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École Doctorale en Informatique et Mathématiques de Lyon
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Abstract

Learning properties of data is a fundamental problem in statistics that has applications
in almost every aspect of our lives. There are two natural classes of strategies for learning
properties of data. Non-adaptive strategies collect all the required data and then processes
all this data in one batch, while adaptive strategies can use the accumulated information to
decide whether more samples should be collected. Furthermore, with adaptive methods
the way that new information is gathered can also be adapted according to what was
observed in previous steps. Since our goal is to minimize the required amount of data,
in this thesis, we study the optimal number of resources for both approaches in various
classical and quantum learning problems.

For testing classical distributions, we show that adaptive strategies outperform their
non-adaptive counterparts by a factor of four when the alphabet size is small. In addition,
adaptive strategies can stop earlier when the tested distributions are far apart from each
other. This advantage holds even with larger alphabets.

Concerning testing quantum states, we exhibit situations where adaptive strategies
have provable advantage against the non-adaptive ones. These include the (binary) hy-
pothesis testing, testing identity and closeness of quantum states.

In certain situations however, we have multiple ways of querying the data. These
situations can be modeled by quantum channels that output data after receiving an in-
put chosen by the learning strategy. These inputs can also be adapted to the previous
observations by adaptive strategies while non-adaptive ones should determine all inputs
in advance. We determine the optimal complexity of testing whether a channel is perfect
or not. Moreover, we characterize the optimal number of resources for learning a general
channel or a Pauli noise in the non-adaptive setting. Furthermore, we reduce the gap
between adaptive and non-adaptive strategies for learning Pauli noise.
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Résumé

Apprendre à partir de données est un problème fondamental en statistique qui a des
applications dans presque tous les aspects de notre vie. Il existe deux classes naturelles
de stratégies pour apprendre à partir de données. Les stratégies non adaptatives collectent
toutes les données nécessaires, puis traitent toutes ces données en une seule fois, tandis
que les stratégies adaptatives peuvent utiliser les informations accumulées pour décider si
davantage d’échantillons doivent être collectés. De plus, avec les méthodes adaptatives,
la façon dont les nouvelles informations sont obtenues peut également être adaptée en
fonction de ce qui a été observé lors des étapes précédentes. Étant donné que notre objectif
est de minimiser la quantité de données requises, dans cette thèse, nous étudions le nombre
optimal de ressources pour les deux approches pour différents problèmes d’apprentissage
classiques et quantiques.

Pour tester les distributions classiques, nous montrons que les stratégies adapta-
tives surpassent leurs analogues non adaptatives d’un facteur de quatre lorsque la taille
de l’alphabet est petite. De plus, les stratégies adaptatives peuvent s’arrêter plus tôt
lorsque les distributions testées sont très différentes les unes des autres. Cet avantage est
également présent même pour les grands alphabets.

En ce qui concerne le test des états quantiques, nous présentons des situations où les
stratégies adaptatives ont un avantage significatif par rapport aux stratégies non adap-
tatives. Celles-ci comprennent le test d’hypothèses (binaires), le test d’identité et de
proximité des états quantiques.

Cependant, dans certaines situations, nous avons plusieurs façons de générer les données.
Ces situations peuvent être modélisées par des canaux quantiques qui produisent des
données après avoir reçu une entrée choisie par la stratégie d’apprentissage. Ces entrées
peuvent également être adaptées aux observations précédentes par les stratégies adapta-
tives, tandis que les stratégies non adaptatives doivent déterminer toutes les entrées à
l’avance. Nous déterminons la complexité optimale pour tester si un canal est parfait ou
non. De plus, nous caractérisons le nombre optimal de ressources pour apprendre un canal
général ou un bruit de type Pauli dans le cadre non adaptatif. En outre, nous réduisons
l’écart entre les stratégies adaptatives et non adaptatives pour l’apprentissage du bruit
de type Pauli.
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Notation

Common
[n] The set of integers between 1 and n: [n] = {1, . . . , n}
log Natural logarithm (base e)
a ∧ b min{a, b}
a ∨ b max{a, b}
Sn The group of permutations of [n]

N (µ, σ2)
The Gaussian distribution of mean µ and variance σ2 of prob-

ability density function f(x) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
N (0, 1) The standard Gaussian distribution

‖x‖p The p-norm of the vector x: ‖x‖p =
(∑d

i=1 x
p
i

)1/p

Cd×d′ The set of complex d× d′ matrices
Id The identity matrix of Cd×d

diag(X)
The diagonal matrix whose diagonal entries are the elements
of X.

U(d) The group of unitary matrices {A ∈ Cd×d : AA† = I}
Sd The set of unit vectors of Cd

A> The transpose of the matrix A
A† The conjugate transpose (adjoint) of the matrix A

|A| The absolute value of A: |A| =
√
A†A

‖A‖p The Schatten p-norm of the matrix A: ‖A‖p = [Tr (|A|p)]1/p
‖A‖Tr The trace norm of the matrix A: ‖A‖Tr = 1

2
Tr(|A|)

A < 0 The matrix A is positive semi-definite
A < B The matrix A−B is positive semi-definite
Bra-ket
|φ〉 A column vector
〈φ| The row vector adjoint to |φ〉

{|i〉}i∈[d]
The canonical basis {|i〉}i∈[d] := {|ei〉}i∈[d] where ei has the
i-th entry equal to 1 and the other entries are equal to 0

|ij〉 The tensor product of |i〉 and |j〉: |ij〉 = |i〉 ⊗ |j〉
〈φ|ψ〉 The scalar product of the vectors |ψ〉 and |φ〉
|φ〉〈φ| The projector on the space spanned by the unit vector |φ〉
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Chapter 1

Introduction

1.1 Adaptivity in classical and quantum Learning

Learning properties of data is an essential part of statistics. It involves understand-
ing the underlying patterns which can then be used to make predictions about future
outcomes. This task is essential and ubiquitous in every aspect of human life [WW70;
RRSRR73] including clinical trials [FFDRG15], economics [ASWCC16], finance [Rup04],
machine learning [JDM00], fraud detection [BH02], etc. In this thesis, we will explore
two different strategies for learning properties of data : non-adaptive/non-sequential and
adaptive/sequential strategies. Our goal is to minimize the required amount of data
required to perform the learning task for both types of strategies.

Non-adaptive or non-sequential strategies are those where all parameters of the learn-
ing process are chosen before it begins; these choices remain fixed throughout the whole
procedure. This type of strategy relies heavily on prior knowledge and assumptions about
how best to approach the learning task, as well as having access to the total batch of
observations before starting the learning procedure.

In contrast, adaptive or sequential strategies [Wal45; BV94; Ünl04; LHSS06; GK19] are
capable of adapting the choices of the learning procedure during its execution. This means
that these models learn actively rather than passively like their non-adaptive counterparts
do. Importantly, the choices determining how the newly acquired data will be generated
can depend on the previously observed data.

By “learning properties of data” we mean every task of extracting classical information
from random observations. In this thesis, we focus on two types of problems that fit in
this category. The first type concerns learning fully the object we are dealing with.
Of course, because of the inherent randomness, we cannot exactly recover this object
without allowing any error. Still, we can require to construct a classical description that
approximates this object in most cases. We refer to this type of problem as tomography
or simply learning. The second type of problem we consider in this thesis is about testing.
In this case, we do not ask to approximate completely the object we are dealing with,
but only to test whether it satisfies some property or is far from satisfying it. This kind
of problems is interesting because it requires less resources than its learning counterpart
and in many cases knowing whether a data satisfies some property is all that is needed.
Furthermore, from a theoretical point of view, the techniques we need for testing problems
are in general different than those used for learning problems.

The main question of the thesis can be formulated as follows: Can adaptive/sequential
strategies outperform non-adaptive/non-sequential strategies for some testing

1



2 CHAPTER 1. INTRODUCTION

or learning problem? We investigate the difference between adaptive/sequential and
non-adaptive/non-sequential strategies for testing discrete classical distributions, quan-
tum states and quantum channels.

1.2 Testing classical distributions

We start with classical discrete distributions, the simplest model for unknown data. Learn-
ing classical distributions is at the heart of classical machine learning [AB09; JM15]. We
here focus on learning properties of unstructured discrete distributions, that is situations
where we have no prior knowledge or information other than the number of different
outcomes.

Definition 1.2.1. Let n ∈ N∗ be a positive integer. A discrete probability distribution D
on [n] is a set of n non negative reals {D(i)}i∈[n] that sum to 1:

• ∀i ∈ [n] : D(i) ≥ 0,

•
∑n

i=1D(i) = 1.

An important example of discrete distributions is the uniform distribution whose parts
are all equal: ∀i ∈ [n] : D(i) = 1

n
. We denote this distribution by Uniform([n]) or simply

Un whenever there is no confusion. A Bernoulli distribution is any probability distribution
on a set of size 2. It is denoted by Bern(p) := {1− p, p}.
An event in the discrete case is any subset S ⊂ [n]. Under the distribution D, the
probability that the event S occurs is D(S) =

∑
i∈S D(i).

A sample x ∼ D from the distribution D is a random variable that takes the value i with
probability Di. For independent and identically distributed samples, we use the shorthand
“i.i.d.”. In the modeling phase, we may have a candidate of a probability distribution D0

which represent our guess about this unknown distribution the data is sampled from. It
is then natural to ask whether this source of randomness is exactly what we think, or not
at all. This problem known as testing identity is formally defined as follows.

Definition 1.2.2. Let ε > 0 be a threshold parameter, δ be a confidence parameter and let
D0 be a fixed known probability distribution on the set [n]. Given τ i.i.d. samples from an
unknown distribution D, testing identity problem is about distinguishing between D = D0

and dist(D,D0) ≥ ε with at least a probability 1− δ.

Note that in this kind of tests, we have two requirements. If we define the null
hypothesis as H0 = {D = D0} and the alternate hypothesis as H1 = {D : dist(D,D0) ≥
ε}, two types of error are to be distinguished. The type I error occurs if the algorithm
rejects the null hypothesis while it is the true one. On the other hand, the type II error
happens when the algorithm rejects the alternate hypothesis while it is the true one. The
type I and II errors represent the bad situations a tester would like to avoid. Then, the
two requirements in the above definition can be reformulated as follows: both the type I
and II errors should happen with a probability at most δ.
Thus far, we have not specified the distance “ dist ” we choose for this problem. To do so,
let us suppose, only for now, that both distributions D0 and D are known. We are given
a sample x from one of these distributions and would like to decide which distribution
generates this sample. Since we have only one sample, any deterministic algorithm would
choose a subset A0 of [n] so that it answer D0 if the sample x ∈ A0 and D otherwise.



1.2. TESTING CLASSICAL DISTRIBUTIONS 3

Suppose furthermore that D0 and D are equally likely to be the true distribution. In this
case the success probability can be computed exactly:

P (D0)Px∼D0(x ∈ A0) + P (D)Px∼D(x /∈ A0) =
1

2
(D0(A0) +D(Ac0)) . (1.1)

Note that this probability only depends on the set A0 and the two distributions D0 and D.
So, in order to minimize the error probability, we can take the set A0 that maximizes the
latter expression. It turns out that one such set is given by A0 = {i ∈ [n] : D0(i) > D(i)}
which is natural: it is unlikely that the distribution generating x is D while we observe
x = i such that D0(i) > D(i). In this case the success probability can be written as
follows

1

2
(D0(A0) +D(Ac0)) =

1

2
+

1

2

∑
i:D0(i)>D1(i)

(D0(i)−D(i)) =
1

2
+

1

4

n∑
i=1

|D0(i)−D(i)| (1.2)

where we use the fact that D0 and D are probability distributions in the last equality. This
expression of the best success probability to discriminate between two distributions D0

and D motivates the total variation distance which we denote by TV and define formally:

Definition 1.2.3. Let D0 and D be two probability distributions on [n]. The total varia-
tion distance between D0 and D is defined as

TV(D,D0) =
1

2

n∑
i=1

|D(i)−D0(i)|. (1.3)

The total variation distance characterizes the minimal error probability to distinguish
between the distributions D0 and D when considering only one sample. Moreover, it
satisfies the Data-Processing inequality which can be seen in the following equivalent
formulation.

Proposition 1.2.1. Let D0 and D be two probability distributions on [n]. The total
variation distance between D0 and D satisfies

TV(D,D0) = max
S⊂[n]

(D(S)−D0(S)) . (1.4)

In particular, this can be used to prove lower bounds for testing two hypotheses prob-
lems (see Section 4.4). In the literature, this argument is called LeCam’s method [LeC73].
Now, it is clear that the natural distance for testing identity problem is the total variation
(TV). It remains to clarify what would be the difference between a sequential and non-
sequential strategy for this task. Since a testing strategy has no role in the distribution
that generates the i.i.d. samples, it can only choose whether it needs a new sample or
not. As such, we can distinguish two settings of testing identity: non-sequential or batch
setting in which the number of samples is fixed beforehand and sequential setting where
the strategy has the ability to choose at each step whether a) to stop and answer the null
or alternate hypothesis or b) to continue and ask for a new sample if it does not have a
sufficient level of confidence to answer the correct hypothesis. In the latter setting, the
stopping time can be random so we need to choose how to compare it with the determin-
istic number of samples in the batch setting. For this, it is natural to choose the expected
stopping time.
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If we want to see the exact difference between the optimal sample complexity for
the testing identity problem in the batch and sequential settings, we could focus on the
case of small alphabet where n is small, δ and ε goes to 0. For the simplicity of the
presentation, we choose n = 2 and test Bernoulli distributions. In this case, we can
characterize the exact sample complexity. Before stating this result, we need to introduce
an important divergence that appears naturally in the complexity of both batch and
sequential strategies. It is known as the Kullback Leibler (KL) divergence and will play
a central role in this thesis.

Definition 1.2.4. Let D1 and D2 be two probability distributions on [n]. The Kullback
Leibler divergence between D1 and D2 is defined as

KL(D1‖D2) =
n∑
i=1

D1(i) log

(
D1(i)

D2(i)

)
. (1.5)

For two real numbers p, q ∈ [0, 1], we denote by KL(p‖q) = KL(Bern(p)‖Bern(q)) =

p log
(
p
q

)
+ (1− p) log

(
1−p
1−q

)
.

This is only defined when D1 is absolutely continuous with respect to D2 where we
use the convention “0 log

(
0
0

)
= 0”. Otherwise, we can take KL(D1‖D2) = +∞. The KL

divergence can be related to the TV distance by Pinsker’s inequality.

Proposition 1.2.2 ([FHT03]). Let D1 and D2 be two distributions on [n]. We have

KL(D1‖D2) ≥ 2 TV(D1,D2)2. (1.6)

One can wonder why the KL divergence appears in the sample complexity of testing
identity problem. This is simply because of the Chernoff Hoeffding’s inequality and its
reverse. Let X1, . . . , Xn be i.i.d. Bernoulli random variables of parameter p. The law of
large numbers says that the empirical mean 1

n

∑n
t=1Xt converges to the theoretical mean

E (X1) = p almost surely when n → ∞. To have a precise estimation of the number of
samples sufficient to achieve a good precision we need to use a concentration inequality.
In this case, we can apply the Chernoff-Hoeffding inequality.

Theorem 1.2.1 ([Hoe63]). Let n ∈ N∗ and X1, . . . Xn ∼ Bern(p). We have for any t > 0:

P

(∑n
i=1(Xi − E (Xi))

n
> t

)
≤ exp(−nKL(p+ t‖p)). (1.7)

Now we can state a simplified version of the main result of this part of the thesis. We
start with the batch setting.

Theorem 1.2.2 (Batch setting). • There is a non-sequential algorithm for testing
identity to D0 = Bern(p) that uses a number of samples τ satisfying

τ = max

{
log(2/δ)

KL(p± ε/2‖p)
,

log(2/δ)

KL(p± ε/2‖p± ε)

}
∼

ε,δ→0

8p(1− p)
ε2

log(2/δ) . (1.8)

• Any non-sequential algorithm for testing identity to D0 = Bern(p) needs to use a
number of samples τ satisfying

lim inf
δ→0

τ

log(1/δ)
≥ max

{
1

KL(p+ αε‖p)
,

1

KL(p− βε‖p)

}
∼
ε→0

8p(1− p)
ε2

, (1.9)

where α ∈ (0, 1) and β ∈ (0, 1) are defined such that KL(p+αε‖p) = KL(p+αε‖p+ε)
and KL(p− βε‖p) = KL(p− βε‖p− ε).
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The detailed proof of this theorem can be found in Section 2.3.1. The upper bound
is given by an application of the Chernoff-Hoeffding inequality. For the lower bound, we
use instead Stirling’s approximation. This result can be related to the fact that Chernoff-
Hoeffding inequality is almost optimal, indeed we have the reverse Chernoff-Hoeffding
inequality which also can be proved using Stirling’s approximation.

Theorem 1.2.3. Let n ∈ N∗, X1, . . . Xn ∼ Bern(p). We have for any t > 0:

P

(∑n
i=1(Xi − E (Xi))

n
> t

)
≥ 1

e
√

2πn
exp(−nKL(p+ t‖p)). (1.10)

The idea of the proof is simple, let l = n(t+ p) which we suppose is an integer for
simplicity, we can express and lower bound the previous probability as follows:

P

(∑n
i=1(Xi − E (Xi))

n
> t

)
=

∑
n≥k>n(t+p)

(
n

k

)
pk(1− p)n−k ≥

(
n

l

)
pl(1− p)n−l. (1.11)

Then Stirling’s approximation [Leu85] implies(
n

l

)
pl(1− p)n−l ≥ 1

e
√

2πn
exp(−nKL(p+ t‖p)). (1.12)

After finding the optimal sample complexity of testing identity in the batch setting, we
move to the sequential setting. Here, the number of samples τ is a (random) stopping
time that can behave differently under the null and alternate hypotheses. Let q be the
unknown parameter of the Bernoulli distribution D. We state the main result in the
sequential setting whose proof can be found in Section 2.3.2.

Theorem 1.2.4 (Sequential setting). There is a sequential algorithm for testing identity
to D0 = Bern(p) whose stopping time τ satisfies

lim sup
δ→0

E(τ)

log(1/δ)
≤ 1

min{KL(p‖p± ε)}
∼
ε→0

2p(1− p)
ε2

if q = p, and (1.13)

lim sup
δ→0

E(τ)

log(1/δ)
≤ 1

min{KL(p± |q − p|‖p)}
∼

|q−p|→0

2p(1− p)
|q − p|2

if |q − p| > ε . (1.14)

Moreover, any sequential algorithm for testing identity to D0 = Bern(p) has a stopping
time τ satisfying

E(τ) ≥ log(1/3δ)

min{KL(p||p± ε)}
∼
ε→0

2p(1− p)
ε2

log(1/3δ) if q = p, and (1.15)

E(τ) ≥ log(1/3δ)

KL(q‖p)
∼

|q−p|→0

2p(1− p)
|q − p|2

log(1/3δ) if |q − p| > ε. (1.16)

The sequential upper bound uses time uniform concentration inequalities. In our case,
it is not difficult to deduce this type of inequalities using the Chernoff Hoeffding inequality
and the union bound. Indeed, if X1, · · · ∼ Bern(p) are i.i.d. random variables then we
have by applying the union bound then the Chernoff Hoeffding inequality and Pinsker’s
inequality:

P

(
∃n ∈ N∗ :

∑n
i=1(Xi − E (Xi))

n
>

√
log(2n(n+ 1)/δ)

2n

)
(1.17)

≤
∑
n≥1

exp

−2n

(√
log(2n(n+ 1)/δ)

2n

)2
 =

∑
n≥1

δ

2n(n+ 1)
=
δ

2
. (1.18)
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This is only to illustrate the method but not used in the actual proof of this theorem. To
obtain an expression involving the KL divergence as in the previous Theorem, we need
to choose the time dependent thresholds carefully. On the other hand, this way of using
the union bound is in general not optimal and leads to sub-optimal second terms in the
complexity. A better technique is based on Ville’s maximal inequality for non-negative
super-martingales [HRMS20] which we use for general alphabets (see Lemma 2.6.2).
For the lower bound, we use again the Kullback Leibler divergence which is not a distance,
but it is non negative and satisfies the tensorization property.

Proposition 1.2.3. Let D1,D′1,D2 and D′2 distributions on [n], we have

• Non negativity KL(D1‖D2) ≥ 0.

• Tensorization KL(D1 ×D′1‖D2 ×D′2) = KL(D1‖D2) + KL(D′1‖D′2).

Furthermore, the Kullback Leibler divergence satisfies the Data-Processing property.
For a distribution D on [n] and a random variable X : [n]→ X , we define the distribution
of X under D as DX = {D(X = x)}x∈X .

