthèse possibles augmente exponentiellement avec la taille de la structure
générée. Par conséquent, le but de ce projet est de créer un nouvel outil de rétro-synthèse pour
évaluer l’accessibilité synthétique des structures générées à l’aide d’un AE.

Rétrosynthèse par auto-apprentissage

Récemment, les algorithmes de rétro-synthèse par recherche arborescente de Monte-Carlo
(Monte-Carlo Tree Search, MCTS) ont montré des gains de performance considérables par
rapport aux approches heuristiques précédentes. Les MCTS sont un processus itératif, où à
chaque itération, un nouveau nœud de l’arbre de recherche est créé (Figure 1.5). Ce nœud est
constitué des précurseurs nécessaires pour synthétiser la molécule du nœud parent. L’ordre
dans lequel les nœuds sont créés est déterminé par le "cœur" de l’algorithme MCTS qui
définit des fonctions de politique et d’évaluation. En bref, une fonction de politique doit
sélectionner et classer les transformations rétro-synthétiques (RST) qui permettent d’accéder
à une molécule (un nœud de l’arbre) à partir de précurseurs (les descendants dans l’arbre).
Ensuite, la fonction évaluation doit estimer la vraisemblance de la rétro-synthèse obtenue.
L’algorithme va concentrer son exploration de l’arbre sur les branches qui obtiennent les
meilleurs scores produits par la fonction évaluation. En suivant jusqu’un bout les branches
disposant des meilleurs scores, on obtient les propositions les plus prometteuses de voie de
synthèse.

8 Résumé en français

Fig. 1.5 Les principales étapes de la recherche arborescente de Monte-Carlo. Ici, à chaque
itération, un nœud est créé et ajouté à l’arbre.

1.2 Resultats et discussions 9

Parmi les différentes approches publiées, la plus populaire consiste à utiliser une stratégie «
rollout » (Figure 1.6a). L’idée du rollout est la notation rapide du nœud actuel par la création
séquentielle de nœuds enfants sur la base des RST ordonnés par la fonction politique. Le
processus est répété jusqu’à ce qu’un nœud ne soit constitué que de blocs de construction (fin
de la rétro-synthèse) ou qu’une profondeur maximale de l’arbre soit atteinte. La principale
limite de cette approche est sa forte dépendance à la fonction politique. Ainsi, une fonction
de politique imparfaite ne peut pas toujours prioriser la meilleure RST pour une structure
donnée, ce qui conduit à une exploration inutile de l’arbre de recherche. Une autre idée
consiste à remplacer la stratégie rollout par une intelligence artificielle chargé d’explorer
l’arbre rétro-synthétique dans toute son ampleur (Figure 1.6b). Le principal défi est qu’il
n’existe pas de moyen évident d’estimer la proximité (en termes de transformations) entre
une molécule et les blocs de construction. Il a donc été proposé d’utiliser une technique
d’auto-apprentissage (self-learning) pour construire un réseau de neurones artificiels capable
de prendre ces décisions(Figure 1.7). L’idée de l’auto-apprentissage est d’entraîner le modèle
sur des arbres de recherche de rétro-synthèse précédemment réalisés. L’auto-apprentissage a
été appliqué[2] à la MCTS pour la rétro-synthèse, mais il n’a pas été comparé aux méthodes
précédentes.

Fig. 1.6 a) Une fonction de rollout descend l’arbre en utilisant les règles top-1 les plus probables
selon le réseau de politiques. Si rollout a trouvé un nœud constitué uniquement de blocs de
construction, il renvoie un score de 1, sinon un score de 0. b) Un modèle de "valeur" qui prédit
le score du nœud en fonction des structures du nœud évalué.

10 Résumé en français

Dans ce travail, nous étendons les approches actuelles avec une nouvelle variante de
la recherche de rétro-synthèses par MCTS appelée GSLRetro (Graph-based Self-Learning
Retrosynthesis), où les fonctions politique et valeur sont composées de réseaux de neurones de
graphes basés sur des VQGAE. Avec cet outil, nous proposons une nouvelle stratégie d’auto-
apprentissage avec une technique « epsilon-greedy ». Cette technique force l’algorithme MCTS
à explorer des voies de synthèses diverses au lieu de n’exploiter que la première proposée par
la fonction politique. Cette architecture a été comparée à d’autres implémentant la stratégie
rollout, en particulier la référence en la matière : AiZynthFinder[3]

Fig. 1.7 Schéma du concept d’auto-apprentissage.

Le MCTS nécessite trois éléments : des règles de rétrosynthèse (RST), un ensemble de
blocs de construction et une structure moléculaire à synthétiser. Les RST ont été extraites du
jeu de données open-source de l’USPTO. Ce jeu de données contient une grande quantité de
données de réactions incorrectes, qui ont été corrigées selon le protocole proposé dans notre
étude[4]. Au total, 1 million de réactions ont été traitées et 12 000 RST ont été extraites. Un
ensemble de blocs de construction a été extrait des catalogues des sociétés E-molécules et
Sigma-Aldrich. Nous avons également constitué un ensemble de molécules cibles pour une
évaluation comparative, réparties de manière égale entre des molécules "faciles à synthétiser" et
des molécules "complexes" (semblables à des produits naturels). Les données ont été collectées
à partir des bases de données ChEMBL et Coconut, puis divisées en 7 catégories selon le
score d’accessibilité synthétique (SAScore)[5] (Figure 1.8). Ces jeux de données ont ensuite

1.2 Resultats et discussions 11

été échantillonnés pour en maximiser la diversité selon un algorithme MaxMin. Le modèle
entraîné sur 28K molécules a été testé sur un jeu de test de 700 molécules. Les résultats sont
présentés sur la Figure 1.9.

Fig. 1.8 Préparation du flux de travail pour les molécules d’entraînement et de test à partir des
bases de données ChEMBL et COCONUT.

Fig. 1.9 Résultats sur des jeux d’essai d’évaluation comparative pour différentes approches
rétro-synthétiques. AiZynthFinder[3] est une approche réprésentative de l’état de l’art avec
une stratégie « rollout ». Pour comparaison, GSLRetro avec différentes fonctions d’évaluation
telles que : aléatoire, « rollout » et le modèle auto-entraîné.

Les résultats montrent que GSLRetro surpasse l’algorithme de référence (AiZynthFinder[3])
dans une configuration similaire. En même temps, la fonction de valeur proposée permet de
trouver des voies rétro-synthétiques pour des molécules complexes avec des performances
nettement améliorées. La seule limite est la recherche de voies de synthèse pour les produits
naturels avec un SAScore élevé. Ce problème pourrait être résolu par l’extraction de RST à
partir de bases de données de réactions plus importantes et plus propres, telles que Reaxys, qui
feront le sujet de travaux futurs. Des exemples de voies de synthèse trouvées par GSLRetro et
AiZynthFinder sont donnés dans les figures 1.10, 1.11 et 1.12.

12 Résumé en français

Fig. 1.10 Exemples de différentes voies de synthèse pour la même cible résolues par AiZyn-
thFinder original (a) et GSLRetro avec réseau de valeurs (b). Ici, chaque chiffre correspond à
une transformation de la réaction.

1.2 Resultats et discussions 13

Fig. 1.11 Exemples de voies de synthèse pour des cibles résolues uniquement par a) AiZyn-
thFinder et b) GSLRetro. Ici, chaque chiffre correspond à une transformation de la réaction.

Fig. 1.12 Exemple de la même voie de synthèse trouvée par AiZynthFinder original et GSLRetro
avec le réseau de valeurs. Le SAScore de la cible est de 3.52.

14 Résumé en français

1.2.3 Exploration de l’espace chimique du récepteur de l’adénosine

Dans la dernière partie de la thèse, les méthodologies développées de conception moléculaire et
d’analyse rétro-synthétique ont été testées pour générer des molécules actives contre le récepteur
A2A de l’adénosine qui appartient à la famille des récepteurs couplés aux protéines G (GCPR).
Un modèle Random Forest (RF) a été entraîné sur le jeu de données de 3300 molécules extraites
de la base de données ChEMBL en utilisant les vecteurs latents de l’encodeur VQGAE comme
descripteurs. Le modèle entraîné a été utilisé comme fonction de score pour un algorithme
génétique (GA). Les vecteurs optimisés par le GA ont été décodés par le décodeur VQGAE, ce
qui a mené à 4 nouvelles structures avec les valeurs prédites de Ki < 10 nM (Figure 1.13). Les
voies de synthèse de ces structures ont été retrouvées à l’aide de GSLRetro, comme illustré sur
la Figure 1.14.

Fig. 1.13 Structures moléculaires générées avec VQGAE.

1.2 Resultats et discussions 15

Fig. 1.14 Exemple de voie de synthèse pour le ligand généré pour le récepteur A2A de
l’adénosine. En bleu une molécule générée par VQGAE, en rouge les molécules intermédiaires
et en vert les blocs de construction.

Nous avons retrouvé que l’une de structures générée (1ère dans la Figure 1.13) est déjà
enregistrée dans la base de données de brevets SureChEMBL en tant qu’antagoniste A2A. Ceci
démontre le potentiel de notre méthodologie pour générer les molécules possédant des activités
désirées et de vérifier leur faisabilité synthétique en fournissant une voie de synthèse.

16 Résumé en français

1.3 Conclusion generale

Trois nouvelles méthodologies basées sur des réseaux de neurones de graphe ont été dévelop-
pées pour trouver de nouvelles structures chimiques et des voies de synthèse. La première
méthodologie, HyFactor, s’est attachée à réduire les paramètres des autoencodeurs en utilisant
une nouvelle représentation de la molécule, les graphes labellisés par les nombres d’hydrogène
(HLG). Il a été démontré que HyFactor a 20% de paramètres en moins et est 1.5 fois plus
rapide pendant l’entraînement que ReFactor, qui est basé sur un graphe moléculaire non annoté.
En même temps, HyFactor montre des performances de reconstruction élevées sur les jeux de
données ZINC 250K et ChEMBL, similaires à celles de ReFactor et des autoencodeurs de la
littérature. Cela prouve que la représentation HLG de la molécule est utile pour réduire les
paramètres du réseau de neuronnes et peut refléter efficacement la structure de la molécule.

Cependant, il a été constaté que les vecteurs latents générés par HyFactor dépendent de
la numérotation des atomes. Ce problème a été résolu par une nouvelle architecture appelée
autoencodeur de graphes quantifiés vectoriels (VQGAE). Cet autoencodeur a montré une haute
performance de reconstruction (comparable à HyFactor et ReFactor) et ses vecteurs latents
se sont avérés efficaces dans les simulations QSAR. VQGAE a été utilisé pour générer des
molécules actives contre les récepteurs A2A en utilisant un algorithme génétique. Bien que
le nombre de structures générées soit assez faible, il a été constaté que certaines d’entre elles
existent déjà dans d’autres bases de données et sont connues pour être actives contre cette cible.

Dans la deuxième partie de la thèse, un nouvel outil de recherche rétro-synthétique basé
sur le MCTS et les réseaux de neurones de graphes a été développé. Cet outil est capable
d’apprendre et de s’améliorer à partir des recherches précédentes et a atteint une performance
rivalisant avec les outils de référence sur un ensemble de données extraits des bases de données
ChEMBL et Coconut. L’outil a été utilisé pour trouver des voies de synthèse pour les structures
générées et prédites comme étant actives sur le récepteurs A2A et a trouvé avec succès des
voies pour chacune d’entre elles. En conclusion, il a été démontré que toutes les méthodologies
peuvent former un système de recommandation efficace pour la tâche de conception moléculaire
de novo.

1.4 Liste des presentation 17

1.4 Liste des presentation

• T. Akhmetshin, A. Lin, D. Mazitov, Y. Zabolotna, E. Ziaikin, T. Madzhidov, A. Varnek.
HyFactor: Hydrogen-count labelled graph-based defactorization autoencoder, Strasbourg
Summer School in Chemoinformatics, Strasbourg, France, 28 July 2022 (poster).

• T. Akhmetshin, A. Lin, T. Madzhidov, A. Varnek, Presentation on PhD project at UMR
scientific day, Strasbourg, France, 10 May 2022 (oral).

• T. Akhmetshin, A. Lin, T. Madzhidov, A. Varnek. Order-independent graph-based
AutoEncoder for exploration of chemical space, 4th Artificial Intelligence in Chemistry
Symposium, Cambridge, United Kingdom, 28 September 2021 (poster).

• T. Akhmetshin, T. Gimadiev, R. Nugmanov, T. Madzhidov, A. Varnek. Reactions
cleaning: Big data challenge, IV Kazan Summer School on Chemoinformatics, Kazan,
Russia, 7 June 2019 (oral).

• T. Akhmetshin, R. Nugmanov, T. Madzhidov, A. Varnek. Transformation-out and
solvent-out strategies for reaction model’s predictive ability assessment, III International
School-Seminar From Empirical to Predictive chemistry, Kazan, Russia, 6 April 2018
(poster).

• T. Akhmetshin, R. Nugmanov, T. Madzhidov, A. Varnek. Development of a predic-
tion’s performance metric for chemical reactions’ models, III Kazan Summer School on
Chemoinformatics, Kazan, Russia, 6 July 2017 (poster).

18 Résumé en français

1.5 Liste des publication

• Akhmetshin, T.; Lin, A.; Mazitov, D.; Zabolotna, Y.; Ziaikin, E.; Madzhidov, T.;
Varnek, A. HyFactor: A Novel Open-Source, Graph-Based Architecture for Chemi-
cal Structure Generation. J. Chem. Inf. Model. 2022, 62 (15), 3524–3534. DOI:
10.1021/acs.jcim.2c00744

• Gimadiev, T. R.; Lin, A.; Afonina, V. A.; Batyrshin, D.; Nugmanov, R. I.; Akhmetshin,
T.; Sidorov, P.; Duybankova, N.; Verhoeven, J.; Wegner, J.; Ceulemans, H.; Gedich, A.;
Madzhidov, T. I.; Varnek, A. Reaction Data CurationI: Chemical Structures and Transfor-
mations Standardization. Mol.Inform. 2021, 40 (12), 1–16. DOI:10.1002/minf.202100119

• Rakhimbekova, A.; Akhmetshin, T. N.; Minibaeva, G. I.; Nugmanov, R. I.; Gimadiev,
T. R.; Madzhidov, T. I.; Baskin, I. I.; Varnek, A. Cross-Validation Strategies in QSPR
Modelling of Chemical Reactions. SAR QSAR Environ. Res. 2021, 32 (3), 207–219.
DOI: 10.1080/1062936X.2021.1883107

• Nugmanov, R. I.; Mukhametgaleev, R. N.; Akhmetshin, T.; Gimadiev, T. R.; Afonina, V.
A.; Madzhidov, T. I.; Varnek, A. CGRtools: Python Library for Molecule, Reaction, and
Condensed Graph of Reaction Processing. J. Chem. Inf. Model. 2019, 59, 2516–2521.
DOI: 10.1021/acs.jcim.9b00102

Chapter 2

Introduction

The concept of fully automated molecular design holds the potential to enable the rapid
production of drugs for various diseases and the discovery of new materials in a matter of
days without human intervention. Once considered science fiction, recent developments have
brought the dream of autonomous design closer to reality.

The main challenge towards automated molecular design is the exploration of a chemical
space [6, 7]. Chemoinformatics defines chemical space as a universe of all possible molecules.
While the chemical space is infinite by definition, in practice, it refers to the subspace of
drug-like compounds, estimated to consist of 1033 molecules [8]. The positions of molecules
in the chemical space are encoded by their vector representations – numerical descriptions of
their physicochemical and structural properties

One of the most important computational methods used to explore chemical space is virtual
screening [9, 10]. The idea behind virtual screening is to search or “screen” chemical databases
of synthesised or virtually created compounds and identify those with desirable properties. This
is the method of choice when molecule availability is a key constraint. The researcher need only
virtually browse the list of available compounds to ensure that the virtual hits are guaranteed to
be on the shelf and ready for testing or at least highly likely to be possible products of carefully
selected virtual combinatorial libraries. The screening uses simple statistical filters such as
Lipinski’s rule of five [11] and techniques such as docking and quantitative structure-activity
relationships (QSAR) modelling. For its high efficiency, virtual screening is still actively used
today. However, it is limited in chemical space exploration, as generating and screening all
possible drug-like compounds is impossible.

One concept developed to explore the unknown chemical space without its complete
enumeration is “de novo” molecular design [12]. The de novo design aims to identify an
optimal chemical structure that meets a specified set of physiochemical properties. However,
this search process assumes that the visited points in the chemical space can be related to the

20 Introduction

desired properties, despite the absence of a universally applicable relationship between chemical
space and measurable properties. Therefore, such relationships (Quantitative Structure-Activity
Relationship, QSAR) need to be learned, associating properties of known molecules to the
chemical space zones in which they reside, and then fitting property predictor functions on top
of this data. Methods for de novo design generate molecules from scratch using iterative search
methods and the above property predictor models, acting as objective functions to optimise.
Previously, these search methods were based on heuristics modifying the actual structures,
where compounds were constructed using atoms or pre-defined fragments [13]. While these
methods have efficiently explored chemical space, some have been limited in their ability to
operate in large spaces or have relied on human expert rules for assembling structures. [14]

In the past decade, chemical space exploration has significantly transformed due to the
emergence of deep learning (DL) techniques [15] . Deep learning is a subclass of machine
learning based on deep neural networks. While neural networks existed long before, deep
neural networks gained popularity much after. Starting from the outstanding performance of the
“AlexNet” neural network[16] in computer vision in 2012, the potential of DL to outperform
other machine learning approaches led to its adoption in various fields, including natural
language processing[17], speech recognition[18], and protein folding[19]. In chemoinformatics,
the capacity of neural networks to accept a massive amount of raw data input without pre-
processing into a vector format has been advantageous, leading to the development of the first
DL models for molecular structure generation[14, 20] and chemical synthesis planning[21].

In recent years, we have just begun to tap into the limitless potential of neural networks, and
there is still so much more to discover and achieve. However, while various DL architectures
have been developed, not all innovative approaches have been made publicly available, and
our understanding of what they learn is limited [22, 23]. Moreover, like any other machine
learning method, neural networks can learn biased knowledge and make incorrect associations
due to inaccurate input data representation. This issue has also been observed in DL models
for chemistry, where a phenomenon known as atom ordering bias has been identified and has
affected many models for encoding chemical structures, particularly those based on alphanu-
merical string representations of molecules such as Simplified Molecular-Input Line-Entry
Systems (SMILES) [24]. One way to mitigate this issue is to use graph-based representations
of molecules as inputs to neural networks. In chemistry, molecules are often represented as
graphs because this 2D representation captures most of the molecule’s structural properties and
graph neural networks (GNNs) are invariant to the ordering of atoms. However, when it comes
to generating new molecular structures, models cannot be fully invariant and require sequential
operations [25]. As a result, string-based neural networks are still the most widely used method
for structure generation.

21

The design of novel molecules using generative deep learning models presents several
challenges, one of the most significant of which is the synthetic feasibility of the generated
structures.[26] The synthetic feasibility of a structure refers to its ability to be chemically
synthesised, which is a non-trivial property to measure. Indeed, to be synthetically feasible, a
compound needs to be thermodynamically stable at common temperatures – a physicochemical
property already challenging to predict. However, this is not sufficient – there must also be a
reaction path leading to it specifically rather than to other concurrent products. Furthermore,
the most challenging part is that this path must imply available and cheap building blocks and
eco-friendly reaction conditions. Herewith, feasibility is not only a physicochemical but also a
logistical and economic issue – a practical problem with forcibly empirical and never perfect
answers. Previous works[14] used empirically calibrated functions of the structural features
in the molecule, such as Synthetic Accessibility score (SAScore)[5] as scoring functions or
filters. Even if a score can predict whether a compound is principally feasible and stable, it
cannot predict whether it can be practically produced because it does not include logistical
and economic constraints: availability and cost of reactants, catalysts, reactors, etc. Another
approach used is based on the combination of generation by forward synthesis and selection
by some property[27], where neural networks are trained on existing reaction data to predict
possible products given a set of available reactants. These models can ensure the availability
of starting materials; however, goal-directed optimisation can be challenging as it is unclear
which choice of starting molecules and products will lead to the maximisation of desired
properties. In addition, the search space of available molecules and possible reactions can be
vast, which only makes the task more difficult. In contrast, with the development of DL-based
retrosynthetic search, the combination of generative neural networks with retrosynthetic tools
became a promising direction. Retrosynthetic planning algorithms are designed to find synthetic
pathways for molecules, which can ensure their synthetic feasibility. Thus, retrosynthetic tools
can not only filter out those molecules that cannot be synthesised (from available reactants) but
also provides synthetic pathways for others.

The integration of generative neural networks with deep learning-enabled retrosynthesis
may represent the ultimate solution for the automated design of novel molecules, an endeavour
that is notoriously challenging. In light of this, this thesis attempts to address the problems
associated with the use of graph generative neural networks to find new molecular structures
and optimise retrosynthesis algorithms.

22 Introduction

In this work we focused on the following topics:

1. Neural Network architecture based on hydrogen count labeled graph. Compared to
conventional graph-based NN, the new architecture has significantly lower number of
parameters

2. New architecture of generative GNN: we present a new graph-based generative model
that learns order-independent vector representations of molecules. Order independence
was achieved through the use of permutation invariant operations. In addition, the archi-
tecture of GNN is based on a vector quantisation technique that enables the demonstration
of a new concept called unsupervised fragment learning.

3. Methodology for reaction data curation: a unified protocol for standardisation of reac-
tion data, including standardisation of chemical structures and reaction transformations.

4. New retrosynthetic planning tool based on neural networks: the new instrument for
retrosynthetic search that can learn new synthesis strategies by training from results of
previous searches.

5. New cross-validation techniques for reaction data: with these techniques, it is possible
to evaluate the unbiased performance of ML and DL models in predicting physicochemi-
cal parameters of reactions in new transformations and conditions.

The manuscript contains two parts devoted to graph-based deep learning architectures for
structure generation and synthesis planning, respectively.

Chapter 3

Generation of molecular structures

The de novo molecular design field was typically formulated through the goal-directed optimi-
sation paradigm. Within this framework, generated molecules were evaluated using a scoring
function, which evaluates whether they possess the desired properties. The scoring function
can be based on molecular simulation, docking, or structure-activity relationships (QSAR)
models. The latter approach, which utilises machine learning models to predict molecular
properties, has become increasingly popular due to its computational efficiency and precision
of predictions.[28, 29]

The performance of QSAR models depends to a large extent on the choice of vector
representation, or “descriptors,” used to represent the molecular structures. Descriptors can be
based on experimental measurements of physicochemical properties (e.g., molecular weight,
lipophilicity, and refractivity) or structural features (e.g., molecular fragments and topological
indices). Over time, a set of requirements for “good” molecular descriptors has been established,
including that they should have a structural interpretation, correlate with at least one molecular
property, and be invariant to the numbering of atoms in a molecule. [30]

While QSAR models can be used as scoring functions and filters of generated molecules,
they can also provide a vector that might correspond to the structure with the highest properties
of interest. Searching for the “optimal” vector and corresponding molecular structure is called
the inverse QSAR task[31, 32]. Compared to other de novo molecular design approaches,
inverse QSAR algorithms can be fast methods for creating new molecular structures with
a high probability of possessing the desired properties. This task can be divided into two
main subtasks: searching for a molecular descriptor that maximises the expectation of having
the most suitable properties and searching for corresponding molecular structures to a given
vector representation. Although the first task is conceptually straightforward, the second is
computationally challenging to solve [33]. As a result, previous approaches to the inverse

24 Generation of molecular structures

QSAR task have not been widely used, as existing generators based on fragment descriptors
often yielded a large number of solutions.[34, 35]

In recent years, the development of modern DL algorithms has revolutionised the field of
“de novo” molecular design[32]. The neural networks, characterised by their ability to learn
patterns from large datasets[36], have enabled the creation of models suitable for inverse QSAR
tasks. This chapter will discuss new approaches for inverse QSAR using GNNs. The discussion
is structured as follows:

• Section 3.1 introduces existing concepts in deep learning for inverse QSAR of molecules.
Initially, two main molecular representations, SMILES and molecular graphs, are dis-
cussed. Then, several classifications of generative neural networks are provided with
examples of known architectures. Next, a particular class of the most promising archi-
tectures, graph-based autoencoders, is described in more detail. After, the applications
of generative architectures are presented. Lastly, the current challenges for generative
models are outlined.

• Section 3.2 defines the main goal of this work and presents our main developments:

– Section 3.2.1 presents a new generative neural network based on a graph represen-
tation of molecules called the Hydrogen-count Labelled Graph (HLG). The new
architecture was tested in the reconstruction task and the generation of analogues
of molecules. For benchmarking, a new autoencoder based on molecular graphs,
called ReFactor, was also developed and compared in the same tasks.

– Section 3.2.2 describes the new order-independent graph-based autoencoder. This
autoencoder can learn structural fragments in an unsupervised manner, making it
the first of its kind. The latent vectors of this autoencoder are compared to other
generative architectures in similarity search and QSAR tasks.

3.1 Background of generative deep learning for inverse QSAR

3.1.1 Molecular representations

One of the key benefits of deep learning methods is the capability to extract knowledge directly
from “raw” molecular representations[36], leading to the question: “which representation
would be the most suitable for the efficient generative architectures?”. The typical choice is
string- and graph- based representations.

The common string-based approaches use SMILES[24] or InChI[37, 38] representations
of molecules. The SMILES notation, in particular, has gained widespread usage due to its

3.1 Background of generative deep learning for inverse QSAR 25

compatibility with natural language processing (NLP) deep learning methods, which have
been shown to achieve high performance in the generation of new text. However, it should be
noted that the SMILES representation of a molecule is not unique due to the linear traversal
of the molecular graph used in its construction. Depending on the starting point and path
taken, this can result in different SMILES strings for the same molecular structure. This issue
was addressed with the concept of canonical SMILES notation, which formalises the traversal
of the molecular graph with the Morgan algorithm. Despite this, it has been observed that
generative models trained on canonical SMILES are affected by atom order bias. Studies have
shown that augmenting training data with non-canonical SMILES can improve the performance
of generative models.[39] However, models that encode molecular structures in their vector
representations are more affected by atoms order bias and require more sophisticated solutions
to mitigate this issue.[1] Alternative representations of SMILES, such as DeepSMILES[40] and
SELFIES[41], have been proposed as well, which are better suited for use with deep learning
algorithms.

Another form of representation is graph-based, specifically molecular graphs. In comparison
to strings, molecular graphs do not require special symbols to encode the arrangement of atoms
and bonds. One benefit of this representation is the absence of atoms ordering bias. Graphs, by
nature, are order-invariant objects and are widely used in chemistry. However, graph-based
generative architectures are complex in optimisation, especially those generating graphs atom
by atom, also known as atom-based generators. As an alternative, some approaches focus on the
reconstruction of molecules through the combination of predefined molecular fragments, known
as fragment-based approaches[42, 43]. The effectiveness of such generators is contingent on the
diversity and specificity of the extracted fragments. These methods are becoming more popular
due to the reduced complexity of the generation process. An exception to this classification is
the work of Maziarz et al.[44], where both atom-based and fragment-based approaches were
combined, allowing for the decoder to select from individual atoms or predefined fragments

3.1.2 Types of neural networks for inverse QSAR

Generative neural networks suitable for inverse QSAR must generate molecules from their
vector representations. As such, generative neural networks can be broadly classified into two
categories: those that generate molecules from existing descriptors, such as physicochemical
properties or fragment descriptors, and those that formulate new “reversible” vector representa-
tions from “raw” molecular representations (both structure → descriptor vector and descriptor
→ structure transformation rules being learned in parallel).

The first category of generative neural networks used in inverse QSAR is known as con-
ditional generative models. These models use a calculated descriptor as a starting point to

26 Generation of molecular structures

generate corresponding molecules. A popular class of conditional generators is the iterative
generators. These models originated in natural language processing, where they are used to
predict the next symbol in a string. Due to its simplicity of training and speed of generation,
the combination of iterative generators with SMILES strings has gained significant popularity
in molecular design. One subclass of iterative approaches is based on recurrent neural networks
(RNNs), which predict the next symbol based on a hidden vector that retains information about
what should be generated in the following steps (Figure 3.1a)[45, 20]. Another subclass of
iterative generators is based on autoregressive modelling. In contrast with RNNs, autoregressive
generators predict the following symbols from the vectors of previous symbols given to the
network explicitly (Figure 3.1b)[46, 47].

Fig. 3.1 Scheme of conditional iterative generators. In both cases, one symbol is predicted on
each iteration until a maximum size is reached or a special “STOP” symbol is generated. a)
Recurrent generators that iteratively predict the following symbols based on the hidden vector
and the vector of generated symbols obtained in the previous step. In a conditional setup,
the condition vector is the initial hidden vector from which the first symbol is predicted. b)
Autoregressive generators that re-use vectors of previously generated symbols to predict new
ones. In the conditional setup, the first vector is the condition vector, which is later concatenated
with vectors of generated symbols

3.1 Background of generative deep learning for inverse QSAR 27

The second category of generative architectures that create vector representations of
molecules from the input is based on the autoencoder framework (Figure 3.2). Autoencoders
consist of two interconnected networks: an encoder and a decoder. The training process is
formulated as an unsupervised learning problem in which the encoder converts a raw input of
a molecular structure into a vector representation, and the decoder subsequently reconstructs
the original structure. The primary metric used to evaluate the model’s performance is the
reconstruction rate, which measures the percentage of fully reconstructed molecular structures.
A reconstruction rate of 100% indicates that the autoencoder has been trained perfectly. The
architectures based on the autoencoding concept can employ one (flow-based models[48]) or
two networks (discrete[49] and variational autoencoders[50]).

Discrete autoencoders[49] (Figure 3.2a) are autoencoders without constraints imposed on
their latent space. Thus, the trained decoder can be employed as a generative architecture;
however, it should be noted that the “random walking” in the learned chemical (latent) space
will result in a low number of chemically valid (without valence mistakes) and energetically
stable structures. This effect is related to latent space learned by the autoencoder, which is
intractable, meaning it cannot be analytically expressed. As no function describes the latent
space, there is no way to ensure that structures resulting from random latent vectors correspond
to valid and realistic molecular structures. Therefore, for efficient generation in terms of the
number of valid molecules, the discrete autoencoders can be combined with search methods or
other generative approaches.

Variational Autoencoders (VAEs)[50] Figure 3.2b) are another subclass of autoencoders.
These models can be seen as a regularised version of discrete autoencoders, where intractable
posterior distribution is shifted towards known probability distribution, for example, normal
distribution. This “shift” is done by calculating the evidence lower bound, which is a difference
between reconstruction and regularisation terms. The regularisation term is a distance metric
between two probability distributions, for example, Kullback–Leibler divergence [50, 51] or
Wasserstein distance [52]. Once trained, the known probability distribution can be utilised
by the decoder to generate new structures. Although VAEs are of significant interest, their
training can be challenging as the reconstruction and regularisation loss interfere with each
other. Most known VAEs for the inverse QSAR design are based on SMILES[14, 53–56] and
graph representations[57–59].

The next generation of models based on the autoencoding concept is flow-based models
Figure 3.2c) [48]. These models differ from traditional autoencoders in that they use a single
network for encoding and decoding instead of two separate networks. This is achieved through
sequences of invertible layers so that the decoder is the inverse operation of the encoder.
However, these approaches are limited by choice of operations, as only for some neural

28 Generation of molecular structures

Fig. 3.2 Scheme of different types of neural networks that are based on the autoencoding
concept. a) Discrete autoencoder, which has no constraints applied to the latent vectors. b)
Variational autoencoder, where the encoder returns vectors of means (µ) and standard deviations
(σ), which in this case define normal distribution that should be close to the standard normal
distribution with µ = 0 and σ = 1. These vectors are used to sample (also known as the
reparameterisation trick) a latent vector that goes to the decoder. c) Flow-based generator,
where “decoder” is the inverse operation of “encoder”.

3.1 Background of generative deep learning for inverse QSAR 29

networks it is possible to compute gradients for the inverse operation. The most dominant
representation used for the generation of molecules with normalising flows is graph-based.
[60–64]

An exceptional type of architecture that can formulate a molecular vector representation
and conditionally generate a molecule from an existing one is the conditional autoencoder. In
this architecture, the conditional vectors are added to the latent vector from the encoder as
input to the decoder. This approach can also be combined with a variational autoencoder to
obtain a generative model from the decoder, generating molecules with specified properties or
fragments.

Graph-based autoencoders One promising direction in de novo design and inverse QSAR
is the usage of graph-based autoencoders.[26, 65] As previously noted, the use of graph
representation allows for the elimination of atom ordering bias and can explicitly incorporate
2D information about a molecule.

Most graph-based autoencoders share the encoding part, which is based on graph neural
networks (GNNs). Similar to the convolution layers used in image processing, for each
node, graph neural networks aggregate information from neighbouring nodes. The literature
distinguishes three classes of graph neural networks: convolutional, attentional, and message-
passing. However, the latter category can serve as a generalisation of the first two.[66] For
simplicity, we will express GNN through a message passing (MP) scheme[67]. The central
idea behind message passing is the exchange of information between the nodes of a graph
or, in the context of a molecular graph, the atoms within a molecule. Conceptually, each
atom in a molecular graph is represented by an embedding vector that captures all atom’s
relevant features. In the message-passing network, this vector is updated via “messages” from
neighbouring atoms, which are computed by multiplying the vectors of neighbours by message
coefficients. These message coefficients can be either pre-determined based on the atom’s
neighbourhood or learned during the training process. (Figure 3.3)

Here we describe the general equation applicable for most graph neural networks with
message passing which operate on graphs G, including molecular graphs. In this graph, the
properties of node (atom) v are encoded in a vector representation called a node (atom) embed-
ding h0

v . Edge properties, or bonds, between atom v and its neighbour w can be represented by
the vector evw. The forward pass of the message-passing neural networks (MPNN) has two
phases: a message-passing phase and a readout (or pooling) phase. During the first phase, the
atom embeddings h0

v pass through T message passing layers, where at each layer t the atoms’
hidden states ht

v until final atoms vectors hT
v are obtained. The message passing is defined in

terms of message functions Mt (equation 3.1) and vertex update functions Ut (equation 3.2):

30 Generation of molecular structures

Fig. 3.3 The general scheme of message-passing neural networks for molecular graphs. In the
atom embedding step, each atom is assigned the vector representation. Then, in the message-
passing step, each atom vector is updated depending on the neighbours around the atom and the
bond types. The messages are computed by multiplying the neighbour vectors by the message
coefficients, and the "agg" refers to the aggregation function of the messages. The atom vectors
are compressed to a molecular vector by a readout operation in the last step. The indices around
the atoms are given for simplicity but are not considered at any stage.

mt+1
v = aggw∈N(v)(Mt(ht

v,h
t
w,evw)) (3.1)

ht+1
v =Ut(ht

v,m
t+1
v) (3.2)

where agg is the message aggregation function, so that w ∈ N(v), in which N(v) denotes
the neighbours of atom v in graph G. The aggregation function is usually represented by sum,
average, max, min or standard deviation [68]. Once atoms vectors hT

v are created, they are
passed to the readout function R (can be both learnable or static), which reduces the atoms
vectors into a single graph vector:

ŷ = R(hT
v | v ∈ G) (3.3)

3.1 Background of generative deep learning for inverse QSAR 31

All functions Mt , Ut and R can be parametrised by neural network or static differential
functions, for example, summation or average.

One of the most popular GNNs is the Graph Convolution Network (GCN), proposed by
Kipf and Welling [69]. The graph convolution can be described by the following equation:

H(t+1) = ReLU(D̃− 1
2 ÃD̃− 1

2W t)) (3.4)

where Ã = I +A in which A is the adjacency matrix and I is the identity matrix, D̃ is a
degree matrix (diagonal matrix of number of atom’s neighbours) of Ã, W t is a matrix of weights
for the current layer t, and ReLU is the rectifier activation function. In this way, the GCN layer
updates the central atom using messages calculated from the hidden states of its neighbours.
The message is computed by dividing the hidden state of the neighbour by the product of the
central atom’s degree and the neighbouring atom’s degree. All messages are then aggregated
by summation. The original GCN implementation, designed for node classification, does not
include a pooling operation; however, in other work using GCNs, summation has been the most
popular choice.[70]

One limitation of GCN is that it needs to be adapted to process graphs with different
types of edges (multigraphs). One solution proposed in GCN modifications[71, 57] is to split
multigraphs on edge-specific graphs that pass through separate graph convolution layers (Figure
4a). Another approach is based on the concatenation of three vectors corresponding to the
central atom, its neighbour and the bond between them [72] (Figure 4b). Unfortunately, both
solutions create additional computational overhead for molecular multigraphs with different
bond types.

Due to the efficiency and flexibility of GNNs, they became essential both in “forward”
and “inverse” QSAR. While many other approaches exist, I refer the reader to the reviews
[66, 73, 74] that discuss them in detail.

In comparison to encoders, the architectures of decoders are highly varied. A broad classifi-
cation of decoders can be made by grouping them into two categories: iterative and one-shot
decoders. Iterative decoders, which are closely related to iterative generators discussed earlier,
create molecules by repetitively reusing one layer and adding structural units of the molecule at
each step. These iterative decoders are typically based on recurrent neural networks[42, 70], au-
toregressive generators[43, 61, 64], and reinforcement learning-based generators[44, 75]. They
currently achieve high-quality generation and are widely used; however, they are complex in
terms of optimisation and typically include a large number of parameters. In contrast, one-shot
generators create atoms and bonds in a single pass through a neural network.[76, 58, 77, 78]
These approaches allow for high speed during the training and prediction stages; however, the
number of valid structures during generation is usually lower.

32 Generation of molecular structures

Fig. 3.4 Schematic illustration of different techniques for graph convolution on multigraphs.
a) Multigraph is split into several edge-specific graphs (in case molecular graphs are bond-
specific). Each graph is passed through separate graph convolution, and resulting atom vectors
are summed between edge-specific graphs. b) Pair vectors of a central atom and its neighbour
with the bond vector are concatenated and passed through a neural network that predicts
“message” vectors. These vectors are then aggregated into one vector, concatenated with the
central atom vector and passed through another neural network to obtain an updated vector for
the central atom.

3.1.3 Application of neural networks for inverse QSAR

The conditional generators were found to be helpful in the task of inverse QSAR for drug design.
For example, Kotsias et al.[79] compared physics-based and fingerprint-based condition vectors
for the cRNN model in generating novel ligands for the dopamine receptor D2. The authors
showed that fingerprint-based cRNN generated structures more similar to known ligands and
retained more scaffolds than physchem-based cRNN. Thus, the fingerprint-based cRNN could
be useful in the task of analogue generation, whereas the physchem-based cRNN can help in the
discovery of novel structures. In another work [80], three-dimensional structural information
of the protein binding pocket was used for the conditional generation of molecules. It was
shown that a cRNN with pocket information was able to generate molecules with lower docking
scores than an unconstrained RNN generator. Li et al. [81] applied cRNN to generate a virtual
library of receptor-interacting protein kinase 1 (RIPK1) inhibitors. After a virtual screening of
the generated library, the authors found a molecule with a previously unreported scaffold that
showed activity in vitro and in vivo.

3.1 Background of generative deep learning for inverse QSAR 33

Autoencoders were also actively used in inverse QSAR, starting from the pioneering work
of Gomez-Bombarelli et al. [14], where authors first applied SMILES-based VAE for the
generation of new molecules. After this work, many variants of autoencoders were developed,
including conditional variational autoencoders [33, 82]. The application of autoencoders
to medicinal chemistry is a rapidly evolving field, with a few studies proving the activity
of generated molecules in vitro. One such example is the GENTRL[83] approach, which
employs a SMILES-based variational autoencoder to facilitate the rapid discovery of potent
inhibitors of discoidin domain receptor 1 (DDR1), a kinase target linked to fibrosis and other
diseases. Within the generated structures, one molecule exhibited favourable pharmacokinetics
in mice. Another study employed a graph-based variational autoencoder to design active
molecules for Chagas parasitic disease[84]. The authors successfully identified a molecule that
showed activity in an in vitro study. These studies demonstrate the potential of deep learning
architectures based on the autoencoder concept for the efficient and cost-effective development
of drugs, which can be applied in large pharmaceutical companies and the treatment of rare
and tropical diseases

3.1.4 Challenges of DL for inverse QSAR

The generative neural networks should be flexible and reliable and answer the need of human
experts. However, the reliability of neural networks for inverse QSAR is concerning, as these
models may exhibit undesirable biases that can negatively impact performance. One such
bias identified is the atoms order bias[1], which can affect architectures that utilise string-
based representations. As previously mentioned, this bias can affect not only the generative
component of these models but also the encoding part in the case of autoencoders. However,
there may be other biases that have yet to be identified. Therefore, it is important to increase the
interpretability of these architectures to understand them better and address such biases. Another
solution is to develop a set of guidelines or “cookbook” to design task-specific generative
approaches, as has been done in the field of QSAR[85].

Furthermore, the problem of the computational efficiency of generative architectures is
yet to be solved. Thus, with the development of computational libraries for the design of DL
architectures, it became easier to develop generative neural networks. However, the question
of the scalability of these architectures to handle larger datasets (greater than 107 structures)
that include more complex compounds (consisting of structures larger than 35 atoms and
similar to the natural-product molecules) remains unresolved. The generation of big molecules
is particularly challenging for graph-based architectures[86]. Among the various concepts,
fragment-based approaches are a promising solution to this challenge.[26]

34 Generation of molecular structures

With the development of generative architectures for inverse QSAR, the problem of the
synthetic feasibility of generated structures still needs to be solved [26, 87, 88]. This problem
has been addressed by new generative methods trained on reaction data, known as forward
synthesis generators [27]. The idea behind these models is to predict possible products given
a set of input molecules or reactants. However, the search space over both reactants and
reactions is vast and current methods need to indicate whether a synthesis is likely successful.
Alternative approaches have therefore been proposed, including the combination of generators
with retrosynthetic algorithms. These strategies are discussed in more detail in the following
chapter. For a more detailed discussion of forward synthesis generators, I refer the reader to the
following works [89, 90].

These examples are among the many other challenges[88] facing scientists to create better
generative neural networks.

3.2 Development of novel graph-based architectures 35

3.2 Development of novel graph-based architectures

As previously discussed in the literature review, there are still numerous challenges associated
with the development of powerful deep learning approaches for de novo drug design. Among
the various concepts and architectures, graph-based architectures appear to possess a greater
degree of flexibility and potential, as they are able to incorporate both 2D and 3D information
of molecules and are not influenced by atoms order bias. However, the generation of graphs
remains a significant challenge due to their discrete nature and non-linear structures, which are
more complex than images or text. Consequently, previous works have proposed architectures
that are sophisticated and computationally expensive[91, 92] or are tested only on small and
simple structures[76, 70, 77]. At the same time, only a few of them published the source
code[44, 92], making others irreproducible.

The primary objective of this work is to design a deep learning model for inverse QSAR.
Among the various candidates of generative architectures, we posit that discrete autoencoders
are the most appropriate for graph-based architectures, given that graphs are discrete in nature.
Additionally, their combination with generative approaches and combinatorial optimisation
techniques can make the architecture modular and flexible, enabling the evaluation of each
component separately. Hence, our goal can be formulated as follows:

• The autoencoder model should be computationally efficient;

• It should achieve high reconstruction rates, including for molecules larger than 35 atoms;

• It should be devoid of undesired biases, such as atoms order bias;

• It should be easily interpretable, requiring no complex methods or heuristics to understand
what the model has learned.

36 Generation of molecular structures

3.2.1 Hydrogen-count labeled defactorisation graph-based autoencoder

As was mentioned above, autoencoders are a promising architecture for inverse QSAR task.
Their ability to learn vector representations of molecules and generate their structures from
them makes them flexible and efficient in goal-directed optimisation tasks. However, designing
computationally efficient graph-based generative networks poses significant challenges. One
such challenge concerns graph convolutions, which do not natively support the multigraphs
and require separate convolution layers for each edge type. However, molecules are often
represented as multigraphs, with edge types corresponding to the chemical bonds between
atoms.

This section introduces a new graph-based autoencoder architecture named Hydrogen-count
labelled defactorisation graph-based autoencoder (HyFactor). This autoencoder is based on
a representation of molecules known as a Hydrogen-count Labelled Graph (HLG). In this
graph, bond types are replaced by the connectivity between atoms and the number of hydrogens
attached to heavy atoms. HyFactor was compared with the implementation of its “clone”
version, called ReFactor, which is based on the molecular multigraph. Both HyFactor and
ReFactor were evaluated on the ZINC 250k benchmark set and the ChEMBL v. 27 datasets in
a reconstruction task and on the MOSES dataset in an analogue generation task.

