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General Introduction

Context of the Thesis

The electricity power system is currently facing the challenge of providing clean, reliable and secure access to affordable energy. These issues have led to paradigm shifts, especially in the way the electricity is produced and consumed. Nowadays, the development of worldwide electricity systems are starting to be "decentralized, decarbonized, and democratized" [START_REF] Hirsch | Microgrids: A review of technologies, key drivers, and outstanding issues[END_REF]. With this trend in mind, many renewable-based sources are now being deployed in the distribution networks (i.e., medium and low voltage level) -closer to the customer-side. This type of generation is called as Distributed Energy Resources (DERs) with a geographic dispersions of small scales units.

Unlike conventional generating units, DERs can also be deployed and owned by the consumers "behind the meter ". This, and complement with consumption flexibility, lead to turn traditional consumers into prosumers [2]. With DERs, prosumers are not only able to manage their energy consumption more efficiently, but can also contribute to a cleaner energy mix for the overall power system. Hence, prosumers will play an important role on achieving global green and sustainable energy systems.

Many efforts have been conducted to further increase the integration of DERs. For instance, feed-in-tariff (FiT) has been used extensively to attract prosumers to invest in DERs, particularly solar photovoltaic (PV) systems. More recently, The Clean Energy Package, released by the European Commission in 2016, introduced new electricity market designs to enhance the role and organization of end-users [3]. Energy communities, for instance, enable proximal prosumers connected at low voltage grid to exchange energy that is produced locally. This emerging concept opens new opportunities and business models that can attract and provide incentives to the prosumers. Despite of the aforementioned potential benefit, the expansion of local generations (i.e., DERs), especially PV systems, introduces new operational challenges for the distribution system operators (DSOs). Especially, due to its intermittent and non-dispatchable nature, massive integrations of PV systems can lead to unpredictable network flows that cause voltage problems, thus affecting the quality of the power supply.

Smart distribution systems (SDS) are one of the key concepts to overcome the aforementioned challenges. SDS enable new types of flexibilities in the distribution grid that can support DSOs to better optimize their operation with the involvement of different stakeholders -i.e. prosumers in this thesis. In the context of voltage management, SDS can enable direct participation of prosumers in the control scheme, namely customer side control. In order to achieve this, new algorithms and methodologies are required, to ensure both technical and non-technical aspects in the voltage control schemes that can be satisfied across all the actors. Tackling these challenges, more precisely under a fairness among different participants constraint, became the main motivation of this PhD research, reported in the present manuscript. The primary objective of this thesis is to address voltage problems in SDS framework with high integration of DERs, mainly PV generations. We focus on model-based voltage controllers formulated as optimal power flow (OPF) problems, to allow us obtaining the set-points of DER assets under constraints that can optimally satisfy various objectives and use cases.

Furthermore, voltage problems, which represent the fundamental challenges in DER integration, are mainly missing in the literature on energy communities [4]. Hence, coupling voltage management strategies and energy communities was an objective of this PhD. In order to reach such target, a number of fundamental questions were addressed. The first scientific challenge is related to the development of model-based voltage controller agorithms, where the methods shall be able to adapt to a wide variety of use cases. This includes the possibility of implementing different control objectives and enabling management of DER assets, primarily PV and energy storage system (ESS). The second challenge deals with the customer side control, notably to enable active participation of the prosumers in the voltage management. In such a framework, moving towards decentralized strategies are necessary to ensure a coordination among actors that can lead to optimal results on a global scale. Moreover, it allows addressing major limitations of the conventional centralized model-based voltage controller that is widely studied in the literature, such as reliability, scalability and privacy issues [START_REF] Antoniadou-Plytaria | Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research[END_REF], [START_REF] Almasalma | Peer-to-peer control of microgrids[END_REF]. Moreover, one important challenge of voltage management is to achieve a fair contribution among all the participants (i.e. prosumers), which also have not been widely studied in the literature. This aspect is important for preventing any economic disadvantage to some of the prosumers. Other associated scientific challenges are also addressed in this thesis. This is outlined within the scientific contributions of the thesis below.

C-11 The development of a novel methodology to fairly allocate the community energy (i.e., the keys of repartition) to the members, on a monthly basis. Additionally, a penalty and a reward scheme are proposed. The purpose of these schemes is to put a cost on households' uncertainties and to incentivize households' participation in voltage regulation. The formulation also ensures cost reduction (or revenue increase) for each individual community members. This formulation is computed at the end of the month and integrated in the 3 rd stage of the management strategy.

C-12 Analysis of different community pricing schemes to identify the configuration that offer the best economic compromise between the community manager and the members.

Organization of the Thesis

This thesis is organized in four chapters. Chapter 1 is the general literature review that provides a broader context of this thesis. The chapter starts by presenting the technical challenges faced by distribution systems operators. Then, the concept of smart distribution system (SDS) is discussed, with a specific attention is dedicated to the voltage management methodologies. The chapter finishes with a brief description of new energy services, in the context of local energy markets and energy communities.

Chapter 2 is dedicated to model-based voltage controllers. First of all, the generic models (e.g., grid, PV and ESS models) that are used throughout the manuscript are presented. Next, the formulation of the proposed centralized voltage controller with SOCP relaxation is introduced. Then, the methodology to allow architecture decentralization of the voltage controller is presented. Numerical tests to compare the performance of different control architectures are conducted (centralized, decentralized and distributed). Finally, the adaptive parameter tuning algorithm is developed to enable fair control contribution among PV systems.

Chapter 3 deals with mitigation of grid parameter uncertainties in the model-based voltage controller. Six different impedance estimation methodologies, including two distributed approaches, are proposed. A framework to compare the performance of these methods is also developed. Then, robustness tests are conducted, aiming at observing the impact of measurement uncertainties to the performance of the proposed methodologies. Lastly, an impedance parameter tuning algorithm is developed, which is utilized to fine-tune the impedance estimation over successive runs of voltage management.

Chapter 4 focuses on the application to energy communities. Firstly, the general context of the considered energy communities is introduced. Then, a distributed coordination scheme is described, which is used to solve global community problems in a distributed-manner. Next, the proposed three-stage community management strategy is described. The proposed management strategy is tested and compared with two baseline scenarios. Subsequently, sensitivity studies are carried out to observe the impact of different pricing schemes to the economic surplus in the community. Lastly, scalability tests are conducted to verify the applicability of the proposed management strategy.

Chapter 5 concludes this thesis and gives an outlook of perspectives of the work. 1.1 Introduction

Chapter 1

Advancement of Distribution Networks

Rising Shares of DERs

Nowadays, power systems are facing emerging challenges with the need to provide clean, reliable and affordable energy [START_REF] Morstyn | Using peer-to-peer energytrading platforms to incentivize prosumers to form federated power plants[END_REF]. Traditionally, worldwide electricity was generated by centralized generation units that mainly rely on fossil-fuel sources, which have created significant negative impacts to the environment. In addition, the continuous increase of worldwide energy consumption has fostered rapid depletion of this non-renewable energy resources [START_REF] Dovì | Cleaner energy for sustainable future[END_REF]. Apart from that fact, all large conventional generators typically located far-away from the actual demand [START_REF] Mariam | Microgrid: Architecture, policy and future trends[END_REF]. As illustrated in Fig. 1.1, the generated energy then shall be transported to the customers over long distances via transmission and distribution lines which ultimately incurs significant energy losses.

Distributed energy resources (DERs) are the prominent key to overcome the aforementioned problems. By definition, DERs cover a wide range of technologies that are deployed Figure 1.1: Traditional electricity system representation (source: wikimedia [START_REF]Simple diagram of electricity grids in North America[END_REF]).

close to the customer side (i.e., distribution level or 'behind the meter'). They can consist of a small-scale non or renewable-based generating units (typically under 10 MW), energy storage systems (e.g., batteries or electrical vehicle), as well as partially or totally controllable loads (demand response solutions) that can provide flexibility to the utility grid [START_REF] Iea | Distributed energy resources for net zero: An asset or a hassle to the electricity grid? -analysis[END_REF]. Over the past years, there has been a worldwide significant growth of DER deployments worldwide. To give some illustration, Fig. 1.2 depicts the installed capacity of different DER technologies in the United States. In overall, distributed solar photovoltaic systems (PV) account the highest share of the deployments, and are foreseen to increase vastly in the future. This massive growth is driven by the increase of environmental awareness and backed with well-supported policies, including green-energy incentives such as feed-in-tariffs (FiT), investment tax credits and capital subsidies for both commercial and residential customers [START_REF] Olivares | Trends in microgrid control[END_REF]. 

Challenge of Massive DER productions

Conventional distribution networks are designed with "fit and forget" approach, which implies that all the possible technical issues are resolved in the planning stage [START_REF] Eurelectric | Active distribution system management -a key tool for the smooth integration of distributed generation[END_REF]. This approach makes use of very few monitoring tools and expect the current grid infrastructure to be capable of operating under the worst-case scenario, with the assumption of unidirectional power flow, i.e., energy flows only from the generation station down to the end-users [START_REF] Almasalma | Peer-to-peer-based integrated grid voltage support function for smart photovoltaic inverters[END_REF]. However, with the rising presence of DERs, the assumption of unidirectional power flow is not valid anymore. Without a proper installation planning, a massive DER integration could lead to many technical challenges, as presented below. Reverse power flow is the situation when the power at the distribution/end-user level flows back to the upstream substation in case of high penetration of local generation (e.g. PV systems), and could lead to major problems if the installations are not properly sized [START_REF] Hu | Voltage stabilization: A critical step toward high photovoltaic penetration[END_REF]. Nowadays, reverse power flow has become a common problem in many places [START_REF] Eurelectric | Active distribution system management -a key tool for the smooth integration of distributed generation[END_REF], and typically arises during the peak afternoon when the local production is significantly higher than the demands, as illustrated in Fig. 1.3. Reverse power flow is an abnormal situation in the traditional operational scheme. Hence, it could lead to complication in protection coordination and overall operational criteria of distribution networks [START_REF] Olivares | Trends in microgrid control[END_REF]. Especially, it can cause bus voltage rise beyond the operating limits (i.e., overvoltage). This topic will be further described in Section. 1.1.2.3.

Reverse Power Flows

Grid Losses

Ideally, DERs are deployed in proximity with the demand. Hence, the electricity can be transmitted in a shorter distance with reduced losses. However, in reality, DERs may be located far from the consumption, which eventually increase the grid losses. Fig. 1. 4 shows that the grid losses tend to decrease as the DER penetration increases until a certain optimal level. Beyond this level, increasing the penetration will have a negative impact to the grid losses [START_REF] Ramos Gutierrez | D1.2-evaluation of current market architectures and regulatory frameworks and the role of dsos[END_REF], [START_REF] Quezada | Assessment of energy distribution losses for increasing penetration of distributed generation[END_REF]. Grid losses can represent the share of energy that does not reach to the customer. In many countries, for instance France, Denmark, and Germany; the Distribution System Operator (DSO) has the obligation to manage this energy loss [START_REF] Eurelectric | Active distribution system management -a key tool for the smooth integration of distributed generation[END_REF], [START_REF] Quezada | Assessment of energy distribution losses for increasing penetration of distributed generation[END_REF]. In this case, the DSO can compensate it by purchasing extra energy at the wholesale market. Or as an alternative, losses can be mitigated by optimizing the operation of DERs and conducting grid reinforcement [START_REF] Ramos Gutierrez | D1.2-evaluation of current market architectures and regulatory frameworks and the role of dsos[END_REF].

Figure 1.4: Representation of the impact of DER penetration to grid losses [START_REF] Damsgaard | Study on the effective integration of distributed energy resources for providing flexibility to the electricity system[END_REF].

Voltage Problems

Voltage problems have been addressed as the dominant effect in the massive integration of DERs [START_REF] Hu | Voltage stabilization: A critical step toward high photovoltaic penetration[END_REF], [START_REF] Vovos | Centralized and distributed voltage control: Impact on distributed generation penetration[END_REF]. Overvoltage becomes the prominent ones, as the trend of DER deployments are dominated by distributed PV systems that naturally have intermittent and nondispatchable characteristics. Overvoltage problem is associated with reverse power flows, where the more local productions exceed the demands, the stronger the impact will be to the voltage profiles. Unlike transmission systems, distribution network display a higher R/X characteristic (i.e., with R and X are line resistance and reactance, respectively). As a result, the voltage is more sensitive to the change of active power production, which is a typical case in the grid with high penetration of PV systems. Fig. 1.5 illustrates the impact of different R/X ratios to the bus voltage in a distribution grid during peak PV production with low demands.

It can be seen that a higher R/X will increase more the impact (i.e., voltage increase) on the voltage at the bus around the PV installation. The DSO has to maintain the grid voltage within the operating limits to guarantee the quality of the power delivered to the customers. The nominal voltage requirements are specified in the grid codes, which may differ from one country to another. Table 1.1 shows the voltage requirements range in % of the nominal voltage in different countries [START_REF]6th CEER benchmarking report on the quality of electricity and gas supply[END_REF]. 

France ±5% of U n ±10% of U n 100% Great Britain ±6% of U n ±10% of U n 100% Malta +5%, -10% of U n ±10% of U n 100% Netherlands ±10% of U n ±10% of U n 95% U n : Nominal voltage

Smart Distribution Systems

The challenges incurred by DER penetration highlight the need of proper operational changes in distribution systems. Legacy distribution networks are typically referred to passive systems, since all the electricity in the downstream nodes is fully supplied by the upstream generation/utility with unidirectional flows. Driven by the increased integration of DERs as well as the advancement of technologies and communication infrastructures, distribution systems are now on a major transition into a more active role with a capability of bidirectional electricity transportation. We refer to them as smart grid or smart distribution systems (SDS) [START_REF] Chowdhury | Microgrids and Active Distribution Networks[END_REF]. Although different terminologies can be found across the literatures, for instance, active distribution system/networks [START_REF] Chowdhury | Microgrids and Active Distribution Networks[END_REF], [START_REF] Hashim | A review on voltage control methods for active distribution networks[END_REF] or a smart distribution networks [START_REF] Mahmud | Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation[END_REF], the main idea and concept are quite similar. Fig. 1.6 illustrates the concept of SDS that consist of various technologies that enable real-time network monitoring and employing flexibility of DER assets. SDS is an integrated solution that leverages technologies to drive economic and social benefits of all actors in distribution system [START_REF] Fan | The evolution of distribution[END_REF]. This advancement makes it possible to reach optimal operations of the system with a coordination between different actors. Moreover, it opens many opportunities. From the DSO perspective, the employment of an advanced distribution management system (DMS) would provide greater insight about the local assets and data acquisition at customer level. Furthermore, it can be used as decision making tools, for instance, to perform better state estimation, load flow, grid optimization, operational planning and fault identification [START_REF] Meliopoulos | Advanced distribution management system[END_REF]. As a result, investment in new infrastructures can be deferred, operational and maintenance cost can be reduced and grid efficiency and reliability can be improved.

On the other hand, consumers nowadays can deploy their own production assets, e.g., PV, energy storage system (ESS), and become more intelligent consumers, the so-called prosumers. A prosumer is defined as a consumer that has a capability not only to consume, but also produce energy and possibly able to provide flexibility or grid services, thanks to demand response programs [START_REF] Kanchev | Energy management and operational planning of a microgrid with a pv-based active generator for smart grid applications[END_REF]. With the growth of advanced metering/monitoring infrastructure (AMI), prosumers can have access to real-time energy prices, weather forecast and make use of the exogenous data to better optimize their energy profile/DER assets using home energy management system (HEMS) [START_REF] Frenzel | Chapter 9 -networking: Wired and wireless: All devices talking to one another[END_REF]. Moreover, the expansion of AMI have enabled two-way communication between prosumers and DSO (or other third-party actors), which also allow a coordinated control between the two actors [START_REF] Mack | Chapter 35 -big data, data mining, and predictive analytics and high performance computing[END_REF].

New third-party entities called aggregators have also emerged in this era of energy transition. In general, an aggregator is an entity who offers services to aggregate different sources of energy supply (i.e., local generations), flexibilities and/or loads, and act towards the grid as one single entity [START_REF] Zhou | 5.11 smart energy management[END_REF]. These aggregators can be utility companies themselves, a commercial entity or a customer representative of energy community [START_REF] Talari | Chapter 5 -the role of various market participants in blockchain business model[END_REF]. Aggregator can serve as a middleman for transactions between the customers and energy markets, since small customers/households are not allowed to participate directly in the wholesale energy markets [START_REF] Kerscher | The key role of aggregators in the energy transition under the latest european regulatory framework[END_REF]. In many studies, aggregators combine a group of prosumers as a virtual power plant (VPP) to deliver ancillary services to the utility grid [START_REF] Lehmbruck | Chapter 10 -aggregation of front-and behind-the-meter: The evolving vpp business model[END_REF], [START_REF] Rai | Chapter 14 -the value of flexibility in australia's national electricity market[END_REF]. Aggregators can also be considered as market operators at a community level and that assists local energy trading between prosumers [START_REF] Mustika | A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption[END_REF], [START_REF] Morstyn | Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences[END_REF]. Moreover, they can also be viewed as microgrid operators that aggregate a group of prosumers connected to the same LV grid into a single controllable entity with respect to the main grid [START_REF] Paudel | Peer-to-peer energy trading in a prosumer-based community microgrid: A game-theoretic model[END_REF], [START_REF] Mariam | Microgrid: Architecture, policy and future trends[END_REF]. Indeed, coordination among all relevant actors in SDS is the essential key to allow the maximum and efficient integration of DERs, while the secure operation of the grid can still be ensured in the most cost-effective way.

In the literature, the terms DMS and Energy Management System (EMS), or EMS and HEMS, are often used interchangeably. To avoid misleading of the terminology, this manuscript defined DMS as a controller deployed at the top level of distribution system (DSO level), while an EMS and HEMS are at the aggregator and prosumer/household level respectively. This is illustrated in Fig. 1.7. 

Voltage Management in Smart Distribution Systems

Up to this point, the problem of voltage violation is overcomed with network-side mitigation approaches, for which the DSO relies on the management of the existing infrastructure [START_REF] Hu | Voltage stabilization: A critical step toward high photovoltaic penetration[END_REF], [START_REF] Xu | Voltage control techniques for electrical distribution networks including distributed generation[END_REF]. Conventional examples of voltage management at the distribution level are transformers with on-load tap changer (OLTC), capacitor banks, and/or grid reconfigurations. The major limitations of these solutions are the low response time compared to the fast-changing nature of solar irradiance. To cope with renewables intermittency, these devices then shall be operated frequently, which decreases their lifetime and incurs additional operational costs to the DSO [START_REF] Wanik | Pv generation in distribution network and its impact on power transformer on-load tap changer operation[END_REF]. Moreover, both OLTC and capacitor banks are controlled in a discrete-manner and it would be challenging to compensate the exact amount of desired voltage with reactive power steps [START_REF] Vinnal | Analyses of supply voltage quality, power consumption and losses affected by shunt capacitors for power factor correction[END_REF]. Lastly, these solutions are unable to effectively regulate the voltage at the buses located far away from the devices. A prominent example is illustrated in the Fig. 1.8, where the taps chosen by the OLTC might provoke voltage violations at the bus close to the local production [START_REF] Swaminathan | Operational planning of active distribution networks-convex relaxation under uncertainty[END_REF]. Alternative solutions, such as deploying energy storage system (ESS) and distributed flexible AC transmission system (D-FACTS) [START_REF] Wang | Dynamic voltage restorer utilizing a matrix converter and flywheel energy storage[END_REF] or synchronous compensators [START_REF] Kanchanaharuthai | Transient stability and voltage regulation in multimachine power systems vis-à-vis statcom and battery energy storage[END_REF], can overcome the limitations of OLTC and traditional capacitor banks [START_REF] Hu | Voltage stabilization: A critical step toward high photovoltaic penetration[END_REF], [START_REF] Xu | Voltage control techniques for electrical distribution networks including distributed generation[END_REF]. Another approach consist in upgrading the existing distribution grid infrastructure, such as capacity upgrades (line reinforcement, transformers) and enhanced protection systems. This approach is more effective and indeed enhance clearly the reliability of the grid [START_REF] Ding | Sequential mitigation solutions to enable distributed pv grid integration[END_REF]. However, the aforementioned approaches are expensive and incur an extensive amount of investments cost to the DSO.

SDS offers new flexibility with a direct participation of end-users in voltage management, namely customer side control. From a simple solution such as providing reactive power from local PV inverter, to coordinated DER control among different actors, the solutions will play an important role in maintaining the voltage quality in the distribution grid with a cost-efficient and optimal-way.

Voltage Control Classification

There are numerous amounts of research on voltage control techniques for SDS in the literature. In general, voltage problems and control can be classified into three different types based on the control level and the speed of response time [START_REF] Olivares | Trends in microgrid control[END_REF], [START_REF] Martin-Martínez | A literature review of microgrids: A functional layer based classification[END_REF]. This type of classification is also often called as hierarchical control in the context of distribution grid/microgrid [START_REF] Sen | Microgrid control: A comprehensive survey[END_REF], which consist of i) primary, ii) secondary and iii) tertiary control, as illustrated in Fig. 1.9. Figure 1.9: Hierarchical control in SDS [START_REF] Shuai | Hierarchical structure and bus voltage control of dc microgrid[END_REF].

The typical implementation of a hierarchical control is depicted in Figure 1. 10 [52] and the control function of each level is explained below:

1. Primary control: The first control layer operates in the fastest response time and at the shortest time horizon (within milliseconds to seconds intervals). The objective of the primary control is to maintain the stability of the grid voltage during rapid changes of load/production or disturbances. This control is embedded locally at the level of each DER, and typically relies on local measurements to perform actions without requiring any communication infrastructure. Local droop control, such as conventional Q/V control is the classical example of a primary voltage control [START_REF] Seal | Standard language protocols for pv and storage grid integration[END_REF]. Alternative P/V droop control is also widely considered in distribution grid/microgrid to cope with the high R/X characteristic [START_REF] Rami | Controle de tension auto adaptatif pour des productions decentralisees d'energies connectees au reseau electrique de distribution[END_REF], [START_REF] Tonkoski | Voltage regulation in radial distribution feeders with high penetration of photovoltaic[END_REF].

Secondary control:

The secondary control operates on a slower time frame (within minutes) than the primary control. It also referred to as an EMS [START_REF] Olivares | Trends in microgrid control[END_REF] that is responsible for reliable and economical operation of the grid. The secondary control covers different Figure 1.10: Conventional implementation of hierarchical control [START_REF] Farrokhabadi | Microgrid stability definitions, analysis, and examples[END_REF].

types of applications. In normal operation, the objective of EMS in the secondary control is to find the optimal dispatch of DER units such that the technical and economic operation objectives can be achieved. In many research works, the secondary control is also responsible for eliminating any steady state voltage deviation that arises from the action of the primary control [START_REF] Sen | Microgrid control: A comprehensive survey[END_REF].

The EMS typically has a centralized architecture, as shown in Fig. 1.10. In this case, it communicates with local DER assets to collect relevant information and gather additional external data such as forecast data in order to compute the optimal operation/setpoints of the local assets over a given time horizon. An EMS typically solves an optimal power flow (OPF) problem to determine the best operating points of controllable resources (i.e., DERs) that can satisfy predefined objective, such as minimization of grid losses or production costs while respecting grid physical and safety constraints [START_REF] Low | Convex relaxation of optimal power flow-part i: Formulations and equivalence[END_REF], [START_REF] Berseneff | Réglage de la tension dans les réseaux de distribution du futur[END_REF]. A model predictive control (MPC) is also widely used to account for uncertainties [START_REF] Allgower | Nonlinear model predictive control: From theory to application[END_REF] and to optimize the operation with updated forecast over time (e.g., rolling window MPC). The aforementioned methods are referred to as model-based control approaches, since they rely on grid topology/model to perform the calculation. This model is typically entered as constraints in optimization problems Non-model-based solutions, typically using data-driven approaches such as fuzzy controllers [START_REF] Nadai | A secondary control based on fuzzy logic to frequency and voltage adjustments in islanded microgrids scenarios[END_REF], artificial neural networks [START_REF] Vega | Secondary control of microgrids via neural inverse optimal distributed cooperative control * * this work is supported by conacyt, mexico, project 257200[END_REF] or a distributed method (e.g., coordinated droop control [START_REF] Shafiee | Distributed secondary control for islanded microgrids-a novel approach[END_REF], [START_REF] Guo | Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids[END_REF]) are also widely proposed in the literature. However, the main limitation of these approaches is their inability to return the optimal solution once it stucks at local optima [START_REF] Antoniadou-Plytaria | Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research[END_REF], [START_REF] Sen | Microgrid control: A comprehensive survey[END_REF].

Tertiary control:

The tertiary control manages the power exchange with the upstream grid and aims at optimizing the distribution grid at the global level. In case of lowvoltage microgrid, the tertiary control is responsible for optimizing the operation of multiple microgrids/EMS. In this case, it represents the role of advanced distribution management systems (DMS) that naturally presents a centralized architecture, as illustrated in Fig. 1.10. This control level has the slowest time scale (minutes to hours). In many applications, the tertiary control can also be regarded as the interaction between the EMS with other stakeholders, for instance, between the aggregator and the DSO to provide ancillary services in the context of Virtual power plant (VPP) [START_REF] Martin-Martínez | A literature review of microgrids: A functional layer based classification[END_REF].