Proposition 1.2.4. Let D1 and D2 be two distributions on [n]. Let X be a random
variable and g a function. Define the random variable Y = g(X), we have

KL
(
DX1 ‖DX2

)
≥ KL

(
DY1 ‖DY2

)
. (1.19)

The last ingredient of the sequential lower bound is Wald’s lemma:

Lemma 1.2.1 ([Wal44]). Let X1, . . . be i.i.d random variables and τ ∈ N be a stopping
time for the sequence (Xn)n. Suppose that τ and X1 have finite expectations. We have

E(X1 + · · ·+Xτ ) = E(τ)E(X1) . (1.20)

Combining the tensorization property (Proposition 1.2.3), the data processing prop-
erty (Proposition 1.2.4) of the KL divergence along with Wald’s lemma in various scenarios
permit to prove the sequential lower bound of Theorem 1.2.4. Let us illustrate this method
for a stopping time under the null hypothesis. Let q = p± ε, X1, . . . be random variables
i.i.d. as Bern(p) and Y1, . . . be random variables i.i.d. as Bern(q). Let τ be the stopping
time of a testing strategy that answers with an error probability at most δ. On the one
hand the tensorization property of the KL and Wald’s Lemma imply:

KL(PX1,...,Xτ‖PY1,...,Yτ ) = E (τ) KL(p‖q) (1.21)

where PX is the probability distribution of the random variable X. On the other hand,
if E denotes the event that the testing algorithm A answers the null hypothesis, we have
under the null hypothesis, P (E) ≥ 1 − δ while under the alternate hypothesis we have
P (E) ≤ δ. Hence, we can apply the data processing inequality on the KL divergence to
obtain:

KL(PX1,...,Xτ‖PY1,...,Yτ ) ≥ KL(A(X) ∈ E‖A(Y ) ∈ E) ≥ KL(1− δ‖δ) ≥ log(1/3δ). (1.22)

Combining these (in)equalities, we obtain the lower bound on the expected stopping time
under the null hypothesis:

E (τ) ≥ log(1/3δ)

KL(p‖q)
=

log(1/3δ)

KL(p‖p± ε)
. (1.23)
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So far, we have characterized the optimal sample complexity for testing identity to
the Bernoulli distribution Bern(p) in both batch (Theorem 1.2.2) and sequential (Theo-
rem 1.2.4) settings. In particular, when ε, δ → 0, the batch complexity is equivalent to
8p(1 − p)ε−2 whereas the expected sequential complexity is equivalent to 2p(1 − p)ε−2

under the null hypothesis and 2p(1 − p)|q − p|−2 under the alternate hypothesis (re-
call D = Bern(q)). We remark that sequential strategies outperform batch ones by
at least a factor 4. Furthermore, under the alternate hypothesis, sequential strategies
adapt to the actual difficulty of the problem: the complexity depends on the distance
|q − p| = TV(D,D0) rather than the threshold parameter ε. This is the main message
of Chapter 2 where we exhibit the same advantage for testing identity and closeness of
distributions on small alphabets. For general alphabets, it is hard to find the optimal
constant either in the batch or the sequential settings. Still, we show that sequential
strategies can adapt to the actual distance between the tested distributions. Moreover,
we prove a sequential lower bound that shows that (up to a constant) we cannot hope for
more than this advantage in the worst case.
Since the advantage of sequential strategies over batch ones is understood for discrete
distributions, one can wonder whether there is a learning problem for which this advan-
tage is more significant. For instance, can we obtain a separation between sequential and
non-sequential strategies at least polynomial in the parameters of some learning task?
In the sequel, we will explore the advantage of sequentiality/adaptivity for more general
models of learning properties of data.

1.3 Testing quantum states

One of the generalizations of discrete distributions is given by quantum states. We need
to introduce some basics about quantum information theory before formulating learning
or testing problems of quantum states. For this, we follow the excellent textbook [NC02].

1.3.1 Postulates of quantum mechanics

Quantum mechanics has four main postulates which connect the mathematical formalism
with the real physical world.

1. State space The first postulate says that every quantum system is associated to
a Hilbert space H. A (pure) state |ψ〉 is any unit element of the Hilbert space H.
The quantum system is completely described by its state vector |ψ〉 ∈ H. In finite
dimension, we can take the Hilbert space H = Cd. In particular, when d = 2, the
quantum mechanical system is the qubit.

2. Evolution The second postulate states that the evolution of a closed quantum
system is described by a unitary transformation. Concretely, the time evolution of
the state |ψ(t)〉 ∈ H is given by:

|ψ(t)〉 = U(t) |ψ(0)〉 (1.24)

where U(t) is a unitary operator. This is equivalent to saying that the state |ψ(t)〉
satisfies the Schrödinger equation:

d

dt
|ψ(t)〉 = − i

~
H |ψ(t)〉 (1.25)
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where H represents the Hamiltonian, which is a Hermitian operator. The solu-
tion to the Schrödinger equation takes the form |ψ(t)〉 = U(t) |ψ(0)〉 with U(t) =
exp

(
− itH

~

)
being a unitary operator.

3. Quantum measurement The third postulate is about describing the effects of
measurements on quantum systems. A quantum measurement is a collection of
{Ax}x∈X of measurement operators satisfying

∑
x∈X A

†
xAx = I. The measurement

outcome is one of the indices x ∈ X . If the state |ψ〉 ∈ H is measured with this
quantum measurement then we observe x with probability 〈ψ|A†xAx |ψ〉 and the
state of the system becomes

|ψ〉|x =
Ax |ψ〉√
〈ψ|A†xAx |ψ〉

. (1.26)

4. Composite systems The fourth postulate says that state space of a composite
physical system is the tensor product of the state spaces of the component physi-
cal systems. Concretely, if for x ∈ X , Hx is the Hilbert space of the x-th quantum
system then the Hilbert space of the combined quantum systems is ⊗x∈XHx. For in-
stance a pure bipartite state |φ〉 ∈ H1⊗H2 can be written as |φ〉 =

∑
x

√
λx |rx〉⊗|sx〉

(Schmidt decomposition). It is called separable or product if it can be decomposed
as |φ〉 = |r〉⊗ |s〉, otherwise it is called entangled. An example of an entangled state
is given by |Ψ〉 = 1√

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) where {|0〉 , |1〉} is the canonical basis of

C2.

The first and third postulate are necessary to formulate every quantum testing or learning
problem (Section 1.3.4, Section 1.4). The second postulate is only necessary when the
object of the testing or learning procedure is the evolution of the system and not its
state (Section 1.4). The fourth postulate permits to differentiate between two types of
strategies of learning: coherent (or entangled) and incoherent strategies. Besides, it also
allows us to consider situations when an algorithm can use auxiliary systems. We refer
to Section 1.3.4 (resp. Section 1.4.3) for different models of learning properties of states
(resp. evolutions).

1.3.2 Quantum states

Let H = Cd be the Hilbert space associated to a quantum system. So far, we have
mentioned only pure states, that is unit vectors |ψ〉 ∈ H. Now, we could be in a situation
where we only have a probabilistic description of the state: with probability py, the state
is |ψy〉 ∈ H. In this case the state is given by a pure state ensemble {py, |ψy〉}y∈Y .
By the linearity of the measurement, this pure state ensemble would produce the same
observations as ρ =

∑
y∈Y py |ψy〉〈ψy|. Indeed, for a POVM measurement {Mx}x∈X , the

probability of observing x ∈ X can be written as

∑
y∈Y

py 〈ψy|Mx |ψy〉 = Tr

(
Mx

∑
y∈Y

py |ψy〉〈ψy|

)
= Tr (Mxρ) . (1.27)

Note that Tr(ρ) =
∑

y∈Y pyTr(|ψy〉〈ψy|) =
∑

y∈Y py = 1 since p is a probability and for all

|φ〉 we have 〈φ| ρ |φ〉 =
∑

y∈Y py|〈φ|ψy〉|2 ≥ 0 so ρ is positive semi-definite. Any matrix
satisfying these conditions is called a density matrix or simply a quantum state.
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Definition 1.3.1. A quantum state (density matrix) is a positive semi-definite matrix of
trace 1.

Conversely, by the spectral theorem, a quantum state can be written as ρ =∑
y∈Y py |ψy〉〈ψy| such that p = {py}y∈Y is a probability. Now, with this definition, a

pure state is any quantum state of rank 1 since for two unit vectors |φ〉 and |ψ〉 we have
|φ〉〈φ| = |ψ〉〈ψ| ⇐⇒ |〈φ|ψ〉|2 = 1 ⇐⇒ ∃θ ∈ [0, 2π) : |φ〉 = eiθ |ψ〉. Three particularly
important examples of quantum states are:

1. A classical state is given by a diagonal density matrix ρ = diag(p) where p =
{px}x∈X is a probability distribution. We will see in Section 1.3.4 how testing
classical states reduces to testing classical distributions.

2. The maximally mixed state is given by ρ = I
d
.

3. The maximally entangled state is given by ρ = |Ψ〉〈Ψ| where |Ψ〉 =
1√
d

∑d
i=1 |i〉A⊗|i〉B and {|i〉A}di=1 (resp. {|i〉B}di=1) is the canonical basis of HA

∼= Cd

(resp. HB
∼= Cd). For example when d = 2, the maximally entangled state is

ρ = |Ψ〉〈Ψ| = 1

2


1
0
0
1

(1 0 0 1
)

=


1
2

0 0 1
2

0 0 0 0
0 0 0 0
1
2

0 0 1
2

 .

We can generalize the definition of an entangled state for non-pure states.

Definition 1.3.2. Let ρ be a bipartite quantum state on H1 ⊗H2. It is called separable
if it can be written as

ρ =
∑
x

px(σx ⊗ ζx) (1.28)

for a probability distribution p = {px}x and quantum states {σx}x and {ζx}x.
A quantum state is called entangled if it is not separable.

For instance, the maximally mixed state on Cd1⊗Cd2 is separable. On the other hand,
the maximally entangled state ρ = |Ψ〉〈Ψ| = 1

d
(|i〉 ⊗ |i〉)(〈j| ⊗ 〈j|) on Cd ⊗ Cd is, as the

name suggests, entangled (not separable).

1.3.3 POVM measurements

POVM (positive operator-valued measure) measurements provide an elegant mathemati-
cal tool to analyze quantum measurement in situations the post measurement states are
not important and we are only interested in the measurement statistics.

Definition 1.3.3. A POVM measurement is a set of positive semi-definite matricesM =
{Mx}x∈X acting on the Hilbert space Cd and satisfying

∑
x∈X Mx = I. Each element Mx

in the POVM M is associated with the outcome x ∈ X .

Starting from a quantum measurement {Ax}x∈X , we can construct a POVM mea-
surement M = {Mx = A†xAx}x∈X since for all x ∈ X , Mx = A†xAx < 0 and
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∑
x∈X Mx =

∑
x∈X A

†
xAx = I. As such, we can see how to perform a POVM mea-

surement on a state |ψ〉: the probability that the measurement on a quantum state |ψ〉
using the POVM measurementM will output x is exactly 〈ψ|A†xAx |ψ〉 = 〈ψ|Mx |ψ〉. An
important POVM is given by a random basis. The rule is simple, when we do not have
enough information about the eigenbasis of an unknown given state, we measure with a
random basis. But, how to generate such a basis? A simple way to generate a random
basis would be to choose a Haar(d)-distributed unitary matrix U (Haar(d) is the Haar
probability measure over the compact group U(d) of unitary d× d matrices [Haa33]). To
sample such a matrix U ∼ Haar(d), one could start with a random matrix M whose en-
tries are i.i.d. standard complex Gaussian random variables and apply the Gram-Schmidt
orthonormalization process to its columns [Mec19]. Then it is not difficult to check that
for any unitary matrix U ∈ U(d), the set MU = {U |i〉〈i|U †}i∈[d] is a POVM measure-
ment. In this case, after measuring the state |ψ〉, the post measurement states have the
form

|ψ〉|i =

(
〈i|U † |φ〉
| 〈i|U † |φ〉 |

)
U |i〉 for i = 1, . . . , d (1.29)

thus they are in general useless.

1.3.4 Testing quantum states

After this brief introduction, we can now move to test quantum states. Since a state
generalizes a probability distribution, our first question would be to find the right way
to measure the distance between two quantum states. We have seen previously that the
TV distance determines the minimal error probability to discriminate two distributions.
It turns out that the trace norm plays a similar role.

Theorem 1.3.1 (Holevo-Helstrom, [Hol73; Hel69]). The minimal error probability to
discriminate between two known states σ1 and σ2 is given by

1

2
+

1

2
‖σ1 − σ2‖Tr =

1

2
+

1

2
max
04O4I

Tr((σ1 − σ2)O). (1.30)

A maximizing observable 0 4 O 4 I in the last equality provides an optimal strategy
to discriminate two states. Indeed, the condition 0 4 O 4 I permits to construct the
measurement device MO = {I − O,O}. Measuring ρ ∈ {σ1, σ2} with the POVM MO

produces a sample X ∼ Bern(Tr(Oρ)). Thus, in the setting where ρ = σ1 and ρ = σ2

occur with probability 1/2 each, the error probability is:

1

2
Tr(Oσ1) +

1

2
Tr((I−O)σ2) =

1

2
+

1

2
Tr((σ1 − σ2)O). (1.31)

Such observable can be constructed easily once the spectral decomposition of σ1 − σ2 is
known. Indeed, since the matrix σ1 − σ2 is Hermitian, by the spectral theorem, it can be
written as:

σ1 − σ2 = Π+ − Π− (1.32)

where Π+ and Π− are two orthogonal projectors onto the positive and negative eigenspace
respectively. In this case we can choose O = Π+ and the minimal error probability of
Theorem 1.3.1 is exactly:

1

2
+

1

2
Tr((σ1 − σ2)Π+) =

1

2
+

1

2

∑
i

λi (1.33)
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x

ρ

Mρ
ρ

ρ

H0

H1

Figure 1.1: Illustration of an entangled strategy for testing quantum states. Here, x is
the classical outcome of a measurement of the state ρ⊗N with the POVM M.

where {λi}i is the set of positive eigenvalues of σ1−σ2. Note that
∑

i λi = 1
2
‖σ1−σ2‖1 =

‖σ1 − σ2‖Tr as Tr(σ1 − σ2) = 0. Observe that the previous minimal error probability
is in general strictly less than 1 unless the states σ1 and σ2 have disjoint supports. In
particular, there are examples of states (σ1, σ2) for which the best error probability to
discriminate them is very close to 1/2. In other words, they are almost indistinguishable
with only one measurement. In this case, repeating the test proves to be essential. With
that we can give the formal definition of the binary hypothesis selection problem.

Definition 1.3.4. Let δ ∈ (0, 1/2) be a confidence parameter and let σ1 and σ2 be two fixed
and known d dimensional quantum states. Given N i.i.d. copies of an unknown quantum
state ρ ∈ {σ1, σ2}, the binary hypothesis selection problem is to distinguish between ρ = σ1

and ρ = σ2 with at least a probability 1− δ.

This problem cannot be solved without specifying how we can use the N i.i.d. copies
of ρ. For instance, one can think of a strategy where we put these copies all together
in parallel and measure them at once. This type of strategies is called entangled and
illustrated in Figure 1.1. Here M is a large dN dimensional POVM. The entangled
strategies are powerful and subsumes every possible strategy for testing states. However,
in order to be able to use these strategies, we need to be able to keep the entanglement
between the copies of ρ. This requires to have a quantum memory of large size: observe
that the dimension of N systems grows exponentially with N . To circumvent these
restrictions, we can think of simpler strategies without entanglement. In this case, one
could think of a scenario where each copy of the state ρ is measured at each step. This
enables, for instance, testing in situations we have not all the copies at once and we
receive the copies at different times. In other words, we do not need to have a quantum
memory to store all the copies before performing a global measurement. Here also we
can distinguish between different strategies depending on the adaptiveness of the choice
of the measurement devices on the previous observations. Concretely, an incoherent
strategy is given by a sequence of POVMs {Mt}t∈[N ], each of them acts on the Hilbert
space H = Cd. In this case, we measure at step t the quantum state ρ using the POVM
Mt. Depending on whether the measurement devices and the number of copies can adapt
on the previous observations or not, we distinguish four types of incoherent strategies:

• Non-adaptive non-sequential is the setting where the number of copies N and
the POVMs {Mt}t are fixed in advance (i.e., do not depend on the outcomes of the
previous measurements) (see Figure 1.2 for an illustration).
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x1

x2

xN

M1

ρ

M2

ρ

...

MN

ρ

H0

H1

Figure 1.2: Illustration of a non-adaptive non-sequential incoherent strategy for testing
quantum states. The classical computer processes the observations (x1, . . . , xN) to distin-
guish between two hypotheses H0/H1.

• Non-adaptive sequential is the setting where the POVMs Mt are fixed before
hand but the the number of copies N can be chosen depending on the results of the
previous measurements with the POVMs {Ms}s<t (see Figure 1.3 for an illustra-
tion).

• Adaptive non-sequential is the setting where the number of copies N is fixed be-
forehand but the POVMsMt can be chosen depending on the results of the previous
measurements with the POVMs {Ms}s<t (see Figure 1.4 for an illustration).

• Adaptive sequential is the setting where both the number of copies N and the
POVMs Mt can be chosen depending on the results of the previous measurements
with the POVMs {Ms}s<t (see Figure 1.5 for an illustration).

For sequential strategies, the complexity is given by the expected copy complexity of
the procedure E (N). Non-sequential strategies have a fixed number of measurements N .

It turns out that for incoherent strategies, the difference between sequential and non-
sequential complexities is essentially a factor 4 as in the classical case (Section 1.2).

Theorem 1.3.2 (Informal). We can characterize the optimal copy complexity of binary
hypothesis problem:

• 2 log(1/δ)

‖σ1−σ2‖2Tr
copies of ρ are necessary and sufficient to distinguish between ρ = σ1 and

ρ = σ2 with incoherent non-sequential strategies.

• In expectation, log(1/δ)

2‖σ1−σ2‖2Tr
copies of ρ are necessary and sufficient to distinguish be-

tween ρ = σ1 and ρ = σ2 with incoherent sequential strategies.

Actually, this result only holds asymptotically when δ → 0 and ‖σ1−σ2‖Tr → 0. Non-
asymptotic complexities can be found with the same methods. Since the upper bounds
use similar techniques of classical testing identity in Section 1.2, we prefer to focus on the
lower bounds. Now, the testing algorithm can choose the measurement device at each
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x1

x2

xN

M1

ρ output H0/H1 and stop

x1

continue

output H0/H1 and stop

x<N

continue

output H0/H1 and stop

M2

ρ

...

MN

ρ

Figure 1.3: Illustration of a non-adaptive sequential incoherent strategy for testing quan-
tum states. The classical computer processes the observations (x1, . . . , xN) to distinguish
between two hypotheses H0/H1.

x1

x2

xN

x1

M1

ρ

Mx1
2

ρ

x2, . . . , xN−1

Mx<N
N

ρ

H0

H1

Figure 1.4: Illustration of an adaptive non-sequential incoherent strategy for testing quan-
tum states. The classical computer processes the observations (x1, . . . , xN) to distinguish
between two hypotheses H0/H1.
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x1

x2

xN

M1

ρ output H0/H1 and stop

output H0/H1 and stop

output H0/H1 and stop

continue

x1
x1

Mx1
2

ρ

continue

x2, . . . , xN−1

x<N
Mx<N

N

ρ

Figure 1.5: Illustration of an adaptive sequential incoherent strategy for testing quan-
tum states. The classical computer processes the observations (x1, . . . , xN) to distinguish
between two hypotheses H0/H1.

step so proving a lower bound against it is harder than the classical setting where the
testing algorithm does not interact with the source of randomness. Still, we can choose a
type of states for which the quantum testing algorithm cannot extract more information
than a classical testing algorithm. The states we choose to prove the lower bounds are:

σ1 =

(
1
2

0
0 1

2

)
and σ2 =

(
1
2
− ε 0
0 1

2
+ ε

)
where ε = ‖σ1 − σ2‖Tr. With this choice of states, we show that every measurement
the testing algorithm performs on σ1, σ2 can be seen as a post processing of a sample
from Bern(1/2),Bern(1/2 + ε) respectively. We can generalize this idea to any diagonal
quantum state(s).

Lemma 1.3.1. Let D1 and D2 be two discrete distributions and σ1 and σ2 their corre-
sponding diagonal quantum states. Let M be a POVM. Measuring the quantum state σ1

(resp. σ2) with the POVMM can be seen as post-processing (independent of the quantum
states) of samples from the distribution D1 (resp. D2).

This lemma permits to translate every lower bound for a classical testing problem to
a lower bound for its quantum analogue. However, in some situations, this lower bound
is not optimal. We refer to Section 3.3.1 for the proofs of these results.
So for the problem of discrimination two quantum states, the difference between sequen-
tial and non-sequential algorithms is the same as in the classical case. Moreover, adaptive
algorithms cannot outperform non-adaptive ones since one of the optimal POVM is al-
ready known to the testing algorithm. It turns out that adaptive algorithms have the
same performance as the non-adaptive ones for other problems as well, for instance test-
ing identity [CHLL22] and state tomography [CHLLS22]. One can conjecture that this is
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always the case. To show the contrary, we construct a (contrived) learning problem for
which there is a polynomial separation between adaptive and non-adaptive strategies. We
refer the reader to Section 3.4 for more details. We would like to finish with one of the
main open problems about testing quantum states known as the composite hypothesis
testing.

Definition 1.3.5 (Composite hypothesis testing). Given a known family {σ1, . . . , σ2m}
of 2m quantum states ε-separated in the trace norm. The goal is to distinguish between
the hypotheses

H0 : ρ ∈ {σ1, . . . , σm} vs. H1 : ρ ∈ {σm+1, . . . , σ2m} (1.34)

with high probability.

In this problem we can have up to 2m2 − m optimal POVMs to choose. So a non-
adaptive algorithm can be designed with a sample complexityO(m2/ε2). Moreover a lower
bound of Ω(m/ε2) can be proved for adaptive algorithms when m ≤ d. We conjecture a
separation between adaptive and non-adaptive algorithms for this problem.

1.4 Learning properties of quantum channels

After discussing how to learn properties of quantum states, we move to analyse how to
learn properties of quantum channels. Let us first consider the classical analogue problem:
learning properties of the classical channels.

1.4.1 Learning properties of classical channels

A classical channel is a stochastic matrix W (y|x)x∈[m],y∈[d]. For an input x ∈ [m], the
output follows the probability distribution y ∼ {W (y|x)}y∈[d]. In other words, if we send
an input x through the channel W , we receive the output y with a probability W (y|x).
For instance we have these examples of classical channels.

• The identity channel for which m = d and W (·|x) = δx for all x ∈ [d].

• The noisy channel satisfying for all x ∈ [m], W (·|x) ∼ Uniform(d).

The identity channel is a perfect channel without any loss of information while the noisy
channel is completely useless since the output is independent of the input. We can distin-
guish between these two types of channels using a few number of inputs (for d ≥ 2). Still,
we can imagine more interesting testing and learning tasks for classical channels. For
instance, we can consider learning completely the channel or testing whether it is equal to
a fixed channel or far from it. The problem of learning a channel can be formally defined
as follows.

Definition 1.4.1 (Learning a classical channel). Given an unknown classical channel W
as a black box. The goal is to construct a classical channel W̃ (y|x)x∈[m],y∈[d] satisfying for
all x ∈ [m]:

TV(W̃ (·|x),W (·|x)) ≤ ε. (1.35)

with an error probability at most 1/3 while minimizing the total number of channel uses
N .
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It is not difficult to see that a number Θ̃(md/ε2) of channel uses is necessary and
sufficient for this task.
Moreover, testing whether an unknown channel W is exactly the identity channel or far
from it can be formally defined as follows.

Definition 1.4.2 (Testing identity to the identity channel). Given an unknown channel
W as a black box. The goal is to distinguish between the hypotheses

H0 : ∀x ∈ [d],W (·|x) = δx vs. H1 : ∃x ∈ [d],TV(W (·|x), δx) ≥ ε (1.36)

with an error probability at most 1/3 while minimizing the total number of channel uses
N .