HyFactor: A Novel Open-Source, Graph-Based Architecture for
Chemical Structure Generation
Tagir Akhmetshin, Arkadii Lin, Daniyar Mazitov, Yuliana Zabolotna, Evgenii Ziaikin, Timur Madzhidov,*
and Alexandre Varnek*

Cite This: J. Chem. Inf. Model. 2022, 62, 3524−3534 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Graph-based architectures are becoming increas-
ingly popular as a tool for structure generation. Here, we introduce
novel open-source architecture HyFactor in which, similar to the
InChI linear notation, the number of hydrogens attached to the
heavy atoms was considered instead of the bond types. HyFactor
was benchmarked on the ZINC 250K, MOSES, and ChEMBL data
sets against conventional graph-based architecture ReFactor,
representing our implementation of the reported DEFactor
architecture in the literature. On average, HyFactor models
contain some 20% less fitting parameters than those of ReFactor.
The two architectures display similar validity, uniqueness, and
reconstruction rates. Compared to the training set compounds, HyFactor generates more similar structures than ReFactor. This
could be explained by the fact that the latter generates many open-chain analogues of cyclic structures in the training set. It has been
demonstrated that the reconstruction error of heavy molecules can be significantly reduced using the data augmentation technique.
The codes of HyFactor and ReFactor as well as all models obtained in this study are publicly available from our GitHub repository:
https://github.com/Laboratoire-de-Chemoinformatique/HyFactor.

■ INTRODUCTION
Nowadays, deep neural networks (DNNs) play a significant
role in drug and material discovery, being used for property
prediction,1 de novo design,2 and computer-aided retrosyn-
thesis.3 One of the most widely used DNN architectures is the
autoencoder (AE).4 It is able not only to encode chemical
structures in their latent representation but also to generate
new compounds by decoding sampled latent vectors using a
decoder subnetwork.
To generate new molecular structures, the majority of AEs

use SMILES strings5 as an input, which allows one to employ
the power of natural language processing (NLP) techniques.
Although SMILES seems suitable for de novo design tasks, the
latent representation of text strings may not reflect chemical
similarity relationships between considered structures.
Graph-based AE (GAE) architectures6 serve as a valuable

alternative to the SMILES-based ones. They present a
chemical structure as a graph in which nodes and edges
encode atoms and chemical bonds, respectively. GAEs have
three fundamental advantages over SMILES-based autoen-
coders. First, no specific order of graph traversal is required,
which solves the problem of fixing the canonical ordering of
atoms or training on random ordering. Second, a graph object
does not need to follow specific grammar rules, such as
opening and closing brackets, cycle numbering, etc., which
seriously limits the generation ability of neural networks.

Notice that different non-canonical SMILESs describing the
same structure may be embedded to different latent vectors.
Finally, GAEs always generate graph objects, which, in turn,
allows for a meaningful chemical analysis of errors including
detection of graph disconnectivity and erroneous valence.
A molecular graph can be represented by an ensemble of

atom vectors and bond matrices, which, in turn, can be
transformed into its vector representation using graph
convolutional networks (GCN).7 Once a latent vector is
obtained, it can be decoded using either single-shot or iterative
decoders. Single-shot decoders generate atoms and bonds in a
graph in a single pass.6,8 Their training is fast, but simultaneous
generation of atom vectors and bond matrices is technically
challenging.9 In contrast, iterative decoders create atoms and
bonds sequentially one by one until a molecule is
reconstructed.10 Iterative decoders can be categorized into
two classes. The first class generates atom vectors one by one
until vectors of all atoms are sampled. These vectors are then
used to extract atom and bond types. For example, in the

Received: June 12, 2022
Published: July 25, 2022

Articlepubs.acs.org/jcim

© 2022 American Chemical Society
3524

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

D
ow

nl
oa

de
d

vi
a

U
N

IV
 S

T
R

A
SB

O
U

R
G

 o
n

Ja
nu

ar
y

14
, 2

02
3

at
 1

7:
50

:1
8

(U
T

C
).

Se
e

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n

ho
w

 to
 le

gi
tim

at
el

y
sh

ar
e

pu
bl

is
he

d
ar

tic
le

s.

autoregressive method, the generation of the next vector is
based on previously created atom vectors.11 Another popular
approach employs a recurrence-based generation where the
next atom vector is generated from a hidden (or difference)
vector updated at every step.12 The second class of decoders
uses a Markov decision process. In contrast with previous
methods, they require the explicit creation of the molecule’s
substructure at each step of generation. To achieve that, they
perform several actions such as “creation of atoms” and
“creation of bonds” until the molecule is generated.10

However, iterative generation requires a much more complex
and slow network architecture compared to single-shot
autoencoders.8 One of the most efficient recurrence-based
iterative decoder architectures was recently implemented in the
DEFactor tool reported by Assouel et al. in the arXiv e-print.11

The encoder in DEFactor is a multi-layer GCN, whereas the
decoder combines the long short-term memory (LSTM)13 cell
for atomic vector generation with a new adjacency matrix
defactorization procedure.
Typically, the GCN employed by the encoder subnetwork in

GAEs computes the neighbors’ messages within each bond-
type specific channel. For this reason, it is necessary to store up
to four bond-type-specific adjacency matrices and specific
trainable weight matrices. This takes a lot of memory and
requires numerous mathematical operations with the corre-
sponding computational graph. A complex iterative process of
atom and bond “creation” and related high memory and time
costs prevent GAE architectures from becoming widely used.
In this paper, we propose an alternative to conventional

structure encoding, which may help reduce both the required
GPU memory and the model training time. Instead of
considering different bond types, we propose to use the
number of hydrogens attached to each heavy atom, similar to
the InChI linear notation.14 Together with an adjacency
matrix, this information is sufficient to reproduce molecular
structures. Also, it solves the problem of a standard
representation of functional groups and aromaticity. In this
case, a molecular graph can be represented by three objects:
(1) a vector of atoms, (2) a vector of hydrogen counts, and (3)
a binary adjacency matrix. The above approach was
implemented in a new hydrogen-count labeled graph-based
defactorization (HyFactor) GAE architecture. In HyFactor, a
DNN is combined with the algorithm needed to convert a

regular molecular graph to a hydrogen-count labeled graph (a
graph where a certain number of hydrogens is assigned to each
heavy atom) and back.
In order to assess the efficiency of the new architecture

compared to conventional GAE, we have decided to compare
HyFactor with DEFactor. However, neither DEFactor codes
nor neural network hyperparameters (e.g., the number of
convolutional layers in the encoder or the batch size, etc.)
needed for re-implementation of this tool were provided in the
original publication.11 Therefore, we attempted to re-imple-
ment and further improve the DEFactor architecture in its
advanced version referred here as ReFactor. Here, we describe
the HyFactor and ReFactor architectures and report the
benchmarking results on ZINC250K, ChEMBL v. 27, and
MOSES data sets in the reconstruction and generation tasks.

■ METHODS
Data and Curation. Three data sources were used:

ZINC250K benchmarking data set extracted from the ZINC
database4 by Kusner et al.,15 MOSES data set from the
MOSES package (v. 1.0),16 and ChEMBL database (v. 27).17

All sets were standardized with ChemAxon JChem’s utilities18

using the following procedures: (1) dearomatization, (2)
isotope removal, (3) stereo mark removal, (4) explicit
hydrogen removal, (5) small fragment removal, (6) solvent
removal, (7) salt strip, (8) neutralization of charges, (9)
functional group transformation, (10) selection of the
canonical tautomer form of the molecule, (11) aromatization,
(12) duplicate removal, and (13) dearomatization. The order
of atoms in standardized structures was defined by the
canonical SMILES string produced by ChemAxon JChem.
Some 1.7K structures were removed from the ZINC250K

data set as a result of the cleaning procedure. The cleaned set
was split into training, validation (tuning), and test sets as
reported by Kusner et al.15 The validation set was used for
early stopping.19 The test set consisted of 5K predefined
molecules, and the remaining structures were randomly split
into training and validation sets in a ratio of 9:1. Note that
several duplicates were found in ZINC250K (see Table S1)
due to the presence of stereoisomers in the data set. This may
cause some overestimation of the performance of the earlier
reported models.

Figure 1. Heavy-atom count distribution in studied data sets.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3525

The MOSES data set is a benchmarking set for generative
models (details are given in the Supporting Information). It
was analyzed with the proposed standardization procedure;
however, no mistakes were found. Therefore, it was used as it
is. The original “training” set was split into training and
validation sets in a 4:1 ratio.
The ChEMBL database was standardized by the same

workflow as the ZINC250K data set. The initial database
consisted of 1.9M molecules, and it was reduced to 1.6M of
standardized structures. The prepared data set was additionally
analyzed in terms of the frequency of atom types (Figure S1).
Sixty unique atomic types (including information on atomic
charges) were found in ChEMBL, and molecules containing
only 15 atomic types (C, O, N, S, F, Cl, N+, O−, Br, P, I, N−, B,
Si, and Se) have been retained according to the threshold of
1000. The compounds containing less than 5 and more than
50 heavy atoms have been discarded due to their under-
representation. The filtrated ChEMBL data set was then split
into a training set (80% of data or 1.3M molecules) and a test
set (20% of data or 327K molecules). We did not use a
validation set for early stopping since, starting from 100
epochs, the model performance parameters (the loss and
reconstruction rate) practically did not vary. The modeling was
stopped at 150 epochs.
All chemical structures from each data set have been

kekulized in order to avoid a need to introduce an additional
aromatic bond type for the ReFactor architecture. The latter
would increase the size of the graph-based architecture, slow
down the calculations, and decrease the number of valid
structures in sampling.
Both the ChEMBL and ZINC250K data sets have a similar

distribution of heavy atom counts (Figure 1). However, the
MOSES data set differs from both, and most of the structures
lie in the range from 16 to 26 heavy atoms. For some
computational tests, the ChEMBL database was enriched by
460K virtual structures bearing more than 35 heavy atoms. The
heavy-atom distribution of the enriched ChEMBL
(E_ChEMBL) is shown in Figure 1.
Hydrogen-Count Labeled Graph. In the hydrogen-count

labeled graph (HLG), only the connections between atoms
and the count of hydrogens connected to the atoms are taken
into account (see Figure 2). The formal charge of an atom is
used as a vertex label. Such a representation has already been
tested in the development of structure−property models with

graph convolution networks.20 The implemented workflow
first transformed a molecular graph to HLG and then to three
complementary representations: adjacency matrix, atomic
types, which include the atom symbol and charge, and
hydrogen-count vectors (Figure 2). The conversion from a
molecular graph to HLG and back was performed with the
help of the CGRtools toolkit.21

Autoencoders Based on Conventional (DEFactor and
ReFactor) and Hydrogen-Count (HyFactor) Representa-
tions of the Molecular Graph. All three autoencoder
architectures used in this work, namely, DEFactor (reported
earlier)11 and ReFactor and HyFactor (both developed in this
work), are depicted in Figure 3. Their detailed description is
given below.

DEFactor Architecture. The encoder in DEFactor uses one-
hot embedding to represent atoms in the molecular graph and
consists of several layers of edge-specific graph convolution
networks7,22 that can be expressed as

= ++
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
H D E D H W H WReLU ()l

b
b b b

l
b
l l l1 1/2 1/2

self
(1)

where Hl is the atoms’ vectors after the lth graph convolution
layer, Eb is a bond-type specific adjacency matrix, Db is the
corresponding bond-type specific diagonal degree matrix, Wb
and Wself are trainable matrices of weights for every bond type
b and weights for self-channel, respectively, and ReLU is the
rectifier activation function. The aggregation of atomic vectors
is performed with the help of a long short-term memory
(LSTM)13 unit followed by a one-layer perceptron (see Figure
3a), giving a molecular latent vector.
In the decoder, the molecular latent vector is unpacked into

a set of atomic embeddings, H̃, where each hi is predicted using
the LSTM layer. Thus, the entire matrix of atoms’ embedding
is restored. Next, it passes through two subunits in parallel
where the first one is represented by a multilayer perceptron
(MLP) with the sof tmax activation function that returns
predictions of atom types (Ã). The second subunit realizes the
multichannel defactorization procedure23 needed to recon-
struct the bond matrix according to eq 2

= +E HW H(bias)b b
T (2)

Figure 2. Hydrogen-count labeled graph representation. Here, the molecular graph (hydrogens are hidden) is converted into a graph with no edge
features, while the nodes have two features, namely, the type of atoms and number of hydrogens.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3526

where Ẽb is the reconstructed adjacency matrix for a bond type
b, H̃ is the matrix of the recovered atoms’ embeddings hi,Wb is
a diagonal matrix of weights for the bond type b, and σ is the
sigmoid activation function. A certain probability is returned
for each bond type between each pair of atoms, and the bond
type with the highest probability is selected for the
reconstruction. A three-step procedure including teacher
forcing was used to speed up the DEFactor training. Within
each step, trainable weights of a certain part of the network
were frozen and then relaxed at the next step.

The loss function is a sum of categorical cross-entropy for
atom predictions (eq 3) and binary cross-entropy for bond
predictions (eq 4)

= ×L
n

A A
1

log()atoms (3)

= [× + ×]L
n

E E E E1
log() (1) log()

b
b b b bbonds 2

4

(4)

Figure 3. Architectures of different autoencoders considered in this work: (a) DEFactor,11 (b) ReFactor, and (c) HyFactor. BN refers to the batch
normalization layer, and GRU refers to the gated recurrent unit. Parameters for each experiment are specified in Table S2.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3527

where A is the one-hot matrix for atom types, Ã is the
predicted atom-type probability matrix, n is the number of
atoms in a molecule, and Eb is the real adjacency matrix for
bond type b.
It should be noted that some important information like the

number of GCN layers as well as the dimensionality of the
atoms’ embedding matrix was missed in the original
publication by Assouel et al.11 Therefore, we reimplemented
the DEFactor architecture with some modifications that
improved its performance, at least, for large molecules (see
below).
ReFactor Architecture. The ReFactor architecture keeps the

main ideas of the DEFactor model. Some parts of DEFactor
that were explained well were kept and reimplemented in the
Tensorflow package24 v. 2.6. Others were modified or replaced
by new layers. Thus, it was decided that token embedding is a
more powerful and flexible technique than a simple one-hot
embedding. Hence, the latter was replaced by a token
embedding layer.
To stabilize the learning process, the GCN from the

DEFactor was completed by a layer normalization (LN)25

layer among the atoms’ features (parameter “axis = −2”) and
masking of imaginary atoms (padding):

= × ×

+

+
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

H D E D H W

H W

mask ReLU (LN())

LN()

l

b
b b b

l
b
l

l l

1 1/2 1/2

self
(5)

In each experiment, the number of GCN layers was fixed at
five. The dimensionality of the input and output vectors did
not change across the layers.
For atomic vector aggregation, LSTM units in DEFactor

were replaced with bidirectional gated recurrent units26 (GRU;
see Figure 3b). The output of GRUs was passed to the dense,
batch normalization (BN), and ReLU activation layers to
obtain the molecular latent vector. A teacher-forcing technique
applied in the original article was skipped since no predictive
performance improvement was detected in our experiments.
In the decoder, the atoms’ vectors were generated by two

sequentially connected GRU layers and a dense layer in
between headed by a RepeatVector layer (see Figure 3b). In
such a case, the input molecular latent vector was repeated N
times (i.e., according to the maximal molecular graph size) and
passed through the first GRU, and intermediate atom vectors
were returned. These intermediate vectors were then
concatenated with the repeated molecular vectors. They
passed first through a perceptron layer with a ReLU activation

function and then through the second GRU layer. Further, the
hidden vectors of the second GRU were used as the retrieved
atoms’ embeddings. For the atom reconstruction, the retrieved
atoms’ embeddings were passed through two dense layers with
the output dimensionality equal to the number of atom types.
Activation of the first layer was ReLU, and activation of the
second was the sof tmax function. During the bond
reconstruction step, the atoms’ embeddings were forwarded
to a dense layer with the output dimensionality of the latent
vector divided by 8 and ReLU activation and then to the
defactorization layer.
These and other minor changes allowed us to handle

molecules containing up to 50 heavy atoms (see Results and
Discussion). Unless specified, the dimensionality of the atom
embedding vectors as well as all internal and latent vectors was
the same. Parameters for each experiment are specified in
Table S2. All layers were taken with standard parameters if not
specially mentioned.

HyFactor Architecture. The main changes compared to
ReFactor concern the steps of graph convolution and graph
reconstruction from the atoms’ vectors (see Figure 3c). First,
the HLG was transformed to the atoms’ (dimension of 64) and
hydrogens’ (dimension of 4) embeddings. These embeddings
were concatenated and passed through the dense layer with the
ReLU activation function. The graph convolution network was
similar to that in ReFactor

= × [×

+]

+H D ED H W

H W

mask ReLU LN()

LN()

l l l

l l

1 1/2 1/2
neighbors

self (6)

where E and D are adjacency and degree matrices of HLG, and
the other designations are the same as in eqs 1 and 2. Here, the
number of the training parameters is twice less than that for
ReFactor GCN.
At the graph reconstruction stage, the number of hydrogens

and atom types were predicted similar to using dense layers
with the sof tmax activation function. The maximal number of
hydrogens attached to an atom was equal to 3. The adjacency
matrix was reconstructed using the defactorization procedure
(eq 2), ignoring bond types; only one trainable diagonal Wb
matrix was used.
The initialization of weights for each layer was performed

with HE normal initialization.27 Training of the architecture
was performed using the AdaBelief optimizer28 with default
parameters. Exponential learning decay was applied in order to
maintain the training stability.
Sampling Procedure. New molecular structures were

generated by sampling latent vectors in the vicinity of the
known molecules.29 Here, the latent vectors of selected

Figure 4. Sampling of new structures from the autoencoder latent space.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3528

molecules from the training set were used as seeds (Figure 4).
During generation, these latent vectors were multiplied by
noise vectors composed of random numbers generated from a
probability density function of a log-normal distribution
followed by their decoding to a molecular graph.
In order to effectively explore the chemical space around the

given seed, the “mean” parameter was set to 0, whereas the
“standard deviation” was systematically varied. Generally, the
probability of generating more dissimilar structures increases
with the “standard deviation” value.

■ RESULTS AND DISCUSSION
Reconstruction Rate of Different Graph Autoen-

coders. The performance of the autoencoders’ model is
measured by the reconstruction rate representing a percentage
of correctly reconstructed structures in the considered data set.
Reconstruction rate values for several SMILES-based and
graph-based autoencoders on the ZINC 250K set are reported
in Table 1.

One can see that the performances of graph-based and
SMILES-based architectures are similar. The leading graph-
based architecture (TSGCD) has a reconstruction rate that is
only 2% lower than the best SMILES-based autoencoder
(rebalanced VAE). The DEFactor architecture also demon-
strates high performance, which is only 1% lower than the
leading graph-based autoencoder. Notice that the data
standardization issue was not sufficiently discussed in the
publications on all the architectures mentioned in Table 2.
Therefore, results for the ReFactor and HyFactor architectures
are given for both initial15 (non-standardized) and stand-
ardized data sets. In addition, results for training and validation
sets for model overfitting analysis are also reported.
The reconstruction rate for ReFactor obtained on the initial

data set is slightly better than that of the standardized data set.
This fact supports our assumption that the performance of
autoencoder may be overestimated since training and test sets
partially overlap in the non-standardized data. As it follows
from Table 1, ReFactor outperforms DEFactor on the initial
data set.

The HyFactor architecture has almost the same reconstruc-
tion rate as ReFactor but has a smaller number of neural
network parameters (10M compared to 12M in ReFactor).
The training time for HyFactor was 2 h and 45 min. (with 5
GB of GPU RAM allocated), while for ReFactor, it was 4 h and
10 min. (with 5.5 GB of GPU RAM allocated).
Structure Generation Performance of Graph-Based

Autoencoders. The efficiency of the proposed graph-based
autoencoders to generate valid chemical structures has been
investigated on the MOSES data set using the metrics included
in the MOSES package.16 Both ReFactor and HyFactor
architectures were trained on 80% of the MOSES training set
and achieved more than 99% of the reconstruction rate on the
remaining 20% of the data used as a validation set. Then, 10 K
compounds were randomly selected as seeds for sampling new
structures. For each seed compound, 10 virtual structures were
generated, so 100K structures were obtained. The generation
was based on a log-normal distribution with a mean equal to
0and a standard deviation ranging from 0.2 to 1.0 with a step
of 0.2. Since the original DEFactor source code was not
available from the original publication,11 the ReFactor
architecture was benchmarked instead.
A preliminary analysis of the results revealed that the

MOSES package did not correctly handle typical problems
frequently occurring during the structure generation: dis-
connected molecular graphs were not considered erroneous,
and some valence errors were ignored. Therefore, an additional
examination of generated structures was performed using the
CGRtools package.21 The results of the analysis of STD
influence on validity, uniqueness, and novelty metrics of the
generated structures are given in Table 2.
One can see that the increase in standard deviation leads, on

one hand, to the rise of the percentage of new molecules and
to the decrease of validity on the other hand. We notice the
difference between original and modified workflows for validity
checks caused mainly by the trend to return disconnected
graphs by ReFactor and HyFactor at high STD, which

Table 1. ZINC 250K Reconstruction Benchmarking
Resultsa

reconstruction rate (%)

architecture
name

molecular
representation

training
set

validation
set

test
set

TSGCD9 molecular graph 90.5
DEFactor11 molecular graph 89.8
JTVAE12 molecular graphb 76.7
rebalanced
VAE30

SMILES 92.7

all SMILES31 SMILES 87.6
SDVAE32 SMILES 76.2
ReFactor molecular graph 99.5 90.8 90.7
ReFactorc molecular graph 99.7 90.0 90.0
HyFactor HLG 99.3 89.3 89.0
HyFactorc HLG 99.2 89.8 88.4
aReconstruction rate values for other architectures are taken from the
original publications. bJTVAE uses hierarchical fragments instead of
atoms to reconstruct the molecule. cAdditional standardization and
duplicate data removal have been applied to the initial ZINC 250K
data set.15

Table 2. MOSES Metricsa Calculated for the 100 K
Structures Generated with Different Standard Deviations
(STDs)d

validity uniqueness novelty

STD originalb modifiedc originalb modifiedc originalb modifiedc

ReFactor
0.2 0.997 0.996 0.656 0.105 0.074 0.042
0.4 0.921 0.886 0.748 0.265 0.634 0.578
0.6 0.698 0.503 0.948 0.730 0.875 0.814
0.8 0.540 0.149 0.998 0.971 0.978 0.855
1 0.516 0.022 0.961 1.000 0.999 0.983

HyFactor
0.2 1.000 0.9880 0.661 0.193 0.117 0.006
0.4 0.989 0.7290 0.795 0.267 0.729 0.129
0.6 0.940 0.1820 0.980 0.634 0.923 0.288
0.8 0.886 0.0120 1.000 0.966 0.993 0.491
1 0.822 0.0003 0.981 1.000 1.000 0.912
aValidity is a fraction of valid molecules compared to generated ones.
Uniqueness (or Unique 10K) is defined as a fraction of the first 10K
unique molecules among the valid ones. Novelty is a fraction of the
novel generated molecules among unique ones. bMetrics calculated by
the MOSES package. cMetrics calculate by CGRtools after removal of
structures with valence errors and disconnected graphs. dResults for
STD = 0.4 selected for further tests are shown in italics.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3529

Table 3. Results of MOSES Benchmarking for Different Autoencoders; the Similarity Metrics FCD, SNN, and Scafa Relate a
Set of Generated Structures with the MOSES Test Setd

model validity uniqueness novelty FCD SNN Scaf IntDiv

AAE 0.937 0.997 0.793 0.556 0.608 0.902 0.856
VAE 0.977 0.998 0.695 0.099 0.626 0.939 0.856
JTVAE 1.000 1.000 0.914 0.395 0.548 0.896 0.855
ReFactorb 0.886 0.265c 0.578 1.743 0.547 0.847 0.868
HyFactorb 0.729 0.267c 0.129 0.365 0.614 0.862 0.860

aThe MOSES benchmarking parameters:16 Scaf is a cosine similarity based on the occurrence of Bemis−Murcko scaffolds in the compared sets.
SNN is an average Tanimoto similarity calculated with Morgan fingerprints between a molecule from the generated set and its nearest neighbor
from the test set. FCD is a Wasserstein-2 distance computed on vectors produced by the last layer of the ChemNet neural network between the
generated and test sets. IntDiv measures the dissimilarity of structures in the generated set calculated with Morgan fingerprints. See the Supporting
Information for details. bSampling for STD = 0.4. All metrics were calculated after the removal of structures with valence errors and disconnected
structures using the CGRtools-based workflow. cUniqueness was calculated on the entire generated data set after filtration by validity. dThe
performances of AAE, VAE (SMILES-based), and JTVAE (graph-based) architectures were taken from the article by Polykovskiy et al.16

Figure 5. Example of structures generated with ReFactor and HyFactor trained on the MOSES set. Molecules generated with a standard deviation
of <0.6 (>0.6) lie within (outside) the dashed circle. All molecules were aromatized with the ChemAxon toolbox. Each number corresponds to a
pairwise Tanimoto similarity of a given generated structure with respect to the seed assessed with the atom-centered ISIDA fragments35 involving
sequences of atoms and bonds of sizes from 2 to 4 atoms with different labeling of cyclic and acyclic bonds.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3530

nonetheless represent correct structures. Valid structures
generated with a high standard deviation parameter (STD ≥
0.6) are characterized by high novelty and uniqueness. The
validity of structures generated with HyFactor sharply drops
for high STD values, which is not the case of ReFactor. Thus,
one can suggest that the HyFactor latent space is more
discontinuous than that of ReFactor. We notice that the latent
space discontinuity is a quite common phenomenon for regular
autoencoders without special regularization on latent space,
like in variational autoencoders33 or application of latent
vectors for additional task solving.34

However, both architectures achieved high reconstruction
rates and reasonable values of the validity, uniqueness, and
novelty parameters at STD = 0.4 (Table 3). To compare with
other autoencoders, we used this standard deviation. The
results of MOSES benchmarking are given in Table 3, which
includes the most important metrics assessing the generation
ability of the proposed architectures. The results for all other
metrics available in the MOSES package are given in the
Supporting Information (see Table S3).
Since graphs are discrete objects, they occupy particular

positions in the continuous autoencoder latent space. The
latent vectors corresponding to invalid molecular graphs (e.g.,
disconnected structures or structures with valence mistakes) in
the latent space are located between positions of valid
molecules. While the proposed sampling method allows

systematic exploration of the chemical space, the validity of
the generated structures can hardly be controlled. Uniqueness
and novelty are lower than for other architectures as we
generate molecules in the vicinity of seed molecules.
Table 3 shows that the scaffold similarity (Scaf) of structures

generated with HyFactor and ReFactor is lower than that for
earlier reported autoencoders. Therefore, one can conclude
that new architectures are more potent for scaffold hopping,
which is crucial in de novo design. Moreover, HyFactor and
ReFactor generate molecules with rather high internal diversity
(IntDiv), characterizing a broader variety of generated
structures. Compared to all benchmarked autoencoders,
generated samples from ReFactor have the biggest Frećhet
Chemnet distance (FCD) and the smallest similarity to a
nearest neighbor (SNN). This demonstrates that the
ReFactor’s structures are more diverse with respect to the
training set than those generated with any other architecture.
Another important issue concerns the neighborhood

behavior analysis in the latent space. Thus, it is expected
that for small STDs, the distances between generated latent
vectors and the seed are rather small, which means that the
generated chemical structures are similar to the seed structure.
In order to check this hypothesis, for each of the 10K selected
seed structures, several molecules were generated with
HyFactor and ReFactor for standard deviations varying from
0.3 to 1.0 with a step of 0.02. At each step, 10 molecules were

Table 4. Training Results on the ChEMBL Data Set

number of training
parameters (M) reconstruction rate (%)

architecture batch vector length encoder decoder time per epocha (min) GPU memorya (MB) training set test set

ReFactor 1024 1024 35.7 14.8 ∼24.3 ∼ 22,845 99.8 95.2
HyFactor 1024 1024 25.3 15.1 ∼16.5 ∼ 16,755 99.7 95.0

aMeasured in a “mixed precision” mode, which is available in the TensorFlow package. In this mode, a 16-bit floating-point type is used where it is
possible; otherwise, a 32-bit floating-point type is applied.

Figure 6. Distributions of errors in the ChEMBL validation set as a function of molecular size for ReFactor (gold) and HyFactor (blue)
architectures trained on the (a) ChEMBL data set and (b) E_ChEMBL data set.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3531

generated followed by the validity and uniqueness check.
These simulations resulted, on average, in 10 and 40 generated
structures per seed for HyFactor and ReFactor, respectively.
Generally, the neighborhood behavior is respected, that is,

most of the structures generated with a small standard
deviation (STD < 0.6) are more similar to the seed than
those generated with a large STD (Figure 5). However, even
with small STDs, ReFactor may occasionally generate very
dissimilar structures corresponding to open-chain analogues of
the cyclic seed structure. Such dissimilarity explains high FCD
and low SNN scores observed for ReFactor compared to
HyFactor and other considered architectures.
Data Augmentation: Case Study of the ChEMBL

Database. The Achilles’ heel of graph-based autoencoders is
the reconstruction of molecules with a large number of atoms.
Indeed, the probability of error in predicting the atom or bond
type increases with molecular size. In this section, we
demonstrate how data augmentation may help solve this
problem. The experiments with ReFactor and HyFactor were
performed on the ChEMBL database containing molecules
bearing up to 50 heavy atoms. The results of training are given
in Table 4 and specifications of training parameters are
reported in the Supporting Information (Table S2).
According to Table 4, HyFactor uses 20% fewer training

parameters than ReFactor in order to achieve a similar
reconstruction rate, and thus, its training is 33% faster than
ReFactor. Although the overall reconstruction rate of both
networks is high enough, the reconstruction error sharply
increases for molecules containing more than 35 atoms and it
reaches almost 30% for ReFactor and HyFactor for molecules
containing 50 atoms (Figure 6a). The latter can be explained
by the small number of heavy molecules present in the training
set (see Figure 1).
In order to confirm these suggestions, 460K virtual

structures containing >35 atoms were generated using the
Synt-On tool (former SynthI)36 and then added to the
ChEMBL set. These structures were generated using a special
protocol insisting their similarity to related heavy ChEMBL
molecules and synthetic feasibility; see details in the
Supporting Information. The enriched ChEMBL set
(E_ChEMBL) was then divided into training and test sets in
the ratio 4:1 containing 1.6M and 420K structures,
respectively. The distribution of molecular size in the obtained
data set is given in Figure 1. Both architectures trained on the
E_ChEMBL training set achieved reconstruction rates of
>95% measured on the E_ChEMBL test set. The enrichment
of the initial data set significantly reduced the reconstruction
error of heavy molecules: for the molecules containing 50
atoms from ChEMBL, this value drops from some 25% for the
models trained on ChEMBL (Figure 6a) to around 7% for the
models trained on E_ChEMBL.

■ CONCLUSIONS
Neural network architecture HyFactor, which uses a hydrogen-
count labeled graph as a chemical structure representation, has
been developed. In this graph, implicit hydrogen atom counts
are used instead of bond types, like in the InChI linear
notation. Such a representation allows avoiding most of the
problems of molecule standardization (aromatization, func-
tional group standardization, and representation of Kekule
structures) that make HyFactor insensible to molecule
representation specifics.

For the sake of comparison, we have implemented the
ReFactor architecture based on a classical molecular graph. It
represents an updated and optimized version of the previously
published DEFactor architecture, which uses defactorization of
the adjacency matrix for graph generation. Since the latter
proceeds in a single-shot manner without autoregressive bond
and atom addition, the architecture is time and resource-
economic.
Both ReFactor and HyFactor networks demonstrated high

(>90%) reconstruction rates both in ZINC250K and ChEMBL
datasets, which is similar to (or even better than) earlier
reported graph-based or SMILES-based approaches. While the
HyFactor architecture achieved the same reconstruction rate as
ReFactor, it was also more effective in terms of the network
parameters and training time.
Analysis of the dependency of reconstruction rates of

HyFactor and ReFactor on molecular size revealed that, for
molecules containing more than 35 atoms, the fraction of
errors starts to grow, achieving almost 25% for molecules with
50 atoms. We hypothesized that this was related to the
underrepresentation of such large molecules in the training
dataset. Significant loss on the error rate on large molecules to
7% for the models trained on the dataset enriched by rationally
generated virtual molecules supported this hypothesis. We
believe that such a problem can be common for other graph-
or SMILES-based autoencoders and encourage adding
corresponding tests in generative chemistry benchmarking
tools.
Both HyFactor and ReFactor can be used for efficient

generation of new chemical structures. Since no special
regularization of the latent space was used, vectors
corresponding to new structures have been sampled around
selected training set molecules. Novelty and uniqueness of
generated structures increase as a function of the noise level,
but the structures’ validity drops in the same direction. In the
MOSES benchmark, the structures generated by proposed
architectures are characterized by greater diversity and scaffold
novelty compared to those generated with the help of some
other state-of-the-art approaches. This makes the proposed
approaches especially promising for constrained molecule
generation.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00744.

Detailed information about data sets used and some
complementary modeling results (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Timur Madzhidov − Laboratory of Chemoinformatics and
Molecular Modeling, Butlerov Institute of Chemistry, Kazan
Federal University, 420008 Kazan, Russia; orcid.org/
0000-0002-3834-6985; Email: Timur.Madzhidov@kpfu.ru

Alexandre Varnek − Laboratory of Chemoinformatics, UMR
7140 CNRS, University of Strasbourg, 67081 Strasbourg,
France; orcid.org/0000-0003-1886-925X;
Email: varnek@unistra.fr

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3532

Authors
Tagir Akhmetshin − Laboratory of Chemoinformatics, UMR
7140 CNRS, University of Strasbourg, 67081 Strasbourg,
France; orcid.org/0000-0002-2549-6431

Arkadii Lin − Laboratory of Chemoinformatics, UMR 7140
CNRS, University of Strasbourg, 67081 Strasbourg, France

Daniyar Mazitov − Laboratory of Chemoinformatics and
Molecular Modeling, Butlerov Institute of Chemistry, Kazan
Federal University, 420008 Kazan, Russia

Yuliana Zabolotna − Laboratory of Chemoinformatics, UMR
7140 CNRS, University of Strasbourg, 67081 Strasbourg,
France

Evgenii Ziaikin − Laboratory of Chemoinformatics and
Molecular Modeling, Butlerov Institute of Chemistry, Kazan
Federal University, 420008 Kazan, Russia; orcid.org/
0000-0001-6316-1301

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.2c00744

Notes
The authors declare no competing financial interest.
The source code of HyFactor and all models obtained in this
study are publicly available from our GitHub repository:
https://github.com/Laboratoire-de-Chemoinformatique/
HyFactor.

■ ACKNOWLEDGMENTS
T.A. thanks the Region Grand Est. for the Ph.D. fellowship.

■ REFERENCES
(1) Varnek, A.; Baskin, I. Machine Learning Methods for Property
Prediction in Chemoinformatics: Quo Vadis? J. Chem. Inf. Model.
2012, 52, 1413−1437.
(2) Button, A.; Merk, D.; Hiss, J. A.; Schneider, G. Automated de
Novo Molecular Design by Hybrid Machine Intelligence and Rule-
Driven Chemical Synthesis. Nat. Mach. Intell. 2019, 1, 307−315.
(3) Segler, M. H. S.; Preuss, M.; Waller, M. P. Planning Chemical
Syntheses with Deep Neural Networks and Symbolic AI. Nature 2018,
555, 604−610.
(4) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-
Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Cent. Sci. 2018, 4, 268−276.
(5) Baskin, I. I. The Power of Deep Learning to Ligand-Based Novel
Drug Discovery. Expert Opin. Drug Discovery 2020, 15, 755−764.
(6) Simonovsky, M.; Komodakis, N. GraphVAE: Towards
Generation of Small Graphs Using Variational Autoencoders. In
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics); 2018; Vol.
11139 LNCS, pp. 412−422. DOI: 10.1007/978-3-030-01418-6_41.
(7) Kipf, T. N.; Welling, M. Semi-Supervised Classification with
Graph Convolutional Networks. 5th Int. Conf. Learn. Represent., ICLR
2017 - Conf. Track Proc. 2017, 1−14. DOI: 10.48550/
arXiv.1609.02907.
(8) Samanta, B.; De, A.; Jana, G.; Gómez, V.; Chattaraj, P. K.;
Ganguly, N.; Gomez-Rodriguez, M. NeVAE: A Deep Generative
Model for Molecular Graphs. Proc. AAAI Conf. Artif. Intell. 2019, 33,
1110−1117.
(9) Bresson, X.; Laurent, T. A Two-Step Graph Convolutional
Decoder for Molecule Generation. arXiv 2019, 1906, No. 03412.
(10) Zhou, Z.; Kearnes, S.; Li, L.; Zare, R. N.; Riley, P. Optimization
of Molecules via Deep Reinforcement Learning. Sci. Rep. 2019, 9,
10752.

(11) Assouel, R.; Ahmed, M.; Segler, M. H.; Saffari, A.; Bengio, Y.
DEFactor: Differentiable Edge Factorization-Based Probabilistic
Graph Generation. arXiv 2018, 1−14.
(12) Jin, W.; Barzilay, R.; Jaakkola, T. Chapter 11. Junction Tree
Variational Autoencoder for Molecular Graph Generation. In RSC
Drug Discovery Series; 2020; pp. 228−249. DOI: 10.1039/
9781788016841-00228.
(13) Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory.
Neural Comput. 1997, 9, 1735−1780.
(14) Heller, S. R.; McNaught, A.; Pletnev, I.; Stein, S.;
Tchekhovskoi, D. InChI, the IUPAC International Chemical
Identifier. J. Cheminf. 2015, 7, 1−34.
(15) Kusner, M. J.; Paige, B.; Hemández-Lobato, J. M. Grammar
Variational Autoencoder. 34th Int. Conf. Mach. Learn., ICML 2017
2017, 4, 3072−3084.
(16) Polykovskiy, D.; Zhebrak, A.; Sanchez-Lengeling, B.;
Golovanov, S.; Tatanov, O.; Belyaev, S.; Kurbanov, R.; Artamonov,
A.; Aladinskiy, V.; Veselov, M.; Kadurin, A.; Johansson, S.; Chen, H.;
Nikolenko, S.; Aspuru-Guzik, A.; Zhavoronkov, A. Molecular Sets
(MOSES): A Benchmarking Platform for Molecular Generation
Models. Front. Pharmacol. 2020, 11, 1−10.
(17) Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.;
Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani,
B.; Overington, J. P. ChEMBL: A Large-Scale Bioactivity Database for
Drug Discovery. Nucleic Acids Res. 2012, 40, 1100−1107.
(18) ChemAxon Ltd: Budapest, Hungary. https://chemaxon.com/
(accessed 2022-04-19).
(19) Bourlard, N.; Morgan, H. Generalization and Parameter
Estimation in Feedforward Nets: Some Experiments. In Proceedings
of the 2nd International Conference on Neural Information Processing
Systems; Touretzky, D., Ed.; Morgan-Kaufmann, 1989; pp. 630--637.
(20) Pocha, A.; Danel, T.; Podlewska, S.; Tabor, J.; Maziarka, L.
Comparison of Atom Representations in Graph Neural Networks for
Molecular Property Prediction. In 2021 International Joint Conference
on Neural Networks (IJCNN); IEEE, 2021; pp. 1−8. DOI: 10.1109/
IJCNN52387.2021.9533698.
(21) Nugmanov, R. I.; Mukhametgaleev, R. N.; Akhmetshin, T.;
Gimadiev, T. R.; Afonina, V. A.; Madzhidov, T. I.; Varnek, A.
CGRtools: Python Library for Molecule, Reaction, and Condensed
Graph of Reaction Processing. J. Chem. Inf. Model. 2019, 59, 2516−
2521.
(22) Simonovsky, M.; Komodakis, N. Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs. Proceedings -
30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017 2017,
2017-Janua, 29−38. DOI: 10.1109/CVPR.2017.11.
(23) Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling Polypharmacy
Side Effects with Graph Convolutional Networks. Bioinformatics
2018, 34, i457−i466.
(24) GoogleResearch. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015. DOI: 10.5281/zenodo.5949169.
(25) Ba, J. L.; Kiros, J. R.; Hinton, G. E. Layer Normalization. arXiv
2016, DOI: 10.48550/arXiv.1607.06450.
(26) Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representa-
tions Using RNN Encoder-Decoder for Statistical Machine Trans-
lation. In EMNLP 2014−2014 Conference on Empirical Methods in
Natural Language Processing, Proceedings of the Conference; Association
for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp.
1724−1734. DOI: 10.3115/v1/d14-1179.
(27) He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on Imagenet Classification. In
Proceedings of the IEEE International Conference on Computer Vision;
IEEE, 2015; Vol. 2015 Inter, pp. 1026−1034. DOI: 10.1109/
ICCV.2015.123.
(28) Zhuang, J.; Tang, T.; Ding, Y.; Tatikonda, S.; Dvornek, N.;
Papademetris, X.; Duncan, J. S. AdaBelief Optimizer: Adapting
Stepsizes by the Belief in Observed Gradients. Adv. Neural Inf. Process.
Syst. 2020, 2020, 1−29.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3533

(29) Sattarov, B.; Baskin, I. I.; Horvath, D.; Marcou, G.; Bjerrum, E.
J.; Varnek, A. De Novo Molecular Design by Combining Deep
Autoencoder Recurrent Neural Networks with Generative Topo-
graphic Mapping. J. Chem. Inf. Model. 2019, 59, 1182−1196.
(30) Yan, C.; Wang, S.; Yang, J.; Xu, T.; Huang, J. Re-Balancing
Variational Autoencoder Loss for Molecule Sequence Generation.
Proc. 11th ACM Int. Conf. Bioinformatics, Comput. Biol. Heal.
Informatics, BCB 2020 2020. DOI: 10.1145/3388440.3412458.
(31) Alperstein, Z.; Cherkasov, A.; Rolfe, J. T. All SMILES
Variational Autoencoder. arXiv 2019. DOI: 10.48550/
arXiv.1905.13343.
(32) Dai, H.; Tian, Y.; Dai, B.; Skiena, S.; Song, L. Syntax-Directed
Variational Autoencoder for Structured Data. 6th Int. Conf. Learn.
Represent. ICLR 2018 - Conf. Track Proc. 2018, 1−17.
(33) Kingma, D. P.; Welling, M. Auto-Encoding Variational Bayes.
2nd Int. Conf. Learn. Represent. ICLR 2014 - Conf. Track Proc. 2014,
1−14.
(34) Winter, R.; Montanari, F.; Noé, F.; Clevert, D. A. Learning
Continuous and Data-Driven Molecular Descriptors by Translating
Equivalent Chemical Representations. Chem. Sci. 2019, 10, 1692−
1701.
(35) Varnek, A.; Fourches, D.; Horvath, D.; Klimchuk, O.; Gaudin,
C.; Vayer, P.; Solov’ev, V.; Hoonakker, F.; Tetko, I.; Marcou, G.
ISIDA - Platform for Virtual Screening Based on Fragment and
Pharmacophoric Descriptors. Curr. Comput.-Aided Drug Des. 2008, 4,
191−198.
(36) Zabolotna, Y.; Volochnyuk, D. M.; Ryabukhin, S. V.;
Gavrylenko, K.; Horvath, D.; Klimchuk, O.; Oksiuta, O.; Marcou,
G.; Varnek, A. SynthI: A New Open-Source Tool for Synthon-Based
Library Design. J. Chem. Inf. Model. 2022, 62, 2151−2163.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3534

 Recommended by ACS

Permutation Invariant Graph-to-Sequence Model for
Template-Free Retrosynthesis and Reaction Prediction
Zhengkai Tu and Connor W. Coley
JULY 26, 2022
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ

Exploration of Chemical Space Guided by PixelCNN for
Fragment-Based De Novo Drug Discovery
Satoshi Noguchi and Junya Inoue
DECEMBER 01, 2022
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ

MACAW: An Accessible Tool for Molecular Embedding and
Inverse Molecular Design
Vincent Blay, Hector Garcia Martin, et al.
JULY 20, 2022
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ

Graph-Driven Reaction Discovery: Progress, Challenges, and
Future Opportunities
Idil Ismail, Scott Habershon, et al.
OCTOBER 03, 2022
THE JOURNAL OF PHYSICAL CHEMISTRY A READ

Get More Suggestions >

48 Generation of molecular structures

Supporting Information

Fig. 3.5 Distribution of molecules from standardised ChEMBL v. 27 as a function of atoms’
types presence.

