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The objective of this study is to identify the direct and/or indirect impacts of occupant behavior on the overall performance of the building. The dynamic behavior of the occupants is modeled and simulated along with the thermal aspects of a building. Consequently, to support this study, a chronological review of the literature on OB and its effects on building performance was conducted. This thesis describes our principle validation platform which integrates stochastic occupant models into a multi-agent simulation platform (SimOcc), which communicates directly with the building simulation. Subsequently, building simulations were completed for the buildings using real data and TRNSYS software tools. SimOcc is validated through a co-simulation platform in order to demonstrate the effectiveness of the built-in stochastic behavior model of occupants in educational buildings.

A belief-desire-intention model is used to develop a set of objectives and plans that an agent should follow to influence the environment based on their beliefs about current environmental conditions. SimOcc uses multi-agent-based modeling to learn how to react to building processes and agents are able to choose strategies without the need for context-specific rules.

Using these complementary techniques, the integration of occupant presence and behavior in a single platform to support comprehensive simulation support that can be easily interfaced with various building performance simulation programs is a key contribution of this thesis.

Les études précédentes se sont concentrées sur les enquêtes BO liées à l'énergie dans les bâtiments résidentiels. Cette recherche implique le développement et la validation de modèles stochastiques dans les bâtiments universitaires existants. Modèles spécifiques dans les domaines de l'occupation, des activités, de l'ombrage, des ouvertures de fenêtres, du thermostat et de l'utilisation de l'éclairage. Dans les outils de simulation conventionnels actuels, le comportement des occupants est modélisé sous forme de modèles d'occupation.

L'objectif de cette étude est d'identifier les impacts directs et/ou indirects du comportement des occupants sur la performance globale du bâtiment. Le comportement dynamique des occupants est modélisé et simulé ainsi que les aspects thermiques d'un bâtiment. Par conséquent, pour étayer cette étude, une revue chronologique de la littérature sur l'OB et ses effets sur la performance des bâtiments a été réalisée. Cette thèse décrit notre principale plateforme de validation qui intègre des modèles d'occupants stochastiques dans une plateforme de simulation multi-agents (SimOcc), qui communique directement avec la simulation du bâtiment. Par la suite, des simulations de construction ont été réalisées pour les bâtiments à l'aide de données réelles et d'outils logiciels TRNSYS. SimOcc est validé via une plateforme de co-simulation afin de démontrer l'efficacité du modèle de comportement stochastique intégré des occupants dans les bâtiments commerciaux.

Un modèle croyance-désir-intention est utilisé pour développer un ensemble d'objectifs et de plans qu'un agent doit suivre pour influencer l'environnement en fonction de ses croyances sur les conditions environnementales actuelles. SimOcc utilise des techniques d'apprentissage automatique multi-agents pour apprendre à réagir aux processus de construction et les agents sont capables de choisir des stratégies sans avoir besoin de règles spécifiques au contexte.

En utilisant ces techniques complémentaires, l'intégration de la présence et du comportement des occupants dans une plate-forme unique pour prendre en charge un support de simulation complet qui peut être facilement interfacé avec divers programmes de simulation de la performance des bâtiments est une contribution clé de cette connaissance de thèse. v L'un des défis critiques de la société actuelle est de faire face au problème climatique mondial et à ses conséquences sur l'économie, la santé et la productivité des utilisateurs causées par la croissance démographique et économique et le déséquilibre entre l'offre et la demande. Selon l'EIA 2016, la consommation énergétique mondiale totale a augmenté de 49 % au cours des deux dernières décennies en raison de la croissance économique rapide dans les pays en développement et de l'urbanisation et devrait augmenter de 48 % d'ici 2040 (Tyagi et al., 2021). Pour surmonter cela, le monde doit se tourner vers la durabilité énergétique et gérer la demande et l'offre d'énergie. Ainsi, les deux principaux défis auxquels le monde est confronté sont les crises énergétiques et le changement climatique, qui ont été identifiés comme la plus grande menace environnementale des temps modernes. À mesure que de grandes quantités d'énergie sont consommées, la crise énergétique s'aggrave. Par conséquent, la réduction de la consommation d'énergie est une solution cruciale qui nécessite la coopération du monde entier. Par exemple, l'objectif national français de réduction des émissions pour 2030 est de réduire les émissions de 40 % par rapport à 1999 (Maros et Juniar, 2016).

Les transports et les bâtiments représentent près de 100 % de la demande d'énergie. Cependant, une quantité importante de cette énergie est gaspillée inutilement. Par exemple, environ 30 % de l'énergie commerciale est gaspillée en raison de l'utilisation inefficace et inutile des installations de construction (Energy Star 2015). Cela indique qu'il existe de grandes opportunités dans le secteur de la construction pour prendre des mesures qui aident à minimiser les pertes d'énergie. En plus de mettre l'accent sur la réduction des déperditions énergétiques dans les bâtiments, la sécurisation du confort des occupants est également l'un des principaux objectifs de cette recherche. Dès lors, offrir un cadre de vie confortable et durable avec l'acquisition d'un bâtiment économe en énergie devient une attente de la recherche.

L'environnement bâti apporte une contribution importante à l'amélioration de l'efficacité énergétique, car les bâtiments ont un impact énorme et croissant sur l'environnement. En fait, leurs performances sont inférieures à l'efficacité et aux potentiels actuels, de sorte que les bâtiments offrent un grand potentiel d'opportunités d'économie d'énergie.

Les bâtiments et les systèmes énergétiques utilisés pour maintenir l'environnement intérieur consomment environ 36 % de l'énergie mondiale (le chauffage et le refroidissement en consomment les 2/3) et sont responsables de 39 % des émissions de dioxyde de carbone (CO2) (IEA, 2019). En France, la construction de bâtiments consomme environ 35 % de l'énergie totale et représente près de 28 % des émissions totales de dioxyde de carbone. Si aucune mesure n'est prise pour réduire la consommation énergétique des bâtiments, les émissions de gaz à effet de serre (GES) doubleront d'ici 2030. Par conséquent, la mise en oeuvre de la gestion de l'énergie dans le processus de construction est une voie prometteuse pour réduire la consommation d'énergie. On estime généralement que les gens passent 90 % de leur vie dans un bâtiment, ce qui suggère qu'une grande partie de la consommation d'énergie du bâtiment dépend du comportement des occupants.

Au fur et à mesure que la qualité de l'environnement intérieur change, les occupants voudront toujours rendre leur environnement plus confortable en consommant moins d'énergie, ce qui réduit la demande vi d'énergie et son impact sur les émissions environnementales. Afin d'améliorer la qualité de l'environnement des occupants, l'occupant interagit avec les systèmes du bâtiment, ce qui augmente considérablement la consommation énergétique du bâtiment. Par conséquent, pour réduire la consommation d'énergie et les émissions de gaz à effet de serre, l'énergie doit être utilisée efficacement. Comment réduire significativement la consommation énergétique du bâtiment sans nuire à la qualité de l'environnement intérieur ? Selon la directive européenne (UE) sur la performance énergétique des bâtiments, tous les nouveaux bâtiments construits en Europe doivent être des bâtiments à consommation d'énergie quasi nulle d'ici 2050. L'optimisation du processus de conception des bâtiments dans les délais est très importante pour répondre aux futures attentes réglementaires et réduire considérablement la consommation d'énergie. du parc immobilier (K. E. [START_REF] Thomsen | Implementing the cost-optimal methodology in eu countries eceee -The European Council for an Energy Efficient Economy EuroACE -The European Alliance of Companies for Energy Efficiency in Buildings[END_REF].

Par exemple, la France vise à réduire la consommation d'énergie dans le secteur du bâtiment de 28 % d'ici 2030 et à atteindre zéro émission nette de gaz à effet de serre d'ici 2050. Un code du bâtiment obligatoire est en vigueur. Cependant, selon l'American Society of Heating Refrigeration and Air Conditioning (ASHRAE), 70 à 80 % des bâtiments actuels existeront au cours des 10 à 15 prochaines années. Ainsi, la plus grande opportunité de réduire la consommation énergétique des bâtiments est d'augmenter la performance des services de construction existants (Tyagi et al., 2021).

La réduction de la consommation d'énergie dans les bâtiments existants nécessite l'utilisation de diverses technologies économes en énergie, telles que l'éclairage, le chauffage et la climatisation, le contrôle intelligent et l'utilisation d'énergies renouvelables. Tout cela ne dépend que de la technologie. Cependant, la technologie seule ne permettra pas d'atteindre l'objectif d'économie d'énergie et d'émissions climatiques des bâtiments. Il n'y a pas eu de réduction significative de la consommation d'énergie dans les bâtiments dotés de telles technologies d'économie d'énergie, principalement grâce à l'adoption de nouvelles technologies et à la restauration de technologies d'efficacité énergétique (Cowie et al., 2017).

Diverses mesures d'économie d'énergie peuvent être prises pour augmenter considérablement les économies d'énergie dans la conception et l'exploitation des systèmes de construction. Cependant, un bâtiment multidisciplinaire performant est composé de nombreux composants d'interaction dynamique qui sont des processus non linéaires et complexes. La complexité provient des nombreux paramètres interconnectés impliqués dans la conception basée sur la performance, tels que l'enveloppe, la qualité de l'environnement intérieur, les matériaux de construction, l'entretien, le climat et les comportements des occupants (Chen, Liang et Hong, 2017).

Il est largement reconnu que le comportement des occupants joue un rôle crucial dans la performance des bâtiments. Cependant, il a été trop simplifié ou négligé et un manque de compréhension de la façon dont l'occupant interagit avec la technologie du bâtiment pour prédire les prévisions de performance énergétique du bâtiment (Sun et Hong, 2017 ;Gilani et al., 2018 ;Carlucci et al., 2020 ;Salimi et Hammad , 2020 ;Jami et al., 2021). vii Une telle influence significative du comportement des occupants a été progressivement reconnue et mesurée par des études récentes, mais manque encore d'évaluation et d'examen systématiques, en particulier sur un tel effet sur la conception et l'optimisation des contrats énergétiques. Ainsi, la thèse se concentre principalement sur la compréhension de l'influence du comportement des occupants sur les performances du bâtiment (confort thermique, consommation d'énergie et qualité de l'environnement intérieur). Les comportements des occupants peuvent optimiser la consommation énergétique du bâtiment sans compromettre le confort ou gaspiller inutilement de l'énergie.

Les outils de simulation sont les techniques les plus puissantes utilisées pour déterminer ou analyser la consommation d'énergie des bâtiments et son effet sur le confort humain. En particulier, la simulation dynamique des performances des bâtiments (BPS) est définie comme la représentation des caractéristiques physiques conçues ou réelles des bâtiments et de leurs systèmes avec leurs stratégies de contrôle à l'aide de modèles informatiques ou mathématiques. BPS a joué un bon rôle dans l'élaboration de politiques, de codes et de règles qui régissent la réalisation de la conception et de l'exploitation de bâtiments à faible consommation d'énergie ou à consommation d'énergie quasi nulle, à haute performance des bâtiments et à la réduction des émissions de gaz à effet de serre.

Les simulations de performance des bâtiments permettent non seulement de répondre aux besoins des occupants, mais permettent également aux concepteurs d'essayer d'améliorer les performances des bâtiments au stade de la conception/rénovation. La plupart des travaux dans ce domaine se concentrent sur la modélisation et la simulation de bâtiments résidentiels utilisant les occupants comme profil unique et statique. Cela ne reflète pas la situation réelle de l'occupant; le comportement de l'occupant réel est plus complexe et relève de la pluridisciplinarité.

La simulation de bâtiment traditionnelle considère les occupants comme une réflexion passive de l'énergie du bâtiment et de l'appareil du bâtiment. Bien que la simulation énergétique des bâtiments soit un outil puissant et efficace d'aide à la décision de conception, elle peut être soumise à des limites.

Les méthodes actuelles de simulation de la consommation énergétique des bâtiments sont souvent imprécises, avec une erreur allant de 150 % à 250 % (De Wilde, 2014 ;Deng et Chen, 2019). La simulation utilisée pour estimer l'énergie du bâtiment peut avoir une erreur de 30 à 100 % par rapport aux conditions réelles en raison du comportement dynamique des occupants et de l'instabilité stochastique (Lee, [START_REF] Tong | 2 1 'Occupant Behavior in Building Design and Operation[END_REF]. Selon (Chapman et al. 2016), la performance énergétique du bâtiment s'écarte de l'énergie réelle ou estimée du bâtiment conceptuel après la construction.

Les principales raisons de cet écart énergétique sont dues à des erreurs manquantes ou commises dans la modélisation du comportement des occupants ou à la prise en compte du comportement des occupants comme une entrée déterministe. Cependant, l'interaction des occupants avec les systèmes du bâtiment est dynamique. Par conséquent, à temps constant ou déterministe, son impact sera surestimé. Les chercheurs (Chen et al., 2017 ;Gunay et al., 2018 ;Paone et Bacher, 2018) dans leur étude remarquent que l'erreur de modélisation du comportement réel d'un occupant est la principale cause de cet écart. Classiquement, les outils de simulation de la performance énergétique des bâtiments utilisent des entrées statiques ou déterministes trop simplifiées ou présumées imprécises pour viii modéliser l'occupation dans l'analyse de la performance énergétique (Chen et al., 2017). Ainsi, le couplage du comportement stochastique ou réaliste des occupants dans celui du bâtiment conduit à une simulation plus réaliste (Virote et Neves-Silva, 2012).

Cette recherche s'inscrit dans le cadre de son projet fédérateur INC-Wood (Ingénierie Numérique pour la Construction Bois), le département ISET du CRAN, en collaboration avec le LERMAB se concentre sur la gestion de l'énergie, les aspects qualité de l'air intérieur sur la phase d'exploitation, via le BIM, de l'instrumentation de bâtiments.

La thèse s'est concentrée sur la simulation des interactions des occupants avec les systèmes du bâtiment et leur impact sur la performance du bâtiment. La limitation est que le profil déterministe, planifié ou d'entrée qui représente généralement le comportement dynamique des occupants dans la plupart des simulations énergétiques des bâtiments ne montre pas la réalité. Il y a eu une tentative de combler ces lacunes, mais pas de manière générique, ou la plupart d'entre elles ne sont pas validées par des moyens expérimentaux.

L'objectif principal de ce doctorat. est de développer un cadre d'architecture de modélisation et de cosimulation du comportement des occupants qui peut analyser les effets du comportement des occupants sur les exigences de performance dans le cycle de vie d'un bâtiment. Cette approche intègre la modélisation stochastique des comportements liés à l'occupation et à l'énergie dans des outils de simulation dynamique. Les modèles développés sont ensuite validés par rapport à des mesures réelles (températures, humidité relative, dioxyde de carbone, etc.). Cette plate-forme de co-simulation est utilisée pour coupler le comportement des occupants développé dans un cadre de simulation multiagents dans un outil de simulation de bâtiment bien connu. Les agents de notre environnement de simulation sont des objets qui reflètent leur réponse en fonction de leurs perceptions environnementales.

La modélisation multi-agents (MAB) a été appliquée avec succès pour modéliser l'interaction entre les occupants et les composants du bâtiment, mais la plupart des modèles sont construits sur la base de la simulation sans implication réelle des données (Jia et al., 2017). Cette architecture vise à intégrer la nature stochastique du comportement des occupants dans l'outil de simulation actuel afin de minimiser l'écart de performance énergétique entre les résultats prédits et réels mesurés. Atteindre cet objectif aidera à comprendre l'impact du comportement des occupants sur la performance du bâtiment et à améliorer la précision de la performance énergétique en réduisant l'écart de performance énergétique.

1. Comment pouvons-nous développer et mettre en oeuvre des modèles stochastiques du comportement énergétique des occupants dans les bâtiments pour estimer l'impact sur la consommation d'énergie des bâtiments et le confort des occupants grâce à la simulation des performances des bâtiments ? ix 2. Comment le comportement des occupants (fenêtre, éclairage, radiateur et store) réagit-il à la consommation d'énergie du bâtiment et à la qualité de l'environnement (thermique, qualité de l'air intérieur)?

3. Quel comportement a le plus d'influence sur la performance des bâtiments ? 4. Comment relier l'impact mesuré du comportement des occupants et la consommation d'énergie dans les bâtiments ? 5. Comment pouvons-nous développer une plate-forme architecturale de co-simulation et améliorer la prédiction des performances des enveloppes de bâtiments avancées dans plusieurs domaines ? 6. Il est essentiel de vérifier la validité du comportement des occupants. Par conséquent, une méthode de validation est requise avant d'utiliser le modèle dans l'outil de simulation pour estimer la performance du bâtiment. Comment valider le modèle de comportement des occupants multi-agents et la plate-forme architecturale de co-simulation ? Cette étude porte sur le développement d'une plate-forme de co-simulation pour comprendre l'impact du comportement des occupants sur la performance énergétique de pièces sélectionnées. En plus d'apporter du confort aux usagers dans un bâtiment polyvalent, cela permet de comprendre l'impact du comportement des occupants sur la consommation d'énergie et la qualité de l'air intérieur. Des mesures sur site pour étudier la consommation d'énergie, la qualité de l'air intérieur et le confort thermique ont été menées en parallèle. Les tests ont été réalisés comme suit : Mesure des systèmes physiques (ouverture ou fermeture des fenêtres, consigne radiateur, occupation et porte), des informations météorologiques et utilisées pour la validation de la plateforme.

Un cadre de modèle de comportement des occupants basé sur plusieurs agents a été développé, appelé SimOcc. Le cadre de simulation multi-agents SimOcc est utilisé pour modéliser le comportement des occupants et utilise l'environnement Building Control Virtual Test Bed (BCVTB) couplé à l'outil de simulation de bâtiment.

La méthodologie de recherche pour cette thèse suit les étapes et est présentée sous forme graphique dans la figure .   1. Revue de littérature 2. Installation de capteurs dans des pièces sélectionnées et collecte de données 3. Analyse de la collecte des données 4. Développer un cadre de comportement des occupants multi-agents 5. Développement et couplage du modèle de comportement des occupants du bâtiment dans la simulation du bâtiment pour analyser la performance du bâtiment 6. Vérification et validation du cadre de modélisation et de simulation.

x Dans cette thèse, afin d'étudier l'influence du comportement des occupants sur la performance du bâtiment. La méthodologie de modélisation de l'influence du comportement des occupants sur la performance des bâtiments suit deux approches principales : Cas 1. La modélisation et la simulation thermiques des bâtiments sans tenir compte du comportement réel des occupants, la prise en compte du programme d'occupation déterministe de l'outil de simulation, représentent la simulation des performances du bâtiment au stade de la conception. Les paramètres considérés pour les simulations au stade de la conception sont l'enveloppe et les propriétés thermo-physiques, le climat, l'occupation et l'orientation. L'outil de simulation est utilisé pour étudier la performance énergétique afin d'évaluer sa précision et de trouver pourquoi l'écart énergétique est trop élevé au stade de la conception. La divergence qui a été soulignée ici sera discutée plus loin.

Cas2. Le deuxième cas est principalement utilisé pour expliquer pourquoi il y a une différence d'énergie dans le cas 1 ou la forme étendue du cas 1, qui considère l'influence du comportement des occupants sur l'estimation de la performance du bâtiment en phase d'exploitation. Dans ce mode d'estimation, il existe deux groupes principaux tels que la simulation comme le cas 1 mais avec des informations complètes. Les étapes à suivre ici sont la préparation des informations, la géométrie du bâtiment et la simulation avec le comportement des occupants par défaut trouvé dans les outils de simulation. Les deux modèles de base de ces étapes sont le modèle de lecteur de données stochastique et le modèle de construction thermique. La première étape que nous prenons pour modéliser le modèle stochastique est la collecte et l'analyse de données ou la collecte d'ordonnées logistiques et de coefficients à partir de recherches connexes, la modélisation multi-agents du comportement des occupants sur la croyancedésir-intention (BDI). La modélisation du bâtiment du plugin TRNSYS 3D SketchUp est couplée au modèle de comportement des occupants de la plateforme de co-simulation avec un orchestrateur du studio de simulation TRNSYS pour estimer les performances du bâtiment. L'évaluation des résultats (les données collectées et les résultats de la simulation) a créé le cadre conceptuel initial. Le premier résultat a été vérifié par différentes normes du manuel ASHREA ou par des experts en énergie. Cependant, le deuxième cadre est développé après vérification du modèle de co-simulation pour effectuer une performance énergétique précise du bâtiment.

Divers chercheurs examinent qu'un écart énergétique dans les résultats de la simulation est dû à la prise en compte de l'horaire par défaut des occupants. Pour résoudre ce problème, des études ont été entreprises sur l'influence du comportement des occupants sur la performance énergétique des bâtiments afin de minimiser l'écart énergétique entre la simulation et la réalité. La réduction de l'écart énergétique suggère une augmentation de la précision de la simulation et les ingénieurs en énergie peuvent l'utiliser pour prendre des décisions, améliorer les codes de conception, sélectionner la conception de bâtiments à faible consommation d'énergie dans les bâtiments existants et utilisés comme normes pour les décideurs de la police.

La première contribution de cette recherche est le développement d'un cadre général de modèle de comportement des occupants et d'une plate-forme de co-simulation pour intégrer le modèle stochastique de conduite de données dans le modèle thermique du bâtiment.

xi La deuxième contribution consiste à trouver les lacunes de la recherche à partir de la revue de la littérature. Ces études montrent que la modélisation trop simplifiée du comportement des occupants est la principale cause d'écarts énergétiques dans la simulation de la performance énergétique des bâtiments. La troisième contribution de ce travail est le prolongement de la première contribution. Développer une plate-forme de co-simulation et valider avec des données réelles collectées à partir d'une salle sélectionnée. Ce modèle est envisagé pour les bâtiments multifonctionnels (bureau, salle de classe et salle de réunion) qui n'ont pas été suffisamment étudiés.

Les grandes lignes de ce travail de recherche sont représentées par les chapitres suivants : Chapitre 1. [Introduction] : présente le contexte de la recherche, le but et les objectifs, la méthode de recherche et la contribution Chapitre 2 [Revue de la littérature] : présente une revue de la littérature à travers deux sections (i) la consommation d'énergie et son écart énergétique (ii) comment le comportement des occupants est modélisé dans la simulation multi-agents : méthodes et motivation. En outre, une lacune dans la recherche est identifiée à partir de la revue de la littérature et l'orientation et la portée de la recherche sont expliquées. Chapitre 3 [méthodologie] : rappel des différentes méthodes utilisées pour étudier l'influence du comportement des occupants sur la performance énergétique des bâtiments. Discuté du cadre développé en réponse aux besoins tirés de la littérature et couplé à la simulation énergétique du bâtiment, suivi d'un test à l'aide d'une étude de cas. Description des techniques de collecte de données utilisées.

Chapitre 4 [modélisation du comportement des occupants] : ce chapitre comprend la première étude de cas visant à modéliser le comportement stochastique des occupants dans SimOcc à l'aide d'un modèle de simulation multi-agents Belief-Desired-Intention pour le comportement des occupants. : comprend une brève description de l'environnement SimOcc vérifie la mise en oeuvre du modèle de comportement et discuter d'une approche à co-simuler et mis en oeuvre. L'objectif de ce chapitre est de déterminer l'influence du comportement des occupants sur la performance énergétique du bâtiment. En outre, il a discuté du type d'outil utilisé dans la co-simulation et du mode d'intégration.

