
HAL Id: tel-04208571
https://theses.hal.science/tel-04208571

Submitted on 15 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning techniques for automatic knowledge
graph completion

Armand Boschin

To cite this version:
Armand Boschin. Machine learning techniques for automatic knowledge graph completion. Artificial
Intelligence [cs.AI]. Institut Polytechnique de Paris, 2023. English. �NNT : 2023IPPAT016�. �tel-
04208571�

https://theses.hal.science/tel-04208571
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
3I

P
PA

T0
16 Machine learning techniques for

automatic knowledge graph completion
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat : Mathématiques et Informatique

Thèse présentée et soutenue à Palaiseau, le 21 avril 2023, par

ARMAND BOSCHIN

Composition du Jury :

Amel Bouzeghoub
Professeure, Télécom SudParis Présidente/examinatrice

Sébastien Ferré
Professeur, Université de Rennes - CNRS - IRISA Rapporteur

Nathalie Pernelle
Professeure, Université Sorbonne Paris Nord - LIPN Rapporteur

Luis Galárraga
Chercheur permanent, INRIA - IRISA Examinateur

Thomas Bonald
Professeur, Télécom Paris Directeur de thèse

Résumé

Un graphe de connaissances est un graphe orienté dont les nœuds sont des entités et
les arêtes, typées par une relation, représentent des faits connus liant les entités. Ces
graphes sont capables d’encoder une grande variété d’information mais leur construction
et leur exploitation peut se révéler complexe. Historiquement, des méthodes symbol-
iques ont permis d’extraire des règles d’interaction entre entités et relations, afin de cor-
riger des anomalies ou de prédire des faits manquants. Plus récemment, des méthodes
d’apprentissage de représentations vectorielles, ou plongements, ont tenté de résoudre
ces mêmes tâches. Initialement purement algébriques ou géométriques, ces méthodes se
sont complexifiées avec les réseaux de neurones profonds et ont parfois été combinées
à des techniques symboliques antérieures. Cette thèse est constituée de six chapitres
structurés de la manière suivante.

Le premier chapitre commence par retracer rapidement l’histoire des bases de con-
naissances depuis les projets historiques jusqu’à Wikidata. Est ensuite introduite la
tâche de complétion de graphe de connaissances ainsi que trois de ses sous-tâches
habituelles, la prédiction de liens, la prédiction de relations et le typage d’entité.

Le deuxième chapitre introduit les définitions formelles nécessaires à la construction
d’une base de connaissance et d’une ontologie, c’est-à-dire à la constitution de faits
accompagnés d’une taxonomie et d’axiomes logiques de construction. La notion de
graphe est ensuite introduite de manière à décrire formellement la structure formée par
les faits constitutifs des bases de connaissances.

Le troisième chapitre propose ensuite un état des lieux des techniques existantes
pour la complétion automatique de graphe de connaissances. Pour commencer, une
définition de l’apprentissage automatique est donnée à l’aide du formalisme des fonctions
paramétriques dont les paramètres sont estimés sur des données d’entrainement. Cela
sert à introduire les modèles de plongement et plus particulièrement ceux s’appliquant
aux graphes de connaissances qui sont ensuite présentés en détail. Quelques méthodes
combinatoires reposant principalement sur des règles d’associations sont présentées.

Le quatrième chapitre s’intéresse au problème de l’implémentation. En effet, la
grande diversité des bibliothèques utilisées rend difficile la comparaison des résultats
obtenus par différents modèles. Dans ce contexte, la bibliothèque Python TorchKGE
a été développée afin de proposer un environnement unique pour l’implémentation de
modèles de plongement et un module hautement efficace d’évaluation par prédiction
de liens. Cette bibliothèque repose sur l’accélération graphique de calculs tensoriels
proposée par PyTorch, est compatible avec les bibliothèques d’optimisation usuelles et
est disponible en source ouverte. Son adoption croissante pas la communauté montre
son intérêt.

Le cinquième chapitre porte sur l’enrichissement automatique de Wikidata par ty-
page des hyperliens liant les articles de Wikipedia. Une étude préliminaire a montré que
le graphe des articles de Wikipedia est beaucoup plus dense que le graphe de connais-
sances correspondant dans Wikidata. Une nouvelle méthode d’entrainement impliquant
les relations et une méthode d’inférence utilisant les types des entités ont été proposées

2

3

et des expériences ont montré la pertinence de l’approche. Un nouveau jeu de données,
WDV5 est également proposé.

Enfin, le sixième chapitre propose aborde le typage automatique d’entités comme une
tâche de classification hiérarchique. L’étude de cette tâche a mené à la conception d’une
fonction d’erreur hiérarchique, utilisable pour l’entrainement de modèles tensoriels, ainsi
qu’un nouveau type d’encodeur. Des expériences ont permis une bonne compréhension
de l’impact que peut avoir une connaissance a priori de la taxonomie des classes sur la
classification. Elles ont aussi renforcé l’intuition que la hiérarchie peut être apprise à
partir des données si le jeu est suffisamment riche.

Abstract

A knowledge graph is a directed graph in which nodes are entities and edges, typed by
a relation, represent known facts linking two entities. These graphs can encode a wide
variety of information, but their construction and exploitation can be complex. Histori-
cally, symbolic methods have been used to extract rules about entities and relations, to
correct anomalies or to predict missing facts. More recently, techniques of representa-
tion learning, or embeddings, have attempted to solve these same tasks. Initially purely
algebraic or geometric, these methods have become more complex with deep neural
networks and have sometimes been combined with pre-existing symbolic techniques.

In this thesis, we first focus on the problem of implementation. Indeed, the diver-
sity of libraries used makes the comparison of results obtained by different models a
complex task. In this context, the Python library TorchKGE was developed to pro-
vide a unique setup for the implementation of embedding models and a highly efficient
inference evaluation module. This library relies on graphic acceleration of tensor com-
putation provided by PyTorch, is compatible with widespread optimization libraries and
is available as open source.

We then consider the automatic enrichment of Wikidata by typing the hyperlinks
linking Wikipedia pages. A preliminary study showed that the graph of Wikipedia
articles is much denser than the corresponding knowledge graph in Wikidata. A new
training method involving relations and an inference method using entity types were
proposed and experiments showed the relevance of the combined approach, including on
a new dataset.

Finally, we explore automatic entity typing as a hierarchical classification task. That
led to the design of a new hierarchical loss used to train tensor-based models along with
a new type of encoder. Experiments on two datasets have allowed a good understanding
of the impact a prior knowledge of class taxonomy can have on a classifier but also
reinforced the intuition that the hierarchy can be learned from the features if the dataset
is large enough.

4

List of Publications

WikiDataSets: Standardized sub-graphs from Wikidata.
Boschin, A., Bonald, T. (2019)
Preprint.
Reference [19]

Knowledge Representation and Rule Mining in Entity-Centric Knowledge
Bases.
Suchanek, F., Lajus, J., Boschin, A., Weikhum, G. (2019)
Postprint presented at the 15th Reasoning Web Summer School (Bolzano, Italy, Septem-
ber 2019).
Reference [116]
Personal contribution: Section 4 (Representation Learning)

TorchKGE: Knowledge Graph Embedding in Python and PyTorch
Boschin, A. (2020)
Postprint presented at the International Workshop on Knowledge Graph co-located with
the 26th Conference on Knowledge Discovery and Data Mining (August 2020).
Reference [18]

Enriching Wikidata with Semantified Wikipedia Hyperlinks.
Boschin, A., Bonald, T. (2021)
Postprint presented at the 2nd Wikidata Workshop co-located with the 20th Interna-
tional Semantic Web Conference (October 2021).
Reference [20]

Combining Embeddings and Rules for Fact Prediction.
Boschin, A., Jain, N., Keretchashvili,G., Suchanek,F. (2022)
Postprint presented at the International Research School in Artificial Intelligence (Bergen,
Sweden, June 2022).
Reference [22]
Personal contribution: parts of Sections 3 (Embedding models), parts of Section 4 (Em-
bedding Methods with Logical Components) and Section 5 (Rule Mining with embedding
techniques).

A Self-Encoder for Learning Nearest Neighbors.
Boschin, A., Bonald, T., Jeanmougin, M. (2023)
Under review at ECML23
Reference [21]

5

Contents

Notations 9

Acronyms 10

1 Introduction 11
1.1 Context of the thesis . 11
1.2 Thesis outline . 12

2 Representing knowledge 15
2.1 Entity-centric knowledge bases . 15

2.1.1 Entities . 15
2.1.2 Entity types . 16
2.1.3 Relations . 17
2.1.4 Knowledge base . 18
2.1.5 The semantic web . 19

2.2 Strengths and limits of existing knowledge bases 20
2.3 From knowledge bases to knowledge graphs 21

2.3.1 Graph definitions . 21
2.3.2 Graph structure of knowledge bases 22

3 Knowledge graph completion 24
3.1 Introduction to graph representation learning 24

3.1.1 Supervised machine learning . 25
3.1.2 Representation learning . 26
3.1.3 Graph embedding with spectral theory 28
3.1.4 Extending spectral embedding to knowledge graphs 29

3.2 Knowledge graph representation learning 30
3.2.1 Estimating triples likelihood . 30
3.2.2 Negative Sampling . 31
3.2.3 Model training . 33
3.2.4 Evaluation techniques . 34
3.2.5 Common datasets . 36

3.3 Existing embedding models . 36
3.3.1 Translational models . 36
3.3.2 Bilinear models . 38
3.3.3 Deep models . 40
3.3.4 Comments on the available literature 41

3.4 Reasoning with knowledge bases . 44
3.4.1 Rules at the core of semantic reasoning 44
3.4.2 Rule mining for knowledge base completion 45
3.4.3 Embedding methods with logical components 45

3.5 Conclusion . 48

4 TorchKGE 50
4.1 Motivations . 50

6

CONTENTS 7

4.2 Other existing libraries . 51
4.2.1 OpenKE . 51
4.2.2 Ampligraph . 51
4.2.3 Pykg2vec . 52
4.2.4 PyTorch-BigGraph . 52
4.2.5 The need of a new library . 52
4.2.6 Pykeen . 52

4.3 Conception choices . 53
4.3.1 GPU acceleration . 53
4.3.2 API design . 53
4.3.3 Good development practices . 54

4.4 Code structure . 56
4.4.1 Models . 56
4.4.2 Evaluation module . 59
4.4.3 Knowledge graphs in memory . 60
4.4.4 Negative sampling . 60

4.5 Performances . 61
4.5.1 Experimental setup . 61
4.5.2 Results . 61

4.6 Future of Developments . 62

5 Automatically enriching Wikidata using Wikipedia hyperlinks 66
5.1 Motivations . 66
5.2 Related work . 67

5.2.1 Embedding and negative sampling 67
5.2.2 Type filtering . 68
5.2.3 NLP for relation-prediction . 68
5.2.4 Wikipedia hyperlink semantification 68

5.3 Proposed approach . 68
5.3.1 Ranking relations . 68
5.3.2 Balanced negative sampling . 69
5.3.3 Type filtering for relation-prediction 69

5.4 Experimental setup . 70
5.4.1 Datasets . 70
5.4.2 Baseline . 71
5.4.3 Embedding models . 71

5.5 Results on supervised relation-prediction 73
5.5.1 Impact of balanced negative sampling 73
5.5.2 Impact of type filtering . 74
5.5.3 Results of the complete approach 74

5.6 Application to Wikipedia hyperlinks . 74
5.7 Conclusion . 75

6 Hierarchical classification for entity typing 78
6.1 Hierarchical classification . 78

6.1.1 Taxonomies . 78
6.1.2 Global and local hierarchical classification models 79
6.1.3 Performance metrics . 80

6.2 Dirichlet node classification . 81
6.2.1 Original model . 82
6.2.2 Hierarchical Dirichlet classifier 84

6.3 Hierarchical loss for gradient-based training 85
6.3.1 Existing hierarchical losses . 85
6.3.2 Hierarchical binary cross-entropy loss 86
6.3.3 Hierarchical graph convolutional network 88

6.4 The Self-Encoder model . 89
6.4.1 Related work . 89

CONTENTS 8

6.4.2 Description of the Self-Encoder 90
6.4.3 Invariance property . 92
6.4.4 Categorical features . 93
6.4.5 Sampling . 94
6.4.6 Self-Encoder for flat classification 94

6.5 Experiments . 97
6.5.1 Datasets . 97
6.5.2 Classification models . 98
6.5.3 Performance metrics . 98

6.6 Results . 99

7 Conclusion 101

A Usual neural network training techniques 103
A.1 Neural network training . 103
A.2 Regularization . 104

A.2.1 Weight decay . 104
A.2.2 Early-stopping . 104
A.2.3 Dropout . 105

B Dirichlet problem on directed graphs 106
B.1 Definitions . 106
B.2 Dirichlet problem . 106
B.3 Existence and unicity of the solutions 107
B.4 Convergence in discrete time . 108

C The TF-IDF weighting scheme 110

Notations

• Given S a set with group structure, S∗ is the same set without its identity element.

• N is the set of natural numbers. N∗ is the set of strictly positive natural numbers.

• K denotes a field (usually either R or C).

• R (resp. C) is the field of real (resp. complex) numbers.

• Given a set A, |A| ∈ N is the cardinal of A.

• Given a set A, P(A) denotes the set of all subsets of A.

• Vectors are denoted with bold letters.

• Any vector v ∈ Kk can indifferently be considered as a matrix of Kk×1.

• Given any matrix M ∈ Kn×m, MT ∈ Km×n is the transposition of M .

• Given a complex number x ∈ C, x̄ is the complex conjugate of x. For a vector
x ∈ Cn, x̄ is a complex vector such that for any i ∈ {1, 2, . . . , n}, (x̄)i = (xi).

• Re and Im designate the real and imaginary operators such that for any x ∈ C,
x = Re(x) + i Im(x) with (Re(x), Im(x)) ∈ R2. Those are naturally extended to
complex vectors.

• Given two matrices (A,B) ∈ Kn×k × Kk×m, A · B ∈ Kn×m is the matrix product
of A and B.

• Ik is the k-dimensional identity matrix and 1k is the all-one vertical vector of Rk.
The dimension k of these will be omitted except when ambiguous.

• Given a vector x ∈ Kn, diag(x) ∈ Kn×n is the diagonal matrix with the elements
of x on the diagonal.

• =⇒ denotes the logical implication and ⇐⇒ denotes the logical equivalence.

9

Acronyms

API Application programming interface
BalNS Balanced negative sampling
BCE Binary cross-entropy
BerNS Bernoulli negative sampling
CD Continuous development
CI Continuous integration
CWA Closed world assumption
DAG Directed acyclic graph
DVCS Distributed version control system
FN False negative
FP False positive
GCN Graph convolutional networks
GPU Graphics processing unit
HC Hierarchical classification
ILP Inductive logic programming
KB Knowledge base
KG Knowledge graph
LCN Local classifier per node
LCPN Local classifier per parent node
LCWA Local closed world assumption
LLM Large language model
ML Machine learning
MLP Multi-layer perceptron
MR Mean rank
MRR Mean reciprocal rank
NN Nearest neighbors
NS Negative sampling
OWA Open world assumption
OWL Web ontology language
PCA Partial completeness assumption
RDF Resource description framework
RDFS Resource description framework schema
RL Representation learning
SVD Singular value decomposition
SVM Support vector machine
TF Type filtering
TN True negative
TorchKGE Knowledge graph embedding in PyTorch
TP True positive
URI Uniform resource identifier
URL Uniform resource locator

10

Chapter 1

Introduction

1.1 Context of the thesis

One of the most ambitious projects of knowledge collection in history is the famous
Great Library of Alexandria. Established in the third century before Christ’s birth,
it quickly expanded notably by copying all books found on the numerous ships that
docked in the Alexandria harbor and by keeping the originals while returning the copies
to the owners. This famous enterprise is just an example of the numerous attempts of
mankind to centralize knowledge. Successive societies came up with various solutions to
the problem formalized in the eighteenth century by Denis Diderot in its Encyclopedia
as: “collect[ing] knowledge disseminated around the globe; to set forth its general system
to the men with whom we live and transmit it to those who will come after us” [37].

Diderot’s ambitious project found a modern embodiment with the internet and the
birth of Wikipedia: a global, open-source and collaborative project. Jimmy Wales, a
co-founder of Wikipedia presented it in the following terms: “Imagine a world in which
every single person on the planet is given free access to the sum of all human knowl-
edge. That’s what we are doing.”. First launched in 2001, Wikipedia has become an
unavoidable tool of the modern era. It is widely use by people around the world to doc-
ument themselves on a large variety of subjects. It currently counts nearly sixty million
articles in more than three hundred languages. The format of textual articles, however,
shows some limitations for some modern usage. Particularly, textual representation of
natural language is not easily queryable for machines and algorithms, thus limiting its
processing by modern intelligent systems such as recommender systems or chatbots.

In the last decades, the concept of knowledge base has come to designate databases
designed to record and organize knowledge mainly by listing entities and verified facts
involving these entities. There is a large variety of knowledge bases. Some are public and
about general knowledge such as ConceptNet, Freebase and Wikidata. Such projects are
usually open-source and rely on public contributions to grow. Others are topic-specific
such as WordNet, which specifically records knowledge in the field of linguistics. All the
public knowledge bases available online form what is called the semantic web. On the
other hand, many knowledge bases are not public and are simply projects that private
companies launch to organize their domain expertise, as an operational necessity or for
archiving purposes. Eventually, larger private knowledge bases can be used by tech
companies to propose services to the public, such as personal assistants.

In term of public knowledge bases, the most unavoidable project is certainly Wiki-
data. In 2012, the Wikimedia foundation, parent organization of Wikipedia, launched
a new project to organize the knowledge contained in textual articles in the form of a
structured knowledge base that would be easily queryable and processable by machines.
Wikidata was born and would soon become the largest public knowledge base [127].

11

CHAPTER 1. INTRODUCTION 12

By essence, knowledge bases aim at growing as large as possible to become complete.
Because of their size, they can quickly become difficult to process manually. This is the
reason why methods to automatize processing tasks have been developed simultaneously
with the knowledge bases themselves. Examples of tasks that researchers have contin-
uously tried to automatize are the completion by fact suggestion and the correction by
erroneous facts search. The first proposed methods were symbolic and rely on combina-
torics to mine patterns in the bases. Those patterns can either be used to raise unusual
facts as possible errors or to propose missing facts. Despite being historically the first,
symbolic methods still prove to solve efficiently some problems.

In the same way as combinatorics, a historically prominent field in data pattern
mining is statistics. Statistical theory indeed provides a lot of tools to estimate un-
derlying distributions of observed data. More recently, the field of machine learning,
which originally used mainly statistical methods, saw a large amount of new techniques
emerge with the drop in the cost of computing power. A tipping point was the recent
accessibility of graphics processing units over the past fifteen years that democratized
the development and the use of models requiring heavy tensor computations. One of
the consequences was the revolutionary performances of neural networks in the field of
computer vision. The field of knowledge bases also benefited from this cheap access to
computation power and many new machine learning models were proposed to automat-
ically solve tasks such as construction, completion and correction by involving vector
representations of knowledge bases.

1.2 Thesis outline

The problem tackled in this thesis is the automatic completion of knowledge graphs
using machine learning techniques. A requirement to any pertinent contribution, is a
proper introduction of the concepts at hand. Chapter 2 introduces the building blocks
of knowledge bases and taxonomies along with the notion of graph, thus introducing
knowledge graphs. In its simplest form, a knowledge graph is a collection of facts in
the form of triples 〈h, r, t〉 were a relation r links a head entity h to a tail entity t. An
example of a fact can be 〈Paris, capital of, France〉. Completing a knowledge graph
then comes down to finding new triples that are likely to be true given the existing ones.
A toy example is shown in Figure 1.1.

New-York

Ross Geller

Rachel Green

Emma Geller-Green

Paleontologist

Ralph Lauren
Corporationres

idence

childoc
cu

pa
tio

n
em

ploy
er

ch
ild

residencespouse ?

Figure 1.1: Toy example of a knowledge graph. The fact in gray, involving Ross Geller
and Rachel Green, is unknown but it could be automatically suggested as likely, knowing
that they are parents of the same child and live in the same city.

CHAPTER 1. INTRODUCTION 13

Generation of new facts
〈?, ?, ?〉

Link prediction
〈h, r, ?〉 or 〈?, r, t〉

Relation prediction
〈h, ?, t〉

Entity typing
〈h, instance of, ?〉

Figure 1.2: General task of knowledge graph completion and three restricted versions of
it. h, r and t respectively designate the head entity, tail entity and relation and “?” is
the missing part of the fact.

Following these definitions, Chapter 3 gives a proper framework to the task of auto-
matic knowledge graph completion and then reviews the existing methods. The focus
of the chapter is on machine learning techniques mainly relying on vector representa-
tions, or embeddings, of entities and relations. Symbolic methods are also introduced as
they help put the performances of the machine learning techniques in perspective and
are useful to design hybrid methods. This chapter particularly highlights the challenge
of assessing the performance of various models in a comparable setting as well as the
potential of simple models to perform comparably to over-engineered ones.

A first contribution of this thesis is then presented in Chapter 4: TorchKGE for
Knowledge Graph Embedding in PyTorch. This is a Python library that provides a
unique setting in which machine learning models for knowledge graph completion can
be easily implemented and experimented with. The design of TorchKGE makes it com-
patible with the use of other widespread machine learning libraries, while providing tools
specific to knowledge graphs. A key feature is a very efficient module to evaluate models
on inference, a key task when tuning the parameters of a model.

Most of the introduced methods mine patterns from existing facts of the knowledge
graph to be able to assess the likelihood of unknown ones. A naive way to apply those
would be to evaluate all the possible combinations of two entities and a relation to
select the most likely ones. The number of candidate triples is however very large and
applying possibly heavy models to that task would be costly. A reasonable solution is
to use alternative data sources to reduce the set of possible candidates in an informed
manner. The resulting tasks that are tackled in the thesis are schematically represented
in Figure 1.2.

There are several possible sources of candidates and a good example is Wikipedia
and the natural graph structure formed by the pages and the hyperlinks between them.
If the pages of two entities are linked, it might indicate a semantic relation between the
two and subsequently a possible fact. For example, the Wikipedia page of Ross Geller
is linked to the one of Rachel Green by a link embedded in the sentence: “His romantic
feelings towards Rachel Green are an ongoing theme of his narrative arc.”

Chapter 5 proposes a method to enrich the Wikidata knowledge graph by predicting
the semantic meaning of hyperlinks existing between Wikipedia pages. The two entities
of the fact-to-be come from the hyperlink and only the relation is missing. The resulting
task is called relation-prediction. The method mainly relies on simple embedding mod-
els trained on the facts already existing in the knowledge graph. Three contributions
are presented in this chapter: first a new training method improving the performance
of models when specifically predicting missing relations, second, an inference protocol
exploiting entity types with a simple and yet efficient symbolic technique and eventually,
a new dataset extracted from Wikidata and called WDV5.

Another source of candidates simply comes from the typing relation that exists in
knowledge bases and that characterizes entities with types hierarchically organized in a
taxonomy. Figure 1.3 presents a small taxonomy involving types that could apply to en-

CHAPTER 1. INTRODUCTION 14

Thing

Organization

Workers
union

Company Musical
ensemble

Profession

Waiter Executive Scientist

Figure 1.3: Example of a possible class taxonomy.

tities of the toy knowledge graph of Figure 1.1. If the taxonomy is rich enough, any entity
could be typed. The resulting candidates are of the form 〈entity, instance of, ?〉. For
example, some possible new facts involving the types of the taxonomy in Figure 1.3 are
〈Ralph Lauren, instance of, Company〉 and 〈Paleontologist, instance of, Scientist〉.
Entity typing is a key task of knowledge graph completion because types are likely to
give a very clear description of each entity. They are also making it possible to constrain
facts, resulting in a well-constructed and coherent knowledge graph.

Motivated by entity typing, Chapter 6 dives into the problem of hierarchical classi-
fication by exploring various ways to include a known taxonomy in a machine learning
classifier. A new hierarchical loss function is proposed to train tensor-based models
and a simple, yet powerful, unsupervised Self-Encoder model is introduced. While the
first improves the hierarchical compliance of predictions, the latter empirically gives an
intuition of how much of the taxonomy is encoded in the knowledge graph structure.

Eventually a conclusive chapter puts the contributions of this thesis in perspective
with the rest of the field to isolate promising axis for future works.

A schematic structure of the thesis is displayed in Figure 1.4.

Chapter 2
Preliminary definitions

Chapter 3
Review of existing automatic completion methods

Chapter 4
TorchKGE library

Chapter 5
Relation prediction

Chapter 6
Hierarchical classification

for entity typing

Figure 1.4: Structure of the thesis.

Chapter 2

Representing knowledge

The current chapter gives a comprehensive definition of knowledge bases and introduces
the concept of knowledge graph.

Section 2.1 covers parts of Section 2 of the following article:

Knowledge Representation and Rule Mining in Entity-Centric Knowl-
edge Bases.
Suchanek, F., Lajus, J., Boschin, A., Weikhum, G. (2019)
Postprint presented at the 15th Reasoning Web Summer School (Bolzano, Italy,
September 2019).
Reference [116]
Personal contribution: Section 4 (Representation Learning)

2.1 Entity-centric knowledge bases

There are three necessary building blocks in a Knowledge Base (KB): entities, relations
and types. Those will be defined before formally introducing KBs.

2.1.1 Entities

Definition 1 (Entity). An entity is whatever may be an object of thought.

It can be any conceivable thing: concrete or abstract, conceptual or material. For
example, the concept of city is an entity as well as all the existing cities in the world.
Referring to a specific entity can be tricky. Indeed, most entities have names (e.g.
humans, places, events) but there is a large multiplicity in names. The city of New-York
can either be designated by New-York or by its nickname The Big Apple. Conversely,
Paris can either designate the city in France or the city in Texas or even a hero of Greek
mythology. This calls for a mean to identify entities uniquely.

Definition 2 (Identifier). An identifier for an entity is a string of characters that
represents the entity in a computer system.

These identifiers can be chosen to be abstract (not human-intelligible). For example,
Wikidata refers to entities by identifiers formed by an integer preceded by the letter Q
(e.g. the Freddie Mercury entity’s identifier in Wikidata is Q15869). These abstract
identifiers are thought to be language-independent and stable in time. Even if another
Freddie Mercury becomes a famous singer in the future, Q15869 will still refer to the
original one. It is usually assumed that there is a bijection between the set of entities of a

15

https://www.wikidata.org/wiki/Q15869

CHAPTER 2. REPRESENTING KNOWLEDGE 16

knowledge base and the set of identifiers and they are usually not distinguished, they are
basically the entities. It is however necessary to have an intelligible and human-readable
way to identify entities. This is done using labels.

Definition 3 (Label). A label for an entity is a human-readable string that names the
entity.

An entity can have several labels (they are synonymous) and a label can refer to
several entities (it is then polysemous). However, not all entities have labels. Most
chairs for example don’t have particular labels, though some have: Q4267023 is a throne
in Tehran called the Marble Throne. Entities with labels are called named-entities.
Though most KBs tend to record mostly named ones, unnamed-entities represent the
vast majority of entities [98].

2.1.2 Entity types

The vast amount of entities of the world can be logically grouped together following
some common features, precisely they can be typed.

Definition 4 (Type). Given a set of entities E, a type (also: concept, class) T ∈ P(E)
is a named set of entities that share a common trait. An entity of that set is called an
instance of the type, and is said to have the type or belong to the type.

Under this definition, the following are types of entities: the type of singers (i.e. the
set of all people who sing professionally) but also the type of cities in France. Some
instances of these types are, respectively, Freddie Mercury and Paris. Since everything
is an entity, a type is also an entity and has an identifier and a label. Obviously, some
types are related to one another and it is possible to define an order on types using the
subsumption relation on types.

Definition 5 (Subsumption). Type A is a sub-type of type B if entities of type A are
contained in the set of entities of type B, i.e. A ⊂ B. B is called a super-type of A.

This binary relation is a partial order on the set of types of a KB. It is indeed
obviously reflexive, anti-symmetric and transitive. It is not a total order, however, as it
is not possible to order any arbitrary pair of types (for example two disjoint types can
not be ordered). It is important not to confuse type inclusion with the relation between
parts and wholes which can exist in a KB. For example, an arm is a part of the human
body by the entity arm is not a sub-type of the entity body.

Given A and B two types, suppose A is a sub-type of B. A is said to be a proper
sub-type of B if B contains more entities than A and A is a direct sub-type of B, if there
is no type in the KB that is a super-type of A and a sub-type of B. Usually, when
referring to sub-types, only direct sub-types are meant.

The partial order on types yields a natural hierarchy on the types: a taxonomy. The
concept of graph, which is used in the following definition of taxonomy, will be properly
defined in Section 2.3.1.

Definition 6 (Taxonomy). A taxonomy is a directed graph, where the nodes are types
and there is an edge from type X to type Y if X is a proper direct sub-type of Y.

The notion of taxonomy comes from biology. Zoological or botanic species form a
taxonomy: tiger is a sub-type of cat, cat is a sub-type of mammal, and so on. This
principle carries over to all other types of entities. For example, internetCompany is
a sub-type of company, and company is a sub-type of organization. Since a taxonomy
models proper inclusion, it follows that the taxonomic graph is acyclic: if a type is the
sub-type of another type, then the latter cannot be a sub-type of the former. Thus, a
taxonomy is a directed acyclic graph.

https://www.wikidata.org/wiki/Q4267023

CHAPTER 2. REPRESENTING KNOWLEDGE 17

Thing

Organization

Workers
union

Company Musical
ensemble

Place

Galaxy Territory
Front

(Military)

Figure 2.1: Extract of a taxonomy.

In some taxonomies, nodes have at most one out-going edge, turning it into a tree.
In other cases, types can have several super-types. For example in Wikidata, the type
military officer is a sub-type of both types military personnel and officer.

Usually, taxonomies are connected and have a single root, that is, a single type that
has no outgoing edges. This is the most general type, of which every other type is a
sub-type. In Wikidata, the root type is Q35120:entity . Types that have no incoming
edge are called the leaves or leaf-types. Figure 2.1 presents a small example taxonomy.

2.1.3 Relations

Entities allow KBs to record the existence of anything. These entities can then be
organized using types. A final missing step in order to record knowledge is to record
links and interactions between entities. This is the role of relations.

Definition 7 (Relation). Given a set of entities E, a relation (or predicate) is a seman-
tically meaningful subset of the Cartesian product E × E. The subsets of E on which the
relation is defined are called its domain and range.

An intuitive way to understand this definition is to see relations as semantic links
between types. For example, the types person and city might define the relation place-
OfBirth as a subset of the Cartesian product person × city. It will contain couples of a
person and their city of birth, e.g. (Freddie Mercury, Stone Town) ∈ placeOfBirth.
This is just an intuition, however, because in general relations can be defined on any
subset of E × E , not only on types.

Just like entities, relations are referred to by unique identifiers and labels. For
example, relation identifiers in Wikidata are formed by and integer preceded by the
letter P : P19 is the identifier of the placeOfBirth relation.

There exists a broader definition of relations where the Cartesian product involves
more than two sets of entities. The number of sets of entities involved is called the arity
of the relation. The previous definition concerns relations of arity 2: binary relations.
In the thesis, only binary relations will be used.

Definition 8 (Triple). Given a set of entities E, r a relation on E and (e1, e2) ∈ E ×E,
〈e1, r, e2〉 is called a triple.

Definition 9 (Fact). Given a set of entities E and a set of relations R on E, the triple
〈h, r, t〉 ∈ E ×R× E is a fact if (h, t) ∈ r, otherwise it is an unknown triple.

The arguments of a relation are respectively called the head entity (noted h) and
the tail entity (noted t). Subsequently, a triple is either a fact or an unknown triple.
The next section will present the various assumptions under which unknown triples can

https://www.wikidata.org/wiki/Q35120
https://www.wikidata.org/wiki/Property:P19

CHAPTER 2. REPRESENTING KNOWLEDGE 18

be handled. As stated earlier, types are entities as well. It is then possible to define a
relation hasType such that given a type T , e ∈ T can be noted 〈e, hasType, T 〉.

Notation remark The notations presented here are the ones usually used by the
machine learning community. They differ from the ones used by the semantic web
community who calls triples statements, denoted p(s,o). A statement is made of a
predicate p, a subject s and an object o, respectively corresponding to a relation, a head
entity and a tail entity.

Definition 10 (Inverse relation). Given a set of entities E and r a relation on E, the
inverse relation of r is a relation r−1 such that ∀(x, y) ∈ E2, (x, y) ∈ r ⇐⇒ (y, x) ∈ r−1.

Definition 11 (Function). A function is a relation that has for each head at most one
tail.

Typical examples for functions are birthPlace and hasLength: people have at most
one birthplace and every river has at most one length. Some relations are nearly func-
tions, in the sense that very few heads have more than one associated tail. For example,
most people have only one nationality, but some may have several. This idea is formal-
ized by the notion of functionality [114]. The functionality of a relation r is the number
of heads, divided by the number of facts involving that relation. It is always a value
between 0 and 1, and it is 1 if r is a function. It is undefined for an empty relation.

fun : R → [0, 1]

r 7→ |{h : ∃t : 〈h, r, t〉 is known}|
|{h, t : 〈h, r, t〉 is known}|

When building KBs, it is usually possible to have to choose between a relation
and its inverse relation, for example isCitizenOf or hasCitizen for the relation linking
countries and their citizens. In general, KBs tend to choose the relation with the higher
functionality, i.e. where the head has fewer tails. The intuition is that facts should be
about the head.

2.1.4 Knowledge base

Using the previously defined entities, types and relations, a knowledge base can now
formally be defined.

Definition 12 (Knowledge Base). Given, a set of entities E and a set of relations R
on E, a Knowledge Base (KB), in its simplest form, is a set of facts involving entities
of E and relations of R.

The general KBs are the most well-known and notorious examples are Wikidata,
DBpedia and YAGO [127, 74, 115]. A review of existing KBs is proposed in Section 2.2.

Definition 13 (Completeness). A knowledge base is complete if it contains all entities
and facts of the real world in the domain of interest. The complete knowledge base is
usually noted K∗.

Definition 14 (Correctness). A knowledge base K is correct if K ⊆ K∗, where K∗ is
the complete KB.

In real life, large KBs tend to contain some erroneous triples. For example, the
authors or YAGO4 [101] estimate that 95% of its triples are in K∗, which is in prac-
tice approximated by Wikipedia. This means that YAGO4 still contains hundreds of
thousands of wrong triples. For most other KBs, the degree of correctness is not even
known.

An important remark is that KBs usually do not model negative information, but
only positive facts. For example, Wikidata may say that Eurostar serves the cities of

CHAPTER 2. REPRESENTING KNOWLEDGE 19

Paris and London but it will not record that this train service does not serve the city
of Stockholm. While incompleteness tells us that some facts may be missing, the lack
of negative information prevents us from specifying which facts are missing because
they are false. This poses considerable problems, because an unknown triple might as
well be considered false or missing and it does not allow any conclusion about the real
world [103].

Subsequently, there are two ways to consider missing information from KBs. First,
the Closed World Assumption (CWA) considers the KB at hand as complete. This
implies that any triple that is not in the KB is not in K∗ either and is subsequently
false. However, KBs are hardly ever complete. Therefore, KBs typically operate under
the Open World Assumption (OWA), which says that if a triple is not in the KB, then
it can either be true or false in the real world.

Definition 15 (Axiom). An axiom is a logical constraint that usually come with a KB.