Although there exists many types of solutions for each control level, this thesis focuses on the voltage management on the secondary and tertiary levels (i.e., EMS and DMS level), in which we target the operational planning/management of the local assets in a distribution system. The aim is to find the optimal operating points of the local assets based on predefined objectives. In particular, the thesis focuses on model-based controllers formulated as optimization problems to address different scenarios and control objectives. Throughout the rest of the manuscript, we simply refer to the management systems (i.e., DMS, EMS, HEMS) as a voltage controller /controller, and the entity who performs the control actions as a control agent.

Classification of Voltage Control Architecture

As presented previously, management/operational control functions in a distribution system is typically handled by a dedicated control agent (e.g., DMS or EMS) in a centralized manner. In a centralized architecture, the control agent gathers all the necessary data directly from the local devices before computing any operational problems. Hence, providing less complexity on the computational scheme and the optimality of the solution can likely be guaranteed [START_REF] Almasalma | Peer-to-peer control of microgrids[END_REF], [START_REF] Sen | Microgrid control: A comprehensive survey[END_REF]. However, a centralized system presents many downsides. The first one is the main characteristic of single point of failure (SPOF), meaning that any loss of the controller or part of the communication infrastructure may jeopardize the overall system. Secondly, the control agent shall collect and process a massive amount of data generated by local devices that makes it vulnerable to communication bottlenecks [START_REF] Zheng | A fully distributed reactive power optimization and control method for active distribution networks[END_REF]. Moreover, a centralized controller requires a high computational power, especially with the increase integration of DERs and the raise of big data that complexifies the operational problems [START_REF] Kaisler | Introduction to big data: Challenges, opportunities, and realities minitrack[END_REF]. Most importantly, a centralized management usually involves a dedicated central authority (e.g., DSO or aggregator) that has full controllability and observability of the prosumers' assets. This situation becomes one of the major prosumers' concerns about privacy and security [START_REF] Amin | Smart grid security, privacy, and resilient architectures: Opportunities and challenges[END_REF], [START_REF] Danzi | Distributed proportionalfairness control in microgrids via blockchain smart contracts[END_REF], since data can present a relatively detailed picture of what appliances are being used. This describes well the overall households' activities [START_REF] Lee | Data privacy and residential smart meters: Comparative analysis and harmonization potential[END_REF], [START_REF] Basu | Nonintrusive load monitoring: A temporal multilabel classification approach[END_REF]. Moving towards a decentralized architecture is the key answer to overcome the limitations of a centralized controller. In the literature, the terms "distributed " and "decentralized " architecture are used interchangeably. In this thesis, we use the definition inspired by the study in [START_REF] Antoniadou-Plytaria | Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research[END_REF], where the control architecture can be further classified based on how information are being exchanged between the different control entities. As illustrated in Fig. 1.11, the control architecture can be categorized into four different taxonomies, namely i) centralized, ii) decentralized, iii) distributed, and iv) community-based. Although there exists a fully local control architecture that relies on no communication infrastructure, it is not considered in this thesis since it cannot fully exploit the potential of DERs and usually returns non-optimal solutions [START_REF] Antoniadou-Plytaria | Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research[END_REF].

The decentralized architecture disaggregates the grid into several partitions/zones [START_REF] Zheng | A fully distributed reactive power optimization and control method for active distribution networks[END_REF]. Each zone is embedded with its own control agent namely zone controller who acts similarly as a centralized architecture that has full controllability and observability of the assets within its area. This architecture relies on a coordination among the different zone controllers in order to optimize the grid globally. It offers more robustness than the centralized architecture, since the computation tasks are shared several control agents. However, the privacy and security concerns of the prosumers are not addressed since the zone controller still has direct authority to prosumers' assets.

A distributed architecture is usually called as an autonomous control and does not rely in any centralized management. In this case, all prosumers are control agents, and they cooperate together in order to reach the global common objective(s). Each prosumer agent only has access to local information. Depending on the communication techniques, a prosumer can exchange information to its adjacent/neighboring agents with a consensus algorithm [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF] or to random agents using a gossip protocol [START_REF] Kempe | Gossip-based computation of aggregate information[END_REF]. Although the latter offers more reliable and robust communication scheme [START_REF] Schindler | Gossip protocol approach for a decentralized energy market with opc ua client-server communication[END_REF], the complexity of gossip protocol increases with the number of shared information/agents. Hence, the algorithm may fail if the amount of information exceeds the maximum carrying capacity of the messages [START_REF] Hu | Voltage stabilization: A critical step toward high photovoltaic penetration[END_REF]. The advantage of distributed architectures is that the prosumers' privacy and security can be preserved, since prosumers do not share any sensitive information and there is no direct control from third parties. This architecture also presents superior scalability with regards to other architectures, and can easily be plug and play. A new prosumer/agent can be directly integrated in the control system without requiring any control overhaul, contrary to the centralized architecture [START_REF] Almasalma | Peer-to-peer control of microgrids[END_REF]. As presented in the next chapter, the main drawback of this architecture is that the convergence rate is slower than for the others.

Lastly, the community-based architecture is an intermediate state between a centralized and a distributed architecture. Although there is a centralized entity in this type of control, it does not have a full controllability and observability of prosumers assets. Rather, the centralized agent acts as a coordinator that interacts with prosumers, who in this case, are control agents as well. This architecture relies on coordination scheme. Each prosumer acts as a selforganized entity that individually computes the optimal operation of its own assets and shares communication variables (non-sensitive information) to the centralized coordinator. On the other hand, the coordinator is responsible to maintain the overall operational security/activity of the prosumers and ensures that the coordination reaches the global optimal. This architecture is typically used in a context of an energy community [START_REF] Morstyn | Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences[END_REF], [START_REF] Paudel | Peer-to-peer energy trading in a prosumer-based community microgrid: A game-theoretic model[END_REF] that will be further presented in this manuscript. As there is no third-party authority, a community-based architecture can also preserve prosumers' privacy and security concerns. Yet, the overall control function will be damaged if the centralized coordinator fails. Table 1.2 summarizes the trade-off between different control schemes. A community-based architecture can be the alternative solution to a centralized one that has limitation due to privacy concerns. Distributed and decentralized schemes are suitable in the smart distribution grid applications, since they offer robust and scalable solutions that are very important to face the rapid deployment growth of DERs. 

Unlocking DER Potential with Emerging Energy Services

In the traditional passive distribution system, customers can only conduct transaction with a retailer (energy provider) who purchases electricity from the wholesale energy market [START_REF] Marvasti | Optimal operation of active distribution grids: A system of systems framework[END_REF]. Fig. 1.12 shows the conventional power and cash flows in the traditional distribution system.

Figure 1.12: Flow of energy and cash in traditional distribution system [START_REF] Marvasti | Optimal operation of active distribution grids: A system of systems framework[END_REF].

Nowadays, the energy landscape has been transforming and the concept of transactive energy (TE) has been emerged since the advent of active distribution systems. The definition of TE varies depending on the scientific publications. The most common one is proposed by GridWise Architecture Council, which defined TE as "A system of economic and control mechanisms that allows the dynamic balance of supply and demand across the entire electrical infrastructure using value as a key operational parameter " [START_REF] Melton | Gridwise transactive energy framework[END_REF]. The term "value" here simply equates to a price that represents generation or consumption prices across the system [START_REF] John | A how-to guide for transactive energy[END_REF]. Under the framework of TE in smart distribution systems, transaction and control mechanisms that incentivize DERs owners for their generating/consuming resources can be established. Most importantly, this emerging concept would lead to efficient integration of DERs, from both technical and economic perspectives [START_REF] Abrishambaf | Towards transactive energy systems: An analysis on current trends[END_REF].

The TE framework in the context of DER integration can be classified into two different categories, which are uncoordinated and coordinated. The uncoordinated scheme only considers energy management of an individual user, while coordinated approaches incorporate energy management of several prosumers/DERs at the global level [START_REF] Guerrero | Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading[END_REF]. A Typical uncoordinated approach would be the individual energy management through HEMS. The principle of HEMS extends the capability of traditional demand response (DR) programs on which flexibility is enabled not only on the consumption side, but also on the generating capability of the prosumers [START_REF] Chen | From demand response to transactive energy: State of the art[END_REF]. Prosumers embedded with HEMS can optimize their local generation and consumption assets to reach different objectives -minimum electricity bill, maximum use of local generation, etc. For instance, they can act on different pricing schemes such as time-of-use or real-time pricing, and optimize their consumption or storage usage to mitigate high energy consumption during peak period [START_REF] Beaudin | Home energy management systems: A review of modelling and complexity[END_REF]. Although uncoordinated HEMS can provide individual economic benefit, it can also lead to network problems such as overvoltage particularly in a grid with high penetration of DERs [START_REF] Navarro-Espinosa | Probabilistic impact assessment of low carbon technologies in lv distribution systems[END_REF]. To cope with this issue, several HEMS schemes are embedded with operating envelopes (HEMS-OE) that imposes operational limitations constraints to prevent any technical issues on the grid side [START_REF] Guerrero | Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading[END_REF], [START_REF] Uddin | Energy management for distribution networks through capacity constrained state optimization[END_REF].

The cooperative approach can augment more the benefit of DERs integration. A typical scheme is done through a VPP, where prosumers are aggregated and managed by a single entity to provide flexibility and services -e.g., load shifting to propose demand side management or balancing services that cover different types of ancillary services to grid operators, e.g., DSO or transmission system operators (TSO) [START_REF] Aoun | 13 -demand-side management[END_REF]. In the operation scheme, the VPP provider receives commands/set-points from the upstream entities, or it can also act autonomously to contribute on various energy services and markets [START_REF] Zajc | 11 -virtual power plant communication system architecture[END_REF]. Prosumers who participate in the VPP by sharing their energy and flexibility resources will then be incentivized in the form of monetary payments or energy bill reductions [START_REF] Wang | Incentive mechanism for sharing distributed energy resources[END_REF]. Note that VPP and microgrids share some similar characteristics, in which both concepts aggregate different local sources into a single controllable entity with respect to the grid [START_REF] Mariam | Microgrid: Architecture, policy and future trends[END_REF]. However, the main difference between the two concepts is that a VPP does not necessarily need resources to be physically located in a close proximity one from the other [START_REF] Zheng | Chapter 1 -the concept of microgrid and related terminologies[END_REF]. Hence, VPP does not address possible local network problems, especially in the case when the VPP participants are geographically dispersed.

In TE framework, new business models at prosumers level are also emerging with the concept of local energy markets (LEM). LEM allows prosumers to trade and exchange energy between each other under different types of business models/schemes. In general, there are two distinct categories of LEM that are studied in the literature, which are non-supervised and supervised approach [4] as illustrated in Fig 1 .13.

In non-supervised approach, prosumers can directly conduct transactions and exchange energy with other prosumers without any intermediary/third-party involvement, typically using bilateral contracts. In many papers, this architecture is also referred to as a peer-to-peer (P2P) energy market [START_REF] Huang | A review of transactive energy systems: Concept and implementation[END_REF]. A prominent example of P2P market can be found in [START_REF] Sorin | Consensus-based approach to peer-to-peer electricity markets with product differentiation[END_REF], where the authors proposed a multi-bilateral trading approach that allow market participants (i.e., prosumers) to express their product preferences, such as local or clean generation. The main characteristic of P2P market is the independency of prosumers to participate in the market, and least privacy concerns since there is no central supervision/coordinator. The current limitation of P2P market is the vulnerability of having technical grid issues (e.g., voltage issues) since these constraints are typically not considered in the market scheme [4]. Even though, there are many researches in P2P coordination dedicated to voltage management [START_REF] Putratama | Parameter tuning for LV centralized and distributed voltage control with high PV production[END_REF], [START_REF] Šulc | Optimal distributed control of reactive power via the alternating direction method of multipliers[END_REF] (purely technical, without economic aspect), there are still few papers that integrate market approach, such as [START_REF] Zhong | Cooperative p2p energy trading in active distribution networks: An milp-based nash bargaining solution[END_REF].

On the other hand, a supervised market relies on a third-party entity that usually called as a community manager (CM) who has the responsibility to assist the energy exchange/trading between prosumers. Different types of business models for supervised market have been studied in the literature. For instance, the work in [START_REF] Tushar | Energy storage sharing in smart grid: A modified auction-based approach[END_REF] considers an auction-based approach to share energy storage within a community using the CM as a third-party auctioneer. A similar example is given in [START_REF] Paudel | Peer-to-peer energy trading in a prosumer-based community microgrid: A game-theoretic model[END_REF], where the authors propose a community microgrid model with prosumers that participate in an auction to ask/bid for energy prices. Several works on energy communities are also emerging [START_REF] Mustika | A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption[END_REF], [START_REF] Morstyn | Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences[END_REF], [START_REF] Moret | Energy collectives: A community and fairness based approach to future electricity markets[END_REF]- [START_REF] Zepter | Prosumer integration in wholesale electricity markets: Synergies of peer-to-peer trade and residential storage[END_REF]. In an energy community, prosumers are grouped together to collaboratively work toward common goals (typically minimization of energy cost within the community), which puts the welfare of the collective ahead of individuals. Despite of different market models of supervised local energy market available in the literature, there are still few studies that considers grid constraints in the methodologies. Energy communities usually modelled in an "energy hub" fashion -i.e., no grid constraints/model, or embedded simplified grid model [START_REF] Morstyn | Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences[END_REF], [START_REF] Mediwaththe | Network-aware demand-side management framework with a community energy storage system considering voltage constraints[END_REF]. This due to the fact that the grid does not belong to the community members. Hence, any information regarding grid model will not always be accessible.

All the different presented approaches of TE framework indeed have different characteristics and trade-off between each other. There is still not an obvious answer on a question of what model is the best?. More specifically, the presented frameworks on local energy communities are non-mature topics. There are still a lot of barriers and challenges ahead -regulatory challenges, methodology for prosumer engagement and incentive schemes, addressing potential technical grid constraints, limitation of technologies, and security as well as data privacy shall need to be addressed. There is yet no solution that can fit all the challenges, but one solution can be more suitable depending on the applications and use cases. In this thesis, our interest is to focus on two principal keys, which are grid constraints and to emphasize benefits as a collective. From those two aspects, the different TE approach can be summarized as in in Fig. 1.14, which classification is inspired from the work in [START_REF] Guerrero | Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading[END_REF]. The horizontal axis represents if the model does/does not consider grid model/constraints in the formulation. The term grid model here refers to the approach that can ensure the technical constraints (e.g., voltage) at the local/prosumers level can be mitigated. The vertical axis discriminates the approaches either if the solution emphasizes on providing benefit to individual or to the community. Based on the presented figure, a supervised community market approach is the best suitable as the goal of this thesis. A further study in energy community will be presented in the Chapter 4, in which we develop a solution that was adopted by French energy community framework.

Conclusion

In this chapter, the rising trend of DER integration in distribution system was first presented. Despite of its benefit, this phenomenon also brings several technical challenges, including reverse power flows, increase in grid losses and voltage violations. Next, the advancement of traditional and passive distribution system into an active system, namely smart distribution systems were briefly described. The presence of new technologies, actors, and energy services in this emerging concept were presented.

A specific attention was then dedicated to the voltage management methodology in smart distribution systems. Firstly, the limitation of traditional voltage control strategy with the presence of DERs was discussed. Secondly, classification of voltage control levels were presented, which it can be categorized into three different levels bases on the communication speed and response of the control. Then, different types of decentralized voltage management architectures, which is the main theme of this thesis, was then elaborated.

Lastly, this chapter presented various new energy services that can allow maximum integration of DER in distribution systems, by providing various incentive schemes to the prosumers. The main limitation in the current literature of these services is that technical grid constraints is mainly not evaluated. The different methodologies were then classified by looking at their consideration on grid constraints, and this leads to one of the contributions of this thesis on developing management strategy for energy community that will be presented further later in the manuscript. Each contribution of this thesis will then be introduced in each following chapter throughout the manuscript.

In Chapter 2, voltage management strategies with model-based voltage controllers are presented, which become the main building blocks of the research. Three different voltage control architectures (i.e., centralized, decentralized, and distributed) are developed, and their performance are tested and compared. Then, the study focuses on the fairness aspect of voltage management, where we address the possible uniformity of prosumers' participation using an adaptive update of controller parameters. 

Introduction

As presented in the previous chapter, massive deployment of PV systems in distribution grids can generate many operational and technical issues, particularly overvoltage problems. As conventional methodologies (e.g., OLTC, grid reinforcement) could not effectively overcome these challenges and/or may not be cost-effective, a prominent solution is then to directly regulate the PV generation through the inverters. In the past, PV systems were fully operated in unity power factor and were not expected to provide any ancillary services (e.g., voltage support) [START_REF] Hu | Voltage stabilization: A critical step toward high photovoltaic penetration[END_REF]. Nowadays, they offer partial controllability and may comply with more advanced grid codes. For instance, depending on the country, all DERs (including PV systems) can be operated in a sandboxed power factor, as shown in Fig. 2.1, and have to contribute to voltage regulation depending on their nominal capacity [START_REF] Cabrera-Tobar | Active and reactive power control of a pv generator for grid code compliance[END_REF].

Figure 2.1: Illustration of PV system active and reactive power requirements in some countries [START_REF] Cabrera-Tobar | Active and reactive power control of a pv generator for grid code compliance[END_REF].

Up to this point, many types of voltage control schemes are proposed in the literature for PV systems. One of the simplest solutions is to use the PV inverter to dispatch reactive power (i.e., consumption/injection) depending on the voltage level [START_REF] Demirok | Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids[END_REF]. The limitation of this approach is that it is not necessarily effective for a typical distribution grid that presents high R/X characteristic. Often, PV inverters also have to be oversized in order to comply with the reactive power requirements [START_REF] Olivier | Active management of lowvoltage networks for mitigating overvoltages due to photovoltaic units[END_REF]. For this reason, PV active power curtailments is more suitable to cope with the overvoltage problems [START_REF] Gagrica | Microinverter curtailment strategy for increasing photovoltaic penetration in low-voltage networks[END_REF] if the reactive adjustments are not sufficient. However, this method may incur significant economic loss for the PV owners, since they cannot harness fully their local production. Some studies in [START_REF] Dall'anese | Decentralized optimal dispatch of photovoltaic inverters in residential distribution systems[END_REF] and [START_REF] Olivier | Active management of lowvoltage networks for mitigating overvoltages due to photovoltaic units[END_REF] have shown the effectiveness of combining both active and reactive power controls of PV systems while prioritizing reactive power dispatch before the active power curtailment in order to mitigate overvoltage problems. Strengthened with the advancement of technologies and communication infrastructures, PV systems can then now be collectively optimized [START_REF] Antoniadou-Plytaria | Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research[END_REF]. As a result, the grid voltage can be optimally maintained with better economic benefits for the distribution grid actors (e.g., DSO and prosumers).

The aforementioned control objectives are typically managed within an operational planning phase. In most cases, it incorporates day-ahead and intraday planning (Fig. 2.2) to manage any type of operational uncertainties, such as forecast deviation due to intermittent renewable resources or unexpected disturbances/faults [START_REF] Hamon | On frequency control schemes in power systems with large amounts of wind power[END_REF]. These scheduling problems are typically formulated as optimal power flow (OPF) problems that include the grid model as mathematical constraints [START_REF] Ebeed | Chapter 7 -optimal power flow using recent optimization techniques[END_REF]. Unfortunately, most OPF problems are generally nonconvex due to the nonlinear nature of the grid model. Hence, the optimality of the solution cannot be guaranteed. Moreover, they are classified as NP-hard, which mean that the problems cannot be solved in a polynomial time. To overcome these challenges, many works on metaheuristic algorithms have been considered for solving OPF problems. Several variations, for instance Particle Swarm Optimization [START_REF] Nayeripour | Coordinated online voltage management of distributed generation using network partitioning[END_REF] and Genetic Algorithm [START_REF] Liu | An optimized multi-objective reactive power dispatch strategy based on improved genetic algorithm for wind power integrated systems[END_REF], [START_REF] Richardot | Réglage Coordonné de Tension dans les Réseaux de Distribution à l'aide de la Production Décentralisée[END_REF] have been utilized for optimizing reactive power control of DERs as well as various operational planning use cases [START_REF] Mohan | A genetic algorithm for solving optimal power flow problem[END_REF], [START_REF] Turkay | Optimal power flow solution using particle swarm optimization algorithm[END_REF]. Other algorithms such as Ant Colony Optimization [START_REF] Slimani | An ant colony optimization for solving the optimal power flow problem in medium-scale electrical network[END_REF], Tabu Search [START_REF] Abido | Optimal power flow using tabu search algorithm[END_REF] and Artificial Neural Network [START_REF] Wang | Approximating multipurpose ac optimal power flow with reinforcement trained artificial neural network[END_REF] have also been successfully applied for solving a wide variety of OPF problems. The main interest of using metaheuristic is that it can find "good enough"/near-optimal solution within a reasonable time [START_REF] Abdel-Basset | Chapter 10 -metaheuristic algorithms: A comprehensive review[END_REF]. The algorithm cannot guarantee the global optimal solution and can get stuck in local optima as illustrated in Fig. 2.3(a). Comparison studies of different metaheuristic algorithms are proposed in [START_REF] Khanmiri | Optimal reactive power dispatch by genetic algorithm and particle swarm optimization considering lost opportunities[END_REF] and [START_REF] Tan | Optimization of distribution network incorporating distributed generators: An integrated approach[END_REF], where both studies show that the algorithms return non-identical solutions. This is not in accordance with the aim of this thesis. Our objective is to find the optimal solution of the OPF problem. Hence, in our context, the goal is to determine the operating conditions of the PVs that can produce the most economic profit, while respecting the operational/technical constraints of the grid (i.e., voltage level) and ensuring a replicability of the results. Alternatively, many researches on convex relaxation techniques have been developed to transform the original non-convex OPF formulation into a convex problem for faster computation. "Relaxing" means that certain constraints and variable bounds of the original formulation are eliminated or simplified in order to preserve the problem convexity. The main characteristic of a convex optimization problem is that it is easy and fast to solve in case of continuously differentiable functions. More importantly, the global optimum can be reached and guaranteed, where there exists only a single best solution in the search space, as illustrated in Fig. 2.3(b). This is also true for a relaxed OPF problems, where the optimal solution can also be guaranteed under certain conditions that can be proven mathematically [START_REF] Swaminathan | Operational planning of active distribution networks-convex relaxation under uncertainty[END_REF]. For distribution system applications, a linearized OPF (i.e., DC-OPF) model is generally utilized in the literature [START_REF] Šulc | Optimal distributed control of reactive power via the alternating direction method of multipliers[END_REF], [START_REF] Baran | Network reconfiguration in distribution systems for loss reduction and load balancing[END_REF], [START_REF] Yeh | Adaptive var control for distribution circuits with photovoltaic generators[END_REF]. This approach considers a hypothesis of a linear grid model, using several assumptions such as lossless networks and small voltage changes between buses. Indeed, these approximations do not reflect the original non-linear nature of the grid. Hence, the linearized grid model may not always be applicable [START_REF] Low | Convex relaxation of optimal power flow-part i: Formulations and equivalence[END_REF].

More recently, Farivar and Low [START_REF] Farivar | Branch flow model: Relaxations and convexification-part i[END_REF], [START_REF]Branch flow model: Relaxations and convexification-part ii[END_REF] proposed a convex relaxation technique using Second-Order Conic Programming (SOCP) for a radial distribution grid. The authors claimed that the technique is exact under some mild assumptions. Since then, it has been extensively used in the literature [START_REF] Putratama | Parameter tuning for LV centralized and distributed voltage control with high PV production[END_REF], [START_REF] Zheng | A fully distributed reactive power optimization and control method for active distribution networks[END_REF], [START_REF] Farivar | Optimal inverter var control in distribution systems with high pv penetration[END_REF]. In this thesis, we focus on applying SOCP relaxation for convexifying different applications of OPF problems. In the first part of this chapter, we propose a multi-objective OPF problem with SOCP relaxation as a major building block of different studies that are conducted throughout the thesis. One of our main contributions is that we identify some potential limitations of SOCP relaxation. In this chapter, we will then show how the relaxation can be inexact in some cases, and lead to invalidity of the controller actions. Fortunately, this issue can be mitigated by a proper tuning of the controller parameters as it is discussed further in this chapter. Note that, there are as well other convex relaxation techniques for OPF problems explored in the literature, such as Semi-Definite Programming (SDP) [START_REF] Dall'anese | Decentralized optimal dispatch of photovoltaic inverters in residential distribution systems[END_REF] and Quadratic Convex (QC) [START_REF] Hijazi | Convex quadratic relaxations for mixedinteger nonlinear programs in power systems[END_REF] relaxation. Our interest stayed on SOCP since it presents comparable performances as SDP and QC [START_REF] Hijazi | Convex quadratic relaxations for mixedinteger nonlinear programs in power systems[END_REF], and is faster to reach the optimal solution [START_REF] Coffrin | The qc relaxation: A theoretical and computational study on optimal power flow[END_REF]. In addition, SOCP problems can be solved by various industrial solvers such as Gurobi [START_REF]Gurobi optimizer reference manual, Online, Gurobi Optimization[END_REF] or CPLEX [START_REF] Cplex | V12. 1: User's manual for cplex[END_REF], while it is not the case for SDP relaxation for instance. Other simple relaxation will be further explored in Section 2.3.