Table 3.1 Results of ZINC 250K data set standardisation.

Filters Training set Test set

Number of molecules 244 455 5 000

Duplicates within set 1612 1

Duplicates between
training and test sets

73

Remaining molecules 242 770 4 999

Training parameters All calculations were made with NVIDIA QUADRO RTX 6000 GPU
with CUDA drivers 11.2. The version of Tensorflow[93] was 2.6. All preprocessing, including
transformations of molecular graphs to matrix representation, was done with CGRtools[94]
version of 4.1.33. The charts were done with Altair Python package[95, 96]

MOSES benchmarking The MOSES benchmarking[97] is a distribution learning bench-
marking. The main goal is to create generative architecture, that will approximate distribution

3.2 Development of novel graph-based architectures 49

Table 3.2 Training parameters for each data set. The parameters are equal for both ReFactor
and HyFactor architectures.

Dataset
Latent
dimen-
sion

Batch
Initial
learn-

ing rate

Max
num-
ber of
atoms

Number
of

epochs

Number
of

atom
types

ReFactor
param-
eters

HyFactor
parame-

ters

ZINC
250K

512 256 0.001 39 100 11 12M 10M

MOSES 512 1024 0.001 28 100 7 12M 10M

ChEMBL
&

Enriched
ChEMBL

1024 1024 0.0008 50 150 15 50M 40M

of real drug-like molecules over known distribution. In the best case, the model should generate
valid, unique and novel structures, while the distribution of the generated molecules should be
almost the same as real ones.

To measure the quality of learned distribution, several metrics are considered in this tool:

• Validity – a fraction of valid molecules compared to generated ones;

• Unique 10K – a fraction of 10K first unique molecules from the valid ones;

• Novelty - a fraction of novel generated molecules from unique ones;

• Frag (fragment similarity) – a cosine similarity based on the occurrence of BRICS
fragments in compared sets. Higher value means that both sets have similar fragments;

• Scaf (scaffold similarity) – a cosine similarity based on the occurrence of Bemis-Murcko
scaffolds in compared sets. Higher value means that both sets have similar scaffolds;

• SNN (Similarity to a Nearest Neighbour) – an average Tanimoto similarity calculated on
Morgan fingerprints between a molecule from the generated set and its nearest neighbour
from the reference set;

• FCD (Fréchet ChemNet Distance)[98] – a Wasserstein-2 distance computed on vectors
produced by the last layer of ChemNet neural network between generated and reference
sets.

50 Generation of molecular structures

• IntDiv (Internal Diversity) – an average Tanimoto distance between molecules in the
generated set based on Morgan fingerprints;

• Filters – a fraction of molecules that pass MCFs (Medicinal Chemistry Filters) and
PAINS (Pan-Assay Interfering compounds) medicinal filters[99].

The data used in MOSES benchmarking based on ZINC Clean Leads collection. After
standardizing and filtering, 1.9M molecules with non-charged atom types such as C, N, S, O, F,
Cl, Br remained. The cleaned set was split into training, test and scaffold test (TestSF) sets in
ratio 9:1:1. In the scaffold test set, there were molecules with unique Bemis-Murcko scaffolds
that were not present in the training and test sets.

Table 3.3 MOSES benchmarking results

Architecture Valid Unique IntDiv Filters Novelty

ReFactor
0.4 std

0.886 0.265 0.869 0.850 0.578

HyFactor
0.4 std

0.729 0.267 0.860 0.959 0.129

Table 3.4 MOSES benchmarking results comparing to test set (Test) and test scaffolds set
(TestSF)

Architecture
FCD SNN Frag Scaf

Test TestSF Test TestSF Test TestSF Test TestSF

ReFactor 0.4
std

1.743 2.380 0.547 0.511 0.996 0.993 0.847 0.041

HyFactor 0.4
std

0.365 0.871 0.614 0.566 0.999 0.998 0.862 0.003

Enriched ChEMBL experiments Synthons Interpreter (SynthI)[?] – knowledge-based
reaction toolkit for the library analysis and design – was used for creating E_ChEMBL. It
combines the RECAP-like[100] fragmentation approach (based on 38 retrosynthetic rules) with
a synthons-based way of reagents representation. Synthons are increments of the BB that will
be added to the final compound upon a particular chemical reaction. Their distinctive feature is
the presence of special markings at the former position of the leaving groups (case of generation

3.2 Development of novel graph-based architectures 51

Fig. 3.6 Results of generation with variable standard deviation in range from the 0.3 to 1.0 with
the step of 0.02. V corresponds to Valid, U corresponds to Unique.

from BBs, not used in this work) or bond disconnection if derived from compound fragmenta-
tion. The type of the mark defines the type of the reaction center – electrophile, nucleophile,
radical etc. Those synthons can then be used as a source for the library enumeration.

In this work, as a source of synthons library, needed for the E_ChEMBL generation, the
library of 372K ChEMBL synthons obtained in a previous work[101] has been used. As
a reference, only molecules from ChEMBL containing 35-50 heavy atoms were used and
analogues for them were generated using SynthI-Enumeration module. At the first stage, the
reference compounds were fragmented (Figure 3.7 (I)) and the search of the analogues in a
source synthons library was performed. Analogous synthons always have the same number of
cycles and reaction centers, the types of reaction centers are also preserved, see Figure 3.7 (II
and III)). They may differ by a presence or absence of a simple groups like methyl, hydroxyl,

52 Generation of molecular structures

halogen etc., or have a high Tanimoto similarity. On the next stage, all possible compounds
are enumerated using the list of analogues synthons by applying the same reaction rules that
were used for fragmentation of real ChEMBL molecules. In such a way, the resulting library of
analogues still contain the same chemotypes as the reference compounds while introducing
some diversity, needed for the training of HyFactor and ReFactor.

Summary for the section 3.2.1

In this work, we introduce a novel autoencoder architecture, referred to as HyFactor, which is
based on hydrogen-count labelled graph representations. Through a comparison of HyFactor
and ReFactor on the ZINC 250K and ChEMBL datasets, we demonstrate that the autoencoders
based on HLG are capable of efficiently creating a vector representation of a molecule without
any loss in performance. Additionally, the HLG representation enables a reduction of up to 20%
of trainable parameters, which is particularly beneficial for architectures with a large number
of parameters, as evidenced by experiments on the ChEMBL dataset.

Both ReFactor and HyFactor were also evaluated in the task of generating analogues,
with HyFactor generating structures that were similar to the target structure. Analysis of
the generated structures revealed that ReFactor generated a significant number of open-chain
analogues of the cyclic target (seed) structure. Additionally, a high number of disconnected
structures were generated by both tools, which were not recognised as invalid by the MOSES
benchmarking package, highlighting the need for further development of metrics and scoring
functions that estimate the structural properties of molecules.

We also recommend adding rationally generated virtual molecules to the training dataset
in order to enhance the quality of generative architectures. This approach was proposed as a
solution to address the issue of underrepresentation of large molecules in the training dataset,
which our findings suggest may be a contributing factor to the increase in error rates for
molecules containing more than 35 atoms, reaching nearly 25% for molecules with 50 atoms.
Our analysis of the relationship between the reconstruction rates of the HyFactor and ReFactor
and molecular size revealed this phenomenon. The implementation of this proposed technique
resulted in a significant reduction of the error rate on large molecules to 7% for models trained
on such a dataset.

In summary, the new HLG representation is a useful and efficient representation for inverse
QSAR and can be beneficial for reducing the number of trainable parameters in architectures.

3.2 Development of novel graph-based architectures 53

Fig. 3.7 Example of fragmentation of existing ChEMBL compounds (I), search of their ana-
logues in the synthons library prepared from commercial building blocks (II), and generation
of virtual compounds for E_ChEMBL (III).

54 Generation of molecular structures

3.2.2 Vector Quantisation Graph AutoEncoder

The previously developed HyFactor graph neural network demonstrated potential as a graph-
based architecture for inverse QSAR. However, our analysis revealed that the encoder of
HyFactor employed order-dependent operations, resulting in the latent space of HyFactor being
corrupted by atom order bias. As this presents a significant limitation, we redesigned the
architecture to eliminate this bias in the latent vectors.

In addition, we sought to improve the interpretability of the latent vectors of graph-based
autoencoders. Therefore, we developed an autoencoder with a discrete latent vector of fragment
counts, where learnable vectors represent fragments. This approach was implemented using
a vector quantisation operation adopted from models used for image generation [102]. By
learning atomic vectors representing atoms and their environment, this approach allows the
application of all the analysis techniques developed for fragment-based descriptors.[103]

This section describes the new Vector Quantisation Graph AutoEncoder (VQGAE) ar-
chitecture. This autoencoder operates in the discrete latent space and generates molecules
in a one-shot manner. VQGAE was trained on the ChEMBL dataset, and its latent vectors
were tested in the similarity ranking and QSAR benchmark prepared from the ChEMBL v.27
database for 532 targets. For comparison, fragment descriptors (ECFR and ISIDA) and latent
vectors of autoencoders (HyFactor and LatentGAN) were also tested in the benchmarks.

Preprint_______________________

Akhmetshin et al., 2023, Repository : ChemRxiv 1

Construction of order-independent molecular fragments
space with vector quantised graph autoencoder

Tagir Akhmetshin1, Arkadii Lin1, Timur Madzhidov2*, Alexandre Varnek1*

Abstract: Autoencoders represent a promising technique for the inverse quantitative structure-activity
relationship (QSAR) task. However, undesirable bias, such as atom ordering, affects the neighbourhood
behaviour of autoencoders’ latent space and, consequently, usage of the latent vectors as variables in
machine-learning models. Here, we report a graph-based autoencoder which implements vector
quantisation operation (VQGAE). The latter allows to learn vectorial representation of molecular
fragments in an unsupervised manner. The latent vectors or fragment count vectors of VQGAE are
permutation invariant and perform well in similarity ranking. In QSAR benchmarks, the VQGAE’s latent
vectors outperform those derived by some earlier developed SMILES-based and graph-based
autoencoders. Finally, VQGAE autoencoder was used in the inverse QSAR task in order to design new
A2A adenosine receptor inhibitors.

Keywords: Inverse QSAR, Autoencoders, Deep learning, Generative models, VQVAE, molecular
graphs

INTRODUCTION

The current trend in chemoinformatics is the
usage of deep learning architectures to learn the
structural features of molecules.1 Deep learning
architectures attracted much attention as they can
conditionally generate chemical structures based
on the learned features. While it is an active field
of research, many works showed possible
advantages of deep learning in constrained
molecular optimisation2 and virtual libraries
generation3. Nevertheless, few studies have
explored the properties of the learned molecular
representations.

One group of deep-learning approaches consists of
architectures learning molecular vectors in
unsupervised manners (e.g., autoencoders,
normalising flows, etc.). They apply various
operations to transform high-dimensional input
into low-dimensional latent vectors. However,
some of these operations have undesirable effects.
The influence of atom order on the molecular
latent vector can be an example of such an impact.
It was first shown for SMILES-based
architectures.4 SMILES-based architectures use
sequential operations, which rely on the
arrangement of the input symbols. Atoms’ order
influences the latent space of such architectures.
This allows researchers to achieve higher
reconstruction rates. At the same time, it damages
the topology of the latent space. Bjerrum et al.4
studied the order-independence of latent vectors
produced by a SMILES-based heteroencoder. The
heteroencoder was trained using SMILES data

1. University of Strasbourg, Laboratoire de
Chemoinformatique, 4, rue B. Pascal, Strasbourg
67081 (France) *e-mail: varnek@unistra.fr

2. Chemistry Solutions, Elsevier Ltd, Oxford, (United
Kingdom) *e-mail: tmadzhidov@gmail.com

Preprint_______________________

Akhmetshin et al., 2023, Repository : ChemRxiv 2

augmentation5 with different atom orders. It was
shown that the latent vectors of the heteroencoder
improve performance in the Quantitative
Structure-Activity Relationship (QSAR) task
compared to an autoencoder trained on canonical
SMILES. Higher performance was explained by
removing atoms’ order dependence. Sadly, the
reconstruction ability of such a heteroencoder
decreased dramatically compared to an
autoencoder based on canonical SMILES.

Another way to overcome order dependence in
learned chemical space was proposed by Winter et
al.6 The authors used a graph-based autoencoder to
create a latent space without any influence of
atoms’ order, where the encoder consisted only of
graph convolution networks. The obtained latent
vectors were tested on four Quantitative Structure-
Property Relationship (QSPR) tasks using
MoleculeNet benchmarking7. The obtained results
have demonstrated slight outperforming of learned
molecular representations in comparison to ECFP
fragments.

In this work, we develop a new order-independent
graph-based autoencoder called Vector-Quantized
Graph AutoEncoder (VQGAE). This autoencoder
is designed to generate an order-independent
molecular representation based on learned
fragment vectors. Unlike previous work, it does
not require a predefined set of fragments but is able
to learn them in an unsupervised manner. Thus, the
latent vector of VQGAE is represented by
fragment counts, as in commonly used fragment-
based descriptors. The atom order independence in
the latent space of VQGAE is ensured by using
only commutative operations in the encoder.

The performance of VQGAE was tested in
representation learning and generative problems.
For the first concept, two common virtual
screening tasks were used, namely similarity
ranking and QSAR benchmarking. The VQGAE
latent vectors were compared with latent vectors
from graph-based (HyFactor8) and SMILES-based
(LatentGAN9) autoencoders, and with classical
chemical descriptors, such as ISIDA10 fragment
descriptors and ECFP fingerprints11. It was shown
that the VQGAE latent vectors are both atoms

order independent and capture structural features
with the same efficiency as fragment-based
descriptors. The generation ability of the
autoencoder was tested in the context of Inverse
QSAR, where VQGAE was successfully used to
generate new antagonists of the adenosine A2A
receptor.

METHODS

Data

The ChEMBL database (v. 27)12 was used
for the experiments. It was standardised with
ChemAxon JChem’s utilities13 using the following
procedures: 1) dearomatisation, 2) isotopes
removal, 3) stereo marks removal, 4) explicit
hydrogens removal, 5) small fragments removal,
6) solvents removal, 7) salts strip, 8) neutralisation
of charges, 9) functional groups transformation,
10) selection of canonical tautomer form of the
molecule, 11) aromatisation, 12) duplicates
removal, 13) dearomatisation.

The standardised dataset consisted of 1.6M
structures with 15 atomic types (C, O, N, S, F, Cl,
N+, O-, Br, P, I, N-, B, Si, and Se). The number of
heavy atoms in molecules was no more than 50.
The canonical order of atoms in molecules was
obtained from a breadth-first search (BFS)
algorithm, similar as it was done by Mercado et al.
14

The curated ChEMBL data set was then split into
a training set (80% of data or 1.3M molecules) and
a test set (20% of data or 327K molecules) as it
was done for the training of HyFactor
architecture8.

Vector quantised graph autoencoder
architecture

The vector quantised graph autoencoder
(VQGAE) architecture comprises four parts:
encoder, decoder, vector quantiser, and several
linear layers for predicting structural properties
from the feature vector. The general scheme is
presented in Figure 1.

Preprint_______________________

3

Figure 1. General scheme of VQGAE. HLG refers to the hydrogen-count labelled graph.

Encoding

The input graph is a hydrogen-count labelled
graph (HLG)8 where each atom is encoded in a
vector with the following properties: element
number, period, group, number of electrons on
the last subshell + atom’s charge, number of last
shells, the total number of hydrogens, whether or
not the atom is in a ring, number of neighbours
and counts of single, double, triple and aromatic
bonds near current atom. Each property is
normalised with a natural logarithm for

numerical stability. As a result, the input for the
encoder consists of atom feature vectors with
dimension 12 and the graph’s adjacency matrix.

The scheme of the encoder is shown in Figure 2.
The first operation is an increase of the
dimensionality of atoms features by a simple
linear operation. Then, these vectors are passed
to a Graph Convolution Network (GCN) layer15
implemented in the Pytorch Geometric
package16. After each GCN layer, the ReLU
activation function is applied.

Figure 2. Scheme of VQGAE encoder. N is the maximal number of atoms, and D is the dimension of atoms vectors. GCN
refers to the Graph Convolution Network and HLG to the hydrogen-count labelled graph.

Preprint_______________________

4

The updated atom vectors are passed to the self-
attention blocks (Figure 3). These blocks are
inspired by class attention layers described in the
work of Touvron et al.17 The authors proposed
concatenating the training vector with a matrix
instead of pooling it. In contrast, in our
implementation, the trainable class (or feature)
vector is replaced by a vector of the sum of the
atom vectors.

Figure 3. Scheme of self-attention block. The + operation
refers to residual summation between input and output
vectors.

Following the authors of the article17, the multi-
head attention described in 18 is replaced by the
talking-heads attention19. Furthermore, the scale
layer17 is used, a trainable diagonal matrix
initialised by a constant value (0.005). This
matrix is multiplied by the output of the dropout
layer before residual summation.18

After self-attention blocks, the molecular feature
vector and the final atom vectors are obtained.
The molecular feature vector is used to predict
eight pre-calculated structural properties, such
as hetero atoms count, H-acceptors and H-
donors count; chiral centres count; rings, hetero
rings and aromatic rings and rotatable bonds
count. Each property was calculated with
ChemAxon14 cxcalc package. To predict them,
eight independent linear layers are employed.

Vector quantisation

Usually, most architectures use pooling
operations to reduce several atom vectors to one
molecular latent vector. Thus, the quality of
encoding and generation depends on the
effectivity of pooling and unpooling operations,
respectively. These operations require much
computational power, and models become hard
to interpret.

Another approach could be the usage of atom
vectors directly to generate molecules. However,
due to the nature of the graph convolution
operation, atom vectors for the same atom with
the same environment will differ if they come
from different molecules. Therefore, storing all
atom vectors and combining them to generate
new molecules is technically impossible. But. if
it can be assumed that atom vectors with small
changes correspond to one fragment, then it is
possible to average them to obtain a general
(centroid) fragment vector representation. In this
way, the number of atom vectors can be reduced
without loss of information (Figure 4).

Figure 4. Vectors in N-dimensional fragment space. Here
grey circles correspond to atoms vectors after the encoder,
and the coloured circles correspond to average vectors
(centroids) of the closest atom vectors. It is assumed that
centroids represent fragments learned by graph
convolution.

A vector quantisation operation is a way to
obtain atom vectors’ centroids (fragment
vectors) during simultaneous training of the
encoder and decoder. First proposed for
images20,21, this operation allows to create a
codebook representing collection of fragment
vectors. The vectors in the codebook are
initialised randomly and updated during training
to achieve higher reconstruction rates. During
training and inference, these vectors are used to
replace atom vectors from the encoder and then
are passed to the decoder (Figure 5).

Preprint_______________________

5

Figure 5. The scheme of vector quantisation step. The
nearest neighbours of the atom vectors in the codebook are
initially found. Then, the chosen vectors from the
codebook are used to replace corresponding atom vectors.
Here L represents the length of the codebook.

The update of the chosen vectors from the
codebook minimises the distance between them
and the corresponding atom vectors (see loss
function section). Thus, the codebook vectors
should move to clusters of atom vectors
representing a single fragment to become
clusters’ centroids.

However, codebook vectors cannot be directly
used in virtual screening tasks such as similarity
search or QSAR modelling. Therefore, inspired
by fragment-based approaches, one can count
indices of the chosen codebook vectors and form
integer molecular latent vectors (Figure 6).

Figure 6. Translation of chosen vectors’ indices from the
codebook to molecular latent vector. Here L represents the
length of the codebook.

Decoding

The obtained codebook atoms vectors are
extracted and then passed to the decoder. The
gated recurrent unit (GRU)22 layer is applied to
break up symmetrical atoms that have the same
neighbourhood in the molecule. During GCN,
these atoms receive the same updates and it is
expected that they have the same properties.
Thus, symmetric atoms have identical atomic
vectors and any neural network cannot
distinguish which neighbour to connect with the
atom. Therefore, indexing of symmetric atoms is
necessary, which currently requires ordering of
atoms in decoder. The hidden states of GRU are
then given through layer scale and residually
summed with GRU input vectors. Next,
codebook atoms vectors are passed to 12 self-
attention blocks and, in the end, to
defactorization and linear layers, which predict
bonds matrix and atoms types, respectively.

Figure 7. Scheme of the decoder. Here GRU is a gated recurrent unit.

Loss function

The loss function is composed of several
components. The main function is

reconstruction loss L!"#, a sum of categorical
cross-entropy for atoms predictions L$%&'((1),
and binary cross-entropy for bonds predictions
L)&*+((2):

Preprint_______________________

6

L$%&'(= −
1
n&A ∗ log	(A.) (1)

L)&*+(= −
1
n,&0E) ∗ log2E.)3

-

.
+ (1 − E)) ∗ 	 log2E.)35

(2)

L!"# = L$%&'(+ L)&*+((3)

, where A is a one-hot matrix for atom types, Ã
is a predicted atom types probability matrix, n is
the number of atoms in a molecule, and Eb is the
true adjacency matrix for bond type b.

However, the vector quantisation operation
requires vector extraction by indexing, which is
not differentiable. Thus, the gradient from
reconstruction loss would not pass through this
step, and the encoder would not be trained. To
prevent this, as suggested by Van Den Oord et
al.20,21 for vector quantised variational
autoencoder (VQVAE), two losses are used –
codebook and commitment losses. The idea of
codebook loss is to shift selected codebook
variables closer to the atom vectors while the
gradient from the commitment loss moves the
atom vectors towards the closest codebook
vectors. Later, the authors replaced codebook
loss with Exponential Moving Averages (EMA).
The classical EMA updates each codebook
vector as the average of all the nearest vectors
from the encoder to a given codebook vector (4):

e =
1
n&z/

*

/

 (4)

where 𝐞 is a codebook vector, 𝐳𝐣 – one of the 𝐧
closest atom vectors to 𝐞.

However, since the training is in batch mode, an
online version of EMA is applied. To do so, the
number of the nearest vectors in batch n and
their sum z for the current batch t are added to
the previous count of closest atoms vectors N (6)
and their sum m (5), respectively. The codebook
vector is updated in the following way (7):

m% = γ ∗ m%12 + (1 − γ) ∗&z/%
*

/

 (5)

N% = γ ∗ N%12 + (1 − γ) ∗ n% (6)

e% =
m%

N%
(7)

, where 𝐞𝐭 is the codebook vector in the current
batch t, 𝛄 was taken as the default value of 0.99.

The EMA function does not require gradient
computation, therefore the vector quantisation
loss L45 consists only of commitment loss (8):

L45 =
1
k%
&(z(e)6 − sg(e6)),
7!

6

 (8)

, where 𝐳𝐞 is the closest atom to the chosen
codebook vector e, k is the number of atoms
vectors in the batch t, sg – is a “stop gradient”
operator, which stops the propagation of the
gradient to a given argument.

The property loss is a sum of categorical cross-
entropies of each property.

The full loss is calculated as the sum of
reconstruction loss L!"#, vector quantisation loss
L45 and property loss L9!&9"!%: (9):

L = L!"# + 0.5 ∗ L45 + 0.01 ∗ L9!&9"!%: (9)

Ordering network

Despite VQGAE’s ability to generate molecules
from given fragment vector indices, it requires
that these indices should be arranged in a
“canonical” order learned by GRU for successful
generation. To address this issue, a model called
an ordering network was trained to predict the
canonical order of randomly arranged fragment
indices from the VQGAE codebook. The
architecture used fragment indices as input, with
each index associated with an embedding vector.
The embeddings were then processed through
six self-attention blocks, identical to those used
in the VQGAE. The target output was the
“canonical” position of the fragment index in the

Preprint_______________________

7

vector for the decoder. The loss function was
used as a binary cross-entropy. The output of
network can be seen as pseudo-permutation
matrix. Different from permutation matrix, in
the “pseudo” version the sum of values in
columns were not equal to one. For extraction of
canonical positions of fragment vectors, we also

implemented a beam search-like algorithm. The
main goal of this algorithm is to find the
combinations of unique positions with the
highest sum of predicted probabilities.

Figure 8. Scheme of the decoder. Here GRU is a gated recurrent unit.

Similarity search analysis

Similarity search is one of the most
common methods in chemoinformatics that
heavily relies on the neighbourhood principle.
This approach is one of the fundamental
methods for virtual screening, which is still
widely used in drug discovery research.

In this work, similarity search was used in a
ranking setup, where the goal is to find the most
similar structures in a data set for a given
molecular query. First, the molecules from the
ChEMBL data set were encoded in their vector
representation using algorithmic fragment-based
and deep learning approaches. It is important to
note, that the ordering of atoms was randomised
before encoding of molecular structure in a
vector representation. Then a group of 33
molecules were taken from the ChEMBL v.30
data set13, which were registered in the US
Accepted Names (USAN) in 2021, so these

molecules were not present in the ChEMBL v.27
standardised data set. The query molecules were
also converted to vector representations with the
same parameters as for ChEMBL structures. The
500 most similar structures from the ChEMBL
database were identified for each query using the
studied vectors. These sets of molecules were
then used to compare each approach pairwisely
and by visual analysis. The choice of similarity
metrics was based on the nature of descriptors.
Thus, for fragment-based approaches, Tanimoto
coefficient was used, and for continuous vectors,
Euclidian distance was employed23.

QSAR benchmarking workflow

One of the tasks where learned molecular
features can be used is a Quantitative Structure-
Activity Relationship (QSAR) problem. Based
on the neighbourhood principle, QSAR can be
used to assess the quality of the obtained
molecular representation. In this way, it is

Preprint_______________________

8

expected that the predictions on latent vectors of
order-dependent autoencoders will be lower than
those of order-independent autoencoders.

The data used for the QSAR benchmarking was
collected from the ChEMBL v.27 database.
More specifically, the activity information about
targets for “Homo sapiens” organism with assay
type “Binding assay” and target type “Single
protein” was extracted. The obtained data
consisted of 387K activity records for 1805
targets. Then, activity records were filtered if 1)
they were measured for compounds that did not
pass standardisation; 2) if the standard deviation
of several IC50 concentrations for the same
target and compound was more than 20 nM. It
must be noticed that stereo marks were removed
during standardisation, so the filtering process
also excluded stereo active compounds’ records.
The remaining measurements for the
“compound-target” pairs were averaged.

IC50 thresholds were calculated for activity
class labelling based on the number of active and
inactive compounds for each target according to
the protocol24. The protocol consists of three
steps. First, an active IC50 threshold is selected
from the range [10 nM, 50 nM, 100 nM, 300 nM,
500 nM, 700 nM, 1 µM] to determine at least 15
active compounds. Then, an inactive IC50
threshold of 30% or 15 compounds is chosen.
Finally, if the threshold for inactive compounds
is more than ten times the threshold for active
compounds, the threshold for active compounds
is updated as the inactive threshold divided by
10 to collect more active molecules.

The final number of the activity records
remaining was 189K for 149K compounds and
532 targets. The thresholds for each target, the
number of compounds and activity analysis are
given in the Supplementary information.

The machine learning algorithm for
benchmarking was Random Forest25,
implemented in the Scikit-learn Python
package26. The following training procedure was
used: the activity class labels and corresponding
descriptors were extracted for each target, and
then data was split into five folds using the
StratifiedKFold algorithm26. The standard

scaling was fitted on the training folds for each
cross-validation iteration and used to transform
the validation fold, except for fingerprints. To
explore different parameters, the grid search was
used. The metrics were balanced accuracy (BA)
and receiver operating characteristic area under
the curve (ROCAUC). The parameters of
training are given in the Supplementary
information.

RESULTS AND DISCUSSION

Analysis of fragments learned by VQGAE

In the methodology section it was
assumed that centroids of atoms vectors after the
encoder of VQGAE represent vectors of learned
fragments. However, it is not possible to retrieve
structure of a fragment by passing a single
codebook vector to the decoder, as VQGAE will
only generate a single atom. Therefore, we
decided to extract fragments in an “indirect”
manner. In this approach, substructures were
extracted from molecules that contained atoms
encoded in the same codebook vector, with these
atoms serving as the centres of the substructures.
The main assumption was that a small size of the
environment around the central atom would
result in the same extracted substructures that
correspond to the learned fragment.

The standardised ChEMBL dataset was used to
extract fragments. First, VQGAE was trained on
this dataset and achieved a reconstruction rate of
94.5%. Fragment analysis was then performed
on the same dataset. The environment around
central atoms was used as two (i.e. only the alpha
and beta atoms around the central atom were
included). Several features of the atoms were
kept in the fragment structures: presence of atom
in the ring and maximum bond order around the
atom.

During analysis of the fragments, we discovered
that for one codebook vector there are several
corresponding fragments. For example, in
Figure 9a, for a single codebook vector, 6
fragments were extracted from 4783 molecules.
The most frequent structure corresponds to the
C(sp2, central atom)-C(sp2)-C(sp3) acyclic
fragment. The other fragments look quite similar

Preprint_______________________

9

to the first one. At the training stage, VQGAE
learns enough fragment vectors to maximise the
reconstruction rate. At the same time, it is not
forced to use as many fragment vectors as
possible. In fact, at the end of training, out of a
possible 4096 fragment vectors, only 1201 were
non-zero. Since the number of non-zero
components in the codebook is relatively small,
the performance of VQGAE latent vectors in
virtual screening tasks might be reduced. One
way to increase codebook utilisation is to
improve the vector quantization operation by
applying noise substitution as suggested in 27 or
codebook initialisation techniques such as k-
means28.

Figure 9. The examples of fragment structures for the two
selected codebook vectors. Near the fragment number, the
occurrence of the fragment structure in the molecule
containing the corresponding fragment vector is given.
The central atom is indicated by the red circle. The dashed
circles represent atoms included in the ring. The number
near the atoms is the maximum bond order around an
atom, where 4 corresponds to the aromatic bond.

In the second example (Figure 9b), for one
codebook vector more than 5K different
structures of fragments from 42K molecules
were extracted. Here the top six most frequent
fragments are presented. In contrast to the
previous example, there is no dominant
fragment, as the most popular one was seen less
than 5% of the time. The difference between
these examples is that in the second case the
central atom contains more neighbours.

Similarity search

Once the autoencoder has been trained, it
is important to understand the quality of the
latent vectors and its generative ability. These
characteristics are non-trivial to measure, as
there are no existing metrics for them. However,
one way to analyse the performance of the
autoencoder’s latent space is through the
similarity ranking task. The similarity search
provides insight into the neighbourhood
behaviour of the latent space, which is the basis
for any modelling using the vector
representation of molecules.

The VQGAE latent and feature vectors were
compared with the time-proved descriptors for
similarity search, which are ISIDA10 fragment
descriptors and ECFP fingerprints11. In addition,
these representations were compared with latent
vectors from graph-based (HyFactor8) and
SMILES-based (LatentGAN9) architectures.
The training details of these architectures are
given in the Supplementary information. The
similarity metric used for VQGAE feature
vectors, HyFactor and LatentGAN latent vectors
was the Euclidean distance and for others the
Tanimoto coefficient.

A similarity search experiment was performed
using the 6 descriptor sets of the 50 most similar
structures for each query. Thus, each pair of
descriptor sets was compared for overlapping
structures for each of the 33 query molecules.
The results are given in Figure 10.

Preprint_______________________

10

Figure 10. The average percentage of shared structures
between the sets of 50 chemical structures most similar to
a given query molecule, based on selected vector
representations. The pairwise overlaps between these top
50 sets were compared within the query molecule, and the
results were averaged across 33 query molecules. Here
“VQGAE lv” corresponds to the latent vector and
“VQGAE fv” corresponds to the feature vector.

On average, the ECFP and ISIDA methods share
16 common structures as the most similar ones.
Regarding the deep learning techniques, the top
50 most similar molecules by VQGAE and
LatentGAN latent vectors also have similar
number of overlapping structures. Nevertheless,
the results of the similarity search based on the

HyFactor latent vectors do not overlap with the
results of any other representation.

During the analysis of the HyFactor architecture,
it was discovered that the latent vectors of the
autoencoder depend on the canonical ordering of
atoms. Since its encoder includes a recurrent
neural network (RNN) in the graph aggregation
step, the neighbourhood behaviour in the latent
space also depends on the order of atoms. In
contrast, the results demonstrate that
autoencoder of LatentGAN does not suffer from
this problem, as it uses a heteroencoder with the
SMILES augmentation technique.

To better understand the neighbourhood
behaviour of all approaches, we conducted a
visual analysis of the most similar molecules for
two queries. The first query, Tovinontrine
(Figure 11a), is considered “easy” because it has
an analogue with Tanimoto similarity higher
than 0.9 based on ISIDA and ECFP descriptors.
The second query, Bersacapavir (Figure 11b), is
considered “hard” as it has no analogues in the
ChEMBL 27 data set. Thus, the most similar
structure for this query does not exceed a
Tanimoto coefficient of 0.65 based on ISIDA,
0.45 in the case of ECFP and 0.55 with VQGAE
latent vectors.

.

100%

29%

33%

0%

27%

5%

29%

100%

29%

0%

29%

8%

33%

29%

100%

0%

23%

8%

0%

0%

0%

100%

0%

0%

27%

29%

23%

0%

100%

7%

5%

8%

8%

0%

7%

100%

ECFP
ISIDA

VQGAE lv

VQGAE fv

LatentGAN

HyFactor

ECFP

ISIDA

VQGAE lv

VQGAE fv

LatentGAN

HyFactor

Preprint_______________________

11

Figure 11. The most similar structures of Tovinontrine (a) and Bersacapavir (b) that were chosen based on different vector
representations. For the Tovinontrine, every descriptor except VQGAE feature vectors and HyFactor latent vectors found
the same structure.

Figure 11a shows that for the “easy” query, the
search found close analogues based on all
representations except HyFactor. As mentioned
earlier, this was due to the order dependence in
the HyFactor latent vector and once the order of
the atoms was randomised for all molecules, the
performance in similarity ranking was
annihilated.

In the “hard” case (Figure 11b) for all
representations different most similar molecules
were found. By visual comparison it can be seen
that LatentGAN’s latent vectors and ECFP
descriptors provided the most similar structures,
keeping the biggest part of scaffold. The search
with VQGAE feature vectors was able to

identify relatively close analogue, but, in case of
VQGAE latent vectors the structure has different
than the given query. A possible explanation is
the limited use of codebook vectors mentioned
in the fragment analysis section. Since some
fragment vectors correspond to different
fragments, collision effects similar to those seen
with short fingerprints can be expected.

QSAR benchmarking

Another way to assess the quality of
latent space concerns their application as
variables in machine-learning models linking
chemical or biological properties with molecular
structure.

H3C

N

N

N

N

O

N

O

NH

Tovinontrine

H3C

N

N
H

N

N

O

N

N

N

O

VQGAE cbv

ECFPISIDA

LatentGAN

N

H3C

S
NH

N

N
O

S

H3C

H3C

CH3

O

H2N

N
H

N

N

H3C

N

O

N

O

O

HyFactor

VQGAE fv

CH3

HN S

O

O

O

N
H

F

N

N

CH3

F

F

F

Bersacapavir

O

N
H

N

CH3

S

O

O

N

HN

Cl

F

F

F

VQGAE fvVQGAE cbv

ECFP

S

O

O

N
HO

F

F
F

Cl

N

O

N
H

N

CH3

S

O

O

N

F

F
F

N

S

N

HN

O

O

S

N

CH3

F

F

F

CH3

F

ISIDA

LatentGAN

N

CH3

O

N
HSN

O

O

O F

F

F

Cl
O

CH3

H3C CH3

HO

O

HyFactor

a)

b)

Preprint_______________________

12

Figure 12. QSAR benchmarking results based on 532 datasets. Here LatentGAN corresponds to the SMILES-based
heteroencoder, VQGAE fv corresponds to the feature vector of VQGAE, and VQGAE lv to the vector of codebook indices
counts (molecular latent vector.

Here, the VQGAE latent and feature vectors and
previously described molecular descriptors were
benchmarked in classification models obtained
with the random forest method on 532 datasets
corresponding to different biological activities
extracted from ChEMBL.

Statistical analysis of model performances
(balanced accuracy) for different descriptors is
given in Figure 12. One can see the model
trained on HyFactor latent vectors demonstrated
the worst results due to the atoms order
dependence in the latent space. Other models
showed similar performances, especially model
trained on latent vectors of VQGAE showed the
same performance as those trained on fragment-
based descriptors. The high performance of the
model based on VQGAE latent vectors can be
explained by good “local” neighbourhood
behaviour as shown in the similarity search
benchmark. Indeed, biological measurements
are often made for analogues of a structure
within the same scaffold; therefore, it can be
assumed that local effects are more important
than long-range effects in the current QSAR
benchmark.

Inverse QSAR

In the previous sections the performance
of VQGAE to capture structural features was
studied. However, the combination of VQGAE
with the ordering network can also be used for
the discovery of new chemical structures,
particularly for the generation of new structures
in the context of inverse QSAR. As a proof of
concept, the VQGAE was used to design new
antagonists of the adenosine A2A receptor.

The adenosine A2A receptor is an example of
the G protein-coupled receptor (GPCR) family,
which is important in mediating vasodilation,
supporting the synthesis of new blood vessels
and protecting tissues from collateral
inflammatory damage. It is a well-studied
receptor with several known molecules for
which affinities have been measured. The
standardised ChEMBL v.27 dataset contains
3300 molecules with measured inhibition
constants (ki) for the A2A target.

The inverse QSAR setup consisted of genetic
algorithm, ordering network and VQGAE
architecture. Genetic algorithm (GA)
implemented in PyGAD v. 3.0.0 python library29

Preprint_______________________

13

was used as the method to generate new latent
vectors of VQGAE. The fitness or scoring
function used was a random forest regressor
trained on previously extracted molecules with
measured ki for the A2A target. The ordering
network was used to generate structures from the
VQGAE latent vectors. It was trained separately
from the VQGAE as it requires a fixed set of
fragment vectors. The training and generation
statistics are given in Supplementary
Information.

In the result, 5 new latent vectors were selected
as potentially highly active (predicted ki < 10
nM), of which 4 were successfully converted
into molecular structures via combination of
ordering network and decoder of VQGAE.

Figure 13. 4 generated structures by VQGAE with
ordering network.

The 4 generated molecules are shown in Figure
13. Among them, 1-3 share the same Bemis-
Murcko framework and highly similar to each
other. During analysis of these structures, it was
discovered that the structure 1 is present in the
SureChEMBL patent database, but not in the
ChEMBL. This compound was registered as
A2A antagonist with measured ki = 43nM.
Therefore, this result confirms that our approach
was able to identify molecules with desired
properties.

CONCLUSIONS

Here, we report a new autoencoder
(VQGAE) able to learn the vectorial
representation of fragments in an unsupervised
manner. Its architecture allows to obtained an
atom order independent latent space. The latent
vectors of VQGAE demonstrated high
performance in both similarity search and QSAR
benchmarking compared to fragment-based
descriptors and latent vectors of previously
developed architectures. A combination of

VQGAE with the ordering network can be
efficiently applied to the inverse QSAR task
which was demonstrated on the example of A2A
adenosine receptor inhibitors. We believe that
this work opens new perspectives for exploring
unsupervised learning of fragments. Follow-up
studies are still needed to analyse learned
fragment space and to improve generation
ability of the proposed autoencoder.

DATA AND SOFTWARE AVAILABILITY

The Python code and pre-trained model weights
of VQGAE are available in a GitHub repository:
https://github.com/Laboratoire-de-
Chemoinformatique/VQGAE

ACKNOWLEDGEMENTS

TA thanks the Region Grand Est for the PhD
fellowship.

BIBLIOGRAPHY

(1) Baskin, I. I. The Power of Deep Learning
to Ligand-Based Novel Drug Discovery. Expert
Opin. Drug Discov. 2020, 15, 755–764.
https://doi.org/10.1080/17460441.2020.174518
3.

(2) Gómez-Bombarelli, R.; Wei, J. N.;
Duvenaud, D.; Hernández-Lobato, J. M.;
Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.;
Aspuru-Guzik, A. Automatic Chemical Design
Using a Data-Driven Continuous Representation
of Molecules. ACS Cent. Sci. 2018, 4 (2), 268–
276.
https://doi.org/10.1021/acscentsci.7b00572.

(3) Polykovskiy, D.; Zhebrak, A.; Sanchez-
Lengeling, B.; Golovanov, S.; Tatanov, O.;
Belyaev, S.; Kurbanov, R.; Artamonov, A.;
Aladinskiy, V.; Veselov, M.; Kadurin, A.;
Johansson, S.; Chen, H.; Nikolenko, S.; Aspuru-
Guzik, A.; Zhavoronkov, A. Molecular Sets
(MOSES): A Benchmarking Platform for
Molecular Generation Models. Front.
Pharmacol. 2020, 11, 1–10.
https://doi.org/10.3389/fphar.2020.565644.

(4) Bjerrum, E. J.; Sattarov, B. Improving

Preprint_______________________

14

Chemical Autoencoder Latent Space and
Molecular de Novo Generation Diversity with
Heteroencoders. Biomolecules 2018, 8 (4), 1–17.
https://doi.org/10.3390/biom8040131.

(5) Arús-Pous, J.; Johansson, S. V.;
Prykhodko, O.; Bjerrum, E. J.; Tyrchan, C.;
Reymond, J. L.; Chen, H.; Engkvist, O.
Randomized SMILES Strings Improve the
Quality of Molecular Generative Models. J.
Cheminformatics 2019, 11 (1), 1–13.
https://doi.org/10.1186/s13321-019-0393-0.

(6) Winter, R.; Noé, F.; Clevert, D.-A.
Permutation-Invariant Variational Autoencoder
for Graph-Level Representation Learning. 2021,
No. NeurIPS.

(7) Wu, Z.; Ramsundar, B.; Feinberg, E. N.;
Gomes, J.; Geniesse, C.; Pappu, A. S.; Leswing,
K.; Pande, V. MoleculeNet: A Benchmark for
Molecular Machine Learning. Chem. Sci. 2018,
9 (2), 513–530.
https://doi.org/10.1039/c7sc02664a.

(8) Akhmetshin, T.; Lin, A.; Mazitov, D.;
Zabolotna, Y.; Ziaikin, E.; Madzhidov, T.;
Varnek, A. HyFactor: A Novel Open-Source,
Graph-Based Architecture for Chemical
Structure Generation. J. Chem. Inf. Model. 2022,
62 (15), 3524–3534.
https://doi.org/10.1021/acs.jcim.2c00744.

(9) Prykhodko, O.; Johansson, S. V.;
Kotsias, P. C.; Arús-Pous, J.; Bjerrum, E. J.;
Engkvist, O.; Chen, H. A de Novo Molecular
Generation Method Using Latent Vector Based
Generative Adversarial Network. J.
Cheminformatics 2019, 11 (1), 1–13.
https://doi.org/10.1186/s13321-019-0397-9.

(10) Varnek, A.; Fourches, D.; Horvath, D.;
Klimchuk, O.; Gaudin, C.; Vayer, P.; Solov’ev,
V.; Hoonakker, F.; Tetko, I.; Marcou, G. ISIDA
- Platform for Virtual Screening Based on
Fragment and Pharmacophoric Descriptors.
Curr. Comput. Aided-Drug Des. 2008, 4, 191–
198.
https://doi.org/10.2174/157340908785747465.

(11) Rogers, D.; Hahn, M. Extended-
Connectivity Fingerprints. J. Chem. Inf. Model.

2010, 50 (5), 742–754.
https://doi.org/10.1021/ci100050t.

(12) Gaulton, A.; Bellis, L. J.; Bento, A. P.;
Chambers, J.; Davies, M.; Hersey, A.; Light, Y.;
McGlinchey, S.; Michalovich, D.; Al-Lazikani,
B.; Overington, J. P. ChEMBL: A Large-Scale
Bioactivity Database for Drug Discovery.
Nucleic Acids Res. 2012, 40, 1100–1107.
https://doi.org/10.1093/nar/gkr777.

(13) ChemAxon Ltd: Budapest, Hungary.
https://chemaxon.com/ (accessed 2022-04-19).

(14) Mercado, R.; Bjerrum, E. J.; Engkvist, O.
Exploring Graph Traversal Algorithms in
Graph-Based Molecular Generation. J. Chem.
Inf. Model. 2021, No. 2, acs.jcim.1c00777.
https://doi.org/10.1021/acs.jcim.1c00777.