For example, it can be imposed that if e has the type t, and if t is a sub-type of t′,
then e must also have the type t′: 〈e, hasType, t〉 ∧ 〈t, subTypeOf, t′〉 ⇒ 〈e, hasType, t′〉.
Usual axioms are the following:

• Domain (resp. range) constraints force the head (resp. tail) entities of a
relation to have a certain type. For example the domain of bornIn is included in
the type human and its range is included in the type place.

• Cardinality constraints limit the number of tail entities per head for a certain
relation. For example, entities of type human can only be involved in one fact
with the relation dateOfBirth.

• Symmetry, transitivity, and inverse constraints force a relation to be sym-
metric, transitive, or the inverse of another relationship.

• Subsumption constraints force a relation to imply another one. For example
isMarriedTo should always imply isContemporaryTo.

• Disjointness constraints force types not to have entities in common, For exam-
ple: places and people.

Such axioms exist in packages of different complexity: the Resource Description Frame-
work Schema (RDFS) is a system of basic axioms that are concerned mainly with types
of entities. The axioms are so basic that they cannot result in contradictions. The Web
Ontology Language (OWL) is a system of axioms that exists in several flavors, from the
simple to the undecidable [116]. Such packages of axioms, together with the taxonomy,
can be called ontology or schema.

2.1.5 The semantic web

The common exchange format for KBs is RDF, which stands for Resource Description
Framework [134]. It specifies a syntax for writing down facts with binary relations.
Most notably, it prescribes Uniform Resource Identifiers (URIs) as identifiers, which
means that entities can be identified in a globally unique way. For example the URIs of
Wikidata entities are the concatenation of the Wikidata URL with the entity identifier,
for example https://www.wikidata.org/entity/Q15869.

To query such RDF KBs, the most appropriate query language is SPARQL [135]. It
borrows its syntax from SQL, and allows the user to specify graph patterns, i.e. triples
where some components are replaced by variables. It is common for public KBs to
provide a public endpoint, which can be queried. For example, one can ask Wikidata1

for the birth date of Freddie Mercury by writing the SPARQL query of Figure 2.2 where
P569 is the identifier of the birth date relation and Q15869 is the identifier of the Freddie
Mercury entity.

1https://query.wikidata.org

https://www.wikidata.org/entity/Q15869
https://query.wikidata.org/#SELECT%20%3Fbirthdate%20%0AWHERE%20%0A%7B%20%0A%20%20%20%20wd%3AQ15869%20wdt%3AP569%20%3Fbirthdate%20%0A%7D
https://query.wikidata.org

CHAPTER 2. REPRESENTING KNOWLEDGE 20

SELECT ?birthdate

WHERE

{

wd:Q15869 wdt:P569 ?birthdate

}

Figure 2.2: SPARQL query asking the birth date of Freddie Mercury to Wikidata. P569
is the identifier of the birth date relation and Q15869 is the identifier of the Freddie
Mercury entity.

entities # relations # facts share of typed entities
Wikidata 101M 10,775 14.5B 94%
YAGO4 67M 116 343M 100%
DBpedia3 6M 3,253 9.5B 87%

Table 2.1: Descriptive figures of Wikidata, YAGO4 and DBpedia.

Many KBs are publicly available online and form what is known as the Semantic
Web. Some of these KBs talk about the same entities, though with different identifiers.
The Linked Open Data project2 [12] establishes links between equivalent identifiers, thus
weaving all public KBs together into one giant knowledge graph. The following section
introduces a few of the existing notorious KBs.

2.2 Strengths and limits of existing knowledge bases

Obviously Wikidata is an example of a public knowledge base. It currently counts a
hundred million entities and it is growing fast thanks to nearly twenty-four thousand
active contributors. Despite being the best-known project, it was not the first. As ex-
plained in [116], the Cyc (1993) and the WordNet (1998) projects [85, 44] were among the
first open-source ones to tackle the tedious challenge of centralizing knowledge, followed
notably by KnowItAll and ConceptNet in 2004 [42, 79], YAGO and Freebase in 2007
[115, 14], BabelNet and Wikidata in 2012 [92, 127] and DBpedia in 2015 [74]. Among
these, Wordnet, Freebase and DBpedia are some of the most widespread in machine
learning literature, though Freebase was discontinued in 2016 in favor of Wikidata and
Wordnet was not updated since 2011. Table 2.1 reports the sizes of Wikidata, YAGO4
and DBpedia.

Currently, the largest public KB is Wikidata. Its large set of contributors makes it a
very abundant collection of information. Though Wikidata does not have a strong defi-
nition of the concept of types, they can be defined empirically as the entities of the KB
that are involved as tails of facts with the relations P31: instance of or P279: subclass
of . The latter one also defines the subsumption binary relation on types necessary to
build a taxonomy. As of 2020, only 6% of the Wikidata entities were not typed4 and
according to [101], Wikidata contains approximately 2.4M types. However, there is a
downside to the obvious richness of Wikidata: it is sparse. For example, 80% of the
types have less than ten entities in the KB. Another issue can come from the structure
of the taxonomy itself: it is not a tree and because of the lack of constraints, for a
single type, the numerous paths up to a more general type can diverge in meaning. For
example, the happiness entity has the type emotion. There are several possible paths
from emotion to the root entity in the Wikidata taxonomy. The shortest one might
be the most intuitive: entity/qualia/emotion/basic emotion. Another possible path
counts fifteen types: entity/collective entity/set/group/series/activity/behavior/human
behavior/human activity/intentional human activity/use/function/mental process/emo-

2https://lod-cloud.net
3https://www.dbpedia.org/blog/yeah-we-did-it-again-new-2016-04-dbpedia-release/
4https://www.wikidata.org/wiki/Wikidata:Statistics

https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Q8
https://www.wikidata.org/wiki/Q9415
https://lod-cloud.net
https://www.dbpedia.org/blog/yeah-we-did-it-again-new-2016-04-dbpedia-release/
https://www.wikidata.org/wiki/Wikidata:Statistics

CHAPTER 2. REPRESENTING KNOWLEDGE 21

tion/basic emotion. In a 2020 archive, we counted ten different such paths. This can be
the source of errors and incoherence as it can make machine learning methods noisy by
concealing patterns.

Contrasting with this very complex and unconstrained taxonomy, schema.org5 pro-
poses a much simpler and constrained taxonomy. This is an unavoidable contribution
to the semantic web and currently, the taxonomy counts 797 types and 1,457 properties
describing the types. Some extensions of the taxonomy are proposed on specific topics
in order to properly match specialized KBs. A major extension is the “health and life
science” one which accounts for 80 types and 162 properties.

Attempting to combine the best of both projects, YAGO4 [101] was introduced in
2020 to structure the profusion of entities in Wikidata with the rigorous design of the
schema.org taxonomy. The design of the KB relies precisely on entity typing with a
hybrid taxonomy: the top-level comes from schema.org, whereas the leaf types come
from Wikidata. The junction mapping was done manually. Eventually, for each entity
in Wikidata, if the path to entity in the original taxonomy starts with a type that has
a Wikipedia page then the type is kept and is mapped to the schema.org type that
first appears on the path up to entity. Eventually, types with less than 10 entities were
discarded and so were the corresponding entities. The resulting taxonomy counts ten
thousand types and the largest version of the KB contains 67 million entities and 343
million facts.

Those are publicly available KBs but there are also a lot of private ones (and certainly
even more). Big tech companies of course maintain their own knowledge graphs. Google
and Microsoft’s search engines enrich results with facts extracted from their KBs and
Apple and Amazon use their own ones to help their personal assistants answer queries.

2.3 From knowledge bases to knowledge graphs

The previous section explains how knowledge can be represented and recorded in the
form of knowledge bases. These are often studied by looking at their natural graph
structure. Let us first define rigorously what a graph is.

2.3.1 Graph definitions

A graph is a mathematical object that represents the links between entities. In its
simplest form, a graph is a list of n nodes or vertices V = {v1, v2, · · · vn} and p edges
between them E = {e1, e2, · · · ep} ⊂ (V ×V)p. It is usually denoted G = (V,E). A more
general version allows edges to carry weight.

Definition 16 (Adjacency matrix). Given a graph G = (V,E) and K a field, G is fully
defined by the adjacency matrix A ∈ Kn×n:

Aij =

{
wi,j ∈ K if (i, j) ∈ E,
0 otherwise.

with wi,j ∈ K the weight of edge (i, j).

The adjacency matrix of an unweighted graph is a binary matrix belonging to {0, 1}n×n.

Depending on the form of the adjacency matrix, a graph can present some topological
features. There are mainly three types of graphs:

• undirected graphs have a symmetric adjacency matrix (A = AT).

• directed graphs have a non-symmetric adjacency matrix (A 6= AT).

5https://schema.org

https://schema.org
https://schema.org

CHAPTER 2. REPRESENTING KNOWLEDGE 22

• bipartite graphs have an adjacency matrix that can be written in the form of
a block matrix up to a reordering of the nodes, as in Equation 2.1 where k ∈
{1, . . . , n− 1} and B ∈ Kk,n−k.

A =

(
0 B
BT 0

)
(2.1)

Intuitively, nodes in a bipartite graph can be divided in two groups and edges can
only link nodes from one group to nodes of the other.

Definition 17 (Degree matrix). Let G = (V,E) be a weighted undirected graph and A
its adjacency matrix. Then d = A · 1 are the node degrees and D = diag(d) is called the
degree matrix of G.

A graph is said to be connected if there exists a path of edges between any pair
of nodes. In directed graphs, strong connection involves directed edges whereas weak
connection removes the direction of edges. Connection (resp. weak connection) defines
an equivalence relation on the nodes of a graph (resp. directed graph). The equivalence
class of these are called the connected components (resp. weakly-connected components)
of the graph.

2.3.2 Graph structure of knowledge bases

As presented in Section 2.1.4, a KB is a collection of facts, i.e. known triples linking
a head entity to a tail entity by a relation. Facts can naturally be seen as edges in a
graph where the nodes are the entities. This graph structure of a KB is referred to as a
Knowledge Graph (KG).

Definition 18 (Knowledge graph). A Knowledge Graph (KG) is a triple (E ,R,F) such
that E is a set of entities, R a set of relations on E and F a set of facts of E × R× E.
It is usually noted K.

Using the usual graph terminology, a KG is a directed graph with labels on the edges.
The nodes are the entities and the labels on the directed edges are the relations.

A graph structure is naturally formalized as an adjacency matrix. Likewise, the KG
structure can easily be formally written in the form of 3-dimensional adjacency tensor.

Definition 19 (Adjacency tensor). Given a KG (E ,R,F), its adjacency tensor is de-
fined as T ∈ {0, 1}n×n×m such that

Ti,j,k =

{
1 if (ei, rk, ej) ∈ F
0 otherwise.

where n = |E|, m = |R|, E = {e1, . . . , en} and R = {r1, . . . rm}.

Intuitively, the adjacency tensor of a KG is the concatenation along the third dimen-
sion of the adjacency matrices of the graphs containing the edges of only one relation.
Figure 2.3 shows a 3D visualization of an adjacency tensor.

Terminology remark The definitions of knowledge bases and knowledge graphs are
very close. The first one historically comes from the field of semantic reasoning, while
the second one is more prevalent in the field of machine learning. The main difference is
that knowledge graph refers to the graph structure of the fact collection of a knowledge
base. Commonly, knowledge base implicitly refers to the fact collection along with the
ontology. In the rest of this thesis, the term knowledge graph will be mostly used.

CHAPTER 2. REPRESENTING KNOWLEDGE 23

Figure 2.3: Frontal concatenation of adjacency matrices. Each slice of the tensor can
be seen as the adjacency matrix corresponding to a specific relation.

Chapter 3

Knowledge graph completion

The previous chapter introduced the concept of knowledge base and the graph structure
of the fact collection, the knowledge graph.

As explained in the introduction, researchers have tried to automatize several tasks
related to KB construction and maintenance. Depending on the stage of development of
the KB, the task might be very different. A very early-stage task could be to structure
the knowledge contained in a text corpus (e.g. Wikipedia pages). This might require
the use of natural language processing techniques for example. If the KB is at a more
advanced stage of development, it might already have reached a critical size and contain
enough information for an agent to partially complete it without requiring external
sources of knowledge. For example, a KB containing people’s place of birth could be
enriched with facts on people’s nationality.

Completing a knowledge base essentially comes down to suggesting new facts. There
has been a variety of proposed solutions to solve this task automatically. The two main
fields are semantic reasoning and machine learning. Coherently with the final remark
of the preceding chapter, semantic reasoning usually tackles knowledge base completion
while machine learning tackles knowledge graph completion. The task is however the
same in both cases. In the current chapter, a brief introduction to machine learning and
representation learning is proposed followed by a state of the art of machine learning
completion methods of KGs. Eventually, the semantic reasoning methods are briefly
introduced along with methods combining the two approaches.

3.1 Introduction to graph representation learning

Machine Learning (ML) is a field of computer science that develops algorithms to au-
tomatically learn which aspects of the data are relevant to solve a specific task. It is
considered as a part of artificial intelligence and originally relied on statistics to mine
patterns in the data.

A demonstrative example of a task that can be solve with a ML algorithm is spam
detection. Internet users often receive a large number of emails that they wish they did
not receive like advertisement or phishing attempts. A way to filter the unwanted emails
could be to manually maintain a list of specific keywords and to dismiss incoming emails
that contain any of these. A more comfortable solution is let an algorithm maintain the
list by detecting which keywords are characteristic of spam emails. A vanilla version
of this algorithm would learn the set of banned keywords on a set of annotated emails
but a more complex version should update the rules continuously as the user flags new
emails.

24

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 25

KGs can be considered as annotated data. As stated earlier, they model positive
information and thus facts come with a True label. A natural task would thus be to build
and train a model to classify triples as True or False. The problem is that, as stated in
Chapter 2, KBs do not model negative information and training a ML algorithm with
only one label does not make much sense. For the algorithm to learn the difference
between the labels, it has to be shown true and false triples. This problem of false triple
generation, called Negative Sampling, will be presented in Section 3.2.2. Ignoring it for
now, let us focus on supervised ML.

3.1.1 Supervised machine learning

A formal definition of supervised ML is the following. Let X = {x1, . . . ,xn} ∈ (Rk)n

be a dataset of n samples with k features. Each sample xi comes with a label yi ∈ R.
Let y ∈ Rn. This (X,y) pair naturally defines a supervised task: defining a function
φ : Rn → R fitting the annotated samples, i.e. φ(xi) = yi for as many i ∈ {1, . . . , n} as
possible. This is done hoping that φ generalizes properly to label correctly unseen data
samples. Depending on the possible values for the labels, the task has a different name:

• if the set of possible labels is finished, then the task is called classification.

• if the set of possible values is a range in R, then the task is called regression.

Solving this task relies on the assumption that there exists a true labelling function
φ0 : Rn → R such that ∀i ∈ {1, . . . , n}, φ0(xi) = yi. This function is called a ground
truth oracle. Supposedly, the annotations of the dataset were generated by it and given
any new sample, it can predict its correct label.

There are possibly many reasons for which it is impossible to call the oracle φ0 every
time an annotation is needed. For example, in image processing, asking the oracle for
an annotation often comes down to asking a pool of human annotators to describe the
content of an image, which is very costly. Physics is also full of examples of expensive
calls to the oracle that often amount to solving complex equations at the cost of very
heavy computations [6].

A ML algorithm can then be defined as a parametric function φ : Rn → R that
approximates φ0 and that is hopefully much easier to be called on unseen samples.
Training this algorithm comes down to adjusting the parameters of φ so that the known
annotations are fitted, i.e. φ(xi) = yi for as many i ∈ {1, . . . , n} as possible. Though the
form of the function is typically defined by a human, the optimization of its parameters
is done by the machine. φ is usually called a ML model because the engineering of the
function should reflect a deep understanding of the structure of the data and require
modelling skills. Two fundamental characteristics of ML models are the following:

• the expressive power can intuitively be defined as the amount of information
the model can store and it is directly linked to its number of parameters.

• the generalization capacity of a model refers to its ability to adapt to unseen
data samples and more precisely to data points that diverge from the distribution
of the training samples.

There is a natural trade-off between the two. Intuitively, a ML model needs to be
given enough expressive power to record possibly complex patterns from the data. How-
ever, too much expressive power can lead to a model that is difficult to train (because of
too much parameters) and that generalizes poorly because the numerous parameters fit
too well the training samples. The latter phenomenon is called overfitting and is con-
trolled by regularization. Appendix A presents three common regularization techniques
and lists references from [52] for extensive analysis. In practice, ML models almost never
fit perfectly the training data.

In a simple binary classification task of data in R2, the learned pattern is simply a
border separating the plane in regions with label 0 and others with label 1. Figure 3.1

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 26

Figure 3.1: Visualization of overfitting in the case of 2D binary classification (source
of the image: Wikipedia1). Samples are colored in blue or red depending on their
label. The green border corresponds to an overfitting model. The black border might
generalize better to new data points.

illustrates the overfitting phenomenon with two possible borders.

A widespread naming convention in ML calls parameters the variables of a model
that are adjusted during training to fit the data. The other variables that are used
to define the form of the function φ but that remain unchanged afterwards are called
hyper-parameters.

An important problem in ML is model selection: given several models (possibly the
same one but with different hyper-parameters), choosing the best performing one can
be tricky. Commonly, the best model is defined as the one that performs the best on
previously unseen data. This can be estimated by measuring performance metrics on a
test set distinct from the training set. Because of overfitting, the best model might not
be the one performing best on training data. When some hyper-parameters must be
chosen, it might be tempting to select the ones resulting in the best test performances.
This can however lead to overfitting as well. A common technique to properly select
the hyper-parameters is k-fold cross validation [56]: it splits the training set in k groups
and independently trains the model k times. Each time, one of the groups is used as
validation set to evaluate the performance of the model while the k − 1 groups are
used as training data. Eventually, the performance of the model is set to the average
validation performance of the k independent runs. This value then can be used to select
the hyper-parameters. More details can be found in Chapter 1 of [9].

Let us conclude this section with a simple remark which will be useful later in the
chapter. When solving a supervised ML problem, the available training data should
contain at least two different labels. Otherwise, a simplistic model always outputting
the only training label could perfectly fit the data while having a very poor generalization
capacity. An intuitive way of looking at supervised ML models is to think that those
models are trained to make differences, to learn distinctive patterns in the features
describing the samples.

3.1.2 Representation learning

ML models need to represent real-world objects in the form of vectors to process them.
Often, the representation of objects is natural from the problem definition. In the Iris

1https://en.wikipedia.org/wiki/Overfitting

https://en.wikipedia.org/wiki/Overfitting

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 27

dataset for example [46], flowers are represented by four of their measures. However,
sometimes there is no natural representation available of the data or the only one is
unsatisfactory, because it is in too high dimension for example (cf. one-hot encoding in
Definition 20). An entire field of ML focuses on learning representations of objects: it
is called Representation Learning. This is usually only a means to an end but it is a
necessary step to solve real-world problems.

The simplest way to represent a set of objects as vectors is by a one-hot encoding:

Definition 20 (One-hot encoding). Given an ordered set of objects S = {o1, . . . , on},
the one-hot encoding of an object oi is the vector h(oi) ∈ {0, 1}n that contains only
zeros, and a single 1 at position i.

This is a very poor representation as it only contains the information that samples
are distinct from one another. It does not carry descriptive information. It should be
accompanied by additional data, such as an adjacency matrix if the objects are nodes
of a graph.

Definition 21 (Embedding). A d-dimensional embedding for a group of objects (e.g.
words, entities) is an injective function that maps each object to a vector in Kd, so that
the intrinsic relations between the objects are maintained. K is a field and usually K = R.

This definition is intentionally vague on what the intrinsic relations are. The main
interest of representing objects as vectors comes with the metric structure of vector
spaces allowing to measure distances between objects. The difficulty lies in the interpre-
tation of that distance and this is linked to the vague notion of intrinsic relations used
in Definition 21. For example, closeness between words can be related to their semantic
proximity or to their grammatical use or the two altogether. For entities and relations of
KGs, they can be considered close if they often appear in facts together or if the entities
are semantically close in the real world. The design of the embedding should result in a
metric that can be interpreted in term of this closeness.

Obviously, a one-hot encoding could be considered as a n-dimensional embedding.
A goal of embedding techniques however usually is to reduce the embedding dimension
to the minimum to ease the processing of the resulting vectors in downstream tasks.
Scalability and computational cost are obvious concerns, but more refined problems
can appear in high dimensions. A common one is the curse of dimensionality. The
expression, which was coined by Bellman in 1957 usually refers to the fact that the
volume of a space grows exponentially with its dimension. This leads to data becoming
sparse and counter-intuitive phenomena arising.

As previously defined, the function used to compute the vector representations is
called the embedding or the embedding model. By extension, the resulting vectors are
usually called the embeddings of the object or the embedding of the data. Finally, the
field dealing with the study of embedding models is called representation learning.

Learning representations can either be done upstream of the ML task at hand (if no
natural representation of the data is naturally available for example) or it can be done
simultaneously. A classical way to embed a set of objects is to train a parametric ML
model on a task linked to the closeness one wants to capture in the embedding. Once
trained, an embedding of the objects can possibly arise in the parameters if they can be
mapped to the objects.

For example, the OpenFlight dataset2 records international airports and daily flights
linking them. This is a weighted graph, the nodes of which are airports. An embedding
of the airports representing highly linked airports by close vectors could be computed
by training a ML model to predict the number of daily connections between airports.

2https://netset.telecom-paris.fr/pages/openflights.html

https://netset.telecom-paris.fr/pages/openflights.html

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 28

(a) Karate club graph. (b) Embedding of the same graph in R3

Figure 3.2: Visualizations of the embedding of the Karate club graph [145] in R3 using
spectral embedding.

3.1.3 Graph embedding with spectral theory

When it comes to graphs, there exists a variety of representation learning tasks in the
literature. The objects to embed can be either the nodes of a graph or a set of graphs
altogether. The latter case is common in biology: some molecules can be represented
as graphs and embedding those can make molecules comparable by a simple distance
measure. The common and best-documented task however is the problem of node em-
bedding for which the distance between vectors can be interpreted as how the original
nodes are likely to be linked by an edge. The current section presents an example of
such a technique, relying on spectral theory.

Let G = (V,E) be a graph, n the number of nodes, A the adjacency matrix and
D the degree matrix. A d-dimensional embedding for this graph consists in vectors
(xi)i∈{1,...,n} ∈ (Rd)n representing the nodes. Let X ∈ Rn×d be a matrix in which the
i-th row is xi. Encoding the structure of the graph in X can be done for example by
forcing that two close nodes i and j in the graph be represented by close vectors xi and
xj in Rd (cf. Figure 3.2).

An intuitive way to achieve this is to design a model that can estimate the likeli-
hood of an edge to exist between any pair of nodes using the distance between their
embeddings. Let us write this model as the parametric function fX :

fX : V × V → R
(i, j) 7→ ||xi − xj ||

As explained previously, this parametric function can be interpreted as an approximation
of the oracle that returns larger values for existing edges and smaller ones otherwise.
The parameters X need to be adjusted by solving the following minimization problem:

min
X∈Rn×d:XT 1=0,XTX=Ik

∑
(i,j)∈E

Ai,j × f(i, j)2

= min
X∈Rn×d:XT 1=0,XTX=Ik

∑
(i,j)∈E

Ai,j × ||xi − xj ||2 (3.1)

There are two constraints on X ∈ Rn×d: XT1 forces the embedding to be centered on
0 and XTX = Ik forces the embeddings to have uncorrelated coordinates of positive
variance. The latter constraint adds repulsive forces between the vectors and forces
them to occupy the whole space, thus avoiding the trivial solution X = 0.

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 29

The problem in Equation 3.1 can be solved using spectral analysis of the matrix A.
Let us briefly state the Spectral Theorem, which is necessary to express the solutions.

Definition 22 (Eigenvalue and eigenvector). Given a matrix A ∈ Kn×n, if (λ,x) ∈
K × Kn is a solution of Ax = λx then x is an eigenvector of A associated to the
eigenvalue λ.

Definition 23 (Graph Laplacian). Let G = (V,E) be a weighted undirected graph, A its
adjacency matrix and D its degree matrix. The Laplacian of G is defined as L = D−A
and its normalized version is defined as L = I − D−1/2AD−1/2. L and L are real
symmetric.

Theorem 1 (Spectral theorem). Let M ∈ Rn×n be a real symmetric matrix then there
exists P ∈ Rn×n and Λ ∈ Rn×n such that M = P · Λ · PT and

• The columns of P are the eigenvectors of M and P · PT = PT · P = In.

• Λ is diagonal and its diagonal elements (λ1, λ2, . . . , λn) are the eigenvalues of M .

Let us call P and (λ1, . . . , λn) the spectral decomposition of M .

A demonstration of this theorem can be found in [75].

Let L be the Laplacian of G, which is symmetric. Let λ1 ≤ · · · ≤ λn be the
eigenvalues of L given by the Spectral theorem. The columns of the matrix X solving
the problem in Equation 3.1 are the eigenvectors of the Laplacian matrix L associated
with the eigenvalues λ2, . . . , λd+1. A demonstration of the result can be found in [15].

This gives a graph embedding method called Spectral embedding. A comprehensive
presentation of the spectral analysis of graphs can be found in [28].

3.1.4 Extending spectral embedding to knowledge graphs

Though KBs are naturally represented as graphs, the spectral analysis cannot be used
as is for KG embedding. Indeed, as explained in Section 2.3.2, a KG is represented by
a 3-dimensional tensor and not as a matrix. The spectral embedding method relies on
spectral analysis and eigenvalue decomposition of square matrices, which are particular
cases of the study of Singular Value Decomposition (SVD) of non-square matrices. To
apply to KGs, these have to be extended to higher-order tensors. According to Kolda
et Bader [68], there are mainly two generalizations of the SVD: the CANDECOMP/-
PARAFAC (CP) decomposition, introduced by Hitchcock in 1927 [57] and the Tucker
decomposition [123]. This second method is often also presented as a generalization of
the usual principal component analysis [100]. Explicit details of these techniques are
beyond the scope of the current chapter but they will further be introduced indirectly
with the presentation of DistMult and ComplEx algorithms [141, 121].

As explained by Kolda et Bader [68], the CP and Tucker decompositions pose some
problems compared to the extensively studied SVD of matrices. For example, the di-
mensions of the decompositions of a higher-order tensor cannot be ranked according to
reconstruction quality as it was done in Section 3.1.3 with a matrix. There are examples
where the best rank-one approximation of a 3-dimensional tensor is not a factor in the
best rank-two approximation. Those factors then have to be computed all-together and
cannot be computed sequentially, which poses computation issues.

There are however several KG embedding techniques that were based on CP or
Tucker decompositions. For example DistMult and ComplEx [141, 121] implement con-
strained versions of the CP decomposition of the adjacency tensor whereas TuckER [4]
adapts the Tucker decomposition to the same task. Those methods will be detailed in
the following section. An extensive comparison of CP decomposition for automatic KG
completion can be found in [72].

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 30

3.2 Knowledge graph representation learning

KG representation learning has been a trending topic in recent years. Most of the
available literature focuses on embedding entities and relations. To the best of our
knowledge, no published work on embedding entire KGs as single objects has drawn
significant attention. This section, introduces the main formalism used to describe KG
embedding models relying on a scoring function. A variety of existing models are then
reviewed.

3.2.1 Estimating triples likelihood

Despite the large number of publications focusing specifically on KG embedding, it is a
mean to solve other tasks, and mainly the automatic completion of KGs.

Automatic completion of KGs is can be formalized as a supervised binary classifica-
tion task: categorizing triples as true or false. The ground truth oracle here would be
an omniscient intelligence with encyclopedic knowledge about the world, or at least the
topic of the KG at hand, making annotations obviously difficult to get.

As stated earlier, most KGs do not model negative information, which means that
the available training data only contains samples from one of the two labels. This is
problematic as explained in the final remark of Section 3.1.1. Methods to get a hold of
false triples will be detailed in the Section 3.2.2. Until then, let us suppose that true
facts and false triples are available.

Approximating this oracle is often tackled by the close task of estimating the like-
lihood of a triple to be true. Models are then defined as a parametric scoring function
that estimates likelihood.

Definition 24 (Scoring function). Given a KG K = (E ,R,F), a scoring function is a
parametric mapping f : E ×R×E → R that maps triples 〈h, r, t〉 to real scores f(h, r, t).
The score should be high for facts and low for false triples.

A KG embedding model is entirely defined by its scoring function f . Some parame-
ters of the function are usually vectors representing each entity and each relation, which
are by extension used as embeddings. The specificity of each model lies in how the inter-
action between entities and relations is algebraically formalized in order to compute the
score of triples. The rationale behind this method is that a model capable of correctly
predicting the truth value of a triple should have encoded the necessary information in
the representation it has of the involved entities and relation.

As an example, let us now look at one of the simplest embedding model. TransE,
proposed in 2013 by Bordes et al. [17], simply represents entities and relations as d-
dimensional vectors and models relations as translation between entities. This implies
that the associated scoring function has d × (n + m) parameters in the form of two
matrices E ∈ Rn×d and R ∈ Rm×d where n (resp. m) is the number of entities (resp.
relations). Given an entity e ∈ E and a relation r ∈ R, the corresponding rows of E and
R, noted Ee and Rr, are the embeddings of e and r. The scoring function is eventually
simply defined as:

fE,R : E ×R× E → R
〈h, r, t〉 7→ ||Eh +Rr − Et||2

KG embedding models are usually grouped together according to the form of their
scoring functions: the main ones are the translational, the bilinear and the deep-learning
models. Models inside families distinguish themselves by imposing various constraints
on the representations. A more precise presentation of various families of models is
proposed in Section 3.3.

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 31

3.2.2 Negative Sampling

As explained, negative triples are required to train embedding models on the binary
classification task. However, most KGs only record positive triples (facts), an example
used in Section 2.1 was that a KG might record that the Eurostar serves the cities of
Paris and London. It cannot however exhaustively list all the places that are not served
by it. This is related to the open and closed world assumptions: under the CWA, a
city which is not listed as served by Eurostar is assumed not to be. Under the OWA,
however, it is not possible to conclude. Let us introduce several existing methods to
generate negative samples.

Uniform Negative Sampling

First, it is obvious that the OWA makes it impossible to train a supervised binary
classifier of triples. Indeed, given a KG K = (E × R × F), the OWA divides the set of
all possible triples E × R × E between the triples that are known to be true T and all
the others for which no decision can be made.

The CWA however, makes it easy to solve this problem: if false triples are required,
any triple which is not in T can work. This led to a simple and yet effective way of
generating false triples from known facts using randomness, a process called Negative
Sampling (NS). Proposed by Bordes et al. [17], the uniform NS technique generates
triples from facts by replacing either the head or the tail by an new randomly chosen
entity. If the resulting triple is unknown, it is then considered false under the CWA.
The process is detailed in Algorithm 1. The new triple is called a negative sample.

Algorithm 1: Uniform Negative Sampling.

Input: 〈h, r, t〉, a fact
Output: 〈h′, r, t′〉, a false triple
Data: T , the facts in the KG

1 (h′, t′)← (h, t)
2 while 〈h′, r, t′〉 ∈ T do
3 u← uniform random variable on [0, 1]

4 if u < 1
2 then

5 h′ ← random entity

6 else
7 t′ ← random entity

8 return 〈h′, r, t′〉

An underlying paradox

The simple definition of NS however hides a paradox. Under the CWA, a binary classifier
could be trained by assuming that any unknown triple is false but would be used in the
end to complete the KG with unknown triples likely to be true and yet previously
supposed false. An ideal NS technique would generate false triples that are both very
likely to be true and yet for sure false. For example, replacing Amiens with Paris in the
fact 〈EmmanuelMacron,wasBornIn,Amiens〉 leads to a very likely triple: Emmanuel
Macron could have been born in Paris. However, as it is a known fact that he was
born in Amiens: the triple 〈EmmanuelMacron,wasBornIn, Paris〉 is for sure false.
This is linked to the Partial Completeness Assumption (PCA), or Local Closed World
Assumption (LCWA) introduced in [49]. It states that if a KB contains the facts 〈h, r, t1〉,
..., 〈h, r, tn〉 then any triple 〈h, r, t′〉 with t′ 6∈ {t1, . . . , tn} can be assumed false. The
intuition behind this assumption is that if some contributor of the KB made the effort
to document the entities linked to h by r, then it did it exhaustively. [48] showed that
this is generally true for relations with fewer objects, such as wasBornIn. It has been

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 32

observed that generally, relations have a lower number of tail per head than head per
tail. This observation argues in favor of an informed choice when selecting whether the
head or the tail will be replaced in the NS procedure.

Bernoulli Negative Sampling

Introduced in 2014 by Wang et al. [131], this technique (noted BerNS) relies on relation-
specific Bernoulli distributions to choose which entity between the head and the tail of
a fact should be replaced to maximize the probability of the resulting triple to be false.
Formally, a Bernoulli parameter pr is computed for each relation r as follows:

pr =
ρrt,h

ρrt,h + ρrh,t
,

where ρrt,h (resp. ρrh,t) is the average number of tail entity per head entity (resp. head
entity per tail entity) among all known facts involving r. This parameter pr is the
probability to replace the head entity of the fact.

Algorithm 2: Bernoulli Negative Sampling (BerNS).

Input: 〈h, r, t〉, a fact
Input: pr, Bernoulli parameter for relation r
Output: 〈h′, r, t′〉, a false triple
Data: T , the facts in the KG

1 (h′, t′)← (h, t)
2 while 〈h′, r, t′〉 ∈ T do
3 u← uniform random variable on [0, 1]
4 if u < pr then
5 h′ ← random entity

6 else
7 t′ ← random entity

8 return 〈h′, r, t′〉

As an example, consider author of, which is a one-to-many relation (one author and
many potential books). In that case, the head entity (an author) should be more likely
replaced than the tail entity (a book), yielding a false triple with greater probability.

Positional Negative Sampling

Introduced by Socher et al. in 2013, this NS technique simply constrains the random
choice of new entities so that it respects domain and range constraints of relations. It
is done without looking at the ontology. Given a fact 〈h, r, t〉, a replacement entity for
the head (resp. tail) for example would be chosen at random among all the entities of
the KG that are known to have been involved as a head (resp. tail) of a fact featuring
the relation r.

Adversarial Negative Sampling

A more recent approach looks at NS as an adversarial problem. In 2017, Cai et al.
proposed in [26] to train two embedding models concurrently. The main one acts as
a discriminator: it should become able to discriminate between true and false triples
that are presented to him. That is the usual binary classification task. Another model,
playing the role of generator, is used to compute a likelihood distribution on a set of
candidate triples generated using randomness. The sampling is eventually done using
this distribution, making triples with high scores more likely to be generated. In 2019,
Zhang et al. proposed in [148] to refine this adversarial approach by keeping track with
a smart caching system of negative samples with high scores, which they claim are rare.

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 33

Figure 3.3: Margin loss as a function of the score of a true fact (a) and of the score of
its negative version (b). In both cases y = max {0, γ − f(h, r, t) + f(h′, r′, t′)}.

To conclude on NS, it is interesting to remark that many proposed implementations
accompanying KG embedding literature do not check whether the generated triples
belong to the KG or not. This is supported by the sparseness of the KG, lowering the
probability of finding an existing triple when the new entity is selected at random (even
lower when using BerNS) as opposed to the computation cost of checking whether the
new triple is already known.

3.2.3 Model training

Training an embedding model comes down to finding proper values for its parameters
(the embeddings) so that the scoring function gives high scores to facts and low scores
to false triples. This is usually done by minimizing an overall measure of the mistakes
made on triples known to be true and their corresponding negative samples, supposed to
be false. Given a training fact denoted 〈h, r, t〉, the corresponding false triple 〈h′, r′, t′〉
is generated by NS. Then for each resulting pair, a loss measuring the gap between the
corresponding scores is computed, `(f(h, r, t), f(h′, r′, t′)). This loss ` should be high for
close scores. These measures are called loss functions and the two historic ones are the
margin loss (3.2) and the logistic loss (3.3).

