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iii

Le hasard est une divinité – plus compliquée, plus exigeante, plus
secrète qu’aucune.

Julien Gracq, Un beau ténébreux

Dans une seule idée d’un créateur vivent mille nuits d’amour
oubliées.

Rainer Maria Rilke, Lettres à un jeune poète





v

Acknowledgements
In La Formation de l’esprit scientifique, Gaston Bachelard once wrote

Avant tout, il faut savoir poser des problèmes. Et quoi qu’on dise, dans
la vie scientifique, les problèmes ne se posent pas d’eux-mêmes. C’est
précisément ce sens du problème qui donne la marque du véritable es-
prit scientifique. Pour un esprit scientifique, toute connaissance est une
réponse à une question. S’il n’y a pas eu de question, il ne peut y avoir
connaissance scientifique. Rien ne va de soi. Rien n’est donné. Tout est
construit.

Writing the last words of this dissertation, I now better understand what Bachelard
meant. Asking the right questions is fine art, answering them is lifelong learning.

To have put me on track, encouraged me to cultivate scientific rigor, transmitted
to me his taste for try and fail, his sense of ethics and modesty, to have pushed me
to develop my intellectual curiosity, keep courage, and sharpen my critical thinking,
in a few words, to have taught me how to do important, sustainable and enjoyable
high-quality research, I want to thank my Ph.D. supervisor Xavier D’Haultfœuille.
Working with and learning from him has been a chance for me, and he remains a solid
source of inspiration for my early career as an academic. I hope our collaboration
will continue in the future.

Other people have greatly inspired me to pursue excellence and develop a strong
taste for curiosity and rigorous thinking. Early in my studies, I think of Christelle
Fairise and Pascal Vanhove. Later on, Daniel-Li Chen, Matthieu Lequien, Antonin
Bergeaud, Loriane Py, Jérémy L’Hour, Christophe Gaillac, and Stéphane Bonhomme.
I am indebted to Anna Simoni who, maybe unconsciously, triggered my will to pursue
a Ph.D. when I was a young graduate student attending her Econometrics course at
the École Polytechnique. There I discovered, not without some apprehension but also
with excitement, I still had a long way to go beyond my nascent understanding of
econometrics. Together with Victor-Emmanuel Brunel, I thank her for being part of
my annual internal thesis committee.

I thank Pierre Alquier, Christophe Giraud, and the many great professors from the
Master in Statistics and Machine Learning in Orsay who trusted me and supported
my Ph.D. project at the intersection of econometrics, statistics, and machine learning.
My research benefits a lot from what I have learned from them. I thank Éric Gautier
for his helpful advice at early stages.

Research is a collective activity. I am grateful to my exceptional co-authors:
Xavier D’Haultfœuille, Laurent Davezies, Ao Wang, and Jérémy L’Hour. I have
learned a lot from them, and I am confident that we will have opportunities to work
together again in the future. I thank and wish a long life to the CREST-PSE econo-
metric group, in which I intend to continue to actively participate.

I want to thank the examiners, referees, and members of my dissertation jury who
kindly accepted to evaluate this work. It is an honor to have you as a jury.



vi

I thank the French Ministry of Higher Education, Research and Innovation and
the Agence Nationale de la Recherche for funding most of this research. Although
somewhat rippled by elitism, the French Grandes Écoles system, I believe, fosters
excellence and provides the necessary facilities and environment to produce inter-
national standard research. A pure product of this system, I am grateful to it, in
particular the École Normale Supérieure Paris-Saclay (my alma mater) and ENSAE.

Beyond my beloved students and daily colleagues at CREST, fellow doctoral stu-
dents and faculty, I want to thank the directors of doctoral studies, Thibaud Vergé
and Alessandro Riboni, as well as members of the administration and technical sup-
port, particularly, Arnak Dalalyan, Eliane Madelaine, Édith Verger, Murielle Jules,
Tristan Duchenne, Djamila Gherarbi, Lyza Racoon, Fanda Traoré, Leyla Marzuk,
Weronika Leduc, Philippe Pinczon du Sel, and Teddy Arrif. CREST benefits a lot
from such an efficient and joyful staff.

I am grateful to Stéphane Bonhomme for his warm welcome at the University of
Chicago, his continuing guidance and support. Like Xavier, I rarely met someone
so enthusiastic about research, friendly, and curious. I thank the faculty members
of UChicago for encouraging comments, in particular, Guillaume Pouliot, Alex Tor-
govitsky, Max Tabord-Meehan, Azeem Shaikh, and Jim Heckman. Thomas B., Art
Institute of Chicago, Smartbar, Lou, Cécile, Jonas, Eyo, Jiarui, Thomas W., Hugo,
Sasha, Léon, Kathleen, and Émilien: my stay at the Kenneth C. Griffin Department
of Economics would probably not have been so great without having met you.

Suzette Tanis-Plant and Ted Eames provided valuable help in the process of writ-
ing official documents in the language of Shakespeare. I am very grateful to them.

Special thanks go to my family and friends, especially the team of Ramonvillois.
These years have been special to me and required a lot of abnegation. Being sur-
rounded by you was precious. I particularly thank Clément G. for our multiple chats
on Gaussian processes, L-statistics, A. Grothendieck, J. Gracq, P. Modiano, uncer-
tainty quantification, and sensitivity analysis, for our lunches on the “platal” and our
(too rare) mojitos at every corners of the 13th and 14th arrondissements.

I owe so much to my parents. Somehow, they are the first responsible for who I
am today. I thank them for all their love and the nurturing environment which have
allowed me to emancipate intellectually.

When my brother and I were young, we were reluctant to go to those endless art
et essai movies, strange art exhibitions and plays, or long walks in the countryside
and lost villages on Sunday afternoons. We didn’t understand why we didn’t have
television at home. Today I understand the value of all this. Nino, the thought of our
music jams – sometimes together with unfinished proofs – made me wake up everyday
and continue. Anne, you made me read the best books of my life. Eric, you kind of
taught me mathematics in the end.

Research is love. I am grateful to all the people who shared their love with me.



vii

Contents

Acknowledgements v

Résumé Substantiel en Français xvii

Introduction xxi

1 Fixed Effects Binary Choice Models with Three or More Periods 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The Model and Moment Conditions . . . . . . . . . . . . . . . 3
1.2.2 Necessary and Sufficient Conditions for Identification . . . . . . 7

1.3 GMM Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Efficiency Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Unbalanced Panel . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Application to Brender and Drazen (2008) . . . . . . . . . . . . . . . . 12
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Proofs of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.1 Proposition 1.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.2 Theorem 1.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.3 Lemma 1.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.4 Theorem 1.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.5 Theorem 1.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6.6 Theorem 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Identification and (Fast) Estimation of Large Nonlinear Panel Mod-
els with Two-Way Fixed Effects 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Identification and Estimation . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.3 Numerical Equivalence to the MLE . . . . . . . . . . . . . . . . 49

2.4 Monte Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 Empirical Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 The Determinants of Trade Linkages and Flows . . . . . . . . . 56



viii

2.5.2 The Effects of Institutional Ownership on Innovation . . . . . . 58
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.7.1 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . 62
Pairwise Compensation . . . . . . . . . . . . . . . . . . . . . . 64

2.7.2 Proof of Theorem 2.3.2 . . . . . . . . . . . . . . . . . . . . . . 65
Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . 65
Proof of Theorem 2.3.2: FPMLE . . . . . . . . . . . . . . . . . 66
Proof of Theorem 2.3.2: FPMLE++ . . . . . . . . . . . . . . . 67

2.7.3 Consistency in the Presence of Heterogeneous Slopes . . . . . . 71
2.7.4 Monte Carlo Experiments: Details . . . . . . . . . . . . . . . . 73

Poisson Count Model with Heterogeneous Slopes . . . . . . . . 74
2.7.5 Empirical Illustrations: Additional Results . . . . . . . . . . . 74
2.7.6 Existence and Uniqueness of Coordinate-Wise Minima (Proof

of Theorem 2.3.2) . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.7.7 Extension of Theorem 2.3.1 to Multimodal Outcomes . . . . . 76
2.7.8 Heterogeneous Slope Across Time . . . . . . . . . . . . . . . . 79
2.7.9 Extension of FPMLE and FPMLE++ . . . . . . . . . . . . . . 80

Heterogeneous βi . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Numerical Convergence without Concavity . . . . . . . . . . . 83

2.7.10 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Proof of Lemma 2.7.1 . . . . . . . . . . . . . . . . . . . . . . . 84
Proof of Proposition 2.7.3 . . . . . . . . . . . . . . . . . . . . . 84

2.7.11 Monte Carlo Experiments: Additional Tables and Details . . . 88
Split-sample Jackknife Bootstrap Procedure . . . . . . . . . . . 90

3 A Simple and Computationally Trivial Estimator for Grouped Fixed
Effects Models 93
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2 A Two-Step Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3 Large Sample Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.1 Clustering Consistency . . . . . . . . . . . . . . . . . . . . . . . 99
3.3.2 Asymptotic Distribution . . . . . . . . . . . . . . . . . . . . . . 100
3.3.3 Choice of the Preliminary Consistent Estimator . . . . . . . . . 101
3.3.4 Choice of the Tuning Parameter . . . . . . . . . . . . . . . . . 102

3.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5 Proofs of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.5.1 Proof of Proposition 3.3.1 . . . . . . . . . . . . . . . . . . . . . 103
3.5.2 Proof of Corollary 3.3.2 . . . . . . . . . . . . . . . . . . . . . . 110

4 Unobserved Clusters of Time-Varying Heterogeneity in Nonlinear
Panel Data Models 111
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



ix

4.2 Nonlinear Discrete Outcome Models with Unobserved Clusters of Time-
Varying Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Large-N , Large-T Nonparametric Identification . . . . . . . . . . . . . 121
4.4 Semiparametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.1 A Generic M-Estimation Framework . . . . . . . . . . . . . . . 125
4.4.2 Semiparametric NGFE Estimators . . . . . . . . . . . . . . . . 125
4.4.3 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.5 Asymptotic Properties of Semiparametric NGFE Estimators . . . . . . 127
4.5.1 Binary Choice Model With Grouped Fixed Effects . . . . . . . 127
4.5.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.3 Asymptotic Distribution . . . . . . . . . . . . . . . . . . . . . . 129
4.5.4 Average Partial Effects (APEs) . . . . . . . . . . . . . . . . . . 132

4.6 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.6.1 Static Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.6.2 Dynamic Logit Model . . . . . . . . . . . . . . . . . . . . . . . 134

4.7 Empirical Application: Revisiting the Inverted-U Relationship Be-
tween Innovation and Competition . . . . . . . . . . . . . . . . . . . . 135

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.9 Proofs of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.9.1 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . 140
4.9.2 Sufficient Condition for Assumption 4.3.2(a) . . . . . . . . . . . 141
4.9.3 Proof of Theorem 4.5.1 . . . . . . . . . . . . . . . . . . . . . . 145
4.9.4 Proof of Theorem 4.5.2 . . . . . . . . . . . . . . . . . . . . . . 149

Step 1: A Useful Asymptotic Equivalence . . . . . . . . . . . . 149
Step 2: Asympotic Properties of the Oracle MLE . . . . . . . . 156

4.10 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.10.1 Cluster-Specific Slopes and Time-Specific Effects . . . . . . . . 159
4.10.2 Group and Time-Specific Link Functions . . . . . . . . . . . . . 160
4.10.3 Grouping Time Periods . . . . . . . . . . . . . . . . . . . . . . 161
4.10.4 NGFE Large Sample Theory for Poisson Count Models . . . . 161

4.11 Large-N , Large-T Inference . . . . . . . . . . . . . . . . . . . . . . . . 163
4.11.1 Binary Choice Model . . . . . . . . . . . . . . . . . . . . . . . . 163
4.11.2 Poisson Count Model . . . . . . . . . . . . . . . . . . . . . . . 163

4.12 More Details on Monte Carlo Experiments . . . . . . . . . . . . . . . . 164
4.13 Tables & Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.13.1 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . 165
4.13.2 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . 166

5 Asymptotic Properties of Empirical Quantile-Based Estimators 177
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.2 Asymptotic Results (Observed Rank) . . . . . . . . . . . . . . . . . . . 178
5.3 Asymptotic Results (Estimated Rank) . . . . . . . . . . . . . . . . . . 179



x

5.4 Application to Change-in-Change . . . . . . . . . . . . . . . . . . . . . 181
5.5 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.5.1 Exponential-Pareto DGP . . . . . . . . . . . . . . . . . . . . . 186
5.5.2 Gaussian DGP . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.6 Proofs of the Main Results . . . . . . . . . . . . . . . . . . . . . . . . 196
5.6.1 Proof of Lemma 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . 196
5.6.2 Proof of Theorem 5.2.2 . . . . . . . . . . . . . . . . . . . . . . 196
5.6.3 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . 201

5.7 Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



xi

List of Figures

2.1 Support Condition on x(1) and Identification . . . . . . . . . . . . . . 43
2.2 Numerical Convergence of β̂NT , β̂++

NT , δ̂NT , and δ̂++
NT . . . . . . . . . . 53

2.3 Execution Time (in seconds) of FPMLE++ and logitfe, N = T . . . 54
2.4 Distribution of Estimated Trade Elasticity . . . . . . . . . . . . . . . 58
2.5 Distributions of β̂i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Replicating Aghion et al. (2005) . . . . . . . . . . . . . . . . . . . . . 166
4.2 Residuals of the Two-Way Fixed Effects Poisson Model . . . . . . . . . 167
4.3 Regularization Path of the Two-Step Pairwise Differencing Estimator . 167
4.4 Two-Step Pairwise Differencing Estimates (Three Clusters) . . . . . . 169
4.5 Innovation and Competition Revisited: A Mildly Inverted-U Relationship173
4.6 Estimated Cluster-Specific Time-Varying Effects . . . . . . . . . . . . 173
4.7 Data-Driven Clusters of Industries . . . . . . . . . . . . . . . . . . . . 174
4.8 Unobserved Heterogeneity, Competition, and Innovation Vary Across

Time and Data-Driven Clusters . . . . . . . . . . . . . . . . . . . . . 174

5.1 Exponential DGP, Coverage Rates as a Function of b2 + d2 – Sample
Size = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187





xiii

List of Tables

1.1 Estimates of Relative Effects of Budget Balances and Growth on the
Probability of Reelection in Developed Economies . . . . . . . . . . . 14

2.1 Inference – Poisson Model with Heterogeneous Slopes . . . . . . . . . 55
2.2 Numerical Convergence – Logit Model with Homogeneous Slope (N =

T = 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.3 Inference – Poisson Model with Heterogeneous Slopes . . . . . . . . . 75
2.4 Regressions of −γ̂exp

j and −γ̂imp
i over Observed Characteristics of a

Country . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5 Regressions of β̂i and η̂i over Observed Characteristics of Firm i . . . 75
2.6 Correlations and Variance Decomposition . . . . . . . . . . . . . . . . 75
2.7 Numerical Convergence – Logit Model with Homogeneous Slopes (N =

5000, T = 30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.8 Numerical Convergence – Poisson Model with Heterogeneous Slopes

(N = T = 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Bias and Root Mean Squared Error of β̂ (Static Model) . . . . . . . . 168
4.2 Classification Accuracy and CPU Time (Static Model) . . . . . . . . . 168
4.3 Inference for β (Static Model) . . . . . . . . . . . . . . . . . . . . . . . 169
4.4 Bias and Root Mean Squared Error (Dynamic Model) . . . . . . . . . 170
4.5 Classification Accuracy and CPU Time (Dynamic Model) . . . . . . . 170
4.6 Inference for β1 and β2 (Dynamic Model) . . . . . . . . . . . . . . . . 171
4.7 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.8 Industries at the 2-Digit Level . . . . . . . . . . . . . . . . . . . . . . . 172
4.9 The Effect of Competition on Innovation . . . . . . . . . . . . . . . . . 173
4.10 The Effect of Competition on Innovation (Control Function Approach) 175

5.1 Gaussian simulations, B = 10, 000. . . . . . . . . . . . . . . . . . . . . 188





xv

To Eric, Anne, and Nino. To all the musicians, poets, and
writers who have brighten the Day ‘N’ Nite





xvii

Résumé Substantiel en Français

Cette thèse propose de nouvelles méthodes économétriques pour l’analyse des données
de panel. Les données de panel incluent les données longitudinales, où les unités
statistiques telles que des individus, firmes ou pays sont observées à plusieurs dates
dans le temps, ainsi que les données hiérarchiques, par exemple, les caractéristiques
d’élèves affectés à des professeurs, d’employés travaillant pour certaines firmes, de
biens et services vendus sur plusieurs marchés, ou de flux commerciaux entre pays au
cours du temps (panel en trois dimensions).

Un problème important en économie appliquée demeure la prise en compte de
l’hétérogénéité inobservée (Heckman, 1981). Les unités peuvent différer systéma-
tiquement selon des caractéristiques inobservées par l’économètre, ce qui rend difficile
l’identification de paramètres d’intérêts. Par exemple, il est plausible que les indi-
vidus aux capacités de concentration et d’organisation élevées choisissent en moyenne
de poursuivre des études plus longues et obtiennent des salaires élevés qu’ils auraient
pu obtenir indépendamment de leur niveau d’éducation : les différences moyennes de
salaire observées par niveaux de diplômes ne rendent pas bien compte des rendements
moyens de l’éducation (voir Abowd et al., 1999). Ce “biais de variable omise” menace
la plupart des études exploitant des données non-expérimentales, l’expérience “idéale”
telle qu’une assignation aléatoire d’individus au sein d’un groupe de contrôle et de
test étant bien souvent impossible en économie (e.g., Angrist and Pischke, 2008).

À l’instar de la notion de parcimonie en statistiques en grande dimension (spar-
sity), les données de panel offrent de nombreuses opportunités à l’économètre pour
prendre en compte une hétérogénéité inobservée de grande dimension à condition
que celle-ci ait une structure simple. Cette tension entre flexibilité (grande dimen-
sion des modèles) et parcimonie de la structure est au cœur de la modélisation des
données de panels et de la formulation des modèles économétriques modernes. À
titre d’illustration, supposons que la capacité individuelle de l’individu i puisse être
résumée par une variable scalaire non-observée Ai ∈ R et que le salaire à l’instant
t, noté Wit ∈ R, soit une fonction linéaire de la capacité Ai, du nombre d’années
d’études achevées à l’instant t, noté Eit ∈ N, et d’un terme d’erreur spécifique à
l’individu et à la période Uit ∈ R :

Wit = Ai + βEit + Uit, E(Uit|Ai, Ei1, . . . , EiT ) = 0, i = 1, . . . , N, t = 1, . . . , T.
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Le paramètre β ∈ R représente l’effet marginal moyen d’une année d’études supplé-
mentaire (de e− 1 à e) sur le salaire d’un individu de niveau de capacité a :

β = E(Wit|Ai = a,Eit = e) − E(Wit|Ai = a,Eit = e− 1).

Si E(Ai|Eit) ̸= 0, il se peut que les individus à haute capacité gagnent des salaires plus
élevés et poursuivent une éducation plus longue. Sous des hypothèses de régularité
standards, le coefficient obtenu en utilisant une régression linéaire des moindres carrés
ordinaires regroupée des salaires sur les années d’études est un estimateur biaisé de
l’effet marginal moyen β. En raison de la linéarité du modèle et de la constance
temporelle de la capacité, la variable de capacité non-observée Ai peut être facilement
éliminée par une différenciation temporelle de premier ordre du modèle :

∆Wit = β∆Eit + ∆Uit, E(∆Uit|∆Ei2, . . . ,∆EiT ) = 0, i = 1, . . . , N, t = 2, . . . , T,

avec ∆Wit = Wit − Wit−1, ∆Eit = Eit − Eit−1 et ∆Uit = Uit − Uit−1. Sous des
conditions standard, une régression linéaire des moindres carrés ordinaires regroupée
des différences temporelles de salaires sur les différences temporelles d’années d’études
fournit un estimateur sans biais et convergent de β dès que le nombre d’individus N
diverge (e.g., Mundlak, 1961; Wooldridge, 2010).

La simplicité de cette procédure ne doit pas cacher sa puissance. Le résultat
d’identification pour β est fort car le modèle semi-paramétrique impose très peu
d’hypothèses sur l’hétérogénéité non-observée : la distribution conditionnelle de la ca-
pacité non-observée Ai étant donné le nombre d’années d’éducation complétées Eit est
entièrement non-restreinte (au-delà du modèle conditionnel pourWit|Ei1, . . . , EiT , Ai),
la distribution du terme d’erreur Uit n’est pas spécifiée, et la corrélation temporelle
des termes d’erreur (Uit)t=1,...,T n’est pas un problème de premier ordre.

Les choses deviennent radicalement différentes dans les modèles non-linéaires avec
une hétérogénéité non-observée variante dans le temps. La non-linéarité peut résulter
de comportements de maximisation d’utilité et la capacité peut varier de manière
endogène au cours de la vie d’un travailleur. Premièrement, la plupart des objets
d’intérêt ne sont que partiellement identifiés (e.g., Chamberlain, 2010; Chernozhukov
et al., 2013; Davezies et al., 2022). Deuxièmement, l’estimation et l’inférence devien-
nent plus difficiles (Arellano and Hahn, 2007).

Une question centrale de cette thèse est de déterminer si des approches de différen-
ciation computationnellement simples s’appliquent aux modèles plus complexes, tels
que des modèles non-linéaires, dynamiques et avec hétérogénéité inobservée variant
dans le temps. Cette ligne de recherche complète les idées de différenciation fonction-
nelle et les généralisations développées notamment dans Athey and Imbens (2006),
Bonhomme (2012) et Hoderlein and White (2012). En particulier, cette thèse pro-
pose de nouvelles méthodes pour les données de panel visant à identifier, estimer et
effectuer une inférence statistique sur des paramètres causaux dans certains modèles
économétriques (non-linéaires) avec hétérogénéité inobservée. Les nouvelles méthodes
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permettent des relations fonctionnelles non-linéaires entre les variables endogènes et
exogènes, des interactions entre les paramètres non-observés spécifiques à l’individu
et spécifiques au temps, des distributions d’erreurs flexibles et des routines de calcul
rapides. Les panels courts et larges sont étudiés.

Le premier chapitre, écrit en collaboration avec Xavier D’Haultfœuille et Lau-
rent Davezies, généralise les résultats de Johnson (2004) et Chamberlain (2010) en
montrant que le paramètre de pente dans un modèle de choix binaire statique avec
trois périodes ou plus peut être identifié de manière ponctuelle même si les chocs
idiosyncratiques ne suivent pas une distribution logistique. Nous fournissons une re-
striction de moment conditionnelle, qui peut être utilisée pour obtenir un estimateur
asymptotiquement normal au taux paramétrique, lorsque le nombre d’unités diverge
vers l’infini, en appliquant la méthode des moments généralisés (GMM). Nous illus-
trons cette nouvelle méthode en revisitant la relation entre les déficits budgétaires et
les réélections étudiée dans Brender and Drazen (2008). L’effet significatif et positif
du déficit budgétaire sur la probabilité de réélection est robuste à une relaxation de
l’hypothèse logistique.

Le deuxième chapitre, rédigé en collaboration avec Ao Wang, présente de nou-
veaux résultats d’identification et des conditions suffisantes pour une classe de mod-
èles non-linéaires à doubles effets fixes avec des coefficients hétérogènes pour les panels
larges et longs. Nous proposons une procédure d’estimation rapide basée sur un algo-
rithme de descente de gradient coordonnée par coordonnée de type Gauss-Siedel qui
exploite la séparabilité additive des effets fixes. Dans le cas semi-paramétrique, nous
démontrons l’équivalence numérique de notre méthode avec l’estimateur du maximum
de vraisemblance, reportons des gains de calcul importants sans perte de précision au
regard des routines existantes (par exemple, logitfe/probitfe dans Stata) et revisitons
deux applications empiriques en innovation (Aghion et al., 2013) et commerce inter-
national (Helpman et al., 2008). Nous trouvons une hétérogénéité significative des
coefficients de pente relatifs aux variables indépendantes dans chacun des modèles.

Les troisième et quatrième chapitres traitent d’un cas particulier de modèles fac-
toriels, dans lesquels les facteurs individuels sont supposés discrets. Cette hypothèse
génère une structure de groupe qui peut rationaliser une grande variété de configu-
rations économiques (par exemple, clubs de pays, partenaires commerciaux, types de
consommateurs, de biens et d’actifs financiers). Le troisième chapitre propose un nou-
vel estimateur en deux étapes pour le modèle linéaire, qui présente plusieurs avantages
théoriques et computationnels. En résolvant un programme d’optimisation convexe
et en utilisant une procédure de regroupement agglomérative, nous généralisons Bon-
homme and Manresa (2015) et montrons que le paramètre de pente commun, les effets
fixes et le nombre de groupes peuvent être estimés de manière convergente sans borne
supérieure connue sur le nombre de groupes, tout en réduisant la complexité algo-
rithmique à l’ordre du cube du nombre d’unités contre une complexité exponentielle
pour l’estimateur reposant sur l’algorithme des k-means. Le quatrième chapitre étend
certains de ces résultats à une classe de modèles non-linéaires à variable dépendante
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discrète.
Le cinquième et dernier chapitre, écrit en collaboration avec Xavier D’Haultfœuille

et Jérémy L’Hour, démontre la normalité asymptotique d’estimateurs définis comme
moyennes empiriques de la transformation d’une fonction de répartition empirique
par un processus quantile empirique, sous des hypothèses bien plus faibles que celles
connues actuellement. Un exemple populaire est l’estimateur “Changes-in-Changes”
proposé dans Athey and Imbens (2006). Nous obtenons de nouveaux résultats en
utilisant la théorie des L-statistiques (Shorack and Wellner, 1986). Certains de nos
résultats intermédiaires peuvent avoir un intérêt indépendant. Des simulations de
Monte Carlo suggèrent que ces nouvelles hypothèses sont nécessaires.
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Introduction

– Ah oui ! Les économistes ! dit Kostanjoglo, sans l’écouter et
avec une expression sarcastique... De fameux imbéciles qui en
mènent d’autres et ne voient pas plus loin que leur nez ! Des
ânes qui montent en chaire et mettent des lunettes... Tas
d’idiots !

Nicolas Gogol, Les Âmes mortes

Despite Kostanjoglo’s radical view, economists have long drawn inferences by
combining economic theory with data science (Haavelmo, 1943, 1944). To understand
complex relationships between economic variables, to predict counterfactual events,
or to evaluate public policies, they build structural models, run randomized controlled
experiments, and carefully exploit observational data. Most rely on several branches
of applied mathematics to answer scholarly, business, and policy-relevant questions.

A common concern in applied work is unobserved heterogeneity. Economic agents,
unlike gaz particles, make decisions based on characteristics unobserved to the re-
searcher (Heckman, 1981). Unobserved heterogeneity may render identification of
key parameters of interest difficult. High-ability individuals plausibly stay longer in
school and would earn high wages anyway: observed differences in wages across de-
grees do not identify marginal returns to education (e.g., Abowd et al., 1999). This
so-called omitted variable bias is a spectre haunting applied economics, where “ideal”
randomized experiments are rarely feasible (e.g., Angrist and Pischke, 2008).

Panel data provide opportunities to account for high-dimensional unobserved het-
erogeneity. Panel data is longitudinal data, where units of observations such as in-
dividuals, firms, or countries are observed at different points in time; or hierarchical
data, for instance, goods purchased on different markets, students assigned to teach-
ers, or trade flows between countries over time (a three dimensional panel). Akin
to the notion of sparsity in high-dimensional statistics (e.g., Giraud, 2014), high-
dimensional ability may have a low-dimensional underlying structure relative to the
number of observations. As a short illustration, suppose that individual i’s ability
can be summarized by an unobserved scalar variable Ai ∈ R, while her wage at time
t, denoted by Wit ∈ R, is a linear function of ability Ai, her completed years of ed-
ucation at time t, denoted by Eit ∈ N, and some individual-time specific error term
Uit ∈ R:

Wit = Ai + βEit + Uit, E(Uit|Ai, Ei1, . . . , EiT ) = 0, i = 1, . . . , N, t = 1, . . . , T.
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The parameter β ∈ R is the average marginal effect of one additional year of education
(from e− 1 to e) on wages given ability level a:

β = E(Wit|Ai = a,Eit = e) − E(Wit|Ai = a,Eit = e− 1).

If E(Ai|Eit) ̸= 0, high-ability individuals might have higher wages and longer educa-
tion, and – under standard regularity conditions – the coefficient obtained by running
a pooled Ordinary Least Squares (OLS) linear regression of wages on years of educa-
tions is a biased estimate of the average marginal effect β. Because of linearity and
time-constant ability, the unobserved ability variable Ai is eliminated by a first-order
time-differencing transformation of the model:

∆Wit = β∆Eit + ∆Uit, E(∆Uit|∆Ei2, . . . ,∆EiT ) = 0, i = 1, . . . , N, t = 2, . . . , T,

where ∆Wit = Wit − Wit−1, ∆Eit = Eit − Eit−1, and ∆Uit = Uit − Uit−1. Under
standard conditions, a pooled OLS linear regression of time differences in wages on
time differences in years of education is unbiased and consistent for β as long as the
number of individuals N diverges (e.g., Mundlak, 1961; Wooldridge, 2010).

The simplicity of the manipulation should not undermine its usefulness. The
identification result for β is strong and desirable as the semi-parametric model imposes
very few assumptions on the unobserved heterogeneity: the conditional distribution
of unobserved ability Ai given completed years of education Eit is fully unrestricted
(beyond the conditional model for Wit|Ei1, . . . , EiT , Ai), the distribution of the error
term Uit is not specified, and serial correlation in (Uit)t=1,...,T is not a first-order issue.

Things become radically different in nonlinear models with time-varying unob-
served heterogeneity. Nonlinearities may arise from utility-maximization behaviors,
and ability may vary endogeneously during a worker’s life. First, most objects of
interest are only partially identified (e.g., Chamberlain, 2010; Chernozhukov et al.,
2013; Davezies et al., 2022). Second, estimation and inference become more challeng-
ing (Arellano and Hahn, 2007). A central question to this dissertation is whether
computationally straightforward differencing approaches apply to more complicated
models, e.g., nonlinear, dynamic, and time-varying unobserved heterogeneity models.
This line of research complements the functional differencing ideas and generaliza-
tions developed in, e.g., Athey and Imbens (2006), Bonhomme (2012), and Hoderlein
and White (2012).

This dissertation proposes new panel data methods to identify, estimate, and per-
form statistical inference on causal parameters in (nonlinear) econometric models with
unobserved heterogeneity. The new methods allow for nonlinear functional relation-
ships between endogenous and exogenous variables, interactions between individual-
specific and time-specific unobserved parameters, flexible error terms distributions,
and fast computation routines. Both short and large panels are studied.

The first chapter, written jointly with Xavier D’Haultfœuille and Laurent Dav-
ezies, generalizes Johnson (2004) and Chamberlain (2010)’s results by showing that
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the slope parameter in a static binary choice model with three periods or more can
be point identified even if idiosyncratic shocks do not follow the restrictive logistic
distribution. We provide a conditional moment restriction, which can be used to ob-
tain an asymptotically normal estimator at the parametric rate, when the number of
units diverges to infinity, by applying the Generalized Method of Moments (GMM).
We illustrate this new method by revisiting the relationship between budget deficits
and reelections studied in Brender and Drazen (2008). The significant positive effect
of budget deficits on the probability of reelection is robust to departures from the
logistic assumption.

The second chapter, written jointly with Ao Wang, presents new identification
results and sufficient conditions for a class of nonlinear two-way fixed effects models
with heterogeneous coefficients for large and long panels. We provide a fast estimation
procedure based on a Gauss-Siedel coordinate-wise gradient descent algorithm which
exploits additive separability in the fixed effects. In the semiparametric case, we
prove the numerical equivalence of our method to the maximum likelihood estimator,
we report considerable gains in execution time without loss in precision with respect
to existing packages (e.g., logitfe/probitfe in Stata), and we revisit two empirical
applications in innovation (Aghion et al., 2013) and international trade (Helpman
et al., 2008). We find significant heterogeneity in estimated slopes for the independent
variables in each case.

The third and fourth chapters consider a special case of factor models, in which
individual factor loadings are assumed discrete. This assumption generates a group
structure that can rationalize a wide variety of economic settings (e.g., clubs of coun-
tries, trading partners, types of consumers, goods, financial assets). The third chapter
proposes a new two-step estimator for the linear model, which has several theoreti-
cal and computational advantages. By solving a convex optimization program and
using an agglomerative clustering procedure, we generalize Bonhomme and Manresa
(2015) and show that the common slope parameter, the fixed effects, and the number
of groups can be consistently estimated without a known upper bound on the num-
ber of groups while reducing algorithmic complexity to the order of the cube of the
number of units against an exponential complexity for the estimator relying on the
k-means algorithm. The fourth chapter extends some of these results to a class of
nonlinear models for discrete outcomes.

The fifth and last chapter, written jointly with Xavier D’Haultfœuille and Jérémy
L’Hour, proves the asymptotic normality of estimators defined as empirical means of
the transform of an empirical cumulative distribution functions by an empirical quan-
tile process under much weaker assumptions than what is currently known. One pop-
ular example is the “Changes-in-Changes” estimator proposed in Athey and Imbens
(2006). We obtain these new results by using results from the theory of L-statistics
(see, e.g. Shorack and Wellner, 1986). Some of our intermediate results may have
independent interest. Monte Carlo simulations suggest that our assumptions cannot
be improved.
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This thesis mostly contributes to econometric theory. This subfield of economics
consists not only in developing a better mathematical understanding of existing eco-
nomic models and estimation procedures, but also in proposing new methodologies
and statistical guarantees to quantify uncertainty in one’s conclusions. An economic
model is a set of restrictions on the phenomenon under study. Once economic the-
ory provides such restrictions, formal conditions can be established and statistical
procedures be developed to take decisions, learn, and test further economic theories
using experimental or observational data (e.g., Gourieroux and Monfort, 1995; Man-
ski, 2021). While some investigations require brand new economic theories, economic
researchers otherwise often combine popular existing models and statistical tools. A
caricatural example is OLS. OLS lie at the heart of instrumental variables regres-
sion, Local Average Treatment Effects (LATE) analysis (Angrist and Imbens, 1995;
Imbens and Angrist, 1994), estimation of trade gravity equations (Helpman et al.,
2008), longitudinal studies of wage returns to education (Abowd et al., 1999), etc. As
many other procedures, OLS can be analyzed in the very general framework of models
defined by moment and inequality restrictions (e.g., Hansen, 1982). Hence, it seems
reasonable to conduct methodological research independently from any practical eco-
nomic questions.1 This direction has seemingly been taken by an important body
of the theoretical econometric literature, and we follow it here. Also, this illustrates
that few problems lie at the heart of many economic questions: selection, unobserved
heterogeneity, and functional form restrictions.

To conclude this introduction, a few remarks are in order. To which extent can
a theory explain human facts? Are there quantitative laws that economists should
disclose? Are models still useful in the Big Data era? This dissertation does not
address these difficult epistemological questions. Nevertheless, the latter help under-
stand the roots of the problems considered here. The economics we are interested
in, the social science concerned chiefly with the way society chooses to employ its
resources, which have alternative uses, to produce goods and services for present and
future consumption, rarely focuses on “all human beings” producing “all types of
goods and services”, but rather addresses well-delimited questions involving agents
plausibly very close to mechanically applying optimization routines, whether or not
it is profit or welfare maximization (e.g., firms, financial institutions, governments,
NGOs); large aggregates (e.g., macroeconomic consumption, investment, production,
trade flows between countries); or human beings acting in highly competitive mar-
kets or situations for which financial considerations are of primary order (e.g., private
investors, highly-qualified job seekers, tax payers). There, the existence of natural
laws holding “on average” that economists should disclose seems hardly controver-
sial. Outside of this scope, e.g., when the focus lies on individual-level decisions per
se which involve a lot of considerations that plausibly go beyond purely optimizing
behaviors, let say at the household level for which some methods developed in this

1That theoretical econometrics is not merely “mathematical statistics” or “data science” simply
follows from the fact that “econ” is still there: questions, assumptions, and theorems generally differ
between these neighboring fields.
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dissertation could find important applications (e.g., models of choices), economics is
often criticized for its imperialism. This is perhaps not without reason.

Relying on utility-maximization principles as a basis for economic analysis, how-
ever, is certainly not the illusory dream of a few ultra-liberal economists convinced
that human beings can be reduced to cold calculating machines, nor is it the deses-
perate attempt of a few lost physicists convinced that there is not much difference
between modeling human consumption behaviors and missile trajectories using opti-
mal control theory. A model is an idealization, which allows to reach an agreement
regarding the validity of a proposed solution. When so-called Nobel Prize Gary
Becker’s A Theory of Marriage (Becker, 1973, 1974) modeled the decision to marry
as the result of a utility-maximization process, eternally single philosophy master
Arthur Schopenhauer had already confessed, in L’Art de se connaître soi-même, “Ne
plus pouvoir disposer librement de ma propre personne est un mal bien plus grand que
l’avantage qui naîtrait potentiellement du gain d’une autre”. Cost-benefit analysis is
therefore infinitely more delicate than what a rough picture may suggest.

An economic theory formulates stable assumptions on agents behaviors and pos-
sible states of nature with the purpose of deriving informative propositions. Ab-
stracting from an agent’s budget, if utility derived from car consumption at period
t ∈ {0, 1, ...} is uc,t ∈ R, utility from bike consumption is ub,t ∈ R, utility from the
outside-option of commuting by feet is uf,t ∈ R, and an agent chooses at each time
period what is best for her in terms of derived utility, then a resulting optimal action
plan (a∗

t )t∈N ∈ {c, b, f}N is such that

ua∗
t ,t

≥ ua,t, for all (a, t) ∈ {c, b, f} × N.

The above equation simply summarizes that the agent chooses what she prefers to
do at each period. How does the agent derive utility? How to deal with multi-
ple heterogeneous agents that differ based on unobserved dimensions absent from
the data? These are important questions underlying many everyday economic prob-
lems. Unfortunately, the abstract cary-all summary measure of “utility” is rarely
fully observed as a function of both observed economic treatments of interest xt (e.g.,
distance to workplace, income, type of job, socio-economic class of parents, etc) and
unobserved individual-specific attributes αt (e.g., deep preference for an ecological
mode of transportation) that may systematically be related to xt. Since many impor-
tant economic questions tantamount to learn from the data functionals of population
marginal derivatives ∂ua,t(xt, αt)/∂xt or counterfactuals ua,t(x′

t, α
′
t) in order to quan-

tify (causal) consequences of changes in the economic environement, and because the
perfect randomized controlled experiment is rarely feasible in economics (e.g., be-
cause of costs and ethical considerations), it is important to develop rich models for
observational data which parcimoniously but flexibly account for multidimensional
sources of unobserved heterogeneity.

Panel data allow the researcher to take into account unobserved heterogeneity of a
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particular form when estimating a causal model. For instance, under the assumption
that motivation, ability, and familial background remain stable over time and any
other factors correlated with participation and future labor market outcome evolve
similarly for different individuals over time, some mathematically well-defined average
causal effect are identified from the data and can be estimated at parametric rates (see,
e.g., de Chaisemartin and D’Haultfœuille, 2020). Such common trend restrictions are
pervasive, but preclude many types of nonlinearities between the variables of interest.

In nonlinear panel data models, identification and estimation of key (causal) pa-
rameters in the semi-parametric case remain challenging because of the incidental
parameters problem Neyman and Scott (1948). In this thesis, we aim at contributing
to the literature on fixed-T , large-N asymptotics and large-T , large-N asymptotics
by considering several special cases where the unobserved heterogeneity has some
low-dimensional structure (it lies on some low-dimensional manifold) so that high-
dimensional statistical tools such as for instance penalization or clustering may pro-
vide satisfying solutions. Applications range from microeconometrics to macroecono-
metrics. Reference textbooks for panel data (micro)econometrics are Hsiao (2014);
Pesaran (2015); Wooldridge (2010).
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Chapter 1

Fixed Effects Binary Choice
Models with Three or More
Periods

La pensée commence par un retrait du monde, une absence,
c’est-à-dire une absence à une présence, à un « présent »
toujours pressant et urgent puisqu’il doit se définir avec rigueur
par les besoins de la vie et par les exigences du corps. (...) Ainsi,
penser, c’est d’une manière ou d’une autre, par un choix plus ou
moins libre, exercer une capacité plus ou moins indépendante, se
détacher.

Frédéric Worms, Penser à quelqu’un

Abstract: We consider fixed effects binary choice models with a fixed number of pe-
riods T and regressors without a large support. If the time-varying unobserved terms
are i.i.d. with known distribution F , Chamberlain (2010) shows that the common
slope parameter is point identified if and only if F is logistic. However, he only con-
siders in his proof T = 2. We show that the result does not generalize to T ≥ 3: the
common slope parameter can be identified when F belongs to a family including the
logit distribution. Identification is based on a conditional moment restriction. Under
restrictions on the covariates, these moment conditions lead to point identification of
relative effects. If T = 3 and mild conditions hold, GMM estimators based on these
conditional moment restrictions reach the semiparametric efficiency bound. Finally,
we illustrate our method by revisiting Brender and Drazen (2008).1

1This chapter is based on a co-authored paper with Laurent Davezies (CREST-ENSAE) and
Xavier D’Haultfœuille (CREST-ENSAE). It has been accepted for publication in Quantitative Eco-
nomics in 2022.



2 Chapter 1. Fixed Effects Binary Choice Models with Three or More Periods

1.1 Introduction

In this chapter, we revisit the classical binary choice model with fixed effects. Specifi-
cally, let T denote the number of periods and let us suppose to observe, for individual
i, (Yit, Xit)t=1,...,T with

Yit = 1{X ′
itβ0 + γi − εit ≥ 0} (1.1.1)

where β0 ∈ RK is unknown and εit ∈ R is an idiosyncratic shock. The nonlinear
nature of the model and the absence of restriction on the distribution of γi conditional
on Xi := (X ′

i1, . . . , X
′
iT )′ renders the identification of β0 difficult. Rasch (1960) shows

that if the (εit)t=1,...,T are i.i.d. with a logistic distribution, a conditional maximum
likelihood can be used to identify and estimate β0. Chamberlain (2010) establishes a
striking converse of Rasch’s result: if the (εit)t=1,...,T are i.i.d. with distribution F and
the support of Xi is bounded, β0 is point identified only if F is logistic. Other papers
have circumvented such an impossibility result by either considering large support
regressors (see in particular Honore and Lewbel, 2002; Manski, 1987) or allowing for
dependence between the shocks (see Magnac, 2004).

It turns out, however, that Chamberlain (2010) only proves his result for T = 2.
And in fact, we show that his result does not generalize to T ≥ 3. Specifically, we
consider distributions F satisfying

F (u)
1 − F (u) =

τ∑
k=1

wk exp(λku) or 1 − F (u)
F (u) =

τ∑
k=1

wk exp(−λku), (1.1.2)

with T ≥ τ + 1, (w1, . . . , wτ ) ∈ (0,∞)τ , and 1 = λ1 < . . . < λτ . We study the
identification of β0, assuming that λ := (λ1, . . . , λτ ) is known. The weights w1, . . . , wτ

remain unknown, thus allowing for much more flexibility on the distribution of εit
than in the logit case. In particular, it may either be left- or right-skewed, platykurtic
or leptokurtic. Our main insight is that for any F satisfying (1.1.2), a conditional
moment restriction holds. We also obtain some results on the corresponding identified
set B. For instance, if, roughly speaking, Xi is continuous, we show that B includes
at most T ! − 1 points (2 if T = 3) and relative marginal effects are point identified.
Note that Johnson (2004) considers the same family with τ = 2 and T = 3. However,
he does not study the general case and does not show any formal identification result
based on the corresponding moment conditions.

Obviously, the conditional moment condition can be used to construct GMM esti-
mators. This means, in particular, that

√
n-consistent estimation is possible beyond

the logit case when T > 2, overturning again the impossibility results of Chamber-
lain (2010) and Magnac (2004). Further, we show that if T = 3 and mild additional
restrictions hold, the optimal GMM estimator based on our conditional moment con-
ditions reaches the semiparametric efficiency bound of the model. Hence, at least
when T = 3, these moment conditions contain all the information of the model.
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Finally, we showcase the empirical relevance of our approach by studying whether
budget deficits and economic growth affect reelection, revisiting Brender and Drazen
(2008). The authors investigate this issue using simple and fixed effects logit models.
However, the assumption of logistic errors is not warranted, so we consider whether
the results are robust to this assumption on the unobserved terms. Our results suggest
that the relative effects of budget deficits and economic growth or other variables are
fairly robust to the logistic assumption.

This chapter is related to the seminal work of Bonhomme (2012), who develops a
unified approach for models where the conditional distribution of (Y1, . . . , YT ) given
(Xi, γi) is parametrized by β0, but no restriction on the distribution of γi|Xi is im-
posed. In such set-ups, he shows that the identification and estimation of β0 depends
on the existence of functions m ̸= 0 satisfying

E[m(Y,X, β0)|X, γ] = 0.

This approach has been fruitfully applied to the dynamic logit model by Kitazawa
(2022) and Honoré and Weidner (2020). Our work may be seen as yet another applica-
tion of this approach, focusing on static models but dropping the logistic assumption.

The remainder of the chapter is organized as follows. Section 1.2 describes the
moment condition we use for identification of β0 and establishes some properties of
the identified set based on these moments. Section 1.3 discusses GMM estimation of
β0, links it with the semiparametric efficiency bound of the model and discusses the
case of unbalanced panel data. Section 1.4 is devoted to the application. Section 1.5
concludes. All the proofs are collected in the appendix.

1.2 Identification

1.2.1 The Model and Moment Conditions

We drop the subscript i in the absence of ambiguity and let Y = (Y ′
1 , . . . , Y

′
T )′,

X = (X ′
1, . . . , X

′
T )′, Xt = (X1,t, . . . , XK,t)′ , Xk,· = (Xk,1, . . . , Xk,T )′, X−k =

(Xk′,t)k′ ̸=k,t=1,...,T , Xk,−t = (Xk,s)s ̸=t, and X−k,t = (Xk′,t)k′ ̸=k. Supp(X) ⊂ RKT

denotes the support of the random variable X. For any set A ⊂ Rp (for any p ≥ 1),
we let A∗ := A\{0} and denote by |A| the cardinal of A. Hereafter, we maintain the
following conditions.

Assumption 1.2.1 (Binary choice panel model) Equation (1.1.1) holds and:

1. (X, γ) and (εt)1≤t≤T are independent and the (εt)1≤t≤T are i.i.d. with a known
cumulative distribution function (cdf) F .

2. For all (k, t), E[X2
k,t] < ∞.

3. β0 ∈ RK∗.



4 Chapter 1. Fixed Effects Binary Choice Models with Three or More Periods

The first condition is also considered in Chamberlain (2010). The second condition
is a standard moment restriction on the covariates. Finally, we exclude in the third
condition the case β0 = 0 here. This case can be treated separately, as the following
proposition shows.

Proposition 1.2.1 Suppose that Assumption 1.2.1 holds, F is strictly increasing on
R and there exist (t, t′) ∈ {1, . . . , T}2 such that E[(Xt−Xt′)(Xt−Xt′)′] is nonsingular.
Then β0 = 0 if and only if

P(Yt = 1, Yt′ = 0|Yt + Yt′ = 1, Xt, Xt′) = 1
2 a.s. (1.2.1)

Condition (1.2.1) can be tested by a specification test on the nonparametric re-
gression of D = Yt(1 − Yt′) on (Xt, Xt′), conditional on the event Yt + Yt′ = 1. See,
e.g., Bierens (1990) or Hong and White (1995).

Turning to identification on RK∗, we first recall the impossibility result of Cham-
berlain (2010). We say below that F is logistic if G(u) := F (u)/(1 − F (u)) =
w exp(λu) for some (w, λ) ∈ R+∗2.

Theorem 1.2.2 Suppose that T = 2, Xt includes 1{t = 2}, Assumption 1.2.1.1
holds, F is strictly increasing on R with bounded, continuous derivative and Supp(X)
is compact. If F is not logistic, there exists β0 ∈ RK∗, a distribution of γ|X and an
open ball B ⊂ RK such that β0 is not identified compared to β ∈ B.

This result implies in particular that when T = 2 and F is not logistic, relative
effects β0j/β0k, for k such that β0k ̸= 0, may not be identified. Such relative effects
are important as they are equal to relative marginal effects if both Xj,t and Xk,t

are continuous. If only Xk,t is continuous (say), −β0j/β0k still corresponds to a
compensating variation.2

The key step in Chamberlain’s proof is that if β0 is identified for all data gener-
ating process satisfying the restrictions of the theorem, the conditional probabilities
(conditional on X and γ) of the four possible trajectories for (Y1, Y2) are necessarily
affinely dependent. Moreover, by letting |γ| tend to infinity, the stable trajectories
(0, 0) and (1, 1) disappear from this relationship. This leads to the following func-
tional equation for G:

ψ1(α)G(u) + ψ2(α)G(u+ α) = 0, (1.2.2)
2To see the first point, note that under Assumptions 1.2.1-1.2.2,

µk,t(x) := ∂P(Yt = 1|Xk,t = xk,t, Xk,−t = xk,−t, X−k = x−k)
∂xk,t

= β0kE[F ′(x′
tβ0 + γ)|X = x]

and thus µj,t(x)/µk,t(x) = β0j/β0k. Also, −β0j/β0k corresponds to the change in Xk,t necessary to
keep P(Yt = 1|Xt, α) constant when Xj,t increases by one unit.
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for all u ∈ R, α in an open subset of R and some functions ψ1(·), ψ2(·) such that for all
α, (ψ1(α), ψ2(α)) ̸= (0, 0). The result follows by noting that the solutions necessarily
have the form u 7→ w exp(λu).

Equation (1.2.2) relies on the time dummy variable 1{t = 2}. However, the
proof of Theorem 2 of Chamberlain (2010) shows that even without such a dummy
variable, (1.2.2) is necessary for the semiparametric efficiency bound not to be zero,
or, equivalently, for the existence of regular, root-n consistent estimators of β0. In
this case, α corresponds to (x2 − x1)′β0, for (x1, x2) in a set of positive measure.

In any case, the same reasoning with T = 3 leads to the following equation for G:

ψ1(α)G(u) + ψ2(α)G(u+ α1) + ψ3(α)G(u+ α2) + ψ4(α)G(u)G(u+ α1)

+ψ5(α)G(u)G(u+ α2) + ψ6(α)G(u+ α1)G(u+ α2) = 0,
(1.2.3)

for all u ∈ R, α := (α1, α2) in an open subset of R2 and some functions ψk(·),
k = 1, . . . , 6, such that for for all α, (ψ1(α), . . . , ψ6(α)) ̸= (0, . . . , 0). We now have
6 = 23 − 2 terms instead of just 2 = 22 − 2, and thus we can expect to have other
solutions than just u 7→ w exp(λu). And indeed, one can check that if G has the form
u 7→ w1 exp(λ1u) + w2 exp(λ2u), we can construct (ψ1(α), ψ2(α), ψ3(α)) ̸= (0, 0, 0)
such that (1.2.3) holds, with ψ4(α) = ψ5(α) = ψ6(α) = 0. Similarly, if 1/G has
the form u 7→ w1 exp(λ1u) + w2 exp(λ2u), we can construct (ψ4(α), ψ5(α), ψ6(α)) ̸=
(0, 0, 0) such that (1.2.3) holds, with ψ1(α) = ψ2(α) = ψ3(α) = 0. Note that there
may still be other solutions to (1.2.3) that are increasing and have a limit of ∞ (resp.
0) at ∞ (resp. at −∞). The question of identifying all such solutions is left for future
research.

Generalizing this reasoning to any T > 2, we see that combinations of at most
T − 1 exponential functions satisfy the functional restrictions tantamount to (1.2.3)
and which render identification of β0 possible. This suggests that identification may
be achieved for the corresponding family of distribution, which we now formally
introduce. Hereafter, Λτ denotes a subset of {(λ1, . . . , λτ ) ∈ Rτ : 1 = λ1 < . . . < λτ}.

Assumption 1.2.2 (“Generalized” logistic distributions)3 There exist known
τ ∈ {1, . . . , T − 1} and λ := (λ1, . . . , λτ )′ ∈ Λτ and unknown w := (w1, . . . , wτ )′ ∈
(0,∞)τ such that:

Either F (u)/(1 − F (u)) = ∑τ
j=1wj exp(λju) (First type),

or (1 − F (u))/F (u) = ∑τ
j=1wj exp(−λju) (Second type).

Fixing min{λ1, . . . , λτ} to 1 is without loss of generality, as we can always multiply
β0, γi and εit by this factor. If F is of the second type, then one can show that the cdf

3Though we use the same name, our family of distributions should not be confused with those
introduced by Balakrishnan and Leung (1988) and Stukel (1988).
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of −εit is of the first type. Thus, up to changing (Yt, Xt) into (1 − Yt,−Xt), we can
assume without loss of generality, as we do afterwards, that F is of the first type. We
shall see that τ + 1 periods are sufficient to achieve identification. Hence, we assume,
again without loss of generality, that T = τ + 1: if T > τ + 1, we can always focus on
τ + 1 periods.

Before describing our identification strategy of β0 when F is a generalized logistic
distribution, two remarks are in order. First, we obtain our results below irrespective
of the vector w.4 Hence, in contradistinction with the fixed effect logistic model, we
do not fix the distribution of ε, but simply impose that it belongs to a family of
distributions indexed by two parameters. Members of this family differ in particular
by their skewness and kurtosis. In linear regressions, the residuals are often found
to have a skewed distribution with either positive or negative excess kurtosis. Then,
there is no reason why the latent variables corresponding to Yit would not exhibit a
similar pattern. On the other hand, we do fix λ. Identification of λ could also be of
interest but is not addressed in this work.

Now, the idea behind the identification of β0 is to construct a function m ̸= 0 such
that E[m(Y,X, β0)|X, γ] = 0 almost surely. Thus, as mentioned in the introduction,
we apply Bonhomme (2012)’s general idea of functional differencing. The function m
is related to the functions ψk in (1.2.3) when T = 3, and the generalization of (1.2.3)
when T > 3. For any x = (x′

1, . . . , x
′
T )′ ∈ RKT , let x−t

s = xs if s < t, x−t
s = xs+1 else.

We let

Mt(x;β) = (−1)t+1 det


exp(λ1x

−t
1

′β) . . . exp(λ1x
−t
T−1

′β)
...

...
exp(λT−1x

−t
1

′β) . . . exp(λT−1x
−t
T−1

′β)

 .

Then define, for any (y, x, β) ∈ {0, 1}T × Supp(X) × RK∗,

m(y, x;β) :=
T∑
t=1

1{yt = 1, yt′ = 0 ∀t′ ̸= t}Mt(x;β).

Our first result shows that m, indeed, satisfies a conditional moment restriction:

Theorem 1.2.3 If Assumptions 1.2.1-1.2.2 hold, we have, almost surely,

E[m(Y,X;β0)|X, γ] = E[m(Y,X;β0)|X] = 0. (1.2.4)

Theorem 1.2.3 shows there exists a known moment condition which potentially
identifies β0 in a more general model than the logistic one. Also, as the number of
periods T increases, the class of distributions F for which β0 can be point identified
increases. This is consistent with the idea that if T = ∞, β0 is point identified

4 We do impose however that all the components of w are non-zero, for normalization purposes.
Otherwise, the model with w = (w1, 0) and β0, for instance, would be equivalent to the model with
w = (0, w1) and β0/λ2. A similar issue arises with, e.g., w = (w1, w2, 0) if λ3/λ2 = λ2/λ1.
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for any F , by using variations in Xt of a single individual. Note however that the
class of generalized logistic distribution is not dense for the set of all cdf’s: any cdf F
belonging to the closure of this class should be such that either F/(1−F ) or (1−F )/F
is convex. In Section 1.7, we exhibit an even more general class of distributions (when
weights w’s are known) that does not suffer this limitation and for which we show that
moment conditions exist for T sufficiently large. Theorem 1.2.3 also complements the
results of Chernozhukov et al. (2013) showing that bounds on β0 for general F shrink
quickly as T increases.

Theorem 1.2.3 holds with T = τ + 1 = 2. In such a case, the conditional moment
condition can be written

E
[
1{Y1 > Y2} exp(X ′

2β0) − 1{Y2 > Y1} exp(X ′
1β0)|X

]
= 0.

This conditional moment generates the first-order conditions of the maximization
of the theoretical conditional likelihood, since these the first-order conditions are
equivalent to

E
[ (X1 −X2)

exp(X ′
1β0) + exp(X ′

2β0)
(
1{Y1 > Y2} exp(X ′

2β0) − 1{Y2 > Y1} exp(X ′
1β0)

)]
= 0.

1.2.2 Necessary and Sufficient Conditions for Identification

The discussion above implies that with T = τ + 1 = 2, β0 is identified by (1.2.4) as
soon as E [(X1 −X2)(X1 −X2)′] is nonsingular. We now turn to the more difficult
case where T − 1 = τ > 1. Let B denote the identified set of β0 obtained with our
conditional moment conditions, namely

B :=
{
b ∈ RK∗ : E[m(Y,X; b)|X] = 0 a.s.

}
.

We also denote by Bk := {bk : ∃b = (b1, . . . , bk, . . . , bK) ∈ B} (k = 1, . . . ,K) the
identified set of β0k. Our first result shows that B is included in a set depending on
the distribution of X only. To define this set, let us introduce

Dj(x; b) := det


exp(λjx′

1β0) . . . exp(λjx′
Tβ0)

exp(λ1x
′
1b) . . . exp(λ1x

′
T b)

...
exp(λT−1x

′
1b) . . . exp(λT−1x

′
T b)


and, for all b ∈ RK∗, let

D(b) =
{
x ∈ Supp(X) : max

j=1,...,T−1
Dj(x; b) > min

j=1,...,T−1
Dj(x; b) ≥ 0

or min
j=1,...,T−1

Dj(x; b) < max
j=1,...,T−1

Dj(x; b) ≤ 0
}
.
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Because Dj(x;β0) = 0 for all x ∈ Supp(X), we have P(X ∈ D(β0)) = 0. The following
lemma shows that B is actually included in the set of b’s satisfying this property.

Lemma 1.2.4 Suppose that Assumptions 1.2.1-1.2.2 hold. Then,

B ⊂ B̃ :=
{
b ∈ RK∗ : P(X ∈ D(b)) = 0

}
.

This result follows because the moment condition can be written as a weighted
sum of the Dj(x; b)’s, with positive weights. It shows that β0 is identified if for all
nonzero b ̸= β0, we can find some x ∈ Supp(X) such that all nonzero Dj(x; b) have
the same sign, and the set of such nonzero determinants is not empty.

The set B̃ is convenient in that it does not depend on the unknown distribution
of γ|X; but it is hard to characterize in general. Nevertheless, we are able to obtain
results under either of the conditions below.

Assumption 1.2.3 For all k ∈ {1, . . . ,K}, P (|{Xk,1, . . . , Xk,T }| = T,X−k = 0) >
0.5

Assumption 1.2.4 There exists (s, t, x) ∈ {1, . . . , T}2 × RK , s < t and a neighbor-
hood V of x such that Supp(X) ∩ [R(s−1)K × V × R(t−s−1)K × V × R(T−t)K ] has a
non-empty interior.

The first assumption corresponds to a case where all components of X are discrete.
It imposes that for all k and t, the support of Xk,t includes 0 and at least T − 1
additional elements. Because we can always replace Xk,· by Xk,· −ck for any ck ∈ RT ,
the condition 0 ∈ Supp(Xk,t) for all k, t holds as long as ∩Tt=1Supp(Xk,t) is not empty
(for all k). The second condition imposes that all components of Xt are continuous.
It also imposes that for at least two periods s and t, Supp(Xs) ∩ Supp(Xt) is not
empty. This last condition holds for instance if (Xt)t≥1 is strictly stationary.

Theorem 1.2.5 Suppose that Assumptions 1.2.1-1.2.2 hold. Then:

1. If Assumption 1.2.3 also holds, |B| < ∞ and Bk ⊂ {cβ0k : c ∈ {0} ∪
(1/λT−1, λT−1)}.

2. If Assumption 1.2.4 also holds,

B ⊂ B̃ ⊂ R := {cβ0 : c ∈ (1/λT−1, λT−1)}. (1.2.5)

Moreover, |B| ≤ T ! − 1 and |B| ≤ 2 when T = 3. All relative effects β0j/β0k,
for k such that β0k ̸= 0, are point identified.6

5When K = 1, the condition X−k = 0 should simply be omitted.
6The set of indices k such that β0k ̸= 0 is identified since by (1.2.5), Bk = {0} when β0k = 0, and

0 ̸∈ Bk otherwise.
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Whether Assumption 1.2.3 or 1.2.4 holds, Theorem 1.2.5 shows that under-
identification is at most finite, namely |B| < ∞. This implies that β0 is locally
identified in the sense that there exists a neighborhood of β0 in which the unique
solution to the equation E[m(Y,X; b)|X] = 0 is b = β0. Further, the first result of
Theorem 1.2.5 shows that with discrete regressors satisfying Assumption 1.2.3, the
“length” of the identified set on β0k, defined as

max
(b1k,b2k)∈B2

k

|b1k − b2k| ,

cannot exceed β0k(λT−1 − 1/λT−1) if 0 ̸∈ Bk. Note that under Assumption 1.2.3,
we can actually identify whether or not β0k = 0 without relying on our conditional
moments, since the sign of β0k is equal to that of E[Yt−Ys|X−k,s = X−k,t, Xk,t > Xk,s].
The second result on continuous regressors is stronger. It shows that if Assumption
1.2.4 holds, β0 is identified up to a scale c, with c belonging at most to (1/λT−1, λT−1).
This directly implies point identification of relative marginal effects. The second result
also states that B includes at most T !−1 points, and even only 2 points when T = 3.
Importantly, all these result hold for any possible distribution of γ|X. Thus, point
identification may actually hold for many distributions of γ|X, a point we shall come
back to below.

The proof of Theorem 1.2.5 relies on the following ideas. In the first case, when
bk ̸∈ {cβ0k : c ∈ {0} ∪ (1/λT−1, λT−1)}, we construct a subset of Supp(X) of positive
probability such that all nonzero Dj(x; b) have the same sign. The result then follows
by Lemma 1.2.4. We use a similar reasoning to prove (1.2.5). To establish the
upper bounds on |B|, we exploit the fact that the family of exponential functions
(v 7→ exp(ζkv))k=1,...,K with distinct coefficients ζk forms a Chebyshev system (see,
e.g., Krein and Nudelman, 1977, Chapter II for the formal definition of such systems).
This property implies that some key determinants do not vanish, and any non-zero
“exponential polynomial” v 7→

∑K
k=1 αk exp(ζkv) does not have more than K − 1

zeros.

We now turn to necessary conditions for identification. The following result is a
partial converse of Lemma 1.2.4 and Theorem 1.2.5 above.

Theorem 1.2.6 Suppose that Assumptions 1.2.1-1.2.2 hold and T = τ + 1 ≥ 3.
Then:

1. If P (|{X1, . . . , XT }| = T ) = 0, then B = RK∗.

2. If T = 3, then, for any b ∈ R, there exists a distribution of γ|X such that for
the corresponding distribution of Y |X, b ∈ B.7

The first result shows that for our conditional moments to have any identifying
power, there must exist trajectories of X = (X1, . . . , XT ) with distinct values at all

7Note that B depends on the distribution of γ|X but as before, we leave this dependence implicit.
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periods. Since we focus here on T ≥ 3, this excludes in particular the case where
Xt is binary. More generally, if all components of Xt are binary, one must have
K > log(T )/ log(2) for our moment conditions to have some identifying power. The
second result shows that when T = 3, one cannot improve (1.2.5), at least in a uniform
sense over conditional distributions of γ. Specifically, for any b ∈ R, there exists a
data generating process satisfying Assumptions 1.2.1-1.2.2 and for which b ∈ B.
Note however that failure of point identification at b implies strong restrictions on
the distribution of γ|X. If b ∈ B with b ̸= β0, then, for almost all x,

E [a1(γ, x)D1(x, b) + a2(γ, x)D2(x, b)|X = x] = 0, (1.2.6)

where ai(γ, x) is defined in (1.6.20). Namely, the distribution of γ|X should satisfy
a conditional moment restriction (note that (1.2.6) trivially holds when b is replaced
by β0, because D1(x, β0) = D2(x, β0) = 0). A violation of (1.2.6) on a set of x of
positive measure is sufficient to discard b from B.8

1.3 GMM Estimation

1.3.1 Efficiency Bounds

We now suppose point identification based on (1.2.4) (namely, B = {β0}) and discuss
estimation of β0. Let R(X) = E[∇βm(Y,X;β0)|X], Ω(X) = V[m(Y,X;β0)|X] (so
that Ω(X) ∈ R) and define, provided that it exists,

V0 := E
[
Ω(X)−1R(X)R(X)′

]−1
.

As shown by Chamberlain (1987), asymptotically optimal estimators of β0 based on
(1.2.4) have an asymptotic variance equal to V0. The standard way to construct
such estimators consists in two steps: first, one uses the unconditional moment
g(X)m(Y,X;β) for some g(·) and second, one estimates the optimal instruments
g⋆(X) := R(X)/Ω(X). Such estimators, however, are not consistent if

E[g(X)m(Y,X;β)] = 0 or E[g⋆(X)m(Y,X;β)] = 0

for β ̸= β0; see Dominguez and Lobato (2004). Instead, we can use an efficient GMM
estimator exploiting the continuum of moment conditions associated with (1.2.4). We
refer in particular to Section 4 in Hsu and Kuan (2011) and Section 2.5 in Lavergne
and Patilea (2013) for the construction of such estimators.

These GMM estimators are optimal among those based on (1.2.4). However, it is
not obvious that (1.2.4) actually exhausts all the possible restrictions induced by the
model, and therefore that V0 is the semiparametric efficiency bound of β0. Theorem
1.3.1 below shows that this is the case for T = τ+1 = 3 under the following conditions.

8Related to this, we establish point identification of β0 under some restrictions on the conditional
distribution of γ|X in a previous version of Davezies et al. (2020).

https://arxiv.org/abs/2009.08108v1
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Assumption 1.3.1 1. There exists t ∈ {1, . . . , T} such that E[XtX
′
t] is nonsin-

gular.

2. E
[
Ω−1(X)R(X)R(X)′] exists and is nonsingular.

3. |Supp(γ|X)| ≥ 10 almost surely.

The first condition is a mild restriction on X. The second condition is a lo-
cal identifiability condition, which is neither weaker nor stronger than B = {β0}.
The third condition is weaker than that imposed by Chamberlain (2010), namely
Supp(γ|X) = R. Intuitively, if γ|X has few points of support, moments of γ|X
are restricted, and we may exploit this to produce additional restrictions that would
improve an estimation of β0 based solely on (1.2.4).

Theorem 1.3.1 Assume T = τ + 1 = 3 with λ2 ̸= 2 and Assumptions 1.2.1, 1.2.2
and 1.3.1 hold. Then the semiparametric efficiency bound of β0, V ⋆(β0), is finite and
satisfies V ⋆(β0) = V0.

Intuitively, this result states that all the information content of the model is in-
cluded in the conditional moment restriction E[m(Y,X;β0)|X] = 0. It complements,
for T = τ + 1 = 3, the result of Hahn (1997), which states that the conditional
maximum likelihood estimator is the efficient estimator of β0 if F is logistic. Note
however that we cannot compare his bound with ours in the logistic case: for this
distribution, w2 = 0, and for identification reasons, this case is excluded from our
family of generalized logistic distributions with τ = 2. We refer to Footnote 4 above
for more details about this.

1.3.2 Unbalanced Panel

In many applications, as that considered below, panel data are unbalanced. To handle
this case, we can simply consider, for each individual, all possible subsets of periods
of size τ + 1 and form the corresponding moment conditions. Specifically, suppose
that the set of periods available for individual i is Ti ⊂ {1, . . . , T}. Thus, we ob-
serve the sample ((Yit, Xit)t∈Ti)i=1,...,n. Let us assume that the selection of periods is
(conditionally) exogenous, namely

Ti ⊥⊥ (Yit)t≥1|(Xit)t≥1, γi. (1.3.1)

Then, we basically get back to the case T = τ + 1 by considering the moment vector

ψ(Yi, Xi, Ti, β) = 1{|Ti| ≥ τ + 1}
∑

t1<...<tτ+1
(t1,...,tτ+1)∈T τ+1

i

g(Xit1 , . . . , Xitτ+1)m((Yit, Xit)t∈{t1,...,tτ+1}, β).
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for some function g(Xit1 , . . . , Xitτ+1) ∈ RL, with L ≥ K. Condition (1.3.1) ensures
that E [ψ(Yi, Xi, Ti, β0)] = 0. Then, we can consider the GMM estimator

β̂ = arg min
β

(
n∑
i=1

ψ(Yi, Xi, Ti, β)
)′

Ŵ

(
n∑
i=1

ψ(Yi, Xi, Ti, β)
)
, (1.3.2)

for some symmetric positive definite Ŵ . This idea also applies to balanced panel data
for which T > τ + 1. In such a case, Ti = {1, . . . , τ + 1} and (1.3.1) automatically
holds.

1.4 Application to Brender and Drazen (2008)

Brender and Drazen (2008) study how budget deficits and economic growth affect
reelection. To this end, they gather data from multiple sources on 74 countries, over
the period 1960-2003. They use two definitions for their binary outcome variable
REELECT, one where reelection is defined in a “narrow” sense and another where it is
“expanded”, following here their terminology. This also leads to two different samples,
as REELECT may be missing in the narrow sense but equal to 0 in the expanded
sense. The covariates related to budget deficits are BALCH_term and BALCH_ey.
BALCH_term corresponds to the change in ratio of the central government’s balance
to GDP over the term in office. BALCH_ey is the change in the balance/GDP
ratio between the year preceding the election and the election year. The variable
GDPPC_gr is the average annual growth rate of real GDP per capita between two
election years. The authors also include in their models two controls, namely a dummy
for a new democracy and a dummy of having a majoritarian electoral system. We
refer to Brender and Drazen (2008) for more details about the data.

In their main specification, Brender and Drazen (2008) consider a simple logit
model, see Table 2 therein. Then, as a robustness check (see their Table 3), they
estimate a fixed effect logit model. They show that their main results are robust to
including fixed effects. However, the assumption of logistic errors is not warranted,
so we investigate whether the results are robust to this assumption, by considering
instead the family of generalized logistic distribution, with τ = 2. We focus on
the sample of developed countries as the sample of less developped countries is very
small, and thus leads to noisy estimates. Note that the data are not balanced at
all: some countries are only observed for 4 periods in the narrow sample (resp. 5
in the expanded sample), while others are observed over 13 (resp. 14) periods. We
thus apply the procedure mentioned in Section 1.3.2. The vector of instruments
g(Xit1 , Xit2 , Xit3) is simply the list of the corresponding 15 variables (as Xit ∈ R5),
demeaned over these three periods. We consider λ2 = 1.2, 1.4, 1.6 and 1.8. We do not
consider larger values of λ2 as they seem to lead to numerical instabilities.9 Finally, as
the GMM objective function may have local optima, we consider 200 random initial

9This may be because |Mt(x; β)| increases quickly with λ2, due to the exponential function.
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points and pick the vector of parameters minimizing the corresponding final objective
function.

The results are presented in Table 1.1. Because the coefficients themselves are
not comparable, we focus on the sign of BALCH_ey and on the relative effects with
respect to BALCH_ey; note that we were able to recover the exact same estimates
as Brender and Drazen (2008) in their Tables 2 and 3. We choose BALCH_ey as the
reference variable for relative effects because its coefficient should not be 0, and it
has the largest t-test on the logit and fixed effect logit model. For the three methods,
the t-statistics of relative effects under the null hypothesis are obtained using the
estimated asymptotic variance of β̂.

Overall, at least two important results seem robut to the distributional assumption
on the unobserved terms. First, the sign of BALCH_ey is always positive. Second, the
relative effect of BALCH_term and BALCH_ey remain quite stable when considering
our FE generalized logistic model, with fluctuations between 0.27 and 0.52 depending
on the sample and value of λ2 that we consider. At the 10% level, we cannot reject that
the effect of BALCH_term is actually 0, except in the narrow sample with λ2 = 1.8.
But the test was already close to not being rejected with the FE logit model on the
narrow sample (p-value=0.097), and not rejected with the simple and FE logit models
based on the expanded sample (p-values=0.124 and 0.204 respectively). So the most
important results seem overall robust to the change of specification we consider. Other
results fluctuate slightly more: the fact of being a new democracy had a positive and
borderline significant effect with the expanded sample (p-value=0.099). It is not
significant anymore with our model, the coefficient being sometimes even negative.
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Table 1.1: Estimates of Relative Effects of Budget Balances and
Growth on the Probability of Reelection in Developed Economies

Logit FE logit FE generalized logit
λ2 1.2 1.4 1.6 1.8

Narrow sample
Sign of BALCH_ey >0 >0 >0 >0 >0 >0
BALCH_term/BALCH_ey 0.54 0.55 0.48 0.37 0.37 0.52

(2.34) (1.82) (0.03) (0.06) (0.03) (2.49)
GDPPC_gr/BALCH_ey -0.04 0.27 -0.35 -0.34 -0.33 -0.37

(0.17) (0.70) (0.04) (0.07) (0.04) (1.04)
New democraties/BALCH_ey 0.03 0.07 0.05 0.05 0.05 -0.20

(2.69) (1.62) (0.04) (0.08) (0.04) (0.03)
Majoritarian 0.02 0.07 -0.10 0.00 0.00 -0.03
electoral system/BALCH_ey (1.31) (1.52) (0.03) (0.02) (0.01) (0.20)

Expanded sample
Sign of BALCH_ey >0 >0 >0 >0 >0 >0
BALCH_term/BALCH_ey 0.40 0.36 0.34 0.27 0.37 0.47

(1.44) (1.35) (0.85) (1.64) (0.72) (0.42)
GDPPC_gr/BALCH_ey 0.09 0.46 -0.09 0.00 -0.14 -0.28

(0.30) (1.20) (0.22) (0.00) (0.29) (0.61)
New democraties/BALCH_ey 0.04 0.09 0.02 0.01 -0.00 -0.15

(3.11) (1.81) (0.32) (0.08) (0.00) (0.26)
Majoritarian 0.02 0.04 -0.15 -0.10 -0.21 -0.67
electoral system/BALCH_ey (1.74) (1.12) (0.99) (1.54) (1.08) (1.14)

Notes: Analytical t-statistics of the coefficient ratios are under parentheses. The estimated asymp-
totic variance of the simple logit model is obtained through clustering at the country level. Both sam-
ples include 23 countries, with on average 7.1 (resp. 7.8) periods per country in the narrow (resp. ex-
panded) sample.

1.5 Conclusion

This Chapter studies the identification and root-n estimation of the common slope
parameter in a static panel binary model with exogenous and bounded regressors.
We first show that when T ≥ 3 and the unobserved terms belong to a family of
generalized logistic distribution, a conditional moment restriction holds. Then, we
study the identified set corresponding to these restrictions. In particular, under a
restriction on the distribution of covariates only, relative effects are point identified,
no matter the distribution of the individual effect. Our identification results lead
to a GMM estimator that reaches the semiparametric efficiency bound when T = 3.
Estimating this model may serve as a robustness check for the fixed effect logit model,
something we illustrate in the application.
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This Chapter also leaves a few questions unanswered. A first one is whether
the family of F considered here is the only one for which point identification can
be achieved (see Section 1.7 below). Another one is whether the GMM estimator
still reaches the semiparametric efficiency bound when T > 3. Both questions raise
difficult issues and deserve future investigation.

1.6 Proofs of the Results

For any real a ∈ R, we let sgn(a) := 1(a > 0) − 1(a < 0). For any subset A of a
reference space E, we let Ac denote the complement of A in E. The following lemma
on “exponential polynomials” is key in the proof of Theorems 1.2.5 and 1.3.1.

Lemma 1.6.1 Let K ≥ 1, (ζ1, . . . , ζK) be K distinct real numbers, (α1, . . . , αK)′ ∈
RK , (α1, . . . , αK) ̸= (0, . . . , 0) and P (x) := ∑K

k=1 αk exp(ζkx). Then P has at most
K − 1 distinct roots.

The proof is by induction on K and Rolle’s theorem, see e.g. Chapter 2, section
2 of Krein and Nudelman (1977).

1.6.1 Proposition 1.2.1

The sufficient part is obvious. To prove necessity, suppose β0 ̸= 0. Since E[(Xt −
Xt′)(Xt − Xt′)′] is non singular, there exists a subset S of the support of (Xt, Xt′)
such that P(S) > 0 and for all (xt, xt′) ∈ S, (xt − xt′)′β0 has constant, non-zero sign.
Without loss of generality let us assume (xt − xt′)′β0 > 0. Let G(u) := F (u)/(1 −
F (u)). Because G is strictly increasing, we have, for all g ∈ R,

G(x′
tβ0 + g) > G(x′

t′β0 + g).