The condition of the alternate hypothesis is equivalent to the existence of x ∈ [d]
such that W (x|x) ≤ 1− ε. In this case, a simple strategy would be to choose each input
x ∈ [d] a sufficient number of times then answer H0 if always receiving the same output
as input, otherwise answer H1. If the channel is identity, this test makes no error. On the
other hand, if the channel is not identity, then there is at least one input x such that the
output is not always x. Since TV(W (·|x), δx) ≥ ε, the probability of seeing a different
output than x is at least ε so the error probability after n repetitions is at most (1− ε)n
thus we can choose n = log(1/3)/ log(1− ε) = O(1/ε) to reduce the error probability to
1/3. Hence, the total number of uses of the channel is N = dn = O(d/ε) because we do
not know x and we need to test all the inputs to be sure we pass on x. Moreover, it is
not difficult to see that a number of copies of the channel satisfying N = Ω(d/ε) is also
necessary for any correct test. As we shall see in the sequel, generalizing this learning and
testing results is not straightforward in the quantum setting.
Before we consider the quantum analogue of these learning/testing tasks, we introduce
the definition of quantum channels and illustrate them with some examples. Then we
compare different access models for learning properties of quantum channels.

1.4.2 Quantum channels

We have seen in the second postulate (Section 1.3.1) that the time evolution of a closed
quantum system is described by a unitary transformation. However, the operator is
no longer unitary when the quantum system is open, that is when it interacts with an
environment. The overall evolution of the system and the environment is driven by
Schrödinger’s equation. If we want to focus only on the open quantum system (without the
environment), we may ignore (trace out) the environment and analyse the new evolution.
It can be proved that any such transformation can be described by a quantum channel
(see e.g., [Lid19]).

Definition 1.4.3 (Kraus decomposition of quantum channels). A (din, dout)-dimensional
quantum channel (process) is a map N : Cdin×din → Cdout×dout of the form

N (ρ) =
∑
k

AkρA
†
k

where the Kraus operators {Ak}k satisfy
∑

k A
†
kAk = I.

There are many important examples of quantum channels, including:
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1. The identity channel idd(ρ) = ρ admits the Kraus operator {Id}.

2. Unitary channels: given a unitary matrix U , the corresponding unitary channel
NU(ρ) = UρU † admits the Kraus operator {U}.

3. The completely depolarizing channel D(ρ) = Tr(ρ) I
dout

admits the Kraus op-

erators
{

1√
dout
|i〉 〈j|

}
j∈[din],i∈[dout]

.

4. Measurement channels (instruments): given a quantum measurement M =
{Ax}x∈X , after measuring a quantum state ρ with M, we see the outcome x ∈
X with a probability px = Tr(AxρA

†
x) and the post-measurement state is ρ|x =

AxρA
†
x

Tr(AxρA
†
x)

. The corresponding quantum channel, denoted by NM, can be defined as

NM(ρ) =
∑

x∈X pxρ|x =
∑

x∈X AxρA
†
x, which gives the state of the system after the

measurement has been performed. Therefore, the Kraus operators for the channel
NM are simply given by the measurement operators {Ax}x∈X .

Since a convex combination of two quantum channels remains a quantum channel, we can
construct more examples using the previous ones.
Note that the condition that the mapN can be written asN (ρ) =

∑
k AkρA

†
k is equivalent

to be completely positive (CP): for all d and ρ < 0, idd ⊗ N (ρ) < 0. The second
condition

∑
k A
†
kAk = I is equivalent for the map N to be trace preserving (TP): for all ρ,

Tr(N (ρ)) = Tr(ρ). Hence a map N is a quantum channel if, and only if, it is completely
positive and trace preserving (CPTP).
It turns out that we can see a quantum channel as a quantum state with an additional
property. Before stating this connection, we define the partial trace.

Definition 1.4.4 (Partial trace). Let M =
∑

k Ak ⊗ Bk ∈ Cd×d ⊗ Cd′×d′. We define the
partial trace of the matrix M with respect to the first system as

Tr1(M) =
∑
k

Tr(Ak)Bk ∈ Cd′×d′ .

Similarly, we define the partial trace of the matrix M with respect to the second system as

Tr2(M) =
∑
k

Tr(Bk)Ak ∈ Cd×d.

The Choi state of a quantum channel N is a useful tool in quantum information theory
that captures all the information about the channel. By linearity, once we know the set of
images {N (|i〉 〈j|)}dini,j=1, we can compute exactly the output state N (ρ) for any given state
ρ. Therefore, we can define the Choi state as the bipartite state JN , which is obtained
by applying the channel N to one part of a maximally entangled state, and leaving the
other part untouched.

Definition 1.4.5 (Choi state). Let N be a (din, dout) dimensional quantum channel. We
define the Choi state JN of the channel N as

JN = id⊗N (|Ψ〉〈Ψ|) =
1

din

din∑
i,j=1

|i〉 〈j| ⊗ N (|i〉 〈j|)

where |Ψ〉 = 1√
din

∑din
i=1 |i〉 ⊗ |i〉 is the maximally entangled state.



18 CHAPTER 1. INTRODUCTION

The map J : N 7→ id ⊗N (|Ψ〉〈Ψ|) is an isomorphism called the Choi–Jamio lkowski
isomorphism [Cho75; Jam72]. Note that for any quantum channel N , JN is positive
semi-definite and satisfies Tr2(JN ) = I

din
. Moreover, any K satisfying these conditions is

a Choi state: we can construct a quantum channel N such that K = JN .
We can compute the Choi states of the previous examples:

1. The identity channel idd(ρ) = ρ has a Choi state Jid = |Ψ〉〈Ψ|.

2. A unitary channel NU(ρ) = UρU † has a Choi state JU = (I⊗U) |Ψ〉〈Ψ| (I⊗U †).

3. The depolarizing channel D(ρ) = Tr(ρ) I
dout

has a Choi state JD =
Idin⊗Idout
dindout

.

We have not specified so far how a learning algorithm would interact with an unknown
channel. In the following, we describe various settings we can consider for learning prop-
erties of quantum channels.

1.4.3 Different models of learning properties of channels

In any natural scenario we could imagine, the learning algorithm would have the abil-
ity to choose the input state, send it through the channel and finally measure it. The
classical observations the algorithm obtains after the measurement(s) are then processed
by a classical computer to either a) distinguish between two hypotheses H0/H1 (testing
problem) or b) return a classical approximation Ñ of N (learning problem). The com-
plexity is always measured by the total number of the channel uses and the number of
measurements.

Coherent strategies.

The most general model of learning properties of a channel is given by quantum circuits.
In this setting, we allow using auxiliary systems of arbitrary dimensions, the unknown
channel can be applied sequentially before performing a measurement and finally multiple
copies of the channel can be used in parallel so that the input state and the output state
can be entangled.

Definition 1.4.6 (Coherent strategy). Let n,N ∈ N∗ be positive integers, n (resp. N)
represents the width (resp. depth) of the circuit. The input state is 2n-dimensional and
equal to |0〉〈0|⊗n. The general coherent strategy would choose

1. a dnin × 2n-dimensional isometry matrix V0,

2. (N − 1) dnout × dnin-dimensional isometry matrices V1, . . . , VN−1 and

3. a 2n × dnout-dimensional isometry matrix V .

For each layer 1 ≤ l ≤ N − 1, the learner chooses a vector xl ∈ {0, 1}n whose i−th entry
determines whether the channel N is applied on the i−th system or not. The state before
measurement is given by:

ρoutput = NV ◦ N⊗xl ◦ · · · ◦ NV1 ◦ N⊗x1 ◦ NV0(|0〉〈0|
⊗n) (1.37)

where NV (ρ) = V ρV †. The output state is then measured with the canonical basis
{|i〉〈i|}i∈[2n]. The learner thus sees the outcome i ∈ [2n] with a probability 〈i| ρoutput |i〉.
See Figure 1.6 for an illustration of this model. Shallow circuits where the depth is N = 1
are called coherent batch and are illustrated in Figure 1.7.
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|0〉 N

|0〉

output

Figure 1.6: Illustration of a general strategy for learning properties of an unknown chan-
nel N . The classical computer processes the observation x to distinguish between two
hypotheses H0/H1 or produce an approximate channel Ñ .

Observe that a coherent strategy can also be represented in a sequential circuit where
at each layer only one channel is applied (see Figure 1.8 for an illustration). This model
permits to apply and combine several powerful quantum subroutines such as Grover’s
search algorithm [Gro96], quantum phase estimation [DDDSLWBW09] and quantum
singular value transformation [GSLW19], among others. However, it presents practi-
cal challenges because, in this case, the learning algorithm must maintain entanglement
throughout the circuit. Additionally, the number of required copies of quantum channels
is generally exponential in the number of qubits. In this thesis, we will not consider
such strategies and we focus only on incoherent strategies. We can imagine a variety of
settings depending on whether an auxiliary system is allowed or not and whether the
input/measurements can be chosen adaptively or not.

Incoherent strategies.

In the case we do not have a quantum memory, we have to measure the output of the
unknown quantum channel immediately. So an incoherent strategy cannot use entangled
input states or entangled measurement devices. Moreover, incoherent strategies are not
allowed to apply the channel successively before performing a measurement. Depending
on whether the ancilla is allowed or not and whether the input and measurement devices
can depend on the previous observations or not, we distinguish four types of incoherent
strategies. When auxiliary systems are not allowed, the strategy is called ancilla-free.

Definition 1.4.7 (Ancilla-free independent/incoherent strategy). At each step 1 ≤ t ≤
N , the strategy would choose an input din-dimensional state ρt and a dout-dimensional
measurement device Mt = {M t

x}x∈Xt. It thus sees the outcome xt ∈ Xt with a probability
Tr(N (ρt)M

t
xt). If the choice of the state ρt and measurement deviceMt can depend on the

previous observations (x1, . . . , xt−1) the strategy is called adaptive (see Figure 1.10 for
an illustration), otherwise it is called non-adaptive (see Figure 1.9 for an illustration).
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|0〉

V0

N

V x

|0〉 N

|0〉 N

|0〉 N

|0〉

|0〉

output

Figure 1.7: Illustration of a batch strategy for learning properties of an unknown chan-
nel N . The classical computer processes the observation x to distinguish between two
hypotheses H0/H1 or produce an approximate channel Ñ .

. . .

. . .

ρ
N

V1 VN−1

N
V x output

Figure 1.8: Illustration of a general coherent strategy for learning properties of an un-
known channel N . The classical computer processes the observation x and distinguish
between two hypotheses H0/H1 or produce an approximate channel Ñ .
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ρ1 N V1

ρ2 N V2

...

ρN N VN

output

Figure 1.9: Illustration of an ancilla-free incoherent non-adaptive strategy for learn-
ing properties of quantum channels. The classical computer processes the observations
(x1, . . . , xN) to distinguish between two hypotheses H0/H1 or produce an approximate
channel Ñ .

Note that adaptive strategies are at least as powerful as their non-adaptive counter-
parts. On the other hand, if an auxiliary system is allowed to be used, these strategies
are called ancilla-assisted.

Definition 1.4.8 (Ancilla-assisted independent/incoherent strategy). At each step t, the
learner would choose an input dancdin-dimensional state ρt and a dancdout-dimensional
measurement device Mt = {M t

x}x∈Xt. It thus sees the outcome xt ∈ Xt with a probability
Tr(iddanc ⊗ N (ρt)M

t
xt). If the choice of the state ρt and measurement device Mt can

depend on the previous observations (x1, . . . , xt−1) the strategy is called adaptive (see
Figure 1.12 for an illustration), otherwise it is called non-adaptive (see Figure 1.11 for
an illustration).

Relation between different models of learning properties of channels

Here, we give the obvious reductions between the models we have seen previously and
discuss about the interesting separations we would like to know in general.
First of all, every strategy can be cast in the general coherent model (see Definition 1.4.6).
Moreover, each model where the use of auxiliary systems is allowed contains its ancilla-free
counterpart as a special case. Also, non-adaptive incoherent strategies can be turned to co-
herent batch ones. But it is not clear how adaptive incoherent strategies perform compared
to coherent batch ones. We known that there are examples of problems for which batch
algorithms outperform adaptive ones. This includes the state tomography [HHJWY16;
CHLLS22] and shadow tomography [Aar19; CCHL22] among others. However, finding an
example for which adaptive strategies have a provable advantage over coherent batch ones
remains an open question. We refer to Figure 1.13 for an illustration of these relations.

Now we see that different settings can be chosen for learning properties of quantum
channels. We shall focus on incoherent strategies. We start with the problem of learning
quantum channels then we analyse the same task for a restricted class of channels and
finally we move to study the problem of testing whether a channel is equal to a fixed
channel or far from it.
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Figure 1.10: Illustration of an ancilla-free incoherent adaptive strategy for learning proper-
ties of quantum channels. The classical computer processes the observations (x1, . . . , xN)
to distinguish between two hypotheses H0/H1 or produce an approximate channel Ñ .
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Figure 1.11: Illustration of an ancilla-assisted incoherent non-adaptive strategy for learn-
ing properties of quantum channels. The classical computer processes the observations
(x1, . . . , xN) to distinguish between two hypotheses H0/H1 or produce an approximate
channel Ñ .
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Figure 1.12: Illustration of an ancilla-assisted incoherent adaptive strategy for learn-
ing properties of quantum channels. The classical computer processes the observation
(x1, . . . , xN) and distinguish between two hypotheses H0/H1 or produce an approximate
channel Ñ .
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Figure 1.13: Different models of learning for quantum channels. A red arrow from strategy
A to strategy B means that the former is more general than the latter.
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1.4.4 Learning quantum channels

Learning completely a quantum channel is the most important question we can ask when
we want to extract classical information from a quantum evolution. The reason is simple,
once we have a classical approximation of the unknown process, we can compute (clas-
sically) an approximation of the output state of any input state of our choice. Thus we
can answer any statistical test about the channel using its approximation. This problem
is known in the literature as “quantum process tomography” which we define formally in
the following.

Definition 1.4.9 (Quantum Process Tomography). Let ε > 0 be a precision parameter
and N : Cdin×din → Cdout×dout be an unknown quantum channel. Given a collection of
N copies of N and the ability to choose the input states and measure the corresponding
output states, the task of quantum process tomography is to produce a quantum channel
Ñ such that with high probability:

d�(Ñ ,N ) ≤ ε. (1.38)

The natural figure of merit for this learning task is the diamond distance d� because
it characterizes the optimal error of discriminating two channels when auxiliary systems
are allowed [Wat18]. The diamond distance d� between two channels N andM is defined
as:

d�(N ,M) = sup
|φ〉∈Sdin×din

‖id⊗ (N −M)(|φ〉〈φ|)‖1. (1.39)

For the problem of quantum process tomography, we can characterize the optimal number
of channel uses for non-adaptive incoherent strategies.

Theorem 1.4.1. A number N = Θ̃
(
d3ind

3
out

ε2

)
of copies is sufficient and necessary to solve

the quantum process tomography problem with non-adaptive strategies.

The upper bound is achieved by an ancilla-free algorithm while the lower bound is
proven for any ancilla-assisted strategy. We refer to Chapter 5 for the proof of this
theorem. The algorithm and its analysis are similar to the ones proposed by [SSKKG22].
Then we use a standard method to prove lower bounds for learning problems known as
Fano’s inequality. To state this result, we need first to define the mutual information.

Mutual information In order to quantify the correlations between two discrete random
variables X and Y , we use the mutual information which is given by the Kullback Leibler
divergence between the joint distribution P(X,Y ) and the product distribution PX × PY :

Definition 1.4.10. Given two random variables X and Y taking values in the sets [n]
and [m] respectively, the mutual information between X and Y is defined as

I(X : Y ) =
n∑
i=1

m∑
j=1

P (X = i, Y = j) log

(
P (X = i, Y = j)

P (X = i)P (Y = j)

)
. (1.40)

The mutual information is non negative, symmetric and satisfies the Data-Processing
inequality.
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Proposition 1.4.1. Let X and Y be two discrete random variables and f be a function.
We have

I(X : f(Y )) ≤ I(X : Y ). (1.41)

When X ∼ Uniform([n]), we have a useful lower bound on the mutual information
known as Fano’s inequality.

Proposition 1.4.2 (Fano, [Fan61]). Let X ∼ Uniform([n]) and Y be a random variable
taking values in [n]. Let δ = P (X 6= Y ), the mutual information between X and Y is at
least

I(X : Y ) ≥ (1− δ) log(n)− log(2). (1.42)

This means that if X and Y are equal with a positive probability, then they are
correlated and should share at least Ω(log(n)) nats of information. To use this inequality,
we proceed by constructing an ε-separated family of quantum channels {Nx}x∈[n]. Then
we use this family to encode the uniform random variable X ∼ Uniform([n]) by the map
X 7→ NX . The next step is to use the learning algorithm to construct an approximation
M of NX to within ε/2. Since the family {Nx}x∈[n] is ε-separated, the channel M is ε/2
close to at most one channel in the family, we denote it by NY . This defines a random
variable Y verifying δ = P (Y 6= X) ≤ 1/3 since the learning algorithm approximates a
channel with success probability at least 2/3. By Fano’s inequality, the random variables
X and Y satisfy:

I(X : Y ) ≥ 2/3 log(n)− log(2). (1.43)

Next, we need to pack a large number n of channels while keeping the mutual information
I(X : Y ) small. We construct the family of channels randomly by choosing the Choi
states having the following expression:

JU =
I

dindout

+
ε

dindout

(U + U †)− ε

dindout

Tr2(U + U †)⊗ I
dout

(1.44)

where U ∼ Haar(dindout). This construction is different than the usual constructions for
states because the Choi state J has the additional property Tr2(J ) = I

din
. The existence

of the family of cardinal exp(Ω(d2
ind

2
out)) is proven using the concentration inequality of

Lipschitz functions of Haar distributed unitary matrices. Before stating this theorem, we
recall the definition of a Lipschitz function.

Definition 1.4.11. Let f : U(d)n → R. we say that f is an L-Lipschitz function if for
all U = (U1, . . . , Un) ∈ U(d)n and V = (V1, . . . , Vn) ∈ U(d)n we have

|f(U)− f(V )| ≤ L‖U − V ‖2,HS (1.45)

where the 2-norm of Hilbert-Schmidt metric is defined as ‖U − V ‖2,HS =

(
∑n

i=1 ‖Ui − Vi‖2
2)

1/2
.

Then we have the following concentration inequality.

Theorem 1.4.2 ([MM13]). Let M = U(d)n endowed by the 2-norm of Hilbert-Schmidt
metric. If f : M → R is L-Lipschitz, then for any t > 0

P (|f(U1, . . . , Un)− E (f(U1, . . . , Un)) | ≥ t) ≤ exp

(
− dt2

12L2

)
, (1.46)

where U1, . . . , Un are independent Haar(d)-distributed unitary matrices.
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The last ingredient of the lower bound’s proof is to upper bound the mutual informa-
tion with an expression of N, din, dout and ε. For this we use Weingarten calculus.

Lemma 1.4.1 ([Gu13]). Let U be a Haar(d)-distributed unitary matrix and {Ai, Bi}i be
a sequence of d× d complex matrices. We have the following formula

E
(
Tr(UB1U

†A1U . . . UBnU
†An)

)
(1.47)

=
∑

α,β∈Sn

Wg(βα−1, d)Trβ−1(B1, . . . , Bn)Trαγn(A1, . . . , An), (1.48)

where γn = (12 · · ·n) and Trσ(M1, . . . ,Mn) = ΠjTr(Πi∈CjMi) for σ = ΠjCj and Cj are
cycles.

The following values of Weingarten function suffice to compute the expectation of any
polynomial in the entries of U ∼ Haar(d) of degree at most 6.

Lemma 1.4.2. The Weingarten function Wg(π, d) depends only on the cycle type of the
permutation π ∈ Sn. We have:

• Wg([1], d) = 1
d
,

• Wg(([2], d) = −1
d(d2−1)

,

• Wg([1, 1], d) = 1
d2−1

,

• Wg([3], d) = 2
d(d2−1)(d2−4)

,

• Wg([2, 1], d) = −1
(d2−1)(d2−4)

and

• Wg([1, 1, 1], d) = d2−2
d(d2−1)(d2−4)

.

The complexity of quantum process tomography is thus Θ̃
(
d3ind

3
out

ε2

)
. Since this com-

plexity is optimal, we should add more restrictions on the channel in order to reduce the
query complexity of approximating it. One particularly important class of processes is
given by Pauli channels. We will investigate the query complexity of learning a Pauli
channel in the next section.

1.4.5 Learning pauli channels

In this section, we consider the problem of learning Pauli channels. This task is motivated
by the fact that quantum computation are in reality imperfect. So we need to consider
a model of computation where the noise is taken into account. Then, in order to correct
the noise affecting this computation, we need to be able to learn its type. An important
and simple model of n-qubit noise (din = dout = 2n) is given by Pauli channels since every
noisy channel can be transformed to this form while keeping the same fidelity [WE16].
Formally, Pauli channels are quantum channels whose Kraus operators are weighted Pauli
operators. For an n-qubit system, Pauli operators have the form:

P = P1 ⊗ P2 ⊗ · · · ⊗ Pn (1.49)
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where for each i ∈ [n], Pi is a 1-qubit Pauli operator:

Pi ∈
{
I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)}
. (1.50)

These Pauli operators generalize the notion of an error that occurs on a qubit. For instance
X can be seen as a bit flip error because it satisfies:

X |0〉 = |1〉 and X |1〉 = |0〉 . (1.51)

On the other hand, Z can be seen as a phase (sign) flip error since it verifies:

Z |0〉 = |0〉 and Z |1〉 = (−1)1 |1〉 . (1.52)

Finally, Y represents both flip and phase errors since Y = (−i)ZX.
We denote the set of n-qubit Pauli operators by Pn = {I, X, Y, Z}⊗n. Then a Pauli
channel is any quantum channel of the form:

P(ρ) =
∑

P∈{I,X,Y,Z}⊗n
p(P )PρP (1.53)

where {p(P )}P∈Pn is a probability distribution. Note that the Kraus operators of this

channel can be taken as
{√

p(P )P
}
P∈Pn

which satisfy:

∑
P∈Pn

(√
p(P )P

)† (√
p(P )P

)
=
∑
P∈Pn

p(P )P †P =
∑
P∈Pn

p(P )I = I (1.54)

because Pauli operators are unitary. Given such channel as a black box, our goal is to
learn it in the diamond norm.