Once again, it is necessary to involve true and false triples in the training procedure.
If it were to involve only true facts, a trivial model classifying all triples as true could
minimize any measure of performance. Intuitively, if we want the model to learn the
difference between the true and false, it should be shown both. In the following, F is a
set of training facts and F ′ is a negatively sampled version of it such that to each fact
〈h, r, t〉 ∈ F corresponds its corrupted version 〈h′, r′, t′〉 ∈ F ′.

Margin loss

This loss separates the scores of true and false triples by a margin γ, which is a hyper-
parameter. Once the difference between the scores of a fact and its corrupted version is
larger than the margin, the loss is 0. The graphical shape of the loss is represented in
Figure 3.3.

L =
∑

(h,r,t)∈F
max {0, γ − f(h, r, t) + f(h′, r′, t′)} (3.2)

Logistic loss

This loss associates low scores to false triples and high scores to true facts. Once the
score of a true (resp. false) triple is above 3 (resp. below -3), the loss is approximately
0. The shape of the loss is represented in Figure 3.4.

L =
∑

〈h,r,t〉∈F
log {1 + exp(−f(h, r, t))}+

∑
〈h′,r′,t′〉∈F ′

log {1 + exp(f(h′, r′, t′))} (3.3)

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 34

(a) y = log {1 + exp(−f(h, r, t))} (b) y = log {1 + exp(f(h′, r′, t′))}

Figure 3.4: Logistic loss for a true fact (a) and a false triple (b).

These two losses are the simplest ones and also the first ones used. There is however
a wide variety of more complicated losses, generally aiming at enforcing some constraints
on the embeddings for logical reasons [87] or to limit overfitting [95]. In order to avoid
overfitting, simpler models normalize the handled vectors at each step of the optimization
process using the Euclidean distance.

Training is then done from a random initialization state of the parameters by in-
crementally changing the parameters in order to minimize the loss function by gradient
descent: the gradient of the loss with respect to the parameters of the model is com-
puted and then the parameters are updated in the direction opposite to the gradient
vector. This is the elementary principle of gradient optimization (cf. Algorithm 3) for
tensor models but the methods used in practice can be more complex. An important
remark is that usual neural network models are also tensor-based. This means that all
the techniques developed to improve training of neural networks are likely to apply as
is to the training of KG embedding models. More details on the optimization of tensor-
based models can be found in Appendix A, including a short introduction to the Adam
optimizer [65], which is used recurrently in the thesis.

Algorithm 3: Training a model by gradient descent.

Input: f , scoring function
Input: γ, step size
Output: P , parameters of the model

1 randomly initialize P
2 for a fixed number of epochs do
3 L ← 0
4 for all facts 〈h, r, t〉 in training set do
5 〈h′, r, t′〉 ← NS(〈h, r, t〉)
6 L ← L+ ` [f(h, r, t), f(h′, r, t′)]

7 P ← P + γ∇L
8 return P

3.2.4 Evaluation techniques

The evaluation of KG embedding techniques comes down to measuring how well the
model’s scoring function estimates the likelihood of triples to be true. This is done
mainly through three tasks: link-prediction, relation-prediction and triple classification.
They are all applied under the CWA.

It is crucial to apply these evaluation protocols very efficiently, in order to be able to
do it as often as possible. For example, frequent evaluation during the training process

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 35

allows a better selection of the hyper-parameters. Chapter 4 presents TorchKGE, as a
Python library with a high-performance evaluation module.

Triple Classification

First proposed by Socher et al. in [111], this technique matches the binary classification
task on which the whole idea of a scoring functions was formed. Models are evaluated
by measuring how accurately they can classify a given triple 〈h, r, t〉 between true and
false. Most of the time, only known facts are used during evaluation. The trained model
is used to compute the scores associated to each triple of a test set. If the score is higher
than a given threshold, the triple is classified as true. Eventually, the metric reported
is the accuracy, that is the share of facts that were correctly classified. This relies on
some thresholds that are specific to each relation of the KG and are learned using an
evaluation set (distinct from the training and test sets) so that any true fact of the
evaluation set cannot have a score inferior to the threshold.

Link-Prediction

First proposed by Bordes et al. in [17], this protocol measures how well the model can
complete facts that are missing entities. For each fact 〈h, r, t〉 in a given test set, two
tests are done: a head test to complete the triple 〈 , r, t〉 and a tail test to complete
〈h, r, 〉. All known entities e are ranked in both tests by decreasing order of score for
the triple 〈e, r, t〉 (resp. 〈h, r, e〉). The ranks of the true entities h and t are respectively
called the head and tail recovery ranks. Three standard metrics can then be reported:
mean rank (MR), mean reciprocal rank (MRR) and hit-at-k (Hit@k).

• MR (mean rank): average of recovery ranks over all facts and both head and tail
tests.

• MRR (mean reciprocal rank): average of the inverse of the recovery ranks. This
gives a value in [0, 1] and the closer to 1 the better. The interest of this metric
compared to MR is that it is less dependent on the number of entities of the KG.

• Hit@k (hit at k): percentage of tests for which the true entity ranks in the top-k
entities.

These metrics can also be reported in their filtered version, meaning that the recovery
ranks taken into account are adjusted by removing all entities with better ranks than
the true one that give true facts as well. For example, in the tail test generated with
the fact 〈AlbertCamus,wrote, LaPeste〉, if La Peste ranks 5 but among the four top
entities there are three books by Albert Camus (three known facts), then the filtered
recovery rank will be 2. The normal version is then called the raw metric. The intuition
behind the filtered setting is that the model should not be penalized if it predicts true
facts that are simply more likely than the one at hand in the current test.

Some authors refer to this task as relation-prediction, cf. [91] for instance. We make
a clear distinction between link-prediction (head or tail entity unknown) and relation-
prediction (relation unknown).

Relation-Prediction

This evaluation technique is very close to the previous one and yet it is not very common
in the literature. A proposed definition comes in [20]. For each fact 〈h, r, t〉 of a given
test set of facts, a relation test is done to complete the missing relation in 〈h, , t〉. All
known relations are ranked by decreasing order of the score of the resulting triple and
the rank of the true relation is recorded as recovery rank. As in link-prediction, MR,
MRR and Hit@k can then be reported in both raw and filtered settings.

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 36

3.2.5 Common datasets

There is a variety of datasets in the KG embedding literature. However, a handful of
them are very recurrent in the proposed evaluation procedures. Here is a non-exhaustive
list focusing on the most common ones:

• FB15k: first introduced by Bordes et al. in [17], this is a subset of Freebase
[14] containing roughly fifteen thousand entities selected based on the number of
citations in the original dataset. After being the most used dataset for several
years, its relevance has seriously been questioned in 2015 by Toutanova et al. who
pointed in out some serious data leakage [119]. Many facts of the test set were
present in the training set but involving the inverse relation.

• FB15k237: proposed by Toutanova et al. in [119], this is a subset of FB15k in
which reverse facts between training and test sets were removed.

• WN18: also introduced by Bordes et al. in [17], this is a subset of Wordnet
involving 18 relations between synsets considered as entities. Similarly to FB15k,
some data leakage issues were highlighted in WN18 by Dettmers et al. [35].

• WN18RR: proposed y Dettmers et al. in [35], this is a subset of WN18 created by
removing data leakage through reverse facts.

• YAGO3-10: proposed by Dettmers et al. in [35], this is a subset of YAGO3 [83]
mainly including facts describing people.

Some detailed figures about those datasets can be found in Table 3.1.

Dataset Entities Relations Training facts Testing facts Validation facts

FB15k 14,951 1,345 483,142 50,000 59,071
FB15k237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 3.1: Descriptive figures of the most usual datasets.

3.3 Existing embedding models

As explained earlier, embedding models are divided in groups depending on the form of
their scoring function, and subsequently depending on their underlying modelization of
the interactions between entities and relations. There are mainly three groups which will
be detailed in this section: translational models embedding relation as linear translation
between two entities, bilinear models embedding relations as bilinear forms applied to the
two entities and eventually deep models. Those latter are usually much less interpretable
geometrically. Table 3.4 summarizes the performances of various models with modern
re-implementation when available.

3.3.1 Translational models

Translational models, sometimes called linear models, are certainly the most natural
and visual ones as they simply try to model relations as translations from one entity to
the other in the embedding space or in a sub-space of it. Their scoring functions are
based on a distance measure. Empirically, the margin loss seems to give better results
than the logistic one when training translational models.

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 37

TransE

Bordes et al. presented in 2013 [17] the first model to clearly represent relations as
translations. It simply embeds both entities and relations in the same space and defines
the scoring function as f : (h, r, t) 7→ −||h + r − t||. Intuitively, this scoring function, if
properly fitted to the data, should enforce arithmetic equations of the form h + r ≈ t
for true facts 〈h, r, t〉 (as illustrated in Figure 3.5).

It has later been noted by Wang et al. [131], that this simple model lacks expressive
power, especially for reflexive, one-to-many and many-to-one relations. First, reflexive
relations tend to have an embedding close to 0: for example if 〈a,married to, b〉 is true
then 〈b,married to, a〉 is true as well and then both ||a+r−b|| and ||b+r−a|| ought to
be minimized (where r is the embedding of isMarriedTo). This happens simultaneously
if and only if r is close to 0 and a ≈ b. When it comes to one-to-many (resp. many-
to-one) relations, the scoring function of TransE tends to embed the many tail (resp.
head) possibilities of those relations at the same place. To cope with these limitations,
Wang et al. proposed a new model called TransH.

TransH

In 2014, Wang et al. [131] explained that the aforementioned limitations of TransE come
from the fact that in TransE “representations of entities are the same when involved in
any relation”. They then proposed to represent relations by a vector and a hyperplane on
which entities are projected before the translation is done (as illustrated in Figure 3.5).
This gives a scoring function of the form of (3.4) where pr is the orthogonal projection on
the hyperplane specific to the relation r. This hyperplane is defined by its orthonormal
vector, which becomes a new parameter of the model to be trained by gradient descent.

f : (h, r, t) 7→ −||pr(h) + r − pr(t)|| (3.4)

This seems to solve the limitations of TransE because a reflexive relation r can have
an embedding vector r close to 0, all information being contained in the projection pr
(i.e. in the vector defining the hyperplane specific to r) and pr(a) ≈ pr(b) is possible
without having aaa ≈ b.

TransR and TransD

TransH paved the way for a series of algorithms such as TransR and TransD. Each of
those model keeps the scoring function of the form of (3.4) but proposes a new way of
projecting entities in relation-specific subspaces. In TransR [78], Lin et al. proposed to
allow projections to any subspace of a given dimension (which is a hyper-parameter of
the model). It improved the expressiveness but increased the number of parameters of
the model beyond reason. Indeed, defining a projection to any subspace of dimension
k requires a matrix of d× k parameters (compared to the d parameters of TransH). In
TransD [60], Ji et al. proposed in turn to allow any projection defined by a low-rank
projection matrix, then limiting the number of parameters.

TorusE

Models presented up to now represent entities as vectors in Rd, others will be presented
later embedding in Cd. In 2018, Ebisu et al. explained in [41] that regularization in
existing models, which is done using normalization at each step of optimization, prevents
the embeddings from behaving as expected. They illustrate how normalized vectors in
TransE cannot verify the equation h + r ≈ t on which the scoring function is defined.

The authors then proposed a new method called TorusE changing the embedding
space to a torus T d in Rd (cf. Figure 3.6). Defining for any (x,y) ∈ Rd the equiv-
alence relation x ∼ y if and only if y − x ∈ Zd, T d is then the quotient space

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 38

(a) TransE (b) TransH

Figure 3.5: Visualizations of the TransE (a) and TransH (b) models. These figures are
extracted from the original paper by Wang et al. [131].

Figure 3.6: Embedding of two facts (A, r,A′) and (B, r,B′) on a torus T 2. On the torus,
A′ −A = B′ −B. This figure is extracted from the original paper by Ebisu et al. [41].

T d =
{
{y ∈ Rd | y ∼ x} | x ∈ Rd

}
. The authors claim that embedding in T d is self-

regularizing (no normalization needed) and allows vectors to truly verify the arithmetic
equations of TransE thanks to a distorted geometry (cf. Figure 3.6). They also claim
that on top of performing well, their model is faster to train because of the lack of
regularization.

3.3.2 Bilinear models

Bilinear models, sometimes called semantic matching models, use the different approach
of modelling relations as bilinear forms (i.e. matrices belonging to Rd×d) that define
similarity functions measuring how similar or related two embedded entities are for a
given relation. These models have scoring functions of the form of (3.5).

An intuitive interpretation of bilinear models is that they try to learn a geometry
specific to each relation by representing it by a bilinear form. If the bilinear forms
representing the relations were sufficiently constrained, namely symmetric and positive
definite, they would become scalar-products and define relation-specific metrics and sub-
sequently geometries. Now, even if those bilinear forms are not sufficiently constrained,
they still act as some relation-specific distortion of the embedding space in which the
representations of the entities live.

Empirically, the logistic loss seems to give better results than the margin loss in
training bilinear models.

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 39

RESCAL

In 2011, Nickel et al. presented in [95] the first bilinear model in its simplest form.
Relations are represented as matrices Mr ∈ Rd×d and the scoring function is defined as:

f : (h, r, t) 7→ hT ·Mr · t (3.5)

This model is mainly limited by its high number of parameters, making it hard to
train because prone to overfitting. Several models were introduced in the following years
to cope with these limitations by proposing new ways of choosing the relation-specific
bilinear forms.

DistMult

In 2014, Yang et al. proposed in [141] to limit the choice of bilinear forms to those
represented by diagonal matrices. However, as noted in [80], this model is limited to
model only symmetric relations. Indeed if Mr is a diagonal matrices, it is also symmetric
and then f(h, r, t) = hT ·Mr · t = tT ·MT

r · h = tT ·Mr · h = f(t, r, h).

This model can also be seen as an implementation of the CP decomposition for
three-dimensional tensors. For an adjacency tensor T ∈ Rn×n×m, the d-rank CP de-
composition results in three matrices (U, V,W) ∈ (Rn×d × Rn×d × Rm×d) that can be
used as embeddings of the head entities U and tail entities V and embeddings of the
relations W . This is what the authors of DistMult proposed, adding the constraint
U = V .

HolE

In 2016, Nickel et al. proposed in [94] a new model of holographic embedding that uses
circular matrices as in (3.6). The number of parameters in the model is still the same
as in DistMult but it can now model other relations than the symmetric ones.

Mr =

r1 rd . . . r2
r2 r1 r3
...

...
...

rd rd−1 . . . r1

 (3.6)

ComplEx

In 2016, Trouillon et al. released in [122] a new way of representing all kinds of relations
with an embedding in complex numbers. Entities are embedded in Cd and relations are
represented by diagonal bilinear forms Mr = diag(r) with r ∈ Cd. The scoring function
is defined as the real part of the Hermitian product f : (h, r, t) 7→ Re(hT ·Mr · t̄). In
their paper, the authors justify the use of complex embeddings by linking the matrix
factorization problem of the adjacency matrix of a relation to its spectral decomposition
that is only possible in C for some non-symmetric matrices.

Like with DistMult, ComplEx can be seen as an implementation of the CP decom-
position of the adjacency tensor but this time the constraint is that U = V̄ .

ANALOGY

In 2017, Liu et al. presented a new algorithm in [80] called ANALOGY whose goal
was to model analogical structures found in data. Analogical structures are famously
illustrated by the natural language processing example of Mikolov et al. [86]: man is
to king as woman is to queen. It is naturally extended to KGs as the implicit links
beingCrowned and feminineOf of this example are possible relations of a KG.

In their paper, the authors argue that this analogical structure can be achieved with
embeddings by enforcing commutativity of the relation-specific bilinear forms. They

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 40

then show that constraining any pair of relations to be commutative can be simplified
to constraining the relation-specific bilinear forms to almost-diagonal matrices. This
final constraint is compatible with a gradient-descent optimization process.

Definition 25 (Almost-diagonal matrix). An almost diagonal matrix is a matrix M ∈

Rd×d such that any diagonal block is either a scalar or a 2×2 block of the form

(
x y
−y x

)
.

All other elements of M should be zero. The set of d× d almost-diagonal matrices with
k scalar elements is denoted as Bkd .

Eventually, they state that in their implementation of ANALOGY, relation-specific

matrices are forced to live in B
d/2
d . This new model still has the same number of

parameters as DistMult, which is lower than RESCAL.

3.3.3 Deep models

The translational and bilinear models previously presented are based on differentiable
tensor computations and can thus be considered as shallow neural networks [116]. Mod-
els with deeper architectures have also been proposed with additional hidden layers used
to define more complex scoring functions. Those architectures differ from one model to
the other and exhaustively listing them would be of poor interest. Instead the current
section explains the underlying structure common to all the models.

In order to compute the score of a fact 〈h, r, t〉, deep models usually have an architec-
ture divided in two parts. The first part projects h, t and r to corresponding embeddings
h, t and r in Rd and processes them together using linear transformations such as con-
catenation, reshaping, matrix and vector products along with coordinate-wise non linear
functions. The output of the first part of the network is a latent representation of the
input fact. The second part of the network uses the latter to compute the score. The
architectures of both parts define the specificity of the model and a variety of neural net-
work layers can be involved: fully connected [39], convolutional [108, 35, 93] or recurrent
[147].

The embeddings of entities and relations are usually not the only parameters of the
model as the parameters of the hidden layers (used to compute the fact representation
and the final score) need to be trained as well. Those are however shared by all entities
and relations.

In 2013, Bordes et al. proposed the first deep architecture called Semantic-Matching
Energy (SME), later published in [16]. Two versions of SME were presented: linear and
bilinear that are respectively comparable to translational and bilinear models. Later
in 2013, Socher et al. proposed in [111] a model called Neural Tensor Network (NTN)
introducing the use of coordinate-wise non-linear functions. Then in 2014, Dong et al.
proposed a simpler approach called Multi-Layer Perceptron (MLP) [39].

More recently, in 2017 and 2018, models including convolutional layers in the second
part of their structures were introduced: ConvE by Dettmers et al. and ConvKB by
Nguyen et al. [35, 93]. They process the concatenations of embeddings as images and
use convolutional layer to extract relevant features from the weights. A visualization of
ConvKB is available in Figure 3.7. Such layers, which proved very successful in image
processing are parameter-efficient and seem to increase the expressive power of models.

Simultaneously, Graph Convolutional Networks (GCNs) have become a cornerstone
of the ML literature on graphs. First introduced in 2014 [24] and in 2016 [67, 34],
these neural networks feature aggregation mechanisms over graphs in order to propagate
features from a node to its neighbors, like a message passing algorithm. These will be
more detailed in Chapter 6. Several adaptations of GCNs to KGs have been proposed,
the first of them being R-GCN by Schlichtkrull et al. in 2018 [108]. As it lacked an
explicit representation of relations, it was extended a year later by Ye et al. in [143].

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 41

Figure 3.7: Processing of a fact 〈h, r, t〉 by ConvKB. The embedding size is k = 4, three
convolution filters are used and the activation function g is ReLU. (Source [93])

Eventually, Vashishth et al. proposed CompGCN in 2019 [125] which outperforms most
of the existing deep models in link-prediction.

3.3.4 Comments on the available literature

In spite of the amount of published research and the performances reported, a rigorous
experimenter might be disappointed by the results of state-of-the-art models when ap-
plied to real-world data, that is data that has not been selected, designed and processed
specifically for this research topic. This has been reported in the literature with several
studies taking a critical look on the reported performances and implying that a large
amount of the performance gain reported by some authors might actually come from
poorly designed evaluation processes.

Toutanova et al. [119] along with Dettmers et al. [35] have already been cited in
Section 3.2.5 for exhibiting data leakage in the two most widespread datasets at the time,
FB15k in 2015 and WN18 in 2018. This caused a substantial drop in performances of
existing models. For example, the filtered Hit@10 of ConvE went from 85.6% on FB15k
to 48.1% on FB15k237 and from 95.5% on WN18 to 50.4% on WN18RR [35]. Despite
the publication of corrected versions, namely FB15k237 and WN18RR, many papers
still report performances on the original flawed datasets (cf. [38] for example).

More recently, Akrami et al. proposed in 2020 an eye-opening analysis of data
redundancy in common datasets [2]. Three possible causes were highlighted:

• inverse relations (cf. Definition 10).

• duplicate relations (e.g. hasCitizenship and hasNationality).

• Cartesian product relations (i.e. relations that are true between any pair of a
subset of E × E).

These relations are particularly problematic when they cause redundancy shared across
training and test facts. The authors then proceeded to measure precisely the extent of
the redundancy in FB15k and WN18 and formulate some remarks on remaining flaws in
the corrected versions. For example, WN18RR still contains symmetric relations with
up to 34% of the training triples involving a single symmetric relation. When it comes

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 42

to FB15k237, Akrami et al. regret that the reverse property available in Freebase was
not used.

Another recurrent flaw in the KG embedding literature was pointed out by Sun et al.
in 2020 [117]. The authors noticed that performance gains claimed by some articles can
actually be credited to a flawed evaluation method. Precisely, when entities are being
scored for link-prediction, several recent models give the exact same score to many
entities. This makes it difficult to break ties and many articles actually use the most
advantageous strategy to do so.

Another simpler criticism of the evaluation strategy applies to the use of fixed train,
test and validation splits. Though it is understandably motivated by the high compu-
tation cost of applying a model selection technique such as k-fold cross validation, it
undoubtedly can lead to a whole field of research iteratively overfitting the data, article
after article.

Eventually let us cite [63] and [105] who wisely explained the successive progress of
the proposed models by the simultaneous progress in optimization and training meth-
ods. To do so, they re-implemented, re-trained and re-evaluated many models including
the older ones. The results were that training strategies (optimizer, parameter regular-
ization, learning rate choice) play a major role in the gain of performance observed in
recent literature. The authors managed to train older models such as RESCAL up to
outperforming recent and more complex methods such as ConvE. The results of their
study are partially reported in Table 3.3.

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 43

Model Number of parameters

Translational
Models

TransE O(ned+ nrd)
TransH O(ned+ nrd)
TransR O(ned+ nrdk)
TransD O(ned+ nrk)
TorusE O(ned+ nrd)

Bilinear
Models

RESCAL O(ned+ nrd
2)

DistMult O(ned+ nrd)
HolE O(ned+ nrd)
ComplEx O(ned+ nrd)
ANALOGY O(ned+ nrd)

Deep Models
SME O((ne + nr + k)d)
ConvE O(ned+ nrk)

Table 3.2: Number of parameters (space complexity) of models presented in Section 3.3.
ne is the number of entities, nr the number of relations, d the embedding dimension, k
can either be the relation embedding dimension or the latent space dimension (this is
optional).

FB15k237 WN18RR
MRR Hit@10 MRR Hit@10

First reported
results

RESCAL [95] 0.270 42.7 0.420 44.7
TransE [17] 0.294 46.5 0.226 50.1

DistMult [141] 0.241 41.9 0.430 49.0
ComplEx [122] 0.247 42.8 0.440 51.0

ConvE [35] 0.325 50.1 0.430 52.0

Recent
re-implementations

[105]

RESCAL 0.356 53.6 0.468 52.1
TransE 0.303 48.8 0.227 52.6

DistMult 0.342 52.3 0.452 53.1
ComplEx 0.351 53.7 0.477 54.3

ConvE 0.337 52.8 0.447 50.8

Table 3.3: Performances of various embedding models as first reported in the original
articles and as reported by [105]. The table itself is from [105].

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 44

3.4 Reasoning with knowledge bases

The previous section introduced ML methods for KG completion using embeddings.
Historically however, the first solutions to the problem were symbolic and came from
the field of semantic reasoning. The current section introduces it along with classical
algorithms and eventually explains how it can help machine learning methods.

This section partially covers the following article:

Combining Embeddings and Rules for Fact Prediction.
Boschin, A., Jain, N., Keretchashvili,G., Suchanek,F. (2022)
Postprint presented at the International Research School in Artificial Intelligence
(Bergen, Sweden, June 2022).
Reference [22]
Personal contribution: parts of Section 3 (Embedding models), parts of Section 4
(Embedding Methods with Logical Components) and Section 5 (Rule Mining
with embedding techniques).

3.4.1 Rules at the core of semantic reasoning

Semantic reasoning is the act of inferring new facts by exploiting the ones recorded in a
KB along with the accompanying ontology (taxonomy and axioms). Chapter 2 stated
that KBs come with axioms that are usually manually defined and allow no exceptions.
They are enforced during the KB construction.

Constraints, on the other hand, come from the data itself and can have some ex-
ceptions. For example, is it possible to learn that the relation marriedTo is usually
symmetric, exceptions coming from missing facts. Such patterns in the KB are formal-
ized by Horn rules, which will be defined now.

Definition 26 (Atom). An atom is an expression of the form 〈α, r, β〉, where r is a
relation and α, β are either entities or variables [73]. Variables are usually written in
lower case and entities in upper case.

A substitution σ is a partial mapping from variables to entities. For example, σ =
{x → Freddie Mercury} is a substitution and A = 〈x, occupation, singer〉 is an atom
with one variable x. σ(A) yields the fact 〈FreddieMercury, occupation, singer〉 known
to be true.

An atom is said to be instantiated if at least one of its arguments is an entity. If both
arguments are entities, the atom is grounded and becomes a triple. A conjunction of
atoms B1, . . . , Bn is the logical AND concatenation of the atoms, noted B1∧ ...∧Bn. For
example, the conjunction 〈x, occupation, singer〉∧〈x, birth place, Tanzania〉 intuitively
designates all entities who were born in Tanzania and who are professional singers.

Definition 27 (Horn Rule). A Horn rule is a formula of the form B1 ∧ ... ∧Bn ⇒ H,
where B1 ∧ ... ∧Bn is a conjunction of body atoms, and H is the head atom.

A rule is grounded if all of its atoms are grounded and it is closed if every variable
in the head appears in at least one body atom. Two atoms A, A′ are connected if they
have common variables. It is common [49, 48, 97] to impose that all atoms in a rule are
transitively connected and that rules are closed.

To conclude, rules are an expression of data constraints, just like axioms, but they
usually reflect patterns that must be mined from the facts. As opposed to axioms, rules
allow exceptions: the fewer the better the quality of the rule. Two usual metrics for rule
quality are the support (the number of positive examples predicted by the rule) and the
confidence (the proportion of the triples predicted that are known to be true). Rules
are sometimes called soft as opposed to hard axioms.

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 45

3.4.2 Rule mining for knowledge base completion

Given a rule R = B1∧...∧Bn ⇒ H and a substitution σ, we can apply σ to both the body
and the head and obtain an instantiation of R denoted σ(R). An example for a rule is
〈x, spouse, y〉 ∧ 〈x, residence, z〉 ⇒ 〈y, residence, z〉, noted R∗. It could be instantiated
by σ = {x → Alice, y → Bob, z → Paris}, and obtain σ(R∗) as 〈Alice, spouse,Bob〉 ∧
〈Alice, residence, Paris〉 ⇒ 〈Bob, residence, Paris〉.

Definition 28 (Prediction). Given K a KB, σ a substitution and R a rule with head
atom H and body atomes (Bi)i∈{1,...,n}, if σ(Bi) ∈ KB ∀i ∈ {1, ..., n}, we call σ(H) a
prediction of R from KB.

The previous example rule R∗ yields the prediction 〈Bob, residence, Paris〉 if the
facts 〈Alice, spouse,Bob〉 and 〈Alice, residence, Paris〉 are known in the KB.

KB completion by semantic reasoning subsequently comes down to mining rules
automatically and instantiating as many of them with the known facts, thus yielding
predictions. A restriction compared to the ML approach is that it is not possible to
complete any atom like in link-prediction but only the ones that exist in the head of a
rule.

The key step is the automatic rule mining that is done by Inductive Logic Program-
ming (ILP). A precise definition of ILP is given in [116]. It typically takes as input a
set of positive examples (i.e. facts that the rules shall predict), and a set of negative
examples (facts that the rules must not predict). ILP faces several challenges: first, as
explained previously, KBs usually do not record negative examples. Methods to gener-
ate false triples have already been discussed in Section 3.2.2. Another challenge is that
a strict application of the definition of ILP to rule mining would find only rules that do
not tolerate exception (hard rules). A solution is for rule mining to aim for rules that
have high support and confidence.

AMIE [49] was one of the first rule mining systems for large KBs under the Open
World Assumption. It is a greedy method that basically explores the set of all possible
rules and only keeps the ones respecting confidence and support constraints. It starts
with the most general rules (such as “everybody is married with each other”) and refines
them until their confidence is high enough but stops once the support gets too low.
This relies on the observation that the support of a rule decreases monotonically when
a rule is made more specific. The latest version, called AMIE3 [73], remains one of the
most used methods for rule mining. It dramatically improves the computation time by
improving the exploration strategy and implementing some coding tricks.

Many rule mining systems have been proposed subsequently to AMIE. Two notable
examples are RuDiK, which can mine negative rules [97], and AnyBURL, which has
successfully been applied to link-prediction (cf. Table 3.4). Another interesting method
is DRUM that formulates rule mining as a linear optimization problem solved by gradient
descent.

Eventually, let us remark that it is also possible to design symbolic methods that do
not rely on rules and reasoning. For example, a symbolic method that can be applied
to link-prediction is Concepts of Nearest Neighbors (CNNs) [45]. It uses recurrent KG
neighboring patterns to define a graph metric that can then be used for classification by
nearest neighbors.

3.4.3 Embedding methods with logical components

A healthy practice when engineering ML models is to incorporate as much prior knowl-
edge about the data in the model definition. The extreme approach of designing a model
with a huge expressive power by including a massive number of parameters and hope for
the model to learn by itself everything there is to learn about the data is indeed usually

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 46

inefficient. Large language models such as BERT [36] or GPT-3 [23] show how costly
designing and training such models can become.

The previous section recalls that KBs usually come with hard constraints on the
entities and relations in the form of axioms and explains that soft rules can be learned
directly from the KB and be used to predict some missing facts.

Surprisingly, axioms which are usually available off-the-shelf were originally left un-
tapped by ML techniques. The trend at the beginning of the 2010s was to let ML
models with many parameters solve any problem and in particular KG completion.
When Toutanova et al. spotted some flaws in the (too) widely used dataset FB15k
[119] in 2015, disappointment spread with the drop in performances. As explained in
Section 3.3.4, in 2020 Akrami et al. studied the role of data redundancy in artificially
boosted performances [2]. They also showed that it was possible to beat the perfor-
mances of complex embedding models with simple rule mining approach when guided
by reasoning.

There are several arguments in favor hybrid methods for automatic KG completion
and both axioms and soft rules seem to be good allies of KG embedding methods. First,
rules and axioms constitute logical expressions of explainable patterns that can usually
be easily integrated in model designs. Moreover, rule mining is usually designed, applied
and evaluated under the OWA, to predict rules that are not yet in the KB. This is not the
case of ML as it needs to be trained under the CWA, thus causing the paradox already
explained in Section 3.2.2. Eventually and most importantly, the empiric results show
that semantic reasoning improves the performance of ML models.

There are mainly three ways semantic reasoning has been integrated in ML ap-
proaches. The simplest one is to force or at least nudge the embeddings and scoring
function to comply with axioms and rules. The simplest constraints to implement apply
to relations (e.g. equivalence, inverse, symmetry and subsumption) because they can
be directly enforced on the embedding vectors. For example, [87] proposed in 2017 a
method to implement equivalence and inverse axioms by intuitively adapting them to
each model: for TransE, if r1 and r2 are to equivalent relations then their embeddings
should be equal. If the constraint comes from a mined rule, then the model should be
incentivized to give close embedding to the two by adding to the loss function a reg-
ularization term of the form λ × ||r1 − r2||. [38] has the same approach and enforces
subsumption constraint on ComplEx. If the constraint comes from a mined rule, the
authors propose to include the rule confidence in the process. [43] proposes in addition
to enforce taxonomic compliance by formalizing typing constraint as a particular case
of relation subsumption. The authors of those three articles claim that hybridization
caused sensible performance improvement on link-prediction.

Another possibility is to use axioms to enrich the set of training facts on which the
embedding models are trained. In 2021, Amato et al. proposed to use ontological axioms
such as taxonomic sub-typing and equivalence or reverse of relations to generate more
training facts [40]. They also propose a negative sampling strategy that corrupts existing
facts by violating taxonomic axioms, making sure that the new samples are not in the
KB. Also in 2021, Jain et al. proposed to improve negative sampling with reasoning
with a framework called ReasonKGE to train embedding models [59]. The idea is to
use predicted triples that do not comply with the taxonomy as new negative samples
(cf. Figure 3.8). The authors claim that the framework improves the performance of
all tested models in link-prediction by up to 10% in Hit@10. Unfortunately, the only
common dataset on which ReasonKGE tested is YAGO3-10, comparative results are
reported in Table 3.4.

Eventually, some authors attempt to synchronize rule mining and KG embedding
mainly by using the scoring function to score rules. For example in 2016, Guo et al. use
t-norm logic to score rules mined by AMIE with the scoring function of an embedding
model [53]. The same research group proposed in 2018 a more comprehensive method

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 47

Standard Negative
SamplingKG

Positive
Samples

Negative
Samples

Embedding Training Fact Prediction Predicted
Triples

Consistency
Checking

Ontology

Inconsistent
Predicted

Triples
Generalization

1 2 3

45

Figure 3.8: Schematic representation of the ReasonKGE framework [59].

Soft Rules

Soft Label Prediction

Embedding
Rectification

Labeled Triples

Unlabeled Triples

Em
beddingsSo

ft
La

be
ls

Figure 3.9: Schematic representation of the RUGE framework [54].

called RUGE [54] that alternatively mine rules on a dataset enriched by the embedding
model and train the embedding model on a dataset enriched with the mined rules, while
score triples generated by rule mining with the scoring function of the embedding model.

Eventually, note that there are very few works trying to improve rule mining with
ML methods. A selection of them were presented in [22].

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 48

3.5 Conclusion

Several lessons can be learned from the large variety of models previously reviewed.
Some performance metrics are reported in Table 3.4.

First, many factors can influence the performances of a model. An obvious one, and
maybe the most important one, is the dataset. No model yet has been able to surpass
all the others on all the datasets. Though ComplEx and CompGCN seem to be better
off than most of the models, the score differences are not that impressive relatively to
their absolute value. For example on FB15k237, CompGCN has a 53.5% Hit@10 score,
which is almost 4% better than the simplest model TransE. Considering that models do
not rank the true entities in the top ten ones approximately half of the time, this slight
improvement is not really significant. The cost of training deep-learning models is not
obvious.

Another intuition relative to datasets and coming from Table 3.4 is that the per-
formances of most models might not generalize well to real-world data. An argument
is that YAGO3-10 is much less used than FB15k237 and WN18RR in the literature
making it a possible proxy estimator for real-world performances. The results show that
most models perform poorly comparatively to ComplEx or CompGCN and even the
simpler TransE. This will be further discussed in Chapter 5 that introduces WDV5, a
new dataset extracted from Wikidata.

Second, the performances of most models reported after retraining in [104] confirm
the importance of high-end training techniques comparatively to more complex models.

Eventually, it is interesting to note that the reasoning model AnyBURL performs best
on WN18RR, while TransE ranks last. It might be explained by the remark formulated
in [2] that WN18RR still contains some symmetric relations and that symbolic methods
of rule mining are interestingly good at mining those, while TransE represents them
poorly. This is in favor of conceiving hybrid methods that take advantage of both
semantic reasoning and machine learning.