Equivalently,

F (x′
tβ0 + g)(1 − F (x′

t′β0 + g)) > F (x′
t′β0 + g)(1 − F (x′

tβ0 + g)).

In other words,

P(Y1 = 1, Yt′ = 0|Xt = xt, Xt′ = x′
t, γ = g) > P(Y1 = 0, Yt′ = 1|Xt = xt, Xt′ = x′

t, γ = g),

and the result follows by integration over g.
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1.6.2 Theorem 1.2.3

Let us define

A(x, γ;β) :=


∑T−1
j=1 wj exp(λj(x′

1β + γ)) . . .
∑T−1
j=1 wj exp(λj(x′

Tβ + γ))
exp(λ1x

′
1β) . . . exp(λ1x

′
Tβ)

...
...

exp(λT−1x
′
1β) . . . exp(λT−1x

′
Tβ)

 .

Let Ai(x, γ;β) denote the ith row of A(x, γ;β). Then

A1(x, γ;β) =
T−1∑
j=1

wj exp(λjγ)Aj+1(x, γ;β).

It follows that for all (x, γ) ∈ Supp(X) × R,

detA(x, γ;β0) = 0.

By Assumption 1.2.2 and since we focus on the first type therein, we have G(u) :=
F (u)/(1 − F (u)) = ∑T−1

j=1 wj exp(λju). Now, developing detA(x, γ;β0) with respect
to the first row yields, by definition of the function m,

∑
y∈{0,1}T

m(y, x;β0)
∏
t:yt=1

G(x′
tβ0 + γ) = 0.

Multiplying this equality by ∏t(1 − F (x′
tβ0 + γ)) we obtain

∑
y∈{0,1}T

m (y, x;β0)
∏
t:yt=1

F (x′
tβ0 + γ)

∏
t:yt=0

(1 − F (x′
tβ0 + γ))

 = 0.

This equation is equivalent to E [m(Y,X;β0)|X, γ] = 0 a.s. The result follows.

1.6.3 Lemma 1.2.4

Let b ∈ B̃c and let us prove that b ̸∈ B. Fix x ∈ D(b) and let Jx := {j ∈ {1, . . . , T −
1} : Dj(x; b) ̸= 0} and

aj(x) := wjE

 exp(λjγ)∏T
t=1

(
1 +∑T−1

k=1 wk exp(λk(x′
tβ0 + γ))

)∣∣∣X = x

 . (1.6.1)

Then Jx ̸= ∅ and

E[m(Y,X; b)|X = x] =
∑
j∈Jx

aj(x)Dj(x; b). (1.6.2)

Moreover, aj(x) > 0 and all the Dj(x; b) for j ∈ Jx have the same sign. Thus,
E[m(Y,X; b)|X = x] ̸= 0. Because b ∈ B̃c, we have, by definition of B̃, P(X ∈
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D(b)) > 0. Thus, E[m(Y,X; b)|X = x] ̸= 0 with positive probability, implying b ̸∈ B.

1.6.4 Theorem 1.2.5

Part 1

a. Bk ⊂ Rk := {cβ0k : c ∈ {0} ∪ (1/λT−1, λT−1)}.

Let us fix k ∈ {1, . . . ,K}, b = (b1, . . . , bK) and define

X0k := {x ∈ Supp(X) : xj,1 = · · · = xj,T = 0 ∀j ̸= k, |{xk,1, . . . , xk,T }| = T} .

First, suppose that β0k = 0 and bk ̸= 0. Then, Dj(x; b) does not depend on j.
Moreover, because

∣∣{x′
1b, . . . , x

′
T b}

∣∣ = |{xk,1bk, . . . , xk,T bk}| = T,

we have Dj(x; b) ̸= 0 by properties of Chebyshev systems. Thus, x ∈ D(b), implying
that X0k ⊂ D(b). By Assumption 1.2.3, P(X ∈ X0k) > 0. Hence, P(X ∈ D(b)) > 0.
By Lemma 1.2.4, bk ̸∈ Bk and Bk ⊂ {0} = Rk.

Now, suppose β0k ̸= 0. Then any bk ∈ R can be written as cβ0k. We prove that if
c ̸∈ {0} ∪ (1/λT−1, λT−1), then X0k ⊂ D(b). By Lemma 1.2.4 again, this shows that
Bk ⊂ Rk. Let us first suppose that c ̸∈ {1/λT−1, λT−1} and fix x ∈ X0k. Let us show
that for each (j, j′) ∈ {1, . . . , T − 1}2,

sgn(Dj(x; b)) = sgn(Dj′(x; b)) ̸= 0. (1.6.3)

If c ∈ (−∞, 0) , we have

cλT−1 < . . . < cλ2 < c < 0 < 1 < λ2 < . . . < λT−1. (1.6.4)

If c ∈ (0, 1/λT−1), we have

0 < c < cλ2 < . . . < cλT−1 < 1 < λ2 < . . . < λT−1. (1.6.5)

Else, c ∈ (λT−1,+∞) and we have

1 < λ1 < . . . < λT−1 < c < cλ2 < . . . < cλT−1. (1.6.6)

Let pj denote the number of transpositions (ie permutations exchanging two elements,
leaving the others fixed) needed to sort λ̃j := (λj , c, cλ2, . . . , cλT−1)′ in ascending
order. It is clear from Equations (1.6.4)-(1.6.6) that pj = pj′ = p for all (j, j′) ∈
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{1, . . . , T − 1}2. Let λ̃sj denote the sorted version of λ̃j and define

Dj(x; b, λ) =: det


exp(λjx′

1β0) . . . exp(λjx′
Tβ0)

exp(λ1x
′
1b) . . . exp(λ1x

′
T b)

...
exp(λT−1x

′
1b) . . . exp(λT−1x

′
T b)

 ,

so that Dj(x; b) = Dj(x; b, λ). Because x ∈ X0k, we have

Dj(x; b, λ) = det


exp(λjxk,1β0k) . . . exp(λjxk,Tβ0k)
exp(cλ1xk,1β0k) . . . exp(cλ1xk,Tβ0k)

...
exp(cλT−1xk,1β0k) . . . exp(cλT−1xk,Tβ0k)

 = Dj(x;β0, λ̃
j).

Hence, for all j ∈ {1, . . . , T − 1},

sgn (Dj(x; b)) = sgn
(
Dj(x;β0, λ̃

j)
)

= (−1)p sgn
(
Dj(x;β0, λ̃

sj)
)
.

Now, let p be the number of pairwise coordinates permutations needed to sort the
vector (x′

1β0, . . . , x
′
Tβ0)′ in ascending order, and let xs denote a rearrangement of x

such that xs1′β0 < . . . < xsT
′β0. It follows that, for all j ∈ {1, . . . , T − 1},

sgn (Dj(x; b)) = (−1)p sgn
(
Dj(x;β0, λ̃

sj)
)

= (−1)p+p sgn
(
Dj(xs;β0, λ̃

sj)
)

= (−1)p+p,

where the last equality follows by properties of Chebyshev systems. The last equality
implies that (1.6.3) holds. Hence x ∈ D(b), implying P(X ∈ D(b)) > 0.

Finally, consider the case where b = cβ0 with c ∈ {1/λT−1, λT−1}. By conti-
nuity of the determinant and (1.6.3), we either have 0 ≤ minj=1,...,T−1Dj(x; b) ≤
maxj=1,...,T−1Dj(x; b) or 0 ≥ maxj=1,...,T−1Dj(x; b) ≥ minj=1,...,T−1Dj(x; b). More-
over, DT−1(x;β0/λT−1) ̸= 0 and D1(x;λT−1β0) ̸= 0. Therefore, whatever the value
of c (1/λT−1 or λT−1), we have x ∈ D(b). Then, again, P(X ∈ D(b)) > 0. The result
follows.

b. |B| < ∞.

Because |B| ≤
∏K
k=1 |Bk|, it suffices to prove that for each k, |Bk| < ∞. Fix

k. If β0k = 0, then Bk = {0} and we have nothing to prove. Otherwise, let b =
(b1, . . . , bK) ∈ B and fix x = (x1, . . . , xT ) ∈ X0k. Let c ∈ {0}∪(1/λT−1, λT−1) be such
that bk = cβ0k. By Equation (1.6.2), we have ∑T−1

j=1 aj(x)Dj(x; b) = 0, where aj(x)
is defined by (1.6.1). Moreover, by definition of X0k, we have Dj(x; b) = Dj(x; cβ0).
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Then, c satisfies
T−1∑
j=1

aj(x)Dj(x; cβ0) = 0, (1.6.7)

Developing Dj(x; cβ0) with respect to the first line, and using the definition of the
determinant, we obtain

T∑
t=1

(−1)t+1
T−1∑
j=1

aj(x) exp(λjx′
tβ0)

∑
σ∈St

ε(σ) exp

∑
s ̸=t

λσ(s)x
′
sβ0

 c
 = 0, (1.6.8)

where St is the set of bijections from {1, . . . , T}\{t} to {1, . . . , T−1} and ε(σ) denotes
the parity of σ (we can assimilate σ to a permutation by assimilating {1, . . . , T}\{t}
with {1, . . . , T − 1}, keeping the natural ordering of both sets). The left-hand side of
(1.6.8) is a function of c of the form ∑K

k=1 dk exp(bkc), with K ≤ T ! (the inequality
arises because some coefficients in the exponential monomials may be equal). Let us
show that dk ̸= 0 for at least one k. First, remark that x′

tβ0 = xk,tβ0,k. Then, because
|{xk,1, . . . , xk,T }| = T and β0k ̸= 0, we can assume without loss of generality, up to a
rearrangement of periods, that x′

1β0 < . . . < x′
Tβ0. Let It be the element of St such

that It(s) = s− 1{s ≥ t+ 1}. By the rearrangement inequality, for all σ ∈ St\{It},

∑
s ̸=t

λσ(s)x
′
sβ0 <

∑
s ̸=t

λIt(s)x
′
sβ0.

Moreover, for all t ∈ {1, . . . , T}, let

g(t) :=
∑
s ̸=t

λIt(s)x
′
sβ0.

Because It(s) = It−1(s) for all t > 1 and s ≤ t− 2 or s ≥ t+ 1, we have

g(t) − g(t− 1) = λt−1x
′
t−1β0 − λt−1x

′
tβ0 < 0.

Hence, the exponential monomial with highest coefficient in (1.6.8) is

exp

∑
s ̸=1

λs−1x
′
sβ0

 c


and we can obtain it only by letting t = 1 and σ = I1. Because aj(x) > 0 for all j,
the coefficient of this monomial is ∑T−1

j=1 aj(x) exp(λjx′
1β0) > 0. Therefore, at least

one dk in the exponential polynomial ∑K
k=1 dk exp(bkc) satisfies dk ̸= 0. Then, by

Lemma 1.6.1, the equation ∑K
k=1 dk exp(bkc) = 0 has at most T ! − 1 solutions. Thus,

|Bk| ≤ T ! − 1. The result follows.
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Part 2

The point identification of relative marginal effects is obvious given the other results,
which we prove in turn.

a. Equation (1.2.5) holds.

Let us define, for all b ∈ RK∗,

X1(b) =
{
x = (x1, . . . , xT ) ∈ Supp(X) : ∃(s, t) ∈ {1, . . . , T}2 : x′

sb = x′
tb, x

′
sβ0 ̸= x′

tβ0,

and ∀(s′, t′) ∈ {1, . . . , T}2, s′ ̸= t′, {s′, t′} ≠ {s, t} : x′
s′b ̸= x′

t′b
}
.

The proof of is divided into three steps. First, we prove that X1(b) ⊂ D(b), for all
b ∈ RK∗\lin(β0). In a second step, we prove that B̃ ⊂ lin(β0). Finally, the third step
shows that B̃ ⊂ R.

First step: X1(b) ⊂ D(b) for all b ∈ RK∗\lin(β0).

Let x ∈ X1(b) and (s, t) be as in the definition of X1(b). Developing Dj(x; b)
according to the first row, we obtain, for all j ∈ {1, . . . , T − 1},

Dj(x; b) =
T∑
ℓ=1

(−1)ℓ+1 exp(λjx′
ℓβ0)D−{1,ℓ}

j (x; b),

where D−{1,ℓ}
j (x; b) denotes the determinant of the matrix in Dj(x; b) once its first

row and ℓth column have been removed. Remark that, for all j ∈ {1, . . . , T − 1}, for
all ℓ ∈ {1, . . . , T}\{s, t}, D−{1,ℓ}

j (x; b) = 0, and

D
−{1,t}
j (x; b) = (−1)|s−t|−1D

−{1,s}
j (x; b).

As a result,

Dj(x; b) = (−1)s+1 exp(λjx′
sβ0)D−{1,s}

j (x; b) + (−1)t+1 exp(λjx′
tβ0)D−{1,t}

j (x; b)

= D
−{1,s}
j (x; b)

[
(−1)s+1 exp(λjx′

sβ0) + (−1)t+1 exp(λjx′
tβ0)(−1)|s−t|−1

]
= D

−{1,s}
j (x; b)(−1)s+1 [exp(λjx′

sβ0) − exp(λjx′
tβ0)

]
,

where we have used (−1)|s−t|+t = (−1)s. Now, D−{1,s}
j (x; b) does not depend on j

and by definition of Chebyshev systems, D−{1,s}
j (x; b) ̸= 0. Also, the sign of the term

inside brackets is equal to the sign of (xs − xt)′β0, and thus does not depend on j.
Hence for all (j, j′) ∈ {1, . . . , T − 1}2,

sgn (Dj(x; b)) = sgn
(
Dj′(x; b)

)
̸= 0,

which shows that x ∈ D(b).

Second step: B̃ ⊂ lin(β0).
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Fix b ̸∈ lin(β0), b ̸= 0 and let us prove that P(X ∈ D(b)) > 0. The result will then
follow by Lemma 1.2.4.

Suppose without loss of generality that (s, t) in Assumption 1.2.4 is equal to
(1, 2). By that assumption, there exists x̃ := (x′, x′, x′

3, . . . , x
′
T )′ ∈ Supp(X) and a

neighborhood Ṽ of x̃ included in Supp(X). Since b and β0 are not collinear, there
exists (u′

1, u
′
2)′ ∈ R2K such that (u1 − u2)′b = 0 and (u1 − u2)′β0 ̸= 0. Moreover, up

to replacing (u′
1, u

′
2)′ by c(u′

1, u
′
2)′ with c ̸= 0, (u′

1, u
′
2)′ can be chosen of arbitrarily

small norm.

Now, let x1 = x2 = x and

A(u1, u2) =
{

(u′
3, . . . , u

′
T )′ ∈ RK(T−2) : ∀(s, t) ∈ {1, . . . , T}2, s ̸= t, {s, t} ≠ {1, 2} :

(us − ut + xs − xt)′b ̸= 0
}
,

The set A(u1, u2) is dense as the intersection of open, dense subsets of RK(T−2).
Hence, there exists (u′

3, . . . , u
′
T )′ ∈ A(u1, u2) with arbitrarily small norm. Then,

we can ensure that u := (u′
1, . . . , u

′
T )′ satisfies x∗ := x̃ + u ∈ Ṽ . Moreover, by

construction, x∗ ∈ X1(b). Then, Step 1 implies x∗ ∈ D(b) and Dj(x; b) ̸= 0 for
all j. By continuity of the map x 7→ Dj(x; b) and Assumption 1.2.4, there exists a
neighborhood of x∗, V ⊂ D(b) such that P(X ∈ V) > 0. Hence, P (X ∈ D(b)) > 0.

Third step: B̃ ⊂ R.

We just have to prove that if b = cβ0 with c ∈ (−∞, 1/λT−1] ∪ [λT−1,+∞) and
c ̸= 0 (since β0 ̸= 0), then b ̸∈ B. The reasoning is exactly the same as in Part 1.a,
with just one change: Instead of considering x ∈ X0k, we consider x ∈ X0, with

X0 :=
{
x ∈ Supp(X) :

∣∣{x′
1β0, . . . , x

′
Tβ0}

∣∣ = T
}
.

b. |B| ≤ T ! − 1.

The reasoning is exactly the same as in Part 1.b, with just two changes. First, we
reason directly on B, not on Bk. Second, instead of considering x ∈ X0k, we consider
x ∈ X0.

c. |B| ≤ 2 when T = 3.

For any b = cβ0 ∈ B, we have, as in Eq. (1.6.7),

a1(x)D1(x; cβ0) + a2(x)D2(x; cβ0) = 0 (1.6.9)

for almost all x ∈ Supp(X). Suppose there exist three distinct solutions 1, c1, c2

to Equation (1.6.9), with 1/λ2 < c1 < c2 < λ2. Multiply Eq. (1.6.9), evaluated
at c = c1, by D2(x; c2β0). Similarly, multiply Eq. (1.6.9), evaluated at c = c2, by
D2(x; c1β0). Substracting the two expressions, we obtain, since a1(x) > 0,

D1(x; c1β0)D2(x; c2β0) −D1(x; c2β0)D2(x; c1β0) = 0. (1.6.10)
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For any x ∈ X0, let ut := x′
tβ0. Fixing u2 and u3, (1.6.10) may be written as

P (u1) :=
13∑
k=1

αk exp(ζku1) = 0, (1.6.11)

where the αk and ζk are functions of (u2, u3). Suppose first that c2 > 1. Some tedious
algebra shows that the smallest ζk is 1 + c1, and its associated coefficient is equal to

αk = [exp(c2(u2 + λ2u3)) − exp(c2(u3 + λ2u2))]

× [exp(λ2(u2 + c1u3)) − exp(λ2(u3 + c1u2))] .

Because u2 ̸= u3 (as x ∈ X0), αk ̸= 0. Hence P is nonzero and by Lemma 1.6.1,
it has at most 12 zeros. However, under Assumption 1.2.4.2 and the second part of
Assumption 1.2.4.3,

∣∣Supp(X ′
1β0|X ′

2β0 = u2, X
′
3β0 = u3)\{u2, u3}

∣∣ > 12.

Thus, in view of (1.6.11), P has strictly more than 12 zeros, a contradiction.

Second, suppose that c2 < 1. Then, the largest ζk is λ2(1 + c2), and its associated
coefficient is equal to

αk = − [exp(u2 + c2u3)) − exp(u3 + c2u2)]

× [exp(c1(u2 + λ2u3)) − exp(c1(u3 + λ2u2))] .

Again, αk ̸= 0 and we reach a contradiction as before. The result follows.

1.6.5 Theorem 1.2.6

Part 1

Let us suppose that P(|{X1, . . . , XT }| = T ) = 0. Let T1 and T2 > T1 denote the
two random dates, functions of X only, such that XT1 = XT2 almost surely. For all
t ∈ {1, . . . , T}, let et denote the vector of T − 1 zeros and a 1 at coordinate t. Let
f(x; b) := E [m(Y,X; b)|X = x]. By definition,

f(X; b) =
∑

y∈{0,1}T

P(Y = y|X)m(y,X; b). (1.6.12)

Moreover, almost surely,

P(Y = eT1 |X) =
∫
F (X ′

T1β0 + γ)
∏
t̸=T1

(1 − F (X ′
tβ0 + γ))dFγ|X(γ)

=
∫
F (X ′

T2β0 + γ)
∏
t̸=T2

(1 − F (X ′
tβ0 + γ))dFγ|X(γ)

=P(Y = eT2 |X). (1.6.13)
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Next, remark that the matrices in MT1(X; b) and MT2(X; b) have the same columns
but in different order, with T2 − T1 − 1 transpositions needed to obtain the same
ordering. Thus, by definition of the determinant, MT1(X; b) = −MT2(X; b), which
implies

m(eT1 , X; b) = −m(eT2 , X; b). (1.6.14)

Moreover, for all s ̸∈ {T1, T2}, m(es, X; b) = 0 because Ms includes two identical
columns (given that XT1 = XT2). Finally, if ∑t yt ̸= 1, we also have m(y,X; b) = 0.
These last points, combined with (1.6.12)-(1.6.14), imply f(b) = 0. Thus, b ∈ B and
the result follows.

Part 2

The proof is in two steps. First, we show that for all b ∈ R,

sgn(D1(X; b)) = − sgn(D2(X; b)) a.s. (1.6.15)

Second, we show that whenever (1.6.15) holds, we can construct a distribution of γ|X
such that (1.2.4) holds. The result then follows.

First step: (1.6.15) holds.

First, the result holds for b = β0 since then Dj(X; b) = 0 for j ∈ {1, 2}. Otherwise,
fix b = cβ0 ∈ R and let λ̃ := (1, c, cλ2) and λ̌ := (λ2, c, cλ2). Let p (resp. p′) denote
the minimal number of pairwise coordinate permutations needed to sort the vector
λ̃ (resp. λ̌) and let λ̃s (resp. λ̌s) be the corresponding vector, sorted in ascending
order. If c ∈ (1/λ2, 1), we have p = 1 and p′ = 2, whereas if c ∈ (1, λ2), p = 0 and
p′ = 1. Hence, in all cases, p′ = p+ 1.

Now, for any x ∈ Supp(X), notice that

D1(x; b, λ) = D1(x;β0, λ̃) = (−1)pD1(x;β0, λ̃
s), (1.6.16)

D2(x; b, λ) = D2(x;β0, λ̌) = (−1)p′
D2(x;β0, λ̌

s). (1.6.17)

Let p′′ be the minimal number of pairwise coordinates permutations needed to sort
the vector (x′

1β0, x
′
2β0, x

′
3β0) in ascending order, and let xs denote the corresponding

vector, i.e., such that x′
s1β0 ≤ x′

s2β0 ≤ x′
s3β0. Then

D1(x;β0, λ̃
s) = (−1)p′′

D1(xs;β0, λ̃
s), (1.6.18)

D2(x;β0, λ̌
s) = (−1)p′′

D2(xs;β0, λ̌
s). (1.6.19)

Now, by properties of Chebyshev systems, D1(xs;β0, λ̃
s) and D2(xs;β0, λ̌

s) are both
non-negative. Moreover, both are nonzero if and only if |{x′

1β0, x
′
2β0, x

′
3β0}| = 3. The

result follows by (1.6.16)-(1.6.19) and (−1)p = −(−1)p′ .

Second step: if (1.6.15) holds, there exists a distribution of γ|X such
that (1.2.4) holds.
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Let us define

ai(γ, x) = wi exp(λiγ)∏T
t=1

(
1 +∑T−1

j=1 wj exp(λj(x′
tβ0 + γ))

) . (1.6.20)

Then, we have

E[m(Y,X, b)|X = x] = E [a1(γ, x)|X = x]D1(x, b) + E [a2(γ, x)|X = x]D2(x, b).
(1.6.21)

Hence, if D1(x, b) = D2(x, b) = 0, any distribution of γ|X = x satisfies
E[m(Y,X, b)|X = x] = 0. Now, suppose that sgn (D1(x, b)) = − sgn (D2(x, b)) ̸= 0.
Then R(x) := −D1(x, b)/D2(x, b) > 0. Let us define

γ0 := ln [w1R(x)/w2]
λ2 − 1 .

Consider for γ|X = x the Dirac distribution at γ0. Then, from (1.6.21), we obtain
that E[m(Y,X, b)|X = x] = 0. The result follows.

1.6.6 Theorem 1.3.1

Let us first summarize the proof. We link the current model with a “complete” model
where γ is also observed. This model is fully parametric and thus can be analyzed
easily. Specifically, we show in a first step that this complete model is differentiable
in quadratic mean (see, e.g. van der Vaart, 2000, pp.64-65 for a definition) and has a
nonsingular information matrix. In a second step, we establish an abstract expression
for the semiparametric efficiency bound. This expression involves in particular the
kernel K of the conditional expectation operator g 7→ E[g(X,Y )|X, γ]. In a third
step, we show that

K = {(x, y) 7→ q(x)m(x, y;β0),E[q2(X)] < ∞}. (1.6.22)

The fourth step of the proof concludes.

First step: the complete model is differentiable in quadratic mean and
has a nonsingular information matrix. Let p(y|x, g;β) := P(Y = y|X = x, γ =
g;β). We check that the conditions of Lemma 7.6 in van der Vaart (2000) hold.
Under, Assumptions 1.2.1-1.2.2, we have

p(y|x, g;β) =
∏
t:yt=1

F (x′
tβ + g)

∏
t:yt=0

(1 − F (x′
tβ + g)),

where F is C∞ on R and takes values in (0, 1). This implies that β 7→ ln p(y|x, g;β) is
differentiable. Let Sβ := ∂ ln p(Y |X, γ;β)/∂β and let Sβk denote its k-th component.
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We prove that E[S2
βk] < ∞. First, remark that

Sβk =
T∑
t=1

Xk,tF
′(X ′

tβ + γ)
[F (X ′

tβ + γ)][1 − F (X ′
tβ + γ)]

[
Yt − F (X ′

tβ + γ)
]
.

Next, we have

|Sβk| ≤
T∑
t=1

|Xk,t|
F ′(X ′

tβ + γ)
F (X ′

tβ + γ)(1 − F (X ′
tβ + γ))

=
T∑
t=1

|Xk,t|
∑T−1
j=1 wjλje

λj(X′
tβ+γ)∑T−1

j=1 wje
λj(X′

tβ+γ)

≤ λT−1

T∑
t=1

|Xk,t| , (1.6.23)

where we have used the triangle inequality and |Yt − F (X ′
tβ + γ)| ≤ 1 to obtain the

first inequality. Equation (1.6.23) and Assumption 1.2.1.2 imply that E[S2
βk] < ∞. By

the dominated convergence theorem and again (1.6.23), β 7→ E[SβS′
β] is continuous.

Therefore, the conditions in Lemma 7.6 in van der Vaart (2000) hold, and the complete
model is differentiable in quadratic mean. Moreover,

E[SβS′
β] = E[V(Sβ|X, γ)] =

T∑
t=1

E
[(

F ′(X ′
tβ + γ)

[F (X ′
tβ + γ)][1 − F (X ′

tβ + γ)]

)2
XtX

′
t

]
.

Then, if for some v ∈ RK , v′E[SβS′
β]v = 0, we would have X ′

tv = 0 almost surely for
all t ∈ {1, . . . , T}. By Assumption 1.3.1.1, this implies v = 0. Hence, the information
matrix E[SβS′

β] is nonsingular.

Second step: V ⋆ depends on the orthogonal projection of E[Sβ0 |X,Y ] on
K. Let ψ̃ = (ψ̃1, . . . , ψ̃K)′ denote the efficient influence function, as defined p.363
of van der Vaart (2000). Then V ⋆ = E[ψ̃ψ̃′] and E[ψ̃] = 0. Let S :=span(Sβ0),
G := {q : E[q2(X, γ)] < ∞,E[q(X, γ)] = 0} and for any closed convex set A and
any h = (h1, . . . , hK)′, let ΠA denote the orthogonal projection on A and ΠA(h) =
(ΠA(h1), . . . ,ΠA(hK))′. By Equation (25.29), Lemma 25.34 (since the complete model
is differentiable in quadratic mean by the first step) and the same reasoning as in
Example 25.36 of van der Vaart (2000), ψ̃ is the function of (X,Y ) of minimal L2-
norm satisfying

χ̃ = ΠS +G (ψ̃), (1.6.24)

where χ̃ is the efficient influence function of the large model. Because this large model
is parametric, we have

χ̃ = E[Sβ0S
′
β0 ]−1Sβ0 . (1.6.25)

Equation (1.6.24) implies E[(ψ̃ − χ̃)χ̃′] = 0. Thus, defining ℓβ0 = E[Sβ0 |Y,X], we get

E[ψ̃ℓ′β0 ] = E[ψ̃S′
β0 ] = Id, (1.6.26)
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Moreover, because E[Sβ0 |X, γ] = 0, S and G are orthogonal. Thus, (1.6.24) is
equivalent to ΠS (χ̃) = ΠS (ψ̃) and ΠG (χ̃) = ΠG (ψ̃). Moreover, (1.6.25) implies that
ΠG (χ̃) = 0. Hence, ψ̃ ∈ KK . Now, because ΠK is an orthogonal projector, we have

E[ψ̃ΠK(ℓβ0)′] = E[ΠK(ψ̃)ℓ′β0 ] = E[ψ̃ℓ′β0 ] = Id,

where the last equality follows by (1.6.26). Hence, if ΠK(ℓβ0)′λ = 0 a.s., we would
have λ = 0. In other words, E[ΠK(ℓβ0)ΠK(ℓβ0)′] is nonsingular. Now, consider the
set

F :=
{
E[ΠK(ℓβ0)ΠK(ℓβ0)′]−1ΠK(ℓβ0) + v : E[vΠK(ℓβ0)′] = 0

}
.

F is thus the set of vector-valued functions ψ satisfying the equation E[ψΠK(ℓβ0)] =Id.
Hence, ψ̃ being the element of F with minimum L2-norm, we obtain

ψ̃ = E[ΠK(ℓβ0)ΠK(ℓβ0)′]−1ΠK(ℓβ0).

Finally, because V ⋆ = E[ψ̃ψ̃′],

V ⋆ = E[ΠK(ℓβ0)ΠK(ℓβ0)′]−1. (1.6.27)

Third step: (1.6.22) holds. Let r ∈ K and let us prove that r(y, x) =
q(x)m(y, x;β0) for some q. First, by definition of K, we have, for almost all
(g, x) ∈ Supp(γ,X),

0 =r((0, 0, 0), x0) + r((1, 0, 0), x0)G(x′
1β0 + g) + r((0, 1, 0), x0)G(x′

2β0 + g)

+r((0, 0, 1), x0)G(x′
3β0 + g) + r((1, 1, 0), x0)G(x′

1β0 + g)G(x′
2β0 + g)

+r((1, 0, 1), x0)G(x′
1β0 + g)G(x′

3β0 + g) + r((0, 1, 1), x0)G(x′
2β0 + g)G(x′

3β0 + g)

+r((1, 1, 1), x0)G(x′
1β0 + g)G(x′

2β0 + g)G(x′
3β0 + g). (1.6.28)

Let at := x′
tβ0 for t ∈ {1, 2, 3} and, for the sake of conciseness, let us remove the

dependence of r on x. Then, using Assumption 1.2.2, we obtain, for almost all (g, x),

0 =A1e
0×g +A2e

g +A3e
λ2g +A4e

2g +A5e
2λ2g +A6e

(1+λ2)g +A7e
3g +A8e

(2+λ2)g

+A9e
(1+2λ2)g +A10e

3λ2g,
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where

A1 :=r(0, 0, 0),

A2 :=w1 [r(1, 0, 0)ea1 + r(0, 1, 0)ea2 + r(0, 0, 1)ea3 ] ,

A3 :=w2
[
r(1, 0, 0)eλ2a1 + r(0, 1, 0)eλ2a2 + r(0, 0, 1)eλ2a3

]
,

A4 :=w2
1

[
r(1, 1, 0)e(a1+a2) + r(1, 0, 1)e(a1+a3) + r(0, 1, 1)e(a2+a3)

]
,

A5 :=w1w2
[
r(1, 1, 0)(ea1+λ2a2 + ea2+λ2a1) + r(1, 0, 1)(ea1+λ2a3 + ea3+λ2a1)

+r(0, 1, 1)(ea2+λ2a3 + ea3+λ2a2)
]
,

A6 :=w2
2

[
r(1, 1, 0)eλ2(a1+a2) + r(1, 0, 1)eλ2(a1+a3) + r(0, 1, 1)eλ2(a2+a3)

]
,

A7 :=w3
1r(1, 1, 1)ea1+a2+a3 ,

A8 :=w2
1w2r(1, 1, 1)

[
ea1+a2+λ2a3 + ea1+λ2a2+a3 + eλ2a1+a2+a3

]
,

A9 :=w1w
2
2r(1, 1, 1)

[
ea1+λ2(a2+a3) + ea2+λ2(a1+a3) + ea3+λ2(a1+a2)

]
,

A10 :=w3
2r(1, 1, 1)eλ2(a1+a2+a3).

Since λ2 = 2 is excluded by assumption, there are three cases left depending on the
number of different exponents in Equation (1.6.28).

First, we consider λ2 /∈ {3/2, 3}. By Lemma 1.6.1 and because |Supp(γ|X)| ≥ 10,
we obtain Ak = 0 for all k ∈ {1, . . . , 10}. A1 = A7 = 0 imply that r(0, 0, 0) =
r(1, 1, 1) = 0. Next, A4 = A6 = 0 implies that either r(1, 0, 1) = r(1, 1, 0) =
r(0, 1, 1) = 0 or r(1, 1, 0) = −r(1, 0, 1)eλ2(a3−a2) − r(0, 1, 1)eλ2(a3−a1),

r(1, 1, 0) = −r(1, 0, 1)e(a3−a2) − r(0, 1, 1)e(a3−a1).
(1.6.29)

Consider the second case. A5 = 0 implies, since (r(1, 0, 1), r(1, 1, 0), r(0, 1, 1)) ̸=
(0, 0, 0),

r(1, 1, 0) = −r(1, 0, 1)e
a1+λ2a3 + ea3+λ2a1

ea1+λ2a2 + ea2+λ2a1
− r(0, 1, 1)e

a2+λ2a3 + ea3+λ2a2

ea1+λ2a2 + ea2+λ2a1
.

By assumption, for almost every x = (x1, x2, x3), a3 ̸= a2 and a3 ̸= a1. Then, using
the latter display with equation (1.6.29) yields, since λ2 ̸= 1,

r(1, 0, 1) = r(0, 1, 1)
[
eλ2(a3−a2) − ea3−a2

]−1 [
ea3−a1 − eλ2(a3−a1)

]
,

r(1, 0, 1) = r(0, 1, 1)
[
eλ2(a3−a2) − ea1+λ2a3 + ea3+λ2a1

ea1+λ2a2 + ea2+λ2a1

]−1

×
[
ea2+λ2a3 + ea3+λ2a2

ea1+λ2a2 + ea2+λ2a1
− eλ2(a3−a1)

]
.
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Since (r(1, 1, 0), r(1, 0, 1), r(0, 1, 1)) ̸= (0, 0, 0), these equalities and (1.6.29) imply that
r(1, 0, 1) ̸= 0 and r(0, 1, 1) ̸= 0. Then

e(1−λ2)a2

e(1−λ2)a1

ea3+λ2a2+(λ2−1)a1 − eλ2(a2+a3)

eλ2(a1+a2) − e(λ2−1)a2+λ2a1+a3
= ea3+λ2a2+(λ2−1)a1 − eλ2(a2+a3)

eλ2(a1+a2) − e(λ2−1)a2+λ2a1+a3
,

which is equivalent to a1 = a2. By assumption, the set of x for which this occurs is
of probability zero. In other words, for almost every x,

r((1, 1, 0), x) = r((1, 0, 1), x) = r((0, 1, 1), x) = 0.

A2 = A3 = 0 implies that either r(1, 0, 0) = r(0, 1, 0) = r(0, 0, 1) = 0 or
{
r(0, 0, 1) = −e(a1−a3)r(1, 0, 0) − e(a2−a3)r(0, 1, 0),
r(0, 0, 1) = −eλ2(a1−a3)r(1, 0, 0) − eλ2(a2−a3)r(0, 1, 0).

In the first case, almost surely r(Y,X) = 0 = 0 × m(Y,X;β0). In the second case,
r(Y,X) = q(X) ×m(Y,X;β0) for some q ∈ L2

X . The result follows.

Now, we turn to λ2 = 3/2. Then, for almost all (g, x) ∈ Supp(γ,X),

0 =A1e
0×g +A2e

g +A3e
3
2g +A4e

2g + (A5 +A7)e3g +A6e
5
2g +A8e

7
2g +A9e

4g +A10e
9
2g.

By Lemma 1.6.1 and because |Supp(γ|X)| ≥ 9, we obtain A5 + A7 = 0 and Ak = 0
for all k ̸∈ {5, 7}. A1 = A10 = 0 implies that r(0, 0, 0) = r(1, 1, 1) = 0 which in turn
implies that A7 = 0 and thus A5 = 0. Hence, we have Ak = 0 for all k ∈ {1, . . . , 10}
and the same reasoning as when λ2 ̸∈ {3/2, 3} allows us to obtain the result.

Finally, we consider λ2 = 3. Then, for all (g, x),

0 = A1e
0×g +A2e

g + (A3 +A7)e3g +A4e
2g +A5e

6g +A6e
4g +A7e

5g +A8e
7g +A9e

9g,

By Lemma 1.6.1 and because |Supp(γ|X)| ≥ 9, we obtain A3 + A7 = 0 and Ak = 0
for all k ̸∈ {3, 7}. A1 = A10 = 0 implies that r(0, 0, 0) = r(1, 1, 1) = 0 which in turn
implies that A7 = 0 and thus A3 = 0. Hence, Ak = 0 for all k ∈ {1, . . . , 10} and the
result follows again as when λ2 ̸∈ {3/2, 3}.

Fourth step: conclusion. By Steps 2 and 3, there exists q0(X) such that
ΠK(ℓβ0) = q0(X)m(Y,X;β0). Moreover, by definition of the orthogonal projection,
ΠK(ℓβ0) − ℓβ0 ∈ (K⊥)K . Hence, again by Step 3, we have, for all q ∈ L2

X ,

E[q0(X)q(X)m(Y,X;β0)2] = E[ℓβ0q(X)m(Y,X;β0)].

This implies that
q0(X)Ω(X) = E[ℓβ0m(Y,X;β0)|X].
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As a result, because ℓβ0 = E[Sβ0 |Y,X],

ΠK(ℓβ0) =Ω−1(X)m(Y,X;β0)E[ℓβ0m(Y,X;β0)|X]

=Ω−1(X)m(Y,X;β0)E[Sβ0m(Y,X;β0)|X].

Then, using (1.6.27), we obtain

V ⋆ = E
[
Ω−1(X)E[Sβ0m(Y,X;β0)|X]E[Sβ0m(Y,X;β0)|X]′

]−1
.

Now, by the end of the proof of Theorem 1.2.3, we have, for all β,

0 = Eβ [m(Y,X;β)|X, γ] .

As a result,

0 = ∇βEβ [m(Y,X;β)|X, γ]

= Eβ [∇βm(Y,X;β)|X, γ] + Eβ [m(Y,X;β)Sβ|X, γ] .

Evaluating this equality at β0 and integrating over γ yields:

E[Sβ0m(Y,X;β0)|X] = −E[∇βm(Y,X;β0)|X] = −R(X).

We conclude that
V ⋆ = E

[
Ω−1(X)R(X)R(X)′

]−1
= V0,

which is a well-defined matrix by Assumption 1.3.1.1.

1.7 Extensions

We show that there exists a class of distribution functions even larger, for which
non-trivial moment conditions exist and allow for identification and

√
n-consistent

estimation of β0. To the best of our knowledge, this class is new to the existing
literature. Let Λτ denote a subset of {(λ1, . . . , λτ ) ∈ Rτ : ∏r ̸=s(λr − λs) ̸= 0}.

Assumption 1.7.1 (Exponential polynomial odds-ratio distributions)
There exist known (τ1, τ2) ∈ N∗2, w = (w1, . . . , wτ1) ∈ Rτ1, w′ = (w′

1, . . . , w
′
τ2) ∈ Rτ2,

and λ = (λ1, . . . , λτ1∨τ2) ∈ Λτ1∨τ2 such that

F (ε)
1 − F (ε) =

∑τ1
j=1wj exp(λjε)∑τ2
j=1w

′
j exp(−λjε)

. (1.7.1)

defines a cumulative distribution function F on R.

Assumption 1.7.1 generalizes both types of generalized logit distributions proposed
in Assumption 1.2.2. The first type is obtained by letting τ2 = τ1 + 1, w′

1 = · · · =
w′
τ1 = 0, w′

τ1+1 = 1, λτ1+1 = 0, and λ1 = 1; the second type, by letting τ1 = τ2 + 1,
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w1 = · · · = wτ2 = 0, wτ2+1 = 1, λτ2+1 = 0, and λ1 = 1. Assumption 1.7.1 also allows
for any mixture of logit distributions. In particular, beyond the standard logistic
distribution, it covers the mixture of logit distributions considered in Honoré and
Weidner (2020)’s equation (12) when τ1 = τ2 = 2 and

(w1, w2) = (1, ω exp(µ2) + (1 − ω) exp(µ1)),

(λ1, λ2) = (λ, 0),

(w′
1, w

′
2) = (exp(µ1 + µ2), (1 − ω) exp(µ2) + ω exp(µ1)).

Theorem 1.7.1 Let Assumptions 1.2.1 and 1.7.1 hold. Then, for T sufficiently
large, there exists a non-trivial function m of (Y,X, β, τ1, τ2, w, w

′, λ) such that

E[m(Y,X;β0)|X, γ] = E[m(Y,X;β0)|X] = 0. (1.7.2)

Proof: Let G := F/(1 − F ), zt := x′
tβ0, πt := exp(zt), and a := exp(γ). We have

p(y|x, γ) :=
T∏
t=1

[1 − F (zt + γ)]1−yt [F (zt + γ)]yt

=
T∏
t=1

( 1
1 +G(zt + γ)

)1−yt
(

G(zt + γ)
1 +G(zt + γ)

)yt

=
(

T∏
t=1

1
1 +G(zt + γ)

) ∏
s:ys=1

G(zs + γ)


=
(

T∏
t=1

1
1 +G(log(πta))

) ∏
s:ys=1

∑τ1
j=1wj(πsa)λj∑τ2
j=1w

′
j(πsa)−λj


=
(

T∏
t=1

1
1 +G(log(πta))

)(
T∏
s=1

1∑τ2
j=1w

′
j(πsa)−λj

)

×

 ∏
s:ys=1

τ1∑
j=1

wj(πsa)λj

 ∏
r:yr=0

τ2∑
j=1

w′
j(πra)−λj


=: κ(a)p(y, a),

where

κ(a) =
(

T∏
t=1

1
1 +G(log(πta))

)(
T∏
s=1

1∑τ2
j=1w

′
j(πsa)−λj

)
,

p(y, a) =

 ∏
s:ys=1

τ1∑
j=1

wj(πsa)λj

 ∏
r:yr=0

τ2∑
j=1

w′
j(πra)−λj

 .
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Let J1 = {j : wj ̸= 0} and J2 = {j : w′
j ̸= 0}. Thus, p(y, a) is an exponential

polynomial in γ with at most

K :=

∣∣∣∣∣∣
∑
j∈J1

Ajλj −
∑
j∈J2

Bjλj : (Aj , Bj) ∈ {0, . . . , T}2,
∑
j∈J1

Aj +
∑
j∈J2

Bj = T


∣∣∣∣∣∣ ,

distinct coefficients, i.e., there exist K distinct real numbers λ̃1, . . . , λ̃K and
(c1(y), . . . , cK(y)) ∈ RK such that

p(y, a) =
K∑
k=1

ck(y) exp(λ̃kγ).

We are looking for non-trivial moment functions m(y) ∈ R such that

∑
y∈{0,1}T

m(y)κ(a)p(y, a) = 0, ∀a ∈ (0,+∞).

Because κ(a) > 0, this is equivalent to finding m(y) ∈ R that satisfy

K∑
k=1

∑
y∈{0,1}T

m(y)ck(y) exp(λ̃kγ) = 0, ∀γ ∈ R.

By Lemma 1.6.1, this is equivalent to finding m(y) ∈ R that satisfy

∑
y∈{0,1}T

m(y)ck(y) = 0, ∀k ∈ {1, . . . ,K}. (1.7.3)

These are K linear conditions in 2T unknown parameters m(y). We therefore have
at least 2T −K linear independent solutions m(y). Let us show that 2T −K > 0 for
T sufficiently large. Let τ∗

1 = |J1| and τ∗
2 = |J2|. It is easy to see that K is bounded

above by
T∑
s=0

(
s+ τ∗

1 − 1
s

)(
T − s+ τ∗

2 − 1
T − s

)
.

For any (a, b) ∈ N2 such that a+ b ≥ 1, we have(
a+ b− 1

a

)
≤ (a+ b− 1)b−1

(b− 1)! .

Hence, for any 0 ≤ s ≤ T ,(
s+ τ∗

1 − 1
s

)(
T − s+ τ∗

2 − 1
T − s

)
≤ (s+ τ∗

1 − 1)τ∗
1 −1(T − s+ τ∗

2 − 1)τ∗
2 −1

(τ∗
1 − 1)!(τ∗

2 − 1)!

≤ (T + τ∗
1 + τ∗

2 − 1)τ∗
1 +τ∗

2 −2.

For T sufficiently large, 2T −K ≥ 2T − (T + 1)(T + τ∗
1 + τ∗

2 − 1)τ∗
1 +τ∗

2 −2 > 0 and there
exists a non-trivial moment function m that verifies (1.7.2). □
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Chapter 2

Identification and (Fast)
Estimation of Large Nonlinear
Panel Models with Two-Way
Fixed Effects

Il fallut que Colomb partît avec des fous pour découvrir
l’Amérique. Et voyez comme cette folie a pris corps, et duré.

André Breton, Manifeste du surréalisme

Abstract: We study a nonlinear two-way fixed effects panel model that allows for
unobserved individual heterogeneity in slopes and flexibly specified link function.
The former is relevant when the researcher is interested in the distributional causal
effects of covariates, and the latter mitigates potential misspecification errors due to
restrictions imposed on the link function. We show that the fixed effects parameters
and the link function can be identified when both individual and time dimensions are
large. We propose a novel iterative Gauss-Seidel estimation procedure that overcomes
the practical challenge of dimensionality in the number of fixed effects when the
dataset is large. We revisit two empirical studies in trade (Helpman et al., 2008) and
innovation (Aghion et al., 2013), and find non-negligible unobserved dispersion in
trade elasticity across countries and the effect of institutional ownership on innovation
across firms. These exercises emphasize the usefulness of our method in capturing
flexible heterogeneity in the causal relationship of interest that may have important
implications for the subsequent policy analysis.1

1This chapter is based on a co-authored paper with Ao Wang (University of Warwick).
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2.1 Introduction

Nonlinear two-way fixed effects panel models are gaining popularity in economic
research. This class of models typically features individual and time dimensions,
enabling researchers to incorporate rich heterogeneity in empirical research.2 Tech-
nically, by allowing the two dimensions to increase to infinity, one can reduce the
incidental parameter problem in panel data models (Lancaster, 2000; Neyman and
Scott, 1948) to a post-estimation bias correction (Fernández-Val and Weidner, 2016).
The application of these models, however, is still subject to theoretical and practical
challenges. First, the extent to which the model is nonparametrically identified is un-
clear, leaving many parametric assumptions in empirical research, such as common
slope parameters across individuals/time and parametrically specified error terms,
unjustified. Second, even in a parametric setting, the routine estimation procedure
(e.g., concentrated MLE) is subject to a challenge of dimensionality: the number of
fixed effects can be too large to be handled in reasonable time.3 This dimensionality
is particularly difficult to deal with when the dataset is large and/or the researcher
wishes to incorporate multiple dimensions of unobserved heterogeneity.

In this chapter, we tackle these two challenges in a class of index function static
models characterized by the probability of individual i = 1, . . . , N from choosing
yit ∈ Y at time t = 1, . . . , T :

P(yit = y|xi1, . . . , xit, αi, βi, ξt) = g(y;αi + ξt + x′
itβi), (2.1.1)

where xit are individual i’s observed characteristics at time t, (αi, βi) are individual-
fixed effects, ξt is a time-fixed effect, and g is a link function. This model encompasses
settings with a single index, such as binary outcome, ordered outcome and count
outcome, as well as those with multimodal outcome, and has been widely used in
literature including empirical industrial organization (Dubois et al., 2020), interna-
tional trade (Helpman et al., 2008), labor (Abowd et al., 1999), innovation (Aghion
et al., 2013), and network (Jochmans, 2018). Compared to routinely used nonlin-
ear two-way fixed effects models, model (2.1.1) features two important relaxations.
First, we allow the slope parameter, βi, to be individual-specific rather than common
across individuals (βi = β).4 This feature enables applied researchers to incorporate
(unobserved) heterogeneity in the causal effect of covariates of interest across individ-
uals, e.g., household’s price sensitivity, trade elasticity. This is particularly relevant
when the researcher is interested in the distributional causal effects of covariates and

2In some situations, the time dimension also refers to the same set of individuals in the individual
dimension. Then, the panel data describes interactions between two individuals, e.g., export and
import (Helpman et al., 2008) and directed network (Jochmans, 2018).

3For instance, the standard implementation of the MLE requires storing and inverting a Hessian
matrix whose size is equal to the number of parameters including the fixed effects. This numerical
challenge can be even more severe if one wishes to implement the post-estimation bias correction.
See Section 2.3.2 for details.

4We can also allow for the slope parameter to be time-specific rather than individual-specific. The
main results still hold. See Remark 2.2.1 for details.
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their implications for policy evaluations. Second, the link function g can be left to
be estimated (e.g., up to a finite number of parameters) rather than specified as
a known function (e.g., logit, probit). This flexibility enables to mitigate potential
misspecification errors due to restrictions made on the link function.

The central theoretical question in this chapter is then the extent to which the
parameters in model (2.1.1) are identified under such relaxations. In the setting of
large N and large T , we prove that βi, αi, ξt, and function g can be point-identified,
a novel identification result in the literature of panel data methods. Our strategy
relies on the technique of compensating variable.5 Intuitively speaking, we require
the existence of a variable in xit that can compensate the variation due to other com-
ponents of the index (other covariates in xit, αi, and ξt) to keep the index unchanged.
Under standard assumptions on the link function (e.g., monotonicity with respect to
the single index), one can then back out the amount of the compensation, giving rise
to restrictions on the parameters of interest and achieving the point identification.
When the support of (βi, αi) and/or ξt is large, a large support condition on the
compensating variable (e.g., R) is needed to apply our strategy. Otherwise, it can
still apply with a limited-support compensating variable (e.g., an interval) when the
ranges/shape of parameters of interest is limited, an appealing feature to practition-
ers who may have prior knowledge of (βi, αi) and ξt. Moreover, it allows for other
variables to be endogenous, e.g., correlated with time-fixed effect ξt.

The identification result provides a theoretical ground for a semi(or non)-
parametric estimation of model (2.1.1), especially when the data are rich in both
individual and time dimensions and/or in the presence of multiple dimensions of
individual heterogeneity. To deal with the emerging challenge of dimensionality in
estimation, we propose a novel iterative Gauss-Seidel procedure to implement the like-
lihood fixed effects estimators routinely used in the literature. During each iteration,
we sequentially update the estimates of individual fixed effects, time fixed effects, and
common parameters. Different from the usual Gauss-Seidel procedure, we leverage
the structure of the separable two-way fixed effects to update the estimated individual
(time) fixed effects in a fully parallelized way across N individuals (T time periods).
This substantially alleviates the computational burden of concentrating out a poten-
tially large number of fixed effects in the usual implementation of the MLE. Besides,
the proposed procedure has desired theoretical and numerical properties. First, we
prove that under standard conditions, the resulting estimators converge to the MLE
ones when the number of iterations is large enough. This numerical equivalence le-
gitimizes the use of the proposed procedure in inference.6 Second, extensive Monte
Carlo simulations suggest its fast convergence. It already achieves a good numerical

5This term was first introduced by Hicks (1939) and later appears in Lewbel (2019)’s survey of
identification in econometrics.

6We also provide a consistency result regarding the MLE estimator of βi that implies the consis-
tency of the plug-in estimators for the distributional features of βi. See the discussion of inference
in Section 2.3.2 and Appendix 2.7.3. Besides, we develop a practical Bootstrap construction of
confidence intervals for such features. See Section 2.4 for the Monte Carlo evidence of its good
finite-sample performance.
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approximation to the MLE estimator after a few iterations using only a fractional
execution time of existing methods (e.g., STATA command logitfe). Finally, this
iterative estimation procedure with parallelized updating is of general interest. It can
be applied to both moderate and large-T settings, and conveniently augmented with
post-estimation bias reduction and bias correction. One can also extend it to a panel
model along the lines of (2.1.1) with multi-way fixed effects.7 We provide a Python
package nlmfe that implements this procedure and some of the extensions.8

To demonstrate the empirical relevance of the proposed method, we revisit two
classic empirical studies in international trade (Helpman et al., 2008) and innovation
(Aghion et al., 2013). Specifically, we investigate the extent to which the causal effect
of interest is heterogeneous across individuals. In other words, different from the
two-way fixed effects models with common slope parameter βi = β in the original pa-
pers, we allow for individual-specific slopes that encapsulate potentially heterogeneous
causal effects of covariates and explore the underlying mechanisms. In the setting of
Helpman et al. (2008), we specify country-specific rather than constant trade elastic-
ity; in the setting of Aghion et al. (2013), we allow for a firm’s innovation to react
differently to the same change in institutional ownership. In both illustrations, we
find non-negligible dispersion in the estimated slopes across countries/firms. This
dispersion suggests intuitive distributional patterns of the heterogeneity in the causal
relationship explained by observed characteristics of countries/firms. The residual
dispersion in the slopes (i.e., unexplained by the observed characteristics), however,
is still significant. These exercises emphasize the usefulness of the proposed method
in capturing flexible (and unobserved) heterogeneity in the causal relationship of in-
terest.

Related literature. This chapter contributes to the literature on nonseparable
panel data models with unobserved fixed effects. Recent progresses on two-way fixed
effects models with large N and T mostly focus on estimation and inference, while
there are much fewer results on identification.9 To the best of our knowledge, we
are the first to provide a systematic treatment of the identification of nonlinear two-
way fixed effects index models when both N and T are large, serving as a theoretical
foundation for their estimation and inference. Our identification strategy relies on the
arguments of compensating variable, a technique that has been used in the literature
but different contexts from ours (see D’Haultfoeuille et al. (2021) and D’Haultfœuille
et al. (2022)). Several recent papers study models of network formation with two-
way fixed effects, and leverage specific features of the setting (e.g., the dimension of

7See also Iaria and Wang (2021) for an application of a similar iterative procedure to estimating
demand with large choice sets.

8The package is available at https://github.com/martinmugnier/nlmfe.
9For the progress on estimation and inference, see Hahn and Kuersteiner (2002), Hahn and Newey

(2004), Fernandez-Val (2009), Dhaene and Jochmans (2015), Chen (2016), Fernández-Val and Wei-
dner (2016, 2018), Chen et al. (2021) among others.

https://github.com/martinmugnier/nlmfe
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time completely coincides with that of individuals) to achieve identification.10 We
focus on a different setting in which the relationship between time and individual
dimensions is unrestricted.11 Relative to the literature of classic nonlinear fixed-T
panel models, our results articulate that all the structural parameters (fixed effects,
slope parameters, link function) can be nonparametrically identified when both N

and T are large, which is hard to obtain without further restrictions when T is fixed
(Chamberlain, 2010).12 In addition, our methodology applies not only to the usual
setting with common slope parameters (e.g., Fernández-Val and Weidner, 2016) but
also the case with heterogeneous slopes across individuals/time. Boneva and Linton
(2017) study estimation and inference of a nonlinear panel model with interactive
fixed effects and heterogeneous slopes when T increases at a rate slower than N .
Differently, our asymptotic results focus on the setting when T and N increase at the
same rate.

Our work also contributes to the literature on the estimation of nonlinear fixed
effects models. Recent progresses in this literature rely on the (multinomial) logit
structure (Charbonneau, 2017; D’Haultfoeuille and Iaria, 2016; Graham, 2017; Stam-
mann et al., 2016), focus on specific models such as Poisson (Correia et al., 2020) and
Generalized Linear Models (Hinz et al., 2019), use alternating projection and Frisch-
Waugh-Lowell methods (Czarnowske and Stammann, 2020; Gaure, 2013; Stammann,
2018; Stammann et al., 2016), EM method (Chen, 2016), or Minorization-Maximation
algorithm (Chen et al., 2021) to alleviate the numerical bottleneck due to many fixed
effects in the MLE. Differently, we provide a general Gauss-Seidel estimation proce-
dure to tackle this challenge of dimensionality and improve upon existing Gauss-Seidel
approaches in several aspects. Hospido (2012) adopts the Gauss-Seidel algorithm in
the estimation of nonlinear models with only individual fixed effects. Guimaraes and
Portugal (2010) employ such algorithm to estimate a linear model with many fixed
effects and note that their approach can be considerably slowed down when applied
to estimating nonlinear models.13 Different from these approaches, our Gauss-Seidel
procedure leverages the separable two-way fixed effects structure, parallelizing the
updatings of individual and time fixed effects and significantly reducing the compu-
tational complexity of the concentration step in the MLE. Bergé (2018)’s approach
sequentially updates all fixed effects and guarantees the likelihood is increasing (but
not necessarily to the global maximum) in the concentration step. Instead, we estab-
lish the numerical equivalence of our procedure to the fixed effect MLE under standard

10See Graham (2017), Toth (2017), Gao (2020), Zeleneev (2020), Candelaria (2020) for examples.
See also de Paula (2020) for a review of recent progress.

11Jochmans (2018) studies directed network formation and his setting is close to ours. Differently,
he focuses on inference on common parameters rather than identification.

12Altonji and Matzkin (2005) obtain identification of the structural function in a fixed-T setting
with individual-fixed effects using restrictions on the conditional distribution on the fixed effects (see
their Assumption 4.4). Having large-T also allows to relax conditions needed to guarantee desired
asymptotic properties of the estimator. One such condition is time homogeneity. See Athey and
Imbens (2006), Evdokimov (2010, 2011), Hoderlein and White (2012), Chernozhukov et al. (2013),
Botosaru and Muris (2017a) for examples using this condition in fixed-T setting.

13See page 16 in their paper.
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conditions, ensuring its validity in inference and robust finite-sample performance.

Organization. Section 2.2 introduces necessary notations and the model. The
main results of identification and estimation are in Section 2.3. Section 2.4 summa-
rizes the results of Monte Carlo simulations. Two empirical illustrations are included
in Section 2.5. All proofs and additional results can be found in Appendices 2.7.1-
2.7.4.

2.2 Model

We consider a class of index function models with discrete outcome characterized by
the probability of individual i ∈ N at time t ∈ T choosing yit ∈ Y:

P (yit = y|xi1, . . . , xit, αi, βi, ξt) = g(y;αi + ξt + x′
itβi), (2.2.1)

where xit are individual i’s observed characteristics at time t, (αi, βi) are individual-
fixed effects, ξt is a time-fixed effect, and g is a link function of outcome y and index
αi+ξt+x′

itβi. Model (2.2.1) differs from routinely used two-way fixed effects models in
two ways. First, it allows for individual-specific slopes βi, rather than common slope
βi = β, that capture heterogeneous causal effect of covariates xit across individuals
and are potentially unobserved to the researcher, such as household’s heterogeneous
sensitivity to price change.14 Second, the link function g in model (2.2.1) can be
flexibly specified (e.g., unknown up to a finite number of parameters to be estimated),
relaxing the common restrictions such as probit and logit in empirical research.

Remark 2.2.1 One can consider a model with time-specific slope parameters:

P (yit = y|xi1, . . . , xit, αi, βt, ξt) = g(y;αi + ξt + x′
itβt). (2.2.2)

The parameter βt captures potentially heterogeneous causal effect of xit across time
periods. To simplify the exposition, we will focus on model (2.2.1) in the main text
and extend our main results to model (2.2.2) in Section 2.7.8.

Before proceeding with the identification and estimation, we provide some leading
examples.

Example 1 (Binary outcome)

yit = 1{αi + ξt + x′
itβi − uit > 0},

14 One can use an it-specific βit and specify βit = γzit to capture observed heterogeneity in slopes,
where zit is a vector of observed characteristics of individual i at time t. This is equivalent to adding
xitzit in (2.2.1) with common slopes γ across individuals and time periods.
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where (x′
i1, . . . , x

′
it, αi, β

′
i, ξt)′ and uit are independent, and uit is distributed according

to a cumulative distribution function (cdf) F . Then,

g(y;αi + ξt + x′
itβi) = 1{y = 1}F (αi + ξt + x′

itβi) + 1{y = 0}(1 − F (αi + ξt + x′
itβi)).

Example 2 (Ordered outcome)

yit =


0 if αi + ξt + x′

itβi − uit < d1.

1 if d1 ≤ αi + ξt + x′
itβi − uit < d2.

2 if αi + ξt + x′
itβi − uit ≥ d2,

where d2 > d1, (x′
i1, . . . , x

′
it, αi, β

′
i, ξt)′ and uit are independent, and uit is distributed

according to a cdf F . Then,

g(y;αi + ξt + x′
itβi) =


1 − F (αi + ξt + x′

itβi − d1) if y = 0.

F (αi + ξt + x′
itβi − d1) − F (αi + ξt + x′

itβi − d2) if y = 1.

F (αi + ξt + x′
itβi − d2) if y = 2.

Example 3 (Count outcome) When Y = {0, 1, 2, . . .}, model (2.2.1) becomes a
count model with

∑∞
y=0 g(y; v) = 1 for any v > 0. A leading example is Poisson count

model:

g(y;αi + ξt + x′
itβ) = exp(− exp(αi + ξt + x′

itβ)) exp(y(αi + ξt + x′
itβ))

y! .

Another example of g is negative binomial distribution.

Example 4 (Multimodal outcome)

yit = arg max
j=1,...,J

{
αij + ξtj + x′

tjβij − uitj
}
, (2.2.3)

where (uit1, . . . , uitJ) are independent of (αij , ξtj , βij , xtj)Jj=1 and distributed according
to density g∗. Define vitj = αij + ξtj + x′

tjβij. Then,

g(y; vit1, . . . , vitJ) =
J∑
j=1

1{y = j}P(uitj − uitj′ ≤ vitj − vitj′ , for any j′ ̸= j),

where the right-hand side is a function of g∗ and J indexes vit = (vitj)Jj=1. In this
setting, αi = (αij)Jj=1, βi = (βij)Jj=1, ξt = (ξtj)Jj=1, and J is known.

2.3 Identification and Estimation

Suppose that the econometrician observes (yit, xit) for i ∈ N, and t ∈ T and aims
to identify and estimate (αi, βi)i∈N, (ξt)i∈T, and function g in model (2.2.1). To
simplify the exposition, we present the arguments for xit = (x(1)

it , x
(2)
it ) ∈ X ⊂ R2
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and the case of single index in the main text. The results for the case of multi-modal
outcome (Example 4) and model (2.2.2) (heterogeneous slope parameters across time)
are presented in Section 2.7.7 and 2.7.8, respectively. For any random variables U,Z,
let Supp(U |Z) denote the support of U conditional on Z. Without loss of generality,
we normalize α1 = 0, ξ1 = 0, and β

(1)
1 = 1.15

2.3.1 Identification

In this section, we assume that both the number of individuals and that of time
periods are infinity. To start with, define:

zi(x(1);x(2)) = αi + β
(1)
i x(1) + x(2)(β(2)

i − β
(2)
1 ). (2.3.1)

Intuitively, zi(x(1);x(2)) is interpreted as a compensating variable, i.e., the needed
value of x(1) for individual 1 with x(2) to make her and i’s indices equal: α1 + ξt +
β

(1)
1 zi(x(1);x(2)) + β

(2)
1 x(2) = αi + ξt + β

(1)
i x(1) + β

(2)
i x(2). The following definition

formalizes the idea of compensation.

Definition 2.3.1 (Compensable) Individual i is compensable at (x(1), x(2)) ∈ Xi =
Supp(xit|αi, βi) by individual 1 if (zi(x(1);x(2)) ∈ X1.16

Let Zi =
{

(zi(x(1);x(2)), x(2)) : (x(1), x(2)) ∈ Xi

}
and Pv(z, x(2)) = v(z, x(2))′ be the

operation of inner product. Denote by Zit the support of (zi(x(1)
it ;x(2)

it ), x(2)
it ) con-

ditional on ξt. To obtain the main identification result, we propose the following
assumption.

Assumption 2.3.1

(i). There exists y ∈ Y such that the function g(y; v) is strictly monotonic in v.

(ii). (a) For all i ∈ N, conditional on (αi, βi), {(yit, xit)}t≥2 is a strictly stationary
and strong mixing process with mixing coefficients τt that satisfy τt ≤ Cρt.
For all t ∈ T, conditional on ξt, {(yit, xit, αi, βi)}i∈N are independent.

(iii). For all (i, i′, t) ∈ N2 × T, ξit and (αi, βi, x(1)
it ) are independent conditional on

x
(2)
it . Moreover, ξt|

{
x

(2)
it = x(2)

}
d= ξt|

{
x

(2)
i′t = x(2)

}
∼ Fξ(ξ;x(2)).

(iv). Any individual i ∈ N is compensable by individual 1 at least at (x(1)k, x(2)k) ∈ Xi

for k = 1, 2, 3 with 
1 x(1)1 x(2)1

1 x(1)2 x(2)2

1 x(1)3 x(2)3


being nonsingular.

15Suppose β
(1)
1 ̸= 0. Note that g(y; αi +ξt +x′

itβi) = g̃(y; α̃i + ξ̃t +x′
itβ̃i), where α̃i = (αi −α1)/β

(1)
1 ,

ξ̃t = (ξt − ξ1)/β
(1)
1 , β̃i = βi/β

(1)
1 , and g̃(y; v) = g(y; β

(1)
1 v + α1 + ξ1). It is then necessary to normalize

α1 = 0, ξ1 = 0, and β
(1)
1 = 1.

16We do not index Xi by t because {xit}t∈T will be assumed strictly stationary conditional on
(αi, βi) for all i ∈ N.
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(v). Denote Zt = ∩i∈NZit.

(a) For some (t, r) ∈ T × R,
{

(z, x(2)) ∈ Zt : P(1,β(2)
1 )(z, x

(2)) = r

}
is not a

singleton.

(b) For all t ∈ T,
(

∩i∈NP(1,β(2)
1 )(Zit) + ξt

)
∩
(

∩i∈NP(1,β(2)
1 )(Zi1)

)
̸= ∅.

Remark 2.3.1 When some covariates do not change across individuals, i.e., xit =
xt, we can condition on such covariates and ξt in Assumption 2.3.1(ii)b. Then, the
independence among {(yit, xit, αi, βi)}i∈N (with such covariates being excluded from
xit), as well as our main results below, still holds. See footnote 38 for more details.

Assumption 2.3.1(i) is standard in index function models and satisfied in the ex-
amples we provided.17 Assumption 2.3.1(ii) imposes dependence restrictions across
individual and time dimensions of the panel. Assumption 2.3.1(ii)a requires station-
arity and strong mixing properties across time. It allows ξt and ξt′ to be correlated,
as long as the correlation vanishes as the time periods are distant enough. Assump-
tion 2.3.1(ii)b requires the conditional cross-sectional independence across individuals.
Both requirements are standard in the panel data literature.18 Assumption 2.3.1(iii)
requires the exogeneity of individual-fixed effect (αi, βi) and variable(s) x(1)

it with re-
spect to time-fixed effect ξt, but allows x(2)

it to be endogenous, e.g., prices that are
correlated with time-specific demand shocks.

Assumptions 2.3.1(iv)-(v) characterize the properties of the compensating variable
zi(x(1);x(2)) that achieve the identification. Assumption 2.3.1(iv) specifies the condi-
tion under which zi(x(1);x(2)) compensates between individuals to identify individual-
i specific parameters αi, β(1)

i , and β
(2)
i − β

(2)
1 . Intuitively, if individual i can be

compensated at three points in Xi, one can then identify the three corresponding
values of zi(x(1);x(2)) by comparing i’s and 1’s choices, yit and y1t, over time. The
rank condition in Assumption 2.3.1(iv) ensures the unique recovery of αi, β(1)

i , and
β

(2)
i − β

(2)
1 from the three identified values of zi(x(1);x(2)), achieving the identifica-

tion. In essence, the rank requirement rules out the situation in which one point,
say (x(1)3, x(2)3), lies on the line defined by (x(1)1, x(2)1) and (x(1)2, x(2)2). When
(x(1), x(2)) are continuous and the set of points at which i is compensable has positive
Lebesgue measure, the rank condition automatically holds. Note that the compen-
sation in Definition 2.3.1 can be generalized to any pair of two individuals i and i′.
Instead of requiring individual 1 to compensate all the other individuals, one can also
achieve the identification by relying on such pairwise compensation. In Appendix
2.7.1, we illustrate such identification argument and show that it may need weaker
support conditions on x(1)

i than Assumption 2.3.1(iv) in some situations. Assumption
2.3.1(v)a gives the condition under which zi(x(1);x(2)) compensates between x(1) and
x(2) for individual 1. It will be used to identify β(2)

1 (and therefore β(2)
i ). Assumption

17For the case of multimodal outcome, we will replace the monotonicity by the conditions that
imply the invertibility of g with respect to the vector of indices. See Assumption 2.7.2(i) for details.

18See Assumption 4.1 in Fernández-Val and Weidner (2016) for example.
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2.3.1(v)b describes the condition under which zi(x(1);x(2)) compensates between time
periods, i.e., the sets of indices in time periods t and 1 overlap. It will be used to iden-
tify (relative) time-specific fixed effect ξt. It is worth noting that when one is primarily
interested in identifying the marginal effects of xit on P (yit = y|xi1, . . . , xit, αi, βi, ξt)
in (2.2.1) rather than the values of β(2)

1 and ξt, Assumption 2.3.1(v) can be redundant.
In fact, if the unknown g(y; v) is real analytic with respect to v for any y ∈ Y and Zt

contains an open subset, Assumption 2.3.1(iv) is already sufficient for this purpose.19

We provide more details in Remark 2.7.1.
The support of x(1)

1 (denoted by X 1
1 ) plays an important role in the arguments of

compensating variable and Assumptions 2.3.1(iv)-(v). When x(1)
1 has a large support,

e.g., X 1
1 = R, the two assumptions hold trivially. When X 1

1 is not the entire real line
(e.g., a box), both assumptions can still hold and the required support condition is
determined by the ranges of (βi, αi), and ξt. We elaborate these points in the next
example.

Example 5 (Support of x(1)
1 and Identification) Suppose that Xi = X =

[a,A] × [b, B] where a < A < 0 and 0 < b < B. Moreover, Zit = Zi for any
(i, t) ∈ N × T. This setting can be considered as a demand model with x(1) being mi-
nus price of the goods and x(2) being its quality. Correspondingly, coefficient β(1)

i > 0
(downward-sloping demand) is interpreted as the extent of the disutility of price and
β

(2)
i the preference for quality.

In addition, suppose that max{β(1)
i } > 1 > min{β(1)

i } > 1/max{β(1)
i } > 0,

1
2∆(2)

β := max{β(2)
i } − β

(2)
1 = β

(2)
1 − min{β(2)

i }, and 1
2∆α := max{αi} − α1 =

α1 − min{αi}, i.e., individual 1’s (α1, β1) is at the center of the range of (αi, βi) ∈
[min{αi},max{αi}] × [min{β(1)

i },max{β(1)
i }] × [min{β(2)

i },max{β(2)
i }], where quanti-

ties defined by an application of the max and min operators are well-defined. Recall
the normalizations α1 = 0 and β(1)

1 = 1.
First, Assumption 2.3.1(iv) holds when for any (αi, βi), there exists xi ∈ X such that
αi+β(1)

i x
(1)
i +x(2)

i (β(2)
i −β(2)

1 ) ∈ (a,A). Because of the connectedness of X , continuity
of the linear mapping x → zi(x(1);x(2)), and the intermediate value theorem, this is
equivalent to

sup
(αi,βi)

inf
x∈X

{αi + β
(1)
i x(1) + x(2)(β(2)

i − β
(2)
1 )} = max{αi} + min{β(1)

i }a+ b(max{β(2)
i } − β

(2)
1 ) < A,

inf
(αi,βi)

sup
x∈X

{αi + β
(1)
i x(1) + x(2)(β(2)

i − β
(2)
1 )} = min{αi} + max{β(1)

i }A+ b(min{β(2)
i } − β

(2)
1 ) > a.

(2.3.2)
The geometric interpretation of (2.3.2) is illustrated in Figure 2.1(a). The linear

mapping x → (zi(x(1);x(2)), x(2)) maps the box X to a parallelogram that overlaps with
int(X ), the interior of X (e.g., the red and green ones in Figure 2.1(a)). The first in-
equality in (2.3.2) requires the red parallelogram corresponding to the mapping defined
by (max{αi},min{β(1)

i },max{β(2)
i }), which is stretched to the right, to overlap with

19A function g(v) is real analytic at v = v0 if g(v) is C∞ and coincides with its Taylor series
(defined around v0) in a neighborhood of v0. Most link functions, e.g., logit, probit, multinomial
logit, are real analytic. Iaria and Wang (2022) also show that mixed-logit/probit models with an
index structure as in (2.2.1) are also real analytic.
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Figure 2.1: Support Condition on x(1) and Identification
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int(X ). Similarly, the second inequality requires the green parallelogram correspond-
ing to (min{αi},max{β(1)

i },min{β(2)
i }), which is stretched to the left, to overlap with

int(X ). These two parallelograms are the “most distant” from X in either direction.
Inequalities (2.3.2) are further equivalent to:

A > min{β(1)
i }a+

∆α + b∆(2)
β

2 ,

A >
1

max{β(1)
i }

a+
∆α + b∆(2)

β

2 max{β(1)
i }

.

(2.3.3)

The yellow region defined by the blue line (the first inequality in (2.3.3)) and red line
(the second in (2.3.3)) in Figure 2.1(b) shows the values of (a,A) that satisfy (2.3.3).
In particular, A can be close to zero (the lower bound of the observed price of the

goods is small) and a close to −
∆α+b∆(2)

β

2 min{β(1)
i }

, as illustrated by point S. The size of

the corresponding support for x(1), A − a, is then close to ∆α+b∆(2)
β

2 min{β(1)
i }

. For any size
greater than this length, Assumption 2.3.1(iv) can always hold with some (a,A). This
minimal support requirement becomes more stringent when the ranges of αi (∆α) and
β

(2)
i (∆(2)

β ) increase.

Second, Assumption 2.3.1(v)a holds when one further requires that the parallelograms
the most distant from X overlap, as illustrated by the orange region in Figure 2.1(c).
This is because the preimage of P(1,β(2)

1 )(x) = r for any r ∈ (b′, B′) is a line segment
in this region and therefore not a singleton. In particular, this implies

max{αi} + min{β(1)
i }a+ b(max{β(2)

i } − β
(2)
1 ) < min{αi} + max{β(1)

i }A+ b(min{β(2)
i } − β

(2)
1 )

=⇒ A >
min{β(1)

i }
max{β(1)

i }
a+

∆α + b∆(2)
β

max{β(1)
i }

.

(2.3.4)
Inequality (2.3.4) is stronger than the second one in (2.3.3) and is represented by the
dashed red line in Figure 2.1(d). The values of (a,A) with which Assumption 2.3.1(v)a
holds, the orange region in Figure 2.1(d), are then more limited than the yellow one

(corresponding to Assumption 2.3.1(iv)) and the strict lower bound of A−a, ∆α+b∆(2)
β

min{β(1)
i }

(achieved at S′), is greater than ∆α+b∆(2)
β

2 min{β(1)
i }

. In other words, identifying further β(2)
1

requires a larger support of x(1) than the one needed for the identification of αi, β(1)
i ,

and β(2)
i − β

(2)
1 .

Finally, Assumption 2.3.1(v)b holds when the projection of the orange region by
P(1,β(2)

1 ) (the segment between b′ and B′ in Figure 2.1(c)) intersects with itself when
translated by ξt for any t ∈ T. Without enlarging the support of x(1) required by
Assumption 2.3.1(v)(a), one can only identify ξt with |ξt| < B′ − b′. As a result, to
point identify ξt with |ξt| ≥ B′ − b′, one may need a larger support of x(1) than that
required by Assumption 2.3.1(v)a.
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The next theorem summarizes our main identification result. See Appendix 2.7.1 for
the proof.

Theorem 2.3.1 Suppose that Assumptions 2.3.1(i)-(iv) hold.

• β
(1)
i , αi, and β(2)

i − β
(2)
1 are identified for i ∈ N.

• If Assumptions 2.3.1(v) further holds, then

– ξt and β(2)
i are identified for i ∈ N and t ∈ T.

– g(y; v) is identified for (y, v) ∈ Y × ∪t∈T

(
∩i∈NP(1,β(2)

1 )(Zit) + ξt

)
.

According to Theorem 2.3.1, fixed effects parameters αi, βi, and ξt are point identi-
fied when N and T are large. In particular, the identification of βi enables applied
researchers to specify and estimate unobserved heterogeneity in the causal effects of
covariates among individuals. This is important when the researcher is interested
in the distributional effects of such covariates and their policy implications. In Sec-
tion 2.5, we illustrate this point by revisiting two classic empirical studies. Moreover,
Theorem 2.3.1 provides a theoretical foundation for nonparametrically estimating the
link function g. One such procedure is sieve MLE (see Chen et al. (2006); Gallant
and Nychka (1987); Shen and Wong (1994) for examples), which can be applied in
practice to check whether empirical findings are driven by parametric assumptions
such as logit and probit often motivated by computational reasons. Finally, Theorem
2.3.1 can be extended to a model (2.2.1) with multimodal outcomes and model (2.2.2)
with heterogeneous slopes βt. See Sections 2.7.7 and 2.7.8 for details, respectively.