In the previous chapter, we have stated that an OPF problem is conventionally solved in a centralized manner by a dedicated central entity (e.g., DSO or aggregator), which may lead to robustness, scalability and privacy issues. The second part of this chapter focuses on applying an Alternating Direction Method of Multipliers (ADMM) for implementing distributed optimization algorithms. ADMM has become a favorable methodology to solve a convex optimization problem in a distributed-manner, due to its simplicity, accuracy and fast convergence speed [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. It also has been widely applied for distributed voltage control/OPF in distribution grids. For instance, studies in [START_REF] Almasalma | Peer-to-peer-based integrated grid voltage support function for smart photovoltaic inverters[END_REF], [START_REF] Xu | Voltage control techniques for electrical distribution networks including distributed generation[END_REF], [START_REF] Šulc | Optimal distributed control of reactive power via the alternating direction method of multipliers[END_REF] applied ADMM to solve a linearized OPF problem. Other studies with more accurate representations of the grid (using SOCP relaxation) are also available in the literature [START_REF] Zheng | A fully distributed reactive power optimization and control method for active distribution networks[END_REF], [START_REF] Liu | A fully distributed voltage optimization method for distribution networks considering integer constraints of step voltage regulators[END_REF], [START_REF] Xu | Accelerated admm-based fully distributed inverter-based volt/var control strategy for active distribution networks[END_REF]. Compared to the existing literature, our aim is to develop a generic formulation to create a decentralized architecture for voltage control. The proposed methodology is capable of transforming the original centralized problem into various types of architecture, such as distributed or decentralized, or possibly a hybrid combination of both. This possibility highlights another contribution of the thesis, compared to the existing literature that typically focus on a single control architecture, i.e., either distributed or decentralized

The last part of this chapter emphasizes on a fairness aspect of prosumers' (i.e., PV owners) participation in the voltage control scheme, which is an important topic for public acceptability and economic reasons [START_REF] Heylen | Fairness and inequality in power system reliability: Summarizing indices[END_REF]. From the perspective of the prosumers, unfair contribution could lead to economic disadvantage, especially for the users who are located in the weaker parts of the grid. This situation is illustrated in Fig. 2.4, where overvoltage occurs beyond bus 3. On one hand, curtailing PV 1 will have little impact on the violated voltage of buses, since it is located on a different feeder. On the other hand, a small production change of PV 2 can significantly improve the voltage profile. Therefore, the most effective solution will be to only curtail the production of PV 2. But this situation is unfair for PV 2 owner because, due to the grid topology, he has to regulate more its PV production compared to other PV owners. This control aspect seems to be relatively confidential in the literature. A recent study proposes an adaptive droop control to alleviate voltage problems while guaranteeing an effective contribution of all PV systems [START_REF] Mai | Adaptive coordination of sequential droop control for pv inverters to mitigate voltage rise in pvrich lv distribution networks[END_REF]. However, this study only fairly allocates the contribution among the PVs within a given proximity criteria. Another study in [START_REF] Alyami | Adaptive real power capping method for fair overvoltage regulation of distribution networks with high penetration of pv systems[END_REF] proposes a methodology to fairly distribute PV curtailments among the users using a linear approximation between active power production and bus voltage. As discussed previously, a linearized assumption does not reflect the actual model of the grid, hence the solution can be inaccurate and not optimal. A non-convex coordination approach is proposed in [START_REF] Gebbran | Fair coordination of distributed energy resources with volt-var control and pv curtailment[END_REF] to fairly allocate the active power curtailments with different control options. However, due to the non-convexity of the formulation, the optimality of the solution then cannot be guaranteed. To this extent, our objective is to fill the gaps in the existing literature. In particular, we aim at incorporating a scheme that enables a fair PV curtailment allocation in the proposed voltage controller. Hence, the convexity of the problem can be preserved and the optimality of the solution can be guaranteed.

To sum up, the contributions of the thesis within the scope of this chapter are: The remainder of this chapter is organized as follows: Section 2.2 considers generic system models that will be used throughout the manuscript, including grid, PV and ESS. Section 2.3 presents the proposed centralized voltage control as well as different models for comparison studies. The generic decentralization methodology is presented in the Section 2.4. The performance of the proposed controller and decentralization method are depicted in the Section 2.5. Section 2.6 is dedicated to the fairness aspects of the control. The tuning algorithm is described and evaluated within this section. Finally, Section 2.7 concludes the chapter.

General Model Formulation

In this section, the generic system models that are used throughout the manuscript are introduced. These models will mainly be utilized as the optimization (i.e., OPF) constraints in the proposed model-based voltage controllers that will be further elaborated in the next section. We start by firstly introducing the distribution grid model and followed by the considered DER assets (i.e., PV and ESS), which are the main degree of freedoms/source of flexibilities in the proposed voltage controllers.

Grid model

This thesis specifically focuses on a balanced radial distribution grid that comprises local generations. Any considered grid can be represented as a graph G(B, E), where B = {0, 1, . . . , |B|-1} and E = {(i, j)} ⊂ B × B denote the set of busses and lines/edges in the grid respectively. Let T = {0, ∆t, • • • , (|T | -1)∆t} be the set of time horizon, with ∆t denotes the time step in minutes. At each time t ∈ T , let v i,t be the voltage at bus i ∈ B and bus 0 denotes the slack bus with typically v 0,t = 1 p.u. Similarly, let i ij,t , p ij,t , q ij,t be the current as well as active and reactive power flowing from bus i to bus j through the line (i, j) that has a resistance r ij and reactance x ij . Fig. 2.5 shows a typical representation of the considered radial grid.

For each time t and link (i, j) ∈ E, a radial distribution grid can be formulated with conventional DistFlow equations [START_REF] Low | Convex relaxation of optimal power flow-part i: Formulations and equivalence[END_REF], as expressed in (2.1).

p ij,t = k:(j,k)∈E p jk,t + r ij i 2 ij,t + p c j,t -p pv j,t + p st j,t (2.1a) 
q ij,t = k:(j,k)∈E q jk,t + x ij i 2 ij,t + q c j,t -q pv j,t + q st j,t (2.1b) 
v 2 j,t = v 2 i,t -2(r ij p ij,t + x ij q ij,t ) + (r 2 ij,t + x 2 ij,t )i 2 ij,t (2.1c) 
The current in (2.1) can be alternatively expressed as (2.2).

i 2 ij,t = p 2 ij,t + q 2 ij,t v 2 i,t (2.2) 
where p c j,t , q c j,t denote the active and reactive power consumption at node j at time t. On the other hand, p pv j,t , p st j,t denote the PV and ESS active power production. Lastly, the PV and ESS reactive power dispatch are denoted as q pv j,t , q st j,t respectively. For any bus without PV and/or ESS, their corresponding power dispatch are obviously set to zero. The aforementioned powers are usually defined as "bus power", where they can be equivalently expressed as p net j,t = p c j,t -p pv j,t + p st j,t for active and q net j,t = q c j,t -q pv j,t + q st j,t for reactive power (i.e., power balance at each bus).

The DistFlow formulation is based on the iterative computation of the branch flows and node voltages from the slack bus down to the termination buses of the considered radial distribution grid [START_REF] Baran | Network reconfiguration in distribution systems for loss reduction and load balancing[END_REF]. The branch power flows are described by (2.1a) and (2.1b) that represent the active and reactive power flows, respectively. These flows can be bidirectional due to the presence of local generation (i.e., PV and/or ESS). Therefore, every branch should supply or absorb the active and reactive power balance at all its downstream buses by taking into consideration the grid losses (i.e., the non-linear terms in the equations) [START_REF] Rigo-Mariani | An iterative linear distflow for dynamic optimization in distributed generation planning studies[END_REF]. Furthermore, the third equation (2.1c) represents the voltage drop along each branch that are computed based on the power flow directions and the losses.

PV System Model

Let the subset G ⊂ B describes the set of busses with PV. In this thesis, a P, Q domain, based on [START_REF] Dall'anese | Optimal dispatch of photovoltaic inverters in residential distribution systems[END_REF], is considered for the PV system operation, in which the active and reactive power can be dispatched as in (2.3) and illustrated in the Fig. 2.6.

0 ≤ p pv j,t ≤ p pv j,t
(2.3a)

(q pv j,t ) 2 ≤ (s pv j ) 2 -(p pv j,t ) 2 (2.3b) |q pv j,t | ≤ tan(θ pv j ) p pv j,t (2.3c) 
where p pv j,t is the available active power of the PV j based on the irradiance profile at time t. s pv j and θ pv j denote the rated apparent power of the PV inverter and the predefined power angle, respectively. 

ESS Model

Several study cases that will be further presented throughout the manuscript may or may not consider ESS. Each storage j has its own predefined ratings that are described by the maximum energy capacity (e st j ) and the maximum charging and discharging rated power (p st + j , p st - j ). The ESS power can be decomposed as (2.4a), where p st + j,t , p st - j,t denote the charging and discharging power and the constraints (2.4b) and (2.4c) set the limit to both powers. Note that the ESS cannot be charged or discharged simultaneously. Thus, at each time t, either p st + j,t , or p st - j,t shall be equal to zero.

p st j,t = p st + j,t -p st - j,t
(2.4a)

0 ≤ p st + j,t ≤ p st + j (2.4b) 0 ≤ p st - j,t ≤ p st - j (2.4c)
The ESS reactive power can be dispatched as (2.5).

(q st j,t ) 2 ≤ (s st j ) 2 -(p st j,t ) 2 (2.5a) |q st j,t | ≤ tan(θ st j ) p st j,t (2.5b) 
where s st j and θ st j denote the rated apparent power of the ESS inverter and its predefined power angle, respectively.

Then, the SoC is updated as (2.6), and by considering the charging (η st + j ) and discharging (η st - j ) efficiencies (in %) of the ESS.

soc j,t+∆t = soc j,t + p st + j,t η st + j - p st - j,t η st- j 100 e st j ∆t 60 (2.6) 
Finally, for each time t, the state-of-charge (SoC) of ESS j, shall be maintained between soc j and soc j as (2.7). soc j ≤ soc j,t ≤ soc j (2.7)

Centralized Control Formulation

Conventional OPF Formulation

All the voltage controllers developed in this thesis are formulated as an OPF problem. However, different OPF formulations are considered depending on the use case that will be described through each chapter. In general, the ultimate goal of every OPF problem is to maintain the grid voltage within safe operating limits, while minimizing some predefined objectives that may differ from one case to another. In this chapter, we consider a grid with only PV installations (i.e., without ESS). The aim of the controller is then to prevent any significant economic loss for the PV owners/prosumers due to voltage control actions. Due to the potential high R/X ratio in distribution systems, our motivation is then to optimally adjust both active and reactive power dispatch of PV systems. As previously described, active power curtailments, however, may incur loss of revenue to the prosumers. On the other hand, reactive power dispatch shall also be minimized since it shares a significant part in lifetime degradation of PV inverters [START_REF] Gandhi | Reactive power cost from pv inverters considering inverter lifetime assessment[END_REF].

Firstly, let p be a vector that combines the active and reactive power set-points of all the PVs (i.e., the actual degrees of freedom of the system), as described in (2.8). Moreover, let g be the vector that aggregates the grid state variables (i.e., voltage, current, active and reactive power flows) as shown in (2.9).

p = (p pv j,t |∀j ∈ G, ∀t ∈ T ) (2.8) g = (v j,t , p ij,t , ij,t |∀(i, j) ∈ B, ∀t ∈ T ) (2.9)
Then, the following OPF problem (2.10) is proposed, with p and g act as the decision variables. min p,g j∈G t∈T α j (p pv j,t -p pv j,t )

P curtailments + (1 -α j )|q pv j,t | Q dispatch (2.10a)
Subject to:

1. DistFlow equations (2.1) and (2.2), ∀(i, j) ∈ E, ∀t ∈ T .

2. PV operating points (2.3), ∀j ∈ G, ∀t ∈ T .

3. Voltage operating limits, ∀i ∈ B, ∀t ∈ T :

v ≤ v i,t ≤ v (2.10b)
The objective (2.10a) has two components. The first component aims at minimizing active power curtailments. The minimization of reactive power dispatch is formulated with an absolute value (|q pv j,t |) because we would like to aim at having q pv j,t = 0 under normal operating condition, and to dispatch the reactive power only during voltage problems (to avoid over ageing of power electronics). Hence, a parameter α j ∈ [0, 1] is introduced to give priority between active power curtailments and reactive power dispatch. As the prosumers target the maximization of their profit, α j would be preferably set close to unity to firstly prioritize reactive power dispatch before active power curtailments.

Lastly, the constraint (2.10b) is the primary purpose of the voltage controller, which is to ensure that the voltage is maintained within the acceptable operating limits, with v = 0.95 and v = 1.05.

The introduced optimization problem however is non-convex, thus it is hard to solve and the optimality of the solution cannot be guaranteed. The source of non-convexity lies on the non-linear relation of the current (2.2). In the following subsections, convex relaxation techniques are introduced to transform the original OPF formulation into a convex optimization problem.

Proposed OPF with SOCP Relaxation

A convexification of a OPF problem using SOCP proposed by Farivar and Low [START_REF] Farivar | Branch flow model: Relaxations and convexification-part i[END_REF], [START_REF]Branch flow model: Relaxations and convexification-part ii[END_REF] is claimed to be exact for radial distribution grids, under an assumption of full controllability of the loads with no upper bounds. This assumption is indeed unrealistic and leads to misinterpretation of the system model [START_REF] Christakou | Ac opf in radial distribution networks -part i: On the limits of the branch flow convexification and the alternating direction method of multipliers[END_REF]. This restriction will lead to the invalidity of the solution and the failing of the controller to maintain the grid voltage within the operating range [START_REF] Putratama | Parameter tuning for LV centralized and distributed voltage control with high PV production[END_REF]. Despite of this limitation, we will show how SOCP relaxation can still be utilized using more realistic assumptions, i.e., without full controllability of the loads nor no upper bounds requirements, as long as the controller parameters are properly selected.

In order to convexify the original OPF problem (2.10) using SOCP relaxation, two new variables are firstly introduced as expressed in (2.11).

ν i,t = v 2 i,t and ij,t = i 2 ij,t (2.11) 
By substituting v 2 i,t , i 2 ij,t with ν i,t , ij,t , the constraints in (2.1) are then become linear with respect to the state variable g. Then, the nonlinear equality relation of (2.2) are relaxed to:

ij,t ≥ p 2 ij,t + q 2 ij,t ν i,t (2.12) 
The constraint (2.12) is now becoming a second-order conic constraint, and the problem becomes convex. Alternatively, it can also be expressed in a standard SoC formulation as in (2.13).

2p ij,t 2q ij,t ij,t -ν i,t 2 ≤ ij,t + ν i,t (2.13) 
In addition, the voltage operating limits can be transformed into (2.14).

v 2 ≤ ν i,t ≤ v 2 (2.14)
Ultimately, the original OPF problem (2.10) can be casted into a SOCP problem as the following formulation:

min p,g j∈G t∈T c pv j,t α j (p pv j,t -p pv j,t ) P curtailments + (1 -α j )(q pv + j,t + q pv - j,t ) Q dispatch + c loss (i,j)∈E t∈T ij,t r ij (2.15a)
Subject to:

1. DistFlow equations (2.1) and current relaxation (2.13), ∀(i, j) ∈ E, ∀t ∈ T .

2. Voltage operating limits (2.14), ∀i ∈ B, ∀t ∈ T .

3. PV operating points (2.3), ∀j ∈ G, ∀t ∈ T .

4. PV reactive power dispatch relaxation , ∀j ∈ G, ∀t ∈ T :

q pv j,t = q pv + j,t -q pv - j,t
(2.15b)

0 ≤ q pv + j,t , q pv - j,t (2.15c) 
In this formulation, an extra term (i.e., minimization of grid losses) shall be added in the objective to ensure the exactness of the current/conic relaxation of (2.12) or (2.13). Adding the losses term will make the objective function increase with ij,t . Hence, the original equality relation of the current (2.2) can be preserved. Moreover, supplementary control parameters c pv j,t , c loss ≥ 0 are also introduced to provide the weight between the primary controller objectives (i.e., active power curtailments and reactive power dispatch minimization) and the grid losses. We identified that the current relaxation (2.12) is not always be valid for all values of c pv j,t and c loss . This specific topic has not been systematically addressed in the literature. Section 2.5.4 will be dedicated to further discuss this topic.

Furthermore, the term q pv + j,t + q pv - j,t in (2.15a) represents a linear relaxation of an absolute value |q pv j | in the original objective (2.10a). In this relaxation, the reactive power dispatch is disaggregated as (2.15b) and (2.15c), where it is defined as if either the PV export (q pv + j,t ) or import (q pv - j,t ) the reactive power.

By solving the proposed formulation (2.15), The optimal PV set-points can then be computed in a centralized fashion with a central controller (i.e., DMS or EMS level). To compare the performance of the proposed formulation, two additional convex relaxation techniques are considered as explained the further subsections.

Quadratic DistFlow Relaxation as a Comparison Model

As proposed in [START_REF] Rigo-Mariani | An iterative linear distflow for dynamic optimization in distributed generation planning studies[END_REF], a quadratic DistFlow (QDF) further relaxes the current relation (2.12) by using an approximation of every bus voltage close to the reference value (voltage at the slack bus), as formulated in (2.16).

ij,t = p 2 ij,t + q 2 ij,t ν 0,t (2.16) 
The considered OPF formulation with QDF is similar as (2.15), but with the current constraint (2.12) is substituted with (2.16). This formulation is as well convex and easily solvable.

Linear DistFlow Relaxation as a Comparison Model

A linear DistFlow (LDF) is widely used in the literature [START_REF] Šulc | Optimal distributed control of reactive power via the alternating direction method of multipliers[END_REF], [START_REF] Baran | Network reconfiguration in distribution systems for loss reduction and load balancing[END_REF], [START_REF] Yeh | Adaptive var control for distribution circuits with photovoltaic generators[END_REF] thanks to its fast computational time that allows the simulation of large system over longer periods of time horizon. This approach neglects the non-linear terms in the DistFlow equations (2.1) that represent the losses. In addition, it is also assumed that the voltage at each bus is close to the reference voltage, i.e., (v 2 i,t -v 2 0,t ≈ 0). Based on these assumptions, the LDF equations can be written as:

p ij,t = k:(j,k)∈E p jk,t + p net j,t (2.17a) q ij,t = k:(j,k)∈E q jk,t + q net j,t (2.17b) ν j,t = ν i,t -2(r ij p ij,t + x ij q ij,t ) (2.17c)
The considered OPF with LDF is similar as the formulation with quadratic relaxation, but with only substituting the original DistFlow equations (2.1) with the linearized model (2.17) and neglecting the losses term in the objective.

Decentralized and Distributed Control Formulation

Control Agents

As been shown in Fig. 1.11, both distributed and decentralized architectures rely on coordination among a group of control agents. A control agent here refers to an entity who manages assets (i.e., PV systems) under single or multiple buses, and which is able to perform computations as well as coordinate with its neighboring/adjacent agents. In a decentralized architecture, an agent can represent an aggregator who manages multiple buses/prosumers. On the other hand, an agent in distributed architecture could represent a prosumer with HEMS, in a case of coordination in LV grid. At MV level, a distributed architecture can be for instance viewed as a coordination among distributed aggregators/microgrids.

Let A be the set of agents. Each agent a ∈ A is responsible for managing an equivalent subgrid G a (B a , E a ), with the generic properties of an agent a are described in the Table 2.1. These properties identify all the information that belonged to an agent (e.g., adjacent bus and lines properties/variables) and point out the essential communicated variables (i.e., ADMM local variables) that are being exchanged with the adjacent agents in the course of the coordination. The introduced properties are generic, and can be used to describe agents in both decentralized and distributed architectures. Moreover, we can refer to Table 2.1 for implementing a hybrid architecture as well (i.e., mixed of distributed and decentralized agents). Fig. 2

.7 illustrates

an example of dissemination of agents in this type of architectures and the corresponding properties of two samples of agent. Table 2.1: Designated sets and vectors to describe the properties of any control agent a ∈ A.

Sets B a ⊂ B Controlled busses G a ⊂ G PVs E a = {(i, j) ∈ E} ⊂ B a × B a Branches N a = {i ∈ B ∩ B a | ∃j ∈ B a : (i, j) ∈ E ∨ (j, i) ∈ E} Neighboring/adjacent buses Ba = B a ∪ N a
Busses and neigboring busses

C a = {(i, j) ∈ E ∩ E a } ⊂ Ba × Ba
Branches that connects agent a with its adjacent buses (i.e., coupled branches)

Êa = E a ∪ C a
Branches and coupled branches

N a = {n ∈ A|∃j ∈ B a : j ∈ N n } Adjacent agents Vectors * p a = (p pv j,t , q pv j,t | j ∈ G a )
PV active and reactive power setpoints

g a = (ν j,t | j ∈ Ba ), ( ij,t , p ij,t , q ij,t | (i, j) ∈ Êa )
Grid state variables

ADMM variables vectors * z a = (ν i,t , ν j,t | (i, j) ∈ Êa , j ∈ B a ), (p ij , q ij | (i, j) ∈ C a ) Global variables considered by agent a x a = (z (a) |z ∈ z a )
Local variables of agent a λ a = (λ z(a) |z ∈ z a )

Corresponding ADMM dual variables * : The element of the vector also consist of the whole time horizon of the variables, i.e., ∀t ∈ T .

Voltage Control Formulation with ADMM

Both decentralized and distributed architecture rely on a coordination scheme among distributed agents. In this chapter, we adopt a consensus ADMM (C-ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] to solve the proposed centralized OPF problem (2.15) in a decentralized/distributed fashion. The main principle of the C-ADMM is to decompose the augmented Lagrangian of the centralized problem (2.15) into several sub-problems, so that they can be disseminated to the control agents. Each agent then iteratively solves its respective sub/local problem and exchange information (i.e., local variables) with its adjacent/neighboring agents, until everyone reach consensus toward the global solution. Let k be the C-ADMM iteration number, the superscript • {k} denotes the state of any variables/vectors at the iteration k. C-ADMM consists of three steps, with each iteration of the algorithm comprising of the following:

Step 1: Local optimization In the first step, each agent solves a decomposed Lagrangian/subproblem of (2.15), in which it minimizes the PV dispatch change and grid losses minimization of its corresponding sub-grid G a (B a , E a ). By solving this sub-problem, agents can determine their optimal PV setpoints p 

f a + λ {k-1} a • (x {k} a -z {k-1} a ) + ρ 2 x {k} a -z {k-1} a 2 2
(2.18)

Based on the original centralized OPF problem (2.15), The local optimization/sub-OPF problem of an agent a is formulated as in (2.19).

min p {k} a ,g {k} a t∈T j∈Ga c pv j,t α j (p pv j,t -p pv{k} j,t ) + (1 -α j )(q pv + {k} j,t + q pv -{k} j,t ) + c loss t∈T (i,j)∈ Êa r ij {k} ij,t + λ {k-1} a • (x {k} a -z {k-1} a ) + ρ 2 x {k} a -z {k-1} a 2 2
(2.19) subject to:

1. DistFlow equations (2.1) ∀t ∈ T , ∀(i, j) ∈ Êa : j ∈ B a .

2. Current relaxation, (2.12) ∀t ∈ T , ∀(i, j) ∈ Êa : j ∈ B a . and ρ. The latter is added due to the fact that the consesus variables can be interpreted as values in which all agents should ultimately agree. Note that, in the notation described in Table 2.1, the elements of x a are denoted similarly to those of z a but with added subscript • (a) . This subscript implies that the variable is computed/owned by agent a and used to differentiate from the same variables computed by other agents. As the algorithm iterates, the local variables computed by different agents will eventually be converging to the corresponding consensus variables.

Each agent a then shares the optimal local variables vector x {k} a (i.e., the expected voltage as well as the active and reactive power flow within the subgrid G a (B a , E a )) obtained in this step to the adjacent agents. By using the proposed coordination methodology, agents are not required to share their behind the meter assets data (i.e., load and PV), which are considered as sensitive information and potentially harmful for their privacy [START_REF] Liu | Achieving privacy protection using distributed load scheduling: A randomized approach[END_REF].

Step 2: Consensus Update Next, each agent a receives local variable vectors from their its adjacent agents, and utilizes this information to update locally the consensus variables z {k} a . These local variables received from the adjacent agents can be different in values as the locally computed ones. Therefore, the goal of the consensus variables is to drive the local variables of all the agents to reach a "consensus" state in each iteration.

The consensus variables are updated by taking the average of the locally computed and the received local variables from the adjacent agents, as in (2.20).

ν {k} j = ν {k-1} j(a) , ν {k-1} j(n:n∈M a,j ) (2.20a) p {k} ij = p {k-1} ij(a) , p {k-1} ij(n:n∈M a,ij ) ; q {k} ij = q {k-1} ij(a) , q {k-1} ij(n:n∈M a,ij ) (2.20b)
Where the sets M a,j and M a,ij consist of all the adjacent agents that also consider ν j and p ij , q ij as their local/global variables, respectively.

Step 3: Dual Update and Stopping Criteria In the last step, agents update in paralel the dual variables using gradient ascent principles [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], as expressed in (2.21).

λ {k} a = λ {k-1} a + ρ 2 (x {k} a -z {k} a ) (2.21)
The algorithm then repeats and starts the next iteration k + 1. It will terminate when it reaches a maximum number of iteration k max or when both the primal and dual residuals reach a certain threshold res , as in (2.22). The latter case implies that all agents agree that their local variables have reached the consensus values.

a∈A

x {k} a -z {k} a primal residuals , a∈A z {k} a -z {k-1} a dual residuals ∞ ≤ res (2.22)
2.5 Validation of the Proposed Methodologies

Test System

In this chapter, an IEEE 33-bus distribution system [START_REF] Vita | Development of a decision-making algorithm for the optimum size and placement of distributed generation units in distribution networks[END_REF] is considered as the primary test system to evaluate the proposed methodologies -i.e., the SOCP relaxation and the performance of both distributed and decentralized architectures. In the considered system, ten PVs of 1 MWp with cos(θ pv j ) = 0.95 are integrated, as displayed in Fig. 2.8. For the simulations conducted in this section, 1-day simulation horizon with 30 min time step is considered. The PV profiles utilized in the test system are obtained from real irradiance data in Grenoble, France, and the load profiles are adopted from the database that are available in [START_REF] Murray | An electrical load measurements dataset of united kingdom households from a two-year longitudinal study[END_REF]. For the application of decentralized architecture, the test system is clustered into four zones as highlighted by different colors in the figure. This aspect will be further discussed in the Section 2.5.5. Note that, there is no ESS in this chapter.