To conclude, it seems that a reasonable method in practice is to keep the model
conception simple, like TransE. Resorting to reasoning to improve training or inference
in hybrid-methods also seems fruitful. Importantly, diverse datasets should be used for
evaluation and particular attention must be paid to the training procedure. Chapter 4
will introduces TorchKGE, a Python library featuring a very efficient evaluation module
that is useful to train models properly.

CHAPTER 3. KNOWLEDGE GRAPH COMPLETION 49

FB15k237 WN18RR YAGO3-10
MRR Hit@10 MRR Hit@10 MRR Hit@10

Translational
models

TransE [105] 0.310 49.7 0.206 49.5 0.501 67.4
TorusE [104] 0.281 44.7 0.463 53.4 0.342 47.4

Bilinear
models

CP [108] 0.182 35.7 - - - -
DistMult [104] 0.313 49.0 0.433 50.2 0.501 66.1

HolE [104] 0.303 47.6 0.432 48.8 0.502 69.2
ComplEx [104] 0.349 53.0 0.458 52.1 0.576 70.4
Analogy [104] 0.202 35.4 0.366 38.0 0.283 45.7

Deep
models

ConvE [104] 0.305 47.6 0.427 50.8 0.488 65.8
ConvKB [104] 0.230 41.5 0.249 52.5 0.420 60.5
R-GCN [108] 0.248 41.7 - - - -

VR-GCN [125] 0.248 43.2 0.475 53.7 - -
CompGCN [125] 0.355 53.5 0.479 54.6 - -

Symbolic
models

AMIE+ [45] 0.143 24.1 - - - -
CNN [45] 0.286 42.9 - - - -

AnyBURL [104] 0.324 48.9 0.485 56.0 0.528 66.1

Hybrid
models

RUGE [54] - - - - 0.431 60.3
ReasonKGE
(TransE) [59]

- - - - 0.367 62.9

ReasonKGE
(ComplEx) [59]

- - - - 0.530 66.8

Table 3.4: Performances in filtered setting of various models as reported by the cited
sources. [104] proposes a comparative study of models by retraining the proposed models
implementations in the same framework.

Chapter 4

TorchKGE

This chapter covers the following article:

TorchKGE: Knowledge Graph Embedding in Python and PyTorch
Boschin, A. (2020)
Postprint presented at the International Workshop on Knowledge Graph
co-located with the 26th Conference on Knowledge Discovery and Data Mining
(August 2020).
Reference [18]

4.1 Motivations

Chapter 3 introduced a variety of ML models, most
of them relying on the definition of a scoring func-
tion and on a common KG completion evaluation
procedure. It has however been argued that the
successive performance gains reported by some au-
thors are questionable and one of the main rea-
sons is related to implementation and optimization
frameworks.

A first issue is the heterogeneous model imple-
mentations that are likely to make the results in-
comparable. When authors provide accompanying
code, and it is not always the case, a variety of pro-
gramming languages (e.g. C++, Python, Java)
and computing frameworks (e.g. Theano, SciPy,
TensorFlow, PyTorch) are used. A second issue, that Section 3.3.4 already raised, is
that some recent advances are more likely to be caused by better training strategies
than by better models [105]. These two problems call for a unique framework to exper-
iment with all the models. Such a library should provide efficient tools specific to KG
completion but it should also be compatible with recent optimization libraries. These
are two primary objectives of TorchKGE.

A key feature for an implementation framework is computation efficiency and given
that most KG embedding models are built with tensors, parallel computing is a must.
Recently Graphics Processing Units (GPUs) have made the access to heavy computation
cheaper and cheaper. Such GPUs are usually powered by CUDA for vectorization.
First released in 2007 [96] by Nvidia, CUDA indeed quickly became a standard tool for

50

CHAPTER 4. TORCHKGE 51

accelerated computation by being adopted by popular tensor frameworks PyTorch [99]
and TensorFlow [1]. These libraries propose off-the-shelf methods to train parametric
functions with diverse gradient descent methods, thus making it easy to training KG
embedding models with efficiency. Support for one of those is a requirement.

Specific to KG embedding models, the evaluation procedures detailed in Chapter 3
are not directly proposed by the main computing frameworks. Effectively implementing
an evaluation module is however crucial because it conditions the ability to better tune
the hyper-parameters. Indeed, hyper-parameter tuning usually comes down to testing
several value combinations (with more or less sophisticated strategies) and selecting
the one yielding the best results. Building such a module that can be applied to any
embedding model is however tricky because of the diversity of scoring function possible.

It has become clear that a unique framework for KG embedding could be of key
interest to the research community to make the comparison of embedding models easier
and more accurate. It could also help the adoption of the most advanced techniques
by the industry by proposing off-the-shelf solutions. A performance measure of such a
framework is the efficiency of the code in both training and evaluating models.

First released in 2019, TorchKGE, which stands for Knowledge Graph Embedding
in PyTorch, aims to meet the challenge by proposing an efficient API for the imple-
mentation and evaluation of KG embedding models. It also comes with pre-trained
implementations of models and a handful of useful tools to represent KGs in memory
and handle models. This open-source library is implemented in Python and relies on
PyTorch as computing backend. It is currently in version 0.17.7 and supports Python
3.8, 3.9 and 3.10.

4.2 Other existing libraries

TorchKGE was not the only Python library to propose a framework for KG embedding
models and tools for evaluation. Here is a brief review of the other existing frameworks.

4.2.1 OpenKE

OpenKE (for Open-source Knowledge Embedding)1 was first released in 2017 by a re-
search group from the Tsinghua University in China [55]. Despite being first based on
TensorFlow, PyTorch was then adopted as main computing backend in 2020. In search
of efficiency, some methods are implemented in C++, which is faster than Python thanks
to compilation and static typing among other things. This leads to good performances
in model training. The evaluation modules, however, are naively implemented and fail
at taking full advantage of GPU acceleration (cf. Section 4.5). A major drawback of
OpenKE is that its development does not implement any of the CI/CD practices (cf.
Section 4.3 for an extensive definition of CI/CD) preventing the library from being used
in any serious or industrial system. For example, it does not number releases. Eventu-
ally, let us remark that the project does not seem to be maintained anymore as the last
commit on the GitHub repository dates from April 2021.

4.2.2 Ampligraph

Another contender for TorchKGE is AmpliGraph2. It was first released in March 2019
by a team from the Accenture Labs based in Dublin [31]. Currently in version 1.4.0, its
development follows commons good practices as the development team aims at turning
it in a serious industrial tool. For example, they provide an extensive documentation.
Eventually, the TensorFlow computing backend yields efficient model training perfor-

1https://github.com/thunlp/OpenKE
2https://github.com/Accenture/AmpliGraph/

https://github.com/thunlp/OpenKE
https://github.com/Accenture/AmpliGraph/

CHAPTER 4. TORCHKGE 52

Figure 4.1: Pykeen logo

mances but regrettably the link-prediction evaluation module is not implemented in an
efficient enough way.

4.2.3 Pykg2vec

A third python library is Pykg2vec3, which was
first released in March 2019 [144]. Using Tensor-
Flow, this library provides several modules (mod-
els, wrappers, visualization), but its development
is still at a very early stage and as the current
version number suggest (0.0.52), the API is not
stable. In the tests presented at this end of the
current chapter, we were unable to make version

0.0.50 work with enough satisfaction to compare it to the other libraries.

4.2.4 PyTorch-BigGraph

PyTorch-BigGraph is also worth mentioning. Developed by Facebook AI Research
(FAIR) [76], the library aims at embedding massive graphs that cannot fit on single
machines. This is however a specific (and very useful) use-case which is different from
the one of TorchKGE. It will not be further included in the current chapter.

4.2.5 The need of a new library

In 2019, OpenKE and AmpliGraph seemed to be the two best candidates for providing
a simple and efficient framework for KG embedding. However, their implementations
of link-prediction evaluation, which is at the core of the development of KG embedding
models was really unsatisfactory (cf. Section 4.5 for comprehensive benchmarks). Diver-
gence in the project vision led to the choice of developing a new library from the ground
up (TorchKGE), instead of contributing improvements to the existing ones. They will
be detailed in the following sections.

4.2.6 Pykeen

Eventually, let us introduce Pykeen4. This library was at first not included in our
work [18] in 2020 because when the development of TorchKGE started, Pykeen was
a discrete package at a very early stage in its development. It was in alpha version
0.0.26 since august 2019 and had no usable documentation. The first official release,
which was made in June 2020, was a major step up. Despite its slow take-off, Pykeen
has since managed to build-up a large community of contributors, approximately thirty

3https://github.com/Sujit-O/pykg2vec
4https://github.com/pykeen/pykeen

https://github.com/Sujit-O/pykg2vec
https://github.com/pykeen/pykeen

CHAPTER 4. TORCHKGE 53

according to GitHub, making it the current most serious contender to TorchKGE. The
two libraries now propose the best performing evaluation modules (cf. Section 4.6).
Currently in version 1.9.0, Pykeen proposes a large collection of implemented models,
negative sampling methods and other useful tools.

4.3 Conception choices

As previously explained, the goal of TorchKGE is to provide users with a flexible KG
data-structure, fast evaluation modules, off-the-shelf model implementations and model
interfaces to make it easy to develop new models and compare them to existing state-
of-the-art but also to integrate painlessly existing models in other projects.

4.3.1 GPU acceleration

As explained earlier, a key specification of TorchKGE from the start was the computing
efficiency, making the support of GPU acceleration a requirement. The two best solu-
tions for accelerated tensor computations are still currently TensorFlow, developed by
Google [1], and PyTorch, based on the Torch framework developed by Meta [99]. The
choice naturally fell on PyTorch as in 2019, its user experience was way superior to the
one of TensorFlow. The latter was greatly improved with the release of TensorFlow 2
by the end of 2019 but not enough to justify the change in TorchKGE. The fact that
Ampligraph relied on TensorFlow is the reason why we choose not to contribute to the
project and instead to pick-up the development of TorchKGE.

PyTorch is an open-source machine learning library published under BSD license.
It provides support of GPU acceleration for tensor computations along with a high-
performance auto-differentiation system useful to train models with iterative methods
such as gradient descent. Its API is simple to learn and use and yet highly efficient.
Another very interesting feature is the seamless integration with the Numpy library
[128], which is one of the most widespread tools in machine learning research. Those
reasons make PyTorch one of the best choices of backend for TorchKGE.

4.3.2 API design

Inspired by the design of PyTorch, TorchKGE can be used by advanced user to imple-
ment new models or to tweak existing ones. It can also be used more simply with one
of the pre-implemented models and wrappers.

The design of the library matches the intuitive one of PyTorch. This allows easy
adoption by users that are already familiar with engineering ML models in PyTorch.
Namely, a requirement for models is to implement a core interface from PyTorch:
torch.nn.module. This simple class inheritance gives access to all the useful GPU
acceleration tools of PyTorch (e.g. automatic differentiation) by a simple call to the
object method cuda (cf. Figure 4.2). The interface also comes with handy tools for pa-
rameters management (training and evaluation modes, model parameters listing, saving
and reloading of model state).

Another advantage of matching the design of TorchKGE with the one of PyTorch is
that it brings built-in support of the many resources available in PyTorch (e.g. op-
timization modules) but also resources designed for PyTorch. A useful example is
PyTorch-Ignite5, which is described as a high level library for training and evalu-
ating PyTorch models. It includes very important tools such as early stopping and
checkpoint management. A code snippet of training a model with early-stopping using
Ignite can be found in Figure 4.7 at the end of the chapter. Easy resort to such tools
can help solve the training problem raised in the previous chapter.

5https://pytorch.org/ignite

https://pytorch.org/ignite

CHAPTER 4. TORCHKGE 54

1 from torch import cuda

2 from torchkge.utils.pretrained_models import load_pretrained_transe

3 from torchkge.utils import load_fb15k237

4

5 kg_train , kg_eval , kg_test = load_fb15k237 ()

6

7 model = load_pretrained_transe(dataset=’fb15k237 ’, emb_dim =150)

8

9 if cuda.is_available ():

10 model.cuda()

Figure 4.2: Loading a pre-trained TransE model and moving it to the GPU.

Some wrappers are also already implemented for off-the-shelf use of existing models.
See Figure 4.3 for an example of the trainer wrapper. Eventually, the library includes
as few dependencies as possible to ease both the maintainability on the developer side
and the integration on the user side.

4.3.3 Good development practices

From the start, TorchKGE was designed with rigorous development practices in mind.
This is the only way the project could lead to a serious library that could meet the
objectives presented in Section 4.1.

Documentation

First, an extensive documentation is provided online6. It includes class and method de-
scriptions along with code snippets and full example scripts for model definition, training
and evaluation. All the included implementations are documented with references to the
original papers. Documentation also provides guidelines for community contributions.

Continuous integration

Integrating new code to existing systems can lead to what is usually referred to as
integration hell. It is the set of problems that can arise when making changes to a
piece of code that is already in production (i.e. part of a system with active users).
An intuitive example is backward compatibility: modifying a function or an object can
break older pieces of code that were using it. The function and method signatures
can have changed for example, to add an argument. ML engineers can experience this
integration hell at a very early stage of research and development, even if they are still
the only users of their code.

There is a set of good practices known as Continuous Integration (CI) that helps
developers cope with integration hell. CI relies on the use of a Distributed Version
Control System (DVCS), e.g. git7. It enables teams of developers to commit changes
to the code and organize them with branches. They can work offline and only push
modifications occasionally, eventually merging simultaneous contributions with the help
of a conflict solver. Code commits should be as frequent as possible and documented to
ease the integration. The code is also required to respect the PEP8 style guide in order
to ease collaboration [124].

TorchKGE is hosted on the well-known GitHub hosting service, which obviously pro-
vides git support along with useful features such as access control, bug tracking, feature
requests and task management. Community contributions, which are encouraged, can
be submitted as Pull Requests that are assigned, reviewed and eventually merged after
validation.

6https://torchkge.readthedocs.io/en/latest/
7https://git-scm.com/

https://torchkge.readthedocs.io/en/latest/
https://git-scm.com/

CHAPTER 4. TORCHKGE 55

1 from torch import cuda

2 from torch.optim import Adam

3

4 from torchkge.evaluation import LinkPredictionEvaluator

5 from torchkge.models import TransEModel

6 from torchkge.utils.datasets import load_fb15k237

7 from torchkge.utils import Trainer , MarginLoss

8

9

10 def main(use_cuda):

11 # Define some hyper -parameters for training

12 emb_dim = 100

13 lr = 0.0004

14 margin = 0.5

15 n_epochs = 1000

16 batch_size = 32768

17

18 # Load dataset

19 kg_train , kg_val , kg_test = load_fb15k237 ()

20

21 # Define the model and criterion

22 model = TransEModel(emb_dim , kg_train.n_ent , kg_train.n_rel ,

dissimilarity_type=’L2’)

23 optimizer = Adam(model.parameters (), lr=lr, weight_decay =1e-5)

24 trainer = Trainer(model , MarginLoss(margin), kg_train , n_epochs ,

25 batch_size , optimizer=optimizer ,

26 sampling_type=’bern’, use_cuda=use_cuda ,)

27

28 trainer.run()

29

30 evaluator = LinkPredictionEvaluator(model , kg_test)

31 evaluator.evaluate (200)

32 evaluator.print_results ()

33

34

35 if __name__ == "__main__":

36 if cuda.is_available ():

37 main(use_cuda="all")

38 else:

39 main(use_cuda=False)

Figure 4.3: Training TransE on FB15k237 using a wrapper.

CHAPTER 4. TORCHKGE 56

1 a := [1, 2, 3, 4]

2 b := [5, 6, 7, 8]

3 c := [0, 0, 0, 0]

4 for i:= 0 to 3 do:

5 c[i] := a[i] + b[i]

(a) Sequential code.

1 a := [1, 2, 3, 4]

2 b := [5, 6, 7, 8]

3 c := a + b

(b) Vectorized code.

Figure 4.4: Sequential and vectorized code for the addition entry-wise addition of two
lists.

Continuous Delivery

Continuous Delivery (CD) on the other hand consists in frequent releases of software
with a coherent versioning system: three digits for major, minor and patch release. A
usual convention is to certify backward compatibility within major versions. TorchKGE
has however not yet reached the first major release because some changes to the API
(e.g. renaming of methods of interfaces) are still likely to occur8. CD also recommends
the use of automated workflows to allow automatic code testing and compatibility checks
upon branch merges and releases. The development workflow of TorchKGE uses GitHub
actions for automation.

Eventually, TorchKGE is publicly released under a BSD license and distribution is
done using Pypi, one of the main package manager in Python. This makes the library
very easy to install. The PyTorch dependency should however be installed a priori to
ensure CUDA compatibility and GPU support.

$ pip install torchkge

Vectorization

Vectorized code refers computation that are done on all components of a vector at once,
as opposed to sequential and slower operations done by looping over the entries. A
simple example of vectorization is presented in Figure 4.4. In Python, the for loop is
not natively parallelized, which is better for simplicity of use, but it makes the sequential
code of Figure 4.4a slower than the one of Figure 4.4b in which each additions, which
are independent, can be done simultaneously. Numpy’s central array object support
vectorized operations and of course, tensor computing frameworks like PyTorch and
TensorFlow also support it with their tensor objects. A coding guideline of TorchKGE
is to vectorize as much operations as possible and use for loops only if necessary.

4.4 Code structure

TorchKGE is organized in separate modules and the main ones are models, evaluation,
sampling and utils. Here are the details of these modules.

4.4.1 Models

All model implementations and interfaces are in the models module. In order to make
the most of the auto-grad function of PyTorch seamlessly on the models parameters,
the core model interface models.interfaces.Models inherits from torch.nn.Module

and requires the implementation of different methods.

8Waiting a long time before the first major release is not uncommon. For example, it took Pandas,
one of the most common Python library, 10 years to reach that stage.

CHAPTER 4. TORCHKGE 57

1 class Model(torch.nn.Module)

2 ...

3

4 def forward(self , heads , tails , relations , negative_heads ,

5 negative_tails , negative_relations=None):

6 if negative_relations is None:

7 negative_relations = relations

8 pos = self.scoring_function(heads , tails , relations)

9 neg = self.scoring_function(negative_heads ,

10 negative_tails ,

11 negative_relations)

12

13 return pos , neg

Figure 4.5: torchkge.models.interfaces.Model implementation of the forward
method required by the torch.nn.Module inheritance.

Scoring function

The scoring_function method should compute the score for each fact of a batch.
Of course, its implementation should be vectorized to support GPU acceleration easily.
The inheritance from torch.nn.Module designates the parameters that require gradient
descent. The interface also requires the definitions of a forward method that is used
to automatically compute the gradient of the loss with respect to the parameters of the
model. As stated in Chapter 3, the scoring function fully defines each model’s specificity
and it is then used in the implementation of the forward method. Eventually, as loss
functions used to train KG embedding models always depend on the models parameters
only through the scoring function, it can be implemented once and for all in the interface
(cf. Figure 4.5).

Vectorizing inference

Inference is the use a model to make a choice between possible candidates. In link-
prediction for example, all entities must be ranked as possible head and tails, whereas in
relation-prediction, the relations have to be ranked. A inference_scoring_function

method is then required to compute the score of all possible candidate triples for each
fact of a batch. This is a generalization of the previous scoring function method, which
is needed for very fast link-prediction and relation-prediction evaluations.

For better understanding, let us define a running example, which will be used for
illustration: the tail test of a link-prediction evaluation. Let ne and nr be the number
of entities and relations in the KG, let b be the size of the current batch of triples and d
the dimension of the embedding. Let (E,R) ∈ Rne×d×Rnr×d be the tensors of all entity
and relation embeddings and (h, t, r) ∈ (Rb)3 be the tensors containing the indexes of
the heads tails and relations of the current batch of triples.

The method scoring_function is able to compute the scores of the b triples of the
batch in a vectorized way with simple operations on tensors of the same shape: E[h],
E[t] and R[r]. However, in the tail test, all entities need to be scored as possible tails for
each of the b pairs of head and relation provided. That makes b×ne scores to compute.

A naive solution would be to loop over all possible head/relation pairs and to compute
the scores using scoring_function with repeated entries (cf. Figure 4.6). This would
be inefficient because it comes down to a sequence of b vectorized computations.

It is possible to use the vectorization of scoring_function to fully vectorize the
inference by calling it on index tensors with a lot of repeated entries, namely h and r will
be repeated ne times and e will be repeated b times. This data redundancy can generally
be handled so that no useless parameter copy is made, thus avoiding memory overflow.
It can become very tricky with complex models, however. Moreover, it is still inefficient

CHAPTER 4. TORCHKGE 58

1 def sequential_evaluation(h, r, e):

2 """

3 h: torch.Tensor , shape=(b, d)

4 r: torch.Tensor , shape=(b, d)

5 e: torch.Tensor , shape=(n_e , d)

6 """

7 b, d = h.shape

8 scores = []

9 for i in range(d):

10 current_scores = []

11 h_tmp = h[i].view(1, d).repeat(n_e , d)

12 r_tmp = r[i].view(1, d).repeat(n_e , d)

13 current_scores.append(torch.norm(h_tmp + r_tmp - e, dim =1))

14 return torch.cat(scores , dim=0))

Figure 4.6: Sequential inference.

because many models require pre-processing of their parameters (e.g. projection in
relation-specific subspace or relation matrix building) and this method would repeat
the pre-processing each time an index entry is repeated. A caching method could be
considered but memory management is very tricky, especially with GPU support if we
want it to apply to any possible model.

The solution implemented in TorchKGE keeps things simple by defining a new ob-
ject method for each model called inference_scoring_function. This method can
compute the scoring function in inference mode by handling three dimensional tensors.
Those three dimensions are usually the batch size, the embedding dimension and lastly
the number of entities in the KG. Those tensors are prepared by another required method
called inference_prepare_candidates that pre-processes embeddings only once. They
are then used in higher-dimensional tensors by paying careful attention to avoid useless
data recopy. To that prospect, useful tensor methods in PyTorch are view and expand.
They act like reshaping and repeating methods but without copying any data.

If the evaluated model is TransH for example, the embeddings of the head entities can
be projected only once on the relation-specific hyper-planes and then expanded ne times
(without additional memory usage) along the third dimension of a tensor. Eventually
tensor addition and norm computations are done using built-in vectorized functions from
PyTorch. A partial implementation of TransH is presented in Figure 4.8 as an example,
it does not implement relation inference. Some caching is still used to further speed-up
evaluation of some specific models that require a lot of pre-processing, e.g TransR.

Pre-implemented models

As of version 0.17.7, TorchKGE features the following pre-implemented models:

• 5 translational models: TransE, TransH, TransR, TransD and TorusE
[17, 131, 78, 60, 41]

• 5 bilinear models: RESCAL, DistMult, HolE, ComplEx and ANALOGY
[95, 141, 94, 122, 80]

• 1 deep model: ConvKB [93]

Pre-trained models

Some of the previous models were trained on usual datasets and have been made available
directly from the library with functions from torchkge.utils.pretrained_models.
New ones are also continuously added. See Table 4.2 for a list of available pre-trained
models. WDV5, which will be properly introduced in Chapter 5, is a subset of Wikidata
corresponding to the entities corresponding to the level 5 of Wikipedia vital articles9.

9https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

CHAPTER 4. TORCHKGE 59

FB15k237 WN18RR YAGO3-10
MRR Hit@10 MRR Hit@10 MRR Hit@10

RESCAL 0.307 0.496 0.424 0.483 0.334 0.560
TransE 0.286 0.457 0.236 0.501 0.261 0.466
ComplEx 0.308 0.481 0.455 0.508 0.421 0.602

Table 4.1: Performance metrics of pretrained models

FB15k FB15k237 WN18 WN18RR YAGO3-10 WDV5

RESCAL 7 3 7 3 3 7

TransE 3 3 3 3 3 3

ComplEx 7 3 7 3 7 3

Table 4.2: List of available datasets for TransE and ComplEx pre-trained models.

These pre-trained models were trained using usual optimization techniques such as
early-stopping, dropout, weight decay and learning-rate decay. These techniques are
detailed in Appendix A. Hyper-parameters we selected using the Bayesian optimiza-
tion strategy proposed by Hyperopt10. They were also trained using a reasoning ap-
proach, resembling the ones presented at the end of Chapter 3. The set of training facts
are enriched a priori with the triples generated by grounding rules mined by AMIE3
[73]. The confidence threshold becomes an hyper-parameter of the model chosen in
{0.5, 0.8, 0.9, 1}.

Table 4.1 reports the filtered performances of some pre-trained models. It is inter-
esting to note that, despite being the oldest model, RESCAL performs largely better
than TransE on almost all the metrics and comparably to ComplEx. In the original
papers, which only included experiments on FB15k and WN18, TransE [17] was better
than RESCAL and ComplEx [122] was better than TransE.

4.4.2 Evaluation module

The torchkge.evaluation module features three evaluation techniques, implementing
the methods presented in Section 3.2.4.

Triple Classification

Introduced by [111], it evaluates the quality of the embedding by measuring how well
the model classifies triples as right or wrong. For initialization, the object needs a
trained model, a validation and a test set. On the validation set, score thresholds
are computed for each relation so that any fact with a score higher than the relation-
specific threshold should be true. The thresholds are then used to classify as true or
false the triples of the test set and its negatively sampled version. The metric re-
ported is the accuracy. This process is done using three consecutive methods of the
evaluation.TripletClassificationEvaluator object.

• get_scores: compute the score of all the facts using the scoring_function

method of the model.

• evaluate: get the relation-specific thresholds on the validation set.

• accuracy: compute the accuracy of the binary classification of testing facts using
the previously computed thresholds.

10https://hyperopt.github.io/hyperopt/

https://hyperopt.github.io/hyperopt/

CHAPTER 4. TORCHKGE 60

Link-prediction and relation-prediction

These methods evaluate the quality of the embedding by measuring how well the model
predicts respectively missing entities and relations in facts. It is necessary to compute the
scores of all candidate triples for each head, tail and relation test associated to the facts
of the KG at hand. These scores are computed with the inference_scoring_function

method of the model. Once the recovery ranks of the true heads, tails and relations
are computed, the module can return the three standard metrics (MR, MRR, Hit@k)
in raw and filtered settings [17].

As explained in Section 4.4.1, this evaluation process is done very efficiently thanks
to the required definition of the inference_scoring_function method. While most
frameworks loop over the facts of a KG to compute the scores of related candidate
triples, this method makes it possible to group those computations by batch, dramati-
cally increasing the computation speed. It is also further-accelerated by pre-computing
the model specific projections when possible (e.g. TransR). See Section 4.5 for details
on the performance of this module.

4.4.3 Knowledge graphs in memory

TorchKGE requires a representation of knowledge graphs in memory. This is the purpose
of the data_structures.KnowledgeGraph class. It features a split_kg method to split
the facts of the knowledge graph in train, test and optionally validation sets. When the
split is random, the method keeps at least one fact involving each entity and each relation
in the training subset.

The utils.datasets module provides functions to easily load the datasets presented
in Chapter 3 among others: FB13, FB15k, WN18, FB15k237, WN18RR , YAGO3-10,
WikiDataSets and WDV5 [17, 119, 35, 19, 20].

Eventually, TorchKGE also implements tools to measure data redundancy in any
dataset. Those tools are extracted from the study presented in 2020 by Akrami et al.
in [2] that has already been discussed in Chapter 3.

4.4.4 Negative sampling

Negative sampling is the generation of false triples by corruption of known facts and
using randomness. As discussed in Chapter 3, it is instrumental in the generation
of relevant embeddings. TorchKGE implements various negative sampling methods
as different object classes inheriting from the interface sampling.NegativeSampler.
This interface requires its child classes to implement the corrupt_batch method, which
corrupts the batch of facts passed as arguments and that will be used during training.
It also helps define the corrupt_kg method, which can be used to corrupt all the facts
of a KG at once.

Currently, the torchkge.sampling module features the following negative sampling
objects in the sampling module, three of which have been presented previously. The
last one will be introduced in Chapter 5.

• UniformNegativeSampler [17]

• BernoulliNegativeSampler [131]

• PositionalNegativeSampler [111]

• BernoulliRelationNegativeSampler [20]

CHAPTER 4. TORCHKGE 61

TransE TransD RESCAL ComplEx
Number of batches 10 20 10
Embedding dimension 100
Hidden dimension 50
Loss Margin loss Sigmoid loss
Margin 1

Table 4.3: Hyper-parameters used to train the models in all frameworks of the experi-
ment.

4.5 Performances

4.5.1 Experimental setup

OpenKE, AmpliGraph and TorchKGE were compared in terms of running times. First
pykg2vec (v0.0.50) was supposed to be included in the comparison but we did not
manage to make the library work sufficiently well, due to its unstable API and outdated
documentation. Four different models (TransE, TransD, RESCAL and ComplEx) were
trained in each framework (apart from AmpliGraph which does not feature TransD and
RESCAL) on both FB15k and WN18 and then evaluated by link-prediction on test
sets. The goal was to measure the mean epoch time and evaluation duration in each
case. Even if those two datasets are flawed (cf. Chapter 3), the competition here is only
computational and could basically be run on automatically generated toy datasets.

Experiments were done with AmpliGraph 1.3.1, TorchKGE 0.16.0, PyTorch 1.5,
TensorFlow 1.15 and a Tesla K80 GPU powered by Cuda 10.2. The version of OpenKE
was the one of April 9, 2020 on GitHub. For the CPU parallelized part of OpenKE,
8 threads were used. For comparison purpose, the same sets of hyper-parameters were
used in each framework: Adam optimizer, 0.01 as learning rate, 1e-5 as L2-regularization
factor, Bernoulli negative sampling and one negative sample per triplet. Model specific
hyper-parameters are detailed in Table 4.3.

4.5.2 Results

Table 4.4 shows for each library the mean duration of the first 100 epochs of training.
They were averaged over 10 independent training procedures. The mean duration of
an epoch is however quite stable: the standard deviation was always less than 0.007
seconds, which is not significant compared to the average duration. In the case of
RESCAL, TorchKGE was able to train using only 10 batches thanks to lower memory
usage. It could then be faster than OpenKE, which needed 20 batches. Both frameworks
were eventually trained with 20 batches to be comparable. In term of model training, the
implementations proposed in TorchKGE are comparable to the ones of other libraries.
The mean epoch times are of the same order and always within a factor 2.

Table 4.5 reports the duration of the link-prediction evaluation process for each
model in each framework. Each duration was averaged over 5 independent evaluation
processes. Once again, they are quite stable: the standard deviations were always not
significant compared to the average. These results show that TorchKGE is significantly
faster than the two other frameworks: always at least three times faster and up to
twenty-four times in the case of OpenKE when evaluating RESCAL on WN18. This
shows that the initial goal of providing users with a fast evaluation module is reached.

CHAPTER 4. TORCHKGE 62

TransE TransD RESCAL ComplEx
FB15k WN18 FB15k WN18 FB15k WN18 FB15k WN18

AmpliGraph 0.171 0.106 0.528 0.254
OpenKE 0.415 0.150 0.538 0.284 3.46 1.05 0.457 0.191
TorchKGE 0.312 0.156 0.770 0.543 3.91 1.20 0.449 0.287

Table 4.4: Mean epoch duration (in seconds) of 10 independent training processes.
Standard deviations were all smaller than 0.007, which is not significant. Best values
are in bold.

TransE TransD RESCAL ComplEx
FB15k WN18 FB15k WN18 FB15k WN18 FB15k WN18

AmpliGraph 354.8 39.8 537.2 94.9
OpenKE 235.6 42.2 258.5 43.7 789.1 178.4 354.7 63.9
TorchKGE 76.1 13.8 60.8 11.1 46.9 7.06 96.4 18.6

Table 4.5: Duration (in seconds) of the link-prediction evaluation process on test sets.
Those figures are averaged over 5 independent evaluation processes (standard deviation
was never significantly high). Best values are in bold.

4.6 Future of Developments

When it was launched, TorchKGE set the standard for fast inference in KG embedding
frameworks. It should still grow to reach a critical community size and attention must be
paid specifically to growing the community of contributors. Indeed, despite the rather
large attention it drew, with more than 300 stars on GitHub, tens of forks and issues
raised, the library received less than ten contributions from external teams through the
pull request system. Successfully encouraging contributions is undoubtedly a key to
further developing the adoption of TorchKGE in the research community.

Several further developments of the library are also possible. Of course, the set
of pre-implemented models could be enriched, so is the set of losses and regularizers.
Another possibility is to include new modules for entity typing. Many tools were already
developed relatively to the work presented in Chapter 6 and are to be released soon.

Another nice-to-have possible development would be the removal of the method
inference_scoring_function from the model interface. Of course, this has to be
done without any speed loss in inference. The risk, however, is that it might bring a
lot of complexity to an API that has been kept easy to read, understand and modify.
This is indeed a differentiating strength of TorchKGE, particularly when comparing it
to Pykeen. The latter grew significantly since TorchKGE was launched and it is now
the most extensive alternative thanks to a large collection of models and tools. An
interesting advantage compared to TorchKGE is that it also proposes a fast evaluation
module but without requiring any helper scoring function, thanks to a very high-end
caching system. Comparative performances are reported in Table 4.6. The performance
and extensive catalog of tools however come at the cost of code simplicity. A simple
API, easy to tweak and experiment with is the strength TorchKGE will have to put
forward in the future to keep thriving.

CHAPTER 4. TORCHKGE 63

TransE TransD RESCAL ComplEx
FB15k WN18 FB15k WN18 FB15k WN18 FB15k WN18

TorchKGE 76.1 13.8 60.8 11.1 46.9 7.06 96.4 18.6
Pykeen v1.9.0 43 5 112 21 36 3 77 13

Table 4.6: Duration (in seconds) of the link-prediction evaluation process on test sets.
Those figures are averaged over 5 independent evaluation processes (standard deviation
was never significant). Best values are in bold.

1 import torch

2 from ignite.engine import Engine , Events

3 from ignite.handlers import EarlyStopping

4 from ignite.metrics import RunningAverage

5 from torch.optim import Adam

6

7 from torchkge.evaluation import LinkPredictionEvaluator

8 from torchkge.models import TransEModel

9 from torchkge.sampling import BernoulliNegativeSampler

10 from torchkge.utils import MarginLoss , DataLoader , load_fb15k237

11

12

13 def process_batch(engine , batch):

14 h, t, r = batch [0], batch[1], batch [2]

15 n_h , n_t = sampler.corrupt_batch(h, t, r)

16

17 optimizer.zero_grad ()

18

19 pos , neg = model(h, t, r, n_h , n_t)

20 loss = criterion(pos , neg)

21 loss.backward ()

22 optimizer.step()

23

24 return loss.item()

25

26

27 def linkprediction_evaluation(engine):

28 model.normalize_parameters ()

29

30 loss = engine.state.output

31

32 # validation MRR measure

33 if engine.state.epoch % eval_epoch == 0:

34 evaluator = LinkPredictionEvaluator(model , kg_val)

35 evaluator.evaluate(b_size =256, verbose=False)

36 val_mrr = evaluator.mrr()[1]

37 else:

38 val_mrr = 0

39

40 print(’Epoch {} | Train loss: {}, Validation MRR: {}’.format(

41 engine.state.epoch , loss , val_mrr))

42

43 try:

44 if engine.state.best_mrr < val_mrr:

45 engine.state.best_mrr = val_mrr

46 return val_mrr

47

48 except AttributeError as e:

49 if engine.state.epoch == 1:

50 engine.state.best_mrr = val_mrr

51 return val_mrr

52 else:

53 raise e

CHAPTER 4. TORCHKGE 64

54 device = torch.device(’cuda’)

55

56 eval_epoch = 20 # do link -prediction evaluation every 20 epochs

57 max_epochs , patience = 1000, 40

58 emb_dim , lr = 100, 0.0004

59

60 kg_train , kg_val , kg_test = load_fb15k237 ()

61 model = TransEModel(emb_dim , kg_train.n_ent , kg_train.n_rel , ’L2’)

62 model.to(device)

63

64 optimizer = Adam(model.parameters (), lr=lr, weight_decay =1e-5)

65 criterion = MarginLoss(margin =0.5)

66 sampler = BernoulliNegativeSampler(kg_train , kg_val=kg_val , kg_test=

kg_test)

67

68 trainer = Engine(process_batch)

69 RunningAverage(output_transform=lambda x: x).attach(trainer , ’margin ’)

70 handler = EarlyStopping(patience=patience ,

71 score_function=linkprediction_evaluation ,

72 trainer=trainer)

73 trainer.add_event_handler(Events.EPOCH_COMPLETED , handler)

74

75 # Training

76 train_iterator = DataLoader(kg_train , 32768 , use_cuda=’all’)

77 trainer.run(train_iterator ,

78 epoch_length=len(train_iterator),

79 max_epochs=max_epochs)

80

81 print(’Best score {:.3f} at epoch {}’.format(handler.best_score ,

82 trainer.state.epoch - handler

.patience))

Figure 4.7: Training a TorchKGE model using early-stopping in Ignite.