Chapitre 7 [discussion, conclusion et travaux futurs] : ce chapitre comprend une discussion plus approfondie, la validation, l'identification des principales contributions et la description des orientations futures.
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Chapter 1 Introduction

Background and motivation

One of the critical challenges of current society is facing the global climate problem and its consequence on the user's economy, health and productivity caused by population and economic growth and imbalance between the demand and supply. According to EIA 2016, the total global energy consumption increased by 49% over the last two decades due to the rapid economic growth in the developing countries and urbanization and is expected to increase by 48% by 2040 (Tyagi et al., 2021). To overcome this, the world has to look to energy sustainability and manage energy demand and supply. Thus, the two main challenges facing the world are energy crises and climate change, which have been identified as the greatest environmental threat of modern times. As large quantities of energy are consumed, the energy crisis becomes more acute. Therefore, the reduction of energy consumption is a crucial solution that requires the cooperation of the whole world. For example, the French national emission reduction target for 2030 is to reduce emissions by 40% compared to 1999 (Maros and Juniar, 2016).

As illustrated in Figure 1.1, Industry, transportation and buildings account for close to 100% of energy demand. However, a significant amount of this energy is wasted unnecessarily. For example, about 30 percent of commercial energy is wasted because of inefficient and unnecessary use of construction facilities (Energy Star 2015). This indicates that there are great opportunities within the construction sector to take measures that help minimize energy loss. In addition to emphasizing the reduction of energy loss in buildings, securing occupant comfort is also one of the main objectives of this research. Therefore, providing a comfortable and sustainable living environment with the acquisition of an energy-efficient building becomes an expectation of research. The built environment makes an important contribution to energy efficiency improvements, as buildings have a huge and growing impact on the environment. In fact, their performance is below the current efficiency and potential, so buildings offer great potential for energy-saving opportunities.

Buildings and energy systems used to sustain the indoor environment consume approximately 36 percent of the world's energy (heating and cooling consumed 2/3 rd of it) and are responsible for 39% of carbon dioxide (CO 2 ) emissions (IEA, 2019). In France, building construction consumes approximately 35% of total energy and accounts for nearly 28% of total carbon dioxide emissions. If action is not taken to reduce the energy consumption of buildings, greenhouse gas (GHG) emissions will double by 2030. Therefore, implementing energy management in the building process is a promising way to reduce energy consumption. It is commonly estimated that people spend 90 percent of their life in a building, which suggests that much of the energy consumption of the building depends on occupant behavior.

As the quality of the indoor environment changes, occupants will always want to make their surroundings more comfortable by consuming less energy, this reduces the energy demand and its impact on the environmental emission. In order to improve the quality of the occupants' environment, the occupant interacts with the building systems, which considerably increases the building's energy consumption. Therefore, to reduce energy consumption and greenhouse gas emissions, energy should be used effectively. How can we significantly reduce the energy consumption of the building without affecting the quality of the internal environment?

According to the European EU's Energy Performance of Buildings Directive, all new buildings constructed in Europe must be nearly zero-energy buildings by 2050. Optimizing the building design process on time is very important to meet future regulatory expectations and significantly reduce the energy use of the building stock (K. E. [START_REF] Thomsen | Implementing the cost-optimal methodology in eu countries eceee -The European Council for an Energy Efficient Economy EuroACE -The European Alliance of Companies for Energy Efficiency in Buildings[END_REF].

For example, France aims to reduce energy consumption in the building sector by 28% by 2030 and to achieve net zero greenhouse gas emissions by 2050. A mandatory building code is in effect. However, according to the American Society of Heating Refrigeration and Air Conditioning (ASHRAE), 70 to 80 percent of today's buildings will exist over the next 10 to 15 years. As such, the greatest opportunity to reduce the energy consumption of buildings is to increase the performance of existing construction services (Tyagi et al., 2021).

The reduction of energy consumption in existing buildings requires the use of various energy-efficient technologies, such as lighting, heating and cooling, intelligent control and the use of renewable energy. All this only depends on technology. However, technology alone will not achieve building energy conservation and climate emission goal. There has been no significant reduction in energy consumption in buildings with such energy-saving technologies, mainly through the adoption of new technologies and the restoration of energy efficiency technologies (Cowie et al., 2017).

A variety of energy saving measures can be taken to substantially increase energy savings in the design and operation of construction systems. However, a high-performance, multidisciplinary building is composed of many dynamic interaction components that are non-linear and complex processes. The complexity comes from the many interconnected parameters involved in performance-based design, such as the envelope, the quality of the indoor environment, building materials, maintenance, climate, and occupant behaviors (Chen, Liang and Hong, 2017).

It has been broadly acknowledged that occupant behavior plays a crucial role in building performance. However, it has been oversimplified or overlooked and a lack of understanding of how occupant interacts with building technology in predicting building energy performance predictions (Sun and Hong, 2017;Gilani et al., 2018;Carlucci et al., 2020;Salimi and Hammad, 2020;Jami et al., 2021).

Such significant influence of occupant behavior has been gradually recognized and measured by recent studies, yet lacking systematic evaluation and examination, especially on such an effect on energy contract design and optimization. Therefore, the dissertation concentrates mainly on the understanding of the influence of the behavior of the occupants on the performance of the building (thermal comfort, energy consumption and quality of the indoor environment . Occupants' behaviors can optimi e the energy consumption of the building without compromising comfort or can needlessly waste energy.

Occupant Behavior Modeling Challenges and Limitations

Simulation tools are the most powerful techniques used to determine or analyze building energy consumption and its effect on human comfort. In particular, dynamic building performance simulation (BPS) is defined as representing designed or actual building physical features and their systems with their controlling strategies using computer or mathematical models. BPS has played a good role in the development of policies, codes and rules that govern the achievement of design and operation of low energy consumption or near-zero energy building, high building performance and lowering greenhouse gas emission.

Building performance simulations not only enable to meet the need of occupants, but also allow designers to try to improve building performance at the design/retrofit stage. Most of the work in this area is concentrated on modeling and simulation of residential home buildings using occupants as a single and static profile. This does not reflect the actual situation of the occupant; the real occupant's behavior is more complex and depends on multidisciplinary.

Traditional building simulation considers the occupants as passive reflectance to building energy and the building appliance. Although building energy simulation, is a powerful and effective design decision supporting tools, can be subject to limitations.

Current methods for simulating building energy consumption are often inaccurate, with error ranging from 150% to 250% (De Wilde, 2014; Deng and Chen, 2019). Simulation used to estimate building energy can have 30 to 100% error with respect to actual conditions due to dynamic occupant behavior and stochastic instability (Lee, [START_REF] Tong | 2 1 'Occupant Behavior in Building Design and Operation[END_REF]. According to (Chapman et al. 2016) the energy performance of the building deviates from the actual or estimated energy of the conceptual building after construction.

The main reasons for this energy discrepancy are due to missing or doing errors on modeling of occupant behavior or considering occupant behavior as deterministic input. However, occupant interaction with building systems is dynamic. Therefore, under constant or deterministic timing, its impact will be overestimated. Researchers (Y Chen et al., 2017;Gunay et al., 2018;Paone and Bacher, 2018) on their study notice that the modeling error of an actual occupant behavior is the main cause of this discrepancy. Conventionally, building energy performance simulation tools uses oversimplified or assumed imprecisely, static or deterministic inputs to model occupancy in energy performance analysis (Y Chen et al., 2017). Hence, the coupling of the occupants' stochastic or realistic behavior in the building's leads to a more realistic simulation (Virote and Neves-Silva, 2012).

Objectives and Research Questions 1.2.1. Objectives

The thesis focused on simulating occupant interactions with building systems and their impact on building performance. The limitation is that the deterministic, scheduled or input profile that typically represents dynamic occupant behavior in most building energy simulations does not show the reality. There has been an attempt at addressing these gaps, but not in a generic way, or most of them are not validated using experimental ways.

The primary aim of this Ph.D. is to develop an occupant behavior modeling and co-simulation architecture framework that can analyze the effects of occupant behavior on the performance requirements in a building's life cycle. This approach integrates the stochastic modeling of the occupancy and energy-related behaviors into dynamic simulation tools. The developed models are further validated against real-life measurements (temperatures, relative humidity, carbon dioxide etc.). This co-simulation platform is used to couple the occupant behavior developed in a multi-agent-based simulation framework into a well-known building simulation tools. Agents in our simulation environment are objects which reflect their response based on their environmental perceptions.

Multi-agent-based modeling (MAB) has been successfully applied to model the interaction between the occupants and building components, but most models are built based on simulation without the actual data involvement (Jia et al., 2017). This architecture aims to incorporate the stochastic nature of the occupant behavior into the current simulation tool to minimize the energy performance gap between the predicted and actual measured results. Reaching this goal will help to understand the impact of occupant behavior on building performance and improve the accuracy of energy performance by reducing the energy performance gap.

Scope and Limitations

This study focuses on developing a co-simulation platform to understand the impact of occupants' behavior on energy performance in selected rooms. In addition to providing user comfort in a multipurpose building, this allows us to understand the impact of occupants' behavior on energy consumption and indoor air quality. On-site measurements to investigate energy consumption, indoor air quality and thermal comfort were conducted at the same time. The tests were performed as follows: Measurement of physical systems (opening or closing of windows, radiator setpoint, occupancy and door), meteorological information and used for platform validation.

Research Methodology

A multi-agent-based occupant behavior model framework has been developed, which is called SimOcc. The SimOcc multi-agent simulation framework is used to model occupant behavior and using Building Control Virtual Test Bed (BCVTB) environment coupled into the building simulation tool.

The research methodology for this thesis follows the steps and is presented in graphical form in the figure.

1. Literature review 2. Installation of sensors in selected rooms and collecting data In this PhD, in order to investigate the occupant behavior influence on building performance. The methodology for modeling the influence of occupant behavior on the performance of buildings follows two main approaches:

Case1. Thermal building modeling and simulation without consideration of the actual occupant behavior, consideration of the deterministic occupant schedule from the simulation tool, represents simulating of building performance at the design stage. The parameters considered for the simulations at the design stage are envelope and thermo-physical property, climate, occupancy and orientation. The simulation tool is used to investigate the energy performance to evaluate its accuracies and find why the energy discrepancy is too high at the design stage. The discrepancy that has been pointed out here will be discussed further.

Case2. The second case is mainly used to explain why there is a difference in energy in case 1 or the extended form of case 1, which considers the influence of the occupant behavior on the estimation of the building performance at the operational stage. In this estimation mode, there are two main groups such as simulation like case 1 but with complete information. The steps to follow here are information preparation, building geometry and simulation with the behavior of the default occupants found in the simulation tools. The two basic models in these steps are the stochastic data drive model and the thermal construction model. The foremost step we take to model the stochastic model is data collection and analysis or collecting logistic intercept and coefficient from related researches, multi-agent-based modeling of occupant behavior on beliefdesire-intent (BDI). The building modeling from TRNSYS 3D SketchUp plugin is coupled with the occupant behavior model of the co-simulation platform with an orchestrator of TRNSYS simulation studio to estimate the building performance. The assessment of the outcomes (the collected data and the simulation outputs) created the initial conceptual framework. The first result has been checked through different ASHREA handbook standards or energy experts. However, the second framework is developed after verifying of the co-simulation model to perform an accurate building energy performance.

Contribution

Various researchers review that an energy discrepancy in simulation outcome is due to the consideration of default occupant schedule. To solve this problem, studies have been undertaken on the influence of occupant behavior on the energy performance of buildings in order to minimize the energy gap between simulation and reality. The reduction in the energy gap suggests an increase in simulation accuracy and energy engineers can use to make decisions, improve design codes, select low energy building design in retorting and existing building and used as standards for police makers.

The first contribution of this research is the development of a general occupant behavior model framework and a co-simulation platform to integrate the data drive stochastic model into the thermal building model.

The second contribution is finding the research gaps from the literature review. These studies show that oversimplified occupant behavior modeling is the leading cause of energy discrepancies in building energy performance simulation. The third contribution of this work is the extension of the first contribution. Develop a co-simulation platform and validated with real data collected from a selected room. This model is considered for multi-functional buildings (office, classroom and meeting room) which have not been adequately studied.

Research outline

The research outlines are graphically represented in Error! Reference source not found.

Chapter Chapter 5 and 6 [co-simulation]: Includes a brief description of the SimOcc environment to test the implementation of the behavior model and discuss the simulation and implementation approach. The purpose of this chapter is to determine the influence of occupant behavior on building energy performance. Additionally, discussed the type of tool used in the co-simulation and the integration method.

Chapter 7 [discussion, conclusion and future works]: this chapter includes further discussion, validation, identifying the main contributions and description of future directions.

Figure 1.2 Research outline

Chapter 2 A literature reviews

Introduction

Over the past decade, there has been a significant increase in the need to ensure the sustainability of buildings. The construction sector has enormous potential to increase efficiency and reduce greenhouse gas (GHG) emissions in order to make a positive contribution to global climate change (Li, Z. (Jerry) Yu, et al., 2019). The impact of climate change on the environment and human resources is forcing governments to strengthen policies on carbon emissions. An example of carbon policies is the European Union's (EU) target to reduce carbon emissions by 30 percent by 2050 (Xiao, 2020a). Therefore, climate change is the greatest threat and the most significant environmental challenge of today and indeed of tomorrow.

There are initiatives to address the challenge of anthropogenic emissions contributing to climate change and achieving pressing global targets for reducing energy consumption (Nicol, Humphreys and Olesen, 2004a). For example, the Paris agreement and the Leadership in Energy and Environmental Design (LEED) in the United States agreed to consider the influence of the occupant behavior on minimizing the climate changes. Considering the behavior of the occupants at different stages of the life of the building has an important effect on increasing the energy efficiency of the building and reduces its environmental impact. Therefore, it is essential to estimate energy demand at different stages of the building, from conception to operation.

Several kinds of research show that the building sector is the key sector that displaces energy demand and environmental pollutants. The building sector consumes almost 30% of the total global energy, revealing the great energy saving potential and its energy cost covers nearly 50% of the entire operation (Yousefi, Gholipour and Yan, 2017a). Another study confirmed that in Iran, the construction industry consumes about 35 percent of the country's total energy. In the USA and Canada, 2018, [START_REF] Jerry | A methodology for identifying and improving occupant behavior in residential buildings[END_REF]Cai et al., 2016;Salimi and Hammad, 2020) the energy consumption of the building covers 43% and 11% of the total energy and 80% of the energy consumption occurs during the operating phase of the building. Likewise, in Japan, China, India and Thailand, building energy consumption accounts for 26%, 35%, 35% and 15.4% respectively (Klein, J. Kwak, et al., 2012). Finally, (Petri et al., 2017;Hashempour, Taherkhani and Mahdikhani, 2020a) In EU and UK, energy use for the building sector represents more than % and 39% of Europe's energy. As far as the International Energy Agency is concerned, the construction sector contributes significantly to global warming by releasing 40% of all greenhouse gases. In the recent years, this emission related to the building annually increases by 1% (Hashempour, Taherkhani and Mahdikhani, 2020b). Therefore, the building sector is one of the areas that generates an energy imbalance between demand and energy sources and generates an emission for the environment.

To address-the potential energy and GHG crises, in the Kyoto and Paris Agreement, there is an international imperative to reduce energy consumption and its associated anthropogenic emissions that contribute to global change and pollutions (Nicol, Humphreys and Olesen, 2004a). For instance, the European Commission has defined a clear 20-20-20 target to reduce by 20% energy consumption, 20% reduction in carbon dioxide emissions and increase by 20% the share of renewable energy (Petri et al., 2017) and to reduce GHG emission between 60-80% by 2050. Thus, increasing the performance or energy efficiency at the operating stage is a promising means of reducing energy consumption in buildings.

The targets set by the EU might be met by the year 20-20-20 by proposing methods for solving building energy efficiency issues as i) implementing an intelligent controlling strategy to building energyconsuming equipment ii) maintaining equipment to maximum efficiency iii) increasing the environmental awareness of the occupant. Occupant behavior is one of the main sources of uncertainty in building energy modeling due to considering standardized schedules or predefined inputs which are oversimplified descriptions of the complex reality [START_REF] Jerry | A methodology for identifying and improving occupant behavior in residential buildings[END_REF]Carlucci et al., 2020a). However, the dynamic behavior of occupants is difficult to analyze in numerical terms. Energy simulations are used to analyze complex and dynamic inputs.

The purpose of this chapter is to provide reader with the better understanding of the impact of occupant behavior on energy performance in buildings and on environmental emissions.

Methodology for the literature analysis of the behavior of buildings and their impact

This review chapter focuses on collecting relevant information on occupant behavior and integrating into the building performance simulation. The criteria used to select the research papers were based on the direct relevance of the subject, time and importance to the study subjects. As shown in Figure 2.1, the approach of this study is based on the strategic aspect of the research environment regarding issues related to occupant behavior modeling integrated with energy performance simulation.

Literature review research was conducted from different published scientific journals and peer-reviewed papers. The reason is that published and peer-reviewed papers are considered the most valuable source of information. This systematic review of the research was conducted using Science Direct, Scopus and Web of science as the search engine database. The "search" engine was used to identify the relevant documents and to group them based on pre-determined criteria like publication year, citations, relevance to form an inclusive set relating to the research area. The keywords used in the literature search were "occupant* OR User OR Human" and "behavior* OR behaviour and building* and Energy*", since the main aim of this chapter is to review studies related to implementation of the occupant behavior model in BPS. Searching for these keywords in different documents where it was found in an abstract, keyword or on the whole body returns many. To limit this broad scope and to emphasize the behavior of occupants related to the simulation of the energy performance of buildings.

The requirements to select publications are  Only "Review" and "Research papers"  These articles must be written in English.  These articles are available electronically.  Articles must be from 2010 to 2020 (rise of interest for occupant behavior)  Articles which are directly related to the objective of the review Systematic literature reviews are based on 4 steps: 1) documentation of review requirements, 2) the commissioning of a review, 3) the conduct of research and, 4) the analysis of the review.  Snowballing -Include additional documents based on checking references to previously selected documents. This process can be repeated many times as new documents are found: However, only the first repetition was applied in this work.

 By abstract selection -Using the criteria for adding and removing criteria for nominations to be designated for the next stage.

 Full-text selection -Full text of the candidates' papers from the previous stage, using the adding and removing criteria, for the final selection (Aguilar et al., 2021).

At the end of the search process, 1185 articles were selected based on the proposed research topic and keywords (Figure 2.2). Initially, a total of 1,450 papers were retrieved from science libraries. Refining was subsequently applied because not all documents were relevant to this review. Only documents published in the period "2010-2020" identified as "Review and Research Papers" were retained. The reason to choose these years is the recent rise in interest in occupant behavior. After the detailed selection, a total of 1185 articles were selected for further general analysis. According to the systematic reviewed papers, the most frequently used keywords by the researchers in this topic area are "occupant behavior", "Building efficiency", "Building performance", "Thermal Comfort", "Energy use/consumption", finally followed by "machine learning" and "Energy Management" as shown in Figure 2.4. Thus, this identifies the relevance of the behavior of the occupants associated with the energy saving of the building. The term with the highest number of links can be found for the occupant behavior. 

Co-occurrence of Key words

By browsing through the keywords of the literature articles and conducting a comprehensive review, VOSviewer tools can be used to identify sensitive topics using clustering techniques. In this paper, a minimum of five ( 5) co-occurrences was used as a threshold to map the keywords (figure 5). Circles are here representing the number of keywords co-occurrences, while lines connecting them are representing those that could be retrieved in a same paper. Therefore, the bigger a circle is, the more a keyword is present in the literature review and the bigger a line is, the more the connected keywords are related in literature. Finally, the generated color code is determining the clusters grouping the keywords by topic. As show in the Figure 2.5, the research area is divided into four main sections, some of which are related to building applications (office, residential, social and commercials), building occupant behavior (window and adaptive actions), building energy performance (energy management, energy use and thermal comfort) and building HVAC systems (Heat pump). Most researchers have looked at certain behaviors of occupants, such as opening windows and occupation. Therefore, much work is needed to do with the other types of behavior change that impact the building's energy efficiency (thermostat, doors and a combination of all). In addition, it shows, building energy simulation was done for residential and office buildings, there is no work for the multipurpose building, and this indicates, further investigation is required for these. Finally, the color code indicates the average publication years of keywords. This makes it possible to estimate the tendency of a subject. For instance, the key words in the upper left corner of the Figure 2.6 are like machine learning, Heat pump, building energy simulation and big data is in yellow, meaning that the subject is trending, while "data mining" and "office building", in purple, are the subject of older interest. 

Overview of Occupant behavior and brief review of modeling approaches

Energy-related occupant behavior in buildings can be defined as occupants' behavioral responses to discomfort, presence and movement and interactions with building systems that have an impact on the performance (energy, thermal, visual, acoustical and IAQ) of buildings (Deme Bélafi and Reith, 2018). However, due to physical, physiological and psychological differences between occupants, and other external factors such as economic, users do not "receive, recogni e and act" in the same way (Bluyssen, 2020). They may adapt buildings to their own thermal comfort by improving indoor air quality (bringing fresh air and eliminating air pollution and odor), acoustical (avoiding unwanted noise and vibrations), visual (by controlling lighting (luminance ratios), reflections and glare) and thermal (controlling indoor air temperature) conditions (Figure 2.7).

Figure 2.7 Occupant's types of activities affecting building energy consumption

Thermal comfort is defined as "the conditions of mind that express satisfaction with the environment" (Turner et al., 2011). A comfortable environment is a subjective state where the individual is neither too hot nor too cold. It occurs when the temperature and humidity of the air immediately adjacent to the body lie in between narrow ranges, where the air movement is "pleasant" and the air quality provides a sensation of freshness (Jukes, Jenkins and Laws, 1981). An adequate comfort zone, with temperatures and humidity where 80% of the occupants do not feel dissatisfied, with summer and winter clothing, when the metabolic rate is between 1 to 1.3 met, i.e., during sedentary activity such as sitting in a lecture room or office and the average airspeed is below 0.2 m/s is shown in Figure 2.8 (Ledo, 2015a). (Fanger, 1972), are used for its measurement: predicted mean vote (PMV) and predicted percentage dissatisfied PPD . Fanger's thermal comfort experiments did not enable individuals to interact with the environment, thus building occupants were considered as passive receivers of the thermal environment controlled by HVAC systems (Van Hoof, 2008). However, occupants are active agents, rather than passive ones. They find a way to restore their comfort conditions if they do not feel comfortable in their environments (De Dear and Brager, 2002;Al et al., 2016). Occupancy and occupant interaction in building simulation have been represented in terms of deterministic and stochastic ways.

Deterministic occupant modeling and limitation

How occupant behaviour models and input data are commonly applied in building performance simulation?

Traditionally, most building energy simulation tools assume that occupants are deterministic occupant schedules or used as direct inputs. In BPS, occupant and occupant interaction with building systems reflect the environmental change to secure their comfort considers as deterministic input and this provides a simple representation of occupant behavior over the entire building life cycle (Lee and Malkawi, 2014a). For example, in building simulation tools, the occupant behavior data are derived from the American Society of Heating, Refrigeration and Air Conditioning Engineers manuals. However, these manuals imply consistent schedules for different buildings, which can be used to design the interaction between the building and the user when occupancy and operating schedules are not defined. These schedules represent the occupancy or occupant behavior in the form of a daily profile, and this is applied differently on weekdays and weekends. A deterministic way of representing occupancy or building energy use is easy to use and interpretations. However, the main limitations of this way of approach are steady-state and weak capturing of the stochastic behavior of the occupant (Hong et al., 2017).