2.3.2 Estimation

In this section, we propose a convenient iterative estimation procedure of model
(2.2.1). It has three appealing features. First, it significantly improves the numerical
efficiency upon the routine implementation of the MLE, particularly when one (or
both) dimension in the panel is large. Second, we show that it is numerically equiv-
alent to the MLE under standard conditions: the resulting estimators converge to
the MLE estimator as long as the number of iterations is large enough. Finally, the
proposed estimation procedure is of general interest. It applies to both finite-T and
large-T settings with a post-estimation bias reduction and correction, respectively.
We present a semi-parametric estimation of model (2.2.1) with a known g and βi = β

in the main text. We discuss the extensions to the settings in which one estimates g
and/or heterogeneous slope parameters in Remarks 2.3.2 and 2.3.3.

Oftentimes, researchers estimate model (2.2.1) by treating the unobserved indi-
vidual and time effects as parameters to be estimated and using a concentrated MLE.
Denote the log-likelihood function by

LNT (θ) :=
N∑
i=1

T∑
t=1

log g(yit;αi + ξt + x′
itβ), (2.3.5)
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where θ = (α2, . . . , αN , ξ1, . . . , ξT , β) with α1 being normalized to zero. The standard
implementation consists of two steps. In the first step (inner loop), given β, one
maximizes LNT (θ) with respect to fixed effect parameters (αi, ξt) for i = 2, . . . , N
and t = 1, . . . , T :

(α̂2, . . . , α̂N , ξ̂1, . . . , ξ̂T ) ∈ arg max
(α2,...,αN )∈A,(ξ1,...,ξT )∈Ξ

LNT (α2, . . . , αN , ξ1, . . . , ξT , β),

(2.3.6)

where A := A2 × · · · × AN ⊂ RN−1 and Ξ := Ξ1 × · · · × ΞT ⊆ RT , with Ai and Ξt
containing the support of αi and ξt, respectively. In the second step (outer loop),
plugging in the estimates of the fixed effects in (2.3.5), one maximizes LNT (θ) with
respect to β:

β̂ ∈ arg max
β∈B

LNT (α̂2, . . . , α̂N , ξ̂1, . . . , ξ̂T , β), (2.3.7)

where B ⊂ RK ,K ≥ 1.
This standard implementation can be computationally intensive due to two rea-

sons. First, concentration step (2.3.6) involves numerical optimization with a large
number of parameters (i.e., fixed effects whose number is at least of order T + N).
Simultaneous numeric searches with respect to these parameters are both time and
space consuming. Second, and more severely, the maximization in outer loop (2.3.7)
treats α̂i and ξ̂t as functions of β (as a result of the inner loop). Each numeric
search in this step will then inevitably execute (2.3.6) multiple times, substantially
increasing computation time.

Our proposed iterative procedure resembles the block-nonlinear Gauss-Seidel
method (or the bloc/cyclic coordinate descent method) in the optimization litera-
ture (see, e.g., Bertsekas, 2016) and circumvents these two numerical challenges in
the implementation of the likelihood estimators. In each iteration, we update se-
quentially estimated individual fixed effects {α̂i}Ni=2, time fixed effects

{
ξ̂t
}T
t=1

and

common slopes β̂. In particular, the updates of {α̂i}Ni=2 and
{
ξ̂t
}T
t=1

are fully paral-
lelized, greatly reducing computational time and solving the numerical challenge in
concentration step (2.3.6). This is doable due to the two-way fixed effects structure
in (2.3.6): given {ξt}Tt=1 and β, when maximizing the entire likelihood with respect
to αi, only the likelihood corresponding to individual i is relevant. Then, to update
{α̂i}Ni=2, one only needs to solve N − 1 one-dimensional maximization problems in
parallel. Analogously, given {αi}Ni=2 and β, when maximizing the entire likelihood
with respect to ξt, only the likelihood corresponding to time t is relevant. Then, to
update

{
ξ̂t
}T
t=1

, one only needs to solve T one-dimensional maximization problems
in parallel given the updated {α̂i}Ni=2 and β̂. Finally, given the updated {α̂i}Ni=2 and{
ξ̂t
}T
t=1

, we update β̂. This update avoids re-evaluating {α̂i}Ni=2 and
{
ξ̂t
}T
t=1

, solving
the numerical challenge in (2.3.7).
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We provide two algorithms that practitioners can use depending on the dimen-
sionality of the optimization and availability of computational resources. The first
one, “fixed-point MLE” (FPMLE), updates {α̂i}Ni=2,

{
ξ̂t
}T
t=1

and β̂ by solving the
corresponding optimization problems in each iteration.

Algorithm FPMLE:

1. Let (ξ(0)
1 , . . . , ξ

(0)
T , (β(0))′)′ ∈ Ξ × B be some starting value. Let α(j)

1 = 0 for all
j ∈ {1, 2, . . .}. Set s = 0.

2 Compute (in parallel) for all i ∈ {2, . . . , N}:

α
(s+1)
i ∈ arg max

α∈Ai

T∑
t=1

log g(yit;α+ x′
itβ

(s) + ξ
(s)
t ).

3. Compute (in parallel) for all t ∈ {1, . . . , T}:

ξ
(s+1)
t ∈ arg max

ξ∈Ξt

N∑
i=1

log g(yit;α(s+1)
i + x′

itβ
(s) + ξ).

4. Compute:

β(s+1) ∈ arg max
β∈B

N∑
i=1

T∑
t=1

log g(yit;α(s+1)
i + x′

itβ + ξ
(s+1)
t ).

5. Set s = s+ 1 and go to Step 2 (until numerical convergence).

When N (or T ) is large, or computational resource is limited (e.g., the number of
CPUs available to parallel computation), Steps 2 and 3 in FPMLE could still be time-
consuming. This motivates our second algorithm, an accelerated version of FPMLE,
labelled as FPMLE++, that updates {α̂i}Ni=2,

{
ξ̂t
}T
t=1

, and β̂ using one-step Newton-
Raphson method, rather than solving the optimization problems. Let g′(y; v) denotes
the first derivative of g with respect to its second argument.

Algorithm FPMLE++:

1. Let (α(0)
2 , . . . , α

(0)
N , ξ

(0)
1 , . . . , ξ

(0)
T , (β(0))′)′ ∈ A × Ξ × B be some starting value.

Let α(j)
1 = 0 for all j ∈ {1, 2, . . .}. Let

{
ν(s)

}
s≥0

be some bounded sequence of
positive scalars such that lim infs ν(s) > 0. Set s = 0.

2 Compute:

α

(s+1)
2
...

α
(s+1)
N

 =



α

(s)
2
...

α
(s)
N

− ν(s)


∑T
t=1

g′

g (y2t;α(s)
2 + x′

2tβ
(s) + ξ

(s)
t )

...∑T
t=1

g′

g (yNt;α(s)
N + x′

Ntβ
(s) + ξ

(s)
t )




+

A

,

where [v]+A denotes the vector whose i-th coordinate is the orthogonal projection
of vi on Ai.
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3. Compute:

ξ

(s+1)
1

...
ξ

(s+1)
T

 =



ξ

(s)
1
...
ξ

(s)
T

− ν(s)


∑N
i=1

g′

g (yi1;α(s+1)
i + x′

i1β
(s) + ξ

(s)
1 )

...∑N
i=1

g′

g (yiT ;α(s+1)
i + x′

iTβ
(s) + ξ

(s)
T )




+

Ξ

,

where [v]+Ξ denotes the vector whose t-th coordinate is the orthogonal projection
of vt on Ξt.

4. Compute:

β(s+1) =
[
β(s) − ν(s)

N∑
i=1

T∑
t=1

xit
g′

g
(yit;α(s+1)

i + x′
itβ

(s) + ξ
(s+1)
t )

]+

B

,

where [v]+B denotes the orthogonal projection of v on B.

5. Set s = s+ 1 and go to Step 2 (until numerical convergence).

Note that in Step 2 (and 3), the update of α(s)
i (ξ(s)

t ) is purely arithmetic. In particu-
lar, when Ai (and Ξt) are “nice” convex sets, e.g., boxes, the update does not involve
any α(s)

r for r ̸= i (ξ(s)
r for r ̸= t). As a result, these updates can be entirely vectorized

within each step. While the parallelization in FPMLE is usually constrained by the
number of CPUs, the vectorization in FPMLE++ is not and can be implemented on
the GPUs, further accelerating the implementation.

Remark 2.3.2 (Estimating heterogeneous slope parameters) The extension
of FPMLE/FPMLE++ to the case of heterogeneous slopes βi (βt) is straightforward.
It suffices to additionally update β(s)

i in Step 2 (β(s)
t in Step 3) using the same rule

in either algorithm. We provide more details in Sections 2.7.9.

Remark 2.3.3 (Estimating link function g) Denote by G the space of a finite-
dimensional parameters, θg, that determine the link function g. We use g(·, θg) to
refer to the parametrizaton by θg ∈ G. For instance, g can be a link function cor-
responding to t-distribution with θg being the degree of freedom of the t-distribution.
Another example is sieve estimation of g. In the setting of binary outcome (Example
1), for given N and T , G can be a finite-dimensional space with the density of g,
den(g), satisfies:

den(g)(δ; θg) =
[
K∑
k=1

θgkHk(x) exp
{

−x2

2

}]2

, (2.3.8)

where Hk is the Hermite polynomial of degree k. G can also be defined as a mixture
sieve space with

den(g)(δ; θg) =
K∑
k=1

θgk
1
σk
ϕ

(
x− µk
σk

)
, (2.3.9)

where ϕ is the standard normal density.
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To customize FPMLE and FPMLE++ to estimating θg, it suffices to add an ad-
ditional step between Steps 4 and 5 in each iteration of FPMLE and FPMLE++ that
updates the estimated parameters θg ∈ G. In FPMLE, this step is

• Compute:

θg(s+1) ∈ arg max
θ∈G

N∑
i=1

T∑
t=1

log g(yit;α(s+1)
i + x′

itβ̂
(s+1) + ξ

(s+1)
t , θ).

In FPMLE++, this step is

• Compute:

θg(s+1) =
[
θg(s) − ν(s)

N∑
i=1

T∑
t=1

xit
∂θg

g
(yit;α(s+1)

i + x′
itβ

(s+1) + ξ
(s+1)
t , θg(s))

]+

G

,

where [v]+G denotes the orthogonal projection of v on G.

Remark 2.3.4 In theory, the projection operation in each step of FPMLE++ ensures
that the updated estimate is always within its support, facilitating the numerical con-
vergence by restricting the estimates in the first iterations to be not too distant from
the solutions. In practice, one can update the estimates without projecting and still
achieve the numerical convergence, which we observe in the Monte Carlo simulations.

2.3.3 Numerical Equivalence to the MLE

In this section, we prove that both FPMLE and FPMLE++ are numerically equivalent
to the MLE: given T and N , both estimators converge to the MLE estimators as the
number of iterations increases to infinity. As a result, FPMLE and FPMLE++ provide
reliable approximations to the MLE in the finite sample.

Define the MLE, θ̂MLE
NT , that maximizes the log-likelihood function LNT (·) over

RK+N+T−1:
θ̂MLE
NT = arg max

θ∈RK+N+T −1
LNT (θ). (2.3.10)

To establish the equivalence results, we will need the following assumptions on LNT (·)
and ΘNT := A × Ξ × B.

Assumption 2.3.2

(i). Ai,Ξt, and B are convex, closed sets with nonempty interior and ΘNT contains
θ̂MLE
NT .

(ii). LNT is strictly concave and continuously differentiable over RK+N+T−1. More-
over, lim∥θ∥→∞ LNT (θ) = −∞.

(iii). Ai,Ξt, and B are bounded boxes containing 0 in their interiors and LNT is
twice continuously differentiable over over RK+N+T−1.
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Assumption 2.3.2(i) is a standard condition for deriving properties of M-estimators.
Assumption 2.3.2(ii) features smoothness, concavity and coercivity properties of LNT

that together ensure that problem (2.3.10) admits a unique solution characterized by
the first-order conditions. The commonly used nonlinear models in applied economics
such as logit, probit, ordered probit, Poisson, and tobit models satisfy this assump-
tion, provided that all the elements of xit have sufficient cross sectional and time
series variation.

Assumptions 2.3.2(i)-(ii) are sufficient for the numerical equivalence of FPMLE.
We further need Assumption 2.3.2(iii) to show the numerical equivalence of
FPMLE++. This assumption strengthens the smoothness of the log-likelihood func-
tion and holds generically for commonly used distributions. Together with Assump-
tions 2.3.2(i)-(ii), it allows to locally bound the Hessian matrix of LNT (·) from below
and from above. This will deliver local strong concavity and Lipschitzity of the gra-
dient, which is the key to the convergence of FPMLE++.

We now state the numerical equivalence of FPMLE and FPMLE++ to the MLE.
The proof can be found in Appendix 2.7.2.

Theorem 2.3.2

• Suppose that Assumptions 2.3.2(i)-(ii) hold. Then, θ̂MLE
NT exists and the sequence

of iterates generated by FPMLE,
{
θ̂

(s)
NT

}
s=1,2,...

, converges to θ̂MLE
NT .

• If Assumption 2.3.2(iii) further holds and ν(s) ≡ ν is constant such that 0 < ν <

1/L̄ for some absolute constant L̄ > 0,20 then the sequence of iterates generated
by FPMLE++,

{
θ̂

++(s)
NT

}
s=1,2,...

, converges to θ̂MLE
NT .

Remark 2.3.5 (Estimating heterogeneous slope parameters) The numerical
convergences of both algorithms still hold in the presence of heterogeneous slopes βi.
We refer to the proof in Appendix 2.7.2 for such extension.

When the concavity requirement in Assumption 2.3.2(ii) does not hold, the likelihood
function may have multiple local maxima and the numerical equivalence is not uni-
versally guaranteed in theory. The lack of concavity is more likely to occur when the
link function g is left to be estimated.21 In this case, one can still verify the numeri-
cal convergence of both algorithms by simply checking if

∥∥∥θ̂(s+1)
NT − θ̂

(s)
NT

∥∥∥ and/or the
corresponding difference in the likelihood function is small enough. In Section 2.7.9,
we show that if FPMLE/FPMLE++ converges numerically, it then converges to a

20For the definition of ν(s), see Algorithm FPMLE++. The constant L̄ is implicitely defined in the
proof of Theorem 2.3.2, Eq. (2.7.10). In practice, choosing ν and deriving an upper bound on L̄ is
straightforward given knowledge of g, ΘNT , and the data.

21For instance, in the case of ordinal outcome, the log-concavity of den(g) is sufficient (and almost
necessary) for the concavity of LNT with respect to θ (Pratt, 1981). When den(g) is left to be
estimated, e.g., the sieve approach in (2.3.8) and (2.3.9), such shape restriction on den(g) is, a priori,
not imposed. Even with such restrictions, one still needs the concavity of LNT with respect to
the entire vector of parameters, i.e., θ and those in den(g), to obtain the numerical equivalence in
Theorem 2.3.2, which is not automatically satisfied.
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stationary point of the likelihood function (2.3.5). As a result, applied researchers
can use both algorithms to pin down the set of stationary points of the likelihood
function using different starting points, and obtain the global maximum from the set.
Theorem 2.3.2 implies that given (N,T ), θ̂(s)

NT and θ̂
++(s)
NT will be close enough to

θ̂MLE
NT when s is large. In our Monte Carlo simulations (Section 2.4) as well as empir-

ical illustrations, both algorithms converge fast and already achieve good numerical
approximation after a few number of iterations.

Inference. Given the numerical equivalence, the researcher can use θ̂(s)
NT and θ̂++(s)

NT

as approximates of θ̂MLE
NT and conduct inference.22 In the classic setting with βi = β,

one can implement post-estimation bias correction by deriving a consistent estimate
of the bias (Fernández-Val and Weidner, 2016) and bias reduction using re-sampling
methods such as jackknife (Dhaene and Jochmans, 2015; Hahn and Newey, 2004).
In the setting with heterogeneous βi, Boneva and Linton (2017) propose a method
of inference when T and N are both large with T/N → 0 (see Assumption B2 on
page 1230). Gao et al. (2020) focus on the inference in a binary panel model with
heterogeneous slopes, interactive fixed effects, and a known link function. To be
self-contained, we provide a consistency result for the MLE estimators of the slopes
in Appendix 2.7.3, and show that maxNi=1 |β̂i − β0

i | is of order N−3/8 as N → ∞
and N/T → κ ∈ (0,+∞) and therefore (β̂i)Ni=1 is consistent under the max norm.
In particular, this result implies that plug-in estimators of the moments of βi are
consistent. Consequently, applied researchers can estimate the population average
of the causal effect of a covariate (the mean of βi) and assess the extent of its het-
erogeneity across individuals (the dispersion of βi). We also provide Monte Carlo
evidence for the consistency result in the setting of Poisson count model in Table
2.8 of Section 2.7.11. In the next section, we supplement the consistency result with
a practical Bootstrap inference procedure and provide Monte Carlo evidence for its
good finite-sample performance. 23

2.4 Monte Carlo Experiments

In this section, we use Monte Carlo experiments to assess the numerical performance
of FPMLE and FPMLE++. We focus on three tasks. First, we investigate the number
of iterations with which the objects of interests, e.g., slope parameters, average partial
effects (APEs), computed by using θ̂(s)

NT and θ̂
++(s)
NT approximate well those obtained

22We focus on the inference in the semi-parametric setting of model (2.2.1) with g being known (or
up to a fixed number of parameters that does not increase with N and T ). We leave the inference in
the nonparametric setting, e.g., sieve estimation of g in (2.3.8) and (2.3.9), for future research.

23As detailed in Appendix 2.7.3, when βi is bounded, we show that the plug-in estimators of the
moments of βi converge to the true values with a rate at least equal to N3/8. Despite the good finite-
sample performance of the proposed Bootstrap procedure suggested by the Monte Carlo simulations,
it is yet to show the theoretical validity of the procedure for such plug-in estimators (e.g., they
are

√
N -Gaussian, potentially subject to an asymptotic bias). We leave this for future research. An

alternative inference method is subsampling (Politis et al., 1999) that applies under weaker conditions
than Bootstrap (e.g., a convergence rate slower than

√
N).
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by using θ̂MLE
NT . Second, we investigate the extent to which both algorithms reduce

execution time relative to the routine implementation of the MLE, and in particular,
the performance of FPMLE++ when the number of fixed effects is large. Third, in
the presence of heterogeneous slopes, we assess the finite-sample performance of a
practical Bootstrap inference procedure for the distributional features of the slopes
and the APEs. Finally, based on our findings, we give practical guidance to applied
researchers regarding the use of our algorithms.

Monte Carlo design. The designs build on those in Section 5.1 of Fernández-
Val and Weidner (2016). We consider a static logit model with homogeneous slope
coefficients (Example 1):

yit = 1{xitβ0 + αi + ξt ≥ uit}, i = 1, . . . , N, t = 1, . . . , T,

where α1 = 0, αi ∼ N (0, 1/16) for i ≥ 2, ξt ∼ N (0, 1/16), uit ∼ Λ with
Λ(u) = 1/(1 + exp(−u)), and β0 = 1. In all designs xit is strictly exogenous with re-
spect to uit conditional on the individual and time effects. The variables αi, ξt, uit, vit,
and xi0 are independent and i.i.d. across individuals and time periods. We con-
sider four data generating processes (DGPs) for xit. In DGP (i), xit ∼ N (0, 1). In
DGP (ii), xit ∼Unif[−

√
3,

√
3]. Both DGPs satisfy Assumption 2.3.1. In DGP (iii),

xit = xi,t−1/2 + αi + ξt + vit, with vit ∼ N (0, 1/2), and xi0 ∼ N (0, 1). In DGP (iv),
xit = 2t/T + αi + ξt + vit, with vit ∼ N (0, 3/4). DGPs (iii) and (iv) violate the exo-
geneity condition (Assumption 2.3.1(iii)). Besides, DGP (iv) violates the stationary
requirement in Assumption 2.3.1(ii)a.

Calibration of the number of iterations. Figure 2.2 summarizes the “Root
Mean Squared Error” (RMSE) distance to the MLE estimator for β̂NT (blue, left
panel), β̂++

NT (orange, left panel), and the corresponding estimated APEs δ̂NT and
δ̂++
NT (right panel).24 The statistics in both figures are computed using 50 Monte

Carlo replications and with N = T = 200. The full results are in Table 2.2.
As the number of iterations increases, both FPMLE and FPMLE++ converge to

the MLE as predicted by Theorem 2.3.2. FPMLE delivers good approximation to
the MLE even when the number of iteration is small. When we run only 3 iterations,
the RMSE distance for β̂NT is at most of order 10−3 for all the DGPs and the RMSE
distance for δ̂NT is even a magnitude smaller. For a given number of iterations,
FPMLE++ approximates less well than FPMLE. However, the difference seems to
diminish very quickly. For the DGPs we consider, FPMLE++ with 20 iterations
already achieves comparable precision to FPMLE (see Table 2.2). We replicate the
exercises for the setting of N ≫ T (N = 5000 and T = 30) and these findings remain
valid. For details, see Table 2.7 in Section 2.7.11.

24For the definitions of the RMSE distance to the MLE estimator θ̂MLE and δ̂NT , see Eq. (2.7.20)
and (2.7.21), respectively.
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Figure 2.2: Numerical Convergence of β̂NT , β̂++
NT , δ̂NT , and δ̂++
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Notes: N = T = 200. Left panel: β̂NT (blue) and β̂++
NT (orange). Right panel: δ̂NT (blue) and δ̂++

NT

(orange). Dashed, solid, dotted, dash-dotted lines correspond to DGPs (i)-(iv), respectively.

Reduced execution time by FPMLE and FPMLE++. Figure 2.3 summarizes
the execution time of our Python’s implementation (nlmfe) of FPMLE++ (left panel)
and STATA’s logitfe (right panel). The statistics in both figures are computed using
10 Monte Carlo replications and with N = T . Given the similar precision of FPMLE
and FPMLE++ after a relatively small number of iterations, we focus on FPMLE++

in this section and set the number of iterations to be 20 (and jointly with the usual
numerical stopping criteria).25 Overall, FPMLE++ largely outperforms logitfe in
terms of execution time for all sizes of data sets. First, whether or not implementing
post-estimation bias correction (dotted lines in Figure 2.3), FPMLE++ only uses a
fractional execution time of that by logitfe. For instance, when N = T = 1100,
FPMLE++ gives point estimates in less than 20s, while logitfe uses more than two
hours. Second, for very large data sets (e.g., N = T = 2600), logitfe can not
even run; in contrast, FPMLE++ still produces point estimates in about 1min. This
remarkable time efficiency remains valid when N ≫ T . See Table 2.7 in Section 2.7.11
for comparisons when N = 5000 and T = 30.26

Bootstrap inference procedure. We simulate a Poisson model with heteroge-
neous slopes and implement a split-sample jackknife bootstrap procedure in the spirit
of Dhaene and Jochmans (2015) for the distributional features of β0i as well as the

25In the Monte Carlo experiments and empirical illustrations, we jointly use a stopping criterion
based on the variation of the objective function generated by the previous iterate (e.g., the iteration
stops as soon as this variation is less than 10−5). For FPMLE++, we use a step size of ν(s) ≈ 1/(NT ),
or an Hessian step.

26In the same table, we also report the execution time of FPMLE. We find that FPMLE++ further
reduces execution time relative to FPMLE.
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Figure 2.3: Execution Time (in seconds) of FPMLE++ and logitfe,
N = T
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Notes: Left panel: Python’s nlmfe implementation of FPMLE++ with ν = 1/(NT ) and 20
iterations. Right panel: STATA’s logitfe. DGPs (i)-(iv) in blue/orange/yellow/green,
respectively. Solid lines: time to compute the estimates. Dashed lines: time to compute the
Jackknife bias-corrected estimates. Elapsed time is compuputed using STATA’s timeit and
Python’s time.perf_counter() commands on the ENSAE IP Paris’s cluster (Intel(R) Xeon(R)
Gold 6130 CPU, 2.10GHz, 256Gb RAM).

APEs.27 The details of the Poisson model is in Appendix 2.7.4 and the implementa-
tion details of the Bootstrap procedure are in Section 2.7.11.

Table 2.1 summarizes the coverages of the percentile bootstrap jackknife confi-
dence intervals (CIs) for the mean of β0i, its standard deviation, and the APEs.
Overall, the proposed bootstrap procedure achieves reasonable coverage. When the
DGP satisfies Assumption 2.3.1 (DGPs (i) and (ii)), the coverages of the CIs for
E(β0i) and the APE attain the desired levels. When the DGP violates the identifi-
cation assumption (DGPs (iii) and (iv)), the coverages decrease relative to those in
DGPs (i) and (ii), but are still reasonably large. We find that the coverages of the
CIs for

√
V(β0i) are lower than the desired levels. They can be ameliorated by using

asymmetric quantiles (e.g., using 4% and 99% quantiles to construct the CI with level
95%). See Table 2.3 for details.

Suggestions to practitioners. Due to the fast convergence and high precision
of FPMLE/FPMLE++, both algorithms provide good approximations of the MLE
estimator and are useful for applied research in various settings. When the problem
size is small or moderate and the concentrated MLE is still feasible, one can use
FPMLE/FPMLE++ to accelerate the implementation of the MLE estimator. For

27In practice, when T or N is moderate, which is the case of our second empirical illustration, the
splitted sample may be too small, leading to potentially unstable numerical performance. We test
the performance of a straightforward percentile bootstrap procedure without the jackknife correction
that makes use of the full sample and therefore minimizes the numerical instability. As expected, for
DGPs (i) and (ii) that satisfy Assumption 2.3.1, the corresponding coverages are dominated by the
procedure with the jacknife correction. In contrast, for DGPs (iii) and (iv) that violate Assumption
2.3.1, we do not find such dominance. An alternative method is analytical bias correction, which we
leave for future research.
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Table 2.1: Inference – Poisson Model with Heterogeneous Slopes

Ê(β0i)
√
V̂(β0i) ÂPE

Coverage .90 .95 .99 .90 .95 .99 .90 .95 .99
DGP
i. .9170 .9600 .9900 .5870 .6910 .8410 .9630 .9780 .9860
ii .9450 .9820 .9950 .4980 .6370 .8080 .9800 .9920 .9990
iii. .8040 .8560 .8900 .7810 .8310 .8840 .5530 .6790 .7960
iv. .8250 .8850 .9380 .6430 .7210 .8420 .5970 .6970 .8330
Notes: Data are generated from the Poisson model described in Appendix
2.7.4 with N = T = 50. The coverages are computed based on 1, 000 repli-
cations. For each repetition, we implement percentile Bootstrap jackknife
CI’s based on 200 Bootstrap samples. All computations are performed
with FPMLE++ with at most 2 Hessian step iterations.

commonly used nonlinear models (e.g., logit, probit, Poisson), Assumption 2.3.2 is
satisfied and the likelihood function has a unique global maximum. Then, both algo-
rithms converge to the desired solution. When Assumption 2.3.2 may not hold, the
likelihood function could have multiple local maxima. One can use both algorithms to
fast back out the set of stationary points of the likelihood function (Proposition 2.7.6
in Section 2.7.9) and find out the global maximum, solving the practical challenge of
multiple local maxima in the MLE approach (see the discussion after Theorem 2.3.2).
When the problem size is large (or the computational resources are limited), running
the concentrated MLE can be costly (e.g., N = T ≥ 1100 in Figure 2.3). We suggest
using either FPMLE or FPMLE++. One can start with a small number of iterations
(say, 20) and double check their numerical convergences by increasing the number of
iterations (jointly with the usual numerical stopping criteria). Finally, if the problem
is very large (e.g., N = T = 2600), it is possible that the implementation of FPMLE
would become costly. In these cases, we suggest using FPMLE++.

2.5 Empirical Illustrations

We demonstrate the empirical relevance of our proposed method by revisiting two
classic studies: the determinants of trade flows (Helpman et al., 2008) and the causal
relationship between institutional ownership and innovation (Aghion et al., 2013).
Contrasting to the models in the original studies that impose homogeneity in the slope
parameter capturing the causal relationship, we allow such slope to be individual-
specific. In both illustrations, we find significant dispersion in the slope, suggesting
important heterogeneity in the strength of the causal relationship. Moreover, the
residual dispersion after controlling for individual’s observed characteristics does not
disappear, suggesting non-negligible unobserved heterogeneity in the slope parameter.
Imposing homogeneous slopes and ruling out the heterogeneity may miss out the
complexity in the underlying mechanism(s).
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2.5.1 The Determinants of Trade Linkages and Flows

Helpman et al. (2008) estimate trade flows and explicitly take into account firm
selection into export markets. Their method features a first step that estimates
the establishment of exportation from one country to another using a binary model.
Because of this step, they can then control for the fraction of firms that export
(consistently estimated from the first step) and the selection effect due to zero trade
flows when estimating the gravity equation in the second step. In the empirical
application, this first step is implemented as following (see their equation 12 on page
455):

P(Tij = 1|distij , wij , ζi, ξj) = Φ
(
−γdistij + w′

ijκ+ ζi + ξj
)
, i, j = 1, . . . , N, i ̸= j,

(2.5.1)
where Tij = 1 when country j exports to i and zero otherwise, distij is the distance
between i and j, wij is a vector of observed country-pair specific variables, ζi (ξj) is an
importer (exporter) fixed effect, and Φ is the standard normal cumulative distribution
function. According to their theoretical model, γ is interpreted as a constant elasticity
of a firm’s trade with respect to distance.

Different from the original setting, we allow γ to be country- and exporter-specific:

P(Tij = 1|distij , wij , ζi, ξj) = Φ(−γexp
j distij + w′

ijκ+ ζi + ξj), i, j = 1, . . . , N, i ̸= j.

(2.5.2)
Recent literature on international trade raises concerns about the assumption of con-
stant trade elasticities that impose homogeneous effects of trade cost shifters (see
Carrère et al. (2020); Chen and Novy (2021) for examples). The specification in
(2.5.2) relaxes this assumption along two dimensions. First, it allows firms from dif-
ferent countries to react differently to the same change in trade cost shifters when
exporting to the same third country. Second, two countries in a trade relationship,
when exporting to the other, can react differently to the same change in the trade cost
shifters that affects the trade in both directions. Furthermore, this specification is
implied by a theoretical model along the lines of Helpman et al. (2008) with demand
elasticity in the product market being country-specific.28 We also consider another
specification that allows γ to be country- and importer-specific:

P(Tij = 1|distij , wij , ζi, ξj) = Φ(−γimp
i distij + w′

ijκ+ ζi + ξj), i, j = 1, . . . , N, i ̸= j.

(2.5.3)
Similar to (2.5.2), the specification in (2.5.3) allows two countries in a trade relation-
ship to react differently to the same change in the trade cost shifters that affects the
trade in both directions. Moreover, (2.5.3) can also incorporate firm’s heterogeneous
reaction to the same change in trade cost shifters, depending on the country it ex-
ports to. In what follows, we estimate the first step of the method by Helpman et al.

28Concretely, denote by εj the demand elasticity in country j in their equation 2 on page 449.
Then, the log of trade cost, ln τij , enters the first (and the second) step with a coefficient εj − 1. As
a result, along the lines of their empirical specification, we can specify (εj − 1) ln τij = γexp

j dij − uij .
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(2008) using (2.5.2) and (2.5.3), and quantify the extent to which the trade elasticity
is heterogeneous among countries.29

We estimate (2.5.2) and (2.5.3) using the 1986 worldwide trade data sample of Help-
man et al. (2008) which include N = 158 countries. We remove Congo as an exporter
from the sample because it did not export to anyone in 1986. This treatment leaves
us with 24, 649 observations of trade flows (exportation) from country j to i.30 We
then obtain 157 estimated γexp

j and 158 estimated γimp
i . The average of −γexp

j (resp.
−γimp

i ) across countries is estimated to be −0.010 (resp. −0.014) and the corre-
sponding marginal effects at the sample mean is −0.004 (resp. −0.006). We find
non-negligible dispersion in −γexp

j and −γimp
i (Figures 2.4(a) and (b)): the standard

deviation of the former is estimated to be 0.078 and the latter is estimated to be
0.048, both of which are of greater magnitudes to the averages and statistically sig-
nificant.31 This dispersion can be partly explained by country characteristics that
may determine the trade elasticity. In Figures 2.4(c) and (d), we plot the distri-
bution of −γexp

j and −γimp
i by country’s WTO membership status. We find that

as an exporting/importing country, j is less elastic with respect to distance if it is
a member of the WTO (dark vs light blue/red in Figures 2.4(c) and (d). See also
Table 2.4). The residual dispersion after controlling for such observed characteristics
does not seem to disappear. We implement linear regressions of −γexp

j and −γimp
j

over country’s WTO membership status and its geographic characteristics used in
Helpman et al. (2008). The results are summarized in Table 2.4.

29Allowing for country-specific trade elasticity such as (2.5.2) and (2.5.3) may also change the
second-step estimation in Helpman et al. (2008). First, and consistently, the trade elasticity param-
eter in the second stage will be also country-specific. Second, the estimated fraction of firms that
export and inverse Mills ratio (if the first step is specified as a probit model), both of which are
used as regressors in the second step, will take into account the heterogeneity in the estimated trade
elasticity in the first step. Intuitively, the more significant heterogeneity in the trade elasticity is, the
more the second step will be affected. Characterizing these consequences is beyond the scope of our
methodology, which we leave for future research.

30We use the set of controls ϕij in the second column of Table 1 of Helpman et al. (2008). Totally
removing Congo from the sample does not significantly alter the results.

31The 95% symmetric percentile Bootstrap confidence intervals are [0.065, 0.092] and [0.036, 0.061],
respectively.
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Figure 2.4: Distribution of Estimated Trade Elasticity
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(c) Estimated −γexp
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Notes: Histograms based on 157 and 158 estimated −γexp
j and −γimp

i , respectively.

2.5.2 The Effects of Institutional Ownership on Innovation

Aghion et al. (2013) study how institutional ownership affects firm’s innovation. The
main empirical specification in the paper (Eq. 1 on page 280) is a two-way fixed effects
Poisson count model:

CITESit ∼ Poisson(λit),

λit = exp
{
β × INSTITit + x′

itα+ ηi + τt
}
,

(2.5.4)

where CITESit is firm i’s number of patents in period t weighted by future citations,
INSTITit is the proportion of stock owned by institution investors, xit is a vector of
control variables (e.g., sales, firm size), ηi is firm-i specific fixed effect, and τt is period-
t specific fixed effect. Slope β captures the causal effect of institutional ownership: 1
percentage point increase in INSTITit leads to firm i’s number of patents in period
t to change on average by 100β percentage points. Their main results (Table 1 on
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page 283) show that the coefficient of INSTITit is significantly positive, suggesting a
positive impact of institution ownership on firm’s innovation.

We allow the coefficient of INSTITit to be firm-i specific, i.e., βi, in model (2.5.4).32

This specification is plausible and coherent with the two micro-foundations in Aghion
et al. (2013) (career concern and “lazy manager”): higher institution ownership will
induce a higher probability of monitoring that incentives the manager to innovate
more; however, because corporate structure may vary substantially across firms,
the same change in the proportion of institution ownership may not produce the
same amount of change in monitoring, leading to different incentives of innovation
and therefore heterogeneous coefficient of institution ownership. This relaxation also
raises interesting questions regarding the correlation between βi and ηi, e.g., whether
a more innovative firm (larger ηi) is more (or less) incentivized by the institutional
monitoring to innovate (more positive βi), and what are the drivers of the correlation
(if there is any).

32We use the same set of controls xit as column (5) of Table 1 in Aghion et al. (2013).
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Figure 2.5: Distributions of β̂i
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Notes: Histograms based on 452 estimated βi. Firms with largest R&D investment (Tobin’Q) are
defined as those in the top 10% quantile of average R&D investment (Tobin’ Q) over the time
period in the data.

Figure 2.5 summarizes the unconditional distribution of β̂i (panel a) and some con-
ditional distributions (panels b and c).33 The estimated average of βi is very close
to zero (−0.0017). In addition, firms with greater R&D investment (panel b) and
Tobin’Q (pabel c) are estimated to react more positively to institutional ownership
than other firms. Importantly, we find a significant dispersion in β̂i. We estimate σ̂β
to be 0.0105, which is of the same magnitude as the effect found by Aghion et al.
(2013).34 We decompose β̂i over a set of firm i’s characteristics, denoted by zi, as
follows:

β̂i = ziγ
β + ζβi . (2.5.5)

33Different from the first empirical illustration, the panel data in the second one are unbalanced
and the number of periods (9 years) is moderate compared to the number of firms (803 firms). As a
result, the estimates could be noisier. Augmenting the data with observations from more periods will
mitigate such noise in finite sample. Besides, the economic points of this illustration are still valid.

34In their Table 1, estimated β ranges from 0.005 to 0.01.
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We can then estimate the extent to which the dispersion in β̂i is explained by the
observed zi and the unobserved component, ζβi .35 We find that ζβi still explains
around 62% of the total variation in β̂i. See Table 2.5 for details.
Next, we assess the correlation between estimated βi and ηi and find significantly
positive correlation (0.231, with symmetric 95% percentile Bootstrap confidence in-
terval being [0.172, 0.806]). To shed light on the drivers of this positive correlation,
we decompose η̂i over the same set of firm i’s characteristics zi in (2.5.5):

η̂i = ziγ
η + ζηi . (2.5.6)

By using both equations, we quantify the extent to which the correlation between β̂i
and η̂i is driven by the observed correlation captured by (ziγη, ziγβ) and the unob-
served correlation by (ζβi , ζ

η
i ). We find that the correlation between β̂i and η̂i is not

fully driven by the observed characteristics; the co-variance between ziγ
η and ziγ

β

accounts for 49% of that between β̂i and η̂i, and the correlation between ζβi and ζηi
accounts for 51%.36

2.6 Conclusion

We study a class of nonlinear two-way fixed effects panel models that features
individual-specific slopes in addition to the usual individual-specific and time-specific
intercepts, and flexibly specified link function. The former is relevant when the re-
searcher is interested in the distributional causal effects of covariates and their policy
implications. The latter mitigates potential misspecification errors due to restric-
tions imposed on link function in empirical research. When both N and T are large,
we prove that the fixed effects parameters and the link function can be nonpara-
metrically identified using the strategy of compensating variable. We propose a novel
iterative Gauss-Seidel estimation procedure that largely alleviates the challenge of di-
mensionality in the number of fixed effect parameters in the routine implementation
of the MLE. We show that the procedure is numerically equivalent to the MLE under
standard conditions. Extensive Monte Carlo simulations suggest its fast convergence
and robust finite-sample performance in inference. We revisit two classic empirical
studies in international trade (Helpman et al., 2008) and innovation (Aghion et al.,
2013) to illustrate the empirical relevance of our method. Specifically, we investigate
the extent to which the causal effect of interest is heterogeneous across individuals
by allowing for (unobserved) heterogeneous slope parameters across countries/firms.
We find non-negligible (unobserved) dispersion in trade elasticity and the effect of
institutional ownership on firm innovation, respectively. These exercises emphasize

35We include the average of sales, R&D expenditure, Tobin’s Q across time period, and sector
dummies in zi.

36See Tables 2.5 and 2.6 for more details of the decomposition.
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the usefulness of the proposed method in capturing flexible (and unobserved) hetero-
geneity in the causal relationship of interest which may have important implications
for the subsequent policy analysis.

2.7 Appendix

Notation: For any p ≥ 1 and any two vectors x and y in Rp, we let ⟨x, y⟩ denote
the usual Euclidean inner product of x with y. Thus, the Euclidean norm is given by
∥x∥ =

√
⟨x, x⟩. For any twice continuously differentiable function f : Rp → R, we let

∇f(x) (resp. ∇2f(x)) denotes its gradient (resp. Hessian) at x ∈ Rp. For a matrix
A, we denote A′ as the transpose of A. For a real symetric matrix A ∈ Rn×n, we
let λ1(A) ≥ · · · ≥ λn(A) denote its real eigenvalues. For any real matrix A ∈ Rn×m,
∥A∥2 :=

√
λ1(A′A) denotes the spectral norm (i.e., the operator norm induced by

the Euclidean norm), ∥A∥F :=
√

trA′A denotes the Frobenius norm, and ∥A∥max :=
maxi=1,...,n;j=1,...,m |Aij | denotes the max norm.

2.7.1 Proof of Theorem 2.3.1

First, we focus on the observations corresponding to individual i and identify
individual-fixed effects β

(1)
i , αi, and β

(2)
i − β

(2)
1 . For y ∈ Y verifying Assump-

tion 2.3.1(i), and x ∈ Xi, define the following quantity:

Γi(y;x) := E [1{yit = y}|xit = x, αi, βi] . (2.7.1)

Then, under Assumption 2.3.1(ii), we can identify Γi(y;x) for each x ∈ Xi. When Xi

is discrete, Γi(y;x) is obtained by using the law of large numbers (LLN) and Slutsky’s
lemma.37 When xit has continuous components, it can obtained by using Nadaraya
and Watson’s estimator under standard regularity conditions on the density of xit
(see, e.g. Hansen, 2008). Using Assumption 2.3.1(iii), we obtain:38

Γi(y;x) = E [E [1{yit = y}|xi1, . . . , xit−1, xit = x, αi, βi, ξt] |xit = x, αi, βi]

= E
[
g(y;αi + ξt + x′βi)|xit = x, αi, βi

]
=
∫
g(y;αi + ξ + x′βi)dFξ(ξ;x(2)).

Similarly,
Γ1(y;x) =

∫
g(y;α1 + ξ + x′β1)dFξ(ξ;x(2))

37Concretely, one would rely on Bernstein’s LLN over t’s to identify Γi(y; x): given x, Γi(y; x) is
obtained by aggregating 1 {yit = y} across countably many time periods as long as the correlation
between 1{yit = y}1{xit = x} and 1{yit′}=y1{xit′ = x} decreases to zero when |t − t′| → ∞.

38The construction of Γi(·) does not require xit to be different for individuals in the same time
period t. Instead, for a given individual i, it aggregates the outcomes corresponding to this individual
and with the same values of covariates xit = x (or, xt = x when xit = xt) across different periods.
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is identified for x ∈ X1. Assumption 2.3.1(iv) ensures that we can find (x(1)k, x(2)k) ∈
Xi such that (zi(x(1)k;x(2)k), x(2)k) ∈ X1 with k = 1, 2, 3 and the matrix

1 x(1)1 x(1)1

1 x(1)2 x(1)2

1 x(1)3 x(1)3


is nonsingular. Fixing such (x(1)k, x(2)k) ∈ Xi, we can then identify (x̃(1)k, x(2)k) ∈ X1

such that
Γ1(y; x̃(1)k, x(2)k) = Γi(y;x(1)k, x(2)k).

Given x(2)k, because of the strict monotonicity in Assumption 2.3.1(i) and the nor-
malization β(1)

1 = 1, such x̃(1)k is unique. Moreover, by the definition of zi(x(1);x(2)),
we know that

Γ1(y; zi(x(1)k;x(2)k), x(2)k) = Γi(y;x(1)k, x(2)k).

As a result, we identify zi(x(1)k;x(2)k) = x̃(1)k for k = 1, 2, 3, i.e.,
1 x(1)1 x(1)1

1 x(1)2 x(1)2

1 x(1)3 x(1)3




αi

β
(1)
i

β
(2)
i − β

(2)
1

 =


x̃(1)1

x̃(1)2

x̃(1)3

 .

Solving this linear system identifies αi, β(1)
i and β

(2)
i − β

(2)
1 .

Second, we identify β(2)
i and ξt by further using Assumptions 2.3.1(ii) and (v). Note

that zi(x(1);x(2)) is already identified for any (x(1), x(2)) ∈ Xi and i ∈ N. Fix-
ing t ∈ T (and therefore conditional on (ξt, β1)), because of the independence of
{(yit, xit, αi, βi)}i∈N in Assumption 2.3.1(ii),

{
(yit, zi(x(1)

it ;x(2)
it ), x(2)

it )
}
i∈N

are also in-
dependent. Similarly to (2.7.1), we then identify the following quantity:

Γt(y; z, x(2)) := E
[
1{yit = y}|zit = z, x

(2)
it = x(2), ξt, β

(2)
1

]
.

for (z, x(2)) ∈ Zt. Using (2.3.1), we have Γt(y; z, x(2)) = g(y; z + β
(2)
1 x(2) + ξt). Then,

g(y; z + β
(2)
1 x(2) + ξt) is identified for any y ∈ Y, (z, x(2)) ∈ Zt, and t ∈ T.

Remark 2.7.1 Suppose that g(y; v) is real analytic with respect to v ∈ R for any
y ∈ Y and Zt contains an open set. Because g(y; z + β

(2)
1 x(2) + ξt) is identified for

(z, x(2)) ∈ Zt, g(y;αi+x′β
(1)
i +ξt) is then identified for x ∈ Xi such that zi(x(1);x(2)) ∈

Zt. Note that zi(·) is continuous in x and Zt has an open subset. Then, the preimage
of Zt also contains an open subset and g(y;αi + x′βi + ξt) is identified in this open
subset of Xi. Due to the unique continuation of the real analytic function and the real
analyticity of g(y;αi+x′βi+ξt) with respect to x, we can then identify g(y;αi+x′βi+ξt)
as well as its derivatives with respect to x for x ∈ R2.39

39The real analyticity of g(y; αi + x′βi + ξt) with respect to x is a result of that of g(y; v) with
respect to v and v = αi + x′βi + ξt with respect to x.
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Because of Assumption 2.3.1(v)a, we can find t ∈ T, r ∈ R, and two
(z, x(2)), (z′, x(2′)) ∈ Zt, such that x(2) ̸= x(2′) and g(y; r+ξt) = g(y; z+β(2)

1 x(2)+ξt) =
g(y; z′ + β

(2)
1 x(2′) + ξt). Using Assumption 2.3.1(i) and setting y = y, we obtain

z + β
(2)
1 x(2) + ξt = z′ + β

(2)
1 x(2′) + ξt, identifying β

(2)
1 (and therefore β

(2)
i ). This

further identifies g(y; z + β
(2)
1 x(2) + ξt) for any (z, x(2)) as long as P(1,β(2)

1 )(z, x
(2)) ∈

∩i∈NP(1,β(2)
1 )(Zit) for all t ∈ T (and g(y; v + ξt) for any v ∈ ∩i∈NP(1,β(2)

1 )(Zit) for all
t ∈ T).

Assumption 2.3.1(v)b ensures for any t ∈ T,{
g(ȳ; z + β

(2)
1 x(2) + ξt) : P(1,β(2)

1 )(z, x
(2)) ∈ ∩i∈NP(1,β(2)

1 )(Zit)
}

∩ {
g(ȳ; z + β

(2)
1 x(2)) : P(1,β(2)

1 )(z, x
(2)) ∈ ∩i∈NP(1,β(2)

1 )(Zi1)
}

̸= ∅.

Then, using Assumption 2.3.1(i), we can then find (z, x(2)) with P(1,β(2)
1 )(z, x

(2)) ∈

∩i∈NP(1,β(2)
1 )(Zit), and (z′, x(2′)) with P(1,β(2)

1 )(z
′, x(2)′) ∈ ∩i∈NP(1,β(2)

1 )(Zi1), such that

z + β
(2)
1 x(2) + ξt = z′ + β

(2)
1 x(2′).

We then identify ξt by z′ − z + β
(2)
1 (x(2′) − x(2)).

Finally, the identification of ξt and g(y; v + ξt) for any v ∈ ∩i∈NP(1,β(2)
1 )(Zit) allow

to identify g(y; v) as a function of Y ×
(

∩i∈NP(1,β(2)
1 )(Zit) + ξt

)
. We then identify

g(y; v) in Y × ∪t∈T

(
∩i∈NP(1,β(2)

1 )(Zit) + ξt

)
.

Pairwise Compensation

Consider the following generalization of Definition 2.3.1.

Definition 2.7.1 (Pairwise compensable) Individual i is compensable at
(x(1), x(2)) ∈ Xi = Supp(xit|αi, βi) by individual i′ if (zi(x(1);x(2)) ∈ Xi′.

Suppose that there exists a sequence (i1, i2, . . .) with {i1, i2, . . .} = N such that in
is compensable by in+1 at least at three points in Xin with the same rank condition
in Assumption 2.3.1(iv). Then, using the same identification argument in the proof
of Theorem 2.3.1, we can identify αin − αin+1 , β(1)

in
− β

(1)
in+1

, and β
(2)
in

− β
(2)
in+1

for all
n = 1, 2, . . .. Without loss of generality, suppose individual i is indexed by i in this
sequence for any i. Then, we can identify αi, β(1)

i , and β(2)
i −β(2)

1 by∑i−1
r=1 (αr+1 − αr),∑i−1

r=1

(
β

(1)
r+1 − β

(1)
r

)
, and ∑i−1

r=1

(
β

(2)
r+1 − β

(2)
r

)
, respectively.

The key insight behind pairwise compensation is that one can “order” all indi-
viduals in a way that one individual can be compensated by the next one in the
sequence. This could hold if the parameters of interest have a monotonic dependence
on individuals’ characteristics, i.e., shape restriction. We illustrate this point in the
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following example and show how such restriction can attenuate support requirement
on x(1).

Example 6 (Support condition in pairwise compensation) We use the same
setting as in Example 5 but drop x(2) from the model. Suppose that β(1)

i , the parameter
of disutility of price, is continuous with respect to wi, individual i’s income, denoted
by β(wi), and decreases with wi, i.e., a richer individual is less sensitive to price
change. Moreover, αi depends continuously on wi, denoted by α(wi).

Start with the individual with the highest income max{wi} whose β(max{wi})
is then the smallest. Now consider the individual whose income is slightly be-
low, say max{wi} − ϵ. Then, this individual’s β(max{wi} − ϵ) is slightly greater
than β(max{wi}) and the corresponding α(max{wi} − ϵ) is slightly different from
α(max{wi}). Then, the individual with the highest income can be compensated by the
one with the slightly lower income if there exists x(1) ∈ (a,A),

α(max{wi}) − α(max{wi} − ϵ)
β(max{wi} − ϵ) + β(max{wi})

β(max{wi} − ϵ)x
(1) ∈ (a,A). (2.7.2)

Because α(max{wi})−α(max{wi}−ϵ)
β(max{wi}−ϵ) ≈ 0 and β(max{wi})

β(max{wi}−ϵ) ≈ 1, the compensating vari-
able α(max{wi})−α(max{wi}−ϵ)

β(max{wi}−ϵ) + β(max{wi})
β(max{wi}−ϵ)x

(1) is always in a neighborhood of x(1).
Consequently, as long as A > a, (2.7.2) always holds.

We can repeat this argument to another individual with a slightly lower wi

than max{wi} − ϵ and show that she is compensable by the individual with income
max{wi} − ϵ, forming the required sequence of compensation. Note that we only re-
quire A > a and the size of the support A − a can be arbitrarily small, which differs
from the support condition in Assumption 2.3.1(iv).

2.7.2 Proof of Theorem 2.3.2

Preliminary results

We first recall classical results from the optimization literature. Let f : Rn → R be a
continuously differentiable function and X ⊂ Rn. f is said (µ,X)-strongly convex if
there exists a constant µ > 0 such that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ

2 ∥y − x∥2 , ∀x, y ∈ X. (2.7.3)

f is said (L,X)-smooth if there exists a constant L > 0 such that

∥∇f(x) − ∇f(y)∥ ≤ L ∥x− y∥ , ∀x, y ∈ X. (2.7.4)

Lemma 2.7.1
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1. f is (µ,X)-strongly convex if and only if

⟨x− y,∇f(x) − ∇f(y)⟩ ≥ µ ∥x− y∥2 , ∀x, y ∈ X. (2.7.5)

2. Suppose that f is twicely differentiable on Rn.

(a) ∇2f(x) ≳ µI for some µ > 0 and all x ∈ X if and only if f is (µ,X)-
strongly convex.

(b) If ∇2f(x) ≲ LI for some L > 0 and all x ∈ X, then f is (L,X)-smooth.

The proof of Lemma 1 can be found in Section 2.7.10.

Proposition 2.7.2 (Bertsekas (2016), Proposition 3.7.1) Consider the prob-
lem

min f(x)

subject to x ∈ X,

where X is a Cartesian product X = X1 × · · · × Xm of closed convex subsets Xi ⊂
Rni such that

∑m
i=1 ni = n. Suppose that for each x = (x1, . . . , xm) ∈ X and i ∈

{1, . . . ,m}, y 7→ f(x1, . . . , xi−1, y, xi+1, . . . , xm) attains a unique minimum y over
Xi, and is monotonically nonincreasing in the interval from xi to y. Let

{
xk
}

be
the sequence generated by the block coordinate descent method which generates the
next iterates xk+1 = (xk+1

1 , . . . , xk+1
m ), given the current iterate xk = (xk1, . . . , xkm),

according to the iteration

xk+1
i ∈ arg min

y∈Xi

f(xk+1
1 , . . . , xk+1

i−1 , y, x
k
i+1, . . . , x

k
m), i = 1, . . . ,m.

Then, every limit point x∗ of
{
xk
}

is a stationary point, i.e.,

⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀x ∈ X. (2.7.6)

Proof of Theorem 2.3.2: FPMLE

We proceed in two steps. In a first step, we apply Proposition 2.7.2 to f = −LNT

to show that any limit point of the sequence of iterates generated by FPMLE,{
θ̂

(s)
NT

}
s=1,2,...

, is a stationary point of −LNT . In a second step, we show that such a

limit point exists and that θ̂MLE
NT is the unique stationary point of −LNT .

Step 1: any limit point of
{
θ̂

(s)
NT

}
s=1,2,...

is a stationary point of −LNT . We
show that the conditions of Proposition 2.7.2 hold for f = −LNT , m = N + T , n1 =
· · · = nN+T−1 = 1, nN+T = K,n = K+N +T −1, X1 ×· · ·×XN−1 = A2 ×· · ·×AN ,
XN × · · · × XN+T−1 = Ξ1 × · · · × ΞT , and XN+T = B. By Assumption 2.3.2(i),
X = X1 × · · · × XN+T = ΘNT is a Cartesian product of closed convex sets. By
Assumption 2.3.2(ii), f is continuously differentiable over X. Let (α, ξ, β) ∈ ΘNT ,
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and define the m = N + T real-valued functions

fi,α−(i+1),ξ,β : a ∈ Ai+1 7→ −LNT (α2, . . . , αi, a, αi+2, . . . , αN , ξ, β), i = 1, . . . , N − 1,
fN+t−1,α,ξ−t,β : e ∈ Ξt 7→ −LNT (α, ξ1, . . . , ξt−1, e, ξt+1, . . . , ξT , β), t = 1, . . . , T,
fN+T,α,ξ : b ∈ B 7→ −LNT (α, ξ, b).

The fact that each sets

arg mina∈Ai+1 fi,β,α−(i+1),ξ(a), arg mine∈Ξt fN+t−1,β,α,ξ−t(e), arg minb∈B fN+T,α,ξ(b)
(2.7.7)

are (nonempty) singletons follows from coercivity and strict concavity of each function
fi,β,α−(i+1),ξ, fN+t−1,β,α,ξ−t , and fN+T,α,ξ, and standard functional analysis arguments
(see Section 2.7.6). Finally, the monotonicity condition required to apply Proposi-
tion 2.7.2 follows from the strict convexity of f .

Step 2:
{
θ̂

(s)
NT

}
s=1,2,...

admits a limit point and θ̂MLE
NT is the unique stationary

point of −LNT . By coercivity of −LNT , the level sets of −LNT are bounded
(and hence compact). Hence, there exists at least one limit point to the sequence{
θ̂

(s)
NT

}
s=1,2,...

. Because −LNT is convex and differentiable over ΘNT , the set of
stationary points of −LNT is (see, e.g., Theorem 1.1.3(a) in Bertsekas, 2016):

Θ∗
NT :=

{
θ ∈ ΘNT :

〈
∇LNT (θ), θ̃ − θ

〉
≤ 0, ∀θ̃ ∈ ΘNT

}
.

Again, by coercivity and strict convexity of −LNT , we have Θ∗
NT =

{
θ̂MLE
NT

}
.

Proof of Theorem 2.3.2: FPMLE++

To simplify the exposition, consider for the moment the case with an homogeneous
slope coefficient β. We extend the proof to the case with heterogeneous coefficients
(βi)i∈N at the end of this section.

For any θ = (α, ξ, β) ∈ ΘNT , we let θ1 = α2, . . . , θN−1 = αN , θN =
ξ1, . . . , θN+T−1 = ξT , and θN+T = β. Let Xi be the reference space of θi (e.g.,
XN+T = B) and X = X1 × · · · ×XN+T = ΘNT . Let f = −LNT and ∇if(θ),∇2

i f(θ)
denote the gradient and Hessian operators respectively applied to f restricted to the
coordinates of bloc i for i ∈ {1, . . . , N + T}. The proof consists in verifying that
FPMLE++ meets the conditions of Theorem 3.1 in Luo and Tseng (1993), a high-
level result establishing linear convergence rates for a large class of feasible descent
algorithms applied to the problem of finding stationary points of a continuously dif-
ferentiable function whose gradient is Lipschitz continuous.40

40Note that we do not apply Luo and Tseng (1993)’s Proposition 3.4 for FPMLE because they
require more stringent conditions than Proposition 2.7.2. A recent general treatment of block-
coordinate gradient descent algorithms similar to FPMLE++ is given in Beck and Tetruashvili
(2013). We do not use their results because they assume (µ,RN+T +K−1)-strong convexity and
(L,RN+T +K−1)-smoothness of LNT which rarely holds in our econometric examples, except for rare
exceptions (e.g., (L,RN+T +K−1)-smoothness of LNT holds for the logit model).
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First, Luo and Tseng (1993)’s Assumption A holds because f is convex. Second,
by Assumptions 2.3.2(i) and 2.3.2(iii), X = ΘNT is compact and convex as a Carte-
sian product of compact and convex sets, and the functions θ 7→ λ1(∇2f(θ)) and
θ 7→ λN+T (∇2f(θ)) are continuous and strictly positive on ΘNT . By the extreme
value theorem and Lemma 2.7.1.2, it follows that f is (µ,ΘNT )-strongly convex and
(L,ΘNT )-smooth for some µ,L > 0.41 Theorem 3.1 in Pang (1987) (whose Assump-
tion (B) holds by Lemma 2.7.1.1) ensures that Luo and Tseng (1993)’s Assumption
B holds with τ = (L+ 1)/µ. By similar arguments, there exists a sequence of strictly
positive constants (µi)i such that, for any θ ∈ X, any i ∈ {1, . . . , N + T}, and any
θ′
i ∈ Xi,

f(θ1, . . . , θi−1, θ
′
i, θi+1, . . . , θN+T ) − f(θ) +

〈
∇if(θ), θi − θ′

i

〉
≥ µi

∥∥θ′
i − θi

∥∥2
, (2.7.8)

i.e., condition C in Luo and Tseng (1993) holds with γ = µ̄ := mini µi. Third, it
remains to show that equations (3.1)-(3.3) in Luo and Tseng (1993) hold. Fix any
index s. By definition of FPMLE++ iterates, we have

θ
(s+1)
i =

[
θ

(s)
i − ν(s)∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T )

]+
Xi

, i = 1, . . . , N + T.

Since X = X1 × · · · ×XN+T is a Cartesian product of boxes, we have

θ(s+1) =
[
θ(s) − ν(s)∇f(θ(s)) + e(s)

]+
X
, (2.7.9)

where e(s) is the vector in RN+T whose ith component is

e
(s)
i = ν(s)

[
∇if(θ(s)) − ∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T )

]
.

Under Assumptions 2.3.2(i) and 2.3.2(iii), there exist positive constants
L11, . . . , LN+TN+T such that, for all i, j,

∥∇if(x) − ∇if(x1, . . . , xj−1, yj , xj+1, . . . , xN+T )∥ ≤ Lij ∥yj∥ , ∀(x, yj) ∈ X ×Xj .

(2.7.10)
Let ν̄ := sups ν(s) ≤ 1/L̄ < +∞ where L̄ := maxi,j Lij . By the triangle inequality
and the Lipschitz conditions (2.7.10), we have∥∥∥e(s)

i

∥∥∥ ≤ ν(s)
∥∥∥∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T−1) − ∇if(θ(s))

∥∥∥
≤ ν(s)

i∑
j=1

Lij
∥∥∥θ(s)
j − θ

(s+1)
j

∥∥∥
≤ iν̄L̄

∥∥∥θ(s) − θ(s+1)
∥∥∥ ,

41These constants can be easily derived as functions of the data and ΘNT in common settings (e.g.,
logit/probit/Poisson).
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where the last equality uses the uniform bounds ν(s) ≤ ν̄, Lij ≤ L̄, and∥∥∥θ(s)
j − θ

(s+1)
j

∥∥∥ ≤
∥∥∥θ(s) − θ(s+1)

∥∥∥. By the triangle inequality again, we obtain

∥∥∥e(s)
∥∥∥ ≤

∑N+T
i=1

∥∥∥e(s)
i

∥∥∥ ≤ ν̄L̄
∥∥∥θ(s) − θ(s+1)

∥∥∥∑N+T
i=1 i ≤ (N+T )(N+T+1)

2

∥∥∥θ(s) − θ(s+1)
∥∥∥ .

(2.7.11)
Equations (2.7.9) and (2.7.11) show that (3.1)-(3.2) in Luo and Tseng (1993) hold
with κ1 = (N+T )(N+T+1)

2 and αr = ν(r) for all r. We now show that (3.3) in Luo and
Tseng (1993) holds. Let consider a fixed iteration s. It suffices to show that for all
i ∈ {1, . . . , N + T},〈

∇if(θ(s+1)
1 , . . . , θ

(s+1)
i , θ

(s)
i+1, . . . , θ

(s)
N+T ), θ(s+1)

i − θ
(s)
i

〉
≤ 0. (2.7.12)

Equation (3.3.) with κ2 = µ̄ in Luo and Tseng (1993) then immediately follow by
summing (2.7.8) over i ∈ {1, . . . , N + T} and cancelling terms:

f(θ(s)) − f(θ(s+1)) ≥ µ̄
∥∥∥θ(s) − θ(s+1)

∥∥∥2
.

Let us show (2.7.12). For each i ∈ {1, . . . , N + T}, Taylor-Lagrange formula with
integral remainder ensures

∇if(θ(s+1)
1 , . . . , θ

(s+1)
i−1 , θ

(s+1)
i , θ

(s)
i+1, . . . , θ

(s)
N+T )

= ∇if(θ(s+1)
1 , . . . , θ

(s+1)
i−1 , θ

(s)
i , θ

(s)
i+1, . . . , θ

(s)
N+T )

+
∫ 1

0
∇2fi(θ(s)

i + t(θ(s+1)
i − θ

(s)
i ))(θ(s+1)

i − θ
(s)
i )dt,

where we define fi : x 7→ f(θ(s+1)
1 , . . . , θ

(s+1)
i−1 , x, θ

(s)
i+1, . . . , θ

(s)
N+T ). It follows that〈

∇if(θ(s+1)
1 , . . . , θ

(s+1)
i , θ

(s)
i+1, . . . , θ

(s)
N+T ), θ(s+1)

i − θ
(s)
i

〉
=
〈
∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T ), θ(s+1)

i − θ
(s)
i

〉
+
〈∫ 1

0
∇2fi(θ(s)

i + t(θ(s+1)
i − θ

(s)
i ))(θ(s+1)

i − θ
(s)
i )dt, θ(s+1)

i − θ
(s)
i

〉
. (2.7.13)

Eq. (2.7.10) with j = i implies that fi is (Lii, Xi)-smooth so that by Lemma 2.7.1.2(b),
we have

∇2fi(xi) ≲ L̄I, ∀xi ∈ Xi. (2.7.14)
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Since Xi is convex, θ(s)
i +t(θ(s+1)

i −θ(s)
i ) ∈ Xi. Then, by linearity of the scalar product,

(2.7.14), and monotonicity of the integral together, we obtain〈∫ 1

0
∇2fi(θ(s)

i + t(θ(s+1)
i − θ

(s)
i ))(θ(s+1)

i − θ
(s)
i )dt, θ(s+1)

i − θ
(s)
i

〉
=
∫ 1

0

〈
∇2fi(θ(s)

i + t(θ(s+1)
i − θ

(s)
i ))(θ(s+1)

i − θ
(s)
i ), θ(s+1)

i − θ
(s)
i

〉
dt

≤
∫ 1

0
L̄
∥∥∥θ(s+1)
i − θ

(s)
i

∥∥∥2
dt

= L̄
∥∥∥θ(s+1)
i − θ

(s)
i

∥∥∥2
.

Plugging this result into (2.7.13) yields〈
∇fi(θ(s+1)

1 , . . . , θ
(s+1)
i , θ

(s)
i+1, . . . , θ

(s)
N+T ), θ(s+1)

i − θ
(s)
i

〉
≤
〈
∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T ), θ(s+1)

i − θ
(s)
i

〉
+ L̄

∥∥∥θ(s+1)
i − θ

(s)
i

∥∥∥2
.

(2.7.15)
Notice that θ

(s+1)
i − θ

(s)
i = −ν(s)

[
∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T )

]+
Xi

. Be-
cause Xi is compact with 0 in its interior, there exists a ∈ (0,+∞) such that
a∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T ) ∈ Xi. By linearity of [·]+Xi

a(θ(s+1)
i − θ

(s)
i ) = −aν(s)

[
∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T )

]+
Xi

= −ν(s)
[
a∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T )

]+
Xi

= −aν(s)∇if(θ(s+1)
1 , . . . , θ

(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T ).

(2.7.16)

Hence, multiplying the first term of (2.7.15) by a gives〈
∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T ), a(θ(s+1)

i − θ
(s)
i )
〉

= −aν(s)
∥∥∥∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T )

∥∥∥2
. (2.7.17)

Next, since orthogonal projection is a contraction, using (2.7.10) and multiplying the
second term of (2.7.15) by a we obtain

a
∥∥∥θ(s+1)
i − θ

(s)
i

∥∥∥2
= aL̄ν(s)2

∥∥∥∥[∇if(θ(s+1)
1 , . . . , θ

(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T )

]+
Xi

∥∥∥∥2

≤ aL̄ν(s)2
∥∥∥∇if(θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T )

∥∥∥2
. (2.7.18)

Finally, multiplying (2.7.15) by a, combining (2.7.17)-(2.7.18), and dividing by a

yields

〈
∇fi(θ(s+1)

1 , . . . , θ
(s+1)
i , θ

(s)
i+1, . . . , θ

(s)
N+T ), θ(s+1)

i − θ
(s)
i

〉
≤ ν(s)(ν(s)L̄− 1)

∥∥∥∇if(θ(s+1)
1 , . . . , θ

(s+1)
i−1 , θ

(s)
i , . . . , θ

(s)
N+T )

∥∥∥2
.

Because 0 ≤ ν(s) = ν ≤ 1/L̄ the right hand-side is negative, which proves (2.7.12).
Taken together, the above results show that the conditions of Theorem 3.1 in Luo



2.7. Appendix 71

and Tseng (1993) are verified with κ1 = (N+T )(N+T+1)
2 , κ2 = µ̄, and αr = ν(r) for all

r. Then, their Theorem implies that θ̂(s)++
NT converge R-linearly to θ̂MLE

NT , i.e., there
exist constants C2 > 0 and γ < 1 such that∥∥∥θ̂++(s)

NT − θ̂PJML
NT

∥∥∥ ≤ C2γ
s.

The proof of Theorem 2.3.2 is complete.

Numerical convergence in the presence of heterogeneous slopes. We need
to first strengthen Assumption 2.3.2 to accommodate this case. Because the dimen-
sion of the parameters becomes N(K + 1) + T − 1, we then need to extend the
requirements on the likelihood function, in particular, the strict concavity and co-
ercivity in Assumption 2.3.2(ii) and the smoothness in Assumption 2.3.2(iii) to the
new space of parameters RN(K+1)+T−1. Using these conditions, the difference from
the proof in the case of homogeneous slopes lies in the definitions of µ,L, L̄, µ̄ and
thus κ1, κ2 and in turn C2 and γ. In effect, both objects should be defined on the
basis of the number of parameters N(K + 1) + T − 1 and all the other arguments go
through. For FPMLE++, as a consequence of the increased number of parameters,
the constant learning rate ν(s) = ν will become smaller to satisfy the requirement
that it is no greater than 1/L̄.

2.7.3 Consistency in the Presence of Heterogeneous Slopes

Let x = {xit : (i, t)}, α0 = (α0
1, . . . , α

0
N )′, ξ0 = (ξ0

1 , . . . , ξ
0
T )′, β0 = (β0

1 , . . . , β
0
N )′ ∈

RN×K , θ0 = (β0,α0, ξ0), π0
it = α0

i + ξ0
t , z0

it = x′
itβ

0 +π0
it, and ∂zqℓit = ∂zqℓit(z0

it). Let
Z = Supp(z0

it). The two-way fixed effects estimator θ̂ verifies

θ̂ = arg max
θ∈ΘNT

L(θ) := 1
NT

{
N∑
i=1

T∑
t=1

ℓit(x′
itβi + πit) −QNT (α, ξ)

}
, (2.7.19)

where function ℓit(·) encapsulates individual i’s response in time t, yit and QNT > 0 is
any penalty function that enforces the chosen normalization of the fixed effects such
that QNT (α̂, ξ̂) = QNT (α0, ξ0) = 0.

Assumption 2.7.1

(i). (Model) yit is distributed as

yit|x,β0,α0, ξ0 ∼ exp[ℓit(x′
itβ

0
i + π0

it)],

and conditional on (x,β0,α0, ξ0), yit is independent across (i, t).

(ii). (Compactness) For all N,T , ΘNT is compact and θ0, θ̂ lie in the interior of
ΘNT .

(iii). (Asymptotics) As N and T tend to infinity: N/T → κ2 ∈ (0,+∞).
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(iv). (Smoothness, tails, and moments) z 7→ ℓit(z) is four times continuously dif-
ferentiable over Z a.s. and there exist constants C1, C2, C3 > 0 such that,
for all k, i, t,N, T, q ≤ 4, maxi,t E[

∣∣∂zqℓit(z0
it)
∣∣8+ν ] ≤ C1 for some ν > 0,

E[exp(λ
∣∣∣∂zℓit(z0

it)x
(k)
it

∣∣∣)] ≤ exp(λC2) for all 0 < λ < 1/C2, where the expectation

E is with respect to yit given z0
it, ∥xit∥ ≤ C1, and infi,T

∑T
t=1(x(k)

it )2/T ≥ C3.

(v). (Non-collinearity) There exists c > 0 such that for any v = (v1, . . . , vK) ∈
RN×K and ξ ∈ RT ,

1
NT

Tr
(
M(α0,1N ), (v · X) M(1T ,ξ) (v · X)′

)
≥ c ∥v∥2

max

with probability one, where MA = I − A(A′A)−1A′ is the coprojection matrix
corresponding to column vectors in A, v · X = ∑K

k=1 Diag(vk)Xk with Xk =
(x(k)
it )i=1,...,N ;t=1,...,T , and 1n = (1, . . . , 1)′ ∈ Rn.

(vi). (Concavity) For all N,T , the function z 7→ ℓit(z) is strictly concave over Z
a.s. Furthermore, there exist positive constants bmin and bmax such that for all
z ∈ Z, bmin ≤ −∂z2ℓit(z) ≤ bmax a.s. uniformly over i, t,N, T .

Assumption 2.7.1 ressembles Assumption 1 in Chen et al. (2021). The main difference
lies on Assumptions 2.7.1(iv) and 2.7.1(v). Assumption 2.7.1(iv) requires the score
to have thin tails (sub-exponential) and is satisfied in many routinely used models,
e.g., yit has bounded support (binary, multimodal outcome) or yit follows Poisson
distribution. Assumption 2.7.1(v) adapts the non-collinearity condition to the setting
with individual-specific slopes. Along the lines of their non-collinearity condition (as
well as those in the existing literature, such as Bai (2009), Moon and Weidner (2015,
2017)), it requires the covariates to have sufficient variation once the fixed effects
are partialled out and rules out covariates that do not vary across time or across
individuals. Differently, due to the dimensionality in the number of slope parameters
that increases asymptotically (proportionally to N), we instead use ∥·∥max rather
than ∥·∥F.42

The following proposition summarizes our consistency result in the presence of
heterogeneous βi. We adapt the proof of Lemma 1 in Chen et al. (2021) and the
details can be found in Online Appendix 2.7.10.

Proposition 2.7.3 Let Assumption 2.7.1 hold. Then, as N,T → ∞, we have∥∥∥β̂ − β0
∥∥∥

max
= OP (N−3/8).

Proposition 2.7.3 implies that the plug-in estimators of moments of βi are consistent.
To see this, suppose that βi is a scalar i.i.d. random variable and the estimator

42The dimension of v is N × K and ∥v∥2
F could be of order O(N), while it is O(1) in Chen et al.

(2021) with v ∈ R1×K . As a result, adopting ∥v∥2
F in Assumption 2.7.1(v) may lead to a violation

that does not occur in their framework. Instead, ∥v∥2
max is still of order O(1) and therefore immune

to such violations.
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of its kth moments is m̂β = 1
N

∑N
i=1 β̂

k
i . Moreover, suppose that the compact set

corresponding to βi in (2.7.19), Bi, is a subset of [− lnN, lnN ] for i ≤ N , and
P(β0

i ∈ Bi, i = 1, . . . , N |XN ) → 1.43 Then,

∣∣∣m̂β − E
[
βki

]∣∣∣ ≤
∣∣∣∣∣m̂β − 1

N

N∑
i=1

βki

∣∣∣∣∣+
∣∣∣∣∣ 1
N

N∑
i=1

βki − E
[
βki

]∣∣∣∣∣
= 1
N

N∑
i=1

(∣∣∣β̂i − βi
∣∣∣× k−1∑

h=0

∣∣∣β̂hi βk−h−1
i

∣∣∣)+
∣∣∣∣∣ 1
N

N∑
i=1

βki − E
[
βki

]∣∣∣∣∣ .
and, with probability approaching one,

1
N

N∑
i=1

(∣∣∣β̂i − βi
∣∣∣× k−1∑

h=0

∣∣∣β̂hi βk−h−1
i

∣∣∣) ≤ k(lnN)k−1 1
N

N∑
i=1

∣∣∣β̂i − βi
∣∣∣

≤ k(lnN)k−1
∥∥∥β̂ − β0

∥∥∥
max

→0.

Moreover, according to the law of large numbers,
∣∣∣ 1
N

∑N
i=1 β

k
i − E

[
βki

]∣∣∣ p→ 0. Then,
we obtain that

∣∣∣m̂β − E
[
βki

]∣∣∣ p→ 0. Furthermore, it is straightforward to show that
m̂β − E

[
βki

]
= OP (N− 3

8 (lnN)k−1) (and OP (N− 3
8 ) when βi are bounded).

2.7.4 Monte Carlo Experiments: Details

In our Monte Carlo simulations, the results are obtained by using 50 replications.
The RMSE to MLE is the average Root Mean Squared Error to the joint maximum
likelihood estimator (MLE) is defined as:

RMSE(θ̂, θ̂MLE) := 1
50

50∑
b=1

√√√√√1
d

d∑
j=1

(
θ̂

(b)
j − θ̂MLE

j

(b)
)2
, (2.7.20)

where 50 is the number of Monte Carlo repetitions, θ̂ is a d−dimensional estimator.
The APEs δ̂NT is defined as:

δ̂NT = 1
NT

N∑
i=1

T∑
t=1

β̂NTΛ′(xitβ̂NT + α̂NT,i + ξ̂NT,t). (2.7.21)

FPMLE and FPMLE++ are implemented by our Python package nlmfe. For both
algorithms and the MLE, we initialize (α(0)′

, ξ(0)′
, β(0)′)′ = 0N+T (results are not sen-

sitive to this choice). FPMLE++ employs either a constant step size of ν(s) ≈ 1/(NT )
or an Hessian step. FPMLE employs the Newton Conjugate Gradient method imple-
mented in the minimize() function from the Python class scipy.optimize. More-
over, in both the Monte Carlo experiments and empirical applications, besides the

43This condition accommodates the cases of bounded and unbounded (with thin tail such as Gaus-
sian) βi.
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number of iterations, we jointly use a stopping criterion based on the variation of
the objective function generated by the previous iterate (e.g., the iteration stops
as soon as this variation is less than 10−5). For the MLE, we compute it using
the LogisticRegression(penalty=’none’, tol=1e-4, C=1.0, fit_intercept=False,
solver=’newton-cg’, max_iter=1000) function from the sklearn.linear_model

Python class. The CPU time is computed by Python’s time.perf_counter() and
measures the average user CPU time (in seconds) for the estimation with a Microsoft
Windows 10 Enterprise laptop Intel(R) Core(TM) i7-1165G7MQ CPU @ 2.80GHz
1.69 GHz, 16GB RAM.