The validation process of the proposed methodologies follows the diagram in Fig. 2.9, where we performed deterministic simulations with the assumption of prior knowledge of load and PV profile (perfect forecast and no uncertainties impact). As shown in the figure, both PV and load data are utilized as inputs for the voltage controllers. Then, the obtained optimal PV set-points are tested by running a load-flow simulation in the open-source software pandapower [START_REF] Thurner | Pandapower -An open source python tool for convenient modeling, analysis and optimization of electric power systems[END_REF] to allow observing the actual voltage profiles once the control is taken into account. All the tests performed in this section utilize a uniform controller configuration (i.e., identical settings ∀j ∈ G and ∀t ∈ T ) with parameters c pv j,t = 5, c loss j,t = 5 and α j = 1. These parameters are selected based on preliminary sensitivity studies that will be discussed further in the next subsection. due to the uniformity of the configuration, we refer c pv j,t simply as c pv in this section.

All the simulations performed in this thesis are conducted using a lab computer with 40 The optimization problems are formulated using Pyomo [START_REF] Hart | Pyomo -Optimization modeling in python[END_REF] and solved with Gurobi [START_REF]Gurobi optimizer reference manual, Online, Gurobi Optimization[END_REF].

Controller Performance Metric

In order to assess the performance of the different convex relaxation approaches, a voltage error criterion is defined to estimate the deviation between the voltage that is estimated by the controller v i,t with the actual voltage (i.e., the voltage returned by the load solver) vi,t . The formulation of this computation criteria is obtained by the study from [START_REF] Rigo-Mariani | An iterative linear distflow for dynamic optimization in distributed generation planning studies[END_REF], in which the voltage errors are normalized with regard to the mean deviation of the voltage computed over the total number of busses, as expressed in (2.23). 2.2 presents the results obtained for different controller models in three different simulation time horizons, with the snapshot referring to a single simulation time step. The load and PV profiles utilized in the simulations are adopted from [START_REF] Navarro | Low carbon technology profiles[END_REF]. In addition, the PVs are assumed to be located in a close proximity, hence they are all based on by the same irradiance profile. In overall, the SOCP relaxation is able to precisely estimate the bus voltage as the actual values, as indicated by the lowest δ v compared to other relaxation models. Although, linear and quadratic approaches have a relatively higher δ v , it still lays within an acceptable range. As illustrated in Fig. 2.10, all the models can effectively maintain the voltage just below the upper limit (i.e., 1.05 pu) with fairly similar voltage profiles over a single test day. Furthermore, two other comparisons in terms of total PV active power curtailments and absolute reactive power dispatch over the considered time horizon are observed over one day time horizon. The accuracy of the SOCP model results in less overall active power curtailments and reactive power dispatch. This implies that the model can predict more accurately the required changes of active/reactive power to prevent any overvoltage. Compared to linear and quadratic models, the proposed SOCP does not over-estimate the PV curtailments and the reactive power dispatch, which are highly correlated with energy as well as economic losses.

δ v (%) = 100 |B| t∈T i∈B |v i,t -vi,t | 1 |B| t∈T i∈B |1 -vi,t | (2.23)

Simulation -Model Comparisons

Sensitivity of the optimal solution to controller parameters for the SOCP model

The main goal of the sensitivity studies carried out in this subsection is to observe the impact of parameters selection c pv j,t , c loss , α to the performance and feasibility of the controller. Note that, only a single simulation time snapshot snapshot (i.e., single 30 min time step) is considered in this sensitivity studies and the parameters are configured uniformly for all PVs.

Hypothetically, we can decrease further the amount of PV curtailments by increasing the weight of c pv . Hence, three initial tests were compared, where we observe different configurations of c pv ∈ {0, 5, 10} to see their impact on the controller performance. From this, we identify that selecting c pv = 10 leads to invalid controller behavior. As depicted in Fig. 2.11, this configuration is not able to maintain the voltage properly. This anomaly occurs because of the non-validity of the inequality current assumption (2.12) used in the SOCP relaxation. In fact, this is due to the losses term in the objective function (2.15a) that is not adequately penalized with regard to the curtailment term. As a result, the branch current ij could continuously increase and deviate from the original current equality relation (2.2). This situation can be generally described by (2.24), where the controller is valid if this condition is respected, with denoting a small value ( = 10 -4 ).

∃(i, j) ∈ E : ij,t - p 2 ij,t + q 2 ij,t ν i,t ≤ (2.24)
As can be seen in Fig. 2.12, the current deviation (2.24) with c pv = 10 is extensively higher than the other c pv that are within the range of 10 -7 . Further investigations are conducted to observe different combinations of c pv and c loss within the range of c pv ∈ [0, 60] and c pv ∈ [0, 100]. The result from this experiment is presented in Fig. 2.13. Based on this, three operating regions can be identified for the controller:

1. Region 1 (Invalid): This area corresponds to the anomaly previously described, where at least one of the line current ( ij ) does not meet (2.24) with a tolerance of = 10 -4 . Although the problem is mathematically feasible, it does not respect the actual physical phenomena of the line current.

Region 2 (Loss minimization):

Here, the controller tends to prioritize the minimization of line losses. Hence, it may still curtail PV production in order to minimize the losses, even though there is no voltage violation while reducing the line flows. A prominent example is by selecting c pv = 0 as in initial test, where the voltage at all busses can be maintained close to 1 pu. We identify this region if the condition (2.25) is true.

∀i ∈ B : v i,t < v (2.25)
3. Region 3 (PV curtailments minimization): Finally, this is the area where the controller will prioritize PV curtailment minimization. The controller may curtail the PV power at least as possible while maintaining the grid voltage close to the maximum voltage limit. Finally, the last sensitivity analysis focuses on the study on α. In this test, different combinations of c pv ∈ [0, 60] and c loss ∈ [0, 100], and three different values of α ∈ [1, 0.75, 0.5] are observed. In general, a lower value of α generates a wider operating region, as presented in Fig. 2.14. This is because the weight of active power curtailments in the objective function (2.15a) is smaller than the one obtained with a higher α. However, the lower the α is, the narrower the area where the PV is the least curtailed (the green area). From the sensitivity studies, we can then select the controller parameters based on the desired operating regions (either PV curtailment or losses minimization). Moreover, these studies can help us defining the maximum c pv for given c loss and α that minimizes the PV curtailments while the validity of the SOCP relaxation can be ensured.

Validation of the Distributed Algorithms

The main objective of this subsection is to compare the performance of the centralized controller with distributed and decentralized architectures. In the case of a fully distributed architecture, there exists a total of 33 controller agents that are deployed at each bus. The considered decentralized architecture consist of four controller agents (or zones) as previously presented in Fig. 2.8. For the decentralized and distributed architectures, the ADMM penalty parameter is initially set to ρ = 0.5, which is pre-selected based on preliminary assessment. Fig. 2.15 shows the effectiveness of the three considered controllers to maintain the bus voltage within the safe operating limits (over a single time step). On top of that, all controllers lead to the same profiles, which highlights the preciseness of the decentralized and distributed architectures to generate results identical to the centralized controller. Fig. 2.16 compares the obtained active and reactive power of the PVs between the three control architectures. Similarly, this result highlights the exactness of the solutions for the three architectures. This also implies the effectiveness of the proposed distributed algorithm to return the exact global optimal solution (by considering the centralized controller as the reference). Although the voltage can be effectively optimized, there is an unfair decision in the active curtailments as the PV at bus 15 has to decrease its production significantly compared to the other PVs. This unfair request could be the result of improper planning, such as nonoptimal PV sizing or location [START_REF] Hu | Voltage stabilization: A critical step toward high photovoltaic penetration[END_REF] that are outside the scope of this thesis. In other cases, such as local ancillary services provision [START_REF] Zhang | Coordinated market design for peer-to-peer energy trade and ancillary services in distribution grids[END_REF], an unfair contribution could provide market power for certain users. Any prosumers that are located in the weaker part of the grid might have a bigger market power for voltage support, since a small change of their production could significantly improve the grid voltage and they could capture most of the revenues. Hence, our interest is to propose a methodology to disseminate fairly the PV curtailments, which is the main topic of the next section. The significant difference between the control architectures is the computational time, as presented in the Table 2.3. The decentralized and distributed architectures requires a significant higher computational time due to the iterative process of C-ADMM. The convergences of the decentralized and distributed controls are illustrated by the evolution of their primal and dual residuals shown in Fig. 2.17. The fully distributed control has the slowest convergence rate due to the presence of more controller agents. As a result, more information is being exchanged, hence the algorithm may require more iterations in order to reach the consensus state (this may be a problem from the point of view of the communication that is not discussed here). Note that, the higher number of agents also impacts the convergence criteria res (2.22), in which the magnitude of both primal and dual residuals become higher. In summary, the computational time would be an inevitable trade-off of going towards a fully distributed architecture, despite of the superiority it offers (e.g., robustness, scalability, and privacy).

Figure 2.17: Evolution of primal and dual residuals of the decentralized and distributed architectures.

Fairness in PV Control Scheme

As highlighted previously in Fig. 2.16, the pre-selected uniform configuration of the weight parameter c pv results in an unfair contribution in the voltage control action, where the PV at 15 and 11 curtail more than the other PVs. In this section, we focus on non-uniform configuration of c pv j,t (i.e., non-identical c pv j,t setting for each prosumer j) and we investigate the impact of this setting to the curtailment contribution. Then, adaptive c pv j,t tuning algorithm is proposed to successively update c pv j,t of each prosumer based on individual historical energy curtailments.

Unfairness Criteria

Firstly, an unfairness index (σ pv t ) is proposed as a criterion to evaluate the fair participation in the PV active active power controls over a predifined time horizon t. To compute this index, let e j,t be the percentage of total energy curtailed of a PV j ∈ G over the time t ∈ T In addition, let e t be the vector that aggregates e j,t for all PVs. Then, the unfairness index over the time t can be computed as the standard deviation of the curtailment participation of every PV (2.27).

σ pv t = std e t e tot (t) (2.27)
Computing (2.27) allows to measure the dispersion of the curtailment ratios among the different PV systems. Hence, the lower σ pv t indicates that the fairer PV curtailments are being allocated among the users.

Adaptive Dynamic Update of c pv

From the sensitivity analysis conducted in Section. 2.5.4, we can observe that the amount of active power curtailments is influenced by the selection of the weight parameter c pv j . For a particular selection of c loss and α, PV curtailment can be reduced by increasing the weight of c pv j . However, c pv j has to be carefully selected, since increasing further c pv j could make the controller operates in the invalid operating region (Fig. 2.13).

Therefore, we propose an adaptive online tuning algorithm to update regularly the c pv j of each PV at every time step. Let c pv j be the maximum value of c pv j that ensures the validity of the controller. This value can be approximately identified by observing the sensitivity results of Fig. 2.14. For any PV j ∈ G, the tuning scheme is described as follows:

c pv j,t+∆t = min(c pv j , cpv j ), where cpv j =        c pv j,t ψ if e j,t ≤ e tot t -µ c pv j,t × ψ if e j,t ≥ e tot t + µ c pv j,t otherwise (2.28)
The tuning algorithm (2.28) works by comparing the share of energy curtailments ratios between an individual e pv j with the overall PVs e tot over the past time steps. The goal of the algorithm is to increase the individual c pv j,t+∆t of a given PV system j by a tuning parameter ψ(-) whenever it has a higher curtailment ratio e j relatively to the overall combined PVs e tot (computed along the past time periods), with µ providing a tolerance index (i.e., µ = 5 %). On the opposite case, the c pv j,t of any PV with a lower curtailment ratio compared to the overall PVs would be reduced. As a result, their control contribution can be prioritized for the next time step t + ∆t.

Preliminary Fairness Analysis

These preliminary tests aim at further observing the impact of non-uniform and static configuration of c pv j,t (i.e., c pv j,t remains constant ∀t ∈ T but may differ from one PV to the other) to the unfairness index (σ pv t ). A simulation over a two weeks time horizon with one hour time step is considered for all the simulations performed in this subsection and the next ones. Note that, all the simulations conducted in the rest of this chapter consider c loss = 10 and α = 1. The preliminary tests consist of three different scenarios of c pv settings, which are: Fig. 2.18 presents the results of the considered scenarios, where the relation between the obtained unfairness index (σ) and the total curtailments of the combined PVs are presented. There is an improvement in the curtailment fairness (i.e., a lower σ) in the scenario S1 compared to the preliminary test S0. This enforces the validity of our hypothesis, where the PV curtailments of a particular PV can be lowered by increasing independently the weight of the corresponding c pv . However, the relation between c pv and the actual PV curtailments is not straightforward. Nevertheless, the production fairness can certainly be improved with a proper selection of c pv which motivated the work presented in this subsection.

Overall, we can see the trade-off between the total energy curtailed and the unfairness index from Fig. 2.18. The most effective way to prevent the voltage violation (in terms of least energy loss) so far is by using the initial configuration S0 that have relatively high σ, due to the unfair contribution of PV 15 and 11 as previously shown in Fig. 2.16. To reach the fairest production, the PVs have to be curtailed up to 90 %. This due to the fact that curtailing the PV productions other than PV 15 and 11 will have a little impact on the voltage improvement. To achieve a fair control contribution, more production has then to be curtailed for each individual PV. Ultimately, this leads to significant global energy loss compared to the scenario S0. Finally, the Pareto front can be drawn to highlight the solution boundary of the static methodology. One sample from the LHS simulation (denoted as a sample S2* in Fig. 2.18) is extracted for comparison purposes in the next subsection.

Proposed Adaptive Tuning Results

The final tests (Scenario S3) aims at observing the effectiveness of the proposed adaptive tuning algorithm (2.28) to improve the unfairness index (i.e., lower σ). For all the prosumers, c pv j,t are initialized to 0.5 at t = 0. We run 100 simulations of dynamic c pv with various configuration of ψ ∈ (1, 10]. Fig. 2.19 shows that the proposed tuning algorithm (i.e., dynamic method) can achieve better results (i.e. lower σ), where the solutions are located outside the Pareto boundary of the static method. To better visualize the obtained results, one sample in Fig. 2.19 is selected (S3*) and compared with the results obtained with the static methods. This comparison is depicted in Fig. 2.20, where we compare the total energy PV production among four different scenarios. Please recall that all PVs present similar sizes and irradiance profiles. Hence, without any control, they shall produce the same amount of energy over the considered time horizon. From Fig. 2.20, we can validate our assumption for S1. The PV curtailments at buses 11 and 15 can be reduced, compared to the preliminary case S0. Moreover, it can be seen that the curtailment at PV 8 increases significantly to cope with the reductions. All in all, the results show that the proposed adaptive tuning algorithm is capable of fairly allocating the energy production of all the PVs, compared to the static method. As we can see visually, the profile obtained by S3* is a straight line, thus close to optimum in that context.

Conclusion

In this chapter, a voltage control methodology for a radial distribution grid under massive integration of PV systems was presented. The first part of the study focused on the formulation of the voltage controller in the context of a centralized architecture. In particular, the voltage control was formulated as an OPF problem using SOCP relaxation with the objective to minimize PV dispatch changes (in terms of active and reactive power) and grid losses, subject to the voltage operating limits. A comparison study of control models was conducted, in which the performance of the proposed OPF problem was compared with other convex relaxation approaches. The simulation results firstly highlighted the effectiveness of the proposed controller to maintain the voltage within the limits while the total PV curtailments can be minimized. Moreover, it highlighted the effectiveness of the proposed methodology to return the optimal solutions and the preciseness of the SOCP relaxation to estimate the actual state of the grid compared to other implemented methodologies. Furthermore, the sensitivity analysis of the different weighting parameters identified three operating regions of the controllers. Especially, we identified that the convex relaxation may not be valid with some parameters' selection. Therefore, the weighting parameters shall be appropriately selected in order to ensure the robustness of the controller/the validity of the SOCP relaxation.

The second study focused on architecture decentralization of the controller. A decentralization methodology using ADMM was introduced. Two additional control architectures were compared with the centralized one, namely decentralized and distributed controls. The simulations showed that the three architectures return identical results, which emphasize the preciseness of the decentralization methodology. Indeed, the decentralized control is able to transform the original centralized problem into a distributed/decentralized one while still producing the global optimal solution.

The final part of the chapter focused on the fairness control of the PV systems. Firstly, an unfairness index (σ pv t ) was introduced as the criteria that quantifies the contribution of each PV system. Finally, the proposed adaptive parameter tuning algorithm was shown to be effective in improving the production fairness among PVs compared to the three initial static configuration of the controller parameters.

The proposed OPF with SOCP relaxation as well as the distributed algorithm become the main building blocks of all voltage control applications developed throughout the thesis. In the next chapter, we focus on uncertainties studies on the proposed model-based voltage controller.

In particular, we focus on grid data uncertainties, which is one of the most important aspects in the model-based voltage controller. In the chapter, different approaches to mitigate impedance uncertainties under different type of grid configurations are investigated. Moreover, a strategic algorithm is also formulated to ensure grid data uncertainties can be mitigated under worst scenario. 

Introduction

In Chapter 2, we have seen that the selection of grid model relaxation plays an important role in the performance of model-based voltage controllers. Yet, the developed voltage controllers in the previous chapter consider an assumption of perfect knowledge of the grid parameters (i.e., the values of branches' resistance and reactance). However, this assumption may not be realistic as detailed information of distribution grids, such as grid topology and line parameters are often inaccurate even not available, especially in low-voltage grids [START_REF] Yu | Patopa: A data-driven parameter and topology joint estimation framework in distribution grids[END_REF]. This is mainly explained due to outdated information, which can happen because of regular grid maintenance and reconfiguration that may not be well synchronized with all stakeholders [START_REF] Li | Distribution grid impedance & topology estimation with limited or no micro-pmus[END_REF]. In addition, inaccurate grid data can also occur due to the natural degradation (i.e., aging) of the lines.

Studies in [START_REF] Zarco | Power system parameter estimation: A survey[END_REF], [START_REF] Miao | Distribution grid admittance estimation with limited non-synchronized measurements[END_REF] have highlighted that inacurrate grid parameters can significantly affect the operational effeciency of the system, and even worse, cause a system instability. In Chapter 2, we have presented as well that a simplified OPF model (i.e., linear grid relaxation) can lead to unecessary control action, such as over curtailments of PV systems (Table 2.

2).

A dedicated study on the impact of grid parameter uncertainties have also been discussed in our latest publication [START_REF] Putratama | Uncertainties Impact and Mitigation with an Adaptive Model-Based Voltage Controller[END_REF], synthetized in Appendix A. In this work, we showed how the grid parameters error in model-based voltage controller can lead to an increase occurrence of voltage violations, as shown in Fig 3 .1. All in all, the study highlights the importance of having an accurate grid model, especially to ensure a model-based voltage controller able to maintain the grid voltage within the required standard. This also points out the need to develop algorithms that can precisely estimate grid parameters, so that the optimality and the accuracy of model-based voltage controllers can be guaranteed. Most of the studies on grid impedance estimation in the literature mainly lie within the context of power system state estimation. There are numerous types of methodologies with different assumptions. For instance, [START_REF] Yu | Patopa: A data-driven parameter and topology joint estimation framework in distribution grids[END_REF], [START_REF] Li | Distribution grid impedance & topology estimation with limited or no micro-pmus[END_REF] proposed a methodology to estimate grid parameters using voltage magnitude as well as branch active and reactive power measurements. While in [START_REF] Miao | Distribution grid admittance estimation with limited non-synchronized measurements[END_REF], the authors were able to perform the estimation relying only on voltage magnitude and phase information. Furthermore, a recent study in [START_REF] Park | Learning with end-users in distribution grids: Topology and parameter estimation[END_REF] proposed a methodology to compute lines resistance and reactance using only time-stamped voltage magnitude measurements. However, the main limitation of the proposed method is that it relies on recursive algorithms (not optimization-based) and requires more than ten thousands of measurement samples, resulting to high computational complexity. Our motivation is to address the gap in the studied literature. In particular, our objective is to develop a methodology to estimate the grid impedance using the least information possible and with low computational complexity.

Therefore, this chapter proposes methodologies to estimate grid impedance parameters (i.e., branch resistance and reactance) of a radial distribution grid using historical measurement data. The main contributions of this chapter are as follows:

• Convex optimization-based strategies to estimate grid impedance parameters under three different use cases. The considered cases are differentiated based on the assumptions on the availability of measurement data. (contribution C-6)

• Distributed impedance estimation schemes using consensus ADMM. As far as our knowledge, there is no study in the literature that proposes a distributed algorithm for impedance estimation. (contribution C-7)

• An impedance tuning algorithm to adaptively refine branches resistance and reactance parameters with successive runs of a model-based voltage controller. (contribution

C-8)
The remainder of this chapter is organized as follows. Section 3.2 describes the proposed methodologies under three different use cases. Section 3.3 describes the methodology to estimate grid impedance in a distributed way. The strategic impedance tuning algorithm is presented in Section 3.4. The methodologies are simulated and compared in Section 3.5 and Section 3.6 concludes the chapter.

Model Formulations and Use Case

In this section, the proposed methodologies to estimate line impedances (i.e., resistance and reactance) under three different cases are presented. The general flow diagram of the proposed methodologies is shown in Fig. 3.2. We utilize historical data (typically at least measurements data over one day) as inputs of the algorithms. Based on that, the line impedance (i.e., resistance (r ij ) and reactance (x ij )) of each branch can be estimated. It should be noted that, the following assumptions are considered for all cases: 1. Synchronized and accurate measurements. However, further studies on algorithm robustness are also studied the Section 3.5.3, where we investigate the performance in the presence of measurement error/noise.

2. Knowledge of bus net power (injection or consumption). This assumption is reasonable, due to the fact that a prosumer (who represents a single bus) shall contain a smart meter.

3. Knowledge of the grid topology. However, the distributed algorithms furtherly introduced are immune to this assumption.

For the first step, all methodologies that are introduced in this section are formulated as centralized problems. In this case, the impedance estimation task is solved by a dedicated centralized entity (e.g., DSO or aggregator) who has access to all measurement data, including prosumers' smart meter.

Case 1: Full Grid Observability

Details of the first case are summarized in the Fig. 3.3. In this case, measurement devices are installed at the beginning and the end of each line. As a result, branch active and reactive power flows can be retrieved along with the nodes' voltage. Typically, this monitoring capability can be provided through phasor measurement units (PMUs) or micro PMUs that have become available in distribution grids [START_REF] Von Meier | Micro-synchrophasors for distribution systems[END_REF]. Although full grid observability is slightly optimistic case, the presence of alternative cheaper monitoring devices in the market, such as Grid Monitoring Devices (GMD), can increase the possibility of enabling this use case. Nevertheless, GMD has a limitation. Even though it can provide three-phase real and reactive power as well as voltage magnitude every 2.5 minutes, they do not provide information on voltage phase [START_REF] Miao | Distribution grid admittance estimation with limited non-synchronized measurements[END_REF]. Because of that, we do not consider voltage phase in all the proposed methodologies. All the studies in this chapter focus on a radial distribution grid, which can be represented as a graph G(B, E) as presented in the Chapter 2. Let T tr = {0, ∆t tr , (|T tr | -1)∆t tr } be the set of time interval of the utilized historical measurements for the input of the impedance estimation algorithm. Moreover, note that the same notation as Chapter 2 is used: variable with an accent • represents measurement data.

The proposed impedance estimation algorithm for the first case is formulated as an optimization problem (3.1). We called the first methodology as C1 (abbreviated from centralizedmethod 1 ). min r,x,v t∈Ttr i∈B

(ν i,t -ν i,t ) 2 (3.1a)
Subject to:

1. DistFlow equations for branch flow (3.1b) and (3.1c), ∀(i, j) ∈ E, ∀t ∈ T tr .

pij,t = k:(j,k)∈E pjk,t + r ij ˆ ij,t + pnet j,t (3.1b) qij,t = k:(j,k)∈E qjk,t + x ij ˆ ij,t + qnet j,t (3.1c) 2. Modified DistFlow voltage equation (3.1d) ∀i ∈ N , ∀t ∈ T tr . ν j,t = ν i,t -2(r ij pij,t + x ij qij,t ) + (v j,t -vi,t ) 2 (3.1d) 3. Impedance limit ∀(i, j) ∈ E. r ij , x ij ≥ 0 (3.1e)
where:

ˆ ij,t = p2 ij,t + q2 ij,t v2 i,t
where the decision variables consist of the vectors r = (r ij | ∀(i, j) ∈ E), x = (x ij | ∀(i, j) ∈ E) and the vector v that aggregates the voltage (ν i,t ) state variables. To recall from the previous chapter, the bus powers are defined as pnet j,t = pc j,t -ppv j,t and qnet j,t = qc j,t -qpv j,t . The proposed methodology is formulized as a typical model fitting algorithm (least square minimization), with the objective (3.1a) that aims at minimizing the sum of the squared error between the computed and the actual voltage measurement.