Despite the simulation assumptions, there is no certainty that occupants will be present in the space at fixed intervals or execute a certain style when the same environmental factors trigger it. This type of assumption leads to an estimate of the difference between the simulated energy consumption and the real energy consumption of the building. (Carolina et al., 2012;[START_REF] Ledo | Energy efficiency and thermal comfort upgrades for higher education buildings[END_REF] found in his subject that estimating energy performance at the design stage at which not to have complete information on the occupation and behavior of occupants in schools, offices and universities; the differences ranged from 60% to 70% for schools and offices, while universities recorded a difference of 85% between actual and expected energy consumption. According, (D Yan et al., 2015;[START_REF] Yan | Occupant behavior modeling for building performance simulation : Current state and future challenges[END_REF] indicates that the difference in energy performance of the building due to an occupant behavior effect can sometimes be as much as 300%. Additionally, R.C. Sonderegger, ( 2009) suggests that up to 70% of the variation in energy demand in buildings occurs due to the over-simplification of occupant behavior.

Similarly (Gilani and Brien, 2019) indicated that the measured electrical power consumption in a case study was 30% different from what was simulated. (Clevenger and Haymaker, 2006) modeling uncertainty in the study of occupant behavior and integrating it with building energy models, considering different occupancy schedules and environmental preferences, found that energy consumption can vary by 150% or more if occupant-related input information is increased or decreased.

According to (Galasiu and Veitch, 2006) an individual's preferred wor plane illuminance ranged from 230 to 1000 lux. Simulation results may indicate that maximizing the window area will maximize the use of daylight. However, increasing the building window area leads will cause the window shade to close to protect the glare and this significantly increases the use of electric light energy [START_REF] Yan | Occupant behavior modeling for building performance simulation : Current state and future challenges[END_REF]. These results indicate the misunderstanding of occupant behavior or as fixed input or deterministic to estimate energy performance does not reflect reality in any BPS.

Stochastic occupant behavior modeling

We can consider the occupant behavior to be stochastic since behavior varies between occupants and may evolve over time and is the result of complex relationships between contextual factors, adaptive triggers and non-adaptive triggers [START_REF] Ansanay-Alex | Statistical and Stochastic Modelling of French Households and Their Energy Consuming Activities To cite this version : HA Id : hal-13 929[END_REF]Carlucci et al., 2020b).

Stochastic behavior models can interpret the state of a building element as a behavioral proxy or, more precisely, state transitions of a building element or indoor environment changing at discrete time steps (e.g., every 15 minutes) or discrete events (Correia da Silva, Leal and Andersen, 2015).

As noted above, the attempt to reduce the performance discrepancy by accounting for inconsistency between occupants has led to the development of models addressing the stochastic nature of occupants' behaviors. Related research in integrating stochastic occupant behaviors is like, (Zhou et al., 2012;Page et al., 2008) developed a light switch-2002 stochastic occupancy model, to predict office lighting profiles. According to (Reinhart and K Voss, 2003) monitoring lighting control in ten offices, (Taylor et al., 2008) observed a relationship between closing shades and the magnitude of vertical irradiance but opening shades did not reveal a clear relationship to the amount of incident solar radiation. (Zhang and Barrett, 2012) studied the factors influencing blind operation in a naturally ventilated building (Da Yan, Brien, [START_REF] Yan | Occupant behavior modeling for building performance simulation : Current state and future challenges[END_REF]. Finally, (VORGER, 2015) prepares the probability distributions of French survey data to predict long-term absences due to holidays and illness.

Others used a complex approach, for instance, Feng et al developed a software module to simulate the occupancy based on the Markov chain concept. Similarly, (Virote and Neves-silva, 2018) improved the occupant behavioral model based on hidden Markov Models to predict building energy consumption using actual measured data with stochastic knowledge. They reported that occupant behavior continues to play an important role in overall energy consumption, although the technologies used in buildings are not already effective. The models they developed showed that different living styles produce different energy consumption patterns and provided useful information to simulate the impact of the occupants on the building in terms of energy consumption. Also, [START_REF] Dong | Sensor-based occupancy behavioral pattern recognition for energy and comfort management in intelligent buildings[END_REF]develop based on semi-Markov models to optimize occupancy schedules for lighting and HVAC control related to occupant presence and behavior pattern recognition. Similarly, Erickson et al. ( 2011) on (Jia and Ravi S Srinivasan, 2016a) contributed to the temporal dynamics of occupancy by developing two advanced Markov chain models from ground truth data collected from a sensor network. Their study showed good accuracy in occupancy estimation and 42% annual energy savings could be achieved by implementing real-time occupancy data into HVAC work schedules. The most recent agent-based modeling has been used even for the consideration of individual interest. (Jia and Ravi S Srinivasan, 2016b) delivered a stochastic model capable of seizing randomness in building operations. The model also used an agent -based modeling with respect to time-related factors. Duration is based on assumptions in the research. The stochastic occupant behavior modeling method falls to consider reflection of individual with building system and with each other. The stochastic occupant behavior modeling method does not consider the reflection of individuals with construction systems and with each other.

Multi-agent-based modeling

A multi-agent-simulation (MAS) consists of several agents interacting with their environment, capable of flexible, autonomous action and interconnected to function in a way exceeding the capacity of any single agent. Agents have three main characteristics; reactivity, pro-activeness and social ability (Leon, Atanasiu and Asachi, 2008;Pan, Han and Law, 2007;Building and Street, 2010;Drogoul et al., 2014;Langevin et al., 2014;Schaumann et al., 2017). Reactivity is the ability of agents to respond to changes within their environment. Proactivity refers to one's goal-oriented behavior, while social capacity refers to the ability of agents to interact with other agents in order to achieve their goals as depicted in the Figure 2.9. The environment that the agent can perceive affects the agent's perception, including the quality of the indoor environment, thus enabling the agent's behavioral options to adapt to the environment. Another is the agent's decision as to which behavior the agent will take at a given time step (Bandini and Manzoni, 2009;Building and Street, 2010;Tijani et al., 2014;Reynaud et al., 2021).

Figure 2.9 MAS occupant system interactions MAS systems could be used to better simulate and understand how occupants' behavior and activities impact energy consumption in buildings. MAS follows a bottom-up approach which addresses the behavior and interactions of agents at a micro level and their influence on the macro level (energy consumption within the building). This can be achieved through an unobtrusive wireless sensor network from which information on individual occupants going about their normal daily activities, reacting to their environment-adjusting shading devices, opening windows or turning on the air conditioning. (Davidsson and Boman, 2005) introduced a MAS framework using personal comfort agents, room agents and environmental measurement agents for energy savings and occupant comfort in office buildings. More than the system developed by Haberman, the increase in individual satisfaction was achieved by adjusting the light and temperature according to individual preferences. Building on the previous work involving MAS systems, (Klein, J. Y. Kwak, et al., 2012a) developed a multi-agent comfort and energy system to simulate alternative management and control of building systems and occupants.

Agent cognition is often based on the belief-desire-intention (BDI) model formulated by (Nave, 1983).

The BDI approach has been the most prominent and sustaining. Beliefs are the set of information that an agent has at a certain time about the environment in which it resides. They are the knowledge set that an agent holds about its environment. Desires are long-term goals that the agent tries to achieve. These desires may change over time. Intentions are the agent's short-term goals or the goals that an agent is currently trying to achieve. In this system an agent has beliefs about the current state of the environment and related desires about what it wants to achieve, they commit to an intent which is the desire they want to achieve. A plan made up of a set of actions, preferably to achieve their intent, where agents can obtain a belief about the state of the current environment from a building performance simulation. For instance, (Kashif et al., 2013) developed a similar approach to predict the use of fridgefreezers, where an occupant would first perceive their hunger, second conceives a desire based on social norms, household rules and culture. They then finally perform an action, remove food from the freezer, increase the electrical load on the fridge and then cook. These approaches attempt to summarize the human decision-making processes involved in each activity. But they can lead to very complex and unpredictable models with weak empirical bases. Paradoxically, this is their strength, as relatively little data can be used to simulate reasonably reliable generalizations.

With their ability interact with building systems to respond to change through adaptation and learning (Soo and Malkawi, 2013;Putra et al., 2014). The MAS provides an opportunity to further understand the impact of occupant behavior on energy consumption. While significant advances have been made in research on multi-agent modeling of occupant behavior, most traditional simulations have not incorporated these models. Most of the studies on the impact of occupant behavior have not considered the implementation of simulation tools developed in a dynamic real-time and independent platform. Therefore, the above underlines the importance, advantages and limitations of integrating the stochastic occupant behavior model into simulation tools.

These models cover a complete range of energy-related behaviors, but some parameters have not yet been covered.

Parameters influencing energy-related occupant behavior

The energy consumption of the building is influenced by the physical and thermal characteristics of the building and the behavior of its occupants. In this study, occupant behavior mainly refers to the occupancy and the interaction with the physical systems of the building in response to the external and internal environment, which can vary according to the individual (psychological, physiological) and social parameters. Therefore, energy-related occupant behavior impact building energy consumption and indoor environmental quality (comfort and indoor air quality). Thermal comfort varies from person to person due to psychological, biological, physical, and social (occupant-occupant interaction, cultural norm and economics). These directly affect building energy performances (Delzendeh et al., 2017).

According to (Fabi, et al., 2012) driving forces refer to parameters that influence the passenger's interaction with building systems and equipment. Those are categorized into the physical environment, contextual, psychological, physiological and social. IEA EBC Annex 66 specified as, occupant behavior is influenced by external factors such as culture, economy and climate, as well as internal factors like comfort, psychology and physiology (Figure 2.10).

Figure 2.10 Relationship between occupants and buildings (IEA EBC ANNEX 66)

Similarly, (Polinder et al., 2013) elaborated on internal factors like biological, psychological, and social factors and external factors such as building and building equipment properties, physical environment, and time (Table 2-1). 

Previous related review on the impact of occupant behavior on building energy performance

The featured studies are classified according to the methodology used, building type, the occupants' interaction with the building systems and the effects of occupant behavior on energy simulation and energy discrepancy as depicted in the Table 23. 2 above, we can conclude that the main source of inaccuracy in energy simulation is due to a simplistic or misinterpretation of occupant behavior. Conversely, considering the behavior of the occupants on estimating the performance of the building significantly decreases the energy gap or significantly increases the quality of the simulation. For instance, (Yu, Du and Pan, 2019) showed from his research that improving energy consumption prediction accuracy by 14% of the total building floor area and 16% of the total living area. Similarly, (Klein, J. Y. Kwak, et al., 2012b) found a 12% reduction in energy consumption and a 5% improvement in occupant comfort are realized as compared to the baseline control.
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Statistics show that in this study, residential and office buildings respectively cover 40 and 33 percent of the literature review. Similarly, commercial and educational environments, which cover 6 percent of the same review, are not adequately covered. Therefore, further research is needed to determine the impact of this behavior on these building types.

Figure 2.12 Building types used in the literature review

Most of the research on this subject focuses on the influences of the behavior of the occupants in the energy performance of the building which focuses on a particular behavior. As shown in Figure 2.13, among all building system interactions windows, lighting and occupancy cover 20, 18 and 32% respectively. These are the fields which attracted more than 60% of the previous researchers in this field, even if the others have an impact on the energy performance of the building. Although domestic hot water (2%) and building heating systems (radiator 2% and floor heating, 2%) are limited in the previous subject area, these parameters have started to appear in the current journals.

Figure 2.13 Different occupant and building system interactions

Building performance simulation and limitations

Energy performance simulation (BPS) is the most important approach for analyzing the design of a building. It depends intrinsically on the design parameters of the quality of the indoor environment (Xiao, 2020b). The BPS helps to speed up building design, increase the efficiency of a building and also possible to use for deciding on a wide range of design and used to select the optimum (Gulben Calis, Aitor Corchero Rodriguez, Türkan Göksal-Özbalta, Regina Enrich Sard and Ignacio Lazaro, 2016). Therefore, the BPS has become an important evaluation method during the design process and renovation of existing buildings to predict energy performance based on the building's physical characteristics and usage patterns. The importance of energy simulation is increasing with the tendency of more complex building designs and higher performance requirements on sustainability. The first simulation tool developed in the 1980s was used to calculate the energy consumption of buildings from deterministic inputs using a simple mathematical formula. The simulation results include area, temperature, energy consumption of HVAC equipment and indoor occupant comfort. Based on these outcomes, energy experts decided to select a better design for achieving energy efficiency goals and environmental impact (Turner et al., 2011).

Currently, simulation tools use dynamic inputs to estimate different complex outcomes. To use a simulation, the first and most important requirement is identifying the key parameter that can be incorporated into the simulation for estimating building energy.

Energy consumption of buildings is related to various factors including the thermo-physical properties of the building elements, its construction technical details (energy-efficient building elements may not perform efficiently if poorly constructed), climatic location characteristics, the quality and maintenance of the installed HVAC system, and occupants' behavior and activities towards energy utili ation (Buso et al., 2015;Delzendeh et al., 2017) (Figure 2.14).

Figure 2.14 Factors influencing building energy consumption [START_REF] Hong | Building Performance Simulation[END_REF] The occupant behaviors have a significant impact on energy performance. However, it is not yet accurately represented in the simulation. Occupant behavior impact on building energy performance has much larger than the thermal properties and processes. For example, (Bordass et al., 2001) stated that the actual energy consumption in Probe's air-conditioned offices was twice as high as predicted. A study of 15 schools in the UK showed that actual electricity consumption was around 60 to 70 percent higher than expected (Demanuele, Tweddell and Davies, 2010).

Building energy simulation failing to predict these transition parameters leads to prediction errors in energy demand models, resulting in a discrepancy between the actual and simulated indoor environmental conditions and energy consumption (Li, Z. J. Yu, et al., 2019).

A simulation tool is used to estimate building performance in the design, construction, operation and maintenance phases. The input information required to estimate the building energy at the different stages is different. It is difficult to get all the required information used to input the model and simulate the building performance. The lack of detailed input data into the modeling can lead to inaccurate energy simulation. For example, lack of detailed thermo-physical properties, work schedule, occupancy, HVAC equipment, building function and occupant behavior may result in simulation inaccuracy.

Energy consumption at the operational building stage evaluation has been analyzed in numerous research works. For example, (Reviewed, Berkeley and Cancer, 2010) found according to his experiment on 248 different apartments, that energy demand varies with at least 71% due to occupants' behavior and individual variation when reacting to react to the change of the environmental conditions (Bonte, Thellier and Lartigue, 2014). In a study of 28 identical houses for two years, Maier et al found a discrepancy of two in heating energy. Since the houses were identical, the primary reason for the energy gap is the difference between the occupants or generally due to the occupant behaviors. From (Yousefi et al., 2017b), the variation in the heating and cooling of a residential building due to the changing of window type is 20%. According to (Visser et al., 2016) studies indicate that the difference in energy efficiency between the actual energy consumption and the calculated energy consumption can reach 80% due to the occupant. They concluded that occupant behavior and preferences are significant factors in the gap between the anticipated and the actual energy performance of the building.

Efforts to reduce the performance gap by accounting for variability among occupants have led to the development of models to characterize occupant behavior and integrate it into building performance simulations. This starts from the coupling of occupancy and occupant interaction (Salimi and Hammad, 2020) window and occupant presence in Energy plus, integration occupancy and lighting in (Yun et al., 2012) the integration of occupancy, lighting and window shade (Gilani et al. , 2019).

Likewise, when comparing an ideal and worst-case occupant scenario to demonstrate the range of influence occupants have, (Gaetani et al., 2018;Muroni et al., 2019) found improvement of the total electricity consumption prediction from an initial 22.9% average deviation of measurements to 1.7%. (Klein and Kavulya, 2012) found that a 12% reduction in energy consumption and a 5% improvement in occupant comfort are realized as compared to the baseline control from the coupling of occupant behavior models of lights, windows, shades and temperature set points into a building simulation tool.

Although efforts combine the dynamic behavior of occupants to demonstrate the impact on building performance, the above integrate completely different simulation tools or focus on a single office building and lack generalization. This is partly addressed by [START_REF] Chapman | Multi-agent stochastic simulation of occupants for building simulation[END_REF], who develop a multiagent stochastic occupant behavior of occupancy, lighting, windows and shade to building simulation tools. But this approach is also software specific, doesn't support more complex features and yet has not been proven to be validated under the circumstances.

Occupant behavior modeling and building performance simulation: toward integrated approaches

The last few decades have observed a paradigm towards creating interoperable simulation frameworks that can analyze a complex system effectively when compared to independent and standalone simulation models (Page, 2007) (Simulation, 2007). A co-simulation refers to a framework in which at least two simulators are coupled to communicate and exchange information between them throughout its simulation time as shown in the Figure 2.15. The overall concept of co-simulations is to model and couple the dynamic energy-related behavioral impact on building energy performance. The energy related occupant behavior is grouped into occupancy (no. occupant, arrival, departure, movement) and occupant system interaction, such as interaction with window, thermostat set point, equipment, light and window shade (Mengda Jia et al., 2021). In building performance simulation, co-simulation is a growing need for performing the coupled simulation. Because traditional energy simulation tools assume deterministic to estimate the impact of occupancy and behavior on building energy consumption, which does not accurately consider the stochastic occupant behavior during operation phase of the building (Li et al., 2017, Thomas, Menassa and Kamat, 2017, Bourgeois et al., 2006).

For instance, (Stephane, Interface and Unit, 2014), (Nicolai and Paepcke, 2017a) developed agent-based modeling with an occupant behavior Functional Mock-up Unit that could simulate the presence, movement and interaction with building equipment of each occupant implementing Functional Mock-up Interface of Energy Plus for co-simulation purpose instead of using a separate tool. (Li et al., 2017b), (Li et al., 2017a), (Jia and Srinivasan, 2020) developed a new method to model occupant behavior for a single occupant office like control of lighting, plug load and thermostat using the energy plus that enables the co -simulation framework to couple energy plus with Java via functional Mock-up Interface to analysis the building energy performance. Agent-based simulation is used to model occupant's operations on window, door and blinds and used the Building Control Virtual Test Bed (BCVTB) to interface the influence of these occupant behaviors on building energy performance (Dols, Emmerich and Polidoro, 2016;Wetter and Berkeley, 2015).

(Langevin, Wen and Gurian, 2014b) used MAT AB to model occupant's window opening/closing behavior, use of heaters/fans and thermostat set point adjustments and use the BCVTB environment to represent the effects of these behavioral variation patterns in an energy simulation. Similarly, (Nouidui et al., 2013) used the FMU scheme to couple an HVAC (Heating Ventilation and Air Conditioning) module that simulated the variations in sensible and latent heat gain in a room with an energy simulation analysis to represent its energy effects.

(Chen et al., Chen et al., 2014) indicate that co-simulation allows a more realistic and robust representation of occupant behavior and that its aim is to couple two or more simulation tools, offering a data exchange environment between subsystems. Co-simulation provides a flexible solution that allows simultaneous consideration of network behavior and physical energy system conditions, as well as large system evaluation opportunities [START_REF] Raad | FMU software component orchestration strategies for co-simulation of building energy systems[END_REF]. Therefore, co-simulation takes the stochastic occupant behavior model into energy performance simulation and accurately predicts it to address its contribution to reducing the performance gap.

Discussion and research gaps

A summary of the key findings of the literature review suggests the following research gaps:

Limitation of generic and robust occupant behavior model

• Occupant behavior is difficult to model due to the stochastic nature and variability of the occupants, it is necessary to explore the generic pattern of their behaviors and integrate the information with the building energy model. In other words, the environmental conditions in which an occupant resides will cause adaptive behavior, while energy consumption may therefore be misused. Therefore, a valid occupant behavior model should be able to simulate the actual users' responses to the different environments.

Lack of actual data for the validation

• In recent years, many researchers in this field have focused primarily on the impact of occupant behavior in the energy optimization of buildings. The main drawback of modeling the occupant behavior is the difficulty to show the reality. The dynamics of the occupant not only interact with the building systems, but also individually reflect the change in their surroundings to maintain their comfort. Coupling the behavior of stochastic occupants in building simulation significantly reduces the uncertainties of the real world. This cannot be ignored because one of the main objectives of modeling occupant behavior is to reduce the gap between real and simulated energy consumption. However, almost all studies that applied the old model to simulate stochastic occupant behavior are not validated.

Lack of research on different types of buildings (institutions, university buildings)

• There is a relatively high level of research in the domestic sector. The review research, which studied the occupant behavior impact on building energy performance, has focused on residential and office building (40 and 33%, respectively) and very little research has been analyzed in commercial and educational (3 and 3% respectively) buildings. While the institutional and hospital building sectors (a total of around 3% of the review) are particularly neglected, due to their significant carbon emissions and require further research.

Limitation of considering all factors which influence occupant behavior

• The limitations of building dynamic simulations regarding occupant behaviors are well known and several studies aim to overcome such obstacles. Occupant behavior models have not yet been established and BPS tools do not enable the consideration of several fundamental variables which influence human behaviors, such as physiological, psychological and social factors (Polinder et al., 2013). Therefore, one of the main challenges nowadays is to be able to accurately simulate a building's energy performance with current tools and to predict which share of this consumption is due to occupants' behavior.

Considering the limited number of occupant behavior

• According to the literature reviewed, the different types of occupant interactions with building systems, such as lighting, thermostat setpoint, windows and shade, were investigated. However, some areas, such as the use of hot water radiators and domestic hot water (DHW) have a significant impact on energy consumption in an office building, have received slight attention. In addition, future investigations of the relationship between the different characteristics of the occupants are necessary, which will lead to more realistic estimates by simulating the energy of the building.

Limitation on coupling of occupant behavior into building energy simulation

• Many studies contain detailed methods, including case studies, experiments, field measurements, surveys and questionnaires, and simulations. The results clearly show a clear direction in understanding how occupant behavior affects the energy performance of buildings. However, the present results have significantly improved the estimation of the energy behavior of occupants in buildings. Combining the findings of these stochastic occupants with integrated energy performance simulations to reduce the energy gap between predicted and actual remains a major research challenge in this area (Sagerschnig et al., 2011;Alfakara and Corxford, 2017;Nicolai and Paepcke, 2017b).

Missing the detailed realistic situations of occupant behavior

• More recently, multi-agent simulations (MAS) have been used to optimize the energy of buildings. This environment simulation method provides a realistic method to model occupant behavior, which plays a major role in the building's energy performance. However, in the current multi-agent approach, agents are representing occupants properties, such as tracking a person's movement in a given location and counting occupants, the level of detail is negligible (Pan, Han and Law, 2007;Drogoul, Vanbergue and Meurisse, 2014;Ebuy et al., 2020;Reynaud et al., 2021). Consequently, the MAS modeling approach to modeling occupant behavior is not new, but the extent to which it covers complex occupant behavior modeling is limited (Cai et al., 2016;[START_REF] Chapman | Multi-agent stochastic simulation of occupants for building simulation[END_REF].