CHAPTER 4. TORCHKGE 65

1 from torch import empty

2 from torch.nn import Parameter

3 from torch.nn.functional import normalize

4

5 from torchkge.models.interfaces import Model

6 from torchkge.utils import l2_dissimilarity , init_embedding

7

8

9 class TransH(Model):

10 def __init__(self , emb_dim , n_entities , n_relations):

11 super().__init__(n_entities , n_relations)

12 self.dissimilarity = l2_dissimilarity

13 self.emb_dim = emb_dim

14 self.ent_emb = init_embedding(self.n_ent , self.emb_dim)

15 self.rel_emb = init_embedding(self.n_rel , self.emb_dim)

16 self.norm_vect = init_embedding(self.n_rel , self.emb_dim)

17

18 self.normalize_parameters ()

19

20 self.evaluated_projections = False

21 self.projected_entities = Parameter(empty(size=(self.n_rel ,

22 self.n_ent ,

23 self.emb_dim)),

24 requires_grad=False)

25

26 def scoring_function(self , h_idx , t_idx , r_idx):

27 self.evaluated_projections = False

28

29 h = normalize(self.ent_emb(h_idx), p=2, dim=1)

30 t = normalize(self.ent_emb(t_idx), p=2, dim=1)

31 r = self.rel_emb(r_idx)

32 norm_vect = normalize(self.norm_vect(r_idx), p=2, dim =1)

33

34 return - self.dissimilarity(self.project(h, norm_vect) + r,

35 self.project(t, norm_vect))

36

37 def inference_prepare_candidates(self , h_idx , t_idx , r_idx):

38 if not self.evaluated_projections:

39 self.evaluate_projections ()

40

41 r = self.rel_emb(r_idx)

42 proj_h = self.projected_entities[r_idx , h_idx]

43 # shape=(b_size , emb_dim)

44 proj_t = self.projected_entities[r_idx , t_idx]

45 # shape=(b_size , emb_dim)

46 candidates = self.projected_entities[r_idx]

47 # shape=(b_size , self.n_rel , self.emb_dim)

48

49 return proj_h , proj_t , r, candidates

50

51 def inference_scoring_function(self , proj_h , proj_t , r):

52 b_size = proj_h.shape [0]

53

54 if len(proj_t.shape) == 3:

55 assert (len(proj_h.shape) == 2)

56 # this is the tail completion case in link -prediction

57 hr = (proj_h + r).view(b_size , 1, r.shape [1])

58 return - self.dissimilarity(hr, proj_t)

59 else:

60 assert (len(proj_h.shape) == 3) & (len(proj_t.shape) == 2)

61 # this is the head completion case in link -prediction

62 r_ = r.view(b_size , 1, r.shape [1])

63 t_ = proj_t.view(b_size , 1, r.shape [1])

64 return - self.dissimilarity(proj_h + r_ , t_)

Figure 4.8: TransH partial implementation. Only head and tail inference are imple-
mented in this example. Support for relation inference is also needed and can be found
in the real TorchKGE implementation.

Chapter 5

Automatically enriching
Wikidata using Wikipedia
hyperlinks

This chapter presents a method to predict missing facts in Wikidata by doing relation-
prediction on candidate pairs of entities. The pairs are likely to be involved in a fact as
they come from hyperlinks linking Wikipedia pages.

This chapter covers the following article:

Enriching Wikidata with Semantified Wikipedia Hyperlinks.
Boschin, A., Bonald, T. (2021)
Postprint presented at the 2nd Wikidata Workshop co-located with the 20th
International Semantic Web Conference (October 2021).
Reference [20]

5.1 Motivations

Since its launch in 2001, Wikipedia1 has successfully become the largest open-source
collection of knowledge. Its textual content is however mostly unstructured, the struc-
tured information being mainly limited to the content of infoboxes (e.g. place and date
of birth for articles on humans). Another structure in Wikipedia that is yet to be fully
integrated in Wikidata lies in the hyperlinks between pages. The main challenge to
this integration is that, to know the meaning of a hyperlink, it is necessary to read the
text in which the hyperlink is embedded. While a few hyperlinks do not correspond to
relevant facts, we claim that this is a rich source of information to complete Wikidata.
To illustrate this, one can look at the level 5 of Wikipedia vital articles2, that is about
40,000 pages “serving as a centralized watchlist to track the quality of the most important
articles”. These Wikipedia pages are linked by slightly more than 3 million hyperlinks,
which is far more than the approximately 200,000 facts linking the corresponding enti-
ties in Wikidata. For instance, there is a link from the page Henri Poincaré to the page
Optics in Wikipedia. This suggests the existence of a relation linking the two entities,
here field of work. This fact is not present in Wikidata.

1https://www.wikipedia.org
2https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

66

https://www.wikipedia.org
https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 67

Precisely, we address the task of relation-prediction: finding the relation linking
some given head and tail entities. For instance, we would like to complete the triple
〈Berlin, ,Germany〉 with the relation capital of, assuming the fact is not in the KG.
This task, also known as the semantification of a link, was already introduced in Sec-
tion 3.2.4 as an evaluation technique for KG embedding models. Though most existing
works on embeddings have focused on link-prediction, we show that embeddings can also
perform notably well when predicting relations. We do this by looking into a real-world
application and not only the evaluation technique.

The main contributions in this chapter are the following:

• An approach to enrich Wikidata by the semantification of hyperlinks from Wikipedia.
This approach relies on KG embedding models and on a symbolic type filtering.

• A novel negative sampling technique that improves the ability of KG embedding
models to predict relations by balancing the role of entities and relations, without
affecting their performance on link-prediction.

• A novel filtering technique for relation-prediction where candidate relations are
selected through the types of the head and tail entities.

• A new dataset, WDV5, consisting of the facts between entities of Wikidata cor-
responding to the level 5 of Wikipedia vital articles3. This dataset can easily be
accessed using the Python library TorchKGE.

5.2 Related work

5.2.1 Embedding and negative sampling

KG embedding was extensively introduced in Chapter 3. Let us simply recall that there
are mainly three categories of models depending on the form of their scoring function
f which reflects how entities and relations are modeled to interact in the embedding
vector space: linear models (relations are modeled as translations from the head to the
tail entity), bilinear models (relations are models as bilinear forms distorting the vector
space in which head and tail entities interact) and deep models using neural networks
to define all sorts of parametric scoring functions.

Deep models possibly include techniques from the deep learning literature such as
attention mechanisms [91, 130] or rely on Large Language Models (LLMs): GilBERT
[90] for example, is a more recent model that specifically tackles the task of relation-
prediction by fine-tuning the BERT LLM [36]. In accordance with the conclusion of
Chapter 3, the method proposed here relies on simpler models (TransE and ComplEx
[17, 121]).

As explained in Section 3.2.2, false triples are required to train embedding models
as their scoring function f are expected to discriminate true from false. The random
generation of false triples is called negative sampling and it can have a major impact on
the performance of the trained model [70]. Given some known fact 〈h, r, t〉, the usual
way to create a false triple from it (under the CWA) is to randomly choose either the
head entity or the tail entity and to replace it with another random entity of the KG [17].
This technique was improved in [131] by using a Bernoulli parameter. The replacement
of the relation is rarely considered. It is mentioned in [137] but not precisely described
and its impact not precisely measured, as it is not the focus of that article. We propose
a modification of the Bernoulli NS technique to include random replacement of the
relation, to get high performance in both link-prediction and relation-prediction.

3https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 68

5.2.2 Type filtering

As presented in Chapter 2, most KBs assign types to entities through a rdf:type relation
(e.g. the P31: instance of relation of Wikidata). They usually come with taxonomic
axioms such as rdfs:domain and rdfs:range constraints on the relations. As stated
in Section 3.4.3, these taxonomic axioms have mainly been used to train models, either
during negative sampling or directly by constraining the loss function. They can however
also be used during inference as a criteria to select the candidate entities [71, 137].

In relation-prediction, selecting candidate relations with these axiomatic constraints
seems natural but they can be missing or too coarse grained making the filtering either
too restrictive or with no effect. In Wikidata, relation constraints are hints for the
editors, not firm restrictions4. That leads to domains and ranges that are often either
undocumented or heterogeneous. We propose a simple method to infer such constraints
from the rdf:type relation of the KG at hand and use the resulting rules for relation-
prediction. We show that it has a major impact on performance.

5.2.3 NLP for relation-prediction

When it comes to KG completion, there are two main tasks tackled by NLP methods.
The first task is relation linking, that is linking relations of a KG to plain text surface
forms. Some interesting articles are [106, 142]. The second a more common task is
relation extraction, consisting in predicting the semantic relation linking two entities
based on sentences involving these entities. The best performing models rely on deep
neural network architectures with attention mechanisms [129, 102, 146] or directly on
pre-trained LLMs such a LUKE [140]. The task of relation-prediction in KG, tackled
in the current chapter, is different from the two previous ones as it relies only on the
graph structure of the KG and not on any textual content. A method combining both
graph and textual inputs is left as an interesting perspective for future research.

5.2.4 Wikipedia hyperlink semantification

Very few works exist specifically on the semantification of Wikipedia hyperlinks using
only the graph structure of the KG. The closest approach was presented by Galarraga
et al. in 2015 [47]. It is based on rule mining but limit of this method is that it can
only predict relations for entities matching the body of the mined rule. The proposed
technique based on KG embedding applies to all links.

5.3 Proposed approach

The proposed approach relies on the combined use of several techniques, which will be
presented now.

5.3.1 Ranking relations

KG embedding models can be used to rank relations: given two entities h and t, an
embedding model and its scoring function f , the relations of the graph can be ranked
by decreasing order of scores: f(h, r1, t) > f(h, r2, t) > · · · > f(h, rk, t). The relation r1
is then predicted, corresponding to the fact (h, r1, t). Note that this method applies to
the case of undirected links, by ranking the scores of the predictions for both directed
links (h, t) and (t, h). This is especially useful when some relations have no reciprocal.
In practice, TorchKGE proposes an efficient implementation of ranking.

4https://www.wikidata.org/wiki/Help:Property_constraints_portal

https://www.wikidata.org/wiki/Help:Property_constraints_portal

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 69

5.3.2 Balanced negative sampling

A simple experiment shows that off-the-shelf linear models like TransE perform really
badly in relation-prediction (3% of Hit@1 on FB15k237, cf. Table 5.3a). This suggests
that the representation of relations is not as good as that of entities. It turns out that
entities and relations play similar roles in the training procedure except for the NS
step. In the usual NS techniques presented in Chapter 3, only the entities are randomly
replaced to get false triples. We propose a simple modification of BerNS to balance the
roles of entities and relations during training. Rather than just replacing one of the two
entities of a known fact, the relation is replaced with some probability p, and otherwise
BerNS is applied (cf. Algorithm 4). This new method is called Balanced Negative
Sampling (BalNS). The default value for p is set to 1

2 . Experiments have shown that
the value of the parameter has no major impact on the performances of the approach
as long as it is in the range [0.1, 0.7].

Algorithm 4: Balanced Negative Sampling (BalNS).

Input: (h, r, t), a fact
Input: p, probability to replace the relation
Output: (h′, r′, t′), a false triple
Data: T , the facts in the KG
Data: pr, Bernoulli parameter for relation r

1 (h′, r′, t′)← (h, r, t)
2 while (h′, r′, t′) ∈ T do
3 u← uniform random variable on [0, 1]
4 if u < p then
5 r′ ← random relation

6 else
7 (h′, t′)← BerNS(h, r, t)

8 return (h′, r′, t′)

5.3.3 Type filtering for relation-prediction

Another key technique to improve the quality of relation-prediction is through Type
Filtering (TF). An entity e is said to have the type t if the fact 〈e, rdf:type, t〉 is
known. To predict the relation linking h and t, only relations that are known to link
entities of the type(s) of h to entities of the type(s) of t should be considered. Formally,
we say that a relation r links type a to type b if there exists some known fact 〈h, r, t〉 with
the head entity h of type a and the tail entity t of type b. To predict the relation missing
in 〈h, , t〉, we propose to consider as candidates only the relations r linking any type
of h to any type of t. The corresponding algorithm for relation-prediction is described
in Algorithm 5. Observe that if either the head entity h and/or the tail entity t is not
typed, the candidate relations are then the relations that are involved in a training fact
with either h as a head entity or t as a tail entity. In the end, if no relation meets any
constraint, there is no filtering, i.e. all relations are selected. Regarding speed, this step
has no significant impact on the global computation time if a proper index is built a
priori: link between entities and their types and types to possible relations.

To summarize, our approach relies on the following steps:

1. Training the model (e.g. TransE or ComplEx) with BalNS (Algorithm 4).

2. Predicting relations with TF (Algorithm 5).

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 70

Algorithm 5: Relation-prediction with Type Filtering (TF).

Input: h, t, entities
Input: f , scoring function
Output: r, relation linking h to t
Data: T , the facts in the KG
Data: R, the relations in the KG

1 A← types of h
2 B ← types of t
3 if |A| > 0 and |B| > 0 then
4 R← {r : ∀(a, b) ∈ A×B, ∃h′, t′ : type(h′) = a, type(t′) = b, (h′, r, t′) ∈ T }
5 else
6 R← {r ∈ R : ∃e : (h, r, e) ∈ T } ∪ {r ∈ R : ∃e : (e, r, t) ∈ T }
7 if |R| = 0 then
8 R← R
9 r ← arg max({f(h, r, t), r ∈ R})

10 return r

5.4 Experimental setup

The experiments aim at assessing the performance of the proposed approach on exist-
ing KGs in a supervised way through relation-prediction (cf. Section 3.2.4) but also at
showing its practical interest on the real-world task of Wikipedia hyperlinks semantifi-
cation. In relation-prediction, the candidates selected by TF are ranked by decreasing
score and the rank of the true relation r is recorded as the recovery rank. If the true
relation r is not selected by TF, the rank is set to the maximum. All experiments can
be reproduced using the publicly available code5 and data6.

5.4.1 Datasets

As stated in Section 3.2.5, one of the most common datasets used to evaluate the quality
of KG embeddings is a subset of Freebase called FB15k237 [119]. The typing relation
from Freebase is however not included in it and resources are no longer available online
since the discontinuation of the Freebase project [14] in 2016. Subsequently, entity types
were imported from Wikidata using a matching between the two KBs. Attention was
paid to prevent data leakage by removing any imported fact that could match an existing
validation or test fact. For comparability reasons, the new facts were not used to train
the embedding models but only for the TF step. Only 18,6% of entities are typed, cf.
Table 5.1.

We also introduce WDV5, a new dataset containing the facts linking entities of
Wikidata corresponding to the level 5 of Wikipedia vital articles (cf. Section 5.1).
This dataset is handful in the current chapter has it can provide performance metrics
measuring if the facts predicted using Wikipedia hyperlinks are true when there is a
known ground truth in Wikidata (and WDV5). We hope however that it will be widely
adopted by the community to diversify the datasets used. It is important to note that
WDV5 is a raw extract from Wikidata, without any pre-processing. As such, we expect
the corresponding experiments to be more representative of real-world use-cases than
those based FB15k237. To type entities, only typing facts included in the dataset are
used (i.e. all types are entities of WDV5). In particular, not all entities are typed (only
56%, cf. Table 5.1).

For the semantification of Wikipedia hyperlinks, Wikivitals+6 is used. This is an
extraction of the level 5 of Wikipedia vital articles and the hyperlinks between them.

5https://gitlab.telecom-paris.fr/aboschin/hyperlinks-semantification
6https://netset.telecom-paris.fr/pages/wikivitals+.html

https://gitlab.telecom-paris.fr/aboschin/hyperlinks-semantification
https://netset.telecom-paris.fr/pages/wikivitals+.html

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 71

Dataset Entities/nodes Facts/edges Relations Types Typed entities
FB15k237 14,541 310,116 237 73 2,719
WDV5 39,062 231,744 607 1,206 22,883
Wikivitals+ 39,062 3,008,116

Table 5.1: Descriptive figures of the datasets used in experiments. For FB15k237, the
split between train, validation and test is fixed by literature. For WDV5, the splits are
chosen randomly.

Only pages that have a corresponding Wikidata entity were kept. This dataset provides
many hyperlinks that are natural candidates for true facts.

Detailed figures about the three datasets used in the experiments are available in
Table 5.1.

5.4.2 Baseline

To measure the impact of using a KG embedding model for ranking the candidates
selected by TF, we compare our approach to a simple baseline that ranks the candidate
relations by popularity in the training set. For example, if most training facts linking
a city to a country involve the relation located in then the baseline predicts located in
when presented with the incomplete fact 〈Paris, , France〉.

5.4.3 Embedding models

Two off-the-shelf embedding models were chosen for the experiments:

• TransE [17], the simplest linear model, intuitive and fast to train and apply.

• ComplEx [120], the best bilinear model, with twice more parameters, longer to
train and apply.

As explained at the beginning of this chapter, more elaborate models were excluded in
accordance with the conclusion of Chapter 3.

The models were trained using the Adam algorithm for optimization, dropout and
early-stopping with 100 epochs of patience (on the filtered validation MRR for link-
prediction) for regularization. Details on these techniques can be found in Appendix A.
All experiments were done using Python 3.8, PyTorch 1.7.0 [99], TorchKGE 0.16.25 [18]
pytorch-ignite 0.4.4 and a Nvidia Titan V GPU powered with Cuda 10.1. The hyper-
parameters of the embedding models were tuned using hyperopt 0.2.5. The possible
values along with those chosen are listed in Table 5.2.

In the case of FB15k237, the split between train, validation and test sets is defined
by Toutanova et al. [119]. For WDV5, we split the dataset at random with 80% of
the facts for training, 10% for validation (for choosing hyper-parameters) and 10% for
testing. The reported metrics are averaged over 6 distinct random splits and independent
training procedures.

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 72

Hyper-parameter Possible values

Learning rate {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}
Batch size {4096, 8192, 16384, 32768, 65536}
Loss type logistic, margin, binary cross entropy
Margin (if margin loss) {0.5, 1, 2, 3, 10}
Embedding dimension {100, 150, 200}
Dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5}
L2 penalization {1e-5, 5e-5, 1e-4}
LR decay {1, 0.995, 0.99, 0.985}

(a) Possible values for the hyper-parameters.

TransE
FB15k237 WDV5

BerNS BalNS BerNS BalNS
Learning rate 0.005 0.1 NC 0.001
Batch size 4096 16384 NC NC
Loss type margin margin margin NC
Margin (if margin loss) 1 0.5 1 NC
Embedding dimension 150 150 NC 200
Dropout 0.2 0.1 0.4 0
L2 penalization 1e-5 5e-5 NC NC
LR decay 0.995 0.99 0.995 NC

(b) Chosen values for the hyper-parameters of TransE.

ComplEx
FB15k237 WDV5

BerNS BalNS BerNS BalNS
Learning rate 0.0005 0.0005 0.001 NC
Batch size 8192 32768 NC NC
Loss type margin margin logistic logistic
Margin (if margin loss) 1 0.5
Embedding dimension 200 200 NC NC
Dropout 0.4 0.2 0.3 0.3
L2 penalization 5e-5 5e-5 1e-4 1e-4
LR decay 1.0 1.0 1.0 1.0

(c) Chosen values for the hyper-parameters of ComplEx.

Table 5.2: Possible and chosen values for the hyper-parameters. For WDV5, some values
were different from one random split of the dataset to the other; NC means that the
chosen values were Not Constant.

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 73

Base model Variant MRR Hit@1 Hit@5

TransE

Original 0.061 0.033 0.049
BalNS 0.940 0.914 0.972
TF 0.405 0.184 0.744
BalNS & TF 0.957 0.935 0.983

ComplEx

Original 0.928 0.894 0.967
BalNS 0.956 0.934 0.982
TF 0.953 0.927 0.983
BalNS & TF 0.961 0.943 0.983

Baseline 0.153 0.050 0.262

(a) FB15k237

Base model Variant MRR Hit@1 Hit@5

TransE

Original 0.556 ± 0.116 0.458 ± 0.128 0.664 ± 0.102
BalNS 0.779 ± 0.006 0.697 ± 0.017 0.881 ± 0.012
TF 0.711 ± 0.063 0.588 ± 0.092 0.872 ± 0.020
BalNS & TF 0.821 ± 0.002 0.754 ± 0.003 0.903 ± 0.002

ComplEx

Original 0.546 ± 0.078 0.454 ± 0.108 0.649 ± 0.052
BalNS 0.816 ± 0.037 0.734 ± 0.059 0.917 ± 0.011
TF 0.826 ± 0.009 0.765 ± 0.013 0.902 ± 0.004
BalNS & TF 0.827 ± 0.024 0.762 ± 0.041 0.910 ± 0.003

Baseline 0.516 ± 0.006 0.416 ± 0.006 0.618 ± 0.006

(b) WDV5 (mean ± standard deviation).

Table 5.3: Results of relation-prediction on FB15k237 and WDV5.

5.5 Results on supervised relation-prediction

The results for relation-prediction are shown in Table 5.3 for different variants of the
model so as to assess the respective gains of each proposed technique. Metrics are
reported in the filtered setting. The model variants are labelled as follows:

• Original: The base model (either TransE or ComplEx) trained with BerNS.

• BalNS: The base model trained with BalNS.

• TF: The base model evaluated with Type Filtering (TF).

• BalNS & TF: The base model trained with BalNS and evaluated with TF.

The figures show that the off-the-shelf version of TransE is not efficient on FB15k237
(only 3% of Hit@1). ComplEx performs however notably well on the same dataset (89%
of Hit@1). It seems less sensitive to the unbalanced role of entities and relations during
training. We suspect however that the score of ComplEx on FB15k237 mainly results
from the over-fitting due to the issues raised in Section 3.3.4 and notably the over-
engineering of FB15k237. It is confirmed by the fact that TransE and ComplEx have
almost the same scores (around 45% of Hit@1) on the new dataset WDV5 which is a
raw extraction from Wikidata.

Let us now investigate the impact of each technique separately.

5.5.1 Impact of balanced negative sampling

Training with BalNS has a strong impact on the relation-prediction performance of the
models: training TransE on FB15k237 with BalNS rather than BerNS increases the
Hit@1 from 3% to 91%. This confirms the intuition that the relation embeddings were
not well trained. The difference is less impressive for ComplEx on FB15k237 but the

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 74

FB15k237 WDV5
Model NS method MRR Hit@10 MRR Hit@10

TransE
BerNS 0.282 0.451 0.305 0.480
BalNS 0.286 0.457 0.296 0.465

ComplEx
BerNS 0.308 0.481 0.367 0.506
BalNS 0.304 0.475 0.364 0.495

Table 5.4: Impact of the Negative Sampling method on link-prediction.

original ComplEx model performs already quite well on this dataset. On WDV5, there
is a big increase in Hit@1 for both models: 24% for TransE and 28% for ComplEx.

Observe that this novel NS technique brings significant performance gains on relation-
prediction without loss on link-prediction, as shown in Table 5.4.

5.5.2 Impact of type filtering

TF has a strong impact on the performance of the models. Looking at Hit@1 on WDV5,
TransE goes from 45% to 58% and ComplEx goes from 45% to 76%. Note that Type
Filtering alone (the baseline) performs almost as well as the original embedding models.
It is however largely beaten by the combination of TF with scoring by an embedding
model. The gain of using and embedding model is very important.

5.5.3 Results of the complete approach

The combination of BalNS and TF gives the best results in term of MRR on both
datasets and with both models.

On FB15k237, the increase in performance of TransE is impressive (Hit@1 from 3%
to 94%) and makes this model almost as efficient as ComplEx. This is obtained through
additional facts imported from Wikidata for TF but the scores of TransE simply trained
with BalNS (and without TF) are already close to those of ComplEx.

On WDV5, all performance metrics are significantly improved by our approach.
Both models, that perform similarly in their original forms remain close. On average,
ComplEx beats TransE by 1% in Hit@1 but the scores of TransE are much more stable
from one run to the other, as shown by the lower standard deviation. The intervals of
fluctuation of MRR and Hit@1 tend to be reduced if the model is trained with BalNS.
This is particularly true for TransE, whose standard deviation for each metric is very
small. Let us eventually notice the surprising and very slight decrease in Hit@1 (resp.
Hit@5) between the TF (resp. BalNS) version of ComplEx and the complete approach.
There is no clear explanation for that but the results of MRR are reassuring.

It is remarkable to get almost identical performance with TransE and ComplEx,
knowing that TransE has half the number of parameters of ComplEx, is more geomet-
rically intuitive and requires six times less operations for each gradient descent step
during training. This is a confirmation of what was already stated in the conclusion of
Chapter 3: simple models can perform as well as more complex ones if properly trained
and combined with symbolic exploitation of the ontology.

5.6 Application to Wikipedia hyperlinks

To predict the relation associated to a Wikipedia hyperlink, we use the TransE embed-
ding of WDV5 trained with BalNS and applied using TF. When two pages are linked
and the corresponding Wikidata entities are involved in a fact of Wikidata (110,311 out
of 3,008,116 hyperlinks), we can compare the predicted relation to the ground-truth. We
obtain 84% of accuracy. This good score is expected as the model is trained on WDV5

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 75

facts and some hyperlinks indeed correspond to existing facts. However, it is interesting
to look at cases where the prediction is different from the true fact. We have observed
that the model can hardly predict directed relations (e.g. parent-child) or semantically
close relations (e.g. employer and educated at for links between scholars and universi-
ties). This is not surprising as the only available data is the structure of the KG. Some
other mistakes come from the embedding model itself, for example headquarter location
always has a lower score than twinned administrative body for some reason, making the
headquarter predictions all wrong.

In Table 5.5, we report for two pages the semantified hyperlinks that got the highest
scores. It is reassuring to see that most of the resulting facts are true, many of them
being however already known in Wikidata. A few mistakes could be avoided using a
little bit of context (e.g. text information) but these results suggest that our approach
is able to correctly semantify many links.

It seems however difficult to automatically add these predictions to Wikidata. First,
the scores of embedding models are usually not normalized so comparing them works
fine when done locally (e.g. looking at the links of a particular page) but comparing the
scores of the three million possible facts is not feasible. Second, many facts that get a
high score are very likely but require additional information not present in data. For
example the three most likely facts resulting from semantified hyperlinks of Wikivitals+
are:

• (Serbia, member of, World Trade Organization): Serbia’s application is still under
review.

• (Taiwan, member of, World Trade Organization): Taiwan is already a member of
the WTO through the Chinese Taipei but not in its name.

• (Kosovo, member of, Interpol): Kosovo’s application was rejected in 2018.

Some additional textual content would be very helpful in these cases.

5.7 Conclusion

We have proposed a novel approach to improve relation-prediction by KG embedding. It
is based on two key ideas: Balanced Negative Sampling in the training of the embedding
model, and Type Filtering to select candidate relations during inference. We have shown
that this approach performs well using an embedding model as simple as TransE. Our
results suggest that the model can be used to enrich Wikidata, by the semantification
of Wikipedia hyperlinks associated with known entities.

This approach is however not yet fully automatable and performances still need to
be increased for that goal. A possible extension of this work is a further improvement
of the negative sampling technique by replacing the relation with some probability that
depends on the considered fact 〈h, r, t〉, inspired by the Bernoulli probabilities for enti-
ties. It seems also necessary to integrate some context from textual data for example
(like the description of the relations and the articles themselves) to help the embedding
model in its choices. A fully automatized process of enriching Wikidata with semantified
Wikipedia hyperlinks seems however possible.

A possible improvement to the method is to ease the decision task by dealing with
some relations in a specific way. For example, the Wikidata relation different from might
be excluded from the training set. Another possibility is to replace it by a broader
artificial relation no-relation that could also be involved in negatively sampled facts
involving unrelated entities, or a least entities that are not known to be related. This
would be closer to the functioning of the NLP task of relation extraction presented in
Section 5.2.3.

Eventually, another possible use of the proposed method is to apply it to other sources

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 76

Head Predicted Relation Tail Score Evaluation
Allergy health specialty Immunology -0.728593
Allergy has effect Rhinorrhea -0.839387
Allergy has cause Allergen -0.844231
Allergy health specialty Pediatrics -0.972245
Allergy health specialty Internal medicine -1.022068
Allergy instance of Disease -1.022585
Allergy drug used for treatment Adrenaline -1.040919
Allergy medical examinations Blood test -1.165760
Allergy drug used for treatment Aspirin -1.172504
Allergy health specialty Hematology -1.219639
Allergy possible treatment Medication -1.221141
Allergy symptoms Abdominal pain -1.228720
Allergy drug used for treatment Penicillin -1.235292
Allergy subclass of Pollution -1.283537
Allergy health specialty Statistics -1.297987
Allergy health specialty Epidemiology -1.301585
Allergy afflicts Immune system -1.374023
Allergy afflicts Blood -1.376165
Allergy possible treatment Antibiotic -1.406908
Allergy symptoms Itch -1.416243

(a) Top-20 triples predicted from the page Allergy.

Head Predicted Relation Tail Score Evaluation
Henri Poincaré employer University of Paris -0.358521

Henri Poincaré employer École Polytechnique -0.412040
Henri Poincaré occupation Mathematician -0.414613
Henri Poincaré place of death Paris -0.492610
Henri Poincaré occupation Engineer -0.537747
Henri Poincaré field of work Number theory -0.561962
Henri Poincaré student of Charles Hermite -0.592644
Henri Poincaré field of work Epistemology -0.605310
Henri Poincaré field of work Topology -0.678377
Henri Poincaré field of work Algebraic geometry -0.712538
Henri Poincaré student of Wilhelm Wundt -0.738560
Henri Poincaré field of work Optics -0.738636
Henri Poincaré notable work Poincaré conjecture -0.739285
Henri Poincaré field of work Philosophy of science -0.791077
Henri Poincaré field of work Metaphysics -0.822683
Henri Poincaré place of birth Nancy, France -0.824190
Henri Poincaré different from Raymond Poincaré -0.830676
Henri Poincaré student of Karl Weierstrass -0.843734
Henri Poincaré field of work Set theory -0.855588
Henri Poincaré field of work Celestial mechanics -0.877295

(b) Top-20 triples predicted from the page Henri Poincaré.

CHAPTER 5. AUTOMATICALLY ENRICHING WIKIDATA 77

Head Predicted Relation Tail Score Evaluation
Paris capital of France -0.507053
Paris located in or next to body of water Seine -0.656630
Paris instance of Capital city -0.699302
Paris twinned administrative body Rome -0.708570
Paris official language French language -0.709513
Paris twinned administrative body Berlin -0.761601
Paris twinned administrative body Strasbourg -0.791677
Paris history of topic History of Paris -0.795585
Paris head of government Jacques Chirac -0.813331
Paris twinned administrative body Madrid -0.824193
Paris twinned administrative body Cologne -0.836061
Paris instance of Administrative division -0.839149
Paris continent Europe -0.844736
Paris twinned administrative body Milan -0.855923
Paris twinned administrative body Geneva -0.857794
Paris twinned administrative body Florence -0.864486
Paris shares border with Marseille -0.870625
Paris shares border with Tel Aviv -0.878915
Paris significant event Storming of the Bastille -0.883031
Paris twinned administrative body London -0.899031

(c) Top-10 triples predicted from the page Paris. As a city can only be the capital of one
country, only the prediction of the form 〈Paris, capitalOf, 〉 with the highest score was kept.

Table 5.5: Relation-prediction applied to the semantification of Wikipedia hyperlinks
(green = true fact unknown by Wikidata, blue = fact already known by Wikidata, red
= false triple).

of untyped links. In the spirit of relation extraction presented in Section 5.2.3, textual
data can also be used to provide candidate entities that are likely to be in relation.
A simple approach would apply the proposed technique to predict relations linking
entities occurring in common sentences, relying on a pre-processing step of named-entity
recognition. This would be comparable to the recent technique of [90], which relies on a
BERT LLM [36] to detect if a relation exists between two entities of a given sentence and
then uses KG concepts of nearest neighbors to choose among a set of possible relations.

Chapter 6

Hierarchical classification for
entity typing

This chapter focuses on hierarchical classification and specifically on the possible impact
a label hierarchy can have on classification. This is motivated by entity typing in KGs,
which is another way of automatically completing KBs. The focus will however be on
the general ML task.

The structure of the chapter is the following. A first section introduces hierarchical
classification by linking it to entity-typing. Then, three methods are considered as ways
to include the hierarchy in the training process of classification methods. The first one
extends the existing Dirichlet graph classifier using an intuitive local-classifier-per-parent
node technique, which will be presented. Then an hierarchical innovative training loss
for neural and tensor-based models is introduced and experimented with. Eventually,
the contradictory intuition that, conditionally to rich data, a flat classifier can learn the
hierarchy directly from the features is reinforced by the results of a new Self-Encoder
model we propose.

The Self-Encoder model is the subject of the following preprint article:

A Self-Encoder for Learning Nearest Neighbors.
Boschin, A., Bonald, T., Jeanmougin, M. (2023)
Under review at ECML23
Reference [21]

6.1 Hierarchical classification

The current section first recalls the definition of a taxonomy and then reviews some
important contributions on automatic entity typing. The rest of the section introduces
the underlying and more general task of Hierarchical Classification (HC), which is the
focus of the chapter.

6.1.1 Taxonomies

As explained in Chapter 2, entities in KBs are typed and ontologies define a subsumption
binary relation between types that yields a natural hierarchy: the taxonomy. This binary
relation on classes is denoted ⊂: ci ⊂ cj if class i is a sub-class of class j. The taxonomy
is a directed acyclic graph and in the simpler case where an entity can only have a single
super-type, it is a tree. Figure 6.1 shows an extract of the YAGO4 taxonomy [101].

78

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 79

Thing

Organization

Workers
union

Company Musical
ensemble

Place

Galaxy Territory
Front

(Military)

Figure 6.1: Extract of the YAGO4 taxonomy. Only the labels of the types are shown
for readability.

Entity typing is the task of assigning a class of the taxonomy to existing entities in the
KG. The definition of taxonomy in the context of KBs (cf. Definition 6) is actually
general to classification. Entity typing is then a sub-problem of HC.

Automatic entity typing in KGs has been an active research topic for a few years
and several machine learning solutions have been proposed. For example, [138] pro-
poses FIGMENT, a method relying on word embeddings from contextual descriptions
of entities. Other methods combine several data representations (e.g. graph and KG
embeddings, word embeddings and other node features) to reduce the amount of tex-
tual data required and to improve the performances. Examples of such methods are
MuLR [139], APE [61], Cat2Type [11] and GRAND [10]. More complex neural network
structures, such as attention mechanisms and graph convolutions, have also been exper-
imented with [62, 133, 149]. Eventually let us mention an interesting method involving
restricted Boltzmann machines [132].