(15) Kipf, T. N.; Welling, M. Semi-
Supervised Classification with Graph
Convolutional Networks. In 5th International
Conference on Learning Representations, ICLR
2017 - Conference Track Proceedings; 2017; pp
1–14.
https://doi.org/10.48550/arXiv.1609.02907.

(16) Fey, M.; Lenssen, J. E. Fast Graph
Representation Learning with PyTorch
Geometric. 2019, No. 1, 1–9.

(17) Touvron, H.; Cord, M.; Sablayrolles, A.;
Synnaeve, G.; Jégou, H. Going Deeper with
Image Transformers. 2021.
https://doi.org/10.1109/iccv48922.2021.00010.

(18) Vaswani, A.; Shazeer, N.; Parmar, N.;
Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser,
Ł.; Polosukhin, I. Attention Is All You Need.
Adv. Neural Inf. Process. Syst. 2017, 2017-
Decem (Nips), 5999–6009.

(19) Shazeer, N.; Lan, Z.; Cheng, Y.; Ding,
N.; Hou, L. Talking-Heads Attention. 2020.
http://arxiv.org/abs/2003.02436.

(20) Van Den Oord, A.; Vinyals, O.;
Kavukcuoglu, K. Neural Discrete
Representation Learning. Adv. Neural Inf.
Process. Syst. 2017, 2017-Decem (Nips), 6307–
6316.
https://doi.org/10.48550/arXiv.1711.00937.

Preprint_______________________

15

(21) Razavi, A.; van den Oord, A.; Vinyals,
O. Generating Diverse High-Fidelity Images
with VQ-VAE-2. Adv. Neural Inf. Process. Syst.
2019, 32.

(22) Cho, K.; van Merrienboer, B.; Bahdanau,
D.; Bengio, Y. On the Properties of Neural
Machine Translation: Encoder-Decoder
Approaches. 2014.

(23) Willett, P.; Barnard, J. M.; Downs, G. M.
Chemical Similarity Searching. J. Chem. Inf.
Comput. Sci. 1998, 38 (6), 983–996.
https://doi.org/10.1021/ci9800211.

(24) Lin, A.; Baskin, I. I.; Marcou, G.;
Horvath, D.; Beck, B.; Varnek, A. Parallel
Generative Topographic Mapping: An Efficient
Approach for Big Data Handling. Mol. Inform.
2020, 39 (12), 1–12.
https://doi.org/10.1002/minf.202000009.

(25) Breiman, L. Random Forests; 2001; Vol.
45, pp 5–32.

(26) Pedregosa, F.; Michel, V.; Grisel, O.;
Blondel, M.; Prettenhofer, P.; Weiss, R.;
Vanderplas, J.; Cournapeau, D.; Pedregosa, F.;
Varoquaux, G.; Gramfort, A.; Thirion, B.;

Grisel, O.; Dubourg, V.; Passos, A.; Brucher,
M.; Perrot andÉdouardand, M.; Duchesnay.
Scikit-Learn: Machine Learning in Python Gaël
Varoquaux Bertrand Thirion Vincent Dubourg
Alexandre Passos PEDREGOSA,
VAROQUAUX, GRAMFORT ET AL. Matthieu
Perrot; 2011; Vol. 12, pp 2825–2830.
http://scikit-learn.sourceforge.net. (accessed
2020-09-15).

(27) Vali, M. H.; Backstrom, T. NSVQ: Noise
Substitution in Vector Quantization for Machine
Learning. IEEE Access 2022, 10, 13598–13610.
https://doi.org/10.1109/ACCESS.2022.3147670
.

(28) Kapre, R.; Ouyang, J. Using Discrete
VAEs on T1-Weighted MRI Data to Embed
Local Brain Regions; 2021.

(29) Gad, A. F. PyGAD: An Intuitive Genetic
Algorithm Python Library, 2021.

Preprint_______________________

16

SUPPLEMENTARY INFORMATION

VQGAE training

The VQGAE was trained using ChEMBL v.27. Specifically, the autoencoder network was trained for
100 epochs with a batch size of 500 and a constant learning rate of 0.0002. The dimensions of all atom
vectors were set to 512, and the size of the codebook was set to 4000. The number of heads in the
multi-head attention (MHA) layers was 16. In the encoder, the number of MHA was 2, and in the
decoder, it was 8. The layer scale’s initial value was 0.0005, and the dropout probability was set to
0.2. The optimiser was AdaBelief with a gradient clip equal to 1. After training, VQGAE achieved a
reconstruction rate of 98.5% on the training set and 94.5% on the validation set.

Other molecular vector representations

ISIDA fragments

The type of ISIDA fragments was as follows: atom-centred fragments based on sequences of atoms
and bonds of fixed length from 2 to 4 atoms with a special marker if the atom was in a cycle. The
fragments were extracted from 300k random molecules from the ChEMBL database, and 1% of the
most popular fragments were retained (4018).

ECFP fingerprints

The experiments used ECFP fingerprints with a radius of 2 and 4096 bits. The RDKit Python package
was used to encode the molecules in the fingerprints.

LatentGAN

The heteroencoder part of the LatentGAN architecture was trained on ChEMBL v.27. It was trained
for 100 epochs with a batch size of 128 and a constant learning rate of 10−3 for the first 50 epochs and
an exponential decay thereafter, reaching a value of 10−6 in the last epoch. The dimensions of each of
the two bidirectional long-short memory units were 256. The latent vector dimension was defined as
the dimension of the feed-forward (code) layer, which was 128. The standard deviation of the Gaussian
noise smoothing layer was 0.1. The number of stacked unidirectional LSTM layers in the decoder was
3. In addition, standard scaling and principal component analysis (PCA) decomposition were applied
to the input vectors. The number of the first PCA components was equal to the dimension of the input
vectors (equal to the number of symbols used in the SMILES strings - 37). The resulting loss was
0.065

Ordering network training

The fragment indices and their positions were extracted from the same dataset on which VQGAE was
trained. The data was divided into training and validation sets in a 4:1 ratio. The model was trained
for 100 epochs with a batch size of 256, using an AdaBelief [140] optimiser with an initial learning
rate of 0.0005 and a dropout probability of 0.4. The dimension of all vectors was set to 512. The trained
model achieved an F1 score of 0.82.

Inverse QSAR with genetic algorithm.

The crossover type was chosen as scattered crossover, which randomly selects the gene from one of
the 2 parents. The scoring (fitness) function used in the GA was a Random Forest (RF) [144] regression
model, which was trained on 3300 molecules with known inhibition constants. The RF model was
trained using 5-fold cross-validation on VQGAE latent vectors. The model achieved an R2 value of

Preprint_______________________

17

0.60, and was used as is. The GA optimisation started from the latent vectors of molecules with known
inhibition constant and to ensure the applicability domain. The optimisation continued for 20
generations, resulting in 100 vectors that corresponded to new structures.

72 Generation of molecular structures

Summary for the section 3.2.2

In this study, we developed a new graph-based autoencoder for the inverse QSAR task that
operates in a discrete latent space, free from the influence of atoms order bias, as demonstrated
in similarity ranking and QSAR tasks. Additionally, it achieves a high reconstruction rate
comparable to the performance of the order-dependent HyFactor.

Comparison with other approaches revealed that the latent vectors of the proposed VQGAE
have the highest performance in QSAR, along with fragment-based approaches. Furthermore,
the neighbourhood behaviour of the latent space of VQGAE is similar to ISIDA and ECFP
methods, as observed on similarity ranking benchmarks. However, it should be noted that every
vector representation showed different neighbourhood behaviour during the similarity search of
structures with no analogues in the dataset.

In conclusion, the proposed discrete autoencoder shows promise as a more efficient approach
for inverse QSAR compared to the previously proposed HyFactor. With the combination of a
generative architecture or combinatorial optimisation method, this approach has the potential
to become an essential tool in de novo molecular design. Further experimentation is needed to
fully assess its capabilities, such as analysing learned fragment vectors and conducting QSAR
based on them.

Chapter 4

Self-learning-based synthesis planning

Exploring the vast and largely uncharted chemical space presents a significant challenge. While
current generative approaches have demonstrated high performance in goal-directed tasks for
the optimisation of physicochemical properties of interest, the generated structures have to be
synthetically feasible. However, designing more diverse and distinct molecules from known
compounds will result in less synthesisable structures. Therefore, there is a need for a method
that can verify the synthetic feasibility of generated structures and provide possible synthetic
pathways to them.

The first generative architectures were combined with Synthetic Accessibility score[5]
(SAScore) as a scoring function to avoid generating molecules that are difficult to synthesise.
This heuristics-based function considers the presence of fragments in a molecule and its size
and number of macrocycles to determine whether it is “easy” or “complex” to synthesise. While
SAScore and similar scoring functions align with chemical intuition, they do not ensure the
current structure can be synthesised. Moreover, they do not take into account the availability of
starting molecules (building blocks) and reactions.

An alternate strategy is to use retrosynthetic planning tools[104], which search for synthetic
pathways for the given set of generated structures. This approach is more reliable than SAScore,
as it provides examples of different synthetic routes, conditions and starting materials. However,
it should be noted that this approach is computationally intensive. To address this limitation,
recent advancements in automated retrosynthesis have employed a combination of Monte-
Carlo tree search (MCTS) and deep learning models, significantly increasing the speed of the
search process[21]. Furthermore, these new MCTS-based retrosynthesis variants have been
trained using self-learning techniques, allowing the models to improve continually through
experience[105, 2]. This can be used not only for speeding up the retrosynthesis planning
but also has the potential to be integrated with robotic synthesis systems, paving the way
for the development of fully autonomous systems capable of optimising the synthesis of

74 Self-learning-based synthesis planning

various compounds. This idea represents a significant step towards realising the dream of fully
autonomous systems that can facilitate routine searches and enhance the development of drugs
and materials.

The core of the automated synthesis planning tool is the search algorithm and the scoring
functions that guide the search process (Figure 4.1). The scoring functions play a crucial role
in determining the search. Furthermore, the search algorithms rely on the use of retrosynthetic
transformations, which are employed to decompose a molecule into its potential precursors.
These transformations are hand-crafted by human experts or sourced from reaction databases.
The latter approach has gained popularity recently, as automated extraction from existing data
is more efficient and straightforward than manual creation. Additionally, the recent machine
learning scoring functions are also trained on the reaction data. Unfortunately, these databases
suffer from non-unique representations of reactions and structures, errors in valence and
reaction mechanisms, missing reagents etc. Therefore, given that the quality of retrosynthesis
planning is closely tied to the quality of the data, a pre-processing step is necessary. This step
involves curating and standardising the reaction data before the extraction and utilisation of
retrosynthetic transformations. However, even after the retrosynthetic search has identified
potential synthetic pathways, a post-processing step is required to evaluate the reactions in terms
of regio- and stereo- selectivity, optimal conditions, and efficiency in terms of thermodynamic
and kinetic parameters. All of these components are essential for the successful implementation
of a retrosynthetic planning tool capable of providing synthetic pathways for even the most
complex compounds.

Fig. 4.1 The three main steps for development of high-performant automated retrosynthesis
planning tool.

In this chapter, we will focus on the aforementioned challenges associated with automated
retrosynthetic approaches. The discussion is outlined as follows:

4.1 Reaction data curation 75

• Section 4.1 outlines a unified protocol for the curation of reaction data. The discussion
summarises all stages of reaction record standardisation. The standardisation protocol
was implemented and used to standardise data from three known reaction databases -
Reaxys, Pistachio, and USPTO.

• Section 4.2 iintroduces a novel tool for retrosynthetic planning. This tool is based on the
principle of self-learning, which is employed in training the graph-based neural network
scoring function. In this manner, the tool is able to adapt and improve retrosynthetic
strategies based on previous searches. The effectiveness of this tool was evaluated
through comparison with other retrosynthesis approaches and the state-of-the-art tool,
AiZynthFinder[3], using both simple and complex compounds for synthesis. The results
of these comparisons demonstrate the potential of the proposed tool in advancing the
field of retrosynthetic planning;

• Section 4.3 describes two new concepts for validating machine learning models to
predict reaction parameters. Predicting reaction pathways under various conditions is
a current challenge in advanced retrosynthetic planning. Accurate prediction of kinetic
and thermodynamic parameters is a crucial element of this challenge. The proposed
validation techniques are employed to access the unbiased performance of machine
learning algorithms for the prediction of reaction physicochemical parameters in new
transformations and conditions. The effectiveness of these techniques was evaluated on
the task of predicting reaction rate constants for SN2, E2, and Diels-Alder reactions.

4.1 Reaction data curation

Previously, retrosynthesis programs used hard-coded retro transformations to generate potential
precursors starting from a synthetic target. The creation of these rules required expert input
to define the reaction centre and functional groups that are favourable or unfavourable for
the reaction. To date, the most comprehensive set of rules was compiled by the authors of
Synthia[106], comprising approximately 100K rules. As the authors note, as the database
of retro-rules has grown over time, it has become increasingly challenging to add new rules
without conflicting with existing ones. In addition, the current database is proprietary, which
prevents from testing algorithms using this set of rules. Furthermore, the manual collection
of rules is a resource-intensive and time-consuming task, as it requires the participation of
an expert for the creation of each rule. Therefore, there is a constant need for alternative
approaches to collect retro transformations efficiently.

76 Self-learning-based synthesis planning

Another method of obtaining retro-rules is data-driven, which involves the automatic
extraction of retro-rules from reaction records. There are currently two possible ways to
annotate reaction data: hand-crafted and text mined. Examples of hand-crafted reaction
databases are Reaxys[107] with over 50M records and SciFinder[108] compiled by experts who
analysed organic chemistry articles and manually added entries into databases. The alternative
approach involves the automatic translation of articles and patents into a reaction records format,
such as SMIRKS or RDF files. The most popular and only freely available reaction dataset of
this type was collected from United States Patent and Trademark Office (USPTO) database by
Daniel Lowe[109], comprising approximately 3.75 million reaction records from 1976 to 2016.
Another text mined commercial database is Pistachio[110] which was compiled from United
States, European and WIRO patents and consists of 9.7M reaction records. Comparing both
approaches, hand-crafted databases have an advantage over automatically generated ones as
they include more context about reactions, specifically regarding selectivity and conditions,
which can aid the search algorithm in producing more accurate results. By contrast, automatic
extraction is a cheaper and faster method suitable for big data analysis. However, both
approaches can lead to inconsistent representation of reactions and retro-rules obtained from
them, which subsequently can reduce the overall performance of the retrosynthesis tool.

It has been well established over several decades that the quality of data is essential for the
effective utilisation of chemical knowledge. Much of this research has focused on molecular
data and has demonstrated that the lack of proper standardisation in the representation of
molecules can degrade QSAR/QSPR models[111]. Over the past 30 years, rules for molecular
standardisation have been developed, taking into account various chemical properties such as
isomerism and tautomerism. In contrast, the discussion about the standardisation of reactions
has emerged more recently with the availability of large reaction databases (consisting of more
than one million records). The complexity of standardising reactions is significantly greater
than that of standardising molecules due to the additional details that must be considered. As a
result, the “structure” or “composition” of reactions is highly dependent on the conditions under
which they are conducted. Additionally, many reaction records are imbalanced and multi-step,
resulting in missing important information.

In this chapter, we will discuss a unified protocol for the curation of reaction data that
consists of four main steps: curation of chemical structures, transformation, reaction conditions,
and endpoints (such as yield or thermodynamic and kinetic parameters). We will further
implement the first two steps of reaction data standardisation and apply them to the known
reaction databases of USPTO, Pistachio, and Reaxys.

doi.org/10.1002/minf.202100119

Reaction Data Curation I: Chemical Structures and
Transformations Standardization
Timur R. Gimadiev,[a] Arkadii Lin,[b] Valentina A. Afonina,[c] Dinar Batyrshin,[c] Ramil I. Nugmanov,[c]

Tagir Akhmetshin,[b, c] Pavel Sidorov,[a] Natalia Duybankova,[d] Jonas Verhoeven,[d] Joerg Wegner,[d]

Hugo Ceulemans,[d] Andrey Gedich,[e] Timur I. Madzhidov,[c] and Alexandre Varnek*[a, b]

Abstract: The quality of experimental data for chemical
reactions is a critical consideration for any reaction-driven
study. However, the curation of reaction data has not been
extensively discussed in the literature so far. Here, we
suggest a 4 steps protocol that includes the curation of
individual structures (reactants and products), chemical

transformations, reaction conditions and endpoints. Its
implementation in Python3 using CGRTools toolkit has
been used to clean three popular reaction databases
Reaxys, USPTO and Pistachio. The curated USPTO database
is available in the GitHub repository (Laboratoire-de-
Chemoinformatique/Reaction_Data_Cleaning).

Keywords: chemical reactions · data cleaning · big data · Reaxys · USPTO · Pistachio

1 Introduction

Data quality is crucial for the effective storage and
exploitation of chemical knowledge. Errors in a chemical
structure representation always complicate a modelling
task and may cause technical problems in searches for
chemical entities. Fourches et al.[1] pointed out the impor-
tance of data curation on Quantitative Structure-Activity
Relation (QSAR) models performance and proposed a work-
flow to clean up compounds datasets in the context of their
application in further modelling studies. Despite an expand-
ing importance of reaction data cleaning to enable
machine-learning, deep-learning and recently reaction min-
ing applications,[2–6] this issue has been very little
discussed.[7]

So far, two databases have been intensively used in the
modelling studies: Reaxys®[8,9]1 (https://www.reaxys.com/)
and USPTO reaction dataset.[10] Reaxys is a commercial
database containing data from 105 patent offices and
16,000 + journals with 55+ M manually annotated reac-
tions. Access to this data is limited to partners of the
Elsevier company and it has been extensively used for
various applications of deep-learning neural networks to
retrosynthesis,[4,11–15] robochemistry,[16] and prediction of
optimal reaction conditions,[6] as well as for analysis of
reaction network.[17] USPTO is the largest public dataset of
chemical reactions extracted from the US patents using text
mining techniques.[18] Nowadays, it contains >3 M reactions
extracted from 9 M patent applications and patents issued
in the period of 1976–2016.[19] This dataset has being
extensively used for different applications: analysis of
reaction databases,[20] forward[21–23] and backward-synthesis
(single-step, also called retro-synthesis if multi-step),[24]

reactions classification,[25,26] atom-to-atom mapping,[27] yield
prediction,[28–30] and compound role assessment (i. e.

whether a compound is reactant, solvent, or catalyst).[31]

Pistachio is an extended commercial derivative of USPTO; it
contains reaction data extracted by text mining from recent
US and EU patents. A brief description of some other
reaction datasets was given in the reference.[32]

Notwithstanding the extensive use of the abovemen-
tioned reaction databases in machine-learning applications,
very little effort has been invested to curate reaction data.
Most of the suggested structures’ standardization
workflows,[20,22,24,25,31,33] recombine selected steps of the
molecules cleaning proposed suggested by Fourches
et al.[1,34] We assume that a chemical reaction is a complex

[a] T. R. Gimadiev, P. Sidorov, A. Varnek
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD),
Hokkaido University
Kita 21 Nishi 10, Kita-ku, 001-0021 Sapporo, Japan

[b] A. Lin, T. Akhmetshin, A. Varnek
Laboratory of Chemoinformatics, UMR 7140 CNRS, University of
Strasbourg
4, Blaise Pascal str., 67081 Strasbourg, France
E-mail: varnek@unistra.fr

[c] V. A. Afonina, D. Batyrshin, R. I. Nugmanov, T. Akhmetshin,
T. I. Madzhidov
Laboratory of Chemoinformatics and Molecular Modeling, Butlerov
Institute of Chemistry, Kazan Federal University
18, Kremlyovskaya str., 420008 Kazan, Russia

[d] N. Duybankova, J. Verhoeven, J. Wegner, H. Ceulemans
Janssen Pharmaceutica
30, Turnhoutseweg str., 2340 Beerse, Belgium

[e] A. Gedich
Arcadia Inc., Bol’shoy Sampsoniyevskiy Prospekt, 28 kopпyc 2,
194044 St Petersburg, Russia
Supporting information for this article is available on the WWW
under https://doi.org/10.1002/minf.202100119

1 Copyright © 2020 Elsevier Limited except certain content provided
by third parties. Reaxys is a trademark of Elsevier Limited.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (1 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 460/474] 1

object that combines a chemical transformation and
corresponding reaction conditions (see Figure 1) and,
hence, a curation protocol must fully account for this
complexity. Here, a transformation term corresponds to a
reaction equation that links sets of reactants and products.
According to IUPAC definition, a reactant is “a substance
that is consumed in the process of a chemical reaction”
whereas a product is “a substance that is formed during the
chemical reaction”.[35] Atoms of reactants that change their
connectivity and/or formal charge(s) upon the transforma-
tion constitute a reaction centre. To identify a reaction
centre, a one-to-one correspondence between atoms of
reactants and products called atom-to-atom mapping[36]

(AAM) must be established. Along with reactants and
products, some other chemical entities called reagents (or
additives) can be specified. These are catalysts (or some
compounds forming catalytic system), solvents, catalytic
poisons, complexation agents, redox agents, detergents,
and acids/bases. It should be noted that the IUPAC
definition of a reagent as a “substance that is added to the
chemical system in order to bring about a reaction”[35] is not
precise enough for automatized reagents recognition. Two
alternative definitions have been suggested in the literature
for reagents identification. Schneider et al.[31] attributed a
compound to reagents if it wasn’t affected in the course of
reactions, whereas Gao et al.[6] considered any compound
as a reagent if it did not contribute any carbon atom to the
reaction. In turn, reaction conditions describe a physico-
chemical environment in which a transformation takes
place. Generally, a conditions’ description includes both
numeric properties like temperature, pressure, and reaction
duration, as well as reagents. A reaction can be character-
ised by some endpoints representing yield and its kinetic
and thermodynamic parameters (Figure 1).

Since errors may occur in each component of a reaction,
a curation workflow should consist, at least, of four steps
related to the curation of (1) individual chemical structures
(reactants, products and reagents), (2) chemical transforma-

tions, (3) reaction conditions, and (4) endpoints (see
Figure 2). Only the two first steps are considered in this

work; the others represent a topic for a separate scientific
article. Notice that not all the described steps are necessa-
rily needed; the curation protocol may vary as a function of
a particular chemoinformatics task (see Table 1).

This paper contains two chapters. The first one describes
a protocol of individual structures and transformations
curation and relates to the two first steps of the workflow
shown in Figure 2. The second chapter reports results of the
curation of three popular databases (Reaxys, USPTO and
Pistachio) using the developed protocol.

Figure 1. Chemical reaction is described by (1) chemical transformation proceeding under (2) particular reaction conditions and yielding (3)
some endpoints. Chemical transformation assembles two types of molecular species: reactants and products.

Figure 2. Main steps of reaction curation workflow. Only the two
first steps are considered in this work.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (2 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 461/474] 1

2 Reaction Curation Workflow

2.1 Existing Software Tools for Reaction Data Curation

Nowadays, there exist no ready-to-use tools able to perform
the ensemble of reaction curation operations mentioned in
Figure 2. Thus, the most popular non-commercial libraries –
RDKit,[45] CDK,[46] Indigo,[47] and OpenBabel[48] – can be
applied to standardize only individual molecules extracted
from reaction equation. Among existing software solutions,
only ChemAxon JChem Standardizer[49] and CGRTools[50] can
perform out-of-the-box standardization of molecules in
reactions using common rules described by Fourches
et al.[1]

There are several popular software packages that
establish atom-to atom mapping (AAM) between reactants
and products. These are non-commercial or free for
academia like Indigo,[47] Reaction Decoder Tool,[51]

RXNMapper[52] and AutoMapper/ChemAxon JChem
Standardize,[49] commercial tools like Automapper[53] from
BIOVIA and ICMap[54] from InfoChem, or web-applications
like ReactionMap[55] and DREAM.[56] The two latter, however,
are only applicable to balanced reactions, which are very
rare in a reaction database. A review of mapping software
tools was published by Chen et al.[36]

In some cases, the parsing of chemical records proceeds
with errors that occur during the interpretation of chemical
data. One of reasons is that reaction data are stored in a
particular file format, which may not be readable by a given
tool. For instance, in the USPTO database, the records are
stored in the XML format that combines an extended
reaction SMILES[57] and related reaction conditions. An
extended reaction SMILES string combines a regular SMILES
with some supplementary information needed to relate
certain substructures separated by a dot and belonging to a
complex or salt. However, the extended SMILES format is
poorly supported by some chemoinformatics tools. For
instance, several thousands of USPTO reactions are not
readable by RDKit, but are correctly parsed by Indigo and
ChemAxon JChem.

The absence of ready-to-use tools for reaction curation
motivated us to develop a curation workflow that combines

several selected standardization steps. It was implemented
in Python3 language[58] using CGRTools library[50] and
ChemAxon’s facilities.[49] This tool is available in the GitHub
repository Laboratoire-de-Chemoinformatique/Reaction_
Data_Cleaning.

2.2 Chemical Structures Curation

2.2.1 Specific Features of Structures Curation

Some steps of the structures curation protocol, like func-
tional groups standardization, aromatization and valences
checking are similar with those recommended for med-
chem databases.[1] However, several previously recom-
mended options like “removal of inorganics”, “delete frag-
ment”, “strip salts” and “neutralize” lead to deterioration of
the reaction equation and to discarding many important
organic chemistry reactions (e. g., Grignard[59]).

Organometallic compounds (usually discarded in med-
chem data cleaning) represent a particular problem because
they are poorly represented using conventional bond types.
Typically, a metal atom is linked to its neighbours via single
covalent bonds (Figure 3) or is represented as an isolated
cation (Figure 4). Both representations may lead to signifi-
cant problems upon reactions standardization. For example,
in the tetrakis(triphenylphosphino)palladium complex
shown in Figure 3, Pd(II) forms the covalent bonds with the
P atoms of four triphenylphosphine molecules. This results
in assigning wrong valences to the phosphorus atoms (5
instead of 3). Figure 4 (top) shows a reaction of substitution
into a cyclopentadiene moiety of ferrocene in which the
latter is represented by three separated ionic species.
Appearance of the same species (Fe(II) cation and cyclo-
pentadienyl anion) in the reactants and products sides
suggests their assignment to reagents and consequent
removal from the both sides which leads to a completely
wrong reaction equation (see Figure 4, bottom). A special
coordination bond type between metal and its environment
could be a solution of this problem. For the moment, there
exists no tool able to standardize organometallic com-

Table 1. Typical reaction modelling tasks and related reaction standardization steps.

Task Exemplary works Curation stage(s) requireda

Template-free forward synthesis [21,22] 1
Template-free retrosynthesis [13]
Template-based reaction generation and reaction rules extraction [37] 1, 2
Selection of optimal retrosynthetic rules for a given product [38]
Rule-based retrosynthesis [11,12]
Reaction generation and discovery [39]
Prediction of optimal reaction conditions [6,40] 1, 2, 3
Prediction of kinetic and thermodynamic properties of reaction [41,42] 1, 2, 3, 4
Prediction of reaction yield [43,44]
a See Figure 2.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (3 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 462/474] 1

pounds, which creates a significant problem to curate
reactions that contain organometallics.

A similar problem is observed for some inorganic
compounds represented by a mixture of ions. For example,
Figure 5 shows a reaction in which all components of LiAlH4

Figure 3. Example of the USPTO record where invalid atom valences were detected with CGRTools. Here, the Pd atom in the tetrakis
(triphenylphosphino)palladium complex is connected via covalent bonds to each P atom. As a consequence, Marvin Sketch (ChemAxon)
considers phosphorus in triphenylphosphine to be 5-valent whereas its real valence is 3.

Figure 4. USPTO reaction extracted from the patent US20030137713A1 before (top) and after (bottom) standardization with the protocol
developed in this work. Ferrocene is represented as 3 separated ionic species both in reactants and products sides of the reaction equation.
One can see that removal of unaffected species destroys the reaction equation.

Figure 5. USPTO reaction extracted from the patent number US20010051625A1 in which all components of LiAlH4 and AlCl3 are represented
by mixture of ions.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (4 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 463/474] 1

are represented by mixture of ions. A single covalent bond
Al� H is more relevant for the structure encoding because it
allows to keep the AlH4

� structure as an individual species.

2.2.2 Structure Curations Steps

2.2.2.1 Functional Groups Standardization

Big data collections gathered from different sources often
suffer from inconsistent representation of certain functional
groups. This leads to a reduced number of records retrieved
in substructure searches and may introduce noise in the
data Functional groups must be transformed into their
standard representations as it is shown in Figure 6. A list of
standard representations in CGRTools for 31 popular func-
tional groups is reported by Nugmanov et al.[50] and is
constantly extending in order to tackle some errors found
in the Reaxys database (see examples in Figure S1 in SI).

2.2.2.2 Aromatization

Several different algorithms of structure aromatization have
been proposed,[49] see an example of three aromatization
styles in Figure 7. Therefore, a database gathering informa-
tion from different sources may contain structures aromat-

ized according to different aromatization rules. In such a
way, the same molecules may not be identified as
duplicates, which introduces noise in data mining tasks.

Although aromatization solves the problem of standard
representation of arenes and the vast majority of hetero-
cycles, it may cause ambiguity in structure of heterocycles
containing both pyrrolic and pyridinic nitrogen atoms, like
imidazole. In aromatized structures of such heterocycles,
the protonation state of atoms, i. e., their tautomeric form,
can hardly be identified. Therefore, SMILES of such
structures should contain information about implicit hydro-
gens, but, on the other hand, the information on implicit
hydrogens is not stored in standard MDL file formats.
Sometimes, implicit hydrogens in heterocycles are omitted
in SMILES notation. This may cause problems with file
reading and dearomatization.

In order to achieve the aromatization consistency within
a given dataset, we suggest, first, to transform all chemical
structures to the Kekulé form and then re-aromatize them
again at the end of the “Structures curation” part using
selected aromatization algorithm. Among different aromati-
zation algorithms, the “partial” option, which keeps hetero-
cycles with pyrrolic nitrogen in the Kekulé form looks rather
convenient. Technically, this helps to restore position of
hydrogen atoms in heterocycles (see Figure 7). Note that
aromatization is considered here only as a part of the

Figure 6. Examples of standardization of functional groups using CGRTools.[50]

Figure 7. An example of three approaches applied to represent aromatic compounds: (a) Kekule form, (b) Full aromatization (including
pyrroles), and (c) Partial aromaticity (i. e. only six-members rings are aromatized).

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (5 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 464/474] 1

structure’s standardization protocol, and, hence, we do not
pay any attention to its chemical interpretation.

We believe that the dearomatization/re-aromatization
procedure described above can also be recommended for
data standardization in any database of individual com-
pounds, including medchem databases.

2.2.2.3 Valence Checking

This option checks whether molecules comprising reactions
possess any atoms with violated valence. If so, such
reactions are to be discarded. Typical example of such
reactions is shown in Figure 3.

2.2.2.4 Major Tautomer Generation

The generation of the major tautomer is needed because a
given molecule can be recorded in a database in different
tautomeric forms. This creates a problem with duplicates
detection, substructural or similarity searches and molecular
descriptors generation. The RDKit[45] and ChemAxon[49] tools
used for identification of a major tautomer cannot be
directly applied to chemical reactions: RDKit gives an error
message, whereas ChemAxon corrupts the data by reassign-
ing each compound to reactants, (see Figure 8). The only
solution is to apply a tautomerization tool separately to
each individual structure in the reaction equation.

Notice that RDKit, CDK, CGRTools, and ChemAxon
Standardizer tools are not able to handle ring-chain
tautomerism standardization. Although several rules for

ring-chain tautomers generation have earlier been
proposed,[60] they were not implemented into any stand-
ardization workflow. This may introduce an additional noise
in data. For instance, cyclic and acyclic forms of glucose
were recognized by name-to-structure converter applied to
the words “D-glucose” and “glucose” as two different
chemical structures upon the text mining of the USPTO.

2.2.2.5 Removal of Explicit Hydrogens

Once the major tautomer is selected, explicit hydrogens
should be removed unless they are required in a particular
chemoinformatics task (e. g., defining stereochemistry or
isotopically labelled molecules).

2.2.2.6 Discarding Reactions Containing Radicals

In USPTO, reactions containing radicals frequently result
from erroneous recognition of chemical structures by text
mining tool or bad reaction balancing (see Figure 9). On the
other hand, Reaxys contains some 100 K reactions where
radicals, like (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (a.k.a.-
TEMPO), are used as a reactant (see an example in
Figure 10). Unfortunately, there are no algorithms able to
distinguish erroneously parsed reactions from truly radical
reactions. Improvement of the text parsing and reaction
balancing techniques may help to solve this problem. So
far, we propose to discard any reaction containing radicals
to avoid potential mistakes.

Figure 8. Reaction extracted from the patent US06413448B1 before (a) and after (b) standardization with ChemAxon Standardizer.[49] One
can see that ChemAxon merges all reactants, products and a reagent into one sole MOL block.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (6 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 465/474] 1

2.2.2.7 Cleaning Isotopes

Isotope labels are used in organic chemistry in reaction
mechanism elucidation studies.[61] However, atom-to-atom
mappers ignore this information and isotopes do not
almost influence reaction characteristics (yield, reaction
rate). Therefore, to avoid any confusion, we propose to
clean up the isotope labels.

2.2.2.8 Split of Ions

This option helps to detect ions exchange reactions, which
proceed without any transformation of covalent bonds.
Formally, these reactions have no reaction centre. They are

out of the scope of the chemoinformatics tasks listed in
Table 1 and, therefore, could be discarded. However, their
formal representation as entire salts (as it is done in USPTO
and Reaxys) may significantly complicate their identifica-
tion. For this reason, the ions in salts must be split, as this is
shown in Figure 11. After splitting, reactions having the
same molecular structures on the left- and right-hand sides
of the reaction equation can be easily identified.

2.2.2.9 Clear Stereo

In most of the tasks, stereochemistry can be ignored. In this
case, stereochemistry labels of bonds and atoms should be

Figure 9. Example of a USPTO reaction balanced in reference[27] by addition of five neutral carbon atoms and divalent radical of oxygen to
the products side.

Figure 10. Example of a radical reaction from the Reaxys database with the participation of (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl,
a.k.a.TEMPO, reactant (Reaxys ID is 42346215).

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (7 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 466/474] 1

discarded. Thus, reactions involving stereoisomers of some
compounds will be later considered as duplicates.

2.3 Transformations Curation

Transformation curation aims to perform the following
operations: (i) atom-to-atom mapping, (ii) reaction role
assignment, (iii) reaction duplicates removal, and (iv)
reaction equation balancing. As a function of reaction
equation completeness, operations 2 and 3 can be
performed either using canonical reaction SMILES or
Condensed Graphs of Reactions (CGR).[62] A CGR represents
an ensemble of reactants and products as a single

molecular graph resulting from superposition of related
atoms in reactants and products (see Figure 12). A CGR is
described by both conventional and “dynamic” atoms and
bonds. Dynamic atoms represent changes in atomic
features upon chemical transformations, e. g., the change of
atomic charge. Dynamic bonds describe a chemical trans-
formation: breaking or formation of chemical bonds, trans-
formation of a single bond to a double bond, etc. A special
CGR/SMILES encoding has recently been suggested using
slightly modified SMILES rules.[39] Unlike reaction SMILES
that encode a set of individual reactants and products, CGR
and related CGR/SMILES account for both structure of all
molecular species (reactants and products) and information
about reaction centre issued from atom-to-atom mapping

Figure 11. Example of ions exchange reaction (Reaxys 33598213) where the “Split ions” option of CGRTools is applied.

Figure 12. Example of a chemical reaction (left) and related Condensed Graphs of Reaction, CGR (right). The correspondence between the
atom numbers of reactants and products in reaction equation is established by an atom-to-atom mapping procedure. Dotted lines in CGR
represent dynamic bonds. Indices “c-1” and “c+1” means that the formal atomic charge is lowered and increased by 1, respectively. Indices
“0>1”, “2>1”, “3>2” denote formed single bond, transformation of double bond to single and triple to double, correspondingly.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (8 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 467/474] 1

(Figure 12). CGR is useful in various reaction modelling
tasks, e. g. calculation of descriptors, computing similarity
between reactions, data visualization, etc.[40,42,63–66]

SMILES-based operations don’t need any mapping and,
therefore, are recommended as a relatively fast procedure
to perform reaction role assignment and reaction duplicates
removal. Such partial transformation curation allows to
decrease the number of records and to simplify some
reaction equations because of re-assigning some reactants
to reagents. In turn, this helps to reduce both a computa-
tion time for atom-to-atom mapping and the number of
erroneously mapped reactions. At the next stage, trans-
formation curation can be completed with the help of CGR-
based operations.

2.3.1 Atom-to-atom Mapping

Atom-to-atom mapping (AAM) is a one-to-one correspond-
ence between an atom in a reactant and an atom in a
product.[36] AAM is needed to identify the reaction centre
and is required as a preliminary step in some data curation
procedures. Many AAM algorithms and related software
tools are known,[36] but none of them is perfect. Benchmark-
ing of popular AAM tools (ChemAxon Automapper,[49]

Indigo,[47] NextMove,[67] RDTool,[51] and RXNMapper[68]) and
different approaches for mapping refinement and error
identification are reported in our recent article.[69] Notice
that the data standardization process may have to account
for the particularities of some tools. Thus, RDTools and
RXNMapper have an in-built standardization procedure that
splits ions in a salt encoded in one MOL block. Both
programs also change the order and structural representa-
tion of molecules in a reaction equation. Therefore, in this

case, all steps of the standardization workflow should be
repeated after completing the AAM. The Indigo does not
affect the reaction equation; however, it can leave some
atoms unmapped and may establish a many-to-one corre-
spondence that causes a problem with CGR construction.
Among the tested tools, only the ChemAxon Automapper
produces one-to-one correspondence between reactant
and product atoms, does not leave unmapped atoms and
does not modify molecular representation.

2.3.2 Reaction Role Assignment

Reaction role assignment is one of the most delicate
operation of the reaction data curation. The erroneous
assignment of reactants to reagents or vice versa can be
introduced by incorrect text parsing, data storage techni-
que, or special rules in particular databases. For instance, in
Reaxys, molecules that do not contribute carbon atom to
product are considered as reagents. In the USPTO dataset,
only compounds recognized by text mining as catalysts and
solvents are identified as reagents, and the others are
considered reactants. It is confusing to find the same
reaction recorded differently in Reaxys and USPTO.

The presence of reagents can also slow down AAM
assignments as mapping complexity increases with the
number of atoms. Therefore, before the AAM step we
suggest to identify reagents as molecules present in both
reactants and products and remove them from the reaction
equation. Sometimes, this procedure leads to reaction
equations without any reactant or product; such reactions
should be removed as suspicious. A typical example of an
erroneous reaction equation extracted from a text file
(patent) is demonstrated in Figure 13 and in Figure S2 in

Figure 13. (a) A record from the USPTO database issued from wrongly parsed patent US4029552 A and (b) correct reaction equation. One
can see that the text-mining tool erroneously recognized toluene as a product, n-heptane as a reagent and perfluoro-n-heptane as both
product and reactant.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (9 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 468/474] 1

the Supplementary Information. This patent describes an
electrochemical reaction of n-heptane fluorination, where
toluene is used as a reagent for the product (perfluoro-n-
heptane) separation. However, the text mining tool erro-
neously recognized toluene as a product, n-heptane as a
reagent and perfluoro-n-heptane both as product and
reactant. In such a way, perfluoro-n-heptane looks as an
unaffected species and, therefore, must be considered as a
reagent. This leads to a reaction equation without any
reactant, which, therefore, must be discarded. Among the
correct reactions that can be removed at this step are ion
exchange reactions and racemic resolutions (since informa-
tion on stereochemistry is erased during the molecule
standardization step). Generally, these reactions are out of
scope of the chemoinformatics tasks listed in Table 1.

In order to assign a reaction role (reactant, reagent, or
product) automatically, one can follow the definition from
Schneider et al.[31] which considered compounds unaffected
in the course of a reaction as reagents. Such compounds
can be automatically detected in AAM as reactants that are
not mapped into products. The example presented in
Figure 14 shows that any atom of dimethyl-ether in the
reactant side does not contribute to 2-bromoethyl ethane-
1-sulfonate formation and, therefore, it should be assigned
to reagents.

2.3.3 Duplicates Detection

Duplicates detection and removal is a regular data cleaning
procedure that aims to keep only unique entities. Two types
of duplicates were considered: (i) transformations with the
same list of reactants and products and (ii) transformations
that contain a different number of reactants and products
but corresponding to the same CGR. This is illustrated on
the example of addition of furan-2-carbonyl to 2,3-
dimethyl-1-(3-phenylpropyl)piperazine, three alternative re-
action equations of which are given in Figure 15. Reaction
(c) is balanced, whereas reactions (a) and (b) are not
because they do not include the minor product HCl.
Reactions (a) and (b) can be identified as duplicates using
canonical reaction SMILES, whereas for identification of the
duplicate (c) a CGR is required.

We recommend duplicate detection using canonical
reaction SMILES strings before the AAM step. This helps to
decrease the number of reactions considered in time

consuming mapping procedures. For some datasets, like
USPTO and Pistachio, SMILES-based duplicates removal
leads to cutting dataset almost threefold. As soon as AAM is
established, reactions can be converted into CGR (and
unique CGR/SMILES) which, in turn, can be used to identify
remaining duplicates.

2.3.4 Reaction Balancing

Some chemoinformatics tasks, like the preparation of
reaction vectors[70] require fully balanced reactions. The
latter can be prepared with the help of a Condensed Graph
of Reaction. As one may see from Figure 16, CGR allows to
balance a given reaction upon its reversible decomposition.
Application of some additional heuristics[71] can be used to
balance redox processes or for compounds that are used
many times in a reaction, e. g. reagents for exhaustive
alkylation. Alternatively, missing components in reactions
can be identified using deep networks.[72] It should be noted
that balancing can only be performed if the list of reactants
and/or products are complete enough to produce a realistic
CGR. For instance, a hypothetical transformation with an
ester as reactant and an alcohol as product cannot be
balanced without supplementary information about the
second reactant (water or amine).

3 Curation of Popular Reaction Databases

The simplified curation workflow described in Section 2 has
been applied to clean three popular reaction databases:
Reaxys (single step reactions only), USPTO and Pistachio.
This simplified workflow did not include the AAM step and,
hence, some other curation procedures (AAM-based reac-
tion role assignment, reaction balancing, CGR-based dupli-
cates removal) that require mapped reaction equations
were not considered.

Statistics on reactions discarded at each step of the
protocol are given in Table 2. Here, the difference in initial
numbers of reactions and transformations in the USPTO
and Pistachio databases is explained by the fact that some
transformations proceed under different reaction condi-
tions. Data in these databases are stored in the XML format,
and, thus, each combination “transformation/reaction con-
dition” represents an independent record. In Reaxys,

Figure 14. A USPTO reaction from US03930836 patent in which no atom in dimethyl-ether makes part a product and, therefore, this
compound should be assigned to reagents.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (10 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 469/474] 1

reactions are stored in the RDF format that already supports
the storage of several reaction conditions for the same
transformation. Hence, the number of reaction records in

Reaxys fully corresponds to the number of transformations.
Surprisingly, 1.65 M duplicated transformations (i. e., some
6 % of the initial one-step reactions dataset) were detected

Figure 15. Reactions (a), (b) and (c) are duplicates because they correspond to the same Condensed Graph of Reaction. Reaction duplicates
(a) and (b) can be identified using canonical reaction SMILES, whereas for identification of the duplicate (c) a CGR is required.

Table 2. Statistics of data cleaning in three popular databases.

Reaxysa USPTO Pistachio

Initial reactions 27.34Mb 3.75 M 9.7 M
Initial transformations 27.34 M 1.48 M 3.03 M
Unrecognised reaction SMILES 0c 586 2.5 K
Transformations with invalid valences 2.42 M 55.4 K 148 K
Transformations containing isotopesd 52.3 K 45 713
Transformations with radicals 102.6 K 1.04 K 0
Transformations without reactants 6.25M 1.8 K 2.8 K
Transformations without products 941.3 K 10.1 K 23.3 K
Transformations without reactants and products 182.9 K 5.8 K 3.8 K
Transformations duplicates 1.65 M 85.3 K 0
Final number of transformations 15.79 M 1.32 M 2.84 M
a Reaxys database includes the latest update done on 04 March 2021. b Reaxys contains 55.56 M reactions. The number here corresponds to
single step reactions. c Reaxys data was stored in the RDF format, so, no problem with SMILES parsing was detected. d These reactions were
kept but the isotopic labels were removed.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (11 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 470/474] 1

in Reaxys. This number is significantly smaller for USPTO
whereas no duplicates were found in Pistachio. Duplicates
in Reaxys mostly result from discarding stereoisomers and
isotope labels upon the data cleaning procedure.