Integrating building information modeling (BIM) in building energy modeling

• The emerging of BIM provides an opportunity to the building engineers, architects and designers to give a solution for the building energy modeling limitations such as tedious model preparing, model inconsistency and cost implementations and promotes the modeling process into digital.

The energy consumption by the building is quite high, therefore, simulation tools have been used by the designer to construct an energy-efficient building and most of the analysis is conducted at the end of the construction drawing design stage, which means ones the stage of selecting appropriate material required for the building had been already selected. However, the estimation of building energy consumption at the first two stages of building design (preliminary and conceptual) and the occupant behavior impact in post-occupancy have a huge impact on the building energy consumption and helps the designer to give a decision related to selecting different suitable design models and understanding users that leads to an energyefficient building. BIM integrating occupant behavior into building simulation tools used for designers to improve overall energy performance and the automation capabilities. However, building energy performance research studies lack a digital BIM model coupled with simulation tools and this leads to a wrong decision and requires future research (Lu et al., 2017;Petri et al., 2017;Milyutina, 2018).

Conclusions

This chapter provides a comprehensive overview of future research needs related to occupant monitoring and modeling approaches, the implementation of models in simulation tools, and, and to the identification of research gaps. The behavior of the occupants is one of the main influential parameters in estimating the energy performance of buildings and causes uncertainties in the tools used to simulate the energy performance of buildings. The lack of understanding of the stochastic, diversity and interdisciplinary nature of occupant behavior causes a problem in energy policy, management, optimization, way of energy-saving approaches and giving decisions on the causes of energy losses. The occupant behavior from this review is grouped into occupancy and building systems interactions. To address the impact of occupant behavior on building energy performance, it is important to consider the actual data on the real building in the post-occupation stage and this can significantly increase the building performance. However, behavioral inputs and model validations need to be improved in the future.

Chapter 3 Proposed co-simulation framework: methodological approach

Background

The research objective of the thesis is split into two groups: one is to construct the multi-agent-based platform architecture for modeling the behavior of the occupants and the other one is to integrate the behavior of the occupants with the simulation engine of the building to estimate the building performance. Therefore, in this chapter, the proposed occupant behavior modeling methodologies, as well as its performance and integration approach with building energy simulation, are discussed. The multi-agent-based modeling is selected as an occupant behavior modeling approach due to its high potential to directly integrate with building performance simulation (Lee and Malkawi, 2014b; [START_REF] Jia | Occupant behavior modeling for smart buildings: A critical review of data acquisition technologies and modeling methodologies[END_REF].

The method used in this decision-making process depends on two approaches: multi-agent modeling and machine learning. The following sections provide a detailed description of the proposed workflow methodology.

MAS approaches are used to represent occupant movement and activities to assess the day-to-day performance of the selected office buildings owing to their high potential to integrate with the energy simulation program (Klein, J. Y. Kwak, et al., 2012c). The overall process in the diagram is analogous to the research objective of this dissertation: starting from analyzing the data collected from embedded sensors and weather stations, determining the occupancy numbers and schedules, developing a multiagent framework for predicting the occupant behavior action, the developed co-simulation platform is used to integrate the occupant behavior with the building model to simulating the occupant behavior impact on the building performance. The data collected from the physical platform environment, named "Synergy" (CRAN Laboratory testbed platform), is partly used for generating the stochastic/probability of occupants' interaction with building systems and for validating it by comparing the output with the actual data. These require extensive repeated experiments with different parameters and time consuming processes. Finally, the outputs from the multi-agent-based simulation are coupled with the building dynamic simulation tool, TRNSYS, to enhance the accuracy of the simulation functionality and minimize the energy gaps.

Specifically, the uniqueness of the entire modeling method that distinguishes this research from other studies is as follows:

1. The MAS framework developed, SimOcc, is used to model occupant behavior. The MAS considers three types of perceptions to model occupant behavior through considering occupancy belief, desire and intentions to provide a comprehensive view for OB modeling. Even though multi-agent modeling is used to model the occupancy interaction with the building system and within the agents, it is difficult to model the overall dynamic behavior. Assuming too many occupants in each space and using MAS increases the probability of realizing the dynamic behavior of the occupants. So, in this research, both methods are used for occupant behavior modeling. 2. The novelty of this research is the development of a MAS platform for modeling OB and a cosimulation architectural platform to integrate, using Building Virtual Control Testbed (BCVTB) environment, with a building simulation tool, TRNSYS/ Energy Plus, respectively, even though the coupling process has been used by other researchers, in this research, the occupant behavior reflects the actual situation of the occupancy agent model. However, other researchers consider insufficient input information that is not enough to model and takes an assumption of the missing value or consider the built-in model from the building simulation tools, which reflects the discrepancy of the building simulation engine. 3. The case study used for this research is based on the actual existing multi-functional building along with actual indoor and outdoor environmental data that support the validation of the cosimulation results.

The BDI concepts (Belief, Desire and Intention) are used to model decision-making process for the agent on the MAS.

The conceptual architectural elements of a BDI model can be defined as: -

 Beliefs represent the local information that the agent has about its environment. Examples are the climatic conditions.

 Desires represent the motivational state of the agent. They represent objectives or situations that the agent would like to accomplish or bring about. A desire is based on its level of comfort and an agent makes behavior decisions to address comfort dissatisfaction.

 Intentions represent the deliberative state of the agent -what the agent has chosen to do. Intentions are desired that the agent has, to a certain degree, committed. An agent communicates with an external platform to implement its intentions on the environment, which impacts on energy use and comfort level.

 Events are triggers for the reactive activity of the agent. An event may update beliefs, trigger desires or modify intentions. Events may be generated externally and received by sensors or integrated systems. Additionally, events may be generated internally to trigger decoupled updates or plans of action.

As outlined in the research platform flowchart, Figure 3.2, four main targets need to be achieved through several steps. The first objective involves the construction of a virtual occupant behavior model and the targeted occupants of the existing commercial building. To fulfill the goal, the identification of input and output parameters is carried out. The input parameters for occupant behaviors are derived from the surrounding environment and the output parameters are the situation of the occupants and interaction with building systems at the given time steps. Therefore, the occupant behavior is stochastically modeled by changing with the dynamic behavior of the environmental conditions, which can be used to modify the building performance at the end of each time step.

Agent based modeling flow The behaviors of the occupants are modeled using multi-agent simulation taking into consideration that the multi-agent-based modeling is a computational modeling approach most often used to study complex adaptive systems. This type of modeling represents individual agents and places them within a virtual platform environment and every agent participates in different behaviors encoded in a set of decision rules that derives different action in response to environmental or social changes.

The multi-agent-based modeling is best situated in the discipline of social science where an individual agent is considered a good representative of population outcomes. Modeling the response of the individual agents in the given population is not straightforward. A simple model of agents using multiagent-based modeling in each population may have several interacting processes affecting occupant behavior, due to those behaviors that depend on different non-linear parameters (even a change of a single parameter) can lead to an unexpectedly large effect on simulation outcomes. Models that use weather data are large and time-consuming to run simulations. Indeed, the simulation cost imposes constraints on the size of the test simulations. To extend the analysis without impairments, machine learning is a possible solution. It supports simplifying and saves time without compromising, maximizing results using the input and output of a model. The main aim of machine learning is to use the input from the multi-agent-based modeling in the form of the configuration parameters and results to train a set of machine learning algorithms having an optimum socio-economic output as a target. Machine learning has been used together with the multi-agent-based model to automatically calibrate the time-discrete behavior of agents (Furtado and Andreão, 2022).

In the second objective, a co-simulation architectural platform is developed, the orchestrator environment, used to integrate the SimOcc and TRNSYS/Energy Plus simulation tools to estimate the impact of the behavior of the occupants on the performance of the building. The transfer of the data from and to the OB and the building is managed by the orchestrator. The overall inputs and outputs from the occupant behavior model, building energy and indoor air quality analysis are depicted in table and more Figure 3.3 illustrates their networks. The simulation coupling can support, understanding how the behaviors of the agents greatly affect the overall performance of the building.

dissertation. The goal is to find a robust rationale for making behavioral predictions in buildings. Subchapter 3.3 deals with multi-agent-based modeling. Subchapter 3.4 deals with the coupling of multiagent-based with machine learning, which is a new approach in building simulation for modeling occupant behaviors. Finally, subchapter 3.5 presents a simulation coupling method that integrates all the components to increase building energy simulation accuracy.

Occupant Behavior modeling

According to the IEQ (Indoor Environmental Quality), the thermal comfort of space and the quality of indoor air are the two key performance indicators that determine the quality of life in a building for an occupant. In winter, most occupants in European countries feel "too cold" in their wor ing environments like office, which reflects the dissatisfaction of occupants according to the ASHRAE standard. Indeed, occupant adaptations are seen to contribute to both thermal comfort and energy performance outcomes. Behaviors occur when multiple stimuli trigger occupant interaction with one or more building systems or changing clothing or metabolic levels as shown in the Figure 3.4. Occupant behavior can be defined as "the occupancy of the users in the space and the actions and decisions ta en by occupants that influence the building performance".

The occupants are not only passive recipients of the indoor climates in the given environment. They undertake adaptive behaviors to restore their comfort when they feel uncomfortable. These actions often involve adjusting their indoor environment through interactions with blinds, lighting, windows, and thermostats, as well as actions taken on the occupants themselves like changing clothes or schedules and any other components. The way these behavioral building components are used shows the significant uncertainty in the building's energy use and occupants' comfort. Energy-related OB in buildings is one of the six influencing factors of a building performance, these include climate, building envelope, building equipment, operation and maintenance and indoor environmental conditions (Figure 3.5). Of which, the last three parameters are also controlled by the user during the operation phase of the building. Daily interactions between building systems and occupants are the direct drive for the building performance (Belafi, Hong and Reith, 2016).

Figure 3.5 Dynamic interactions of (continuously changing) sub-systems in buildings (Hensen and Lamberts, 2012) As the dynamic environmental conditions in the building space change, it eventually makes some change in the thermal environment, such as producing discomfort, the occupant interacts or adjusts the building systems to achieve comfort and indoor air quality.

Advances in BPS over the last few decades projected a switch from a deterministic to a stochastic approach in considering OB in buildings. Traditionally, OB is represented as oversimplified and predefined deterministic (static schedules or fixed settings) and rules which are input into BPS programs resulting in deterministic and homogeneous results-ignoring the stochastic nature, dynamics and diversity of OB. For instance, the occupant will lower the office shade if too much heat gain or glare causes thermal or visual discomfort respectively. Similarly, for windows, windows are opened if the indoor temperature is greater than the setpoint or greater than the outdoor temperature or if the space has pure indoor air quality. Additionally, the lighting switch is off if the indoor illuminance is greater than the threshold which means that the light inside the zone is enough to give visual comfort (Hong et al., 2018).

Expected occupancy patterns are by far the most widely used in the industry, although their use can result in errors as high as 600% (Haldi, 2010). This method is usually based on surveys and observational data, which take a lot of time to collect and may not accurately reflect the actual occupancy status. For instance, Hong et al simulate the impact of the OB on the energy consumption of identical commercial buildings leading to an energy gap of 50 to 90 percent. Similarly, (Bourgeois et al. 2006) have analyzed the lighting switching modes that the occupants adapt according to the outside and interior conditions. The simulation results show that occupants actively looking for daylight have reduced their energy consumption by more than 40% compared to occupants interacting with artificial lighting.

Eventually, the qualitative and quantitative, evidence of the impact of occupant behavior on building energy performance motivates many researchers to work on different energy-related behaviors like a window opening, shade, automatic lighting and adjustable thermostat. Webby et al. (2006) have investigated the use of office equipment in different commercial buildings and the results have shown that less than 50% of the occupant goes out during office hours. Sanchez et al., (2006) investigated the usage of the various commercial plug load equipment densities and the data collected from the sensors installed in the building showed that 45% for copiers and 59% of the computer during unoccupied hours. Davis and Nutter, (2010) simulate the building energy by considering occupant schedules for a university classroom building. Experimental results done by different researchers showed that awareness of energy information among building occupants can lead to a reduction in energy consumption (Akiya, Scott Bury and Wassick, 2011;Carrico and Riemer, 2011). This dissertation aims to contribute to the evolution of simulation behaviors through the increase of the capabilities to predict the actual behaviors of occupants in building performance.

The occupant behavior modeling mostly depends on the environmental condition and the behavior of the other agents. These can be manipulated by considering the relationship between the two parameters by constructing an experimental platform to collect data to find the relationship or by constructing a mathematical relationship for the prediction of the behavior. The following sections introduce the theoretical background and survey approaches to accomplish the prediction of the behavior, which will serve as the foundation for simulation studies throughout the dissertation. Therefore, the occupant behavior modeling approach, stochastic approach, mainly based on the Markov chain approach and multi-agent-based coupled with a machine learning modeling method used in this dissertation. The multi-agent-based modeling methods allow more complex reactive behaviors to be modeled altogether. However, more parameters must be customized.

Stochastic Occupancy Modeling

Stochastic or probabilistic modeling is a statistical description of the state probabilities or transition probabilities derived from the measured data. There are usually three types of probabilistic or stochastic occupant behavior models: The Bernoulli process, Markov chain, and survival analysis. All three models have been used to address both occupant movement and action to control their building interior condition. Survival analysis (SA) is commonly used to evaluate the time-period of a state or events before a change, and it can be utilized to assess to what extent a building is probably going to be unaffected by building inhabitants or occupants. Bernoulli models predict the state of a building system or component. [START_REF] Haldi | 2 9 'A comprehensive stochastic model of blind usage: Theory and validation[END_REF] developed window opening models using the Bernoulli model form to predict whether a window is open, rather than if an occupant opens or closes the window that is designed by a Markov process. The common statistical model form which is used for Markov chain and Bernoulli models are logistic regression models, as the dependent variable is just two categories: whether an action happens or not. Survival models can be controlled by exponential or Weibull distribution functions. Therefore, in this dissertation, the Markov chain and Weibull distribution are used. The limitation in stochastic modeling is that a collective prediction is not always reliable and that an individual occupant must be modeled for better prediction.

Multi-Agent-Based Modeling

The MAS platform is typically characterized by several elements as shown in Figure 3.6: the two main components are the agent and environment. The agents are the occupants of the building. The model used in the present research considers the physical perceptions and mental cognition of individuals as the principal characteristics of agents. Agents could only make behavioral decisions based on their comfort level and the preference of other agents for making a better decision. The environments are the space within which agents interact with building systems. The agent is specified by the geographic locations within the thermal zone at the given time step. External and internal environmental conditions are the direct trigger that influences the agent's behavior decisions (Jia and Srinivasan, 2020). Currently, one of the most common ways to account for occupant behavior is through the occupancy and operation schedules. In the existing simulation tools, the internal gains and other occupant behaviors are mostly represented in the form of schedules. From research, their schedules are mainly derived from real data collected from sensors or an ASHRAE standard that are consistent throughout the simulation process (Figure 3.7). For example, temperature data acts as the average air temperature of the area. However, taking this type of data into account is one of the limits to the inaccuracy of the building simulation due to the lack of considering the dynamic behavior of the occupants (Jia and Ravi S.

Srinivasan, 2016). Therefore, integrating real data-based occupant behavior is expected to enhance the accuracy or robustness of building energy simulation tools. The use of the deterministic schedules is one of the major limitations of the existing simulation process as it lacks considering the stochastic or dynamic behavior of the real building occupants and produces a lack of accuracy. Hence, the coupling of the dynamic or stochastic behavior of the occupying enhances the robustness of the simulation process. The right side of Figure 3.7 represents the new multi-agent simulation approach that considers the observation of individual behavior in the study of population behavior, and it is adopted in this dissertation for modeling occupant behavior. MAS approach collects the change in thermal comfort due to the behavior decision of the individual occupant and considers for the next stage of simulation time that have an impact on the performance of the building and neighboring agents. In MAS, agents are independent in that they have independent access to the environment. They need to adapt to new circumstances and to detect and extrapolate patterns (Figure 3.8). Therefore, each agent should incorporate a learning algorithm to learn and explore the environment. At each time step, the agent perceives the state of the environment and takes an action, which causes the environment to transit into a new state. The difference between the two ways of modeling is that MAS considers the change in input stochastic behavior due to the dynamic nature of outdoor and indoor conditions such as temperature, relative humidity, and solar radiation snie y s i, 2 1 halil et al., 2015b). Multi-agent learning is not a matter of straight learning, but it is involving complex patterns of social interactions. This leads to complex collective functions. For example, the rules governing MAS may be difficult to formulate from experimental data only, at least with minimum bias. Moreover, the performance of MAS can be computationally costly, and it is difficult to choose statistical measures that accurately and meaningfully summarize stochastic effects. This dissertation uses the machine learning method in combination with MAS to alleviate the limitations (Khalil et al., 2015a).

Machine learning coupled to MAS

Machine learning refers to the process of extracting information and knowledge from raw data whereby algorithms use statistical methods to 'learn' from data on their own. Most real-life systems involve a wide variety of spatial or temporal scales, as well as interactions between the built environment and the natural system, which can be very complex in applications (Yong and Brintrup, 2020).

Machine-learning (ML) based inference models can improve sequential decision-making through behavioral models of learning agents at a lower computational expense. In addition, machine learning is a broad set of approaches in which algorithms use statistical methods to "learn" data on their own to build accurate and robust models.

ML techniques can be applied in three different stages in the modeling process: pre-processing, agent behavior and decision making, and post-processing of simulation output [START_REF] Augustijn | Teaching Agent-Based Modelling and Machine Learning in an integrated way[END_REF].

Pre-processing: based on human behavioral datasets, a ML algorithm is trained to model which behavior agents should display under a range of circumstances. The trained model is used as input to the ABM to replace rule-based modeling.

Agent behavior: Every time an agent must decide, the ML algorithm is consulted to predict the agent's behavior. This can be done using a pre-trained ML algorithm or include training. Agents can learn from their own experiences or the experience of others.

Post-processing: After running the MAS, the data can be mapped back to a trained ML algorithm to calibrate or validate the model.

However, an ML requires a large amount of experimental or simulation output data such as occupancy, occupant interaction, indoor temperature, outdoor temperature and solar radiations and getting this data may be difficult due to sensor inaccuracy and measurement errors and it is difficult to use the results of machine learning to policies after the behavior prediction. For instance, the ML result only leads to the decision that the engineer needs to make, without knowing when the ideal time to implement. [START_REF] Augustijn | Teaching Agent-Based Modelling and Machine Learning in an integrated way[END_REF] studied the application of ML techniques in ABM and concluded that from an agent-based-modeling (ABM) perspective, the use of ML of validation is most promising and in the case of ML, ABMs are a way of creating datasets that otherwise would not be available. One method commonly used for modeling that details social structure is the agent-based modeling and simulation. In this study, in performing the action prediction, we propose a method to determine the appropriate parameters of the multi-agent-based simulation by using the simulation results of machine learning (Figure 3.9).

Figure 3.9 The coupling of machine learning on multi-agent-based simulations

The new method used for modeling the occupant behavior in this dissertation is machine learning integrated with the MAS. In this way of modeling, the occupancy and environmental condition data from the dataset collected using embedded sensors and weather stations are used to estimate the agent reaction from the environmental conditions.

The agent is updated with the ML processes result. Based on this up-to-date information, the agent perceives the cost function and decides on the actions to be taken to meet the most urgent needs. The result of the decision generated in the zone is then transferred to the MAS as a new input where the corresponding schedule parameters are adjusted to reflect the behavior change for calculating the next time step. This process is repeated every time the two simulators share information within a loop until the end of the simulation period.

Co-simulation

In office buildings, occupants tend to interact with accessible building components, devices or systems to adapt to their work environment according to their comfort level. The development of the occupant behavior model aims to add another critical dimension to building energy simulation programs and has the potential to improve its overall simulation performance. The goal of this research step is to integrate the occupant behavior model into the building energy simulation model to dynamically exchange information between the two simulators and to reflect a more realistic virtual environment for building energy estimation. Given the growing need to use energy or building environment data, it is necessary to integrate data into building energy simulation [START_REF] Mun | Influence of complex occupant behavior models on cooling energy usage analysis[END_REF].

In the study, two processes were simulated on several occasions. First, OB was learned and predicted. The predicted behavior was then incorporated into a building energy analysis tool to calculate the interior thermal environment and energy consumption. SimOcc, which performs a multi-agent-based occupant simulation, was used to model OB and TRNSYS, a dynamic building energy analysis tool, was utilized to derive the indoor thermal environment and energy consumption (Figure 3.10).

In the case of this study, the window operation status was predicted using a machine learning algorithm in the multi-agent-based simulation platform and transfers the OB and the occupancy to the cosimulation through the orchestrator (used for managing the data transfer between the two simulators).

In the co-simulation platform, the performance of the building is simulated by reflecting the behavior of the occupants predicted at every time step. The output result from the co-simulation is used back for the modeling of the OB at the next timestep. The next timestep reached while the results are being exchanged (M Jia et al., 2021).

Conventional building performance simulation, however, cannot exchange output results while performing simulations. This is because simulations are performed after all variables have been entered and it is extremely difficult to add or change variables during the simulation. Therefore, to solve this problem, a co-simulation environment needs to be developed for the search results to be exchanged during the simulation. The purpose of co-simulation is to fill or supplement these gaps by combining two or more simulation tools and using their advantages (J. [START_REF] Thomsen | Implementing the cost-optimal methodology in eu countries eceee -The European Council for an Energy Efficient Economy EuroACE -The European Alliance of Companies for Energy Efficiency in Buildings[END_REF].

The simulation units can be independent black boxes, possibly running on different simulation platforms. Hence, an orchestrator is necessary to couple them. The orchestrator controls how the simulated time progresses in each simulation unit and moves data from outputs to inputs according to a co-simulation scenario (Gomes et al., 2017(Gomes et al., , 2018)).

In this study, in cases where it is necessary to integrate with data analysis tools, a co-simulation environment is developed to orchestrate the results from the two simulation tools to achieve the next step.

To design energy-efficient building systems with complex settings, a co-simulation platform is required. A tool should be coupled with a complementary tool in such a way that the integrated result provides more value to the user than the individual tool does to itself. Individual tools are specialized focused on some parameters of the real systems (e.g., in building simulation only consider envelope and its properties). The co-simulation paradigm is creating a network of interconnecting simulations which specialize in different aspects of the same real system. The co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential equations and exchange data that couples these equations during the time integration (Trcka et al., 2009).

In a co-simulation environment, the subsystem models are interconnected with each other at their behavioral level through the models given in different tools. To execute a co-simulation, it is crucial to set a co-simulation scenario and an orchestrator algorithm. It is important to underline that the orchestrator is responsible to couple the different simulation units. Therefore, the orchestrator also transfers the data from the outputs of one simulation unit to the inputs of another following a cosimulation scenario. Hence, an orchestrator also regulates the development of the simulated time in each simulation time (Nguyen et al., 2017;Gomes et al., 2018;Dahash, Ochs and Tosatto, 2019). In other words, we developed SimOcc for predicting window operation behavior and TRNSYS for analyzing the building performance on the orchestrator. The two tools are independently simulated on the orchestrator; however, the input and output of each tool are exchanged. Therefore, the simulation of SimOcc predicts the behavior at the next timestep by reading and utilizing the variables derived from TRNSYS. In addition, TRNSYS reads the behavior information predicted by SimOcc and reflects it in the window opening factor to perform the simulation.