Table 2.2: Numerical Convergence – Logit Model with Homogeneous
Slope (N = T = 200)

FPMLE++ FPMLE
RMSE to MLE RMSE to MLE

DGP #iter β̂++ δ̂++ β̂ δ̂

i. 1 0.18381 0.02711 0.01918 0.00178
3 0.00069 0.00005 0.00007 0.00001
20 0.00005 0.00001 0.00006 0.00001

ii. 1 0.13534 0.01783 0.01999 0.00187
3 0.00043 0.00003 0.00008 0.00001
20 0.00005 0.00001 0.00007 0.00001

iii. 1 0.35989 0.06817 0.19461 0.04555
3 0.02415 0.00504 0.01096 0.00238
20 0.00009 0.00002 0.00024 0.00005

iv. 1 0.30205 0.05693 0.12703 0.03163
3 0.00943 0.00200 0.00257 0.00058
20 0.00006 0.00001 0.00015 0.00003

Notes: For each DGP, each row reports the results ob-
tained after #iter iterations and based on 50 replica-
tions.

Poisson Count Model with Heterogeneous Slopes

Consider a static Poisson count model with heterogeneous slopes: for y = 0, 1, . . .,

P(yit = y|(xis)ts=1, αi, ξt, β
0
i ) = exp(y(xitβ0

i + αi + ξt)) exp(− exp(xitβ0,i + αi + ξt))
y! ,

with α1 = 0, (αi)2≤i≤N
iid∼ N (0, 1/16), (ξt)1≤t≤T

iid∼ N (0, 1/16), and β0,i
iid∼

N (1, 1/10).

2.7.5 Empirical Illustrations: Additional Results
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Table 2.3: Inference – Poisson Model with Heterogeneous Slopes

Ê(β0i)
√

V̂(β0i) ÂPE
Quantile interval (%) [2.5, 97.5] [4, 99] [1, 96] [2.5, 97.5] [4, 99] [1, 96] [2.5, 97.5] [4, 99] [1, 96]
DGP
i. .9600 .9350 .9820 .6910 .7920 .6220 .9780 .9780 .9760
ii .9820 .9660 .9900 .6370 .7570 .5370 .9920 .9860 .9970
iii. .8560 .8270 .8830 .8310 .8590 .8030 .5530 .5940 .7660
iv. .8850 .8510 .9190 .6430 .8050 .6740 .5970 .6390 .7900
Notes: Data are generated from the Poisson model described in Appendix 2.7.4 with N = T = 50.
The coverages are computed based on 1, 000 replications. For each repetition, we implement per-
centile Bootstrap jackknife CI’s based on 200 Bootstrap samples. All computations are performed
with FPMLE++ with at most 2 Hessian step iterations.

Table 2.4: Regressions of −γ̂exp
j and −γ̂imp

i over Observed Charac-
teristics of a Country

WTO member Island country Landlocked Constant R2

−γ̂exp
j 0.067

(0.011)
−0.024
(0.014)

−0.023
(0.016)

−0.040
(0.010)

20.93%

−γ̂imp
i 0.034

(0.007)
−0.004
(0.009)

−0.004
(0.010)

−0.033
(0.006)

13.01%

Notes: Both regressions are implemented based on 157 estimated −γ̂exp
i and 158 esti-

mated −γ̂imp
j .

Table 2.5: Regressions of β̂i and η̂i over Observed Characteristics of
Firm i

Sales R&D Exp. Tobin’s Q Sector dummies R2

β̂i 0.0011
(0.0004)

0.0003
(0.0003)

0.0005
(0.0002)

Yes 38.27%

η̂i 0.0001
(0.0001)

0.00005
(0.00006)

−0.00004
(0.00004)

Yes 11.02%

Notes: Both regressions are implemented based on 452 estimated β̂i and
η̂i. Regressors are defined as the average of their values across the time
period in the data. Sector dummies are defined using variable sic4.

Table 2.6: Correlations and Variance Decomposition

(η̂i, β̂i) (ziγ̂η, ziγ̂β) (ζ̂ηi , ζ̂
β
i )

Corr. 23.08% 54.36% 16.09%
Co-Variance Decom. 100% 48.84% 51.16%

Notes: The variance decomposition is based on (2.5.5) and (2.5.6).
The observed characteristics zi are the same as in Table 2.5.
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2.7.6 Existence and Uniqueness of Coordinate-Wise Minima (Proof
of Theorem 2.3.2)

Without loss of generality, let us focus on minimization of fN+T,α,ξ over B and drop
the indices (α, ξ) for convenience.

Existence. Let us denote m = infb∈B fN+T (b) and define

B0 =
{

{b ∈ B : fN+T (b) ≤ m+ 1} if m ∈ R,
{b ∈ B : fN+T (b) ≤ 0} if m = −∞.

By Assumption 2.3.2(ii), lim∥θ∥→∞ LNT (θ) = −∞ which implies lim∥b∥→∞ fN+T (b) =
+∞, i.e., fN+T is coercive. Hence, B0 is bounded (if not, we would have (bn)n ⊂ B0

such that ∥bn∥ → +∞ and thus fN+T (bn) → ∞ whereas, for all n, fN+T (bn) ≤
max(m + 1, 0)). Next, since fN+T is continuous, B0 is a closed subset of B and,
because B is closed, B0 is itself a closed subset of RK . As a closed and bounded set
of RK , B0 is compact in RK . By Weirstrass theorem, fN+T reaches infb∈B0 fN+T (b).
Let b∗ ∈ B0 such that fN+T (b∗) = infb∈B0 fN+T (b). Let us show that b∗ is a minimum
of fN+T over B. Let b ∈ B. If b ∈ B0, fN+T (b∗) ≤ f(b) by definition of b∗. If b ̸∈ B0

then, either m ∈ R and thus fN+T (b) ≥ m+ 1 ≥ fN+T (b∗), either m = −∞ and thus
fN+T (b∗) ≤ 0 ≤ fN+T (b). In both cases, fN+T (b) ≥ fN+T (b∗).
Uniqueness. Assume that B∗ := arg minb∈B fN+T (b) has more than one point. Let b1

and b2 be two distinct solutions, i.e., fN+T (b1) = fN+T (b2) = fN+T and b1 ̸= b2. By
Assumption 2.3.2(ii), θ 7→ LNT (θ) is strictly concave, and therefore fN+T is strictly
convex. Since fN+T is convex, the set B∗ is also convex. Hence, for any t ∈ (0, 1),
tb1 + (1 − t)b2 ∈ B∗ and thus

fN+T (tb1 + (1 − t)b2) = fN+T . (2.7.22)

By strict convexity of fN+T over B and since B∗ ⊂ B, we have

fN+T (tb1 + (1 − t)b2) < tfN+T (b1) + (1 − t)fN+T (b2) = fN+T ,

which contradicts Equation (2.7.22). Hence fN+T has a unique minimum over B.
We note that the same reasoning applied to f shows the existence and uniqueness of
θ̂MLE
NT .

2.7.7 Extension of Theorem 2.3.1 to Multimodal Outcomes

Consider a model with multimodal outcome: the probability of individual i from
choosing yit ∈ {1, . . . , J} at time t is

P(yit = j|(αij , ξsj , βij , xisj)s=1,...,t
j=1,...,J) = gj(vit), (2.7.23)

where vit = (vitj)Jj=1 with vitj = αij + ξtj + x′
itjβij ,

∑J
j=1 gj(vit) < 1, and J is

known. The residual probability, g0(vit) = 1 −
∑J
j=1 gj(vit), is usually defined as
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the probability of choosing the outside option. Model (2.7.23) is a common setting
in empirical research such as demand estimation (Berry et al., 2013; Dubois et al.,
2020). Define g(vit) = (gj(vit))Jj=1, αi = (αij)Jj=1, βi = (βij)Jj=1, ξt = (ξtj)Jj=1. For j =
1, . . . , J , we normalize α1j = 0, ξ1j = 0, and β(1)

1j = 1. We aim to identify (αi, βi)i∈N,
(ξt)t∈T, and g(·). Similarly to the single-index case, we define a compensating vector
of dimension J :

zi(x(1);x(2)) = (zij(x(1);x(2)))Jj=1 =
(
αij + x

(1)
ij β

(1)
ij + x

(2)
ij (β(2)

ij − β
(2)
1j )

)J
j=1

(2.7.24)

zi(x(1);x(2)) is the needed value of x(1) for individual 1 with x(2) to make her and i’s
indices equal: for j = 1, . . . , J ,

α1j + ξtj + β
(1)
1j zij(x(1);x(2)) + β

(2)
1j x

(2)
1j = αij + ξtj + β

(1)
ij x

(1)
ij + β

(2)
ij x

(2)
ij .

The definition of compensation in Definition 2.3.1 can accordingly be extended. For
v = (v1, . . . , vJ) ∈ R2×J , let PJ

(1,β(2)
1 )

(v) :=
(

P(1,β(2)
11 )(v1), . . . ,P(1,β(2)

1J )(vJ)
)

. We now
extend Assumption 2.3.1 to the following:

Assumption 2.7.2

(i). The mapping g satisfies the following conditions:

(a) The support of (vit1, . . . , vitJ), V, is a Cartesian product.

(b) (Weak substitutes) gj(v) is weakly decreasing in vk for all j = 1, . . . , J and
k /∈ {0, j}.

(c) (Connected strict substitution) For all v ∈ V and any nonempty subset
of {1, . . . , J}, K, there exists k ∈ K and l /∈ K such that gl is strictly
decreasing in vk.

(ii). (a) For all i ∈ N, conditional on (αi, βi), {(yit, xit1, . . . , xitJ)}t≥2 is a strictly
stationary and strong mixing process with mixing coefficients τt that satisfy
τt ≤ Cρt.

(b) For t ∈ T, conditional on ξt, {(yit, xit1, . . . , xitJ , αi, βi)}i∈N are indepen-
dent.

(iii). For all (i, i′, t, j) ∈ N2 × T × {1, . . . , J}, ξt is independent of (αij , βij , x(1)
itj ) con-

ditional on x
(2)
itj . Moreover, ξt|

{
x

(2)
itj = x(2)

}
d= ξt|

{
x

(2)
i′tj = x(2)

}
∼ Fξ(ξ;x(2)).

(iv). Any individual i ∈ N is compensable by individual 1 at least at (x(1)k, x(2)k) ∈ Xi

for k = 1, 2, 3 with 
1 x

(1)1
j x

(2)1
j

1 x
(1)2
j x

(2)2
j

1 x
(1)3
j x

(2)3
j


being nonsingular for j = 1, . . . , J .
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(v). Denote Zt = ∩i∈NZit and Zjt the projection of Zt along its jth coordinate.

(a) For any j = 1, . . . , J , there exists some (t, rj) ∈ T × R, such that
{(zj , x(2)

j ) ∈ Zjt : P(1,β(2)
1j )(zj , x

(2)
j ) = rj} is not a singleton.

(b) For all t ∈ T,
(

∩i∈NPJ
(1,β(2)

1 )
(Zit) + ξt

)
∩
(

∩i∈NPJ
(1,β(2)

1 )
(Zi1)

)
̸= ∅.

Assumption 2.7.2(i) is a multi-index version of Assumption 2.3.1(i). It is motivated
by sufficient conditions for the invertibility of demand by Berry et al. (2013) and
usually satisfied in the setting of discrete-choice random utility models with separa-
bly additive index and idiosyncratic error in indirect utility. This assumption implies
that g is a bijection from V to g(V). Moreover, it implies that the aggregated choice
probability function, i.e., the integral of g(vit) over ξt for a given i, satisfies Assump-
tion 2.7.2(i) and is therefore a bijection. Both bijection properties enable to apply
the argument of compensating variable as in the single-index case. As argued in
Berry et al. (2013), Assumption 2.7.2(i) is convenient in practice due to its Cartesian
support requirement and it applies even when g may not be not differentiable. This
contrasts other arguments such as those by Gale and Nikaido (1965) which require
rectangular support condition and differentiability of g. In contrast, due to the weak
substitutes requirement in Assumption 2.7.2(i)b, the derivative of gj (if differentiable)
with respect to vk is restricted to be nonpositive for all k ̸= j. As an alternative, one
can require gj(·) to be strictly increasing with respect to index vj for all j = 1, . . . , J
and the mapping g to have strictly diagonally dominant Jacobian, which will also im-
ply the bijection properties we need to apply the argument of compensating variable
but allows for positive cross derivatives in g. Assumptions 2.7.2(ii)-(v) are similar to
those in Assumption 2.3.1 and are accommodated to the fact that the compensating
vector is of dimension J .

Theorem 2.7.4 Suppose that Assumptions 2.7.2(i)-(iv) hold.

• β
(1)
i , αi, and β(2)

i − β
(2)
1 are identified for i ∈ N.

• If Assumption 2.7.2(v) further holds, then

– ξt and β(2)
i are identified for i ∈ N and t ∈ T.

– g(y; v) is identified for (y, v) ∈ Y × ∪t∈T

(
∩i∈NPJ

(1,β(2)
1 )

(Zit) + ξt

)
.

First, for i ∈ N and x ∈ Xi, we identify the following vector of quantities using
Assumptions 2.7.2(ii)a and (iii):

Gi(x) := (Γij(x))Jj=1 ,

Γij(x) := E [1{yit = j}|xitj = x, αij , βij ] =
∫
gj(αij + x′βij + ξ)dFξ(ξ;x(2))dξ.

(2.7.25)
To apply the argument of compensating variable in the proof for the single-index
case, we need first to prove that g and Gi are bijections from V and the support of
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αi +x′βi (which is supposed to be a Cartesian product) to their images, respectively.
The former bijectivity is immediately implied by Assumption 2.7.2(i) using the ar-
guments in Berry et al. (2013). To prove the latter injectivity, it suffices to verify
that Gi satisfies the three requirements in Assumption 2.7.2(i). The first and second
requirements are immediate because of the definition of Gi. Moreover, because of the
weak substitutes of Gi and connected strict substitution of g in the integral for any
ξ, the third requirement holds as well.

Given the bijectivities of g and Gi, we can now apply the argument of compen-
sating variable using Assumptions 2.7.2(ii)-(v) and zi defined in (2.7.24). The proof
is essentially the same as that of Theorem 2.3.1.

2.7.8 Heterogeneous Slope Across Time

We give sufficient conditions for the identification of model (2.2.2) with heterogeneous
slopes across time periods. To start with, define a compensating variable:

zt(x(1);x(2)) = ξt + β
(1)
t x(1) + x(2)(β(2)

t − β
(2)
1 ) (2.7.26)

Intuitively, zt(x(1);x(2)) is the needed value of x(1) for individual i with x(2) at t = 1
to make her indices at time 1 and t equal: αi + ξ1 + β

(1)
1 zt(x(1);x(2)) + β

(2)
1 x(2) =

αi + ξt + β
(1)
t x(1) + β

(2)
t x(2).

Definition 2.7.2 Time period t is compensable at (x(1), x(2)) ∈ X t := Supp(xit|ξt, βt)
by time period 1 if (zt(x(1);x(2)), x(2)) ∈ X 1.44

Let Zt =
{

(zt(x(1);x(2)), x(2)) : (x(1), x(2)) ∈ X t
}

. Denote by Zti the support of
(zt(x(1)

it ;x(2)
it ), x(2)

it ) conditional on αi.

Assumption 2.7.3

(i). There exists y ∈ Y such that the function g(y; v) is strictly monotonic in v.

(ii). (a) For all t ∈ T, conditional on (βt, ξt), {(yit, xit)}i∈N are independent.

(b) For all i ∈ N, conditional on αi, {(yit, xit, βt, ξt)}t≥2 is a strictly stationary
and strong mixing process with mixing coefficients τt that satisfy τt ≤ Cρt.

(iii). For all (i, i′, t) ∈ N2 × T, αi is independent of (ξt, βt, x(1)
it ) conditional on x

(2)
it .

Moreover, αi|
{
x

(2)
it = x(2)

}
d= αi′ |

{
x

(2)
i′t = x(2)

}
∼ Fα(α;x(2)).

(iv). Any time period t ∈ T is compensable by time period 1 at least at (x(1)k, x(2)k) ∈
X t for k = 1, 2, 3 with 

1 x(1)1 x(2)1

1 x(1)2 x(2)2

1 x(1)3 x(2)3


being nonsingular.

44We assume that X t does not depend on i to simplify the exposition. This holds, e.g., if {xit}i≥2
is i.i.d. conditional on (ξt, βt) for all t ∈ T.
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(v). Denote Z i = ∩t∈TZti.

(a) For some (i, r) ∈ N × R,
{

(z, x(2)) ∈ Zi : P(1,β(2)
1 )(z, x

(2)) = r

}
is not a

singleton.

(b) For all i ∈ N,
(

∩t∈TP(1,β(2)
1 )(Z

ti) + αi

)
∩
(

∩t∈TP(1,β(2)
1 )(Z

t1)
)

̸= ∅.

Theorem 2.7.5 Suppose that Assumptions 2.7.3(i)-(iv) hold.

• β
(1)
t , ξt, and β(2)

t − β
(2)
1 are identified for t ∈ T.

• If Assumptions 2.7.3(v) further holds, then

– αi and β(2)
t are identified for i ∈ N and t ∈ T.

– g(y; v) is identified for (y, v) ∈ Y × ∪i∈N

(
∩t∈TP(1,β(2)

1 )(Z
ti) + αi

)
.

Assumption 2.7.3, as well as zt(x(1);x(2)), mirrors Assumption 2.3.1 and zi(x(1);x(2))
regarding the individual and time dimensions. Consequently, one can alter the roles
of the two dimensions in the proof of Theorem 2.3.1 to show Theorem 2.7.5. Apart
from this difference, the proofs are essentially the same.

2.7.9 Extension of FPMLE and FPMLE++

Heterogeneous βi

We describe the extension to the case of heterogeneous slopes βi. The extension to
the case of βt is similar.

Fully Heterogeneous βi. In this case, all the components of βi are individual-i
specific. Let N ×K matrix β0 ∈ BN denote heterogeneous slopes (β0

1 , . . . , β
0
N )′. We

introduce an additional step in FPMLE and FPMLE++ to update each slope.
Algorithm FPMLE (Fully Heterogeneous Slopes):

1. Let (ξ(0)
1 , . . . , ξ

(0)
T , (β(0))′)′ ∈ Ξ × BN be some starting value. Let α(j)

1 = 0 for
all j ∈ {1, 2, . . .}. Set s = 0.

2 Compute (in parallel) for all i ∈ {2, . . . , N}:

α
(s+1)
i ∈ arg max

α∈Ai

T∑
t=1

log g(yit;α+ x′
itβ

(s)
i + ξ

(s)
t ),

and

β
(s+1)
i ∈ arg max

β∈B

T∑
t=1

log g(yit;α(s+1)
i + x′

itβ + ξ
(s)
t ).

3. Compute (in parallel) for all t ∈ {1, . . . , T}:

ξ
(s+1)
t ∈ arg max

ξ∈Ξt

N∑
i=1

log g(yit;α(s+1)
i + x′

itβ
(s+1)
i + ξ).
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4. Set s = s+ 1 and go to Step 2 (until numerical convergence).

To use this algorithm, one can set (het_exog=range(K), fast=False) in the
TwoWayFPMLE class from our nlmfe package.

Algorithm FPMLE++ (Fully Heterogeneous Slopes):

1. Let (α(0)
2 , . . . , α

(0)
N , ξ

(0)
1 , . . . , ξ

(0)
T , (β(0))′)′ ∈ A × Ξ × BN be some starting value.

Let α(j)
1 = 0 for all j ∈ {1, 2, . . .}. Let

{
ν(s)

}
s≥0

be some bounded sequence of
positive scalars such that lim infs ν(s) > 0. Set s = 0.

2 Compute:

α

(s+1)
2
...

α
(s+1)
N

 =



α

(s)
2
...

α
(s)
N

− ν(s)


∑T
t=1

g′

g (y2t;α(s)
2 + x′

2tβ
(s)
2 + ξ

(s)
t )

...∑T
t=1

g′

g (yNt;α(s)
N + x′

Ntβ
(s)
N + ξ

(s)
t )




+

A

,

where [v]+A denotes the vector whose i-th coordinate is the orthogonal projection
of vi on Ai.

3. Compute:

ξ

(s+1)
1

...
ξ

(s+1)
T

 =



ξ

(s)
1
...
ξ

(s)
T

− ν(s)


∑N
i=1

g′

g (yi1;α(s+1)
i + x′

i1β
(s)
i + ξ

(s)
1 )

...∑N
i=1

g′

g (yiT ;α(s+1)
i + x′

iTβ
(s)
i + ξ

(s)
T )




+

Ξ

,

where [v]+Ξ denotes the vector whose t-th coordinate is the orthogonal projection
of vt on Ξt.

4. Compute (keeping it vectorized) for all i ∈ {1, . . . , N}:

β
(s+1)
i =

[
β

(s)
i − ν(s)

T∑
t=1

xit
g′

g
(yit;α(s+1)

i + x′
itβ

(s)
i + ξ

(s+1)
t )

]+

B
,

where [v]+B denotes the orthogonal projection of v on B.

4. Set s = s+ 1 and go to Step 2 (until numerical convergence).

To use this algorithm, one can set (het_exog=range(K), fast=True) in the
TwoWayFPMLE class from our nlmfe package.

Partly Heterogeneous βi. In this case, some components in βi are heterogeneous
across individuals, while the other components in βi are homogeneous. Let H ⊂
{1, . . . ,K} be the subset indexing variables with heterogeneous coefficients and let
β0
H ∈ BNH with BH ⊂ R|H| denote the true heterogeneous parameter values. Let

β0
Hc ∈ BHc with BHc ⊂ RK−|H| denote the true homogeneous parameter values. For

any subset S ⊂ {1, . . . ,K} and vector u ∈ RK , let uS ∈ R|S| be the vector obtained
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after “removing” coordinates s ∈ S from u. We propose that following extensions of
FPMLE and FPMLE++.
Algorithm FPMLE (Partly Heterogeneous βi):

1. Let (ξ(0)
1 , . . . , ξ

(0)
T , (β(0)

Hc)′, (β(0)
H )′)′ ∈ Ξ × BHc × BNH be some starting value. Let

α
(j)
1 = 0 for all j ∈ {1, 2, . . .}. Set s = 0.

2 Compute (in parallel) for all i ∈ {2, . . . , N}:

α
(s+1)
i ∈ arg max

α∈Ai

T∑
t=1

log g(yit;α+ x′
Hc,itβ

(s)
Hc + x′

H,itβ
(s)
H,i + ξ

(s)
t ),

and

β
(s+1)
H,i ∈ arg max

β∈BH

T∑
t=1

log g(yit;α(s+1)
i + x′

Hc,itβ
(s)
Hc + x′

H,itβ + ξ
(s)
t ).

3. Compute (in parallel) for all t ∈ {1, . . . , T}:

ξ
(s+1)
t ∈ arg max

ξ∈Ξt

N∑
i=1

log g(yit;α(s+1)
i + x′

Hc,itβ
(s)
Hc + x′

H,itβ
(s+1)
H,i + ξ).

4. Compute:

β
(s+1)
Hc ∈ arg max

β∈BHc

N∑
i=1

T∑
t=1

log g(yit;α(s+1)
i + x′

Hc,itβ + x′
H,itβ

(s+1)
H,i + ξ

(s+1)
t ).

5. Set s = s+ 1 and go to Step 2 (until numerical convergence).

To use this algorithm, one can set (het_exog=H−1, fast=False) in the TwoWayFPMLE

class from our nlmfe package.45

Algorithm FPMLE++ (Partly Heterogeneous βi):

1. Let (α(0)
2 , . . . , α

(0)
N , ξ

(0)
1 , . . . , ξ

(0)
T , (β(0))′)′ ∈ A × Ξ × BN be some starting value.

Let α(j)
1 = 0 for all j ∈ {1, 2, . . .}. Let

{
ν(s)

}
s≥0

be some bounded sequence of
positive scalars such that lim infs ν(s) > 0. Set s = 0.

2 Compute:

α

(s+1)
2
...

α
(s+1)
N

 =



α

(s)
2
...

α
(s)
N

− ν(s)


∑T
t=1

g′

g (y2t;α(s)
2 + x′

Hc,2tβ
(s)
Hc + x′

H,2tβ
(s)
H,2 + ξ

(s)
t )

...∑T
t=1

g′

g (yNt;α(s)
N + x′

Hc,Ntβ
(s)
Hc + x′

H,Ntβ
(s)
H,N + ξ

(s)
t )




+

A

,

where [v]+A denotes the vector whose i-th coordinate is the orthogonal projection
of vi on Ai, and

45The “−1” comes from Python’s indexing system starting at 0.
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3. Compute (keeping it vectorized) for all i ∈ {1, . . . , N}:

β
(s+1)
H,i =

[
β

(s)
H,i − ν(s)

T∑
t=1

xH,it
g′

g
(yit;α(s+1)

i + x′
Hc,itβ

(s)
Hc + x′

H,itβ
(s)
H,i + ξ

(s)
t )
]+

BH

,

where [v]+B denotes the orthogonal projection of v on B.

3. Compute:

ξ

(s+1)
1

...
ξ

(s+1)
T

 =



ξ

(s)
1
...
ξ

(s)
T

− ν(s)


∑N
i=1

g′

g (yi1;α(s+1)
i + x′

Hc,i1β
(s)
Hc + x′

H,i1β
(s+1)
H,i + ξ

(s)
1 )

...∑N
i=1

g′

g (yiT ;α(s+1)
i + x′

Hc,iTβ
(s)
Hc + x′

H,iTβ
(s+1)
H,i + ξ

(s)
T )




+

Ξ

,

where [v]+Ξ denotes the vector whose t-th coordinate is the orthogonal projection
of vt on Ξt.

4. Compute:

β
(s+1)
Hc =

[
β

(s)
Hc − ν(s)

T∑
t=1

xHc,it
g′

g
(yit;α(s+1)

i + x′
Hc,itβ

(s)
Hc + x′

H,itβ
(s+1)
H,i + ξ

(s+1)
t )

]+

BHc

.

5. Set s = s+ 1 and go to Step 2 (until numerical convergence).

To use this algorithm, one can set (het_exog=H−1, fast=True) in the TwoWayFPMLE

class from our nlmfe package.

Numerical Convergence without Concavity

In this appendix, we show that if FPMLE/FPMLE++ converges numerically, then it
converges to a stationary point of the likelihood function (2.3.5). We prove it for the
general case with a L-dimensional θg in g being estimated.

This property holds straightforwardly for FPMLE as long as the likelihood func-
tion is continuously differentiable. For FPMLE++, we prove it in the next proposition.

Proposition 2.7.6 Suppose that ν(s) = ν, θ̂++(s) → θ∗, ΘNT = ∏nbloc
i=1 Xi is a prod-

uct of convex compact sets Xi with 0 in their interior, and LNT is continuously
differentiable over RN+T+K+L−2. Then, ∂LNT (θ∗)

∂θ = 0.

Proof: By continuity of the orthogonal projection onto closed convex sets and con-
tinuous differentiability of LNT (·), we have

θ∗
i =

[
θ∗
i − ν

∂LNT

∂θi
(θ∗)

]+

Xi

, i = 1, . . . , nblocs. (2.7.27)

Fix i ∈ {1, . . . , nblocs} and let Li = supθ∈ΘNT

∥∥∥∂LNT (θ)
∂θi

∥∥∥. Since LNT is continuously
differentiable and ΘNT is compact, 0 ≤ Li < +∞. As θ∗

i ∈ Xi and Xi is bounded,
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there exists Mi > 0 such that ∥θ∗
i ∥ ≤ Mi. The triangle inequality yields∥∥∥∥θ∗

i − ν
∂LNT

∂θi
(θ∗)

∥∥∥∥ ≤ Mi + νLi =: ai,

where ai > 0. Since 0 lies in the interior of Xi, there exists bi > 0 sufficiently large
such that (1/bi)×

(
θ∗
i − ν ∂LNT

∂θi
(θ∗)

)
∈ Xi. By (2.7.27) and linearity of the orthogonal

projection, it follows that

(1/bi) × θ∗
i = (1/bi) ×

[
θ∗
i − ν

∂LNT

∂θi
(θ∗)

]+

Xi

=
[
(1/bi) ×

(
θ∗
i − ν

∂LNT

∂θi
(θ∗)

)]+

Xi

= (1/bi)θ∗
i − (1/bi)

∂LNT

∂θi
(θ∗). (2.7.28)

The result then follows from (2.7.28) and (1/bi) ̸= 0 for all i = 1, . . . , nbloc. □

2.7.10 Proofs

Proof of Lemma 2.7.1

1. Let g(x) = f(x) − µ
2 ∥x∥2. f is (µ,X)-strongly convex if and only if g(y) ≥

g(x) + ⟨∇g(x), y − x⟩ for all x, y ∈ X, if and only if g is convex. By the monotone
gradient condition for convexity, g is convex if and only if ⟨∇g(x) − ∇g(y), x− y⟩ ≥ 0
for all x, y ∈ X, if and only if (2.7.5) holds.
2.(a) By twice differentiability of g, g is convex if and only if ∇2g ≳ 0, if and only if
∇2f ≳ µI. 2.(b) comes from an application of the fundamental theorem of calculus
and the triangle inequality.

Proof of Proposition 2.7.3

For all z1, z2 ∈ Z, the second-order Taylor expansion of ℓit(z2) around z1 yields

ℓit(z1) − ℓit(z2) = [∂zℓit(z1)](z1 − z2) − 1
2[∂z2ℓit(z∗)](z1 − z2)2, (2.7.29)

for some z∗ ∈ [min {z1, z2} ,max {z1, z2}]. Letting eit = ∂zℓit/bmin and e := (eit)i,t,
we have by definition of θ̂:

0 ≥ L(θ0) − L(θ̂) = 1
NT

N∑
i=1

T∑
t=1

[ℓit(z0
it) − ℓit(ẑit)]

≥ bmin
2NT

N∑
i=1

T∑
t=1

(x′
it(β̂i − β0

i ) + α̂i − α0
i + ξ̂t − ξ0

t − eit)2 − bmin
2NT ∥e∥2

F .



2.7. Appendix 85

Letting λ̂ := (α̂,1N ) ∈ RN×2, f̂ := (1T , ξ̂) ∈ RT×2, λ0 := (α0,1N ), and f0 :=
(1T , ξ0), we have

bmin
2NT ∥e∥2

F ≥ bmin
2NT

N∑
i=1

T∑
t=1

(x′
it(β̂i − β0

i ) + α̂i − α0
i + ξ̂t − ξ0

t − eit)2

= bmin
2NT

∥∥∥(β̂ − β0
)

· X + λ̂f̂ ′ − λ0f0′ − e
∥∥∥2

F
.

Because for any matrix A, ∥A∥2
F = Tr (AA′), we then have

1
NT

Tr
(
ee′)

≥ 1
NT

Tr
[((

β̂ − β0
)

· X + λ̂f̂ ′ − λ0f0′ − e
) ((

β̂ − β0
)

· X + λ̂f̂ ′ − λ0f0′ − e
)′
]
.

By using the same reasoning as Chen et al. (2021) p.313, we obtain

1
NT Tr (ee′) ≥ 1

NT Tr
(

Mλ0

((
β̂ − β0

)
· X − e

)
M

f̂

((
β̂ − β0

)
· X − e

)′
)
.

(2.7.30)
Let PA = A(A′A)−1A′. First, note that:

Tr
(
Mλ0eM

f̂
e′
)

= Tr
(
(I − Pλ0) e

(
I − P

f̂

)
e′
)

= Tr
(
ee′)− Tr

(
eP

f̂
e′
)

− Tr
(
e′Pλ0e

)
+ Tr

(
Pλ0eP

f̂
e′
)
,

and, using Tr(A) ≤ rank(A) ∥A∥2,∣∣∣Tr
(
eP

f̂
e′
)∣∣∣ ≤ rank

(
eP

f̂
e′
) ∥∥∥eP

f̂
e′
∥∥∥

2
≤ 2 ∥e∥2

2 ,∣∣Tr
(
e′Pλ0e

)∣∣ ≤ rank
(
e′Pλ0e

) ∥∥e′Pλ0e
∥∥

2 ≤ 2 ∥e∥2
2 ,∣∣∣Tr

(
Pλ0eP

f̂
e′
)∣∣∣ =

∣∣∣∣Tr
([

Pλ0eP
f̂

] [
Pλ0eP

f̂

]′)∣∣∣∣ ≤ 2 ∥e∥2
2 .

(2.7.31)

Then, we obtain:
Tr
(
Mλ0eM

f̂
e′
)

≥ Tr
(
ee′)− 6 ∥e∥2

2 . (2.7.32)

Second, note that

Tr
(
Mλ0

[(
β̂ − β0

)
· X
]

M
f̂
e′
)

= Tr
(
(I − Pλ0)

[(
β̂ − β0

)
· X
] (

I − P
f̂

)
e′
)

= Tr
([(

β̂ − β0
)

· X
]
e′
)

− Tr
(
Pλ0

[(
β̂ − β0

)
· X
]
e′
)

− Tr
([(

β̂ − β0
)

· X
]

P
f̂
e′
)

+ Tr
(
Pλ0

[(
β̂ − β0

)
· X
]

P
f̂
e′
)
,
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and, similarly to (2.7.31),

∣∣∣Tr
(
Pλ0

[(
β̂ − β0

)
· X
]
e′
)∣∣∣ =

∣∣∣∣∣
K∑
k=1

Tr
(
Pλ0

[
Diag

(
β̂(k) − β(k)0

)
Xk

]
e′
)∣∣∣∣∣

≤
K∑
k=1

2
∥∥∥Pλ0

[
Diag

(
β̂(k) − β(k)0

)
Xk

]
e′
∥∥∥

2

≤ 2 ∥e∥2 ×
K∑
k=1

∥∥∥[Diag
(
β̂(k) − β(k)0

)
Xk

]∥∥∥
2

≤ 2 ∥e∥2 ×
K∑
k=1

∥∥∥Diag
(
β̂(k) − β(k)0

)∥∥∥
2

× ∥Xk∥2

≤ 2
√
K ∥e∥2 ×

∥∥∥β̂ − β0
∥∥∥

max
×

√√√√ K∑
k=1

∥Xk∥2
F.

∣∣∣Tr
([(

β̂ − β0
)

· X
]

P
f̂
e′
)∣∣∣ ≤ 2

√
K ∥e∥2 ×

∥∥∥β̂ − β0
∥∥∥

max
×

√√√√ K∑
k=1

∥Xk∥2
F.

∣∣∣Tr
(
Pλ0

[(
β̂ − β0

)
· X
]

P
f̂
e′
)∣∣∣ ≤ 2

√
K ∥e∥2 ×

∥∥∥β̂ − β0
∥∥∥

max
×

√√√√ K∑
k=1

∥Xk∥2
F.

Then, we obtain:

Tr
(
Mλ0

[(
β̂ − β0

)
· X
]

M
f̂
e′
)

≥ Tr
([(

β̂ − β0
)

· X
]
e′
)

− 6
√
K ∥e∥2 ×

∥∥∥β̂ − β0
∥∥∥

max
×

√√√√ K∑
k=1

∥Xk∥2
F. (2.7.33)

Plugging (2.7.32) and (2.7.33) in (2.7.30), we obtain:

Tr
(
ee′) ≥ Tr

(
ee′)+ Tr

(
Mλ0

((
β̂ − β0

)
· X
)

M
f̂

((
β̂ − β0

)
· X
)′
)

+ 2 Tr
([(

β̂ − β0
)

· X
]
e′
)

− 6 ∥e∥2
2 − 12

√
K ∥e∥2 ×

∥∥∥β̂ − β0
∥∥∥

max
×

√√√√ K∑
k=1

∥Xk∥2
F.

(2.7.34)

Under Assumption 2.7.1, Lemma S.6 of Fernández-Val and Weidner (2016) holds and
implies that ∥e∥2 = OP (N5/8). Moreover,

√∑K
k=1 ∥Xk∥2

F = OP (
√
NT ) = OP (N).

Now, denote by β̃ the solutions of the MLE with αi = α0
i and ξt = ξ0

t for i =
1, . . . , N and t = 1, . . . , T . We prove the following lemma.

Lemma 2.7.7 Suppose that Assumption 2.7.1 holds. Then,
∥∥∥β̃ − β0

∥∥∥
max

=

OP

(√
lnN
N

)
.
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Proof: The first-order condition of the MLE with respect to β̃ is: for k = 1, . . . ,K
and i = 1, . . . , N ,

T∑
t=1

∂zℓit(z̃it)x(k)
it = 0. (2.7.35)

Then, using the first-order Taylor expansion at β(k)0
i , we obtain:

0 =
T∑
t=1

∂zℓit(z0
it)x

(k)
it +

T∑
t=1

∂z2ℓit(z∗
it)(x

(k)
it )2 × (β̃(k)

i − β
(k)0
i )

=⇒ β̃
(k)
i − β

(k)0
i =

1
T

∑T
t=1 ∂zℓit(z0

it)x
(k)
it

1
T

∑T
t=1[−∂z2ℓit(z∗

it)](x
(k)
it )2

,

where z∗
it is between z0

it and z̃it. Since Assumption 2.7.1(iv) ensures that

1
T

T∑
t=1

[−∂z2ℓit(z∗
it)](x

(k)
it )2 ≥ bminC2,

we have

∣∣∣β̃(k)
i − β

(k)0
i

∣∣∣ ≤
∣∣∣∣∣ 1T

T∑
t=1

∂zℓit(z0
it)x

(k)
it

∣∣∣∣∣ /bminC2 =: |Sk,i,T | /bminC2.

Without loss of generality, suppose K = 1 and we drop the notation k in the fol-
lowing. Note that given {xit}i=1,...,N ;t=1,...,T ,α

0,β0, ξ0, Si,T is a sum of independent
random variables. Let M := maxi,t,k inf

{
m > 0 : E[exp(

∣∣∂zℓit(z0
it)xit

∣∣ /m)] ≤ 2
}
. Un-

der Assumption 2.7.1(iii) and using Bernstein inequality (see, e.g., Corollary 2.8.3 in
Vershynin, 2019), we obtain that there exists C4 > 0 such that for N,T sufficiently
large:

P

∥∥∥β̃ − β0
∥∥∥

max
≤ A

√
lnN
N

 =
N∏
i=1

P

∣∣∣β̃i − β0
i

∣∣∣ ≤ A

√
lnN
N


≥

N∏
i=1

P

|Si,T | ≤ AbminC2

√
lnN
N


=

N∏
i=1

1 − P

|Si,T | > AbminC2

√
lnN
N


≥
(
1 − 2 exp

{
−A2B × lnN

})N
=
(

1 − 2
NA2B

)N
,

where B = C4b2
minC

2
2

κM2 . As a result, for A >
√
κM√

C4bminC2
and N,T → ∞, we have:

P

∥∥∥β̃ − β0
∥∥∥

max
≤ A

√
lnN
N

 → 1.
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and therefore
∥∥∥β̃ − β0

∥∥∥
max

= OP

(√
lnN
N

)
. The proof is completed. □

Using (2.7.35), we obtain that: for k = 1, . . . ,K and i = 1, . . . , N ,

T∑
t=1

∂zℓit(z̃it)x(k)
it = 0 =⇒ The diagonal elements of Xkẽ

′ are zeros.

=⇒ Tr
(
Diag

(
β̂(k) − β(k)0

)
Xkẽ

′
)

= 0,

where ẽ = (∂zℓit(x′
itβ̃i + α0

i + ξ0
t ))i=1,...,N ;t=1,...,T . Then,

∣∣∣Tr
([(

β̂ − β0
)

· X
]
e′
)∣∣∣ =

∣∣∣∣∣Tr
(

K∑
k=1

[
Diag

(
β̂(k) − β(k)0

)
Xk

]
(e− ẽ)′

)∣∣∣∣∣
=

∣∣∣∣∣∣Tr

 K∑
k=1

[
Diag

(
β̂(k) − β(k)0

)
Xk

] [∫ 1

0
∂z2ℓit

(
x′
it(tβ0

i + (1 − t)β̃i) + α0
i + ξ0

t

) K∑
k=1

(β(k)0
i − β̃

(k)
i )x(k)

it dt

]′

i=1,...,N ;t=1,...,T

∣∣∣∣∣∣
≤ bmax Tr

(
K∑
k=1

[
Diag

(∣∣∣β̂(k) − β(k)0
∣∣∣) |Xk|

] K∑
k=1

[
Diag

(∣∣∣β̃(k) − β(k)0
∣∣∣) |Xk|

]′)

≤ Kbmax
∥∥∥β̂ − β0

∥∥∥
max

×
∥∥∥β̃ − β0

∥∥∥
max

×
K∑
k=1

∥Xk∥2
F

(2.7.36)
Plugging (2.7.36) in (2.7.34), we obtain:

6 ∥e∥2
2 + 2

√√√√K K∑
k=1

∥Xk∥2
F

6 ∥e∥2 + bmax
∥∥∥β̃ − β0

∥∥∥
max

√√√√K K∑
k=1

∥Xk∥2
F

×
∥∥∥β̂ − β0

∥∥∥
max

≥ Tr
(

M(α0,1N )
((

β̂ − β0
)

· X
)

M(1T ,ξ̂)

((
β̂ − β0

)
· X
)′
)
.

Using Assumption 2.7.1(v), we obtain that

1
NT

6 ∥e∥2
2 + 2

√√√√K K∑
k=1

∥Xk∥2
F

6 ∥e∥2 + bmax
∥∥∥β̃ − β0

∥∥∥
max

√√√√K K∑
k=1

∥Xk∥2
F

×
∥∥∥β̂ − β0

∥∥∥
max


≥ c

∥∥∥β̂ − β0
∥∥∥2

max
.

with probability one. Then, this inequality, together with ∥e∥2 = OP (N5/8),√∑K
k=1 ∥Xk∥2

F = OP (N), and Lemma 2.7.7, implies that
∥∥∥β̂ − β0

∥∥∥
max

= OP (N−3/8).

2.7.11 Monte Carlo Experiments: Additional Tables and Details

Table 2.7: Numerical Convergence – Logit Model with Homogeneous
Slopes (N = 5000, T = 30)

FPMLE++ FPMLE MLE
RMSE to MLE CPU time RMSE to MLE CPU time CPU time

#iter β̂++ δ̂++ β̂ δ̂

1 0.21091 0.03081 0.06655 0.04698 0.00587 2.16765 1131.27882
3 0.00204 0.00018 0.11279 0.00454 0.00045 5.16679
20 0.00001 0.00000 0.65884 0.00451 0.00045 9.19747
Notes: Each row reports the results obtained after #iter iterations (for FPMLE and
FPMLE++) and based on 50 replications for DGP (i).
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Table 2.8 summarizes the bias of β̂i (estimated by FPMLE and FPMLE++) and its
numerical convergence to the MLE estimator.

Table 2.8: Numerical Convergence – Poisson Model with Heteroge-
neous Slopes (N = T = 200)

FPMLE++ FPMLE
DGP #iter Bias β̂ RMSE to MLE β̂ Bias β̂ RMSE to MLE β̂

i. 1 -0.30899 0.51512 0.01421 0.13466
3 -0.13506 0.23583 0.02586 0.07470
20 -0.00027 0.10394 0.00066 0.00547

ii. 1 -0.37449 0.50871 0.02664 0.16904
3 -0.11055 0.18596 0.01994 0.09795
20 0.00536 0.04741 0.00322 0.00872

iii. 1. -0.49078 0.76451 0.12356 0.16154
3. -0.28560 0.56801 0.20954 0.22794
20. -0.14200 0.39700 0.01048 0.01270

iv. 1 -0.59094 0.87637 0.08003 0.14778
3 -0.29487 0.50883 0.17232 0.18473
20 -0.03348 0.24580 0.00742 0.00829

Notes: The biases are computed as 1
1000

∑50
r=1

∑200
i=1 β̂

(r)
i − β

(r)
0,i .
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Split-sample Jackknife Bootstrap Procedure

For any finite non-empty set of indices I and n ∈ I, let I:n (resp. In:) denote indices
up to the nth indice (resp. after the n+ 1th) in I. We describe the procedure for the
case of a scalar βi. The extension to the multidimensional case is straightforward.
Denote by B the number of bootstrap samples.
Bootstrap Percentile CI’s:

1. For b ∈ {1, . . . , B}:

(a) Draw N∗ units from {1, . . . , N} with replacement, sort them and label
them with indices I(b) such that

∣∣∣I(b)
∣∣∣ = N∗.

(b) Compute full-sample FPMLE++ estimates using I(b):{
β̂

(b)
i,fs : i ∈ I(b)

}
,
{
α̂

(b)
i,fs : i ∈ I(b)

}
,
{
ξ̂

(b)
t,fs : t = 1, . . . , T

}
.

(c) Compute half-sample FPMLE++ estimates using only units in I(b)
:⌊N∗/2⌋:{

β̂
(b)
i,1N∗ : i ∈ I(b)

:⌊N∗/2⌋

}
,
{
α̂

(b)
i,1N∗ : i ∈ I(b)

:⌊N∗/2⌋

}
,
{
ξ̂

(b)
t,1N∗ : t = 1, . . . , T

}
.

Compute half-sample FPMLE++ estimates using only units in I(b)
⌊N∗/2⌋::{

β̂
(b)
i,2N∗ : i ∈ I(b)

⌊N∗/2⌋:

}
,
{
α̂

(b)
i,2N∗ : i ∈ I(b)

⌊N∗/2⌋:

}
,
{
ξ̂

(b)
t,2N∗ : t = 1, . . . , T

}
.

(d) Compute half-sample FPMLE++ estimates using only time periods in
{1, . . . , ⌊T/2⌋}:{

β̂
(b)
i,1T : i ∈ I(b)

}
,
{
α̂

(b)
i,1T : i ∈ I(b)

}
,
{
ξ̂

(b)
t,1T : t = 1, . . . , ⌊T/2⌋

}
.

Compute half-sample FPMLE++ estimates using only time periods in
{⌊T/2⌋ + 1, . . . , T}:{
β̂

(b)
i,2T : i ∈ I(b)

}
,
{
α̂

(b)
i,2T : i ∈ I(b)

}
,
{
ξ̂

(b)
t,2T : t = ⌊T/2⌋ + 1, . . . , T

}
.
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(e) Let

µ̂(b) := 3

 1
N∗

∑
i∈I(b)

β̂
(b)
i,fs

− 1
2

 1
⌊N∗/2⌋

∑
i∈I(b)

:⌊N∗/2⌋

β̂
(b)
i,1N∗ + 1

N∗ − ⌊N∗/2⌋
∑

i∈I(b)
⌊N∗/2⌋:

β̂
(b)
i,2N∗


− 1

2

 1
N∗

∑
i∈I(b)

β̂
(b)
i,1T + 1

N∗

∑
i∈I(b)

β̂
(b)
i,2T

 ,
σ̂(b) = 3

√√√√√ 1
N∗

∑
i∈I(b)

β̂(b)
i,fs − 1

N∗

∑
i∈I(b)

β̂
(b)
i,fs

2

− 1
2


√√√√√√√ 1

⌊N∗/2⌋
∑

i∈I(b)
:⌊N∗/2⌋

β̂(b)
i,1N∗ − 1

⌊N∗/2⌋
∑

i∈I(b)
:⌊N∗/2⌋

β̂
(b)
i,1N∗


2

+

√√√√√√√ 1
N∗ − ⌊N∗/2⌋

∑
i∈I(b)

⌊N∗/2⌋:

β̂(b)
i,2N∗ − 1

N∗ − ⌊N∗/2⌋
∑

i∈I(b)
⌊N∗/2⌋:

β̂
(b)
i,2N∗


2


− 1
2


√√√√√ 1
N∗

∑
i∈I(b)

β̂(b)
i,1T − 1

N∗

∑
i∈I(b)

β̂
(b)
i,1T

2

+

√√√√√ 1
N∗

∑
i∈I(b)

β̂(b)
i,2T − 1

N∗

∑
i∈I(b)

β̂
(b)
i,2T

2
 ,

ÂPE
(b)

= 3

 1
N∗T

∑
i∈I(b)

T∑
t=1

∑
y∈Y

yβ̂
(b)
i,fsg

′(y;xitβ̂(b)
i,fs + α̂

(b)
i,fs + ξ̂

(b)
t,fs)



− 1
2

 1
⌊N∗/2⌋T

∑
i∈I(b)

:⌊N∗/2⌋

T∑
t=1

∑
y∈Y

yβ̂
(b)
i,1N∗g

′(y;xitβ̂(b)
i,1N∗ + α̂

(b)
i,1N∗ + ξ̂

(b)
t,1N∗)

+ 1
(N∗ − ⌊N∗/2⌋)T

∑
i∈I(b)

⌊N∗/2⌋:

T∑
t=1

∑
y∈Y

yβ̂
(b)
i,2N∗g

′(y;xitβ̂(b)
i,2N∗ + α̂

(b)
i,2N∗ + ξ̂

(b)
t,2N∗)


− 1

2

 1
N∗⌊T/2⌋

∑
i∈I(b)

⌊T/2⌋∑
t=1

∑
y∈Y

yβ̂
(b)
i,1Tg

′(y;xitβ̂(b)
i,1T + α̂

(b)
i,1T + ξ̂

(b)
t,1T)

+ 1
N∗(T − ⌊T/2⌋)

∑
i∈I(b)

T∑
t=⌊T/2⌋+1

∑
y∈Y

yβ̂
(b)
i,2Tg

′(y;xitβ̂(b)
i,2T + α̂

(b)
i,2T + ξ̂

(b)
t,2T)

 ,
and µ̂ := (µ̂(1), . . . , µ̂(B)), σ̂ := (σ̂(1), . . . , σ̂(B)), and ÂPE :=
(ÂPE

(1)
, . . . , ÂPE

(B)
).

2. For α ∈ (0, 1), build CI’s[
qα/2(µ̂), q1−α/2(µ̂)

]
,
[
qα/2(σ̂), q1−α/2(σ̂)

]
,
[
qα/2(ÂPE), q1−α/2(ÂPE)

]
,

where qu(X) is the uth empirical quantile of the sample X.
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Chapter 3

A Simple and Computationally
Trivial Estimator for Grouped
Fixed Effects Models

Il peut paraître étonnant que les pensées profondes se rencontrent
plutôt dans les écrits des poètes que dans ceux des philosophes.
La raison en est que les poètes ont écrit sous l’empire de
l’enthousiasme et de la force de l’imagination. Il y a en nous des
semences de science, comme en un silex ; les philosophes les
extraient par raison ; les poètes les arrachent par imagination :
elles brillent alors davantage.

René Descartes, Discours de la méthode

Abstract: This chapter provides a new fixed effects estimator for linear panel data
models with clustered time patterns of unobserved heterogeneity. The method com-
bines a preliminary consistent estimate for the slope coefficient (e.g., using smooth
and convex nuclear norm regularization) with a pairwise differencing argument that
takes at most O(N3T ) elementary operations to cluster cross-sectional units. Asymp-
totic guarantees are established in a framework where T can grow at any power of N ,
as both N and T diverge to infinity. Unlike most existing approaches, the new estima-
tor (i) is computationally straightforward, (ii) does not require a known upper bound
on the number of groups, and (iii) consistently estimates the number of groups. As
most existing approaches, it (iv) correctly classifies units into groups with probability
tending to one, (v) is asymptotically equivalent to the infeasible least squares esti-
mator which controls for the true group indicators, (vi) and is asymptotically normal
unbiased at parametric rates.
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3.1 Introduction

Consider the grouped fixed effects model:

yit = x′
itβ + αgit + vit, i = 1, . . . , N, t = 1, . . . , T, (3.1.1)

where i denotes cross-sectional units, t denotes time periods, yit ∈ R is a dependent
observed variable, and xit ∈ Rp is a vector of observed covariates uncorrelated with
the zero-mean random variable vit ∈ R, but potentially correlated with the group-
specific time-varying unobservable αgit ∈ R. The common vector β ∈ Rp, the number
of groups G ∈ N∗, the group membership variables gi ∈ {1, . . . , G}, and the vectors of
group-specific time effects (α1t, . . . , αGt)′ ∈ RG are unrestricted and to be estimated.

This special case of interactive fixed effects models (e.g., Bai, 2009) offers a flexible
parcimonious way to model time-varying unobserved heterogeneity and cross-sectional
correlations.1 It was first proposed in Bonhomme and Manresa (2015). In the follow-
ing, N and T are assumed relatively large, while p and G relatively small. Interest
lies in the high-dimensional parameter θ = (G, g1, . . . , gN , α11, . . . , αGT , β

′)′.
To the best of my knowledge, the panel data literature does not mention the

existence of an estimator for θ that, in an asymptotic framework where T can grow
at any power of N , (i) is computationally feasible, (ii) does not require a known upper
bound on the number of groups, (iii) consistently estimates the number of groups,
(iv) uniformly correctly classifies units into groups with probability approaching one,
(v) is asymptotically equivalent to the oracle OLS regression that controls for the true
group indicators, (vi) and is asymptotically normal unbiased at the

√
NT and

√
N

parametric rates for β and αgt. These properties are useful to make inference on θ

when T is only moderately large with respect to N (e.g., microeconometric datasets).
First, I introduce a new and simple two-step estimator θ̂ that enjoys properties (i)-

(ii). The first step is a clustering step. Given an off-the-shelve preliminary consistent
estimate for β, I apply a “triad pairwise differencing” tranformation to the residualized
outcome in order to compute pairwise distances betwen units. Close units are grouped
together according to the outcome of N(N − 1)/2 tests, rejecting H0ij : gi = gj if and
only if the pairwise distance between i and j falls above some regularization positive
threshold cNT . Specifically, units with identical test outcomes are grouped together.
The second step is a pooled OLS regression of the outcome variable on the covariates
and the interactions of time and estimated group dummies. The interactive fixed
effects literature provides many candidates for computationally simple preliminary
consistent estimates of β (e.g., nuclear norm, square-root lasso), which are discussed
more in details in Section 3.3.3.

1Note αgit = λ′
iFt with λ′

i = (c1{gi = 1}, . . . , c1{gi = G}), F ′
t = (α1t/c, . . . , αGt/c), c ̸= 0. Thus,

the re-scaled vector of factor loadings, λi/c, lies in the finite set of vertices of the unit simplex of
RG. Reciprocally, if

∣∣{λ̃1, . . . , λ̃N

}∣∣ = G̃, there exists (g̃1, . . . , g̃N , α̃11, . . . , α̃G̃T )′ such that g̃i ∈{
1, . . . , G̃

}
and λ̃′

iF̃t = α̃g̃it.
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Second, I derive sufficient conditions for θ̂ to enjoy properties (iii)-(vi). To the
best of my knowledge, this work is the first to propose an estimator for model (3.1.1)
with properties (i)-(vi). As a byproduct, it is also the first to show property (iii)
for an estimator that also verifies property (ii) in a specific interactive fixed effects
model. This property stands in sharp contrast with the general case, in which a known
upper bound is generally required (see, e.g., Bai, 2009; Bai and Ng, 2002, 2019). I
do not address the question of conducting inference on groups. Dzemski and Okui
(2018) provides pointwise valid inference methods given a preliminary estimator β̂ is
available. One can use the estimator proposed here. Overall, our results show that
efficient estimation of θ is possible under the maintained asymptotic framework even if
absolutely no information is available regarding the number of groups. Moreover, they
suggest that the first-step estimation of the latent clustering structure neither affects
the bias nor the variance of our estimator compared to the oracle OLS regression.

There is a vast literature on estimating interactive fixed effects panel models
(see, e.g., Bai, 2009; Bonhomme et al., 2022; Higgins, 2022; Moon and Weidner,
2015, 2017; Pesaran, 2006). Traditional leading methods rely on non-convex least
squares and Principal Component Analysis, which violate property (i) and are not
known to verify the other properties. Convex nuclear norm regularization methods
proposed in Moon and Weidner (2019) and Chernozhukov et al. (2019) are not known
to verify properties (iv)-(vi). They can serve as preliminary consistent estimators in
the present approach. Bonhomme and Manresa (2015)’s grouped fixed-effects (GFE)
estimator, an extension of k-means clustering to handle covariates, solves a NP-hard
optimization problem. Algorithms that provide fast solutions may not converge to its
true value. The same concern applies to extensions to grouped factor models (e.g.,
Ando and Bai, 2017, 2022) and other non-convex estimators (e.g., Su et al., 2016). The
GFE estimator does not verify properties (i)-(iii). In contrast, the inferential theory
developed here is valid for a computationally simple estimator which substitutes Gmax

with a pairwise distance regularization parameter. Because inference is on a true
population parameter θ, it also contrasts with Pollard (1981, 1982) which provides
asymptotic theory for the solution to the population k-means sum of squares problem
in the cross-sectional case, i.e., only for a pseudo-true value. Chetverikov and Manresa
(2021)’s spectral and post-spectral estimators enjoy properties (i) and (iv)-(vi) by
imposing a grouped factor structure on the covariates and assuming that “G can
be consistently estimated”. The paper does not explicitely provide a mean to do so
under the maintained asymptotic framework. To the best of my knowledge, these
estimators are not known to verify properties (ii)-(iii). Lewis et al. (2023) propose
an approximating procedure based on the GMM framework in the general case of
grouped slope coefficients, but they do not derive any asymptotic equivalence result
to the oracle estimator.

While the proposed clustering method seems to be new to the literature, the
pairwise distance measure used in the clustering step has already been employed in
the mathematical statistics and econometric literature to study topological properties
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of the graphon (e.g., Auerbach, 2022; Lovász, 2012; Zeleneev, 2020; Zhang et al., 2017).
More generally, dyad, triad, or tetrad comparisons have proven useful in a variety of
other econometric contexts (see, e.g., Charbonneau, 2017; Graham, 2017; Honoré and
Powell, 1994; Jochmans, 2017). Albeit close in spirit, the procedure is different from
the binary segmentation algorithm developed in Wang and Su (2021), or the pairwise
comparisons method proposed in Krasnokutskaya et al. (2022). Some papers rely on
spectral clustering (see, e.g., Brownlees et al., 2022; Chetverikov and Manresa, 2021;
Ng et al., 2002; von Luxburg, 2007; Yu et al., 2022).

The operational research clustering literature is old and mature, and other agglom-
erative clustering approaches could be adapted (e.g., DBSCAN, HDBSCAN). The
method retained here is one for which asymptotic properties are relatively straight-
forward to establish under transparent conditions useful in economic applications.
Also, this work can be seen as the first application of an agglomerative clustering
methods to the econometric panel data model (3.1.1).

Section 3.2 introduces the two-step estimator. Section 3.3 presents large sample
properties, including uniform consistency for the grouping structure and asymptotic
normality at parametric rates. Section 3.4 contains a brief discussion and concludes.
All proofs are in the Appendix.

3.2 A Two-Step Estimator

The goal is to estimate the parameter θ = (G, g1, . . . , gN , α11, . . . , αGT , β
′)′ ∈

Θ, where Θ = ⋃+∞
g=1 Θg and Θg = {g} × {1, . . . , g}N × AgT × B for some

B ⊂ Rp and A ⊂ R. A simple and computationally trivial estimator θ̂ =
(Ĝ, ĝ1, . . . , ĝN , α̂11, . . . , α̂ĜT , β̂

′)′ ∈ Θ can be obtained in two steps. Let cNT ∈ (0,∞),
and β̂1 be a preliminary consistent estimator for β.2

1. Clustering Step:

1.a. Compute for all (i, t) ∈ {1, . . . , N} × {1, . . . , T}:

v̂it = yit − x′
itβ̂

1.

1.b. Compute for all (i, j) ∈ {1, . . . , N}2:

d̂2
∞(i, j) = max

k∈{1,...,N}\{i,j}

∣∣∣∣∣ 1T
T∑
t=1

(v̂it − v̂jt)v̂kt

∣∣∣∣∣ .
1.c. Compute for all (i, j) ∈ {1, . . . , N}2:

Ŵij = 1
{
d̂2

∞(i, j) ≤ cNT
}
.

2Examples are given in Section 3.3.3.



3.2. A Two-Step Estimator 97

1.d. Set k = 1.
Set ĝ1 = 1 and Ĉ1 =

{
i ∈ {1, . . . , N} : Ŵij = Ŵ1j ∀j ∈ {1, . . . , N}

}
.

For all i ∈ Ĉ1: set ĝi = 1.
Set stop=False.
While not stop:

• Set i∗k = inf
{
i ∈ {1, . . . , N} : i /∈ ∪kℓ=1Ĉℓ

}
.

• If i∗k < ∞:
– Set Ĉk+1 =

{
i ∈ {1, . . . , N} : Ŵij = Ŵi∗

k
j ∀j ∈ {1, . . . , N}

}
.

– For all i ∈ Ĉk+1: set ĝi = k + 1.
– Set k = k + 1.

• Else:
– Set stop=True.

Set Ĝ = |{ĝ1, . . . , ĝN}|.

2. Projection Step:
Compute:

(
β̂′, α̂11, . . . , α̂ĜT

)
∈ arg max(

β′,α11,...,α
ĜT

)
∈B×AĜT

N∑
i=1

T∑
t=1

(
yit − x′

itβ − αĝit

)2
.

The estimation procedure has two steps. In the clustering step, a binary
thresholding operator is applied coordinate-wise to the dissimilarity matrix D̂ :=
(d̂2

∞(i, j))(i,j)∈{1,...,N}2 to obtain the binary adjacency matrix Ŵ . The tuning pa-
rameter cNT is the largest possible value for d̂2

∞(i, j) that still yields an estimated
undirected edge between units i and j. Then, estimated groups are formed sequen-
tially by regrouping units with identical sets of edges: start by gathering in Group 1
units that share the same set of estimated edges as unit 1, then gathering in Group 2
units that share the same set of estimated edges as the unit with smallest index not
already in Group 1, etc. By construction, this estimation procedure always assigns
all units to Ĝ ∈ {1, . . . , N} non-empty groups which contain units with the same
set of estimated edges. Intuitively, if cNT → 0, Ĝ → N ; if cNT → ∞, Ĝ → 1. In
the projection step, a pooled OLS regression of yit on xit and the interactions of
groups and time dummies (in the special case where B = Rp and A = R) delivers(
β̂′, α̂11, . . . , α̂ĜT

)′
.

In Section 3.3, we provide theoretical guidance for the choice of cNT . In finite
sample, it can be chosen by cross-validation (see Section 3.3.4).

Remark 1: Consider a finite sample of fixed dimensions N and T . If all random
variables except group memberships are continuous, then to the extreme where cNT →
0, Ĝ → N and each group contains a single unit. To the extreme where cNT →
+∞, Ĝ → 1 and a single group contains all units. Given the low CPU time of the
method, an entire regularization path can be reported by the researcher by making
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cNT vary between these two regimes. In particular, the clustering step can be made
all vectorized, greatly reducing computational burden compared to running loops.3

Also, it is possible to improve the finite sample performance by re-running the first
step with v̂it = yit − x′

itβ̂ in place of v̂it = yit − x′
itβ̂

1 to obtain new ĝ1, . . . , ĝN , and
then re-running the second step and iterating again until some convergence criterion
is achieved. The asymptotic results will hold for any of the subsequent iterates.

Remark 2: When unobserved heterogeneity is assumed to be time-constant, the
O(N3T ) computation cost can be reduced to O(N2T ) and the preliminary estimator
can be replaced with any standard differencing fixed effects estimator such as Arellano
and Bond (1991). See also Wooldridge (2010).

Remark 3: The intuition for the estimator is as follows (see also p.14 in Zeleneev,
2020). Asymptotically, v̂it ≈ αgit so that gi = gj implies, “uniformly” over k,

1
T

T∑
t=1

(v̂it − v̂jt)v̂kt ≈ 0

=⇒ max
k∈{1,...,N}\{i,j}

∣∣∣∣∣ 1T
T∑
t=1

(v̂it − v̂jt)v̂kt

∣∣∣∣∣ ≈ 0.

Reciprocally, if

max
k∈{1,...,N}\{i,j}

∣∣∣∣∣ 1T
T∑
t=1

(v̂it − v̂jt)v̂kt

∣∣∣∣∣ ≈ 0, (3.2.1)

then necessarily gi = gj . To see it, note that if gi ̸= gj , and provided each
group has at least 2 units asymptotically (which is weak), then there exist k∗, l∗ ∈
{1, . . . , N} \ {i, j} such that gk∗ = gi and gl∗ = gj . Equation (3.2.1) implies in turn

1
T

T∑
t=1

(v̂it − v̂jt)v̂k∗t ≈ 0, (3.2.2)

1
T

T∑
t=1

(v̂it − v̂jt)v̂l∗t ≈ 0. (3.2.3)

Differencing (3.2.2)-(3.2.3) yields

1
T

T∑
t=1

(αgit − αgjt)2 ≈ 0,

a contradiction if groups are well separated, e.g., if for all (g, g̃) ∈ {1, . . . , G}2, g ̸= g̃,
there exists cg,̃g > 0 such that

1
T

T∑
t=1

(αgt − αg̃t)
2 ≥ cg,̃g > 0.

3MATLAB code is provided on the author’s website: https://martinmugnier.github.io/research.
A small Monte Carlo exercise and an empirical illustration are presented in sections S.3-4 of the
Supplemental Material.

https://martinmugnier.github.io/research
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The next section formalizes the identification result.

3.3 Large Sample Properties

Consider the following data generating process:

yit = x′
itβ

0 + α0
g0

i t
+ vit, i = 1, . . . , N, t = 1, . . . , T, (3.3.1)

where g0
i ∈

{
1, . . . , G0} denotes group membership, and where the 0 superscripts

refer to true parameter values. I consider asymptotic sequences (N,T ) where N and
T diverge jointly to infinity. I assume for now that the number of groups G0 is fixed
(relative to N,T ) but unknown, and I defer the discussion on the case of an increasing
sequence G0 = G0

NT to the Supplemental Material S.1.4

For any set I ⊂ N∗, all k ∈ N∗, let Pk(I) collects the cardinal-k subsets of I.

3.3.1 Clustering Consistency

Consider the following assumptions.

Assumption 3.3.1 There exists a deterministic sequence rNT such that, as N and
T diverge jointly to infinity,

∥∥∥β̂1 − β0
∥∥∥ = Op(rNT ) and rNT → 0.

Assumption 3.3.2 There exists (ν, κ) ∈ (0,+∞) × (0, 1/2) such that, as N and
T diverge jointly to infinity, NT−ν → 0, cNT → 0, cNT r−1

NT → ∞. There exists
(C,N0, T0) ∈ (0,+∞) × N × N such that for all (N,T ) such that N ≥ N0 and T ≥
T0, cNTT

κ ≥ C.

Assumption 3.3.3 There exist constants a, b, c, d1, d2 > 0 and a sequence τ(t) ≤
e−atd1 such that:

(a) A is a compact subset of R.

(b) For all (i, t) ∈ {1, . . . , N} × {1, . . . , T}: P(|vit| > m) ≤ e1−(m/b)d2 for all m > 0
and E(vit) = 0.

(c) For all (g, g̃) ∈
{
1, . . . , G0}2 such that g ̸= g̃: plimT→∞T

−1∑T
t=1(α0

gt −α0
g̃t

)2 =
cg,̃g ≥ c.

(d) For all (i, j, k, g, g̃) ∈ P3({1, . . . , N}) ×
{
1, . . . , G0}2 such that g ̸= g̃, {vit}t,

{(vit − vjt)vkt}t,
{
α0
gt − α0

g̃t

}
t
, and

{
(α0

gt − α0
g̃t

)vit
}
t

are strongly mixing pro-
cesses with mixing coefficients τ(t). Moreover, E((α0

gt−α0
g̃t

)vit) = E(vitvjt) = 0.

(e) limN→∞ P(ming∈{1,...,G0}
∑N
i=1 1{g0

i = g} ≥ 2) = 1.
4In particular, when β0 = 0 is known, the number of groups can increase with sample size at any

rate bounded by N/2.
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(f) There exists a constant M > 0 such that, as N,T tend to infinity:

sup
i∈{1,...,N}

P
(

1
T

T∑
t=1

∥xit∥2 ≥ M

)
= o(T−δ) for all δ > 0,

where ∥·∥ denotes the Euclidean norm.

Assumption 3.3.1 requires β̂1 to be consistent for β0 at a rate bounded by rNT . This
rate can be slow. Examples of computationally simple estimators satisfying this con-
dition are given in Section 3.3.3. Assumption 3.3.2 allows T to grow considerably
more slowly than N (when ν ≫ 1). It requires that the tuning parameter decreases
to zero, but not too fast, at a rate bounded below by T−1/2 and strictly slower than
rNT . Assumptions 3.3.3(a)-(b) and 3.3.3(d) collect standard moment, tail, and de-
pendence conditions. They do not impose homoscedasticity, but only require uniform
bounds on the unconditional variances. Assumption 3.3.3(c) requires groups to be
well-separated. Assumption 3.3.3(e) allows for asymptotically negligible groups, but
requires that each group has at least two members with probability approaching one.
Assumption 3.3.3(f) is a slight reinforcement of Bonhomme and Manresa (2015)’s
Assumption 2(e). It holds if covariates have bounded support or if they satisfy de-
pendence and tail conditions similar to vit. All results below are understood up to
group relabeling.

Proposition 3.3.1 (Sup-norm classification consistency) Let Assump-
tions 3.3.1-3.3.3 hold. Then, as N and T tend to infinity,

sup
i∈{1,...,N}

∣∣∣ĝi − g0
i

∣∣∣ = op(1), (3.3.2)

and
Ĝ−G0 = op(1). (3.3.3)

3.3.2 Asymptotic Distribution

The following assumption is useful to establish the asymptotic distribution of β̂ and
α̂gt.

Assumption 3.3.4

(a) For all g ∈
{
1, . . . , G0}: plimN→∞

1
N

∑N
i=1 1{g0

i = g} = πg > 0.

(b) For all (g, t) ∈
{
1, . . . , G0}× {1, . . . , T}:

lim
N→∞

1
N

N∑
i=1

N∑
j=1

E
(
1{g0

i = g}1{g0
j = g}vitvjt

)
= ωgt > 0.
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(c) For all (g, t) ∈
{
1, . . . , G0}× {1, . . . , T}: as N and T tend to infinity,

1√
N

N∑
i=1

1{g0
i = g}vit

L−→ N (0, ωgt) ,

where d→ denotes convergence in distribution.

(d) For all (i, j, t) ∈ {1, . . . , N}2 × {1, . . . , T}: E(xjtvit) = 0.

(e) There exist positive definite matrices Σβ and Ωβ such that

Σβ = plim
N,T→∞

1
NT

N∑
i=1

T∑
t=1

(xit − xg0
i t

)(xit − xg0
i t

)′,

Ωβ = plim
N,T→∞

1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
vitvjs(xit − xg0

i t
)(xjs − xg0

j s
)′
]
,

where xgt :=
(∑N

i=1 1{g0
i = g}

)−1∑N
i=1 1{g0

i = g}xit.

(f) As N and T tend to infinity: 1√
NT

∑N
i=1

∑T
t=1(xit − xg0

i t
)vit d→ N (0,Ωβ).

Corollary 3.3.2 (Asymptotic distribution) Let Assumptions 3.3.1-3.3.4 hold.
Then, as N and T tend to infinity,

√
NT (β̂ − β0) L−→ N

(
0,Σ−1

β ΩβΣ−1
β

)
, (3.3.4)

and, for all t:
√
N(α̂gt − α0

gt)
L−→ N

(
0, ωgt
π2
g

)
, g = 1, . . . , G0, (3.3.5)

where Σβ,Ωβ, ωgt, and πg are defined in Assumption 3.3.4.

Consistent plug-in estimates of the asymptotic variances can easily be constructed
(see, e.g., Supplemental Material in Bonhomme and Manresa, 2015).

3.3.3 Choice of the Preliminary Consistent Estimator

The interactive fixed effects literature provides a wide range of possible preliminary
estimators for β. For instance, one may use (square root) nuclear norm penalized
estimators (e.g., Beyhum and Gautier, 2019, 2023; Chernozhukov et al., 2019; Moon
and Weidner, 2019) or robust methods Armstrong et al. (2022). Assuming knowledge
of the number of group and a grouped factor structure on the covariates, one can
alternatively use Chetverikov and Manresa (2021)’s spectral estimators.

To give a computationally very convenient example, we give conditions for using
the nuclear norm estimator of Moon and Weidner (2019) as a preliminary consistent
estimator of the slope coefficient.

Let ∥·∥F and ∥·∥1 denote the Frobenius norm and the nuclear norm respectively.
Additionally, let Y = (yit)i=1,...,N ;t=1,...,T ∈ RN×T , Xk = (xit,k)i=1,...,N ;t=1,...,T ∈
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RN×T for all k ∈ {1, . . . , p}, and v ·X = ∑p
k=1Xkvk for all v ∈ Rp. For all (ψ, β′)′ ∈

(0,+∞) × Rp, define

Qψ(β) = min
Γ∈RN×T

{ 1
2NT ∥Y − β ·X − Γ∥2

F + ψ√
NT

∥Γ∥1

}
(3.3.6)

and
β̂1(ψ) = arg min

β∈Rp
Qψ(β). (3.3.7)

β̂1(ψ) is the nuclear norm regularized estimator (see, e.g., Moon and Weidner, 2019).
It solves a very simple smooth and convex optimization problem (see, e.g. Hastie
et al., 2015). Regularization is needed because the true number of groups is unknown.
Define γ0 = (1{g0

i = g})i=1,...,N ;g=1,...,G0 ∈ {0, 1}N×G0
, α0 = (α0

gt)t=1,...,T ;g=1,...,G0 ∈
AT×G0 , xk = vec(Xk), and x = (x1, . . . , xk).

Assumption 3.3.5

(a) As N and T tend to infinity: ψ → 0 such that
√

min(N,T )ψ → ∞.

(b) Let C =
{
A ∈ RN×T :

∥∥∥Mγ0AMα0

∥∥∥
1

≤ 3
∥∥∥A−Mγ0AMα0

∥∥∥
1

}
, where MB := I −

B(B′B)†B′, I is the identity matrix of appropriate dimensions, and † refers to
the Moore-Penrose generalized inverse. There exists µ > 0, independent from
N and T , such that for any a ∈ RNT with mat(a) ∈ C we have a′Mxa ≥ µa′a,
for N,T sufficiently large.

(c) ∥(vit)i=1,...,N ;t=1,...,T ∥∞ = Op
(√

max(N,T )
)
, where ∥·∥∞ denotes the spectral

norm.

(d) As N and T tend to infinity: 1
NT

∑N
i=1

∑T
t=1 xitx

′
it

p→ Σ > 0 and
1√
NT

∑N
i=1

∑T
t=1 vitxit = Op(1), where p→ denotes convergence in probability.

Assumption 3.3.5(b) is a restricted eigenvalue condition, common in high-dimensional
modeling (see, e.g., Bickel et al., 2009). Sufficient conditions for Assumption 3.3.5(c)
are given in the Supplementary Appendix S.2 of Moon and Weidner (2017).

Proposition 3.3.3 (Moon and Weidner (2019)) Let Assumption 3.3.5 hold.
Then, as N and T diverge jointly to infinity,

∥∥∥β̂1(ψ) − β0
∥∥∥ = Op(ψ) with ψ → 0.

Proposition 3.3.3 follows from Theorem 2 in Moon and Weidner (2019), because of
the interactive fixed effects structure of equation (3.3.1).

3.3.4 Choice of the Tuning Parameter

In finite samples, the parameter cNT has to be chosen carefully. We propose a simple
multiple fold cross-validation procedure which is asymptotically valid (not in the sense
of minimizing the cross-validated ERM but in the sense of consistency and asympotic
normality).
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For simplicity suppose β0 = β̂1 = 0. Split the time dimension of the panel in
K1 distinct folds T1, . . . , TK1 , and the cross-section dimension in K2 distinct folds,
I1, . . . , IK2 . For (k, ℓ) ∈ {1, . . . ,K1} × {1, . . . ,K2} and cNT in a well-calibrated grid
of values (such that any cNT in this grid verifies Assumption 3.3.2),

• Step 1: estimate the group membership variables ĝ1, . . . , ĝN using (i, t) ∈
{1, . . . , N} × Tℓ.

• Step 2: estimate the group-specific time effects using (i, t) ∈ Ik × T c
ℓ .

• Step 3: estimate the cross-validated MSE using (i, t) ∈ Ick × T c
ℓ .

3.4 Discussion and Conclusion

Grouped fixed effects models are plagued with an underlying difficult combinatorial
classification problem, rendering estimation and inference difficult. In this chapter, I
propose a novel constructive identification argument for all the model parameters in-
cluding the number of groups. The corresponding two-step estimator has polynomial
computational cost and is straightforward to implement (only smooth convex opti-
mization and elementary arithmetic operations are required). It is based on thresh-
olding a suitable pairwise differencing transformation of the regression equation and a
preliminary off-the-shelf consistent estimator of the slope. Mild conditions are given
under which the proposed estimator is uniformly consistent for the latent grouping
structure and asymptotically normal as both dimensions diverge jointly. Importantly,
the number of groups is consistently estimated without any prior knowledge, and the
time-dimension can grow much more slowly than the cross-sectional dimension. This
work leaves a few questions unanswered. First, could the approach be fruitful to
build a test for the grouping assumption? Second, how does the new estimator per-
form relative to alternative methods that require the number of groups to be known?
Third, could similar differencing ideas be applied to more general nonlinear models?
While the first two questions are left for further research, the last one is the object
of Chapter 4.