In order to preserve the convexity of the problem, we propose a modified voltage equation (3.1d). To recall, ν i,t = v 2 i,t . If we utilize the original voltage equation (2.1c) instead, the constraint becomes non-linear with respect to r, x and the problem becomes non-convex. Here, we assume that the voltage phase difference between the buses is zero. With this assumption, the line current i 2 ij,t can be approximated as in (3.2).

i 2 ij,t ≈ (v i,t -v j,t ) 2 r 2 ij + x 2 ij (3.2)
With this assumption, the losses terms in the original voltage equation (2.1c) can be approximated as (3.3).

(r 2 ij,t + x 2 ij,t )i 2 ij,t ≈ (r 2 ij,t + x 2 ij,t ) (v i,t -v j,t ) 2 r 2 ij,t + x 2 ij,t = (v i,t -v j,t ) 2 (3.3)
Lastly, the constraint (3.1e) represents the typical characteristic of distribution system lines that are resistive and inductive. In this case, the branch power flow data are not available any longer, except at the slack bus (i.e., substation or upstream transformer), as described in Fig. 3.4. We consider this case where the upstream transformer is equipped with measurement devices [START_REF] Kong | Online smart meter measurement error estimation based on ekf and lmrls method[END_REF]. Hence, we can have access to the active and reactive power flows at the point of common coupling (PCC) level. For this use case, we propose a two-stage optimization problems to compute the line impedances (Fig. 3.5). This two-stage method is named as C2 (abbreviated from centralized-method 2 ). (p 01,t -p 01,t ) 2 + (q 01,t -q 01,t ) 2 (3.4a) subject to:

Case 2: Limited Branch Measurement

∀t ∈ T tr , ∀(i, j) ∈ E : p ij,t = k:(j,k)∈E p jk,t + c r ij (v j,t -vi,t ) 2 + pnet j,t (3.4b) 
q ij,t = k:(j,k)∈E q jk,t + c x ij (v j,t -vi,t ) 2 + qnet j,t (3.4c) 
∀(i, j) ∈ E : c r ij , c x ij ≥ 0 (3.4d)
where the decision variables consist of vector c r = (c r ij | ∀(i, j) ∈ E), c x = (c x ij | ∀(i, j) ∈ E) and y aggregates p ij,t , q ij,t over all branches and time steps. c r ij and c x ij represent the impedance terms of the branch (i, j). Both terms are obtained by consdiering the approximation of the line current (3.2). They are derived from the original branch flow equations (2.1a), (2.1b), and by substituting the current approximation (3.2), as in (3.5a) and (3.5b).

p ij,t = k:(j,k)∈E p jk,t + r ij (v j,t -v i,t ) 2 r 2 ij + x 2 ij + p net j,t (3.5a) 
q ij,t = k:(j,k)∈E q jk,t + x ij (v j,t -v i,t ) 2 r 2 ij + x 2 ij + q net j,t (3.5b) 
From the above equations, c r ij and c x ij ∀(i, j) ∈ E can be defined as (3.6a) and (3.6b).

c r ij = r ij r 2 ij + x 2 ij (3.6a) c x ij = x ij r 2 ij + x 2 ij (3.6b)
Since c r ij , c x ij are fixed (since the values of r ij , x ij are static), our goal is then to "train" both c r ij and c x ij using historical data. By doing that, both c r ij and c x ij can converge to the actual values, and the branch power flows (i.e., p ij,t , q ij,t ) can be correctly estimated. Note that, although we can utilize the linear power flow equations (2.17a), (2.17b) to compute the branch power flows, our intention is to include the losses term, which is impossible with the simple linear formulations.

Stage 2: Impedance Estimation Once the branch flows are computed, a fitting problem is formulated that is somewhat similar to what was introduced in C1. By using the obtained estimated branch flows (i.e., p ij,t , q ij,t ), the impedance can be computed by solving the model fitting problem (3.7). min r,x,y t∈Ttr i∈B

(ν i,t -ν i,t ) 2 (3.7)
subject to modified DistFlow voltage equation (3.1d) ∀t ∈ T tr , ∀(i, j) ∈ E and the impedance limit (3.1e) ∀(i, j) ∈ E. Only these constraints are considered since all the parameters are available, i.e., voltage measurements and the estimated branch flow (i.e., p ij,t , q ij,t ).

Case 3: Limited Measurement (only Bus Voltage)

The last case considers the least available information. In particular, only bus voltage measurements are available, as described in Fig. 3.6. This case is very realistic in most of the cases. This could represent a passive distribution grid, where the system has no (or limited) monitoring capability. Therefore, we only consider a very basic information (i.e., bus voltage) that can be easily extracted at prosumers' smart meter level. Obviously, the complexity of the estimation problem increases as the number of available data decreases. In this use case, we introduced two different methodologies for impedance estimation. The first method is the most complex one, which is formulated as a five-stage optimization problem. We named this method as C3 (abbreviated from centralized-method 3 ). The five stages of the algorithm are depicted in Fig. 3.7. As an alternative, we propose a simplified method, named C3-s (abbreviated from centralized-method 3 simplified ) that is formulated as a two-stage optimization problems. In fact, this method simplifies C3 by only considering the stage 1 and 2. By doing this, the computational time can be significantly improved. Moreover, the simplified method also offers superior robustness compared to the five-stages one. This robustness issues will be further discussed in Section 3.5.3.

Five-Stage Impedance Estimation (Method C3)

Stage 1: p ij,t and q ij,t lower bound estimation The aim of the first stage is to find the lower bound for the active and reactive power flow at each branch at each time step. These bounds can be computed by solving a model fitting problem (3.8), by considering the linear DistFlow power flow equations (2.17a) and (2.17b) as the constraints. In this stage, the objective function aims at minimizing the sum of squared difference between the computed and the actual measurements of bus net powers (p net j,t , q net j,t ) -summed over the time horizon of the measurements. (p net j,t -p net j,t ) 2 + (q net j,t -q net j,t )

subject to:

∀t ∈ T tr , ∀(i, j) ∈ E : p ij,t = k:(j,k)∈E p jk,t + p net j,t (3.8b) 
q ij,t = k:(j,k)∈E q jk,t + q net j,t (3.8c) 
where the element of decision variables vector y consists of the lower bounds for active and reactive power flows (p ij,t , q ij,t ) and the computed bus net powers (p net j,t , q net j,t ). As r ij , x ij ≥ 0, their presence will increase (additive effect) the magnitude of the upstream branch (p ij,t , q ij,t ). This in fact, describes the natural behavior of the impedance that incur losses to the system. By neglecting r ij , x ij (i.e., neglecting losses), solving (3.8) shall ultimately give the lower bounds of p ij,t , q ij,t .

Stage 2: r ij • p ij,t and x ij • q ij,t expectation This stage aims at estimating the values of r ij •p ij,t and x ij •q ij,t , which are the terms inside the voltage equation (2.1c). These components can be computed using the obtained lower bounds (p ij,t and q ij,t ), by solving (3.9). min R,X l∈L std(R l,: ) + std(X l,: ) (3.9a) subject to:

∀t ∈ T tr , ∀(i, j) ∈ E : νj,t = νi,t -2(r ij,t p ij,t , x ij,t q ij,t ) + (v i,t -vj,t ) 2 (3.9b) r ij,t , x ij,t ≥ 0 (3.9c)
where L = {1, . . . , |L|} is the set of line indexes that are mapped from the corresponding set E. R, X ∈ R |L|×|Ttr| denote the matrix of the expected maximum line resistance and reactance (r ij,t and x ij,t ) over the time horizon T tr . Note that, R l,: and X l,: denote the l th -row of the matrix (i.e., row vector).

Firstly, the constraint (3.9b) is similar to the modified DistFlow voltage equation (2.1c). In order to compute the r ij p ij,t and x ij q ij,t terms, we set the impedance to be dynamic over time (r ij,t and x ij,t ). The utilized branch powers are indeed the lower bounds and not the optimal (actual) ones, i.e., p ij,t ≥ p ij,t and q ij,t ≥ q ij,t . If we try to fix the impedances instead (not dynamic), the problem may be infeasible (at some time samples) with the considered equality constraints. In our hypothesis, R and X will provide the expected maximum impedances values of r ij and x ij at each time sample, since we utilize the lower bounds of the power flows in the multiplication (3.9b). Therefore, the minimization of the sum of standard deviation of the vectors R l,: and X l,: are proposed as the objective function, in order to minimize the possible variability of r ij,t and x ij,t over the time horizon.

Stage 3: p ij,t and q ij,t upper bound estimation The branch power upper bounds can be estimated thanks to the obtained r ij,t and x ij,t from the previous stage. These upper bounds can be computed by solving the following model fitting algorithm (3.10) with the objective of minimizing the sum of the squared error between the computed and the actual measurements of bus voltages.

min y t∈Ttr i∈B (ν i,t -ν i,t ) 2 (3.10a) subject to: ∀t ∈ T tr , ∀(i, j) ∈ E : p ij,t = k:(j,k)∈E p jk,t + ij,t r ij,t + pnet j,t (3.10b) 
q ij,t = k:(j,k)∈E q jk,t + ij,t x ij,t + qnet j,t (3.10c) 
ν j,t = ν i,t -2(r ij,t p ij,t + x ij,t q ij,t ) + (v j,t -vi,t ) 2 (3.10d) ij,t = v2 j,t -v2 i,t + 2(r ij,t p ij,t + x ij,t q ij,t ) r 2 ij,t + x 2 ij,t (3.10e) 
where the decision variables vector y aggregates the grid state variables. The constraints (3.10d) is similar as the modified DistFlow equations (3.1d). Furthermore, the expected upper bound of the branch squared current (i.e., ij,t ) can be formulated by utilizing the original voltage equation (2.1c), and by using the voltage measurements as well as other parameters obtained from the previous stages. As r ij,t r ij and x ij,t x ij , solving (3.10) shall return the upper bound of the actual branch power flow at each time step (p ij,t , q ij,t ). Stage 4: p ij,t and q ij,t calculation The aim in this stage is to estimate the actual branch flows over the time step. So far, we can roughly estimate that the branch power flows shall be within p ij,t ≥ p ij,t ≥ p ij,t for the active power and q ij,t ≥ q ij,t ≥ q ij,t for the reactive power. This is illustrated in Fig. 3.8. On one hand, selecting the lower bound as the actual values will result in lossless grid and implicitly neglecting the impedances. On the other hand, selecting the upper bound values may overestimate the magnitude of the impedances and the grid losses. Based on these facts, we estimate that the actual p ij,t and q ij,t shall lie close to their upper bound in order to take the losses/impedance into account. In order to calculate p ij,t and q ij,t the following optimization problem is proposed:

min c r ,c x ,y (i,j)∈E t∈Ttr (p ij,t -p ij,t ) 2 + (q ij,t -q ij,t ) 2 (3.11a) subject to: ∀t ∈ T tr , ∀(i, j) ∈ E : p ij,t = k:(j,k)∈E p jk,t + c r ij (v j,t -vi,t ) 2 + pnet j,t (3.11b) 
q ij,t = k:(j,k)∈E q jk,t + c x ij (v j,t -vi,t ) 2 + qnet j,t (3.11c) 
p ij,t ≥ p ij,t (3.11d) q ij,t ≥ q ij,t (3.11e) 
∀(i, j) ∈ E : c r ij , c x ij ≥ 0 (3.11f)
This formulation is similar to the first stage of Case 2 (3.4), where the decision variables consist of vector c r = (c r ij | ∀(i, j) ∈ E), c x = (c x ij | ∀(i, j) ∈ E) and y that aggregates p ij,t , q ij,t over all branches and time steps. Similarly, c r ij and c x ij represent the impedance terms of the branch (i, j) and our goal is to "train" these variables using measurement data so that p ij,t and q ij,t can be accurately computed.

Stage 5: r ij and x ij calculation Finally, the impedances can be computed thanks to the obtained branch power flows. They are computed by solving a model fitting problem (3.12) that has a similar objective and constraints as (3.7). In this stage, we utilize the obtained branch power flows as the optimization parameters. The decision variables consist of the vector z that aggregates the resistance and reactance of all the lines, and the voltage state variables that are combined as vector v. min r,x,v t∈Ttr i∈B

(ν i,t -ν i,t ) 2 (3.12)
Subject to the modified DistFlow voltage equation (3.1d) ∀t ∈ T tr , ∀(i, j) ∈ E and the impedance limit (3.1e) ∀(i, j) ∈ E.

Simplified Two-Stage Impedance Estimation (Method C3-s)

The simplified version (C3-s) only considers the first and the second stages of C3. In this case, after Stage 2, the estimated impedance can simply be calculated by taking the average of the dynamic expected maximum impedances. For all branches ∀(i, j) ∈ E, the average can be computed as in (2.5) and (3.14).

r ij = t∈Ttr r ij,t |T tr | (3.13) x ij = t∈Ttr x ij,t |T tr | (3.14) 
(3.15)

Distributed Impedance Estimation

In this section, we apply a distributed mechanism to solve the impedance estimation problems under Case 3. We only focus on this use case because it is more realistic, and captures the most complex configuration (i.e., limited amount of available measurements). In particular, we can envision this case as a coordination of prosumers without any third-party involvement (e.g., aggregator or DSO). Indeed, prosumers can easily access local information (i.e., voltage, bus power) through their monitoring assets, while it is not the case for the branch power flow (as in Case 1 and Case 2) since there is no access to such information. Impedances values Figure 3.9: Illustration of distributed scenario and the available measurements.

can then be used in a distributed/decentralized voltage architectures as the ones introduced in the previous chapter. The distributed case is illustrated in Fig. 3.9.

The distributed approach relies on similar procedures as the 3 rd case with centralized methods (i.e., C3 and C3-s). Hence, we also consider two different formulations: i) A fivestage optimization problem that we named D3 (abbreviated from distributed-method for case 3 ) and ii) a simplified version relying on a two-stage optimization problem, named as D3-s. As can be seen in the Fig. 3.7, we formulate the stage 1, 3, and 4 as distributed problems. The other stages are formulated as local problems that can be solved individually by each prosumer.

The distributed methods are formulized using the exact notations and properties (Table 2.7) as the distributed architecture described in Chapter 2. For formulation simplicity, we only explicit the main objective function of the local optimization (f a ) as well as their corresponding decision and local (i.e., exchange) variables for the stages that are formulated as distributed problems (i.e., stage 1, 3 and 4). By introducing the aforementioned components, we can directly construct all the steps of the consensus ADMM, including the corresponding Lagrangian function and the ADMM variables (i.e., consensus and dual variables). Nevertheless, a complete formulation of each stage is available in Appendix B.

For each agent (i.e., prosumer) a ∈ A, all the five-stage optimization problems solved by the agent a are as the following:

Stage 1: p ij,t and q ij,t lower bound estimation This stage is formulated as a distributed problem, with the considered local variables (variables that are exchanged between prosumers) being the lower bound of active and reactive power flowing from/to the adjacent bus, i.e., x a = (p ij,t(a) , q ij,t(a) |(i, j) ∈ Êa , t ∈ T tr ). There is no additional decision variable in Stage 1. Hence, the decision variable vector y a has the same element as x a . The main objective of Stage 1 (f a ) and the constraints are described in (3.16)

f a = t∈Ttr i∈Ba (p net j,t -p net j,t ) 2 + (q net j,t -q net j,t ) 2 (3.16)
subject to (3.8b) and (3.8c) ∀t ∈ T tr , ∀(i, j) ∈ Êa : j ∈ B a .

Stage 2: r ij • p ij,t and x ij • q ij,t expectation Stage 2 can be computed locally by each prosumer. Let r a and x a be the vectors that store the dynamic resistance and reactance of the upstream line of prosumer a. The original problem (3.9) then can be decomposed into a local problem as in (3.17). min r a ,x a std(r a ) + std(x a ) (3.17) subject to (3.9b) and (3.9c) ∀t ∈ T tr , ∀(i, j) ∈ Êa : j ∈ B a .

For the simplified distributed method (D3-s). The final resistance and reactance of the upstream branch can be computed by simply taking the average of the vector r a and x a respectively.

Stage 3: p ij,t and q ij,t upper bound estimation This stage is formulated as a distributed problem, with the considered local variables being the upper bound of active and reactive power flowing from/to the adjacent bus, i.e., x a = (p ij,t(a) , q ij,t(a) |(i, j) ∈ Êa , t ∈ T tr ). The main objective of Stage 3 (f a ) and the constraints are described in (3.18), with the decision variables vector y a aggregating the grid state variables and the local variables.

f a = t∈Ttr i∈ Ba (ν i,t -ν i,t(a) ) 2 (3.18) subject to (3.10b) -(3.10e) ∀t ∈ T tr , ∀(i, j) ∈ Êa : j ∈ B a .
Stage 4: p ij,t and q ij,t calculation This stage is formulated as a distributed problem as well, with the considered local variables being the final active and reactive power flowing from/to the adjacent bus, i.e., x a = (p ij,t(a) , q ij,t(a) |(i, j) ∈ Êa , t ∈ T tr ). The decision variable vector y a consists of the impedance terms of the upstream branch (i.e, c r ij and c x ij ) and the local variables. The main objective of Stage 3 (f a ) and the constraints are described in (3.18).

f a = (i,j)∈ Êa t∈Ttr (p ij,t -p ij,t(a) ) 2 + (q ij,t -q ij,t(a) ) 2 (3.19) subject to (3.11b) -(3.11f) ∀t ∈ T tr , ∀(i, j) ∈ Êa : j ∈ B a .
Stage 5: r ij and x ij calculation Finally, Stage 5 can be computed locally by each prosumer. The original problem (3.12) can be decomposed into a local problem as in (3.20), with the vector v aggregating the voltage state variables over the considered time horizon.

min r ij ,x ij ,v t∈Ttr i∈ Ba (ν i,t -ν i,t ) 2 (3.20)
Subject to modified DistFlow voltage equation (3.1d) and impedance limit (3.1e) ∀t ∈ T tr , ∀(i, j) ∈ Êa : j ∈ B a .

Strategic Impedance Tuning

The proposed methodologies that have been introduced in the previous sections may not guarantee a precise impedance estimation. All the methodologies rely on historical data and the quantity of the data will certainly influence the estimation accuracy. Moreover, as we will study further in the Section 3.5.3, the presence of measurement errors also significantly impacts the estimation accuracy. In order to increase the preciseness of the impedance estimation, we propose a strategic method to successively fine-tune the impedances as presented in Fig. 3.10. Generally, the impedances are tuned after each round of voltage management. At the very first step, we utilize the obtained impedances (returned from the impedance estimation algorithm) as the "starting point" values of our voltage controller. Then, we perform voltage control with these impedances over a certain evaluation time horizon T . At the end of the evaluation time, we compare the actual voltage measurements with the estimated values from the controller, and tune the impedances based on the specific rules. The procedure then repeats in the next evaluation time.

In this chapter, we consider a time horizon of 12 hours for the evaluation period T , because we aim to have a more frequent update of the impedances and the input measurements can capture the variability of night and day profiles. Over the considered evaluation time T , the following information are utilized in the proposed tuning algorithm: 

∆v ij,t = v j,t -v i,t (3.22)
2. voltage drop deviation between the actual measurement and the controller estimation (3.23).

ϑ ij,t = ∆v ij,t -∆v ij,t (3.23) 
Figure 3.10: The proposed strategic impedance tuning scheme method.

3. Active and reactive branch power flow direction. For case 1, this information can be easily extracted from measurements. However, for case 2 and 3, we can retrieve this information from the output of the controller (p ij,t , q ij,t ). In our observation, although the magnitude of the branch power flow returned by the controller are not precise, the power flow directions, however, are accurate.

The proposed tuning strategy increases/decreases the impedances values based on the observed deviations ϑ ij,t . This is done in two steps, as presented in the Algorithm 1 and 2. The aim of the first step is to compute the decision variables for the resistance (τ r ij ) and the reactance (τ r ij ) of each branch. These variables will determine if we should tune the resistance or the reactance for each impedance at each evaluation time. Principally, we would like to tune the impedance if the controller prediction on voltage drop (∆v ij,t ) is far-away from the actual measurement value (∆v ij,t ). This criterion is described with a tolerance ϑ that we configured to 20 × 10 -5 . The tolerance ϑ also act as convergence criteria, where the algorithm will stop tuning the impedance if the |∆v ij,t | ≤ ϑ .

The tuning rules are formulated based on the voltage equation (2.1c). At each time step t, the algorithm observes if ∆v ij,t is either under-estimated or over-estimated for each branch (Algorithm 1 line 4 and 6). When ∆v ij,t is under-estimated, our goal is to decrease the term r ij p ij,t + x ij q ij,t since it has substracting effect to the voltage drop (2.1c). On the opposite, the term r ij p ij,t + x ij q ij,t shall be increased when ∆v ij,t is over-estimated.

The active and reactive power flow directions further determine the action that has to be taken for the resistance and the reactance (either increase or decrease it). At each time step, Algorithm 1 Strategic impedance tuning step 1: decision variables computation if pij,t ≥ 0 then 6:

τ r ij ← τ r ij -1 7: else 8: τ r ij ← τ r ij + 1 9: end if 10:
if qij,t ≥ 0 then 11:

τ x ij ← τ x ij -1 12:
else 13: 

τ x ij ← τ x ij + 1
τ r ij ← τ r ij -1 20: end if 21:
if qij,t ≥ 0 then 22:

τ x ij ← τ x ij + 1 23:
else 24:

τ x ij ← τ x ij -1 25:
end if 

if |τ r ij | > |τ x ij | then Decision to act on r ij 3: if τ r ij < 0 then 4:
if action r ij = increase then decrease r ij 5:

ψ r ij ← ψ r ij * 0.5 6: r ij ← r ij * (1 -ψ r ij ) 7:
else 8:

r ij ← r ij * (1 -ψ r ij ) 9:
end if 10:

action r ij ← decrease 11: else if τ r ij > 0 then increase r ij 12:
if action r ij = decrease then 13:

ψ r ij ← ψ r ij * 0.5 14: r ij ← r ij * (1 + ψ r ij ) 15:
else 16:

r ij ← r ij * (1 + ψ r ij ) 17:
end if if action x ij = increase then 23:

ψ x ij ← ψ x ij * 0.5 24:
x

ij ← x ij * (1 -ψ x ij )
25:

else 26:

x ij ← x ij * (1 -ψ x ij ) 27:
end if 28:

action x ij ← decrease 29: else if τ x ij > 0 then increase x ij 30: if action x ij = decrease then 31: ψ r ij ← ψ r ij * 0.5 32: x ij ← x ij * (1 + ψ x ij ) 33:
else 34:

x ij ← x ij * (1 + ψ x ij ) 35:
end if 36:

action x ij ← increase 37:
end if

38:

end if 39: end for (τ r ij ) records if the branch resistance (r ij ) should increases (+1) or decreases (-1), while (τ x ij ) records it for the reactance (x ij ). The decision variables for each line (τ r ij , τ x ij ) are updated over the whole evaluation time, and their final values will decide the action to be given to both r ij and x ij for each line.

Then, the objective of the second step (Algorithm 2) is to decide either to act on r ij or x ij based on the obtained decision variables of each line. Simply, we act based on the largest decision variable (line 2 and 20). In fact, the largest decision variable can represent the most frequent tuning action (i.e., increase/decrease either r ij or x ij ) identified during the evaluation time/Algorithm 1. Then, the final tuning action can be decided by observing the sign of the decision variables. If it is positive, the final action will be to increase the corresponding impedance component (i.e., either the resistance or the reactance as in line 11 and 29 of Algorithm 2, respectively). On the oppositive, we decrease the corresponding impedance component when the obtained decision variable is negative (line 4 and 21 of Algorithm 2).

For each line, the impedance is updated using a tuning parameter ψ r ij (for resistance) and ψ x ij (for reactance), which are initially set to 0.1. This value was obtained from the preliminary assessment, in which we observed that the value is not excessively high (to prevent tuning oscillation) or extremely low (to prevent slow convergence). Additionally, we also implement an adaptive parameter update (i.e., line 4, 12, 22, and 30) to prevent oscillation during impedance tuning. In this control function, we update ψ r ij and ψ x ij based on the past action in the previous round of evaluation.

As depicted in Fig. 3.10, the performance of the tuning algorithm depends on the initial values of the impedance. The preciseness of the estimation will undoubtedly influence the number of rounds of evaluations required until the impedances reach the convergence values ( ϑ ). Despite of that fact, the main advantage of the proposed tuning algorithm is that it only requires voltage information (similarly to the more complex use case 3). Therefore, the algorithm can be carried out either centrally by a centralized entity (DSO or aggregator) or locally by each prosumer in the context of distributed architecture. The only requirement is that each prosumer shall have the information of its neighbors' voltage measurements, which can be easily retrieved using a single a round of communication (unlike the ADMM approach that requires a few rounds of iteration).

Simulations

The proposed impedance estimation algorithms and the tuning strategy are tested on the IEEE 33-bus distribution system with the exact configuration as in Chapter 2. We consider a time horizon with a 30 min time step for both historical measurements (T tr ) and control horizon for tuning the impedance (T ). To generate continous measurements in the tuning scheme (Fig. 3.10), a similar voltage management flow as the one introduced in Chapter 2 is performed. To recall, we run a centralized voltage controller formulated as in (2.15) (for the centralized cases) or a fully distributed voltage control described in the Section 2.4.2 (for the distributed cases) to generate the optimal setpoints of the PV systems. Then, a load-flow simulation is performed in order to generate the actual voltage measurements of the actual system -that differs in terms of impedance from the model embedded in the controller. This simulation flow is illustrated in Fig. 3.11. 