Therefore, in this study, co-simulation corresponds to external coupling, which is a dynamic synchronization scheme that performs two-way data exchange, because the result data of the two programs are exchanged at each timestep.

Integration of thermal dynamic (TRNSYS) with air flow (CONTAM)

Transient heat transfer and airflow simulations can be handled either using a fully integrated method or using a co-simulation whereby regimes are solved in their respective tool and data exchange between them. Energy simulation tools for buildings are often not developed to determine Interzone air flows as is the case with a multizone air flow network (CONTAM) model (W. Stuart Dols, Emmerich and Polidoro, 2016).

In this dissertation, the second approach is used when TRNSYS is integrated with CONTAM. The National Institute of Standards and Technology (NIST) has developed a simulation tool used to model multi-zone airflow and contaminant transportation, CONTAM, which requires indoor air temperature as an input (McDowell et al., 2003). This co-simulation of heat transfer and airflow is carried out using a quasi-dynamic coupling approach. This type of coupling is used mostly between two simultaneously running simulation tools whereby the exchange of data occurs only once at each time step and converges within each process, not between the process. The TRNSYS building model (Type 56) provides the air temperature of building zones and the CONTAM model (Type 98) gives back the airflow rates between each zone of the building and through the building envelope (Khalifa et al., 2017).

A TRNSYS module (Type 98 was) developed to ensure communication and data interchange between the two simulation tools and allow co-simulation between TRNSYS and CONTAMX (CONTAM simulation engine). This new component acts as a server for CONTAMX, which is the numerical solver of CONTAM.

It defines an application programming interface (API) that is supported by a set of TCP/IP socket communication messages. This server enables CONTAM to be coupled with other simulation tools and to control execution and data exchange between the CONTAMX and external processes (Khalifa et al., 2015). The graphical interface, CONTAMW, is used for creating and visualizing the representation of air flow system components in Figure 3.11. The inter-zone and outer air flows in each area are supplied by CONTAMX, which then passes to the building model (type 56) as coupling air streams and infiltration inlets, respectively (Dols et al. , 2016). 

Integration of occupant behavior model with TRNSYS-CONTAM

In office buildings, occupants tend to interact with accessible building components, appliances, or systems to adapt to their working environment based on their comfort perceptions. The development of the occupant behavior model aims to add another critical dimension to building energy simulation programs and has the potential to improve its overall simulation performance. The goal of this research step is to integrate the occupant behavior model and building energy simulation model to dynamically exchange information between the two simulators and to reflect a more realistic virtual environment for building energy estimation.

It is a broadly accepted fact that in office buildings, occupants tend to interact with devices such as windows, lighting switches, doors, and thermostats to improve their working environment in a certain form to satisfy their perceptual comfort requirements. Thus, the building simulation engine should be able to capture these behavior changes to better estimate building performance (Figure 3.12).

Figure 3.12 Co-simulation platform

Where Co-simulation_1 is a coupling between TRNSYS and CONTAM and Co-simulation_1 is a coupling between occupant behavior platforms, SimOcc and co-simulation_1.

The coupling process works as follows. At the beginning of co-simulations, the energy model of the building is created in CONTAM or TRNSYS plugin in Google SketchUp and transported to the simulation studio to initialize all required parameters and perform the simulation over time-step basis.

At each time step, TRNSYS sends zone-level environmental conditions to the occupant behavior model (MAS generated by SimOcc). With the updated information, the agent in the MAS will evaluate the objective functions and decide what action to take to satisfy the most urgent comfort needs. The decision outcome generated in the zone is then transmitted back to TRNSYS as the new input, where corresponding schedule settings are adjusted to reflect the behavior change (or stay still), for the calculation of next time step. This process repeats until the end of the simulation period as the two simulators exchange data each time in a loop.

It should be noted that there is more than one parameter in the process to reflect common office characteristics. However, in this thesis, the following parameters are chosen to represent the modeled behavior listed in At the co-simulation_2, the OB modeling platform takes different parameters from the co-simulation_1 such as indoor (air/operating temperature, illuminance, carbon-dioxide) and from outdoor (ambient temperature, total horizontal radiation, total diffuse radiation) and output the building component (window, lighting, shade, thermostat) status and occupancy schedule, metabolism and clothing under the current conditions.

Ideally, with additional modules that influence occupants' building performance, the co-simulated results will be closer to the measured carbon dioxide for the target building. However, there is a possibility that the estimate may be more distorted than the measured. The reasons could be from various aspects, for example, there may be some parameters that co-simulation does not consider or simplify or the internal algorithms of TRNSYS or CONTAM may need improvement, but these are not the focus of this dissertation.

Data Collection and Validation

Since the model used in the co-simulation is totally a simulation-based modeling approach, validation is necessary to enhance the reliability and robustness of the model. For this reason, it is significant to collect data in the aspect of indoor /outdoor environmental parameters and occupant behavior. The information collected could be used by directly feeding, environmental condition data into the simulation platform and comparing the output to the actual data (Jia and Ravi S. Srinivasan, 2016). 

Conclusion

This chapter details and describes the research methodology that was carried out in the study and how it was used to develop a specific research plan for this study. In this chapter, we present the method used throughout the thesis. In this chapter, we have mentioned the methodology used in our study class-wise. We also discussed the choice of research methods and the validation and reliability of the thesis.

Chapter 4 Model implementation and co-simulation

This chapter introduces the multi-agent-based simulation platform, SimOcc, then discusses how it is used, how to model adaptive behavior, how it is implemented and how to integrate with the TRNSYS simulation tools.

Introduction

The occupants play a key role in the energy performance of office building, our objective is to capture the behavior that not only represents a simple presence or absence of an occupant in an environment but also represents a realistic interaction of the occupant with the environment. Modeling Occupants' behavior in this way will help to create situations in simulations which are closer to what could possibly happen in daily life of occupants in office actual situations. The occupant behavior is a complex, dynamic and difficult to predict model. Hence, co-simulation of stochastic occupant behavior model can provide an opportunity to estimate its impact on building energy performance. In order to study these interactions, it is necessary to model the complex and dynamic aspects of occupant behavior and how it can be introduced in energy simulations.

SimOcc models use python language and interpreter and provide the basic constructs that enable OB simulations. SimOcc is a simulation platform tool used to model occupant behavior (the activity of the occupant, movement and interaction with building systems) using a multi-agent-based approach to evaluate its impact on building energy performance. In SimOcc, the features of the agent include autonomy, location, social ability, reactivity and movement. Occupants are represented as agents, while artifacts are an object made by a human being. They generally have properties, such as geographical location, which may change over time depending on their interactions. The environment may also be modeled as having properties that change over time, which may depend on interactions between the modeled occupant and artifacts [START_REF] Sierhuis | BRAHMS: A multi-agent programming language for simulating wor practice[END_REF]. In SimOcc environment it is implemented by facts (physical properties associated with geographical locations, e.g., temperature) and by the state attribute of the devices (that reflect the simulated state of a device in the BPS).

Belief -Desire -Intention (BDI) Model

The platform is built upon the BDI architecture: agent actions are not scheduled by an overall scheduler, but by each agent having its own inference engine that plans and executes the agent's activities based on the agent's plans, beliefs, desires and intentions. These three sets represented in Figure 4.1 are involved in decision processes that enable a choice of actions to realize from a base of plans (defining the possible strategies of the agents). BDI is the most popular architecture for the implementation of such agents.

In general, BDI approaches are based on a set of mental categories with defined semantics and control architecture that defines the agent's mental cycle. The mental cycle is the process that rationally selects its course of action based on these mental categories. It is composed of three processes: -first, the option generation process waits for events perceived as beliefs, determines which are relevant according to the current desires of the agent and generates a set of options. Then the deliberation process selects the set of options that the agent believes to be pertinent for achievement. Finally, the selected options are considered as intentions and an execution process works out for their achievement.

A Belief reflects the knowledge of the agent about the environmental conditions that trigger to fulfill psychological and physical desires. Therefore, the beliefs of the agent map its perception of the world. With a more general view, beliefs might also include the perception of the state of other agents and of the agent's own state. Beliefs on the agent's own state are essential for the agent to have control over it, while the beliefs on the statuses of the other agents are required to reason about the opportunity of cooperating with some of them. Desire stands for goals or objective to accomplish of the occupant that must be met in order to secure satisfaction with the environment. Intentions are the occupant interaction with the building systems that occupants perform to achieve the desire of the agent. Building systems are the equipment or mechanisms within the building with which occupants may interact to restore or maintain environmental comfort. An agent might believe the zone environment temperature above the setpoint and feels some discomfort with the thermal and desire to lower the temperature below the setpoint or to cool, leading to the intention to interact with window opening (Yildirim et al., 2015).

any feature to manage the spatial components of models. In contrast to JADE, the main advantage of Repast is managing the spatial component of models. They offer as well different ways to write models in order to satisfy different kinds of users. For simple models, the modelers have a real choice of modeling languages. However, when it comes to more descriptive large-scale models, the modelers must use a generic programming language (e.g., Java). Therefore, developing such descriptive models still requires high-level skills in programming (Nguyen, Dang and Hluchy, 2002;Kravari and Bassiliades, 2015).

CORMAS (Bousquet et al., 1998) is a simulation platform based on the Visual Work programming environment which allows the development of applications in the Smalltalk object-oriented language. CORMAS pre-defined entities are Smalltalk generic classes from which, by specialization and refining, users can create specific entities for their own model. It facilitates the construction of agent-basedmodels and the design, monitoring and analyzing of agent-based simulation scenarios. CORMAS was primarily oriented towards the representation of interactions between stakeholders about the use of natural renewable resources. CORMAS is very popular with model societies and their management of natural resources and provides some interesting features for real life applications. However, CORMAS is limited when it comes to defining large-scale descriptive models, concerning the spatial component. Indeed, CORMAS can only manage grid environment (rectangle or hexagon) and does not allow directly manage vector geographical data.

NetLogo (Tisue and Wilensky, 2004) is a multi-agent programmable modeling environment. It is designed, in the spirit of the Logo programming language, to be "low threshold and no ceiling". NetLogo enables the exploration of emergent phenomena like every ABMs; it comes with an extensive model's library, including models in a variety of domains, such as economics, biology, physics, chemistry, psychology and system dynamics. NetLogo is nowadays one of the most popular platforms and was a powerful driver of the spread of agent-based modeling in the social sciences. Modelers can give instructions to hundreds or thousands of agents all operating independently. This makes it possible to explore the connection between the micro-level behavior of individuals and the macro-level patterns that emerge from their interaction. However, even with its numerous extensions, NetLogo suffers from important limitations such as the impossibility to define several displays of the environment and using classic agent-oriented features (e.g., inheritance), basic integration of data and computational performance. Therefore, most of the models developed with NetLogo are simple toy models, and NetLogo is rarely used to develop models that are more descriptive (Nikolai and Madey, 2009;Bajracharya and Duboz, 2013).

SimOcc as behavior modeling and simulation environment

SimOcc is, a shortage form of simulation occupant, an occupant behavior modeling platform developed by the University of Lorraine in collaboration with CRAN. The SimOcc environment, uses a multi-agent, rule-based, activity programming language, has similarities to BDI architectures and other agentoriented languages (specifically Brahms) and is used for modeling not only the individual and groups of agent behavior but also systems and artifact behaviors, interpersonal interaction, as well as the interaction of occupants, systems and objects within the environment. SimOcc is written in python language.

One of the most relevant design issues for any SimOcc model is the design of the agents. The benefit of this software is the consideration of occupant interaction with the environment which makes it difficult to develop a holistic model of the actual world situations. So far SimOcc includes the model of window, shade/blind, presence, activity, thermostat and lighting. By incorporating an ontology of objects, agents, geography, etc, and means to model interactions, SimOcc makes it possible to model empirical data gathered using ethnographic observations; this facilitates involving the occupants being modeled in the simulation.

In the SimOcc platform, the BDI allows the agents to sense the environment through the input sensor data. When the agent has received a set of beliefs, based on the desired and priority select from the belief to influence the environment. The SimOcc multi-agent-based modeling approach considered the process at the work practice level.

Work practice is how occupant behaves in every day, located and circumstantial interactions in the real world. That is, a practice model describes behaviors (as activities); a task model describes functional relations of processes [START_REF] Sierhuis | Multiagent modeling and simulation in human-robot mission operations wor system design[END_REF]. Put another way, a practice model emphasizes interactions with the environment such as communication and movement; a task model emphasizes mental operations (inference).

To model occupants' behavior, we need to include ecological environmental influences on individual activity.

SimOcc language constructs

Important constructs of SimOcc modeling/simulation language are as follows:

Agents Model

Agents can represent individuals, a group of individuals or model-based systems, such as "software agents."

Agents in SimOcc represents an occupant who interacts with the environment which can be considered as the central element of the platform model (Sierhuis et al., 2003). The simulation engine schedules the constrained activities of agents. In SimOcc agent is a collective name for occupants and device as shown in Figure 4.2. Occupants are humans residing in a building and devices are technical equipment that can change the building conditions. However, in contrast to human beings, an agent "understands" at most only a small, abstracted portion of the real world, although it has always been intended to equip it with comprehensive real-world knowledge. Agents are intentional and represent this intentionality as the set of beliefs at time t and the set of rules (work frames and thought frame) that can be used to act in the world. Beliefs are represented as first-order logic propositions. An agent's belief-set changes over time based on actions in the world, communication with other agents, world fact detection and reasoning. As the belief-set of an agent changes, the behavior of the agent can change. In other words, there is a logical relationship between an agent's belief and its action in the world. For example, taking the thermostat control system as one agent-thermostat has sensors for detecting the room condition in terms of temperature. This sensor is in the environment and produces an output of temperature values with respect to the threshold. Based on the sensor value relative to the threshold, the temperature value can be too high, too low or ok. Based on the desire of the agent, the action available to the thermostat heating state is making on/off. The action thermostat on will generally influence increasing the zone temperature mostly in a confined room. Add a perception process that converts a fact into a perception. The fact source is the location where the current occupant is. These processes run at each simulation step.

Perceive (t: Union [int, float]) → None

Perceive facts in the current location and transform it to the attributes. Also execute internal processes. If the fact is not found in the current location, the parent locations are searched until found.

Where

• fact_name -the fact to perceive 

Belief, Goal and Plan model

Agents have mental attitudes (beliefs, desires and intentions). These reflect the informational, motivational and deliberative status of the agent. An agent is made up of belief, goal and plan theoretical models. The belief model is the agent's nowledge about the environment and the actions an agent can perform from belief set. A belief state is an instance of a belief set (for example, in SimOcc agents the current state of the environment, a belief state, would be that the window is open, the indoor temperature is high etc.). The goal model defines what the agent wants to achieve, for example to have the lights off while arriving at the office. The plan model describes how an agent would achieve a goal, for instance, switching the light off when departing from the office. 

Activities

Every agent or object behavior is represented as an activity. A problem-solving task is a kind of activity. An agent's situation-dependent behavior is therefore modeled using activities. Activities are key constructs representing actions performed by an individual at certain moments of time. Agents have a set of work frames and the workframe contains a list of activities. The activities may be of several types, depending on the action to be carried out. In addition, the compound activity may contain several workframe, which enables a thorough composition of the workframe and activities.

An agent engaged in a low-level activity is still performing the "higher-level" activities on the activation path of the activity tree (e.g., answering the telephone during a meeting). Activities can be interrupted and resumed, just as humans can multitask by switching between different activities.

The SimOcc language allows for user-defined primitive and composite activities describing an agent's behavior. There are a few predefined primitive activity types with predefined semantics, such as (Table 4-1)

Activities are instances of the Activity class, with several ready-made classes for most common cases (Figure 4.5):

• Primitive activity: is an activity that just consists of an execution time, with no other actions.

They are useful when modeling actions where there are no interactions with the environment, for instance "typing on a computer". They have no other effect than ma ing the agent unavailable for some time.

• Move activity changes the location of an agent. The duration is taken from the geographic model and depends on the agent's current location • Execute activity calls an action of on a device after a duration (which represents the amount of time to execute the call, e.g., the time reaches a switch). • Execute if same as above, but the agent evaluates a condition to know if the action should be performed. This can be useful to avoid introducing a new compound activity and workframes in simple cases. • Compound activity is an activity where workframes can be executed (in the same way that an agent executes workframes). So, it is possible to call add_workframes on an instance of this activity. These activities stop executing when all the included workframes are finished, or if the condition on the workframes containing the compound activity is not true. • Send activity enables an agent to send a belief to another agent

• Broadcast activities enable an agent to send a belief to all the agents at the same location.

A primitive activity also has a priority that is used for determining the priority of work-frames. Activities may also be written in the python programming language. An activity that models an agent's movement towards a new location, Position does not change continuously. When activity starts, the location of the agent is set to the first common ancestor between the ends of the move and set to destination when it finishes.

Workframes

A Workframe is an action rule and a declarative description of under what condition(s) an agent or object performs the activities specified in the body of the rule. Workframes represent situations where the agent has a given behavior (e.g., how it behaves in his office room or the cafeteria, etc...). A work frame consists of precondition(s) defining the conditions under which the work frame can be activated. An element executes when the work frame is executed. The body of a work frame can consist of activities and Consequences.

Preconditions are associated with work frames to define the conditions under which the work frame is activated (such preconditions can involve the agent's current location, beliefs, etc.). A Workframe contains a list of activities executed when the work frame is active. After completing them, a set of consequences is evaluated, modifying the agent's beliefs.

A work frame can be set to execute repeatedly or only once.

Workframe can be of the "foreground" type, when they require the agent's full attention (thus being mutually exclusive) or of the "background" type (e.g., subconscious mental process) in which case several work frames can be executed concurrently.

An agent cannot always perform all possible activities, given his cognitive state and location. Each activity is thus associated with a conditional statement or constraint, representing a condition/activity pair, mostly designated as a rule. If the conditions of a rule are believed by the agent, then the associated activities are performed. Agents have a set of workframes and workframes contain a sequence of activities. Activities can be of several types, according to the action to do. Additionally, the compound activity can contain several workframes, enabling deep composition of workframes and activities.

At a given time, an agent can only execute one work-frame. Each work-frame executes a sequence of activities, added using the method add_activity of the workframes. The activities are executed in the order in which they have been added to the workframes. When an agent is not executing a workframes, it tries to select a workframes to run in the list of workframes that are ready. It selects the one with the highest priority attribute. In the case of several workframes with the same priority, a random choice is made (i.e., if n workframes are the highest priority, each has a 1/n chance of being selected).

Once selected, the workframes execute all the activities it contains, and the selection process starts over. If a work-frame is set to be repeated (attribute repeat=True) and its condition is true, it may be in the list of candidates again. It is possible to append conclusions to each activity: they are run at the end of the activity and typically modify a belief (enabling the agent to know that an activity has been run, and e.g., prohibiting it from running again) (Sierhuis et al., 2003).

A composite activity refers to an activity that may require the completion of multiple activities and frameworks. Preference or relative priority of workframes can be modeled by grouping them into ordered composite activities. The workframes within a composite activity, however, can be performed in any order depending on when their preconditions are satisfied. In this way, workframes can explicitly control the executions of composite activities and the execution of workframes depends not on their order, but on the satisfaction of their preconditions and the priorities of their activities. For example, in Figure 4.6 shows the workframes activity hierarchy where the workframes W 1 has two activities, A 1.1 is a primitive activity and A 1.2 is a composite activity since the composite A 1.2 activity further has many workframes from W 1.2.1 to W 1.2.n . The arrow "current activity" indicates that A 1.2 is currently executing under workframes W 1 and it is executing the workframes W 1.2.1 . This subsumption goes on until it reaches the primitive activity A 1.2.1.1.1.1 which is the activity currently in execution. These work frames have a condition () method (by default this is a method that returns true). When this state method returns true, the framework is ready. The set of ready frameworks is then sorted according to priority: the one with the highest priority is selected and its activities are carried out successively. This structure is also applied to any Work frame Manager other than Agent (Figure 4. 

Geography

The geography model in SimOcc represents where activities occur, indicate occupant location. Agents and objects are in areas and can move from area to area by performing a move action. The SimOcc language allows for the representation of types of user-defined locations (called area definitions) such as buildings, rooms and offices. Moreover, the model store is a distance between these locations. The distances are represented by the time to convert them. They can be entered as literal times that stay constant during the simulation or as function, to be able to use a random duration, or more generally durations that arrive during the simulation.

Locations can be defined as parts of an enclosed location. By default, locations are part of the allenclosing default location named "Environment". If a distance has been defined between their enclosed locations, it is used to compute the distance between their parts. For instance, if " itchen" and "Bedroom" are part of "Home" and distance from Home to Office is 20, then distance to Kitchen to Office is also 20. Nevertheless, if a particular distance is entered in the model, it is used in priority over the distance between enclosed locations.

An example of SimOcc source code for Geography: - 

Class

Development of co-simulation framework

Modeling dynamic occupant behavior to create situation in the simulation is closer to what could happen in real life of office occupancy. In order to examine these interactions and to express themselves clearly, it is necessary to model and include dynamic occupant behavior in energy simulations. These behaviors are not activated at regular times. They depend only on the value of some environmental factors. When the physical state of the environment exceeds its threshold value, it makes a psychological state in the users. This initiates the occupants to perform some activities to adjust their environments.

The Co-simulation environment couples the occupant behavior model, SimOcc, multi-agent-based modeling, with dynamic building thermal model. In SimOcc, a server module is available, which can exchange variables with BPS software: received values are used to update the facts in the OB environment, and similarly state of devices and occupancy levels are sent to the building simulation.

Using the SimOcc library, a specific python application is built that will run the OB component of the cosimulation. When connecting to Energy+, messages following the Ptolemy II standard are exchanged over a TCP/IP socket, using the Building Control Virtual Testbed (BCVTB) interface. When connecting to TRNSYS, a simple messaging format inspired by the Ptolemy II protocol is used. A specific module (TRNSYS Type) has been developed to send and receive those messages over a TCP/IP socket.

Application Example

The example scenario is as follows:

Albert lives in a house with only one room. He never leaves the room. During the day, he does activities in 30 minutes (+ -10 minutes). After completing his current activity i.e., after 22 hours he sleeps for 8 hours (+ -1 hours). After waking up, the day starts again. Albert is aware of the temperature of the room. If it's cold, it turns on the heater and turns it off again if the temperature is comfortable. It opens the window when it is warm and closes it again when it is comfortable. If it is too cold, the current activity (sleep or daily activity) is interrupted.

First, we create a new simulation and add some locations (only one here) to the geographic model. In the room, the occupant is created using add_occupant. For the heater and the window, we use a convenience class ``Bistable Device", that can be used when an actuator has a Boolean state on / off .

Then, we start with a basic model of occupant behavior: basically, sleeping at night and interaction with building systems during the day. In the first part, we set some threshold values that measure the agent behavior and initialize some Python attributes used as beliefs.

Then, a perception of the room temperature is added. Finally, we add two wor frames "life" and "sleep", containing exactly one primitive activity each. From the point of view of the simulation, what Albert is doing during these periods is not relevant. Since we simulate more than just one day, they keep repeating.