3.5 Proofs of the Results

Define the matrix norm ∥·∥max such that, for any A = (aij)i,j ∈ Rm×n, ∥A∥max =
maxi=1,...,m;j=1,...,n |aij |.

3.5.1 Proof of Proposition 3.3.1

Let W 0 = (1{g0
i = g0

j })i=1,...,N ;j=1,...,N . Equations (3.3.2) and (3.3.3) are immediate
corollaries of Lemma 3.5.1 below.

Lemma 3.5.1 Let Assumptions 3.3.1-3.3.3 hold. Then, as N and T tend to infinity,∥∥∥Ŵ −W 0
∥∥∥

max
= op(1). (3.5.1)
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Proof of Lemma 3.5.1: Let ϵ > 0. By Assumption 3.3.1, there exists K > 0 such
that, letting E1NT =

{∥∥∥β̂1 − β0
∥∥∥ > KrNT

}
, P(E1NT ) < ϵ for N,T sufficiently large.

Define Z1NT (i, j) = Ŵij(1 − W 0
ij), Z2NT (i, j) = (1 − Ŵij)W 0

ij , and the probability
events E2N =

{
ming∈{1,...,G0}

∑N
i=1 1{g0

i = g} ≥ 2
}

and ENT = Ec1NT ∩ E2N . By the
union bound,

P
(

max
(i,j)∈{1,...,N}2

∣∣∣Ŵij −W 0
ij

∣∣∣ > 0
)

≤ P(EcNT ) +
∑

(i,j)∈{1,...,N}2

P
(∣∣∣Ŵij ̸= W 0

ij

∣∣∣ , ENT)
≤ P (E1NT ) + P (Ec2NT ) +

∑
(i,j)∈{1,...,N}2

P
(∣∣∣Ŵij ̸= W 0

ij

∣∣∣ , ENT)
= ϵ+ o(1) +

∑
(i,j)∈{1,...,N}2

P (Z1NT (i, j) = 1, ENT ) + P (Z2NT (i, j) = 1, ENT ) ,

(3.5.2)

where I have used that limN→∞ P (Ec2N ) = 0 by Assumption 3.3.3(e) to obtain the
equality. Below, I prove that, for ℓ ∈ {1, 2}, and as N and T tend to infinity,

max
(i,j)∈{1,...,N}2

P (ZℓNT (i, j) = 1, ENT ) = o(N2T−δ) for all δ > 0. (3.5.3)

Equation (3.5.1) then follows by combining (3.5.2)-(3.5.3) and Assumption 3.3.2, and
because ϵ is unrestricted.

1. I first show (3.5.3) for ℓ = 1.5 Let (i, j) ∈ {1, . . . , N}2 and δ > 0.

Z1NT (i, j) = 1
{

max
k∈{1,...,N}\{i,j}

∣∣∣∣∣ 1T
T∑
t=1

(v̂it − v̂jt)v̂kt

∣∣∣∣∣ ≤ cNT
}

1{g0
i ̸= g0

j }.

If G0 = 1, then almost surely g0
i = g0

j and Z1NT (i, j) = 0, i.e., (3.5.3) holds. Else,

1{Z1NT (i, j) = 1, ENT }

= 1{ENT }×∑
(g,̃g)∈{1,...,G0}2

g ̸=g̃

1{g0
i = g}1{g0

j = g̃}1
{

max
k∈{1,...,N}\{i,j}

∣∣∣∣∣ 1T
T∑
t=1

(v̂it − v̂jt)v̂kt

∣∣∣∣∣ ≤ cNT
}
.

5Actually, I show the stronger result that the supremum is o(T −δ).
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If 1{ENT }1{g0
i ̸= g0

j } = 1, there exists a pair
(
k∗(i, j, g0

i ), l∗(i, j, g0
j )
)

∈
P2 ({1, . . . , N} \ {i, j}) such that g0

k∗(i,j,g0
i ) = g0

i and g0
l∗(i,j,g0

j ) = g0
j . It follows that

1{Z1NT (i, j) = 1, ENT }

≤ 1{ENT }×∑
(g,̃g)∈{1,...,G0}2

g ̸=g̃

1{g0
i = g}1{g0

j = g̃}1
{ ∣∣∣∣∣ 1T

T∑
t=1

(v̂it − v̂jt)v̂k∗(i,j,g0
i )t

∣∣∣∣∣ ≤ cNT
}

×

1
{ ∣∣∣∣∣ 1T

T∑
t=1

(v̂it − v̂jt)v̂l∗(i,j,g0
j )t

∣∣∣∣∣ ≤ cNT
}

≤ 1{ENT }×∑
(g,̃g)∈{1,...,G0}2

g ̸=g̃

1{g0
i = g}1{g0

j = g̃}1
{ ∣∣∣∣∣ 1T

T∑
t=1

(v̂it − v̂jt)(v̂k∗(i,j,g0
i )t − v̂l∗(i,j,g0

j )t)
∣∣∣∣∣ ≤ 2cNT

}
,

where the first inequality uses the definition of the maximum, and the second
inequality follows from the triangle inequality. Since there is at most one pair
(g, g̃) ∈

{
1, . . . , G0}2 such that g ̸= g̃ and 1{g0

i = g}1{g0
j = g̃} = 1, and by de-

veloping the product and using 1{|a| ≤ b} ≤ 1{a ≤ b} for any (a, b) ∈ R × R∗, I
obtain

1{Z1NT (i, j) = 1, ENT }

≤ 1{ENT }×

max
(g,̃g)∈{1,...,G0}2

g ̸=g̃

1
{ 1
T

T∑
t=1

(
α0
gt − α0

g̃t

)2
+ 1
T

T∑
t=1

(
α0
gt − α0

g̃t

) (
vit − vjt + vk∗(i,j,g)t − vl∗(i,j,̃g)t

)

+ 1
T

T∑
t=1

(
α0
gt − α0

g̃t

) (
β0 − β̂1

)′ (
xit − xjt + xk∗(i,j,g)t − xl∗(i,j,̃g)t

)

+ 1
T

T∑
t=1

(vit − vjt)
(
vk∗(i,j,g)t − vl∗(i,j,̃g)t

)

+ 1
T

T∑
t=1

(
β0 − β̂1

)′
(xit − xjt)

(
β0 − β̂1

)′ (
xk∗(i,j,g)t − xl∗(i,j,̃g)t

)

+ 1
T

T∑
t=1

(vit − vjt)
(
β0 − β̂1

)′ (
xk∗(i,j,g)t − xl∗(i,j,̃g)t

)

+ 1
T

T∑
t=1

(vk∗(i,j,g)t − vl∗(i,j,̃g)t)
(
β0 − β̂1

)′
(xit − xjt) ≤ 2cNT

}
= 1{ENT } × max

(g,̃g)∈{1,...,G0}2

g ̸=g̃

1
{
AT (i, j, g, g̃) ≤ 2cNT

}
, (3.5.4)
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where AT (i, j, g, g̃) is defined implicitely. I now define

BT (i, j, g, g̃) =
∣∣∣∣∣AT (i, j, g, g̃) − 1

T

T∑
t=1

(
α0
gt − α0

g̃t

)2

− 1
T

T∑
t=1

(
α0
gt − α0

g̃t

) (
vit − vjt + vk∗(i,j,g)t − vl∗(i,j,̃g)t

)

− 1
T

T∑
t=1

(vit − vjt)
(
vk∗(i,j,g)t − vl∗(i,j,̃g)t

)∣∣∣∣∣ .
Let a = supa∈A |a|. By assumption 3.3.3(a), a < ∞. It is easy to show using the
Cauchy-Schwarz inequality that

BT (i, j, g, g̃) ≤
∥∥∥β̂1 − β0

∥∥∥{2a
T

T∑
t=1

(
∥xit∥ + ∥xjt∥ +

∥∥∥xk∗(i,j,g)t

∥∥∥+
∥∥∥xl∗(i,j,̃g)t

∥∥∥)

+
4
∥∥∥β̂1 − β0

∥∥∥
T

T∑
t=1

(
∥xit∥2 + ∥xjt∥2 +

∥∥∥xk∗(i,j,g)t

∥∥∥2
+
∥∥∥xl∗(i,j,̃g)t

∥∥∥2
)

+


√√√√ 1
T

T∑
t=1

v2
it +

√√√√ 1
T

T∑
t=1

v2
jt


√√√√ 1
T

T∑
t=1

∥∥∥xk∗(i,j,g)t

∥∥∥2
+
∥∥∥xl∗(i,j,̃g)t

∥∥∥2

+


√√√√ 1
T

T∑
t=1

v2
k∗(i,j,g)t +

√√√√ 1
T

T∑
t=1

v2
l∗(i,j,̃g)t


√√√√ 1
T

T∑
t=1

∥xit∥2 + ∥xjt∥2

 .
By Assumption 3.3.3(b), there exists M∗ > 0 such that E(v2

it) ≤ M∗ for all i, t. Let
M̃ > max(M,max(M∗, 1)), where M is defined in Assumption 3.3.3(f) and let η > 0
such that

η ≤ min

1, c

24
(
2a4

√
M̃ + 8M̃ + 4

√
2M̃

)
 . (3.5.5)

Since rNT → 0 as N,T → ∞, for N,T sufficiently large,
∥∥∥β̂1 − β0

∥∥∥ ≤ η on ENT .
Using the Cauchy-Schwarz inequality and η ≤ 1, I obtain

1{ENT }BT (i, j, g, g̃) ≤ η

2a

√√√√ 1
T

T∑
t=1

∥xit∥2 + ∥xjt∥2 +
∥∥∥xk∗(i,j,g)t

∥∥∥2
+
∥∥∥xl∗(i,j,̃g)t

∥∥∥2

+ 4
T

T∑
t=1

(
∥xit∥2 + ∥xjt∥2 +

∥∥∥xk∗(i,j,g)t

∥∥∥2
+
∥∥∥xl∗(i,j,̃g)t

∥∥∥2
)

+


√√√√ 1
T

T∑
t=1

v2
it +

√√√√ 1
T

T∑
t=1

v2
jt


√√√√ 1
T

T∑
t=1

∥∥∥xk∗(i,j,g)t

∥∥∥2
+
∥∥∥xl∗(i,j,̃g)t

∥∥∥2

+


√√√√ 1
T

T∑
t=1

v2
k∗(i,j,g)t +

√√√√ 1
T

T∑
t=1

v2
l∗(i,j,̃g)t


√√√√ 1
T

T∑
t=1

∥xit∥2 + ∥xjt∥2


=: CT (i, j, g, g̃).
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Plugging this bound into (3.5.4), I obtain

1{Z1NT (i, j) = 1, ENT }

≤ max
(g,̃g)∈{1,...,G0}2

g ̸=g̃

1
{ 1
T

T∑
t=1

(
α0
gt − α0

g̃t

)2

+ 1
T

T∑
t=1

(
α0
gt − α0

g̃t

) (
vit − vjt + vk∗(i,j,g)t − vl∗(i,j,̃g)t

)

+ 1
T

T∑
t=1

(vit − vjt)
(
vk∗(i,j,g)t − vl∗(i,j,̃g)t

)
≤ 2cNT + CT (i, j, g, g̃)

}
.

By the Cauchy-Schwarz inequality again, and because M̃ ≥ 1, note the implication

1
T

T∑
t=1

∥xit∥2 ≤ M̃ =⇒ 1
T

T∑
t=1

∥xit∥ ≤
√
M̃ ≤ M̃.

Using this result, the union bound, and some probability algebra, it follows that

P (Z1NT (i, j) = 1, ENT )

≤
∑

(g,̃g)∈{1,...,G0}2

g ̸=g̃

P
(

1
T

T∑
t=1

(
α0
gt − α0

g̃t

)
vit ≤ − c

12 + 2cNT + η

(
2a4

√
M̃ + 8M̃ + 4

√
2M̃

))

+ 4G0
(
G0 − 1

) [
sup
g ̸=g̃

P
(

1
T

T∑
t=1

(
α0
gt − α0

g̃t

)2
≤ c

2

)
+ sup
i∈{1,...,N}

P
(

1
T

T∑
t=1

∥xit∥2 ≥ M̃

)

+ sup
i∈{1,...,N},g ̸=g̃

P
(∣∣∣∣∣ 1T

T∑
t=1

(
α0
gt − α0

g̃t

)
vit

∣∣∣∣∣ ≥ c

12

)
+ sup
i∈{1,...,N}

P
(

1
T

T∑
t=1

v2
it ≥ M̃

)

+ sup
(i,j,k)∈P3({1,...,N})

P
(∣∣∣∣∣ 1T

T∑
t=1

(vit − vjt)vkt

∣∣∣∣∣ ≥ c

12

)]
. (3.5.6)

First, I bound the terms with a supremum. By Assumption 3.3.3(c), it holds that
limT→∞

1
T

∑T
t=1 E[(α0

gt − α0
g̃t

)2] = cg,̃g > c. So for T large enough, I have

1
T

T∑
t=1

E
[(
α0
gt − α0

g̃t

)2
]

≥ 2c
3 .

Applying Lemma B.5 in Bonhomme and Manresa (2015) to zt = (α0
gt−α0

g̃t
)2−E[(α0

gt−
α0
g̃t

)2], which satisfies appropriate mixing and tail conditions by Assumption 3.3.3(b)
and (d), and taking z = c/6 yields, as T tends to infinity,

P
(

1
T

T∑
t=1

(
α0
gt − α0

g̃t

)2
≤ c

2

)
= o(T−δ), (3.5.7)
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uniformly across g and g̃. Similarly, applying Lemma B.5 to zt = v2
it − E(vit)2 and

taking z = M̃ −M∗ yields

P
(

1
T

T∑
t=1

v2
it ≥ M̃

)
= o(T−δ), (3.5.8)

uniformly across units i. Note that
{
v2
it

}
t is strongly mixing as {vit} is strongly mixing

by Assumption 3.3.3(d). By Assumption 3.3.3(d), the process
{

(α0
g̃t

− α0
gt)vit

}
t

has
zero mean, and is strongly mixing with faster-than-polynomial decay rate. Moreover,
for all i, t and m > 0,

P
(∣∣∣(α0

gt − α0
g̃t

)
vit
∣∣∣ > m

)
≤ P

(
|vit| >

m

2a

)
,

so
{

(α0
gt − α0

g̃t
)vit

}
t

also satisfies the tail condition of Assumption 3.3.3(b), albeit
with a different constant b′ > 0 instead of b > 0. Lastly, applying Lemma B.5 from
Bonhomme and Manresa (2015) again with zt = (α0

gt − α0
g̃t

)vit and taking z = c/12
yields

P
(∣∣∣∣∣ 1T

T∑
t=1

(
α0
gt − α0

g̃t

)
vit

∣∣∣∣∣ ≥ c

12

)
= o(T−δ) (3.5.9)

uniformly across i, g, and g̃. An analogous reasoning yields

sup
(i,j,k)∈P3({1,...,N})

P
(∣∣∣∣∣ 1T

T∑
t=1

(vit − vjt)vkt

∣∣∣∣∣ ≥ c

12

)
= o(T−δ). (3.5.10)

Finally, for N,T sufficiently large, cNT ≤ c/72 and a similar reasoning yields

P
(

1
T

T∑
t=1

(
α0
gt − α0

g̃t

)
vit ≤ − c

12 + 2cNT + η

(
2a4

√
M̃ + 8M̃ + 4

√
2M̃

))

≤ P
(

1
T

T∑
t=1

(
α0
gt − α0

g̃t

)
vit ≤ − c

72

)
= o(T−δ), (3.5.11)

uniformly across g, g̃, where I have used the value of η given in (3.5.5). Combining
(3.5.6)-(3.5.11) and using Assumption 3.3.3(f) yields

sup
(i,j)∈{1,...,N}2

P (Z1NT (i, j) = 1, ENT ) = G0(1 −G0) × op(T−δ) = op(T−δ),

i.e., (3.5.3) for ℓ = 1 holds.
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2. Second, I show (3.5.3) for ℓ = 2. I now have

1{Z2NT (i, j) = 1, ENT }

= 1{ENT }1
{

max
k∈{1,...,N}\{i,j}

∣∣∣∣∣ 1T
T∑
t=1

(v̂it − v̂jt)v̂kt

∣∣∣∣∣ > cNT
}

1{g0
i = g0

j }

≤ 1{ENT }1
{

max
k∈{1,...,N}\{i,j}

∣∣∣∣∣ 1T
T∑
t=1

(vit − vjt)vkt + 1
T

T∑
t=1

(vit − vjt)α0
kt

+ 1
T

T∑
t=1

(
β0 − β̂1

)′
(xit − xjt)

(
β0 − β̂1

)′
xkt

+ 1
T

T∑
t=1

(vit − vjt)
(
β0 − β̂1

)′
xkt + 1

T

T∑
t=1

α0
kt

(
β0 − β̂1

)′
(xit − xjt)

+ 1
T

T∑
t=1

vkt
(
β0 − β̂1

)′
(xit − xjt)

∣∣∣∣∣ > cNT
}
.

By the union bound, the triangle inequality, and the Cauchy-Schwarz inequality,

P (Z2NT (i, j) = 1, ENT )

≤ (N − 2) sup
(i,j,k)∈{1,...,N}3

{
P
(∣∣∣∣∣ 1T

T∑
t=1

(vit − vjt)vkt

∣∣∣∣∣ > cNT
10

)

+P
(

1
T

T∑
t=1

∥xit∥2 + ∥xjt∥2 + ∥xkt∥2 >
cNT

10 × 4K2r2
NT

)

+4P


√√√√ 1
T

T∑
t=1

v2
it

√√√√ 1
T

T∑
t=1

∥xkt∥2 >
cNT

10KrNT


+2P


√√√√ 1
T

T∑
t=1

v2
it >

cNT
10KrNT × a


+2P


√√√√ 1
T

T∑
t=1

v2
it

√√√√ 1
T

T∑
t=1

∥xkt∥2 >
cNT

10KrNT × a

 .
Under the strong mixing and tail conditions given by Assumptions 3.3.3(b) and
3.3.3(d), and because cNT /r

2
NT → 0 and cNT /rNT → 0 by Assumption 3.3.2, all

noninitial probabilities in the above expression can be shown to be o(T−δ) for all
δ > 0, uniformly accross (i, j, k), by similar arguments as in Step 1. For the first
probability, a close inspection of the proof of Lemma B.5 in Bonhomme and Man-
resa (2015) reveals that, by taking zt = (vit − vjt)vkt and z = cNT /6, and because
cNT ≳ T−κ as N,T → ∞ by Assumption 3.3.2, for N,T sufficiently large,

P
(∣∣∣∣∣ 1T

T∑
t=1

(vit − vjt)vkt

∣∣∣∣∣ ≥ cNT
10

)
≤ 4

(
1 + T 1/2−2κ

C1

)−(1/2)T 1/2

+ C2T
κ exp

(
−C3

(
T (1/2−κ)/C4

))
, (3.5.12)
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where C1, C2, C3, and C4 are positive constants that do not depend on i, j, k. Since
κ < 1/2, the upper bound is op(T−δ) for all δ > 0. This shows (3.5.3) for ℓ = 2. □

The proof of Proposition 3.3.1 is complete.

3.5.2 Proof of Corollary 3.3.2

Let β̃ and (α̃11, . . . , α̃G0T )′ denote the infeasible oracle estimators computed using the
pooled OLS regression of yit on xit and the interactions of group and time indicators
1{g0

i = 1}, . . . ,1{g0
i = G0}, 1{t = 1}, . . . ,1{t = T}. By the same reasoning as in

section S.A.1. in Bonhomme and Manresa (2015)’s Supplemental Material, I have

√
NT (β̃ − β0) L−→ N

(
0,Σ−1

β ΩβΣ−1
β

)
, (3.5.13)

and, for all (g, t) ∈
{
1, . . . , G0}× {1, . . . , T},

√
N(α̃gt − α0

gt)
L−→ N

(
0, ωgt
π2
g

)
. (3.5.14)

Without loss of generality, I assume that the chosen labels match the true group
labeling. By Proposition 3.3.1, for all (g, t) ∈

{
1, . . . , G0}× {1, . . . , T},

P
(
{α̂gt ̸= α̃gt} ∪

{
β̂ ̸= β̃

})
≤ P

(
Ĝ ̸= G0

)
+ P

(
max

i∈{1,...,N}

∣∣∣ĝi − g0
i

∣∣∣ > 0
)

= o(1) + o(1)

= o(1).

Then, Eq. (3.3.5) follows from∣∣∣P (√
N(α̂gt − α0

gt) ≤ a
)

− P
(√

N(α̃gt − α0
gt) ≤ a

)∣∣∣
≤
∣∣∣P (√

N(α̂gt − α0
gt) ≤ a,

√
N(α̃gt − α0

gt) > a
)∣∣∣

+
∣∣∣P (√

N(α̂gt − α0
gt) > a,

√
N(α̃gt − α0

gt) ≤ a
)∣∣∣

≤ P (α̂gt ̸= α̃gt) + P (α̂gt ̸= α̃gt) = o(1).

for any a > 0. Eq. (3.3.4) follows from a similar argument.
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Chapter 4

Unobserved Clusters of
Time-Varying Heterogeneity in
Nonlinear Panel Data Models

Mais, comme on le sait, ce qui frappe l’esprit capricieux du poète
n’est pas toujours ce qui impressionne la masse des lecteurs. Or,
tout en admirant, comme les autres admireront sans doute, les
détails que nous avons signalés, la chose qui nous préoccupa le
plus est une chose à laquelle bien certainement personne avant
nous n’avait fait la moindre intention.

Alexandre Dumas, Les Trois Mousquetaires, Préface

Abstract: In studies based on longitudinal data, researchers often assume time-
invariant unobserved heterogeneity or linear-in-parameters conditional expectations.
Violation of these assumptions may lead to poor counterfactuals. I study the iden-
tification and estimation of a large class of nonlinear grouped fixed effects (NGFE)
models where the relationship between observed covariates and cross-sectional unob-
served heterogeneity is left unrestricted but the latter only takes a restricted number
of paths over time. I show that the corresponding “clusters” and the nonparametri-
cally specified link function can be point-identified when both dimensions of the panel
are large. I propose a semiparametric NGFE estimator and establish its large sample
properties in popular binary and count outcome models. Distinctive features of the
NGFE estimator are that it is asymptotically normal unbiased at parametric rates,
and it allows for the number of periods to grow slowly with the number of cross-
sectional units. Monte Carlo simulations suggest good finite sample performance. I
apply this new method to revisit the so-called inverted-U relationship between product
market competition and innovation. Allowing for clustered patterns of time-varying
unobserved heterogeneity leads to a less pronounced inverted-U relationship.
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4.1 Introduction

Unobserved heterogeneity is a prevalent feature of most reduced-form and structural
work in economics and other social sciences. Observational outcomes and explana-
tory variables of interest typically correlate over time with factors unobserved to the
researcher. This confounding problem renders identification of key parameters of
interest, such as average partial effects, difficult.

By sampling N individuals at T points in time, panel data offer opportunities to
account for latent structures embedded in low-dimensional manifolds (see, e.g., Bai,
2009; Bonhomme et al., 2022; Hsiao, 2014; Moon and Weidner, 2019; Wooldridge,
2010).1 While random effects approaches specify the conditional distribution of the
unobserved heterogeneity given covariates (up to a few parameters), fixed effects ap-
proaches leave this distribution unrestricted and introduce instead many additional
parameters. In particular, pooled linear regression with additively separable individ-
ual and time-specific effects has been widely used to control for unobserved permanent
heterogeneity and “common trends”. de Chaisemartin and D’Haultfœuille (2020) find
that 20% of applied papers published in the AER between 2010-12 have estimated
such a regression.

The underlying two-way fixed effects model, however, is restrictive in at least two
important ways. First, it cannot accomodate nonlinearity and nonseparability in pa-
rameters that frequently arise from economic theory and de facto imply heterogeneous
partial effects (e.g., discrete choice, point mass in outcome). Second, common trend
assumptions may fail (see, e.g., Roth and Rambachan, 2022) and the model does not
capture more complicated patterns of time-varying unobserved heterogeneity.

Jointly adressing these concerns is difficult. Standard differencing techniques or
sufficient statistics for the unobserved effects are generally lacking in nonseparable
models. Allowing for unobserved diverging trends creates a dimensionality challenge
in identification and estimation, which reflects Neyman and Scott (1948)’s well-known
incidental parameters problem (even with large T ).

Among existing approaches, restricting the support of unobserved heterogeneity
has recently gained increasing attention as an interpretable, flexible, and economi-
cally meaningful dimension-reduction device.2 Specifically, it often is plausible that
individuals partition into a moderate number of clusters such that all cluster mem-
bers share the same path of unobserved heterogeneity over time but the partition is
unknown to the researcher. The problem becomes that of classifying a large number
of individuals into clusters and estimating a large number of nonseparable cluster-
specific time effects in “large-N,T” nonlinear panel models, where N and T jointly
diverge to infinity.3

1This echoes Occam’s razor principle and the “manifold hypothesis” (Goodfellow et al., 2016).
2Pioneering work includes Bonhomme and Manresa (2015); Hahn and Moon (2010); Heckman

and Singer (1984).
3Such asymptotics have become increasingly popular in the last decades, given the growing avail-

ability of high-frequency data (e.g., scanner, financial data). See, among others, Arellano and Hahn
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To the best of my knowledge, no result is known concerning the nonparametric
identification of many nonlinear models widely used in empirical research (e.g., ran-
dom utility binary/ordered choice models) in this setting.4 Furthermore, estimation
and inference using recently proposed semiparametric estimators (e.g., interactive
fixed effects) is quite challenging. Asymptotic distributions are rarely available or
must be bias-corrected using analytical or jackknife methods justified by asymptotic
frameworks where N and T grow at the same rate (see Bonhomme et al., 2022; Chen
et al., 2021; Zeleneev, 2020). This gap in identification and these limitations in semi-
parametric estimation are important. The distribution of idiosyncratic error terms
(e.g., random shocks in taste), together with common and fixed effects parameters, is
a building block for estimating counterfactual events and policy-relevant parameters
such as average causal effects. Unjustified parametric assumptions can be expected
to deliver poor counterfactuals in large panels. Also, T is often much smaller than N
in practice.

In this chapter, I address both of these concerns for a large class of nonsepara-
ble nonlinear grouped fixed effects (NGFE hereafter) single-index static models for
discrete outcomes. In the most simple version, individual i ∈ {1, . . . , N}’s outcome
Yit ∈ Y at time period t ∈ {1, . . . , T} given i’s covariates history Xi1, . . . , Xit, cluster
membership gi ∈ {1, . . . , G}, and cluster-specific effect αgit is such that

P (Yit = y|Xi1, . . . , Xit, gi, αgit) = h
(
y,X ′

itβ + αgit
)
, (4.1.1)

where the common parameter β, the link function h(·, ·), the number of clusters
G ≪ N , the cluster memberships gi, and cluster-specific effects (αgt)g,t are unobserved
to the econometrician and treated as parameters to estimate. This class covers many
important models of empirical interest such as binary choice, ordered choice, and
count data (see Section 4.2). Extensions to multinomial choice or fully nonparametric
models are discussed in the Appendix.

In this context, I make two contributions. My first contribution is to provide
primitive conditions under which all parameters of model (4.1.1) are point identified
as N and T grow large. The proof is constructive and relies on two steps. In a first
step, I draw on an injectivity condition à la Bonhomme et al. (2022) (see their As-
sumption 2) to build test functions which identify the sequence of latent clusterings
{g1, . . . , gN}N≥1 and number of clusters G from pairwise comparisons of conditional
probability functions identified by time variations in the data at the individual level.
The key idea is to circumvent the difficult (nonlinear and NP-hard) k-means clustering
problem by considering instead N(N − 1)/2 individuals-pairing testing problems.5 I
show that the injectivity condition holds if, for instance, clusters are “well separated”,

(2007); Chen et al. (2021,?); Dhaene and Jochmans (2015); Fernández-Val and Weidner (2016); Hahn
and Newey (2004).

4While Fernández-Val and Weidner (2018) argue “most models are point identified with large T ”,
this paper gives sufficient conditions for a large class of models.

5This idea is at the core of many “hierarchical” or “agglomerative” approaches proposed in the
unsupervised learning literature (e.g., DBSCAN clustering algorithm).
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there is continuous local variation in a “special” regressor (not necessarily with large
support), and the link function is real-analytic (see, e.g., Krantz and Parks, 2002).6

In a second step, I resort to within-cluster variation and apply a well-known result
by Ichimura (1993) to identify the common slope parameter β up to scale. Identi-
fication of cluster-specific time-varying effects and the unknown link function then
follows from leveraging compensating variations within and between clusters and a
monotonicity property.

My second contribution is to develop simple NGFE semiparametric estimators
and establish their large sample properties.7 I introduce a general M-estimation
framework to estimating nonlinear models with clusters of time-varying unobserved
heterogeneity. Semiparametric NGFE estimators are obtained by specializing the
framework to models with a known link function and a known number of clusters.
These estimators maximize the likelihood of the data conditional on the latent clus-
tering and time-effects. Importantly, no tuning parameter is required. Computation,
however, can be cumbersome in large samples. In Chapter 3, I showed how combining
nuclear norm regularization with the pairwise differencing argument that serves as
a foundation for the present nonparametric identification analysis delivers a compu-
tationally trivial estimator for a linear version of model (4.1.1), which enjoys more
powerful statistical guarantees than Bonhomme and Manresa (2015)’s grouped fixed
effect estimator. In particular, the unknown number of clusters G can be consistently
estimated under a restricted eigenvalue condition and without prior knowledge of an
upper bound Gmax ≥ G (see Proposition 3.3.1 in Chapter 3). Here, I instead pro-
pose a simple heuristic, namely Lloyd (1982)’s algorithm described in Section 4.4.3,
and show that it performs well in various Monte Carlo experiments with moderate
sample sizes and number of clusters (see Section 4.6). From a theoretical viewpoint,
and in contradistinction with popular fixed effects estimators such as Chamberlain
(1980); Rasch (1960) or Charbonneau (2017)’s conditional logit, NGFE estimators
can accomodate time-invariant regressors and do not drop individuals without any
variation in outcomes, thus exploiting the full sample variation. On the other hand,
contrary to Bonhomme et al. (2022), I maintain the assumption that unobserved het-
erogeneity is discrete. This assumption is key for the NGFE estimator to have only
one optimization step and enjoy a “perfect recovery” property: provided T grows at
least as some power of N , the misclassification probability tends to zero uniformly
across individuals.8 As in the linear case (see Bonhomme and Manresa, 2015), this
result implies that, under additional regularity conditions, NGFE estimators of the
slope and cluster-specific effects are asymptotically equivalent to the infeasible oracle

6Special regressors are widely used in econometrics (for discussion and examples see, e.g., Lewbel,
2014). There is a trade-off between imposing (i) analyticity of the link function which allows to
interpolate from bounded variation in the regressors at the cost of a strong functional form assumption
and (ii) the existence of a special regressor with unbounded support.

7Fully nonparametric estimation could follow the constructive identification argument. I do not
pursue this avenue here because it would require a lot of tuning parameters.

8A concentration inequality for martingale differences due to Lesigne and Volný (2001) is used to
show this result.
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maximum likelihood estimator (MLE) based on knowledge of the clustering. Remark-
ably, when T = o(N), this oracle is asymptotically unbiased so that standard MLE
inference yields tests and confidence intervals with correct asymptotic level. When
N/T → κ ∈ (0,+∞), existing results can be applied to the oracle to derive analyt-
ical or jackknife bias correction methods for the slope and average marginal effects
estimates.9

I investigate the finite sample performance of NGFE estimators, as well as large-
N,T estimators of their variance, by means of Monte Carlo simulations. I compare
the results with state-of-the-art competing methods. I find that NGFE estimators
perform quite well in settings they are meant for. In particular, in a static logit model
with clustered time-varying correlated unobserved heterogeneity, N = 90, T = 7,
the NGFE estimator has the smallest bias and Root Mean Square Error (RMSE)
compared to both linear and nonlinear methods such as linear two-way fixed effects
(TWFE), Bonhomme and Manresa (2015)’s grouped fixed effects (GFE) Bonhomme
et al. (2022)’s 2-step GFE, Fernández-Val and Weidner (2016)’s nonlinear TWFE,
or Chamberlain (1980); Rasch (1960)’s conditional MLE. It also has the best finite-
sample 95% CI’s coverage (84 to 86%) compared to the CMLE (less than 50%).10

It takes 10 seconds to compute on a professional laptop, which is similar to that of
competing clustering methods such as 2-step GFE.

Finally, I illustrate the practical usefulness of NGFE estimators by revisiting an
influential paper by Aghion et al. (2005). The authors investigate the relationship
between product market competition and innovation using a panel of seventeen UK
industries (i) that spans the last part of the twentieth century (t = 1973, . . . , 1994).
Their preferred specification is a nonlinear Poisson regression model of the num-
ber of citation-weighted patents on “one minus the Lerner index” that controls for
multiplicatively separable industry and time effects. Their results suggest a strong
inverted-U relationship. Yet, there is no reason a priori to assume that dynamic
shocks driving both the production of patents and the market structure of industries
are common to all industries. When I estimate a NGFE model, I find a much flatter
inverted-U curve. This is due to the presence of clustered patterns of time-varying un-
observed heterogeneity. The data-driven clustering procedure reveals a permanently
“high (resp. low)-innovation” cluster of industries gathering “heavy (resp. light) sec-
tors” such as automobile production, chemical products (resp. manufacture of pa-
per/paper products, textile industry), as well as transitioning “caching-up” clusters
of industries, including data and tech related sectors such as electrical and electronic
engineering or data processing equipment. These new results shed light on unobserved
diverging mechanisms that drive both the market structure and technological change
across time. Cluster memberships and clusters effects can be further used as depen-
dent variables to guide the search of key time-varying omitted variables determining

9See, e.g., Hahn and Newey (2004), Arellano and Hahn (2007), and Chen et al. (2021).
10Note that only Bonhomme et al. (2022)’s estimator assumes a correctly specified model. This

paper does not provide inference tools. Comparison with Chen et al. (2021)’s estimator is left for
further research.
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both technological change and market structure.
Economics provides many other possible applications of NGFE models. Janys

and Siflinger (2021) find that young women engage into systematically divergent un-
observed risky behaviors over time that simultaneously affect the chance to have an
abortion and that to develop mental health disorders (a binary dependent outcome
in the study). Deb and Trivedi (1997) control for unobserved time-invariant discrete
types of health risk. More generally, any limited dependent variable model (e.g.,
ordered, multinomial logit) in which it is expected that the baseline level of cross-
sectional unobserved heterogeneity is not subject to the same trend across individuals
(e.g., human capital accumulation, change in taste for different products in the long
run) is a candidate. The approach could also be applied to network data with clus-
tered patterns of heterogeneity (e.g., gravity equations in trade), which I leave for
further research (see Section 4.10.3).

Overall, the theoretical results broaden the scope of application of GFE estima-
tors and clustering techniques in econometrics, complementing the available toolbox
for applied economists interested in assessing the robustness of their results to spec-
ification choices. Results from the empirical applications confirm the usefulness of
considering flexible specifications such as NGFE for modeling unobserved heterogene-
ity.

This chapter contributes to the large literature on nonseparable panel data models.
Most previous papers from this literature obtain (partial) identification results under
fixed-T asymptotics. Point-identification results with fixed T are scarce, even in a
static simple binary choice model with unit-specific unobserved effect (see, e.g., Cham-
berlain, 2010; Davezies et al., 2020). Some papers have leveraged the large-T dimen-
sion but otherwise rely on (additive) separability of the individual/time unobserved
heterogeneity or parametrically specify the link function.11 In contrast, I alleviate the
large-T dimension, cluster separation, and the single-index clustered structure to show
that all parameters of NGFE models can be (nonparametrically) point-identified even
with clustered time patterns of unobserved heterogeneity. I use the technique of com-
pensating variations like D’Haultfoeuille et al. (2021) and Mugnier and Wang (2022),
which does not necessarily require large support (see also Vytlacil and Yildiz, 2007).
This chapter also contributes to the literature estimating semiparametric nonlinear
large-N , large-T panel data models with multiple fixed effects. Much previous work in
the panel data literature has focused on estimation of semiparametric factor-analytic
type linear models while nonlinear models with interactive fixed-effects have only re-
cently drawn considerable attention.12 Fernández-Val and Weidner (2016), Graham
(2017), and Charbonneau (2017) provide consistent and asymptotically normal semi-
parametric estimators of the homogeneous slope coefficient (as well as average partial
effects in Fernández-Val and Weidner, 2016) in nonlinear TWFE models. In contrast

11See, e.g., Mugnier and Wang (2022); Vogt and Linton (2017); Zeleneev (2020).
12For linear factor-type models, see, among many others, Ando and Bai (2017); Bai (2003, 2009);

Bonhomme and Manresa (2015); Ke et al. (2016); Moon and Weidner (2015, 2017); Pesaran (2006).
For nonlinear ones, see, e.g., Ando and Bai (2022); Bonhomme et al. (2022); Chen et al. (2021).



4.1. Introduction 117

to NGFE estimators, Graham (2017) and Charbonneau (2017)’s conditioning esti-
mators, by partialling out unobserved effects, do not provide consistent estimates for
them, and Fernández-Val and Weidner (2016) require N/T → κ ∈ (0,+∞) to obtain
statistical guarantees. Neither TWFE nor NGFE models are nested one into another
and the two approaches should therefore be seen as complementary. On the other
hand, some papers assume that clusters are known to the econometrician (see, e.g.,
Arkhangelsky and Imbens, 2018; Bester and Hansen, 2016). Many papers allow for a
latent clustered structure but otherwise impose time-invariant or additively separable
unobserved heterogeneity.13 Differently from us, a line of research put the grouping
assumption on the unknown slope coefficient (heterogeneous models), letting again the
unobserved heterogeneity individual-specific and time-constant.14 Allowing for clus-
tered patterns of time-varying unobserved heterogeneity in nonlinear models seems to
be a difficult and much less investigated problem that I address in this chapter. The
closest papers to ours are Chen et al. (2021), Bonhomme et al. (2022), and Ando and
Bai (2022). Chen et al. (2021) extend Fernández-Val and Weidner (2016)’s results to
semiparametric nonlinear factor-analytic models under concavity conditions. When
the link function is parametrically specified, NGFE models are special cases of their
framework. In contrast, I consider an unknown link function, derive more primitive
conditions for point identification (e.g., monotonicity in place of log-concavity of the
MLE), and allow T to grow slowly with N in estimation. The two-step discretiza-
tion approach developed in Bonhomme et al. (2022), albeit its remarkable generality,
comes at a similar price. When heterogeneity is discrete, it ressembles a Lloyd’s al-
gorithm where the first clustering step would not take advantage of improvement on
the other parameters. Yet, in contrast to the NGFE approach and to the best of my
knowledge, no inference result is known for this method. Independently from this
work, Ando and Bai (2022) generalize Bonhomme and Manresa (2015)’s semipara-
metric GFE estimator to an exponential family of nonlinear grouped factor models
with heterogeneous coefficients (including Probit, Logit, Poisson). They consider the
MLE and their results allow for heterogeneous coefficients. But their general frame-
work imposes stronger restrictions (requires larger T in the asymptotics), delivers√
T -rate for the slope coefficient estimates (v.s.

√
NT for the NGFE estimate of the

common slope), and they do not provide nonparametric identification results. A third
strand of literature this chapter contributes to is that of dimension reduction methods
applied to nonlinear panel data models. A surge of papers have leveraged state-of-
the-art statistical learning tools such as matrix completion devices and extensions of
Tibshirani (1996)’s Least Absolute Shrinkage Estimator (LASSO) estimator to tackle
the problem of estimating a large number of unobserved effects in parsimonious panel

13See, e.g., Bonhomme and Manresa (2015); Bryant and Williamson (1978); Cheng et al. (2021);
Gu and Volgushev (2019); Hahn and Moon (2010); Saggio (2012); Su et al. (2016); Vogt and Linton
(2017); Yu et al. (2022).

14See, Boneva et al. (2015); Gao et al. (2020); Liu et al. (2020); Su et al. (2016, 2019); Wang and
Su (2021); Zhang et al. (2019).
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data models.15 A common unifying idea is to exploit restrictions on the support of the
unobserved heterogeneity, which echoes the concept of sparsity in high-dimensional
statistics,16 or (nonparametric) finite mixtures models and clustering (see, e.g., Forgy,
1965; Lloyd, 1982; MacQueen, 1967; McLachlan and Peel, 2000).

In Section 4.2, I introduce the class of NGFE models. The main identification
result is presented in Section 4.3. In Section 4.4, I propose a general M-estimation
framework, develop semiparametric NGFE estimators, and discuss computational
aspects. Section 4.5 provides large sample properties in semiparametric binary choice
models. Section 4.6 presents Monte Carlo results. Section 4.7 contains the empirical
application. Section 4.8 concludes. All proofs are collected in the appendix. For any
set A, I let A∗ := A\ {0} and |A| denote the cardinal of A. Henceforth, I denote by
Supp(U) the support of any random variable U .

4.2 Nonlinear Discrete Outcome Models with Unob-
served Clusters of Time-Varying Heterogeneity

Suppose to observe a random sample of balanced panel data
{(Yit, X ′

it)′ : (i, t) ∈ N × T } with dimensions N := |N | and T := |T |.17 In
many applications, N is an index for individuals or “units”, and T indexes time
periods or “unit members”. I consider the problem of modeling, for individual i ∈ N ,
the T -vector of discrete outcomes Yi = (Yit)′

t∈T in relation with its T × p matrix of
weakly exogeneous covariates Xi = (X ′

it)′
t∈T . The dependent variable Yit represent

agents’ (choice) decisions and Xit represent agents’ attributes over time and it is
often plausible that time-varying unobservables (to the econometrician) confound the
“effect” of Xit on Yit.18. For instance, in the empirical application, Yit ∈ N denotes
the number of patents produced by industry i at time t and Xit collects industry i’s
characteristics at time t such as the level of product market competition.

With this purpose, I introduce below a class of nonlinear clustered or “grouped”
fixed effects (NGFE) models to flexibly incorporate time-varying patterns of unob-
served heterogeneity. I let Supp(Yit, Xit) = Y × Xi and assume that Y ⊂ R is
at most countable and Xi ⊂ Rp for some fixed p ∈ N∗. I assume that individ-
ual i ∈ N := {1, . . . , N} at time t ∈ T := {1, . . . , T} chooses Yit ∈ Y given her

15See, among others, Athey et al. (2021); Kock (2016); Kock and Tang (2019); Moon and Weidner
(2019); Zeleneev (2020).

16See, e.g., the monograph by Giraud (2014) for a thorough introduction to the topic.
17Unbalanced panels can be accomodated easily under exogeneous attrition (i.e., missing-at-

random). Endogeneous attrition is beyond the scope of this chapter. Throughout the main text,
I rule out undirected graph (or network or “pseudo-panel”) data for which there is no proper T
and observations are indexed by pairs of indices (i, t) ∈ N 2 such that (Yit, X ′

it)′ = (Yti, X ′
ti)′ for all

(i, t) ∈ N 2. There is a vast literature on models of link formations and networks (see, e.g., de Paula,
2020, for a recent review). I discuss a particular case in Appendix 4.10.3.

18E.g., agents choose Xit depending on time-varying unobservables that also affect Yit before
idiosyncratic shocks are realized. One might also want to distinguish between state dependence and
unobserved (time-varying) heterogeneity (see, e.g. Heckman, 1981).
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weakly exogeneous covariates Xt
i := (X ′

i1, . . . , X
′
it)′, her unobserved cluster member-

ship variable g0
i ∈ G0 :=

{
1, . . . , G0}, and unobserved time-varying cluster-specific

effect α0
gt ∈ A ⊂ R such that, for all y ∈ Y,

P
(
Yit = y|Xi1, . . . , Xit, g

0
i , α

0
g0

i t

)
= h0

(
y,X ′

itβ
0 + α0

g0
i t

)
, (4.2.1)

where β0 ∈ B ⊂ Rp in an unknown fixed parameter of interest, G0 ∈ N∗ is unknown
but “small” relative to N , and h0 ∈ H is an unknown link function from the set

H ⊂

h : Y × R → (0, 1) measurable,
∑
y∈Y

h(y, ·) = 1, and
∑
y∈Y

|y|h(y, ·) < ∞ a.e.

 .
The common parameter β0 is often of key interest in applications (e.g., ratios

of marginal utilities). For g ∈ G0, unobserved cluster-specific time effects (α0
g0t)t≥1

account for time-varying unobserved heterogeneity shared by all members of cluster
g, i.e., all individuals from the set

{
j ∈ N : g0

j = g
}

. These effects are treated as
fixed in the analysis but might be arbitrarily correlated with Xit and confound β0.
The contemporaneous covariates Xit and the unobserved effect α0

g0
i t

enter the response
function as the combination of a linear single-index X ′

itβ
0 +α0

g0
i t

and an unknown link
function h0.19 Single index assumptions are common in the nonseparable panel data
models literature and serve mainly computational and interpretation purposes (rely-
ing on another smooth index would not significantly change our subsequent results,
but likely some identification assumptions). The link function h0 may encapsulate
the conditional distribution of random idiosyncratic shocks in latent variable utility
choice models with exogeneous covariates. Note that (i) neither the clustering nor the
number of clusters is observed by the econometrician and (ii) the number of possible
assignments of N individuals into G0 clusters grows exponentially fast with N .

Model (4.2.1), although static (h is not indexed by time), complements models
with additively separable (and time-invariant) fixed effects that have been routinely
employed in the empirical microeconometric, industrial organisation, macroecono-
metric, innovation, and international trade literature. I provide below some leading
examples.

Example 7 (Binary outcome)

Yit = 1{X ′
itβ

0 + α0
g0

i t
− εit ≥ 0},

where εit is independent from
(
X ′
i1, . . . , X

′
it, g

0
i , α

0
g0

i t

)′
and distributed with (unknown)

cumulative distribution function (cdf) Ψ0. Then,

h0
(
y,X ′

itβ
0 + α0

g0
i t

)
= 1{y = 1}×Ψ0

(
X ′
itβ

0 + α0
g0

i t

)
+1{y = 0}×

[
1 − Ψ0

(
X ′
itβ

0 + α0
g0

i t

)]
.

19If h0 were known to the econometrician, model (4.2.1) would become a special case of the semi-
parametric nonlinear factor models considered in Chen et al. (2021).
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Example 8 (Ordered outcome)

Yit =


0 if X ′

itβ
0 + α0

g0
i t

− εit < d0
1,

1 if d0
1 ≤ X ′

itβ
0 + α0

g0
i t

− εit < d0
2,

2 if X ′
itβ

0 + α0
g0

i t
− εit ≥ d0

2,

(4.2.2)

where d0
2 > d0

1, and εit is independent from
(
X ′
i1, . . . , X

′
it, g

0
i , α

0
g0

i t

)′
and distributed

with (unknown) cdf Ψ0. Then,

h0
(
y,X ′

itβ
0 + α0

g0
i t

)
=


1 − Ψ0

(
X ′
itβ

0 + α0
g0

i t
− d0

1

)
if y = 0.

Ψ0
(
X ′
itβ

0 + α0
g0

i t
− d0

1

)
− Ψ0

(
X ′
itβ

0 + α0
g0

i t
− d0

2

)
if y = 1.

Ψ0
(
X ′
itβ

0 + α0
g0

i t
− d0

2

)
if y = 2.

Example 9 (Count outcome) Y = {0, 1, 2, . . .}. A Poisson parametrization spec-
ifies

h0
(
y,X ′

itβ
0 + α0

g0
i t

)
=
(
λ0
it

)y exp
(
−λ0

it

)
y! , (4.2.3)

where λ0
it = exp

(
X ′
itβ

0 + α0
g0

i t

)
. Alternatively, h0 could encapsulate, e.g., the negative

binomial distribution.

I adopt the so-called “fixed effects” approach, treating realizations of the unob-
served time effects and group membership variables as unrestricted parameters to
be estimated. I assume that G0 is fixed and exogeneous. Policy parameters
of interest such as average marginal effects often write as functionals of β0, h0,
α0 :=

(
α0

11, . . . , α
0
1T , . . . , α

0
G01, . . . , α

0
G0T

)′ ∈ AG0T , and latent clustering structure
γ0 :=

(
g0

1, . . . , g
0
N

)′ ∈ G0N . Hereafter, I focus on identification and estimation of the
sequence of parameters θ0

NT :=
(
G0, h0, β0′

, γ0′
, α0′

)′
∈ ΘNT , where I let

ΘNT =
+∞⋃
G=1

{G} × H × B × {1, . . . , G}N × AGT .

While B is a finite-dimensional space, H is clearly not and the dimensions of both the
discrete set {1, . . . , G}N and AGT grow with the sample size. This makes model (4.2.1)
a high-dimensional combinatorial semi-parametric nonseparable model.

Remark 4.2.1 It is straightforward to adapt the analysis to allow for cluster-specific
slope coefficient β0 :=

(
β0′

1 , . . . , β
0′

G0

)′
such that

P
(
Yit = y|Xi1, . . . , Xit, g

0
i , α

0
g0

i t
, β0
g0

i

)
= h0

(
y,X ′

itβ
0
g0

i
+ α0

g0
i t

)
, ∀y ∈ Y. (4.2.4)

I discuss this extension, as well as heterogeneous link functions, additional individual-
and time-specific effects, and grouped time-periods in Appendices 4.10.1-4.10.3. Model
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(4.2.1) can also be extended to allow for multimodal outcomes. The notation are more
lengthy and would essentially follow the same lines as in Mugnier and Wang (2022).

Remark 4.2.2 Model (4.2.1) extends Bonhomme and Manresa (2015) to nonpara-
metric discrete choice modeling. In contrast to Bonhomme et al. (2022), the link
function h0 is unknown, the true underlying unobserved heterogeneity is discrete, and
all parameters of the models are considered as target parameters.

4.3 Large-N , Large-T Nonparametric Identification

In this section, I prove the nonparametric identification of θ0
NT in model (4.2.1) as N

and T diverge jointly to infinity. More specifically, I show that all parameters can be
written as known functions of quantities that are point identified from either or both
the cross-sectional and longitudinal variation in the data. Note that model (4.2.1)
is related to nonseparable panel data models with latent factors as it implies the
following semiparametric regression equations:

1{Yit = y} = h0
(
y,X ′

itβ
0 + α0

g0
i t

)
+ εit(y), ∀(i, t, y) ∈ N × T × Y, (4.3.1)

where E
[
εit(y)|Xi, g

0
i , α

0
g0

i t

]
= 0, and

Yit =
∑
y∈Y

yh0
(
y,X ′

itβ
0 + α0

g0
i t

)
+ vit, ∀(i, t) ∈ N × T , (4.3.2)

where vit = ∑
y∈Y yεit(y) and, by linearity, E

[
vit|Xi, g

0
i , α

0
g0

i t

]
= 0. The representation

given by (4.3.1) is useful to identify the clustering structure, while the representa-
tion given by (4.3.2) allows to apply results in Ichimura (1993) under appropriate
dependence conditions that I now introduce.

Since both g0
i and α0

g0
i t

are unobserved, identification holds up to clusters relabeling
only.20 It is also necessary to impose location and scale normalizations, which I specify
as
∥∥β0∥∥ = 1 and α0

11 = 0, where ∥·∥ denotes the Euclidean norm.21 Identification is
based on Assumptions 4.3.1-4.3.5 below.

Assumption 4.3.1 (Random sampling) There exist random vectors of fixed di-
mensions λ0

gt, µ0
g, ξ0

i such that, letting λ0 :=
{
λ0
gt : (g, t)

}
, µ0 :=

{
µ0
g : g

}
, ξ0 :={

ξ0
i : i

}
:

(a)
(
Y ′
i , X

′
i, g

0
i

)′ is i.i.d. across i ∈ N conditional on
{
α0, λ0, µ0}.

(b) For all i ∈ N :
(
Yit, X

′
it, α

0
g0

i t

)′

t≥2
is a strictly stationary strong mixing process

with mixing coefficients τi(·) conditional on g0
i , µ

0
g0

i
, ξ0
i . Let τ(·) = supi τi(·)

satisfy τ(l) ≤ Cml with C > 0 and m ∈ (0, 1).
20This mirrors rotational invariance normalizations in interactive fixed effects models (see, e.g.,

Bai, 2009).
21These choices are, of course, arbitrary but normalizing

∥∥β0
∥∥ = 1 is standard in nonparametric

single-index models (see, e.g. Botosaru and Muris, 2017b; Ichimura, 1993).
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(c) For all t ∈ T : Y1t|X1t, g
0
1, α

0, λ0, µ0, ξ0 d= Y1t|X1t, g
0
1, α

0
g0

1t
.

Assumptions 4.3.1(a)-4.3.1(b) restrict cross-sectional and time dependence in the
data. They allow for flexible patterns of unconditional spatial and time-series correla-
tions as captured by the clustering latent structure α0, λ0, µ0 and individual-specific
effects ξ0. Assumption 4.3.1(c) requires that λ0, µ0, ξ0 have no effect on the outcome
after conditioning for the covariates, cluster membership and the cluster-specific ef-
fects α0. In Appendix 4.10.1, I discuss several extensions such as cluster-specific
slopes, individual-fixed and time-fixed effects which possibly affect all observed vari-
ables.22

Assumption 4.3.2 (Latent clustering) X := ⋂∞
i=1 Xi is not empty and:

(a) There exist known X 0 ⊂ X , y ∈ Y, and functional ϕ such that, for all
fixed (i, j) ∈ N 2, letting ρi(x) : X 0 ∋ x 7→ P

(
Yi2 = y|Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

)
,

ϕ (ρi, ρj) = 1{g0
i = g0

j }.

(b) For all g ∈ G0, almost surely P
(
g0

1 = g|α0, λ0, µ0, ξ0) > 0.

Assumption 4.3.2(a) requires clusters to be sufficiently well-separated in terms of
individual-level conditional probability functions. It is a low-level injectivity or
“completeness”-type assumption à la Bonhomme et al. (2022) which ensures that
latent variables are recoverable from observed moments and leaves flexibility to the
researcher for defining clusters of unobserved heterogeneity. In Appendix 4.9.2, I pro-
vide sufficient conditions for Assumption 4.3.2(a) to hold, including smoothness and
the existence of a special regressor à la Honore and Lewbel (2002) but (possibly) with-
out large support. For such a mapping to exist, the intuition is that whenever g0

i ̸= g0
j ,

the conditional distributions α0
g2|Xi2 = x, g0

i , µ
0
i , ξ

0
i and α0

g̃2|Xj2 = x, g0
j , µ

0
j , ξ

0
j across

x ∈ X 0 should differ sufficiently (and the link function h0 should be sufficiently smooth
to convey such a difference) so as to trigger a difference in the integrated-out condi-
tional outcome probabilities captured by ϕ. In many application, ϕ(f, g) = 1{f = g}
makes sense (see, e.g., Vogt and Linton, 2017). Yet, the setting is kept slightly more
general as other clustering structures might be plausible. Assumption 4.3.2(b) rules
out asymptotically negligible clusters. Notice that allowing for an increasing number
of clusters or negligible clusters would require substantial changes to Assumption 4.3.1
(e.g., as the cross-sectional identical distribution would not hold anymore). Note also
that Assumption 4.3.2(a) could be generalized to be based instead on the (possibly
infinite dimensional) full conditional distribution of the outcome.

Assumption 4.3.3 (Regularity and smoothness)

(a) Conditional on g0
i , µ

0
g0

i
, ξ0
i , Xi2 admits a uniformly continuous density

function fXi2|g0
i ,µ

0
g0

i

,ξ0
i

such that 0 < δ ≤ infx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i
(x) ≤

supx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i
(x) ≤ δ < ∞.

22In some application, it could be useful to allow for a non-scalar α0
gt. Estimation in semiparametric

nonlinear grouped factor models with many factors has recently been considered in Ando and Bai
(2022).



4.3. Large-N , Large-T Nonparametric Identification 123

(b) Almost surely, E
(
∥X12∥2 |g0

1, α
0, λ0, µ0

)
is finite and E

(
X12X

′
12|g0

1, α
0, λ0, µ0)

is nonsingular.

(c)
∑
y∈Y yh

0(y, ·) is differentiable on R and not constant on the support of X ′
itβ

0 +
α0
g0

i t
.

Assumption 4.3.3 collects sufficient technical conditions that are useful to achieve
point identification of β0, α0 given that h0 is unknown, by relying on existing results in
Ichimura (1993) for nonparametric i.i.d. single index models. In particular, it requires
continuous covariates (which could be relaxed at the expense of heavier conditions)
and invertibility of conditional Gram matrices.

Assumption 4.3.4 (Monotonicity) There exists y ∈ Y such that h0(y, v) is
strictly monotonic in v.

Assumption 4.3.4 is a shape restriction which may be expected to hold at boundary
points of Y (e.g., outside option in random utility models, absence of trade, absence
of patenting in a count outcome model). Shape restrictions such as monotonicity
have been routinely used to obtain point-identification in nonseparable panel data
models.23 This condition is weaker than log-concavity assumptions found in the
literature (see, e.g. Bonhomme et al., 2022; Chen et al., 2021) that impose strongly
unimodal densities (see Ibragimov, 1956).

Assumption 4.3.5 (Compensating variations) For all fixed (g, g̃, t), there exist
x1, x2 ∈ X such that

α0
g̃t

+ x′
1β

0 = α0
gt + x′

2β
0. (4.3.3)

Similarly, for all (g, t, t̃), there exist x3, x4 ∈ X such that

α0
gt̃

+ x′
3β

0 = α0
gt + x′

4β
0. (4.3.4)

Assumption 4.3.5 requires sufficient variation in the covariates and has the same flavor
as the compensating variations used in D’Haultfoeuille et al. (2021) and Mugnier and
Wang (2022). As in the latter paper, it does not necessarily require a covariate
with large support (it depends on the joint support of covariates and the unobserved
group-specific effects), and ensures that there is overlap in the single index across
unobserved clusters (not individuals) and periods. Theorem 4.3.1 below is the main
identification result. Let W 0

N =
(
1{g0

i = g0
j }
)

(i,j)∈{1,...,N}2
.

Theorem 4.3.1 Let Assumptions 4.3.1-4.3.3(a) hold, and let N and T diverge
jointly to infinity. Then,

1. (W 0
N )N∈N∗ and G0 are point identified.

2. If Assumptions 4.3.3(b)-4.3.5 further hold, then h0, β0, and (α0
gt)(g,t)∈G0×N∗ are

point identified.
23See, among many others, Altonji and Matzkin (2005); Athey and Imbens (2006); Evdokimov

(2011); Klein and Spady (1993); Mugnier and Wang (2022).
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For the proof see Appendix 4.9.1.

Remark 4.3.1 A key argument of the proof of Theorem 4.3.1 is to frame the iden-
tification of the clustering γ0 up to cluster relabeling as the equivalent problem of
recovering the lower (or uppper)-triangular submatrix of the adjacency matrix W 0

N

of the undirected graph GN = {V,E} whose set of vertices V contains units i ∈ N
and whose edges E contains all (i, j) ∈ N 2 such that g0

i = g0
j . Given the clustering

structure of the model, note that W 0
N has rank RN ≤ G0 which is also its number of

distinct rows because clusters form disconnected cliques in GN .24 In other words, it is
easily seen that identification of γ0 up to cluster relabeling is equivalent to identifica-
tion of all sets C0(i) :=

{
j ∈ N : g0

j = g0
i

}
for i ∈ N . Such a characterization has two

advantages: (i) it is invariant to clusters relabeling and (ii) it reduces the NP-hard
G0-mean clustering problem to that of solving N(N − 1)/2 pairwise binary classifica-
tion problems.25 Once the clustering γ0 has been identified for all N , identification
of G0 follows easily by letting N → ∞. Identification of β0 can be obtained relying
on within-cluster cross-sectional variation for a single cluster and time period and a
result by Ichimura (1993) for a large class of cross-sectional nonparametric single-
index models. Identification of cluster-specific effects and link function h0 relies on
the compensating variations and monotonicity of h0(y, ·) for some y ∈ Y.

A natural nonparametric estimation approach follows from the constructive identifi-
cation strategy. Yet, it has the drawback of requiring a lot of nonparametric density
estimation, i.e., a lot of tuning parameters as it requires combining nonparametric
estimators for many unknown conditionals probabilities. This is similar to Gao et al.
(2022)’s approach in a pure network setting. I do not pursue the theoretical analysis
of an estimator of this type, because I aim at developing a simple method for which
inference tools are available. An open question is how the pairwise approach compares
to the bruteforce fully nonparametric maximum likelihood approach. I note that, for
a class of nonlinear (exponential) directed network models, the pairwise differencing
approach developed in Mugnier (2022) yields a convenient estimation procedure un-
der conditional moment restrictions, without requiring any nonparametric estimation,
which reconciles computational simplicity and powerful inference.

4.4 Semiparametric Estimation

In the first part of this section, I propose a general M-estimation framework acco-
modating nonlinear models when the number of clusters, G0 ∈ N∗, is known to the

24The related problem of “community detection” in networks has been widely studied in the sta-
tistical learning literature, and in particular in the compressed sensing literature. I do not pursue
adaptation of spectral clustering techniques or recent development in Graph-cut problems for which
very few asymptotic results in statistical settings with complex structure of dependencies are known.
See von Luxburg (2007); Wang and Su (2021).

25Building on this insight, Mugnier (2022) proposes computationally straightforward pairwise dif-
ferencing estimators for linear grouped fixed effects models. A similar-in-philosophy though different
trick to break NP hardness is the binary segmentation approach of Wang and Su (2021).
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researcher.26 In the second part, I specialize the framework to cases where h0 ∈ H is
further assumed to be known (e.g., Probit, Logit, Poisson) to define semiparametric
NGFE estimators. In the third part, I discuss computation.

4.4.1 A Generic M-Estimation Framework

Assume from now that G0 ∈ N∗ is known to the researcher, and suppose there exists
a known function ρ : Y × X × B × H × G0N × AG0T −→ R such that θ0

NT :=
(β0′

, h0, γ0′
, α0′)′ satisfies

θ0
NT = arg max

θ∈B×H×G0N ×AG0T

E
(

1
NT

N∑
i=1

T∑
t=1

ρ(Yit, Xit; θ)|γ, α
)
, (4.4.1)

where G0N =
{
1, . . . , G0}N is the set of all partitions of {1, . . . , N} into at most

G0 clusters. Provided it exists, the M-NGFE nonparametric estimator θ̂M
ρ :=

(β̂M′
, ĥM, γ̂M′

, α̂M′)′ of θ0
NT solves

θ̂M
ρ ∈ arg max

θ∈B×H×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

ρ(Yit, Xit; θ). (4.4.2)

Finding a suitable ρ-function, proving identification of θ0
NT (i.e., that Eq. (4.4.1)

holds), and deriving the asymptotic properties of the sequence of θ̂M
ρ are certainly

difficult problems beyond the scope of the chapter, each of them would require fur-
ther assumptions. Moreover, computation of θ̂M

ρ is generally infeasible because max-
imization problem (4.4.2) is a non-smooth non-concave optimization problem with
combinatorial optimization (due to the clustering part) over an infinite-dimensional
space (due to H). A practical solution to make the problem finite-dimensional is
sieve-estimation of h0 but this is beyond the scope of this chapter. Instead, I focus on
semiparametric versions where h0 is assumed to be known and that are of practical
interest in many empirical applications.

4.4.2 Semiparametric NGFE Estimators

From now on, I assume that h0 ∈ H is known (e.g., Logit, Probit, Poisson, etc.)
and consider the problem of estimating θ0

NT := (β0′
, γ0′

, α0′)′ in the semiparametric
model (4.2.1) with known G0. The semiparametric NGFE estimator of θ0

NT , denoted
θ̂NGFE := (θ̂′, γ̂′, α̂′)′, is the M-NGFE estimator θ̂M

ρ (once suppressing dependence on
h) with ρ(Yit, Xit; θ) = ln h0 (Yit, X ′

itβ + αgit). In other words, θ̂NGFE is solution to
26Estimating G0 in nonlinear models with time-varying unobserved heterogeneity is a difficult prob-

lem that is beyond the scope of the chapter. See Chen et al. (2021) for a discussion in some concave
nonlinear factor type models. An AIC or BIC-type criterion à la Bai and Ng (2002); Bonhomme
and Manresa (2015) could be employed but would require to know at least an upper bound on G0.
Letting G0 grow slowly with N, T could also be of interest but would require a different analysis that
is beyond the scope of the chapter. Note that Bonhomme et al. (2022) need the number of clusters
to increase as they assume a (possibly) continuous underlying unobserved heterogeneity.
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the following minimization problem:

θ̂NGFE ∈ arg min
θ∈B×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

− ln h0 (Yit, X ′
itβ + αgit

)
, (4.4.3)

where the minimum is taken over all possible common parameters β, partitions γ =
(g1, ..., gN )′ of the N individuals into G0 clusters, and cluster-specific time effects
{αgt : (g, t)}. Note that the NGFE estimator is a “classification likelihood” estimator.
For given values of β and α, the optimal cluster assignment for individual i is

ĝi(β, α) = arg min
g∈G0

1
NT

N∑
t=1

T∑
t=1

− ln h0 (Yit, X ′
itβ + αgt

)
, (4.4.4)

where the minimum g is taken in case of a non-unique solution. The NGFE estimator
of (β0′

, α0′)′ in (4.4.3) can then be written as

(β̂, α̂) = arg min
(β,α)∈B×AG0T

1
NT

N∑
i=1

T∑
t=1

− ln h0
(
Yit, X

′
itβ + αĝi(β,α)t

)
, (4.4.5)

where ĝi(β, α) is given by (4.4.4).

4.4.3 Computation

The minimization problem (4.4.3) is not differentiable nor convex in θ. In particular,
it may be subject to the existence of local minima. Note that the number of parti-
tions of N individuals into G0 clusters increases steeply with N , making exhaustive
search impossible.27 I propose the following simple algorithm which is an extension
of the popular Lloyd (1982)’s algorithm for k-means, a “greedy” algorithm providing
a converging sequence of heuristic solutions in polynomial time.

Iterative Algorithm:

1. Let (β(0), α(0)) ∈ B × AG0T be some starting value. Set s = 0.

2. Compute for all i ∈ {1, . . . , N}:

g
(s+1)
i = arg min

g∈G0

T∑
t=1

− ln h0
(
Yit, X

′
itβ

(s) + α
(s)
gt

)
. (4.4.6)

3. Compute:

(
β(s+1), α(s+1)

)
= arg min

(β,α)∈B×AG0T

N∑
i=1

T∑
t=1

− ln h0
(
Yit, X

′
itβ + α

g
(s+1)
i t

)
. (4.4.7)

4. Set s = s+ 1 and go to Step 2 (until numerical convergence).
27The number of partitions of N objects into G0 disjoint and non-empty subsets is

1
N !
∑N

i=1(−1)N−i
(

N
i

)
NG0

∝ G0N

G0! . In fact the G0-means problem without regressors in a cross-
sectional setting is NP-hard (see, e.g., Aloise et al., 2009).
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Algorithm 1 alternates between two steps. In the “assignment” step, each individual
i is assigned to cluster gi whose vector of time effects minimizes individual’s i time-
averaged log-likelihood given the slope parameter. In the “update step”, β and α are
computed using maximum likelihood and controlling for interactions of cluster and
time dummies. A potential issue is that the solution depends on the chosen starting
values. Drawing starting values at random and selecting the solution that yields the
lowest objective is a practical solution in low-dimensional problems. Finding a fast
approximation of NGFE for larger-scale problems and controlling its optimization
error is left for further research.28

4.5 Asymptotic Properties of Semiparametric NGFE Es-
timators

In this section, I assume that θ0
NT := (β0′

, α0′
, γ0′)′ is identified (e.g., by Theo-

rem 4.3.1) and derive the asymptotic properties of semiparametric NGFE estimators.
I consider an asymptotic framework where N and T tend jointly to infinity but G0

does not grow with N and T . I focus on binary choice models with grouped fixed
effects as the leading case. Similar results can be obtained for other models with
strictly concave log-likelihood function (see Appendix 4.10.4), but I stick to binary
choice models to keep the exposition simple. I abstract from optimization errors
and study the asymptotic behaviour of the exact sequence of estimates defined in
Eq. (4.4.3).

4.5.1 Binary Choice Model With Grouped Fixed Effects

Consider the following data generating process:

Yit = 1{X ′
itβ

0 + α0
g0

i t
− εit ≥ 0}, i = 1, . . . , N, t = 1, . . . , T. (4.5.1)

For any Z := {Zit : (i, t)}, let Z(t)
− = {Zis : 1 ≤ i ≤ N, 1 ≤ s ≤ t} and Z(t)

+ =
{Zis : 1 ≤ i ≤ N, t ≤ s ≤ T}.

Assumption 4.5.1
Eq. (4.5.1) holds and

(a) For all t:
(
X(t)

− , γ0, α0, ε
(t−1)
−

)
and ε

(t)
+ are independent.29

(b) The {εit : (i, t)} are identically distributed with known cumulative distribution
function Ψ that is fully supported on R, twicely continuously differentiable,
strictly increasing, and such that (ln Ψ)′′ < 0. Moreover, Ψ′ is symmetric
around 0.

28Note that an algorithm similar to Algorithm 2 in Bonhomme and Manresa (2015) can be employed
to improve the trade-off between exploration and exploitation during the optimization process.

29If one lag Yit−1 is included as regressor, I assume that Yi0 is observed and contained in X(t)
− .

Higher-order dependence can be accommodated similarly.
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Assumption 4.5.1(a) is a weak exogeneity assumption, standard in the panel data liter-
ature, which allows Xit to contain predetermined variables with respect to Yit. In par-
ticular, Xit can include lags of Yit to accommodate dynamic models. This assumption
does not restrict the correlation between (γ0, α0) and {Xi : i}. Assumption 4.5.1(b)
is standard in semiparametric panel discrete choice models and yields strict con-
cavity of the log-likelihood function under minimal amount of cluster-specific and
time-specific variation in the covariates (as assumed, e.g., in Bonhomme et al., 2022;
Chen et al., 2021; Fernández-Val and Weidner, 2016).30 The second part of Assump-
tion 4.5.1(b) is weak and is statisfied by the Probit (Ψ(u) =

∫ u
−∞(1/

√
2π)e−t2/2dt)

and Logit (Ψ(u) = 1/(1 + e−u)) distributions. Symmetry of Ψ is not necessary
but it conveniently simplifies notation in the proofs. Under Assumption 4.5.1, note
that Eq. (4.5.1) is a semiparametric NGFE model (4.2.1) with known link function
h0(y, z) = Ψ(z)1{y=1}(1 − Ψ(z))1{y=0}. The corresponding NGFE estimator writes

(β̂, γ̂, α̂) ∈ arg min
(β,γ,α)∈B×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

− ln Ψ
(
Qit

(
X ′
itβ + αgit

))
, (4.5.2)

where Qit = 2Yit − 1.

4.5.2 Consistency

Consider the following assumption.

Assumption 4.5.2

(a) B and A are compact convex subsets of Rp and R, respectively.

(b) There exists a constant M > 0 such that ∥Xit∥ ≤ M almost surely.

(c) Let Xg∧g̃,t denotes the mean of Xit in the intersection of clusters g0
i = g, and

gi = g̃. For all partitions γ = {g1, ..., gN} ∈ ΓG0N , let ρ̂(γ) denote the minimum
eigenvalue of the following matrix:

1
NT

N∑
i=1

T∑
t=1

(Xit −Xg0
i ∧gi,t

)(Xit −Xg0
i ∧gi,t

)′.

Then, plimN,T→∞ minγ∈ΓG0 ρ̂(γ) = ρ > 0.

Assumption 4.5.2(a) is standard in the context of M-estimation. Assumption 4.5.2(b)
is for a matter of convenience (it simplifies the proof). It strengthens Assumption 1(b)
in Bonhomme and Manresa (2015), and ensures (together with Assumption 4.5.2(a))
strong concavity of the log-likelihood function and rules non-stationary covariates.31

Assumption 4.5.2(c) is the same noncollinearity condition as Assumption 1(g) in
30See also, Pratt (1981).
31One could relax this assumption by allowing covariates to have sub-gaussian tails (see, e.g.,

Vershynin, 2019, for a definition). I do not pursue this avenue in order to keep the exposition light.
Moment conditions in Bonhomme and Manresa (2015) also rule out non-stationary covariates.
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Bonhomme and Manresa (2015). It requires that Xit shows sufficient within-cluster
variation over time and across individuals, and is related to standard noncollinearity
assumptions encountered in the large-N , large-T panel data literature (see, e.g., Ando
and Bai, 2022; Bai, 2009; Chen et al., 2021; Vogt and Linton, 2017). It allows for
time-invariant covariates provided that they have a sufficiently rich support. As a
special case highlighted in Bonhomme and Manresa (2015), Assumption 4.5.2(c) is
satisfied if Xit are discrete and, for all g, the conditional distribution of Xi given
g0
i = g has strictly more than G0 points of support.

Theorem 4.5.1 (Consistency) Let Assumptions 4.5.1 and 4.5.2 hold. Then, as N
and T tend to infinity:

1. β̂ p−→ β0.

2. 1
NT

∑N
i=1

∑T
t=1

(
α̂ĝit

− α0
g0

i t

)2 p−→ 0.

For the proof see Appendix 4.9.3.
Theorem 4.5.1 shows that NGFE estimators of the common slope coefficient and

cluster-specific effects in NGFE binary choice models are both consistent.

4.5.3 Asymptotic Distribution

Consider the following assumption.

Assumption 4.5.3

(a) For all g ∈ G0: plimN→∞
1
N

∑N
i=1 1{g0

i = g} = πg > 0.

(b) For all (g, g̃) ∈ G02 such that g ̸= g̃: plimT→∞
1
T

∑T
t=1(α0

gt − α0
g̃t

)2 = cg,̃g > 0.

(c) There exist constants a > 0 and d > 0 and a sequence α(t) ≤ exp(−atd) such
that, for all (g, g̃) ∈ G02 such that g ̸= g̃,

{
α0
gt − α0

g̃t
: t
}

is a strongly mixing
process with mixing coefficient α(t).

Assumptions 4.5.3(a)-(c) are identical to Assumptions 2(a)-(c) in Bonhomme and
Manresa (2015), respectively. Assumption 4.5.3(a) ensures that no cluster is asymp-
totically negligible relative to the others and that each cluster has a large number of
observations in the population. This is equivalent to the “strong factor” condition in
approximate factor models (see, e.g., Assumption 1.(v) in Chen et al., 2021). Assump-
tion 4.5.3(b) imposes that the G0 clusters are well separated in the population. As
discussed in a recent work by Chetverikov and Manresa (2021), departing from such
an assumption seems quite difficult. Assumption 4.5.3(c) restricts the dependence
and tail properties of the processes (α0

gt − α0
g̃t

), which are assumed to be strongly
mixing.

Assumption 4.5.3 allows me to rely on exponential inequalities for dependent
processes (e.g., Rio, 2000) in order to bound misclassification probabilities, almost
the same way as in the proof of Theorem 2 in Bonhomme and Manresa (2015). The
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novelty here is that their assumption that the idiosyncratic shock in the linear model
is a strong mixing process is hidden in the parametric and independence restrictions
formulated in Assumption 4.5.1, the latter allowing to rely on exponential inequalities
for martingale differences (see, e.g., Lesigne and Volný, 2001) to control remainder
terms in the proofs (essentially the score).

Let (β̃, α̃) be such an infeasible version of the NGFE estimator where cluster
membership gi, instead of being estimated, is fixed to its population counterpart g0

i :

(β̃, α̃) = argmin
(β,α)∈B×AG0T

1
NT

N∑
i=1

T∑
t=1

− ln Ψ
(
Qit

(
X ′
itβ + αg0

i t

))
. (4.5.3)

This is the maximum likelihood estimator in the pooled regression of Yit on Xit and
the interactions of population cluster dummies and time dummies.

Assumptions 4.5.1, 4.5.2, and 4.5.3 provide conditions under which estimated clus-
ter memberships converge to their population counterparts, and the NGFE estimator
defined in (4.5.2) is asymptotically equivalent to the infeasible maximum likelihood
estimator (β̃, α̃), when N and T tend to infinity and N/T ν → 0 for some ν > 0 (see
Lemma 4.9.7 in Appendix 4.9.4). In particular, this allows T to grow considerably
more slowly than N . Because of invariance to relabeling of the clusters, the results for
cluster membership and cluster-specific effects are understood to hold given a suitable
choice of the labels (see the proof for details). Theorem 4.5.1 and Eq. (4.9.27) cru-
cially hinge on the restrictive assumption that the number of well-separated clusters
G0 is known and fixed, but it could be that consistent estimation of β̂ remains possi-
ble under weaker assumptions that would nonetheless prevent consistent estimation
of cluster memberships.32

Given Lemma 4.9.7, showing asymptotic normality of the NGFE estimator then
reduces to the simpler problem of showing asymptotic normality of the infeasible
(oracle) MLE (β̃, α̃). Let Z0

it = X ′
itβ

0 + α0
g0

i t
. For all g ∈ G, all t ∈ {1, ..., T}, let X̃gt

denote the projection of Xit on the space spanned by the cluster membership variable
under a metric weighted by (− ln Ψ)′′(QitZ0

it):

X̃gt =
(

1
N

N∑
i=1

1{g0
i = g}(ln Ψ)′′(QitZ0

it)
)−1(

1
N

N∑
i=1

1{g0
i = g}(ln Ψ)′′(QitZ0

it)Xit

)
,

i.e., the weighted average of Xit for individuals
{
i : g0

i = g
}
. Also, let π̂gt denote the

following weighted average:

π̂gt = 1
N

N∑
i=1

1{g0
i = g}(− ln Ψ)′′(QitZ0

it).