Accuracy of the Proposed Algorithms

The objective of this section is to assess the performance of the proposed impedance estimation algorithms. Throughout this chapter, a voltage error index (δ v ) that was previously introduced in 2.23 is selected as the performance criteria. This index measures how accurate the voltage controller is (using the estimated impedances) to compute the voltage compared to the actual measurements. Four different tests are conducted for each proposed methodology, with different amount of input data (i.e., evaluation horizon). After the estimated impedance is computed, we conduct a validation test by running a voltage management for one-day horizon in order to compute the δ v . The simulation process also follows the diagram in Fig. 3.11. Fig. 3.12 shows the resulting δ v as a function of the number of input data for the considered methodologies. Obviously, the accuracy of the estimation decreases (i.e., higher δ v ) as the number of available information (e.g., moving from C1 to C3). Furthermore, we can see the performance gap between C3 and the simplified method (C3-s). This gap in performance validates the effectiveness of the proposed five-stage formulation (C3) that allow increasing the preciseness of the estimation. However, the proposed distributed methods do not return similar results as the centralized ones. The main possible reason for this is due to the convergence of the algorithms. In the simulations, we fixed the maximum iteration number of each stage to 1000 to get a reasonable computation time. As a result, the algorithm stops the iteration before reaching the convergence state. Despite of that, both distributed approaches are still able to reach comparable performances, where the obtained δ v is still close to the one from the other methodologies. For a better visualization of the accuracy, Fig. 3.13 shows the absolute difference between the estimated (i.e., controller output) and actual voltage drop (|ϑ ij,t |) over all branches at a given time step. Our aim is to have ϑ ij,t as low as possible. Yet, only method C1 that able to achieve ϑ ij,t ≤ ϑ for all branches and has the superior accuracy compared to the other methods. Table 3.1 summarizes the computational time of the different methodologies. There is a significant difference in computational time between the centralized and distributed methods. This is obviously due to the iterative nature of the distributed algorithm that requires several rounds of communication between agents before convergence. Another important highlight is the computational difference between method D3 and D3-s. This points out the advantage of method D3-s, which offers faster computational time (due to less number of stages/complexity) with a comparable performance.

Performance of the Tuning Algorithm

From Fig. 3.13, we can see that most of the methodologies still cannot meet an acceptable accuracy (i.e., ϑ ij,t ≥ ϑ for some branches). Therefore, this subsection aims at observing the effectiveness of the proposed strategic tuning algorithm to improve the accuracy of impedance estimation over successive evaluations. In this test, the estimation tunes the impedance over a 10 days of simulation horizon, with the evaluation time horizon (T ) of 12 hours (two evaluations per day). Fig. 3.14 shows the evolution of δ v over 10 days, where δ v is computed at the end of each evaluation period (every 12 hours) and day 0 refers to the initial estimated impedance (before the tuning). The results show that the proposed tuning algorithm is effective, and able to lower δ v below 1 % for all the methods at the end of the simulation period. To better visualize the obtained results, Fig. 3.15 shows |ϑ ij,t | with the final tuned impedances after 10 days of tuning. Compared to the initial estimation (Fig. 3.13), the tuned impedances are able to achieve ϑ ij,t ≤ ϑ for all branches. 

Impact of Measurement Noise

The final study aims at validating the robustness of the methodology to measurement errors and/or non-synchronized measurements. To simulate this, we apply a randomized noise [START_REF] Li | State estimation for power distribution system and measurement impacts[END_REF] with a standard deviation of 2 % (a typical allowable range of measurement error [START_REF] Kong | Online smart meter measurement error estimation based on ekf and lmrls method[END_REF]) to the measurements data. The impact of measurement errors is very significant, as shown in Fig. 3.16. Compared to the reference values (i.e., 9 % with method C3-s and ideal measurement), all methodologies with measurement noise end up with a massive voltage error (δ v ). Especially, the five-stage distributed method (D3) cannot find a solution. Our hypothesis is that the algorithm requires more iterations than the considered 1000 to converge into a feasible point. In terms of ϑ ij,t , almost no branch lies under the desired limit ( ϑ ), as shown in Fig. 3.17. By applying the tuning algorithm, the accuracy of the impedance estimation can be massively improved. In the simulations, we try to tune the impedance over a whole year using similar evaluation period of 12 hours. We can see from Fig. 3.18 that δ v converges toward small values after 90 days of tuning. At the final evaluation period, δ v can reach a value of around 1 %, which is a significant improvement compared to the initial one (above 100 %). With the tuned impedance, ϑ ij,t are massively improved as well, as shown in Fig. Lastly, we intent to observe the effectiveness of the tuning algorithm with 5 % of measurement noise. Still, the algorithm is able to significantly improve δ v after one year of tuning period (using similar 12 hours evaluation period), as shown in Fig. 3.20. We can see the impact of higher noise levels at the final evaluation period, in which δ v can be maintained around 1.5 %, compared to 1 % in Fig. 3.19. This also implies that the algorithm needs more evalua-tion days in order to reach the same level of δ v as the previous case with 2 % of measurement error. 

Conclusion

In this chapter, methodologies to estimate grid impedances (i.e., line resistance and reactance) using historical measurements data are presented. The studies cover three diferent use cases that are differentiated based on the availability of measurement data. Furthermore, a distributed impedance estimation scheme is also proposed, where we employ consensus ADMMbased distributed coordination schemes that have been studied previously in the Chapter 2.

The first simulations showed that all the proposed methodologies were able to estimate the grid impedance within an acceptable accuracy. In order to improve the preciseness of the estimation, a strategic impedance tuning scheme was proposed to successively fine-tune the impedances. The second part of the simulations highlighted the effectiveness of the tuning strategy, in which the algorithm was able to significantly improve the accuracy of the impedance estimation.

The final part of this chapter focused on robustness tests of the algorithm, by imposing noises in the measurements data. The impact on measurement noise to the proposed estimation algorithms is significant, where the estimation error can reach values up to 100 times higher than the ones from the case with ideal measurements. Despite of that, the proposed tuning algorithm is yet very effective to improve this massive error, lowering it to 1 % after several tuning rounds.

Finally, we can summarize that the proposed impedance estimation algorithms can provide an initial "starting point" for the impedance values, despite of the presence of measurement errors. Then, the preciseness of the estimation can be gradually improved thanks to the strategic tuning scheme.

In the next chapter, we apply the developed voltage controller and distributed algorithm blocks to implement a novel management strategy for energy community. The methodology covers both economic and technical difficulties on a real-world implementation of energy community. The effectiveness of the management strategy is then tested and compared with conventional energy trading scenarios.

Introduction

We have seen that the deployment of DERs (e.g., PV and ESS) at the residential level has been increasing rapidly over the past years. With this phenomenon, the end-user, who is becoming a prosumer, is envisioned as a key participant in the future innovative energy markets [START_REF] Zepter | Prosumer integration in wholesale electricity markets: Synergies of peer-to-peer trade and residential storage[END_REF]. The Clean Energy Package released by the European Commission in 2016, introduces new electricity market designs in order to enhance the role of end-users to be organized as an energy community [3]. Up till now, the concept of energy community is still an emerging topic, and there is still no clear consensus about its definition. In case of the European context [START_REF] Frieden | Overview of emerging regulatory frameworks on collective self-consumption and energy communities in europe[END_REF], the recent regulation states that each EU member shall define its own energy community framework, which may differ from one country to another. However, the EU Directive 2019/944 [START_REF]The European Union Parliament and The Council of The European Union[END_REF] states that the energy community has the right to be treated in a non-discriminatory manner in terms of regulation. Moreover, the primary purpose of a community shall be to provide environmental, economic or social community benefits for its members, rather than purely financial profits for the coordinator/developer.

In this thesis, we adopt the definition of an energy community based on the collective self-consumption framework in France [START_REF] Government | Energy code[END_REF]. In the French context, an energy community is defined as a group of households in close-proximity (within 1 km radius) connected to the low-voltage (LV) grid and able to collectively exchange and share energy. The community members organize themselves around a legal entity, called an "organizing legal person" or Personne Morale Organisatrice (PMO) in French. A PMO can be a community member itself or a dedicated third-party/aggregator. Principally, the PMO is in charge of the overall activities of the community. It facilitates interactions between the community members with the utility or other possible third-party stakeholders. As in the French regulation, the PMO is obliged to determine the share of locally produced energy (i.e., energy that is exchanged in the community) allocated to each participant on a 30-minute basis. This share is computed in the form of coefficients denoted as keys of repartition (KoR). Furthermore, a PMO shall forward those cofficients to the utility/distribution system operator (DSO) who further validates the community energy exchange based on households' smart meter measurements [START_REF]Methods of Implementing an Operation of Collective Self-consumption (in French, original title: Modalité de Mise en OEuvre d'une Opération d'Autoconsommation Collective)[END_REF].

There are various type of business/management models for energy communities in the literature. Typically, an energy community can be managed either in a centralized-way [4] or as a distributed market [START_REF] Zhou | State-of-the-art analysis and perspectives for peer-to-peer energy trading[END_REF]. Indeed, the centralized approaches present a simpler community model, since all the community activities are fully handled by a dedicated central entity who can act as a single controller or a market operator [START_REF] Zepter | Prosumer integration in wholesale electricity markets: Synergies of peer-to-peer trade and residential storage[END_REF], [START_REF] Lüth | Local electricity market designs for peer-to-peer trading: The role of battery flexibility[END_REF]. As discussed in Chapter 2, this architecture has the risk of privacy issues, due to the fact that the community coordinator (i.e., PMO) can directly access the prosumers' assets and data. Hence, a distributed decision mechanism may be preferred, since it can overcome the privacy concerns. Typically, ADMMbased distributed mechanisms are utilized in the literature [START_REF] Morstyn | Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences[END_REF], [START_REF] Moret | Energy collectives: A community and fairness based approach to future electricity markets[END_REF] to lower the amount of exchanged information in the community operations.

A major limitation in the current literature on energy community (and local energy markets in general) is that the technical feasibility of the operations in terms of grid constraints are oftentimes neglected [4], or embedded with oversimplified models [START_REF] Morstyn | Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences[END_REF], [START_REF] Mediwaththe | Network-aware demand-side management framework with a community energy storage system considering voltage constraints[END_REF]. Nevertheless, we have seen in the Chapter 2 that a high penetration of DERs (e.g., PV) in LV grid could lead to many technical issues, especially overvoltage problems. Recently, several studies on local energy markets considered this technical challenge [START_REF] Zhong | Cooperative p2p energy trading in active distribution networks: An milp-based nash bargaining solution[END_REF], [START_REF] Zhang | Coordinated market design for peer-to-peer energy trade and ancillary services in distribution grids[END_REF], [START_REF] Guerrero | Decentralized p2p energy trading under network constraints in a low-voltage network[END_REF]. However, these studies do not consider community-based scheme, and mainly focus on peer-to-peer with bilateral transactions approaches. Furthermore, the current challenge faced by the industry, particularly in France, is to determine attractive energy allocation rules (i.e., the keys of repartition) that can incentivize participants to join a community. In France, the main DSO proposes two conventional methods to determine the keys of repartition, which are static and dynamic methods [START_REF]Methods of Implementing an Operation of Collective Self-consumption (in French, original title: Modalité de Mise en OEuvre d'une Opération d'Autoconsommation Collective)[END_REF]. However, these conventional methods have limitations that may not be attractive to the prospective participants. The French DSO considers a prorate-consumption, meaning that the community energy that are allocated to each member is proportional to its individual energy consumption. Yet, this is counterproductive, since it embraces prosumers to consume more energy in order to benefit more from the local production. In this context, a recent work for long-term and short-term planning of solar and storage collective that build upon French context is proposed in [START_REF] Contreras-Ocaña | Integrated planning of a solar/storage collective[END_REF]. Although the work covers different configurations of keys of repartition to make the community attractive, it does not focus on real-time operation and grid constraints/services are not considered.

Lastly, uncertainty in energy supply and demand becomes one of the main implementation challenges of energy communities or local energy markets in general [START_REF] Alabdullatif | Market design and trading strategies for community energy markets with storage and renewable supply[END_REF]. In the context of voltage management for instance, poor forecast performance can lead to inaccuracy of the controller behavior [START_REF] Putratama | Uncertainties Impact and Mitigation with an Adaptive Model-Based Voltage Controller[END_REF]. In fact, it is very important to have precise and optimal solutions in order to ensure that the most economic benefit can be harnessed and allocated to the community participants. In many papers, multi-stages optimization strategies have shown to be the suitable approaches to address those uncertainties [START_REF] Alabdullatif | Market design and trading strategies for community energy markets with storage and renewable supply[END_REF], [START_REF] Zepter | Prosumer integration in wholesale electricity markets: Synergies of peer-to-peer trade and residential storage[END_REF], [START_REF] Rosato | Two-stage dynamic management in energy communities using a decision system based on elastic net regularization[END_REF].

Based on the studied literature, we have not seen any strategy that took into account all the aforementioned challenges of deploying an energy community. Therefore, our motivation is to address these gaps in the literature. Particularly, our aim is to develop a management strategy for an energy community that incorporates: i) grid services/voltage management, ii) mitigation of uncertainties and iii) economic attractiveness through innovative keys of repartition methodologies.

Therefore, this chapter proposes a management strategy for an energy community of a group of residential households with PV and ESS. The methodology developed in this work is based on an actual community demonstrator in France. The main objective of the work is to cover both technical and economic challenges related to the deployment of an energy community. To that extent, a three-stage operational management strategy is proposed, where we incorporate a day-ahead (DA) commitment followed by a real-time (RT) strategy. Furthermore, we propose a billing and allocation method on a monthly basis to ensure a fair cost reduction for the community participants (i.e., households) and possibly create economic surplus in the community. In addition, a penalty and a reward scheme are introduced in order to incentivize households to be more predictable, and to participate to the voltage regulation.

To summarize, the main contributions of this chapter are as follows:

• A commitment problem for the minimization of day-ahead bill at the community level.

(contribution C-9)

• A real-time operational strategy to mitigate forecast uncertainties and voltage deviations. (contribution C-10)

• A distributed community-based optimization schemes that is applied in day-ahead and real-time operations. (contribution C-3)

• A methodology to fairly allocate the community energy (i.e., the keys of repartition) while ensuring a cost reduction (or revenue increase) for each individual household.

(contribution C-11 and C-12)

Even though the study is built upon the French context, we would like to highlight that the proposed methodology is generic and can be applied to any energy community under the European Renewable Energy Directive definition [START_REF]Directive (eu) 2018/2001 of the european parliament and of the council of 11 december 2018[END_REF]. The proposed methodology can also be utilized as an operational guidelines to deploy an energy community in a residential neighborhood or microgrid with local generations.

The remainder of this chapter is organized as follows. Section 4.2 describes the considered system with households and community models. Section 4.3 describes the generic methodology to solve the operational problems in a distributed way using an exchange ADMM. The proposed three-stage community market management strategy is finally described in Section 4.4. The methodology is simulated and compared to the base scenarios in Section 4.5 before Section 4.6 concludes the chapter.

Model Formulation

The proposed methodology incorporates a management over different time frames. Let D = {1, . . . , D} be the set of days over a month. Firstly, we consider a time horizon T m = {0, ∆t m , . . . , (|T m | -1)∆t m } with a time step of ∆t m = 30 minutes that corresponds to the time interval required by the DSO for the computation of the KoR. Additionally, let T d m ⊂ T m be the similar time interval at a particular day dinD. The second time interval represents the real-time operation interval. It is defined as T r = {0, ∆t r , . . . , (|T r | -1)∆t r } with the time step is denoted as ∆t r = 5 minutes.

In this section, we describe the model with a generic set T for the sake of simplicity. We shall refer to this modeling in Section 4.4. The obtained scalars/vectors/matrices from different operation stages are written with additional superscript, i.e., • DA for DA commitments and

• RT for RT operations. The models presented in this section are the generic ones that are written without the superscript.

Household Model

In this thesis, we consider a household as a non-flexible load that potentially equipped with DER(s) (i.e., PV and/or ESS) ) that are the main controllable resources and optimized during the operational stages. The DERs are operated similarly as the models described in the Chapter 2. The PV model follows (2.3), while the ESS is operated as (2.7) -(2.6).

Let H be the set of households. At each time interval t ∈ T , the net active and reactive power flow of household h ∈ H, i.e., the powers that are flowing through the meter of household h, are described as:

p net h,t = p load h,t -p P V h,t + p st h,t (4.1a) 
q net h,t = q load h,t -q P V h,t + q st h,t (4.1b) 
(s net h ) 2 ≥ (p net h,t ) 2 + (q net h,t ) 2 (4.1c) 
where s net h denotes the maximum contractual apparent power of household h. Conventionally, households are bounded by a contract with traditional retailers, in which they are billed/paid from the amount of energy that they have imported/exported to the utility grid. With the presence of energy community, households can additionally purchase/sell energy to the community. Therefore, the physical active power flow through the household meter (p net h,t ) can be further decomposed into four different "contractual powers" as (4.2).

p net h,t = p gd + h,t + p cm + h,t -p gd - h,t -p cm - h,t (4.2) 
where p gd + h,t and p cm + h,t denote the amount of power purchased/imported by household h at time t from the retailer and the community respectively. Similarly, p gd - h,t and p cm - h,t denote the amount of power sold/exported to the retailer and the community respectively. 

Community Model

The energy community considered in this thesis consist of a community manager (CM) who is a third-party entity that has the role of a PMO, and the community members (i.e., households/prosumers). In addition, third-party entities also exist (not part of the energy community), which are the DSO and traditional retailers.

The main role of the CM is to assist the overall community activity in day-ahead and real-time. It is responsible for maintaining the safety of the grid (i.e., prevent any voltage violations) during real-time operations. Moreover, the CM is in charge of determining and forwarding the keys of repartition to the DSO at the end of the month and computing the households' energy bills. On the other hand, the DSO will validate the forwarded KoR with the actual households' measurements (smart meters belong to the DSO). By validating this information, the DSO can determine for each household how much energy they should purchase/sell from/to their retailer (i.e., after deducting the part of community energy they are allocated for both selling and buying). Finally, the DSO sends this information to the suppliers who then can conventionally invoice the customers based on these data. The interaction between the different actors is illustrated in the Fig. 4.2. In France, this interaction model has been utilized in more than 50 collective self-consumption/community projects. Some examples of study case are available on the following website: beoga.fr. Every households comprise of smart meter and a home energy management system (HEMS), hence they are considered as "control agents" in the sense that was defined in Chapter 2 for the ADMM algorithm. They interact with the CM in both DA and RT operations. This two-way communication can be provided by the smart meters [START_REF] Alahakoon | Smart electricity meter data intelligence for future energy systems: A survey[END_REF] or through dedicated communication infrastructures. In the real application, however, households' computational and communication capability are limited due to practical and economic reasons. Therefore, all computations and coordination within the community that will be introduced in the next sections are formulated as convex optimization problems, such that acceptable computational time and the optimality of the solutions can be achieved. For the prosumers, the main benefit of joining the community is to allow them to purchase or sell energy at more attractive rates (i.e., the community prices). Note that, other motivations rather than economic could exist (social or environmental for instance) that are not accounted in this chapter. Principally, the considered energy community enables households to trade energy in addition to conventional energy purchase/sell from/to traditional retailers. The community energy prices are fixed and predetermined by the CM. This gives simplicity in the pricing scheme, which is highlighted as one important practice to achieve healthy energy collectives [START_REF]Best Practices on Renewable Energy Self-consumption[END_REF]. The pricing schemes are depicted in Fig. 4.4, where the community offers attractive energy prices than the traditional retailers. As can be seen in the figure, households can benefit from lower purchasing cost (π cm + t ≤ π gd + t ) and higher selling rate (π cm - t ≥ π gd - t ) by exchanging their energy in the community.

Similar to conventional energy market, the energy that are traded in the community shall have equal supply and demand. At each time interval t, the CM ensures the total energy exported by the community sellers matches the energy imported by the buyers. This can be described as a community balance, as in (4.3).

Ω t = h∈H p cm + h,t importers/buyers = h∈H p cm - h,t exporters/sellers (4.3)
where Ω t denotes the total power allocated/energy traded in the community at time t. Note that, a household cannot buy and sell energy simultaneously, hence it shall be respected that p gd - h,t , p cm - h,t = 0 when a household is purchasing and p gd + h,t , p cm + h,t = 0 when selling. Finally, allocation on the overall community energy (at a given time step) to each household is done through the keys of repartition that can be disaggregated into two parts; which are for buyers (λ + h,t ) and for sellers (λ - h,t ). From the buyers point of view, (λ + h,t ) represents the ratio of community energy allocated to the household h at time t with respect to the available energy community Ω t . Similar definition is applied to (λ - h,t ), in which it is defined as the ratio of individually supplied energy to the community at time t. The keys of repartition of buyers and sellers are computed as in (4.4) and (4.5) respectively. The right side of the equations (4.4) and (4.5) ensure all community energy allocated to households (either as buyers or sellers) match the actual traded energy Ω t .

λ + h,t = p cm + h,t Ω t ; h∈H λ + h,t = 1 (4.4) λ - h,t = p cm - h,t Ω t ; h∈H λ - h,t = 1 (4.5) 

Community-based Distributed Optimization

This section presents a generic formulation of the algorithm that solves the distributed problems in the proposed strategy that will be further introduced in the section 4.4. Similar to the distributed voltage controller introduced in Chapter 2, we still consider ADMM for the distributed algorithm. However, since the considered system architecture is a community-based, a different variation of ADMM is implemented, namely exchange ADMM [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. The main characteristic of exchange ADMM is that each control agent (i.e., household) does not communicate with the other agents. Rather, they all coordinate using the centralized coordinator (i.e., the CM). In terms of formulation, the difference lies on the second step of the algorithm.

In particular, the consensus variables in exchange ADMM are updated by the CM by solving a Global/CM optimization problem. In a generic formulation, the Global/CM optimization problem can be formulated as in (4.6).

min z (κ) f g + h∈H γ (κ-1) a • (x (κ) a -z (κ) a ) + ρ 2 x (κ) a -z (κ) a 2 2 (4.6) 
Subject to: CM/Global constraints where z (κ) aggregates z

(κ) a
for all agent a ∈ A. Furthermore, f g denotes the main objective function considered by the CM that represents the global objective of the community. For instance, this common goal can be a minimization of the collective community bill or other objectives that will be presented in the next section. In exchange ADMM, the CM has similar role as Walrasian auctioneer, where it iteratively matches the global and the local variables that are submitted by the households, and stops until both variables reach the equilibrium/consensus state [START_REF] Morstyn | Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences[END_REF], i.e., when the convergence criterion is met.

By using the similar ADMM notations as in the Chapter 1, the exchange ADMM is formulated as Algorithm 3. In order to have a simplification and cleaner formulations, all distributed problems that will be described in the next section are written by expliciting the main objective function of the agent's local problem (i.e, f a in (2.18)) and global/CM problem (i.e, f g in (4.6)), including their corresponding decision variables and constraints. By introducing those components, the problems then can be directly translated into their corresponding augmented Lagrangian form, such as (4.6) for the global problem, and solved using the distributed Algorithm 3. In addition, since the households are the control agents, all ADMM variables and vectors of agent a (e.g., f a , x a ) are written with a subscript h instead in this chapter (e.g, f h , x h ). The main reason of this is to better harmonize the formulations with households' variables that are originally indexed with a subscript h (e.g., p gd + h,t , p cm + h,t ).

Three-Stage Management Strategy

In this section, the proposed three-stage management strategy is described. The three operating stages and their objectives are as follows:

(Stage 1) Day-ahead commitment To plan DER operations and determine the household dispatch as well as contractual power commitments on 30-minute basis. The commitments can help the CM to oversee the expected amount of tradable energy in the community for the next day at each 30-minute interval.

( 

Stage 1: Day-ahead Commitment

In the first look-ahead stage, each household in the community submits the contractual powers profile it is committed to import/export for the next day on a 30 min basis to the CM. These commitments will allow the CM to determine the expected amount of tradable community energy, and properly allocate them such that the overall households' energy cost can be minimized.

The DA commitment problem is formulized as a local optimization problem that is solved by each agent/household, as described in the proposed distributed mechanism (Algorithm 3). In this stage, we consider the contractual powers over the day as the ADMM variables, i.e., for each household h, the local variables of DA commitment for day d are combined in a vector x DA h = (p gd + h,t , p cm + h,t , p gd - h,t , p cm - h,t |t ∈ T d m ) DA . These are also the variables that are exchanged between the households and the CM. The management flow in this stage is depicted in the Fig 4 .5. The output of this stage is the vector of contractual household commitments, which will be used as operational reference in the real-time operation and bill calculation in the stage 3.

This stage firstly starts by each household determining its contractual power commitments by solving a local bill optimization problem, using load and PV forecast data. This local optimization aims at minimizing individual expected energy bill for the next day, which can be computed by summing the expected total energy traded by the household with the community and the retailer at each 30 min interval. For households with ESS, this stage helps them to plan their battery operation for the next day as well. By following the generic formulation of ADMM local optimization, the considered main objective function and constraints are described in (4.7), and the element of decision variables vector y consist of the ESS operating setpoints and contractual powers (i.e., local variables).

f DA h = t∈T d m       p gd + DA h,t p cm + DA h,t p gd -DA h,t p cm -DA h,t       •       π gd + t π cm + t -π gd - t -π cm - t       ∆t m 60 (4.7) 
subject to:

1. PV operating points (2.3). Additional ESS constraint (4.8) is defined to maintain the SoC at least equal to its initial value soc 0 h at the end of the day.