In the rest of the chapter, types are indifferently called types or classes and the
taxonomy is supposed to be a tree, with one root class (a class with no super-class) and
several leaves (classes with no sub-class).

6.1.2 Global and local hierarchical classification models

As introduced in Chapter 3, a classification model is an algorithm that is trained to
assign a class to unknown samples. If there are more than two possible classes, the task
is called multi-class and when the answer can be made of several classes for each sample,
it is called multi-label.

The set of possible classes either comes flat or with a taxonomy. Let us call flat a
model that has been trained with no structural information on the classes, as opposed
to a hierarchical one. It can be discussed that HC is multi-label because if a sample is
assigned a class, then it is also implicitly assigned all its super-classes up to the root.
Multi-label hierarchical classification, however, usually designates the case where several
unrelated classes can be assigned to a single sample. In the rest of the chapter, only
single-label multi-class classification (hierarchical or flat) will be discussed.

Following [110], there is a natural division of HC models between the local and the
global ones.

• A local approach is made of several flat classifiers. The Local Classifier per Node
(LCN) mode counts as many binary classifiers as there are classes and each one
decides to assign or not a specific class to samples. Another mode is called Local
Classifier per Parent Node (LCPN) and associates one classifier per non-leaf class,
each one deciding which of the sub-classes should be assigned to samples.

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 80

There are two ways to run local methods. First, all the classifiers can be run inde-
pendently and the possible hierarchy conflict can be resolved at the end. Another
more intuitive way is to apply classifiers in a sequence following a graph traversal
of the taxonomy, starting from the root node and following the predictions made
on the go. An example of LCPN will be described in Section 6.2.

• A global approach is made of a single classifier that somehow takes the hierarchy
into account during training or when choosing among all the classes available. An
example of global approach will be described in Section 6.3.

In HC, performance metrics should reflect how predictions comply with the hierarchy.
They will be detailed in the following section.

6.1.3 Performance metrics

Let C = {c1, . . . , cK} be a set of classes and let (xi, yi)
n
i=1 be the data at hand such

that ∀i ∈ {1, . . . , n}, yi ∈ C. For all i ∈ {1, . . . , n}, the prediction associated to xi is
noted ŷi.

Accuracy

A key metric in classification is the accuracy, that is the share of labels correctly pre-
dicted:

Acc =
1

n

n∑
i=1

1{yi = ŷi}

Precision, recall and f1-score

Three usual metrics are precision, recall and f1-score. Let us define them in the binary
case followed by the multi-class case.

• In binary classification, C = {0, 1}. The predictions can intuitively be organized in
four categories, as in the confusion matrix in Table 6.1: True Positives (TP), True
Negatives (TN), False Positives (FP) and False Negatives (FN). The precision,
recall and f1-scores are then defined as follows:

– Precision is the share of samples predicted as positive that are correctly clas-
sified

P =
|TP |

|TP |+ |FP |

– Recall is the share of samples truly positive that are correctly classified

R =
|TP |

|TP |+ |FN |

– f1-score is a common aggregated measure defined as the harmonic mean of
precision and recall

f1 = 2 · P ·R
P +R

=
2 · TP

n+ TP − TN

• In multi-class classification (|C| > 2), the confusion matrix is larger but it is built
in the same way. There are two possible definitions of the metrics:

– In the micro setting (noted µ), the number of TP, FN and FP are summed
over all classes. The number of TP is simply the number of correctly classi-
fied samples. The numbers of FN and FP are both equal to the number of
incorrectly classified samples. Indeed, if yi = c1 and ŷi = c2 then this is a FP
for the class c2 and a FN for the class c1. As a result, precision and recall

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 81

y = 1 y = 0
ŷ = 1 TP FP
ŷ = 0 FN TN

Table 6.1: Confusion matrix of a binary classification problem.

are equal in micro setting and fµ1 = P = R. Eventually, there are no TN in
multi-class because each sample has exactly one class. As a result, fµ1 is also
equal to the accuracy.

– In the macro setting (noted M), each metric is computed separately for each
class in a one-vs-all binary setup (one label against all the others) and are
then averaged. Specifically, the macro f1-score (noted fM1) is the average of
all the binary f1-scores:

fM1 =
1

|C|
∑
c∈C

f
(c)
1

It is also possible to weight this average, by the support of each class for
example.

Hierarchical versions

Assume now that C comes with a taxonomy. According to Kosmopoulos et al. [69], there
are three main performance metrics in multi-class HC and they are set-based, meaning
that they rely on the definition of sets of predictions for each sample. Precisely, for
each sample i, the set-based metrics define yaugi (resp. ŷaugi) as a set containing yi
(resp. ŷi) and other related classes from the taxonomy. The taxonomic sub-classes or
super-classes can be added to these augmented sets. Sometimes, the super-classes up
to a common ancestor between the true and predicted classes are added. Eventually,
hierarchical precision, recall and f1-score are computed for each sample as follows and
the global metrics are simply computed by averaging those over all the samples.

Ph(ŷaugi , yaugi) =
|ŷaugi ∧ yaugi |
|ŷaugi |

Rh(ŷaugi , yaugi) =
|ŷaugi ∧ yaugi |
|yaugi |

fh1 (ŷaugi , yaugi) = 2 · Ph ·Rh
Ph +Rh

The rationale behind the augmented sets is that predictions should not be considered
as standalone but within the taxonomy. Using the extract taxonomy in Figure 6.1, if a
model predicts the class Company for a sample while the true class was the super-class
Organization, then it should be less penalized than if the prediction was Place and more
penalized than if the prediction was Thing.

6.2 Dirichlet node classification

This section introduces the Dirichlet classifier following [33] and a hierarchical version
using the LCPN method.

An interesting feature of the Dirichlet classifier is that it does transductive [50]
learning in the sens that its learning process uses the entire adjacency matrix of the
underlying graph and not simply the feature vectors (e.g. the rows of the adjacency
matrix) of the labeled nodes of the training set. That usually makes it an excellent
choice to solve graph learning tasks, like node classification.

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 82

6.2.1 Original model

The Dirichlet classifier relies on the physical mechanism of heat diffusion, which is
ruled by the heat equation ∂T

∂t = α∆T where T is the temperature, α is the thermal
conductivity and ∆ denotes the Laplacian operator. This equation, once discretized,
has been applied to graph analysis numerous times including for supervised and semi-
supervised classification of nodes. In the semi-supervised case, only a share of the nodes
have a label that can be used for training [118, 7, 77].

Let G = (V,E) be an undirected weighted graph, n = |V | the number of nodes, A
the adjacency matrix and D the degree matrix. Let P = D−1A be the transition matrix
of a random walk on the graph. Let T ∈ Rn be the vector of node temperatures, which
is time dependent. The heat equation in discrete space can be written for each node as
in Equation 6.1 or in a vector form as in Equation 6.2 where L = D − A is the graph
Laplacian (cf. Definition 23).

∀i ∈ V, ∂Ti
∂t

=
∑
j∈V

Ai,j(Tj − Ti) (6.1)

∂T

∂t
= −LT (6.2)

The Dirichlet problem consists in finding the equilibrium temperature vector T solv-
ing the heat equation 6.2 in the specific case where the temperature of a strict subset
of nodes (denoted S for seeds) is fixed to a constant value at all time. Those are usu-
ally called boundary conditions. Let s = |S| be the number of seeds and T S ∈ Rs the
fixed temperatures. Up to a reordering of the nodes, T and P can be written in block
form as in Equation 6.3 where x ∈ Rn−s is the vector of unknown temperatures and
Equation 6.4 where Q ∈ R(n−s)×(n−s) and R ∈ R(n−s)×s.

T =

(
x
T S

)
(6.3)

P =

(
Q R
· ·

)
(6.4)

A synthetic formulation of the Dirichlet problem is the following:{
∂T
∂t = −LT
∀t,∀s ∈ S,Ts(t) = Ts(0)

(6.5)

It can be proven that if G is connected, the Dirichlet problem 6.5 has a unique
solution [28] mainly by showing that connectedness of G implies that (In−s − Q) is
invertible. It follows that the solution x is of the form x = (In−s−Q)−1RT S . Computing
this exact solution can be costly. Instead, a very good approximation can be computed
by iterating x(t+1) = Qx(t) +RT S . A proof of the convergence of this iterative method
can be found in Appendix B for the more general case of directed graphs. A detailed
formulation of the solver is proposed in Algorithm 6.

Solving a Dirichlet problem can easily be applied to binary node classification by
using the nodes of the training set as seeds and setting their temperature either to 0
or 1 depending on their labels. The solution then gives a temperature for nodes that
are not in the training set, which can be classified as 1 (resp. 0) if their temperature
is above (resp. below) a given threshold. There are various strategies to choose the
threshold: the naive one is to use 1

2 but a more performing one is to use the average of
the temperatures [33]. Figure 6.2 illustrates the Dirichlet binary classifier on the Karate
Club graph [145, 33].

The generalization to multi-class classification is straightforward with a one-vs-all
strategy: there are as many diffusion processes as there are distinct labels and the

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 83

Algorithm 6: Dirichlet solver

Input: A ∈ Rn×n adjacency matrix of the graph

Input: T =

(
(−1)n−s

T S

)
, with T S ∈ {0, 1}s temperatures of the seeds

Input: K number of iterations

Output:

(
x
T S

)
, where x ∈ [0, 1]n−s vector of temperatures

1 D ← A · 1n;
2 P ← D−1A;

3 x← mean(T S);

4 y ← T S ;
5 for k = 1, . . . ,K do

6

(
x
y

)
← P ·

(
x
y

)
;

7 y ← T S

8 return

(
x
T S

)

(a) Ground truth. (b) Solution to the Dirichlet problem.

Figure 6.2: Binary classification of the Karate Club graph [145] with 2 seeds (indicated
with a black circle). Red nodes have label 0, blue nodes have label 1. Visualization is
extracted from [33].

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 84

seeds for each label are once set to 1 and the rest of the time set to 0. Eventually,
temperatures are shifted so that the mean temperature of each diffusion is 0 and nodes
are assigned the label that maximizes their temperature. This classifier is usually called
the Dirichlet classifier and has no hyper-parameter. A detailed formulation is proposed
in Algorithm 7.

Algorithm 7: Dirichlet Multi-class Classifier

Input: A adjacency matrix of the graph
Input: y ∈ ({−1} ∪ C)n the true labels (unknown nodes have true label -1)
Input: t ∈ [0, 1] a threshold (default is 0)
Output: ŷ ∈ Cn the predicted labels

1 ŷ ← (−1)n

2 T ← (0)|C|×n ; // matrix with all the class temperatures for each node.

3 for c ∈ C do
/* Binary classification for class c. */

4 T c ← (−1)n

5 for i = 0, . . . , n− 1 do
6 if yi = c then
7 T c

i ← 1
8 else if yi 6= −1 then
9 T c

i ← 0

10 T c ← binaryDirichlet(A,T c, 10)
11 Tc ← T c −mean(T c) ; // Tc ∈ [0, 1]n is the row of T corresponding to label c

/* Select the class of highest temperature respecting the threshold condition. */

12 for i = 0, . . . , n− 1 do
13 c1, c2 the two classes with highest temperature in T:,i
14 if Tc1,i > Tc2,i + t then
15 ŷi ← c1

16 return ŷ

The Dirichlet classifier seems natural for entity typing in KGs as it can be applied
in a semi-supervised setting while still using the entire adjacency matrix in the diffu-
sion/learning process. This is particularly interesting in the case of KGs because usually
many entities are not typed. For example, according the Wikidata official statistics1,
approximately 6% of the Wikidata entities had no type in 2020. The Dirichlet classifier
can also be applied to a directed graph, with asymmetric adjacency matrix. Appendix B
presents a proof of the existence and unicity of the solution to the Dirichlet problem
along with a proof of the convergence of the iterative algorithm, both in the directed case.
Though it seems appropriate to use the directed version for KGs, which are directed
graphs, the experiments showed that the classifier works best with a symmetrized adja-
cency matrix, which is less sparse. Eventually, recall that KGs are defined by adjacency
tensors, not matrices. There are various possibilities to apply Dirichlet classification to
a KG. The simplest one would be to forget about the edge types (the relations) to turn
the tensor into a matrix. This will be discussed in the experiments in Section 6.5.

6.2.2 Hierarchical Dirichlet classifier

An interesting feature of the Dirichlet classifier is that the temperature of each node can
be interpreted as a confidence in the prediction. This classifier can then naturally be
used in a local approach of HC such as the LCPN (cf. Section 6.1.2). Indeed, starting
from the root class in the taxonomy, one chooses a sub-class and then moves down
progressively, using the confidence measure as a stopping criterion in the traversal of

1https://www.wikidata.org/wiki/Wikidata:Statistics

https://www.wikidata.org/wiki/Wikidata:Statistics

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 85

the tree. It might be more interesting to stop the prediction on a more general type
rather than making a mistake trying to specialize it.

We propose to call this algorithm Hierarchical Dirichlet and a detailed version is
proposed in Algorithm 8. To the best of our knowledge, no publication has previously
experimented with this hierarchical generalization of the Dirichlet classifier on graphs.

Generally speaking, the LCPN approach can be applied to any classifier that outputs
a confidence metric in its prediction: in the experiments of Section 6.5, a hierarchical
version of Euclidean nearest neighbor will be used as a baseline.

Algorithm 8: Hierarchical Dirichlet Classifier

Input: A adjacency matrix of the graph
Input: child a function returning the child classes of its argument
Input: T a graph traversal of the hierarchy
Input: root the most general class in the taxonomy
Input: y ∈ ({−1} ∪ C)n the true labels (unknown nodes have true label -1)
Input: t ∈ [0, 1] a threshold
Output: ŷ ∈ Cn the predicted labels

1 ŷ ← (root)n

2 for c ∈ T do
3 if |child(c)| > 0 then

/* Then the current class is not a leaf. */

/* Build the current ground truth vector. */

4 yc ← (−1)n

5 for i = 1..n do
6 if ∃c̃ ∈ child(c) : c̃ � yi then
7 yci ← c̃

8 else
9 yci ← −1

/* Apply Dirichlet classifier to choose among the children of c. */

10 ŷc ← Dirichlet(A,yc, t) ; // ŷc ∈ ({−1} ∪ child(c))n

/* Update predictions for nodes that were already assigned c. */

11 for i = 1..n do
12 if ŷi = c and ŷci 6= −1 then
13 ŷi ← yci

14 return ŷ

6.3 Leveraging class taxonomy in gradient-based train-
ing with a hierarchical loss

This section introduces a hierarchical version of the binary cross-entropy loss to leverage
the class taxonomy when training a node classifier such as a graph convolutional network.

6.3.1 Existing hierarchical losses

As explained in Chapter 3, neural networks and tensor models (e.g. KG embedding
models) are usually trained using a gradient-based algorithm in order to minimize a
training loss and assuming the set of classes comes with a taxonomy, a natural way to
include it in the learning process is to make the training loss hierarchical.

Hierarchical losses for neural network training have not drawn much attention in the
past and most of the literature focuses on hierarchical image classification. In 2019, Wu
et al. [136] defined a metric that penalizes the model more, the further its prediction

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 86

falls from the ground truth in the taxonomy, relying on ultrametric trees in which each
leaf is at the same distance from the root. The authors however express concerns on
the comparative interest to usual flat loss. In 2019, Brust et al. proposed to encode
existing hierarchies into a probabilistic model on the labels that is then used to derive a
new label encoding [25]. The authors report some improvements in the overall accuracy
but also a change in the training dynamics. In 2020, Bertinetto et al. expressed the
cross-entropy of a prediction as a weighted sum of the cross-entropies of super-classes
using an exponential discount factor linked to the depth in the hierarchy [8]. Eventually,
Lucena proposed in 2022 a general framework to include any type of structure on the
labels in entropy computations [82].

6.3.2 Hierarchical binary cross-entropy loss

When training tensor models on a classification task, a common loss is the Binary Cross-
Entropy (BCE) expressed in Equation 6.6 where C is the set of possible classes, T is
the set of training samples and given a such a sample i, yi ∈ C is the true class of i and
p(i) ∈ [0, 1]|C| is the estimated vector of probabilities that i belongs to each class.

−
∑
i∈T

log p(i)
yi +

∑
c∈C\{yi}

log
(

1− p(i)
c

) (6.6)

Let us propose a hierarchical formulation of BCE that follows the principle presented
by Bertinetto et al. in [8]: when computing the loss associated to a sample, the super-
classes should be considered in order to weight how far the predicted one is from the
true one.

Precisely, the contribution to the loss of a sample i is given by Equation 6.7 where

A(c) is the set of all super-classes of c up to the root (note that c ∈ A(c)) and p
(i)
c is the

estimated probability for node i to be of class c. Note that it has been assumed that
taxonomies handled in this chapter are trees so the set A(c) is unequivocally defined.

Li = −

 ∑
c∈A(yi)

log p(i)
c +

∑
c∈C\A(yi)

log
(

1− p(i)
c

) (6.7)

Equation 6.7 might include the probabilities computed by the model for any class
of the taxonomy: leaves as well as inner-classes. Another constraint for the hierarchical
BCE is that the probabilities of a class should be the sum of the probabilities of its
sub-classes. This would result in an estimated probability distribution that is coherent
with the taxonomy.

This last constraint is easily respected if the model only estimates probabilities on
leaf-classes. The probability of inner-classes can then simply be computed by a bottom-
up summation. In general however, some samples might be associated to inner-classes.
It is moreover desirable to allow the model to predict a class high in the hierarchy with
certainty rather than a leaf at random. This problem is solved by creating artificial
leaves as sub-classes of the original inner-classes, as on Figure 6.3.

With artificial leaves, the classification model only estimates probabilities of leaf-
classes and the probabilities of inner-classes are simply computed as the sum of the
probabilities of their sub-classes. If the leaf probabilities sum to 1 (if the output of
the classifier is normalized with a SoftMax function for example) then the probabilities
smoothly sum to one when going up the taxonomy, resulting in a coherent probability
distribution (recall that the taxonomy is supposed to be a tree).

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 87

c0

c1 c2

c3 c4 c5 c6 c7

(a) Original class hierarchy.

c̃0

c0

c1 c2

c̃1 c3 c4 c̃2 c5 c6 c7

(b) New class hierarchy.

Figure 6.3: Toy example of the creation of artificial leaves c̃0, c̃1, c̃2 as a child-classes of
c0, c1 and c2.

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 88

c0

c1 c2

c3 c4 c5 c6 c7

1

0.6 0.39

0.4 0.19 0.01 0.01 0.10.01 0.27

0.01

c̃0

c̃1 c̃2

Figure 6.4: Example of an estimated probability distribution over the taxonomy pre-
sented in Figure 6.3. The estimated probabilities of the leaves are reported in red, while
the hierarchically computed ones are in blue.

An example is proposed in Figure 6.4. The leaf probabilities that the model output
are reported in red and the hierarchical summation is reported in blue. Such a distribu-
tion reflects that the model is confident in c3 but, if asked, it would rather not choose
between the sub-classes of c2 (because pc̃2 is larger than pc5 , pc6 and pc7).

Note that the proposed hierarchical BCE can be used to train any tensor model,
though it will be studied in the specific case of graph convolutional networks in the
following section.

6.3.3 Hierarchical graph convolutional network

Graph Convolutional Networks (GCNs) are a class of deep learning models designed to
work on the topological structure of graphs the same way convolutional neural networks
work on pixel structures in images. Precisely GCNs propagate information from one
node to the other using what is called convolution operators. There exists a variety of
such operators and depending on their nature, GCNs are categorized differently: spatial
GCNs propagate information along edges, whereas spectral GCNs use spectral analysis
to do so [24, 34, 67].The current section focuses on one of the most widespread spatial
convolution operator, which was presented by Kipf and Welling in 2017 [67] and applied
specifically to semi-supervised node classification, like the Dirichlet classifier previously
introduced. In the rest of this chapter, GCN designates networks involving this specific
operator.

Let G = (V,E) be an undirected weighted graph, n = |V | the number of nodes, A
the adjacency matrix and D the degree matrix. Given a node i, let N (i) be the set
of neighbors of i. Let X ∈ Rn×d be the matrix of node features. A GCN is basically
a succession of steps (corresponding to layers) that compute successive vector repre-

sentations for each node, using the spatial convolution operator. Let h
(`)
i be a vector

representation of node i at step `, the successive representations are recursively defined
following Equations 6.8 and 6.9 where W is a weight matrix and σ a non-liner function
such as ReLU: x 7→ max(0, x). Equation 6.8 is the aggregation step in which each node
gets information from its neighbors and computes the average of their features. Fol-
lowing equation 6.9, the new hidden representation of each node is then computed by
concatenating the averaged vector to the current representation of the node and feeding

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 89

the resulting vector to a fully connected network, the output of which is normalized.

h
(`+1)
N (i) =

1

|N (i)|
∑

j∈N (i)

h
(`)
j (6.8)

h
(`+1)
i = normalize

(
σ
(
W · concat

(
h
(`)
i ,h

(`+1)
N (i)

)))
(6.9)

Each step corresponds to a layer in the GCN with the first representation of the
nodes being set to the feature matrix X ∈ Rn×d. For classification, the dimension of
the output layer is equal to the number of classes and the output is usually normalized
between [0, 1] using the SoftMax function of Equation 6.10 for example. This makes the
output interpretable as probabilities for a node to belong to each class.

u ∈ Rn 7→
(

eu1∑n
i=1 e

ui
, . . . ,

eun∑n
i=1 e

ui

)
(6.10)

The parameters of the model are limited to the weights of the fully-connected net-
works in each layer. Those are usually trained using gradient descent in order to find
the configuration minimizing a loss such as the BCE (see Appendix A).

Interestingly, the Dirichlet classifier can be described as a particular case of a GCN.
Let c be the number of classes, recall that the Dirichlet classifier is made of c binary
classifiers in which, at each step, the nodes receive the average of their neighbor’s tem-
perature and the seeds have constant temperatures (either 0 or 1 depending on their
label). This amounts to a GCN in which the input node features are a one-hot encoding
of the known classes, the dimensions of the hidden representations are constant and
the hidden fully connected layers (with non-linearity) are removed. Moreover, some
nodes (the seeds) have constant hidden representations. The GCN is closer to the un-
constrained problem of thermal diffusion without boundary conditions, the solution of
which is a unique common temperature for all the nodes. A usual problem with GCNs is
precisely the over-smoothing issue [27], which occurs when several steps of aggregation
yield very close hidden representations for all the nodes.

We propose to train a hierarchical version of the GCN classifier using the hierarchical
BCE introduced in the previous section.

6.4 The Self-Encoder model

The current section presents a flat model called the Self-Encoder. This is a simple and
yet powerful model that can learn a geometry specific to the training samples that can
be used on downstream tasks such as classification, as a kernel method.

The Self-Encoder is a neural network trained to guess the identity of each data
sample. Given n data samples x1, . . . ,xn ∈ Rd, the objective of this encoder is to find
a mapping g : Rd → {1, . . . , n} such that g(xi) = i for most samples i = 1, . . . , n.
The output of the encoder is a probability distribution over the training samples that is
computed using a latent representation of each sample.

6.4.1 Related work

Nearest Neighbors

A simple and yet fundamental method to solve tasks in machine learning is the prox-
imity search. It relies on the intuition that close vectors in the feature space should
have close properties (similar labels in classification and close values in regression). A
straightforward application to supervised classification is the k-nearest neighbor (k-NN)
algorithm [32] which assigns a label to a point by choosing the most present label among

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 90

its k closest neighbors. Usual similarity measures are the Euclidean metric or the cosine
similarity but k-NN can also be applied with any similarity measure, such as the one
learned by the proposed Self-Encoder model.

Kernel methods

Kernel methods are a class of ML algorithms that can work with similarity functions
that are different from the usual Euclidean metric to measure the similarity between
input vectors. Such a function is called a kernel and is usually defined by computing
inner products involving all available pairs of data points.

One of the most famous kernel methods is the Support Vector Machine (SVM)
[30]. Its description will give a better understanding of kernels. SVM is a supervised
classification method that tries to find a boundary separating samples of different labels.
In the simple case of binary classification, the dataset is said to be linearly separable if
there exists an affine hyper-plane separating samples of both labels. In that case, the
linear SVM learns the position of the hyper-plane by maximizing the margin, that is
the distance of the hyper-plane to the closest training vector. In the case where the
dataset is not linearly separable, the SVM can still be used with the help of a kernel
that moves the training vectors into another space, possibly of different dimension, in
which they are more likely to be separable. A usual example is the 2-dimensional case
where positive samples are within a circle of radius 1 and negative samples are out of
the circle. These points are not linearly separable in usual Cartesian coordinates but
moving the points into the 1-dimensional space of the distance to the origin of the first
space makes it separable.

The Self-Encoder is an unsupervised technique that learns a geometry of training
samples to make them separable. By doing so, it learns a kernel that can compare
new vectors to the training samples. A broader task is metric learning and aims at
learning genuine distance functions (symmetric bilinear forms that verify the separability
property and the triangle inequality). Importantly, the Self-Encoder is unsupervised
making it theoretically applicable to any downstream task.

Auto-encoders

In its simplest form, an auto-encoder is a neural network model that learns a compact
latent representation of data points with an encoder part and that is able to reconstruct
them from this representation with a decoder part. The rationale is that a performing
encoder should be able to extract the core discriminative features that define the samples
of the dataset and this is measured by the ability of the decoder to reconstruct the
original data from those features.

There is a large variety of application domains for auto-encoders and even more
different structures. Let us cite for example variational auto-encoders that are used in
a probabilistic framework for variational inference [66] or denoising auto-encoders that
can be used for example to improve image resolutions by changing the reconstruction
criterion [126] of manually noised data samples.

The output of an auto-encoder being a reconstructed version of the input vector,
the measure of reconstruction loss is key in the training process. Unlike auto-encoders,
in the case of the Self-Encoder, there is no need to engineer a good similarity measure
between the original data sample and its reconstruction because the objective is simply
to predict the identity of each data sample as an index in {1, . . . , n} and not the data
point in Rd itself.

6.4.2 Description of the Self-Encoder

Let (xi)i∈{1,...,n} ∈
(
Rd
)n

be the set of training samples with d the dimension of the fea-
ture space and n the number of samples. The Self-Encoder is a Multi-Layer Perceptron

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 91

(MLP) with input dimension d and output dimension n, trained to predict the identity
i of each data sample xi.

Hidden layers

The encoder consists of L hidden layers. Each layer l = 1, . . . , L consists in an affine
transformation followed by an activation function:

h(1) = φ(1)(W (1)x + b(1))

h(2) = φ(2)(W (2)h(1) + b(2))

...

h(L) = φ(L)(W (L)h(L−1) + b(L))

where φ(1), . . . , φ(L) are the activation functions, typically non-linear. The dimensions
of the successive outputs, say d1, . . . , dL, are hyper-parameters. The weight matrices
W (1), . . . ,W (L) and the bias vectors b(1), . . . , b(L) must be learned.

Output layer

The output layer is a fully connected layer with input dimension dL (the output dimen-
sion of the last hidden layer) and output dimension n. This affine transformation is
followed by an activation function φ which is either a coordinate-wise sigmoid function
φ : x 7→ ex

1+ex or a SoftMax function (cf. Equation 6.10).

The output of the network is then a vector p = φ(Wh(L) + b) ∈ [0, 1]n that can
be interpreted as probabilities: the ith component pi is the probability that the input
x corresponds to the training sample xi. Observe that the probabilities sum to 1 only
with the SoftMax function (with the sigmoid function, the probabilities are learned
independently for each training sample i by the output layer). The weight matrix W
and the bias vector b must be learned, together with the other parameters.

Loss function

In the following, f denotes the learned function of the network, mapping sample vectors
x ∈ Rd to probability vectors p ∈ [0, 1]n. f is a parametric function and its parameters
are the weight matrices W (1), . . . ,W (L),W and the bias vectors b(1), . . . , b(L), b. Those
are learned by minimizing the following BCE loss by gradient descent (cf. Appendix A):

L = −
n∑
i=1

log fi(xi) +
∑
j 6=i

log(1− fj(xi))

 (6.11)

Interpretation

The Self-Encoder learns a latent representation of data, given by the last hidden layer,
where the n training samples are linearly separable. It is the role of the output layer to
find the hyperplanes (given by the weight matrix W and the bias vector b) separating
each training sample.

No hidden layer

Observe that the Self-Encoder can also be trained without any hidden layer. It then
reduces to the output layer, i.e. a perceptron with input dimension d and output di-
mension n. Equivalently, the Self-Encoder then consists of n binary logistic regressions
(for the sigmoid activation function) or a single multinomial logistic regression (for the
SoftMax activation function).

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 92

Geometry

In both cases (with or without hidden layers), the Self-Encoder learns a specific similarity
measure in the sense that it can predict the training samples that are the most similar
to any new data sample x. This measure depends on the distribution of the training
samples x1, . . . ,xn in the original space Rd. Any sample x ∈ Rd is said “close” to the
training sample xi if the corresponding predicted probability pi = fi(x) is close to 1.

6.4.3 Invariance property

The Self-Encoder is invariant to invertible affine transformations of the training data,
as stated below.

Proposition 1. Let f be the mapping learned by the encoder with training samples
x1, . . . ,xn. For any invertible matrix M ∈ Rd×d and vector v ∈ Rd, let x̃1, . . . , x̃n be
the new training samples obtained by affine transformation x 7→ Mx + v. The new
mapping f̃ defined by:

∀x̃ ∈ Rd, f̃(x̃) = f(M−1(x̃− v))

minimizes the cross-entropy loss (6.11) for the training samples x̃1, . . . , x̃n. Both en-
coders are related through the affine transformation:

∀x ∈ Rd, f(x) = f̃(Mx + v).

In other words, if the training data are the same up to some invertible affine trans-
formations, so are the mappings learned by the encoder.

Proof. The mapping f̃ is the same encoder as f except for the first hidden layer, whose
output h̃(1) for the input x̃ is given by:

h̃(1) (x̃) = h(1)
(
M−1(x̃− v)

)
= φ(1)

(
W (1)(M−1(x̃− v)) + b(1)

)
= φ(1)

(
W (1)M−1x̃ + b(1) −W (1)M−1v

)
= φ(1)(W̃ (1)x̃ + b̃(1)),

for the weight matrix and bias vector:

W̃ (1) = W (1)M−1

b̃(1) = b(1) −W (1)M−1v.

The corresponding binary cross-entropy loss is minimized, given that:

L = −
n∑
i=1

log f̃i(x̃i) +
∑
j 6=i

log(1− f̃j(x̃i))

= −

n∑
i=1

log fi(xi) +
∑
j 6=i

log(1− fj(xi))

�

This invariance property is a clear difference with the usual Euclidean distance.
To illustrate this, Figure 6.5 shows the Voronoi diagram (regions formed by the nearest
neighbors) associated with n = 4 points of R2 for the Self-Encoder and for the Euclidean
distance. On the left, the 4 points form a square and the Voronoi diagrams coincide,

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 93

(a) Euclidean distance

(b) Self-Encoder

Figure 6.5: Impact of a linear transformation on the Voronoi diagram (regions of nearest
neighbors) formed by n = 4 points in R2.

by symmetry. On the right, a linear transformation is applied; the Voronoi diagram
is obtained by the same linear transformation for the Self-Encoder, while it changes
completely for the Euclidean distance.

This invariance property is handy as it simplifies the pre-processing steps, which can
become tedious and that usually have an impact on the performances of many classifiers.
This will be showed later in the experiments for the Euclidean k-NN classifier.

6.4.4 Categorical features

We claim that the Self-Encoder robustly handles categorical features, in the sense that
it does not depend on the number of bits they are encoded on, unlike Euclidean Nearest
Neighbor (NN).

Given x(1), . . . ,x(n) training samples with categorical features in {0, 1}d, data re-
dundancy in the features does not modify the optimum of the function. If there is a

pair (k1, k2) such that ∀i,x(i)
k1

= x
(i)
k2

then the contributions to the loss involving these
features is duplicated and they should result in the same corresponding weights in the
input layer, which should not impact the learned geometry. If there is a pair (k1, k2)

such that ∀i,x(i)
k1

= 1 − x
(i)
k2

then the k1-th feature is a invertible affine transformation
of the k2-th feature and the invariance property of Proposition 1 tells us that the first
case of redundancy applies.

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 94

Let us illustrate on a simple example how the similarity measure learned by a Self-
Encoder can outperform the usual Euclidean metric on a nearest-neighbor search by
handling categorical features differently.

X1 =

x
(1)
1

x
(2)
1

x
(3)
1

x
(4)
1

x
(5)
1

 =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 1
1 0 1 0

 (6.12)

X2 =

x
(1)
2

x
(2)
2

x
(3)
2

x
(4)
2

x
(5)
2

 =

1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
0 1 0 0 1
0 1 0 1 0

 (6.13)

Let X1 and X2 be defined in Equations 6.12 and 6.13. The only difference between
the two set of samples is that the binary feature of the first binary column of X1 is
encoded on two bits in X2 in the first two columns. It is reasonable to expect that a
classifier trained on X1 and fed with x̄1 =

(
1 1 0 0

)
makes the same decision as a

classifier trained on X2 and fed with x̄2 =
(
0 1 1 0 0

)
. This is not the case for a

Euclidean nearest-neighbor as the closest vector from x̄1 in X1 is
(
0 1 0 0

)
and the

closest ones from x̄2 inX2 are
(
1 0 1 0 0

)
,
(
0 1 0 0 1

)
and

(
0 1 0 1 0

)
.

On the other hand, the Self-Encoder returns
(
0 1 0 0

)
as the most similar to x̄1

and
(
1 0 1 0 0

)
as the most similar to x̄2.

6.4.5 Sampling

Under the reasonable assumption that the dimensions of the hidden layers do not scale
with n, the time complexity is that of the output layer: O(n2) for training and O(n) for
evaluation. The training time complexity is higher than the n-linear time complexity of
Euclidean k-NN. However, training is only done once and then the trained model can
be used in O(n) for similarity search. Moreover, the natural way to implement a MLP
model is to use machine learning frameworks such as PyTorch [99] or TensorFlow [1],
which natively support GPU acceleration and highly reduce the computation time.

To control the memory usage and time complexity of the approach and in order to
improve the performance, we propose to use a simple sampling strategy, where a random
subset of the training set is selected, thus reducing the space and time complexity of
the model. Given a set of training samples X = (x(i))i∈{1,...,n}, sampling generates a
new training subsets of size s by randomly sampling vectors from X. The model is then
trained on the new training subset. Experiments show that that the performance of the
sampled model is comparable to the complete one.

6.4.6 Self-Encoder for flat classification

Experimental setting

To evaluate the quality of the similarity measure learned by the proposed Self-Encoder,
we apply it to a flat classification task with k-NN method (with k = 3). The Self-
Encoder k-NN is simply called Self-Encoder for simplicity. It is tested with and without
a hidden layer and in normal and sampling modes. Training uses early stopping and
learning rate decay (cf. Appendix A).

The performances are compared to those of three classification baselines: the Eu-
clidean k-NN with k = 5, the linear Support Vector Machine (SVM) and the one-vs-all
logistic regression.