Assumption 4.5.4 below allows to characterize the asymptotic distribution of the
infeasible MLE (β̃, α̃).

32I thank Martin Weidner for pointing out this to me, something also discussed in Dzemski and
Okui (2018).
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Assumption 4.5.4

(a) {Yit : (i, t)} are independent conditional on (X, γ0, α0).

(b) There exists a positive definite matrix Σβ such that

Σβ = plimN,T→∞
1
NT

N∑
i=1

T∑
t=1

(− ln Ψ)′′(QitZ0
it)
[
Xit − X̃g0

i t

] [
Xit − X̃g0

i t

]′
.

(c) As N and T tend to infinity,

1√
NT

N∑
i=1

T∑
t=1

{
(− ln Ψ)′′(QitZ0

it)
(
Xit − X̃g0

i t

)}{
Qit(− ln Ψ)′(QitZ0

it)
}

d−→ N (0,Σβ).

(d) For all (g, t): plimN→∞π̂gt = π̃gt > 0.

(e) For all (g, t):

lim
N→∞

1
N

N∑
i=1

N∑
j=1

E
(
1{g0

i = g}1{g0
j = g}QitQjt(ln Ψ)′(QitZ0

it)(ln Ψ)′(QjtZ0
jt)
)

= ωgt > 0.

(f) For all (g, t), and as N and T tend to infinity:

1√
N

N∑
i=1

1{g0
i = g}Qit(ln Ψ)′(QitZ0

it)
d−→ N (0, ωgt).

(g) The true value of β, β0, is in the interior of B. For all T , the true value of α,
α0, is in the interior of AG0T .

Assumption 4.5.4(a) rules out dynamic or feedbacks.

Theorem 4.5.2 (Asymptotic distribution) Let Assumptions 4.5.1-4.5.4 hold
and let N and T tend to infinity such that N/T → ∞ and, for some ν > 1, N/T ν → 0.
Then: √

NT (β̂ − β0) d−→ N
(
0,Σ−1

β

)
, (4.5.4)

and, for all (g, t),
√
N
(
α̂gt − α0

gt

)
d−→ N

(
0, ωgt
π̃2
gt

)
, (4.5.5)

where Σβ, ωgt, and π̃gt are defined in Assumption 4.5.4.

For the proof see Appendix 4.9.4.
Theorem 4.5.2 demonstrates that NGFE estimators in NGFE binary choice mod-

els achieve the parametric
√
NT and

√
N rates of convergence and are free of Neyman

and Scott (1948)’s incidental parameters problem. The asymptotic regime T/N → 0
is needed since (i) there are time effects and (ii) the model is nonlinear. These rates
are in contrast with standard interactive fixed-effects models (see, e.g. Ando and Bai,
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2022; Bai, 2003, 2009) for which
√
N consistency of the time-varying factors requires

N/T 2 → 0 or more generally N/T → κ, 0 < κ < ∞, as it is assumed for instance
in Chen et al. (2021); Fernández-Val and Weidner (2016). The intuition behind this
result is that the extreme sparsity of the factor loading structure in model (4.5.1)
allows NGFE estimators to achieve fast accurate classification of individuals, which
reduces the estimation problem to that of a standard nonlinear models with mul-
tidimensional time-varying fixed effect in the limit.33 Consistent estimators of the
asymptotic variances are given in Appendix 4.11.

4.5.4 Average Partial Effects (APEs)

Under Assumption 4.5.1, if Xit,k, the kth element of Xit is binary, its partial effect
on the conditional probability of Yit is

∆(Xit, β
0, α0

g0
i t

) = Ψ(β0
k +X ′

it,−kβ
0
−k + α0

g0
i t

) − Ψ(X ′
it,−kβ

0
−k + α0

g0
i t

),

where β0
k is the kth element of β0, and Xit,−k and β0

−k include all elements of Xit

and β0 except the kth element. If Xit,k is continuous, the partial effect of Xit,k on
the conditional probability of Yit is

∆(Xit, β
0, α0

g0
i t

) = β0
kΨ′(X ′

itβ
0 + αg0

i t
),

where Ψ′ is the derivative of Ψ. As discussed in Fernández-Val and Weidner (2016),
if (Xit, g

0
i , (α0

gt)g∈G0) is identically distributed over i but can be heterogeneously
distributed over t, then E(∆it) = δ0

t and δ0
NT = 1

T

∑T
t=1 δ

0
t changes only with T .

If (Xit, g
0
i , (α0

gt)g∈G0) is identically distributed over i and stationary over t, then
E(∆it) = δ0

NT , and δ0
NT = δ0 does not change with N and T .

Deriving the asymptotic properties of plug-in estimators of average partial effects
of the type δ̂NT = ∆(β̂, α̂, γ̂) should follow similar arguments as in Fernández-Val
and Weidner (2016).

4.6 Monte Carlo Simulations

In this section, I conduct Monte Carlo experiments to assess the numerical perfor-
mance of NGFE estimators in finite samples, in terms of bias, root mean squared
errors (RMSE), classification (Precision, Recall, Rand Index), execution (CPU) time,
and inference accuracy (standard errors, standard deviation and coverage). I com-
pare the results with currently available competitors. I consider Chamberlain (1980);
Rasch (1960)’s conditional logit (CMLE), nonlinear two-way fixed effects (NLTWFE,
see, e.g. Fernández-Val and Weidner, 2016; Mugnier and Wang, 2022), Bonhomme

33To see the factor-loading structure, note that model (4.5.1) can be written as Yit = 1{X ′
itβ +

λ′
ift − εit ≥ 0}, where λ′

i = (1{g0
i = 1}, . . . ,1{g0

i = G0}) ∈
{

b ∈ {0, 1}G0
:
∑G0

g=1 bg = 1
}

and

ft = (α0
gt)′

g∈G0 ∈ AG0
. If N/T → κ ∈ (0, +∞), similar arguments than Chen et al. (2021) apply and

bias-correction methods are needed.
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et al. (2022)’s 2-step grouped fixed effects (2GFE), pooled OLS regression, linear two-
way fixed effects (LTWFE), and Bonhomme and Manresa (2015)’s GFE estimators.34

As in Bonhomme and Manresa (2015), I focus on settings of moderate size
(N = 90, T = 7) to highlight the performance of NGFE with small datasets as often
encountered in macro/meso-economics (e.g., in my empirical application). Having
large N is not computationally demanding. When T is very large, computation of
the NGFE estimate might be demanding and results in Mugnier (2022) could prob-
ably be adapted. I consider static and dynamic logit models, and four DGPs for the
time-varying covariates (more or less correlated with the unobserved heterogeneity,
UH hereafter), where the number of groups G0 each time varies across {2, 3, 5}. Vari-
ation across time periods in the covariates is not necessary for NGFE but allows for
comparisons (e.g., with CMLE).

Overall, I find that NGFE estimators perform best uniformly across competitors in
the design they are meant to adress: correlated time-varying unobserved heterogeneity
(DGP 1). In other DGPs, where the unobserved heterogeneity does not vary with
time, they might be slightly more noisy than well-suited estimators (e.g., CMLE or
NLTWFE) and have a larger finite sample bias.

4.6.1 Static Logit Model

The data generating process is

Yit = 1{Xitβ + αgit > εit}, i = 1, . . . , N, t = 1, . . . , T, (4.6.1)

where β = 1 and εit ∼Logit(0, π2/3), gi ∼Unif
{
1, . . . , G0} for G0 ∈ {2, 3, 5}, and,

letting with µ = (−1, 1)′ if G0 = 2, µ = (−π/
√

3, 0, π/
√

3)′ if G0 = 3, and
µ = (−2π/

√
3,−π/

√
3, 0, π/

√
3, 2π/

√
3)′ if G0 = 5, Vi such that P(Vi = −2) =

1/12,P(Vi = −1) = 1/4,P(Vi = 0) = 1/3,P(Vi = 1) = 1/4,P(Vi = 2) = 1/12, and
Wit ∼ N (0, 1):

• DGP 1 (grouped patterns of time-varying UH): αg0 = µg, for t ≥ 1, αgt =
0.1αgt−1 + (−1)g−1Ugt, Ugt ∼Unif[0, 1], Xit = 0.5Vi + 0.8Ug0

i t
.

• DGP 2 (grouped patterns of time-invariant UH): αgt = µg, Xit = 0.3µgi + Vi +
0.8Wit.

• DGP 3 (continuous time-invariant UH): αi ∼ N (0, 1), Xit = αi+0.5Vi+0.8Wit.

• DGP 4 (No UH): αgt = 0, Xit = 0.5Vi + 0.8Wit.

The variables Ugt, Vi,Wit, gi and εit are independent and i.i.d. across individuals and
time periods. All the results are based on 50 Monte-Carlo replications and com-
puted using Algorithm 1 with 200 randomized initialization points (results improve
by increasing this number).

34I leave comparison with Charbonneau (2017)’s conditional logit and Chen et al. (2021)’s nonlinear
factor models for further research. A definition of the metrics and more details are given in Appendix
4.12.
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Table 4.1 reports the bias and RMSE of NGFE and five competing estimators. It
shows that NGFE estimates minimize both metrics across all estimators in DGP 1
(e.g., one order of magnitude less than CMLE or 2STEPGFE, the best competitors).
If there is no UH (DGP 4), NGFE keeps a reasonable RMSE compared to CMLE but
has small bias (e.g. RMSE of .151 v.s. .152 if G0 = 2 and .178 v.s. .118 if G0 = 5,
Bias of 0.040 v.s. -0.002 and 0.114 v.s. 0.018 respectively). All linear estimators
perform very poorly. The 2-step GFE is more noisy in general.

Table 4.2 shows that any measure of the clustering accuracy remains at a high level
because of the high level of UH. For instance, the misclassification rate falls below 50%
when G0 = 2 only. Unreported simulations show that it actually drops to 5% when
G0 = 2 and cluster-specific effects are not correlated with the covariates. There is a
continum between the two regimes that merits further investigation. Precision also
improves with the number of iterations of Lloyd (1982)’s algorithm. The CPU time
of the method is comparable to that of other clustering methods such as Bonhomme
et al. (2022)’s 2-step GFE.

Table 4.3 suggests that estimates of the standard errors based on the large-T clus-
tered variance formula match on average the effective finite sample dispersion of the
NGFE estimates. The resulting confidence intervals have an almost correct coverage
though showing a small finite-sample under-coverage.35 In particular, Table 4.3 sug-
gests good coverage rates around the prescribed theoretical level of 95% (e.g., .86,
.80, .84 in DGP 1 and .92, .92, .88 in DGP 4), which fall with the number of groups
and, more generally, with the degree of continuity of the UH (e.g., below .5 in DGP
3 but still .82 in DGP 2 with G0 = 2).

4.6.2 Dynamic Logit Model

The data generating process is

Yit = 1{Yit−1β1 +Xitβ2 + αgit > εit}, i = 1, . . . , N, t = 1, . . . , T,

Yi0 = 1{Xi0β2 + αgi0 > εi0}, i = 1, ..., N, (4.6.2)

where β1 = 0.5 and β2 = 1. Tables 4.4-4.6 report the same statistics as Tables 4.1-4.3
but for the dynamic model. Results for β2 are very similar to that for β. On the
other hand, the precision of NGFE estimates of β1 is more mixed (the conditional
independence assumption 4.5.4(a) does not hold here). Previous comparisons still
apply there.

35A similar finite-sample undercoverage phenomenon is also reported in Bonhomme and Manresa
(2015), who suggest the use of a bootstrap estimator instead.
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4.7 Empirical Application: Revisiting the Inverted-U
Relationship Between Innovation and Competition

Does more competition lead to more innovation? This fundamental question (e.g., for
Antitrust and Competition policy) has been the subject of a longstanding academic
debate in the fields of industrial organization and macroeconomics of endogeneous
growth theory (for surveys, see, e.g., Gilbert, 2006; Griffith and Van Reenen, 2021).36

On the one hand, more competition reduces profit and postinnovation rents, and
therefore disincentivizes innovation: this is the so-called Schumpetarian effect. On
the other hand, more competition may reduce a firm’s preinnovation rent by more
than it reduces its postinnovation rent and thus foster innovation and growth: this is
the escape-competition effect.

In an influential paper, Aghion et al. (2005)[ABBGH henceforth] reconcile these
two contradictory views by documenting an inverted-U relationship between the num-
ber of citation-weighted patents and a measure of product market competition using
a panel data set of seventeen UK industries (i) observed over the period 1973-1994
(t). The inverted-U shape is predicted by a model of endogeneous growth and esti-
mated after controlling for multiplicatively separable industry and year fixed effects,
aimed at capturing permanent unobserved technological levels and common trends.
The authors’ preferred specification is a conditional fixed effects (FE) Poisson model:
for all p ∈ {0, 1, . . .}

P(cwpatentit = p|compit, νi, ξt)

= exp(p(g(compit) + νi + ξt) exp(− exp(g(compit) + νi + ξt)))
p! , (4.7.1)

where cwpatentit represents the number of citation-weighted patents in industry i in
year t, compit is one minus the average Lerner index in industry i in year t, νi is an un-
observed industry-specific permanent level of innovation, ξt captures macroeconomic
trend, and g(·) is a second-degree polynomial.37 Figure 4.1 shows ABBGH’s original
inverted-U relationship, by replicating ABBGH’s Figure II, a scatterplot comparing
the fit of the exponential model (4.7.1) with that of a nonparametric spline.38

While model (4.7.1) is in line with a large body of the previous literature (see,
e.g., Gourieroux et al., 1984; Hausman et al., 1984), it imposes strong assumptions
on the data generating process: conditional Poisson distribution and multiplicative
separability of unobserved effects. In particular, the inverted-U relationship seems

36For public coverage, see, e.g, Lohr, Steeve “How Software Is Stifling Competition and Slow-
ing Innovation”, The New York Times, 7 Jul, 2022. Last consulted on September 29, 2022 at:
https://www.nytimes.com/2022/07/21/business/software-james-bessen-book.html.

37The fact that the number of patents is weighted and averaged at the industry level makes it a
“continuous” variable with a mass point at 0. This is probably a reason why the authors apply a
discrete model. See the summary statistics in Table 4.7. See Aghion et al. (2005) for details on the
construction of each variable.

38I note that the scale of the y-axis in ABBGH’s Figure II is incorrect, as well as the legend of
their Figure I since the graph in fact corresponds to specification (1) in their Table I (and not (2) as
claimed).

https://www.nytimes.com/2022/07/21/business/software-james-bessen-book.html
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fragile as recent empirical research has reported both increasing and decreasing mono-
tonic relationships depending on the controls included (Aghion et al., 2013), whether
accounting or not for the presence of structural breaks (Correa, 2012), or the country
data used (Askenazy et al., 2013; Hashmi, 2013), etc. This has spurred a variety of
explanations and theoretical models.

To the best of our knowledge, however, no paper has assessed the robustness of the
inverted-U relationship to modeling choices regarding unobserved heterogeneity. As
ABBGH and Correa (2012) argue, innovation is a dynamic process and endogeneity
issues might comes from unobserved forces that drive both innovation and the market
structure in a dynamic way.39 Moreover, while industry might be a good level to
control for permanent scaling, it is likely that among the 311 firms of the panel, a
few time-varying paths emerge. A natural question is then: to which extent are all
industries subject to the same economic trend (i.e., time effect) during the 1973-1994
period where, e.g., the development of I.T. has been exponential and plausibly shaped
market structures?

In this section, I illustrate how the class of NGFE models together with semi-
parametric NGFE estimators introduced in this chapter can be used to adress this
question, challenging the view that firms are all subjects to the same macroeconomic
trends and that the unobserved propensity to innovate and compete is industry-
specific and fixed across time.

Data. I use ABBGH’s original data set available at N. Bloom’s website.40 This is
an unbalanced industry-level panel based on 311 firms listed on the London Stock
Exchange and grouped in 17 two-digit SIC code industries, which received patent
grants from the United States Patent and Trademark Office (USPTO). The period
covered by the dataset is from 1973 until 1994 and there are 354 observations. In
particular, here N = 17 and T = 22 and I assume that missing observations are
missing-at-random.41 Table 4.7 reports summary statistics borrowed from Hashmi
(2013). In particular, one can see that some industries are never granted patents.42

Table 4.8 describes the industries present in the sample.

Evidence of Time-Varying Unobserved Heterogeneity. Before estimating a
NGFE model, I investigate the existence of a latent clustering structure by applying

39Fernández-Val and Weidner (2016) estimate model (4.7.1), including one lag of the dependent
variable as an additional regressor and find ABBGH’s results to be robust to this change. Yet,
unobserved time-varying heterogeneity could still remain.

40https://nbloom.people.stanford.edu/sites/g/files/sbiybj4746/f/abbgh.zip.
41While the time dimension is large, the cross-sectional dimension is slightly at odd with the

asymptotic framework I consider. Still the economic point applies and it is likely that larger datasets
with more digits will be available in the near future.

42This does not mean that such industries do not innovate. Patenting is an imperfect measure of
innovation in several aspects (Boldrin and Levine, 2013). Many studies perform robustnes checks by
using R&D expenses as an alternative measure (Aghion et al., 2005).

https://nbloom.people.stanford.edu/sites/g/files/sbiybj4746/f/abbgh.zip
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the pairwise differencing estimator developed in Chapter 3 to ABBGH’s residuals:

cwpatentit − Ê[cwpatentit|compit, ν̂i, ξ̂t] = cwpatentit − exp(ĝ(cwpatentit) + ν̂i + ξ̂t),

plotted in Figure 4.2. This smooth exploration method allows for an unconstrained
number of clusters, run in polynomial time, provides a regularization path for the
number of groups and estimate time-varying effects without relying on k-means or
computing the NGFE which is subject to local minima.43 Figure 4.3 and Figure 4.4
plot the regularization path corresponding to the largest plateau, i.e., for a choice
of the regularization parameter such that Ĝ = 3, and time effects respectively. Fig-
ures 4.4 reveals one cluster with residuals centered around zero and low variance (in
red), one cluster with higher volatility and statistically different from zero at several
periods and whose CI does not intersect that of the first cluster at least at one period
(in blue), and a very high volatility cluster (in green) that consists of industries with
missing values. There is evidence of time-varying unobserved heterogeneity.

A Mildly Inverted-U Relationship. I now estimate the following NGFE model:

P(cwpatentit = p|compit, gi, αgit)

= exp(p(g(compit) + αgit) exp(− exp(g(compit) + αgit)))
p! , ∀p ∈ {0, 1, . . .} ,

(4.7.2)

where gi ∈ {1, . . . , G} is industry i’s unknown cluster membership and
(α1t, . . . , αGt)′ ∈ RG are time-specific unobserved effects accounting for unobserved
confounding variations in the propensity to patent and product market competition
in each of the G clusters. Given the small number of industries, I report results for
G ∈ {2, 3, 4}. Models (4.7.1) and (4.7.2) are non-nested as G << N .

Table 4.9 and Figure 4.5 replicate ABBGH’s Table I and Figure I, and additionally
show results of NGFE estimation for the choicesG ∈ {2, 3, 4}, and using 2, 000 random
initializers around 02+GT . Two results are striking. When G = 2, the in-sample
relationship (no extrapolation) is a significant but mildly increasing relationship. This
can be explained by the structure of the cluster effects discussed in the next paragraph:
when G = 2, the two estimated clusters do not exhibit a lot of variation over time.
Estimation then acts as a constrained classical fixed effect estimator (where industry-
specific effects only have two points of support). When G increases, I find strong
evidence of a mildly inverted-U relationship. Estimates of the competition parameters
are still significantly different from zero but the inverted-U relationship is dramatically
less pronounced (the curve is flatter) when unobserved heterogeneity is allowed to be
time-varying.

43Yet, its statistical guarantees are currently not known in the Poisson model.
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Clustered Unobserved Innovation Dynamics. The 70-90’s are characterized
by the extremely rapid development of electronics, networks and the Internet. It is
likely that economies of scale, shocks and unobserved innovation trends are not the
same for each industry. Figure 4.6 confirms this intuition by plotting the estimated
cluster-specific effects obtained in specifications (3)-(5) from Table 4.9, where the
data-driven clustering of industries is displayed in Figure 4.7.

The NGFE estimates of the unobserved determinants of innovation reveal het-
erogeneous, time-varying patterns, in particular for G ≥ 3. Setting G = 2 delivers
two clusters that experience stable innovation paths over time, albeit at very dif-
ferent levels. Cluster 1, which I refer to as the “high-innovation” cluster, mostly
contains highly-patenting, highly-competitive industries. It includes Manufacture
of office machinery and data processing equipment, Electrical and electronic engi-
neering, Manufacture of motor vehicles and parts therof, and Manufacture of other
transport equipment, but also Chemical industry. Cluster 2, which I refer to as “low-
innovation” mostly includes low-patenting, low-competition: metal manufacturing,
textile industry, and processing of rubber and plastics, among others. This clustering
structure of unobserved heterogeneity is broadly consistent with an additive fixed-
effects representation, as the cluster effects α̂1t and α̂2t are approximately parallel
over time. In contrast, when allowing for more than two clusters, newly estimated
clusters are not consistent with a fixed effects model. For G = 3, Cluster 2 does not
change significantly but the vast majority of industries from Cluster 1 now belongs
to Cluster 3 (“steady-catchers”) as they experience a steadily increase during the all
period towards the unobserved innovation level of Cluster 1. Only the car, food and
tobacco, and chemical industries remain in the stable “high-innovation” Cluster 1
whereas Cluster 3 now includes electrical and electronical engineering, office machin-
ery and data processing equipment. Finally, when G = 4, Cluster 3 further splits
into two neck-to-neck catching-up clusters of industries. The new Cluster 4 (“Noisy-
catchers”), which is more volatile in the race, contains other manufacturing industries
and transport equipment. Steadily increasing industries now include, among others:
Manufacture of office machinery and data processing equipment, and Electrical and
electronic engineering.

Figure 4.8 plots estimated cluster effects, competition and innovation by esti-
mated cluster memberships. It suggests that the relationship between observables
and unobservables is complex and hardly predictable from observables only.

Endogeneity. Because competition is likely to be an endogeneous variable, AB-
BGH use a control function approach by including the residual of a first-stage where
the lerner index is predicted by a set of policy instruments such as the Thatcher
era privatizations, the EU Single Market Programme, and the Monopoly and Merger
Commission investigations at the industry level (see Table II in ABBGH), as an ad-
ditional regressor in their main specification. The first and fourth columns of Table
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4.10 show that coefficient estimates are similar to Table 4.9 in the case of NGFE
models.

Testing for Structural Break. Finally, I revisit Correa (2012) who tests for the
existence of a structural break in 1981. The author finds a decreasing relationship
before but no effects of competition afterwards, which would spuriously explain AB-
BGH’s inverted-U relationship. In contrast, a NGFE specification with four clusters
shows evidence of a mildly relationship before 1981, but still no significant relationship
afterwards (see Table 4.10).

4.8 Conclusion

In this chapter, I study the nonparametric identification and estimation of a new class
of nonlinear panel data models that accomodates clustered patterns of time-varying
unobserved heterogeneity. Sufficient low-level conditions delivering identification of
all parameters are provided. Because nonparametric estimation might be overwhelm-
ingly cumbersome in panel data with moderate length, I propose semiparametric
NGFE estimators that are free of the incidental parameters problem when T = o(N),
which sharply contrasts with many competing approaches. Individuals are uniformly
classified in the limit as T grows at least as some power of N , and cluster-specific and
slope coefficient estimates are asymptotically normal (and centered at the true value).
A simple Lloyd’s algorithm is shown to perform well in Monte-Carlo simulation. By
applying this new estimator to revisit Aghion et al. (2005), I demonstrate that the
so-called inverted-U relationship between innovation and product market competition
is sensitive to the researcher’s choice of whether controlling for time-varying grouped
effects or not. I document a data-driven clustering of industries. In particular, once
controlling for two groups, the relationship becomes increasing. Once controlling for
3 ≤ G ≤ 4 clusters, the relationship becomes a mildly inverted-U.

Interesting research avenues include improving computational execution time and
developing an estimation approach that would estimate the number of groups with
theoretical guarantees (e.g., consistency). In Chapter 3, I propose such an estimator
for linear versions of NGFE models and obtain this result under relatively weak
conditions (see Proposition 3.3.1). Given such a promising result, it would be nice
to extend the approach and prove similar large sample properties for more general
nonlinear models, including those considered in this chapter. I leave such extensions
for future work.

4.9 Proofs of the Results

I introduce some notation. For any (a, b) ∈ R2, I let a ∨ b := max {a, b} and a ∧ b :=
min {a, b}. λ denotes the Lebesgue measure on (R,B(R)), where B(R) collects the
Borel sets on R. The abbreviation “a.e.” stands for “almost everywhere” (with respect
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to an appropriate measure). Let d−→ and p−→ denote convergence in distribution and
convergence in probability respectively. For any sequence of random variables {Un :
n ∈ N} such that Un

p−→ U , let plimn→∞Un := U . Un = Op(1) (resp. op(1)) means
Un is bounded in probability (resp. converges in probability to zero). Un = Op(Rn)
means that Un = Rn × Vn with Vn = Op(1); Un = op(Rn) means that Un = Rn × Vn

with Vn = op(1).

4.9.1 Proof of Theorem 4.3.1

Part 1.
Identification of W 0

N ∈ {0, 1}N×N for all N ∈ N∗. Let N ∈ N∗. By Assumption 4.3.2,
there exist X 0 ⊂ X , y ∈ Y, and a known functional ϕ such that, for all (i, j) ∈ N 2,
the (i, j)-th entry of W 0

N , W 0
ijN , satisfies W 0

ijN := 1{g0
i = g0

j } = ϕ (ρi, ρj) with
ρi(x) : X 0 ∋ x 7→ P(Yi2 = y|Xi2 = x, g0

i , µ
0
i , ξ

0
i ). It is then sufficient to show that,

for all i ∈ N , ρi is identified. Let (i, x) ∈ N × X 0. Under Assumptions 4.3.1(b)
and 4.3.3(a), and conditional on the σ-algebra generated by (g0

i , µ
0′

g0
i
, ξ0′
i )′, the time-

series process
{

(Yit, X ′
it)

′ : t ≥ 2
}

is strictly stationary strong mixing and satisfies
regularity conditions given in Hansen (2008) to obtain consistency of the Nadaraya-
Watson estimator of E

[
1{Yit = y}|Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
. Hence, point identification

of E
[
1{Yi2 = y}|Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
= ρi(x) follows by pooling unit i’s choices when

(Yit, X ′
it)

′ ∈ {y} × BT (x), where BT (x) is a well-chosen shrinking neighborhood of x
as T → ∞ (e.g., using any well-chosen kernel K and bandwidth hT ).

Identification of G0. For any fixed N ∈ N∗, let R0
N denote the number of distinct

rows in W 0
N . By the previous paragraph, R0

N is identified. But R0
N , which is also

the rank of W 0
N , is exactly the number of clusters represented in the finite sample

of size N . Under Assumptions 4.3.1(a) and 4.3.2(b), G0 = lim supN→∞R0
N is thus

identified.44

Part 2.
Identification of β0. Let (i, t) ∈ N∗2. By Part 1, C0(i) :=

{
j ∈ {1, . . . , N} : g0

j = g0
i

}
is identified for all N ∈ N∗. Under Assumption 4.3.1(a) and 4.3.2(b), condi-
tional on (γ0′

, α0′
, λ0′

, µ0′)′,
{

(Yjt, X ′
jt)′ : j ∈ C0(i)\ {i}

}
is an identified infinite se-

quence of i.i.d. random variables. By applying Theorem 4.1 in Ichimura (1993) with
φ(·) = ∑

y∈Y yh
0(y, · + α0

g0
i t

), whose conditions 4.1 and 4.2(1-3) hold under Assump-
tions 4.3.1(c) and 4.3.3, β0 is identified up-to-scale. Because

∥∥β0∥∥ = 1, β0 is identified.

Identification of cluster-specific time effects α0
gt for all (g, t) ∈ G0 × N∗, up to cluster

relabeling. Given identification of W 0
N for all N ∈ N∗, I build the G0 groups sequen-

tially starting from N = 2, N = 3,... and regrouping at each step units with same
44From an estimation perpective, one would need conditions on the joint rate of convergence of

(N, T ) to ensure adequate controls of the error terms (ρi should typically be estimated in sup-norm
on X 0 at some polynomial rate in T ).
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rows in W 0
N . Without loss of generality, I assume that the resulting labeling matches

the true labeling. Let t ∈ N∗, x ∈ X , and y ∈ Y verifying Assumptions 4.3.4. By
pooling choices of individuals in cluster g and g̃ at time t for which Yit = y and
Xit = x, and applying a standard LLN using Assumptions 4.3.1(a) and 4.3.1(c), the
following probabilities are identified:

P
(
Y1t = y|X1t = x, g0

1 = g, α0
gt

)
= h0

(
y, x′β0 + α0

gt

)
,

P
(
Y1t = y|X1t = x, g0

1 = g̃, α0
g̃t

)
= h0

(
y, x′β0 + α0

g̃t

)
.

By Assumption 4.3.5 (Eq. (4.3.3)), I can find x1, x2 ∈ X such that

P
(
Y1t = y|X1t = x2, g

0
1 = g, α0

gt

)
= P

(
Y1t = y|X1t = x1, g

0
1 = g̃, α0

g̃t

)
,

or, equivalently,
h0
(
y, x′

2β
0 + α0

gt

)
= h0

(
y, x′

1β
0 + α0

g̃t

)
. (4.9.1)

By strict monotonicity of h0(y, ·), I can invert (4.9.1) and identify α0
g̃t

− α0
gt =

(x2 − x1)′β0. As β0 is already identified, it follows that α0
g̃t

− α0
gt is identified. Be-

cause the result holds for all (g, g̃, t), it holds for g = t = 1 (for which α0
gt = 0 by

the normalization assumption), thus (α0
g1)g∈G0 is identified. A similar reasoning but

now identifying x1, x2 ∈ X such that Eq. (4.3.4) holds in place of Eq. (4.3.3) yields
identification of α0

gt̃
−α0

gt for all (g, t, t̃), and, in turn, that of (α0
1t)t∈N∗ . Identification

of α0
gt for all (g, t) then follows because, for all (g, t) with g ̸= 1 and t ̸= 1, α0

gt can be
decomposed as

α0
gt = α0

gt − α0
1t︸ ︷︷ ︸

:=a

+ α0
1t︸︷︷︸

:=b

,

where a and b are identified. Finally, h0(y, z) is identified as a function of y ∈ Y and
index z = X ′

itβ
0 + α0

g0
i t

.
The proof of Theorem 4.3.1 is complete.

4.9.2 Sufficient Condition for Assumption 4.3.2(a)

Consider the following assumption.

Assumption 4.9.1

(a) There exists an open set X 1 ⊂ X such that, for all (i, j, g, g̃, x) ∈ N∗2×G02×X 1,
the conditional distribution α0

g2|Xi2 = x, g0
i = g, µ0

g0
i
, ξ0
i admits a fully supported

density fα0
g2|Xi2=x,g0

i =g,µ0
g ,ξ

0
i
(α) with respect to the Lebesgue measure such that

fα0
g2|Xi2=x,g0

i =g,µ0
g ,ξ

0
i
(α) = fα0

g̃2
|Xj2=x,g0

j =g̃,µ0
g̃
,ξ0

j
(α), λ(α)-a.e.

if and only if g = g̃.
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(b) There exists k ∈ {1, . . . , p} such that β0
k ̸= 0 and

Xi2,k ⊥ α0
g0

i 2|Xi2,(−k), g
0
i , µ

0
g0

i
, ξ0
i . Moreover, almost surely,

Supp
(
Xi2,k|Xi2,(−k), g

0
i , µ

0
g0

i
, ξ0
i

)
is open.

(c) There exists y ∈ Y such that ψy : v 7→ h0(y, v) is stricly monotonic, real
analytic with bounded first derivative ψ′

y such that
∫ ∣∣∣ψ′

y

∣∣∣ dλ < ∞.45 Moreover,

the characteristic function of ζ with density fζ(z) = |ψ′
y(z)|∫

|ψ′
y|dλ does not vanish

and is infinitely often differentiable in R\A for some set A such that λ(A) = 0.

Assumption 4.9.1(b) requires the existence of a special regressor (as in Honore and
Lewbel, 2002), but (possibly) without large support (it depends on the support of
the unobserved heterogeneity). Assumption 4.9.1(c) imposes smoothness conditions
including real-analyticity of the link functions. Example of distributions satisfying
these are given in, e.g., D’Haultfoeuille (2010). Real-analyticity can be relaxed to
continuous differentiability by strenghtenning the support in Assumption 4.9.1(b)
to be the full real line, which is equivalent to having a special regressor with large
support à la Honore and Lewbel (2002).

Lemma 4.9.1 If Assumptions 4.3.1(c) and 4.9.1 hold, then Assumption 4.3.2(a)
holds.

Proof of Lemma 4.9.1 W.l.o.g. I assume that k = 1 and denote x(−1) =
(xj)j∈{2,...,p}. Let x = (x1, x

′
(−1))′ ∈ X 1, and y ∈ Y verifying Assumption 4.9.1(c). I

proceed in two steps. In the first step, I construct X 0 ⊂ X 1. In the second step, I
construct ϕ that fulfills Assumption 4.3.2.
Step 1: Let (i, x) ∈ N × X 1 and ρi(x) := P

(
Yi2 = y|Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

)
. By the

law of total expectations, Assumption 4.3.1(c), using equation (4.2.1), and Assump-
tion 4.9.1(a), I obtain

ρi(x) = E
[
P
(
Yi2 = y|Xi2 = x, g0

i , α
0, λ0, µ0, ξ0

)
|Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
= E

[
P
(
Yi2 = y|Xi2 = x, g0

i , α
0
g0

i 2

)
|Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
= E

[
ψy
(
x′β0 + α0

g0
i 2

)
|Xi2 = x, g0

i , µ
0
g0

i
, ξ0
i

]
=
∫
R
ψy
(
x′β0 + α

)
fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α).

(4.9.2)

By Assumption 4.9.1(b), there exists ϵ > 0 and an open set X 0 =
{x+ (v, 0′)′ : v ∈ (−ϵ, ϵ)} ⊂ X 1 with P

(
Xi2 ∈ X 0) > 0 such that, for all w ∈ X 0,

almost everywhere fα0
g0

i
2
|Xi2=w,g0

i ,µ
0
g0

i

,ξ0
i
(α) = fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α). Since X 0 ⊂ X 1,

45Let I ⊂ R be an open set. A function f : I → R is called “analytic” if for any x0 ∈ I there is a
neighborhood J of x0 and a power series

∑
an(x − x0)n such that f(x) =

∑
n

an(x − x0)n ∀x ∈ J
(see, e.g., Krantz and Parks, 2002).
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Eq. (4.9.2) yields, for all w ∈ X 0,

ρi(w) =
∫
R
ψy
(
w′β0 + α

)
fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α).

By Assumption 4.9.1(c), w 7→ ρi(w) is differentiable on X 0 and, for all w ∈ X 0,

∂ρi(z1, . . . , zp)
∂z1

∣∣∣
z=w

= β0
1

∫
R
ψ′
y

(
w′β0 + α

)
fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α)

= β0
1

(
1 − 21{ψ′

y(0) < 0}
)

×
∫
R

∣∣∣ψ′
y

(
w′β0 + α

)∣∣∣ fα0
g0

i
2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α),

(4.9.3)

where the second equality follows from the strict monotonicity of ψy(·).
Step 2: Let ∆(a, b) := a− b and ∂1 be the partial differencing operator with respect
to the first argument (for multivalued functions). I prove below that ϕ(f, g) :=
1{∆(∂1f, ∂1g) = 0} verifies Assumption 4.3.2(a). I have to show that, for all (i, j) ∈
N 2,

∂ρi(z1, . . . , zp)
∂z1

∣∣∣
z=w

= ∂ρj(z1, . . . , zp)
∂z1

∣∣∣
z=w

∀w ∈ X 0 ⇐⇒ g0
i = g0

j . (4.9.4)

Let (i, j) ∈ N 2.
⇐= : Suppose that g0

j = g0
i and let w ∈ X 0. By Assumption 4.9.1(c), I have

fα0
g0

i
2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α) = fα0

g0
j

2
|Xj2=x,g0

j ,µ
0
g0

j

,ξ0
j
(α), λ(α) − a.e..

Equation (4.9.3) then implies ∂ρi(z1,...,zp)
∂z1

∣∣∣
z=w

= ∂ρj(z1,...,zp)
∂z1

∣∣∣
z=w

.
=⇒ : Suppose that, for all w ∈ X 0,

∂ρi(z1, . . . , zp)
∂z1

∣∣∣
z=w

= ∂ρj(z1, . . . , zp)
∂z1

∣∣∣
z=w

.

Dividing each side of this equation by
∫ ∣∣∣ψ′

y

∣∣∣ dλ > 0, using (4.9.3) and the fact that

∣∣∣(1 − 21{ψ′
y(0) < 0}

)
β0

1

∣∣∣ =
∣∣∣β0

1

∣∣∣ > 0,

I obtain, denoting fα0
g0

i

(α) := fα0
g0

i
2
|Xi2,g0

i ,µ
0
g0

i

,ξ0
i
(α), for all w ∈ X 0,

∫
R
fζ
(
w′β0 + α

)
fα0

g0
i

(α)dλ(α) =
∫
R
fζ
(
w′β0 + α

)
fα0

g0
j

(α)dλ(α).

I show below that this constraint is equivalent to fα0
g0

j

= fα0
g0

i

a.e., which, by As-

sumption 4.9.1(a), in turn implies g0
i = g0

j . Specifically, I show that the solution set
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S∗ ⊂ L1(R,B(R), λ) to the integral inverse problem: fα ∈ S∗ if and only if∫
R
fζ
(
w′β0 + α

)
fα0

g0
i

(α)dλ(α) =
∫
R
fζ
(
w′β0 + α

)
fα(α)dλ(α) ∀w ∈ X 0, (4.9.5)

verifies S∗ =
{
f ∈ L1(R,B(R), λ) : fα = fα0

g0
i

a.e.
}

. Suppose f∗
α ∈ S∗ and con-

sider the change of variable z = w′β0 + α in (4.9.5). Then, for all δ ∈(
x′β0 − β0

1ϵ, x
′β0 + β0

1ϵ
)

⊂ R,∫
R
fζ(z)f−α0

g0
i

(δ − z)dλ(z) =
∫
R
fζ(z)f∗

−α(δ − z)dλ(z). (4.9.6)

Note that both sides of Eq. (4.9.6) are convolutions of fζ with df−α0
g0

i

or df∗
−α. By

letting

W : δ 7→
∫
R
fζ(δ − z)

[
f−α0

g0
i

(z) − f∗
−α(z)

]
dλ(z),

and using commutativity of the convolution product, Eq. (4.9.6) implies that there
exists an open set U ⊂ R such that

W(δ) = 0, ∀δ ∈ U. (4.9.7)

Given Assumption 4.9.1(c), it can be shown that W : R → R is real-analytic (see
footnote 45). A continuation theorem for real analytic functions (see e.g. Corollary
1.2.5 in Krantz and Parks, 2002) implies that Eq. (4.9.7) holds for all δ ∈ R, i.e.:

∫
R
fζ(δ − z)

[
f−α0

g0
i

(z) − f∗
−α(z)

]
dλ(z) = 0, ∀δ ∈ R. (4.9.8)

Since the functions fζ , f−α0
g0

i

, and f∗
−α belong to L1(R,B(R), λ), I can apply Fourrier

transformation on both sides of Eq. (4.9.8) to obtain

φfζ
(v) ×

φf−α0
g0

i

(v) − φf∗
−α

(v)

 = 0, ∀v ∈ R, (4.9.9)

where φf is the Fourrier transform of f . By Assumption 4.9.1(c) again, the set

{v ∈ R : φζ(v) = 0}

is of zero Lebesgue measure. Equation (4.9.9) therefore implies φf−α0
g0

i

= ψf∗
−α

a.e..

Since Fourrier transforms are continuous, I obtain φf−α0
g0

i

= φf∗
−α

everywhere and

thus fα0
g0

i

= f∗
α everywhere.

The proof of Lemma 4.9.1 is complete.
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4.9.3 Proof of Theorem 4.5.1

The key argument is to linearize problem (4.5.2) by mean of a second-order Taylor
expansion, bounding the log-likelihood function by below by a quadratic function
similar to that appearing in Lemma A.2 in Bonhomme and Manresa (2015). For all
θ = (β′, α′, γ′)′ ∈ B × G0N × AG0T , define

Q̂(θ) = 1
NT

N∑
i=1

T∑
t=1

− ln (Ψ (QitZit)) ,

where Zit = X ′
itβ + αgit and Qit = 2Yit − 1. Note that Zit is an implicit function

of θ but I drop this conditioning for the sake of clarity and let Z0
it = X ′

itβ
0 + α0

g0
i t

denote Zit evaluated at the true parameter value θ0. Note that the NGFE estimator θ̂
minimizes Q̂(·) over all θ ∈ B × G0N × AG0T . Define the auxiliary quadratic function:

Q̌(θ) = 1
NT

N∑
i=1

T∑
t=1

(
X ′
it

(
β − β0

)
+ αgit − α0

g0
i t

)2
,

and let z := sup(β′,α′,g,x)′∈B×AG0T ×G0×∪t=1,...,i=1,...Supp(Xit) |Zit| and Z = [−z, z]. Note
that Z is a well-defined segment of R by Assumptions 4.5.2(a) and 4.5.2(b). By
second-order Taylor expansion, for any z1, z2 in Z,

− ln Ψ(z1) = − ln Ψ(z2) − (ln Ψ)′(z2)(z1 − z2) − 1
2(ln Ψ)′′(z∗)(z1 − z2)2,

for some z∗ ∈]z1 ∧ z2, z1 ∨ z2[. By continuity of z 7→ −(ln Ψ)′′(z) and because
−(ln Ψ)′′(z) > 0 by Assumption 4.5.1(b), there exists a constant bmin > 0 such that,
for all z ∈ Z,

bmin ≤ −(ln Ψ)′′(z).

Hence, for all z1, z2 ∈ Z

− ln Ψ(z1) ≥ − ln Ψ(z2) + s(z2)(z1 − z2) + bmin
2 (z1 − z2)2, (4.9.10)

where s(z) = −(ln Ψ)′(z). Now substitute QitZit for z1 and QitZ
0
it for z2, and aver-

aging (4.9.10) over i, t, I have, for all θ ∈ B × G0N × AG0T ,

Q̂(θ) − Q̂(θ0) ≥ bmin
2 Q̌(θ) + 1

NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Zit − Z0

it

))
, (4.9.11)

where Eit = s
(
QitZ

0
it

)
. Since the estimated parameter θ̂ minimizes Q̂(·), deduce

0 ≥ Q̂(θ̂) − Q̂(ϕ0) ≥ bmin
2 Q̌(θ̂) + 1

NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Ẑit − Z0

it

))
, (4.9.12)

where Ẑit = X ′
itβ̂+ α̂ĝit

. I start by showing the following uniform convergence result,
which is reminiscent of Lemma A.1 in Bonhomme and Manresa (2015).
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Lemma 4.9.2 Let Assumption 4.5.1 and Assumptions 4.5.2(a)-(b) hold. Then,

sup
θ∈B×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Zit − Z0

it

))
= op(1).

Proof of Lemma 4.9.2: The proof closely follows that of Lemma A.1 in Bonhomme
and Manresa (2015), up to a few adjustments.

1
NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Zit − Z0

it

))

= 1
NT

N∑
i=1

T∑
t=1

QitEit
(
X ′
it

(
β − β0

)
+ αgit − α0

g0
i t

)

=
(

1
NT

N∑
i=1

T∑
t=1

QitEitXit

)′ (
β − β0

)
+ 1
NT

N∑
i=1

T∑
t=1

EitQitαgit − 1
NT

N∑
i=1

T∑
t=1

EitQitα
0
g0

i t
.

Let Ft = σ
({
γ0, α0,X(t)

− , ε
(t−1)
−

})
denote the σ-field generated by γ0, α0,X(t)

− , and
ε

(t−1)
− . Under Assumptions 4.5.1(a) and 4.5.1(b), for all s < t, I have

E
(
QitQisEitEisX

′
itXis

)
= E

(
E(QitQisEitEisX ′

itXis|Ft)
)

= E
(
X ′
itXisQisEisE(QitEit|Ft)

)
= E

(
X ′
itXisQisEisE

(
Yit − Ψ(Z0

it)
Ψ(Z0

it)(1 − Ψ(Z0
it))

Ψ′(Z0
it)|Ft

))

= E

X ′
itXisQisEis

E(Yit − Ψ(Z0
it)|Ft)

Ψ(Z0
it)(1 − Ψ(Z0

it))
Ψ′(Z0

it)︸ ︷︷ ︸
=0


= 0,

where the penultimate equality follows because Ψ′(Z0
it) is Ft-measurable, and the last

equality follows from E(Yit|Ft) = Ψ(Z0
it). By Cauchy-Schwarz (CS) inequality, and

using Assumption 4.5.1(b), 4.5.2(b) and Q2
it = 1, there exists a constant M ′ > 0 such

that, for s = t,

E
(
QitQisEitEisX

′
itXis

)
= E

(
E2
it ∥Xit∥2

)
≤
√
E
(
E4
it

)
E
(
∥Xit∥4

)
≤ M ′ < ∞.

Hence, I have ∣∣∣∣∣ 1
NT

N∑
i=1

T∑
t=1

T∑
s=1

E
(
QitQisEitEisX

′
itXis

)∣∣∣∣∣ ≤ M ′. (4.9.13)

By (4.9.13), I have

E
(

1
N

N∑
i=1

∥∥ 1
T

T∑
t=1

QitEitXit

∥∥2
)

≤ M ′

T
,
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so it follows from the Markov inequality that

1
NT

N∑
i=1

T∑
t=1

QitEitXit = op(1).

In addition,
∥∥β − β0∥∥ is bounded under Assumption 4.5.2(a), hence

(
1
NT

N∑
i=1

T∑
t=1

QitEitXit

)′

(β − β0) = op(1).

I next show that 1
NT

∑N
i=1

∑T
t=1QitEitαgit is op(1), uniformly on the parameter space.

This will imply that 1
NT

∑N
i=1

∑T
t=1QitEitα

0
g0

i t
= op(1). I have

1
NT

N∑
i=1

T∑
t=1

QitEitαgit =
∑
g∈G0

[
1
NT

N∑
i=1

T∑
t=1

1{gi = g}QitEitαgt

]

=
∑
g∈G0

[
1
T

T∑
t=1

αgt

(
1
N

N∑
i=1

1{gi = g}QitEit

)]
.

Moreover, by the CS inequality and for all g ∈ G0:

(
1
T

T∑
t=1

αgt

(
1
N

N∑
i=1

1{gi = g}QitEit

))2

≤
(

1
T

T∑
t=1

α2
gt

)
×

 1
T

T∑
t=1

(
1
N

N∑
i=1

1{gi = g}QitEit

)2 ,
where, by Assumption 4.5.2(a), 1

T

∑T
t=1 α

2
gt is uniformly bounded. Now, note that

1
T

(
1
N

N∑
i=1

1{gi = g}QitEit

)2

= 1
TN2

N∑
i=1

N∑
j=1

1{gi = g}1{gj = g}
T∑
t=1

QitQjtEitEjt

≤ 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

QitQjtEitEjt

∣∣∣∣∣
≤ 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

E(QitQjtEitEjt)
∣∣∣∣∣

+ 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

(QitQjtEitEjt − E(QitQjtEitEjt))
∣∣∣∣∣ .

Since E(QitQjtEitEjt) = 0 for i ̸= j, there exists a constant M ′′ > 0 such that

1
N

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

E(QitQjtEitEjt)
∣∣∣∣∣ ≤ M ′′ < ∞,
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and, therefore, 1
N2
∑N
i=1

∑N
j=1

∣∣∣ 1
T

∑T
t=1 E(QitQjtEitEjt)

∣∣∣ ≤ M ′′

N . Moreover, by the CS
inequality,

 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

(QitQjtEitEjt − E(QitQjtEitEjt))
∣∣∣∣∣
2

≤ 1
N2

N∑
i=1

N∑
j=1

(
1
T

T∑
t=1

(QitQjtEitEjt − E(QitQjtEitEjt))
)2

. (4.9.14)

Similarly again, I can show that there exists a constant M ′′′ > 0 such that∣∣∣∣∣∣ 1
N2T

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

Cov(QitQjtEitEjs, QisqjsEisEjs)

∣∣∣∣∣∣ ≤ M ′′′ < ∞.

Hence, the term in the right-hand side of (4.9.14) is bounded in expectation byM ′′′/T .
This shows that 1

NT

∑N
i=1

∑T
t=1QitEitαgit is uniformly op(1), and ends the proof of

Lemma 4.9.2. □

Next, by Lemma A.2 in Bonhomme and Manresa (2015), it follows that

Q̌(θ̂) ≥ ρ̂
∥∥∥β̂ − β0

∥∥∥2
, (4.9.15)

where plimN,T→∞ρ̂ = ρ > 0. Hence, combining (4.9.12), Lemma 4.9.2, and (4.9.15) I
obtain

0 ≥ bminρ

2
∥∥∥β̂ − β0

∥∥∥2
+ op(1),

from which it is concluded that β̂ = β0 + op(1).
Lastly, to show convergence in quadratic mean of the estimated unit-specific effects,
note that

1
NT

N∑
i=1

T∑
t=1

(
α̂ĝit

− α0
g0

i t

)2

= Q̌(θ) − 1
NT

N∑
i=1

T∑
t=1

X ′
it

(
β0 − β̂

)
X ′
it

(
β0 − β̂

)
− 2
NT

N∑
i=1

T∑
t=1

X ′
it

(
β0 − β̂

) (
α0
g0

i t
− α̂ĝit

)

≤ Q̌(θ) − 1
NT

N∑
i=1

T∑
t=1

∥Xit∥2 ×
∥∥∥β0 − β̂

∥∥∥2

+
(

4 sup
α∈A

|α|
)

× 1
NT

N∑
i=1

T∑
t=1

∥Xit∥ ×
∥∥∥β0 − β̂

∥∥∥ ,
which is op(1) by Assumptions 4.5.2(a)-4.5.2(b), by consistency of β̂, and because
Lemma 4.9.2 and (4.9.12) together imply Q̌(θ̂) = op(1).
This completes the proof of Theorem 4.5.1.
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4.9.4 Proof of Theorem 4.5.2

Step 1: A Useful Asymptotic Equivalence

Lemma 4.9.7 below provides an asymptotic equivalence result which is key to prove
Theorem 4.5.2. I first prove three lemmas (4.9.3, 4.9.4, and 4.9.5) that help in show-
ing that NGFE estimators achieve uniformly consistent classification of individuals
(Lemma 4.9.6). This, in turn, allows me to prove Lemma 4.9.7.

First, consistency of α̂ for α0 can be established as in Bonhomme and Manresa
(2015). Because the objective function is invariant to relabeling of the cluster labels,
the consistency result holds with respect to the Hausdorff distance dH in RG0T , defined
by

dH(a, b)2 = max
{

max
g∈G0

(
min
g̃∈G0

1
T

T∑
t=1

(
ag̃t − bgt

)2
)
,max
g̃∈G0

(
min
g∈G0

1
T

T∑
t=1

(
ag̃t − bgt

)2
)}

.

Lemma 4.9.3 Let Assumptions 4.5.1-4.5.2, and 4.5.3(a)-4.5.3(b) hold. Then, as N
and T tend to infinity,

dH
(
α̂, α0

)
p−→ 0.

Proof of Lemma 4.9.3: Given Theorem 4.5.1, the proof is identical to that of
Lemma B.3 in Bonhomme and Manresa (2015). □

Second, I rely on the use of exponential inequalities for dependent processes.
Lemma 4.9.4 and Lemma 4.9.5 are direct consequences of Theorem 6.2 in Rio (2000)
(see also Merlevède et al., 2011) and Theorem 3.2 in Lesigne and Volný (2001), re-
spectively.

Lemma 4.9.4 (Bonhomme and Manresa (2015), Lemma B.5) Let zt be a
strongly mixing process with zero mean, with strong mixing coefficient α[t] ≤
exp(−atd1), and tail probabilities P(|zt| < z) ≤ exp

(
1 −

(
z
b

)d2
)
, where a, b, d1, and d2

are positive constants. Then, for all z > 0, for all δ > 0,

T δP
(∣∣∣∣∣ 1T

T∑
t=1

zt

∣∣∣∣∣ ≥ z

)
→ 0, as T → ∞.

Lemma 4.9.5 46 Let {zt,Ft}Tt=1 be a martingale difference sequence and assume that
there exists δ,M > 0 such that E(exp(δ |zt|)) ≤ M for all t = 1, . . . , T . Then, for
a > 0, there exist positive constants A and B such that for all z ≥ a/

√
T

P
(∣∣∣∣∣ 1T

T∑
t=1

zt

∣∣∣∣∣ ≥ z

)
≤ A exp

(
−B(z2T )1/3

)
.

46I found this result in a 2013 unpublished manuscript by A.-B. Kock entitled “Oracle inequalities
and variable selection in high-dimensional panel data models” (Lemma 2). For completeness, I report
the original proof of the author here.
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Proof of Lemma 4.9.5: In the proof of their Theorem 3.2 Lesigne and Volný (2001)
show that if E(exp(|zt|) ≤ M for all t = 1, . . . , T , then for any x > 0 and t ∈ (0, 1), I
have

P
(∣∣∣∣∣

T∑
t=1

zt

∣∣∣∣∣ > Tz

)

<

(
2 + M

(1 − t)2

[1
4 t

4/3(z−2T−1)1/3 + t2/3(z−2T−1)2/3 + 2z−2T−1
])

× exp
(

−1
2 t

2/3(z2T )1/3
)
. (4.9.16)

Note that P
(∣∣∣∑T

t=1 zt
∣∣∣ > Tz

)
= P

(∣∣∣∑T
t=1(δzt)

∣∣∣ > T (δz)
)

where {δzt}1≤t≤T , by as-
sumption now satisfy the conditions of Theorem 3.2 in Lesigne and Volný (2001) and
so replacing z by δz in (4.9.16) yields

P
(∣∣∣∣∣

T∑
t=1

zt

∣∣∣∣∣ > Tz

)

<

(
2 + M

(1 − t)2

[1
4 t

4/3δ−2/3(z−2T−1)1/3 + t2/3δ−4/3(z−2T−1)2/3 + 2δ−2z−2T−1
])

× exp
(

−1
2 t

2/3δ2/3(z2T )1/3
)
.

Restricting z to be greater than a/
√
T , implying that z−2T−1 ≤ 1/a2, and using that

M, t and δ are constants the conclusion of the lemma follows. □

I am now in position to prove Lemma 4.9.6 which extends Lemma B.4 in Bon-
homme and Manresa (2015) and shows that ĝi(β, α) achieves uniformly consis-
tent classification of individuals over a neighbourhood of the true parameter values
(β0, α0). Note that by the same arguments as in the proof of Lemma B.3 in Bon-
homme and Manresa (2015), there exists a permutation σ : G0 → G0 such that

1
T

T∑
t=1

(
α̂σ(g)t − α0

gt

)2 p−→ 0. (4.9.17)

By simple relabeling of the elements of α̂, I may take σ(g) = g. I adopt this convention
in the rest of the proof. For any η > 0, I let Nη denote the set of parameters
(β, α) ∈ B × AG0T that satisfy

∥∥β − β0∥∥2
< η and 1

T

∑T
t=1

(
αgt − α0

gt

)2
< η for all

g ∈ G0.

Lemma 4.9.6 For η > 0 small enough, I have, for all δ > 0 and as N and T tend
to infinity,

sup
(β,α)∈Nη

1
N

N∑
i=1

1{ĝi(β, α) ̸= g0
i } = op(T−δ).

Proof of Lemma 4.9.6: Note that, from the definition of ĝi(·), for all g ∈ G0,

1{ĝi(β, α) = g} ≤ 1{
T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ + αg0

i t

)))
≤

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ + αgt

)))
},
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so

1
N

N∑
i=1

1{ĝi(β, α) ̸= g0
i } =

∑
g∈G0

1
N

N∑
i=1

1{g0
i ̸= g}1{ĝi(β, α) = g}

≤
∑
g∈G0

1
N

N∑
i=1

Wig(β, α),

where

Wig(β, α) = 1{g0
i ̸= g} × 1{

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ + αg0

i t

)))
≤

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ + αgt

)))
}.

I start bounding Wig(β, α), for all (β, α) ∈ Nη, by a quantity that does not depend
on (β, α). To proceed first note that, by Assumption 4.5.1(b), and 4.5.2(a)-4.5.2(b),
v 7→ ln (Ψ (Qit (X ′

itv + αgt))) is uniformly Lipschitz over (i, t, α, g) ∈ {1, . . . , N} ×
{1, . . . , T}×AG0T×G0, i.e., there exists a constant Lβ > 0 such that, for all (i, t, α, g) ∈
{1, . . . , N} × {1, . . . , T} ×AG

0T × G0, all β1, β2 ∈ B, almost surely

∣∣ln (Ψ (Qit (X ′
itβ1 + αgt

)))
− ln

(
Ψ
(
Qit

(
X ′
itβ2 + αgt

)))∣∣ ≤ Lβ ∥β1 − β2∥ . (4.9.18)

Similarly, a 7→ ln (Ψ (Qit (X ′
itβ + a))) is uniformly Lipschitz over (i, t, β) ∈

{1, . . . , N} × {1, . . . , T} × B, i.e., there exists a constant Lα > 0 such that, for all
(i, t, β) ∈ {1, . . . , N} × {1, . . . , T} × B, all a, b ∈ A, almost surely

∣∣ln (Ψ (Qit (X ′
itβ + a

)))
− ln

(
Ψ
(
Qit

(
X ′
itβ + b

)))∣∣ ≤ Lα |a− b| . (4.9.19)

Then, by choosing g = g0
i , β1 = β0 and β2 = β in (4.9.18), I have, for all (β, α) and

all i,

Wig(β, α) ≤ 1{g0
i ̸= g} × 1

{ T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ

0 + αg0
i t

)))

≤
T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ + αgt

)))
+ TLβ

∥∥∥β − β0
∥∥∥}.

By choosing a = αg0
i t

, b = α0
g0

i
, and β = β0 in (4.9.19), I have, for all (β, α) and all i,

Wig(β, α) ≤ 1{g0
i ̸= g}

× 1
{ T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ

0 + α0
g0

i t

)))
≤

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ + αgt

)))
+ TLβ

∥∥∥β − β0
∥∥∥+ TLα

∥∥∥α0
g0

i
− αg0

i

∥∥∥},
where I used the norm inequality ∥u∥1 ≤

√
T ∥u∥ ≤ T ∥u∥ for all u ∈ RT , T ∈ N∗,

where ∥·∥1 is the ℓ1-norm. Next, a second-order Taylor expansion of z 7→ ln Ψ(z) at
QitZit around QitZ

0
it combined with (4.9.3), yields
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Now, let define Vit = Yit−Ψ(Z0
it)

Ψ(Z0
it)(1−Ψ(Z0

it))
Ψ′ (Z0

it

)
, and

AT =
∣∣∣∣∣
T∑
t=1

[
Vit
(
X ′
it

(
β − β0

)
+ αgt − α0

g̃t

)
− bmin

2
(
X ′
it

(
β − β0

)
+ αgt − α0

g̃t

)2
]

+ TLβ
∥∥∥β − β0

∥∥∥
+TLα

∥∥∥α0
g̃

− αg̃

∥∥∥−
T∑
t=1

Vit
(
α0
gt − α0

g̃t

)
+ bmin

2
(
α0
gt − α0

g̃t

)2
∣∣∣∣∣ .

As I have

AT ≤
∣∣∣∣∣
T∑
t=1

VitX
′
it

(
β − β0

)∣∣∣∣∣+
∣∣∣∣∣
T∑
t=1

Vit
(
αgt − α0

g̃t

)
−

T∑
t=1

Vit
(
α0
gt − α0

g̃t

)∣∣∣∣∣+ bmin
2

∣∣∣∣∣
T∑
t=1

X ′
it

(
β − β0

)∣∣∣∣∣
+ bmin

∣∣∣∣∣
T∑
t=1

X ′
it

(
β − β0

) (
αgt − α0

g̃t

)∣∣∣∣∣+ bmin
2

∣∣∣∣∣
T∑
t=1

(
α0
gt − αgt

) (
α0
gt − 2α0

g̃t

)∣∣∣∣∣
+ TLβ

∥∥∥β − β0
∥∥∥+ TLα

∥∥∥α0
g̃

− αg̃

∥∥∥ ,
it is easy to show using the CS inequality that, for (β, α) ∈ Nη,

AT ≤ T
√
η

(
1
T

T∑
t=1

V 2
it

)1/2(
1
T

T∑
t=1

∥Xit∥2
)1/2

+ TC1
√
η

(
1
T

T∑
t=1

V 2
it

)1/2

+ bmin

(
1
2 + 2 sup

α∈A
|α|
)

√
η

T∑
t=1

∥Xit∥

+ T
√
η

3bmin
2 sup

α∈A
∥α∥ + T

√
η (Lβ + Lα)

≤ T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα] ,

where C1, C2, C3,

c1 := sup
(β,α,g,x)∈B×AG0T ×G0×∪t=1,...,i=1,...Supp(Xit)

Ψ′(Zit)/Ψ(Zit),

c2 := sup
(β,α,g,x)∈B×AG0T ×G0×∪t=1,...,i=1,...Supp(Xit)

Ψ′(Zit)/(1 − Ψ(Zit)),

are positive constants, independent of η and T . I thus obtain that

Wig(β, α) ≤ max
g̃ ̸=g

1
{ T∑
t=1

Vit
(
α0
g̃t

− α0
gt

)
≤ −bmin

2

T∑
t=1

(
α0
gt − α0

g̃t

)2

+ T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]

}
.
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Noting that the right-hand side of this inequality does not depend on (β, α), it follows
that sup(β,α)∈Nη

Wig(β, α) ≤ W ig, where

W ig = max
g̃ ̸=g

1
{ T∑
t=1

Vit
(
α0
g̃t

− α0
gt

)
≤ −bmin

2

T∑
t=1

(
α0
gt − α0

g̃t

)2
(4.9.20)

+ T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]

}
. (4.9.21)

As a result,

sup
(β,α)∈Nη

1
N

N∑
i=1

1{ĝi(β, α) ̸= g0
i } ≤ 1

N

N∑
i=1

∑
g∈G0

W ig. (4.9.22)

I have, using standard probability algebra and for all g ∈ G0,

P
(
W ig = 1

)
≤
∑
g̃ ̸=g

P
(

T∑
t=1

Vit
(
α0
g̃t

− α0
gt

)
≤ −bmin

2

T∑
t=1

(
α0
gt − α0

g̃t

)2

+ T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]

)

≤
∑
g̃ ̸=g

{
P
(

1
T

T∑
t=1

(
α0
gt − α0

g̃t

)2
≤
cg,̃g
2

)

+ P
(

T∑
t=1

Vit
(
α0
g̃t

− α0
gt

)
≤ −T

cg,̃gbmin

4

+ T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]

)}
.

(4.9.23)

To end the proof, let Ft = σ
({

X(t)
− , ε

(t)
− , γ0, α0

})
denote the σ-field generated by

X(t)
− , ε

(t)
− , γ0, and α0 and set Sit = ∑t

s=1 Vis
(
α0
g̃s

− α0
gs

)
. Then, {(Sit,Ft), 1 ≤ t ≤ T}

is a martingale under Assumptions 4.5.1(a) and 4.5.1(b) since

E
(

t∑
s=1

Vis
(
α0
g̃s

− α0
gs

)
|Ft−1

)

=
t−1∑
s=1

Vis
(
α0
g̃s

− α0
gs

)
+
(
α0
g̃t

− α0
gt

)
E
(

Yit − Ψ
(
Z0
it

)
Ψ
(
Z0
it

) (
1 − Ψ

(
Z0
it

))Ψ′
(
Z0
it

)
|Ft−1

)

=
t−1∑
s=1

Vis
(
α0
g̃s

− α0
gs

)
+
(
α0
g̃t

− α0
gt

)
E
(
E
(

Yit − Ψ
(
Z0
it

)
Ψ
(
Z0
it

) (
1 − Ψ

(
Z0
it

))Ψ′
(
Z0
it

)
|Ft−1, σ

(
X(t)

−

))
|Ft−1

)

=
t−1∑
s=1

Vis
(
α0
g̃s

− α0
gs

)
,
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where the last equality follows from independence of εt and (X(t)
− , ε

(t−1)
− , γ0, α0) and

E
(
Yit|Xi1, . . . , Xit, α

0, γ0
)

− Ψ
(
Z0
it

)
= 0.

By Assumption 4.5.2(b), for all i ∈ {1, . . . , N},
{
Vit
(
α0
g̃t

− α0
gt

)
: t
}

is such that∣∣∣Vit (α0
g̃t

− α0
gt

)∣∣∣ ≤ (c̃1 ∨ c̃2) < ∞, where the positive constants c̃j = 2cj supα∈A |α| >
0, for j ∈ {1, 2}, do not depend on (i, t). Let a > 0. By Lemma 4.9.5, there exist
positive constants A and B, independent from (i, t), such that for all z > a/

√
T ,

P
(∣∣∣∣∣ 1T

T∑
t=1

Vit
(
α0
g̃t

− α0
gt

)∣∣∣∣∣ ≥ z

)
≤ A exp

(
−B(z2T )1/3

)
. (4.9.24)

I now bound the two terms on the right-hand side of (4.9.23).

• By applying Lemma 4.9.4, and conducting the same reasoning as in the first
bullet point page 1176 in Bonhomme and Manresa (2015), under Assumptions
4.5.2(a) and 4.5.3(b)-(c), for all δ > 0 and as T tends to infinity,

P
(

1
T

T∑
t=1

(
α0
gt − α0

g̃t

)2
≤
cg,̃gbmin

2

)
= o(T−δ).

• Lastly, to bound the second term on the right-hand side of (4.9.23), I denote
as c the minimum of cg,̃g over all g ̸= g̃ and I take

η ≤
(

c

8[(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]

)2

. (4.9.25)

Note that this upper bound on η does not depend on T . Taking η satisfying
(4.9.25) yields, for all g̃ ̸= g,

P
( T∑
t=1

Vit
(
α0
g̃t

− α0
gt

)
≤ −T

cg,̃gbmin

4

+ T
√
η [(c1 ∨ c2) × (M + C1) + bminC2M + C3 + Lβ + Lα]

)
≤ P

(
1
T

T∑
t=1

Vit
(
α0
g̃t

− α0
gt

)
≤ −

cg,̃g
8

)
.

Lastly, by applying (4.9.24) with z =
c

g,̃g

8 , for T sufficiently large, I obtain

P
(

1
T

T∑
t=1

Vit
(
α0
g̃t

− α0
gt

)
≤ −

cg,̃g
8

)
= O(exp(−C3T

1/3)) = o(T−δ),

for all δ > 0, and for some constant C3 that does not depend on i, T , and g.
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Combining results, I thus obtain, using (4.9.23), that for η satisfying (4.9.25) and for
all δ > 0,

1
N

N∑
i=1

∑
g∈G0

P
(
W ig = 1

)
≤
∣∣∣G0
∣∣∣ (∣∣∣G0

∣∣∣− 1
) [
o(T−δ) + o(T−δ)

]
= o(T−δ). (4.9.26)

To complete the proof of Lemma 4.9.6, note that, for η that satisfies (4.9.25), I have,
for all δ > 0 and all ε > 0,

P
(

sup
(β,α)∈Nη

1
N

N∑
i=1

1{ĝi(β, α) ̸= g0
i } > εT−δ

)
≤ P

 1
N

N∑
i=1

∑
g∈G0

W ig > εT−δ


≤

E
(

1
N

∑N
i=1

∑
g∈G0 W ig

)
εT−δ = o(1),

where I have used (4.9.22), the Markov inequality, and (4.9.26), respectively. This
ends the proof of Lemma 4.9.6. □

I am now in position to prove the three parts of the following asymptotic equiva-
lence result.

Lemma 4.9.7 (Asymptotic Equivalence) Let Assumptions 4.5.1, 4.5.2, and
4.5.3 hold. Then, for all δ > 0 and as N and T tend to infinity

P
(

sup
i∈{1,...,N}

∣∣∣ĝi − g0
i

∣∣∣ > 0
)

= o(1) + o(NT−δ), (4.9.27)

and
β̂ = β̃ + op(T−δ), (4.9.28)

and
α̂gt = α̃gt + op(T−δ) for all g, t. (4.9.29)

Proof of Lemma 4.9.7: The proof closely follows pages 1178-1180 in Bonhomme
and Manresa (2015).
#1. Properties of β̂. Define

Q̂(β, α) = 1
NT

N∑
i=1

T∑
t=1

− ln
(
Ψ
(
Qit

(
X ′
itβ + αĝi(β,α)t

)))
, (4.9.30)

Q̃(β, α) = 1
NT

N∑
i=1

T∑
t=1

− ln
(
Ψ
(
Qit

(
X ′
itβ + αg0

i t

)))
. (4.9.31)

Notice that Q̂(·) is minimized at (β̂, α̂) and Q̃(·) is minimized at (β̃, α̃). Let η > 0
be small enough such that the conclusion of Lemma 4.9.6 holds. Using Assump-
tions 4.5.2(a) and 4.5.2(b), it is then easy to see that, for all δ > 0,

sup
(β,α)∈Nη

∣∣∣Q̂(β, α) − Q̃(β, α)
∣∣∣ = op(T−δ). (4.9.32)
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By consistency of β̂ (Theorem 4.5.1) and α̂ (Lemma 4.9.3), and because β̃ and α̃ are
also consistent under the conditions of Theorem 4.5.1, I have, as N and T tend to
infinity,

P
((
β̂, α̂

)
̸∈ Nη

)
→ 0, (4.9.33)

P
((
β̃, α̃

)
̸∈ Nη

)
→ 0. (4.9.34)

Then, the same arguments as those appearing between (B-14) and (B-17) in page
1179 in Bonhomme and Manresa (2015) can be used to show that Eq. (4.9.32)-(4.9.34)
imply

Q̃(β̂, α̂) − Q̃(β̃, α̃) = op(T−δ). (4.9.35)

Now, using that (β̃, α̃) minimizes the twicely continuously differentiable function Q̃(·),
I obtain under Assumption 4.5.1(b)

Q̃(β̂, α̂) − Q̃(β̃, α̃) ≥ bmin
2

1
NT

N∑
i=1

T∑
t=1

(
X ′
it

(
β̃ − β̂

)
+ α̃g0

i t
− α̂g0

i t

)2
,

≥ bmin
2
(
β̃ − β̂

)′
(

1
NT

N∑
i=1

T∑
t=1

(
Xit −Xg0

i t

) (
Xit −Xg0

i t

)′
)(

β̃ − β̂
)

≥ ρ̂bmin
2

∥∥∥β̃ − β̂
∥∥∥2
,

where ρ̂ p−→ ρ > 0 as a consequence of Assumption 4.5.2(c). Hence, β̃ − β̂ = op(T−δ)
for all δ > 0. This shows (4.9.28).

#2. Properties of α̂. The proof is identical to page 1180 in Bonhomme and
Manresa (2015). #3. Properties of ĝi = ĝi(β̂, α̂). The proof is identical to page

1180 in Bonhomme and Manresa (2015).
The proof of Lemma 4.9.7 is complete. □

Step 2: Asympotic Properties of the Oracle MLE

By Lemma 4.9.7 and Slutsky’s lemma, it is sufficient to analyze the limiting distri-
bution of the unfeasible maximum likelihood estimator, (β̃, α̃), defined as

(β̃, α̃) = arg min
(β,α)∈B×AG0T

Q̃(β, α),

where

Q̃(β, α) = 1
NT

N∑
i=1

T∑
t=1

∑
g∈G0

1{g0
i = g} ×

[
− ln

(
Ψ
(
Qit

(
X ′
itβ + αgt

)))]
.

First, I show √
NT

(
β̃ − β0

)
d−→ N

(
0,Σ−1

β

)
. (4.9.36)
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Second, I show for all g, t,

√
N
(
α̃gt − α0

gt

)
d−→ N

(
0, ωgt
π̃2
gt

)
, (4.9.37)

and conclude by Slutsky’s lemma.
# 1. (4.9.36) holds. Under Assumption 4.5.4, results in Hahn and Newey (2004)
(Eq. (3)) and Arellano and Hahn (2007) (in case of multi-dimensional fixed effects of
size G0) ensure

√
NT

(
β̃ − β0

)
= SNT +

√
T

N
B +Op

√ T

N3

 ,
for some deterministic B ∈ Rp and SNT

d−→ N
(
0,Σ−1

β

)
. The result then follows

from T = o(N).

#2. (4.9.37) holds. Let (g, t) ∈ G0 ×N∗. For all β ∈ B, define the optimal α̃gt(β) as

α̃gt(β) = arg min
α∈A

1
N

N∑
i=1

−1{g0
i = g} × ln

(
Ψ
(
Qit

(
X ′
itβ + α

)))
.

The first-order optimality condition for α̃gt(β) writes

1
N

N∑
i=1

1{g0
i = g}Qit (ln Ψ)′ (Qit (X ′

itβ + α̃gt(β)
))

= 0. (4.9.38)

Differentiating Eq. (4.9.38) with respect to β yields

dα̃gt(β)
dβ = −

(
1
N

N∑
i=1

1{g0
i = g} (ln Ψit)′′

)−1(
1
N

N∑
i=1

1{g0
i = g} (ln Ψit)′′Xjt

)
,

(4.9.39)
where (ln Ψit)′′ := (ln Ψ)′′

(
Qit

(
X ′
itβ + α̃g0

i t
(β)
))

. By Taylor’s theory, Eq. (4.9.39)
and Assumptions 4.5.2(a)-(b) imply that there exists C > 0 such that, almost surely,

sup
β,β′∈=B

∣∣α̃gt(β) − α̃gt(β′)
∣∣ ≤ C

∥∥β − β′∥∥ . (4.9.40)

Deduce that

√
N
(
α̃gt − α0

gt

)
=

√
N
(
α̃gt(β0) − α0

gt

)
+

√
N
(
α̃gt(β̃) − α̃gt(β0)

)
=

√
N
(
α̃gt(β0) − α0

gt

)
+Op

(√
N
∥∥∥β̃ − β0

∥∥∥)
=

√
N
(
α̃gt(β0) − α0

gt

)
+Op(1/

√
T )

=
√
N
(
α̃gt(β0) − α0

gt

)
+ op(1), (4.9.41)

where the second and third equality use Eq. (4.9.40) and (4.9.36) respectively. Now,
by expanding each summand in Eq. (4.9.38) at X ′

itβ
0 + α̃gt(β0) around Z0

it, Taylor’s
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theory ensures again that there exists Z∗
it ∈ Z such that

α̃gt(β0) = α0
gt−

(
N∑
i=1

1{g0
i = g} (− ln Ψ)′′ (QitZ∗

it)
)−1( N∑

i=1
1{g0

i = g}Qit (− ln Ψ)′
(
QitZ

0
it

))
.

(4.9.42)
Equation (4.9.42) yields

√
N
(
α̃gt(β0) − α0

gt

)
= −

(
1
N

N∑
i=1

1{g0
i = g} (− ln Ψ)′′ (QitZ∗

it)
)−1(

1√
N

N∑
i=1

1{g0
i = g}Qit (− ln Ψ)′

(
QitZ

0
it

))

=
(
π̃−1
gt + op(1)

)( 1√
N

N∑
i=1

1{g0
i = g}Qit (ln Ψ)′

(
QitZ

0
it

))
d−→ N

(
0, ωgt
π̃2
gt

)
,

where the second equality follows from supi=1,...,N
∣∣Z∗
it − Z0

it

∣∣ = op(1) (it is easy to
prove that α̃gt(β0) − α0

gt = op(1) using (4.9.42), Assumptions 4.5.1(b), 4.5.2(a)-(b),
and 4.5.4(e)) and Assumption 4.5.4(c), and the last convergence follows by Assump-
tion 4.5.4(e). Given (4.9.41), (4.9.37) follows by Slutsky’s lemma.