The CM then collects all households' commitments for validating to ensure the submitted contractual powers respect the community balance (4.3). For that purpose, the CM performs a global bill optimization that aims at minimizing the overall households' energy bill while ensuring the community balance is respected. By using the ADMM global problem convention, the considered main objective function and constraints are described in (4.9), and the element of decision variables vector y combines the contractual powers of all households.

f DA g = h∈H t∈T d m       pgd + DA h,t pcm + DA h,t pgd -DA h,t pcm -DA h,t       •       π gd + t π cm + t -π gd - t -π cm - t       ∆t m 60 (4.9)
subject to: Community balance (4.3).

Note that, this stage does not consider both reactive power flow and the grid model, to avoid additional complexity that may exponentially increase the computational time of the ADMM [START_REF] Šulc | Optimal distributed control of reactive power via the alternating direction method of multipliers[END_REF].

Stage 2: Real-time Operation

The second stage focuses on real time control with regards to grid constraints and services. We consider a finer time resolution of ∆t r of 5 min for mitigating forecast uncertainties and voltage violations in the real-time operation. Predictability/accuracy of households' commitments in real-time operation is an important factor to achieve optimal economic benefit among the community users. Any deviation in dispatch commitments with the actual operation could ultimately impact the energy that can be allocated in the community (that have been previously settled in stage 1 ). Apart from that, predictability can also bring additional value to the community. For instance, the CM can possibly provide complementary services to the DSO by being collectively predictable [START_REF] Kiliccote | 15 -improved energy demand management in buildings for smart grids: The us experience[END_REF]. On the other hand, as the grid model is not considered in the management problems in stage 1 , the voltage quality in the actual operation thus cannot be guaranteed. If voltage violations occur in the actual operation, some households may incur additional cost and/or decrease in revenue, since they may have to limit their local production or consumption in order to manage the grid voltage.

The RT operation consists of two steps and two possible scenarios (with or without voltage violation), as shown in 

Forecast Correction

This first step aims at mitigating any mismatch between the actual and the committed dispatch (which is based on forecast), and is formulated as an initial forecast correction problem (4.4.2.1). This forecast correction is solved locally by each household by using the DER reserve. From households perspective, forecast mitigation would prevent them paying penalties to the CM due to the non-respected commitments (further introduced in Stage 3 ). Prior to the RT operation t ∈ T r , each household h submits the initial/corrected active power and also the reactive power it is going to dispatch (p netRT 0 h,t , q netRT 0 h,t

) for the next time step t to the CM. This can be done by solving the following forecast correction problem (4. 4 The vector y RT 0 h = (p net h,t , q net h,t , p P V h,t , q P V h,t , p st + h,t , p st - h,t , soc h,t , q st h,t , ) RT 0 aggregates the decision variables that consist of household's dispatch and DER operating setpoints. Unlike the previous stage, reactive powers (e.g., q net h,t , q P V h,t ) are considered in the real time operation. In fact, households' active and reactive powers shall be first validated by the CM to ensure that the grid voltage are not violated. This verification is conducted in the 2 nd step of RT operation, as will be introduced in the next subsection. Note that in this step, both PV and ESS reactive powers injection are initially set to zero (for prioritizing active power dispatch). Hence, q net h,t only represents reactive power load of the household. Additional ESS operational real-time reserve (4.11) is introduced. With this, ESS can be flexibly operated within a RT reserve ±δ soc (in %, with a typical value of 5%) around the scheduled SoC profile that have been determined in the DA stage (Fig. 4.6). Such flexibility would prevent the ESS to be over-charged/discharged, so that the SoC level can be maintained throughout the day, and most importantly during the peak hours.

Voltage Verification/Control

In the next step, the CM collects households' initial submission p netRT 0 h,t , q netRT 0 h,t and performs a validation using a load flow calculation. If no potential voltage violations are predicted for However, if any bus voltage violation is detected, a second control step (i.e., voltage management) is performed. The voltage management is formulated as a multi-objective optimal power flow (OPF) problem with second-order conic programming (SOCP) relaxation, adopted from our work in Chapter 2. Moreover, a community-based distributed mechanism (Algorithm 3) is also applied to solve the OPF problem in a distributed-way. The ADMM variables considered in the coordination scheme are the households power submissions, i.e., the actual RT power dispatch (p netRT h,t , q netRT h,t

).

The voltage managements starts by each household h solving a local problem (2.18) that aims at reducing the forecast mismatch between the DA commitments. We consider similar objective function as in (4.4.2.1) because any voltage control action may lead to forecast deviations, which will incur additional penalty costs (introduced further in Stage 3 ). In the proposed voltage management, households utilize their real-time ESS reserve as the main control action, or possibly perform additional PV curtailments in the case of severe overvoltage. Solving this problem will allow each household to obtain the new RT power dispatch (p netRT h,t , q netRT h,t

) that will then be submitted to the CM. In this local problem, the vector y RT h = (p net h,t , p P V h,t , q P V h,t , p st + h,t , p st - h,t , soc h,t , q st h,t ) RT aggregates the considered decision variables, including the ADMM local variables (i.e., p netRT h,t

). The following main objective (f RT h ) and constraints are formulated as in (4.13). 2. Voltage operating limits (2.14).

f RT h = (p netDA h,t -p netRT h,
3. Household dispatch limit (4.1c).

The OPF aims at minimizing the global forecast mismatch and grid losses, with θ l , θ n , ≥ 0 denote parameters that weight the two objectives. As highligted in the Chapter 2, these weighting parameters have to be tuned properly to ensure the feasibility and the desired operating point of the SOCP relaxation. Lastly, (2.14) ensures that the bus voltage remains within the limits, with υ = 0.95 and υ = 1.05.

The final solutions of this stage are households' initial submissions (p netRT 0 h,t

) and the actual RT dispatch (p netRT h,t

). Both of these variables will be used in the bill calculation in stage 3i.e., only the active power flows are accounted in the bill calculation..

Stage 3: Monthly settlement and billing

The last stage focuses on final billing and community energy allocation that is computed at the end of the month. In this stage, the CM is responsible for determining the keys of repartition (λ + h,t , λ - h,t ) over the whole monthly horizon on a 30 minutes basis. Ultimately, the energy bill of each household then can then be computed. The individual households' bills consist of the following components: (i) energy trading cost with the retailer and community, (ii) penalty fees due to unsatisfied commitment and (iii) rewards for participating in the voltage management.

Cost Components

Energy Trading Cost The first component of the bill consists of the actual energy trading cost (i.e., energy purchase/sell) of the households. These components are computed based on the actual RT dispatch which can be directly measured at households' meter, and averaged on a 30 min basis. Firstly, the amount of energy imported or exported by household h during a time t ∈ T m is computed by averaging the RT dispatch as (4.16) From the obtained households' import and export data, the energy that can allocated to the community at time t then can be determined using (4.18), which ensures the match the community buyers and sellers.

Ω t = min h∈H B h,t , h∈H S h,t (4.18) 
Based on the above-computed components, the share of energy bill traded by household h at time t with the retailer and community can be calculated. The cost of energy traded with the community (C cm h,t ) expressed in (4.19a), where it depends on the keys of repartition. The remaining energy then is traded with the retailer, with the cost (C gd h,t ) is expressed in (4.19b). Lastly, the total energy trading cost can be calculated as (4.19c). where π gs denotes the grid service reward (in ce/kWh). Note that, for simplicity reason, both π dev and π gs are fixed over time.

C cm h,t = λ + h,t Ω t π cm + t imported/purchased -λ - h,
Total Cost Finally, the total cost for each household h at time t ∈ T m can be computed as in (4.22).

C h,t = C td h,t + C dev h,t + C gs h,t (4.22) 

Community Surplus

Based on the bill components, there are two-direction of transactions between the CM and the households. On one hand, households will pay the CM for the penalties and the energy purchased from the community. This represents the money inflow into the community/CM. On the other hand, the CM will reward the households and also pay them for the energy they inject into the the community. This represents the money outflow from the community to the households. This cashflow within the community can be modelled as community budget balance (4.23).

h∈H t∈T

C cm h,t + C dev h,t + C gs h,t = surplus (4.23)
The right hand side of (4.23) represents the community surplus. This economic surplus can be utilized by the CM in different ways. For instance, the CM can set it for personal revenue or investments, by adjusting the difference between the buying and selling prices. Furthermore, it may also be used to cover any external costs (e.g., operational fees such as costs of contractual establishments with the third parties [START_REF] Özge Okur | Aggregator's business models in residential and service sectors: A review of operational and financial aspects[END_REF]) or to allocate additional benefits to the community members differently over the community lifetime.

Allocation Problem

In order to compute the optimal billing, an allocation problem (4.24) is proposed. This optimization problem aims at minimizing the deviation between the combined households' actual and the ideal predicted bills (based on DA operation) over a month. The keys of repartition at each 30 min in the month are considered as the decisions variables (λ + h,t , λ - h,t ) of the implemented problem. 

where C DA h,t represents the expected total household's h cost at time t based on DA operation (i.e. with uncertainties and grid constraints neglected). An additional cost constraint (4.25) is proposed, to provide a limit on individual households total cost. With this limitation, we can ensure that households' total cost would not be higher than a conventional case, where households trade their energy fully with the retailers -i.e., individual members not organized as a community.

In the proposed allocation problem (4.24), the CM can freely configure the community surplus in (4.23) or the penalty deviation price (π dev ) as well as the grid service price (π gs ) either as optimization parameters or as variables. This topic will be discussed further in the next section.

Study Case

Test System and Scenarios

The proposed community management strategy is tested using the modified IEEE European LV Test Feeder [162]. This test system consists of 55 households, as shown in the Fig. 4.7. We consider households as non-flexible loads with a constant power factor of 0.95. The PV systems have a default configuration of unity power factor (i.e., no reactive power injection). However, the power factor can be re-configured up to 0.95 (inductive and capacitive) in realtime voltage management. On the other hand, the ESSs' power factor are set to unity for this case study (no reactive power dispatch capability). The nominal capacities of the DERs are randomly selected, which are between 5 and 10 kWp for the PV (5 and 10 kVA for their inverters), and between 5kW/10kWh and 10kW/20kWh for the ESS. For households with ESS, the SoC is set to be always maintained between 20 % and 100 % and ensured to be at least 40 % at the end of the day (determined in Stage 1 ). Moreover, we set the RT operational margin of the ESS to δ soc = 10 %. The PV profiles utilized in the test system are obtained from real irradiance data in Grenoble, France and the load profiles are adopted from the database that are available in [START_REF] Murray | An electrical load measurements dataset of united kingdom households from a two-year longitudinal study[END_REF].

We consider the energy pricing schemes that have been previously presented in the Fig. 4.4. A typical Time-of-Use (ToU) rate is utilized for the price to purchase energy from the retailer. Households can also sell their excess energy to the retailer with a fixed rate. These purchase and selling price data are available in [START_REF] Planète | General Conditions -Purchase of Surplus[END_REF]. Finally, the community prices are adjusted such that the CM can offer more attractive rates.

In order to assess the benefits of the proposed methodology, we compare it with two base scenarios. There is no energy community in both scenarios, and households can only trade energy conventionally with the retailer. In this case, households optimize their ESS independently in day-ahead by solving a bill optimization problem (4.7) by considering the retailer's prices only. A similar real-time discretization (∆t r = 5 min) for voltage management is considered for both scenarios. The main difference between the two scenarios lies in the voltage control strategy:

1. Base scenario 1: To mitigate the voltage violations, the DSO sends a power dispatch limit (at the meter level) to each household in real-time. The DSO computes the dispatch limit by solving an OPF (4.4.2.2) with the objective to minimize the grid losses -

Economic Performance Assessment

In this study, the community surplus (4.23) is set to zero. With this, all the money that is received by the CM will be fully allocated to the community members. Furthermore, the price of penalty cost for unmet commitment and grid service reward are configured to be π dev = 1 ce/kWh and π gs = 30.1 ce/kWh, respectively. We will study different configurations of these prices in a sensitivity analysis, that will be discussed in the next subsection. Firstly, we can see the effectiveness of the real-time voltage regulation as shown in the Fig. 4.9. One important highlight is that the proposed method can effectively maintain the voltage close to the upper limit. As a result, the required action/production change of DERs can be minimized. Fig. 4.10 shows the energy that is allocated for each household (i.e., through the keys of repartition) over a particular day. To recall, households cannot buy and sell energy simultaneously, and we can identify from the figure which member act as buyers and sellers in the community at each time interval (Fig. 4.10(a) and (b)). Most of the energy traded in the community occurs in the daytime during high PV production levels. Conversely, there are less activity in the community after 18:00, due to the lower PV production and when households have to maintain their ESS SoC until the end of the day.

The total costs and revenue of the combined households are compared in Fig. 4.11(a). With the proposed community management, we can achieve a total cost reduction (over all households) of 4 % compared to the base scenarios. In addition, it increases the combined households' revenue by 5 % and 6.5 % compared to the first and second base scenario respectively.

It should be highlighted that the presence of the community allows more energy export by the combined households as shown in Fig. 4.11(b). Moreover, there are much less PV curtailments compared to the base scenarios thanks to a more efficient use of the ESS. This improved storage usage leads to energy export (i.e., selling) during night-time and peak-hours, which is not the case in both base scenarios and which ultimately increases further the revenue. This phenomenon is illustrated in Fig. 4.12, in which it shows the plot of power measured at the meter level of a household with storage during one sample day. Furthermore, Table 4.2 shows the cost and revenue breakdown of the proposed community management. From the table, we can see that households still rely on the retailer, especially during the peak hours when the local productions are low. Similarly, the main source of households' revenue (66 % of the share) still comes from the energy sold to the retailer. This is due to the high penetration of PV integration in the considered test case. Hence, the overproduction cannot be fully allocated to the community (since there are not enough community buyers). As a result, these remaining production shall to be sold to the grid (i.e., retailers). Finally, Fig. 4.13 shows the result in terms of individual economic performance. In overall, 

Sensitivity Analysis

The main objective of the sensitivity study performed in this subsection is to observe the impact of the selection of π dev and π gs to the community surplus (4.23). In this tests, we set the surplus as an optimization variable (4.24), and investigate different configurations (i.e., set as parameters) of π dev ∈ [0, 35] and π gs ∈ [0, 80]. The obtained results are displayed in Fig. 4.14, with the shaded gray area representing a zone in which the allocation problem (4.24) becomes infeasible. This situation happens when we select π dev ≥ 25. As a result, some households will experience an increase in energy bill by joining the community, i.e., the The CM can maximize the community surplus (the green area) by configuring the π dev high and the π gs low. However, this configuration will not be fair for some community members, especially for the ones who actively participate in the voltage regulations. Although this setting is more beneficial in the CM perspective, households will receive less reward and benefit (less cost reduction) from the community. Hence, this could perhaps lower the attractiveness of joining the community. In summary, this short sensitivity analysis can help the CM to select the suitable π dev and π gs based on the expected community surplus. In fact, the surplus shall be set to zero if we want to follow the primary intention of energy community. As mentioned in the introduction, the primary purpose of the energy community is to provide environmental, economic or social community benefits for its members, rather than purely financial profits for the community manager. Hence, the CM has to anticipate the trade-off between the surplus and the households' cost reduction, to ensure the attractiveness of the community. Further analysis on surplus maximization and households' cost reduction can be done by observing different community buying and selling prices. Though, it is not the scope of this thesis, and it represents creases the revenue of the overall community members compared to the base cases by 16 % and 20 % respectively. The proposed community achieves 11 % more energy produced by the combined households over the simulated month. This is due to the fact that the community allows collective optimization of combined households' assets, compared to the base scenarios where the assets are individually optimized by the households with no coordination. Moreover, the proposed community energy allocation methodology (keys of repartition computation) can ensure households' individual cost reduction, i.e., 30 % on average on the considered test case. In terms of real-time operation, the proposed coordinated voltage control is effective to maintain the grid voltage within the limit and the reward scheme could proportionally compensate the households' participation in the control scheme.

A analysis displayed how the different penalty and grid service pricing schemes can influence the surplus in the community and the cost reduction among the households. This study can help the community manager to set the appropriate price for the penalty and the grid service reward. Finally, the scalability tests are presented and highlighted the applicability of the proposed distributed coordination methodologies. In the next chapter, we conclude all the work done in the thesis, along with the perspectives for future work are discussed.

Chapter 5

Conclusion and Perspectives

The increase of environmental awereness and well-supported policies have accelerated the integration of renewable-based DERs in distribution grids. These deployments are mainly dominated by distributed PV systems, which are non-dispatchable and their intermittency can threaten the reliability and the security of the supply. In general, higher shares of DERs can lead to unpredictable power flows and voltage problems. This incurs violations of grid constraints and massively affect the quality of the power supply. These present operational challenges to the DSO, especially with the current state of distribution grid infrastructure that is considered as a passive system. With the advancement of smart distribution systems alongside with technology and communication infrastructures, new actors, energy services and business models have emerged. This new energy landscape unlocks flexibility across all the distribution grid actors, and become the major solution to overcome the operational challenges.

Within the aforementioned context, this thesis is dedicated to voltage management strategies for smart distribution systems and the application in new energy services in the context of local energy communities. The achievements and the research done throughout this thesis are summarized in the following section.

Conclusion

The concept of smart distribution systems (SDS) as the key solution to overcome voltage problems are firstly presented in the thesis. The advancement of SDS will allow DSO to plan and operate distribution grid in cost-efficient and optimal-way, while ensuring the reliability and operational constraints (i.e., voltage operating limit) of the system. Voltage management in SDS can be classified into three different levels based on the response time and the time frame in which they operate. In particular, this thesis focuses on voltage management through optimization of local assets (e.g., PV and ESS) in the context of operational planning/management of distribution systems. Moreover, we emphasize our research on model-based voltage controllers that are formulated as optimization problems, to address different scenarios and control objectives that are studied throughout the research.

Model-based voltage controllers are typically formulated as optimal power flow (OPF) problems that embed grid model as one of the constraints. Hence, the biggest challenge is the non-linearity and non-convexity of the problem, which makes it hard to solve and the optimality of the solution cannot be guaranteed. The first achievement in this thesis was the development of a centralized model-based voltage controller with second-order conic programming (SOCP) relaxation, which becomes the main building block throughout the research. In the first application, the voltage controller was designed to maintain grid voltage within the limits while minimizing PV active power curtailments and grid losses. The simulations highlighted the effectiveness of the proposed voltage control to return the optimal solutions and the preciseness to estimate the actual state of the grid compared to other conventional convex-relaxation methods (i.e., linear and quadratic). Through sensitivity studies on the controllers' parameters, the proposed voltage management with SOCP relaxation can always guaranteed to hold under one condition, in which the controller parameters have to be properly selected. This highlighted the second findings of this thesis, where we identified the limitation of SOCP relaxation that have been widely used in the literature.

Due to its centralized nature, the formulated voltage controller still presents many downsides. In particular, the solution is prone to single point of failure and lack of scalability. Most importantly, a centralized management usually involves a dedicated central authority that presents privacy and security concerns. With the advancement of communication infrastructures, SDS enables direct participation of different actors, including end-users in voltage management. This drives the next achievement of the thesis, which is the development of methodologies to allow architecture decentralization of the model-based voltage controller using consensus alternating direction method of multipliers (C-ADMM). Performance comparison studies were then conducted to analyse the performance of two different architectures: decentralized and distributed. The simulations confirmed that both architectures are able to obtain identical results as the centralized one. This implies the effectiveness of the decentralized method to transform the original centralized problem into a distributed/decentralized one while still generating the global optimal solution. Furthermore, one important aspect in voltage management is the fairness among all the participants (i.e. prosumers), which have not been widely studied in the literature. From the perspective of the prosumers, unfair contribution could lead to economic disadvantage, especially for the users who are located in the weaker parts of the grid. The proposed voltage controller is capable to overcome this issue. Through the proposed adaptive (dynamic) update of its parameters, the controller was shown to be capable of allocating PV curtailments for all the prosumers. To reach the same level of fairness on a representative distribution grid (33-bus system), the controller with the initial (i.e., static) parameter configuration shall curtail 90% of PV productions, while only 27% with the adaptive strategy.

The proposed model-based voltage controllers considered deterministic PV and load forecasts. Most importantly, they relied on grid data (i.e. branch resistance and reactance). Any deviation in both forecast and grid parameters leads to errors (inacurracy or even infea-sibility of the solution). In this thesis, the impact of these uncertainties was quantified on the proposed voltage controllers. The study obtained that the presence of uncertainties can significantly deteriorate the performance of the voltage controllers. Especially, we identified that grid parameter uncertainties have a same order of impact as forecast uncertainties that are more conventionally addessed in the literature. Nevertheless, this highlighted the need of mitigation strategies for both uncertainties, so that the validity and the accuracy of the model-based voltage controllers can be ensured.

Therefore, the other achievement of this thesis was the development of methodologies to address uncertainties regarding lines parameters. The proposed methodologies relied on historical data to estimate the resistance and reactance of each branch. We covered three different use cases based on the availability of the measurements data. The six methodologies were able to estimate the grid impedances within an acceptable accuracy (minimum 2 % and maximum 7 % of error). This highlighted the effectiveness of the algorithms. Especially, we were able to estimate impedances by using only a few amounts of information (i.e., voltage and bus power measurements in the 3 rd case) and in a distributed-way. Furthermore, an online impedance tuning scheme is proposed to successively fine-tune the impedance estimation over the control period (up to several weeks). This becomes one of the major contributions of this thesis. Through the simulations, the proposed tuning algorithm was very effective to lower the estimation error under 1%. Robustness studies were also performed, where we tested the algorithm in the presence of measurement noises. The algorithm remained very effective, and able to correct massive estimation errors after three months of tuning rounds.

Lastly, we proposed a novel management strategy in the context of energy communities, which was the final achievement of this thesis. The strategy was formulated as three-stage convex optimization problems that was build upon the French collective self-consumption framework. Households can exchange energy with the community by firstly declaring their contractual energy commitments in day-ahead (DA) operational stage. In real-time stage, the community manager coordinates with the households to oversee any uncertainties (i.e., deviations from committed power) and possible voltage violations from the dispatch commitments settled in the DA. One of the main challenge of energy community deployments is to determine attractive energy allocation rules (i.e., the keys of repartition) that can incentivize and attract participants to join the community. For this purpose, the last optimization stage is dedicated to solve energy allocation and participant billing problems, in order to ensure that the community offers an attractive economic benefit. In order to assess the performance of the proposed management strategy, comparison studies with two base scenarios were conducted. The simulations proved the attractiveness of the community to ensure economic benefit across the members. In particular, the reward scheme could proportionally compensate the households' participation in real-time voltage management. Ultimately, the proposed methodology can ensure individual households' cost reduction with an average of 30 %. Further sensitivity analysis was conducted, and displayed how different pricing schemes can further influnce the economic attractiveness. Finally, the scalability tests are presented and highlighted the applicability of the distributed coordination embedded in the management strategy.

Perspectives

Following the work presented in this thesis, new perspectives can be drawn to open many fields. In terms of model-based voltage controller, an immediate step would be to investigate a strategy to prevent the controller to operate in the invalid region identified in Chapter 2. The outcome of this study will allow flexibility in the parameters selection or an automatic adjustment of those parameters if any infeasibility is detected. Especially, it will lead to easier implementation of multi-objective OPF problems in which the validity of the controller can always be guaranteed.

The work on distributed control can be extended to several areas. Firstly, further works to develop the fairness control with adaptive tuning algorithms shall be conducted for both distributed and decentralized controls. Secondly, the current algorithm did not take into account any communication uncertainties (i.e., communication delay or loss). Therefore, further study on this topic would be very interesting. It will justify the robustness of decentralized method, which is the key value missing in this thesis.

In terms of the work done towards uncertainty in the model-based voltage controller, further improvement of the tuning algorithm can be conducted, with the aim to speed-up the fine-tuning process of the impedance estimation. Hence, the required amount of evaluation rounds can be reduced. Currently, the impedance estimation algorithms still require the information regarding bus power and prior knowledge of grid topology. Nevertheless, this information would not always be accessible in real-life. Therefore, future interesting development will focus on reduction of input information for the algorithms. Machine learning technique could be employed to this perspective.

Finally, the work on the community market can be extended into three areas. The first lies on the study of different pricing configurations (e.g., different community buying and selling prices) and observe this impact on the overall community cost reduction and the community surplus. The second lies on the integration of different technologies such as collective demand response and electric vehicles. By integrating diverse technologies and flexibilities, better community performances would possibly be achieved and increase the attractiveness of the community. Lastly, the implementation of the proposed management strategy in an actual energy community will become a monumental step in order to better understand both technical and non-technical limitations. Especially, the latter should allow assessing the actual willingness of the consumers to join the community.

In general, experimental validation using lab microgrid and real-time Power-Hardware-In-the-Loop simulation on each work developed in this thesis shall be conducted. This will validate the applicability (and possibly the scalability) of the works and will help evaluate their limitations in practical applications. 

Voltage Performance Index

A Voltage Performance Index (V P I) in [0%, 100%] is proposed as an indicator to assess the performance of the different controllers. It is computed a posteriori, and calculated based on the total number of the obtained voltage deviations over all buses along the considered time horizon (A.2). 