Definition 1.4.12 (Learning Pauli Channels). Let ε > 0 be a precision parameter and
P : (C2)⊗n → (C2)⊗n be an unknown n-qubit Pauli channel. Given a collection of N
copies of P and the ability to choose the input states and measure the corresponding
output states, the task of learning a Pauli channel is to produce a Pauli channel P̃ such
that with high probability:

d�(P̃ ,P) ≤ ε. (1.55)

Since Pauli channels are quantum channels, we can apply directly a quantum process
tomography algorithm as in Theorem 1.4.1 which requires in this case a total number
of channels uses O(n26n/ε2) (because din = dout = 2n). However, Pauli channels are
structured and their Kraus operators are not arbitrary: they should be among the Pauli
operators. So we expect that learning a Pauli channel requires fewer resources than the
general process tomography problem. Indeed, [FW20] propose an algorithm for learning p
in the 2-norm using only Õ(2n/ε2) copies of the channel. In order to translate this result
to a learning algorithm in the diamond norm it is sufficient to apply a Cauchy Schwarz
inequality. Indeed, the diamond norm between two Pauli channels is equivalent to the
1-norm between their corresponding probability distributions [MGE12] hence:

‖P − P̃‖� = ‖p− p̃‖1 ≤ 2n‖p− p̃‖2 (1.56)

as p − p̃ is a vector of 4n entries. Therefore we deduce the following upper bound for
learning Pauli channels.
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Theorem 1.4.3 ([FW20]). There is a non-adaptive ancilla-free incoherent algorithm us-
ing O (n23n/ε2) copies to learn a Pauli channel to within ε in diamond norm with at least
a probability 2/3.

Note that this complexity is smaller than the one we obtain by applying quantum pro-
cess tomography. We reproduce this algorithm and its analysis in Section 6.7. Moreover,
we show a matching lower bound in the non-adaptive case.

Theorem 1.4.4. Non-adaptive ancilla-free incoherent strategies for the problem of Pauli
channel tomography require a number of channel uses satisfying:

N = Ω

(
23n

ε2

)
. (1.57)

Furthermore, we prove a lower bound in the adaptive setting and high precision regime
that matches the optimal non-adaptive complexity if the memory of the algorithm is
limited.

Theorem 1.4.5. Let ε ≤ 2−n−5. Adaptive ancilla-free incoherent strategies for the prob-
lem of Pauli channel tomography require a number of channel uses satisfying:

N = Ω

(
25n/2

ε2

)
. (1.58)

Furthermore, any adaptive strategy that uses O(22n/ε2) memory requires a number of
channel uses verifying:

N = Ω

(
23n

ε2

)
. (1.59)

In both non-adaptive and adaptive cases, the proof of these lower bounds relies on
Fano’s inequality (Proposition 1.4.2). In the non-adaptive case we construct our family
of Pauli channels hard to learn by choosing the probability p randomly. Concretely, the
elements of this family have the form:

P(ρ) =
∑

P∈{I,X,Y,Z}⊗n
p(P )PρP =

∑
P∈{I,X,Y,Z}⊗n

(
1 + 4α(P )ε

4n

)
PρP (1.60)

where α(P ) = ±1 to be chosen randomly so that α(P ) = −α(σ(P )) for some matching
σ of {I, X, Y, Z}⊗n. However, it is challenging to obtain a non trivial adaptive lower
bound with such construction. For this reason, we change the construction and choose
the coefficients normally distributed. Precisely, the new construction have elements of the
form:

P(ρ) =
∑

P∈{I,X,Y,Z}⊗n
p(P )PρP = Tr(ρ)

I
2n

+
2ε

2n

∑
P∈{I,X,Y,Z}⊗n

α̃(P )

‖α‖2

PρP (1.61)

where α̃(P ) = α(P )− 1
4n

∑
Q∈Pn α(Q), {α(P )}P are 4n random variables i.i.d. as N (0, 1)

and p(P ) = 1
4n

+ 2ε
2n
· α̃(P )
‖α‖2 . One inconvenience of this construction is that we add the

condition 2n+5ε ≤ 1 in order to be sure that P is a valid Pauli quantum channel. On
the other hand, we can pack the same order of channels as in the previous construction
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using a remarkable concentration inequality of Lipschitz functions of Gaussian random
variables. Precisely, we say that f : Rk → R is an L-Lipschitz function if for all x, y ∈ Rk

we have

|f(x)− f(y)| ≤ L‖x− y‖2. (1.62)

Any such function concentrates around its mean if its entries are standard Gaussians.

Theorem 1.4.6 ([MS86]). Let (X1, . . . , Xk) be a vector of i.i.d. standard Gaussian vari-
ables and f : Rk → R be an L-Lipschitz function. We have for any t > 0:

P (|f(X1, . . . , Xk)− E (f(X1, . . . , Xk)) | > t) ≤ 2 exp

(
−t2

2L2

)
. (1.63)

Finally, with Gaussian variables instead of Bernoulli variables, we can control large
products in a better way. To this end, we use Gaussian integration by parts (see e.g.,
[VH14]) which is a generalization of Isserlis’ formula [Iss18].

Theorem 1.4.7 (Gaussian integration by parts). Let (X1, . . . , Xk) be a Gaussian vector
and f : Rk → R be a smooth function. We have:

E (X1f(X1, . . . , Xk)) =
k∑
i=1

Cov(X1, Xi)E (∂if(X1, . . . , Xk)) (1.64)

We refer to Chapter 6 for the proofs of these lower bounds.
Another approach to reduce the copy complexity of quantum process tomography is to
only consider testing properties of the quantum channel instead of completely approxi-
mating it. This will be the subject of the next section.

1.4.6 Testing quantum channels

Here our goal would be to check whether an unknown process behaves as intended. We
consider a setting where we have two quantum channels N0 and N . The first process
N0 is completely known to the tester. For instance, the tester has a complete classical
description of the Kraus operators or possibly the unitary operator that defines exactly the
process. In particular, the tester knows what would be the output state after applying the
process N0 on any chosen input state. We can think of the process N0 as an ideal channel.
In reality, the tester interacts with an unknown process N that could be very different
from the ideal process N0. The goal of this test is to certify whether the unknown process
N is exactly what we think it should be (i.e., N0) or far from it. This testing question
is important for various reasons. For instance, quantum computation can be modelled
by quantum circuits. These are the analogue of classical circuits in the quantum world
where bits become qubits and gates become quantum gates. These gates are nothing
but unitary quantum channels. So, in order to succeed in a quantum computation, the
quantum gates should act as designed. It is thus important to have a way to check these
gates and characterize the exact amount of resources needed for this task. Let us give the
formal definition of this testing problem.

Definition 1.4.13 (Quantum channel certification). Let ε > 0 be a threshold parameter
and let N0 be a fixed known quantum channel. Given a collection of N copies of an
unknown quantum channel N and the ability to choose the input states and measure the
corresponding output states, the task of quantum channel certification is to distinguish
between N = N0 and dist(N ,N0) ≥ ε with high probability.
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The distance in this type of tests is crucial and the optimal number of copies neces-
sary varies substantially from a distance to another. Moreover, we would not consider a
distance without an operational interpretation. Two particularly important examples of
distances are related to the trace and diamond norms. Recall that the diamond distance
between two channels N and M is

d�(N ,M) = sup
|φ〉∈Sdin×din

‖id⊗ (N −M)(|φ〉〈φ|)‖1. (1.65)

When auxiliary systems are not allowed, we obtain instead the trace distance

dTr(N ,M) = sup
|φ〉∈Sdin

‖(N −M)(|φ〉〈φ|)‖1. (1.66)

So two channels are close in trace or diamond distance means that for any input state,
the channels output close states in the 1-norm. Understanding the complexity of testing
with these distances is important because we want to avoid situations where two channels
appear close but can yield significantly different outputs for the same input. For instance,
such a scenario could disrupt the overall functionality of a quantum computation.
Then, we need to fix a known process N0: this problem differs from one channel N0 to
another. In this thesis, we focus on two extreme cases:

• A fixed unitary channel. Here N0(ρ) = NU(ρ) = UρU † where U is a unitary
matrix. This corresponds to the example of the evolution of a closed quantum
system or a gate in a quantum circuit. It turns out that we can reduce this problem
to testing to the identity channel where U = I and N0(ρ) = id(ρ) = ρ. We refer to
this problem as “testing identity to identity”. This problem can be thought of the
generalization of testing the classical identity channel, testing a rank 1 state or a
Dirac distribution. In the setting of ancilla-free incoherent strategies, this problem
has a different complexity than any of the mentioned problems.

• The completely depolarizing channel. Here N0(ρ) = D(ρ) = Tr(ρ) I
dout

which
corresponds to a noisy channel. Testing to such channel is the natural generalization
to the well studied testing uniform of distribution problem [DGPP17] or testing
mixedness of states [BCL20]. Furthermore, if the channel has no input din = 1 then
testing such channels becomes exactly testing the corresponding states. Besides,
testing to D is believed to be more difficult than any testing to another channel
N0. We also conjecture that this test can be used as a subroutine for the general
quantum certification problem as in [CLO22].

Testing identity to identity

We consider the quantum analogue of the test on classical channels in Section 1.4.1. Our
proposed algorithm uses a random pure state as input and measure with the corresponding
measurement device (the POVM constituted with this pure state and its complement).
When the ideal channel we would like to test to is the identity channel, we know that
the output state is the same as the input state. In this case we always see “0” under
the null hypothesis and thus we can achieve a zero type I error. Under the alternate
hypothesis, the channel N is far from the identity channel so we can see “1” with a
positive probability. This latter can be boosted to 2/3 if the number of repetition is
sufficiently large. Concretely we can prove:
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Theorem 1.4.8. There is an ancilla-free algorithm for testing identity to identity in the
trace distance using only N = O

(
d
ε2

)
incoherent measurements. Moreover, this algorithm

can also solve the testing identity to identity problem in the diamond distance using only
N = O

(
d
ε4

)
incoherent measurements.

The number of copies required by this test is smaller for the trace distance. However,
we remark that the dependency in the threshold parameter ε is quadratic compared to the
classical testing identity to identity. A natural question arises, is this complexity necessary
or this algorithm is suboptimal? We answer this question in the following theorem:

Theorem 1.4.9. Let dist ∈ {dTr, d�} be the trace or diamond distance. Any adaptive
ancilla-free strategy using incoherent measurements requires a number of steps satisfying:

N = Ω

(
d

ε2

)
(1.67)

to distinguish between N = id and dist(N , id) > ε with a probability at least 2/3.

This theorem shows that a number N = Θ
(
d
ε2

)
of channels is necessary and sufficient

for testing identity to identity in the trace distance which is slightly surprising. Indeed,
we usually obtain the same dependency on the threshold parameter ε when we consider
the quantum analogue of a classical problem and a different dependency in the dimension
parameter d. Here the reverse occurs. To prove this lower bound, we use the well known
method of LeCam [LeC73]. Precisely, we consider two situations:

• Null hypothesis H0. Here the unknown channel N is exactly the identity channel
N (ρ) = ρ.

• Alternate hypothesis H1. Here we consider a random N channel ε far from the
identity channel in the trace distance. Given a random unitary matrix V ∈ Haar(d),
we construct the channel NV (ρ) = 1

2
ρ+ 1

2
UV ρU

†
V where UV satisfies:

UV V |l〉 =


√

1− ε2V |0〉+ εV |1〉 if l = 0
√

1− ε2V |1〉 − εV |0〉 if l = 1

V |l〉 otherwise.

The intuition behind this choice is the following. We would like to make it difficult for the
tester to find a state ρ such that the output states ρ (under H0) and NV (ρ) (under H1) are
distinguishable. To do so, we “hide” this maximizing state by choosing a random basis
given by the Haar distributed unitary V . The other details of the construction including
adding the off diagonal elements and taking the convex combination with the identity
channel are important to achieve the optimal lower bound. Finally, the construction is
inspired from the skew divergence [Aud14].
After a sufficient number of measurements, the observations under the two hypotheses
should be distinguishable and thus, by the data processing inequality, they should be Ω(1)
nats separated. However, we can show that for this particular choice of tested channels,
any ancilla-free adaptive tester can only extract O(ε2/d) nats of information after a mea-
surement no matter the dependence on the previous observations. Our techniques are
based on the Chain rule and Weingarten calculus.
We refer to Section 4.3 for the proof of these theorems.
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Testing identity to the depolarizing channel

The second example we consider in this type of problems is whenN0 = D is the completely
depolarizing channel. If the unknown channel N = N0 then the outputs are always equal
to the maximally mixed state I

dout
. In this case, we observe samples from the uniform dis-

tribution if we measure with any orthonormal basis. On the other hand, if N is different
than D then there is at least one state ρ∗ such that the output state N (ρ∗) is far from
I

dout
. If we know this state, then we can apply the testing mixedness algorithm of [BCL20]

to distinguish between the two situations. Since we have no information about ρ∗ (or
any state playing the same role), we take inspiration from the testing identity to identity
problem we discussed earlier and we choose a random rank 1 input state. It turns out that
with such an input state we can detect whether the channel is completely depolarizing
(noisy) or far from it. The reason behind this is that even though we have no information
about ρ∗, a random rank 1 state |φ〉〈φ| has a non vanishing overlap with ρ∗ with high prob-
ability. This overlap helps us to reduce the testing to the depolarizing channel problem
to the testing mixedness problem [BCL20] with a new threshold parameter ε′ = ε

2din
√
dout

.
Precisely we show that:

Theorem 1.4.10. There is an ancilla-free algorithm requiring a number of incoherent
measurements

N = O
(
d2

ind
1.5
out

ε2

)
(1.68)

to distinguish between N = D and d�(N ,D) ≥ ε with a success probability 2/3.

If the channels have no input din = 1, the channels are constant states and the cer-
tification to D problem becomes a certification to the state I

dout
problem. In this case,

our algorithm uses N = O
(
d1.5out

ε2

)
to solve the testing mixedness problem. Note that this

complexity is optimal even for adaptive strategies [CHLL22]. However, we cannot rely
merely on this particular case to deduce that our algorithm is optimal. For this reason,
we prove a general lower bound in the non-adaptive and adaptive settings.

Theorem 1.4.11. Let ε ≤ 1/32 and dout ≥ 10. Any ancilla-free non-adaptive algorithm
for testing identity to the depolarizing channel requires, in the worst case, a number of
measurements satisfying:

N = Ω

(
d2

ind
1.5
out

log(dindout/ε)2ε2

)
. (1.69)

Moreover, any ancilla-free adaptive algorithm for testing identity to the depolarizing chan-
nel requires, in the worst case,

N = Ω

(
d2

indout + d1.5
out

ε2

)
incoherent measurements.

The first lower bound shows that our algorithm is almost optimal and thus the optimal

complexity in the non-adaptive setting is given by N = Θ̃
(
d2ind

1.5
out

ε2

)
. The second lower

bound shows that if adaptive strategies could outperform non-adaptive ones, then the
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improvement is at most d0.5
out.

The lower bound is proved using the same LeCam’s method but with a different construc-
tion. In this case, we mix two hardness in the alternate hypothesis. First we hide the best
input state, then we hide the eigenbasis of the best output state. Precisely we consider
the two situations:

• Null hypothesis H0. Here the unknown channel N is exactly the depolarizing
channel N (ρ) = D(ρ) = Tr(ρ) I

dout
.

• Alternate hypothesis H1. Here we construct a random N channel ε far from the
depolarizing channel having the expression N (ρ) = D(ρ)+ ε

dout
〈w| ρ |w〉U where |w〉

is a Haar distributed vector and U has Gaussian entries: for all i, j ∈ [dout], Uj,i =
Ui,j ∼ 1{i 6= j}N (0, 16/dout) conditioned on the event G = {‖U‖1 ≥ dout, ‖U‖∞ ≤
32}.

We carry out the analysis using the Hypercontractivity of Gaussian polynomials (see e.g.,
[Jan97; AS17]).
We refer to Section 4.4 for the proof of these theorems.
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Chapter 2

Sequential Algorithms for Testing
Identity and Closeness

2.1 Introduction

How to test if two discrete sources of randomness are similar or distinct? This basic and
ubiquitous question is surprisingly not closed if frugality matters, that is if one wants to
take the right decision using as few samples as possible.

To state the problem more precisely, one first needs to define what “distinct” means.
In this chapter, we endow the set of probability distributions on {1, . . . , n} with the
total variation distance TV, and we fix a tolerance parameter ε ∈ [0, 1]. We consider
two distributions D1 and D2, and we assume that either D1 = D2 or TV(D1,D2) > ε.
Whenever 0 < TV(D1,D2) ≤ ε, we do not expect any determined behaviour from our
test. Two cases occur:

• when the first distribution D1 is fixed and known to the algorithm (but not D2), we
say that we are testing identity using independent samples of D2;

• when both distributions are unknown we are testing closeness, based on an equal
number of independent samples of both distributions.

We also need to specify what kind of “test” is considered. Here we treat the two
hypotheses symmetrically (there is no “null hypothesis”) : given a fixed risk δ ∈ (0, 1),
we expect our procedure to find the true one with probability 1− δ, whichever it is. We
call such a procedure δ-correct.

Finally, we consider and compare two notions of “frugality”: in the batch setting,
the agent specifies in advance the number of samples needed for the test: it makes its
decision just after observing the data all at once, and the sample complexity of the test
is the smallest sample size of a δ−correct procedure. In the sequential setting, the agent
observes the samples one by one, and decides accordingly whether to make a decision or
request more samples before deciding . Then, the sample complexity of the test is the
smallest expected number of samples needed before a δ-correct procedure takes a decision.
Note that this expected number depends on the unknown distributions D1 and D2, which
turns out to be an important advantage of sequential procedures.

Contributions When n ≥ 2 is a small constant integer, we show that the optimal
sample complexities can be precisely characterized (up to lower order terms in ε and δ) in
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Model Lower bound Upper bound

Batch
8 bn

2/4c
n2 log(1/δ)ε−2 8 bn

2/4c
n2 log(1/δ)ε−2

−O (n log log(1/δ)ε−2) +8 bn
2/4c
n2 (n+ 1)ε−2

Sequential (τ1)
2 bn

2/4c
n2 log(1/δ)ε−2 2 bn

2/4c
n2 log(1/δ)ε−2

−O(ε−2) +O
(
(n+ log(1/δ)2/3)ε−2

)
Sequential (τ2)

2 bn
2/4c
n2 log(1/δ)d−2 2 bn

2/4c
n2 log(1/δ)d−2

−O(d−2) +O
(
(n+ log(1/δ)2/3)d−2

)
Table 2.1: Lower and upper bounds on sample complexity for uniformity testing in batch
and sequential setting with d = TV(D, Un). τ1 (resp. τ2) represents the stopping time of
the sequential algorithm when D = Un (resp. TV(D, Un) > ε). The O hides universal
constants.

Model Lower bound Upper bound

Batch 4 log(1/δ)ε−2 −O(log log(1/δ)ε−2) 4 log(1/δ)ε−2 +O(nε−2)

Sequential (τ1) log(1/δ)ε−2 −O(ε−2)
log(1/δ)ε−2

+O((n+ log(1/δ)2/3)ε−2)

Sequential (τ2) log(1/δ)d−2 −O(d−2)
log(1/δ)d−2

+O
(
(n+ log(1/δ)2/3)d−2

)
Table 2.2: Lower and upper bounds on the sample complexities for testing closeness in the
batch and sequential settings with d = TV(D1,D2). τ1 (resp. τ2) represents the stopping
time of the sequential algorithm when D1 = D2 (resp. TV(D1,D2) > ε). The O hides
universal constants.

both the batch and sequential setting as shown in Table 2.1 and Table 2.2. This establishes
a provable advantage for sequential strategies over batch strategies when n � log(1/δ):
sequential algorithms reduce the sample complexity by a factor of at least 4, and can stop
rapidly if the tested distributions are far (i.e., TV(D1,D2) > ε). The improvements of the
sequential algorithm are illustrated in Figure 2.1. The sequential algorithms use stopping
rules inspired by time uniform concentration inequalities. The problems of testing identity
and closeness for small n are studied in Section 2.3 and Section 2.4 respectively.

For general n ≥ 2, we improve the dependence on ε to ε ∨ TV(D1,D2) in the best
batch algorithm due to [DGKPP20], which is known to be optimal up to multiplicative
constants. Namely we obtain a sequential closeness testing algorithm using a number of
samples given by

O

(
max

(
n2/3 log1/3(1/δ)

(ε ∨ TV(D1,D2))4/3
,
n1/2 log1/2(1/δ)

(ε ∨ TV(D1,D2))2
,

log(1/δ)

(ε ∨ TV(D1,D2))2

))
. (2.1)

A doubling search technique could also lead to the same order of sample complexity, we
explain this method and compare it with our proposed algorithm in Remark 2.6.1.

As a special case, when ε = 0 (the algorithm should not stop when D1 = D2 in this
case) we show that there is an algorithm that stops after

O
(

max

(
log log(1/d)

d2
,
n2/3 log log(1/d)1/3

d4/3
,
n1/2 log log(1/d)1/2

d2

))
(2.2)

samples where d = TV(D1,D2) > 0. This is an improvement over the sequential al-

gorithm of [DK17] which uses Θ(n/ logn
d2

log log(1/d)) samples. We design the stopping
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Figure 2.1: Left: histogram of the stopping times for 100 Monte-Carlo experiments.
Black: D1 = D2 = Un, blue (resp. magenta): D1 = Un and D2 = {(1 ± 2ε)/n} (resp.
{(1 ± 4ε)/n}). Right: D1 = U2 and D2 = {(1 ± 2ε)/2}. The sequential tester stops
as soon as the statistic enters the red region (for H1) or blue region (for H2) whereas
the batch tester waits for the red and blue regions to cover the whole segment [0, 1].
The blue/red and black dashed lines represent respectively the stopping times of the
sequential and batch algorithms. The blue lower bound for batch algorithms is taken
from Proposition 2.4.1. We note that, in both cases, the sequential tester stops long
before the batch algorithm.

rules according to a time uniform concentration inequality deduced from McDiarmid’s
inequality, where we use the ideas of [HRMS18; HRMS20] in order to obtain powers of
log log(1/d) instead of log(1/d).