A large portion of the transformations with invalid
valences in all three databases largely stems from problems
with the encoding of organometallic molecule chemical
bonds in organometallic compounds (see discussion in
Section 2.2 and example in Figure 3). Almost 7.2 M reactions
with no reactants or products were found in Reaxys (26 %
of the initial one-step reactions dataset). The presence of
such reactions in Reaxys can be explained by various
reasons. For instance, some starting materials like a mixture
of polymers or some resin can hardly be represented by a
chemical structure. Besides that, reactants can be simply
omitted even if they are mentioned in the original paper
(see an example of such in Figure 17). Since all Reaxys
records are manually prepared, some errors can be
explained by a human factor.

Reactions without either reactants or products are much
rarer in USPTO and Pistachio (some 0.3 %) and are often
caused by improper text mining. On the other hand,
transformations without reactants or products are very rare
given their absence in the initial reaction equation. In some
200 K transformations from Reaxys, 2 K from USPTO and
3.8 K from Pistachio (Table 2), reactants and products
coincide, and, therefore, the curation protocol excludes
them from reaction equation and moves to reagents. These
transformations mostly originate from ionic exchange
reactions, stereoisomer resolution reactions, or erroneous
text recognition as shown above.

The cleaned Reaxys, USPTO and Pistachio contain
15.79 M, 1.32 M and 2.84 M transformations, respectively.

As the only publicly accessible dataset USPTO was mapped
by RXNMapper and published in our GitHub repository
Laboratoire-de-Chemoinformatique/Reaction_Data_Clean-
ing.

4 Conclusions

Chemical reactions are complex processes that involve
reactants, products, reagents. Their yield and thermody-
namic or kinetic parameters depend on reaction conditions
(temperature, pressure, solvent catalyst, etc). The protocol
proposed in this work accounts for reaction complexity and
consists of four steps related to the curation of (1)
individual chemical structures (reactants, products and
reagents), (2) chemical transformations, (3) reaction con-
ditions and (4) endpoints. Only the two first steps were
treated here.

Most curation steps of individual structures are similar
to those suggested by Fourches et al.[1] However, only few
software tools (ChemAxon, CGRtools) can be applied to
reactions directly, the others can be applied only to
molecular structures extracted from the reaction equation.
The curation of organometallic compounds poses a partic-
ular problem because it cannot be performed with existing
tools. To our opinion, a special coordination bond type
should be introduced to tackle this problem.

Transformation curation includes (i) atom-to-atom map-
ping, (ii) reaction role assignment, (iii) reaction duplicates
removal, and (iv) reaction equation balancing. Technically,
steps 2 and 3 can be performed using either reaction
SMILES or Condensed Graph of Reaction (CGR). Notice that
a CGR can be prepared only for atom-to-atom mapped

Figure 16. An example of a reaction transformed to CGR followed by the decomposition of the latter to fully balanced reaction. Here, the
dashed connections are the dynamic bonds, where “0>1” means creation of a single bond, and “1>0” means cutting of a single bond.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (12 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 471/474] 1

reaction equations. Therefore, less time-consuming SMILES-
based operations are recommended as the first step of
transformation curation because it may (i) significantly
reduce the size of a database due to removal of reaction
duplicates, and (ii) simplify reaction equation by re-
assigning some reactants to reagents.

The SMILES-based protocol described here has been
applied to three popular reaction databases Reaxys, USPTO
and Pistachio. The removal of reaction duplicates, trans-
formations without reactants and/or products as well as
records containing structures with invalid valences (mostly
organometallics) led to the 2–3-fold size reductions.

Author Contribution Statement

The authors equally participated in this work.

Funding

This project was supported by the VLAIO HBC.2018.2287
MaDeSMArt (Machine Design of Small Molecules by AI)
grant. VA, DB, RN, and TM are grateful to Russian Science
Foundation for support of CGRtools development and

upgrade required for the needs of reaction standardization
(project No 19-73-10137). Reaxys data were made accessible
to our research project via the Elsevier R&D Collaboration
Network.

Conflict of Interest

None declared.

Data Availability Statement

A cleaned and atom-to-atom mapped (with RXNMapper)
USPTO database containing 1.32 M transformations as well
as the standardization protocol implementation in Python3
are freely available in our GitHub repository Laboratoire-de-
Chemoinformatique/Reaction_Data_Cleaning.

Figure 17. Example of a reaction from the Reaxys database (Reaxys ID is 23023671) with missed reactants. Here, (a) corresponds to the exact
Reaxys representation of the reaction, (b) is extracted from EP1445257A1 (2004) patent.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (13 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 472/474] 1

References

[1] D. Fourches, E. Muratov, A. Tropsha, J. Chem. Inf. Model. 2010,
50, 1189–1204.

[2] I. I. Baskin, T. I. Madzhidov, I. S. Antipin, A. A. Varnek, Russ.
Chem. Rev. 2017, 86, 1127–1156.

[3] O. Engkvist, P.-O. Norrby, N. Selmi, Y. Lam, Z. Peng, E. C. Sherer,
W. Amberg, T. Erhard, L. A. Smyth, Drug Discovery Today 2018,
23, 1203–1218.

[4] C. W. Coley, W. H. Green, K. F. Jensen, Acc. Chem. Res. 2018, 51,
DOI 10.1021/acs.accounts.8b00087.

[5] I. W. Davies, Nature 2019, 570, 175–181.
[6] H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green, K. F.

Jensen, ACS Cent. Sci. 2018, 4, 1465–1476.
[7] A. Toniato, P. Schwaller, A. Cardinale, J. Geluykens, T. Laino,

arXiv:2102.01399 2021, 1–30.
[8] J. Goodman, J. Chem. Inf. Model. 2009, 49, 2897–2898.
[9] A. J. Lawson, J. Swienty-Busch, T. Géoui, D. Evans, 2014, pp.

127–148.
[10] D. M. Lowe, Extraction of Chemical Structures and Reactions

from the Literature, University of Cambridge, 2012.
[11] M. H. S. S. Segler, M. Preuss, M. P. Waller, Nature 2018, 555, 604.
[12] J. S. Schreck, C. W. Coley, K. J. M. Bishop, ACS Cent. Sci. 2019, 5,

970–981.
[13] B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q.

Luu Nguyen, S. Ho, J. Sloane, P. Wender, V. Pande, ACS Cent.
Sci. 2017, 3, 1103–1113.

[14] P. Schwaller, R. Petraglia, V. Zullo, V. H. Nair, R. A. Haeuselmann,
R. Pisoni, C. Bekas, A. Iuliano, T. Laino, Chem. Sci. 2020, 11,
3316–3325.

[15] C. W. Coley, L. Rogers, W. H. Green, K. F. Jensen, ACS Cent. Sci.
2017, 3, DOI 10.1021/acscentsci.7b00355.

[16] C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski, C. P.
Breen, V. Schultz, T. Hart, J. S. Fishman, L. Rogers, H. Gao,
Science 2019, 365, eaax1566.

[17] J. M. Weber, P. Lió, A. A. Lapkin, React. Chem. Eng. 2019, 4,
1969–1981.

[18] D. M. Lowe, Extraction of Chemical Structures and Reactions
from the Literature, University of Cambridge, 2012.

[19] D. M. Lowe, “The NextMove Patent Reaction Dataset,” can be
found under https://depth-first.com/articles/2019/01/28/the-
nextmove-patent-reaction-dataset/, 2019.

[20] N. Schneider, D. M. Lowe, R. A. Sayle, M. A. Tarselli, G. A.
Landrum, J. Med. Chem. 2016, 59, 4385–4402.

[21] C. W. Coley, R. Barzilay, T. S. Jaakkola, W. H. Green, K. F. Jensen,
ACS Cent. Sci. 2017, 3, 434–443.

[22] P. Schwaller, T. Gaudin, D. Lányi, C. Bekas, T. Laino, Chem. Sci.
2018, 9, 6091–6098.

[23] W. W. Qian, N. T. Russell, C. L. W. Simons, Y. Luo, M. D. Burke, J.
Peng, ChemRxiv 2020, DOI 10.26434/chemrxiv.11659563.v1.

[24] I. A. Watson, J. Wang, C. A. Nicolaou, J. Cheminf. 2019, 11, 1.
[25] G. M. Ghiandoni, M. J. Bodkin, B. Chen, D. Hristozov, J. E. A.

Wallace, J. Webster, V. J. Gillet, J. Chem. Inf. Model. 2019, 59,
4167–4187.

[26] N. Schneider, D. M. Lowe, R. A. Sayle, G. A. Landrum, J. Chem.
Inf. Model. 2015, 55, 39–53.

[27] W. Jaworski, S. Szymkuć, B. Mikulak-Klucznik, K. Piecuch, T.
Klucznik, M. Kaźmierowski, J. Rydzewski, A. Gambin, B. A.
Grzybowski, Nat. Commun. 2019, 10, 1434.

[28] P. Schwaller, A. C. Vaucher, T. Laino, J.-L. Reymond, Mach.
Learn.: Sci. Technol. 2021, 2, 015016.

[29] P. Schwaller, A. C. Vaucher, T. Laino, J.-L. Reymond, ChemRxiv
2020, DOI 10.26434/chemrxiv.13286741.v1.

[30] D. Probst, P. Schwaller, J.-L. Reymond, ChemRxiv 2021, DOI
10.33774/chemrxiv-2021-mc870.

[31] N. Schneider, N. Stiefl, G. A. Landrum, J. Chem. Inf. Model. 2016,
56, 2336–2346.

[32] W. A. Warr, Mol. Inf. 2014, 33, 469–476.
[33] C. W. Coley, W. H. Green, K .F. Jensen, J. Chem. Inf. Model. 2019,

59, 2529–2537.
[34] D. Fourches, E. Muratov, A. Tropsha, J. Chem. Inf. Model. 2016,

56, 1243–1252.
[35] A. D. McNaught, A. Wilkinson, Compendium of Chemical

Terminology, Blackwell Science Oxford, 1997.
[36] W. L. Chen, D. Z. Chen, K. T. Taylor, Wiley Interdiscip. Rev.:

Comput. Mol. Sci. 2013, 3, 560–593.
[37] P. P. Plehiers, G. B. Marin, C. V. Stevens, K. M. Van Geem, J.

Cheminf. 2018, 10, 11.
[38] J. L. Baylon, N. A. Cilfone, J. R. Gulcher, T. W. Chittenden, J.

Chem. Inf. Model. 2019, 59, 673–688.
[39] W. Bort, I. I. Baskin, T. Gimadiev, A. Mukanov, R. Nugmanov, P.

Sidorov, G. Marcou, D. Horvath, O. Klimchuk, T. Madzhidov, A.
Varnek, Sci. Rep. 2021, 11, 3178.

[40] A. I. Lin, T. I. Madzhidov, O. Klimchuk, R. I. Nugmanov, I. S.
Antipin, A. Varnek, J. Chem. Inf. Model. 2016, 56, 2140–2148.

[41] T. Gimadiev, T. Madzhidov, I. Tetko, R. Nugmanov, I. Casciuc, O.
Klimchuk, A. Bodrov, P. Polishchuk, I. Antipin, A. Varnek, Mol.
Inf. 2018, 0, DOI 10.1002/minf.201800104.

[42] T. R. Gimadiev, T. I. Madzhidov, R. I. Nugmanov, I. I. Baskin, I. S.
Antipin, A. Varnek, J. Comput.-Aided Mol. Des. 2018, 32, 401–
414.

[43] G. Skoraczyński, P. Dittwald, B. Miasojedow, S. Szymkuć, E. P.
Gajewska, B. A. Grzybowski, A. Gambin, Sci. Rep. 2017, 7, 3582.

[44] D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher, A. G. Doyle,
Science 2018, 360, 186–190.

[45] “RDKit: Open-source cheminformatics,” 2019.
[46] E. L. Willighagen, J. W. Mayfield, J. Alvarsson, A. Berg, L.

Carlsson, N. Jeliazkova, S. Kuhn, T. Pluskal, M. Rojas-Chertó, O.
Spjuth, G. Torrance, C. T. Evelo, R. Guha, C. Steinbeck, J.
Cheminf. 2017, 9, 33.

[47] A. Savelev, I. Puzanov, V. Samoilov, V. Karnaukhov, Indigo
Toolkit, 2019, https://lifescience.opensource.epam.com/indigo/
index.html.

[48] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vander-
meersch, G. R. Hutchison, J. Cheminf. 2011, 3, 33.

[49] JChem ChemAxon, https://chemaxon.com/products/jchem-en-
gines.

[50] R. I. Nugmanov, R. N. Mukhametgaleev, T. Akhmetshin, T. R.
Gimadiev, V. A. Afonina, T. I. Madzhidov, A. Varnek, J. Chem. Inf.
Model. 2019, 59, 2516–2521.

[51] S. A. Rahman, G. Torrance, L. Baldacci, S. Martínez Cuesta, F.
Fenninger, N. Gopal, S. Choudhary, J. W. May, G. L. Holliday, C.
Steinbeck, J. M. Thornton, Bioinformatics 2016, 32, 2065–2066.

[52] P. Schwaller, B. Hoover, J.-L. Reymond, H. Strobelt, T. Laino, Sci.
Adv. 2021, 7, eabe4166.

[53] T. Moock, J. Nourse, D. Grier, W. Hounshell, in: Chem. Struct.
(Ed.: W. Warr), Springer- Verlag, Berlin, 1988, pp. 303–313.

[54] H. Kraut, J. Eiblmaier, G. Grethe, P. Löw, H. Matuszczyk, H.
Saller, J. Chem. Inf. Model. 2013, 53, 2884–2895.

[55] D. Fooshee, A. Andronico, P. Baldi, J. Chem. Inf. Model. 2013,
53, 2812–2819.

[56] E. L. First, C. E. Gounaris, C. A. Floudas, J. Chem. Inf. Model.
2012, 52, 84–92.

[57] “Extended SMILES, SMARTS,” can be found under https://
chemaxon.com/marvin-archive/latest/help/formats/cxsmiles-
doc.html, n.d.

[58] T. E. Oliphant, Comput. Sci. Eng. 2007, 9, 10–20.

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (14 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 473/474] 1

[59] K. Maruyama, T. Katagiri, J. Phys. Org. Chem. 1989, 2, 205–213.
[60] L. Guasch, M. Sitzmann, M. C. Nicklaus, J. Chem. Inf. Model.

2014, 54, 2423–2432.
[61] D. A. Semenow, J. D. Roberts, J. Chem. Educ. 1956, 33, 2.
[62] F. Hoonakker, N. Lachiche, A. Varnek, A. Wagner, Int. J. Artif.

Intell. Tools 2011, 20, 253–270.
[63] T. I. Madzhidov, T. R. Gimadiev, D. A. Malakhova, R. I. Nugma-

nov, I. I. Baskin, I. S. Antipin, A. A. Varnek, J. Struct. Chem. 2017,
58, 650–656.

[64] W. Bort, I. I. Baskin, T. Gimadiev, A. Mukanov, R. Nugmanov, P.
Sidorov, G. Marcou, D. Horvath, O. Klimchuk, T. Madzhidov, A.
Varnek, Sci. Rep. 2021, 11, 3178.

[65] T. I. Madzhidov, P. G. Polishchuk, R. I. Nugmanov, A. V. Bodrov,
A. I. Lin, I. I. Baskin, A. A. Varnek, I. S. Antipin, Russ. J. Org. Chem.
2014, 50, 459–463.

[66] R. I. Nugmanov, T. I. Madzhidov, G. R. Khaliullina, I. I. Baskin, I. S.
Antipin, A. A. Varnek, J. Struct. Chem. 2014, 55, 1026–1032.

[67] NextMove Software, www.nextmovesoftware.com, 2020 .

[68] P. Schwaller, B. Hoover, J.-L. Reymond, H. Strobelt, T. Laino, Sci.
Adv. 2021, 7, eabe4166.

[69] A. Lin, N. Dyubankova, T. I. Madzhidov, R. Nugmanov, A.
Rakhimbekova, Z. Ibragimova, T. Akhmetshin, T. Gimadiev, R.
Suleymanov, J. Verhoeven, J. K. Wegner, H. Ceulemans, A.
Varnek, ChemRxiv 2020, DOI 10.26434/chemrxiv.13012679.v1.

[70] H. Patel, M. J. Bodkin, B. Chen, V. J. Gillet, J. Chem. Inf. Model.
2009, 49, 1163–1184.

[71] R. I. Nugmanov, T. I. Madzhidov, I. S. Antipin, A. A. Varnek, Uch.
Zap. Kazan. Univ. Seriya Estestv. Nauk 2018, 160, 32–39.

[72] A. C. Vaucher, P. Schwaller, T. Laino, ChemRxiv 2020, DOI
10.26434/chemrxiv.13273310.v1.

Received: May 4, 2021
Accepted: August 13, 2021

Published online on August 24, 2021

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100119 (15 of 15) 2100119

Wiley VCH Dienstag, 16.11.2021

2112 / 217140 [S. 474/474] 1

92 Self-learning-based synthesis planning

Supporting information

Fig. 4.2 Molecules with a non-standardized azide group extracted from the Reaxys database.
In the given molecules, four different forms are used to present the azide functional group,
whereas its standard (according to CGRTool) representation is R – N = [N+] = [N-].

Fig. 4.3 An example of a wrongly parsed reaction from the USPTO database discarded by the
standardization protocol as a reaction with no reactants. The reaction was extracted from the
patent US4029552A, and the text of the patent is given in the figure.

4.1 Reaction data curation 93

4.1.1 Summary for the section 4.1

In this section, we discussed techniques for the curation of reaction data, formulated its main
steps, and implemented the reaction standardisation protocol. Most of the standardisation
rules for reactions follow those previously formulated for molecules. A unique step in the
standardisation of reactions is atom-to-atom mapping (AAM), which is crucial in the curation
of reactions. It defines the mechanism of the reaction and subsequent steps, such as reaction
role assignment and reaction balancing. The performance of AAM algorithms can be sensitive
to the representation of chemical structures, and the number of mistakes they make can be
reduced through the proper standardisation of molecules and ions.

The developed standardisation protocol was tested on three reaction databases: Reaxys,
Pistachio, and USPTO. The analysis showed that regardless of the type of database (hand-
crafted or automatically collected), they contained a large number of erroneous reactions or
duplicates, resulting in a significant reduction in the size of the databases after curation (42%
for the hand-crafted database and 65-70% for the automatically collected ones). The USPTO
dataset is the only one that is freely accessible and is provided in our GitHub repository in its
standardised form. This dataset will also be used in the following sections as the main reaction
database.

94 Self-learning-based synthesis planning

4.2 Retrosynthetic planning

Retrosynthetic analysis is a problem-solving technique in chemical synthesis design that
was first proposed at the beginning of the 1960s by Elias James Corey, who later received
a Nobel Prize for this work. This technique involves a “molecular deconstruction” process
converting a synthetic target molecule into simpler precursor structures (retrons) or pseudo-
molecular structures (synthons) through a retrosynthetic transformation (retro-rule). Along with
Wipke, Corey also developed the first computer-aided organic synthesis (CAOS) software[104],
renamed further into “Logic and Heuristics Applied to Synthetic Analysis” (LHASA). In this
software, the authors defined key components of retrosynthesis planning algorithms that are
still present in modern tools. These contributions can be divided into three main categories:
retrosynthetic transformations, a retrosynthetic tree, and a search algorithm for navigating this
tree.

The retrosynthetic transformations (Figure 4.4) are characterised by one or more substruc-
tures (located to the left of the retrosynthetic arrow) that must be present for the transformation
to proceed, as well as descriptions of the structural changes that occur during the transformation.
These substructures are comprised of atoms of the reaction centre (atoms around transformed
or broken bonds during the reaction) and may also include neighbouring alpha atoms (the first
environment), beta atoms (the second environment), and so on. In addition to these structural
features, retrosynthetic transformations may also include functional groups that influence the
reaction outcome and physicochemical conditions such as solvents and temperature range.

Fig. 4.4 Example of retrosynthetic transformation included in LHASA program that encodes
aldol addition.

A retrosynthetic tree is a graphical representation of the various synthetic pathways that can
be taken to synthesise a target compound from a set of precursors (Figure 4.5). The tree begins
with the synthetic target at the root and is constructed by applying retrosynthetic transformations

4.2 Retrosynthetic planning 95

to derive precursor compounds successively. The node in the tree represents all the structures
obtained through these transformations, with the edges indicating the retrosynthetic reactions
that were performed. When a node includes an intermediate structure that must be synthesised,
it is chosen as the node’s representative structure. In cases where multiple unavailable retrons
are present, one is selected randomly to represent the node.

Fig. 4.5 Example of a retrosynthetic tree.

The retrosynthetic search is an iterative process, where after each iteration new nodes of
the tree are created. One iteration consists of three key steps: selection of a node, choice and
application of retro-rules, and evaluation of the resulting retrons. During selection, a user
or algorithm selects a leaf node, which is a node from the last levels of the tree. Once the
node is chosen, another module selects retro-rules that meet a predetermined goal, such as
simplification of a structure by splitting rings or reducing the molecular size by disconnection
of chains. The selected retro-rules are then applied to the representative structure, and the
precursors are obtained. The evaluation module assigns them scores based on factors such as
validity of chemical structure, availability in the building blocks set, and other user-defined
criteria. These scores are used in the next iterations of the tree in the selection stage. The search
terminates either when the desired number of iterations has been reached, when a time limit is
exceeded, or when the user chooses to stop the search.

The selection of retro-rules and evaluation of retrons during the search may be conducted
using heuristics or machine learning techniques. As such, in the following discussion, we

96 Self-learning-based synthesis planning

classify retrosynthetic planning tools into those that utilise only heuristics scoring or those that
employ machine learning methods.

Heuristic-based approaches

The LHASA program represented a landmark in computer-aided organic synthesis and had a
long-lasting impact on future developments in this area. In this tool, the retrosynthetic rules
were hand-crafted by human experts. The selection and evaluation steps were carried out by
a user, while the transformation step was scored by a “perception” module that analysed the
chemical structures for synthetically significant features (for example, rings, ring junctures,
functional groups, relations between functional groups and symmetry). If the results were
unsatisfactory, meaning that building blocks were not found, the user could return to any
existing precursor and continue the search.

Fig. 4.6 Protocol used in Logic and Heuristics Applied to Synthetic Analysis (LHASA) program.

LHASA can be seen as an interactive retrosynthetic program, as human participates in
the whole search process. The next generation (so-called “non-interactive” programs) used
heuristics-based scoring functions in the evaluation step to estimate the retrosynthetic feasibility
of the structure, which is a possibility to find a pathway to desired building blocks. This
approach was first proposed in SYNCHEM[112]. In this program, during the selection stage,
the previously obtained scores of chosen transformations and evaluated retrons guided the tree’s
growth. Thus, there was no need for the active participation of human experts, which decreased
the search time.

The next generation of tools, instead of using retrosynthetic transformations, used reaction
mechanisms that are applicable to a large number of reactions. For example, the IGOR[113]
program utilised “bond-electron” matrices for the representation of possible reactants. The rules
were represented as reaction matrices that encoded changes in bond orders and free valence

4.2 Retrosynthetic planning 97

electrons connected to atoms during a reaction. Another approach was implemented in the
SYNGEN[114] software, where all reactions were described by unit reactions, which encoded
the replacement of one kind of bond for another on each involved carbon. These approaches
were not limited by known transformations, which allowed them to find new types of reactions
during retrosynthetic analysis.

Retrosynthetic transformation-based approaches have demonstrated efficacy in identifying
suitable synthetic pathways, yet they did not guarantee the feasibility of individual steps in
the synthetic plan, including the identification of potential by-products. This task, known as
reaction prediction, is crucial for the successful execution of a synthetic plan. This issue was
addressed in the program CAMEO[115], which used a perception module that was able to
identify reactive parts in structures based on calculated pKa. In another tool WODCA[116],
the EROS reaction prediction program[117] was employed, which used reaction mechanisms
to predict the ease of the forward transformations implied by the retrosynthesis search.

One of the leading retrosynthetic platforms among heuristic-based retrosynthesis tools
is Synthia[106] (previously Chematica), which boasts a collection of over 100K hard-coded
retro transformations that encode the regioselectivity of reactions. This extensive collection
of rules was compiled over the course of two decades, beginning in the early 2000s, and is
currently the most comprehensive available. Synthia employs heuristics similar to those used in
LHASA and other retrosynthetic approaches and has incorporated scoring functions (e.g., the
overall monetary cost, the popularity of substrates involved, complexity estimation of obtained
precursors, avoidance of toxic/hazardous intermediates) and a beam-search-inspired priority
queue algorithm[106, 118] to improve search performance.

However, the approach of Synthia has been shown to be limited in its scalability.[119] In par-
ticular, the addition of new retro-rules requires careful checking to ensure they do not contradict
existing ones. These issues were addressed in recent developments that automatically collect
retrosynthetic transformations from existing reaction databases. One example is ARChem
Route Designer[120], which described a protocol for autonomous retrosynthetic transformation
reactions from literature sources. It was tested on the Beilstein reaction database (now known
as the Reaxys database[107]) and produced over 93K retrosynthetic rules in 8 days. This is
in contrast to the Synthia approach, which required the authors to manually collect a similar
number of rules over a period of 20 years. Therefore, the automated extraction of retrosynthetic
rules is a promising approach that can accelerate the development of retrosynthesis platforms.
However, the main limitation of this approach is the dependence on the quality of reaction data.
Furthermore, the reactions in databases are collected based on historical data, and it is possible
that some useful transformations for retrosynthesis may be missing.

98 Self-learning-based synthesis planning

Machine learning-based approaches

Only a few early retrosynthesis tools used machine learning approaches for reaction prediction.
Specifically, regression models were used to estimate the feasibility of reactions within a given
reaction class.[121, 122] One of the limiting factors at the time was the availability of reaction
data to train these models.

The advancement of reaction databases and deep learning theory has enabled the use of
machine learning models to improve the efficiency of retrosynthesis search. A recent study
by Schwaller et al.[123] employed a combination of generative deep-learning models and a
hypergraph exploration strategy. Instead of utilising automatically extracted templates, the
authors proposed training two transformer models based on SMILES representation. One
model suggests precursor molecules given a product molecule, while the other scores chemical
reactions given precursor-product combinations. These models were trained on the USPTO and
Pistachio databases and subsequently coupled with a hyper-graph beam search. The resulting
retrosynthesis algorithm was then implemented in the RoboRXN platform[124], enabling
automated retrosynthesis using robotic systems.

Recent advancements in reinforcement learning with neural networks have had a significant
impact on modern retrosynthesis tools. Researchers at the DeepMind laboratory have success-
fully integrated the Monte-Carlo tree search (MCTS) algorithm with deep learning models
scoring and ranking models, resulting in superhuman performance in a wide range of strategic
games, such as chess, go, and shogi.[125] This breakthrough inspired the pioneering work of
Segler et al.[21], in which authors presented the first MCTS-based retrosynthesis search tool.
Following this idea, numerous variants of MCTS-based retrosynthesis have emerged.

Monte-Carlo tree search is a search method optimised for decision-making problems. This
search is an iterative process, where at each iteration, the algorithm creates a new node of a
search tree until the maximum number of iterations is exceeded. One iteration consists of 4
steps: selection, expansion, evaluation and update (Figure 4.7).

Selection IIn the selection stage, the algorithm identifies the most promising nodes by
evaluating their scores and the number of visits. The process starts at the root node, where the
Upper Confidence Bounds for Trees (UCT) scores of the child nodes are calculated. The child
node with the highest score is subsequently selected, and the selection process continues until a
leaf node (node without children) is reached. The basic formula of UCT is given in equation
3.1

UCT = Qprev + c∗
√

Nparent

1+N
(4.1)

4.2 Retrosynthetic planning 99

Fig. 4.7 The main stages of Monte-Carlo tree search. Here, on each iteration, one node is
created and added to the tree.

where the Qprev – is a score of the node obtained in the previous iterations, c is a non-
negative hyperparameter, N – is the number of visits in the current node, and respectively
Nparent is the number of visits in the parent node. The first term of the equation Qprev reflects the
reward of selecting that particular node, and it facilitates the exploitation of the most promising
ones that lead to building blocks. Thus, the higher its value, the greater the chance that the
node will be chosen in subsequent iterations of the tree search. The second term of the equation
is employed to balance exploitation with exploration by introducing a score that depends on the
number of visits to the node. This score is highest for nodes that have not yet been visited, thus
encouraging the search to explore new solutions. The value of Q is obtained in the following
stages (see evaluation and update steps). One of the modifications of this function is used in
the Thakkar et al.[3]:

UCT =
Qprev

N
+ c∗

√
2∗

ln(Nparent)

1+N
(4.2)

Another variant of UCT is called the probabilistic upper confidence tree (PUCT)[126].
PUCT differs from classic UCT in that it employs predictions from the policy network multi-
plied with exploration term. In this way, the most promising transformations are explored first,
which is especially useful with reliable policy:

PUCT = Qprev + p∗ c∗
√

Nparent

1+N
(4.3)

where p is a probability of retro-rule that leads from the parent node to the current one. The
PUCT used in the Segler et al.[21] with a slight modification:

PUCT =
Qprev

N
+ p∗ c∗

√
Nparent

1+N
(4.4)

100 Self-learning-based synthesis planning

The coefficient c can be specified at the outset (static) or varied during the search process
(dynamic). In the case of MCTS-based retrosynthesis, Wang et al.[2] compared different
versions of UCT with static and dynamic c, PUCT, and naive selection (which relies solely on
the scores of the node). The authors found that UCT with dynamic c performs better when a
pre-trained policy network is used.

Expansion In the expansion phase of the MCTS process, the policy function is responsible
for identifying the most promising retrosynthetic transformation given a particular molecule
represented by a node in the tree. Modern NN-based MCTS algorithms approximate the
policy function using a model that assigns probabilities to each retrosynthetic rule or directly
transforms the molecule into its possible precursors. These models can be classified based on
their input type (such as molecular fingerprints or graphs) and their training objectives.

One common choice for the policy function is a supervised neural network trained on
Morgan fingerprints[21, 105, 2, 3, 127] or molecular graphs[128] to rank retro-rules. This
approach involves training the network to perform multi-class classification. Thus, for the
given reaction we extract retrosynthetic transformation and the product. For this product this
retro-rule (which is extracted from the same reaction) is assigned as positive class, where all
other retrosynthetic transformations extracted from the reaction database are assigned negative
class (as illustrated in Figure 4.8).

Fig. 4.8 Scheme of data preparation for policy neural network in a manner “1 vs all”. This
workflow is used in several retrosynthesis tools, such as AiZynthFinder26 and ASKCOS10.

The main advantage of this technique is that it tends to bias the policy network to prioritise
transformations that after application to the input structure will produce reactions similar to
the real ones. Thus, even without considering reaction conditions, this approach increases the

4.2 Retrosynthetic planning 101

chance that the reactions will pass. However, reaction databases consist of historical data and
some rules useful in retrosynthesis reactions (coupling or cyclisation) might be underrepresented
and will be not used as the first ones to try. Additionally, this policy network does not guarantee
that all chosen rules will be applicable.[3]

Additionally, the expansion step can also incorporate the verification of reaction feasibility
through the use of a reaction prediction model. For example, Segler et al.[21] employed a
classification neural network named "in-scope" that predicts if the reaction is likely to pass
based on the way the retrosynthetic transformation was applied to the structure. This approach
requires the generation of negative data, which is typically not present in databases. To
circumvent this, the authors generated negative data by applying reaction transformations
(reverse of retro-rules) to the reactants of reported reactions

An alternative approach of pre-trained policy networks involves the use of generative neural
networks that generate potential reactants given products. Lin et al.[129] were among the first
to employ a transformer model[130] as a policy network, which directly returned potential
precursors for the representative structure of the node. In a way, this approach combined
ranking and application of retro-rules in one step. A key advantage of this method is that the
transformations learned by model are not restricted to the small area around the reaction centre
so, in theory, model can capture “chemical context” or the functional groups that are plausible
or implausible for a given reaction. While generative policy networks hold promise, they are
less interpretable than retrosynthetic transformations, as the separate identification of reaction
types is necessary. Additionally, they tend to be more resource-intensive in comparison to
policy ranking-based methods.

Evaluation During the evaluation phase (sometimes referred to as “simulation”), another
scoring function (the so-called “evaluation” or “value” function) is used to estimate the ret-
rosynthetic feasibility of a given node. The goal of the evaluation function is to assign a score
defining the potential of the node’s exploration (term Q in equation 4.1). This step highly
influences the tree search strategy, as the tree will grow towards the highly evaluated nodes.
The function can be based on either a heuristic or a machine learning approach.

The widely adopted heuristic evaluation function known as "rollout" or "playout" was
initially introduced in the early variants of the MCTS for retrosynthesis.[21, 3] During the
evaluation, the rollout recursively creates child nodes by selecting the top-1 most probable rules
according to the ranking provided by the policy function. The policy function can be used the
same as in the expansion step (as was done in Thakkar et al.[3]) or a separate one (as was done
in Segler et al.[21]). This process continues until building blocks are found, or the maximum

102 Self-learning-based synthesis planning

search depth of the tree is reached (Figure 4.9a). If building blocks are found, the node receives
a score of 1, otherwise 0.

Fig. 4.9 a) A rollout function descends the tree using the top-1 most probable rules according
to the policy network. If rollout has found a node consisting only of building blocks, it returns
a score of 1, else a score of 0. b) A “value” model that predicts the node’s score based on
structures in the node being evaluated.

The performance of the rollout function is critically dependent on the effectiveness of
the retro-rules ranking provided by the policy function. The rollout function only employs
the highest ranked retro-rule, thus, in the case of a perfect ranking, it will always select the
optimal retro-transformation that leads to the building blocks. This, in turn, will result in the
identification of the most efficient synthetic pathways during the first iterations of the tree
search. However, in practice, policy functions can be noisy and their top-1 ranking accuracy is
often low [3]. The high rate of false negatives in ranking may can lead to certain promising
branches of the tree not being explored during the tree search. In an attempt to improve
the rollout function, Ishida et al.[131] introduced a hybrid approach that combines heuristic
scores (for example, ring disconnection or selective transformation scores) with it to improve
the performance of the retrosynthetic search. While this approach did demonstrate some
improvement, the performance gain was not substantial.

Another evaluation function is based on neural networks (4.9b). Given the input molecular
structure the neural network predicts the node’s score. Neural networks were not widely used
before due to the difficulty of preparing suitable training data for them. Thus, there is no

4.2 Retrosynthetic planning 103

analytical method for calculating the probability that a molecule would lead to the desired
building blocks without performing a retrosynthetic search. This problem was solved when a
self-learning approach was proposed[125]. In this method, the neural network learns from the
results of tree searches and adjusts itself to more accurately predict the scores of nodes. Thus,
the self-learning technique can improve the search strategy over time as the value network
is trained. For example, Schreck et al.[105] trained a value network using self-learning to
predict the “cost” of a molecule and then choose the most “economic” synthetic pathways.
Wang et al.119 also used self-learning to train a value network to optimise pathways based
on “green” or environmentally-friendly criteria, such as lower reaction temperatures and more
cost-effective catalysts. Both of these studies demonstrated that self-learning could help to
shorten the length of synthetic pathways; however, the training process requires a large amount
of time and resources, often requiring millions of CPU hours.

Update In the update stage (also known as “backpropagation”), the score of created node
v is used to update the scores of all parents’ nodes (Qprev). A common update function is:

Qnew =
Qprev ∗N + v

N +1
(4.5)

where v – is the score obtained from the value function for the evaluated node, N is the
number of visits in the updating node, Qprev and Qnew are the previous and new scores of the
node, respectively.

Search strategies Retrosynthetic search can be performed using two distinct strategies:
the evaluation-first and the expansion-first approaches. In the evaluation-first approach, each
child node is assigned a user-defined constant score during the “expansion” step, and then
the expanded node is scored during the “evaluation” phase (Figure 4.10). This approach is
characterised by a more stochastic selection of nodes for expansion, as the nodes on the last
levels of the tree were not yet scored and visited. The evaluation-first strategy is suitable for
noisy evaluation functions, such as rollout, and depending on the constant c, this strategy
promotes the exploration of neighbouring nodes. Another benefit is the speed of this strategy,
as the evaluation function is only called once per iteration. However, with a better evaluation
function, this approach will not improve the search quality as selection of nodes the last levels
selection will be done randomly. The evaluation-first strategy is used by default in most modern
MCTS-based retrosynthesis tools.[21, 3, 127]

Compared to the evaluation-first, the expansion-first strategy is more time-consuming. In
this approach, the evaluation function estimates the child nodes instead of the current node
(as depicted in Figure 4.11). This stage can be limiting, as the evaluation function will be

104 Self-learning-based synthesis planning

Fig. 4.10 In this example, the classic UCT equation 4.1 was used with c=0.1, the update
function was taken from equation 4.5, and the tree is on the 5th iteration.

called multiple times per iteration rather than once. As a result, the expanding node in the
selection phase will be selected based on its existing score. This strategy is effective when
using a reliable value function, for example human expert. In fact, most of early retrosynthetic
algorithms employed an evaluation-first strategy.[104, 112, 113]

Self-learning A self-learning method is an approach to training for model-based reinforce-
ment learning architectures (such as value- and policy-based MCTS)[132]. The general idea is
to perform several simulations (tree searches in the case of MCTS) and then collect training
data about successful and failed decisions for further model fine-tuning. Because of that, this
technique became a key to the success of modern MCTS algorithms for games.[125, 133, 132]

Figure 4.12 shows the main scheme of self-learning in case of MCTS-based retrosynthesis.
In the initial phase of self-learning, the search algorithm employs a value neural network
initialised with random weights to conduct tree searches for a set of synthetic targets. The
resulting trees are then used to form a tuning set where the inputs are retrons and labels are
based on whether the retron was involved in a path that led to the building blocks or not. The
formed tuning set is used to tune the value neural network, which is subsequently utilised by
the tree search algorithm in the next iterations (repetitions) of self-learning on the same set of
synthetic targets. This process of self-learning continues over several repetitions, also known

4.2 Retrosynthetic planning 105

Fig. 4.11 Scheme of MCTS with expansion-first search strategy. In this example, the classic
UCT equation 4.1 was used with c=0.1, the update function was taken from equation 4.5, and
the tree is on the 4th iteration. In this setup, the evaluation function is applied on each created
node and during the update stage maximum value of all new nodes is used to update all parent
nodes.

as iteration or rounds of self-learning, where the value network’s weights for tree searches and
tuning are taken from the previous repetition.

Figure 4.13 shows the formation of the tuning set. All retrons that were involved in
branches that led to building blocks are initially collected and considered as positive examples.
Afterwards, all other retrons in the tree are extracted and are considered as negative examples.
It is important to note that if a retron has led to building blocks at least once, it is considered
a positive example. The labels or scores for positive and negative examples are assigned
depending on the task, which can either be a regression[2] or classification[105] problem. For
example, Wang et al.[2] used a special technique known as bootstrapping to assign scores for
retrons. In this technique, the building blocks are assigned a score of 1, and the retrons leading
to them are assigned a score that is the average of their precursor’s scores, multiplied by a
discount factor. The retrons on the last levels of the tree that are not available are assigned zero
score.

The utilisation of a self-learning approach is a highly attractive technique due to its many
benefits, including the lack of necessity for pre-collected training data, the ability to accelerate

106 Self-learning-based synthesis planning

Fig. 4.12 Scheme of self-learning concept

the search process, and the high level of flexibility in optimisation of synthetic pathways.
However, the primary limitation of this method is the computational power required. The tree
search is already challenging to parallelise and it cannot be used with graphics processing units
(GPUs). At the same time during self-learning several repetitions are performed that include
thousands of tree searches. Therefore, the computational complexity limits the development of
self-learning MCTS-based retrosynthetic algorithms.

MCTS-based approaches In 2017, Segler et al.[21] the first architecture of a data-driven,
Monte Carlo Tree Search (MCTS)-based approach for retrosynthesis. The tool, named 3N-
MCTS, extracted retrosynthetic transformations from the Reaxys database and utilised three
neural networks to select promising retro-rules and predict the feasibility of reactions. The
authors demonstrated that the integration of MCTS and deep learning models leads to a
significant increase in the speed of retrosynthetic search, through efficient tree exploration.
Later, this tool was implemented in the Reaxys platform, which is commercially available.

Since the introduction of MCTS-based retrosynthesis, several further developments have
been made in this field. For example, AiZynthFinder[3], is the first fully open-source MCTS
implementation that has achieved state-of-the-art results. It was trained on automatically col-
lected reaction database from United States Patent and Trademark Office (USPTO). The authors
adopted the similar architecture from work of Segler et al.[21], hohowever they used only

4.2 Retrosynthetic planning 107

Fig. 4.13 Reward assign during the analysis of a tree search. If the molecule has participated at
least once in the root leading to the building blocks, it will receive a positive reward (point);
otherwise, it will receive 0.

Fig. 4.14 Timeline of the recent developments of MCTS-based retrosynthetic tools. Here
tools in green are open-source, green with hachure is partially open-source (the full tool is
unavailable), yellow has no open-source code, and blue are commercial platforms.

108 Self-learning-based synthesis planning

one neural network for selection of retro-rules. Another open-source retrosynthesis platform
ASKCOS[127] augmented the reaction feasibility predictor with forward prediction model that
predicts possible side-products and recommends suitable conditions. This retrosynthesis plat-
form was based on both Reaxys and USPTO databases and was combined with a synthetic robot
that successfully optimised synthetic routes for 15 known drugs. Some other approaches have
also focused on improving retrosynthetic analysis to identify more environmentally friendly
synthetic pathways[2], reduce the cost of synthesis[105] or improving retrosynthetic search
performance[129, 131].

Except 3N-MCTS, several other commercial tools were presented. In March 2020, IKTOS
released the Spaya platform[134], which is capable of calculating the cost of a synthetic pathway
based on the source of building blocks and includes filters to ensure the regioselectivity of
reactions. However, details about the tool are not widely available. Another MCTS-based
variant was patented by Insilico Medicine in 2021, which is similar to the ASKCOS approach
with the added feature of a model for ranking the obtained synthetic pathways.[135]

The use of MCTS has accelerated the development of retrosynthesis tools. Among the
key benefits of the MCTS-based retrosynthesis is the speed of search. Thus, they are able to
propose multiple synthetic pathways within a relatively short time frame of several minutes,
even without parallelisation. Furthermore, the implementation of the MCTS algorithm is
relatively straightforward, which can be seen by the number of recently developed tools.

On the other hand, current retrosynthesis tools heavily rely on selection functions that
prioritise retro-rules, which are trained solely on reaction databases and thus tend to bias
selection towards existing reactions. As previously mentioned, these databases consist of
historical data and as a result, the selection function prioritises transformations of the most
studied reactions, rather than those that may be useful for retrosynthesis. This limitation
can be addressed by the introduction of self-learning algorithms, in which scoring functions
are learned from the previous experience. While two studies[105, 2] have demonstrated the
potential advantages of self-learning (e.g. finding shorter synthetic pathways and increasing
search speed), it required a substantial amount of computational time and have yet to be
compared with previous developments in the field. Therefore, the future development of
self-learning MCTS-based algorithms presents the most interest in the advancement of more
powerful retrosynthesis planning tools.

4.2.1 Graph-Based Self-Learning Retrosynthesis

The literature review reveals several challenges associated with automated retrosynthesis. One
of the primary challenges is the speed of the search process. In the 1990s, the slow speed
of computation hindered the development of retrosynthetic tools, resulting in their limited

4.2 Retrosynthetic planning 109

ability to solve only relatively simple synthesis molecules.[136] However, with the recent
advancements in computing power and the emergence of deep learning theory, new methods
combining Monte Carlo tree search with deep learning scoring functions have significantly
improved the speed of retrosynthetic search.[21] Additionally, the ease of implementation has
made this approach the most popular in current development, as evidenced by the numerous
variants that have been implemented.