Sleeping has a priority of 1 and interaction with building systems is 0 (the default). So, when it's night, Albert will "prefer" sleeping to interacting with building equipment. It would also be possible to set the condition on interaction as not isNight (t). For that interaction, we need a helper function to now if it's sleeping time or not. It takes the time of the simulation (in seconds) as parameter returns as boolean based on the time of day. Now, we need to add more workframes to model the control of the heating system. There is one for turning it on, and one to turn it off. They have a higher priority than the "bac ground" activities "sleep" and "life" and contain just an execute activity that requests the actuator to turn on or off. The most interesting part is the conditions: basically, if he feels cold and the heater is not on, turn it on and if he feels comfortable and the heater is on, turn it off. After executing the activities, Albert also updates his belief about the heater state. This prevents him trying to -for example-repeatedly try to turn the heater on while the temperature is rising.

Chapter 5 Data Driven Stochastic models

Introduction

The complex behaviors of the occupants (who behave partly in a deterministic way, partly stochastically), can be modeled by stochastic models. The models' parameters are the environment characteristics that have an impact on the occupants' decision-making (e.g., temperature, humidity, light level, etc.), and its output are the consequences of this decision-making process (e.g., number of people at a location, state of the building systems, etc.). Different families of models are available for different kinds of stochastic processes. The selection of stochastic will depend primarily on the characteristics of the variable to be simulated. In modeling the action of the occupant, it is useful to estimate whether an action has occurred, considering a set of independent variables. Occupant behavioral models for building simulation tools can be linked to the presence and activities of building occupants. These models can be executed in the pre-processing of the simulation because they do not depend on the environmental parameters or the group of behavior of the occupants. Actions can be described as adaptive versus non-adaptive behaviors. Adaptive actions are actions taken by occupants to maintain a certain level of comfort, such as using lights and windows or changing the type of clothing worn. In contrast, non-adapted actions involve electrical appliances or the consumption of domestic water. It should be noted that activity models are used more in residential buildings than in office buildings D 'Oca et al., 2015).

Occupancy presence and locations model

The influence of the occupants of the buildings can be grouped into several means of interaction as indicated in the Figure 5.1 and each of which can be represented using stochastic models.

In their work on the light switch model, (Page et al., 2008) presented a simple stochastic model for occupant presence. They were interested in reproducing more realistic arrival and departure times for occupants arriving and exiting their offices and modified the standard occupational profiles to do so. The model of simulated work corresponds to working time. Occupants interact with the indoor environment by emitting heat and CO 2 , turning on/off lights, opening windows, etc (Gaetani et al., 2016). Occupation profiles are therefore a necessary contribution to building simulation models which include indoor environmental variables, ventilation loads, electrical energy consumption, etc. The most common way to consider occupancy in simulation tools is to use and, if required, repeat a static occupancy profile (Hoes et al., 2009). Typically, the profile used is consistent over weekdays and weekends, respectively. However, occupants do not enter or leave buildings at specified times. (Wang, Federspiel and Rubinstein, 2005;Wang, Yan and Jiang, 2011) proposed a stochastic model for simulating occupant presence in a single-person office environment. It is based on the principle that the presence of each occupant is independent of that of another occupant. The current status of an occupant in a particular period depends solely on the current status of the occupant in the previous period.

On the SimOcc platform, the methods used to calculate the presence in the building are dependent on the function of the buildings. The methods proposed by (Page et al., 2008) suggest a pattern that only ensures the presence or absence of an occupant in a commercial office. The presence of the occupant in an office building is represented mathematically by a non-homogeneous Markov chain with two states and uses a mobility parameter which means that the probability of transitions between the two states depends on the time of day and the day of the week using a mobility parameter µ and a probability profile depending on the time of the presence p(t).

These are deduced by calculating the transition probability at each time step, either from absent to present or present to present for each occupant (Darakdjian, Billé and Inard, 2019):

The transition from absent to present

( ) ( ) . ( ) (1) 
The transition from absent to absent

( ) ( ) (2) 
The transition from present to present:

The transition from Present to absent

( ) ( ) ( 4) 
Where T 01 (t) is the transition probability from absent and present, the mobility parameter (µ= 0.11) is constant, and P (t) is the probability of being present at the time (t) about week in hours. Estimating this model on a different day is helpful to include occupant diversity in each model.

Windows opening behavior

Windows, lighting, shade and thermostat are all adaptive measures in the thermal environment. Among these actions, the OB window is the simplest and most common way in which occupants can control the thermal environment and restore thermal comfort.

The purpose of an office window is a quick and efficient means commonly used by users to either cool or ventilate in order to refresh with the fresh air within the buildings. It therefore has a profound impact on the thermal and air quality in buildings to ensure comfort for the occupants. The opening and closing of the window vary according to the season. As a result, the building envelope becomes increasingly thermally efficient, with windows opening, ventilation and air infiltration increasing their impact on energy consumption and becoming the most important source of heat loss in the heat balance system D'Oca and Hong, 2 1 .

De Dear and Brager, (1998) explained that the variation in indoor environmental conditions caused by human-controlled windows leads occupants to expect relaxing their tolerance of extreme temperature excursions. Energy awareness has also been shown to be an important positive factor in the improvement of the interior environment by reducing the energy consumption of buildings from 5% to 50% at low investment cost. Healthy et al., (2005) observed that occupants were opening windows to refresh or cool the indoor air.

In winter, the state and duration when the windows remain open will depend on the outdoor temperature. The external temperature for different buildings in the same climate is similar; the occupant shall behave the same way in the model using external temperature as a single trigger even though they do not experience the same sensation of heat due to other factors like indoor temperature, carbon-dioxide, relative humidity and solar radiations. Rijal et al. (2007) considered the internal and external temperature as a trigger for modeling the state of the window. A complete stochastic model, referred to as the Humphreys adaptive algorithm, was introduced by (Rijal et al., 2007), derived from a field study in 10 office buildings in the UK. Buildings are said to be naturally ventilated, which in practice means that they depend on the infiltration and opening of windows to provide fresh air. Only the outdoor and indoor temperatures were considered as driving variables, neglecting possible stimuli related to indoor air quality. The model has been implemented in the ESP-r building simulator tool. In addition, the self-reported level of activity of persons using the windows was found to be consistent with their actions recorded on the windows.

Driving parameters

The randomness of the window status should depend on the occupancy (presence, number of occupants, age, activity and so on), indoor environmental condition (temperature, relative humidity, carbon-dioxide… and outside conditions temperature, wind speed, wind direction, rain… which are split into five categories of influencing factors for office building (Table 5-1). In this thesis, the key parameters considered for the design of the occupant behavior model, the state of the window, are the temperature (inside and outside), the occupancy and the time of arrival and departure. Other parameters that can affect the state of the window such as wind speed, carbon dioxide, noise and rain are considered less influential and therefore not taken into consideration in this study.

Bernoulli process based

Occupants interact with building systems and equipment such as windows opening/closing for a variety of reasons such as thermal comfort response, air pollution (carbon dioxide) to address indoor air quality, and events such as arrival, intermediate and departure.

Data from the field and large-scale surveys confirmed that the presence of stochastic occupants and adaptive behaviors can be represented as probabilistic models of behavior (Wang et al. 2016). Probabilistic models of behavior can be derived from historical data on the indoor and outdoor environment conditions (temperature, relative humidity, luminance levels, CO 2 concentration), occupancy and movements and the operating conditions of the building systems (windows, lighting, plug loads, thermostat, HVAC and blinds). The machine learning process allows us to correlate some of the observed physical or situational environmental conditions with the observed human-building interaction. The ultimate outcomes of behavioral models are the probability that occupants will be present in space or perform certain actions when triggered by various environmental or situational conditions. Probabilistic models provide structural solutions to organize the random and stochastic phenomena of OB in buildings.

Based on comprehensive statistical analyses of continuous measurements over 8 years (Lausanne, 2010) developed three models to predict the actions of office occupants at windows into a hybrid model that also considers the diversity of occupants. This hybrid model first predicts the probability of transitions between window opening states during occupancy using the Markov chain method and then using a Weibull distribution for the estimation of the duration when the window remains open, so as not to have overlapping actions. At every time step, the probability of opening the window is also expressed in the form of logistic models (Fabi et al., 2013):

( )

( ( ∑ )) (5) 
The x k represents the predictors, they include the environmental factors (indoor and outdoor temperature), contextual parameters (like the presence of occupants and the occurrence of rains are supplied by the simulation, TRNSYS, and the agent side supplies the occupants' presence, as well as the future presence and past absence durations during the occupancy stage), whilst at the departure stage the length of departure supplied from SimOcc. n is number of predictors and f R , f WS and f WD are dummy variables for respectively rain presence, wind speed levels and wind direction sectors obtained from climate conditions data.

The probability that an open window will appear each time is determined by the probability of the logistic model with indoor θ in ) and outdoors θ out ) temperatures as explanatory variables:

( ) ( ) ( ) (6) 
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From Frederic Haldi and Robinson, 2011 , and The estimated probabilities of opening and closing actions are subjected to Inverse Transform Sampling Method, which involves a comparison of the estimated probabilities with a random number between 0 and 1 of the standard uniform distribution, to determine the occurrence of an action (Tahmasebi and Mahdavi, 2018).

The Markov chain, which depends on occupancy, extends to a continuous process based on a Weibull distribution for opening periods. The P ij action probabilities are modeled as above, except for closing actions that are predicted by the density of the probability distribution of opening durations:

The probability density function of the Weibull random variable 

Air flow from ventilation

Only single-sided ventilation is considered. The air flows when the window is opened are estimated using EN15242 (En, 2004;[START_REF] Parys | The influence of stochastic modeling of window actions on simulated summer comfort in office buildings[END_REF]:

( ⁄ ) √ ( ) (11) 
Where the coefficients C t (=0.01), C w (=0.001) and C st (=0.035) account for respectively the influence of wind turbulence, wind speed and stack effect. V met is the meteorological wind speed at 10m height and H win is the height of the window.

For bottom hung window, the ratio of the flow through the totally opened window is assumed to be only dependent on the opening angle α and independent of the ratio of the height to the width of the window.

A' ow (m 2 ) is the equivalent open area of the window, as a function of the opening angle α and the area of the window A ow when totally opened: 

Shading Action model

Considering the dynamic processes that cause occupants to act on the shade, we estimate the probabilities of lowering or raising shades by providing relevant physical parameters obtained from the evaluation literature. Our approach is first to search for the driving variables influencing actions and then to formulate lowering and raising probabilities. Reinhart and Voss, (2003) developed the Lightswitch-2002 algorithm that dynamically models the manual and automatic operation of shades and lights over a 5-minute period, and was embedded in ESP-r. This model distinguishes between two types of behavior towards the use of shades: dynamic and static. To do this, the shades are lowered if the radiation in the workplace reaches the threshold of 50 W/m2; if it is not kept open. However, it has certain limitations: it predicts that blinds are only open once a day and uses a rigid threshold for visual comfort. Nicol et al., (2004); Haldi and Robinson, (2008) indicated an increase in the proportion of shades lowered as indoor (and outdoors) temperatures increase. External illumination is recommended as an explanatory variable.

Depending on the observed overrepresentation of the actions on arrival, we will distinguish the situations of occupation (arrival, intermediate and departure) and check the significance of their differences. As mentioned above, in addition to actions, we can model the position of our shades and determine whether an action is performed or not (Figure 5.4).

The shading adjustment reflects the stochastic character of the occupants' behavior. Hence, the characteristic shading behavior requires a stochastic modeling like window modeling. The stochastic shading model, the estimation of the probability of action depends not only on the environmental condition, but also on the present position of the shading. Like the window model, it consists of hybrid with three stages. The first step is to determine the probability that an action will happen when the area is occupied. The other uses the Markov chain to estimate shading adjustment, predicting down and up probabilities (Haldi and Robinson, 2010).

The model takes the pre-processed occupancy status, the global external horizontal illumination E gl,hor and the interior illumination E in as inputs (requiring a coupling with a daylight model, see below). 

Where E in is the indoor illuminance supplied by the simulation, TRNSYS, S L is the current un-shaded fraction at the current time-step. Sutter et al., (2006) have noticed that most occupants keep the blinds lower until the illumination is very low before lifting. They observed that a logistic function with the logarithm of the external vertical global illuminance as the driving variable corresponds to the percentage of blinds raised. There was also some suggestion that there might be an effect independent of temperature.

If an action is predicted, the probabilities predict that the shade position is fully up or down ( )

( ( )) (15) 
The regression parameters ( , and ), taken from Haldi and Robinson (2010), are also estimated using data for an aggregate population. Alternatively, if a partial lowering action is predicted the increase in shading is drawn from the Weibull distribution:

( ) ( ) ( ( ) ) (16) 
With = 1.708

( ) ⁄ (17)

Lighting model

Bernoulli's models of behavior predict the probability that an occupant will leave a building component in a certain state, according to the explanatory variables (ambient illumination...). The probability of switching on a light when entering the office depends on ceiling illuminance, E lux , is taken from TRNSYS at the current time-step. The probability of switching off on departure depends on the duration of absence (D abs ). The probability of action is defined in a logit model which has the following shape:

( ( )) (18) ( ( )) (19) 
For this research, = 2.151, = 0.172 from

The lighting switches on/off are dependent on the status of the occupancy, such as arrival time, intermediate time and departure time. In the intermediate state, the lighting turns on/off depends on the inner illuminance. When the entire occupant leaves the area and predicts that the lighting will be turned off, according to the duration of the absence. The probability of the lighting turning switches off for 30 min, 1 hour, 2 hours, 6 hours and more than 12 hours is 0.08, 0.31, 0.38, 0.60 and 0.96 respectively, depending on the duration of absence.

Thermostat setpoint

The behavior of office thermostat occupants was not analyzed using simultaneous occupancy and temperature data. The schedule and the Bernoulli-type modeling, adaptive behavior approach cannot be used to model thermostat setpoint modeling due to the office occupant does not directly controlling the central unit directly except to change the room temperature. The probability of raising or lowering the thermostat setpoint is dependent on the inside temperature and the outside temperature as follows:

( ( ))

(20)

Case study

To demonstrate the application of the developed Multi-agent-based modeling, SimOcc, platform on the co-simulation architectural platform, TRNSYS, a case-study from the existing building is examined.

Building Description

The building selected for this research is an existing university building in ENSTIB, Epinal (48.177 o N, 6.448 o E), at an elevation of 351 m above sea level. The building has two levels above the ground and has a total floor area of 232 m 2 with a floor height of 2.8m. In this study, the research targets focus on building 6N and for validation the test room utilized in this research measures a total area of 88.4 m 2 and is equipped with sensors and actuators. More specifically, all the rooms in this building are research offices, industrial test rooms and corridors. The building is aligned with true north and main conditioning concept is natural ventilation. The rooms have a size of 88. 4, 31.28, 30.6 and 59.16 in each floor and served for full time researchers and students. The occupants can manually control windows, lights, doors, radiator thermostats and blinds. The natural gas and gasified boiler are used for building the heating system and each room has one or more radiators. The radiators controlled using an actuator are located in the test room. The actuator controls the mass flow rate of the hot water depending on the temperature of the indoor air by controlling the valve opening fractions. Physical characteristics of the wall and the window are given in Table 5-2. For constructive solutions, some parameters of the standard have been taken in order to achieve the desired U-values. The other parameters that are used for the simulation are specified in the next subsection.

One of the most important component models used in my work was the multi-zone building component. Since this type is very complex, it is necessary to configure the component properties using TRNBuild before using it in Simulation Studio. The TRNBuild makes it possible, among other things, to design the structures of a building, but if you want to build them with 3-D design software, you should do this before using TRNBuild. This latter option was chosen for my work. The 3-D model of the investigated office building was made with SketchUp (Figure 5.7). The model of the office can be seen in Figure 5.5.

Results from MAS platform, SimOcc, are compared to the results arising from a standard deterministic schedule. The 3D models of the building layout are shown in Figure 5.6. Both the building zones have similar characteristics with respect to occupancy rate, construction type, floor area, primary energy use and activities. 

Measuring devices and factors

With the development of advanced technology as tools in the field of electrical and computer engineering, researchers can identify occupancy status and occupant behavior easily. The data collection for this research includes two parts, namely environmental data and occupant behavior data sensing (energy consumption data recording is not included). The sensor node consists of a smart single-board with built-in wireless connectivity. Unfortunately, the data-recording system was not fully reliable yet; thus, we considered only the one month span to minimize the missing data from the sensors (Jia and Ravi S Srinivasan, 2016c).

Figure 5.8 Indoor temperature (0), carbon-dioxide (PPM), occupancy and relative humidity (%) respectively from synergy However, the limitation for the data collected from the Synergy platform was the availability of missing data and which makes it difficult to determine why the sensors are not working for some working hours.

The span we took for validation was at the time of school hours and months (February, 2021).

Figure 5.9 Sensors and actuators installed in the room for collecting data

These buildings have been equipped with sensors measuring periodically local indoor temperature, occupancy and actions on each of the windows. The measurement setup includes board (indicated by color in Figure 5.9) that each room contains one embedded sensor for temperature, relative humidity and carbon dioxide, that is installed at a height of 1.5m in the east wall of the room near to the window. The rooms were naturally ventilated. Indoor temperatures are measured by thermometers, occupancy by presence passive infrared (PIR) detectors and window openings by micro switches. The time step of data collection is set to 10 minutes, which could be modified as needed. The Synergy a time-series database (TSDB) to store the data from the sensors and the data could be logged in a more organized way simultaneously. The greatest benefit of the synergy-based data acquisition system is its simplicity and efficiency.

A weather sensor was placed on the roof of the building in order to obtain weather data such as temperature, relative humidity, solar radiation, wind speed and direction. However, there is no complete meteorological data derived from Synergy, due to the issue of missing data. Two types of meteorological data are therefore used for this study, one is used to validate the model from the ENSTIB weather station and the other is used for simulation from TRNSYS. The data collected for the window and door behavior were as shown Figure 5.10. ( Sun et al., 2014).
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Where Yi and ̂ are the actual and predicted value, ̅ average value and N is the total number of observations The calibration criteria can be applied to both monthly and hourly times-scales. If monthly data is used during calibration, the NMBE acceptance requirement is 5% and the RMSE is 15%. If hourly calibration data is used, then the requirement is 10% for NMBE and 30% for CVRMSE. In this study, hourly calibration criteria and data are used. The output result for this validation is < 10% and < 30%.

Internal Heat gain and schedules

The stochastic window models were encoded in SimOcc and tested using Epinal meteorological data. The meteorological data were extracted from the meteorological files from the TRNSYS simulation study. Internal gains from lighting, equipment and occupation are added depending on a weekday working schedule. The fractional office occupancy schedules for weekdays are represented in Figure 5.13. Deterministic data collected from the ASHRAE standards are presented in Table 5-3 form. The wee day's office equipment and lighting schedules are like the occupancy schedule (Figure 5.14) and the other is to see its effect if the lighting and equipment are switched on for the whole working hours as it is represented in the Figure 5.15. Thirdly, the lighting is controlled by the daylight, occupant switches on artificial lighting when natural lighting provides less than 500 Lux [START_REF] En | Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics[END_REF]Yu et al., 2016). The effect of different scenarios of occupant behavior in relation to natural ventilation and thermal comfort on the energy consumption was investigated through building energy simulation. However, this study is based on a few assumptions and issues that should be addressed in this section. Building models have been developed in SketchUp and exported to TRNSYS to estimate building energy consumption and thermal comfort. Different behavioral patterns are simulated for the existing building design. The level of internal heat gained from occupant, lighting, electrical equipment, window-opening user type, thermostat action and window opening angle are considered here as a behavioral variable.

The following assessment is conducted in cases 1 and 2 (table 5-4): 89, 64.53, 41.1, 45.64 and 33.4 KWh/m 2 per year, respectively. The comparison between the first two deterministic models (Case I and Case II) and the rule-based model of occupant behavior shows the difference within the range of average 29-48%. Whereas cooling energy consumption is given with a value of 0.7, 1.7, 1.26 and 1.76 KWh/m 2 respectively.

By breaking down the simulation into a month (Table 5-5), we can better understand the variations in building performance resulting from interactions with occupants over a one-year period. The simulation results for each combination of models, Figure 5.16, show year-round heating energy consumption when deterministic and rule-based models are applied to window, light, shade and thermostat use.

During the whole year, the heat energy consumption is higher for deterministic simulation compared to the rule-based model, as occupants interact with building systems, Window, with reference to the temperature threshold to refresh the indoor air. Heating energy use is zero over the summer for both models. The main reason for having a change in heating energy consumption is mainly due to the difference in the value of the infiltration in the different cases. However, for case III and IV, the energy consumption for case IV is greater than case III, this is due to the daylight luminance being low in winter and the lighting system allows the energy to increase (Figure 5.18 and Figure 5.19). The use of windows during the heating period leads to the principle of increasing energy, because deterministic would not permit it. The effect of the thermostat has an important impact on the reduction of heating energy consumption.

Figure 5.16 Simulation results for monthly heating demand

In Figure 5.17, the results are shown for healing load, according to the mean of the heating energy consumption. The graph shows the mean value, 25 th and 75 th percentile in the boxes. The results of cooling energy consumption for all cases are shown in Figure 5.20. According to the results, it can be observed that the effects of different scenarios of occupant behavior in the operation of natural ventilation have a significant impact on building energy consumption. The period from June to September showed the highest energy consumption for cooling. The high energy consumption for cooling is observed in August. The appropriate operation of natural ventilation reduces the energy consumption for cooling, but allowing ventilation during the hours when the external temperature is higher than the internal temperature leads to an increase in the energy consumption for cooling. The maximum energy is consumed when a multi-occupant behavior (window, lighting and thermostat) is considered, this is due to the operating temperature being below the threshold, considering opening the window action and resulting in zero infiltrations (Figure 5.21). Assuming that for the final three cases, normal infiltration equals zero. Similarly with heating, the use of cooling energy is significantly dependent on the behavior of the occupants. 

Influence of window opening impact on building energy consumption

The probability distribution of energy consumption depending on user type is obtained by running several simulations. By switching from deterministic to a probabilistic approach in dynamic simulation tools, high variation in energy consumptions was found. This result focused on the difference in delivering energy consumption between the rule-based, deterministic and probability simulation. In this work, an action-based Markov-chain modeling approach for predicting windows operating based was used and strictly correlated to indoor and outdoor temperature. Since no fixed air change rate, but variable indoor and outdoor parameters drove the probability of opening windows, great variation in energy consumption between the two models. The Ventilation rate operated by users was the paramount driver for the variation in heat energy consumption in an office building.

The monthly heating demand predicted through the simulation shows that the significant energy consumption differences between the stochastic (window) action model and rule-based models (Figure 5.22). The interaction of the occupants with a window in the heating and cooling season impacts the energy consumption of the building which would not all the cases for the deterministic rule based. The predicted median energy consumption for heating using SimOcc integrated into the thermal simulation was 77.42 KWh/m 2 and 41.1 Kwh/m 2 annually when assuming deterministic rule-based behaviors, with a maximum variation of 46 percent. If the building had been designed using a behavior pattern in reference (deterministic), there would have been a very high risk that the energy consumption would have been larger than the simulated. Similarly for the cooling, the energy consumption through the cosimulation 0.58 kWh/m 2 and 1.26kWh/m 2 when assuming deterministic (Figure 5.23). Comparison of the deterministic and stochastic window opening models, shows, when an occupant interacts with the building systems to retrieve comfort change, a significant amount of energy is consumed. Figure 5.24 shows that there is a significant difference in energy consumption by the stochastic scenario. The yearly mean predicted mean vote (PMV) is almost equal in both cases. The estimation of PMV model using TRNSYS assumes airflow of 0.1m/sec (default value). This air velocity level is increased automatically to achieve a PMV of -0.5 to 0.5. The increase of energy consumption does result in agent to stay in the comfort zone (Figure 5.25). The energy consumption required by the two models to make the occupant in the comfort one according to Fanger's PMV model is 66.08kWh/m 2 is for deterministic and 111.6 kWh/m 2 for the stochastic. 