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 95

samples
Feature
dimension

classes

Breast Cancer [84] 699 9 2
Digits [3] 1,797 64 10
Ecoli [89] 336 7 8
German credit [58] 1,000 24 2
German credit
(categorical) [58]

1,000 20 2

Glass [51] 214 9 6
Ionosphere [109] 351 34 2
Iris [46] 150 4 3
Liver [81] 345 6 2
Wine [13] 178 13 3

Table 6.2: Dataset details

Ten datasets that are recurrent in the machine learning literature were selected for
the experiments. They are all available from the UCI repository2 and descriptive figures
can be found in Table 6.2 along with references. Among these, the German Credit
dataset comes in two versions: one with numerical features and another one with 13 out
of 20 features being categorical. The only pre-processing applied to all the datasets is
the conversion of categorical features into a one-hot encoding.

Some hyper-parameters are fixed: the learning rate decay is set to 0.995, the size of
the hidden layer is fixed to 20 and for the sampling mode, the number of visible samples
is fixed to 100. The learning rate is chosen according to a log-uniform distribution
between 0.001 and 2, using the Bayesian optimization library hyperopt3. The library
is also used to choose the normalization function between sigmoid and SoftMax.

For each classification model and each dataset, the reported metric is the accuracy.
It is measured using 5-fold cross validation.

Results

All results are reported in Table 6.3. An obvious conclusion is that in both normal
and sampling settings, the Self-Encoder performs better than the baselines. A second
conclusion is that the Self-Encoder in the sampling framework performs comparably or
better than the other baselines in the normal setting. This is reassuring because the
Self-Encoder might need to be applied in sampling mode while other lighter models have
access to all the samples.

To measure the impact of the invariance feature, the performance of the Self-Encoder
has also been compared to the performance of the Euclidean k-NN algorithm on normal-
ized numerical datasets. The results are shown in Table 6.4. As expected, normalization
improves the score of the Euclidean k-NN in most cases but not up to the score of the
Self-Encoder.

In conclusion, the Self-Encoder is an unsupervised method that learns a similarity
measure specific to the training data that can be used for downstream tasks such as
classification. Its primary objective being to separate samples from one another, it is
expected that its predictions should comply correctly with the hierarchy if the dataset
is rich enough.

2https://archive.ics.uci.edu/ml/datasets.php
3https://hyperopt.github.io/hyperopt

https://archive.ics.uci.edu/ml/datasets.php
https://hyperopt.github.io/hyperopt

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 96

k-NN MLP Logistic SVM

Breast cancer 0.967 0.009 0.96 0.007 0.963 0.003 0.96 0.003
Digits 0.983 0.004 0.934 0.013 0.965 0.004 0.983 0.002
Ecoli 0.869 0.021 0.762 0.016 0.759 0.029 0.798 0.019
German credit 0.684 0.012 0.741 0.026 0.738 0.012 0.754 0.012
German credit cat 0.716 0.027 0.717 0.023 0.733 0.027 0.736 0.023
Glass 0.616 0.066 0.439 0.099 0.579 0.046 0.616 0.06
Ionosphere 0.835 0.032 0.903 0.033 0.855 0.039 0.838 0.03
Iris 0.953 0.05 0.913 0.129 0.967 0.03 0.987 0.027
Liver 0.693 0.025 0.609 0.098 0.684 0.063 0.687 0.057
Wine 0.714 0.046 0.321 0.1 0.966 0.021 0.977 0.011

(a) Classification accuracies of the baseline methods.

SE SE hidden Best Baseline

Breast cancer 0.968 0.007 0.976 0.011 0.967 0.009
Digits 0.983 0.012 0.655 0.117 0.983 0.004
Ecoli 0.911 0.028 0.899 0.021 0.869 0.021
German credit 0.768 0.011 0.749 0.007 0.754 0.012
German credit cat 0.768 0.025 0.756 0.02 0.736 0.023
Glass 0.794 0.033 0.766 0.041 0.616 0.06
Ionosphere 0.94 0.023 0.963 0.031 0.903 0.033
Iris 1.0 0.0 0.993 0.013 0.987 0.027
Liver 0.759 0.02 0.768 0.016 0.693 0.025
Wine 0.736 0.071 0.871 0.116 0.977 0.011

(b) Classification accuracies of the Self-Encoder. The score of the best baseline is recalled for
comparison.

SE SE hidden Best Baseline

Breast cancer 0.960 0.006 0.970 0.008 0.967 0.009
Digits 0.853 0.019 0.528 0.161 0.983 0.004
Ecoli 0.878 0.036 0.899 0.025 0.869 0.021
German credit 0.741 0.012 0.750 0.008 0.754 0.012
German credit cat 0.742 0.011 0.750 0.011 0.736 0.023
Glass 0.766 0.03 0.771 0.027 0.616 0.06
Ionosphere 0.897 0.028 0.946 0.017 0.903 0.033
Iris 1.0 0.0 0.993 0.013 0.987 0.027
Liver 0.762 0.024 0.760 0.007 0.693 0.025
Wine 0.702 0.04 0.848 0.073 0.977 0.011

(c) Classification accuracies of the Self-Encoder in sampling mode (with 100 visible samples
chosen uniformly at random). The score of the best baseline is recalled for comparison.

Table 6.3: Classification accuracies for the Self-Encoder along with other baselines on ten
usual datasets. Performances are measured using a 5-fold cross validation mechanism.
Best results are in bold. German credit cat is the version of the German credit dataset
with categorical features.

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 97

k-NN
normalized

k-NN SE

Breast cancer 0.960 0.967 0.976
Digits 0.970 0.983 0.983
Ecoli 0.866 0.869 0.911
German 0.693 0.684 0.768
Glass 0.645 0.616 0.794
Ionosphere 0.835 0.835 0.963
Iris 0.960 0.953 1.0
Liver 0.609 0.693 0.768
Wine 0.966 0.714 0.871

Table 6.4: Classification accuracy of Euclidean k-NN on normalized datasets and Eu-
clidean k-NN and Self-Encoder on raw datasets. This comparison is only reported on
numerical datasets. Two best scores for each dataset are in bold.

6.5 Experiments

This section describes the experimental setup used to compare the models introduced
in the three previous sections on HC. Two different datasets are used, Wikivitals+
and WDV5, which were already introduced in Chapter 5. Both datasets come with a
taxonomy on the target classes.

All the metrics reported were computed using 5-fold cross-validation method and
the training hyper-parameters were chosen by grid-search on a random 20% subset of
the training set.

6.5.1 Datasets

The experiments involve two datasets. Both are made of a graph where the nodes
have a feature vector and a class. Classes are hierarchically organized in a taxonomy.
Descriptive figures of both datasets can be found in Table 6.54.

• Wikivitals+5 is an extraction of the level 5 of Wikipedia vital articles6 and the
hyperlinks linking them. The labels are hierarchical and come from the Wikipedia
categories. In the experiments, the hierarchy is manually cut to depth 3. The
node features are made by a bag-of-word representation of the page descriptions.
Initially, 85,512 words are used but for lighter computations, only 500 hundred
words are kept during training. The words with the lowest TF-IDF scores on the
training set are removed. A proper definition of the TF-IDF weighting scheme
[107] can be found in Appendix C.

• WDV5 is a subset of Wikidata containing the facts linking entities corresponding
to the Wikipedia pages of Wikivitals+. As explained in Chapter 2, typing in
Wikidata is based on the P31: instance of relation and the taxonomy is not much
constrained. For simplicity, entities in WDV5 have been typed using the YAGO4
taxonomy which is simpler [101]. However, approximately 26% of the entities
in WDV5 are not present in YAGO4, because the latter is built by discarding
types with too few entities (and the corresponding entities). This is not a problem
though, because the Dirichlet and GCN classifiers work in a semi-supervised setting
as well. WDV5, which is a KG, is turned into a graph simply by filling the
adjacency matrix with the facts deprived of the relation. Node features are made of
a bag-of-relations representation of the relation signatures of entities. For example,

4WDV5 is larger in the current chapter as it was rebuilt since the work presented in Chapter 5 and
it now includes more entities.

5https://netset.telecom-paris.fr/pages/wikivitals+.html
6https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

https://www.wikidata.org/wiki/Property:P31
https://netset.telecom-paris.fr/pages/wikivitals+.html
https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 98

Wikivitals+ WDV5
nodes 45,179 42,679
edges 3,946,850 260,350
labeled nodes 45,179 31,493
labels 540 1,688
Taxonomy depth 3 7
Feature dimension 85,512 648

Table 6.5: Details of Wikivitals+ and WDV5.

a fact 〈h, r, t〉 yields an edge between h and t in the graph and a 1 entry in the
feature vectors of h and t.

6.5.2 Classification models

The following models are tested:

• Dirichlet classifier and the hierarchical version

• GCN classifier trained with usual BCE (noted GCN)

• GCN classifier trained with hierarchical BCE (noted hGCN)

• k-NN using the similarity measure of a Self-Encoder in sampling mode (10,000
visible samples and k = 3)

As it was introduced, the Dirichlet classifier does not support node features. The sim-
plest way to include them in the diffusion process and make all models run exactly on
the same input data is to add as many feature nodes in the graph as there are features
and add corresponding edges between the original nodes and the feature nodes.

Two baselines are also included: the usual Euclidean k-NN algorithm with k = 5
and a hierarchical version of it, following the same LCPN method as the hierarchical
Dirichlet classifier. The predictions of the k-NN algorithm are weighted by the share of
each class among the k nearest neighbors.

6.5.3 Performance metrics

Three metrics are reported in order to measure the performances of each model on a
specific criteria:

• the accuracy measures the ability of a model of being right. There is no measure
of the gravity of the mistakes relatively to the hierarchy.

• the hierarchical f1-score introduced in Section 6.1.3 is expected to measure the
performance of the model in complying with the hierarchy.

• the projected accuracy is defined as the accuracy computed after projecting the
true and predicted labels on a common depth of the taxonomy. For example if a
node should be classified as Thing/Human/Athlete, the new true label at depth 1
should be Thing/Human. This is supposed to measure how well a model performs
at a given depth in the hierarchy.

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 99

6.6 Results

All the results are reported in Table 6.6. Several conclusions can be drawn from them.

First, the results of the hierarchical BCE are conclusive. Even if it does not signifi-
cantly impact the accuracy results of the GCN model, it improves the other hierarchical
scores: up to 7% increase in the projected accuracy on level 1 on WDV5. The LCPN
approach on the other hand has more mixed results. Despite often improving the hier-
archical metrics, it always decreases the accuracy.

Comparing the performances of the flat Dirichlet classifier to its hierarchical version
and the performances of the GCN classifiers trained with flat and hierarchical losses
gives the sense that involving the taxonomy in the training procedure does not improve
their overall propensity of predicting the right labels (measured by the accuracy). It
can however modify the way predictions are made and improve the compliance of the
predictions with the taxonomy. This agrees with the concerns expressed by [136] on
the overall interest of hierarchical loss as well as with a 1998 technical note [88] by
Mitchell, which states that under reasonable assumptions, the naive Bayes classifier is
in fact equivalent in term of accuracy to its obvious hierarchical version. Though this
note specifically deals with naive Bayes classifier, the intuition it conveys is confirmed
by the current experimental results.

The results of the various models on WDV5 also question the choice of graph ap-
proaches to solve the classification task. In Wikivitals+, the features are an encoding of
descriptive words, while in WDV5, they are an encoding of neighboring relations. The
aggregation of such features accross neighboring nodes is questionable. An interesting
follow-up would be to experiment the training of a multi-layer perceptron classifier with
the proposed hierarchical BCE loss. Such a model would not take into account the graph
structure of the nodes and could help quantify the signal spread in the features and its
impact in extracting the taxonomy.

The results also lead to a criticism of the hierarchical f1-score, which can sometimes
be misleading. For example, the Self-Encoder on WDV5 performs better than other
models in term of hierarchical f1-score and yet this is not reflected in the projected
accuracies. A possible explanation is that the metric gives more weight to samples with
labels down in the hierarchy, explaining why the phenomenon is more striking with
WDV5, which has a deeper taxonomy than Wikivitals+.

Eventually, the results of the Self-Encoder are also rich in possible interpretations.
The model performs better than the Euclidean k-NN and Dirichlet classifier on Wikivi-
tals+ on all the metrics. It also gives reasonable results on WDV5 by performing better
for example than the two GCN models. The underlying intuition is that a flat classi-
fier should be able to implicitly comply with the taxonomy directly by mining patterns
from the node features. For example, some features such as a P1532: country for sport
relation might be instrumental in arbitrating if a node is either a Thing/Human or a
Thing/Human/Athlete. Obviously, this is conditional to having enough data points to
make the classes distinguishable in the feature space.

An interesting possible follow-up would be to apply the similarity measure learned
by the Self-Encoder to do clustering on the labels and to compare it to the results of
existing hierarchical clustering methods. This experiment is however difficult to conduct
because hierarchical clustering usually outputs a dendrogram that needs to be cut and
aligning the clusters of a cut dendrogram is a tedious task, especially if the hierarchy is
not well-balanced.

https://www.wikidata.org/wiki/Property:P1532

CHAPTER 6. HIERARCHICAL CLASSIFICATION FOR ENTITY TYPING 100

Wikivitals+ WDV5
k-NN 0.441 ± 0.007 0.731 ± 0.002
Hierarchical k-NN 0.407 ± 0.005 0.608 ± 0.003
Dirichlet 0.514 ± 0.004 0.713 ± 0.003
Hierarchical Dirichlet 0.408 ± 0.002 0.685 ± 0.003
GCN 0.650 ± 0.004 0.654 ± 0.002
hGCN 0.654 ± 0.004 0.653 ± 0.005
Self-Encoder sampling 0.552 ± 0.003 0.655 ± 0.005

(a) Accuracy

Wikivitals+ WDV5
k-NN 0.648 ± 0.013 0.847 ± 0.002
Hierarchical k-NN 0.657 ± 0.005 0.840 ± 0.001
Dirichlet 0.701 ± 0.003 0.856 ± 0.001
Hierarchical Dirichlet 0.685 ± 0.002 0.870 ± 0.001
GCN 0.798 ± 0.003 0.856 ± 0.003
hGCN 0.811 ± 0.003 0.821 ± 0.002
Self-Encoder Sampling 0.736 ± 0.002 0.895 ± 0.002

(b) Hierarchical f1-score

Wikivitals+ WDV5
k-NN 0.649 ± 0.033 0.847 ± 0.002
Hierarchical k-NN 0.678 ± 0.004 0.858 ± 0.003
Dirichlet 0.698 ± 0.006 0.848 ± 0.003
Hierarchical Dirichlet 0.705 ± 0.003 0.866 ± 0.002
GCN 0.783 ± 0.004 0.686 ± 0.004
hGCN 0.849 ± 0.003 0.759 ± 0.006
Self-Encoder Sampling 0.755 ± 0.003 0.776 ± 0.006

(c) Projected accuracy on level 1.

Wikivitals+ WDV5
k-NN 0.500 ± 0.009 0.768 ± 0.003
Hierarchical k-NN 0.472 ± 0.002 0.715 ± 0.001
Dirichlet 0.592 ± 0.005 0.775 ± 0.003
Hierarchical Dirichlet 0.553 ± 0.002 0.769 ± 0.002
GCN 0.730 ± 0.005 0.659 ± 0.004
hGCN 0.743 ± 0.005 0.695 ± 0.005
Self-Encoder Sampling 0.635 ± 0.002 0.708 ± 0.006

(d) Projected accuracy on level 2.

Table 6.6: Performance metrics of the different models. Metrics are measured by a
random 5-fold cross validation.

Chapter 7

Conclusion

In this thesis we have tackled several problems related to knowledge graph automatic
completion.

First, Chapter 2 introduced the concepts of knowledge base and knowledge graph
and listed some of the existing public knowledge bases. Then the task of knowledge
graph automatic completion was defined in Chapter 3 before reviewing existing machine
learning techniques as well as symbolic and hybrid methods. A conclusion drawn from
this review is that the field lacks diversity in the datasets used and simple models might
constitute a good practical choice if properly trained and even more if combined with
symbolic methods to exploit ontologies.

In Chapter 4, TorchKGE was introduced as a Python library specifically designed to
provide users with an efficient and user-friendly framework to implement and experiment
with machine learning methods for KG completion. A key feature of the library is a
very efficient evaluation module that relies on the vectorization of the computations
in inference mode. This is useful to properly train the models. In the future, the
library could benefit from a further development of the tools related to entity typing.
To improve its adoption by the community, its simple usage should be put forward to
stand out from the competition of other existing libraries. We shall also pay particular
attention to the empowerment of the community of contributors.

Then Chapter 5 mainly proposed a method to enrich Wikidata by automatically
assigning a semantic relation to existing Wikipedia hyperlinks. This method relies on
a new negative sampling technique used to train simple models like TransE combined
with an inference scheme that uses both the predictions from the embeddings and the
entity types. Another contribution of this work is the new WDV5 dataset. This chapter
however raises the question of trust in machine learning methods. It is unclear how such
methods are likely to be adopted on real-world projects and importantly what are the
conditions to their adoptions. A first step to their adoption certainly is as suggestion
methods that still require a human verification. This question goes beyond the specific
topic of knowledge graph completion.

Eventually Chapter 6 dived into the general problem of hierarchical classification.
This is motivated by entity typing, which is another way of completing knowledge graphs.
After introducing related works and definitions, a hierarchical formulation of the well-
known binary cross-entropy loss was proposed to use available taxonomies as an in-
ductive bias to train tensor-based classification models. It was then used to train a
graph convolution network on a hierarchical classification task. Another contribution
of this chapter is the proposed Self-Encoder model. That is an unsupervised machine
learning model that is trained to learn a separable representation of training vectors
and by doing so, it learns a similarity measure that can be used for downstream tasks
such as classification. Experiments were conducted to measure the impact of an a priori

101

CHAPTER 7. CONCLUSION 102

knowledge of the hierarchy on the performance of classifiers. The conclusion is that
a model trained with knowledge of the hierarchy might not make fewer mistakes but
those mistakes should be more compliant with the hierarchy. On the other hand, the
unsupervised Self-Encoder method, showed that a flat model should be able to comply
with the hierarchy simply using patterns the features, conditionally to the dataset being
rich enough.

In this last chapter, the similarity metric from the Self-Encoder model has been
applied to entity typing with a k-NN proximity search. It would be interesting to also
apply it to the two other tasks tackled in the thesis: link and relation prediction. An
obvious issue with these is that the proximity search needs to involve a third object
and it is not clear how. We can however imagine other completion tasks, for example,
similar entities might have common outgoing relations, defining their properties. For
example, human entities should have a place of birth. The Self-Encoder could then be
used to determine which properties are missing for an entity by looking at the ones of
its close neighbors. This task is linked to the broader problem of ontology design that
can require specific properties in the definition of typed entities in knowledge bases.

Another interesting subject that was not investigated in the last chapter is the design
of taxonomies. This is a research topic on its own and the motivations are concrete.
The taxonomy of Wikidata for example, though semantically rich, is difficult to process
automatically because of its sparseness and lack of constraints. This is why the taxonomy
from YAGO4 was used to type the entities of WDV5 in Chapter 6. Machine learning
and symbolic methods are likely to perform well on class de-duplication and clustering
or more generally on taxonomy improvement.

Another further application of the contributions presented in this thesis is the knowl-
edge base correction task. As it was evoked in the introduction, this task is complemen-
tary to the automatic completion: if an algorithm can predict likely facts, then it should
be able to rate the existing ones that are very unlikely. A motivation for the works of
Chapters 5 and 6 was the very large number of possible candidate triples to predict new
facts. It seemed judicious to reduce this set by mining possible candidates from other
data sources (Wikipedia hyperlinks) or by focusing on a specific relation (types). When
it comes to correction on the other hand, the list of possible erroneous candidates is
simply made of the existing facts making it possible to review all of them.

To conclude, let us reflect on the recent trendy ChatGPT1 tool proposed by the
company OpenAI. Independently of the large media coverage it received, this tool might
truly represent an important step in the field of artificial intelligence. Up to now,
large language models had successfully been applied to several tasks but they remained
linguistic models, lacking an ordered sense of knowledge. A language model indeed is
only trained to compute a probability distribution on a set of words given a context.
Certainly, existing patterns, in lexical fields for example, often resulted in reasonable
generated sentences but hands-on experiments with models such as GPT-3 [23] quickly
showed that the model had no understanding of the concepts and entities that were
involved in its sentences. This is the field of knowledge bases and reasoning. ChatGPT
however has shown that a tuned large language model can result in surprising discussion
capabilities. There are still many unknowns about the true functioning of the model,
which has not been published yet, but experiments show that when it comes to factual
discussions it is able to answer successive queries very accurately and with surprising
temporal coherence. There are still some major limitations such as the very poor logic
and reasoning capabilities and the impossibility to quote sources of facts. It can however
be considered as a proof-of-concept, showing that large language models can learn and
store knowledge in a diffuse neural way, at the opposite of the structural approach of
knowledge bases, and probably closer to the way our brains work. This breakthrough
provides a new perspective on the fundamental question of the storage and processing
of knowledge by machines.

1https://chat.openai.com/chat

https://chat.openai.com/chat

Appendix A

Usual neural network training
techniques

This appendix briefly introduces some training techniques used in this thesis and com-
monly applied to neural networks. The list obviously is not exhaustive and pointers to
more detailed sources are provided.

A.1 Neural network training

Training tensor-based models, such as neural networks, is usually done using gradient-
based techniques. An extensive presentation and analysis of these can be found in
Chapter 8 of [52].

Let fW be a parametric function with W its parameters. Let (xi, yi)i∈{1,...,n} be a
set of training data points with target values. fW can for example be the function of a
neural network or the scoring function of a KG embedding model. The training process
comes down to finding the set of parameters W that minimizes a loss function when
evaluated in the training set. The loss function should reflect how far the output of fW
is from the target values when evaluated on the training points. Other common names
are cost function, error function, objective function, or criterion.

Functional analysis states that under proper regularity conditions, a function can be
minimized by moving small steps in the direction opposite to the gradient. This is the
underlying principle applied to train almost all the tensor-based models, such as neural
networks. Algorithm 9 shows a general formulation of the gradient descent training
process where ∇WL(W) is the gradient of L with respect to the parameters W .

Algorithm 9: Training a model by gradient descent.

Input: fW the model function
Input: γ the learning rate
Input: ` the loss function
Output: W ∗ the optimal set of parameters

1 randomly initialize W
2 for a fixed number of epochs do
3 L(W)←

∑n
i=1 ` (yi, fW (xi))

4 W ←W − γ∇WL(W)

5 return W

In general, the gradient is not computed for the loss over all the training points but
rather for intermediate smaller losses over smaller batches of training points (batch and

103

APPENDIX A. USUAL NEURAL NETWORK TRAINING TECHNIQUES 104

mini-batch gradient descent). Another possibility is to compute it on training points
chosen at random (stochastic gradient-descent) (See Section 8.1.3 of [52]).

A common gradient-descent based algorithm used for training tensor-based models
is Adam [65]. Its conception relies on the intuition that the learning rate should not be
constant during the whole process. Indeed, it should be larger at the beginning to explore
large parts of the space of possible parameters but become smaller toward the end to
end up very close to the optimum. One of the hyper-parameters of the algorithm is the
learning-rate decay, which states how fast the learning rate should decrease. Adaptive
learning rates are presented in Section 8.5 of [52].

A.2 Regularization

As explained in Chapter 3, ML models in general are judged on the ability to generalize
their performance to previously unseen data points. If a model generalizes poorly, it is
said to overfit its training data. There is a variety of techniques to avoid overfitting.
The current appendix presents three common ones but more can be found in Chapter 7
of [52].

A.2.1 Weight decay

The overfitting problem is more likely to occur with more expressive models. One
might want to limit the expressive power of a model to reduce overfitting but without
modifying too much the structure of the model (e.g. the shape of the scoring function
of a KG embedding model). A simple method to do that is to add a penalty term to
the loss function that depends only on the parameters of the model. Using the notation
of Algorithm 9, the loss L(W) might become L(W) + αΩ(W) where α weights the
contribution of the norm penalty Ω. The latter can have several forms. Two usual
possibilities are the L1 and L2 regularization that simply consist in summing the L1 or
L2 norms of the weights. Choosing a norm regularization is not insignificant as each type
of regularization can have a specific impact on the geometry of the learned parameters.
See Section 7.1 of [52] for more details.

A.2.2 Early-stopping

By design gradient-based optimization techniques aim at minimizing the training loss,
e.g., the loss function evaluated on the training set. However, in case of overfitting, a
model minimizing the training loss might not minimize the test loss.

Quite reliably, the dynamics of model training follow the following pattern: given a
validation set distinct from the training one, both training and validation loss decrease
at first but after a while, the validation loss starts increasing again while the training
loss keeps decreasing. The moment of divergence marks the beginning of overfitting
and the training procedure should be stopped at that moment to keep the parameter
configuration that minimizes the validation loss used as a proxy to measure the gener-
alization ability of the model. Early stopping is the algorithm that regularly measures
the validation loss and keeps the parameters in memory to be able to stop training at
the proper time. It is the topic of Section 7.8 of [52].

APPENDIX A. USUAL NEURAL NETWORK TRAINING TECHNIQUES 105

A.2.3 Dropout

Dropout increases the robustness of the model to noisy data and thus reduces over-
fitting simply by randomly omitting some weights of the network while training [113].
Intuitively, this forces the model to spread the computations on various neural paths in
the network. This prevents a phenomenon, called complex co-adaptation, where some
neurons are very highly dependent on the output of others. A small perturbation of the
one can highly change the behavior of the other. It is detailed in Section 7.12 of [52].

Appendix B

Dirichlet problem on directed
graphs

Let G = (V,E) be a directed graph of n nodes and m edges. Let A ∈ Rn×n be the
adjacency matrix of G and let D = diag(A ·1n) be its out-degree matrix. D is supposed
positive. L = D−A denotes the graph Laplacian. Note that A and L are not necessarily
symmetric because G is directed.

B.1 Definitions

Definition 29 (Sink). In a directed graph, a sink is a node with no outgoing edge. G
has no sink if and only if the degree matrix D is positive.

Definition 30 (Strong Connectedness). A directed graph is said to be strongly connected
if any vertex is reachable from any other vertex.

B.2 Dirichlet problem

Recall the Dirichlet problem as formulated in Chapter 6. It consists in solving the heat
equation (6.2) in the presence of boundary conditions. Let S be some strict subset of V

and assume that the temperature of each seed node i ∈ S is set at some fixed value T
(S)
i .

We are interested in the evolution of the temperatures of the other nodes. A synthetic
formulation of the Dirichlet problem is the following:{

∂T
∂t = −LT
∀t,∀s ∈ S,Ts(t) = Ts(0)

(B.1)

We are interested in finding the vector of temperatures at equilibrium, i.e., such that
∀i 6∈ S, (LT)i = 0 with the boundary conditions T (S) ∈ R|S|. Let P = D−1A be the
transition matrix of a random walk on G, which is well defined because D is invertible
because supposed positive. The previous equation can be re-written as

∀i 6∈ S,Ti = (PT)i (B.2)

That is the temperature of each node at equilibrium is the average temperature of its
out-neighbors.

Without any loss of generality, let us assume that the boundary nodes S are indexed
from n − s to n where s = |S|. The vector of temperatures T can then be written

T =

(
x

T (S)

)
with x ∈ Rn−s the vector of unknown temperatures and T (S) ∈ Rs the

106

APPENDIX B. DIRICHLET PROBLEM ON DIRECTED GRAPHS 107

vector of known boundary temperatures. The transition matrix P can also be written

in block form as P =

(
Q R
α β

)
. Now let us remark that (B.2) can be rewritten as in

(B.3) in which only the blocks Q and R are involved.

x = Qx +RT (S) (B.3)

B.3 Existence and unicity of the solutions

If there is a path from any node of V \ S to at least one node in S, let us remark that
we can assume without loss of generality that α = 0 and β = IS . This does not change
equations (B.2) and (B.3). Intuitively, this is acceptable because out-neighbors of nodes
in S have no impact on their temperatures (because it is set to T (S)) so the edges leaving
S might as well be removed. Some self-loops are added to each node in S (β = IS) in
order to keep P stochastic. The form of P is then

P =

(
Q R
0 Is

)
(B.4)

Note that for the Markov chain associated to the transition matrix P , S are absorbing
states: once entered they cannot be left. If there is a path from any node of V \S to at
least one node in S, then S are the only ergodic states of the process and V \ S are all
transient states.

Lemma 1. In any finite Markov chain, no matter where the process starts, the prob-
ability after n steps that the process is in an ergodic state tends to 1 as n tends to
infinity.

Proof. A proof of this lemma can be found in Chapter 3 of Finite Markov Chains by
John G. Kemeny and J. Laurie Snell [64]. �

Proposition 2. If there is a path from any node of G to at least one node in S, then
limk→∞Qk = 0.

Proof. Given (i, j) ∈ {1, . . . , n− s}2 and k ∈ N, (Qk)i,j is by definition the probability
that the Markov chain defined by the transition matrix P goes from node i to node j
in k steps without leaving the nodes {1, . . . , n− s}, i.e., without entering any absorbing
state in S. Lemma 1 tells us that the probability of entering those states goes to 1. This
shows that (Qk)i,j →k→∞ 0 for any i, j, concluding the proof. �

Proposition 3. Let A ∈ Rn×n, if Ak tends to 0 as k tends to infinity then (I − A) is
invertible and (In −A)−1 =

∑∞
k=0A

k.

Proof. A proof of this result can be found in Chapter 1 of Finite Markov Chains by
John G. Kemeny and J. Laurie Snell [64]. �

If it is assumed that there is a path from any node of V \ S to at least one node
in S, applying Proposition 2 and Proposition 3 results in (In−s − Q) being invertible.
Eventually, (B.3) leads directly to the exact solution of the Dirichlet problem:

x∗ = (In−s −Q)−1RT (S) (B.5)

APPENDIX B. DIRICHLET PROBLEM ON DIRECTED GRAPHS 108

Algorithm 10: Discrete time algorithm.

Data: P =

(
Q R
0 Is

)
transition matrix of the random walk,

S set of seeds,
T (S) temperatures of the seeds,
K number of iterations
Result: T vector of temperatures

1 x← mean(T (S));
2 for k = 1, ..,K do
3 x← Qx +RT (S);

B.4 Convergence in discrete time

Solving the Dirichlet problem in discrete time can be done using Algorithm 10. This
section presents a proof of convergence.

Definition 31. The spectral radius of a matrix A is defined as the largest absolute value
of one of its eigenvalues. It is noted ρ(A) ∈ R∗.

Definition 32. Let N a vector norm, N induces a matrix norm noted ||| · |||N and
defined as follows for any A ∈ Rn×n:

|||A|||N = sup
x∈Rn:N (x)=1

N (Ax)

For any vector norm N , any A ∈ Rn×n and any x ∈ Rn, N (Ax) ≤ |||A|||N · N (x).

Lemma 2. Given Q ∈ Rn×n, if Qk →k→∞ 0 then there is at least one vector norm N
such that the induced matrix norm verifies |||Q|||N < 1.

Proof. A proof of this lemma can be found in Introduction à l’analyse numérique ma-
tricielle et à l’optimisation by Philippe G. Ciarlet (Theorem 1.5-1). [29] �

Proposition 4. If there is a path from any node of V \ S to at least one node in S,
then Algorithm 10 converges to the exact solution x∗ = (In−s −Q)−1RT (S).

Proof. Let us assume that there is a path from any node of V \ S to at least one node
in S. Then X∗ = (In−s − Q)−1RT (S) is well defined and is the exact solution to the
Dirichlet problem at hand (see Section B.3). Let f : Rn → Rn be defined as:

f : Rn → Rn

x 7→ Qx +RT (S)

Proving the convergence of Algorithm 10 comes down to proving that the iterated func-
tion sequence

(
fk(x(0))

)
k∈N

converges to x∗ given any initial state x(0) ∈ Rn. Indeed,

the unknown temperature vector at time step t ≥ 1 is x(t) = f(x(t−1)) = f t(x(0)).

Applying Proposition 2 gives Qk →k→∞= 0. Now let N be the vector norm provided
by Lemma 2. Let (x,y) ∈ (Rn)2.

N (f(x)− f(y)) = N (Qx−Qy)

= N (Q(x− y))

≤ |||Q|||N · N (x− y) (B.6)

Equation (B.6) shows that f is a contraction because |||Q|||N < 1 by definition of
N . Let us apply the Banach-Picard fixed point theorem [5] to the contraction f using

APPENDIX B. DIRICHLET PROBLEM ON DIRECTED GRAPHS 109

the completeness of Rn. It yields that there exists a unique fixed point of f and that
any sequence

(
fk(x(0))

)
k∈N

converges to this point. x∗ being a solution to f(x) = x,
it is the unique fixed point and Algorithm 10 converges to it. �

Appendix C

The TF-IDF weighting scheme

In information retrieval, TF-IDF is a statistic that reflects how important a token is to
a document given a collection of documents or corpus. It stands for Term Frequency
and Inverse Document Frequency. First introduced by Sparck Jones in 1972 [112], it
became vastly used in natural language processing to filter stop-words for example.

Let W be a set of words and D = {d1, . . . , dn} be a corpus of n documents. Suppose
each document di is a sequence of words from W.

Definition 33 (Term Frequency). Given a word w ∈ W and a document d ∈ D, the
term frequency tf(w, d) is the relative frequency of term w in document d:

tf(w, d) =
fw,d∑

w̃∈W fw̃,d

fw,d is the raw count of the number of occurrences of word w in document d.

Intuitively, the larger the term frequency the more important a word must be. There
are however some exceptions with words that are frequent in all the documents and that
does not allow to discriminate them.

Definition 34 (Inverse Document Frequency). The inverse document frequency is a
measure of how specific a word w ∈ W is to a given document d ∈ D. It is defined as:

idf(w, d) = log
n

|{d ∈ D : w ∈ d}|

Intuitively, in a English corpus, stop words (e.g. “the”, “it”) are likely to have an
idf close to 0 in all the documents of the corpus.

Definition 35 (TF-IDF). Given a word w ∈ W and a document d ∈ D, the TF-IDF is
computed as the product of the term frequency and the inverse document frequency:

tdidf(w, d) = tf(w, d)× idf(w, d) =
fw,d∑

w̃∈W fw̃,d
× log

n

|{d ∈ D : w ∈ d}|

There exist some variants to these definitions but the ones reported here are the
most common. Extensive analysis and examples can be found in Chapter 3 of [107].

110

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfel-
low, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[2] Akrami, F., Saeef, M. S., Zhang, Q., Hu, W., and Li, C. Realistic re-
evaluation of knowledge graph completion methods: An experimental study. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (New York, NY, USA, 2020), SIGMOD ’20, Association for Computing
Machinery, p. 1995–2010.

[3] Alpaydin, E., and Kaynak, C. Optical recognition of handwritten digits data
set.

[4] Balazevic, I., Allen, C., and Hospedales, T. TuckER: Tensor Factorization
for Knowledge Graph Completion. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP) (Hong Kong,
China, Nov. 2019), Association for Computational Linguistics, pp. 5185–5194.

[5] Banach, S. Sur les opérations dans les ensembles abstraits et leur application
aux équations intégrales. Fundamenta Mathematicae 3, 1 (1922), 133–181.

[6] Behler, J. Constructing high-dimensional neural network potentials: A tutorial
review. International Journal of Quantum Chemistry 115, 16 (2015), 1032–1050.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.24890.

[7] Berberidis, D., Nikolakopoulos, A. N., and Giannakis, G. B. Adadif:
Adaptive diffusions for efficient semi-supervised learning over graphs. In 2018
IEEE International Conference on Big Data (Big Data) (2018), pp. 92–99.

[8] Bertinetto, L., Mueller, R., Tertikas, K., Samangooei, S., and Lord,
N. A. Making Better Mistakes: Leveraging Class Hierarchies With Deep Net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2020), pp. 12506–12515.

[9] Bishop, C. M. Pattern Recognition And Machine Learning, 1st ed. 2006. corr.
2nd printing 2011 édition ed. Springer-Verlag New York Inc., 2011.