We show that the sample complexity for the testing closeness problem given by Equa-
tion (2.1) is optimal up to multiplicative constants in the worst case setting (i.e., when
looking for a bound independent of the distributions D1 and D2). To do so, we construct
two families of distributions whose cross TV distance is exactly d ≥ ε and hard to dis-
tinguish unless we have a number of samples given by Equation (2.1). This latter lower
bound is based on properties of KL divergence along with Wald’s Lemma. Using similar
techniques, we also establish upper and lower bounds for testing identity that match up
to multiplicative constants.

In addition, we establish a lower bound on the number of queries that matches Equa-
tion (2.2) up to multiplicative constants. The proof is inspired by [KK07] who proved
lower bounds for testing whether the mean of a sequence of i.i.d. Bernoulli variables
is smaller or larger than 1/2. We construct well-chosen distributions Dk (for k integer)
that are at distance εk (εk decreasing to 0) from uniform and then use properties of the
Kullback-Leibler’s divergence to show that no algorithm can distinguish between Dk and
uniform using fewer samples than in Equation (2.2). Note that we could have used the
testing closeness lower bound described in the previous paragraph and let ε = 0, however
this gives sub-optimal lower bounds.

Discussion of the setting and related work It is clearly impossible to test D1 = D2

versus D1 6= D2 in finite time: this is why the slack parameter ε is introduced in this
setting. Other authors like [DK17] make a different choice: they fix no ε, but only require
that the test decides for D1 6= D2 as soon as it can, and never stops with high probability
when D1 = D2.

We focus on the TV distance in testing closeness problems because it characterises the
probability of error for the problem of distributions discrimination ; as noted by [DKW18],
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using other distances such as KL and χ2 is in general impossible.
For an overview of testing discrete distributions we recommend the survey of [Can20].

Testing identity for the uniform distribution was solved by [Pan08], then for general distri-
bution by [VV17] and finally the high probability version by [DGPP17]. Likewise testing
closeness was solved by [CDVV14], and a distribution dependent complexity was found
by [DK16] and finally the high probability version by [DGKPP20]. Besides, the problem
of testing D1 = D2 vs D1 6= D2 was solved by [DK17] for n = 2, however the constants
are not optimal. They also propose algorithms for the general case using black-box re-
duction from non-sequential hypothesis testers. Sequential and adaptive procedures have
also been explored in active hypothesis setting [NJ13], channels’ discrimination [Hay09]
and quantum hypothesis testing [LTT22; LHT22a]. Sequential strategies have been also
considered for testing continuous distributions by [ZZSE16] and [BR15]. In the latter,
the authors design sequential algorithms whose stopping time adapts to the unknown dif-
ficulty of the problem. The techniques used are time uniform concentration inequalities
which are surveyed by [HRMS20]. In contrast to the present work, however, they test
properties of the means of the distributions.

2.2 Preliminaries

We mostly follow [DK17] for the notation.

2.2.1 Testing identity

Given two distributions D (known) and D′ (unknown) on [n] := {1, . . . , n}, we want
to distinguish between two hypothesis H1 : D′ = D and H2 : TV(D′,D) > ε. We call a
stopping rule a function T : [n]∗ → {0, 1, 2} such that if T (x) 6= 0 then T (xy) = T (x) for all
strings x and y. T (x) = 1 (resp. T (x) = 2) means that the rule accepts H1 (resp. H2) after
seeing x while T (x) = 0 means the rule does not make a choice and continues sampling.
We define two different stopping times, the first τ1(T,D′) = inf{t, T (x1 · · ·xt) = 1} and
the second τ2(T,D′) = inf{t, T (x1 · · ·xt) = 2} where x1, . . . are i.i.d. samples from D′.
We want to find stopping rules satisfying

1. P (τ2(T,D) ≤ τ1(T,D)) ≤ δ and

2. P (τ1(T,D′) ≤ τ2(T,D′)) ≤ δ whenever TV(D′,D) > ε.

We call such a stopping rule δ-correct. Our goal is to minimize the expected sample
complexity E(τ1(T,D)) in case of the input is from D and E(τ2(T,D′)) in case of the
input is from D′ such that TV(D′,D) > ε.

A batch algorithm is one for which τ = τ1 = τ2 is a constant random variable which
only depends on δ, ε, n and D.

2.2.2 Testing closeness

Given two distributions D1 and D2 on {1, . . . , n} we want to distinguish between two
hypothesis H1 : D1 = D2 and H2 : TV(D1,D2) > ε. We call a stopping rule a function
T :

⋃
k∈N[n]k × [n]k → {0, 1, 2} such that if T (x, y) 6= 0 then T (xz, yt) = T (x, y) for

all strings x, y, z, t with |x| = |y| and |z| = |t|. T (x, y) = 1 (resp. T (x, y) = 2) means
that the rule accepts H1 (resp. H2) after seeing the sequences x and y while T (x, y) = 0
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means the rule does not make a choice and continue sampling. We define two different
stopping times, the first τ1(T,D1,D2) = inf{t, T (x1 · · ·xt, y1 · · · yt) = 1} and the second
τ2(T,D1,D2) = inf{t, T (x1 · · ·xt, y1 · · · yt) = 2} where x1, . . . are i.i.d. samples from D1

and y1, . . . samples from D2 . We want to find stopping rules satisfying

1. P (τ2(T,D1,D2) ≤ τ1(T,D1,D2)) ≤ δ if D1 = D2 and

2. P (τ1(T,D1,D2) ≤ τ2(T,D1,D2)) ≤ δ whenever TV(D1,D2) > ε.

We call such stopping rules δ-correct. Our goal is to minimize the expected sample
complexity E(τ1(T,D1,D2)) in case of the input is from D1, D2 such that D1 = D2 and
E(τ2(T,D1,D2)) in case of the input is from D1, D2 such that TV(D1,D2) > ε.

2.3 Testing identity for small n

In this section, we focus on small, constant values of n where n ≥ 2 and we consider two
distributions, D = Un is the uniform distribution on [n] and D′ is an unknwon distribution
on [n]. In this case, the hypothesis H1 becomes D′ = Un and H2 becomes TV(D′, Un) > ε.
We are interested in precisely comparing the sample complexity of testing identity in the
sequential versus the batch setting. In order to find the optimal constant, we first need to
obtain a sharp lower bound in the batch setting, which is done directly by using Stirling’s
approximation. We then turn to the sequential case.

2.3.1 Batch setting

In the batch setting, the number of steps τ is fixed before the test. The tester samples
A1, . . . , Aτ ∼ D′ and decides according to the comparison between the empirical TV

distance TV(D̃′τ , Un) and ε/2 where D̃′τ =
{(∑τ

j=1Aj = i
)
/τ
}
i∈[n]

. If TV(D̃′τ , Un) ≤ ε/2

it accepts H1 and rejects it otherwise. In order to control the number of steps τ so that
the error of this algorithm does not exceed δ, Chernoff–Hoeffding’s inequality ([Hoe63])
writes for i.i.d. random variables X1, . . . , Xτ ∼ Bern(q):

P

(∑τ
i=1 Xi

τ
−q > ε

2

)
≤e−τ KL(q+ε/2,q) and P

(∑τ
i=1Xi

τ
−q <−ε

2

)
≤e−τ KL(q−ε/2,q) .

(C-H)

We use the following property of TV distance:

TV(D′, Un) = max
B⊂[bn/2c]

|D′(B)− |B|/n| = |D′(Bopt)− |Bopt|/n|, (2.3)

and choose Xi = 1Ai∈Bopt ∼ Bern(D′(Bopt)).
Applying these inequalities for D′ = Un (to control the type I error) and for D′ 6= Un

(to control the type II error) prove that this test is δ-correct if

τ = max
b∈[n]

{
log(2/δ)

KL(b/n± ε/2, b/n± ε)
,

log(2n+1/δ)

KL(b/n± ε/2, b/n)

}
, (2.4)

where KL(p, q) = KL(Bern(p)‖Bern(q)) denotes the Kullback-Leibler divergence.
To see this, we analyze the three cases: D′ = Un, D′(Bopt)−|Bopt|/n > ε and D′(Bopt)−

|Bopt|/n < −ε. They are all handled by a simple application of Chernoff–Hoeffding’s
inequality (C-H):
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• If D′ = Un, the probability of error is given by

P
(∣∣∣TV(D̃′, Un)

∣∣∣ > ε

2

)
= P

(
∃B ⊂ [n] :

∣∣∣D̃′(B)− |B|/n
∣∣∣ > ε

2

)
(2.5)

≤
∑

B⊂[bn/2c]

e−τ KL(|B|/n+ε/2,|B|/n) + e−τ KL(1−|B|/n+ε/2,1−|B|/n)

(2.6)

≤ δ . (2.7)

• If D′(Bopt)− |Bopt|/n > ε, the probability of error is given by

P
(∣∣∣TV(D̃′, Un)

∣∣∣ ≤ ε

2

)
≤ P

(
D̃′(Bopt)− |Bopt|/n ≤

ε

2

)
(2.8)

≤ e−τ KL(|Bopt|/n+ε/2,D′(Bopt)) (2.9)

≤ e−τ KL(|Bopt|/n+ε/2|,Bopt|/n+ε) (2.10)

≤ δ (2.11)

where we use the fact that the function x 7→ KL(p, x) is increasing on (p, 1).

• If D′(Bopt)− |Bopt|/n < −ε, the probability of error is given by

P
(∣∣∣TV(D̃′, Un)

∣∣∣ ≤ ε

2

)
≤ P

(
D̃′(Bopt)− |Bopt|/n ≥ −

ε

2

)
(2.12)

≤ e−τ KL(|Bopt|/n−ε/2,D′(Bopt)) (2.13)

≤ e−τ KL(|Bopt|/n−ε/2|,Bopt|/n−ε) (2.14)

≤ δ (2.15)

where we use the fact that the function x 7→ KL(p, x) is decreasing on (0, 1).

We show in the following theorem that this number of steps τ is necessary.

Theorem 2.3.1. In the batch setting, any δ-correct algorithm testing identity to D = Un
requires at least τ samples, where

τ ≥ max
b∈[n]

min

{
log(1/δ)

KL(b/n+ ε/2, b/n+ ε)
,

log(1/δ)

KL(b/n+ ε/2, b/n)

}
−O

(
n log log 1/δ

ε2

)
.

(2.16)

This lower bound has the simple equivalent 8 bn
2/4c
n2 log(1/δ)ε−2−O (n log log(1/δ)ε−2)

when ε → 0 (see Lemma 2.4.1 for the equivalent of KL divergence). To prove this
lower bound, we show that every δ-correct tester can be transformed into a test which
depends only on the numbers of 1′s, 2′s, . . . , n′s occurred on {A1, . . . , Aτ} . We then
consider the distribution D′ with roughly half parts are 1/n + ε/bn/2c and the others
are 1/n − ε/dn/2eand derive tight lower bounds on the probability mass function of the
multinomial distribution.

Proof. We consider such a δ-correct test A : {1, . . . , n}τ → {1, 2}, it sees a word consisting
of τ samples either from a distribution ε-far from Un or Un and returns 1 if it thinks the
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the samples come from Un and 2 otherwise. We construct another test B : {1, . . . , n}τ →
{0, 1} by the expression

B(x) = 1

{∑
σ∈Sτ

A(σ(x))− 1 ≥ τ !/2

}
, (2.17)

The test B has the property of invariance under the action of the symmetric group.
Moreover, B is 2δ-correct. Indeed, if x represents τ i.i.d. samples from Un, then for all
σ ∈ Sτ , σ(x) represents also τ i.i.d. samples from Un hence by Markov’s inequality:

P (B(x) = 1) = P

(∑
σ∈Sτ

A(σ(x))− 1 ≥ τ !/2

)
(2.18)

≤ 2

τ !

∑
σ∈Sτ

E (A(σ(x))− 1) (2.19)

≤ 2

τ !

∑
σ∈Sτ

P (A(σ(x)) = 2) (2.20)

≤ 2

τ !

∑
σ∈Sτ

δ (2.21)

= 2δ. (2.22)

Similarly, if x represents τ i.i.d. samples from a distribution D that is ε-far from Un, then
for all σ ∈ Sτ , σ(x) represents also τ i.i.d. samples from D hence by Markov’s inequality:

P (B(x) = 0) = P

(∑
σ∈Sτ

A(σ(x))− 1 < τ !/2

)
(2.23)

≤ 2

τ !

∑
σ∈Sτ

E (2− A(σ(x))) (2.24)

≤ 2

τ !

∑
σ∈Sτ

P (A(σ(x)) = 1) (2.25)

≤ 2

τ !

∑
σ∈Sτ

δ (2.26)

= 2δ. (2.27)

Let d ∈ [n] and suppose that τ
(

1
n

+ ε
2d

)
and τ

(
1
n
− ε

2(n−d)

)
are integers. Consider the

word

w = 1τ(
1
n

+ ε
2d) . . . dτ(

1
n

+ ε
2d)(d+ 1)τ(

1
n
− ε

2(n−d)) . . . nτ(
1
n
− ε

2(n−d)), (2.28)

we have two choices, either B(w) = 0 or B(w) = 1, we suppose the first and take q the
distribution defined by q1 = · · · = qd = 1

n
+ ε

d
and qd+1 = · · · = qn = 1

n
− ε

n−d . It satisfies
TV(q, Un) = ε thus Pq(x1 · · ·xτ = w) ≤ δ hence(

τ

τ1 · · · τn

)(
1

n
+
ε

d

)dτ1 ( 1

n
− ε

n− d

)(n−d)τd+1

≤ δ (2.29)
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where τ1 = · · · = τd = τ
(

1
n

+ ε
2d

)
and τd+1 = · · · = τn = τ

(
1
n
− ε

2(n−d)

)
thus

τ !

(τ1!)d(τd+1!)n−d

(
1

n
+
ε

d

)dτ1 ( 1

n
− ε

n− d

)(n−d)τd+1

≤ δ, (2.30)

which implies by Stirling’s approximation

e(τ/e)τ

(eτ1(τ1/e)τ1)d(eτd+1(τd+1/e)τd+1)n−d
e
−dτ1 log

τ1
q1

(
1

n
+
ε

d

)dτ1 ( 1

n
− ε

n− d

)(n−d)τd+1

≤ δ,

(2.31)

after simplifying we obtain

e

(eτ1)d(eτd+1)n−d
e
−dτ1 log

τ1
q1 e
−(n−d)τd+1 log

τd+1
qd+1 ≤ δ, (2.32)

or

e

(eτ1)d(eτd+1)n−d
e−τ KL(d/n+ε/2,d/n+ε) ≤ δ, (2.33)

Finally

τ ≥ log(1/δ) + 1− n
KL(d/n+ ε/2, d/n+ ε)

−O
(
n log log(1/δ)ε−2

)
. (2.34)

If B(w) = 1, we consider q = Un and we obtain with the same approach

τ ≥ log(1/δ) + 1− n
KL(d/n+ ε/2, d/n)

−O
(
n log log(1/δ)ε−2

)
. (2.35)

These lower bounds work for all d ∈ [n] therefore

τ ≥ max
d∈[n]

min

{
log(1/δ)

KL(d/n+ ε/2, d/n)
,

log(1/δ)

KL(d/n+ ε/2, d/n+ ε)

}
−O

(
n log log(1/δ)

ε2

)
.

(2.36)

This simple analysis relies on well-known arguments for testing Bernoulli variables
D1 = Bern(p) and D2 = Bern(q). For example, [AB09] and [KK07] test whether q =
1/2 + ε or q = 1/2 − ε with an error probability δ. [AB09] show that we need roughly
log(1/δ)ε−2/4 samples while [KK07] prove that 2 log(1/δ)ε−2 samples are sufficient. If ε
is not known to the tester, sequential algorithms prove to be essential. Indeed, [KK07]
manage to prove that Θ(log log(1/|q− 1/2|)|q− 1/2|−2) is necessary and sufficient to test
q > 1/2 vs q < 1/2 with an error probability 1/3. In what follows, we use sequential
algorithms to expose the dependency on TV(D′, Un) for the testing identity problem.
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2.3.2 Sequential setting

If one wants to leverage the sequential setting to improve the optimal sample complexity
of testing identity, it is natural to first investigate how it can be improved by removing
the batch assumption of the previous lower-bound in Theorem 2.3.1. We first state a new
lower bound inspired by the work of [GK19].

Lemma 2.3.1. Let D = Un be the uniform distribution. Let T a stopping rule for testing
identity: D′ = Un vs TV(D′, Un) > ε with an error probability δ. Let τ1 and τ2 the
associated stopping times. We have

• E(τ1(T, Un) ≥ log(1/3δ)
minb∈[n]{KL(b/n,b/n±ε)} if D′ = Un.

• E(τ2(T,D′)) ≥ log(1/3δ)
min{KL(|Bopt|/n±d,|Bopt|/n)} if d = TV(D′, Un) = |D′(Bopt)− |Bopt|/n| > ε.

An average number of samples equivalent to 2 bn
2/4c
n2 log(1/3δ)ε−2 (by Lemma 2.4.1) is

thus necessary when the tester can access sequentially to the samples, which is roughly 4
times less than the complexity obtained in Theorem 2.3.1 for the batch setting. The proof,
with a strong information-theoretic flavor, compares two situations: when the samples are
from equal distributions and when they are from ε-far distributions. Those samples cannot
be distinguished until their size is large enough, as can be proved by combining properties
of Kullback-Leibler’s divergence and Wald’s lemma.

Proof. We apply the lower bounds of Section 2.7.1. If D = Un, we set D+
b the distribution

whose first b parts are equal to 1/n+ ε/b and the others are equal to 1/n− ε/(n− b).

E(τ1(D)) ≥ log(1/3δ)

minD′′s.t. TV(D′′,D) > εKL(D,D′′)
(2.37)

≥ log(1/3δ)

minb∈[n] KL(D,D+
b )

(2.38)

≥ log(1/3δ)

minb∈[n] KL(b/n, b/n+ ε/n)
. (2.39)

Likewise we can prove for D−b the distribution whose first b parts are equal to 1/n− ε/b
and the others are equal to 1/n+ ε/(n− b):

E(τ1(D)) ≥ log(1/3δ)

minD′′s.t. TV(D′′,D)>ε KL(D,D′′)
(2.40)

≥ log(1/3δ)

minb∈[n] KL(D,D−b )
(2.41)

≥ log(1/3δ)

minb∈[n] KL(b/n, b/n− ε/n)
. (2.42)

Finally:

E(τ1(D)) ≥ log(1/3δ)

minb∈[n] KL(b/n, b/n± ε/n)
. (2.43)
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Figure 2.2: Testing identity for Bernoulli (n = 2). Left: q = p = 0.5 and ε = 0.1. Right:
p = 0.5, q = 0.6 and ε = 0.1. The sequential tester stops as soon as St enters the red
region (for H1) or blue region (for H2) whereas the batch tester waits for the red and blue
regions to cover the whole segment [0, 1]. The green and magenta dashed lines represent
respectively the stopping time of the sequential and batch algorithms. We note that, in
both cases, the sequential tester stops long before the batch algorithm.

Now, in order to prove a lower bound on τ2, we focus on distributions that are ε-far from
Un and have the same length of Bopt.

sup
D:TV(D,Un)=d>ε,|Bopt(D)|=b

E(τ2(D)) ≥ sup
D:TV(D,Un)=d>ε,|Bopt(D)|=b

log(1/3δ)

KL(D, Un)
. (2.44)

≥ log(1/3δ)

KL(b/n± ε/n, b/n)
. (2.45)

In the sequential testing, the tester chooses when to stop according to the previous
observations (A1, . . . , At), making comparisons at each step t. The key explanation of
the sequential speedup is that the tester can stop as soon as it is sure that it can accept
one of the hypothesis H1 or H2. On the contrary, in the batch setting it had to sample
enough observation to be simultaneously sure that either H1 or H2 hold. In this aim, at
each time step, after sampling a new observation Xt, it compares the updated empirical
TV distance St = maxB⊂[bn/2c] |D̃′t(B) − |B|/n| to specific thresholds and sees if (a) St
is sufficiently far from 0 to surely accept H2, (b) St is sufficiently close to ε to surely
accept H1, (c) it is unsure and needs further sample to take a sound decision. This test is
formally described in Algorithm 1 and its execution is illustrated in Figure 2.2 for n = 2.

To control the sample complexity of such sequential algorithms, we need here Chernoff-
Hoeffding’s inequality (C-H) and the union bound:

P

(
∃B ⊂ [bn/2c],∃t ≥ 1 :

∑t
i=1 1Ai∈B
t

> D′(B) + φ(δ,D′(B), t)

)
(2.46)

≤
∑

B⊂[bn/2c],t≥1

e−tKL(D′(B)+φ,D′(B)) =
∑

B⊂[bn/2c],t≥1

δ

2n−1t(t+ 1)
=
δ

2
, (2.47)
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Algorithm 1 Distinguish between D′ = Un and TV(D′, Un) > ε with high probability

Require: A1, . . . samples from D′
Ensure: Accept if D′ = Un and Reject if TV(D′, Un) > ε with probability of error less

than δ
t = 1, W = 1
while W = 1 do
D̃′t =

{(∑t
j=1 1Aj=i

)
/t
}
i∈[n]

if ∃B ⊂ [bn/2c] : |D̃′t(B)− |B|/n| > max{φ(δ, |B|/n, t), φ(δ, 1− |B|/n, t)} then
W = 0
return 2

else if ∀B ⊂ [bn/2c] : (D̃′t(B) − |B|/n)+ < ε − φ(δ, |B|/n + ε, t) and (|B|/n −
D̃′t(B))+ < ε− φ(δ, |B|/n− ε, t) then
W = 0
return 1

else
t = t+ 1

end if
end while

and

P

(
∃B ⊂ [bn/2c],∃t ≥ 1 :

∑t
i=1 1Ai∈B
t

< D′(B)− φ(δ, 1−D′(B), t)

)
(2.48)

≤
∑

B⊂[bn/2c],t≥1

e−tKL(D′(B)−φ,D′(B)) =
∑

B⊂[bn/2c],t≥1

δ

2n−1t(t+ 1)
=
δ

2
, (2.49)

where φ(δ, p, t) is the real function1 implicitly defined as the solution of the equation

KL(p + φ(δ, p, t), p) = log
(

2n−1t(t+1)
δ

)
/t. The function φ is a key ingredient in designing

the stopping rules of Algorithm 1 since it enables to directly bound its sample complexity
in terms of the expression of the Kullback-Leibler’s divergence. The stopping time of
Algorithm 1 is τ = min{τ1, τ2} where τ1 and τ2 are defined as follows:

τ1 = inf
{
t ≥ 1 : ∀B ⊂ [bn/2c] (D̃t(B)− |B|/n)+ < ε− φ(δ, |B|/n+ ε, t), (2.50)

(|B|/n− D̃t(B))+ < ε− φ(δ, |B|/n− ε, t)
}

(2.51)

τ2 = inf
{
t ≥ 1 : ∃B ⊂ [bn/2c] |D̃t(B)− |B|/n| > max{φ(δ, |B|/n, t), φ(δ, 1− |B|/n, t)}

}
.