Still, the problem of synthetic pathways search for natural-product compounds remains
unsolved. Despite the existence of tools such as Synthia, which features a comprehensive set of
retrosynthetic rules, predefined strategies for functional group protection, and heuristic scoring
methods that reflect the logic of human experts, these tools are still only able to solve a limited
number of synthetically complex compounds, with many remaining out of reach.[137] The
main limitation is that the search process is constrained by the human-based logic included in
reaction data and is unable to propose novel synthesis strategies. The similar problem existed
in algorithms for strategic games until NN-based Monte Carlo Tree Search (MCTS) algorithms
have demonstrated superhuman performance in them.[125, 133, 132] However, most MCTS-
based retrosynthesis approaches are still limited by the human bias. The selection of rules
and evaluation of precursors heavily depend on policy networks that are trained on historical
reaction data, resulting in a bias towards the most popular and well-studied reactions, rather
than those that may be more valuable for synthesis planning. Therefore, in order to find more
cost-efficient synthetic pathways for complex compounds, the synthetic planning algorithm
have to be able to obtain its own experience, rather than rely solely on human knowledge.

One way towards new experience of the search algorithm is self-learning technique. One of
the primary benefits is the ability to adapt and learn from previous trials, which is particularly
useful in situations where the preparation of training data is challenging. Unlike pre-trained
policy and value functions, which are limited by the availability of reaction data, self-learning
algorithms have the capability to improve themselves with more repetitions. Additionally,
self-learning has been shown to increase the speed of search and decrease the length of synthetic
pathways, which are central goals of any search algorithm used in retrosynthetic planning.
Furthermore, retrosynthetic tools enhanced with self-learning demonstrate an ability to optimize
search in a given direction or under specific constraints. Finally, they are able to improve with
time as the number of trials increases. These advantages are crucial for the development of
future automated retrosynthetic platforms, where search algorithms are integrated with robotic
systems and capable of optimising synthetic pathways without human intervention.

The self-learning approach was previously applied to retrosynthesis search, where evaluation
function was replaced from rollout to neural network. However, the authors utilized a pre-
trained ranking policy network on reaction data, which restricted the algorithm’s potential for

110 Self-learning-based synthesis planning

“imagination” of new search strategies. Additionally, these studies did not provide a comparison
to previous methods and did not make their source code publicly available. These limitations
impede the ability to reproduce and utilise their findings further.

In this study, we address aforementioned issues in a new approach to retrosynthesis called
GSLRetro (Graph-based Self-Learning Retrosynthesis) that utilises graph neural networks
(GNNs) for both the policy and value functions. This method includes a self-learning training
strategy with two evaluation strategies, as well as a rule extraction module. We demonstrate
that the self-learning approach, specifically the trained value GNN, significantly increases
the number of solved molecules by 20% and enhances the efficiency of retrosynthetic search
compared to heuristic evaluation functions such as rollout and random functions. We also
compare GSLRetro to the state-of-the-art MCTS algorithm AiZynthFinder[3, 138], and show
that GSLRetro outperforms in the number of synthetic pathways found while maintaining high
pathway quality.

The previous works were focused only on the performance of MCTS to solve randomly
picked molecules or reproduce existing synthetic routes. However, there has been limited
investigation into the performance of tree searches for molecules of different complexities. To
address this gap, we introduce a new benchmarking dataset composed of evenly distributed
“easy-to-synthesise” and natural product-like molecules using the Synthetic Accessibility
Score (SAScore) [5]. By evaluating the performance of GSLRetro with different evaluation
functions and AiZynthFinder on this dataset, we demonstrate that the trained value network
with self-learning significantly outperforms previous approaches for both “easy” and “complex”
molecules.

4.2.2 Methods

Proposed algorithms

Policy function As previously discussed in the review section, ranking policy networks are
heavily influenced by human bias as they are trained on reaction data. This effect negatively
impacts the shaping of the search algorithm’s own experience, therefore in our work, we
propose an alternative approach referred to as a "filtering" policy network. The concept behind
the filtering network is that instead of learning to rank reaction templates, it learns to keep
only those that can be successfully applied to the input structure. The successful application of
rule results in structures with no valence errors, which may occur as a result of the presence
of leaving groups in reactions from which rules originated. In this way filtering approach
eliminates the influence of human bias as the policy network is not trained on reaction data and
the search relies solely on the value network, which learns from the results of previous tree

4.2 Retrosynthetic planning 111

searches. Furthermore, this method allows for the incorporation of new rules without the need
for reaction examples, which is beneficial in hybrid approaches that combine automatically
extracted rules with those crafted by human experts. However, the number of applicable rules
still can be big and it’s needed to prioritise those that can be more useful in retrosynthesis.
Hence, most perspective rules based on pre-defined heuristics can be chosen in addition to
applicable rules. Then, the neural network will simultaneously predict all applicable retro-rules
and those that seem more perspective.

In this work, priority retro-rules are selected based on basic intuition in the process of
retrosynthetic analysis: preference is given to those retro-rules that split the structure into
two or more “large” structures (more than six heavy atoms) or those that break a ring (Figure
4.15). This choice of retro-rules favours coupling and cyclisation reactions, which are the most
important in synthesis of complex molecules.

Fig. 4.15 Examples of “priority” rules. a) a “coupling” retro-rule and b) a retro-rule that might
correspond to a cyclisation reaction.

Self-learning In training the value network with self-learning, we employ an evaluation-first
search strategy combined with an ε-greedy policy technique. The evaluation-first strategy is
beneficial for increasing the speed of training as the value network has not yet been fully trained.
The ε-greedy technique promotes exploration by introducing random choices into the selection
step with a probability of ε .[105] This method allows the tree search to explore a greater
diversity of paths during the self-learning process. In the validation phase, an expansion-first
strategy is utilised to evaluate the performance of retrosynthesis with a trained value network.
As the trained value network is assumed to be reliable, the expansion-first approach is expected
to show better performance.

Retrosynthetic tree The retrosynthetic tree was implemented with special addition for cases,
where an application of retro-rule resulted in two unavailable precursors. Such instances are
handled by a retrosynthesis queue to which all unavailable molecules are added (Figure 4.16).
From this queue, a random structure is selected as the node’s representative to which the

112 Self-learning-based synthesis planning

retro-rules will be applied. The remaining structures from the queue are inherited in the child
nodes. If a retro-rule has created building blocks, these structures will not be added to the
queue. The creation of nodes continues until the retro-synthesis queue is empty.

Fig. 4.16 An example of a tree branch and corresponding retrosynthetic pathway with a
branched structure.

Additionally, retro-rules can be applied multiple times to the same molecule. This situation
often occurs when a molecule contains symmetrical functional groups or due to the limited
environment of the retro-rules (Figure 4.17). In this work, if a retro-rule can be applied more
than once, all possible structures are created and assigned to individual nodes.

Data

Reaction data As a source of retro-templates the standardised USPTO was taken. However,
the USPTO data used in our work was standardised but not filtered and thus may still contain
reaction records with no reaction centre or reaction with atom-to-atom mapping errors. To
remove such erroneous data, we implemented the following filters for the reactions (Figure
4.18):

1. The “no reaction” filter removes a reaction if it has reactants and identical products;

2. The “small molecules” filter removes a reaction if all reactants and products consist of
molecules with a number of heavy atoms no greater than 6;

4.2 Retrosynthetic planning 113

Fig. 4.17 An example of a retrosynthetic rule (a variant of Suzuki coupling) from the USPTO
data set that can be applied to phenazepam in different ways and act as a coupling or heterocy-
clisation reaction rule. This example illustrates a scenario where the confined reaction centre in
the retro-rule leads to ambiguity in applying the retro-rule to the molecule.

3. The “reaction distance” filter removes a reaction if the number of changed bonds is more
than 6;

4. The “multi-centre reaction” filter removes a reaction record if it includes multiple reaction
centres;

5. The “Csp3 −C breaking” filter removes a reaction if a bond between two sp3 carbons is
broken, as these reactions are energetically unfavourable and may indicate an atom-to-
atom mapping error;

6. The “C−C ring breaking” filter removes a reaction if a bond between two carbons in the
same ring of size 5, 6, or 7 is broken. The rings are determined by the “smallest set of
smallest rings” (SSSR) algorithm;

7. The “C−H breaking” filter removes a reaction if a C-H bond is broken with the formation
of a C-C bond unless the record is a condensation reaction or reaction with carbenes.
This is done by checking presence of heteroatoms neighbours around reacting carbons.

The protocol for the extraction of retro-rules from reactions was developed using the
CGRtools python library[94]. This protocol, given a reaction, involves the extraction of
substructures containing the atoms of the reaction centre and their immediate environment for
each reactant and product. Afterwards, the reactant and product substructures are exchanged.
In cases where the reaction includes reagents, they are not incorporated into the retro-rule.
All labels that pertain to the atoms of the reaction centre, including hybridisation, the number
of neighbours, and the sizes of rings in which the atoms participate, are preserved. In case

114 Self-learning-based synthesis planning

Fig. 4.18 Examples of reactions that did not pass proposed filters. Here are presented filters
that check reactions that are probably energetically unfavourable.

of 1st environment atoms only the sizes of rings are preserved. The formed retrosynthetic
transformation is subsequently applied to the product of the reaction from which it was extracted
and is considered valid if it is able to generate the reactants of the reaction. An example of an
obtained retro-rule is shown in Figure 4.19.

Fig. 4.19 Example of reaction rule used in the GSLRetro. For the rule’s “reactant query”,
atoms of the reaction centre and their neighbours (1st environment) are saved. The atoms of
the reaction centre include information about the number of their neighbours, hybridisation
and sizes of the rings. The atoms of the first environment only include information about the
number of rings in which these atoms were included.

The standardised USPTO database consisted of 1.316 million reactions, of which only
990K reactions passed the filters described above. The reaction rules were then extracted from
the filtered USPTO dataset, resulting in a total of 45.318 retro-rules with the first environment.

4.2 Retrosynthetic planning 115

Among these, 13K retro-rules were deemed “popular,” meaning that they occurred at least in
three reactions.

Building blocks The building blocks were taken from previous work[127]. The authors
collected building blocks from E-molecules and Sigma-Aldrich stocks. The structures were
standardised according to the protocol described in Section 3.2.1. In total, the building block
set included 186K of unique molecules.

Benchmarking sets The data used in training and testing was formed from ChEMBL
v.27[139] and COCONUT[140] databases. ChEMBL is a database of molecules with drug-like
properties and bioactivity data with 1.6M of unique structures, and COCONUT (COlleCtion of
Open Natural prodUcTs) is a database that includes 400K known natural-product compounds.
Both databases include real compounds with different synthetic complexity. During their
analysis, the Synthetic Accessibility Score (SAScore)[5] was used to visualise the distribution
of “easy-to-synthesise” and complex molecules (Figure 4.20).

Fig. 4.20 Distribution of synthetic accessibility score (SAScore) among ChEMBL (dashed line)
and COCONUT (solid line) databases. The SAScore is a fragment-based metric that ranges
from 1 (“easy-to-synthesise” structures) to 10 (“hard-to-synthesise” structures).

From Figure 4.20 it is evident that COCONUT includes more complex compounds to
synthesise. However, the total number of compounds is lower than in ChEMBL, so both
databases have been merged into one dataset. This dataset was partitioned into seven bins by

116 Self-learning-based synthesis planning

SAScore (calculated by the RDKit package[141]) from 1.5 to 8.5 in increments of 1(Figure
4.21). A MaxMin diversity selection was carried out among each split using the Chemfp
package v. 4.0[142]. The descriptors for diversity selection were used as Morgan fingerprints
with size 16384 and radius 2. For each split, 4100 of the most diverse structures were selected.
A random 100 diverse structures from each bin were taken into the test set (700 molecules in
total), and the rest formed the training set for self-learning (28K molecules).

Fig. 4.21 Preparation workflow of training and test molecules from ChEMBL and COCONUT
databases.

Policy network training data The policy network dataset was constructed using 600K
molecules from the ChEMBL and COCONUT datasets, which were not included in the self-
learning training and benchmarking sets. 13K rules extracted from USPTO were applied to
each molecule, and the outcome was evaluated. On average, over 304 rules were found to be
"applicable" for each molecule, with around 134 of them being recognised as "priority". The
formed policy network dataset was randomly divided into training and validation sets in a ratio
of 4:1.

Implementation details

MCTS implementation The retrosynthetic tree and search algorithm based on the Monte-
Carlo tree search was implemented using Python v. 3.10 and CGRtools library v. 4.1.32[94].
The search was limited by tree parameters: number of iterations, time of the search and size of
the tree (total number of nodes). The molecules with a number of heavy atoms of no more than
six atoms are assumed to be available. In the selection stage the classical UCT equation (1)
was used. The UCT coefficient c was chosen as 0.1. Other hyperparameters were adopted from
standard parameters of AiZynthFinder[3] tool. Thus, the maximal depth of the tree search is
set to 6, and the number of tree iterations is fixed at 100. For policy network predictions, the
top 50 retro-templates are used.

4.2 Retrosynthetic planning 117

Policy network The policy network was composed of two parts: molecular representation
and prediction parts (Figure 4.22). The part responsible for creating a numerical representation
of structure (Graph Convolution Network blocks and summation over atoms) adopted from
VQGAE architecture. The prediction part was formed from two linear layers with sigmoid
activation functions that predict the probabilities for the “applicable” and “priority” rules.
These two vectors were summed with a coefficient determined by the hyperparameter α . This
approach ensured that the priority rules receive the highest score, followed by other applicable
rules, while the remaining rules were discarded.

Fig. 4.22 Scheme of policy network used in this work. GCN refers to graph convolution
network, ReLU is a rectifier linear unit, plus sign is a residual summation.

The true multilabel “applicability” and “priority” vectors for training the policy were
obtained by applying all retro-rules to the policy network training molecules. If the retro-rule
created structures without valence errors after application, the retro-rule would be assigned a 1
in the “applicability” vector, otherwise 0. In addition, if the rule split the molecules into two
or more structures with number of heavy atoms more than 6 or opens a cycle, the “priority”
would be 1; otherwise, 0.

The training was done for 100 epochs with batch size 256, number of GCN blocks equal
to 5, an Adabelief optimiser[143] with starting learning rate of 0.0005 and dropout with a
probability of 0.4. The dimension of all vectors was set 512. The model achieved 0.947
Balanced Accuracy (BA) for applicable rules and 0.929 for priority rules on the validation set.
The coefficient α for a ratio of applicable and “priority” rules was 0.5.

Value network The architecture of the evaluation function is similar to the policy network
(Figure 4.23). The molecular representation part of the neural network is the same, and the
difference is that only the Linear layer returns one value. For simplicity, the training task of the
value network is a classification problem, where positive class corresponds to the structure that
leads to building blocks; otherwise, it considered as negative class. The training parameters

118 Self-learning-based synthesis planning

employed are consistent with those used for the policy network. The only deviation is the
number of training epochs, which is set at 20 for each tuning step.

Fig. 4.23 Scheme of value network used in this work. GCN refers to graph convolution network,
ReLU is a rectifier linear unit, plus sign is a residual summation.

Self-learning The process of self-learning repetition can be time-consuming, particularly
when the size of the synthetic targets set is large. Simultaneously, the process of fine-tuning
the value network after a full repetition result in a prolonged optimisation for an optimal value
network. To mitigate this issue, we use of mini-repetitions on subsets, or batches, formed from
the targets set. In the case of self-learning synthetic targets training set of 28k structures, we
employ batches of size 500, thereby performing 56 mini-repetitions (batches) in one “large”
repetition.

4.2.3 Results and discussions

AiZynthFinder reproduction

AiZynthFinder is a state-of-the-art, open-source MCTS-based retrosynthesis tool that uses a
pre-trained policy neural network on Morgan fingerprints with a rollout evaluation function.
In this study, we utilise the version 3.4 of AiZynthFinder as a reference tool for comparison
purposes. The reaction data for retro-rules and policy network training used in AiZynthFinder is
sourced from the USPTO database. The original database was standardised by the authors and
extracted 44K rules with the first environment. However, this version of the USPTO database
is not publicly available.

In order to ensure fair evaluation of the search algorithms and models implemented in
retrosynthesis tools, it is imperative that the building blocks and reaction data used to extract

4.2 Retrosynthetic planning 119

retro-rules be consistent across compared tools. Therefore, we employed our own version
of standardised and filtered USPTO data as a source of retrosynthetic transformations. We
followed the protocol for rule extraction and training of the policy network provided in the
AiZynthFinder package and RDChiral library[144] without any modifications. Thus, the version
of AiZynthFinder that utilises the trained policy model and prepared retro-rules provided by
the authors is referred to as the "original" version, while the version based on our own data is
referred to as the "reproduced" version. It is important to mention that the other part (search
algorithm and search and training hyperparameters) for both versions were the same.

The retro-rules extraction protocol applied to our version of the USPTO yielded 34K retro-
rules with the first environment. The difference between the original rules and the reproduced
ones was mainly due to the application of standardisation techniques on the same database.
Thus, it was expected that most of the rules would overlap (Figure 4.24a). Nevertheless, the
variation in data curation protocols had a substantial effect on the reactions, resulting in only
around half of the original retro-rules being present in the reproduced rules.

Fig. 4.24 On the left, Venn diagram (a) is based on “original” rules provided in AiZynthFinder
and “reproduced” rules extracted from filtered USPTO. On the right are examples of rules that
are present only in the “original” (b) and “reproduced” (c) sets of rules.

The extracted rules were then used to train policy network. The architecture of the policy
network and its training parameters were adopted from the original paper[3]. The input for the
policy network consisted of Morgan fingerprints with a radius of 2 and 2048 bits. The policy
network was trained for 100 epochs using the Adam optimiser[?] with a learning rate of 0.001
and a cross-entropy loss function. The primary performance metrics were the top 1, 5, 10, and
50 accuracies, monitored throughout the training process. At the end of the training, the top-1
and top-50 accuracy on the test set were 0.576 and 0.950, respectively. These results can be
compared to those reported in the original paper, which showed a top-1 accuracy of 0.595 (the
top-50 accuracy was not provided). Based on these results, it can be concluded that the training
was successful.

120 Self-learning-based synthesis planning

The parameters for the retrosynthetic search were adopted from those provided by the
authors of AiZynthFinder[3], with the exception of an increase in the allotted search time to 10
minutes. The standard parameters of AiZynthFinder are following: the maximal depth of the
tree search is set to 6, and the number of tree iterations is fixed at 100. The coefficient c in the
UCT formula is equal to 1.4. For policy network predictions, the top 50 retro-templates are
used.

Figure 4.25 shows the results of a performance test for the original and reproduced ver-
sions of AiZynthFinder on a benchmarking dataset. The results demonstrate that the original
AiZynthFinder is able to solve more targets than the reproduced version. On average, the
synthetic pathways solved by the original AiZynthFinder are 1.2 times shorter, and the number
of pathways found is 2.1 times greater. One potential explanation for the lower number of found
pathways for the reproduced AiZynthFinder is the strictness of the proposed standardisation
protocol. This strictness has resulted in a 1.3 times lower number of retro-rules derived from
the standardised USPTO compared to the number of rules provided by the authors. However,
the difference in number of retro-rules seemed not only the reason for such a decrease in
performance. Therefore, it was decided to visually compare the synthetic paths provided by the
original and the reproduced AiZynthFinder.

Fig. 4.25 Results of original (blue) and reproduced (orange) AiZynthFinder on the benchmark-
ing test set. The shared (red bar) refers to molecules which were solved by both implementa-
tions.

During the visual analysis of the synthetic pathways, it was found that the reproduced
AiZynthFinder did not see some building blocks during the search (Figure 4.26). Consequently,

4.2 Retrosynthetic planning 121

the reproduced algorithm is sometimes forced to “synthesise” building blocks, which lengthens
the synthetic pathways and reduce the number of solved query molecules. This observation
indicates the presence of a hidden bug that prevents the results from being fully reproduced
with the AiZynthFinder. The code for AiZynthFinder was taken from the original repository
without any modifications. We were not able to identify the source of the bug (AiZynthFinder
itself or in RDChiral library) and we notified authors of its presence.

Fig. 4.26 Examples of retrosynthetic pathways for the “original” AiZynthFinder (a) and the
reproduced one using our data (b). Here, the original algorithm sees 2,3,5,6-tetrafluorophenol
(in red) as a building block, while the reproduced one does not.

GSLRetro implementation

The most popular evaluation function employed in previous NN-based MCTS algorithms
was the heuristic-based rollout function. For the fair comparison with value network, we
implemented rollout function as a baseline in GSLRetro following 3N-MCTS approach. Addi-
tionally, we implemented a random evaluation function, which returned a score derived from a
uniform distribution with a range from 0 to 1. For GSLRetro with both functions, the search
strategy employed was expansion-first, as the use of an extensive strategy did not result in any
performance improvement. Furthermore, the reproduced AiZynthFinder was also utilised in
the performance comparison, despite the presence of bugs. The results of comparison are given
in Figure 4.27.

In this setup GSLRetro with even a random evaluation function, outperforms reproduced
AiZynthFinder for “easy-to-synthesise” molecules. This observation supports the idea that
even a naive filtering policy with heuristically chosen “priority” rules can efficiently search
for synthetic pathways. Note that the performance of reproduced AiZynthFinder is lowered,
but it is unlikely to outperform the GSLRetro rollout results. On the other hand, the rollout
evaluation function is slightly better than the random one. As rollout highly depends on the
top-1 ranking by policy network, it is evident that the quality of the ranking of the molecules
by the filtering + priority policy is low.

122 Self-learning-based synthesis planning

Fig. 4.27 Results of tree searches for the reproduced AiZynthFinder (orange), GSLRetro with
filtering policy and random (grey) rollout (yellow), and self-learned value network (green)
evaluation functions.

At the moment, the self-learning of GSLRetro value network was performed until the
10th batch of the first “large” repetition. As was previously mentioned, self-learning is time
consuming process and in current version of GSLRetro one mini-repetition requires 24 hours.

Figure 4.28 shows the performance of the value network during self-learning on the
benchmarking dataset. It can be seen that after training on the first batch, the value network
quickly reaches a performance level close to the best and then gradually improves. One potential
reason for the slower growth of search performance with the value network may be that it
initially solves molecules for which it is relatively easy to find pathways and then gradually
learns new synthetic strategies through self-learning. At the same time, it can be seen, that very
complex molecules (starting from SAScore bin > 7) are almost never solved. One of possible
reasons is the limited amount of tree iterations and the maximum depth of the retrosynthetic tree.
Thus, the authors of Synthia[137] showed, that most of natural product like compound require
long synthetic pathways (> 10 steps). However, in the current implementation of GSLRetro the
increase of tree depth and number of iterations will dramatically increase the computational
time. We leave this issue for the future work.

The performance of the GSLRetro with a trained value network was compared to that of
heuristic (rollout) and random evaluation functions (Figure 4.27). Compared to other functions,
the value network significantly outperforms other approaches. This is mainly seen in the
molecules for SAScore bins 3 and 4. At the same time, GSLRetro with value network also
outperforms reproduced AiZynthFinder. However, AiZynthFinder solved three molecules from
bins 7 and 8, as the compounds with similar cores existed in the building blocks (which means
that these retrosynthesis problems were actually easy). One assumption why the GSLRetro

4.2 Retrosynthetic planning 123

Fig. 4.28 Visualisation of performance of GSLRetro with value network trained after several
batches calculated on the benchmarking data set. Here the bar with batch “0” refers to the
random model before training and “1” means the value network after tuning on the first batch.

could not find it is due to the filtering policy network, which prioritise rules changing core
structure in the first.

Figure 4.29 compares the performance of GSLRetro with the value network and the original
AiZynthFinder. The results show that GSLRetro performs similarly to AiZynthFinder on rela-
tively easy-to-synthesise molecules but outperforms AiZynthFinder on molecules of medium
synthetic complexity. However, for complex structures, both tools show zero performance. Not
surprisingly, both can solve many of the same molecules. As previously noted, the reproduced
and original retrosynthetic transformations in AiZynthFinder have 50% of overlap. At the
same time, the reproduced rules for AiZynthFinder and GSLRetro rules are extracted from the
same version of USTPO data set. Thus, it can be assumed that the same pathways are likely
discovered by both AiZynthFinder and GSLRetro.

Analysis of the value function

The trained value network is of interest not only as a method for improving tree search but also
as a scoring function for the goal-directed generation of molecules. During self-learning, it
should identify the key patterns that lead to the successful discovery of synthetic pathways.
Consequently, it can be assumed that molecules with a higher score from the value network are
likely to be solved by GSLRetro.

First, the distribution of value network scores (VNScores) was examined. The scores for
800 training molecules with SAScores ranging from 4.2 to 4.5 were obtained and then plotted
against the number of heavy atoms and the number of rings (Figure 4.30).

124 Self-learning-based synthesis planning

Fig. 4.29 Results of tree searches for the GSLRetro with self-learned value network (green)
and original AiZynthFinder (blue). The shared (red bar) refers to molecules which were solved
by both tools.

Fig. 4.30 Distribution of a number of heavy atoms (a) and a number of cycles (b) as a function
of scores from value network for molecules from self-learning training set with SAScores in
the range [4.2; 4.5].

4.2 Retrosynthetic planning 125

Analysis of the value network scores reveals that, due to an imbalanced training set (with
an average of 6% positive examples), the range of scores is narrow and, in the majority of
cases (97%), score value does not exceed 0.01. At the same time, there is a weak correlation
between the size of the molecule, the number of cycles, and the VNScore. This indicates that
the network is not primarily seeking simple dependencies between the retrosynthetic feasibility
and structural parameters of the compound but rather giving greater importance to its fragments.
We also compared VNScore with SAScores; however, we did not find any correlation between
them.

Examples of pathways

Consistent with our observations above, the Monte-Carlo tree search algorithm advanced by
the value network are promising in finding the synthetic routes than any other MCTS-variants
based on the rollout function. Unfortunately, the number of solved synthetic targets is the only
metric to estimate the performance of retrosynthetic tools. Therefore, some examples of found
synthetic pathways are given for both GSLRetro with value network and AiZynthFinder.

Fig. 4.31 Example of the same synthetic pathway found by original AiZynthFinder and
GSLRetro with value network. The SAScore of the target is 3.52.

Figure 4.31 shows a synthetic pathway for a target with SAScore equal to 3.52 that was
found by both algorithms. Here a two-step synthesis is proposed, first amide formation from
acyl chloride and secondary amine (nucleophilic acyl substitution) followed by imide alkylation.
The last step might produce several products, as there is no forward reaction prediction module
that validates if product of reaction is major one. However, the presented synthesis provides
a general idea that can be easily modified by an expert chemist. Therefore, the question of
regioselectivity of reactions falls outside the scope of this work.

126 Self-learning-based synthesis planning

Fig. 4.32 Examples of different synthetic pathways for the same target solved by original
AiZynthFinder (a) and GSLRetro with value network (b). Here each number corresponds to a
reaction transformation.

However, for some of the shared solved synthetic targets, AiZynthFinder and GSLRetro
proposed different synthetic strategies. As illustrated in Figure 4.32, two different pathways
were found for the same synthetic target with SAScore 3.55. Specifically, AiZynthFinder
proposed a six-step pathway, while GSLRetro proposed a shorter four-step pathway. The
use of the rollout function in AiZynthFinder likely contributed to the longer length of the
synthetic pathway. Interestingly, both strategies share the same idea of forming the central
1,3-oxazinane cycle. AiZynthFinder’s strategy involves reacting the triphosgene with alcohol

4.2 Retrosynthetic planning 127

and amine groups (Figure 4.32a), reaction 3. However, the Wurtz (or possibly Ulmann)
reaction (5) is probably non-selective and require harsh conditions. Reaction 6 will also require
harsh conditions not to say that there are doubts in its feasibility. In contrast, GSLRetro’s
strategy involves reacting the isocyanate group to form the 1,3-oxazinan-2-one cycle (Figure
4.32b, reaction 4), which has a high yield and requires low temperatures[145]. However, the
reaction 3 probably require protection of oxygen, since it could possibly react with isocyanate.
Also, reaction 2 requiring in situ formation of organometallic reactant could not proceed in
presence of sulphonamide, thus it is more reasonable to change order of reaction 1 and 2: first
make addition of bromopropylamine to ketone and then generate sulphonamide. Nonetheless,
considering synthetic path length and choice of reactions, in this example, GSLRetro more
elegant pathway.

In rare cases, AiZynthFinder and GSLRetro solve different synthetic targets. For example,
AiZynthFinder found synthetic pathways for natural products with SAScore 4.16 (Figure
4.33a). The main steps of the proposed strategy are the hetero-cyclisation of tetrazole ring with
triethyl orthoformate and azide salt (reaction 2) and the addition of 4-(1,2,4-Triazol-1-yl)phenol
through Williamson ether synthesis (reaction 4). In another case (Figure 4.33b) only GSLRetro
found a pathway for a molecule from the ChEMBL dataset with SAScore 4.02. The main
highlights of this strategy are forming a pyrazolidine cycle (reaction 3) and hetero-cyclisation
by assembling a sultam group (reaction 6). The feasibility of some reactions due to selectivity
issues is questionable, but as we mentioned GSLRetro ignores it for the time being.

As a conclusion, it is worth noting that, despite having fewer reaction templates, GSLRetro’s
extended search strategy with a value network allows it to propose more solutions of the same
or even better quality than previous algorithms.

128 Self-learning-based synthesis planning

Fig. 4.33 Examples of synthetic pathways for solved targets only by a) AiZynthFinder and b)
GSLRetro. Here each number corresponds to a reaction transformation.

Search for synthetic pathways of generated structures

One of the main goals of this work was a combination of generative neural networks for design
of new molecular structures with deep learning empowered retrosynthesis planning. Therefore,
in this part we want to find synthetic pathways for molecules generated by VQGAE using
GSLRetro with value network.

As a result, out of the four structures, three were successfully solved. Examples of the
found synthetic pathways are shown in Figure 4.34.

4.2 Retrosynthetic planning 129

Fig. 4.34 Example of synthetic pathways for the three ligands generated for the adenosine A2A
receptor. In blue, a molecule is generated by VQGAE; in red, the intermediate molecules; in
green, the building blocks.

The proposed synthetic pathways for all structures look quite reasonable. What is interesting,
even minor modifications to the structures could result in significantly different synthesis
strategies. At the same time, a common feature among these pathways is the final synthesis step
involving forming an amide bond, which is a widely used and well-known reaction in medicinal
chemistry due to its high yield and mild conditions. Additionally, these pathways share similar
starting building blocks and provide insight into potential starting points for synthesising these
structures

4.2.4 Summary for the section 4.2

In this section, we introduce a self-learning variant of the MCTS-based retrosynthesis algo-
rithm called GSLRetro. This algorithm comprises of several key components, including a

130 Self-learning-based synthesis planning

rule extraction module, two search strategies, graph-based neural networks for both policy
and value functions, a self-learning mechanism, a rollout evaluation function, a synthetic
pathway visualization module, and other relevant functionalities. Additionally, we propose
the integration of a new approach, referred to as a “filtering” policy network, in conjunction
with a value network trained through self-learning. This combination effectively eliminates the
influence of human bias in the search algorithms, enabling the exploration of new synthetic
strategies and the incorporation of new rules without the need for reaction examples.

The results showed that the trained value neural network significantly outperformed the
heuristic rollout function, especially on the quite complex molecules (SAScore between 3
and 6). At the same time, it was compared with the state-of-the-art retrosynthesis algorithm
AiZynthFinder with our and provided with the tool retro-rules. It was found that GSLRetro
outperforms AiZynthFinder in both setups in the number of solved compounds and it generated
more high-quality synthetic pathways for molecules of medium synthetic complexity.

Thus, the GSLRetro was able to improve search performance in a highly constrained setting,
characterized by a limited tree depth of 6 and a maximum number of iterations of 100. However,
it was unable to “crack” the most complex molecules. This represents a significant challenge
that remains to be addressed. There exist two possible explanations for this limitation. Firstly,
the source of retrosynthetic transformations, the USPTO database, was found to contain many
reactions with errors in atom-to-atom mapping, which resulted in a reduced number of useful
retro-rules and hindered the retrosynthesis of natural product compounds. Secondly, it is
possible that the depth and iteration limit were too restrictive for the successful retrosynthesis
of complex compounds, which may require more than 6 steps for synthesis. However, the
current implemented version is not yet efficient, as it requires several months of self-learning
even with small number of tree iterations. Thus, we believe that in the future developments the
optimisation and parallelisation of code and choice of better source of reaction rules will help
in solution of synthetically complex molecules.

In conclusion, our work demonstrates the effectiveness of the self-learning GSLRetro
algorithm for retrosynthetic planning, which can be further improved by training the policy and
value networks in self-learning mode using more comprehensive reaction rules that take into
account the reactivity and regioselectivity of the reactions.

4.3 Validation techniques for prediction of reaction rate constant in different conditions 131

4.3 Validation techniques for prediction of reaction rate con-
stant in different conditions

Despite significant progress in retrosynthesis planning, current tools still need to improve
their ability to determine reaction efficiency regarding thermodynamic and kinetic parameters.
This is partly because retrosynthetic transformations consider only a limited environment
around the reaction centre and do not take into account the reaction conditions. As a result,
even when retrosynthetic transformations are successfully applied, the resulting synthetic
routes may not be feasible due to unfavourable kinetics or thermodynamics. To overcome
this challenge, chemoinformatics researchers are working on methods to optimise reaction
conditions and predict relevant physicochemical parameters for each reaction in a synthetic
pathway. These efforts are essential to improve the accuracy and efficiency of retrosynthetic
design and, ultimately, to enable the synthesis of complex molecules.

One approach to evaluating the feasibility of chemical reactions is the use of quantitative
structure-property relationship (QSPR) models based on a graph representation of reactions
known as the Condensed Graph of Reaction (CGR). This representation allows for the calcu-
lation of fragment descriptors for the reaction and the construction of QSPR models, as well
as the incorporation of information about the reaction conditions to predict kinetic, thermody-
namic, and yield parameters. However, a key challenge in QSPR modelling is the validation
of the model, which can be affected by the fact that physical and chemical properties are
often measured under various conditions, and the number of unique reaction transformations is
much smaller than the number of records. This can lead to an overly optimistic assessment of
predictions in conventional cross-validation techniques, as the test set reactions may be similar
to the ones in the training set. Therefore, we introduce novel techniques for validating the
predictions of QSPR models for new reaction transformations and in new conditions. These
techniques were applied to the training and validation of three models designed to predict the
logarithm of the reaction rate constant for SN2, E2, and Diels-Alder reactions.

Cross-validation strategies in QSPR modelling of chemical
reactions
A. Rakhimbekova a, T.N. Akhmetshin a,b, G.I. Minibaeva a, R.I. Nugmanov a,
T.R. Gimadiev c, T.I. Madzhidov a, I.I. Baskin a,d and A. Varnek b,c

aA.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia; bLaboratory of
Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, Strasbourg, France; cInstitute for Chemical
Reaction Design and Discovery, Hokkaido University, Sapporo, Japan; dDepartment of Materials Science and
Engineering, Technion – Israel Institute of Technology, Haifa, Israel

ABSTRACT
In this article, we consider cross-validation of the quantitative structure-
property relationship models for reactions and show that the conven-
tional k-fold cross-validation (CV) procedure gives an ‘optimistically’
biased assessment of prediction performance. To address this issue, we
suggest two strategies of model cross-validation, ‘transformation-out’
CV, and ‘solvent-out’ CV. Unlike the conventional k-fold cross-validation
approach that does not consider the nature of objects, the proposed
procedures provide an unbiased estimation of the predictive perfor-
mance of the models for novel types of structural transformations in
chemical reactions and reactions going under new conditions. Both the
suggested strategies have been applied to predict the rate constants of
bimolecular elimination and nucleophilic substitution reactions, and
Diels-Alder cycloaddition. All suggested cross-validation methodolo-
gies and tutorial are implemented in the open-source software pack-
age CIMtools (https://github.com/cimm-kzn/CIMtools).

ARTICLE HISTORY
Received 18 September 2020
Accepted 26 January 2021

KEYWORDS
Validation; QSPR; chemical
reactions; rate constant
prediction; reaction rate;
structure-reactivity
modelling

Introduction

Nowadays the external validation is considered as an integral component of any
Quantitative structure-activity/property relationship (QSAR/QSPR) model, irrespective of
the nature of the chemical objects under investigation [1–10]. It was several times pointed
out that the correct validation of QSAR/QSPR models is essential [1–3,5,6,11]. It is common
to distinguish internal validation, which is used for model selection, and external validation,
used for the quality assessment [12]. In most cases, external validation is performed on
a dedicated test set [2,11]. Its drawback is possible to bias due to random fluctuations,
arbitrary or unfair selection of molecules to test set, which can be overcome by the rational
division of the data set into training and test sets [13–18]. Tetko et al. [3] proposed external
cross-validation as a more stable alternative to single the external test set. In this procedure,
a part of the parent dataset is randomly placed to the external (outer) set used for assessing
the predictive performance of the approach, while remaining objects are used for the model

CONTACT T.I. Madzhidov Timur.Madzhidov@kpfu.ru
Supplementary data for this article can be accessed at: https://doi.org/10.1080/1062936X.2021.1883107

SAR AND QSAR IN ENVIRONMENTAL RESEARCH
2021, VOL. 32, NO. 3, 207–219
https://doi.org/10.1080/1062936X.2021.1883107

© 2021 Informa UK Limited, trading as Taylor & Francis Group

building including hyperparameters selection based on internal cross-validation. Outer set
loops over the whole data set guarantee the involvement of all data points in external
prediction. In machine-learning, this technique is also known as nested cross-validation.
Since an external (outer) test set is by no means used for model building, it is free from
model selection bias [3,19] and, hence, can be used for assessment of model performance.

Data sets of complex chemical objects, such as chemical reactions, polymers, com-
pounds’ mixtures often include similar elements (e.g. the same reactant participating in
different reactions). Therefore, correct external validation of QSPR models for these
objects is much less straightforward compared to ‘classical’ QSAR/QSPR models for
individual molecules [7–9,20,21]. Each of these cases requires designing a specific valida-
tion strategy. For the models predicting properties of binary mixtures, ‘Mixtures Out’,
‘Compounds Out’, ‘Points Out’, ‘Everything Out’ cross-validation strategies have been
suggested [7,8]. The ‘Donor Out’, ‘Acceptor Out’, and ‘Both out’ strategies have been
successfully applied to validate QSPR models for dissociation free energy of H-bond
donor-acceptor complexes [9].

Nowadays, growing attention is attracted to statistical models predicting the kinetic or
thermodynamic properties of chemical reactions [22–24]. Chemical reactions represent
a complex object because they involve several molecular species of two types (reactants
and products) and their properties depend on experimental conditions (solvent, catalyst,
temperature, etc). In most of the studies, random split or cross-validation (CV) techniques
were used for the validation of models for chemical reactions [25–33]. However, recently
we published some studies demonstrating the flaws of conventional validation techni-
ques for reaction characteristics modelling [20,21]. We demonstrated on the bimolecular
rate constant data set that the error estimated in conventional CV (RMSE = 0.3 log k units)
was lower than both estimated experimental error (about 0.5–1.0 log k units) and that
computed for the external test set [20]. This can be explained by the fact that the data set
included the same structural transformations of reactants to products studied under
slightly different conditions. Since the reaction rate values of these reactions were often
very close, they behaved as duplicates. Their presence in both training and test sets in CV
loops inevitably leads to very optimistic estimates of predictive ability [20,21]. To over-
come this problem, the model’s performance was assessed using a subset of reactions
studied under one sole condition (called unique data points, UDP) for which such kind of
bias is not possible [20]. However, such validation is not a panacea: its results strongly
depend on the fraction of UDP in the data set, which can potentially vary from 0 (all
reactions were studied at different conditions) to 100% (all reactions were studied at one
condition only). Thus, such a type of validation has limited applicability.

Polishchuk et al. [21] suggested the ‘product-out’ cross-validation strategy in which all
reactions with the same main product are placed either in the training or test set for
a particular fold. It has been shown that the ranking of models on different descriptors
based on ‘product-out’ validation is significantly different in comparison with conven-
tional cross-validation called ‘reaction-out’ CV.

Validation for QSAR modelling means the assessment of the predictive power of the
model on novel datapoints. For molecular QSAR/QSPR studies, a test set on each cross-
validation fold consists of molecules absent in the training set. However, the novelty issue
is more complex in the case of reactions modelling and should account for both either

208 A. RAKHIMBEKOVA ET AL.

chemical transformation or experimental conditions. Therefore, here we propose two
validation strategies that assess predictive performance for a particular novelty type:

● ‘transformation-out’ which estimates the ability to predict characteristics of chemical
reactions with a novel reactant-product pair (hereafter we call it transformation),

● ‘solvent-out’ which assesses the quality of prediction for reactions proceeding in
a new solvent.

Note that in ‘transformation-out’ validation reactions of the test set proceed under the same
conditions as the reactions of the training set. In ‘solvent-out’ validation, the test set includes
chemical transformations present in the training set, but solvents are different. The presence
of completely new reactions, having both new transformations and solvents is more
challenging for the model. In principle, such data points can be used for ‘both-out’ valida-
tion. However, they were very scarce or absent in the considered data sets.

As reactions rates are often measured under several conditions and at several tem-
peratures and the number of unique transformations is much lower than the number of
reactions (see Table 1), in conventional cross-validation, the test set reactions may have
close neighbours in the training set which explains its higher Q2 and lower RMSE
compared to ‘transformation-out’ and ‘solvent-out’ validation.

Proposed validation methodologies have been applied to the modelling of the loga-
rithm of SN2, E2, and Diels-Alder reactions rate constants (log k). They have been imple-
mented in the open-source CIMtools software package (https://github.com/cimm-kzn
/CIMtools) developed for reaction modelling.

Materials and methods

Data set and descriptors

Three data sets for the following types of reactions were used in this study: bimolecular
nucleophilic substitution (SN2), bimolecular elimination (E2), Diels-Alder reactions (DA).
These data sets were collected in our previous studies [20,30,31]. An external data set of
90 Menshutkin reactions (SN2) were also used. The data set was collected and curated in our
previous study [20]. Note that this data set comprised novel transformations and the same
solvents as in the training set. Thus, it corresponds closely to the ‘transformation-out’
validation strategy. The data set characteristics are presented in Table 1.

Descriptors of the reactions
The descriptor vector for each reaction resulted from a concatenation of structural descrip-
tors and parameters describing experimental conditions (solvent and temperature) as

Table 1. The data set characteristics.
Data set Number of reactions Number of unique transformations Number of unique solvents Ref.

SN2 4830 1382 43 [20]
E2 1820 934 21 [30]
DA 1866 812 21 [31]
SN2 (external) 90 48 3 [20]

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 209

proposed in paper [32]. The chemical transformations were encoded by the Condensed
Graphs of Reaction (CGR). In the CGR approach, a reaction is represented by a single 2D
graph, some sort of pseudomolecule that contains both conventional chemical bonds and
so-called dynamic bonds characterizing changed/broken/formed chemical bonds [34,35].
Thus, CGR represents the whole transformation, i.e. reactant-product pair, as a single
molecular graph. CGRtools library was used to generate CGRs [36]. ISIDA fragment descrip-
tors were computed for CGR using the ISIDA Fragmentor [37] program. They represent the
subgraphs of different topologies and sizes. Each subgraph is considered as a descriptor
type whereas its occurrence in a molecule is the descriptor value. In this study, sequences of
atoms and bonds containing from 2 to 4 atoms were considered. This fragmentation was
successfully used in our previous modelling studies [20,30,31,33].

Descriptors of the reaction conditions
Each solvent was described by 15 descriptors that represent polarity, polarizability,
H-acidity, and basicity: Catalan SPP [38], SA [39], and SB constants [38], Camlet–Taft
constants α [40], β [41], and π* [42], four functions depending on the dielectric constant,
three functions depending on the refractive index as shown in paper [32]. The latter seven
descriptors reflect the polarity and polarizability of the bulk of the solvent. The inverse
absolute temperature, 1/T (in Kelvin degrees) was also used as a descriptor of temperature
influence. Since some of the solvents were a water-organic mixture, the molar ratio of
organic solvent was used as a descriptor as well (100% for pure solvent).

Model building and validation

The general procedure of modelling
The models were built using random forest (denoted as RF) approach implemented in the
scikit-learn library [43]. The number of trees was equal to 500 in all cases, the optimized
hyperparameter was the values of features selected upon tree branching (option max_-
features). The rest parameters were set to their default values.

The predictive performance of the best models was estimated using the nested cross-
validation technique. In this approach, an outer (external validation) loop split the initial
data set into an external test set (used for assessment of the model performance) and
a modelling set (used for the model building including internal cross-validation). Here,
three strategies of such split have been tested: conventional random 5-fold cross-
validation (denoted as ‘reaction-out’ CV), ‘transformation-out’ CV, and ‘solvent-out’ CV
(see below). A hyperparameter (the number of features to consider when looking for the
best split) of the Random Forest regression was optimized on modelling set in the
conventional 5-fold cross-validation using grid search. Its best value found in internal
cross-validation was used to build a model on the whole modelling set, followed by the
application of resulting models to the external test set. Predictions for the objects in the
external test set folds were merged and then performance metrics (determination coeffi-
cient, r2, corresponding to Q2

F2 formulae in Roy et al. [5], and RMSE) were calculated.
Notice, that performance on ‘reaction-out’ CV, ‘transformation-out’ CV, and ‘solvent-out’
CV reflects predictive ability on the external test set.