Conclusion

In this study, the window opening/closing behavior models of the occupants were implemented and analyzed by linking a building energy analysis tool with an OB modeling tool. The input and output of each tool were exchanged and the process of updating the prediction results using a simulation and an algorithm was utilized for analyzing the OB and building performance. Coupled with TRNSYS one test case was studied, with the range of results being compared to deterministic representations. SimOcc provides a convenient and comprehensive basis for representing the occupant stochastic behavior in TRNSYS. The results of this study indicated that the occupant behaviors in relation to the operation of natural ventilation are important parameters that affect the energy performance of office buildings.

Operable windows provide occupants with the ability to control local environments and satisfy human expectations to access outdoor environments. Operation behaviors or strategies for operable windows have substantial impacts on the building energy consumption. Analyzing the stochastic model influencing parameters (indoor and outdoor temperature) considered in the model. The energy consumption of buildings in which occupants interact (window opening) was simulated by probabilistic functions. The variation in energy consumption was up to 47% higher than when the interaction was simulated in a deterministic way by fixed schedules. Without changing the existing layout of the building, window operation plays an important role in energy efficiency. This discrepancy could be attributed to user interaction, specifically within windows opening. This way estimation, providing designers with a means to estimate the building performance in response to the different range of occupant behavior and this increases the efficiency of their design that is not possible using the current conventional deterministic models.

parameters. BDI helps define the internal structure of the agent, while stochastic decision-making functions are "embedded" inside this structure. For instance, beliefs are always used to represent what the agent knows about the environment, so the stochastic processes use these beliefs as parameters.

The Intentions of the agent are then triggered by the stochastic functions.

The agent model represents the view of the agents, instances and when they come into effect. The current SimOcc implementation has occupants as agents, each occupant is an instance of the agent class, and its role begins when the simulation begins. The BDI approach is expected to work in conjunction with stochastic patterns. For instance, the ability to open the window on arrival: -in SimOcc during the building simulation the stochastic activity model (present: arrival, movement between office, lunch and departure) is used. When the occupants are in the in an office and interact with the lighting switch, which has a corresponding effect on the heat gain and the building's energy demand. Often the light is switched on at arrival, remaining on during intermediate absences and turned off at departure. It is possible to link the devices to an agent's first arrival time and their final departure time of the day.

The agent needs to understand the state they are in at any given time. The agent should be aware of environmental conditions (e.g., air temperature, humidity) and the state of the device they can interact with (windows, shades, lighting, thermostat, etc.) and the current time. The agent must know if they are in a state of discomfort because of their activity.

Agents have mental attitudes; these are the agent's beliefs, desires and intentions. The BDI framework within SimOcc requires that agents have knowledge of the windows, shades, lights, their current activity and time of day these are parsed from TRNSYS and the stochastic models. The agents understand of the first arrival of the day and which departure is the last of the day. A shade belief is a fraction of the current shade state and the current indoor illuminance allowing the agent to lower the shade. Understanding a light is either switched on or off, the thermostat rises or falls, and a window is open or closed. The window can also have an opening duration allowing the agent to set a survival time for how long it will be in its current state. This requires the Agent to have knowledge of the time. Each activity will have an associated interaction, meaning that a transition to an activity can cause an interaction with the window, light, thermostat or shade.

Multi-simulator environment

The fifth chapter details how an occupant behavior model is implemented in multi-agent based, SimOcc, modeling platform. However, the modeling and simulation of these models required another platform for analyzing their combined impact on the building performance. The architectural co-simulation platform developed is important for including the occupant behavior model with the building performance simulation. It will help the control of different behaviors over the environment and the resulting impact on building performance. The perception of the environment serves to initiate the occupant into interaction with the building system.

Modeling of occupant behavior in SimOcc

This SimOcc platform uses multi-agent modeling to simulate the behaviors of multiple occupants in a non-residential building. The platform provides generic functional modeling modules and computational algorithms that are relevant to the decision-making process in order to develop an occupant behavior model for an existing building.

The development of an occupant behavior model must be influenced by the characteristics of the building and its occupants. In this research, an educational building is chosen to be a test case for the case study. The occupant behavior model encompasses the three processes that are critical for initiating behavior research: defining behaviors, identifying behavioral triggers and measuring and quantifying behaviors. Using simulation coupling, the behavior impact on thermal conditions and energy use can be analyzed.

Case-1_ two user behavior (Window and thermostat modeling)

The rooms were naturally ventilated and heated by a waterborne boiler in the winter season, working with a dead band of 2 0 C and a maximum power of 5000 W placed under the window in each room. The infiltration air flow rate to the room through the crack is assumed to be 0.6 ACH. Both buildings have only a window on the north side and have one wall facing the external environment. The entire schedule, we will consider here for internal gain is like the case study considered in chapter 5. Windows opened with a variable degree; however, in the case study, we assumed a corresponding tilted angle of 30 0 of the total openings. The probability model of the windows opened accordingly to a probability that was strictly correlated to the indoor and outdoor temperature.

We integrated a probabilistic model developed on the multi-agent-based platform considering the window operation and thermostat adjustments. Following the same methodological approach, the thermostat model is added to the case we considered in chapter 5. The up and down probability of the thermostat is triggered by the indoor air temperature (Figure 6.2.1.1). For example, at the arrival time, first we will calculate the probability of up or down and the value will compare with random numbers and thereby translating to boolean number. 

Simulation Result

Due to the complexity of occupant behaviors, the behavior pattern of each occupant may be independently different. There are even variations for the same occupant on different days depending on the simulated results. A multi-agent modeling approach was used to simulate multiple occupant behaviors in an operating building.

In the probability model the windows opened as a result of the probability that was strictly correlated to the indoor and outdoor temperatures. The window opening probability has a normal distribution like bell-shaped as duplicated in Figure 6.2.1.2 and presents a high probability of opening in the summer seasons between May to end of September. The simulation was taken place for 10 different random numbers. There is a trend whereby in cases where there are more residents, the consumption of heating energy is higher. To present the model test results from a more comprehensive view, the Figure 6.2.1.3 shows that median heating energy consumption simulated using fixed input values was 74 kW/m 2 -year. However, the energy consumption for the probability model ranged from 81.3 to 111.2 kW/m 2 -year, with the maximum variation of 49%. The greatest energy consumption is due to probabilistic behavior as it tries to reach a comfort by opening and closing the window. In addition, the downward trend in the MAS scenario suggests that more energy could be saved if the efficient occupant behavior was encouraged without compromising occupant comfort. If the building had been designed using a behavior pattern as in the reference, there would have been a very big risk that the actual energy consumption would have been larger than calculated.

Since there is no constant input of air change rate, however, the probability of opening and closing of the window depends on the dynamical changing environmental conditions, a significant variation in ventilation losses was found between the stochastic and deterministic models. Ventilation losses from airflow through cracks and openings were indicators of the influence of window opening behavior on building performance. The building energy performance was significantly influenced by the ventilation losses if the ventilation rate operated by the users. 

Case-2 Multi-user behavior (thermostat-window-lighting and shade modeling)

The results of the simulation showed that a single window use behavior using MAS resulted in slightly higher energy consumption than an existing simulation result using the default TRNSYS inputs. Apart from energy consumption, the comparison also revealed that the thermal conditions were very different.

Energy consumption

The key findings presented in this paragraph, highlight how the behavior of the occupants and the composition of office systems can impact the building's energy performance. The annual energy consumption linked to the different behaviors of the occupants, divided by the end users, is shown in the Figure 6.2.2.1. The simulation results confirm significant variations in the building's energy performance when different scenarios of occupant behavior are considered.

A probabilistic approach is adopted to investigate how stochastic occupant behavior models influence the quality of the indoor environment and energy consumption and improves the accuracy of energy performance in building simulation tools.

The objective is to define the user behavior that describes the user interaction with the controls and with the window opening, shading fraction, lighting and thermostatic radiator valves. In the occupancy schedule, the occupant is always present, but the behavior of the occupants is represented by probability. TRNSYS indoor environmental and energy, as most simulation programs are deterministic. Therefore, it is necessary to translate the probability that an event takes place in a deterministic signal.

A way to solve this problem is to compare the given probability value to a random number to determine if the event is taking place or not.

The occupants of naturally ventilated buildings open their windows to improve indoor air quality or comfort by reducing indoor temperature and encouraging air movement. The window harnesses and utilizes the prevailing wind to cool and circulate air through the space. The driving force of the wind across the window is the buoyancy or stack effect, which is the result of the difference in temperature between the indoor and outdoor climate. The subsequent variation in air density and pressure gradient of the indoor and outdoor air masses results in warmer, less dense air rising and escaping through the exhaust. Consequently, new air is drawn in to replace the leaking air. Furthermore, although window settings are not direct energy consumption behaviors, their impact on total energy consumption is still considerably according to the simulation results.

There are no specific ventilation systems (in and out) in the classrooms that have not been renovated. Therefore, the ventilation of these classrooms is very much dependent on the opening of the window.

The heating energy consumed in the room when the occupant interacts with the window and got a greater probability to open increases from the base case (deterministic) of 67.96 kW/m 2 -year to 88.78 kW/m 2 -yearly this due to more heat energy is required to heat for the fresh air that gets in. However, less than when the window is opened with occupancy schedule causes a heating energy consumption of 101.83KWh/m 2 -year, this is because the opening time of the window increases the ventilation rate as well. Furthermore, significant differences can also be observed when comparing different occupant behaviors within the same office type category.

The impact of the overall behavior of the occupants was discussed earlier. It is the result of combinations of different single actions (i.e., window, shade, lighting operations, etc. It is therefore essential to quantify individually the impact of each measure on the energy efficiency of buildings. It would highlight the actions that building designers should take to predict more accurately the future energy performance.

The Table 6.2.2-1 is a summary of twelve different stochastic occupant behavioral scenarios that combine the role of single and multiple behaviors. The different column in the table specifies the mean PMV, the energy consumption and the percentage of comfortable hours. The comfort determination criterion is based on the ASHRAE comfort model included in the TRNSYS calculations. The agent was more comfortable in changing the behavior of the stochastic occupants, while consuming less energy using the stochastic behavior of simple lighting to maintain comfort. Lighting actions have a negative effect on energy consumption, which is due to the heat generated by lighting systems. However, the results of this analysis show that stochastic shade-window-thermostat behavior has the most significant impact on energy use, due to more energy used to heat the fresh air used for ventilating the building and most of the shade is closed, so it requires more light energy to produce visual comfort in the room.

The blind of the room can be used by the occupants to control glare from the window, through indoor controls do little to ameliorate high indoor temperature. When the occupant interacts with the shade of the building, the heating energy consumption is reduced by -23% compared to the deterministic. The shade and lighting switch that interact with the occupants have a negative impact on the energy consumption of the building. Similarly, the lighting switch behavior reduces energy consumption by -29%. There is an indirect relationship between the use of heating and indoor temperature, which suggests that, as would be expected, occupants are more likely to use heating at low indoor temperatures.

The change in the window opening position was found to have a significant effect on the indoor airflow and the speed of airflow around the occupants. If all behavioral attitudes are combined for the study scenario, the total performance gap with respect to the deterministic scenario is 53%. Increasing the cooling set point and lowering the heating point, even at a few degrees, can significantly reduce energy consumption without compromising users' thermal comfort. A simulation study of renovated office buildings found a 1% increase in heating energy as a baseline for the deterministic scenario because of the increase and decrease in setpoint. From the behavior of all stochastic occupants, the scenarios with a higher probability of opening the window have a more important impact on both energy consumption and thermal comfort. 

Occupant comfort level differences

The applicability of adaptive criteria for thermal comfort depends on the individual's ability to take adaptive actions when they experience discomfort. The evaluation of the thermal comfort of building users is based on the measurement of objective physical environmental values such as relative humidity, temperatures, air quality, etc. The interactions between the occupants and building components also have an impact on the building occupants.

The series of environmental and user parameters makes it possible to establish general criteria of thermal comfort based on the calculation of two indicators named the PMV and predicted percent dissatisfied (PPD), which are associated with the values of the operating temperature, speed of the air and relative humidity.

An annual PMV value for the agent(s) is plotted to understand the effectiveness of the agent's behavior in achieving the agent's comfort objective. Occupant comfort level is to examine the Predicted Mean Vote Index (PMV) values within the designated time period. PMV stands among one of the most recognized thermal comfort models that were developed by P.O. Fanger Fanger, 1972 . Fanger's equations are used to calculate the mean response of a large group of people for a combination of thermal and metabolic conditions, according to the ASHRAE thermal sensation scale, which is a sevenpoint scale from -3 (cold) to +3 (hot). The PMV is an index that predicts the average climate assessment value of a large group of people. Whenever the PMV value was above 0.5 or below -0.5, it was considered an uncomfortable indoor environment.

In TRNSYS, the PMV information is available to extract after declaring the output variable in the engine, at the user-defined time steps. In this study, hourly PMV values are declared for the targeted thermal zones of the building and aggregated for the simulation period. To give a more complete picture of the PMV, the Figure 6. The PPD value, Figure 6.2.2.3, of the window opening behavior of the deterministic and rule-based model made the room in the comfortable range of less than 20% for all winter, however, in the summer, the PPD value is higher or outside the comfort zone as a result of closing the window (when the outdoor temperature exceeds the indoor temperature, there is some discomfort). As window duration increases, thermal comfort decreases, or the occupant will be in areas of discomfort. However, thermal comfort alone is not the only measure of comfort. The annual relative humidity (RH) of the building following the simulation of the suggested changes is presented in the Figure 6.2.2.4. In all cases, relative humidity was generally lower than the recommended limits set out in ASHRAE Standard 62. If the RH in the building is below 30%, especially in the summer months, the proposed strategies help to increase the ventilation rate and more fresh air, which help to raise the RH by opening the window. Increasing the RH will help to avoid any possible discomfort related to skin drying and so on. The RH in the whole winter is in the comfort zone for all scenarios. In most European countries, they have used a hot water heater to heat a room in winter; however, in summer, there is no way to cool a room. Hence, from the Figure 6.2.2.4, it is difficult to make a comfortable room without using an extra mechanical cooler. 

Conclusion

Natural ventilation retrofitting techniques to improve the indoor environmental conditions of existing offices were investigated through simulation scenario. Performance on the condition of the indoor environment was assessed in terms of PMV, PPD, relative humidity and carbon dioxide. Natural ventilation retrofits were evaluated over an entire year during normal office hours. The simulations took place through the coupling of the multi-agent-based on the building simulation (TRNSYS). In other words, the applicability of the novel occupant behavior model is demonstrated. The results presented can help building designers and engineers to optimize the mechanical or electrical systems of the building, resulting in energy savings and a more comfortable indoor environment.

Further studies may include simulation running for a building with mechanical equipment for ventilation and cooling. The parameters in simulation tools (TRNSYS) that reflect behavioral changes should be revised by developing an independent platform to completely capture the actual impact of the occupant behaviors. The ability to actively account for the user side of building performance will benefit all stakeholders in a building for informed decision-making. A deeper understanding of how the occupants interact with building components can not only optimize system design and energy use throughout the building lifecycle, but also improve occupant comfort levels.

First, a multi-agent-based model was developed in the context of the built environment, which practically predicts the behavior of building occupants. This model is built on the assumption that the occupant is adjusting for physical comfort through a building element that can adapt to the surrounding environment. Relevant parameters of the built environment such as internal and external temperature, relative humidity, internal illumination and external global horizontal illumination level were used as model inputs. The building model has been validated with data from smart sensors. Real-time environment data were logged by sensors embedded in the office and used as input to the simulation tools and the simulation result was compared with the actual indoor temperature and carbon-dioxide.

The comparative results at the individual and group levels indicated an acceptable fit at the time-level, which confirmed the theoretical basis of the model and demonstrated the validity of using the model for further studies. These simulations adopt TRNSYS-a powerful building simulation tool to create a building model and act as a bed for the co-simulation. CONTAM software was used to estimate the mass flow rate of the air and the indoor air quality. Three simulation scenarios were then designed including the default setting, rule-based setting, and MAS-based setting. For MAS-based environment, a co-simulation framework was established that exchanges information from the occupant behavior model and building simulation model at each time step. The simulation results were analyzed in the aspects of energy consumption, occupant comfortable level, indoor air quality and behavior change patterns, which assessed the influence of occupant behaviors on building performance. In summary, this research has led to the development of a new model of occupant behavior which has proven practical in providing another critical dimension to existing building simulation models.

A BDI methodology is used to develop a set of objectives and plans that an agent must follow to impact the environment, considering the beliefs about current environmental conditions. These plans are implemented within SimOcc and tested to examine the impact that consideration of each individual plan has on the overall building performance. These findings suggest that modeling these behaviors should be explored further, through the collection of empirical data.

Chapter 7 Conclusions, limitations and future works

Conclusions and recommendations

The modeling of occupant behavior in SimOcc is based on the hypothesis that occupants can adapt to the surrounding environment for their physical comfort through accessible building systems and equipment. Only the dynamic change in environmental condition was considered when making behavioral decisions commonly observed in buildings. The principal objective of the thesis was to estimate the impact of the behavior of the occupants on the performance of the building. Consequently, TRNSYS simulation tools were used to perform the building performance simulation. However, due to the limitations of the simulation tool, it was difficult to achieve the objective of the study, which was to consider the real impact of the change in individual stochastic behavior on the performance of the building.

In a building design process, energy simulation is mainly responsible for helping architects and engineers make design decisions that improve the performance of the building. However, the traditional simulation did not consider the realistic behavior of the occupants and therefore underestimates the actual performance observed in buildings. Thus, the dissertation proposes a new framework that combines the development and implementation phases of an occupant behavior model to gain an understanding of how a building and its occupants interact and impact building performance. A case study of the application of the frame in a realistic commercial building was conducted to illustrate the validity and feasibility of the research.

First, the multi-agent environment was developed to model the overall behavior of the occupants. The SimOcc, multi-agent-based platform, was used to integrate the stochastic occupant behavior model and in this platform, the social interaction was modeled based on BDI principles. The occurrences of behaviors are directly affected by the indoor environmental conditions like indoor temperature, relative humidity, illuminance and carbon dioxide, similarly, by the external environmental conditions such as temperature, relative humidity, illuminance, air velocity and solar radiations.

The occupant behavior model based on the multi-agent-based approach in SimOcc is coupled with the building simulation in the co-simulation platform with the orchestrator to control the data transfer from both sides as input and output. Subsequently, the co-simulation model was tested using data collected by the embedded sensors in each room. Real-time environmental condition data were logged by sensors from the test office and used as input to the co-simulation model. The simulation results were then compared to the actual collected data. A comparison of the differences between the two results indicates that it was in the acceptable range using Root Mean Square Error (RMSE) and Normalized Mean Bias Error (NMBE).

This co-simulation adopted TRNSYS-a powerful building performance simulation environment to create a thermal building model. The research findings were extracted from a series of simulation experiments applying the methodology discussed in the dissertation.

Three simulation scenarios were then designed, including the default parameter, the rule-based simulation and the MAS-based to perform the simulation. First, the simulation experiment is used to simulate the occupant behavior on a fixed schedule, such as an occupant's weekly schedule, using also for light switches and shades to simulate building performance. Second, the experiment was based on rule-based modeling, for example, the window was modeled to match the occupant's schedule and to vary with the indoor temperature like when the room is occupied and the indoor temperature is greater than 24 o C, the occupant starts to open. However, most simulation practices have made little effort to match schedules that are reflective of reality. Therefore, the purpose of the developed simulation environment was to make a model of occupant behavior which is closely linked to the actual behavior.

The third simulation focused on the potential of multi-agent modeling as a framework for the prediction and simulation of occupant behaviors. In the MAS-based simulation, a co-simulation framework was established which exchanged data from the occupant behavior model and built a simulation model at each time step. The simulation results were analyzed from the perspective of energy consumption, occupant comfort, indoor air quality (carbon-dioxide) and behavior change models, which quantify the influence of occupant behaviors on building performance. As a result, the simulation environment was able to simulate the behavior of multiple occupants within a naturally ventilated office space.

In summary, this research developed a novel occupant behavior model that strives to make predictions of realistic occupant behaviors in buildings, calculates the behavior influences on building energy performance and occupant comfort level and ultimately produces promising results that potentially could help increase the accuracy of building energy simulation programs.

Limitations of the Research

The limitation of occupant behavior modeling using a multi-agent-based simulation was developed in relation to the indoor and external environment, for example, indoor and outdoor temperature for window modeling, indoor illuminance for lighting modeling and shading fraction for shading modeling.

In other words, it has been assumed that the condition of the environment is the only factor that triggers occupant behavior. However, to model OB in multi-agent-based system shows that there is a need for more data collection to increase the accuracy of the model, for instance, window opening behavior in response to rain, indoor air quality, long-term absence, age, gender and holidays. Apparently, the completeness of the model can be improved by considered more relevant factors such as behavioral factors.

The other limitation related to the case study, the case considered was an existing commercial building, more specifically, an educational building. The offices were used as sample rooms for validations and simulations. As a result, the model has not been tested for other cases such as residential or multipurpose buildings. However, the behaviors of the occupants vary considerably depending on the functionality or use of the building. The generality of the current occupant behavior is limited to the education office buildings and locations.

The quality of data collection, accuracy and reliability of the results are dependent upon the accuracy of the data collected, the data collected from the Synergy platform was availability of missing data for unknown reasons. This in turn limited the simulation to not fully depending on the experimental input data. For instance, the weather data is used both from the experimental data for the validation and from the TRNSYS software for the whole simulation.