V P I(%) =

Simulations

The first part of the study focuses on the impact of forecast and grid impedance uncertainties on the proposed controller. Firstly, we investigate the impact of forecast error by performing the test as in Fig. A.3 (a), where the controller uses a forecast data (p c i,t , qc i,t , ppv i,t ) as the profile input. In this test, we assess the impact of forecast error compared to the actual PV and load data. Secondly, we study the impact of impedance uncertainties by performing the test as in Fig. A.3 (b). In order to decompose the effect of the forecast errors, perfect prediction are considered. The controller uses an estimation of grid impedance (z ij ) as the grid data. Similarly, we observe the impact of impedance uncertainties depending on the error between The uncertainties are modelled with two sets of simulations for both uncertainty studies. The first set of simulations consists in integrating a forecast/parameter error as a determinist error compared to the actual data. A positive erorr means that the value of actual data is higher than the estimated value, (e.g., z ij > zij ), while a negative error is the opposite. The result of this simulation for both studies are displayed in Fig. A.4 (a), with the x-axis represents a multiplicative error (in %). The impact of the forecast error is generally greater than the impedance error. However, those errors remain within the same magnitude which highlights the need for accurate grid data while most of the studies in the literature focus mainly on the mitigation of the power forecast errors. Furthermore, we can see that negative impedance error improves the V P I. This is due to the grid is more resilient to voltage drop/violation from what the controller expects, since the actual impedance z ij are lower.

In the second step, uncertainties are modelled through a conventional Monte Carlo simulation. For given forecast and grid parameter value in the controller SOCP model, different potential actual values are generated with a normal law and a standard deviation in the range shows the results for both cases, with the shaded area around the line represents the confidence interval (CI) at 95%. As previously, the impact of forecast error (with immensely narrow CI) is remained significantly higher than the impedance error. Both simulations highlight the need of a proper forecast methodology to ensure that the performance of the controller meets the required standard.

This appendix presents the complete formulations of the five-stage distributed impedance estimation algorithms presented in Chapter 3. This appendix only elaborates the formulation for the local optimization and the consensus update (i.e., first and second steps) of the C-ADMM (2.18), since the third step are straightforward, which can be computed by following a similar procedure as (2.21).

Stage 1: p ij,t and q ij,t lower bound estimation In this stage, the considered ADMM components for each control agents (i.e., prosumers) a ∈ A are:

x a = (p ij,t(a) , q ij,t(a) |(i, j) ∈ Êa , t ∈ T tr ) (B.1) z a = (p ij,t , q ij,t |(i, j) ∈ Êa , t ∈ T tr ) (B.2)

λ a = (λ p ij,t , λ q ij,t |(i, j) ∈ Êa , t ∈ T tr ) (B.3)
with the elements of the decision variable vector y a are similar to x a .

For each iteration k, the first and second C-ADMM steps are as follows:

Step 1: Local optimization From (3.16), the primary local objective (f a ) is defined as:

f a = t∈Ttr i∈Ba
(p net j,t -p net j,t ) 2 + (q net j,t -q net j,t ) 2 (B.4)

By utilizing the defined variables and objective, the local optimization can be formulated as: q ij,t(a) = k:(j,k)∈ Êa q jk,t(a) + q net j,t (B.7)

Step 2: Consensus Update The consensus variables are updated by taking the average of the locally computed and the received local variables from the adjacent agents, as in follows:

∀t ∈ T tr : p Where the sets M a,ij consist of all the adjacent agents that also consider p ij,t , q ij,t as their local/global variables.

Stage 2: r ij • p ij,t and x ij • q ij,t expectation where r a and x a be the vectors that store the dynamic resistance and reactance of the upstream line of prosumer a.

Stage 3: p ij,t and q ij,t upper bound estimation

In this stage, the considered ADMM components for each control agents (i.e., prosumers) a ∈ A are:

x a = (p ij,t(a) , q ij,t(a) |(i, j) ∈ Êa , t ∈ T tr ) (B.13) z a = (p ij,t , q ij,t |(i, j) ∈ Êa , t ∈ T tr ) (B.14) λ a = (λ p ij,t , λ q ij,t |(i, j) ∈ Êa , t ∈ T tr ) (B. [START_REF] Olivares | Trends in microgrid control[END_REF] with the elements of the decision variable vector y a aggregates the grid state variables.

For each iteration k, the first and second C-ADMM steps are as follows:

Step 1: Local optimization From (3.18), the primary local objective (f a ) is defined as: Step 2: Consensus Update The consensus variables are updated by taking the average of the locally computed and the received local variables from the adjacent agents, as in follows:

f a = t∈Ttr i∈
∀t ∈ T tr : p Where the sets M a,ij consist of all the adjacent agents that also consider p ij,t , q ij,t as their local/global variables.

Stage 4: p ij,t and q ij,t calculation

In this stage, the considered ADMM components for each control agents (i.e., prosumers) a ∈ A are:

x a = (p ij,t(a) , q ij,t(a) |(i, j) ∈ Êa , t ∈ T tr ) (B.24) z a = (p ij,t , q ij,t |(i, j) ∈ Êa , t ∈ T tr ) (B.25) λ a = (λ p ij,t , λ q ij,t |(i, j) ∈ Êa , t ∈ T tr ) (B. [START_REF] Hashim | A review on voltage control methods for active distribution networks[END_REF] with the elements of the decision variable vector y a aggregates the grid state variables and the impedance components (i.e, c r ij and c x ij ).

For each iteration k, the first and second C-ADMM steps are as follows:

Step 1: Local optimization From (3.19), the primary local objective (f a ) is defined as: q ij,t(a) ≥ q ij,t (B.32)

f a = (i,
∀(i, j) ∈ Êa |j ∈ B a : c r ij , c x ij ≥ 0 (B.33)
Step 2: Consensus Update The consensus variables are updated by taking the average of the locally computed and the received local variables from the adjacent agents, as in follows:

∀t ∈ T tr : p Where the sets M a,ij consist of all the adjacent agents that also consider p ij,t , q ij,t as their local/global variables. where the decision variables consist of line impedance (r ij , x ij ) and the vector v that aggregates the voltage state variables over the considered time horizon.

Résumé de la thèse

De nos jours, les réseaux de distribution d'électricité sont confrontés à une intégration massive de ressources énergétiques distribuées (DERs), dominées par les systèmes photovoltaïques distribués (PV). Malheureusement, l'expansion des DERs introduit de nouveaux défis opérationnels pour les gestionnaires de réseaux de distribution (DSOs). En particulier, les intégrations massives de systèmes photovoltaïques peuvent entraîner des flux de réseau imprévisibles qui finissent par causer des problèmes de tension affectant la qualité de l'alimentation électrique.

Les Smart distribution systems (SDS) sont le concept clé pour surmonter ces défis. Les SDS permettront de nouveaux types de flexibilités dans le réseau de distribution et aideront les DSOs à mieux optimiser leur fonctionnement en impliquant les différentes parties prenantes, y compris les prosommateurs. Dans le contexte de la gestion de la tension, les SDS peuvent permettre la participation directe des consommateurs au système de contrôle, à savoir le contrôle côté client. Pour y parvenir, de nouveaux algorithmes et de nouvelles méthodologies sont nécessaires, afin de garantir que les aspects techniques et non techniques des schémas de contrôle de la tension puissent être satisfaits par tous les acteurs.

Cette thèse se concentre sur le contrôle de tension basé sur un modèle dans le contexte des SDS. La première partie se concentre sur le développement de contrôleurs de tension basés sur des modèles, ce qui crée le principal élément de base de la recherche. Deux des principaux défis de développement sont abordés. Premièrement, les algorithmes du contrôleur de tension à base de modèle doivent être capables de s'adapter à une grande variété de cas d'utilisation. Cela inclut la possibilité de mettre en oeuvre différents objectifs de contrôle ou d'intégrer différents types de flexibilités tels que des systèmes de stockage d'énergie (ESS). Le deuxième défi concerne le contrôle côté client, notamment pour permettre une participation active des consommateurs à la gestion de la tension. La gestion décentralisée de la tension est la réponse clé à ce problème. En utilisant une architecture décentralisée, des schémas de coordination entre les différents acteurs peuvent être établis. De plus, elle permet de répondre aux limitations majeures du contrôleur de tension centralisé conventionnel basé sur un modèle en termes de fiabilité, d'évolutivité et de confidentialité.

La deuxième partie de la thèse traite des incertitudes des paramètres du réseau dans le contrôleur de tension basé sur un modèle. Six méthodologies différentes d'estimation de l'impédance, dont deux approches distribuées, sont proposées. Un cadre pour comparer les performances de ces méthodes est également développé. Ensuite, des tests de robustesse sont effectués, qui visent à observer l'impact des incertitudes de mesure sur la performance des méthodologies proposées. Enfin, un algorithme d'ajustement des paramètres d'impédance est développé afin d'affiner l'estimation de l'impédance lors des passages successifs de la gestion de la tension.

La dernière partie est dédiée à l'application de la gestion de la tension dans les communautés énergétiques. Cet aspect est principalement absent de la littérature et devient l'objectif principal de cette thèse. Le bloc d'algorithme distribué développé est ensuite appliqué pour mettre en oeuvre une stratégie de gestion pour les communautés énergétiques locales dans le cadre de la réglementation française pour l'autoconsommation collective. La méthodologie couvre à la fois les difficultés économiques et techniques d'une implémentation dans le monde réel. En particulier, nous démontrons comment les prosommateurs peuvent partager l'énergie collectivement et comment déterminer la quantité d'énergie et la répartition des bénéfices entre eux. De plus, la stratégie cherche à atténuer les incertitudes sur le fonctionnement en temps réel tout en assurant le respect des contraintes du réseau.

Abstract / Résumé

Abstract -Nowadays, distribution power systems are facing a massive integration of distributed energy resources (DERs). This phenomenon introduces new operational challenges for the distribution systems, particularly voltage problems. This thesis focuses on model-based voltage controller in the context of Smart distribution systems. First, different voltage control strategies are proposed, including distributed approaches to enable prosumers participation in the control scheme. Then, the uncertainty in controller parameter, in particular grid data, is handled using various mitigation approaches developed in the thesis. The final work is dedicated to the application of voltage management in energy communities. This aspect is mainly missing in the literature and becomes the main goal of this thesis. Hence, a management strategy for energy community is developed, and the results show the effectiveness of the method in both technical and economic aspects.

Keywords: Voltage management, operational planning, distributed control, optimal power flow, energy management system, energy community Résumé -Les systèmes d'électricité sont confrontés à une intégration massive de ressources énergétiques distribuées. Ce phénomène introduit de nouveaux défis techniques pour les systèmes de distribution, notamment des problèmes de tension. Cette thèse se concentre sur le contrôle de tension dans le contexte des systèmes de distribution intelligents. Différentes stratégies de contrôle de tension sont proposées, incluant des approches distribuées pour permettre la participation des prosumers au contrôle. L'incertitude des paramètres du réseau est traitée en utilisant diverses approches d'atténuation développées dans la thèse. L'étude finale se concentre sur l'application du contrôle de tension dans les communautés énergétiques. Cet aspect est souvent absent de la littérature et devient l'objectif principal de cette thèse. Ainsi, une stratégie de gestion pour les communautés énergétiques est développée, et les résultats indiquent son efficacité dans les aspects techniques et économiques.

Mots clés : Contrôle de tension, planification opérationnelle, contrôle distribué, Flux de Puissance Optimal, système de gestion de l'énergie, communauté énergétique.
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 32 Proposed distributed mechanism with Exchange ADMM initialize k = 1 and ∀a ∈ A: x k < k max do Agent (i.e., household) a ∈ A : 1. [Local optimization] computes x [Global/CM optimization] receives x {k} a from all the agents a ∈ A; update z {k} a ∀a ∈ A via (4.6). 3. [Dual update] updates λ {k} a ∀a ∈ A via (2.21). The CM then sends x {k} a to the corresponding agent. k ← k + 1 end while

  2) Real-time operation To mitigate operation uncertainties (i.e., forecast error) and possible voltage violations, while fulfilling operational commitments from day-ahead operation. This mitigation action is performed in a finer time resolution of 5 minutes.(Stage 3) Monthly settlements and billingsTo determine the keys of repartition and compute the final energy bill of each household.
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 4 Fig. 4.5 illustrates the information flows overview between the households and the CM as well as the inputs-outputs relations between the stages. We apply the distributed problems in both Stage 1 and 2 that are represented by two-edge arrows in the figure.
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 2 Figure A.2: Illustration of voltage deviation linearization.

  V P I values indicate fewer voltage deviations in the system and better controller performance compared to a controller with high V P I.
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 3 Figure A.3: Simulations flow chart for uncertainties analysis of a) forecast and b) grid impedance uncertainty analysis.
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 4 Figure A.4: Impact of uncertainties based on a) incremental error, b) Monte Carlo simulation.
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  tr , ∀(i, j) ∈ Êa |j ∈ B a : p ij,t(a) = k:(j,k)∈ Êa p jk,t(a) + p net j,t (B.6)

  ij,t(n:n∈M a,ij ) (B.9)

  ij,t(n:n∈M a,ij ) (B.[START_REF] Vovos | Centralized and distributed voltage control: Impact on distributed generation penetration[END_REF] 

  ij,t(n:n∈M a,ij ) (B.[START_REF] Kerscher | The key role of aggregators in the energy transition under the latest european regulatory framework[END_REF] 

  

  

  

  

  

  

  

  

Table 1 .

 1 

		1: Voltage quality regulation in different countires
	Country	Medium voltage	Low voltage Requirements (% of time during 1-week)

Table 1 .

 1 2: Characteristic of different control architectures.

	Architecture			Characteristic
		Robustness Scalability Privacy	Computational power requirements *
	Centralized	+	+	+	High
	Decentralized	++	++	+	Medium
	Distributed	+++	+++	+++	Low
	Community-based	+	+	+++	Low
					

* Requirement for control agents.

  3. Voltage operating limits, (2.14) ∀t ∈ T , ∀i ∈ Ba . denote the global and dual variables that are parameters obtained from the previous iteration. The objective function (2.19) consist of two parts. The first part aims at minimizing the principal OPF objectives as the centralized architecture (i.e., PV dispatch change and grid losses). The second part minimizes the difference between the values of the local x

	4. PV operating points (2.3), ∀t ∈ T , ∀j ∈ G a .
	5. PV reactive power dispatch, (2.15b), (2.15c) ∀t ∈ T , ∀j ∈ G a :
	where ρ ≥ 0 denotes the C-ADMM penalty parameter (i.e., convergence rate) and z a {k-1}	, λ	{k-1} a
				{k} a	and
	the consensus z	{k-1} a	variables, weighted by λ	{k-1} a

Table 2 .

 2 2: Results of controller validation.

	Snapshot	1 day	1 week

Table 2 .

 2 3: Computational time comparison between the considered architectures.

	Centralized Decentralized Distributed

  and e tot t denotes the share of curtailments over the combined PVs, as defined in (2.26).

	e j,t =	t t =0	p pv j,t -p pv j,t t t =0 p pv j,t	× 100 ; e tot t =	j∈G	t t =0 j∈G p pv j,t -p pv j (t ) t =0 j,t p pv t	× 100	(2.26)

1 .

 1 Actual voltage drop computed from the measurements (3.21) and estimated voltage drop computed from controller output (3.22) at each branch.

	∆v ij,t = vj,t -vi,t	(3.21)

Table 3 .

 3 1: Comparison of computational time (in seconds) between different methodologies.

	Methodology			Input data	
		1 day	2 days	3 days	4 days
	C1	3	10	15	22
	C2	7	20	34	41
	C3	30	76	116	151
	C3-s	8	17	33	48
	D3	1566	4220	6599	10852
	D3-s	950	1773	2025	3500

  .2.1).

	min h y RT 0	p netDA h,t	-p netRT 0 h,t	2	(4.10)
	subject to:				
	1. PV operating points (2.3).				
	2. ESS operating points (2.7) -(2.6), and:			
	soc DA h,t -δ soc ≤ soc RT 0 h,t ≤ soc DA h,t + δ soc	(4.11)
	3. Household constraints (4.1) & (4.2).			

  Next, the CM validates all the submissions and ensures the voltage violations can be mitigated by solving the OPF. It is formulated as a global problem (4.6) with the decision variables vector (x RT ) consisting of the grid state variables (e.g., bus voltage, branch current and power) and the global variables (i.e., submissions of all households). The main objective of the OPF problem (f RT g ) and the constraints are shown in (4.4.2.2).

	2. ESS operating points (2.7) -(2.6) & (4.11).				
	3. Household constraints (4.1) & (4.2).					
	f RT g	= θ n	(p netDA h,t	-pnetRT h,t	) 2	+θ l	ij,t r ij	(4.15)
		h∈H				(i,j)∈E		
		Commitment mismatch		Grid losses	
	Subject to:							
	1. DistFlow with SOCP relaxations (2.1) & (2.12).			
					t	) 2		(4.13)
								(4.14)
	subject to:							
	1. PV operating points (2.3).						

  and (4.17). = {t, t + ∆t r , . . . , t + ∆t m -∆t r } denotes the RT time interval between the time t and t + ∆t m -∆t r .

	B h,t = max(0,	tr∈It p netRT h,t |I t |	)	(4.16)
	importer/buyer		
	S h,t = min(0,	t∈It p netRT h,tr |I t |	)	(4.17)
	exporter/seller		
	where I t			

  t Ω t π cm - Penalty Cost for Unmet Commitment The second bill component is the penalty cost, which is paid by the households due to the non-respected commitments caused by uncertainties or voltage control actions. This cost component is computed based on the difference between the committed and the actual energy dispatch (4.20), with π dev denotes the penalty price (in ce/kWh).

	C dev h,t = p netDA h,t	-	tr∈It p netRT h,tr |I t |	π dev ∆t m 60	(4.20)
	Grid Service Rewards The final component represents the reward received by the house-
	holds for their participation in the voltage regulation. The reward can be computed by com-
	paring the actual RT dispatch (p netRT h,t	) with the initial RT submission (p netRT 0 h,t	), since the
	initial phase is expected as the optimal dispatch (i.e., the dispatch with the minimal forecast
	mismatch) (4.21).				
	C gs h,t =	tr∈It p netRT 0 h,tr |I t |	-p netRT h,tr	π gs ∆t m 60	(4.21)
						t	δt m	(4.19a)
					exported/sold
	C gd h,t = (B h,t -λ + h,t Ω t )π gd + t	-(S h,t -λ -h,t Ω t )π gd -t	δt m	(4.19b)
	imported/purchased		exported/sold
	C td h,t = C cm h,t + C gd h,t				(4.19c)

Table 4 .

 4 2: Total monthly cost and revenue breakdown.

		Cost (€)			Revenue (€)	
	Grid	Community	Penalty	Grid	Community	Reward
	buying	buying		selling	selling	
	446	386.5	31.5	794.5	361	50.3

  This stage is computed locally by each prosumer (i.e., without coordination/ADMM). The following optimization problem is considered for this stage: min r

a ,x a std(r a ) + std(x a ) (B.10) subject to:

∀t ∈ T tr , ∀(i, j) ∈ Êa : νj,t = νi,t -2(r ij,t p ij,t , x ij,t q ij,t ) + (v i,t -vj,t ) 2 (B.11)

r ij,t , x ij,t ≥ 0 (B.12)

  Ba(ν i,t -ν i,t(a) )2 (B.[START_REF]energy information administration -EIA -independent statistics and analysis[END_REF])By utilizing the defined variables and objective, the local optimization can be formulated as:∀t ∈ T tr , ∀(i, j) ∈ Êa |j ∈ B a : p ij,t(a) = k:(j,k)∈ Êa p jk,t(a) + ij,t(a) r ij,t + pnet Êa q jk,t(a) + ij,t(a) x ij,t + qnet ν j,t(a) = ν i,t(a) -2(r ij,t p ij,t(a) + x ij,t(a) q ij,t(a) ) + (v i,t -vj,t ) 2 (B.20)

	min y {k} a	f a + λ {k-1} a	• (x {k} a -z {k-1} a	) +	ρ 2	x {k} a -z {k-1} a	2 2	(B.17)
	subject to:							
							j,t	(B.18)
		q ij,t(a) =				j,t	(B.19)

k:(j,k)∈ ij,t(a) = v2 j,t -v2 i,t + 2(r ij,t p ij,t(a) + x ij,t q ij,t(a) ) r 2 ij,t + x 2 ij,t

(B.21)

  j)∈ Êa t∈Ttr (p ij,t -p ij,t(a) ) 2 + (q ij,t -q ij,t(a) ) 2 (B.27)By utilizing the defined variables and objective, the local optimization can be formulated as:∀t ∈ T tr , ∀(i, j) ∈ Êa |j ∈ B a : p ij,t(a) = k:(j,k)∈ Êa p jk,t(a) + c r ij (v i,t -vj,t ) 2 + pnet Êa q jk,t(a) + c x ij (v i,t -vj,t ) 2 + qnet

	min y {k} a	f a + λ {k-1} a	• (x {k} a -z {k-1} a	) +	ρ 2	x {k} a -z {k-1} a	2 2	(B.28)
	subject to:							
							j,t	(B.29)
			q ij,t(a) =				j,t	(B.30)
			p ij,t(a) ≥ p ij,t					(B.31)

k:(j,k)∈

  Stage 5: r ij and x ij calculationThis stage is computed locally by each prosumer (i.e., without coordination/ADMM). The following optimization problem is considered for this stage:∀t ∈ T tr , ∀(i, j) ∈ Êa |j ∈ B a : ν j,t = ν i,t -2(r ij p ij,t + x ij q ij,t ) + (v i,t -vj,t ) 2 (B.37)

	min r ij ,x ij ,v	t∈Ttr i∈ Ba	(ν i,t -ν i,t ) 2	(B.36)
	subject to:			
	r ij , x ij ≥ 0		(B.38)
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AMI

Advanced Metering/Monitoring Infrastructure ADMM somewhat similar to the centralized controller of Chapter 2.

2. Base scenario 2: In this scenario, households are limited to export ≤3 kW at the maximum. This value is selected based on a preliminary assessment on the test system.

In both base scenarios, households shall respect the power limitation and act by utilizing its ESS' real-time reserve or performing additional PV curtailments if the reserve is not sufficient. Our first objective is to study the feasibility in terms of computational time of all stages and the convergence of the proposed distributed algorithms. Table 4.1 summarizes the results and highlights that the proposed strategy is shown to be considerably fast to solve and able to comply within the proposed management time horizons, especially for the real-time operation that requires faster computational speed (5 min control intervals). However, note that the obtained computational time would not fully represent real-life implementation, since any communication uncertainties (i.e., delay, noises) are neglected. Despite of that fact, the proposed algorithm can converge in relatively small numbers of iterations, as shown by the evolution the residuals of in Fig. 4.8. For comparisons, both studies in [START_REF] Dall'anese | Decentralized optimal dispatch of photovoltaic inverters in residential distribution systems[END_REF] (69 bus system) and [START_REF] Zheng | A fully distributed reactive power optimization and control method for active distribution networks[END_REF] (16 bus system) require hundreds of iterations before reaching the convergence the immediate next step for the possible future works.

Convergence of the Proposed Distributed Algorithm

Scalability Tests of the Distributed Algorithm

The final study aims at validating the scalability of the methodology. In particular, we implement the stage 1 and stage 2 on three additional test systems that consist of 84, 117, and 135 households. The complete grid models are available in [START_REF] Bouchekara | Comprehensive Review of Radial Distribution Test Systems[END_REF]. In each test system, we integrate 50 % of households with DERs -25 % of them with only PV and the rest 25 % with PV+ESS. 4.3 compares the average computational time and number of iterations required to reach the convergence criteria for both stages on the considered test systems. The results highlight that the proposed distributed schemes can converge reliably within a desirable time. Indeed, higher computational time is required as we increase the size of the system. Yet, the obtained results are still within the acceptable time horizon, especially for the real-time operation stage that should be computed every 5 min.

Conclusion

In this chapter, a three-stage management strategy for an energy community that considers grid constraints is presented. The proposed strategy employs ADMM-based distributed coordination schemes that have been studied previously in the Chapter 2. The proposed methodology allows households to exchange energy to the community by firstly declaring their contractual energy commitments in day-ahead (DA) operation (stage 1 ). In the actual real-time operation, the community manager (CM) coordinates with the households to oversee any uncertainties and possible voltage violations from the profiles that have been scheduled in the DA stage 2. At the end of the month, the CM computes households' energy bills and allocate the community energy (i.e., the keys of repartition) such that all the community participants can achieve an attractive economic benefit stage 3.

Simulation results showed that the proposed community reduces the energy cost and in-

Appendix A

Impact of Uncertainties on Model-Based Voltage Controller

This appendix studies the impact of forecast and grid impedance uncertainties on the controller performance, which is based on our publication in [START_REF] Putratama | Uncertainties Impact and Mitigation with an Adaptive Model-Based Voltage Controller[END_REF]. In this study, we show how a small forecast and grid impedance error can significantly impact the performances of the controller.

Test System

In this study, a 11-bus distribution network is considered as a test system (Fig. A.1), with all loads having a constant power factor of 0.98. Three non-dispatchable PVs with a rated power of 250 kW are introduced along with four controllable 0.5 MWh ESSs with 300 kW max power in order to maintain the grid voltage. All the test cases considered in this study are based on a simulation horizon of four weeks with a 30 min timestep. The load profiles are residential profiles adopted from [START_REF] Murray | A data management platform for personalised realtime energy feedback[END_REF] while the PV profiles are adopted from irradiance data in Grenoble, France. 

Formulation of Model-based Controller

The proposed voltage controller is formulated as a centralized optimization problem with the aims to maintain the grid voltage within the limits (i.e., [0.95, 1.05] by optimizing the use of ESSs. However, a strict voltage control within the predefined limits may not be possible in every case due to the system configuration and limited dispatchable resources. Typically, voltage problems may occur during the worst summer (high production) and winter time (high demand), especially if the grid and/or the renewable based generations are not properly sized. In order to ensure the problem feasibility, the proposed voltage controller is then formulated as a voltage deviation minimization problem, as in (A.1). 

Distributed Impedance Estimation

Formulations