210 A. RAKHIMBEKOVA ET AL.

Strategies for model external validation in QSPR for reaction datasets
Three types of cross-validation strategies were applied. In the cross-validation procedure,
the initial data set was divided into a given number of subsets, corresponding to the
desired number of folds. Each subset was sequentially considered as an external test set,
while the rest was used as the modelling set. The schematic representation of ‘reaction-
out’, ‘transformation-out’, and ‘solvent-out’ CV is shown in Figure 1.

The ‘Reaction-out’ CV approach was simply a regular five times repeated five-fold CV.
The sizes of test sets in it are almost equal.

‘Transformation-out’ CV approach was implemented as k-fold cross-validation (Figure
1). In the ‘transformation-out’ procedure, all reactions having the same CGR were placed
into the same fold (different shapes in Figure 1). The implemented splitting algorithm
tried to make the folds approximately equal in size. Therefore, a fold might contain
a group of several CGRs (as presented in fold 2, Figure 1). Moreover, the test set contained
reactions proceeding in the solvents presented also in the training set, see Figure 1. This
allowed us to avoid a bias due to the presence of new solvents in the test set. Thus, unique
reactions (corresponding to a unique combination of transformation and solvent) were
always placed into the training set, see Figure 1. Since in ‘transformation-out’ validation all
reactions having the same reactants and products were placed into the same subset
(Figure 1), this only showed how well reactions with new reactants and products, i.e. CGRs,
were predicted.

Figure 1. The schematic representation of ‘reaction-out’, ‘transformation out’, and ‘solvent out’ cross-
validation. Each shape characterizes a CGR, and different colours indicate the solvent used. The red
star is a unique reaction. The unique reactions are excluded from the test set and always complement
the training set.

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 211

The ‘Solvent-out’ validation approach was implemented as a leave-one-solvent-out
(Figure 1), as the number of solvent types is usually low (less than 50). An additional
hurdle to the application of k-fold validation was caused by a great imbalance in the
number of reactions corresponding to one solvent. In ‘solvent-out’ validation, all
reactions carried out in the same solvent were placed into the same subset which
is sequentially used as the test set. Each reaction in the test set should have
a counterpart in the training set with the same CGR but proceed in a different
solvent. Unique reactions (in this case, reactions measured in a single solvent) were
always included in the training set and never used in the test set. This method
avoids underestimating the model performance because such reactions represent
new CGR and new solvent for the trained model. It is worth noting that in this study
we have grouped the folds by solvents only, but the developed algorithm can group
following several conditions.

Results and discussion

The models were built using RF and fragment descriptors of CGRs and validated
using three strategies described above, i.e. ‘reaction-out’ CV, ‘transformation-out’ CV,
and ‘solvent-out’ CV. The performance of models for three data sets obtained using
‘reaction-out’ CV, ‘transformation-out’ CV, and ‘solvent-out’ CV strategies are shown
in Table 2. In all three cases, the prediction performance metrics for ‘reaction-out’ CV
validation were better than for ‘transformation-out’ CV. In ‘reaction-out’ CV strategy
reactions having the same reactants and products were simultaneously present in
both training and test set. Two reactions with very similar conditions can be present
in the training and test set, and thus the prediction performance is overoptimistic. In
the ‘transformation-out’ CV strategy, all reactions with the same structural transfor-
mation were present in either the training or the test sets, but not both simulta-
neously. Therefore, RMSE values are bigger than for the ‘reaction-out’ CV strategy
(Table 2), but they remain at acceptable levels.

The independent external set consisting of Menshutkin reactions (SN2) was then used
for model validation as well. Prediction on the external set of reactions was used for
comparison with ‘reaction-out’ and ‘transformation-out’ validation strategies. The data set
contained 48 Menshutkin reactions which had new transformations in comparison with
the training set but were carried out in known solvents (corresponding to the training set).
As expected, the results on the ‘transformation-out’ validation are close to the one of
external validation (r2 = 0.51, RMSE = 0.99 log k units on the external test set), confirming

Table 2. Coefficient of determination (r2) and RMSE for different external validation strategies of QSPR
for three reaction data sets.

Strategy of validation

‘Reaction-out’ ‘Transformation-out’ ‘Solvent-out’

Data set r2
RMSE,

log k units r2
RMSE,

log k units r2
RMSE,

log k units

SN2 0.83 0.48 0.58 0.76 0.39 0.98
E2 0.73 0.77 0.56 0.98 0.14 1.29
DA 0.85 0.73 0.71 1.04 0.76 0.94

212 A. RAKHIMBEKOVA ET AL.

that ‘transformation-out’ validation is a more rigorous and unbiased approach for validat-
ing QSPR models of reactions, and, therefore, reliably assesses the accuracy of predictions
for novel structural transformations of reactions.

The prediction performance metrics in ‘solvent-out’ validation were quite different in
all three cases. Reasonable statistical parameters were observed for the Diels-Alder
reactions data set (r2 = 0.76 and RMSE = 0.94 log k units, respectively). Surprisingly,
‘solvent-out’ validation for bimolecular nucleophilic substitution reaction and bimolecular
elimination reaction data sets led to much worse statistical parameters than for DA data
set. We suggest that such results in the case of Diels-Alder reactions are due to the fact
that most of the reactions in the data set (86%) were carried out in non-polar solvents,
moreover, 74% of the reactions were carried out in toluene, benzene, and chlorobenzene
(53%, 11%, and 10%, respectively). In the remaining data sets, the reactions were carried
out in various solvents of different nature. Moreover, since these reactions have a non-
polar transition state, the solvent effect should affect its rate much.

The obtained results in ‘solvent-out’ external validation on the bimolecular nucleophilic
substitution reaction data set are discussed in more detail. The data set of SN2 reactions
consists of 43 different solvents where the most popular solvents were ethanol (17.9%),
methanol (15.4%), nitrobenzene (13.7%), acetone (12.7%) often used in mixtures with
water – more than half the database (59.7%), Figure 2. The total percentage of all reactions
carried out in the rest 31 solvents that aren’t shown in the diagram (Figure 2) was only 9.1%.

The number of reactions carried out in particular solvents, which were used as a test set
in ‘solvent-out’ validation, ranged from 1 to 422. Note that in ‘solvent-out’ validation the
reactions are not included in the test set if there is no data on rate constant for the same
transformations in other solvents. The values of RMSE for all solvents (folds of ‘leave-one-
solvent-out’ external CV) are given in Table 3 and discussed below. The same tables for DA
and E2 data sets are given in Supplementary Materials (see Tables S1 and S2 in
Supplementary materials).

Figure 2. The percentage of reactions carried out in the most popular solvents for the SN2 data set.

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 213

Generally, we found no clear dependence between solvent type, use of water-organic
mixtures as a solvent, size of the data set, and the prediction of RMSE for SN2 reactions.
Solvents, for which a lot of rate data exist, are characterized by a larger RMSE (from 0.59 to
1.52). At the same time, a poor prediction is common also for the least popular solvents.
Among 8 solvents that are often used in mixtures with water 5 (methanol, ethanol,
dimethyl sulphoxide, acetone, acetonitrile) are poorly predicted but 3 (dioxane, sulfolane,
oxolane) are predicted well. Prediction error in alcohols has some trend: heavy alcohols
(more than 2 carbons) have low values of RMSE (from 0.09 to 0.45), ethanol has a greater
error (0.590) and methanol has the greatest (0.82). It is worth noting that water has an
even greater error (about 1.02).

We hypothesize that such specificity of ‘solvent-out’ validation can be explained by the
insufficient generalization ability of the RF approach, probably due to the application of
a large number of weakly informative structural descriptors and a few highly informative
solvent descriptors. To support this hypothesis, the descriptors used for trees’ branching
were analysed, Figure 3. One can see that RF pays a lot of attention to solvent descriptors:
they are selected for branching in about 20–30% of trees, depending on the level of the
tree (Figure 3), while solvent descriptors constitute only 5% of the descriptor set. So, poor
prediction of solvents cannot be explained by ignorance of solvent features by the model.
It can be seen from Figure 3 that RF is more likely to select solvent descriptors as
branching criteria at the first and second level of the tree (i.e. at the root node of the
decision tree or right after it) and to use fragment descriptors more frequently in levels 3
and lower (Figure 3).

Table 3. Results of external ‘solvent-out’ validation of developed QSPR models. Each fold is character-
ized by one solvent. Only solvents used in 10+ reactions were shown.

Folds/solvents
Number of reactions

in the test set
Number of unique

transformations r2 RMSE, log k units

Methanol* 422 167 0.406 0.847
Acetone* 327 84 0.540 0.854
Ethanol* 305 89 0.676 0.593
Nitrobenzene 284 87 −0.644 1.481
Dimethyl sulphoxide * 173 25 −0.380 1.371
Benzene 137 53 0.520 0.745
Water 113 36 −0.146 1.039
1,4-Dioxane* 80 27 0.632 0.542
Dimethylformamide 74 36 0.518 1.206
Acetonitrile* 56 41 −0.193 0.973
Nitromethane 40 14 0.140 0.617
Oxolane* 34 14 0.741 0.415
Phenylmethanol 28 12 0.481 0.434
Chlorobenzene 26 15 0.658 0.507
Butan-1-ol 26 11 0.819 0.331
Propan-2-ol 23 16 0.788 0.431
Propan-1-ol 17 9 0.828 0.318
Bromobenzene 16 10 0.645 0.442
Butan-2-one 15 7 0.725 0.194
Toluene 15 9 0.250 0.623
Cyclohexane 14 12 −2.215 1.491
Sulfolane* 14 5 0.175 0.231
Anisole 11 7 0.699 0.186
Heptan-1-ol 11 4 0.851 0.177
3-Methylbutan-1-ol 10 6 0.126 0.538

*mixtures with water

214 A. RAKHIMBEKOVA ET AL.

We believe such a selection of descriptors can be explained as RF tends to internally
find correlations within a particular solvent type based on structural descriptors of
transformation, creating a kind of family of submodels for each particular solvent type(s).
Thus, the model does not try to generalize solvent influence, and RF predicts reactions in
new solvents poorer than with new transformations. It also explains the mentioned
specificity of alcohols prediction. Heavy alcohols are predicted similarly by the same
implicit RF submodel based on the rest of alcohols but since methanol and ethanol are
quite different from the rest, their prediction is poorer.

Our test on other machine-learning methods (support vector machines, neural nets)
and other fragment descriptors showed similar results: models had a rather poor ‘solvent-
out’ validation performance. It seems that the problem lies mainly in the application of
fragment descriptors, but it would be the subject of specific research.

Conclusion

Validation of QSPR models is a very important aspect to understand the reliability of the
models for the prediction of new objects not present in the data set. In the case of chemical
reactions, test set objects can have new structural transformations or proceed under new
conditions (new solvents, new additives, new catalysts, etc.). Thus, different types of
novelties can be considered. Model performance on conventional cross-validation that

Figure 3. The percentage of solvent and fragment descriptors used for branching at particular depth
levels in decision trees inside trained on SN2 reactions RF model. The root node in the decision tree
was considered as having depth 0. Notice that only a few trees had depth greater than 40 which
caused spurious fluctuations. Temperature descriptor was ignored.

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 215

does not have control over the constitution of the test set has unclear meaning in the case
of chemical reaction modelling. To evaluate the ability of the model predicting property of
chemical reaction, two strategies of model validation, ‘transformation-out’ and ‘solvent-out’,
have been suggested. ‘Transformation-out’ validation provides an estimation of the pre-
dictive performance of the models for novel types of structural transformations in chemical
reactions and ‘solvent-out’ CV – for reactions going under new solvents. It is worth noting
that ‘solvent-out’ validation is a special case of ‘condition-out’ validation, i.e. we can group
folds not only by solvents but also by other conditions (new additives, new catalysts,
a combination of several conditions). It has been shown that performance on ‘transforma-
tion-out’ validation is similar to the external set one containing new transformations. Thus,
the proposed two validation strategies are recommended to be used for an unbiased
evaluation of reaction-property models.

On bimolecular nucleophilic substitution reaction and bimolecular elimination reaction
data sets, we revealed that the reaction-property models better predict the rate constant
for new structural transformations than the rate constants for reactions occurring in novel
solvents. It was explained by the inability of applied machine learning methods (RF,
support vector machines, neural nets) and different fragment descriptors to correctly
generalize dependency of the reaction rate for wide solvent types. But it will require
specific research that we plan to be done in the nearest future.

Proposed validation strategies and a tutorial are implemented into open-source
CIMtools library for structure-property modelling available on GitHub (https://github.
com/cimm-kzn/CIMtools).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Russian Science Foundation grant No 19-73-10137.

ORCID

A. Rakhimbekova http://orcid.org/0000-0002-6820-6385
T.N. Akhmetshin http://orcid.org/0000-0002-2549-6431
G.I. Minibaeva http://orcid.org/0000-0001-7964-4842
R.I. Nugmanov http://orcid.org/0000-0002-8541-9681
T.R. Gimadiev http://orcid.org/0000-0001-5012-0308
T.I. Madzhidov http://orcid.org/0000-0002-3834-6985
I.I. Baskin http://orcid.org/0000-0003-0874-1148
A. Varnek http://orcid.org/0000-0003-1886-925X

References

[1] M. Balls, B.J. Blaauboer, J.H. Fentem, L. Bruner, R.D. Combes, B. Ekwall, R.J. Fielder, A. Guillouzo,
R.W. Lewis, D.P. Lovell, C.A. Reinhardt, G. Repetto, D. Sladowski, H. Spielmann, and F. Zucco,

216 A. RAKHIMBEKOVA ET AL.

Practical aspects of the validation of toxicity test procedures, Altern. Lab. Anim. 23 (1995), pp.
129–146. doi:10.1177/026119299502300116.

[2] A. Tropsha, P. Gramatica, and V. Gombar, The importance of being earnest: Validation is the
absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci.
22 (2003), pp. 69–77. doi:10.1002/qsar.200390007.

[3] I.V. Tetko, V.P. Solov’ev, A.V. Antonov, X. Yao, J.P. Doucet, B. Fan, F. Hoonakker, D. Fourches,
P. Jost, N. Lachiche, and A. Varnek, Benchmarking of linear and nonlinear approaches for
quantitative structure−property relationship studies of metal complexation with ionophores,
J. Chem. Inf. Model. 46 (2006), pp. 808–819. doi:10.1021/ci0504216.

[4] R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C.P. Varghese, and R.K. Agrawal, Validation of
QSAR models - Strategies and importance, Int. J. Drug Discov. 2 (2011), pp. 511–519.

[5] K. Roy, S. Kar, and R.N. Das, Validation of QSAR models, in Understanding the Basics of QSAR for
Applications in Pharmaceutical Sciences and Risk Assessment, K. Roy (ed.), Elsevier, San
Diego, 2015, pp. 231–289.

[6] P. Gramatica and A. Sangion, A historical excursus on the statistical validation parameters for
QSAR models: A clarification concerning metrics and terminology, J. Chem. Inf. Model. 56 (2016),
pp. 1127–1131. doi:10.1021/acs.jcim.6b00088.

[7] I. Oprisiu, E. Varlamova, E. Muratov, A. Artemenko, G. Marcou, P. Polishchuk, V. Kuz’min, and
A. Varnek, QSPR approach to predict nonadditive properties of mixtures. Application to bubble
point temperatures of binary mixtures of liquids, Mol. Inform. 31 (2012), pp. 491–502.
doi:10.1002/minf.201200006.

[8] E. Muratov, E.V. Varlamova, V.E. Kuzmin, A.G. Artemenko, N.N. Muratov, S. Mileyko,
D. Fourches, and A. Tropsha, Everything out validation approach for qsar models of chemical
mixtures, J. Clin. Pharm. 1 (2014), pp. 1005.

[9] M. Glavatskikh, T. Madzhidov, V. Solov’ev, G. Marcou, D. Horvath, and A. Varnek, Predictive
models for the free energy of hydrogen bonded complexes with single and cooperative hydrogen
bonds, Mol. Inform. 35 (2016), pp. 629–638. doi:10.1002/minf.201600070.

[10] A.O. Aptula, N.G. Jeliazkova, T.W. Schultz, and M.T.D. Cronin, The better predictive model: High
q2 for the training set or low root mean square error of prediction for the test set? QSAR Comb.
Sci. 24 (2005), pp. 385–396. doi:10.1002/qsar.200430909.

[11] A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
doi:10.1016/S1093-3263(01)00123-1.

[12] P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26
(2007), pp. 694–701. doi:10.1002/qsar.200610151.

[13] J. Gasteiger and J. Zupan, Neural Networks in Chemistry, Angew. Chemie Int. Ed. English 32
(1993), pp. 503–527. doi:10.1002/anie.199305031.

[14] J. Huuskonen, QSAR modeling with the electrotopological state: TIBO derivatives, J. Chem. Inf.
Comput. Sci. 41 (2001), pp. 425–429. doi:10.1021/ci0001435.

[15] I.V. Tetko, V.V. Kovalishyn, and D.J. Livingstone, Volume learning algorithm artificial neural
networks for 3D QSAR studies, J. Med. Chem. 44 (2001), pp. 2411–2420. doi:10.1021/
jm010858e.

[16] M. Snarey, N.K. Terrett, P. Willett, and D.J. Wilton, Comparison of algorithms for
dissimilarity-based compound selection, J. Mol. Graph. Model. 15 (1997), pp. 372–385.
doi:10.1016/S1093-3263(98)00008-4.

[17] A. Golbraikh, Molecular dataset diversity indices and their applications to comparison of
chemical databases and QSAR analysis, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 414–425.
doi:10.1021/ci990437u.

[18] C. Szántai-Kis, I. Kövesdi, G. Kéri, and L. Örfi, Validation subset selections for extrapolation
oriented QSPAR models, Mol. Divers. 7 (2003), pp. 37–43. doi:10.1023/B:
MODI.0000006538.99122.00.

[19] D. Baumann and K. Baumann, Reliable estimation of prediction errors for QSAR models under
model uncertainty using double cross-validation, J. Cheminform. 6 (2014), pp. 47. doi:10.1186/
s13321-014-0047-1.

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 217

[20] T. Gimadiev, T. Madzhidov, I. Tetko, R. Nugmanov, I. Casciuc, O. Klimchuk, A. Bodrov,
P. Polishchuk, I. Antipinn, and A. Varnek, Bimolecular nucleophilic substitution reactions:
Predictive models for rate constants and molecular reaction pairs analysis, Mol. Inform. 38
(2019), pp. 1800104. doi:10.1002/minf.201800104.

[21] P. Polishchuk, T. Madzhidov, T. Gimadiev, A. Bodrov, R. Nugmanovn, and A. Varnek, Structure–
reactivity modeling using mixture-based representation of chemical reactions, J. Comput. Aided.
Mol. Des. 31 (2017), pp. 829–839. doi:10.1007/s10822-017-0044-3.

[22] O. Engkvist, P.-O. Norrby, N. Selmi, Y. Lam, Z. Peng, E.C. Sherer, W. Amberg, T. Erhardn, and L.
A. Smyth, Computational prediction of chemical reactions: Current status and outlook, Drug
Discov. Today 23 (2018), pp. 1203–1218. doi:10.1016/j.drudis.2018.02.014.

[23] H. Gao, T.J. Struble, C.W. Coley, Y. Wang, W.H. Green, and K.F. Jensen, Using machine learning
to predict suitable conditions for organic reactions, ACS Cent. Sci. 4 (2018), pp. 1465–1476.
doi:10.1021/acscentsci.8b00357.

[24] I.I. Baskin, T.I. Madzhidov, I.S. Antipin, and A.A. Varnek, Artificial intelligence in synthetic
chemistry: Achievements and prospects, Russ. Chem. Rev. 86 (2017), pp. 1127–1156.
doi:10.1070/RCR4746.

[25] D.T. Ahneman, J.G. Estrada, S. Lin, S.D. Dreher, and A.G. Doyle, Predicting reaction performance
in C–N cross-coupling using machine learning, Science 360 (2018), pp. 186–190. doi:10.1126/
science.aar5169.

[26] F. Sandfort, F. Strieth-Kalthoff, M. Kühnemund, C. Beecks, and F. Glorius, A structure-based
platform for predicting chemical reactivity, Chem 6 (2020), pp. 1379–1390. doi:10.1016/j.
chempr.2020.02.017.

[27] J.A. Kammeraad, J. Goetz, E.A. Walker, A. Tewari, and P.M. Zimmerman, What does the machine
learn? Knowledge representations of chemical reactivity, J. Chem. Inf. Model. 60 (2020), pp.
1290–1301. doi:10.1021/acs.jcim.9b00721.

[28] A.A. Kravtsov, P.V. Karpov, I.I. Baskin, V.A. Palyulin, and N.S. Zefirov, Prediction of rate constants
of SN2 reactions by the multicomponent QSPR method, Dokl. Chem. 440 (2011), pp. 299–301.
doi:10.1134/S0012500811100107.

[29] A.A. Kravtsov, P.V. Karpov, I.I. Baskin, V.A. Palyulin, and N.S. Zefirov, Prediction of the preferable
mechanism of nucleophilic substitution at saturated carbon atom and prognosis of SN1 rate
constants by means of QSPR, Dokl. Chem. 441 (2011), pp. 314–317. doi:10.1134/
S0012500811110048.

[30] T.I. Madzhidov, A.V. Bodrov, T.R. Gimadiev, R.I. Nugmanov, I.S. Antipin, and A.A. Varnek,
Structure–reactivity relationship in bimolecular elimination reactions based on the condensed
graph of a reaction, J. Struct. Chem. 56 (2015), pp. 1227–1234. doi:10.1134/
S002247661507001X.

[31] T.I. Madzhidov, T.R. Gimadiev, D.A. Malakhova, R.I. Nugmanov, I.I. Baskin, I.S. Antipin, and A.
A. Varnek, Structure–reactivity relationship in Diels–Alder reactions obtained using the con-
densed reaction graph approach, J. Struct. Chem. 58 (2017), pp. 650–656. doi:10.1134/
S0022476617040023.

[32] T.I. Madzhidov, P.G. Polishchuk, R.I. Nugmanov, A.V. Bodrov, A.I. Lin, I.I. Baskin, A.A. Varnek,
and I.S. Antipin, Structure-reactivity relationships in terms of the condensed graphs of reactions,
Russ. J. Org. Chem. 50 (2014), pp. 459–463. doi:10.1134/S1070428014040010.

[33] T.R. Gimadiev, T.I. Madzhidov, R.I. Nugmanov, I.I. Baskin, I.S. Antipin, and A. Varnek, Assessment
of tautomer distribution using the condensed reaction graph approach, J. Comput. Aided. Mol.
Des. 32 (2018), pp. 401–414. doi:10.1007/s10822-018-0101-6.

[34] A. Varnek, D. Fourches, F. Hoonakker, and V.P. Solov’ev, Substructural fragments: An universal
language to encode reactions, molecular and supramolecular structures, J. Comput. Aided. Mol.
Des. 19 (2005), pp. 693–703. doi:10.1007/s10822-005-9008-0.

[35] F. Hoonakker, N. Lachiche, A. Varnek, and A. Wagner, Condensed graph of reaction: Considering
a chemical reaction as one single pseudo molecule, Int. J. Artif. Intell. Tools 20 (2011), pp.
253–270. doi:10.1142/S0218213011000140.

[36] R.I. Nugmanov, R.N. Mukhametgaleev, T. Akhmetshin, T.R. Gimadiev, V.A. Afonina, T.
I. Madzhidov, and A. Varnek, CGRtools: Python library for molecule, reaction, and condensed

218 A. RAKHIMBEKOVA ET AL.

graph of reaction processing, J. Chem. Inf. Model. 59 (2019), pp. 2516–2521. doi:10.1021/acs.
jcim.9b00102.

[37] A. Varnek, D. Fourches, D. Horvath, O. Klimchuk, C. Gaudin, P. Vayer, V. Solov’ev, F. Hoonakker,
I. Tetko, and G. Marcou, ISIDA - Platform for virtual screening based on fragment and pharma-
cophoric descriptors, Curr. Comput. Aided-Drug Des. 4 (2008), pp. 191–198. doi:10.2174/
157340908785747465.

[38] J. Catalán, V. López, P. Pérez, R. Martin-Villamil, and J.-G. Rodríguez, Progress towards
a generalized solvent polarity scale: The solvatochromism of 2-(dimethylamino)-7-nitrofluorene
and its homomorph 2-fluoro-7-nitrofluorene, Liebigs Ann. 1995 (1995), pp. 241–252.
doi:10.1002/jlac.199519950234.

[39] J. Catalán, C. Díaz, and A. Generalized Solvent, Acidity Scale: The Solvatochromism ofo-tert-
Butylstilbazolium Betaine Dye and Its Homomorpho,o′-Di-tert-butylstilbazolium Betaine Dye,
Liebigs Ann. 1997 (1997), pp. 1941–1949. doi:10.1002/jlac.199719970921.

[40] R.W. Taft and M.J. Kamlet, The solvatochromic comparison method. 2. The .alpha.-scale of
solvent hydrogen-bond donor (HBD) acidities, J. Am. Chem. Soc. 98 (1976), pp. 2886–2894.
doi:10.1021/ja00426a036.

[41] M.J. Kamlet and R.W. Taft, The solvatochromic comparison method. I. The .beta.-scale of solvent
hydrogen-bond acceptor (HBA) basicities, J. Am. Chem. Soc. 98 (1976), pp. 377–383.
doi:10.1021/ja00418a009.

[42] M.J. Kamlet, J.L. Abboud, and R.W. Taft, The solvatochromic comparison method. 6. The .pi.*
scale of solvent polarities, J. Am. Chem. Soc. 99 (1977), pp. 6027–6038. doi:10.1021/
ja00460a031.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, A. Müller,
J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res. 12 (2011), pp. 2825–2830.

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 219

Supporting Information

Table S1. Results of ‘solvent-out’ validation of developed QSPR models for Diels-Alder
reaction data set. Each fold is characterized by one solvent

Folds/solvents
Number of

reactions in test
set

Number of unique
transformations Q2 RMSE, logK

units

toluene 112 38 0.82 0.67
chlorobenzene 91 43 0.93 0.56

benzene 73 28 0.87 0.72
1,4-dioxane 61 34 0.35 2.01

1,2-dichloroethane 37 35 0.83 0.92
trichloromethane 19 16 0.89 0.67

ethyl acetate 17 15 0.61 0.79
acetonitrile 15 11 0.46 0.83

1,4-epoxybutane 12 11 0.65 0.54
propan-2-one 9 7 0.96 0.11

methoxybenzene 9 9 0.90 0.38
dichloromethane 8 8 0.88 0.38

tetrachloromethane 8 8 0.87 0.57
ethanol 7 3 0.84 0.47

nitrobenzene 7 7 0.87 0.58
methanesulfinylmethane 4 2 0.90 0.14

cyclohexane 4 4 0.28 1.73
bromobenzene 2 2 0.83 0.53
nitromethane 2 2 -7.99 0.52
pentan-1-ol 1 1 0.00 0.08
acetic acid 1 1 0.00 0.37

Figure S1. The percentage of Diels-Alder reactions carried out in the most popular solvents

Table S2. Results of ‘solvent-out’ validation of developed QSPR models for bimolecular
elimination reaction data set. Each fold is characterized by one solvent

Folds/solvents
Number of

reactions in test
set

Number of unique
transformations Q2 RMSE, logK

units

ethanol 60 17 0.51 0.75
methanol 58 15 -0.27 1.11

ethane-1,2-diol 46 2 -2.74 1.05
water 44 18 -1.14 1.81

methanesulfinylmethane 32 4 -1.94 2.33
1,4-dioxane 20 14 -0.17 1.58
acetonitrile 18 9 -0.67 1.40

benzene 17 9 -0.33 1.80
propan-2-one 14 10 -0.51 0.89
formamide 12 10 -0.17 0.89

2-methylpropan-2-ol 4 4 0.80 0.44
propan-2-ol 3 1 -7.23 1.09

1,3-dimethylbenzene 3 1 -15.25 1.17
chlorobenzene 3 3 0.65 0.19

trichloromethane 3 3 -1.69 0.87
ethyl acetate 3 3 -2.15 0.54
nitromethane 2 2 -12.07 0.34

hexamethylphosphoramide 2 2 -2.13 0.08

Figure S2. The percentage of E2 reactions carried out in the most popular solvents

4.3 Validation techniques for prediction of reaction rate constant in different conditions 147

4.3.1 Summary for the section 4.3

In this section, we presented novel validation techniques for quantitative structure-property
relationship (QSPR) models, which are used to predict the properties of chemical reactions.
These techniques, known as “transformation-out” and “solvent-out”, allow for the evaluation
of the model’s performance on novel reaction transformations and conditions, respectively.
Our analysis of bimolecular nucleophilic substitution and bimolecular elimination reactions
showed that the models performed better at predicting the rate constants for new structural
transformations than for reactions occurring under novel solvents. This is likely due to the
limitations of the machine learning methods and fragment descriptors used, which may not
accurately capture the dependency of the reaction rate on a wide range of solvents. Our findings
also highlight the need for further research to improve the generalisation of machine learning
models to diverse reaction conditions. Overall, the “transformation-out” and “solvent-out”
validation strategies presented in this work provide an unbiased evaluation of reaction-property
models and should be considered in future studies.

Chapter 5

Conclusions and perspectives

This thesis presents a potential solution to the current challenge in the discovery of synthetically
feasible molecular structures with desired properties based on the combination of generative
approaches with retrosynthetic search methods, both involving graph-based neural networks.

We encountered two major problems when using deep learning methods to generate new
molecular structures: computational efficiency and atom order bias. The computational ef-
ficiency problem was tackled by introducing the Hydrogen-count labelled graph (HLG) rep-
resentation for molecules and related HyFactor autoencoder architecture. Compared to an
architecture based on the conventional molecular graph representation (ReFactor), the applica-
tion of HLG reduces up to 20% of trainable parameters without any performance loss. For a
given seed structure, HyFactor generates more similar structures than ReFactor.

Since the encoder part of HyFactor is not permutation invariant, it leads to order dependence
in the autoencoder latent space. In order to address this issue, a new Vector Quantised Graph-
based AutoEncoder (VQGAE) architecture using permutation invariant operations at the
encoding stage was proposed. A good performance in structure reconstruction and generation
was achieved due to the application of the vector quantisation technique, allowing to learn
the most popular atom-centred fragment vectors. The efficiency of VQGAE latent vectors in
similarity search and QSAR modelling was confirmed in a series of benchmarking calculations.
Finally, VQGAE was tested in the inverse QSAR task, generating new potent inhibitors against
the A2A adenosine receptor target.

Retrosynthetic algorithms typically consist of two main components: retrosynthetic trans-
formation rules and a search strategy which are critical for the performance of the retrosynthetic
analysis. Since the quality of the extracted rules strongly depends on the quality of the reaction
data, a protocol for reaction data curation was proposed and applied to several widely used
reaction databases - USPTO, Reaxys and Pistachio. Since only USPTO was publicly available,
we used its standardised and filtered version for the retrosynthetic rules extraction.

150 Conclusions and perspectives

Inspired by recent advances in retrosynthesis tools based on Monte-Carlo tree search
(MCTS), we developed the Graph Self Learning retrosynthetic tool (GSLRetro). Unlike
previous studies implementing a combination of MCTS with heuristic evaluation functions,
we focused on the development of a self-learning approach combining MCTS with graph
neural networks. Our experiments demonstrated that GSLRetro with a trained value network
significantly increased the number of synthetic pathways compared to those found with random
and rollout heuristic functions. Moreover, compared to the state-of-the-art tool AiZynthFinder,
GSLRetro was able to find 20% more synthetic routes for complex molecules. GSLRetro was
successfully used to find synthetic pathways for molecular structures previously generated by
VQGAE.

Reaction yield depends on the reaction’s thermodynamic and kinetic parameters, particularly
the reaction rate constant. To objectively assess the performance of related ML models,
we proposed two new validation scenarios for predicting the reaction rate constant for new
transformations (“transformation-out” validation) and new reaction conditions (“solvent-out”
validation). These scenarios were tested on three manually-collected SN2, E2, and Diels-Alder
reaction datasets. Our analysis showed that conventional cross-validation overestimates the
performance of the ML models, as the same transformations or conditions are often present in
the validation set.

Perspectives The developments presented in this thesis mark just the beginning of the journey
towards the fully automated design of new molecular structures. We have, indeed, succeeded
in developing and implementing some new search strategies in the chemical space, but still,
there is a room for their improvement. In the realm of “de novo” molecular design using
neural networks, the potential of the developed HLG and VQGAE has yet to be fully explored.
The HLG representation was tested in the unsupervised learning task, but its performance in
supervised tasks (QSAR/QSPR modelling) needs to be investigated. The ordering network of
VQGAE generative part may fail to reconstruct the canonical order of atoms, which needs to
be improved. Another point concerns the systematic analysis (size, chemical content) of the
learned vector representation of fragments by VQGAE. We also expect that VQGAE trained
on large datasets may help to explore more uncharted territories and generate novel and diverse
structures.

In the realm of retrosynthesis, the application of the GSLRetro with a trained value network
has demonstrated a significant improvement in retrosynthetic search capabilities compared to
the tools with heuristic evaluation functions. However, it has been observed that the algorithm
needs help to solve more complex compounds. One of the contributing factors mentioned
earlier is the limited depth of the tree and the number of iterations. These constraints prevented

151

GSLRetro from constructing long multi-step pathways, a common case in the synthesis of
natural product compounds. This problem can be solved in the future by optimising the
GSLRetro code to parallelise the tree search and increase its speed. In addition, the use of
retro rules from the patent-biased USPTO database may also be a limiting factor. Therefore,
a more reliable tool may be achieved by incorporating data-driven and hand-crafted rules.
An alternative approach could be integrating reaction mechanisms instead of automatically
extracted rules. Finally, the existing approaches to validate reaction regioselectivity and
capability, such as in-scope filters and QSPR models (e.g., developed models for SN2, E2 and
Diels-Alder reactions), can be integrated into the GSLRetro to increase the reliability of found
synthetic pathways.

References

[1] E. J. Bjerrum and B. Sattarov, “Improving chemical autoencoder latent space and
molecular de novo generation diversity with heteroencoders,” Biomolecules, vol. 8, no. 4,
pp. 1–17, 2018, arXiv: 1806.09300.

[2] X. Wang, Y. Qian, H. Gao, C. Coley, Y. Mo, R. Barzilay, and K. F. Jensen, “Towards
efficient discovery of green synthetic pathways with Monte Carlo tree search and
reinforcement learning,” Chemical Science, vol. 11, no. 40, pp. 10 959–10 972, 2020.
[Online]. Available: http://xlink.rsc.org/?DOI=D0SC04184J

[3] A. Thakkar, T. Kogej, J. L. Reymond, O. Engkvist, and E. J. Bjerrum, “Datasets and
their influence on the development of computer assisted synthesis planning tools in the
pharmaceutical domain,” Chemical Science, vol. 11, no. 1, pp. 154–168, 2020, publisher:
Royal Society of Chemistry.

[4] T. R. Gimadiev, A. Lin, V. A. Afonina, D. Batyrshin, R. I. Nugmanov, T. Akhmetshin,
P. Sidorov, N. Duybankova, J. Verhoeven, J. Wegner, H. Ceulemans, A. Gedich, T. I.
Madzhidov, and A. Varnek, “Reaction Data Curation I: Chemical Structures and Trans-
formations Standardization,” Molecular Informatics, vol. 40, no. 12, pp. 1–16, 2021.

[5] P. Ertl and A. Schuffenhauer, “Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions,” Journal of
Cheminformatics, vol. 1, no. 1, pp. 1–11, 2009.

[6] A. Varnek and I. I. Baskin, “Chemoinformatics as a Theoretical Chemistry Discipline,”
Molecular Informatics, vol. 30, no. 1, pp. 20–32, Jan. 2011. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/minf.201000100

[7] C. W. Coley, “Defining and Exploring Chemical Spaces,” Trends in Chemistry, vol. 3,
no. 2, pp. 133–145, Feb. 2021. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S2589597420302884

[8] P. G. Polishchuk, T. I. Madzhidov, and A. Varnek, “Estimation of the size of drug-like
chemical space based on GDB-17 data,” Journal of Computer-Aided Molecular Design,
vol. 27, no. 8, pp. 675–679, 2013.

[9] G. Klebe, “Virtual ligand screening: strategies, perspectives and limitations,” Drug
Discovery Today, vol. 11, no. 13-14, pp. 580–594, Jul. 2006. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1359644606001784

http://xlink.rsc.org/?DOI=D0SC04184J
https://onlinelibrary.wiley.com/doi/10.1002/minf.201000100
https://linkinghub.elsevier.com/retrieve/pii/S2589597420302884
https://linkinghub.elsevier.com/retrieve/pii/S2589597420302884
https://linkinghub.elsevier.com/retrieve/pii/S1359644606001784

154 References

[10] G. Schneider, “Virtual screening: an endless staircase?” Nature Reviews
Drug Discovery, vol. 9, no. 4, pp. 273–276, Apr. 2010. [Online]. Available:
http://www.nature.com/articles/nrd3139

[11] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and
computational approaches to estimate solubility and permeability in drug discovery and
development settings 1PII of original article: S0169-409X(96)00423-1. The article was
originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1,” Advanced
Drug Delivery Reviews, vol. 46, no. 1-3, pp. 3–26, Mar. 2001. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0169409X00001290

[12] G. Schneider and U. Fechner, “Computer-based de novo design of drug-like molecules,”
Nature Reviews Drug Discovery, vol. 4, no. 8, pp. 649–663, 2005.

[13] M. Hartenfeller and G. Schneider, “Enabling future drug discovery by de novo design,”
WIREs Computational Molecular Science, vol. 1, no. 5, pp. 742–759, Sep. 2011.
[Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/wcms.49

[14] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-
Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and
A. Aspuru-Guzik, “Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules,” ACS Central Science, vol. 4, no. 2, pp. 268–276, Feb.
2018. [Online]. Available: https://pubs.acs.org/doi/10.1021/acscentsci.7b00572

[15] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The rise
of deep learning in drug discovery,” Drug Discovery Today, vol. 23, no. 6, pp.
1241–1250, Jun. 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S1359644617303598

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90,
May 2017. [Online]. Available: https://dl.acm.org/doi/10.1145/3065386

[17] D. W. Otter, J. R. Medina, and J. K. Kalita, “A Survey of the Usages of Deep
Learning for Natural Language Processing,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 2, pp. 604–624, Feb. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9075398/

[18] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech Recognition Using
Deep Neural Networks: A Systematic Review,” IEEE Access, vol. 7, pp. 19 143–19 165,
2019. [Online]. Available: https://ieeexplore.ieee.org/document/8632885/

[19] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer,
S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain,
J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger,
M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly accurate protein structure
prediction with AlphaFold,” Nature, vol. 596, no. 7873, pp. 583–589, Aug. 2021.
[Online]. Available: https://www.nature.com/articles/s41586-021-03819-2

http://www.nature.com/articles/nrd3139
https://linkinghub.elsevier.com/retrieve/pii/S0169409X00001290
https://onlinelibrary.wiley.com/doi/10.1002/wcms.49
https://pubs.acs.org/doi/10.1021/acscentsci.7b00572
https://linkinghub.elsevier.com/retrieve/pii/S1359644617303598
https://linkinghub.elsevier.com/retrieve/pii/S1359644617303598
https://dl.acm.org/doi/10.1145/3065386
https://ieeexplore.ieee.org/document/9075398/
https://ieeexplore.ieee.org/document/8632885/
https://www.nature.com/articles/s41586-021-03819-2

References 155

[20] M. H. Segler, T. Kogej, C. Tyrchan, and M. P. Waller, “Generating focused molecule
libraries for drug discovery with recurrent neural networks,” ACS Central Science, vol. 4,
no. 1, pp. 120–131, 2018, arXiv: 1701.01329.

[21] M. H. Segler, M. Preuss, and M. P. Waller, “Planning chemical syntheses with deep neural
networks and symbolic AI,” Nature, vol. 555, pp. 604–610, Mar. 2018, publisher: Nature
Publishing Group. [Online]. Available: http://www.nature.com/articles/nature25978

[22] Y. Du, T. Fu, J. Sun, and S. Liu, “MolGenSurvey: A Systematic Survey in Machine
Learning Models for Molecule Design,” 2022, publisher: arXiv Version Number: 1.
[Online]. Available: https://arxiv.org/abs/2203.14500

[23] J. Jiménez-Luna, F. Grisoni, and G. Schneider, “Drug discovery with explainable
artificial intelligence,” Nature Machine Intelligence, vol. 2, no. 10, pp. 573–584, Oct.
2020. [Online]. Available: https://www.nature.com/articles/s42256-020-00236-4

[24] D. Weininger, “SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules,” Journal of Chemical Information
and Modeling, vol. 28, no. 1, pp. 31–36, Feb. 1988. [Online]. Available:
https://pubs.acs.org/doi/abs/10.1021/ci00057a005

[25] R. Winter, F. Noé, and D.-A. Clevert, “Permutation-Invariant Variational Autoencoder
for Graph-Level Representation Learning,” no. NeurIPS, 2021, arXiv: 2104.09856.
[Online]. Available: http://arxiv.org/abs/2104.09856

[26] J. Meyers, B. Fabian, and N. Brown, “De novo molecular design and generative models,”
Drug Discovery Today, vol. 26, no. 11, pp. 2707–2715, Nov. 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1359644621002531

[27] J. Nam and J. Kim, “Linking the Neural Machine Translation and the Prediction of
Organic Chemistry Reactions,” 2016, publisher: arXiv Version Number: 1. [Online].
Available: https://arxiv.org/abs/1612.09529

[28] A. Varnek and I. Baskin, “Machine learning methods for property prediction in chemoin-
formatics: Quo Vadis?” Journal of Chemical Information and Modeling, vol. 52, pp.
1413–1437, 2012.

[29] G. Schneider, “Mind and machine in drug design,” Nature Machine Intelligence, vol. 1,
no. 3, pp. 128–130, Feb. 2019. [Online]. Available: https://www.nature.com/articles/
s42256-019-0030-7

[30] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, 1st ed., ser.
Methods and Principles in Medicinal Chemistry. Wiley, Sep. 2000. [Online]. Available:
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527613106

[31] M. I. Skvortsova, I. I. Baskin, O. L. Slovokhotova, V. A. Palyulin, and N. S.
Zefirov, “Inverse problem in QSAR/QSPR studies for the case of topological indexes
characterizing molecular shape (Kier indices),” Journal of Chemical Information and
Computer Sciences, vol. 33, no. 4, pp. 630–634, Jul. 1993. [Online]. Available:
https://pubs.acs.org/doi/abs/10.1021/ci00014a017

http://www.nature.com/articles/nature25978
https://arxiv.org/abs/2203.14500
https://www.nature.com/articles/s42256-020-00236-4
https://pubs.acs.org/doi/abs/10.1021/ci00057a005
http://arxiv.org/abs/2104.09856
https://linkinghub.elsevier.com/retrieve/pii/S1359644621002531
https://arxiv.org/abs/1612.09529
https://www.nature.com/articles/s42256-019-0030-7
https://www.nature.com/articles/s42256-019-0030-7
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527613106
https://pubs.acs.org/doi/abs/10.1021/ci00014a017

156 References

[32] B. Sanchez-Lengeling and A. Aspuru-Guzik, “Inverse molecular design using machine
learning:Generative models for matter engineering,” Science, vol. 361, no. 6400, pp.
360–365, 2018.