(2.52)

Note that the stopping time of the algorithm is random. Yet, we can show that this algo-
rithm stops always before the batch one and give an upper bound on the expected stopping
time τ (or expected sample complexity) using the inequality E(τ) ≤ N +

∑
t≥N P(τ ≥ t),

where N is chosen so that P(τ ≥ t) is (exponentially) small for t ≥ N . In the following
theorem, we state an upper bound on the estimated sample complexity of this algorithm.

Theorem 2.3.2. The Algorithm 1 is δ-correct and its stopping times can be bounded in

1This function is well defined whenever log
(

2n−1t(t+1)
δ

)
< t log(1/p) and can easily be approximated

as a zero of a one-dimensional convex function
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expectation for n < log2/3(1/δ) as follows:

E(τ1(Un)) ≤ log(2n−1/δ)

minb∈[n]{KL(b/n, b/n± ε)}
+O

(
log(2n−1/δ)2/3

ε2

)
, and (2.53)

E(τ2(D′)) ≤ log(2n−1/δ)

min{KL(|Bopt|/n± d, |Bopt|/n)}
+O

(
log(2n−1/δ)2/3

d2

)
(2.54)

if d = TV(D′, Un) = |D′(Bopt)− |Bopt|/n| > ε .

These upper bounds are tight in the sense that they match the asymptotic lower
bounds of Lemma 2.3.1 if n� log(1/δ). We see here the many advantages of the sequential
setting as shown in Figure 2.2: (a) the sequential algorithm stops always before the
non-sequential algorithm since after the batch complexity the region of decisions of the
sequential algorithm intersect, (b) the estimated sample complexity is 4 times less than
the optimal complexity in the non sequential setting, (c) the sample complexity can be
very small if the probability mass is concentrated on a small set i.e. |Bopt| � n and (d)
the sample complexity in the sequential setting depends on the unknown distribution D′
through the distance TV(D′, Un). Note that this cannot be the case in the batch setting
as the number of sample should be fixed beforehand. This attribute makes a considerable
difference when D′ is very different from Un. Nevertheless, the above lower bounds and
upper bounds do not match exactly, the dependence on n cannot be avoided if n is of the
order (or larger) of log(1/δ). For this reason, we try in Section 2.5 to somehow truncate
our algorithm in a way to get the best sample complexity in every regime. In the previous
results the choice of D = Un is not crucial, we can easily generalize them by replacing
|Bopt|/n by D(Bopt).

Proof. We first prove the correctness of Algorithm 1, i.e., that it has an error probability
less than δ. Let us recall the useful concentration inequalities which can be simply proven
using Chernoff-Hoeffding’s inequalities and union bounds.

Lemma 2.3.2. If A1, . . . , At are i.i.d. random variables with the law D′, we have the
following inequalities:

P

(
∃B ⊂ [bn/2c],∃t ≥ 1 :

∑t
i=1 1Ai∈B
t

> D′(B) + φ(δ,D′(B), t)

)
≤ δ

2
, (2.55)

P

(
∃B ⊂ [bn/2c], ∃t ≥ 1 :

∑t
i=1 1Ai∈B
t

< D′(B)− φ(δ, 1−D′(B), t)

)
≤ δ

2
, (2.56)

Using this lemma we can conclude:

• If D′ = Un, the probability of error is given by

P (τ2 ≤ τ1) ≤ P
(
∃t ≥ 1 : max

B⊂[bn/2c]
|D̃′t(B)− |B|/n| > max{φ(δ, |B|/n, t), φ(δ, 1− |B|/n, t)}

)
(2.57)

≤ P
(
∃t ≥ 1, ∃B ⊂ [bn/2c] : D̃′t(B)− |B|/n > φ(δ, |B|/n, t)

)
(2.58)

+ P
(
∃t ≥ 1,∃B ⊂ [bn/2c] : D̃′t(B)− |B|/n < −φ(δ, 1− |B|/n, t)

)
(2.59)

≤ δ . (2.60)
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• If D′(Bopt)− |Bopt|/n > ε, the probability of error is given by

P (τ1 ≤ τ2) ≤ P
(
∃t ≥ 1 : D̃′t(Bopt)− |Bopt|/n < ε− φ(δ, 1− |Bopt| − ε, t)

)
(2.61)

≤
∑
t≥1

e−tKL(1−|Bopt|/n−ε+φ(δ,1−|Bopt|/n−ε,t),1−D′(Bopt)) (2.62)

≤
∑
t≥1

e−tKL(|Bopt|/n+ε−φ(δ,1−|Bopt|/n−ε,t),|Bopt|/n+ε) (2.63)

≤
∑
t≥1

δ

2t(t+ 1)
≤ δ (2.64)

where we use the fact that x 7→ KL(p, p− x) is increasing on (0, p).

• If D′(Bopt)− |Bopt|/n < −ε, the probability of error is given by

P (τ1 ≤ τ2) ≤ P
(
∃t ≥ 1 : D̃′t(Bopt)− |Bopt|/n > −ε+ φ(δ, 1− |Bopt|/n− ε, t)

)
(2.65)

≤
∑
t≥1

e−tKL(|Bopt|/n−ε+φ(δ,|Bopt|/n−ε,t),D′(Bopt)) (2.66)

≤
∑
t≥1

e−tKL(|Bopt|/n−ε+φ(δ,|Bopt|/n−ε,t),|Bopt|/n−ε) (2.67)

≤
∑
t≥1

δ

2t(t+ 1)
≤ δ (2.68)

where we use the fact that x 7→ KL(p, x) is decreasing on (0, p).

This conclude the proof of the correctness of Algorithm 1.
Let us prove the upper bounds on the expected stopping times of Algorithm 1. We

first prove the asymptotic bounds, then provide the proof for the non-asymptotic bounds.
The proofs rely on the following well-known lemma:

Lemma 2.3.3. Let T be a random variable taking values in N∗, we have for all N ∈ N∗

E(T ) ≤ N +
∑
t≥N

P(T ≥ t) . (2.69)

Proof. Since the random variable T takes values in N∗, we have:

E(T ) =
∑
t≥1

P (T ≥ t) =
N−1∑
t=1

P (T ≥ t) +
∑
t≥N

P (T ≥ t) (2.70)

≤ N +
∑
t≥N

P (T ≥ t) . (2.71)

Recall that φ is defined by the relation KL(p + φ(δ, p, t), p) = log
(

2n−1t(t+1)
δ

)
/t.

Pinsker’s inequality ([RW09]) implies 0 < φ(δ, p, t) ≤
√

1
2t

log
(

2n−1t(t+1)
δ

)
, hence
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limt→∞ φ(δ, p, t) = 0 and φ(δ, p, t) exhibits the following asymptotic behavior:

φ(δ, p, t) ∼
t→∞

√
2p(1− p)

t
log

(
2n−1t(t+ 1)

δ

)
(2.72)

since KL(p+x, p) ∼
x→0

x2

2p(1−p) . Fix a parameter 0 < α < 1, and let N the minimum positive

integer such that for all integers t ≥ N , maxb∈[n/2]{φ(δ, b/n−ε, t), φ(δ, 1−b/n−ε, t)} ≤ αε.
The existence of N is guaranteed since limt→∞ φ(δ, p, t) = 0. We have

max
b∈[n/2]

{
φ(δ, b/n− ε,N), φ(δ, 1− b/n− ε,N)

}
≤ αε, (2.73)

max
b∈[n/2]

{
φ(δ, b/n− ε,N − 1), φ(δ, 1− b/n− ε,N − 1)

}
> αε. (2.74)

Hence,

min
b∈[n/2]

{
KL(b/n− ε+ αε, b/n− ε),KL(1− b/n− ε+ αε, 1− b/n− ε)

}
≤

log
(

2n−1(N−1)N
δ

)
N − 1

.

(2.75)

Thus limδ→0N = +∞ and from Lemma 2.4.2 we can deduce

N ≤
log(2n−1/δ) + 4 log

(
log(2n−1/δ)

minb∈[n/2]{KL(b/n−ε+αε,b/n−ε),KL(1−b/n−ε+αε,1−b/n−ε)}

)
minb∈[n/2]{KL(b/n− ε+ αε, b/n− ε),KL(1− b/n− ε+ αε, 1− b/n− ε)}

+ 1 .

(2.76)

Finally,

lim sup
δ→0

N

log(1/δ)
≤ 1

minb∈[n/2]

{
KL(b/n− ε+ αε, b/n− ε),KL(1− b/n− ε+ αε, 1− b/n− ε)

} .
(2.77)

Likewise, for q = D′(Bopt) and p = |Bopt| such that |q − p| > ε, we can define Nq the
minimum positive integer such that for all t ≥ Nq:

max
{
φ(δ, p, t), φ(δ, 1− p, t)

}
≤ α|q − p| . (2.78)

With the same analysis before, we can prove that

Nq ≤
log(2n−1/δ) + 4 log

(
log(2n1/δ)

min{KL(p+α|q−p ,p),KL(1−p+α|q−p|,1−p)}

)
min{KL(p+ α|q − p|, p),KL(1− p+ α|q − p|, 1− p)}

+ 1 . (2.79)

Finally,

lim sup
δ→0

Nq

log(1/δ)
≤ 1

min{KL(p+ α|q − p|, p),KL(1− p+ α|q − p|, 1− p)}
. (2.80)

Then we use Lemma 2.3.3 and make a case study on D′:
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• If D′ = Un, the estimated stopping time can be bounded as

E(τ1(Un)) ≤ N +
∑
t≥N

P(τ1(Un) ≥ t) (2.81)

≤ N +
∑

s≥N−1

P(∃B ⊂ [bn/2c] : D̃′t(B) > |B|/n+ ε− φ or D̃′t(B) < |B|/n− ε+ φ)

(2.82)

≤ N +
∑

B⊂[bn/2c],s≥N−1

P(D̃′t(B) > |B|/n+ ε− αε or D̃′t(B) < |B|/n− ε+ αε)

(2.83)

≤ N +
∑

B⊂[bn/2c],s≥N−1

P(|D̃′t(B)− |B|/n| > (1− α)ε) (2.84)

≤ N +
∑

B⊂[bn/2c],s≥N−1

2e−2s((1−α)ε)2 (2.85)

≤ N +
2n/2+1e−2(N−1)((1−α)ε)2

1− e−2((1−α)ε)2
≤ N +

2n/2+2e−2(N−1)((1−α)ε)2

(1− α)2ε2
, (2.86)

where we Chernoff-Hoeffding’s inequality and the inequality 1 − e−x ≥ x/2 for
0 < x < 1 in the last line.

• If q := D′(Bopt) > |Bopt|/n+ε =: p+ε, the estimated stopping time can be bounded
as

E(τ2) ≤ Nq +
∑
t≥N

P(τ2(D′) ≥ t) (2.87)

≤ Nq +
∑

s≥N−1

P(|D̃′s(Bopt)− p| ≤ max{φ(δ, p, t), φ(δ, 1− p, t)}) (2.88)

≤ Nq +
∑

s≥N−1

P(D̃′s(Bopt) ≤ p+ max{φ(δ, p, t), φ(δ, 1− p, t)}) (2.89)

≤ Nq +
∑

s≥N−1

P(D̃′s(Bopt) ≤ p+ α(q − p)) (by definition of Nq) (2.90)

≤ Nq +
∑

s≥N−1

P(D̃′s(Bopt) ≤ q − (1− α)(q − p)) (2.91)

≤ Nq +
∑

s≥N−1

e−2s((1−α)(q−p))2 (Chernoff-Hoeffding’s inequality) (2.92)

≤ Nq +
e−2(N−1)((1−α)(q−p))2

1− e−2((1−α)(q−p))2 (2.93)

≤ Nq +
1

(1− α)2(q − p)2
. (2.94)

• If q := D′(Bopt) < |Bopt|/n−ε =: p−ε, the estimated stopping time can be bounded
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as

E(τ2(D′)) ≤ Nq +
∑
t≥N

P(τ2(D′) ≥ t) (2.95)

≤ Nq +
∑

s≥N−1

P(|D̃′s(Bopt)− p| ≤ max{φ(δ, p, t), φ(δ, 1− p, t)}) (2.96)

≤ Nq +
∑

s≥N−1

P(D̃′s(Bopt) ≥ p−max{φ(δ, p, t), φ(δ, 1− p, t)}) (2.97)

≤ Nq +
∑

s≥N−1

P(D̃′s(Bopt) ≥ p− α(p− q)) (by definition of Nq) (2.98)

≤ Nq +
∑

s≥N−1

P(D̃′s(Bopt) ≥ q + (1− α)(p− q)) (2.99)

≤ Nq +
∑

s≥N−1

e−2s((1−α)(q−p))2 (Chernoff-Hoeffding’s inequality) (2.100)

≤ Nq +
e−2(N−1)((1−α)(q−p))2

1− e−2((1−α)(q−p))2 (2.101)

≤ Nq +
1

(1− α)2(q − p)2
. (2.102)

Dividing by log(1/δ), taking the limits δ → 0 then α→ 1 permit to deduce the asymptotic
bounds. By choosing α = (1 + log(2n−1/δ)−1/3)−1, we conclude for n < log2/3(1/δ):

E(τ1(Un)) ≤ log(2n−1/δ)

minb∈[n]{KL(b/n, b/n± ε)}
+O

(
log(2n−1/δ)2/3

ε2

)
, and (2.103)

E(τ2(D′)) ≤ log(2n−1/δ)

min{KL(|Bopt|/n± d, |Bopt|/n)}
+O

(
log(2n−1/δ)2/3

d2

)
(2.104)

if d = TV(D′, Un) = |D′(Bopt)− |Bopt|/n| > ε .

2.4 Testing closeness for small n

In this section, n ≥ 2 is still small and we consider this time two unknown distributions
D1 and D2 on [n]. We are testing two hypothesis H1: D1 = D2 and H2: TV(D1,D2) >
ε. Similar to the previous section, we are interested in precisely comparing the sample
complexity of testing closeness in the sequential versus the batch setting. In order to find
the optimal constant, we first need to obtain a sharp lower bound in the batch setting,
which is done directly by using Stirling’s approximation. We then turn to the sequential
case.

2.4.1 Batch setting

In the batch setting, the number of steps τ is fixed before the test. The tester samples
A1, . . . , Aτ ∼ D1 and B1, . . . , Bτ ∼ D2 then decides according to the comparison between

the empirical TV distance TV(D̃1τ , D̃2τ ) and ε/2 where D̃1τ =
{(∑τ

j=1 1Aj=i

)
/τ
}
i∈[n]

and D̃2τ =
{(∑τ

j=1 1Bj=i

)
/τ
}
i∈[n]

are the empirical distributions. If TV(D̃1τ , D̃2τ ) ≤
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ε/2, it accepts H1 and rejects it otherwise. In order to control the number of steps τ so
that the error of this algorithm does not exceed δ, McDiarmid’s inequality ([HMRAR13])

writes for τ = 4 log(2bn/2c/δ)
ε2

:

P

(
∃B ⊂ [bn/2c] :

∣∣∣D̃1,τ (B)−D1(B)− D̃2,τ (B) +D2(B)
∣∣∣ > ε

2

)
≤

∑
B⊂[bn/2c]

e−τε
2/4 ≤ δ .

(M)

Using the concentration inequality (M) for D1 = D2 (to control the type I error) and for
D1 6= D2 (to control the type II error) we prove that this test is δ-correct. We show in
the following theorem that this number of steps τ is necessary.

Proposition 2.4.1. In the batch setting, the algorithm consisting of accepting H1 when

TV(D̃1τ , D̃2τ ) ≤ ε/2 and rejecting it otherwise is δ-correct for τ = 4 log(2bn/2c/δ)
ε2

.
Moreover, any δ-correct algorithm testing closeness requires at least τ samples, where

τ ≥ min

{
log(1/2δ)

2 KL(1/2− ε/4, 1/2− ε/2)
,

log(1/2δ)

2 KL(1/2 + ε/4, 1/2)

}
−O

(
log log(1/δ)

ε2

)
.

(2.105)

For this proof, we show that every δ-correct tester can be transformed into a test
which depends only on the numbers of 1′s, 2′s, . . . , n′s occurred on {A1, . . . , Aτ} and
{B1, . . . , Bτ}. We then consider the distributions D1,2 = {1/2, 1/2, 0, . . . , 0} or D1,2 =
{1/2± ε/2, 1/2∓ ε/2, 0, . . . , 0} depending on the outcome of the algorithm when it sees
two words of samples having respectively τ(1/2− ε/4) and τ(1/2 + ε/4) ones (the rest of
samples are equal to 2) and derive tight lower bounds on the probability mass function
of the multinomial distribution.

Proof. We consider distributions supported only on {1, 2}, this is possible since we want
that our algorithm would work for all distributions. We consider such a δ-correct test
A : {1, 2}τ ×{1, 2}τ → {1, 2}, it sees two words consisting of τ samples either from equal
distributions or ε-far ones and returns 1 if it thinks they are equal and 2 otherwise. We
construct another test B : {1, 2}τ × {1, 2}τ → {0, 1} by the expression

B(x, y) = 1

{ ∑
σ,ρ∈Sτ

A(σ(x), ρ(y))− 1 ≥ (τ !)2/2

}
, (2.106)

B can be proven to be 2δ-correct and have the property of invariance under the action
of the symmetric group. This leads to an algorithm C : {0, . . . , τ}2 → {0, 1} which is 2δ
correct and satisfies

C(i, j) = B(xi, yj) , (2.107)

where xk = 1 . . . 12 . . . 2 with k ones. We consider i = [τ(1/2−ε/4)] and j = [τ(1/2+ε/4)].
We denote by Ni(x) the number of i in a word x of length τ for i = 1, 2.

• If C(i, j) = 0, let x (resp. y) a word of length τ constituted of i.i.d samples
from {1/2 − ε/2, 1/2 + ε/2, 0, . . . , 0} (resp. {1/2 + ε/2, 1/2 − ε/2, 0, . . . , 0}), then
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P1/2−ε/2,1/2+ε/2(N1(x) = i, N1(y) = j) ≤ 2δ hence with Stirling’s approximation
([Leu85] )

e−2

2πτ
e−τ KL(i/τ,1/2−ε/2)e−τ KL(1−j/τ,1/2−ε/2) ≤ 2δ. (2.108)

Thus

2τ KL(1/2 + ε/4− 1/τ, 1/2 + ε/2) ≥ τ(KL(i/τ, 1/2− ε/2) + KL(j/τ, 1/2− ε/2))
(2.109)

≥ log(1/2δ)− 2− log(2π)− log(τ) . (2.110)

On the other hand, we have the following properties of the KL divergence:

Lemma 2.4.1 (Lemmas for KL-divergence). Let q > p two numbers in [0, 1]. Then

– 2(p− q)2 ≤ KL(p, q) ≤ (p−q)2
q(1−q) ,

– KL(p, q) ∼
q→p

(p−q)2
2q(1−q) ,

– KL(q, p) =
∫ q
p
du
∫ u
p
dv 1

v(1−v)
.

Sketch of the proof. The LHS of the first inequality is Pinsker’s inequality, the RHS
can be proven using the inequality log(1 + x) ≤ x, the second equivalence can be
found by developing the log function and the third equality is proven by computing
the integral.

Hence using Lemma 2.4.1, we have for τ > 2/ε:

2τ KL(1/2 + ε/4, 1/2 + ε/2) (2.111)

≥ −2τ(KL(1/2 + ε/4− 1/τ, 1/2 + ε/2)−KL(1/2 + ε/4, 1/2 + ε/2)) (2.112)

+ log(1/2δ)− 2− log(2π)− log(τ) (2.113)

≥ −2τ

∫ 1/2+ε/4

1/2+ε/4−1/τ

du

∫ 1/2+ε/2

u

dv
1

v(1− v)
+ log(1/2δ) (2.114)

− 2− log(2π)− log(τ) (2.115)

≥ −2(ε/4 + 1/τ) sup
[1/2+ε/4−1/τ,1/2+ε/2]

1

v(1− v)
+ log(1/2δ) (2.116)

− 2− log(2π)− log(τ) (2.117)

≥ −2ε sup
[1/2,1/2+ε]

1

v(1− v)
+ log(1/2δ)− 2− log(2π)− log(τ) . (2.118)

When we deal with inequalities involving τ and log τ (or log log τ) and want to
deduce inequalities only on τ , the following lemma proves to be useful.

Lemma 2.4.2. Let t, a > 1 and b real numbers. We have the following implications:

– If b ≥ a+ 1 :

t ≥ b+ 2a log(b)⇒ t ≥ b+ a log(t) , (2.119)
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– If b ≥ 1 :

t ≥ b− a log(t)⇒ t ≥ b− a log(b) , (2.120)

– If b ≥ 2a :

t ≥ b+ 2a log(log(b) + 1)⇒ t ≥ b+ a log(log(t) + 1) . (2.121)

Proof. We prove only the first statement, the others being similar. Let f(t) =
t − b − a log(t), we have f ′(t) = 1 − a/t thus f is increasing on (a,+∞). Let
t ≥ b+ 2a log(b) > a,

f(t) ≥ f(b+ 2a log(b)) = b+ 2a log(b)− b− a log(b+ 2a log(b)) (2.122)

= a log(b)− a log(1 + 2a log(b)/b)) (2.123)

≥ a log(1 + a)− a log(1 + 2ab/eb) because log(b) ≤ b/e
(2.124)

≥ 0 . (2.125)

Then Lemma 2.4.2 implies:

τ ≥
log(1/2δ)− 2ε sup[1/2,1/2+ε]

1
v(1−v)

− 2− log(2π)

2 KL(1/2 + ε/4, 1/2 + ε/2)
(2.126)

−
log

(
−2ε sup[1/2,1/2+ε]

1
v(1−v)+log(1/2δ)−2−log(2π)

2 KL(1/2+ε/4,1/2+ε/2)

)
4 KL(1/2 + ε/4, 1/2 + ε/2)

(2.127)

≥ log(1/2δ)

2 KL(1/2 + ε/4, 1/2 + ε/2)
−O

(
log log(1/δ)

KL(1/2 + ε/4, 1/2 + ε/2)

)
. (2.128)

Finally we get the asymptotic lower bound:

lim inf
δ→0

τ

log(1/δ)
≥ 1

2 KL(1/2− ε/4, 1/2− ε/2)
. (2.129)

• If C(i, j) = 1, let x and y two words of length τ constituted of i.i.d samples from
{1/2, 1/2, 0, . . . , 0}, then P1/2,1/2(N1(x) = i, N1(y) = j) ≤ 2δ hence with Stirling’s
approximation

e−2

2πτ
e−τ KL(i/τ,1/2)e−τ KL(1−j/τ,1/2) ≤ 2δ . (2.130)

Using the same lemmas as before, we get the following lower bound

τ ≥ log(1/2δ)

2 KL(1/2 + ε/4, 1/2)
−O

(
log log(1/δ)

KL(1/2 + ε/4, 1/2)

)
. (2.131)

Finally we get the asymptotic lower bound:

lim inf
δ→0

τ

log(1/δ)
≥ 1

2 KL(1/2 + ε/4, 1/2)
. (2.132)
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2.4.2 Sequential setting

Inspired by testing identity for small alphabets results in Section 2.3, we would like to
achieve an improvement of factor 4 in sample complexity for sequential strategies over
batch ones for testing closeness problem. For this end, we start by stating a lower bound
on the expected stopping times of a sequential algorithm for testing closeness.