With information on the behavior of the occupants complemented to the energy model of the building, theoretically, the result of the simulated energy consumption will be closer to reality. Therefore, real energy consumption data can be collected on a daily or monthly basis and measured data can be compared with simulated results.
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  field monitoring campaign of indoor and outdoor climate conditions and occupants control actions was performed in a building. In this study, the first part was measured by a customized embedded sensor node. The sensor node consists of a ten-minute step indoor condition data were recorded indoor temperature [C], presence, indoor relative humidity [%] and CO 2 concentration [ppm]. A weather station located in the University of Lorraine Epinal campus was used for external environmental data extraction regarding outdoor temperature [C], outdoor relative humidity [%], global solar radiation [W/m 2 ], wind speed [m/s], wind velocity, wind direction and the sky temperature. Moreover, interactions of occupant regarding window and door position [open/close], and heating set-point on thermostatic radiator valves [C] were recorded. Window and door sensors were installed on windows and doors that occupants declared to use more often when ventilating the dwellings. The exact angles of windows and doors have not yet been studied (Figure 3.13).
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 3 Figure 3.13 Sensors and actuators installed in the room for collecting data The validation was based on a comparison of the results obtained from the simulation software with the actual values measured in an apartment in terms of internal environmental variables. In this dissertation, validation is taking place based on indoor temperature and carbon-dioxide values. The Root Mean Square Error (RMSE) or Coefficient of Variation (CV) and Normalized Mean Bias error (NMBE) were used to quantify the deviation between the predicted and measured values (K Sun et al., 2014).
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 42 Figure 4.2 Class diagram for Agent and its subclassesThe modeler can specify initial beliefs for an agent. Initial beliefs are beliefs that the agent receives at initialization. Initial beliefs specify the initial belief-set of an agent in the model and are a way to define initial scenarios for a simulation run. In Figure4.3, the agent takes sensory input from the environment, and produces as output actions that affect it. The interaction is usually an ongoing, non-terminating one.The inputs from the environment are converted into facts, associated with geographical locations. Agents periodically execute a perception process that converts the facts available at the agents' current location into beliefs. Facts are objective physical values (e.g., temperature in room X is 21°C) whereas beliefs are subjective internal representations (e.g., temp. feels a bit warm). The perception process enables us to convert facts into beliefs, possibly in a non-linear manner. It is likewise possible to model the sensing process in artificial systems: the perception function can model the uncertainty, noise, bias or non-linearity of a sensor.
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  SimOcc.geo.GeographicModel (default_dist: Union [int, float] = 0) SimOcc.geo.Location (name: str, parent: Optional [Location]) add_location (name: str, partof: Union [str, SimOcc.geo.Location, None] = None) → SimOcc.geo.Location Create a new location and add it to the geographic model. Returns the created location Distance (from_loc: Union [str, SimOcc.geo.Location], to_loc: Union [str, SimOcc.geo.Location]) → Union [int, float, Callable [[], Union [int, float]]] set_distance (from_loc: Union [str, SimOcc.geo.Location], to_loc: Union [str, SimOcc.geo.Location], distance: Union [int, float, Callable [[], Union [int, float]]]) → None Distance from a location to one of its ancestors (i.e., enclosing location) is always 0. Where • from_loc -location instance or location name • to_loc -location instance or location name • Name -the name of the new location • Partof -the location enclosing the new location. Defaults to the root location.
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 54 Figure 5.4 Scheme of the model The general formula for determining the probability to increase or decrease shading actions
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 5 Figure 5.5 3D-building model
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 5 Figure 5.10 Five-window and one-door opening/ closing action respectively The occupant's behavioral models, such as those used to represent the interaction of the occupants with the built environment, need to be validated in order to achieve an accurate evaluation of energy consumption in commercial buildings. Model validation is an essential step for the verification of architectural, mechanical and electrical systems. Validation is the measurement of the accuracy of a computer simulation in comparison to experimental data. 918370. The verification was performed by comparing the results obtained by the simulation software with the real values measured in an apartment in terms of internal environmental variables. It is in terms of indoor temperature and carbondioxide values as shown in Figure 5.10 and Figure 5.11. The Root Mean Square Error (RMSE) or Coefficient of Variation (CV) and Normalized Mean Bias error (NMBE) were used to quantify the deviation between the predicted and measured values of the room temperature and carbon-dioxide and are given in equation 21 and equation 22( Sun et al., 2014).
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  in the five cases is 71.
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 5 Figure 5.17 Distribution of the heating energy consumption of a different occupant behavior; the ends of the whiskers indicate minimum and maximum values. The bottom and the top of the boxes represent the 25th and 75th percentiles, and the horizontal lines and dots within the boxes denote the median and mean values, respectively.
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 6 Figure 6.2.1.1 Thermostat status prediction algorithm in SimOcc
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 6 Figure 6.2.1.2 Probability of window opening When the rule-based model was used, the minimum energy consumption was recorded due to the fewer number of opening the window and setting the thermostat setpoint at the lowest value when the room is vacant. The energy consumption using the rules-based model was 8.8 KWh/m 2 lower than the reference (deterministic) consumption. At the same time, the consumption of cooling energy increased.
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 6 Figure 6.2.1.3 Simulated heating energy consumption for deterministic simulations (singular value), rulebased model and for the sets of 10 different random number simulations (probabilistic inputs) The cooling energy consumption for the rule-based model was higher than the standard fixed input values. A stronger tendency is displayed on the change in cooling energy consumption in the case of the scenarios compared to the heating energy use investigation (Figure 6.2.1.4).

Figure 6

 6 Figure 6.2.1.4 Simulated cooling energy consumption for deterministic simulations (singular value), rulebased model and for the sets of 10 different random number simulations (probabilistic inputs)

  Figure 6.2.1.5 displays a comparison among different results of ventilation losses for different models (single deterministic, a set of 10 random simulations of stochastic or probabilistic (S) model for thermostat setpoint (T), window (W) and rulebased model of the window (R)). The energy consumption losses due ventilation on the deterministic model is simulated by considering a fixed input value of ventilation rate was 3.9 kW/m 2 -year. However, the ventilation loss for the set of 10 different random number simulations ranges from 6.8 to 26.13 kW/m 2 -year and for the rule-based model the ventilation energy losses by varying the window opening as a function of the room indoor temperature was 4.7 kW/m 2 -year. The maximum percent variance in ventilation energy losses for the deterministic and probabilistic model was greater than 80%. The difference in the consumption between the two simulations was primarily due to the variation of the heating set-point in the reference simulation and longer periods with open windows also contributed to the increased energy consumptions.

Figure 6

 6 Figure 6.2.1.5 Energy loss through infiltration and natural ventilation for deterministic simulations (singular value), rule-based model and for the sets of 10 different random number simulationsThe breakdown of the simulation into monthly graphs, Figure6.2.1.6, gives us a better understanding of the variations in the energy performance of buildings relative to the behavior of occupants over a year. Throughout the year, heating demand is greater for stochastic simulations, as occupants can interact with windows at a range of temperatures (for example. to refresh the indoor air). During the summer the rule-based model registered zero energy consumption, however, for the probability model, the heating energy varies depending on the variation of the window opening durations.

Figure 6

 6 Figure 6.2.1.6 Simulation results for monthly heating energy consumption for deterministic simulations (singular value), rule-based model and for the sets of 10 different random number simulations (probabilistic inputs)

Figure 6

 6 Figure 6.2.2.1 The average and maximum energy consumption difference for different scenarios

  2.2.2 presents the PMV trends for occupant behavior during the simulation period (8760 hours). The extreme value of the rooms with an open window scenario almost reaches the number of -3.5 and less than. In the figure, the PMV values of the buildings are shown in the comfortable indoor environment when the window is closed. However, the building was out of the comfortable indoor environment when the window is open to ventilate the room. This shows, a room with a natural ventilated building needs a mechanical ventilator to satisfy the indoor environmental condition, however, with window only it is difficult to meet the ASHRAE standards.
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 6222 Figure 6.2.2.2 The PMV of different occupant behavior
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 6223 Figure 6.2.2.3 Figure 6.1.8 the PPD of different occupant behavior

Figure

  Figure 6.2.2.4 The annual relative humidity (RH) of the building 6.2.2.3. Carbon-dioxide (CO2) Figure 6.2.2.5 presents the CO 2 concentration for the base case and the interventions.In all cases, the CO 2 concentration was within the acceptable range of ASHREA standard (<1000 ppm) expect when considering the window is closed. For an open window area of 10%, the maximum value of the CO 2 reaches 1000 ppm, while the minimum value reaches 400 ppm. When the window opened 10% of the total areas does not exceed the ASHRAE recommended value of 1000 ppm. However, the value exceeds the threshold when the window is closed for naturally ventilated buildings.
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 6 Figure 6.2.2.5 CO 2 concentration in the classroom
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  Figure 6.2.2.6 CO 2 concentration in the classroom
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Table 2 -

 2 2 Internal occupant behavior influencing factors Apart from the above,[START_REF] Weerasinghe | Occupant energy behaviours -A review of indoor environmental quality IEQ and influential factors[END_REF] reviewed the occupants' behaviors inside buildings, assessing the main driving factors for their actions categorized into six main types of factors, physical environment, psychological, physiological, contextual, social and time-related factors. As depicted in Figure2.11 showing the influential factors grouped under these categories.

	Internal Driving Forces
	Psychological	Expectations and needs of comfort, lifestyle and habits,
	Occupant related	environmental awareness, . . .
	Social	Interaction with other individuals, family composition
	Biological	Clothing age, gender and health activity, . . .

Table 2 -

 2 3 Review papers related to the country, type of occupied behavior used for their study, methodology, building type and the impact of occupant behavior on building performance (x_ not considered, √_considered)

	Ref.	Year	Country Journal/			Occupant Behavior			Methodology Building	Impact
				Conference								Type
					Window Light Shade Thermostat DHW PRES.		
	1		Iran	Journal	√	x	x	x	x	x	Simulation/	Residential 90% change
											Energy plus		in Heating
													and cooling
	2		Hong	Journal	√	√	x	x	√	√	Simulation	Residential 14%
			Kong										improve
													energy
													consumptio
													n
	3		Miami	Journal	x	x	x	x	x	√	Simulation/	Office	---------
											Agent-based	
	4		Denmar	Journal	√	x	x	x	x	x	Measurement	15/	-------------
			k								/ Logistic	Residential
											regression	
	5		Sweden Journal	x	x	x	x	x	√	Simulation/	5/	Zero in
											IDE	Residential	energy gap
	6		Korea	Journal	x	√	x	x	x	x	Simulation	Office	50%
													increase in
													lighting
													energy
	7		Tehran	Journal	x	x	x	x	x	√	Field Study	Residential 32-60%
													improve on
													energy
													efficiency
	8		Canada Journal	x	√	√	x	x	√	Simulation/st	Residential
											ochastic and	
											rule-based	
											models	

Table 3

 3 

-1Table 3-1 Occupant behavior setting in building energy simulation (TRNSYS-CONTAM), each of which has an open/close or on/off state schedule modification field.

Table 3

 3 

	-1 Occupant behavior setting in building energy simulation (TRNSYS-CONTAM)
	Objects	Status	TRNSYS
	Shade	Raising/lowering	Radiation depending on shading control
	Lighting	On/off	Internal gain
	Window	Open/close	Infiltration
	Thermostat	Increase/decrease	Heating/ cooling

  Objects are representations of artifacts in the world or data objects created by information processing and so on. Unlike agents, objects do not behave based on their representations of the world (beliefs), but instead are directly affected by the actual world state (see Beliefs and Facts section). One of the most important elements of SimOcc with which agents interact is the inanimate artifacts/objects. The key properties of objects are facts, work frames, and activities.

	•	Attribute -the attribute to set
	•	Conversion -conversion to apply to transform fact value to attribute value
	•	P -a method, whose first argument is the agent, and the second is the current time
	•	t -the current time
	4.5.2. Objects

Class

SimOcc.agent.BistableDev (name: str, output_variable: str, location: SimOcc.geo

.Location, sim: Simulation) Bases: simocc.agent.Device Switch (requester: SimOcc.agent. Agent, t: Union [int, float]) → None Turn_on/off (requester: SimOcc.agent. Agent, t: Union [int, float]) → None Class simocc.agent.Device (name: str, location: SimOcc.geo.Location, sim: Simulation) Bases: simocc.agent.Agent add_action (name: str, action: Callable [Agent, Union [int, float], None]) → None Add an action that this device can do

Table 5

 5 

	-1 window operation affecting parameters		
	Physiological Psychological	Social	Physical environment	Contextual
		Shared offices	Indoor temperature	Window type
		Presence	Outdoor temperature	Season
			Solar radiation	Time of the day
			Wind speed	
			Rain	

Table 5 -

 5 2-Building envelope construction material physical properties

	Wall Construction						
	Elements	Conductivity (kJ/h-m-K)	Capacity (kJ/kg.K_	Density (kg/m 3 )	Thickness (m)	U (W/m	2 .K)
	Laminated Wood	0.432	1.3	800	0.05		
	Plywood Steel	0.3816 162	1.42 0.48	552 7850	0.03 0.1	0.82
	Plywood	0.3816	1.42	552	0.03		

.2. Data Collection and Validation

  

Table 5 -

 5 3-Occupancy density, equipment, lighting density and the environmental conditions from ASHRAE standards using the building area method

		Parameter Unit	Density
		Occupancy People/m 2 0.08
	Internal Gains	Equipment W/m2	15
		Lighting	W/m2	15
	Environmental Conditions	Heating Setpoint Cooling Setpoint	C C	21 24
		Infiltration ACH	0.6

Table 6 .

 6 2.2-1 Twelve different stochastic occupant behavioral scenarios that combine the role of single and multiple behaviors Closing the office shade at the intermediate step reduces heating energy by 52.4 kWh/m2-year versus deterministic or rule-based schedule 88.78 or 101.83 kW/m 2 -year respectively.

Table 6 .

 6 2.2-2 PMV yearly average simulation resultFrom the Table6.2.2-2, for the naturally ventilated building, all the PMV values are below zero and are out of the comfortable range as defined by the ASHRAE if the window is open. However, for the rooms with closed windows both for deterministic and stochastic behavior nearly all the PMV values were slightly closer to the neutral value, which indicates occupant behaviors tend to adapt to a more comfortable environment.

This research is part of its unifying project INC-Wood (Digital Engineering for Wood Construction), the ISET department of CRAN, in collaboration with LERMAB focus on the energy management, indoor air quality aspects on the operation phase, via BIM, of the instrumentation of buildings.
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Research questions

The general question of such research is: To what extent can the occupant behavior influence the building's performance and how could we identify the determinants of performance, as well as the behavioral patterns and profiles?

1. How can we develop and implement stochastic models of energy-related occupant behavior in buildings model to estimate the impact on building energy consumption and occupant comfort through building performance simulation?

2. How does occupant behavior (window, lighting, radiator and shade) respond to building energy consumption and environmental quality (thermal, indoor air quality) change?

3. Which behavior has the most significant influence on the performance of buildings?

4. How can we link the measured impact of occupant behavior and energy consumption in buildings?

5. How can we develop a co-simulation architectural platform and improve performance prediction of advanced building envelopes in multiple domains?

6. It is essential to verify the validity of the occupant behavior. Therefore, a validation method is required before using the model within the simulation tool to estimate the performance of the building. How to validate the multi-agent-based occupant behavior model and co-simulation architectural platform? The third objective: custom-installed sensor boards are used to observe the indoor environmental conditions and to verify and validate the building simulation model. By collecting the required input data for the occupant behavior model and the external environmental condition from the weather station, the simulation model can be fed with actual data and then it generates simulated results. Afterward, the observed status data collected in the same period as input data are compared with the simulation results, so that the model's performance can be evaluated in a general view.

Finally, on the fourth objective, the identified related scenarios are going to study the energy related OB impacts of the developed MAS on building performance simulation using the existing multi-purpose educational building as a case study. After testing and calibration, the occupant behavior model is integrated with a building simulation tool to exchange input and output to enable a dynamic simulation process.

The following sub chapters are organized to explain the whole system in detail, comparing each step of the research processes with the traditional simulation process and highlighting the shortcomings of the current approach and how the proposed methodology mitigates the shortcomings. Subchapter 3.2 discusses how 'behavior' is defined and the occupant behavior modeling approach used throughout the 

Agent Platform overview

These last years have seen the development of many platforms, toolkits and frameworks dedicated to the implementation and simulation of agent-based models. Some stochastic occupant behavior has been developed using different platforms like No-mass and BRAHMS which are used to model the stochastic occupant behavior in building energy performance.

Brahms, created by NASA, is a set of software tools to develop and simulate a multi-agent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms is a fullfledged multi-agent, rule-based, activity programming language. It has similarities to belief-desire-andintention (BDI) architectures and other agent-oriented languages, but is based on a theory of work practice and situated cognition. Also integrates the subsumption architecture. Subsumption architecture provides flexible perceptual scoping, redirection of attention, and resumption of interrupted activities (Clancey et al., 2003).

The limitations of both platforms are they didn't allow parallel wor flow or allow only executing one work frame at a time. For instance, it is not possible to do an interaction with shade or lighting while watching television. JADE (Java Agent DEvelopment Framework) and Repast are open-source software framework fully implemented in the Java language that aims at simplifying the implementation of multi-agent systems. JADE is a generic platform -its scope exceeds agent-based simulation and covers all fields of multi-agent systems. However, using it to design models, requires a lot of development in Java, and good skills in computer sciences and programming, when dealing with geographical systems as JADE does not provide

Coupling with thermal building simulation

The activities of occupants, their presence in different locations in the house, their control over different equipment and their communications are modeled in the SimOcc simulation environment. However, to model the environmental variables a physical simulator is required that provides information about physical aspects, such as indoor temperature, relative humidity and outside weather conditions, etc.

Summary and conclusions

The modeling and simulation tool for the implementation of models of occupant behavior is presented with cosimulation to couple those models with models of thermal buildings.

The SimOcc modeling and simulation environment supports the social and behavioral elements required for dynamic group behavior and addresses the need to model dynamic group behavior. The SimOcc platform is developed after a review of various modeling tools for occupant behavior and sample tests with Brahms. The occupant behavior model developed in the SimOcc is based on the BID architectural principles. Therefore, SimOcc is one of the few occupant behavior modeling platforms that support social and group interaction. This developed environment provides the ability to model and simulate the agent and its interaction with the complex model based on building systems within dynamic durations.

The BID model is implemented in SimOcc through its various components. For example, the number of the occupants in the environment, the building systems in the given environment, the geographical location of the agent, actions with building objects and at what time will perceiving all the beliefs on the time scale is modeled in the SimOcc environment using a representative of "agent model", "object model", "location model", "activity" and "simulation model" respectively.

The aim of this work is to estimate the impact of occupant behavior on building performance and requires the coupling of the occupant behavior with thermal building model. The two models are integrated in the cosimulation environment.

Where scale parameter and the shape factor k are always positive integer numbers ( >0, k>0)

Where the shape function is ( ) (Chapman, Siebers and Robinson, 2011) and the scale parameter

Where, (Regression coefficients) are estimated from data relating to an aggregate population, so that each agent uses the same values to predict the probability of a transition. SimOcc estimates the occupancy and the length of the presence and departure when it is required.

For this research, =0.418, = 2.151, = 0.172 and is the outdoor temperature from TRNSYS simulation.

Guided by the initial observation that occupation events influence actions to be taken, we may infer different transition probabilities T ij for these events so that we have three different sub-models for actions on arrival, departure and transition. Simulation may then be conducted as opening on arrival is predicted by a specific probability T 01,arr, and closing on arrival by T 10,arr . Actions after arrival are predicted by another sub-model launched at regular time steps, with transition probabilities T 01,int if the window is closed at this time and T 10,int if it is opened. When the occupant departures, a third sub-model predicts actions, with transition probabilities T 01,dep and T 10,dep . In each case, T 00 and T 11 are easily deduced: T 00 = 1 -T 01 and T 11 = 1 -T 10 .

Detailed steps for implementation of the hybrid Markov chain with a Weibull distribution to predict opening times are implemented. Suppose climate data is available and occupation is first predicted by a preprocessor for the entire simulation period.

A general scheme describing the implementation procedure for a dynamic simulation of window states W(t) for time steps of length t = (t i-1 -t i ) is provided in Figure 5.2, which consists of the following steps: The occupancy status (absence, arrival, intermediate or departure) is retrieved. The different cases considered here in the flow charts are when A. No-occupancy in the room and the window state is set as identical to its previous state: W(t i ) = W(t i-1 ). B. On arrival: -if the probability is greater than the probability of opening the window then the window keeps closed. The duration estimated from Weibull distribution is less, the window is closed for each given time step otherwise, if the reverse happens, the window will be open on each time step. If this number is in the possibility of committing the act, the act will take place; otherwise, the state will remain in its current state. The external schedule of the window is presented in the TRNSYS simulation studio that represented as 0 and 1 which is fully closed and opened respectively. The action will follow depending on the current condition of the window  Lighting: The internal gains due to the supposedly ASHRAE lighting system are equal to 15W/m 2 of floor area. Demand for electrical equipment is based on a ratio of 15 W/m 2 of floor area automatically switched on if the minimum work plane illuminance was lower than 300 lux; on the contrary, light switched off automatically at a luminance level of 500 lux.

 Infiltration (ACH): the assumed air flow rate is equal to 0.6 ACH.

 Heating system: heating begins in September and runs until April. The central heating system is used as a building heating. The heating setpoint is 21 0 C.

 Cooling system: Cooling begins between May and late August. The heating and cooling capacity is supposed to be unlimited. The cooling setpoint is 24 0 C.

Building energy simulation allows understanding the impact of different strategies on the building performance, but the results can present a difference between the predicted and actual energy consumption.

Deterministic models-reference model

To get an indication of the performance of the stochastic occupant behavior model to see its impact on the building performance, a reference model was implemented. The determinist model considered a standard deterministic input variable for window, thermostat and lighting control. For instance, a fixed value is used for the thermostat setpoint like 21 for heating and 24 for cooling and the occupant was passive to the setpoint. Similarly, the window is always closed and predefined air values for the ventilation were considered (Table 5-4), according to European Standard EU 15251 (Fabi et al., 2013). T heat = 19+2*occupancy T cool = 24-2*occupancy 5.7.5.

Result and discussion

Summary

The results of the statistical analysis provide the possibility of defining behavioral models of windows used to be implemented in simulation tool for energy simulations. Next, the focus shifts to the interaction with building systems, considering the window, light, shade and thermostat as variable functions. In the end, both models are used in the simulation for the purpose of obtaining the result and comparing.

Table 5-5-Simulation result of heating and cooling energy consumption per month for different types of occupants (Wh/m 2 )

According to the hypothesis made in the choice of deterministic rules, derived from default in the TRNSYS and the rules-based model, the performance results can deviate considerably. The average Chapter 6 Co-simulation

Introduction

This co-simulation platform uses multi-agent modeling to simulate the behaviors of multiple occupants in an existing commercial building. In the previous chapter, the results of a behavior simulation showed that the MAS approach compared to TRNSYS in terms of the total energy consumption calculation, the new method is suitable for considering the influence of the occupants' behavior in the performance of the building.

The goal of multi-agent-based modeling is to use autonomous agents that interact with their environment and other agents to simulate a real-world inhabitant that makes behavioral decisions based on its thermal comfort level. Individual agent behaviors are modeled and then the results are aggregated to explain the behavioral phenomena of the building. With the aid of the coupled building simulation, the impact of the behavior on thermal conditions and energy consumption can be examined.

The simulation was conducted on how the agent considers five behaviors (use of windows, use of shade, use of light, thermostat setting, level of clothing and metabolism) to reach his comfort goal. How an agent does adapt to dynamic thermal changes in space to maximize comfort and energy savings?

Behaviors are not only closely related to thermal comfort, but are part of the building system with implications on building energy consumption once behavioral changes are implemented. Behaviors are driven by thermal comfort and are closely correlated to specific environmental parameters (usually climate data) or behavioral triggers (Table 6.1-1). Based on the simulation, the thermal comfort level is determined by adopting Fanger's PMV and PPD model. SimOcc has a set of occupant behavior models and is designed as a platform to apply agent-based simulation concepts to occupant behavior in building performance simulations. There are many gaps in our ability to model population stochastic characteristics based on the lack of correlational data.

Agents within SimOcc in general treat stochastic phenomena using statistical models which are estimated from empirical real-world data. SimOcc uses a BDI approach to manage interactions; in these cases, the BDI approach allows agents within SimOcc to detect the environment through input