[33] W. Bort, D. Mazitov, D. Horvath, F. Bonachera, A. Lin, G. Marcou, I. Baskin,
T. Madzhidov, and A. Varnek, “Inverse QSAR: Reversing Descriptor-Driven Prediction
Pipeline Using Attention-Based Conditional Variational Autoencoder,” Journal of
Chemical Information and Modeling, vol. 62, no. 22, pp. 5471–5484, Nov. 2022.
[Online]. Available: https://pubs.acs.org/doi/10.1021/acs.jcim.2c01086

[34] W. W. Wong and F. J. Burkowski, “A constructive approach for discovering
new drug leads: Using a kernel methodology for the inverse-QSAR problem,”
Journal of Cheminformatics, vol. 1, no. 1, p. 4, Dec. 2009. [Online]. Available:
https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-1-4

[35] J. Jiménez-Luna, F. Grisoni, N. Weskamp, and G. Schneider, “Artificial intelligence
in drug discovery: recent advances and future perspectives,” Expert Opinion on
Drug Discovery, vol. 16, no. 9, pp. 949–959, Sep. 2021. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1080/17460441.2021.1909567

[36] G. B. Goh, N. O. Hodas, and A. Vishnu, “Deep learning for computational chemistry,”
Journal of Computational Chemistry, vol. 38, no. 16, pp. 1291–1307, Jun. 2017.
[Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/jcc.24764

[37] S. R. Heller, A. McNaught, I. Pletnev, S. Stein, and D. Tchekhovskoi, InChI, the
IUPAC International Chemical Identifier. Journal of Cheminformatics, 2015, vol. 7,
publication Title: Journal of Cheminformatics Issue: 1 ISSN: 17582946. [Online].
Available: http://dx.doi.org/10.1186/s13321-015-0068-4

[38] J. Handsel, B. Matthews, N. J. Knight, and S. J. Coles, “Translating the InChI:
adapting neural machine translation to predict IUPAC names from a chemical identifier,”
Journal of Cheminformatics, vol. 13, no. 1, p. 79, Dec. 2021. [Online]. Available:
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00535-x

[39] J. Arús-Pous, S. V. Johansson, O. Prykhodko, E. J. Bjerrum, C. Tyrchan, J. L.
Reymond, H. Chen, and O. Engkvist, “Randomized SMILES strings improve the
quality of molecular generative models,” Journal of Cheminformatics, vol. 11, no. 1,
pp. 1–13, 2019, publisher: Springer International Publishing. [Online]. Available:
https://doi.org/10.1186/s13321-019-0393-0

[40] N. O’Boyle and A. Dalke, “DeepSMILES: An Adaptation of SMILES for
Use in Machine-Learning of Chemical Structures,” Chemistry, preprint, Sep.
2018. [Online]. Available: https://chemrxiv.org/engage/chemrxiv/article-details/
60c73ed6567dfe7e5fec388d

[41] M. Krenn, F. Häse, A. Nigam, P. Friederich, and A. Aspuru-Guzik, “Self-referencing
embedded strings (SELFIES): A 100% robust molecular string representation,” Machine
Learning: Science and Technology, vol. 1, no. 4, p. 045024, Dec. 2020. [Online].
Available: https://iopscience.iop.org/article/10.1088/2632-2153/aba947

https://pubs.acs.org/doi/10.1021/acs.jcim.2c01086
https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-1-4
https://www.tandfonline.com/doi/full/10.1080/17460441.2021.1909567
https://onlinelibrary.wiley.com/doi/10.1002/jcc.24764
http://dx.doi.org/10.1186/s13321-015-0068-4
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00535-x
https://doi.org/10.1186/s13321-019-0393-0
https://chemrxiv.org/engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d
https://chemrxiv.org/engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d
https://iopscience.iop.org/article/10.1088/2632-2153/aba947

References 157

[42] W. Jin, R. Barzilay, and T. Jaakkola, “Chapter 11. Junction Tree Variational
Autoencoder for Molecular Graph Generation,” in RSC Drug Discovery Series,
Feb. 2020, pp. 228–249, arXiv: 1802.04364 ISSN: 20413211. [Online]. Available:
http://arxiv.org/abs/1802.04364

[43] ——, “Hierarchical Graph-to-Graph Translation for Molecules,” arXiv, pp. 1–14, Jun.
2019, arXiv: 1907.11223. [Online]. Available: http://arxiv.org/abs/1907.11223

[44] K. Maziarz, H. Jackson-Flux, P. Cameron, F. Sirockin, N. Schneider, N. Stiefl, M. Segler,
and M. Brockschmidt, “Learning to Extend Molecular Scaffolds with Structural Motifs,”
in ICLR 2022, Apr. 2022. [Online]. Available: https://www.microsoft.com/en-us/
research/publication/learning-to-extend-molecular-scaffolds-with-structural-motifs/

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986. [Online].
Available: http://www.nature.com/articles/323533a0

[46] A. Radford and K. Narasimhan, “Improving Language Understanding by Generative
Pre-Training,” 2018.

[47] U. V. Ucak, T. Kang, J. Ko, and J. Lee, “Substructure-based neural machine translation
for retrosynthetic prediction,” Journal of Cheminformatics, vol. 13, no. 1, p. 4,
Dec. 2021. [Online]. Available: https://jcheminf.biomedcentral.com/articles/10.1186/
s13321-020-00482-z

[48] D. J. Rezende and S. Mohamed, “Variational Inference with Normalizing
Flows,” 2015, publisher: arXiv Version Number: 6. [Online]. Available:
https://arxiv.org/abs/1505.05770

[49] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neural
networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243, Feb. 1991. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/aic.690370209

[50] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd
International Conference on Learning Representations, ICLR 2014 - Conference
Track Proceedings, Dec. 2014, pp. 1–14, arXiv: 1312.6114. [Online]. Available:
http://arxiv.org/abs/1312.6114

[51] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, Mar. 1951. [Online]. Available:
http://projecteuclid.org/euclid.aoms/1177729694

[52] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein Auto-
Encoders,” 2017, publisher: arXiv Version Number: 4. [Online]. Available:
https://arxiv.org/abs/1711.01558

[53] Z. Alperstein, A. Cherkasov, and J. T. Rolfe, “All SMILES Variational Autoencoder,”
arXiv, 2019, arXiv: 1905.13343. [Online]. Available: http://arxiv.org/abs/1905.13343

http://arxiv.org/abs/1802.04364
http://arxiv.org/abs/1907.11223
https://www.microsoft.com/en-us/research/publication/learning-to-extend-molecular-scaffolds-with-structural-motifs/
https://www.microsoft.com/en-us/research/publication/learning-to-extend-molecular-scaffolds-with-structural-motifs/
http://www.nature.com/articles/323533a0
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00482-z
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00482-z
https://arxiv.org/abs/1505.05770
https://onlinelibrary.wiley.com/doi/10.1002/aic.690370209
http://arxiv.org/abs/1312.6114
http://projecteuclid.org/euclid.aoms/1177729694
https://arxiv.org/abs/1711.01558
http://arxiv.org/abs/1905.13343

158 References

[54] C. Yan, S. Wang, J. Yang, T. Xu, and J. Huang, “Re-balancing Variational Autoencoder
Loss for Molecule Sequence Generation,” Proceedings of the 11th ACM International
Conference on Bioinformatics, Computational Biology and Health Informatics, BCB
2020, 2020, arXiv: 1910.00698 ISBN: 9781450379649.

[55] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song, “Syntax-directed variational autoencoder
for structured data,” in 6th International Conference on Learning Representations,
ICLR 2018 - Conference Track Proceedings, 2018, pp. 1–17, arXiv: 1802.08786 ISSN:
23318422.

[56] Q. Liu, M. Allamanis, M. Brockschmidt, and A. L. Gaunt, “Constrained graph variational
autoencoders for molecule design,” Advances in Neural Information Processing Systems,
vol. 2018-Decem, no. NeurIPS, pp. 7795–7804, 2018, arXiv: 1805.09076.

[57] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convolutional
neural networks on graphs,” Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 29–38, Apr. 2017, arXiv:
1704.02901 Publisher: Institute of Electrical and Electronics Engineers Inc. ISBN:
9781538604571. [Online]. Available: http://arxiv.org/abs/1704.02901

[58] B. Samanta, A. DE, G. Jana, P. K. Chattaraj, N. Ganguly, and M. G. Rodriguez, “NeVAE:
A Deep Generative Model for Molecular Graphs,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 1110–1117, Jul. 2019, arXiv: 1802.05283 ISBN:
9781577358091. [Online]. Available: https://jmlr.org/papers/v21/19-671.html

[59] D. Flam-Shepherd, T. C. Wu, and A. Aspuru-Guzik, “MPGVAE: Improved generation of
small organic molecules using message passing neural nets,” Machine Learning: Science
and Technology, vol. 2, no. 4, pp. 0–10, 2021.

[60] S. Honda, H. Akita, K. Ishiguro, T. Nakanishi, and K. Oono, “Graph Residual Flow for
Molecular Graph Generation,” arXiv, pp. 1–14, 2019, arXiv: 1909.13521. [Online].
Available: http://arxiv.org/abs/1909.13521

[61] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “GraphAF: a Flow-based
Autoregressive Model for Molecular Graph Generation,” 2020, publisher: arXiv Version
Number: 2. [Online]. Available: https://arxiv.org/abs/2001.09382

[62] C. Zang and F. Wang, “MoFlow: An Invertible Flow Model for Generating Molecular
Graphs,” in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. Virtual Event CA USA: ACM, Aug. 2020, pp.
617–626. [Online]. Available: https://dl.acm.org/doi/10.1145/3394486.3403104

[63] M. Kuznetsov and D. Polykovskiy, “MolGrow: A Graph Normalizing Flow
for Hierarchical Molecular Generation,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 9, pp. 8226–8234, May 2021. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/17001

[64] Y. Luo, K. Yan, and S. Ji, “GraphDF: A Discrete Flow Model for Molecular
Graph Generation,” in Proceedings of the 38th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila and
T. Zhang, Eds., vol. 139. PMLR, Jul. 2021, pp. 7192–7203. [Online]. Available:
https://proceedings.mlr.press/v139/luo21a.html

http://arxiv.org/abs/1704.02901
https://jmlr.org/papers/v21/19-671.html
http://arxiv.org/abs/1909.13521
https://arxiv.org/abs/2001.09382
https://dl.acm.org/doi/10.1145/3394486.3403104
https://ojs.aaai.org/index.php/AAAI/article/view/17001
https://proceedings.mlr.press/v139/luo21a.html

References 159

[65] C. Abate, S. Decherchi, and A. Cavalli, “Graph neural networks for conditional de novo
drug design,” WIREs Computational Molecular Science, Jan. 2023. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1651

[66] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges,” 2021, publisher: arXiv Version
Number: 2. [Online]. Available: https://arxiv.org/abs/2104.13478

[67] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural Message
Passing for Quantum Chemistry,” 2017, publisher: arXiv Version Number: 2. [Online].
Available: https://arxiv.org/abs/1704.01212

[68] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Velickovic, “Principal neighbourhood
aggregation for graph nets,” Advances in Neural Information Processing Systems, vol.
2020-Decem, no. NeurIPS, 2020, arXiv: 2004.05718.

[69] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in 5th International Conference on Learning Representations, ICLR 2017
- Conference Track Proceedings, Sep. 2017, pp. 1–14, arXiv: 1609.02907. [Online].
Available: http://arxiv.org/abs/1609.02907

[70] R. Assouel, M. Ahmed, M. H. Segler, A. Saffari, and Y. Bengio, “DEFactor:
Differentiable Edge Factorization-based Probabilistic Graph Generation,” arXiv, pp. 1–
14, Nov. 2018, arXiv: 1811.09766. [Online]. Available: http://arxiv.org/abs/1811.09766

[71] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling,
“Modeling Relational Data with Graph Convolutional Networks,” 2017, publisher: arXiv
Version Number: 4. [Online]. Available: https://arxiv.org/abs/1703.06103

[72] L. Gong and Q. Cheng, “Exploiting Edge Features in Graph Neural Networks,”
2018, publisher: arXiv Version Number: 2. [Online]. Available: https:
//arxiv.org/abs/1809.02709

[73] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive
Survey on Graph Neural Networks,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 1, pp. 4–24, Jan. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9046288/

[74] Z. Guo, B. Nan, Y. Tian, O. Wiest, C. Zhang, and N. V. Chawla, “Graph-based
Molecular Representation Learning,” 2022, publisher: arXiv Version Number: 1.
[Online]. Available: https://arxiv.org/abs/2207.04869

[75] S. Kearnes, L. Li, and P. Riley, “Decoding Molecular Graph Embeddings with
Reinforcement Learning,” arXiv, Apr. 2019, arXiv: 1904.08915. [Online]. Available:
http://arxiv.org/abs/1904.08915

[76] M. Simonovsky and N. Komodakis, “GraphVAE: Towards Generation of Small Graphs
Using Variational Autoencoders,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2018, vol. 11139 LNCS, pp. 412–422, arXiv: 1802.03480 ISSN: 16113349. [Online].
Available: http://link.springer.com/10.1007/978-3-030-01418-6_41

https://onlinelibrary.wiley.com/doi/10.1002/wcms.1651
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1811.09766
https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1809.02709
https://arxiv.org/abs/1809.02709
https://ieeexplore.ieee.org/document/9046288/
https://arxiv.org/abs/2207.04869
http://arxiv.org/abs/1904.08915
http://link.springer.com/10.1007/978-3-030-01418-6_41

160 References

[77] X. Bresson and T. Laurent, “A Two-Step Graph Convolutional Decoder for
Molecule Generation,” arXiv, Jun. 2019, arXiv: 1906.03412. [Online]. Available:
http://arxiv.org/abs/1906.03412

[78] K. Madhawa, K. Ishiguro, K. Nakago, and M. Abe, “GraphNVP: An Invertible Flow
Model for Generating Molecular Graphs,” 2019, publisher: arXiv Version Number: 1.
[Online]. Available: https://arxiv.org/abs/1905.11600

[79] P.-C. Kotsias, J. Arús-Pous, H. Chen, O. Engkvist, C. Tyrchan, and E. J. Bjerrum,
“Direct steering of de novo molecular generation with descriptor conditional recurrent
neural networks,” Nature Machine Intelligence, vol. 2, no. 5, pp. 254–265,
May 2020, publisher: Springer US ISBN: 4225602001. [Online]. Available:
http://dx.doi.org/10.1038/s42256-020-0174-5

[80] M. Xu, T. Ran, and H. Chen, “De Novo Molecule Design Through the Molecular
Generative Model Conditioned by 3D Information of Protein Binding Sites,” Journal of
Chemical Information and Modeling, vol. 61, no. 7, pp. 3240–3254, Jul. 2021. [Online].
Available: https://pubs.acs.org/doi/10.1021/acs.jcim.0c01494

[81] Y. Li, L. Zhang, Y. Wang, J. Zou, R. Yang, X. Luo, C. Wu, W. Yang, C. Tian, H. Xu,
F. Wang, X. Yang, L. Li, and S. Yang, “Generative deep learning enables the discovery of
a potent and selective RIPK1 inhibitor,” Nature Communications, vol. 13, no. 1, p. 6891,
Nov. 2022. [Online]. Available: https://www.nature.com/articles/s41467-022-34692-w

[82] S. Joo, M. S. Kim, J. Yang, and J. Park, “Generative Model for Proposing Drug Candi-
dates Satisfying Anticancer Properties Using a Conditional Variational Autoencoder,”
ACS Omega, vol. 5, no. 30, pp. 18 642–18 650, 2020.

[83] A. Zhavoronkov, Y. A. Ivanenkov, A. Aliper, M. S. Veselov, V. A. Aladinskiy, A. V.
Aladinskaya, V. A. Terentiev, D. A. Polykovskiy, M. D. Kuznetsov, A. Asadulaev,
Y. Volkov, A. Zholus, R. R. Shayakhmetov, A. Zhebrak, L. I. Minaeva, B. A.
Zagribelnyy, L. H. Lee, R. Soll, D. Madge, L. Xing, T. Guo, and A. Aspuru-Guzik,
“Deep learning enables rapid identification of potent DDR1 kinase inhibitors,” Nature
Biotechnology, vol. 37, no. 9, pp. 1038–1040, Sep. 2019. [Online]. Available:
http://www.nature.com/articles/s41587-019-0224-x

[84] M. Pikusa, O. René, S. Williams, Y.-L. Chen, E. Martin, W. J. Godinez, S. P. S. Rao,
W. A. Guiguemde, and F. Nigsch, “De-novo generation of novel phenotypically active
molecules for Chagas disease from biological signatures using AI-driven generative
chemistry,” Pharmacology and Toxicology, preprint, Dec. 2021. [Online]. Available:
http://biorxiv.org/lookup/doi/10.1101/2021.12.10.472084

[85] A. Tropsha, “Best Practices for QSAR Model Development, Validation, and
Exploitation,” Molecular Informatics, vol. 29, no. 6-7, pp. 476–488, Jul. 2010. [Online].
Available: https://onlinelibrary.wiley.com/doi/10.1002/minf.201000061

[86] A. Nigam, R. Pollice, G. Tom, K. Jorner, L. A. Thiede, A. Kundaje, and
A. Aspuru-Guzik, “Tartarus: A Benchmarking Platform for Realistic And Practical
Inverse Molecular Design,” 2022, publisher: arXiv Version Number: 1. [Online].
Available: https://arxiv.org/abs/2209.12487

http://arxiv.org/abs/1906.03412
https://arxiv.org/abs/1905.11600
http://dx.doi.org/10.1038/s42256-020-0174-5
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01494
https://www.nature.com/articles/s41467-022-34692-w
http://www.nature.com/articles/s41587-019-0224-x
http://biorxiv.org/lookup/doi/10.1101/2021.12.10.472084
https://onlinelibrary.wiley.com/doi/10.1002/minf.201000061
https://arxiv.org/abs/2209.12487

References 161

[87] I. I. Baskin, “The power of deep learning to ligand-based novel drug discovery,” Expert
Opinion on Drug Discovery, vol. 15, pp. 755–764, 2020, publisher: Taylor & Francis.
[Online]. Available: https://doi.org/10.1080/17460441.2020.1745183

[88] C. W. Coley, N. S. Eyke, and K. F. Jensen, “Autonomous Discovery in
the Chemical Sciences Part II: Outlook,” Angewandte Chemie International
Edition, vol. 59, no. 52, pp. 23 414–23 436, Dec. 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/anie.201909989

[89] C. W. Coley, W. H. Green, and K. F. Jensen, “Machine Learning in Computer-Aided
Synthesis Planning,” Accounts of Chemical Research, vol. 51, no. 5, pp. 1281–1289,
May 2018. [Online]. Available: https://pubs.acs.org/doi/10.1021/acs.accounts.8b00087

[90] P. Schwaller, T. Laino, T. Gaudin, P. Bolgar, C. A. Hunter, C. Bekas, and A. A. Lee,
“Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Predic-
tion,” ACS Central Science, vol. 5, no. 9, pp. 1572–1583, 2019, arXiv: 1811.02633.

[91] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning Deep Generative
Models of Graphs,” 2018, publisher: arXiv Version Number: 1. [Online]. Available:
https://arxiv.org/abs/1803.03324

[92] R. Mercado, T. Rastemo, E. Lindelof, G. Klambauer, O. Engkvist, H. Chen,
and E. J. Bjerrum, “Graph networks for molecular design,” Machine Learning:
Science and Technology, vol. 2, no. 2, p. 025023, Jun. 2021. [Online]. Available:
https://iopscience.iop.org/article/10.1088/2632-2153/abcf91

[93] P. B. E. B. Martín Abadi, Ashish Agarwal, G. S. C. A. D. Zhifeng Chen, Craig Citro,
S. G. I. G. Jeffrey Dean, Matthieu Devin, M. I. R. J. Y. J. Andrew Harp, Geoffrey Irving,
J. L. D. M. M. S. Lukasz Kaiser, Manjunath Kudlur, D. M. C. O. J. S. Rajat Monga,
Sherry Moore, K. T. P. T. Benoit Steiner, Ilya Sutskever, F. V. Vincent Vanhoucke,
Vijay Vasudevan, M. W. M. W. Oriol Vinyals, Pete Warden, Y. Yu, and X. Zheng,
“TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” 2015.

[94] R. I. Nugmanov, R. N. Mukhametgaleev, T. Akhmetshin, T. R. Gimadiev, V. A.
Afonina, T. I. Madzhidov, and A. Varnek, “CGRtools: Python Library for
Molecule, Reaction, and Condensed Graph of Reaction Processing,” Journal
of Chemical Information and Modeling, vol. 59, pp. 2516–2521, Jun. 2019,
publisher: American Chemical Society Genre: brief-report. [Online]. Available:
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00102

[95] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-Lite:
A Grammar of Interactive Graphics,” IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 1, pp. 341–350, Jan. 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7539624/

[96] J. VanderPlas, B. Granger, J. Heer, D. Moritz, K. Wongsuphasawat, A. Satyanarayan,
E. Lees, I. Timofeev, B. Welsh, and S. Sievert, “Altair: Interactive Statistical
Visualizations for Python,” Journal of Open Source Software, vol. 3, no. 32, p. 1057,
Dec. 2018. [Online]. Available: http://joss.theoj.org/papers/10.21105/joss.01057

https://doi.org/10.1080/17460441.2020.1745183
https://onlinelibrary.wiley.com/doi/10.1002/anie.201909989
https://pubs.acs.org/doi/10.1021/acs.accounts.8b00087
https://arxiv.org/abs/1803.03324
https://iopscience.iop.org/article/10.1088/2632-2153/abcf91
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00102
http://ieeexplore.ieee.org/document/7539624/
http://joss.theoj.org/papers/10.21105/joss.01057

162 References

[97] D. Polykovskiy, A. Zhebrak, B. Sanchez-Lengeling, S. Golovanov, O. Tatanov,
S. Belyaev, R. Kurbanov, A. Artamonov, V. Aladinskiy, M. Veselov, A. Kadurin,
S. Johansson, H. Chen, S. Nikolenko, A. Aspuru-Guzik, and A. Zhavoronkov,
“Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
Models,” Frontiers in Pharmacology, vol. 11, pp. 1–10, Dec. 2020, arXiv: 1811.12823.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fphar.2020.565644/full

[98] K. Preuer, P. Renz, T. Unterthiner, S. Hochreiter, and G. Klambauer, “Fréchet ChemNet
Distance: A Metric for Generative Models for Molecules in Drug Discovery,” Journal
of Chemical Information and Modeling, vol. 58, no. 9, pp. 1736–1741, Sep. 2018, arXiv:
1803.09518. [Online]. Available: https://pubs.acs.org/doi/10.1021/acs.jcim.8b00234

[99] J. B. Baell and G. A. Holloway, “New substructure filters for removal of pan
assay interference compounds (PAINS) from screening libraries and for their
exclusion in bioassays,” Journal of Medicinal Chemistry, vol. 53, no. 7, pp.
2719–2740, Apr. 2010, publisher: American Chemical Society. [Online]. Available:
https://pubs.acs.org/doi/abs/10.1021/jm901137j

[100] X. Q. Lewell, D. B. Judd, S. P. Watson, and M. M. Hann, “RECAP - Retrosynthetic
Combinatorial Analysis Procedure: A powerful new technique for identifying privileged
molecular fragments with useful applications in combinatorial chemistry,” Journal of
Chemical Information and Computer Sciences, vol. 38, no. 3, pp. 511–522, May 1998.
[Online]. Available: https://pubs.acs.org/doi/10.1021/ci970429i

[101] Y. Zabolotna, D. M. Volochnyuk, V. S. Ryabukhin, D. Horvath, K. S. Gavrilenko,
G. Marcou, Y. S. Moroz, O. Oksiuta, and A. Varnek, “A Close-up Look at the Chemical
Space of Commercially Available Building Blocks for Medicinal Chemistry,” Journal of
Chemical Information and Modeling, p. acs.jcim.1c00811, Dec. 2021.

[102] A. Van Den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete representation
learning,” Advances in Neural Information Processing Systems, vol. 2017-Decem,
no. Nips, pp. 6307–6316, Nov. 2017, arXiv: 1711.00937. [Online]. Available:
http://arxiv.org/abs/1711.00937

[103] M. Matveieva and P. Polishchuk, “Benchmarks for interpretation of QSAR models,”
Journal of Cheminformatics, vol. 13, no. 1, p. 41, Dec. 2021. [Online]. Available:
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00519-x

[104] E. J. Corey and W. T. Wipke, “Computer-Assisted Design of Complex Organic
Syntheses: Pathways for molecular synthesis can be devised with a computer and
equipment for graphical communication.” Science, vol. 166, no. 3902, pp. 178–192, Oct.
1969. [Online]. Available: https://www.science.org/doi/10.1126/science.166.3902.178

[105] J. S. Schreck, C. W. Coley, and K. J. M. Bishop, “Learning Retrosynthetic Planning
through Simulated Experience,” ACS Central Science, vol. 5, no. 6, pp. 970–981, Jun.
2019. [Online]. Available: https://pubs.acs.org/doi/10.1021/acscentsci.9b00055

[106] B. A. Grzybowski, T. Badowski, K. Molga, and S. Szymkuć, “Network
search algorithms and scoring functions for advanced-level computerized synthesis
planning,” WIREs Computational Molecular Science, Jun. 2022. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1630

https://www.frontiersin.org/articles/10.3389/fphar.2020.565644/full
https://pubs.acs.org/doi/10.1021/acs.jcim.8b00234
https://pubs.acs.org/doi/abs/10.1021/jm901137j
https://pubs.acs.org/doi/10.1021/ci970429i
http://arxiv.org/abs/1711.00937
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00519-x
https://www.science.org/doi/10.1126/science.166.3902.178
https://pubs.acs.org/doi/10.1021/acscentsci.9b00055
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1630

References 163

[107] “Reaxys database.” [Online]. Available: https://www.elsevier.com/solutions/reaxys

[108] “SciFinder.” [Online]. Available: https://www.cas.org/solutions/
cas-scifinder-discovery-platform/cas-scifinder

[109] D. M. Lowe, “Extraction of chemical structures and reactions from the literature,” Oct.
2012, publisher: Apollo - University of Cambridge Repository. [Online]. Available:
https://www.repository.cam.ac.uk/handle/1810/244727

[110] J. Mayfield, D. Lowe, and R. Sayle, “Pistachio,” Patent. [Online]. Available:
https://www.nextmovesoftware.com/pistachio.html

[111] D. Fourches, E. Muratov, and A. Tropsha, “Trust, But Verify: On the Importance
of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research,”
Journal of Chemical Information and Modeling, vol. 50, no. 7, pp. 1189–1204, Jul.
2010. [Online]. Available: https://pubs.acs.org/doi/10.1021/ci100176x

[112] H. L. Gelernter, A. F. Sanders, D. L. Larsen, K. K. Agarwal, R. H. Boivie,
G. A. Spritzer, and J. E. Searleman, “Empirical Explorations of SYNCHEM: The
methods of artificial intelligence are applied to the problem of organic synthesis route
discovery.” Science, vol. 197, no. 4308, pp. 1041–1049, Sep. 1977. [Online]. Available:
https://www.science.org/doi/10.1126/science.197.4308.1041

[113] J. Bauer, R. Herges, E. Fontain, and I. Ugi, “IGOR and computer assisted innovation in
chemistry.” Chimia, vol. 39, no. 2, pp. 43–53, 1985.

[114] J. B. Hendrickson, D. L. Grier, and A. G. Toczko, “A logic-based program for synthesis
design,” Journal of the American Chemical Society, vol. 107, no. 18, pp. 5228–5238,
Sep. 1985. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/ja00304a033

[115] T. D. Salatin and W. L. Jorgensen, “Computer-assisted mechanistic evaluation of organic
reactions,” The Journal of Organic Chemistry, vol. 45, no. 11, pp. 2043–2051, May
1980. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/jo01299a001

[116] W.-D. Ihlenfeldt and J. Gasteiger, “Computer-Assisted Planning of Organic Syntheses:
The Second Generation of Programs,” Angewandte Chemie International Edition
in English, vol. 34, no. 2324, pp. 2613–2633, Jan. 1996. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/anie.199526131

[117] J. Gasteiger and C. Jochum, “EROS A computer program for generating sequences
of reactions,” in Organic Compunds. Berlin/Heidelberg: Springer-Verlag, 1978,
vol. 74, pp. 93–126, series Title: Topics in Current Chemistry. [Online]. Available:
http://link.springer.com/10.1007/BFb0050147

[118] C. Sammut, “Beam Search,” in Encyclopedia of Machine Learning and Data Mining,
C. Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2017, pp. 120–120.
[Online]. Available: http://link.springer.com/10.1007/978-1-4899-7687-1_68

[119] P. Schwaller and T. Laino, “Data-Driven Learning Systems for Chemical
Reaction Prediction: An Analysis of Recent Approaches,” in ACS Symposium
Series, E. O. Pyzer-Knapp and T. Laino, Eds. Washington, DC: American

https://www.elsevier.com/solutions/reaxys
https://www.cas.org/solutions/cas-scifinder-discovery-platform/cas-scifinder
https://www.cas.org/solutions/cas-scifinder-discovery-platform/cas-scifinder
https://www.repository.cam.ac.uk/handle/1810/244727
https://www.nextmovesoftware.com/pistachio.html
https://pubs.acs.org/doi/10.1021/ci100176x
https://www.science.org/doi/10.1126/science.197.4308.1041
https://pubs.acs.org/doi/abs/10.1021/ja00304a033
https://pubs.acs.org/doi/abs/10.1021/jo01299a001
https://onlinelibrary.wiley.com/doi/10.1002/anie.199526131
http://link.springer.com/10.1007/BFb0050147
http://link.springer.com/10.1007/978-1-4899-7687-1_68

164 References

Chemical Society, Jan. 2019, vol. 1326, pp. 61–79. [Online]. Available:
https://pubs.acs.org/doi/abs/10.1021/bk-2019-1326.ch004

[120] J. Law, Z. Zsoldos, A. Simon, D. Reid, Y. Liu, S. Y. Khew, A. P. Johnson,
S. Major, R. A. Wade, and H. Y. Ando, “Route Designer: A Retrosynthetic Analysis
Tool Utilizing Automated Retrosynthetic Rule Generation,” Journal of Chemical
Information and Modeling, vol. 49, no. 3, pp. 593–602, Mar. 2009. [Online]. Available:
https://pubs.acs.org/doi/10.1021/ci800228y

[121] D. W. Elrod, G. M. Maggiora, and R. G. Trenary, “Applications of neural networks in
chemistry. 1. Prediction of electrophilic aromatic substitution reactions,” Journal of
Chemical Information and Computer Sciences, vol. 30, no. 4, pp. 477–484, Nov. 1990.
[Online]. Available: https://pubs.acs.org/doi/abs/10.1021/ci00068a020

[122] J.-C. Régin, O. Gascuel, and C. Laurenço, “Machine learning of strategic knowledge
in organic synthesis from reaction databases,” in AIP Conference Proceedings, vol.
330. Nancy (France): AIP, 1995, pp. 618–623, iSSN: 0094243X. [Online]. Available:
http://aip.scitation.org/doi/abs/10.1063/1.47873

[123] P. Schwaller, R. Petraglia, V. Zullo, V. H. Nair, R. A. Haeuselmann, R. Pisoni, C. Bekas,
A. Iuliano, and T. Laino, “Predicting retrosynthetic pathways using transformer-based
models and a hyper-graph exploration strategy,” Chemical Science, vol. 11, no. 12, pp.
3316–3325, 2020. [Online]. Available: http://xlink.rsc.org/?DOI=C9SC05704H

[124] “IBM RoboRXN.” [Online]. Available: https://research.ibm.com/science/ibm-roborxn/

[125] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016. [Online]. Available:
http://www.nature.com/articles/nature16961

[126] C. D. Rosin, “Multi-armed bandits with episode context,” Annals of Mathematics and
Artificial Intelligence, vol. 61, no. 3, pp. 203–230, Mar. 2011. [Online]. Available:
http://link.springer.com/10.1007/s10472-011-9258-6

[127] C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski, C. P. Breen,
V. Schultz, T. Hart, J. S. Fishman, L. Rogers, H. Gao, R. W. Hicklin, P. P. Plehiers,
J. Byington, J. S. Piotti, W. H. Green, A. J. Hart, T. F. Jamison, and K. F.
Jensen, “A robotic platform for flow synthesis of organic compounds informed by AI
planning,” Science, vol. 365, no. 6453, p. eaax1566, Aug. 2019. [Online]. Available:
https://www.science.org/doi/10.1126/science.aax1566

[128] S. Ishida, K. Terayama, R. Kojima, K. Takasu, and Y. Okuno, “AI-Driven Synthetic
Route Design with Retrosynthesis Knowledge,” Tech. Rep., 2020, publication Title:
ChemRxiv ISSN: 25732293.

[129] K. Lin, Y. Xu, J. Pei, and L. Lai, “Automatic retrosynthetic route planning using
template-free models,” Chemical Science, vol. 11, no. 12, pp. 3355–3364, 2020.
[Online]. Available: http://xlink.rsc.org/?DOI=C9SC03666K

https://pubs.acs.org/doi/abs/10.1021/bk-2019-1326.ch004
https://pubs.acs.org/doi/10.1021/ci800228y
https://pubs.acs.org/doi/abs/10.1021/ci00068a020
http://aip.scitation.org/doi/abs/10.1063/1.47873
http://xlink.rsc.org/?DOI=C9SC05704H
https://research.ibm.com/science/ibm-roborxn/
http://www.nature.com/articles/nature16961
http://link.springer.com/10.1007/s10472-011-9258-6
https://www.science.org/doi/10.1126/science.aax1566
http://xlink.rsc.org/?DOI=C9SC03666K

References 165

[130] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing
Systems, vol. 2017-Decem, no. Nips, pp. 5999–6009, 2017, arXiv: 1706.03762.

[131] S. Ishida, K. Terayama, R. Kojima, K. Takasu, and Y. Okuno, “AI-Driven Synthetic
Route Design Incorporated with Retrosynthesis Knowledge,” Journal of Chemical
Information and Modeling, 2022.

[132] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,
A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver,
“Mastering Atari, Go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604–609, Dec. 2020. [Online]. Available:
http://www.nature.com/articles/s41586-020-03051-4

[133] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A
general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, Dec. 2018. [Online]. Available:
https://www.science.org/doi/10.1126/science.aar6404

[134] “Spaya.” [Online]. Available: https://iktos.ai/spaya/

[135] A. Konstantinov, E. Putin, B. Zagribelny, Y. Ivanenkov, and A. Zavoronkovs, “Retrosyn-
thesis systems and methods,” U.S. Patent US 2022/0 172 802 A1.

[136] I. I. Baskin, T. I. Madzhidov, I. S. Antipin, and A. A. Varnek, “Artificial intelligence in
synthetic chemistry: achievements and prospects,” Russian Chemical Reviews, vol. 86,
no. 11, pp. 1127–1156, Nov. 2017. [Online]. Available: http://stacks.iop.org/0036-021X/
86/i=11/a=1127?key=crossref.2bf52566e7b90f69572ab5b2acd28e67

[137] B. Mikulak-Klucznik, P. Gołębiowska, A. A. Bayly, O. Popik, T. Klucznik,
S. Szymkuć, E. P. Gajewska, P. Dittwald, O. Staszewska-Krajewska, W. Beker,
T. Badowski, K. A. Scheidt, K. Molga, J. Mlynarski, M. Mrksich, and
B. A. Grzybowski, “Computational planning of the synthesis of complex natural
products,” Nature, vol. 588, no. 7836, pp. 83–88, Dec. 2020. [Online]. Available:
https://www.nature.com/articles/s41586-020-2855-y

[138] S. Genheden, A. Thakkar, V. Chadimová, J. L. Reymond, O. Engkvist, and E. Bjerrum,
“AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic
planning,” Journal of Cheminformatics, vol. 12, no. 1, pp. 1–14, 2020.

[139] A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light,
S. McGlinchey, D. Michalovich, B. Al-Lazikani, and J. P. Overington, “ChEMBL: A
large-scale bioactivity database for drug discovery,” Nucleic Acids Research, vol. 40, pp.
1100–1107, 2012.

[140] M. Sorokina, P. Merseburger, K. Rajan, M. A. Yirik, and C. Steinbeck,
“COCONUT online: Collection of Open Natural Products database,” Journal
of Cheminformatics, vol. 13, no. 1, p. 2, Dec. 2021. [Online]. Available:
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00478-9

http://www.nature.com/articles/s41586-020-03051-4
https://www.science.org/doi/10.1126/science.aar6404
https://iktos.ai/spaya/
http://stacks.iop.org/0036-021X/86/i=11/a=1127?key=crossref.2bf52566e7b90f69572ab5b2acd28e67
http://stacks.iop.org/0036-021X/86/i=11/a=1127?key=crossref.2bf52566e7b90f69572ab5b2acd28e67
https://www.nature.com/articles/s41586-020-2855-y
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00478-9

166 References

[141] G. Landrum, “rdkit/rdkit: 2022_09_2 (Q3 2022) Release,” Nov. 2022. [Online].
Available: https://zenodo.org/record/7357998

[142] A. Dalke, “The chemfp project,” Journal of Cheminformatics, vol. 11, no. 1, p. 76,
Dec. 2019. [Online]. Available: https://jcheminf.biomedcentral.com/articles/10.1186/
s13321-019-0398-8

[143] J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Papademetris, and J. S.
Duncan, “AdaBelief optimizer: Adapting stepsizes by the belief in observed gradients,”
Advances in Neural Information Processing Systems, vol. 2020-Decem, pp. 1–29, 2020,
arXiv: 2010.07468. [Online]. Available: http://arxiv.org/abs/2010.07468

[144] C. W. Coley, W. H. Green, and K. F. Jensen, “RDChiral: An RDKit Wrapper for
Handling Stereochemistry in Retrosynthetic Template Extraction and Application,”
Journal of Chemical Information and Modeling, vol. 59, no. 6, pp. 2529–2537, Jun.
2019. [Online]. Available: https://pubs.acs.org/doi/10.1021/acs.jcim.9b00286

[145] F. Aricò, S. Bravo, M. Crisma, and P. Tundo, “1,3-Oxazinan-2-ones via
carbonate chemistry: a facile, high yielding synthetic approach,” Pure and
Applied Chemistry, vol. 88, no. 3, pp. 227–237, Mar. 2016. [Online]. Available:
https://www.degruyter.com/document/doi/10.1515/pac-2015-1004/html

https://zenodo.org/record/7357998
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0398-8
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0398-8
http://arxiv.org/abs/2010.07468
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00286
https://www.degruyter.com/document/doi/10.1515/pac-2015-1004/html

List of figures

1.1 HyFactor scheme . 2
1.2 HyFactor scheme . 3
1.3 VQGAE scheme . 5
1.4 Results on QSAR benchmarking . 6
1.5 Resume MCTS scheme . 8
1.6 Resume evaluation functions . 9
1.7 Resume self-learning protocol . 10
1.8 Resume benchmarking sets preparation . 11
1.9 GSLRetro results . 11
1.10 Resume synthetic pathways of AiZynthFinder and GSLRetro on the same target 12
1.11 Resume synthetic pathways of AiZynthFinder and GSLRetro on the same target 13
1.12 Resume shared synthetic pathway of AiZynthFinder and GSLRetro 13
1.13 VQGAE resume generated molecules . 14
1.14 GSLRetro resume paths . 15

3.1 Types of iterative generators . 26
3.2 Types of autoencoders . 28
3.3 General scheme of message-passing neural networks 30
3.4 GNN approaches for multigraphs . 32
3.5 Atom types in ChEMBL . 48
3.6 HyFactor generation results . 51
3.7 E_ChEMBL . 53

4.1 Retrosynthesis intro . 74
4.2 Reaxys non-standardized molecules . 92
4.3 USPTO wrongly parsed reaction . 92
4.4 Classical Retrorules . 94
4.5 Retrosynthetic tree . 95
4.6 LHASA algorithm . 96
4.7 General algorithm of MCTS . 99
4.8 Scheme of ranking policy network . 100
4.9 Types of evaluation functions . 102
4.10 Evaluation-first search strategy . 104
4.11 Expansion-first search strategy . 105
4.12 Scheme of self-learning concept . 106
4.13 Scheme of self-learning data collection . 107
4.14 Timeline of MCTS-based retrosynthesis planning tools 107
4.15 Examples of “priority” rules . 111

168 List of figures

4.16 Branched synthetic pathways . 112
4.17 Non regio-selective retro-rule . 113
4.18 Reaction filters examples . 114
4.19 Example of rule used in GSLRetro . 114
4.20 Distribution of SAScore in ChEMBL and COCONUT 115
4.21 GSLRetro benchmarking sets preparation 116
4.22 GSLRetro policy network . 117
4.23 GSLRetro value network . 118
4.24 RDchiral rules analysis . 119
4.25 AiZynthFinder reproduction restuls . 120
4.26 Example of AiZynthFinder’s bug . 121
4.27 General retrosynthesis results . 122
4.28 Self-learning results . 123
4.29 GSLRetro and AiZynthFinder comparison 124
4.30 Analsysis of value network scores . 124
4.31 Example of the same synthetic pathway found by GSLRetro and AiZynthFinder125
4.32 Examples of synthetic pathways for the same targets found by GSLRetro and

AiZynthFinder . 126
4.33 Examples of synthetic pathways for different targets found by GSLRetro and

AiZynthFinder . 128
4.34 Synthetic pathways for generated antagonists of A2A 129

List of tables

1.1 Résultats du benchmarking des autoencodeurs HyFactor et ReFactor sur le jeu
de données ZINC 250K. 4

1.2 Résultats du benchmarking des autoencodeurs HyFactor et ReFactor sur le jeu
de données ZINC 250K. 4

3.1 Results of ZINC 250K data set standardisation. 48
3.2 Training parameters for each data set. The parameters are equal for both

ReFactor and HyFactor architectures. 49
3.3 MOSES benchmarking results . 50
3.4 MOSES benchmarking results comparing to test set (Test) and test scaffolds

set (TestSF) . 50

Résumé
Cette thèse est dédiée au développement de génératifs par réseaux de neurones
artificiels de graphes et d'un outil de planification rétrosynthétique amélioré par des
méthodes d’apprentissage automatique profond. Les modèles génératifs s'appuient
sur le concept d'autoencodeur, très populaire dans les tâches de conception
moléculaire de novo et d'analyse QSAR inverse. L'architecture proposée, HyFactor,
basée sur le graphe étiqueté par le nombre d'hydrogènes par atome, se révèle
performante et utile pour générer des analogues moléculaires. La seconde
architecture proposée, VQGAE, donne des résultats comparables à ceux d'HyFactor
dans la tâche de reconstruction, mais la représentation latente se montre plus
performante pour la recherche par similarité et pour le QSAR. Ces performances sont
illustrées par la génération de ligands très actifs pour les récepteurs A2A. La faisabilité
synthétique des structures générées a été vérifiée à l'aide d'un nouvel outil de
rétrosynthèse, GSLRetro. Cet outil est conçu sur le concept d'auto-apprentissage qui
améliore la stabilité des solutions grâce aux précédentes solutions proposées. Le
protocole de curation des données de réaction ainsi que de nouvelles techniques de
validation croisée pour les modèles QSPR basés sur les réactions sont également
présentés. En somme, la combinaison de ces outils constitue une étape importante
vers la conception automatisée de molécules.

Résumé en anglais
This thesis is dedicated to the development of graph-based generative neural
networks and a retrosynthetic planning tool enhanced by deep learning architectures.
The generative networks are based on the autoencoder concept, which has gained
popularity in de novo molecular design and inverse QSAR tasks. The proposed
architecture, HyFactor, based on the hydrogen number labelled graph, was
computationally efficient and helpful in generating molecular analogues. The following
architecture, VQGAE, performed as well as HyFactor in the reconstruction task, while
its latent vectors showed the best performance in the similarity search and QSAR
tasks. As a proof of concept, VQGAE was used to generate highly potent ligands of
A2A receptors. The synthetic feasibility of the generated structures was verified using
a new retrosynthesis tool, GSLRetro. This tool is based on a self-learning concept by
which it can improve the search quality by training on previous searches' results. In
addition to the retrosynthetic planning tool, the protocol of reaction data curation and
new cross-validation techniques for reaction-based QSPR models were proposed.
Finally, the combination of these tools represents a significant step towards automated
molecular design.

Tagir AKHMETSHIN

Réseaux neuronaux à base de
graphes pour la génération de

structures moléculaires
synthétiquement accessibles

	Table of contents
	1 Résumé en français
	1.1 Introduction
	1.2 Resultats et discussions
	1.3 Conclusion generale
	1.4 Liste des presentation
	1.5 Liste des publication

	2 Introduction
	3 Generation of molecular structures
	3.1 Background of generative deep learning for inverse QSAR
	3.2 Development of novel graph-based architectures

	4 Self-learning-based synthesis planning
	4.1 Reaction data curation
	4.2 Retrosynthetic planning
	4.3 Validation techniques for prediction of reaction rate constant in different conditions

	5 Conclusions and perspectives
	References
	List of figures
	List of tables