Lemma 2.4.3. Let T be a stopping rule for testing closeness: D1 = D2 vs TV(D1,D2) > ε
with an error probability δ. Let τ1 and τ2 the associated stopping times. We have

sup
D
E(τ1(D,D)) ≥ log(1/3δ)

KL(1/2, 1/2 + ε/2) + KL(1/2, 1/2− ε/2)
∼
ε→0

log(1/3δ)

ε2
and

(2.133)

sup
TV(D1,D2)=d

E(τ2(D1,D2)) ≥ log(1/3δ)

KL(1/2 + d/2, 1/2) + KL(1/2− d/2, 1/2)
∼
d→0

log(1/3δ)

d2
if d > ε .

(2.134)

An average number of samples equivalent to log(1/3δ)(ε ∨ TV(D1,D2))−2 (see
Lemma 2.4.1) is thus necessary when the tester can access sequentially to the samples,
which is roughly 4 times less than the complexity obtained in the batch setting.

Proof. The proof of this Lemma follows from Lemma 2.7.2 by choosing for the first point
D1 = D2 = {1/2, 1/2, 0, . . . , 0} and D′1,2 = {1/2±ε/2, 1/2∓ε/2, 0, . . . , 0}. For the second
point, we use D = {1/2, 1/2, 0, . . . , 0} and D1,2 = {1/2± d/2, 1/2∓ d/2, 0, . . . , 0}.

In the sequential testing, the tester chooses when to stop according to the previous
observations ((A1, B1), . . . , (At, Bt)), making comparisons at each step t. The tester can
stop as soon as it is sure that it can accept one of the hypothesis H1 or H2. On the
contrary, in the batch setting it had to sample enough observation to be simultaneously
sure that either H1 or H2 hold. In this aim, at each time step, after sampling a new
observation (At, Bt), it compares the updated empirical TV distance St = TV(D̃1t, D̃2t)
to specific thresholds and sees if (a) St is sufficiently far from 0 to surely accept H2, (b)
St is sufficiently close to ε to surely accept H1, (c) it is unsure and needs further samples
to take a sound decision. This test is formally described in Algorithm 2 and its execution
is illustrated in Figure 2.1 for n = 2.

To show the correctness of such sequential algorithms, Chernoff-Hoeffding’s inequality
does not work since we have two unknwon distributions. It turns out that McDiarmid’s
inequality (M) is best suited in this situation:

P

(
∃t ≥ 1,∃B ⊂ [n/2] :

∣∣∣D̃1,t(B)−D1(B)− D̃2,t(B) +D2(B)
∣∣∣ > Φt

)
≤ δ, (2.135)

where Φt denote the constant Φt =

√
log
(

2n−1t(t+1)
δ

)
/t. On the other hand, to control

the sample complexity, we prove upper bounds on the expected stopping times:

τ1 = inf
{
t ≥ 1 : TV

(
D̃1,t, D̃2,t

)
≤ ε− Φt

}
, and τ2 = inf

{
t ≥ 1 : TV

(
D̃1,t, D̃2,t

)
> Φt

}
.

(2.136)

It is clear that the stopping time of the algorithm is random. Yet, we can show that this
algorithm stops before the non sequential one and give an upper bound on the expected
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Algorithm 2 Distinguish between D1 = D2 and TV(D1,D2) > ε with high probability

Require: A1, . . . samples from D1 and B1, . . . samples from D2

Ensure: Accept if D1 = D2 and Reject if TV(D1,D2) > ε with probability of error less
than δ
t = 1, W = 1
while W = 1 do
D̃1,t =

{(∑t
j=1 1Aj=i

)
/t
}
i∈[n]

, D̃2,t =
{(∑t

j=1 1Bj=i

)
/t
}
i∈[n]

if TV
(
D̃1,t, D̃2,t

)
>

√
log
(

2n−1t(t+1)
δ

)
t

then

W = 0
return 2

else if TV
(
D̃1,t, D̃2,t

)
≤ ε−

√
log
(

2n−1t(t+1)
δ

)
t

then

W = 0
return 1

else
t = t+ 1

end if
end while

stopping time τ (or expected sample complexity). In the following theorem, we state an
upper bound on the estimated sample complexity of this algorithm.

Theorem 2.4.1. The Algorithm 2 is δ-correct and its stopping times verify for n ≤
O(log(1/δ)1/3):

E(τ1(D,D)) ≤ log(2n+1/δ)

ε2
+O

(
log(2n+1/δ)2/3

ε2

)
if D1 = D2 = D and (2.137)

E(τ2(D1,D2)) ≤ log(2n+1/δ)

TV(D1,D2)2
+O

(
log(2n+1/δ)2/3

TV(D1,D2)2

)
if TV(D1,D2) > ε . (2.138)

These upper bounds are tight in the sense that they match the asymptotic lower
bounds of Lemma 2.4.3 if n � log(1/δ). The advantages of sequential strategies over
batch ones for the testing closeness problem are the same as those for the testing identity
problem.

Proof. We should prove that the Algorithm 2 has an error probability less than δ. We
use the following lemma which can be proven using McDiarmid’s inequality and union
bounds.

Lemma 2.4.4. If {A1, . . . , At} (resp {B1, . . . , Bt} ) i.i.d. with the law D1 (resp D2), we
have the following inequality

P

(
∃t ≥ 1,∃B ⊂ [n/2] :

∣∣∣D̃1,t(B)−D1(B)− D̃2,t(B) +D2(B)
∣∣∣ >√log

(
2n−1t(t+ 1)

δ

)
/t

)
≤ δ.

Using this lemma we can conclude:
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• If D1 = D2, the probability of error is given by

P (τ2 ≤ τ1) ≤ P

(
∃t ≥ 1 : TV

(
D̃1,t, D̃2,t

)
>

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
≤ δ .

• If TV(D1,D2) = |D1(Bopt)−D2(Bopt)| > ε, the probability of error is given by

P (τ1 ≤ τ2) ≤ P

(
∃t ≥ 1 : TV

(
D̃1,t, D̃2,t

)
≤ ε−

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
(2.139)

≤ P

(
∃t ≥ 1 :

∣∣∣D̃1,t(Bopt)− D̃2,t(Bopt))
∣∣∣ ≤ ε−

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
(2.140)

≤ P

(
∃t ≥ 1 :

∣∣∣D̃1,t(Bopt)−D1(Bopt)− D̃2,t(Bopt) +D2(Bopt))
∣∣∣ (2.141)

≥ |D1(Bopt)−D2(Bopt)| − ε+

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
(2.142)

≤ P

(
∃t ≥ 1 :

∣∣∣D̃1,t(Bopt)−D1(Bopt)− D̃2,t(Bopt) +D2(Bopt))
∣∣∣ >√log

(
2n−1t(t+ 1)

δ

)
/t

)
(2.143)

≤ δ . (2.144)

These computations prove the correctness of Algorithm 2. It remains to study the com-
plexity of Algorithm 2. To this aim, we make a case study and use Lemma 2.3.3 to upper
bound the stopping rules.

Let us take α ∈ (0, 1),

• If D1 = D2, we take N =
[

log(2n+1/δ)
(αε)2

]
+ 1 and α̃ ∈ (0, 1)2 so that

α̃2 = α2

(
log log(2n+1/δ)− log((αε)2)

log(2n+1/δ)
+ 1

)
.

2for fixed α we take δ small enough to have α̃ < 1.



2.4. TESTING CLOSENESS FOR SMALL N 57

The estimated stopping time can be bounded as

E(τ1(D1,D2)) ≤ N +
∑
s≥N

P(τ1(D1,D2) ≥ s) (2.145)

≤ N +
∑
t≥N−1

P

(
TV

(
D̃1,t, D̃2,t

)
> ε−

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
(2.146)

≤ N +
∑
t≥N−1

P
(

TV
(
D̃1,t, D̃2,t

)
> ε− α̃ε

)
(2.147)

≤ N +
∑
t≥N−1

P
(

TV
(
D̃1,t, D̃2,t

)
> (1− α̃)ε

)
(2.148)

(a)

≤ N +
∑
t≥N−1

2n/2e−t((1−α̃)ε)2 (2.149)

≤ N +
2n/2e−(N−1)((1−α̃)ε)2

1− e−((1−α̃)ε)2
(2.150)

where in (a) we used McDiarmid’s inequality. Using the inequality (1 − e−x ≥
x/2 for 0 < x < 1) we deduce:

E(τ1(D1,D2)) ≤ N +
2n/2e−(N−1)((1−α̃)ε)2

1− e−((1−α̃)ε)2
(2.151)

≤ log(2n+1/δ)

(αε)2
+ 2

2n/2e−(N−1)((1−α̃)ε)2

((1− α̃)ε)2
+ 1 , (2.152)

≤ log(2n+1/δ)

ε2
+

log(2n+1/δ)2/3

ε2
+O

(
log(2n+1/δ)2/3

ε2

)
(2.153)

≤ log(2n+1/δ)

ε2
+O

(
log(2n+1/δ)2/3

ε2

)
, (2.154)

for α = (1 + log(2n+1/δ)−1/3)−2 so that 1 − α̃ ≥ C log(2n+1/δ)−1/3 and we suppose
here that n < 2C2 log(2n+1/δ)1/3.

• If d = TV(D1,D2) = |D1(Bopt) − D2(Bopt)| > ε, we take N =
[

log(2n+1/δ)
(αd)2

]
+ 1. We

take α̃ ∈ (0, 1) so that α̃2 = α2
(

log log(2n+1/δ)−log((αd)2)
log(2n+1/δ)

+ 1
)

. The estimated stopping
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time can be bounded as

E(τ2(D1,D2)) ≤ N +
∑
s≥N

P(τ2(D1,D2) ≥ s) (2.155)

≤ N +
∑
t≥N−1

P

(
TV

(
D̃1,t, D̃2,t

)
≤

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
(2.156)

≤ N +
∑
t≥N−1

P

(
TV

(
D̃1,t, D̃2,t

)
≤

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
(2.157)

≤ N +
∑
t≥N−1

P

(∣∣∣D̃1,t(Bopt)− D̃2,t(Bopt))
∣∣∣ ≤√log

(
2n−1t(t+ 1)

δ

)
/t

)
(2.158)

≤ N +
∑
t≥N−1

P

(∣∣∣D̃1,t(Bopt)−D1(Bopt)− D̃2,t(Bopt) +D2(Bopt))
∣∣∣ (2.159)

> |D1(Bopt)−D2(Bopt)| −

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
(2.160)

≤ N +
∑
t≥N−1

P

(∣∣∣D̃1,t(Bopt)−D1(Bopt)− D̃2,t(Bopt) +D2(Bopt))
∣∣∣ > (1− α̃)d

)
(2.161)

≤ N +
∑
t≥N−1

e−t((1−α̃)d)2 ≤ N +
e−(N−1)((1−α̃)d)2

1− e−((1−α̃)d)2
(2.162)

≤ log(2n+1/δ)

(αd)2
+

2

(1− α̃)2d2
+ 1 ≤ log(2n+1/δ)

d2
+O

(
log(2n+1/δ)2/3

d2

)
, (2.163)

where we choose α = (1+log(2n+1/δ)−1/3)−2 and we use the inequality 1−e−x ≥ x/2
for 0 < x < 1 in the last line.

Finally, we can deduce the limit when D1 = D2:

lim sup
δ→0

E(τ1(D1,D2))

log(1/δ)
≤ lim sup

δ→0

log(2n+1/δ)

log(1/δ)ε2
+O

(
log(2n+1/δ)2/3

log(1/δ)ε2

)
≤ 1

ε2
, (2.164)

and when d = TV(D1,D2) > ε:

lim sup
δ→0

E(τ2(D1,D2))

log(1/δ)
≤ lim sup

δ→0

log(2n+1/δ)

log(1/δ)d2
+O

(
log(2n+1/δ)2/3

log(1/δ)d2

)
≤ 1

d2
. (2.165)

This concludes the proof of the complexity of Algorithm 2.

After dealing with small alphabets and understanding well the differences between
sequential and batch strategies for testing identity/sequential problems, one could ask
whether sequential strategies have different behaviour for general alphabets when n is
greater than log(1/δ). In the following, we try to transform batch algorithms to sequential
ones in order to adapt to the actual TV distance.
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2.5 Uniformity testing-the general case

[DGPP17] propose an algorithm for uniformity testing in the general case. The advantage
of their algorithm is that it has the tight sample complexity (in batch setting) depending
not only on n but also on the error probability δ. We capture the main ingredient of this
article as a lemma:

Lemma 2.5.1. Let D a distribution on [n] such that d = TV(D, Un) > ε. There is a
universal constant C such that for all t ≥ 1:

E(TV(D̃t, Un)) ≥ µt(Un) + C min

(
d2t2

n2
, d2

√
t

n
, d

)
, (2.166)

where µt(Un) = E(TV(Ũn,t, Un)) = 1
2
EX1,...,Xt∼Un

∑n
i=1 |

1
t

∑t
j=1 1Xj=i− 1

n
| can be computed

in O(t).

This Lemma (Lemma 4 from [DGPP17]) is used along with the ideas of Section 2.3 to
design a sequential algorithm whose complexity is on the worst case of the order of batch
complexity and improves in many situations. At step t, we have samples A1, . . . , At from

D′. For each subset B ⊂ [n] we denote D̃′t(B) =
∑t
j=1 1Aj∈B

t
and by µt(Un) the expected

value of maxB⊂[n]

∣∣∣Ũn,t(B)− |B|/n
∣∣∣. The algorithm is formally described in Algorithm 3.

Algorithm 3 Distinguish between D′ = Un and TV(D′, Un) > ε with high probability

Require: A1, . . . samples from D′
Ensure: Accept if D′ = Un and Reject if TV(D′, Un) > ε with probability of error less

than δ
t = min{n,

√
n log(2/δ)}, W = 1

while W = 1 do
if ∃B ⊂ [bn/2c] :

∣∣∣D̃′t(B) − |B|/n
∣∣∣ > max{φ(δ, |B|/n, t), φ(δ, 1 − |B|/n, t)} or

TV(D̃′t, Un) > µt(Un) + 4 min
(

1, t
3/2

n3/2

)√
log( 2t(t+1)

δ )
2t

then

W = 0
return 2

else if TV(D̃′t, Un) < µt(Un) + C min
(
t2ε2

n2 , ε
2
√

t
n
, ε
)
− 4 min

(
1, t

3/2

n3/2

)√
log( 2t(t+1)

δ )
2t

then
W = 0
return 1

else
t = t+ 1

end if
end while

Let n′ = min{n,
√
n log(2/δ)} and Ψt = 4 min

(
1, t

3/2

n3/2

)√
log
(

2t(t+1)
δ

)
/(2t), the stop-

ping times τ1 and τ2 of Algorithm 3 are then defined by :

τ1 = inf

{
t ≥ n′ : TV(D̃′t, Un) < µt(Un) + C min

(
t2ε2

n2
, ε2

√
t

n
, ε

)
−Ψt

}
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and

τ2 = inf

{
t ≥ n′ : ∃B ⊂ [bn/2c] :

∣∣∣D̃′t(B)− |B|
n

∣∣∣ > max{φ(δ, |B|/n, t), φ(δ, 1− |B|/n, t)}

or TV(D̃′t, Un) > µt(Un) + Ψt

}
.

In order to compare the sequential Algorithm 3 with the batch one of [DGPP17], we need
to show first that it is indeed a δ-correct algorithm and show that its stopping times are
smaller in expectation than the batch sample complexity. In the following theorem, an
upper bound of the expected stopping times is given:

Theorem 2.5.1. Algorithm 3 is δ-correct and its stopping times satisfy:

E(τ1(Un)) ≤ max

{
2 log(1/δ)

C2ε2
+

8

C2ε2
log

2 log(1/δ)

C2ε2
,

(
2n log(1/δ)

C2ε4
+

4

C2ε4
log

2n log(1/δ)

C2ε4

)1/2
}
,

(2.167)

and for d = TV(D′, Un) > ε and Bd := {i : D′i > (1 + d)/n}:

E(τ2(D′)) ≤ min

{
max

{
3 log(1/δ)

C2d2
,

(
3n log(1/δ)

C2d4

)1/2
}
,

log(2n−1/δ)

min{KL(|Bd|/n± d/2, |Bd|/n)}
,

log(2n−1/δ)

min{KL(|Bopt|/n± d, |Bopt|/n)}

}
.

Proof. We prove here that Algorithm 3 has an error probability less than δ. The proof
relies on the following uniform concentration lemma for TV(D̃t, Un):

Lemma 2.5.2. Let Ψt = 4 min
(

1, t
3/2

n3/2

)√
log
(

2t(t+1)
δ

)
/(2t), we have:

P
(
∃t ≥ min{n,

√
n log(2/δ)} :

∣∣∣TV(D̃t, Un)− E[TV(D̃t, Un)]
∣∣∣ > Ψt

)
≤ δ/2 . (2.168)

Proof. If n ≤
√
n log(2/δ), we apply the union bound along with McDiarmid’s inequality

on TV(D̃t, Un) which is (1/t, . . . , 1/t)-bounded to obtain:

P

(
∃t ≥ n :

∣∣∣TV(D̃t, Un)− E[TV(D̃t, Un)]
∣∣∣ > 4

√
log

(
2t(t+ 1)

δ

)
/(2t)

)
≤
∑
t≥n

δ

2t(t+ 1)
.

(2.169)

If n >
√
n log(2/δ), since the last inequality it remains to consider t < n, an application
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of the Bernstein form of McDiarmid’s inequality (as detailed in [DK17]) permits to deduce

P

(
∃t ∈ [

√
n log(2/δ), n] :

∣∣∣TV(D̃t, Un)− E[TV(D̃t, Un)]
∣∣∣ > 4

t3/2

n3/2

√
log

(
2t(t+ 1)

δ

)
/(2t)

)
(2.170)

≤
∑

√
n log(2/δ)≤t<n

exp

 −8 t2

n3 log
(

2t(t+1)
δ

)
4 t2

n3 +
8t
√

log( 2t(t+1)
δ

/2)
3n5/2

 ≤ ∑
√
n log(2/δ)≤t<n

exp

(
− log

(
2t(t+ 1)

δ

))
(2.171)

≤
∑

√
n log(2/δ)≤t<n

δ

2t(t+ 1)
. (2.172)

Combining both inequalities the lemma follows.

The proof of correctness is detailed below:

• If D′ = Un, using Lemma 2.5.2 and letting n′ = min{n,
√
n log(2/δ)} and Ψt =

4 min
(

1, t
3/2

n3/2

)√
log
(

2t(t+1)
δ

)
/(2t) , the probability of error can be bounded as :

P (τ2 ≤ τ1) (2.173)

≤ P
(
∃t ≥ n′,∃B ⊂ [bn/2c] :

∣∣∣D̃′t(B)− |B|
n

∣∣∣ > max{φ(δ, |B|/n, t), φ(δ, 1− |B|/n, t)}
)

(2.174)

+ P
(
∃t ≥ n′ : TV(D̃′t, Un) > µt(Un) + Ψt

)
(2.175)

≤
∑

t≥n′,B⊂[bn/2c]

P

(∣∣∣D̃′t(B)− |B|
n

∣∣∣ > max{φ(δ, |B|/n, t), φ(δ, 1− |B|/n, t)}
)

+ δ/2

(2.176)

≤
∑

t≥n′,B⊂[bn/2c]

e−tKL(|B|/n+φ(δ,|B|/n,t),|B|/n) + e−tKL(|B|/n−φ(δ,1−|B|/n,t),|B|/n) + δ/2

(2.177)

≤ δ . (2.178)

• If TV(D′, Un) > ε, the probability of error can be bounded as:

P (τ1 ≤ τ2) (2.179)

= P

(
∃t ≥ n′ : TV(D̃′t, Un) < µt(Un) + C min

(
t2ε2

n2
, ε2

√
t

n
, ε

)
−Ψt

)
(2.180)

(i)

≤ P

(
∃t ≥ n′ :

∣∣∣TV(D̃′t, Un)− E(TV(D̃′t, Un))
∣∣∣ ≥ Ψt

)
(2.181)

(ii)

≤ δ . (2.182)

where (i) follows from the triangle inequality and Lemma 2.5.1 and (ii) follows from
Lemma 2.5.2.
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The sample complexity of Algorithm 3 is given by the stopping time τ1 if the input
consists of samples from the uniform distribution and by the stopping time τ2 if the
samples are from a distribution ε-far from the uniform distribution. Let’s start by upper
bounding τ1, the two regions related to the two stopping rules concur when

4 min

(
1,
t3/2

n3/2

)√
1

2t
log

(
t(t+ 1)

δ

)
≤ C

2
min

{
ε2t2

n2
, ε2

√
t

n
, ε

}
, (2.183)

and this latter condition is guaranteed by Lemma 2.4.2 if

t ≥ N ′ε := max

{
2 log(1/δ)

C2ε2
+

8

C2ε2
log

2 log(1/δ)

C2ε2
, (2.184)

(
2n log(1/δ)

C2ε4
+

4

C2ε4
log

2n log(1/δ)

C2ε4

)1/2
}
. (2.185)

Therefore,

E(τ1(Un)) ≤ N ′ε. (2.186)

It remains to upper bound E(τ2(D′)) for every distribution D′ verifying d = TV(D′, Un) >
ε. Let Bopt the smallest subset of [n] such that |Bopt| ≤ n/2 and |D′(Bopt)−Un(Bopt)| = d.
We make a case study on the size of |Bopt|:

• If |Bopt| >
√
n log(1/δ), we have by letting Ψt = min

(
1, t

3/2

n3/2

)√
log
(
t(t+1)
δ

)
/(2t):

E(τ2) ≤ N ′d +
∑
s≥N ′d

P(τ2 > s) ≤ N ′d +
∑

t≥N ′d−1

P
(

TV(D̃′t, Un) ≤ µt(Un) + 4Ψt

)
(2.187)

≤ N ′d +
∑

t≥N ′d−1

P

(
|TV(D̃′t, Un)− E(TV(D̃′t, Un))| ≥ C min

{
d2t2

n2
, d2

√
t

n
, d

}
− 4Ψt

)
(2.188)

≤ N ′d +
∑

t≥N ′d−1

P
(
|TV(D̃′t, Un)− E(TV(D̃′t, Un))| ≥ 4Ψt

)
≤ N ′d + δ. (2.189)

• If |Bopt| ≤
√
n log(1/δ), we take α ∈ (0, 1) and define Nα as the minimum positive

integer such that for all integers t ≥ Nα, max{φ(δ, |Bopt|/n, t), φ(δ, 1−|Bopt|/n, t)} ≤
αd. The existence of Nα is guaranteed since limt→∞ φ(B, t) = 0. We have
max{φ(δ, |Bopt|/n,Nα), φ(δ, 1 − |Bopt|/n,Nα)} ≤ αd and max{φ(δ, |Bopt|/n,Nα −
1), φ(δ, 1− |Bopt|/n,Nα − 1)} > αd hence,

min

{
KL

(
|Bopt|
n

+ αd,
|Bopt|
n

)
,KL

(
|Bopt|
n
− αd, |Bopt|

n

)}
≤

log
(

2n−1(N−1)N
δ

)
N − 1

.