[10] Biswas, R., Portisch, J., Paulheim, H., Sack, H., and Alam, M. Entity
Type Prediction Leveraging Graph Walks and Entity Descriptions. In The Seman-
tic Web – ISWC 2022 (Cham, 2022), U. Sattler, A. Hogan, M. Keet, V. Presutti,
J. P. A. Almeida, H. Takeda, P. Monnin, G. Pirrò, and C. d’Amato, Eds., Lecture
Notes in Computer Science, Springer International Publishing, pp. 392–410.

111

BIBLIOGRAPHY 112

[11] Biswas, R., Sofronova, R., Sack, H., and Alam, M. Cat2type: Wikipedia
category embeddings for entity typing in knowledge graphs. In Proceedings of the
11th on Knowledge Capture Conference (New York, NY, USA, 2021), K-CAP ’21,
Association for Computing Machinery, p. 81–88.

[12] Bizer, C., Heath, T., Idehen, K., and Berners-Lee, T. Linked data on the
Web. In WWW (2008).

[13] Blake, C. Wine recognition data.

[14] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J.
Freebase: A collaboratively created graph database for structuring human knowl-
edge. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2008), SIGMOD ’08, Association for
Computing Machinery, p. 1247–1250.

[15] Bonald, T. Lecture notes on spectral embedding of graphs, Jan. 2019.

[16] Bordes, A., Glorot, X., Weston, J., and Bengio, Y. A Semantic Matching
Energy Function for Learning with Multi-relational Data. Machine Learning 94,
2 (Feb. 2014), 233–259.

[17] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. In
Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran Associates,
Inc., 2013, pp. 2787–2795.

[18] Boschin, A. TorchKGE: Knowledge Graph Embedding in Python and PyTorch.
KDD-IWKG 2020 (Aug. 2020), 6.

[19] Boschin, A., and Bonald, T. WikiDataSets : Standardized sub-graphs from
Wikidata. arXiv:1906.04536 [cs, stat] (June 2019). arXiv: 1906.04536.

[20] Boschin, A., and Bonald, T. Enriching wikidata with semantified wikipedia
hyperlinks. In Proceedings of the 2nd Wikidata Workshop co-located with the 20th
International Semantic Web Conference (Oct 2021).

[21] Boschin, A., Bonald, T., and Jeanmougin, M. A self-encoder for learning
nearest neighbors. Preprint, 2023.

[22] Boschin, A., Jain, N., Keretchashvili, G., and Suchanek, F. M. Combin-
ing embeddings and rules for fact prediction. In Proceedings of the 15th Reasoning
Web Summer School (Bolzano, Italy, September 2019).

[23] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhari-
wal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal,
S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh,
A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language Models are Few-Shot
Learners. In Advances in Neural Information Processing Systems (2020), vol. 33,
Curran Associates, Inc., pp. 1877–1901.

[24] Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. Spectral networks
and locally connected networks on graphs. International Conference on Learning
Representations (ICLR2014) (Apr. 2014).

[25] Brust, C.-A., and Denzler, J. Integrating Domain Knowledge: Using Hierar-
chies to Improve Deep Classifiers. In Pattern Recognition: 5th Asian Conference,
ACPR 2019, Auckland, New Zealand, November 26–29, 2019, Revised Selected
Papers, Part I (Berlin, Heidelberg, Nov. 2019), Springer-Verlag, pp. 3–16.

BIBLIOGRAPHY 113

[26] Cai, L., and Wang, W. Y. KBGAN: Adversarial Learning for Knowledge Graph
Embeddings. arXiv:1711.04071 [cs] (Nov. 2017). arXiv: 1711.04071.

[27] Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X. Measuring and
Relieving the Over-Smoothing Problem for Graph Neural Networks from the Topo-
logical View. Proceedings of the AAAI Conference on Artificial Intelligence 34, 04
(Apr. 2020), 3438–3445. Number: 04.

[28] Chung, F. R. K. Spectral Graph Theory. American Mathematical Society, 1997.

[29] Ciarlet, P. G. Introduction à l’analyse numérique matricielle et à l’optimisation.
Dunod, 1998. Google-Books-ID: L1TMPQAACAAJ.

[30] Cortes, C., and Vapnik, V. Support-vector networks. Machine learning 20, 3
(1995), 273–297.

[31] Costabello, L., Pai, S., Van, C. L., McGrath, R., and McCarthy, N.
AmpliGraph: a Library for Representation Learning on Knowledge Graphs, Mar.
2019.

[32] Cover, T., and Hart, P. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory 13, 1 (Jan. 1967), 21–27. Conference Name: IEEE
Transactions on Information Theory.

[33] de Lara, N., and Bonald, T. A Consistent Diffusion-Based Algorithm for
Semi-Supervised Classification on Graphs. arXiv:2008.11944 [cs] (Aug. 2020).
arXiv: 2008.11944.

[34] Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional Neu-
ral Networks on Graphs with Fast Localized Spectral Filtering. In Advances in
Neural Information Processing Systems (2016), vol. 29, Curran Associates, Inc.

[35] Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S. Convolutional
2d Knowledge Graph Embeddings. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence (New Orleans, LA, USA, Feb. 2018), vol. 32, AAAI Press.

[36] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers) (Minneapolis, Minnesota, June 2019), Association for Compu-
tational Linguistics, pp. 4171–4186.

[37] Diderot, D., and Le Rond d’Alember, J. Encyclopédie ou Dictionnaire
raisonné des sciences, des arts et des métiers. Briasson, 1753.

[38] Ding, B., Wang, Q., Wang, B., and Guo, L. Improving Knowledge Graph
Embedding Using Simple Constraints. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers)
(Melbourne, Australia, July 2018), Association for Computational Linguistics,
pp. 110–121.

[39] Dong, X. L., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy,
K., Strohmann, T., Sun, S., and Zhang, W. Knowledge Vault: A Web-
Scale Approach to Probabilistic Knowledge Fusion. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (New York, NY, USA, Aug. 2014), pp. 601–610.

[40] d’Amato, C., Quatraro, N. F., and Fanizzi, N. Injecting Background Knowl-
edge into Embedding Models for Predictive Tasks on Knowledge Graphs. In The
Semantic Web (Cham, 2021), R. Verborgh, K. Hose, H. Paulheim, P.-A. Champin,
M. Maleshkova, O. Corcho, P. Ristoski, and M. Alam, Eds., Lecture Notes in Com-
puter Science, Springer International Publishing, pp. 441–457.

BIBLIOGRAPHY 114

[41] Ebisu, T., and Ichise, R. TorusE: Knowledge Graph Embedding on a Lie
Group. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(New Orleans, LA, USA, Feb. 2018), AAAI Press, pp. 1819–1826.

[42] Etzioni, O., Kok, S., Soderland, S., Cafarella, M., Popescu, A.-M.,
Weld, D. S., Downey, D., Shaked, T., and Yates, A. Web-Scale Informa-
tion Extraction in KnowItAll (Preliminary Results). In Proceedings of the 13th
international conference on World Wide Web (New York, NY, USA, May 2004),
pp. 100–110.

[43] Fatemi, B., Ravanbakhsh, S., and Poole, D. Improved knowledge graph
embedding using background taxonomic information. In AAAI (2019), vol. 33.

[44] Fellbaum, C. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[45] Ferré, S. Link Prediction in Knowledge Graphs with Concepts of Nearest Neigh-
bours. In The Semantic Web (Cham, 2019), P. Hitzler, M. Fernández, K. Janowicz,
A. Zaveri, A. J. Gray, V. Lopez, A. Haller, and K. Hammar, Eds., Lecture Notes
in Computer Science, Springer International Publishing, pp. 84–100.

[46] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals
of Eugenics 7, 2 (1936), 179–188.

[47] Galárraga, L., Symeonidou, D., and Moissinac, J.-C. Rule Mining for
Semantifying Wikilinks. In LDOW@WWW (2015).

[48] Galárraga, L., Teflioudi, C., Hose, K., and Suchanek, F. M. Fast Rule
Mining in Ontological Knowledge Bases with AMIE+. In VLDBJ (2015).

[49] Galárraga, L. A., Teflioudi, C., Hose, K., and Suchanek, F. AMIE:
association rule mining under incomplete evidence in ontological knowledge bases.
In Proceedings of the 22nd international conference on World Wide Web (Rio de
Janeiro, Brazil, 2013), ACM Press, pp. 413–422.

[50] Gammerman, A., Vovk, V., and Vapnik, V. Learning by transduction. In
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence
(San Francisco, CA, USA, 1998), UAI’98, Morgan Kaufmann Publishers Inc.,
p. 148–155.

[51] German, B. Glass identification database.

[52] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[53] Guo, S., Wang, Q., Wang, L., Wang, B., and Guo, L. Jointly embedding
knowledge graphs and logical rules. In EMNLP (2016).

[54] Guo, S., Wang, Q., Wang, L., Wang, B., and Guo, L. Knowledge graph
embedding with iterative guidance from soft rules. In AAAI (2018).

[55] Han, X., Cao, S., Lv, X., Lin, Y., Liu, Z., Sun, M., and Li, J. OpenKE: An
Open Toolkit for Knowledge Embedding. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations
(Brussels, Belgium, 2018), Association for Computational Linguistics, pp. 139–
144.

[56] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY,
USA, 2001.

[57] Hitchcock, F. L. The Expression of a Tensor or a Polyadic as a Sum of
Products. Journal of Mathematics and Physics 6, 1-4 (1927), 164–189. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm192761164.

[58] Hofmann, H. Statlog (german credit data) data set.

http://www.deeplearningbook.org

BIBLIOGRAPHY 115

[59] Jain, N., Tran, T.-K., Gad-Elrab, M. H., and Stepanova, D. Improving
Knowledge Graph Embeddings with Ontological Reasoning. In The Semantic
Web – ISWC 2021 (Cham, 2021), A. Hotho, E. Blomqvist, S. Dietze, A. Fokoue,
Y. Ding, P. Barnaghi, A. Haller, M. Dragoni, and H. Alani, Eds., Lecture Notes
in Computer Science, Springer International Publishing, pp. 410–426.

[60] Ji, G., He, S., Xu, L., Liu, K., and Zhao, J. Knowledge Graph Embedding
via Dynamic Mapping Matrix. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers) (Beijing, China,
July 2015), Association for Computational Linguistics, pp. 687–696.

[61] Jin, H., Hou, L., Li, J., and Dong, T. Attributed and predictive entity
embedding for fine-grained entity typing in knowledge bases. In Proceedings of
the 27th International Conference on Computational Linguistics (Santa Fe, New
Mexico, USA, Aug. 2018), Association for Computational Linguistics, pp. 282–292.

[62] Jin, H., Hou, L., Li, J., and Dong, T. Fine-grained entity typing via hierarchi-
cal multi graph convolutional networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP) (Hong Kong,
China, Nov. 2019), Association for Computational Linguistics, pp. 4969–4978.

[63] Kadlec, R., Bajgar, O., and Kleindienst, J. Knowledge Base Completion:
Baselines Strike Back. arXiv:1705.10744 [cs] (May 2017). arXiv: 1705.10744.

[64] Kemeny, J. G., and Snell, J. L. Finite Markov Chains. Princeton University
Press, 1960.

[65] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings (2015), Y. Bengio and
Y. LeCun, Eds.

[66] Kingma, D. P., and Welling, M. Auto-Encoding Variational Bayes. arXiv
preprint arXiv:1312.6114. (Dec. 2013).

[67] Kipf, T. N., and Welling, M. Semi-Supervised Classification with Graph Con-
volutional Networks. In 5th International Conference on Learning Representations
(ICLR) (Toulon, France, Apr. 2017), OpenReview.net.

[68] Kolda, T. G., and Bader, B. W. Tensor Decompositions and Applications.
SIAM Review (2009).

[69] Kosmopoulos, A., Partalas, I., Gaussier, E., Paliouras, G., and An-
droutsopoulos, I. Evaluation measures for hierarchical classification: a unified
view and novel approaches. Data Mining and Knowledge Discovery 29, 3 (May
2015), 820–865.

[70] Kotnis, B., and Nastase, V. Analysis of the impact of negative sampling on
link prediction in knowledge graphs. arXiv preprint arXiv:1708.06816 (2017).

[71] Krompaß, D., Baier, S., and Tresp, V. Type-constrained representation
learning in knowledge graphs. In The Semantic Web - ISWC 2015 (Cham,
2015), M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srini-
vas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, K. Thirunarayan, and
S. Staab, Eds., Springer International Publishing, pp. 640–655.

[72] Lacroix, T., Usunier, N., and Obozinski, G. Canonical tensor decomposition
for knowledge base completion. In Proceedings of the 35th International Conference
on Machine Learning (10–15 Jul 2018), J. Dy and A. Krause, Eds., vol. 80 of
Proceedings of Machine Learning Research, PMLR, pp. 2863–2872.

BIBLIOGRAPHY 116

[73] Lajus, J., Galárraga, L., and Suchanek, F. M. Fast and Exact Rule Mining
with AMIE 3. In ESWC (2020).

[74] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D.,
Mendes, P. N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., and
Bizer, C. DBpedia – A Large-scale, Multilingual Knowledge Base Extracted from
Wikipedia. Semantic Web 6 (2015), 167–195.

[75] Lengyel, B. A., and Stone, M. H. Elementary Proof of the Spectral Theorem.
Annals of Mathematics 37, 4 (1936), 853–864.

[76] Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L., Bose, A.,
and Peysakhovich, A. PyTorch-BigGraph: A Large-scale Graph Embedding
System. In Proceedings of the 2nd Conference on Systems and Machine Learning
(Palo Alto, CA, USA, Mar. 2019).

[77] Li, Q., An, S., Liu, W., and Li, L. Semisupervised learning on graphs with an
alternating diffusion process. IEEE Transactions on Neural Networks and Learning
Systems 32, 7 (2021), 2862–2874.

[78] Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. Learning Entity and Relation
Embeddings for Knowledge Graph Completion. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (Austin, TX, USA, Feb. 2015),
AAAI Press, pp. 2181–2187.

[79] Liu, H., and Singh, P. ConceptNet — A Practical Commonsense Reasoning
Tool-Kit. BT Technology Journal 22, 4 (Oct. 2004), 211–226.

[80] Liu, H., Wu, Y., and Yang, Y. Analogical Inference for Multi-Relational
Embeddings. In Proceedings of the 34th International Conference on Machine
Learning (Sydney, Australia, May 2017), vol. 70, PMLR, pp. 2168–2178.

[81] Ltd., B. M. R. Bupa liver disorders.

[82] Lucena, B. Loss Functions for Classification using Structured Entropy, June
2022. Publication Title: arXiv e-prints ADS Bibcode: 2022arXiv220607122L
Type: article.

[83] Mahdisoltani, F., Biega, J., and Suchanek, F. M. YAGO3: A Knowledge
Base from Multilingual Wikipedias. In CIDR (Jan. 2013).

[84] Mangasarian, . L., and Wolberg, W. H. Cancer diagnosis via linear pro-
gramming. SIAM News 23, 5 (9 1990), 1–18.

[85] McDermott, D. Building large knowledge-based systems: Representation and
inference in the cyc project: D.B. Lenat and R.V. Guha. Artificial Intelligence
61, 1 (May 1993), 53–63.

[86] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. Dis-
tributed Representations of Words and Phrases and their Compositionality. In
Proceedings of the 26th International Conference on Neural Information Process-
ing Systems (Lake Tahoe, NV, USA, Dec. 2013), vol. 2, Curran Associates Inc.,
pp. 3111–3119.

[87] Minervini, P., Costabello, L., Muñoz, E., Nováček, V., and Vanden-
bussche, P.-Y. Regularizing knowledge graph embeddings via equivalence and
inversion axioms. In ECML PKDD (2017).

[88] Mitchell, T. Conditions for the Equivalence of Hierarchical and Non Hierarchi-
cal Bayesian Classifiers. Tech. rep., Carnegie Mellon University, 1998.

[89] Nakai, K., and Kanehisa, M. A knowledge base for predicting protein local-
ization sites in eukaryotic cells. Genomics 14 (1992), 897–911.

BIBLIOGRAPHY 117

[90] Nassiri, A., Pernelle, N., Säıs, F., and Quercini, G. Knowledge Graph
Refinement based on Triplet BERT-Networks. Presented at the DeepOntoNLP
Workshop co-located with ESWC 2022 (May 2022).

[91] Nathani, D., Chauhan, J., Sharma, C., and Kaul, M. Learning attention-
based embeddings for relation prediction in knowledge graphs. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics (2019).

[92] Navigli, R., and Ponzetto, S. P. BabelNet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic network. Ar-
tificial Intelligence 193 (Dec. 2012), 217–250.

[93] Nguyen, D. Q., Nguyen, T. D., Nguyen, D. Q., and Phung, D. A Novel
Embedding Model for Knowledge Base Completion Based on Convolutional Neural
Network. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(2018), vol. 2, pp. 327–333.

[94] Nickel, M., Rosasco, L., and Poggio, T. Holographic Embeddings of Knowl-
edge Graphs. In Proceedings of the 30th AAAI Conference on Artificial Intelligence
(Phoenix, AZ, USA, Feb. 2016), AAAI Press, pp. 1955–1961. arXiv: 1510.04935.

[95] Nickel, M., Tresp, V., and Kriegel, H.-P. A Three-way Model for Collective
Learning on Multi-relational Data. In Proceedings of the 28th International Con-
ference on International Conference on Machine Learning (Bellevue, WA, USA,
2011), ICML’11, Omnipress, pp. 809–816.

[96] Nickolls, J., Buck, I., Garland, M., and Skadron, K. Scalable Parallel
Programming with CUDA: Is CUDA the parallel programming model that appli-
cation developers have been waiting for? Queue 6, 2 (Mar. 2008), 40–53.

[97] Ortona, S., Meduri, V. V., and Papotti, P. Robust discovery of positive
and negative rules in knowledge bases. In ICDE (2018).

[98] Paris, P.-H., and Suchanek, F. Non-named Entities – The Silent Majority.
In The Semantic Web: ESWC 2021 Satellite Events (Cham, 2021), R. Verborgh,
A. Dimou, A. Hogan, C. d’Amato, I. Tiddi, A. Bröring, S. Mayer, F. Ongenae,
R. Tommasini, and M. Alam, Eds., Springer International Publishing, pp. 131–
135.

[99] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.

[100] Pearson, K. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2,
11 (1901), 559–572.

[101] Pellissier Tanon, T., Weikum, G., and Suchanek, F. YAGO 4: A Reason-
able Knowledge Base. In The Semantic Web (Cham, 2020), A. Harth, S. Kir-
rane, A.-C. Ngonga Ngomo, H. Paulheim, A. Rula, A. L. Gentile, P. Haase, and
M. Cochez, Eds., Lecture Notes in Computer Science, Springer International Pub-
lishing, pp. 583–596.

[102] Peng, N., Poon, H., Quirk, C., Toutanova, K., and Yih, W.-t. Cross-
sentence n-ary relation extraction with graph LSTMs. Transactions of the Asso-
ciation for Computational Linguistics 5 (2017), 101–115.

[103] Razniewski, S., Suchanek, F. M., and Nutt, W. But what do we actually
know? In AKBC workshop (2016).

BIBLIOGRAPHY 118

[104] Rossi, A., Barbosa, D., Firmani, D., Matinata, A., and Merialdo, P.
Knowledge graph embedding for link prediction: A comparative analysis. ACM
Trans. Knowl. Discov. Data 15, 2 (jan 2021).

[105] Ruffinelli, D., Broscheit, S., and Gemulla, R. You can teach an old dog
new tricks! on training knowledge graph embeddings. In International Conference
on Learning Representations (2020).

[106] Sakor, A., Singh, K., Patel, A., and Vidal, M.-E. Falcon 2.0: An entity and
relation linking tool over wikidata. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (New York, NY, USA,
2020), CIKM ’20, Association for Computing Machinery, p. 3141–3148.

[107] Salton, G., and McGill, M. J. Introduction to modern information retrieval.
New York : McGraw-Hill, 1983.

[108] Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. v. d., Titov, I., and
Welling, M. Modeling Relational Data with Graph Convolutional Networks. In
Proceeding of the 15th European Semantic Web Conference (Heraklion, Crete,
Greece, June 2018), pp. 593–607.

[109] Sigillito, V. Johns hopkins university ionosphere database.

[110] Silla, C. N., and Freitas, A. A. A survey of hierarchical classification across
different application domains. Data Mining and Knowledge Discovery 22, 1 (Jan.
2011), 31–72.

[111] Socher, R., Chen, D., Manning, C. D., and Ng, A. Reasoning With Neural
Tensor Networks for Knowledge Base Completion. In Advances in Neural Infor-
mation Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 926–934.

[112] Sparck Jones, K. A Statistical Interpretation of Term Specificity and its Appli-
cation in Retrieval. Journal of Documentation 28, 1 (Jan. 1972), 11–21. Publisher:
MCB UP Ltd.

[113] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15, 56 (2014), 1929–1958.

[114] Suchanek, F. M., Abiteboul, S., and Senellart, P. Paris: Probabilistic
alignment of relations, instances, and schema. In VLDB (2012).

[115] Suchanek, F. M., Kasneci, G., and Weikum, G. YAGO: A Core of Semantic
Knowledge Unifying WordNet and Wikipedia. In Proceedings of the 16th inter-
national conference on World Wide Web (Banff, Alberta, Canada, May 2007),
ACM, pp. 697–706.

[116] Suchanek, F. M., Lajus, J., Boschin, A., and Weikum, G. Knowledge
representation and rule mining in entity-centric knowledge bases. In Reasoning
Web. Explainable Artificial Intelligence - 15th International Summer School 2019,
Bolzano, Italy, September 20-24, 2019 (2019), Springer, pp. 110–152.

[117] Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P., and Yang, Y. A Re-
evaluation of Knowledge Graph Completion Methods. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics (Online, July
2020), Association for Computational Linguistics, pp. 5516–5522.

[118] Thanou, D., Dong, X., Kressner, D., and Frossard, P. Learning heat
diffusion graphs. IEEE Transactions on Signal and Information Processing over
Networks 3, 3 (2017), 484–499.

[119] Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., and
Gamon, M. Representing Text for Joint Embedding of Text and Knowledge

BIBLIOGRAPHY 119

Bases. In Proceedings of the 2015 Conference on Empirical Methods in Natu-
ral Language Processing (Lisbon, Portugal, 2015), Association for Computational
Linguistics, pp. 1499–1509.

[120] Trouillon, T. Complex-Valued Embedding Models for Knowledge Graphs. Phd
thesis, Université Grenoble Alpes, Sept. 2017.

[121] Trouillon, T., and Nickel, M. Complex and Holographic Embeddings of
Knowledge Graphs: A Comparison. arXiv:1707.01475 [cs, stat] (July 2017).
arXiv: 1707.01475.

[122] Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., and Bouchard, G.
Complex Embeddings for Simple Link Prediction. In Proceedings of the 33rd
International Conference on Machine Learning (New York, NY, USA, June 2016),
vol. 48, pp. 2071–2080.

[123] Tucker, L. R. Some mathematical notes on three-mode factor analysis. Psy-
chometrika 31, 3 (Sept. 1966), 279–311.

[124] van Rossum, G., Warsaw, B., and Coghlan, N. Style guide for Python code.
PEP 8, Python Software Foundation, 2001.

[125] Vashishth, S., Sanyal, S., Nitin, V., and Talukdar, P. Composition-based
multi-relational graph convolutional networks. In ICLR (2019).

[126] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-
A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep
Network with a Local Denoising Criterion. The Journal of Machine Learning
Research 11 (Dec. 2010), 3371–3408.

[127] Vrandečić, D., and Krötzsch, M. Wikidata: A Free Collaborative Knowledge
Base. Communications of the ACM 57 (2014), 78–85.

[128] Walt, S. v. d., Colbert, S. C., and Varoquaux, G. The numpy array: A
structure for efficient numerical computation. Computing in Science & Engineer-
ing 13, 2 (2011), 22–30.

[129] Wang, L., Cao, Z., de Melo, G., and Liu, Z. Relation Classification via
Multi-Level Attention CNNs. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (Berlin, Ger-
many, Aug. 2016), Association for Computational Linguistics, pp. 1298–1307.

[130] Wang, R., Li, B., Hu, S., Du, W., and Zhang, M. Knowledge Graph Embed-
ding via Graph Attenuated Attention Networks. IEEE Access 8 (2020), 5212–5224.
Conference Name: IEEE Access.

[131] Wang, Z., Zhang, J., Feng, J., and Chen, Z. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence (2014), AAAI’14, AAAI Press, p. 1112–1119.

[132] Weller, T., and Acosta, M. Predicting instance type assertions in knowledge
graphs using stochastic neural networks. In Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge Management (New York, NY,
USA, 2021), CIKM ’21, Association for Computing Machinery, p. 2111–2118.

[133] Wilcke, W. X., Bloem, P., de Boer, V., van ’t Veer, R., and van Harme-
len, F. End-to-end entity classification on multimodal knowledge graphs. ArXiv
abs/2003.12383 (2020).

[134] Word Wide Web Consortium. RDF Primer, 2004.

[135] Word Wide Web Consortium. SPARQL 1.1 Query Language, 2013.

[136] Wu, C., Tygert, M., and LeCun, Y. A hierarchical loss and its problems
when classifying non-hierarchically, 2019.

BIBLIOGRAPHY 120

[137] Xie, R., Liu, Z., and Sun, M. Representation learning of knowledge graphs
with hierarchical types. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence (2016), IJCAI’16, AAAI Press, p. 2965–2971.

[138] Yaghoobzadeh, Y., and Schütze, H. Corpus-level fine-grained entity typing
using contextual information. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (Lisbon, Portugal, Sept. 2015), Associa-
tion for Computational Linguistics, pp. 715–725.

[139] Yaghoobzadeh, Y., and Schütze, H. Multi-level representations for fine-
grained typing of knowledge base entities. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Vol-
ume 1, Long Papers (Valencia, Spain, Apr. 2017), Association for Computational
Linguistics, pp. 578–589.

[140] Yamada, I., Asai, A., Shindo, H., Takeda, H., and Matsumoto, Y. LUKE:
Deep contextualized entity representations with entity-aware self-attention. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP) (Online, Nov. 2020), Association for Computational Lin-
guistics, pp. 6442–6454.

[141] Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. Embedding Entities
and Relations for Learning and Inference in Knowledge Bases. In Proceedings of
the International Conference on Learning Representation (Banff, Canada, Dec.
2014).

[142] Yang, X., Ren, S., Li, Y., Shen, K., Li, Z., and Wang, G. Relation link-
ing for wikidata using bag of distribution representation. In Natural Language
Processing and Chinese Computing (Cham, 2018), X. Huang, J. Jiang, D. Zhao,
Y. Feng, and Y. Hong, Eds., Springer International Publishing, pp. 652–661.

[143] Ye, R., Li, X., Fang, Y., Zang, H., and Wang, M. A vectorized relational
graph convolutional network for multi-relational network alignment. In IJCAI
(2019).

[144] Yu, S. Y., Rokka Chhetri, S., Canedo, A., Goyal, P., and Faruque,
M. A. A. Pykg2vec: A python library for knowledge graph embedding. arXiv
preprint arXiv:1906.04239 (2019).

[145] Zachary, W. W. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research 33, 4 (1977), 452–473.

[146] Zhang, Y., Qi, P., and Manning, C. D. Graph convolution over pruned depen-
dency trees improves relation extraction. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing (Brussels, Belgium, Oct.-Nov.
2018), Association for Computational Linguistics, pp. 2205–2215.

[147] Zhang, Y., Yao, Q., and Chen, L. Interstellar: searching recurrent archi-
tecture for knowledge graph embedding. In Proceedings of the 34th International
Conference on Neural Information Processing Systems (Red Hook, NY, USA, Dec.
2020), NIPS’20, Curran Associates Inc., pp. 10030–10040.

[148] Zhang, Y., Yao, Q., Shao, Y., and Chen, L. NSCaching: Simple and Ef-
ficient Negative Sampling for Knowledge Graph Embedding. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE) (Apr. 2019), pp. 614–625.
ISSN: 2375-026X.

[149] Zhuo, J., Zhu, Q., Yue, Y., Zhao, Y., and Han, W. A neighborhood-
attention fine-grained entity typing for knowledge graph completion. In Proceed-
ings of the Fifteenth ACM International Conference on Web Search and Data
Mining (New York, NY, USA, 2022), WSDM ’22, Association for Computing
Machinery, p. 1525–1533.

Titre : Méthodes d’apprentissage automatique pour la complétion de graphes de connaissances

Mots clés : graphe de connaissances ; apprentissage automatique ; plongement ; graphe ; classification

Résumé : Un graphe de connaissances est un
graphe orienté dont les nœuds sont des entités et les
arêtes, typées par une relation, représentent des faits
connus liant les entités. Ces graphes sont capables
d’encoder une grande variété d’information mais leur
construction et leur exploitation peut se révéler com-
plexe. Historiquement, des méthodes symboliques
ont permis d’extraire des règles d’interaction entre en-
tités et relations, afin de corriger des anomalies ou
de prédire des faits manquants. Plus récemment, des
méthodes d’apprentissage de représentations vecto-
rielles, ou plongements, ont tenté de résoudre ces
mêmes tâches. Initialement purement algébriques ou
géométriques, ces méthodes se sont complexifiées
avec les réseaux de neurones profonds et ont par-
fois été combinées à des techniques symboliques
antérieures.
Dans cette thèse, on s’intéresse tout d’abord au
problème de l’implémentation. En effet, la grande
diversité des bibliothèques utilisées rend difficile la
comparaison des résultats obtenus par différents
modèles. Dans ce contexte, la bibliothèque Python
TorchKGE a été développée afin de proposer un envi-
ronnement unique pour l’implémentation de modèles
de plongement et un module hautement efficace
d’évaluation par prédiction de liens. Cette bibliothèque

repose sur l’accélération graphique de calculs tenso-
riels proposée par PyTorch, est compatible avec les
bibliothèques d’optimisation usuelles et est disponible
en source ouverte.
Ensuite, les travaux portent sur l’enrichissement au-
tomatique de Wikidata par typage des hyperliens liant
les articles de Wikipedia. Une étude préliminaire a
montré que le graphe des articles de Wikipedia est
beaucoup plus dense que le graphe de connais-
sances correspondant dans Wikidata. Une nouvelle
méthode d’entrainement impliquant les relations et
une méthode d’inférence utilisant les types des en-
tités ont été proposées et des expériences ont montré
la pertinence de l’approche, y compris sur un nouveau
jeu de données.
Enfin, le typage automatique d’entités est exploré
comme une tâche de classification hiérarchique. Ceci
a mené à la conception d’une fonction d’erreur
hiérarchique, utilisée pour l’entrainement de modèles
tensoriels, ainsi qu’un nouveau type d’encodeur. Des
expériences ont permis une bonne compréhension de
l’impact que peut avoir une connaissance a priori de la
taxonomie des classes sur la classification. Elles ont
aussi renforcé l’intuition que la hiérarchie peut être ap-
prise à partir des données si le jeu est suffisamment
riche.

Title : Machine learning techniques for automatic knowledge graph completion

Keywords : knowledge graph ; machine learning ; embedding ; graph ; classification

Abstract : A knowledge graph is a directed graph
in which nodes are entities and edges, typed by a
relation, represent known facts linking two entities.
These graphs can encode a wide variety of informa-
tion, but their construction and exploitation can be
complex. Historically, symbolic methods have been
used to extract rules about entities and relations, to
correct anomalies or to predict missing facts. More re-
cently, techniques of representation learning, or em-
beddings, have attempted to solve these same tasks.
Initially purely algebraic or geometric, these methods
have become more complex with deep neural net-
works and have sometimes been combined with pre-
existing symbolic techniques.
In this thesis, we first focus on the problem of im-
plementation. Indeed, the diversity of libraries used
makes the comparison of results obtained by different
models a complex task. In this context, the Python li-
brary TorchKGE was developed to provide a unique
setup for the implementation of embedding models
and a highly efficient inference evaluation module.
This library relies on graphic acceleration of tensor

computation provided by PyTorch, is compatible with
widespread optimization libraries and is available as
open source.
We then consider the automatic enrichment of Wiki-
data by typing the hyperlinks linking Wikipedia pages.
A preliminary study showed that the graph of Wiki-
pedia articles is much denser than the corresponding
knowledge graph in Wikidata. A new training method
involving relations and an inference method using en-
tity types were proposed and experiments showed the
relevance of the combined approach, including on a
new dataset.
Finally, we explore automatic entity typing as a hierar-
chical classification task. That led to the design of a
new hierarchical loss used to train tensor-based mo-
dels along with a new type of encoder. Experiments
on two datasets have allowed a good understanding
of the impact a prior knowledge of class taxonomy can
have on a classifier but also reinforced the intuition
that the hierarchy can be learned from the features if
the dataset is large enough.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Notations
	Acronyms
	Introduction
	Context of the thesis
	Thesis outline

	Representing knowledge
	Entity-centric knowledge bases
	Entities
	Entity types
	Relations
	Knowledge base
	The semantic web

	Strengths and limits of existing knowledge bases
	From knowledge bases to knowledge graphs
	Graph definitions
	Graph structure of knowledge bases

	Knowledge graph completion
	Introduction to graph representation learning
	Supervised machine learning
	Representation learning
	Graph embedding with spectral theory
	Extending spectral embedding to knowledge graphs

	Knowledge graph representation learning
	Estimating triples likelihood
	Negative Sampling
	Model training
	Evaluation techniques
	Common datasets

	Existing embedding models
	Translational models
	Bilinear models
	Deep models
	Comments on the available literature

	Reasoning with knowledge bases
	Rules at the core of semantic reasoning
	Rule mining for knowledge base completion
	Embedding methods with logical components

	Conclusion

	TorchKGE
	Motivations
	Other existing libraries
	OpenKE
	Ampligraph
	Pykg2vec
	PyTorch-BigGraph
	The need of a new library
	Pykeen

	Conception choices
	GPU acceleration
	API design
	Good development practices

	Code structure
	Models
	Evaluation module
	Knowledge graphs in memory
	Negative sampling

	Performances
	Experimental setup
	Results

	Future of Developments

	Automatically enriching Wikidata using Wikipedia hyperlinks
	Motivations
	Related work
	Embedding and negative sampling
	Type filtering
	NLP for relation-prediction
	Wikipedia hyperlink semantification

	Proposed approach
	Ranking relations
	Balanced negative sampling
	Type filtering for relation-prediction

	Experimental setup
	Datasets
	Baseline
	Embedding models

	Results on supervised relation-prediction
	Impact of balanced negative sampling
	Impact of type filtering
	Results of the complete approach

	Application to Wikipedia hyperlinks
	Conclusion

	Hierarchical classification for entity typing
	Hierarchical classification
	Taxonomies
	Global and local hierarchical classification models
	Performance metrics

	Dirichlet node classification
	Original model
	Hierarchical Dirichlet classifier

	Hierarchical loss for gradient-based training
	Existing hierarchical losses
	Hierarchical binary cross-entropy loss
	Hierarchical graph convolutional network

	The Self-Encoder model
	Related work
	Description of the Self-Encoder
	Invariance property
	Categorical features
	Sampling
	Self-Encoder for flat classification

	Experiments
	Datasets
	Classification models
	Performance metrics

	Results

	Conclusion
	Usual neural network training techniques
	Neural network training
	Regularization
	Weight decay
	Early-stopping
	Dropout

	Dirichlet problem on directed graphs
	Definitions
	Dirichlet problem
	Existence and unicity of the solutions
	Convergence in discrete time

	The TF-IDF weighting scheme