#3. Conclusion. Let δ > 0. By Lemma 4.9.7,

√
NT

(
β̂ − β0

)
=

√
NT

(
β̃ − β0

)
+

√
NT

(
β̂ − β̃

)
=

√
NT

(
β̃ − β0

)
+ op

(√
NT 1−δ

)
, (4.9.43)

and, for all g ∈ G0, all t ∈ N∗,

√
N
(
α̂gt − α0

gt

)
=

√
N
(
α̃gt − α0

gt

)
+

√
N (α̂gt − α̃gt)

=
√
N
(
α̃gt − α0

gt

)
+ op

(√
NT−δ

)
. (4.9.44)

Since (4.9.43) and (4.9.44) hold for all δ > 0, and there exists ν > 0 such that
N/T ν → 0, as N and T tend to infinity, I obtain

√
NT

(
β̂ − β0

)
=

√
NT

(
β̃ − β0

)
+ op(1),

√
N
(
α̂gt − α0

gt

)
=

√
N
(
α̃gt − α0

gt

)
+ op(1).

This result, combined with (4.9.36), (4.9.37), and Slustky’s lemma yields (4.5.4) and
(4.5.5).
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4.10 Extensions

4.10.1 Cluster-Specific Slopes and Time-Specific Effects

In this section, I consider the following extension of model (4.2.1): for all (i, t) ∈
N × T ,

P
(
Yit = y|Xi1, . . . , Xit, α

0
g0

i t
, β0
g0

i
, g0
i , ζ

0
t

)
= h0

(
y,X ′

itβ
0
g0

i
+ α0

g0
i t

+ ζ0
t

)
, (4.10.1)

where h0 ∈ H,
∥∥β0

1
∥∥ = 1 and α0

11 = ζ0
1 = 0 are normalizations. Absent of correlation

between the groups and if groups were known, I could just run separate analysis of
each panel data {(i, t) ∈ N × T : g0

i = g}g∈G0 . Here, the difficulty arises from the as-
sumption that the group membership variables g0

i are unknown to the econometrician.
Let β0 := {β0

g : g}. I first adapt Assumption 4.3.1:

Assumption 4.10.1 (Random sampling)

(a) (Y ′
i , X

′
i, g

0
i )′ is i.i.d. across i ∈ N conditional on α0, β0, λ0, µ0.

(b) For all i ∈ N : {(Yit, X ′
it, α

0
g0

i t
, ζ0
t )′}t≥2 is a strictly stationary strong mixing

process with mixing coefficients τi(·) conditional on g0
i , µ

0
g0

i
, ξ0
i , β

0
g0

i
. Let τ(·) =

supi τi(·) satisfy τ(l) ≤ Cml with C > 0, and m ∈ (0, 1).

(c) For all t ∈ T : Y1t|X1t, g
0
1, α

0, β0, λ0, µ0, ξ0 d= Y1t|X1t, g
0
1, α

0
g0

1t
, β0
g0

i
.

Assumption 4.10.2 (Latent clustering)

(a) There exist known X 0 ⊂ X , y ∈ Y, and functional ϕ such that, for all fixed
(i, j) ∈ N 2, letting ρi(x) : X 0 ∋ x 7→ P

(
Yi2 = y|Xi2 = x, β0

g0
i
, g0
i , µ

0
g0

i
, ξ0
i

)
,

ϕ (ρi, ρj) = 1{g0
i = g0

j }.

(b) For all g ∈ G0, almost surely P(g0
1 = g|α0, β0, λ0, µ0, ξ0) > 0.

Assumption 4.10.3 (Regularity and smoothness)

(a) Conditional on g0
i , µ

0
g0

i
, ξ0
i , β

0
g0

i
, Xi2 admits a uniformly continuous density

function fXi2|g0
i ,µ

0
g0

i

,ξ0
i ,β

0
g0

i

such that infx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i ,β

0
g0

i

(x) ≥ δ > 0 and

supx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i ,β

0
g0

i

(x) < ∞.

(b) Almost surely, E(∥X12∥2 |g0
1, α

0, β0, λ0, µ0) is finite and
E(X12X

′
12|g0

1, α
0, β0, λ0, µ0) is nonsingular.

(c)
∑
y∈Y yh

0(y, ·) is differentiable on R and not constant on the support of X ′
itβ

0
g0

i
+

α0
g0

i t
.

Assumption 4.10.4 (Monotonicity) There exists y ∈ Y such that h0(y, v) is
strictly monotonic in v.

Assumption 4.10.5 (Compensating variations)
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(a) For all fixed (g, t, t̃), there exist x1, x2 ∈ X such that

α0
gt + x′

1β
0
g + ζ0

t = α0
gt̃

+ x′
2β

0
g + ζ0

t̃
. (4.10.2)

(b) For all fixed (g, g̃, t), there exist x3, x4 ∈ X such that

α0
gt + x′

3β
0
g + ζ0

t = α0
g̃t

+ x′
4β

0
g̃

+ ζ0
t . (4.10.3)

Theorem 4.10.1 (Identification) Let Assumptions 4.10.1, 4.10.2 and 4.10.3(a)
hold, and let N and T diverge jointly to infinity.

1. {W 0
N : N ∈ N∗} and G0 are identified.

2. If Assumptions 4.10.3(b)-4.10.5 further hold, then

• β0 is identified.

• ζ0
t + α0

gt is identified for all (g, t) ∈ G0 × N∗.

Proof of Theorem 4.10.1: The proofs of Part 1 and identification of β0 are identi-
cal to the corresponding parts of the proof of Theorem 4.3.1, up to running nonpara-
metric regressions for all g ∈ G0 to identify β0

g . Next, Assumption 4.10.5(b) ensures
that, for all (g, g̃, t), I can identify (x1, x2) ∈ X 2, such that for some y ∈ Y,

h0
(
y, x′

1β
0
g + α0

gt + ζ0
t

)
= h0

(
y, x′

2β
0
g̃

+ α0
g̃t

+ ζ0
t

)
.

By inverting h0(y, ·), I obtain α0
gt − α0

g̃t
= x′

1β
0
g̃

− x′
2β

0
g . Since the right-hand side is

identified, α0
gt − α0

g̃t
is identified for all (g, g̃, t). In particular, (α0

g1)g∈G0 is identified.
Now, suppose that G0 ≥ 2. By Assumption 4.10.5(a), for all (g, t, t̃), I can identify
(x3, x4) ∈ X 2 such that, for some y ∈ Y,

h0
(
y, x′

3β
0
g + α0

gt + ζ0
t

)
= h0

(
y, x′

4β
0
g + α0

gt̃
+ ζ0

t̃

)
. (4.10.4)

By inverting h0(y, ·) again, Eq. (4.10.4) yields

ζ0
t − ζ0

t̃
= α0

gt̃
− α0

gt + (x4 − x3)′β0
g . (4.10.5)

Because ζ0
1 = α0

11 = 0, ζ0
t + α0

1t and ζ0
t + α0

gt = ζ0
t + α0

1t + α0
gt − α0

1t are identified for
all (g, t).

4.10.2 Group and Time-Specific Link Functions

Consider the general model:

P
(
Yit = y|Xt

i , g
0
i

)
= h0

t

(
y,X ′

itβ
0, g0

i

)
, i = 1, . . . , N, t = 1, . . . , T. (4.10.6)
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Under an adaptation of Assumption 4.3.2, the same analysis can be conducted to
identify g0

i and (h0
t )t≥1 up to group relabeling, and β0 up to scale.

4.10.3 Grouping Time Periods

Consider a model in which time effects are also grouped: there exists (g0
i , k

0
t ) ∈{

1, . . . , G0}×
{
1, . . . ,K0} such that

P
(
Yit = y|Xt

i , α
0
g0

i k
0
t
, g0
i , k

0
t

)
= h0

(
y,X ′

itβ
0 + α0

g0
i k

0
t

)
, i = 1, . . . , N, t = 1, . . . , T

(4.10.7)
When N = T , this gives rise to a so-called Holland et al. (1983)’s stochastic block
model on latent variables. Methods developed in Chapters 3 and in 4 can be used
to obtain identification results for nonlinear multiplicative models in cases where
G0 = K0 and under symmetry (α0

gg̃
= α0

g̃g
almost surely).

4.10.4 NGFE Large Sample Theory for Poisson Count Models

Theorem 4.5.1 can be generalized to NGFE models satisfying certain moment and
concavity/regularity conditions on the series of partial derivatives of (β, π) 7→
ln h0(Yit, X ′

itβ + π) ≡ ℓit(β, π).

Assumption 4.10.6

(a) Smoothness and moments: (β, π) 7→ ℓit(β, π) is three times continuously dif-
ferentiable almost surely. The partial derivatives of ℓit(β, π) with respect to the
elements of (β, π) up to the second order are bounded in absolute value uniformly
over (β, π) ∈ B × A by a function M(Yit, Xit) > 0 almost surely, and

max
i,t

E
[
M(Yit, Xit)4|X(t), α0

g0
i t

]
is almost surely uniformly bounded over N,T .

(b) Strict concavity: for all N,T , ∂2ℓit(β,π)
∂π2 < 0 almost surely for all (β, π) ∈ Rp+1.

In particular, Assumption 4.10.6(b) is verified by the Poisson count model (9).

Theorem 4.10.2 (Consistency in General Nonlinear Models) Let Assump-
tions 4.5.2 and 4.10.6 hold. Then, as N and T tend to infinity:

1. β̂ p−→ β0, and

2. 1
NT

∑N
i=1

∑T
t=1

(
α̂ĝit

− α0
g0

i t

)2 p−→ 0.

The proof is available upon request.
Under the existence of a moment generating function for the score on a small

interval around zero, the concentration inequalities and most of the arguments in
the proof of Theorem 4.5.2 could still be applied to obtain asymptotic normality. A
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technical difficulty here is that Yit is not bounded anymore so that uniform Lipschitz
continuity in Eq. (4.9.19) and (4.9.18) does not hold anymore. I only state the result
without proof for the Poisson count model. I denote as X̃gt the projection of Xit on
the space spanned by the cluster membership variable under a metric weighted by
exp(Z0

it),

X̃gt =
(

1
N

N∑
i=1

1{g0
i = g} exp(Z0

it)
)−1(

1
N

N∑
i=1

1{g0
i = g} exp(Z0

it)Xit

)
,

i.e., the weighted mean of Xit in cluster g0
i = g. Also, let define the weighted average

π̂gt = 1
N

N∑
i=1

1{g0
i = g} exp(Z0

it).

Consider the following assumption.

Assumption 4.10.7

(a) {(Yit, X ′
it)′ : (i, t)} are independent conditional on the fixed effects.

(b) There exists a positive definite matrix Σβ such that

Σβ = plimN,T→∞
1
NT

N∑
i=1

T∑
t=1

exp(Z0
it)
[
Xit − X̃g0

i t

] [
Xit − X̃g0

i t

]′
.

(c) As N and T tend to infinity,

1√
NT

N∑
i=1

T∑
t=1

{
exp(Z0

it)
(
Xit − X̃g0

i t

)}{
Yit − exp(Z0

it)
}

d−→ N (0,Σβ).

(d) For all (g, t): plimN→∞π̂gt = π̃gt > 0.

(e) For all (g, t):

lim
N→∞

1
N

N∑
i=1

N∑
j=1

E
(
1{g0

i = g}1{g0
j = g}(Yit − exp(Z0

it))(Yjt − exp(Z0
jt)
)

= ωgt > 0.

(f) For all (g, t), and as N and T tend to infinity:

1√
N

N∑
i=1

1{g0
i = g}(Yit − exp(Z0

it))
d−→ N (0, ωgt).

(g) The true value of β, β0, is in the interior of B. For all T , the true value of α,
α0, is in the interior of AG0T .

Theorem 4.10.3 (Asymptotic Distribution in the Poisson Count Model – Conjectured)
Let Eq. (4.2.3), Assumptions 4.5.2, 4.5.3, and 4.10.7 hold, and let N and T tend to
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infinity such that N/T → ∞ and, for some ν > 0, N/T ν → 0. Then:

√
NT

(
β̂ − β0

)
d−→ N

(
0,Σ−1

β

)
, (4.10.8)

and, for all (g, t),
√
N
(
α̂gt − α0

gt

)
d−→ N

(
0, ωgt
π̃2
gt

)
, (4.10.9)

where Σβ, ωgt, and π̃g are defined in Assumption 4.10.7.

4.11 Large-N , Large-T Inference

4.11.1 Binary Choice Model

Assuming independent observations across individual units, the asymptotic variance
of α̂gt for all g, t can be estimated as

Var (α̂gt) =
∑N
i=1 1{ĝi = g}

(
(ln Ψ)′

(
Qit

(
X ′
itβ̂ + α̂ĝit

)))2

(∑N
i=1 1{ĝi = g} (− ln Ψ)′′

(
Qit

(
X ′
itβ̂ + α̂ĝit

)))2 . (4.11.1)

Given Theorem 4.5.2, an estimate of the asymptotic variance of β̂ is

Var
(
β̂
)

=
(

1
NT

N∑
i=1

T∑
t=1

(− ln Ψ)′′
(
Qit

(
X ′
itβ̂ + α̂ĝit

)) [
Xit − ̂̃

X ĝi,t

] [
Xit − ̂̃

X ĝi,t

]′
)−1

,

(4.11.2)
where

̂̃
Xgt =

(
1
N

N∑
i=1

1{ĝi = g} (ln Ψ)′′
(
Qit

(
X ′
itβ̂ + α̂ĝit

)))−1

×
(

1
N

N∑
i=1

1{ĝi = g} (ln Ψ)′′
(
Qit

(
X ′
itβ̂ + α̂ĝit

))
Xit

)
.

4.11.2 Poisson Count Model

Assuming independent observations across individual units, the asymptotic variance
of α̂gt for all g, t can be estimated as

Var (α̂gt) =
∑N
i=1 1{ĝi = g}

(
Yit − exp

(
X ′
itβ̂ + α̂ĝit

))2

(∑N
i=1 1{ĝi = g} exp

(
X ′
itβ̂ + α̂ĝit

))2 . (4.11.3)

Given Theorem 4.10.3, an estimate of the asymptotic variance of β̂ is

Var
(
β̂
)

=
(

1
NT

N∑
i=1

T∑
t=1

exp
(
X ′
itβ̂ + α̂ĝit

) [
Xit − ̂̃

X ĝi,t

] [
Xit − ̂̃

X ĝi,t

]′
)−1

, (4.11.4)
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where

̂̃
Xgt =

(
1
N

N∑
i=1

1{ĝi = g} exp
(
X ′
itβ̂ + α̂ĝit

))−1

×
(

1
N

N∑
i=1

1{ĝi = g} exp
(
X ′
itβ̂ + α̂ĝit

)
Xit

)
.

4.12 More Details on Monte Carlo Experiments

To measure classification accuracy, I focus on three metrics inspired from the bi-
nary classification and clustering statistical literature, which are invariant to cluster
relabeling.47 The three metrics write

R ≡ Recall rate := TP

TP + FN
,

P ≡ Precision rate := TP

TP + FP
,

RI ≡ Rand Index := TP + TN

TP + TN + FP + FN
,

where

FP ≡ False Positives :=
∑
i<j

1{ĝi = ĝj}1{g0
i ̸= g0

j },

TP ≡ True Positives :=
∑
i<j

1{ĝi = ĝj}1{g0
i = g0

j },

FN ≡ False Negatives :=
∑
i<j

1{ĝi ̸= ĝj}1{g0
i = g0

j },

TN ≡ True Negatives :=
∑
i<j

1{ĝi ̸= ĝj}1{g0
i ̸= g0

j }.

The Recall rate (R) measures the ability of the NGFE estimator to predict the same
group for pairs of individual who truly belong to the same group. The Precision rate
(P) measures how precise the pairing prediction is: among all the predicted pairs of
individual sharing the same group, what is the proportion of correct ones? The Rand
Index (RI) is the proportion of correctly predicted pair (true or false) made by the
algorithm.

Initialization of NGFE I use 1, 000 initialization random points
(θ′

init, α11init, . . . , αG0T init)′ such that θinit = v where v
iid∼ N (0, (1/4)2) and

αgt,init = µg,init + w where µg,init
iid∼Unif[−4, 4] and w

iid∼ N (0, (1/4)2).
47Bonhomme and Manresa (2015) report a “Misclassification Rate” (M) defined as the minimum

of
∑N

i=1

∣∣ĝi − g0
i

∣∣ /N over all possible cluster relabelings for the ĝi. Beyond the fact that computing
MR can be very demanding for large G0, it is not totally fair since the final labeling of ĝi requires
knowledge of g0

i to be determined.
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Computation Having large N is not computationally demanding. When T is
very large, computation of the NGFE estimate might be demanding. The methods
developed in Mugnier (2022) could be adapted. The statistical asymptotic results are
confirmed by increasing (N,T ) in unreported simulations.

4.13 Tables & Figures

4.13.1 Monte Carlo Simulations
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4.13.2 Empirical Application

Figure 4.1: Replicating Aghion et al. (2005)
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Notes: This figure replicates Aghion et al. (2005)’s Figure II. Data include 17 industries of 311
firms listed on the London Stock Exchange observed between 1973 − 1994. For each industry i at
year t, the prediction replaces ν̂i + ξ̂t with an estimated constant α̂ (one industry and time
dummies are dropped).
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Figure 4.2: Residuals of the Two-Way Fixed Effects Poisson Model
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Notes: Each color represents an industry in Aghion et al. (2005)’s dataset. There are 17 industries
observed over the period 1973-1994.

Figure 4.3: Regularization Path of the Two-Step Pairwise Differenc-
ing Estimator
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Notes: Number of estimated clusters as a function of the regularization parameter λ2, using the
pairwise distance estimator proposed in Mugnier (2022) with β̂1(λ1) = 0 (no covariates). There are
17 industries observed over the period 1973-1994.
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Table 4.3: Inference for β (Static Model)

NGFE CMLE
DGP G0 SE SD .95 SE SD .95
1 2 0.16 0.26 0.86 0.15 0.54 0.38

3 0.17 0.28 0.80 0.16 0.56 0.40
5 0.17 0.26 0.84 0.15 0.51 0.42

2 2 0.12 0.13 0.82 0.06 0.16 0.52
3 0.12 0.17 0.46 0.07 0.16 0.62
5 0.14 0.21 0.08 0.08 0.17 0.66

3 2 0.12 0.16 0.22 0.06 0.17 0.52
3 0.12 0.22 0.18 0.06 0.17 0.52
5 0.12 0.16 0.04 0.06 0.16 0.56

4 2 0.12 0.15 0.92 0.05 0.15 0.38
3 0.13 0.13 0.92 0.05 0.12 0.56
5 0.13 0.14 0.88 0.05 0.12 0.56

Notes: Static logit model with β = 1, N = 90, and T = 7. SE re-
ports the median of the estimates of the analytical standard errors
based on the large-N , T analytical variance formula (4.11.4) across
simulations; SD reports the median of the actual standard deviation
across simulations; .95 reports the empirical nonrejection probabili-
ties (nominal size 5%) based on the analytical standard errors esti-
mates. Results are averaged across 50 Monte Carlo replications.

Figure 4.4: Two-Step Pairwise Differencing Estimates (Three Clus-
ters)

Notes: Each color represents an estimated cluster using the pairwise distance estimator
proposed in Mugnier (2022) with β̂1(λ1) = 0 (no covariates) and λ2 ∈ [140, 170]. There are
17 industries observed over the period 1973-1994.
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Table 4.7: Summary Statistics

1-Lerner index Citation-weighted patents Technology gap
Mean 0.95 6.66 0.49
SD 0.02 8.43 0.16
p10 0.92 0 0.28
Median 0.95 3.35 0.51
p90 0.98 20.19 0.69

Notes: There are 17 industries and 354 observations over the time period 1973-94. See
Aghion et al. (2005) for the exact definition of each variable.

Table 4.8: Industries at the 2-Digit Level

SIC 2 Name

22 Metal manufacturing
23 Extraction of minerals not elsewhere specified
24 Manufacture of non-metallic mineral products
25 Chemical industry
31 Manufacture of metal goods not elsewhere specified
32 Mechanical engineering
33 Manufacture of office machinery and data processing equipment
34 Electrical and electronic engineering
35 Manufacture of motor vehicles and parts therof
36 Manufacture of other transport equipment
37 Instrument engineering
41 Food industry
42 Food, drink and tobacco manufacturing industries
43 Textile industry
47 Manufacture of paper and paper products; printing and publishing
48 Processing of rubber and plastics
49 Other manufacturing industries

Source: 1980 Notebook of the UK Office of National Statistics available here:
https://www.ons.gov.uk /methodology/classificationsandstandards/ ukstandardindustrialclassi-
ficationofeconomicactivities/uksicarchive.

https://www.ons.gov.uk/methodology/classificationsandstandards/ukstandardindustrialclassificationofeconomicactivities/uksicarchive
https://www.ons.gov.uk/methodology/classificationsandstandards/ukstandardindustrialclassificationofeconomicactivities/uksicarchive


4.13. Tables & Figures 173

Figure 4.5: Innovation and Competition Revisited: A Mildly
Inverted-U Relationship
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Notes: ABBGH (spe. (2) in Table 4.9) includes a constant and drop a time and an industry dummy
(not included in the fit). NGFE (spe. (3), (4), and (5) in Table 4.9) does not specify a constant and
averages the unobserved effects to obtain the intercept in the fit.

Table 4.9: The Effect of Competition on Innovation

FE Poisson NGFE Poisson
Dependent variable: Citation-weighted patentsit (1) (2) (3) (4) (5)
Competitionit 152.80∗∗∗ 387.46∗∗∗ 171.28∗∗∗ 273.62∗∗∗ 392.23∗∗∗

(55.74) (67.74) (71.51) (70.21) (70.35)
Competition squaredit -80.99∗∗∗ -204.55∗∗∗ -85.15∗∗∗ -147.21∗∗∗ -210.19∗∗∗

(29.61) (36.17) (38.18) (37.62) (37.73)
Year effects Yes Yes
Industry effects Yes
Time-varying clustered effects Yes Yes Yes
Number of clusters 2 3 4

Notes: Analytical standard errors are under parentheses. The sample includes 354 observations from an unbalanced panel of
17 industries over the period 1973-1994. Competitionit is measured by (1-Lerner index)it in the industry-year. NGFE esti-
mates are computed using Lloyd’s algorithm with 2, 000 random initializers. ∗∗∗, ∗∗, ∗ denote statistical significance at 1, 5,
and 10% respectively.

Figure 4.6: Estimated Cluster-Specific Time-Varying Effects
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Notes: Solid red line = High-Innovation, dotted blue line = Low-Innovation, dashed orange line =
Steady-Catchers, dashdotted green line = Noisy-Catchers. See Table 4.9 for more details.
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Figure 4.7: Data-Driven Clusters of Industries
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Notes: From left to right: G0 = 2, 3, 4. Blue bar (1) = Low-Innovation, red bar (2) =
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Figure 4.8: Unobserved Heterogeneity, Competition, and Innovation
Vary Across Time and Data-Driven Clusters
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Notes: Solid red line = High-Innovation, dotted blue line = Low Innovation, dashed orange line =
Steady-Catchers, dashdotted green line = Noisy-Catchers. From left to right: cluster-specific
time-effects estimates (G = 4), results are averaged across clusters.
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Chapter 5

Asymptotic Properties of
Empirical Quantile-Based
Estimators

Voilà de ces distinctions savantes et délicates qui échappent à
beaucoup de gens, parce que fort peu de gens réfléchissent; mais
elles seront accueillies des gens instruits à qui je les adresse, et
elles influeront, je l’espère, sur le nouveau Code que l’on nous
prépare.

Le Marquis de Sade, La Philosophie dans le boudoir

Abstract: Developing statistical methods to infer the causal impact of policies
on a given outcome based on non-experimental data is a workhorse challenge in
econom(etr)ics. In a nonlinear extension of the popular Difference-in-Difference
(DiD) framework, the parameter of interest, the average treatment effect (ATE),
can be expressed as the difference between the expectation of some random variable
(the outcome of the treated after treatment) and the expectation of an (unknown)
quantile-CDF transform of another random variable (the outcome of the treated be-
fore treatment). A Changes-in-Changes estimator can be obtained by replacing ex-
pectations, quantile and CDF transforms by their empirical counterparts. In this
chapter, I present new results showing that the asymptotic normality of such “Em-
pirical Quantile-based” estimators holds under much weaker conditions that what is
currently known. The proofs rely in particular on results on the standard empiri-
cal process and the theory of L-statistics. Finally, the finite sample behavior of the
estimator is investigated through Monte Carlo simulations.1

5.1 Introduction

For any increasing function F on the real line, we denote by F−1 its left-continuous
generalized inverse, F−1(q) = inf{x ∈ R : F (x) ≥ q} for q ∈ (0, 1], extended on [0, 1]

1This chapter is co-authored with Xavier D’Haultfœuille (CREST-ENSAE) and Jérémy L’Hour
(Capital Fund Management).
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by defining F−1(0) = 0 when dom(F ) = [0, 1]. In particular, for any real-valued
random variable W with cumulative distribution function (cdf) FW , F−1

W is the left-
continuous quantile function. The associated empirical quantile function, F̂−1

W , is
obtained by replacing FW by the standard empirical cdf obtained from a random
sample (Wi)i=1,...,n in the definition of F−1

W . All proofs are gathered in the appendix.

5.2 Asymptotic Results (Observed Rank)

We consider θ0 = E[F−1
Y (U)] for some random variable U and the estimator

θ̂n1,n2 = 1
n2

n2∑
j=1

F̂−1
Y (Uj), (5.2.1)

where F̂−1
Y is the empirical quantile function obtained from (Yi)i=1,...,n1 .

Assumption 5.2.1 (Sampling) (i) (Yi)i=1,...,n1 are independent draws from the dis-
tribution FY and (Uj)j=1,...,n2 are independent draws from the distribution FU . (ii)
Uj is independent of Yi for any i and j. (iii) FY is continuous.

Notice that (5.2.1) is a L-statistics (Shorack and Wellner, 1986, Chapter 19), i.e.,
θ̂n1,n2 = n−1

2
∑n2
i=1 cn1iY(i), where Y(1) < · · · < Y(n1) are the order statistics and

cn1i = #{Uj : Uj ∈ ((i − 1)/n1, i/n1]}. However, contrary to the textbook case, the
weights cni are random variables,

(cn11, . . . , cn1n1) ∼ M(n1, FU (1/n1) − FU (0/n1), . . . , FU (n1/n1) − FU ((n1 − 1)/n1)).

In order to study its asymptotic behavior, let us decompose it into two parts, each
only depending at the first order on the random sample (Yi)i=1,...,n1 or (Ui)i=1,...,n2

but not both. Notice that θ0 can be written as

θ0 =
∫ 1

0
F−1
Y dFU .

Let ξi := FY (Yi) ∼ U([0, 1]) and let Gn1 denote the empirical cumulative distribution
function obtained from (ξi)i=1,...,n1 . Thus, G−1

n1 (τ) is the usual empirical quantile of
order τ .

The estimator (5.2.1) can be expressed as2

θ̂n1,n2 =
∫ 1

0
F−1
Y ◦ G−1

n1 dF̂U ,

where F̂U is the empirical cumulative distribution function obtained from (Ui)i=1,...,n2 .
Let N = min(n1, n2) be the minimum sample size. We assume that, as n1, n2 → ∞,

2Letting ⌈a⌉ be the least integer greater than or equal to a, notice that, for all x ∈ (0, 1), G−1
n1 (x) =

ξ(⌈nx⌉) = FY (Y(⌈nx⌉)). By, e.g., Proposition 1.1.3 of Shorack and Wellner (1986), we have almost
surely F −1

Y ◦ G−1
n1 (x) = F −1

Y ◦ FY (Y(⌈nx⌉)) = Y(⌈nx⌉) = F̂ −1
Y (x).
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N/nk
p−→ λk, 0 ≤ λk ≤ 1, for k ∈ {1, 2}. We show that

√
N(θ̂n1,n2 − θ0) =

√
λ2
n2

n2∑
i=1

εi +
√
λ1
n1

n1∑
i=1

ηi + op(1),

where εi = −
∫ 1

0 [1{Ui ≤ t} − FU (t)] dF−1
Y (t) and ηi = −

∫ 1
0 [1{FY (Yi) ≤ t} −

t]fU (t) dF−1
Y (t) are independent, square-integrable, random variables, allowing to ap-

ply a standard CLT.

Assumption 5.2.2 (Regularity conditions on densities)

(i) FU is absolutely continuous with respect to the Lebesgue measure with a density
supported on [0, 1]. Moreover, there exist b1, b2 > 0 and CU > 0 such that for
all t ∈ (0, 1):

fU (t) ≤ CU t
−b1(1 − t)−b2 .

(ii) There exist d1, d2 > 0 and CY > 0 such that for all t ∈ (0, 1):

|F−1
Y (t)| ≤ CY t

−d1(1 − t)−d2 .

(iii) b1 + d1 < 1/2 and b2 + d2 < 1/2.

Point 2 of Assumption 5.2.2 holds under the following moment condition on Y.

Lemma 5.2.1 (Lower-level conditions on Y ) Assume E[|Y |p] < ∞ for p > 1,
then Assumption 5.2.2(ii) is verified with d1 = d2 = 1/p.

Theorem 5.2.2 (Asymptotic normality) Under Assumptions 5.2.1 and 5.2.2, as
N → ∞, √

N(θ̂n1,n2 − θ0) d−→ N (0, σ2),

with

σ2 =
∫ 1

0

∫ 1

0
[λ2 [FU (s ∧ t) − FU (s)FU (t)] + λ1[s ∧ t− st]fU (s)fU (t)] dF−1

Y (s) dF−1
Y (t).

5.3 Asymptotic Results (Estimated Rank)

In many applications, the random variable Ui has a known form Ui = FZ(Xi) for some
observed random variable Xi and a unknown cumulative distribution function FZ . As
a consequence, we do not directly observe the random variables (Ui)i=1,...,n2 , instead
we are left with estimated quantities (Ûi)i=1,...,n2 . In these cases, Ûi is the image
of some observed random variable Xi through an empirical cumulative distribution
function that comes from another independent sample (Zi)i=1,...,n3 , i.e. Ûi = F̂Z(Xi).

Assumption 5.3.1 (Pooled independent samples) (Yi)i=1,...,n1 (resp.
(Xi)i=1,...,n2 and (Zi)i=1,...,n3) are independent draws from the distribution FY
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(resp. FX and FZ). Moreover, (Yi, Xj , Zk) are mutually independent for any value
of i,j and k.

Under Assumption 5.2.2(i), U is distributed with cdf FU = FX ◦F−1
Z and density

fU (t) = fX(F−1
Z (t))

fZ(F−1
Z (t))

1{t ∈ [0, 1]}.

Notice that Assumption 5.2.2(i) also implies that Supp(X) ⊆ Supp(Z) and that
FZ , FX are continuous. Let ζj := FZ(Zj) ∼ U([0, 1]). Notice that Ûi = Hn3(Ui),
where Hn3 is the empirical cdf obtained from (ζj)j=1,...,n3 . We consider the estimator:

θ̌n1,n2,n3 := 1
n2

n2∑
j=1

F̂−1
Y (Ûj) = 1

n2

n2∑
j=1

F̂−1
Y (Hn3(Uj)).

Remark: we can also use a smooothed version of F̂Z . Following Shorack and Wellner
(1986), we let F̂Z(Z(i)) = i/(n3 + 1) for i = 1, . . . , n3, F̂Z(·) linear between Z(i) and
Z(i+1) for i < n3. For z < Z(1) and z > Z(n3), we extrapolate linearly until reaching
0 and 1 respectively. One can show that this extrapolation is equivalent to defining
Z(0) = 2Z(1) − Z(2) and Z(n3+1) = 2Z(n3) − Z(n3−1) instead of 0 and 1 as in Shorack
and Wellner (1986). With this estimator, Hn3(·) is defined as

Hn3(u) = 1
n3 + 1

(
i+

F−1
Z (u) − Z(i)
Z(i+1) − Z(i)

)
if Z(i) ≤ F−1

Z (u) ≤ Z(i+1)

for i = 0, . . . , n. Finally, Hn3 is constant and equal to 0 on [0, FZ(Z(0))] and
constant, equal to 1 on [FZ(Z(n3+1)), 1]. (these two sets may or may not be empty).

Similarly as before, θ̌n1,n2n3 can be expressed as:

θ̌n1,n2,n3 =
∫ 1

0
F−1
Y ◦ G−1

n1 ◦ Hn3 dF̂U .

Here again, we let N = min(n1, n2, n3) be the minimum sample size, and assume that,
as n1, n2, n3 → ∞, N/nk

a.s.−→ λk, 0 ≤ λk ≤ 1 for k ∈ {1, 2, 3} with λ1 > 0, λ3 > 0.

Theorem 5.3.1 (Asymptotic normality) Under Assumptions 5.2.2 and 5.3.1, as
N → ∞, √

N(θ̌n1,n2,n3 − θ0) d−→ N (0, σ2),

with

σ2 =λ2

∫ 1

0

∫ 1

0

[
FX(F−1

Z (s ∧ t)) − FX(F−1
Z (s))FX(F−1

Z (t))
]
dF−1

Y (s) dF−1
Y (t)

+ [λ1 + λ3]
∫ 1

0

∫ 1

0
[s ∧ t− st] fU (s)fU (t) dF−1

Y (s) dF−1
Y (t).

The proof is long and technical. Below are the main steps and ingredients:
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1. Decompose into three terms. Two are the same as in Theorem 1, the third
is new. We decompose it further into several terms: remainder terms plus a
L-statistic.

2. For some remainder term, similar technique as in Theorem 1 but a bit more
complex. Use in particular the fact that (i) order statistic of uniforms and
uniform spacings are distributed as beta; (ii) mean absolute deviation of beta
distributions.

3. For another remainder term, use convergence of the supremum of the weighted
empirical quantile process (see in particular Csorgo et al., 1986, Corollary 4.3.1).

4. For the L−statistic, results in Shorack and Wellner (1986) do not apply here.
Instead, we use the necessary and sufficient condition for its asymptotic nor-
mality in Hecker (1976).

5.4 Application to Change-in-Change

We study the Change-in-Change estimator of Athey and Imbens (2006). Let Ygt,i the
outcome at time t for individual i in group g. The Change-in-Change estimand of
the Average Treatment Effect (ATE) is

τCIC = E[Y11] − E[F−1
Y01

(FY00(Y10))].

The idea is to estimate the counterfactual by averaging the quantile the treated
population would have had, had they been in the untreated group at the initial date
and kept the same rank in the second period. In our more simplistic framework,
we have U = FY,00(Y10), with Y10 ∼ FY,10. Assume that all the cdf are absolutely
continuous with respect to the Lebesgue measure, then FU = FY,10 ◦ F−1

Y,00 and its
density is:

fU (t) =
fY,10(F−1

Y,00(t))
fY,00(F−1

Y,00(t))
1{t ∈ [0, 1]}.

Clearly, if the outcome distribution is the same for the treated and the untreated at the
initial date (fY,10 = fY,00) then U is uniformly distributed. Athey and Imbens (2006)
require the density of Ygt for each g and t to be bounded from below and bounded
from above on a compact support (see Assumption 5 therein). This assumption
yields that fU will also be bounded. In general, fU will be bounded if and only if the
ratio fY,10/fY,00 is bounded, which may not be the case for many usual distributions
typically encountered with economic data. Our method of proof does not require any
constant bound on fU , thus extending the cases where the Change-in-Change is a
relevant tool.

Examples: In the following examples we study the tail behavior of fU with respect to
the underlying distribution of the treated and untreated outcomes at the initial date.
We show that under many standard distributions, Assumption 5.2.2(i) is verified.
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1. Exponential Distribution. Assume that Yg0 ∼ E(λg), in that case

fU (t) = λ1
λ0

(1 − t)λ1/λ0−11{t ∈ [0, 1]},

and U ∼ Beta(1, λ1/λ0).

2. Pareto Distribution. Assume that Yg0 has cdf 1 − (βg/x)αg , in that case

fU (t) = α1
α0

(
β1
β0

)α1

(1 − t)α1/α0−11{1 − (β0/β1)α0 < t < 1},

which is a “truncated” Beta distribution.

3. Normal Distribution. Assume that Yg0 ∼ N (µg, σ2
g), in that case

fU (t) = σ0
σ1

exp
[
− 1

2σ2
1

(
(σ0 + σ1)Φ−1(t) + µ0 − µ1

) (
(σ0 − σ1)Φ−1(t) + µ0 − µ1

)]
× 1{t ∈ [0, 1]}.

If σ1 < σ0, fU (t) → 0, when either t → 0 or t → 1. Now if σ1 > σ0,
the analysis is more complicated. Consider the special case: µ1 = µ0. For
t ∈ (1/2, 1), using the inequality Φ−1(t) ≤

√
−2 ln(2(1 − t)) yields fU (t) ≤

(σ0/σ1)(2(1−t))σ2
0/σ

2
1−1. Symmetrically, for t ∈ (0, 1/2), Φ−1(t) ≥ −

√
−2 ln(2t)

yields fU (t) ≤ (σ0/σ1)(2t)σ2
0/σ

2
1−1.

4. Logistic Distribution. Assume that Yg0 has cdf 1/(1 + exp(−(t − µg)/βg)), in
that case

fU (t) = β0
β1

(1/t− 1)β0/β1−1 e(µ1−µ0)/β1

t2
(
1 + (1/t− 1)β0/β1 e(µ1−µ0)/β1

)21{t ∈ [0, 1]}.

5. Gumbel Distribution. Assume that Yg0 has cdf
e−(t−µg)/βg exp

(
−e−(t−µg)/βg

)
/βg, in that case

fU (t) = β0
β1
e(µ1−µ0)/β1 ln(t)β0/β1−1 exp

(
− ln(t)β0/β1e(µ1−µ0)/β1

)
1{t ∈ [0, 1]}.

If β1 = β0 = 1 and µ0 > µ1, U ∼ Beta(1 − eµ1−µ0 , 1).

We never observe Ui directly, instead F00 is replaced by its empirical counterpart
F̂00 and we have Ûi = F̂00(Yi,10). Notice that:

Ûi = 1
n

n∑
j=1

1{Y00,j ≤ Y10,i}

= 1
n

n∑
j=1

1{F00(Y00,j) ≤ Ui}

= Hn3(Ui),
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where Hn3 is the empirical cdf of F00(Y00,j) ∼ U [0, 1].

Theorem 2 generalizes Theorem 5.1 in Athey and Imbens (2006). Recall
the definition of ηi, φi, and εi in the proof of Theorem 5.3.1. By several changes of
variables, one may easily verify that

ηi = −
∫ F−1

Z (1)

F−1
Z (0)

[1{FY (Yi) ≤ FZ(x)} − FZ(x)] 1
fY
(
F−1
Y (FZ(x))

) × fX(x) dx,

(5.4.1)

φi =
∫ F−1

Z (1)

F−1
Z (0)

[1{Zi ≤ x} − FZ(x)] 1
fY
(
F−1
Y (FZ(x))

) × fX(x) dx. (5.4.2)

Under Assumption 5.2.2, we have E(ζ2
i ) = V q and E(φ2

i ) = V p, where V q and V p are
defined in Theorem 5.1 in Athey and Imbens (2006). It thus remains to analyze the
last term, V r, appearing in the asymptotic variance of their Theorem. We have:

V r := V
(
F−1
Y (FZ(X))

)
=
∫
Supp(X)

[
F−1
Y (FZ (x))

]2
fX(x) dx− θ2

0.

By an integration by part

E(ε2
i ) =

∫ 1

0

∫ 1

0

[
FX(F−1

Z (s ∧ t)) − FX(F−1
Z (s))FX(F−1

Z (t))
]
dF−1

Y (s) dF−1
Y (t)

=
∫ 1

0

{[
F−1
Y (s)

(
FX(F−1

Z (s ∧ t)) − FX(F−1
Z (s))FX(F−1

Z (t))
)]s=1
s=0

−
∫ 1

0
F−1
Y (s)

[fX(F−1
Z (s ∧ t))

fZ(F−1
Z (s ∧ t))

1{s ≤ t} − fX(F−1
Z (s))FX(F−1

Z (t))
fZ(F−1

Z (s))
]
ds
}
dF−1

Y (t)

= −
∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s ∧ t))
fZ(F−1

Z (s ∧ t))
1{s ≤ t} ds

)
dF−1

Y (t)

+
∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s))FX(F−1
Z (t))

fZ(F−1
Z (s))

ds

)
dF−1

Y (t). (5.4.3)

The third equality follows because Assumption 5.2.2 implies

[F−1
Y (s)

(
FX(F−1

Z (s ∧ t)) − FX(F−1
Z (s))FX(F−1

Z (t))
)]s=1
s=0 = 0.
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Focus on the second term in (5.4.3). By the change of variable x = F−1
Z (s), we obtain

∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s))FX(F−1
Z (t))

fZ(F−1
Z (s))

ds

)
dF−1

Y (t)

=
(∫ 1

0
F−1
Y (s)fX(F−1

Z (s))
fZ(F−1

Z (s))
ds

)(∫ 1

0
FX(F−1

Z (t)) dF−1
Y (t)

)

=
(∫ F−1

Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)(∫ 1

0
FX(F−1

Z (t)) dF−1
Y (t)

)

=
(∫ F−1

Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)(
[F−1
Y (t)FX(F−1

Z (t))]t=1
t=0

−
∫ F−1

Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)

= −
(∫ F−1

Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)2

+
(∫ F−1

Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)
F−1
Y (1)

= −θ2
0 + θ0F

−1
Y (1), (5.4.4)

where we obtain the third equality by an integration by part followed by the same
change of variable than before, and the last two equalities hold by Assumption 5.2.2.
Now, focus on the first term in (5.4.3). By the same change of variable again, we
have

−
∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s ∧ t))
fZ(F−1

Z (s ∧ t))
1{s ≤ t} ds

)
dF−1

Y (t)

= −
∫ 1

0

(∫ F−1
Z (t)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)
dF−1

Y (t). (5.4.5)

By Leibniz’s derivation rule for integrals, we have

d
dt

(∫ F−1
Z (t)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)
= 1
fZ(F−1

Z (t))
F−1
Y (FZ(F−1

Z (t)))fX(F−1
Z (t))

= fX(F−1
Z (t))

fZ(F−1
Z (t))

F−1
Y (t).

Hence, an integration by part of (5.4.5) yields

−
∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s ∧ t))
fZ(F−1

Z (s ∧ t))
1{s ≤ t} ds

)
dF−1

Y (t)

= −θ0F
−1
Y (1) +

∫ 1

0
F−1
Y (t)2 fX(F−1

Z (t))
fZ(F−1

Z (t))
dt

= −θ0F
−1
Y (1) +

∫ F−1
Z (1)

F−1
Z (0)

[
F−1
Y (FZ(x))

]2
fX(x) dx, (5.4.6)
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where we used the change of variable x = F−1
Z (t) to obtain the last equality. Now,

by combining (5.4.4) with (5.4.6), and noting that Assumption 5.2.2 implies

∫ F−1
Z (1)

F−1
Z (0)

[
F−1
Y (FZ(x))

]2
fX(x) dx =

∫
Supp(X)

[
F−1
Y (FZ(x))

]2
fX(x) dx,

we obtain

E(ε2
i ) = −F−1

Y (1)θ0 +
∫
Supp(X)

[
F−1
Y (FZ(x))

]2
fX(x) dx− θ2

0 + θ0F
−1
Y (1)

=
∫
Supp(X)

[
F−1
Y (FZ(x))

]2
fX(x) dx− θ2

0

= V r.

5.5 Monte Carlo Simulations

In the following experiments, we consider two types of estimators for θ0 that differ in
their way of computing Ûi = F̂Z(Xi) :

1. The first one considers a standard estimator for the cdf of Z : F̂Z(t) =
n−1
Z

∑nZ
i=1 1{t ≤ Zi}. We call the resulting estimator standard.

2. The second one considers a piece-wise linear version of the cdf estimator, where
a local linear approximation is computed between two consecutive points, as
in Shorack and Wellner (1986). For example, for a point t in the interval
(Z(i), Z(i+1)], instead of a constant value of i/nZ , the function evaluates to :

1
nZ + 1

[
i+

t− Z(i)
Z(i+1) − Z(i)

]
.

We call the resulting estimator smoothed.

Similarly, several options are considered for estimating the standard error. They
differ in their way of estimating the function t → 1/fY

(
F−1
Y (FZ(t))

)
that appears in

the expressions for ηi and φi defined in Theorem 5.3.1 :

1. The first considers a version where fY is estimated using a kernel estimator, as
in Athey and Imbens (2006). Here we opt for a Gaussian kernel. The function
F−1
Y is estimated using a standard quantile function, and FZ is estimated either

by the standard or the smoothed cdf, in congruence with the estimator above.
This version of the standard error estimator is called kernel.

2. The second version follows an idea developed in Lewbel and Schennach (2007)
and relies on observing that 1/fY

(
F−1
Y

)
is the derivative of F−1

Y and as such
can be estimated by (F−1

Y (t(i+1)) −F−1
Y (t(i)))/(t(i+1) − t(i)) for two consecutive

data points t(i) and t(i+1). In practice, the ranks Ûi = F̂Z(Xi) are first com-
puted. Duplicated values are then discarded to make sure that once reordered,
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consecutive values are not equal. Then, the function t → 1/fY
(
F−1
Y (FZ(t))

)
evaluated at X(i) is estimated by (F−1

Y (Û(i+1))−F−1
Y (Û(i)))/(Û(i+1)−Û(i)). This

version of the standard error estimator is called Lewbel-Schennach.

3. The third version draws from the same source for inspiration, without deleting
duplicated values of Ûi. Instead, t → 1/fY

(
F−1
Y (FZ(t))

)
evaluated at X(i) is

estimated by (F−1
Y (Û[i+1]) − F−1

Y (Û[i−1]))/(Û[i+1] − Û[i−1]), where Û[i+1] (resp.
Û[i−1]) indicates the smallest (resp. largest) value inside the sample (Ûi)i strictly
greater (resp. smaller) than Ûi. Extreme values are handled by taking the values
themselves when a larger / smaller value cannot be found in the sample. This
version of the standard error estimator is called Xavier.

5.5.1 Exponential-Pareto DGP

The first experiment favors computational tractability to tightly control cases where
Assumption 5.2.2 is violated, with the hope of finding evidence that it is a necessary
condition for Theorem 5.3.1 to hold. For that purpose, it assumes that both X and Z
have exponential distributions : X ∼ E(λX) and Z ∼ E(1). As a consequence, U has
density λX(1 − t)λX−11{t ∈ [0, 1]}. Y has a Pareto distribution re-scaled to the real
line, i.e. density αY (1 + t)−(αY +1)1{t > 0} and quantile function (1 − t)−1/αY − 1.
The corresponding parameters in Assumption 5.2.2 (i) become b1 = 0 and b2 =
1 − λX while those in Assumption 5.2.2 (ii) become d1 = 0 and d2 = 1/αY . As a
consequence, the constraint b1 + d1 < 1/2 is slacking while b2 + d2 < 1/2 can be
violated depending on the parameter values, meaning that the issue lies at the right
tail of the distributions. Notice that when b2 + d2 > 1, the parameter of interest is
not defined so we exclude those cases by considering DGPs such that b2 + d2 ∈ (0, 1).
Theorem 5.3.1 implies that when b2 + d2 < 1/2, the estimator is asymptotically
Gaussian. If Assumption 5.2.2 is necessary, cases where b2 + d2 ≥ 1/2 should result
in a non-gaussian behavior for the same estimator.

We run 10, 000 simulations for three different sample sizes : 100, 500 and 1000.
Values of λX = 1−b2 across DGPs span the set {.05, .1, .25, .4, .5, .6, .75, .9, .95}, while
values of αY = 1/d2 span the set {20, 10, 4, 2.5, 2, 1.666, 1.333, 1.111, 1.053}, so that
both b2 and d2 span the same set. DGPs where b2 + d2 > 1 are discarded. In the
end, this experiment spans 37 different values of the couple (λX , αY ) for three sample
sizes.

Figure 5.1 plots the coverage rates as a function of the sum b2 + d2.

5.5.2 Gaussian DGP

In this experiment, both Z and Y are distributed as N (0, 1), while X is distributed
as N (µX , σ2

X), which implies θ0 = µX , so the parameter of interest is always defined.
If σX < 1, fU (t) → 0, when either t → 0 or t → 1, so this case does not raise any
concern. However, when σX > 1, the analysis is more complicated. In the special
case where µX = 0. For t ∈ (1/2, 1), using the inequality Φ−1(t) ≤

√
−2 ln(2(1 − t))
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Figure 5.1: Exponential DGP, Coverage Rates as a Function of b2 +
d2 – Sample Size = 1000.

yields fU (t) ≤ (1/σX)(2(1 − t))1/σ2
X−1. Symmetrically, for t ∈ (0, 1/2), Φ−1(t) ≥

−
√

−2 ln(2t) yields fU (t) ≤ (1/σX)(2t)1/σ2
X−1. So this DGP implies b1 = b2 =

1−1/σ2
X . And from Lemma 5.2.1, we can deduce d1 = d2 ≈ 0. As a consequence, σ2

X

is the key parameter that should govern the asymptotic behavior of the estimator.
The intuition is that Theorem 5.3.1 should apply whenever σ2

X < 2.
We run 10, 000 simulations for three different sample sizes : 100,

500 and 1000. Values of σ2
X = 1/(1 − b2) across DGPs span the

set {20, 10, 4, 2.5, 2, 1.666, 1.333, 1.111, 1.053}, while values of µX span the set
{0, .5, 1, 2, 3}. In the end, this experiment spans 45 different values of the couple
(µX , σ2

X) for three sample sizes.
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Table 5.1: Gaussian simulations, B = 10, 000.

n=100 n=500 n=1000
Estimator Bias RMSE Cov. rate CI size Bias RMSE Cov. rate CI size Bias RMSE Cov. rate CI size

µX=0, σ2
X=20 – b1 = b2=0.95

standard kernel -0.0 0.297 0.853 0.852 0.0 0.186 0.786 0.45 -0.0 0.154 0.733 0.337
standard xavier -0.0 0.297 0.855 0.858 0.0 0.186 0.794 0.458 -0.0 0.154 0.745 0.345
smooth kernel -0.0 0.293 0.86 0.853 0.0 0.183 0.797 0.455 -0.0 0.152 0.749 0.348
smooth ls -0.0 0.293 0.917 1.009 0.0 0.183 0.863 0.537 -0.0 0.152 0.82 0.408
smooth xavier -0.0 0.293 0.863 0.862 0.0 0.183 0.806 0.463 -0.0 0.152 0.756 0.35

µX=0, σ2
X=10 – b1 = b2=0.9

standard kernel 0.003 0.267 0.878 0.815 0.0 0.154 0.835 0.424 -0.001 0.122 0.808 0.317
standard xavier 0.003 0.267 0.882 0.825 0.0 0.154 0.847 0.435 -0.001 0.122 0.824 0.328
smooth kernel 0.003 0.262 0.886 0.817 0.0 0.151 0.847 0.429 -0.001 0.12 0.824 0.327
smooth ls 0.003 0.262 0.929 0.945 0.0 0.151 0.896 0.491 -0.001 0.12 0.88 0.371
smooth xavier 0.003 0.262 0.89 0.83 0.0 0.151 0.858 0.441 -0.001 0.12 0.837 0.334

µX=0, σ2
X=4 – b1 = b2=0.75

standard kernel 0.002 0.221 0.916 0.756 -0.0 0.112 0.908 0.377 -0.0 0.083 0.908 0.277
standard xavier 0.002 0.221 0.921 0.769 -0.0 0.112 0.918 0.389 -0.0 0.083 0.918 0.287
smooth kernel 0.002 0.217 0.922 0.757 -0.0 0.11 0.916 0.381 -0.0 0.082 0.915 0.281
smooth ls 0.002 0.217 0.947 0.833 -0.0 0.11 0.937 0.411 -0.0 0.082 0.936 0.301
smooth xavier 0.002 0.217 0.927 0.772 -0.0 0.11 0.925 0.391 -0.0 0.082 0.925 0.29

µX=0, σ2
X=2.5 – b1 = b2=0.6

standard kernel -0.001 0.2 0.93 0.724 -0.001 0.096 0.932 0.349 -0.001 0.069 0.931 0.253
standard xavier -0.001 0.2 0.934 0.734 -0.001 0.096 0.936 0.357 -0.001 0.069 0.937 0.259
smooth kernel -0.001 0.196 0.935 0.723 -0.001 0.095 0.935 0.349 -0.001 0.068 0.934 0.255
smooth ls -0.001 0.196 0.946 0.768 -0.001 0.095 0.946 0.366 -0.001 0.068 0.943 0.264
smooth xavier -0.001 0.196 0.939 0.734 -0.001 0.095 0.94 0.358 -0.001 0.068 0.938 0.26

µX=0, σ2
X=2 – b1 = b2=0.5

standard kernel 0.001 0.192 0.936 0.709 0.001 0.091 0.936 0.336 0.001 0.064 0.942 0.241
standard xavier 0.001 0.192 0.937 0.716 0.001 0.091 0.94 0.342 0.001 0.064 0.946 0.246
smooth kernel 0.001 0.188 0.941 0.708 0.001 0.09 0.939 0.336 0.001 0.063 0.944 0.241
smooth ls 0.001 0.188 0.948 0.739 0.001 0.09 0.945 0.347 0.001 0.063 0.951 0.248
smooth xavier 0.001 0.188 0.941 0.715 0.001 0.09 0.942 0.342 0.001 0.063 0.949 0.246
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µX=0, σ2
X=1.666 – b1 = b2=0.4

standard kernel 0.0 0.185 0.939 0.699 -0.0 0.086 0.943 0.325 0.0 0.061 0.942 0.233
standard xavier 0.0 0.185 0.94 0.702 -0.0 0.086 0.946 0.33 0.0 0.061 0.946 0.236
smooth kernel 0.0 0.181 0.943 0.697 -0.0 0.085 0.945 0.325 0.0 0.06 0.944 0.235
smooth ls 0.0 0.181 0.95 0.718 -0.0 0.085 0.949 0.332 0.0 0.06 0.949 0.237
smooth xavier 0.0 0.181 0.945 0.701 -0.0 0.085 0.947 0.329 0.0 0.06 0.947 0.236

µX=0, σ2
X=1.333 – b1 = b2=0.25

standard kernel -0.002 0.18 0.942 0.685 0.001 0.081 0.946 0.314 -0.0 0.058 0.945 0.224
standard xavier -0.002 0.18 0.942 0.683 0.001 0.081 0.946 0.316 -0.0 0.058 0.946 0.225
smooth kernel -0.002 0.176 0.946 0.683 0.001 0.081 0.946 0.314 -0.0 0.058 0.946 0.223
smooth ls -0.002 0.176 0.948 0.692 0.001 0.081 0.949 0.317 -0.0 0.058 0.947 0.225
smooth xavier -0.002 0.176 0.944 0.681 0.001 0.081 0.948 0.316 -0.0 0.058 0.946 0.225

µX=0, σ2
X=1.111 – b1 = b2=0.1

standard kernel -0.001 0.175 0.948 0.676 -0.001 0.079 0.949 0.307 0.001 0.056 0.947 0.217
standard xavier -0.001 0.175 0.945 0.671 -0.001 0.079 0.949 0.307 0.001 0.056 0.947 0.218
smooth kernel -0.0 0.172 0.952 0.674 -0.001 0.078 0.95 0.306 0.001 0.056 0.948 0.217
smooth ls -0.0 0.172 0.95 0.676 -0.001 0.078 0.951 0.307 0.001 0.056 0.948 0.218
smooth xavier -0.0 0.172 0.946 0.668 -0.001 0.078 0.951 0.306 0.001 0.056 0.948 0.217

µX=0, σ2
X=1.053 – b1 = b2=0.05

standard kernel 0.001 0.174 0.944 0.673 -0.0 0.077 0.95 0.305 0.001 0.056 0.946 0.216
standard xavier 0.001 0.174 0.942 0.666 -0.0 0.077 0.95 0.304 0.001 0.056 0.946 0.216
smooth kernel 0.001 0.171 0.948 0.671 -0.0 0.077 0.951 0.304 0.001 0.056 0.947 0.216
smooth ls 0.001 0.171 0.947 0.671 -0.0 0.077 0.952 0.304 0.001 0.056 0.948 0.216
smooth xavier 0.001 0.171 0.945 0.664 -0.0 0.077 0.952 0.304 0.001 0.056 0.948 0.215

µX=0.5, σ2
X=20 – b1 = b2=0.95

standard kernel -0.292 0.295 0.659 0.848 -0.249 0.188 0.424 0.449 -0.237 0.157 0.31 0.336
standard xavier -0.292 0.295 0.662 0.854 -0.249 0.188 0.431 0.456 -0.237 0.157 0.318 0.344
smooth kernel -0.293 0.291 0.66 0.85 -0.25 0.185 0.427 0.456 -0.238 0.154 0.314 0.354
smooth ls -0.293 0.291 0.75 1.009 -0.25 0.185 0.516 0.54 -0.238 0.154 0.396 0.411
smooth xavier -0.293 0.291 0.665 0.859 -0.25 0.185 0.437 0.463 -0.238 0.154 0.324 0.351

µX=0.5, σ2
X=10 – b1 = b2=0.9

standard kernel -0.214 0.267 0.746 0.809 -0.172 0.154 0.576 0.421 -0.157 0.124 0.481 0.315
standard xavier -0.214 0.267 0.75 0.819 -0.172 0.154 0.589 0.432 -0.157 0.124 0.498 0.326
smooth kernel -0.218 0.262 0.749 0.815 -0.174 0.151 0.581 0.43 -0.159 0.121 0.488 0.327
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smooth ls -0.218 0.262 0.815 0.953 -0.174 0.151 0.66 0.497 -0.159 0.121 0.566 0.376
smooth xavier -0.218 0.262 0.755 0.83 -0.174 0.151 0.594 0.442 -0.159 0.121 0.506 0.336

µX=0.5, σ2
X=4 – b1 = b2=0.75

standard kernel -0.112 0.225 0.855 0.748 -0.071 0.117 0.821 0.376 -0.059 0.086 0.807 0.277
standard xavier -0.112 0.225 0.862 0.762 -0.071 0.117 0.834 0.389 -0.059 0.086 0.823 0.288
smooth kernel -0.119 0.22 0.859 0.76 -0.076 0.115 0.823 0.385 -0.063 0.085 0.81 0.302
smooth ls -0.119 0.22 0.897 0.849 -0.076 0.115 0.861 0.424 -0.063 0.085 0.844 0.312
smooth xavier -0.119 0.22 0.866 0.779 -0.076 0.115 0.838 0.4 -0.063 0.085 0.826 0.298

µX=0.5, σ2
X=2.5 – b1 = b2=0.6

standard kernel -0.069 0.204 0.899 0.717 -0.036 0.098 0.902 0.349 -0.025 0.072 0.903 0.255
standard xavier -0.069 0.204 0.905 0.73 -0.036 0.098 0.912 0.36 -0.025 0.072 0.912 0.263
smooth kernel -0.079 0.199 0.903 0.731 -0.042 0.097 0.904 0.356 -0.03 0.071 0.905 0.264
smooth ls -0.079 0.199 0.923 0.793 -0.042 0.097 0.921 0.38 -0.03 0.071 0.92 0.276
smooth xavier -0.079 0.199 0.907 0.749 -0.042 0.097 0.913 0.369 -0.03 0.071 0.914 0.27

µX=0.5, σ2
X=2 – b1 = b2=0.5

standard kernel -0.05 0.197 0.914 0.703 -0.02 0.094 0.918 0.338 -0.014 0.068 0.924 0.245
standard xavier -0.05 0.197 0.917 0.715 -0.02 0.094 0.926 0.347 -0.014 0.068 0.931 0.252
smooth kernel -0.061 0.192 0.918 0.717 -0.026 0.092 0.923 0.345 -0.018 0.067 0.926 0.251
smooth ls -0.061 0.192 0.933 0.767 -0.026 0.092 0.935 0.361 -0.018 0.067 0.936 0.26
smooth xavier -0.061 0.192 0.922 0.733 -0.026 0.092 0.93 0.354 -0.018 0.067 0.933 0.257

µX=0.5, σ2
X=1.666 – b1 = b2=0.4

standard kernel -0.035 0.19 0.928 0.693 -0.015 0.089 0.925 0.329 -0.008 0.064 0.934 0.237
standard xavier -0.035 0.19 0.93 0.702 -0.015 0.089 0.932 0.337 -0.008 0.064 0.94 0.243
smooth kernel -0.047 0.186 0.932 0.707 -0.021 0.088 0.928 0.333 -0.012 0.063 0.937 0.242
smooth ls -0.047 0.186 0.94 0.747 -0.021 0.088 0.938 0.347 -0.012 0.063 0.946 0.249
smooth xavier -0.047 0.186 0.933 0.719 -0.021 0.088 0.933 0.342 -0.012 0.063 0.944 0.246

µX=0.5, σ2
X=1.333 – b1 = b2=0.25

standard kernel -0.027 0.186 0.93 0.683 -0.007 0.084 0.94 0.319 -0.005 0.061 0.941 0.228
standard xavier -0.027 0.186 0.93 0.688 -0.007 0.084 0.944 0.325 -0.005 0.061 0.945 0.233
smooth kernel -0.039 0.182 0.937 0.696 -0.012 0.083 0.942 0.324 -0.008 0.06 0.944 0.231
smooth ls -0.039 0.182 0.941 0.723 -0.012 0.083 0.949 0.332 -0.008 0.06 0.949 0.236
smooth xavier -0.039 0.182 0.935 0.703 -0.012 0.083 0.946 0.329 -0.008 0.06 0.948 0.235

µX=0.5, σ2
X=1.111 – b1 = b2=0.1

standard kernel -0.016 0.178 0.94 0.675 -0.006 0.082 0.944 0.312 -0.003 0.058 0.946 0.223
standard xavier -0.016 0.178 0.94 0.677 -0.006 0.082 0.947 0.316 -0.003 0.058 0.949 0.226
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smooth kernel -0.028 0.175 0.945 0.687 -0.01 0.081 0.946 0.315 -0.005 0.058 0.949 0.224
smooth ls -0.028 0.175 0.948 0.706 -0.01 0.081 0.949 0.321 -0.005 0.058 0.953 0.228
smooth xavier -0.028 0.175 0.944 0.691 -0.01 0.081 0.948 0.319 -0.005 0.058 0.952 0.227

µX=0.5, σ2
X=1.053 – b1 = b2=0.05

standard kernel -0.017 0.178 0.938 0.674 -0.004 0.082 0.943 0.311 -0.002 0.058 0.943 0.221
standard xavier -0.017 0.178 0.937 0.676 -0.004 0.082 0.943 0.314 -0.002 0.058 0.945 0.224
smooth kernel -0.029 0.174 0.946 0.686 -0.008 0.081 0.944 0.313 -0.005 0.058 0.944 0.222
smooth ls -0.029 0.174 0.948 0.704 -0.008 0.081 0.946 0.319 -0.005 0.058 0.947 0.226
smooth xavier -0.029 0.174 0.944 0.69 -0.008 0.081 0.945 0.317 -0.005 0.058 0.947 0.225

µX=1, σ2
X=20 – b1 = b2=0.95

standard kernel -0.578 0.299 0.281 0.839 -0.502 0.19 0.079 0.444 -0.472 0.16 0.039 0.333
standard xavier -0.578 0.299 0.284 0.845 -0.502 0.19 0.082 0.451 -0.472 0.16 0.042 0.341
smooth kernel -0.581 0.295 0.278 0.842 -0.504 0.187 0.08 0.452 -0.474 0.157 0.041 0.36
smooth ls -0.581 0.295 0.378 1.01 -0.504 0.187 0.122 0.541 -0.474 0.157 0.067 0.414
smooth xavier -0.581 0.295 0.286 0.852 -0.504 0.187 0.084 0.46 -0.474 0.157 0.044 0.35

µX=1, σ2
X=10 – b1 = b2=0.9

standard kernel -0.445 0.269 0.405 0.792 -0.35 0.161 0.185 0.413 -0.317 0.131 0.113 0.31
standard xavier -0.445 0.269 0.412 0.802 -0.35 0.161 0.195 0.425 -0.317 0.131 0.123 0.321
smooth kernel -0.45 0.264 0.402 0.802 -0.354 0.158 0.186 0.427 -0.321 0.129 0.116 0.791
smooth ls -0.45 0.264 0.509 0.951 -0.354 0.158 0.26 0.501 -0.321 0.129 0.174 0.382
smooth xavier -0.45 0.264 0.414 0.818 -0.354 0.158 0.202 0.439 -0.321 0.129 0.129 0.336

µX=1, σ2
X=4 – b1 = b2=0.75

standard kernel -0.244 0.234 0.669 0.72 -0.153 0.124 0.578 0.369 -0.125 0.097 0.524 0.275
standard xavier -0.244 0.234 0.678 0.737 -0.153 0.124 0.602 0.385 -0.125 0.097 0.552 0.29
smooth kernel -0.258 0.228 0.668 0.746 -0.162 0.122 0.576 0.392 -0.133 0.095 0.521 0.298
smooth ls -0.258 0.228 0.738 0.865 -0.162 0.122 0.648 0.441 -0.133 0.095 0.596 0.331
smooth xavier -0.258 0.228 0.68 0.772 -0.162 0.122 0.604 0.408 -0.133 0.095 0.553 0.308

µX=1, σ2
X=2.5 – b1 = b2=0.6

standard kernel -0.154 0.214 0.783 0.689 -0.081 0.11 0.774 0.349 -0.062 0.083 0.768 0.259
standard xavier -0.154 0.214 0.791 0.708 -0.081 0.11 0.794 0.367 -0.062 0.083 0.789 0.274
smooth kernel -0.173 0.21 0.784 0.722 -0.092 0.108 0.771 0.369 -0.071 0.081 0.762 0.277
smooth ls -0.173 0.21 0.829 0.821 -0.092 0.108 0.812 0.408 -0.071 0.081 0.806 0.302
smooth xavier -0.173 0.21 0.794 0.75 -0.092 0.108 0.791 0.387 -0.071 0.081 0.788 0.289

µX=1, σ2
X=2 – b1 = b2=0.5

standard kernel -0.116 0.208 0.833 0.68 -0.057 0.104 0.835 0.342 -0.04 0.077 0.841 0.253
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standard xavier -0.116 0.208 0.84 0.703 -0.057 0.104 0.853 0.36 -0.04 0.077 0.862 0.267
smooth kernel -0.137 0.204 0.835 0.717 -0.068 0.102 0.833 0.358 -0.048 0.075 0.839 0.266
smooth ls -0.137 0.204 0.866 0.809 -0.068 0.102 0.864 0.395 -0.048 0.075 0.873 0.29
smooth xavier -0.137 0.204 0.842 0.746 -0.068 0.102 0.85 0.379 -0.048 0.075 0.859 0.281

µX=1, σ2
X=1.666 – b1 = b2=0.4

standard kernel -0.091 0.205 0.855 0.673 -0.038 0.099 0.877 0.337 -0.026 0.073 0.887 0.248
standard xavier -0.091 0.205 0.862 0.695 -0.038 0.099 0.894 0.354 -0.026 0.073 0.902 0.262
smooth kernel -0.114 0.2 0.858 0.71 -0.049 0.098 0.877 0.351 -0.034 0.072 0.886 0.26
smooth ls -0.114 0.2 0.885 0.792 -0.049 0.098 0.905 0.385 -0.034 0.072 0.908 0.28
smooth xavier -0.114 0.2 0.865 0.737 -0.049 0.098 0.894 0.372 -0.034 0.072 0.901 0.273

µX=1, σ2
X=1.333 – b1 = b2=0.25

standard kernel -0.071 0.198 0.879 0.667 -0.025 0.095 0.904 0.332 -0.015 0.069 0.911 0.243
standard xavier -0.071 0.198 0.886 0.691 -0.025 0.095 0.918 0.35 -0.015 0.069 0.923 0.255
smooth kernel -0.095 0.193 0.884 0.704 -0.036 0.093 0.904 0.344 -0.023 0.068 0.913 0.256
smooth ls -0.095 0.193 0.906 0.781 -0.036 0.093 0.923 0.373 -0.023 0.068 0.927 0.269
smooth xavier -0.095 0.193 0.889 0.734 -0.036 0.093 0.918 0.364 -0.023 0.068 0.923 0.264

µX=1, σ2
X=1.111 – b1 = b2=0.1

standard kernel -0.054 0.196 0.889 0.666 -0.017 0.093 0.917 0.328 -0.01 0.066 0.924 0.239
standard xavier -0.054 0.196 0.896 0.69 -0.017 0.093 0.928 0.344 -0.01 0.066 0.934 0.25
smooth kernel -0.079 0.191 0.895 0.703 -0.027 0.091 0.917 0.341 -0.017 0.066 0.925 0.248
smooth ls -0.079 0.191 0.913 0.772 -0.027 0.091 0.932 0.363 -0.017 0.066 0.939 0.26
smooth xavier -0.079 0.191 0.899 0.733 -0.027 0.091 0.928 0.356 -0.017 0.066 0.936 0.257

µX=1, σ2
X=1.053 – b1 = b2=0.05

standard kernel -0.052 0.196 0.892 0.667 -0.015 0.092 0.916 0.327 -0.01 0.065 0.925 0.238
standard xavier -0.052 0.196 0.898 0.691 -0.015 0.092 0.928 0.343 -0.01 0.065 0.935 0.248
smooth kernel -0.076 0.191 0.897 0.703 -0.025 0.091 0.918 0.337 -0.016 0.065 0.928 0.246
smooth ls -0.076 0.191 0.912 0.768 -0.025 0.091 0.934 0.36 -0.016 0.065 0.939 0.257
smooth xavier -0.076 0.191 0.899 0.73 -0.025 0.091 0.928 0.354 -0.016 0.065 0.936 0.254

µX=2, σ2
X=20 – b1 = b2=0.95

standard kernel -1.178 0.308 0.012 0.802 -1.024 0.203 0.001 0.424 -0.969 0.174 0.001 0.319
standard xavier -1.178 0.308 0.013 0.808 -1.024 0.203 0.002 0.432 -0.969 0.174 0.001 0.326
smooth kernel -1.183 0.304 0.013 0.809 -1.028 0.2 0.002 0.437 -0.973 0.171 0.002 0.335
smooth ls -1.183 0.304 0.039 1.001 -1.028 0.2 0.005 0.54 -0.973 0.171 0.002 0.416
smooth xavier -1.183 0.304 0.014 0.82 -1.028 0.2 0.002 0.444 -0.973 0.171 0.001 0.339

µX=2, σ2
X=10 – b1 = b2=0.9
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standard kernel -0.926 0.284 0.041 0.726 -0.743 0.187 0.009 0.384 -0.684 0.157 0.003 0.29
standard xavier -0.926 0.284 0.044 0.736 -0.743 0.187 0.011 0.396 -0.684 0.157 0.004 0.302
smooth kernel -0.937 0.279 0.042 0.744 -0.752 0.183 0.012 0.414 -0.691 0.153 0.006 0.312
smooth ls -0.937 0.279 0.086 0.939 -0.752 0.183 0.023 0.51 -0.691 0.153 0.013 0.395
smooth xavier -0.937 0.279 0.046 0.762 -0.752 0.183 0.012 0.42 -0.691 0.153 0.006 0.325

µX=2, σ2
X=4 – b1 = b2=0.75

standard kernel -0.581 0.269 0.163 0.618 -0.396 0.162 0.102 0.338 -0.336 0.134 0.083 0.262
standard xavier -0.581 0.269 0.178 0.642 -0.396 0.162 0.12 0.364 -0.336 0.134 0.101 0.287
smooth kernel -0.605 0.263 0.17 0.673 -0.412 0.158 0.11 0.38 -0.35 0.13 0.093 0.329
smooth ls -0.605 0.263 0.286 0.9 -0.412 0.158 0.188 0.496 -0.35 0.13 0.163 0.39
smooth xavier -0.605 0.263 0.19 0.709 -0.412 0.158 0.133 0.411 -0.35 0.13 0.116 0.328

µX=2, σ2
X=2.5 – b1 = b2=0.6

standard kernel -0.438 0.258 0.274 0.578 -0.261 0.158 0.261 0.334 -0.208 0.125 0.265 0.264
standard xavier -0.438 0.258 0.299 0.613 -0.261 0.158 0.306 0.371 -0.208 0.125 0.31 0.297
smooth kernel -0.469 0.252 0.286 0.657 -0.283 0.154 0.273 0.385 -0.225 0.122 0.278 0.313
smooth ls -0.469 0.252 0.443 0.909 -0.283 0.154 0.403 0.51 -0.225 0.122 0.398 0.399
smooth xavier -0.469 0.252 0.32 0.706 -0.283 0.154 0.322 0.43 -0.225 0.122 0.325 0.343

µX=2, σ2
X=2 – b1 = b2=0.5

standard kernel -0.376 0.261 0.337 0.569 -0.21 0.154 0.36 0.336 -0.165 0.12 0.372 0.268
standard xavier -0.376 0.261 0.37 0.612 -0.21 0.154 0.411 0.379 -0.165 0.12 0.427 0.304
smooth kernel -0.41 0.254 0.355 0.661 -0.232 0.15 0.374 0.398 -0.183 0.117 0.387 0.333
smooth ls -0.41 0.254 0.522 0.926 -0.232 0.15 0.506 0.517 -0.183 0.117 0.51 0.401
smooth xavier -0.41 0.254 0.397 0.717 -0.232 0.15 0.428 0.44 -0.183 0.117 0.441 0.351

µX=2, σ2
X=1.666 – b1 = b2=0.4

standard kernel -0.336 0.256 0.384 0.567 -0.174 0.152 0.443 0.341 -0.129 0.119 0.475 0.274
standard xavier -0.336 0.256 0.422 0.616 -0.174 0.152 0.504 0.389 -0.129 0.119 0.534 0.313
smooth kernel -0.373 0.25 0.406 0.668 -0.198 0.148 0.458 0.438 -0.148 0.116 0.485 0.325
smooth ls -0.373 0.25 0.573 0.941 -0.198 0.148 0.596 0.524 -0.148 0.116 0.614 0.407
smooth xavier -0.373 0.25 0.445 0.732 -0.198 0.148 0.518 0.451 -0.148 0.116 0.548 0.36

µX=2, σ2
X=1.333 – b1 = b2=0.25

standard kernel -0.288 0.262 0.438 0.568 -0.137 0.149 0.543 0.35 -0.096 0.115 0.589 0.281
standard xavier -0.288 0.262 0.482 0.628 -0.137 0.149 0.602 0.402 -0.096 0.115 0.651 0.324
smooth kernel -0.329 0.256 0.465 0.681 -0.162 0.145 0.559 0.408 -0.116 0.112 0.602 0.673
smooth ls -0.329 0.256 0.628 0.966 -0.162 0.145 0.68 0.532 -0.116 0.112 0.715 0.411
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smooth xavier -0.329 0.256 0.508 0.755 -0.162 0.145 0.614 0.465 -0.116 0.112 0.662 0.37
µX=2, σ2

X=1.111 – b1 = b2=0.1
standard kernel -0.258 0.264 0.478 0.57 -0.108 0.15 0.613 0.359 -0.078 0.114 0.659 0.289
standard xavier -0.258 0.264 0.522 0.639 -0.108 0.15 0.676 0.416 -0.078 0.114 0.723 0.334
smooth kernel -0.301 0.257 0.512 0.691 -0.134 0.146 0.629 0.421 -0.097 0.11 0.672 0.354
smooth ls -0.301 0.257 0.665 0.979 -0.134 0.146 0.742 0.539 -0.097 0.11 0.769 0.413
smooth xavier -0.301 0.257 0.552 0.772 -0.134 0.146 0.685 0.476 -0.097 0.11 0.728 0.377

µX=2, σ2
X=1.053 – b1 = b2=0.05

standard kernel -0.248 0.257 0.496 0.574 -0.104 0.148 0.633 0.362 -0.073 0.113 0.682 0.291
standard xavier -0.248 0.257 0.545 0.644 -0.104 0.148 0.695 0.42 -0.073 0.113 0.74 0.337
smooth kernel -0.292 0.25 0.533 0.701 -0.13 0.144 0.648 0.431 -0.092 0.11 0.692 0.335
smooth ls -0.292 0.25 0.686 0.988 -0.13 0.144 0.757 0.542 -0.092 0.11 0.783 0.412
smooth xavier -0.292 0.25 0.574 0.782 -0.13 0.144 0.704 0.482 -0.092 0.11 0.744 0.379

µX=3, σ2
X=20 – b1 = b2=0.95

standard kernel -1.816 0.318 0.0 0.741 -1.589 0.222 0.0 0.394 -1.506 0.196 0.0 0.297
standard xavier -1.816 0.318 0.0 0.746 -1.589 0.222 0.0 0.401 -1.506 0.196 0.0 0.304
smooth kernel -1.822 0.313 0.0 0.75 -1.595 0.219 0.0 0.406 -1.511 0.193 0.001 0.311
smooth ls -1.822 0.313 0.002 0.97 -1.595 0.219 0.0 0.533 -1.511 0.193 0.0 0.415
smooth xavier -1.822 0.313 0.0 0.76 -1.595 0.219 0.0 0.416 -1.511 0.193 0.0 0.319

µX=3, σ2
X=10 – b1 = b2=0.9

standard kernel -1.484 0.309 0.002 0.63 -1.218 0.219 0.0 0.338 -1.124 0.191 0.0 0.258
standard xavier -1.484 0.309 0.002 0.64 -1.218 0.219 0.0 0.352 -1.124 0.191 0.0 0.272
smooth kernel -1.497 0.303 0.002 0.655 -1.228 0.215 0.001 0.365 -1.134 0.188 0.002 0.288
smooth ls -1.497 0.303 0.013 0.924 -1.228 0.215 0.002 0.52 -1.134 0.188 0.002 0.412
smooth xavier -1.497 0.303 0.003 0.675 -1.228 0.215 0.0 0.383 -1.134 0.188 0.0 0.302

µX=3, σ2
X=4 – b1 = b2=0.75

standard kernel -1.096 0.311 0.014 0.468 -0.795 0.221 0.009 0.281 -0.693 0.191 0.009 0.228
standard xavier -1.096 0.311 0.017 0.492 -0.795 0.221 0.013 0.313 -0.693 0.191 0.015 0.259
smooth kernel -1.121 0.304 0.018 0.542 -0.815 0.215 0.015 0.347 -0.711 0.186 0.018 0.3
smooth ls -1.121 0.304 0.081 0.957 -0.815 0.215 0.051 0.578 -0.711 0.186 0.046 0.473
smooth xavier -1.121 0.304 0.024 0.583 -0.815 0.215 0.019 0.382 -0.711 0.186 0.02 0.321

µX=3, σ2
X=2.5 – b1 = b2=0.6

standard kernel -0.929 0.331 0.031 0.409 -0.635 0.224 0.031 0.273 -0.537 0.196 0.033 0.234
standard xavier -0.929 0.331 0.04 0.446 -0.635 0.224 0.044 0.317 -0.537 0.196 0.049 0.277
smooth kernel -0.96 0.323 0.043 0.521 -0.659 0.218 0.046 0.365 -0.559 0.191 0.05 0.316
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smooth ls -0.96 0.323 0.168 1.041 -0.659 0.218 0.13 0.639 -0.559 0.191 0.127 0.529
smooth xavier -0.96 0.323 0.058 0.575 -0.659 0.218 0.062 0.409 -0.559 0.191 0.066 0.357

µX=3, σ2
X=2 – b1 = b2=0.5

standard kernel -0.877 0.329 0.038 0.384 -0.569 0.23 0.051 0.275 -0.473 0.197 0.055 0.241
standard xavier -0.877 0.329 0.047 0.426 -0.569 0.23 0.072 0.327 -0.473 0.197 0.08 0.29
smooth kernel -0.91 0.321 0.051 0.512 -0.596 0.225 0.07 0.377 -0.497 0.191 0.081 0.337
smooth ls -0.91 0.321 0.203 1.08 -0.596 0.225 0.189 0.677 -0.497 0.191 0.19 0.559
smooth xavier -0.91 0.321 0.068 0.572 -0.596 0.225 0.094 0.431 -0.497 0.191 0.104 0.379

µX=3, σ2
X=1.666 – b1 = b2=0.4

standard kernel -0.832 0.335 0.046 0.37 -0.521 0.236 0.071 0.279 -0.425 0.2 0.082 0.248
standard xavier -0.832 0.335 0.06 0.414 -0.521 0.236 0.1 0.337 -0.425 0.2 0.112 0.302
smooth kernel -0.868 0.326 0.065 0.512 -0.55 0.229 0.1 0.388 -0.451 0.194 0.11 0.492
smooth ls -0.868 0.326 0.241 1.119 -0.55 0.229 0.244 0.713 -0.451 0.194 0.253 0.583
smooth xavier -0.868 0.326 0.089 0.578 -0.55 0.229 0.132 0.453 -0.451 0.194 0.142 0.397

µX=3, σ2
X=1.333 – b1 = b2=0.25

standard kernel -0.793 0.342 0.052 0.35 -0.472 0.239 0.096 0.285 -0.376 0.2 0.119 0.259
standard xavier -0.793 0.342 0.067 0.399 -0.472 0.239 0.132 0.35 -0.376 0.2 0.159 0.32
smooth kernel -0.831 0.334 0.074 0.511 -0.503 0.233 0.129 0.407 -0.404 0.195 0.155 1.885
smooth ls -0.831 0.334 0.28 1.159 -0.503 0.233 0.307 0.745 -0.404 0.195 0.322 0.616
smooth xavier -0.831 0.334 0.098 0.583 -0.503 0.233 0.166 0.474 -0.404 0.195 0.194 0.423

µX=3, σ2
X=1.111 – b1 = b2=0.1

standard kernel -0.754 0.348 0.062 0.341 -0.429 0.243 0.125 0.291 -0.34 0.204 0.155 0.271
standard xavier -0.754 0.348 0.081 0.396 -0.429 0.243 0.167 0.361 -0.34 0.204 0.204 0.339
smooth kernel -0.793 0.34 0.094 0.518 -0.462 0.236 0.167 0.422 -0.37 0.198 0.198 0.404
smooth ls -0.793 0.34 0.324 1.221 -0.462 0.236 0.366 0.777 -0.37 0.198 0.389 0.646
smooth xavier -0.793 0.34 0.124 0.598 -0.462 0.236 0.212 0.493 -0.37 0.198 0.248 0.449

µX=3, σ2
X=1.053 – b1 = b2=0.05

standard kernel -0.747 0.347 0.064 0.335 -0.429 0.244 0.127 0.294 -0.327 0.206 0.167 0.272
standard xavier -0.747 0.347 0.084 0.391 -0.429 0.244 0.168 0.367 -0.327 0.206 0.222 0.34
smooth kernel -0.788 0.339 0.095 0.515 -0.463 0.237 0.167 0.441 -0.357 0.2 0.216 0.408
smooth ls -0.788 0.339 0.328 1.225 -0.463 0.237 0.369 0.783 -0.357 0.2 0.401 0.651
smooth xavier -0.788 0.339 0.126 0.597 -0.463 0.237 0.212 0.5 -0.357 0.2 0.265 0.452
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5.6 Proofs of the Main Results

Below, we use “≲” to indicate an inequality up to universal constant. In most cases
below, this means a constant independent of x and n. The floor function ⌊·⌋ takes as
input a real number x, and gives as output the greatest integer less than or equal to
x, denoted ⌊x⌋. Similarly, the ceiling function ⌈·⌉ maps x to the least integer greater
than or equal to x denoted ⌈x⌉. We let B(·, ·) denote the beta function, i.e., for all
a, b > 0, B(a, b) =

∫ 1
0 t

a−1(1−t)b−1dt. The identity function is denoted I : x ∋ R 7→ x.

5.6.1 Proof of Lemma 5.2.1

Observe that E[|Y |] < ∞ implies tSY (t) → 0 and tFY (−t) → 0 as t → ∞. Thus
E[|Y |p] < ∞ implies tpSY (t) → 0 and tpFY (−t) → 0 as t → ∞. The convergence to
0 of tpSY (t) implies that there exists C > 0 and t1 such that for all t ≥ t1,

|t|p(1 − FY (t)) ≤ C.

This implies that for all u ≥ FY (t1), |F−1
Y (u)|p(1 − u) ≤ C or, equivalently,

|F−1
Y (u)| ≤ C(1 − u)−1/p.

Hence, there exists C1 > 0 such that for u ≥ FY (t1),

|F−1
Y (u)| ≤ C1[u(1 − u)]−1/p.

Using tpFY (−t) → 0 and a similar reasoning, there exists C2 and t2 ≤ t1 such that for
all u ≤ t2, |F−1

Y (u)| ≤ C2[u(1 −u)]−1/p. The result follows since |F−1
Y (u)[u(1 −u)]1/p|

is bounded on [t2, t1]. □

5.6.2 Proof of Theorem 5.2.2

Consider the following decomposition:

θ̂n1,n2−θ0 =
∫ 1

0
F−1
Y ◦ G−1

n1 dFU −
∫ 1

0
F−1
Y dFU︸ ︷︷ ︸

:=T1n1

+
∫ 1

0
F−1
Y ◦ G−1

n1 dF̂U −
∫ 1

0
F−1
Y ◦ G−1

n1 dFU︸ ︷︷ ︸
:=T2N

.

The proof proceeds in three steps. In the first step, we prove that
√
NT1n1 is linear

up to a negligible remainder term. In the second step, we prove the same result for√
NT2N . The last step concludes.
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First step: linearization of
√
NT1n1. By Lemma 5.7.1 followed by an integration

by part,

√
NT1n1 =

√
n

[∫ 1

0
F−1
Y dFU ◦ Gn1 −

∫ 1

0
F−1
Y dFU

]
=

√
N

{∫ ξ(n1)

ξ(1)

F−1
Y d [FU ◦ Gn1 − FU ] −

∫ ξ(1)

0
F−1
Y dFU −

∫ 1

ξ(n1)

F−1
Y dFU

}

= −
√
N

{∫ ξ(n1)

ξ(1)

[FU ◦ Gn1 − FU ] dF−1
Y −

∫ ξ(1)

0
F−1
Y dFU −

∫ 1

ξ(n1)

F−1
Y dFU

}
,

where the last equality relies on Assumption 5.2.2, d1 + b1 < 1 and d2 + b2 < 1. Next,
using Assumption 5.2.2 again,∣∣∣∣∣

∫ ξ(1)

0
F−1
Y dFU

∣∣∣∣∣ ≲ 1{ξ(1) ≥ 1/2}
∣∣∣∣∫ 1

0
F−1
Y dFU

∣∣∣∣+ 1{ξ(1) < 1/2}
∫ ξ(1)

0
t−b1−d1dt

≲ 1{ξ(1) ≥ 1/2} + ξ1−b1−d1
(1) .

Thus, because ξ(1) = Op(1/n1) and b1 + d1 < 1/2,
√
N
∫ ξ(1)

0 F−1
Y dFU = op(1). Simi-

larly,
√
N
∫ 1
ξ(n1)

F−1
Y dFU = op(1). Hence,

√
NT1n1 = −

√
N

∫ ξ(n1)

ξ(1)

[Gn1 − I]dΛ +RN + op(1),

where Λ is the measure defined by dΛ/dF−1
Y = fU and

RN :=
√
N

(∫ ξ(n1)

ξ(1)

[Gn1 − I]fU dF−1
Y −

∫ ξ(n1)

ξ(1)

[FU ◦ Gn1 − FU ] dF−1
Y

)
.

We show below that RN = op(1), which further proves that

√
NT1n1 = −

√
N

∫ ξ(n1)

ξ(1)

[Gn1 − I]dΛ + op(1).

By the mean value theorem, there exists Tn1(t) ∈ (Gn1(t), t) such that

RN =
√
N

∫ ξ(n1)

ξ(1)

[fU − fU ◦ Tn1 ]︸ ︷︷ ︸
:=An1

[Gn1 − I] dF−1
Y .

By Assumption 5.2.2, there exists δ > 0 such that bj + dj < 1/2 − δ. Further, let
δj > 0 be such that

bj + dj < 1/2 − δ − δj . (5.6.1)

Then let q(t) = t1/2−δ1(1 − t)1/2−δ2 . From what precedes, we have

|RN | ≤
√
N

n1
sup
t∈(0,1)

∣∣∣∣√n1(Gn1(t) − t)
q(t)

∣∣∣∣ ∫ ξ(n1)

ξ(1)

|An1(t)|q(t) dF−1
Y (t). (5.6.2)
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We now show that the last term tends to 0 almost surely. First, by convergence of
Gn1(t) to t, we have, for all t ∈ (0, 1), Tn1(t) a.s.−→ t. Then, by continuity of fU ,
An1(t) a.s.−→ 0 for all t ∈ (0, 1). Fix ε > 0. By Theorem 10.6.1 in Shorack and Wellner
(1986), we have, for all t ≥ ξ(1) and all n1 large enough,

Gn1(t) ≤ (1 + ε)t1−δ/2 ≤ (1 + ε)t1−δ.

Now, let B(t) := CU t
−b1(1 − t)−b2 . Then, by Assumption 5.2.2 and because B is a

convex function, we obtain, for all t ∈ [ξ(1), ξ(n1)],

|An1(t)| ≤ [B (Gn1(t)) ∨B (t)] +B(t)

≲ t−b1−δ(1 − t)−b2−δ, a.s.

Therefore,

|An1(t)|1{t ∈ [ξ(1), ξ(n1)]}q(t) ≲ t1/2−b1−δ−δ1(1 − t)1/2−b2−δ−δ2 .

Moreover, by (5.6.1) and Lemma 5.7.2,
∫ 1

0
t1/2−b1−δ−δ1(1 − t)1/2−b2−δ−δ2 dF−1

Y (t) < ∞.

Then, by the dominated convergence theorem,
∫ ξ(n1)

ξ(1)

|An1(t)|q(t) dF−1
Y (t) a.s.−→ 0. (5.6.3)

Next, by Equation (2) in Chapter 2, Section 7 (page 141) in Shorack and Wellner

(1986), there exists a Brownian bridge U such that

sup
t∈(0,1)

∣∣∣∣√n1(Gn1(t) − t) − U(t)
q(t)

∣∣∣∣ = oP (1).

Hence, since ||./q|| is a norm, the triangular inequality yields

sup
t∈(0,1)

∣∣∣∣√n1(Gn1(t) − t)
q(t)

∣∣∣∣ ≤ sup
t∈(0,1)

|U(t)/q(t)| + op(1) = Op(1) + op(1) = Op(1),

by inequality (17) p.451 in Shorack and Wellner (1986) with a = 0, b = 1/2, and
by noticing that U/q has the same distribution on [0, 1/2] and [1/2, 1], and that the
integral on the right-hand side of the inequality is finite for q(t) = [t(1 − t)]a with
a < 1/2. This, together with (5.6.2) and (5.6.3), implies that RN = op(1). Let

R′
N =

√
N

(∫ ξ(n1)

ξ(1)

[Gn1 − I]dΛ −
∫ 1

0
[Gn1 − I]dΛ

)
.
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The last step is to show that R′
N

p−→ 0, which further proves, provided that
1√
n1

∑n1
i=1 ηi = Op(1) (which we show below),

√
NT1n1 = λ1√

n1

n1∑
i=1

ηi + op(1), (5.6.4)

with ηi := −
∫ 1

0 [1{FY (Yi) ≤ t} − t]dΛ(t). We have

|R′
N | ≤

√
N

∫ ξ(1)

0
xdΛ(x) +

√
N

∫ 1

ξ(n1)

(1 − x)dΛ(x).

Consider the first term, the second can be handled similarly. Let δ ∈ (b1 + d1, 1/2).
With probability tending to 1, ξ(1) ≤ 1/2. Moreover, under this event, we have, using
Assumption 5.2.2 again,

√
N

∫ ξ(1)

0
xdΛ(x) ≲

√
Nξ1−δ

(1)

∫ 1/2

0
xδdΛ(x)

≲
√
Nξ1−δ

(1)

∫ 1/2

0
xδ−b1dF−1

Y (x).

By Lemma 5.7.2,
∫ 1/2

0 xδ−b1dF−1
Y (x) < ∞. Moreover, because ξ(1) = Op(1/n1), we

also have
√
Nξ1−δ

(1) = op(1). The result follows.

Second step: linearization of
√
NT2N . By Lemma 5.7.1 followed by an integra-

tion by part,

√
NT2N =

√
N

∫ 1

0
F−1
Y d

[
F̂U ◦ Gn1 − FU ◦ Gn1

]
=

√
N
[
F−1
Y (t)

(
F̂U (Gn1(t)) − FU (Gn1(t))

)]1
0

−
√
N

∫ 1

0

[
F̂U ◦ Gn1 − FU ◦ Gn1

]
dF−1

Y

= −
√
N

∫ 1

0

[
F̂U ◦ Gn1 − FU ◦ Gn1

]
dF−1

Y , (5.6.5)

since for t ∈ (0, ξ(1)), Gn1(t) = 0 and F̂U (0) = FU (0) = 0 because (Ui)i=1,...,n2 is an
iid sample of random variables absolutely continuous with respect to the Lebesgue
measure on [0, 1]. Symmetrically, for t ∈ (ξ(n1), 1), Gn1(t) = 1 and F̂U (1) = FU (1) =
1. We now prove that

−
√
N

∫ 1

0

[
F̂U ◦ Gn1 − FU ◦ Gn1

]
dF−1

Y = −
√
N

∫ 1

0

[
F̂U − FU

]
dF−1

Y +op(1). (5.6.6)

Let Vn2 = √
n2(F̂U ◦F−1

U −I) denote the empirical process associated with the uniform
variables (FU (Ui))i=1,...,n and define

RN =
∫ 1

0
(Vn2 ◦ FU ◦ Gn1 − Vn2 ◦ FU ) dF−1

Y .
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Equation (5.6.6) is equivalent to
√
N/n2RN = op(1). We actually prove the

stronger result that E[|RN |] → 0. For that purpose, let In1(x) = (x,Gn1(x)] if
Gn1(x) > x, In1(x) = [Gn1(x), x) if Gn1(x) < x and ∅ otherwise. Finally, let
Sn1(x) = sgn(Gn1(x) − x). Observe first that

Vn2 ◦ FU ◦ Gn1(x) − Vn2 ◦ FU (x) = Sn(x)Zn(x), (5.6.7)

with
ZN (x) = 1

√
n2

n2∑
i=1

[1{Ui ∈ In1(x)} − PU (In1(x))] ,

where PU ([a, b]) = PU ((a, b]) = PU ([a, b)) = PU ((a, b)) = FU (a) − FU (b) for all
(a, b) ∈ [0, 1], a ≤ b. Then,

E [|RN | |(ξi)i] ≤ E
[∫ 1

0
|Vn2 ◦ FU ◦ Gn1 − Vn2 ◦ FU | dF−1

Y

∣∣∣∣(ξi)i]
=
∫ 1

0
E [|Vn2 ◦ FU ◦ Gn1 − Vn2 ◦ FU | |(ξi)i] dF−1

Y

≤
∫ 1

0
E
[
ZN (x)2|(ξi)i

]1/2
dF−1

Y (x)

=
∫ 1

0
V [1{U1 ∈ In1(x)}|(ξi)i]1/2 dF−1

Y (x)

≤
∫ 1

0
|PU (In1(x))|1/2 dF−1

Y (x). (5.6.8)

The first equality follows by Fubini-Tonelli’s theorem, the second inequality uses
(5.6.7) and the Cauchy-Schwarz inequality and the second equality holds since con-
ditional on the (ξi)i, the variables 1{Ui ∈ In1(x)} − PU (In1(x)) are i.i.d. with mean
zero. As a result,

E [|RN |] ≤
∫ 1

0
E
[
|PU (In1(x)|1/2

]
dF−1

Y (x)

≤
∫ 1

0
E [|PU (In1(x)|]1/2 dF−1

Y (x), (5.6.9)

where the first inequality follows by (5.6.8) and Fubini-Tonelli’s theorem, whereas
the second is due to Jensen’s inequality. Now, by the law of large numbers and the
continuous mapping theorem, |FU (Gn1(x))−FU (x)| p−→ 0 for all x ∈ [0, 1]. Moreover,
|FU (Gn1(x)) − FU (x)| ≤ 1. Hence, for all x ∈ [0, 1],

E [|FU (x) − FU (Gn1(x))|] → 0.

We now apply the dominated convergence theorem to prove that E[|RN |] → 0. Be-
cause x 7→ E[|PU (In1(x))|]1/2 is bounded by 1 for all n1, it is actually enough to bound
this function for x close to 0 and close to 1. Also, by symmetry, we can focus without
loss of generality on the neighborhood of 0. We prove that

E [|PU (In1(x))|] ≲ x1−b1 . (5.6.10)
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Then the result follows by Lemma 5.7.2 combined with Assumption 5.2.2. To prove
(5.6.10), we apply Lemma 5.7.4 with Qn(x) := Gn1(x) and δ < exp(−1)/2. If x ≥
1/n1, Cauchy-Schwarz inequality yields

E [|Gn1(x) − x|] ≤
[
x(1 − x)

n1

]1/2
≤ 2x, (5.6.11)

since n1/2
1 ≥ x−1/2. If x < 1/n1, (5.6.11) holds as well by Theorem 1 in Berend and

Kontorovich (2013). Hence, (5.6.11) holds for all x ∈ (0, δ̄/2). Next, let n0 ∈ N,
n0 ≥ 4/(1 − δ̄)2. By Kiefer’s inequality (see, e.g. van der Vaart and Wellner, 1996,
Corollary A.6.3), we have, for all x ∈ [0, δ] and all n1 ≥ n0,

P(Gn1(x) > 1/2) ≤ (ex)n1(1−δ̄)2/4 ≲ x. (5.6.12)

Thus, we can apply Lemma 5.7.4, which yields (5.6.10).

Hence, (5.6.6) holds. Combined with (5.6.5), this implies, provided that
1√
n2

∑n2
i=1 εi = Op(1) (which we show below),

√
NT2N = λ2√

n2

n2∑
i=1

εi + op(1), (5.6.13)

with εi = −
∫ 1

0 [1{Ui ≤ t} − FU (t)] dF−1
Y (t).

Third step: conclusion. By definition of ηi and εi, we have E[ηi] = E[εi] = 0 and

E[η2
i ] =

∫ 1

0

∫ 1

0
(s ∧ t− st)fU (s)fU (t) dF−1

Y (s) dF−1
Y (t),

E[ε2
i ] =

∫ 1

0

∫ 1

0
(FU (s ∧ t) − FU (s)FU (t)) dF−1

Y (s) dF−1
Y (t).

Moreover, under Assumption 5.2.1, ηi and εi are independent. The result follows by
the central limit theorem. □

5.6.3 Proof of Theorem 5.3.1

We first decompose the difference θ̌n1,n2,n3 − θ0 into three parts that we study inde-
pendently:

θ̌n1,n2,n3 − θ0 =
∫ 1

0
F−1
Y ◦ G−1

n1 dFU −
∫ 1

0
F−1
Y dFU︸ ︷︷ ︸

=T1n1

+
∫ 1

0
F−1
Y ◦ G−1

n1 dF̂U −
∫ 1

0
F−1
Y ◦ G−1

n1 dFU︸ ︷︷ ︸
=T2N

+
∫ 1

0
F−1
Y ◦ G−1

n1 ◦ Hn3 dF̂U −
∫ 1

0
F−1
Y ◦ G−1

n1 dF̂U︸ ︷︷ ︸
:=T3N

.
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This decomposition is convenient as T1n1 and T2N have already been analyzed in the
proof of Theorem 5.2.2. We then prove the result in eight steps. We first show that

√
NT3N = −

√
N

∫ 1

0

[
F̂U ◦ H−1

n3 ◦ Gn1 − F̂U ◦ Gn1

]
dF−1

Y . (5.6.14)

where Gn1 is defined below. Second, we show that

√
NT3N = −

√
N

∫ 1

0

[
FU ◦ H−1

n3 ◦ Gn1 − FU ◦ Gn1

]
dF−1

Y︸ ︷︷ ︸
:=J1N

+op(1). (5.6.15)

Let us then write −
√
NJ1N =

√
NJ2n3 +R1N +R2N +R3N +R4N , with:

J2n3 := −
∫ 1−1/n3

1/n3

[
H−1
n3 (x) − E[H−1

n3 (x)]
]
fU (x) dF−1

Y (x), (5.6.16)

R1N := −
√
N

(
J1N −

∫ ξ(n1)

ξ(1)

[
H−1
n3 ◦ Gn1 − Gn1

]
fU dF

−1
Y

)
, (5.6.17)

R2N := −
√
N

(∫ ξ(n1)

ξ(1)

[
H−1
n3 ◦ Gn1 − Gn1

]
fU dF

−1
Y −

∫ ξ(n1)

ξ(1)

[
H−1
n3 − I

]
fU dF

−1
Y

)
,

(5.6.18)

R3N :=
√
N

∫ ξ(n1)

ξ(1)

[
x− E[H−1

n3 (x)]
]
fU (x) dF−1

Y (x), (5.6.19)

R4N :=
√
N

(∫ 1−1/n3

1/n3

[
H−1
n3 (x) − E[H−1

n3 (x)]
]
fU (x) dF−1

Y (x)

−
∫ ξ(n1)

ξ(1)

[
H−1
n3 (x) − E[H−1

n3 (x)]
]
fU (x) dF−1

Y (x)
)
. (5.6.20)

In the third to sixth steps, we prove that each of the four terms R1N − R4N tends
to 0 in probability. In the seventh step, we show that

√
NJ2n3 tends to a normal

distribution. The eighth step concludes.

First step: Equation (5.6.14) holds. Let X0
n3 := [0, ζ(1)] and X1

n3 := [ζ(n3), 1].
For all t ∈ [0, 1], let us also define

Gn1(t) = 1
n1

n1∑
i=1

1{ξi ≤ t} + 1
n1

n1−1∑
i=1

1{ξi < t < ξi+1}

= Gn1(t) + 1
n1

n1−1∑
i=1

1{ξi < t < ξi+1}.
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Then, remark that G−1
n1 ◦ Hn3 is the generalized inverse of H−1

n3 ◦ Gn1 . Then, by
splitting the first integral in

√
NT3N and applying Lemma 5.7.1, we obtain

√
NT3N =

√
N

(∫
(X0

n3 ∪X1
n3 )c

F−1
Y ◦ G−1

n1 ◦ Hn3 dF̂U −
∫ 1

0
F−1
Y ◦ G−1

n1 dF̂U

+
∫
X0

n3 ∪X1
n3

F−1
Y ◦ G−1

n1 ◦ Hn3 dF̂U

)

=
√
N

(∫ ξ(n1)

ξ(1)

F−1
Y d

[
F̂U ◦ H−1

n3 ◦ Gn1

]
−
∫ 1

0
F−1
Y d

[
F̂U ◦ Gn1

]
+
∫
X0

n3 ∪X1
n3

F−1
Y ◦ G−1

n1 ◦ Hn3 dF̂U

)

=
√
N

∫ ξ(n1)

ξ(1)

F−1
Y d

[
F̂U ◦ H−1

n3 ◦ Gn1 − F̂U ◦ Gn1

]
+

√
N

∫
X0

n3 ∪X1
n3

F−1
Y ◦ G−1

n1 ◦ Hn3 dF̂U , (5.6.21)

where we used the fact that F̂U ◦ Gn1 is constant on the two segments [0, ξ(1)] and
[ξ(n1), 1] to obtain the third equality. Remark that

√
N
[
F−1
Y (t)

(
F̂U ◦ H−1

n3 ◦ Gn(t) − F̂U ◦ Gn1(t)
)]t=ξ(n1)

t=ξ(1)

=
√
N
[
1
{
ζ(n3) < U(n2)

}
F−1
Y (ξ(n1))

(
F̂U (ζ(n3)) − 1

)
− 1

{
ζ(1) ≥ U(1)

}
F−1
Y (ξ(1))F̂U (ζ(1))

]
.

Also, since Hn3 is constant on the two segments X0
n3 and X1

n3 , we have

√
N

∫
X0

n∪X1
n3

F−1
Y ◦ G−1

n1 ◦ Hn3 dF̂U

=
√
N
[
F̂U (1) − F̂U (ζ(n3))

]
F−1
Y (ξ(n1)) +

√
n
[
F̂U (ζ(1)) − F̂U (0)

]
F−1
Y (ξ(1))

=
√
N
[
1
{
ζ(1) ≥ U(1)

}
F−1
Y (ξ(1))F̂U (ζ(1)) − 1

{
ζ(n3) < U(n2)

}
F−1
Y (ξ(n1))

(
F̂U (ζ(n3)) − 1

)]
.

Thus, an integration by part of the first term in (5.6.21) yields (5.6.14).

Second step: Equation (5.6.15) holds. From (5.6.14), we have

√
NT3N = −

√
N

∫ 1

0

[
FU ◦ H−1

n3 ◦ Gn1 − FU ◦ Gn1

]
dF−1

Y︸ ︷︷ ︸
=:J1N

−
√
N

∫ 1

0

[
F̂U ◦ H−1

n3 ◦ Gn1 − FU ◦ H−1
n3 ◦ Gn1

]
dF−1

Y

−
√
N

∫ 1

0

[
FU ◦ Gn1 − F̂U ◦ Gn1

]
dF−1

Y .
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We show below that

√
N

∫ 1

0

[
F̂U ◦ H−1

n3 ◦ Gn1 − FU ◦ H−1
n3 ◦ Gn1

]
dF−1

Y =
√
N

∫ 1

0

[
F̂U − FU

]
dF−1

Y +op(1).
(5.6.22)

Once combined with (5.6.6), this proves (5.6.15). To prove (5.6.22), we follow closely
the proof of (5.6.6). Recall that Vn2 = √

n2(F̂U ◦ F−1
U − I), and let

RN =
∫ 1

0

(
Vn2 ◦ FU ◦ H−1

n3 ◦ Gn1 − Vn2 ◦ FU
)
dF−1

Y ,

and ĪN (x) = (x,H−1
n3 ◦ Gn1(x)] if H−1

n3 ◦ Gn1(x) > x, ĪN (x) = [H−1
n3 ◦ Gn1(x), x) if

H−1
n3 ◦ Gn1(x) < x and ∅ otherwise. We prove that E[|RN |] → 0. Reasoning as to

obtain (5.6.9) (but conditioning first on (ξi, ζi)i instead of just on (ξi)i), we get

E [|RN |] ≤
∫ 1

0
E
[
|FU (x) − FU (H−1

n3 ◦ Gn1(x))|
]1/2

dF−1
Y (x).

Because Gn1(x) p−→ x, by uniform convergence of H−1
n3 towards I and the continuous

mapping theorem, |FU (H−1
n3 ◦ Gn1(x)) − FU (x)| p−→ 0 for all x ∈ [0, 1]. Moreover,

|FU (H−1
n3 ◦ Gn1(x)) − FU (x)| ≤ 1. Hence, for all x ∈ [0, 1],

E
[
|FU (x) − FU (H−1

n3 ◦ Gn1(x))|
]

→ 0.

Next, we show E[|RN |] → 0 by proving

E
[
|FU (x) − FU (H−1

n3 ◦ Gn1(x))|
]
≲ x1−b1 . (5.6.23)

and applying the dominated convergence theorem. As in Theorem 5.2.2, we apply
Lemma 5.7.4 with Qn(x) := H−1

n3 ◦ Gn1(x). The two conditions of this lemma are
checked in Lemma 5.7.3. Hence, (5.6.23), and thus (5.6.15), hold.

Third step: R1N = op(1). Recall that R1N is defined in (5.6.17). Let jN :=
⌈n1/n3⌉ ≥ 1. We split R1N into two integrals: R1N,1 is obtained by integrating on the
segment [ξ(1), ξ(jN )], and R1N,2 is obtained by integrating on the segment [ξ(jN ), ξ(n1)].
Let us first focus on R1N,2. By the mean value theorem, for all t ∈ [ξ(jN ), ξ(n1)], there
exists TN (t) ∈ (Gn1(t),H−1

n3 ◦ Gn1(t)) such that

R1N,2 =
√
N

n3

√
n3

∫ ξ(n1)

ξ(jN )

[fU − fU ◦ TN ]︸ ︷︷ ︸
:=AN

[
H−1
n3 ◦ Gn1 − Gn1

]
dF−1

Y .

By Assumption 5.2.2, there exists δ > 0 such that bj + dj < 1/2 − δ. Further, let
δj > 0 be such that

bj + dj < 1/2 − δ − δj . (5.6.24)
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Then let q(t) = t1/2−δ1(1 − t)1/2−δ2 . From what precedes, we have

|R1N,2| ≤
√
N

n3
sup

t∈(1/n3,1−1/n1)

∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣
∫ ξ(n1)

ξ(jN )

|AN (t)|q(t) dF−1
Y (t).

(5.6.25)
We now show that the integral in (5.6.25) tends to 0 almost surely. First, by uniform
convergence of H−1

n3 towards I and convergence of Gn1(t) to t, we have, for all t ∈ (0, 1),
TN (t) a.s.−→ t. Then, by continuity of fU , AN (t) a.s.−→ 0 for all t ∈ (0, 1). Fix ε > 0. By
Theorem 10.6.1 in Shorack and Wellner (1986), we have, for all t ≥ ξ(1) and all n1

large enough,
Gn1(t) ≤ (1 + ε)t1−δ/2 ≤ (1 + ε)t1−δ.

Moreover, by the same theorem, we have, for all u ≥ 1/n3,

H−1
n3 (u) ≤ (1 + ε)u(1−δ/2).

Then, since Gn1(t) ≥ 1/n3 for all t ≥ ξ(jN ),

H−1
n3 ◦ Gn1(t) ≤ (1 + ε)2t1−δ.

Now, let B(t) := CU t
−b1(1 − t)−b2 . Then, by Assumption 5.2.2 and because B is a

convex function, we obtain, for all t ∈ [ξ(jN ), ξ(n1)],

|AN (t)| ≤
[
B
(
H−1
n3 ◦ Gn1(t)

)
∨B (Gn1(t))

]
+B(t)

≲ t−b1−δ(1 − t)−b2−δ, a.s.

Therefore,

|AN (t)|1{t ∈ [ξ(jN ), ξ(n1)]}q(t) ≲ t1/2−b1−δ−δ1(1 − t)1/2−b2−δ−δ2 .

Moreover, by (5.6.24) and Lemma 5.7.2,
∫ 1

0
t1/2−b1−δ−δ1(1 − t)1/2−b2−δ−δ2 dF−1

Y (t) < ∞.

Then, by the dominated convergence theorem,
∫ ξ(n1)

ξ(jN )

|AN (t)|q(t) dF−1
Y (t) a.s.−→ 0. (5.6.26)

Next, since for any t ∈ (1/n3, 1 − 1/n1),∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣ = 1{n1 ≤ n3}
∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣+ 1{n1 > n3}
∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣ ,



206 Chapter 5. Asymptotic Properties of Empirical Quantile-Based Estimators

we have

sup
t∈(1/n3,1−1/n1)

∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣ ≤ 2 sup
t∈(1/n3,1−1/n3)

∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣
+ 1{n1 > n3} sup

t∈(1−1/n3,1−1/n1)

∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣
By Corollary 4.3.1 and Theorem 3.4 in Csorgo et al. (1986),

sup
t∈(1/n3,1−1/n3)

∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣ = Op(1).

Also,

1{n1 > n3} sup
t∈(1−1/n3,1−1/n1)

∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣
= 1{n1 > n3} sup

t∈(1−1/n3,1−1/n1)

∣∣∣∣∣
√
n3(ζ(n3) − t)

q(t)

∣∣∣∣∣
≤ 1{n1 > n3} sup

t∈(1−1/n3,1−1/n1)

∣∣∣∣∣
√
n3(ζ(n3) − 1)

q(t)

∣∣∣∣∣
+ 1{n1 > n3} sup

t∈(1−1/n3,1−1/n1)

∣∣∣∣√n3(1 − t)
q(t)

∣∣∣∣
≲ n−δ2

1

[
n3(ζ(n3) − 1) + 1

]
= op(1).

Hence,

sup
t∈(1/n3,1−1/n1)

∣∣∣∣∣
√
n3(H−1

n3 (t) − t)
q(t)

∣∣∣∣∣ = Op(1).

This, together with (5.6.25) and (5.6.26), implies that R1N,2 = op(1). Now, let us
show that R1N,1 = op(1). Recall that

R1N,1 :=
√
N

n3

√
n3

∫ ξ(jN )

ξ(1)

AN (t)
[
H−1
n3 ◦ Gn1(t) − Gn1(t)

]
dF−1

Y (t),

where jN = ⌈n1/n3⌉. If n1 ≤ n3, then jN = 1 and R1N,1 = 0. Thus, assume without
loss of generality that λ3/λ1 > 1. Whenever n1 > n3, since Gn1 is monotonically
increasing, for all t ∈ (ξ(1), ξ(jN )),

0 < 1
n1

= Gn1(ξ(1)) ≤ Gn1(t) ≤ Gn1(ξ(jN )) ≤ 1
n3

+ 1
n1

<
2
n3
.

Therefore, on such interval we have H−1
n3 ◦ Gn1(t) ∈ {ζ(1), ζ(2)}. Also, by assumption,

there exists ε > 0 such that, for N sufficiently large, |n1
n3

− λ3
λ1

| < ε. By choosing
ε sufficiently small, this ensures that for sufficiently large N , jN ≤ ⌈ε + λ3/λ1⌉ ≤
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⌈λ3/λ1⌉ + 1 =: j̄. Hence, for N sufficiently large,

|R1N,1| ≤
√
N

n3

√
n31{n1 > n3}

∫ ξ(jN )

ξ(1)

|AN (t)|
∣∣∣H−1

n3 ◦ Gn1(t) − Gn1(t)
∣∣∣ dF−1

Y (t)

≤
√
N

n3

√
n31{n1 > n3}

∫ ξ(j̄)

ξ(1)

|AN (t)|
∣∣∣H−1

n3 ◦ Gn1(t) − Gn1(t)
∣∣∣ dF−1

Y (t)

≲

√
N

n3

1
√
n3

max
z=1,2

{
n3

∣∣∣∣ζ(z) − 1
n1

∣∣∣∣ ∨ n3

∣∣∣∣∣ζ(z) − j̄

n1

∣∣∣∣∣
}

×
[
B(ξ(1)) ∨B(ξ(j̄)) ∨B(ζ(1)) ∨B(ζ(2)) ∨B(1/n1) ∨B

(
j̄/n1

)] ∫ ξ(j̄)

ξ(1)

dF−1
Y (t),

where the third inequality follows by convexity of u 7→ |ζ(z)−u|, and Assumption 5.2.2.
Now, by using the explicit formula for the Mean Absolute Deviation of Beta distribu-
tions given in the proof of Lemma 5.7.3, the bound f(u) ≲ (C/n3)u2 derived in the
same Lemma and applied to u = 1 and u = 2, and the fact that there exist c, C > 0,
such that for N sufficiently large cn3 ≤ n1 ≤ Cn3 almost surely, one can show that

max
z=1,2

{
n3

∣∣∣∣ζ(z) − 1
n1

∣∣∣∣ ∨ n3

∣∣∣∣∣ζ(z) − j̄

n1

∣∣∣∣∣
}

= Op(1).

Next, by Assumption 5.2.2,
∫ ξ(j̄)

ξ(1)

dF−1
Y (t) ≲ ξ−d1

(1) + ξ−d1
(j̄) .

By Assumption 5.2.2 again, there exists δ > 0 such that 1/2 > δ + b1 + d1. Hence,

n
−1/2
3

[
B(ξ(1)) ∨B(ξ(j̄)) ∨B(ζ(1)) ∨B(ζ(2)) ∨B(1/n1) ∨B

(
j̄/n1

)] ∫ ξ(j̄)

ξ(1)

dF−1
Y (t)

≲
1
nδ3

[
(n3ξ(1))−b1−d1 + (n3ξ(j̄))−b1−d1 + (n3ξ(1))−b1(n3ξ(j̄))−d1 + (n3ξ(1))−d1(n3ξ(j̄))−b1

+(n3ζ(1))−b1(n3ξ(1))−d1 + (n3ζ(2))−b1(n3ξ(j̄))−d1 + (n3ζ(1))−b1(n3ξ(j̄))−d1

+(n3ζ(2))−b1(n3ξ(1))−d1 + (n3/n1)−b1(n3ξ(1))−d1 + (n3j̄/n1)−b1(n3ξ(j̄))−d1

+(n3/n1)−b1(n3ξ(j̄))−d1 + (n3j̄/n1)−b1(n3ξ(1))−d1
]

≲
Op(1)
nδ3

.

The last inequality follows from n3/n1
p−→ λ3/λ1 and the well-known result (see, e.g.

the proof of the DKW inequality in Donsker, 1952) that if (Wi)i=1,...,n
iid∼ U([0, 1]),

then for any k ∈ {1, . . . , n},
W(k)

d= Sk
Sn+1

,

where Sj := T1+. . .+Tj , and T1, T2... is an iid sequence of (mean 1) exponentially dis-
tributed random variables. This result, combined with the law of large numbers and
the continuous mapping theorem, yields that for any (k, a) ∈ {1, ..., n}×R, (nW(k))a =
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Op(1). We conclude that R1N,1 = op(1).

Fourth step: R2N = op(1). Recall that R2N is defined in (5.6.18). We actually
prove the stronger result that R2N converges to 0 in L1. Let Wn3 = √

n3(H−1
n3 − I)

and Bn1 = 1{ξ(1) ≤ x < ξ(n1)}. We have, by Fubini-Tonelli’s theorem,

E[|R2N |] ≤
√
N

n3

∫ 1

0
E[|Wn3 ◦ Gn1(x) − Wn3(x)| ×Bn1 ]fU (x)dF−1

Y (x)

≤
√
N

n3

∫ 1

0
E[(Wn3 ◦ Gn1(x) − Wn3(x))2 ×Bn1 ]1/2fU (x)dF−1

Y (x).

We apply the dominated convergence theorem to prove the result. First, note that
for all (x, y) ∈ (0, 1]2,

|H−1
n3 (x) − H−1

n3 (y)| ∼ Beta(|⌈n3x⌉ − ⌈n3y⌉|, n3 − |⌈n3x⌉ − ⌈n3y⌉| + 1),

with the convention that the Beta(0, n3 + 1) is the Dirac distribution at 0. Hence, for
any k ∈ {1, ..., n1 − 1},

E
[
(Wn3 ◦ Gn1(x) − Wn3(x))2 |Gn1(x) = k/n1

]
= n3

{
E
[(

H−1
n3 (k/n1) − H−1

n3 (x) − (k/n1 − x)
)2
]}

= n3

{
E
[(

H−1
n3 (k/n1) − H−1

n3 (x) − 1
n3 + 1 (⌈(n3k)/n1⌉ − ⌈n3x⌉)

+ 1
n3 + 1 (⌈(n3k)/n1⌉ − ⌈n3x⌉) − (k/n1 − x)

)2
]}

= n3

{
V
[
H−1
n3 (k/n1) − H−1

n3 (x)
]

+ 1
(n3 + 1)2 (⌈(n3k)/n1⌉ − (n3k)/n1 + n3x− ⌈n3x⌉ + x− k/n1)2

}
= n3

(n3 + 1)2(n3 + 2) |⌈(n3k)/n1⌉ − ⌈n3x⌉| (n3 + 1 − |⌈(n3k)/n1⌉ − ⌈n3x⌉|) (5.6.27)

+ n3
(n3 + 1)2 (⌈(n3k)/n1⌉ − (n3k)/n1 + n3x− ⌈n3x⌉ + x− k/n1)2

≤ 1
n3

|⌈(n3k)/n1⌉ − ⌈n3x⌉| + 2
n3

[
2 (⌈(n3k)/n1⌉ − (n3k)/n1)2 + 2 (⌈n3x⌉ − n3x)2 +

(
k

n1
− x

)2]

≤
∣∣∣∣ kn1

− x

∣∣∣∣+ 1
n3

[
10 + 2

(
k

n1
− x

)2]
, (5.6.28)

where the first inequality follows by convexity and the last by the triangle inequality
and because by definition, |a− ⌈a⌉| ≤ 1 for all a ∈ R+. Now, remark that Bn1 = 1
iff n1Gn1(x) ∈ {1, . . . , n1 − 1}. Then, by what precedes,

E
[
(Wn3 ◦ Gn1(x) − Wn3(x))2 ×Bn1

]
≤ E [|Gn1(x) − x|] + 1

n3
[10 + 2V(Gn1(x))]

(5.6.29)

→ 0.
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To apply the dominated convergence theorem, we show that there exists q(.) such
that for all n1 ≥ n0 and all x ∈ [0, 1],

E[(Wn3 ◦ Gn1(x) − Wn3(x))2 ×Bn1 ]1/2 ≤ q(x), (5.6.30)

with
∫ 1

0 q(x)fU (x)dF−1
Y (x) < ∞. As above, we focus on a neighborhood of 0. If

x > 1/n3, we have, by (5.6.29) and (5.6.11),

E
[
(Wn3 ◦ Gn1(x) − Wn3(x))2 ×Bn1

]
≤ 14x.

Now suppose that x < 1/n3. Remark that E(Bn1) ≤ 1 − (1 − x)n1 ≤ n1x. Then,
integrating (5.6.28), we obtain

E
[
(Wn3 ◦ Gn1(x) − Wn3(x))2 ×Bn1

]
≤ E [|Gn1(x) − x|] + 1

n3
[10n1x+ 2V(Gn1(x))]

≤ (⌈λ3/λ1⌉ + 1)14x.

Then we can choose q(x) = ((⌈λ3/λ1⌉ + 1)14x)1/2 in (5.6.30). By Assumption 5.2.2
and Lemma 5.7.2, we have

∫ 1/2
0 q(x)fU (x)dF−1

Y (x) < ∞. The same reasoning applies
to the interval [1/2, 1]. The result follows.

Fifth step: R3N = op(1). Recall that R3N is defined in (5.6.19). Let Λ denote the
measure on (0, 1) such that dΛ/dF−1

Y = fU . Note that Hn3(x) ∼Beta(⌈n3x⌉, n3 + 1 −
⌈n3x⌉), thus E[Hn3(x)] = ⌈n3x⌉/(n3 + 1). Then

E[|R3N |] ≤
√
N

n3

∫ 1

0
[1 − xn1 − (1 − x)n1 ]

∣∣∣∣∣⌈n3x⌉ − (n3 + 1)x
(n3 + 1)n−1/2

3

∣∣∣∣∣ dΛ(x).

Let fN (x) denote the integrand. We have limN→∞ fN (x) = 0. Moreover, using
1 − xn1 − (1 − x)n1 ≤ n1x and since n1 ≲ n3, we obtain, when x < 1/n3,

fN (x) ≤ 2n1/2
3 x ≤ x1/2 ≲ [x(1 − x)]1/2.

When x ∈ [1/n3, 1 − 1/n3],

fN (x) ≤ 2
n

1/2
3

≲ [x(1 − x)]1/2.

Finally, when x > 1 − 1/n3, then x > 1 − 1/n1, and thus using 1 − xn1 ≤ n1(1 − x),

fN (x) ≤ n1(1 − x) 2
(n3 + 1)n−1/2

3
≤ 2(1 − x)1/2 ≲ [x(1 − x)]1/2.

Moreover,
∫ 1

0 [x(1 − x)]1/2dΛ < ∞ by Lemma 5.7.2. Thus, by the dominated conver-
gence theorem, R3N = op(1).
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Sixth step: R4N = op(1). Recall that R4N is defined in (5.6.20). We prove the
stronger result that R4N converges to 0 in L1. By Fubini-Tonelli’s theorem combined
with Assumption 5.2.1 and Jensen’s inequality, we have

E[|R4N |] ≤
√
N

n3

∫ 1

0

√
n3E

[∣∣∣1{x ∈ [ξ(1), ξ(n1)]} − 1{x ∈ [1/n3, (n3 − 1)/n3]}
∣∣∣]

× E
[(

H−1
n3 (x) − ⌈n3x⌉

(n3 + 1)

)2]1/2

dΛ(x). (5.6.31)

Since H−1
n3 (x) ∼Beta(⌈n3x⌉, n3 + 1 − ⌈n3x⌉), we have

E
[(

H−1
n3 (x) − ⌈n3x⌉

(n3 + 1)

)2]1/2

=
√

⌈n3x⌉(n3 + 1 − ⌈n3x⌉)
(n3 + 1)2(n3 + 2) ≲

√
x(1 − x)

n3
.

Let qN (x) denote the first expectation in the integrand. By letting pn1(x) := 1 −
xn1 − (1 − x)n1 , we have

qN (x) = P(ξ(1) ≤ x ≤ ξ(n1), x < 1/n3) + P(ξ(1) ≤ x ≤ ξ(n1), x > (n3 − 1)/n3)

+ P(ξ(1) > x ∪ x > ξ(n1), 1/n3 ≤ x ≤ (n3 − 1)/n3)

= pn1(x) [1{x < 1/n3} + 1{1 − x < 1/n3}] + (1 − pn1(x))1{1/n3 ≤ x ≤ (n3 − 1)/n3}.

Let fN (x) denote the integrand in the right-hand side of (5.6.31). For all x ∈ (0, 1),
limN→∞ pn1(x) = 1 so from what precedes, limN→∞ fN (x) = 0 for all x ∈ [0, 1].
Moreover, using qN (x) ≤ 1, we get

fN (x) ≲ [x(1 − x)]1/2,

with
∫ 1

0 [x(1 − x)]1/2dΛ < ∞ by Lemma 5.7.2. The result follows by the dominated
convergence theorem.

Seventh step: asymptotic normality of J2n3. Let Iin3 = [(i − 1)/n3, i/n3).
First, note that

−
√
n3J2n3 =

n3∑
i=1

ain3

(
ζ(i) − i

(n3 + 1)

)
, (5.6.32)

where a1n3 = an3n3 = 0, and, for all i ∈ {2, . . . , n3 − 1}, ain3 = √
n3Λ (Iin3). We

now verify that the necessary and sufficient conditions given by Hecker (1976) for the
asymptotic normality of the L−statistic in (5.6.32) hold in our case. Let us define

σ2
n3 = 1

n3 + 2

n3∑
j=1

n3∑
k=1

ajn3akn3

[(
j

n3 + 1 ∧ k

n3 + 1

)
− jk

(n3 + 1)2

]
.

We have to prove that

lim
n3→∞

max1≤i≤n3

∣∣∣∑n3
j=i ajn3

∣∣∣
n3σn3

= 0. (5.6.33)
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First, by Assumption 5.2.2 and Lemma 5.7.2, there exists δ < 1/2 such that
∫ 1

0
tδ−b1(1 − t)δ−b2 dF−1

Y (t) < +∞.

Now, because ain3 ≥ 0, we have, for all n3 ≥ 2,

max
1≤i≤n3

∣∣∣∣∣∣
n3∑
j=i

ajn3

∣∣∣∣∣∣ =
√
n3

n3−1∑
j=2

Λ (Ijn3)

=
√
n3

∫ (n3−1)/n3

1/n3
fU (t) dF−1

Y (t)

≤ CU
√
n3

∫ (n3−1)/n3

1/n3
t−b1(1 − t)−b2 dF−1

Y (t)

≤ CU2δn1/2+δ
3

∫ (n3−1)/n3

1/n3
tδ−b1(1 − t)δ−b2 dF−1

Y (t)

≤ CU2δn1/2+δ
3

∫ 1

0
tδ−b1(1 − t)δ−b2 dF−1

Y (t),

where the first inequality follows by Assumption 5.2.2 and the second uses the fact
that [t(1 − t)]δ ≥ 1/(2n3)δ for all t ∈ [1/n3, 1 − 1/n3]. Therefore,

max
1≤i≤n

∣∣∣∣∣∣
n3∑
j=i

ajn3

∣∣∣∣∣∣ = O(n1/2+δ
3 ). (5.6.34)

Next, we have

σ2
n3 = n3

n3 + 2

n3−1∑
j=2

n3−1∑
k=2

Λ (Ijn3) Λ (Ikn3)
(

j

n3 + 1 ∧ k

n3 + 1 − jk

(n3 + 1)2

)

= n

n3 + 2

∫ 1

0

∫ 1

0
fn3(x, y)dΛ(x)dΛ(y),

where fn3(x, y) = j
n3+1 ∧ k

n3+1 − jk
(n3+1)2 when (x, y) ∈ Ijn3 ×Ikn3 , 1 < j∧k ≤ j∨k < n3,

fn3(x, y) = 0 otherwise. For any (x, y) ∈ (0, 1)2, fn3(x, y) → f(x, y) := x ∧ y − xy.
Moreover, for any (x, y) ∈ Ijn3 × Ikn3 , 1 < j ∧ k ≤ j ∨ k < n3,

j

n3 + 1 ∧ k

n3 + 1 ≤ 2(x ∧ y),

1 − j

n3 + 1 ∨ k

n3 + 1 ≤ 2 (1 − x ∨ y) .

Thus, fn3(x, y) ≤ 4f(x, y) for all (x, y) ∈ [1/n3, 1 − 1/n3]2. This inequality also
holds for (x, y) ∈ [0, 1]2\[1/n3, 1 − 1/n3]2 since fn3(x, y) = 0 for such (x, y). Because
x ∧ y ≤ (xy)1/2 and 1 − x ∨ y ≤ [(1 − x)(1 − y)]1/2, we have f(x, y) ≤ [x(1 − x)y(1 −
y)]1/2. Moreover, by Lemma 5.7.2,

∫ 1
0 [I(1 − I)]1/2dΛ < ∞. Thus, by the dominated
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convergence theorem,

lim
n3→∞

σ2
n3 = σ2 :=

∫ 1

0

∫ 1

0
(x ∧ y − xy)dΛ(x)dΛ(y) > 0. (5.6.35)

Combined with (5.6.34), this implies (5.6.33). Thus, by Theorem 1 of Hecker (1976)
and (5.6.35) again,

−
√
n3J2n3

d−→ N (0, σ2).

Eighth step: conclusion. By the previous steps and the proof of Theorem 5.2.2,
we have

√
N
(
θ̌n1,n2,n3 − θ0

)
=
√
λ1
n1

n1∑
i=1

ηi +
√
λ2
n2

n2∑
i=1

εi +
√
λ3n3J2n3 + op(1).

As shown in the proof of Theorem 5.2.2, the first term on the right-hand side is
asymptotically normal. The second term is also asymptotically normal by the pre-
vious step. Moreover, by Assumption 5.3.1, J2n3 is independent of the (ηi, εi)i≥1.
Therefore, the vector

(∑n1
i=1(ηi)/

√
n1 +∑n2

i=1(εi)/
√
n2,

√
n3J2n3

)
converges jointly in

distribution to two independent normal variables distributions. The result follows. □

5.7 Technical Lemmas

In Theorems 1 and 2, we use the following lemma, which is established in Proposition
1 of Falkner and Teschl (2012).

Lemma 5.7.1 Let g be some Borel measurable function on [0, 1], and F,Q be cdf’s
on [0, 1]. Then, for any 0 ≤ a ≤ b ≤ 1,

∫ Q(b)

Q(a)
g ◦Q−1 dF =

∫ b

a
g dF ◦Q. (5.7.1)

Lemma 5.7.2 Suppose that Assumption 5.2.2 holds and that a1 > d1 and a2 > d2,
then

∫ 1
0 x

a1(1 − x)a2 dF−1
Y (x) < ∞.

Proof: first, we have∫ 1

0
xa1(1 − x)a2 dF−1

Y (x) =
∫
R
FY (u)a1(1 − FY (u))a2 du.

By Assumption 5.2.2 (ii), for all u ∈ R:

|u| ≤ CFY (u)−d1(1 − FY (u))−d2 .

Fix ε > 0. Then, for all u ≤ −1 ∧ F−1
Y (ε), FY (u) ≤ C1/d1(1 − ε)−d2/d1 |u|−1/d1 . Thus:

∫ −1∧F−1
Y (ε)

−∞
FY (u)a1(1−FY (u))a2 du ≤ C1/d1(1−ε)−d2/d1

∫ −1∧F−1
Y (ε)

−∞
|u|−a1/d1 du < ∞,
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since d1 < a1. A similar reasoning shows that
∫∞

1∨F−1
Y (1−ε) FY (u)a1(1 −FY (u))a2 du <

∞, using d2 < a2. □

We recall that Gn1 is defined as Gn1(x) = Gn1(x)+∑n1−1
i=1 1{ξ(i) < x < ξ(i+1)}/n1.

Lemma 5.7.3 (Useful properties of H−1
n3 ◦Gn1) There exists δ ∈ (0, 1/2) and n0 ∈ N

such that for all 0 < x < δ and all n ≥ n0,

E
[∣∣∣H−1

n3 ◦ Gn1(x) − x
∣∣∣] ≲ x. (5.7.2)

Moreover, for any η > 0, there exists n′
0 such that for all n ≥ n′

0 and for all 0 < x < δ,

P(H−1
n3 ◦ Gn1(x) > 1/2) ≲ x1−η. (5.7.3)

Inequalities (5.7.2)-(5.7.3) hold if we replace x by 1 − x, using possibly another δ and
n0.

Proof: Let us define

G̃n1(x) = Gn1(x) + 1{0 < Gn1(x) < 1}
n

. (5.7.4)

Observe that for a given x ∈ [0, 1], we have, with probability one, Gn1(x) = G̃n1(x).
Then, recalling that pn1(x) = [1 − xn1 − (1 − x)n1 ]/n1,

E[Gn1(x)] = x+ pn1(x).

By the triangle inequality,

E
[∣∣∣H−1

n3 ◦ Gn1(x) − x
∣∣∣]

≤ E
[∣∣∣∣∣H−1

n3 ◦ Gn1(x) − ⌈n3Gn1(x)⌉
n3 + 1

∣∣∣∣∣
]

+ E
[∣∣∣∣∣⌈n3Gn1(x)⌉

n3 + 1 − x

∣∣∣∣∣
]
. (5.7.5)

Consider the second term first. Suppose first that n3x ≤ 1. Let λ = n3/n1 and
B ∼Binomial(n1, x). We have

E
[∣∣∣∣∣⌈n3Gn1(x)⌉

n3 + 1 − x

∣∣∣∣∣
]

≤ E [|⌈λ(B + 1{n1 > B > 0}⌉ − λn1x|] + x

n3 + 1 . (5.7.6)
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Next, using λn1x ≤ 1, ⌈λ(k + 1)⌉ ≤ λ(k + 1) + 1 and P(B > 0) ≤ n1x, we get

E[|⌈λ(B + 1{n1 > B > 0})⌉ − λn1x|]

≤ λn1xP(B = 0) +
n1∑
k=1

(⌈λ(k + 1)⌉ − λn1x)P(B = k)

≤ λn1x(1 − P(B > 0)) +
n1∑
k=1

(λ(k + 1) + 1 − n1x)P(B = k)

≤ n1x(2λ− (λ+ 1)P(B > 0)) + (λ+ 1)P(B > 0)

≤ (3λ+ 1)n1x. (5.7.7)

Combining (5.7.6), (5.7.7) and n1 ≲ n3 yields

E
[∣∣∣∣∣⌈n3Gn1(x)⌉

n3 + 1 − x

∣∣∣∣∣
]
≲ x.

Now, suppose that n3x > 1. We have

E
[∣∣∣∣∣⌈n3Gn1(x)⌉

n3 + 1 − x

∣∣∣∣∣
]

≤ 1
n3 + 1 + n3

n3 + 1E [|Gn1(x) − x|] + n3pn1(x)
n3 + 1 + x

n3 + 1

≤ 1
n3 + 1 + E [|Gn1(x) − x|] + 2x,

where the first inequality uses the triangle inequality, |⌈a⌉ − a| ≤ 1 for all a ∈ R+,
and Gn1(x) = G̃n1(x) with probability one, and the second inequality follows by
pn1(x) ≤ x. Then, using n3 + 1 > 1/x and (5.6.11), which holds for all x ∈ (0, δ̃), we
also obtain in this case

E
[∣∣∣∣∣⌈n3Gn1(x)⌉

n3 + 1 − x

∣∣∣∣∣
]
≲ x. (5.7.8)

Now, let us bound the first term of (5.7.5). Again, because
H−1
n3 (x) ∼Beta(⌈n3x⌉, n3 + 1 − ⌈n3x⌉), we have

E
[
H−1
n3 ◦ Gn1(x) |Gn1(x)

]
= ⌈n3Gn1(x)⌉

n3 + 1 .

Moreover, any Z ∼Beta(a, b) satisfies E[|Z − E(Z)|] = 2aabb/(B(a, b)(a + b)a+b+1).
Thus,

E
[∣∣∣∣∣H−1

n3 ◦ Gn1(x) − ⌈n3Gn1(x)⌉
n3 + 1

∣∣∣∣∣
∣∣∣∣Gn1(x)

]

=2⌈n3Gn1(x)⌉⌈n3Gn1 (x)⌉(n3 + 1 − ⌈n3Gn1(x)⌉)n3+1−⌈n3Gn1 (x)⌉

B(⌈n3Gn1(x)⌉, n3 + 1 − ⌈n3Gn1(x)⌉)(n3 + 1)n3+2 1{Gn1(x) > 0}.

(5.7.9)
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Now, let f(u) = 2uu(n3 + 1 − u)n3+1−u/[B(u, n3 + 1 − u)(n3 + 1)n3+2] for u ∈ [0, n3].
Then:

E
[∣∣∣∣∣H−1

n3 ◦ Gn1(x) − ⌈n3Gn1(x)⌉
n3 + 1

∣∣∣∣∣
]

= E
[
f
(
⌈n3Gn1(x)⌉

)
|Gn1(x) > 0

]
P(Gn1(x) > 0).

Now, Stirling’s formula gives the following bound for the beta function B(·, ·) (see,
e.g., pp. 263, Ex. 45, Whittaker and Watson, 1996):

1
B(x, y) <

1√
2π

(x+ y)x+y−1/2

xx−1/2yy−1/2 , ∀x, y > 0. (5.7.10)

Plugging (5.7.10) for x = u and y = n3 + 1 − u in the definition of f(u), we have for
all 1 ≤ u ≤ n3

f(u) ≤ 1√
2π

2uu(n3 + 1 − u)n3+1−u(n3 + 1)n3+1/2

uu−1/2(n3 + 1 − u)n3+1/2−u(n3 + 1)n3+2

≲
u1/2(n3 + 1 − u)1/2

(n3 + 1)3/2

≲
u

n3
,

where the last inequality uses u1/2 ≤ u and (n3 + 1 − u) ≤ n3 + 1 for all 1 ≤ u ≤ n3.
Hence,

E
[∣∣∣∣∣H−1

n3 ◦ Gn1(x) − ⌈n3Gn1(x)⌉
n3 + 1

∣∣∣∣∣
]
≲

1
n3

E(⌈n3Gn1(x)⌉|Gn1(x) > 0)P(Gn1(x) > 0)

≲
1
n3

(
1 + n3E(Gn1(x)|Gn1(x) > 0)

)
P(Gn1(x) > 0)

≲
1
n3

(n1x+ n3(x+ pn1(x)))

≲ x.

where we have used ⌈a⌉ ≤ a + 1, P(Gn1(x) > 0) ≤ n1x and P(Gn1(x) >

0)E(Gn1(x|Gn1(x) > 0) = E(Gn1(x)).

We now turn to Equation (5.7.3). Suppose that there exists a constant c > 0 such
that c ≤ n3/n1 (or simply assume that λ1/λ3 > c). Because |Gn1(x)−Gn1(x)| ≤ 1/n1,
Gn1(x) > Hn3(1/2) implies Gn1(x) > Hn3(1/2) − 1/n1. Moreover, H−1

n3 (a) < b iff
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a < Hn3(b). Then, by Kiefer’s and Hoeffding’s inequalities,

P(H−1
n3 ◦ Gn1(x) > 1/2) = E

[
P(Gn1(x) > Hn3(1/2)|Hn3(1/2))

]
≤ E [P(Gn1(x) ≥ Hn3(1/2) − 1/n1|Hn3(1/2))]

≤ E
[
(xe)n1(Hn3 (1/2)−1/n1−x)2]

≤ xe+ P (Hn3(1/2) − x < 1/√n1)

≤ xe+ exp
(

−2(√n3(x− 1/2) +
√
n3/n1)2

)
= xe+ exp

(
−2n3(x− 1/2 + 1/√n1)2

)
.

Let δ ∈ (0, e−1] and fix δ = δ/2 and n0 ≥ (2/δ)2. Then, for all n1 ≥ n0 and any
0 < x ≤ δ, we have ∣∣∣∣∣x− 1/2 + 1

√
n1

∣∣∣∣∣ = 1
2 − (x+ 1/√n1)

≥ 1
2 − δ.

Let C = 2c(1/2 − δ)2 and suppose first that x ≥ exp(A−Cn1) for some A. Then
some algebra shows that, for N sufficiently large,

P(H−1
n3 ◦ Gn1(x) > 1/2) ≲ x.

Now assume that x < exp(A− Cn1). Then,

P(H−1
n3 ◦ Gn1(x) > 1/2) ≤P(Gn1(x) ≥ 1/n1)

=1 − (1 − x)n1

≤n1x

≤A− ln x
C

x.

For any η > 0, we have − ln x ≲ x−η. Thus, P(H−1
n3 ◦ Gn1(x) > 1/2) ≲ x1−η □

Lemma 5.7.4 (Bounds on moments involving FU ) Suppose that Assumption 5.2.2
holds and a random variable Qn(x) satisfies, for some 0 < δ < 1/2 and all 0 < x <

δ, E[|Qn(x) − x|] ≲ x and P(Qn(x) > 1/2) ≲ x1−b1. Then, for such x ∈ (0, δ),
E[|FU (Qn(x)) −FU (x)|] ≲ x1−b1. The latter inequality holds if we replace x by 1 − x,
using possibly another δ.
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Proof of Lemma 5.7.4: first, remark that for x < 1/2, FU (x) ≲ x1−b1 . Then,

E[|FU (x) − FU (Qn(x))|] ≤E[1{x > Qn(x)}|FU (x) − FU (Qn(x))|] + P(Qn(x) > 1/2)

+ E [1{Qn(x) ∈ [x, 1/2]}|FU (x) − FU (Qn(x))|]

≲FU (x) + x1−b1 + E [1{Qn(x) ∈ [x, 1/2]}|FU (x) − FU (Qn(x))|]

≲x1−b1 + E [1{Qn(x) ∈ [x, 1/2]}|FU (x) − FU (Qn(x))|] .

Now, if Qn(x) ∈ [x, 1/2), by the mean value theorem, there exists Xn ∈ (x, 1/2) such
that

FU (x) − FU (Qn(x)) = fU (Xn)(x−Qn(x)).

Moreover, by Assumption 5.2.2 and x < δ, fU (Xn) ≲ x−b1 . Then, using E[|Qn(x) −
x|] ≲ x,

E [1{Qn(x) ∈ [x, 1/2]}|FU (x) − FU (Qn(x))|] ≲ x1−b1 .

The result follows. □
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Résumé : Cette thèse comporte cinq chapitres por-
tant sur l’étude de quelques problèmes d’identifica-
tion, d’estimation et d’inférence au sein de modèles
semi-paramétriques pour l’analyse économétrique
des données de panel. Les quatre premiers cha-
pitres se concentrent sur une classe de modèles dits
≪ à effets fixes ≫, où l’hétérogénéité inobservée par
l’économètre est approximée par des variables la-
tentes de faible dimension (relativement à la taille des
données) dont la distribution conditionnellement aux
variables exogènes n’est pas restreinte.

Dans le premier chapitre, nous généralisons un
résultat de Johnson (2004) et Chamberlain (2010)
en démontrant que l’identification du paramètre de
pente, dans un modèle statique de choix discrets
avec hétérogénéité individuelle constante dans le
temps et des agents observés plus de deux périodes,
reste possible hors du cas restrictif où les erreurs
suivent une loi logistique. Nous exhibons une restric-
tion sur un moment conditionnel à partir de laquelle
un estimateur asymptotiquement normal à vitesse pa-
ramétrique, quand le nombre d’individus tend vers l’in-
fini, est obtenu par la méthode généralisée des mo-
ments (GMM). Nous illustrons cette nouvelle méthode
en revisitant la relation entre déficits budgétaires et
réélections étudiée dans Brender et Drazen (2008).
L’effet significatif et positif du déficit budgétaire sur la
probabilité de réélection est robuste à une relaxation
de l’hypothèse logistique.

Dans le second chapitre, nous présentons des condi-
tions d’identification pour une classe de modèles
non-linéaires à doubles effets fixes et coefficients
hétérogènes séparables lorsque le panel est à la
fois long et large. Nous proposons une méthode
d’estimation rapide reposant sur une descente de
gradient coordonnées par coordonnées exploitant la
séparabilité additive des effets fixes. Dans le cas
semi-paramétrique, nous démontrons l’équivalence
numérique de la méthode avec celle du maximum de
vraisemblance, reportons des gains de calcul impor-

tants sans perte de précision au regard des méthodes
existantes (e.g., logitfe/probitfe dans Stata) et revi-
sitons deux applications empiriques en innovation
(Aghion et al., 2013) et commerce international (Help-
man et al., 2008). Nous trouvons une hétérogénéité
significative des coefficients de pente relatifs aux va-
riables indépendantes dans chacun des modèles.

Les troisièmes et quatrièmes chapitres traitent d’un
cas particulier de modèles à facteurs où les coeffi-
cients individuels associés à chaque facteur tempo-
rel sont supposés discrets. Cette hypothèse génère
une structure de groupe qui présente un intérêt
dans une variété de situations économiques (e.g.,
clubs de pays, de partenaires commerciaux, types
de consommateurs, produits, actifs financiers). Le
troisième chapitre propose un nouvel estimateur en
deux étapes pour le modèle linéaire qui présente un
certain nombre d’avantages théoriques et computa-
tionnels. Grâce à la résolution d’un problème convexe
et l’utilisation d’une procédure agglomérative, nous
généralisons Bonhomme et Manresa (2015) en mon-
trant que le paramètre de pente, les effets fixes, et le
nombre de groupes peuvent être estimés de manière
convergente sans borne supérieure connue sur le
nombre de groupes, tout en réduisant la complexité
algorithmique à l’ordre du nombre d’individus au cube
contre une complexité exponentielle pour l’estimateur
reposant sur l’algorithme des k-means.

Le quatrième chapitre étend certains de ces résultats
à une classe de modèles non-linéaires discrets.

Le cinquième et dernier chapitre démontre la norma-
lité asymptotique d’estimateurs s’exprimant comme la
moyenne empirique d’une transformation d’une fonc-
tion de répartition empirique par un quantile empi-
rique sous des hypothèses plus faibles que les exis-
tantes. Un exemple est l’estimateur ≪ Changes-in-
Changes ≫ pour l’effet de traitement moyen proposé
dans Athey et Imbens (2006). Des simulations de
Monte Carlo suggèrent que nos hypothèses sont dif-
ficilement améliorables.
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Abstract : This thesis consists of five chapters dea-
ling with some identification, estimation, and inference
problems in a class of semiparametric panel data mo-
dels for econometric analysis. The first four chapters
focus on fixed effects models, in which unobserved
heterogeneity (to the econometrician) is approxima-
ted by introducing latent variables defined on low-
dimensional manifolds (relative to the dimension of
the data) and whose distribution conditional on the
exogenous variables is left unrestricted.

In the first chapter, we generalize some of Johnson
(2004) and Chamberlain (2010)’s results by showing
that the slope parameter in a static binary choice mo-
del with three periods or more can be point identi-
fied even if the idiosyncratic shocks do not follow the
restrictive logistic distribution. We provide a conditio-
nal moment restriction, which can be used to obtain
an asymptotically normal estimator at the parametric
rate, when the number of units diverges to infinity, by
applying the Generalized Method of Moments (GMM).
We illustrate this new method by revisiting the relation-
ship between budget deficits and reelections studied
in Brender and Drazen (2008). The significant positive
effect of budget deficits on the probability of reelection
is robust to departures from the logistic assumption.

In the second chapter, we present identification condi-
tions for a class of nonlinear two-way fixed effects
models with heterogeneous coefficients for large and
long panels. We provide a fast estimation procedure
based on a Gauss-Siedel coordinate-wise gradient
descent algorithm which exploits additive separability
in the fixed effects. In the semiparametric case, we
prove the numerical equivalence of our method to the
maximum likelihood estimator, we report considerable
gains in execution time without loss in precision with

respect to existing packages (e.g., logitfe/probitfe in
Stata), and we revisit two empirical applications in in-
novation (Aghion et al., 2013) and international trade
(Helpman et al., 2008). We find significant hetero-
geneity in estimated slopes for the independent va-
riables in each case.

The third and fourth chapters consider a special case
of factor models, in which individual factor loadings
are assumed discrete. This assumption generates a
group structure that can rationalize a wide variety of
economic settings (e.g., clubs of countries, trading
partners, types of consumers, goods, financial as-
sets). The third chapter proposes a new two-step es-
timator for the linear model, which has several theo-
retical and computational advantages. By solving a
convex optimization program and using an agglome-
rative clustering procedure, we generalize Bonhomme
and Manresa (2015) and show that the common slope
parameter, the fixed effects, and the number of groups
can be consistently estimated without a known upper
bound on the number of groups while reducing algo-
rithmic complexity to the order of the cube of the num-
ber of units against an exponential complexity for the
estimator relying on the k-means algorithm.

The fourth chapter extends some of these results to a
class of nonlinear models for discrete outcomes.

The fifth and last chapter proves the asymptotic nor-
mality of estimators defined as empirical means of
the transform of an empirical cumulative distribution
function by an empirical quantile process under much
weaker assumptions than what is currently known.
One popular example is the “Changes-in-Changes”
estimator proposed in Athey and Imbens (2006).
Monte Carlo simulations suggest that our assump-
tions cannot be improved.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Acknowledgements
	Résumé Substantiel en Français
	Introduction
	Fixed Effects Binary Choice Models with Three or More Periods
	Introduction
	Identification
	The Model and Moment Conditions
	Necessary and Sufficient Conditions for Identification

	GMM Estimation
	Efficiency Bounds
	Unbalanced Panel

	Application to BrenderDrazen2008
	Conclusion
	Proofs of the Results
	Proposition 1.2.1
	Theorem 1.2.3
	Lemma 1.2.4
	Theorem 1.2.5
	Theorem 1.2.6
	Theorem 1.3.1

	Extensions

	Identification and (Fast) Estimation of Large Nonlinear Panel Models with Two-Way Fixed Effects
	Introduction
	Model
	Identification and Estimation
	Identification
	Estimation
	Numerical Equivalence to the MLE

	Monte Carlo Experiments
	Empirical Illustrations
	The Determinants of Trade Linkages and Flows
	The Effects of Institutional Ownership on Innovation

	Conclusion
	Appendix
	Proof of Theorem 2.3.1
	Pairwise Compensation

	Proof of Theorem 2.3.2
	Preliminary results
	Proof of Theorem 2.3.2: FPMLE
	Proof of Theorem 2.3.2: FPMLE++

	Consistency in the Presence of Heterogeneous Slopes
	Monte Carlo Experiments: Details
	Poisson Count Model with Heterogeneous Slopes

	Empirical Illustrations: Additional Results
	Existence and Uniqueness of Coordinate-Wise Minima (Proof of Theorem 2.3.2)
	Extension of Theorem 2.3.1 to Multimodal Outcomes
	Heterogeneous Slope Across Time
	Extension of FPMLE and FPMLE++
	Heterogeneous i
	Numerical Convergence without Concavity

	Proofs
	Proof of Lemma 2.7.1
	Proof of Proposition 2.7.3

	Monte Carlo Experiments: Additional Tables and Details
	Split-sample Jackknife Bootstrap Procedure



	A Simple and Computationally Trivial Estimator for Grouped Fixed Effects Models
	Introduction
	A Two-Step Estimator
	Large Sample Properties
	Clustering Consistency
	Asymptotic Distribution
	Choice of the Preliminary Consistent Estimator
	Choice of the Tuning Parameter

	Discussion and Conclusion
	Proofs of the Results
	Proof of Proposition 3.3.1
	Proof of Corollary 3.3.2


	Unobserved Clusters of Time-Varying Heterogeneity in Nonlinear Panel Data Models
	Introduction
	Nonlinear Discrete Outcome Models with Unobserved Clusters of Time-Varying Heterogeneity
	Large-N, Large-T Nonparametric Identification
	Semiparametric Estimation
	A Generic M-Estimation Framework
	Semiparametric NGFE Estimators
	Computation

	Asymptotic Properties of Semiparametric NGFE Estimators
	Binary Choice Model With Grouped Fixed Effects
	Consistency
	Asymptotic Distribution
	Average Partial Effects (APEs)

	Monte Carlo Simulations
	Static Logit Model
	Dynamic Logit Model

	Empirical Application: Revisiting the Inverted-U Relationship Between Innovation and Competition
	Conclusion
	Proofs of the Results
	Proof of Theorem 4.3.1
	Sufficient Condition for Assumption 4.3.2(a)
	Proof of Theorem 4.5.1
	Proof of Theorem 4.5.2
	Step 1: A Useful Asymptotic Equivalence
	Step 2: Asympotic Properties of the Oracle MLE


	Extensions
	Cluster-Specific Slopes and Time-Specific Effects
	Group and Time-Specific Link Functions
	Grouping Time Periods
	NGFE Large Sample Theory for Poisson Count Models

	Large-N, Large-T Inference
	Binary Choice Model
	Poisson Count Model

	More Details on Monte Carlo Experiments
	Tables & Figures
	Monte Carlo Simulations
	Empirical Application


	Asymptotic Properties of Empirical Quantile-Based Estimators
	Introduction
	Asymptotic Results (Observed Rank)
	Asymptotic Results (Estimated Rank)
	Application to Change-in-Change
	Monte Carlo Simulations
	Exponential-Pareto DGP
	Gaussian DGP

	Proofs of the Main Results
	Proof of Lemma 5.2.1
	Proof of Theorem 5.2.2
	Proof of Theorem 5.3.1

	Technical Lemmas