(2.190)
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Thus limδ→0N = +∞ and from Lemma 2.4.2 we can deduce

N ≤
log(2n−1/δ) + 4 log

(
log(2n−1/δ)

min{KL(|Bopt|/n±αd,|Bopt|/n)}

)
min{KL(|Bopt|/n± αd, |Bopt|/n)}

+ 1 . (2.191)

Therefore,

E(τ2(D′)) ≤ Nα +
∑
t≥Nα

P(τ2(D′) ≥ t) (2.192)

≤ Nα +
∑

s≥Nα−1

P(|D̃′s(Bopt)− |Bopt|/n| ≤ φ(Bopt, t)) (2.193)

≤ Nα +
∑

s≥Nα−1

P(|D̃′s(Bopt)−D′(Bopt)| > d− αd) (by definition of Nα)

(2.194)

≤ Nα +
∑

s≥Nα−1

e−2s((1−α)d)2 (Chernoff-Hoeffding’s inequality) (2.195)

≤ Nα +
e−2(Nα−1)((1−α)d)2

1− e−2((1−α)d)2
(2.196)

≤
log(2n−1/δ) + 4 log

(
log(2n−1/δ)

min{KL(|Bopt|/n±αd,|Bopt|/n)}

)
min{KL(|Bopt|/n± αd, |Bopt|/n)}

+ 1 +
e−2(Nα−1)((1−α)d)2

1− e−2((1−α)d)2
.

(2.197)

After dividing by log(1/δ), taking the limit δ → 0 then α→ 1 we deduce finally:

lim sup
δ→0

E(τ2(D′))
log(1/δ)

≤ 1

min{KL(|Bopt|/n± d, |Bopt|/n)}
∼
d→0

2 |Bopt|
n

(
1− |Bopt|

n

)
d2

.

This is an interesting improvement especially when |Bopt| � n but it is not sensi-
tive to small fluctuations of Di around 1/n. For example the distribution {1/n +
ε, 1/n, . . . , 1/n, 1/n − ε} whose Bopt has size 1 can easily transformed to a distribution
with an optimal set of size n/2 by adding small noise η � ε to n/2−1 parts among those
of 1/n probability mass. Even though the transformed distribution has an optimal set of
size n/2 (hence a large upper bound of the complexity ), Algorithm 3 seems to stop on
pretty the same time for both distributions. To overcome this inconvenient in this upper
bound, we can use the same method to prove that for Bd := {i : Di > (1 + d)/n} ⊂ Bopt

we have:

lim sup
δ→0

E(τ2(D′))
log(1/δ)

≤ 1

min{KL(|Bd|/n± d/2, |Bd|/n)}
∼
d→0

8 |Bd|
n

(
1− |Bd|

n

)
d2

.

This upper bound has the advantage to count only the bigger parts of the distributions
for which the noise is of the order d/n at the cost of multiplying the upper bound by
almost 4.

We plot in the same Figure 2.3 the batch complexity and the sequential stopping
time τ2 if the statistic takes into account the optimal set Bopt and if not. It is clear that
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the proposed Algorithm 3 is superior than the batch algorithm of [DGPP17] especially
when |Bopt| is smaller than

√
n log(1/δ) which is also exhibited in Figure 2.3 for a specific

example.
We’ve exposed so far the advantages of sequential procedures over batch algorithms,

they share the idea that if the tested distributions are far away we can hope to stop
earlier. However one can wonder if there is a tangible improvement independent of distri-
butions. We focus on the worst case setting where we consider the eventual improvement
of sequential procedures that works for all distributions. We show that we cannot hope
to improve the dependency on n found in the batch setting more than a constant and
replacing ε by ε ∨ TV(D, Un). For instance we can prove the following lower bounds for
uniformity testing.

Theorem 2.5.2. There is no stopping rule T for the problem of testing D = Un vs
TV(D, Un) > ε with an error probability δ such that

P

(
τ2(T,D) ≤ c

√
n log(1/3δ)

TV(D, Un)2

)
≥ 1− δ if TV(D, Un) > ε and (2.198)

P

(
τ1(T, Un) ≤ c

√
n log(1/3δ)

ε2

)
≥ 1− δ , (2.199)

where c a universal constant. We have similar statement if we replace
√
n log(1/3δ) by

log(1/3δ).

This can be proven using pretty the same construction of distributions as for the batch
lower bounds along with Wald’s lemma.

Proof. We prove only the first statement, the others being similar. Suppose that such a

stopping rule exists. Let d > ε and m = c

√
n log(1/3δ)

d2
. Let Un the uniform distribution

and D a uniformly chosen distribution where Di = 1±2d
n

with probability 1/2 each. With

the work of [DK16] (Section 3), we can show that KL(D×Poi(m), U
×Poi(m)
n ) ≤ Cm2d4

n
where

C is a constant. Therefore

KL(D×m, U×mn ) = mKL(D, Un) (2.200)

= E(Poi(m)) KL(D, Un) (2.201)

= KL(D×Poi(m), U×Poi(m)
n ) (Wald’s lemma) (2.202)

≤ C
m2d4

n
. (2.203)

But

KL(D×m, U×mn ) ≥ KL(PD(τ2 ≤ m),PUn(τ2 ≤ m)) (2.204)

≥ KL(1− δ, δ) (2.205)

≥ log(1/3δ) , (2.206)

since PD(τ2 ≤ m) ≥ 1− δ and PUn(τ2 ≤ m) = PUn(τ2 ≤ m, τ1 < τ2) + PUn(τ2 ≤ m, τ1 ≥
τ2) ≤ δ. Hence

C

(
c

√
n log(1/3δ)

d2

)2

d4

n
≥ log(1/3δ) , (2.207)
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Figure 2.3: Left: We compare different upper bounds on the sample complexity for uni-
formity testing with n = 300, ε = 0.05, δ = 10−10 and d = TV(D, Un) = 0.06. We
remark that for |Bopt| < n/2 we have better upper bounds. Right: Uniformity testing for
n = 10, δ = 10−10,TV(D′, Un) = ε = 0.1 and |Bopt| = 1. We compare the empirical TV
distance with different thresholds. The red zone corresponds to accepting H2 while the
blue one corresponds to accepting H1. The magenta line identifies the batch threshold,
the yellow line designates the sequential stopping time without looking on Bopt and finally
the cyan line defines the actual stopping time of Algorithm 3.

which gives the contradiction if c < 1/
√
C.

2.6 Testing closeness-the general case

In this section we consider testing closeness in the general case n ≥ 3. Let us recall
that we have D1 and D2 two unknown distributions on [n] and we want to distinguish
D1 = D2 and TV(D1,D2) > ε with high probability 1 − δ. Inspired by the case of the
Bernoulli distribution, we describe how to transform a batch algorithm to a sequential one
with better expected sample complexity. In that case, however, identifying the sample
complexity exactly remains out of reach: the dependency on ε, δ and n can be computed
only up to a multiplicative constant.

2.6.1 Batch setting

Recently, [DGKPP20] have shown that the dependence on the error probability in the
sample complexity of the closeness problem could be better than the log 1/δ found by
repeating log 1/δ times the classical algorithm of [CDVV14] and accepting or rejecting
depending on the majority test. More precisely:

Theorem 2.6.1 ([DGKPP20]). Θ
(

max
(
n2/3 log1/3(1/δ)

ε4/3
, n

1/2 log1/2(1/δ)
ε2

, log(1/δ)
ε2

))
samples

are necessary and sufficient to test whether D1 = D2 or TV(D1,D2) > ε with an er-
ror δ > 0.

The main ingredient of a closeness tester is an efficient test statistic which can distin-
guish between the two hypothesis. Let us define by Xi (resp. Yi) the number of samples
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from D1 (resp. D2) whose values are equal to i ∈ [n]. Thinking to the TV distance we
use, we could be tempted to take a decision based on the statistic

∑n
i=1 |Xi − Yi|. How-

ever this simple statistic suffers from a principal caveat: its expected value is neither zero
nor easily lower bounded when D1 = D2. As a remedy, [DGKPP20] propose to use the
following statistic: Z =

∑n
i=1 |Xi−Yi|+ |X ′i−Y ′i |− |Xi−X ′i|− |Yi−Y ′i |, where X ′i and Y ′i

correspond to a second set of independent samples. The expected value of the estimator
Z is obviously 0 when the distributions D1 and D2 are equal. On the other hand when
TV(D1,D2) > ε, they provide a lower bound on the expected value of the estimator Z
which enable to test closeness between D1 and D2. Since these results turn out to be
similarly useful in our subsequent analysis, we summarized them in the following lemma.

Lemma 2.6.1 ([DGKPP20]). Let d = TV(D1,D2). Let k ≥ 1 and (k1, k2, k
′
1, k
′
2) ∼

Multinom(4k, (1/4, 1/4, 1/4, 1/4)). Let (Xi)
k1
i=1 and (X ′i)

k′1
i=1 two sets of i.i.d. samples

from D1 and (Yi)
k2
i=1 and (Y ′i )

k′2
i=1 two sets of i.i.d. samples from D2. Then there are

universal constants c and C such that

• If D1 = D2, E[Z] = 0.

• If TV(D1,D2) > ε, E[Z] ≥ C min
{
kd, k

2d2

n
, k

3/2d2√
n

}
− c
√
k.

The lower bound on the expectation of Z is obtained by a technique of Poissonization.
Note that this lower bound is stronger than the one obtained for the chi-square estimator;∑n

i=1
(Xi−Yi)2−Xi−Yi

Xi+Yi
, used by [CDVV14]. In fact, for far distributions the lower bound on

the expected value of the chi-square estimator does not allow the best dependency on
n, ε and δ. This lemma is the key ingredient behind the batch algorithm. Indeed,

for sufficiently large k = Ω
(

max
(
n2/3 log1/3(1/δ)

ε4/3
, n

1/2 log1/2(1/δ)
ε2

, log(1/δ)
ε2

))
, [DGKPP20] show

that E[Z] ≥ C ′′
√
k log 1/δ for a universal constant C ′′ if TV(D1,D2) > ε, then by applying

McDiarmid’s inequality they prove that the algorithm consisting of returning H2 if Z ≥
C ′′
√
k log 1/δ/2 and returning H1 otherwise is δ-correct. In the following we draw our

inspiration from them to design a sequential algorithm for testing closeness.

2.6.2 Sequential setting

In this section we present how the sequential setting can improve the sample complexity
found in the batch setting. We base our sequential tester on the same test statistic
Z as [DGKPP20], but we allow the stopping rules of this new algorithm to be time-
dependent. When the distributions to be tested D1 and D2 are equal, the estimator
Zt cannot be very large, and if they are ε-far the estimator cannot be very small: at
each step, the tester compares Zt to some well chosen thresholds. If it cannot decide
with sufficient confidence, it asks for more samples. This can possibly last until the two
regions of decision meet. This time has the order of the complexity of the batch algorithm.
This tester is formally defined in Algorithm 4. For sake of simplicity, let us denote by

∆t = C min
{
tε, t

2ε2

n
, t

3/2ε2√
n

}
− c
√
t and by Ψt = 2

√
2t log

(
π2

3δ

)
+ 4et log(log(4t) + 1). The

stopping times τ1 and τ2 of Algorithm 4 are then defined by

τ1 = inf {t ≥ 1 : |Zt| ≤ ∆t −Ψt} , and τ2 = inf {t ≥ 1 : |Zt| > Ψt} . (2.208)

We prove now that Algorithm 4 is δ-correct and then study its sample complexity.
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Algorithm 4 Distinguish between D1 = D2 and TV(D1,D2) > ε with high probability

Require: A1, . . . samples from D1 and B1, . . . samples from D2

Ensure: Accept if D1 = D2 and Reject if TV(D1,D2) > ε with probability of error less
than δ
t = 1, W = 1
while W = 1 do

(m1,t,m
′
1,t,m2,t,m

′
2,t) ∼ Multinom(4t, (1/4, 1/4, 1/4, 1/4))

Zt =
n∑
i=1

|Xi − Yi|+ |X ′i − Y ′i | − |Xi −X ′i| − |Yi − Y ′i | , (2.209)

where Xi(resp. X ′i, Yi, Y
′
i ) are the numbers of i’s in the word formed with m1,t (resp.

m′1,t,m2,t,m
′
2,t) samples from D1 (resp. D1,D2,D2) . We need only to sample the

difference of (m1,t−m1,t−1)+ +(m′1,t−m′1,t−1)+ from D1 and (m2,t−m2,t−1)+ +(m′2,t−
m′2,t−1)+ from D2.

if |Zt| > 2
√

2t log
(
π2

3δ

)
+ 4et log(log(4t) + 1) then

W = 0
return 2

else if |Zt| ≤ C min
{
tε, t

2ε2

n
, t

3/2ε2√
n

}
− c
√
t − 2

√
2t log

(
π2

3δ

)
+ 4et log(log(4t) + 1)

then
W = 0
return 1

else
t = t+ 1

end if
end while

Correctness

We prove here that Algorithm 4 has an error probability less than δ. The proof relies on
the following uniform concentration lemma for Zt:

Lemma 2.6.2. For η, s > 1, let J(η, s, t) =

√
2ηts log

(
log(t)
log(η)

+ 1
)

+ 2t log
(

2ζ(s)
δ

)
, where

ζ(s) =
∑

n>1
1
ns

. Then

P (∃t ≥ 1 : |Zt − E[Zt]| > J(η, s, 4t)) ≤ δ . (2.210)

The proof of this lemma is inspired from [HRMS18] and relies on dividing the set
of integers into some well chosen subsets, applying union bound and finally invoking
McDiarmid’s inequality with specific arguments for each interval. Note that Lemma 2.6.2
yields the best second order term in the complexity (up to constant factor), in contrast to
a simple union bound on McDiarmid’s inequality. We do not use this feature in our study
of the sample complexity of the testing closeness problem as we are interested here in
leading terms only (see Theorem 2.6.2). However, the log− log dependency proves useful
when showing that Algorithm 4 used with ε = 0 obtains the optimal sample complexity
for testing D1 = D2 vs D1 6= D2 (see Theorem 2.6.4).
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Proof. The proof uses similar arguments of [HRMS18]. Actually Zt is a function of 4t
variables (the samples from the distributions) and has the property (2, . . . , 2)-bounded
differences. McDiarmid’s inequality implies P (∃t ≥ 1 : |Zt − E[Zt]| ≥ a+ 4bt/a) ≤ 2e−2b,

taking the intervals Ik = [ηk, ηk+1) for k integer we deduce for bk = 1
2

log
(

2(k+1)s

ζ(s)−1δ

)
and

ak = bk
ak
ηk+1 that

P (∃t ≥ 1 : |Zt − E[Zt]| ≥ J(η, s, 4t)) ≤
∑
k≥0

P (∃t ∈ Ik : |Zt − E[Zt]| ≥ J(η, s, 4t))

(2.211)

≤
∑
k≥0

P (∃t ∈ Ik : |Zt − E[Zt]| ≥ ak + 4bkt/ak)

(2.212)

≤
∑
k≥0

2e−2bk ≤
∑
k≥0

δ
ζ(s)−1

(k + 1)s
≤ δ . (2.213)

For η = e and s = 2, the function J becomes J(e, 2, 4t) = Ψt and we can use
Lemma 2.6.2 to prove the correctness of Algorithm 4 as sketched below:

• If D1 = D2, using Lemma 2.6.2, the probability of error can be bounded as:

P (τ2 ≤ τ1) ≤ P (∃t ≥ 1 : |Zt| > Ψt) ≤ δ . (2.214)

• If TV(D1,D2) > ε, the probability of error can be bounded as:

P (τ1 ≤ τ2) = P (∃t ≥ 1 : |Zt| ≤ ∆t −Ψt) (2.215)

(i)

≤ P (∃t ≥ 1 : |Zt − E(Zt)| ≥ E(Zt)−∆t + Ψt) (2.216)

(ii)

≤ P (∃t ≥ 1 : |Zt − E(Zt)| ≥ Ψt)
(iii)

≤ δ . (2.217)

where (i) follows from the triangle inequality |Zt − E(Zt)| ≥ E(Zt)−Zt, (ii) follows
by the fact that E(Zt) ≥ ∆t from Lemma 2.6.1 and (iii) follows from Lemma 2.6.2.

Complexity

In order to show the advantage of our sequential algorithm, we need to upper bound the
expectations of the stopping times τ1 and τ2. This is done in the following theorem:

Theorem 2.6.2. Let d = TV(D1,D2). The sample complexity of Algorithm 4 satisfies

• If D1 = D2, E(τ1(T,D1,D2)) ≤ 2Nε.

• If TV(D1,D2) > ε, E(τ2(T,D1,D2)) ≤ 2Nd.
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where for all η > 0, Nη is defined by

Nη = max

{
128

C2

log(π
2

3δ
)

η2
+

512e

C2η2
log

(
log

(
128 log(π

2

3δ
)

η2C2

)
+ 1

)
+

16c2

C2η2
, (2.218)(

128

C2

n2 log(π
2

3δ
)

η4
+

512en2

C2η4
log

(
log

(
128

C2

n2 log(π
2

3δ
)

η4

)
+ 1

)
+

16c2n2

η4C2

)1/3

, (2.219)(
128

C2

n log(π
2

3δ
)

η4
+

512en

C2η4
log

(
log

(
128

C2

n log(π
2

3δ
)

η4

)
+ 1

)
+

16c2n

η4C2

)1/2}
, (2.220)

and the constants c and C come from Lemma 2.6.1.

This theorem states that O
(

max
(

n2/3 log1/3(1/δ)

(ε∨TV(D1,D2))4/3
, n

1/2 log1/2(1/δ)
(ε∨TV(D1,D2))2

, log(1/δ)
(ε∨TV(D1,D2))2

))
sam-

ples are sufficient to distinguish between D1 = D2 and TV(D1,D2) > ε with high proba-
bility. We remark that after Nε steps, the two stopping conditions of Algorithm 4 cannot
be both unsatisfied. Therefore, the Algorithm 4 stops surely before Nε hence it has at
least a comparable complexity, in the leading terms, of the batch algorithm of [DGKPP20]
when D1 = D2. Moreover, Algorithm 4 has the advantage of stopping rapidly when D1

and D2 are far away.

Proof. We start by the case D1 = D2, we know that E(τ1) ≤
∑

s≤Nε P(τ1 ≥ s) +∑
s>Nε

P(τ1 ≥ s) ≤ Nε +
∑

s>Nε
P(τ1 ≥ s) so it suffices to prove that

∑
s>Nε

P(τ1 ≥
s) ≤ Nε. By the definition of τ1, τ1 ≥ s implies |Zs−1| > ∆s−1−Ψs−1 but we have chosen

Nε so that if t = s − 1 ≥ Nε, ∆s−1 − Ψs−1 ≥ C
2

min
{

(s− 1)ε, (s−1)2ε2

n
, (s−1)3/2ε2√

n

}
. This

last claim follows from Lemma 2.6.1 and Lemma 2.4.2. Finally

∑
s>Nε

P(τ1 ≥ s) ≤
∑
t≥Nε

P

(
|Zt| >

C

2
min

{
tε,

t2ε2

n
,
t3/2ε2

√
n

})
(2.221)

(McDiarmid’s inequality)

≤
∑

t≥Nε−1

e
−C

2

16
min

{
tε2, t

3ε4

n2
, t

2ε4

n

}
≤ Nε . (2.222)

The last inequality is proven in the following lemma.

Lemma 2.6.3. We have for all d > 0:
∑

t≥Nd e
−C

2

16
min

{
td2, t

3d4

n2
, t

2d4

n

}
≤ Nd.
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Proof. We have∑
t≥Nd

e
−C

2

16
min

{
td2, t

3d4

n2
, t

2d4

n

}
≤
∑

t≥nd−2

e−
C2

16
td2 +

∑
n≥t≥Nd−1

e−
C2

16
t3d4

n2 +
∑

nd−2>t>n

e−
C2

16
t2d4

n

(2.223)

≤
∑

t≥nd−2

e−
C2

16
td2 +

∑
n≥t≥Nd−1

e
−2C1/3 td4/3

n2/3 +
∑

nd−2>t>n

e
−C

2
td2√
n

(2.224)

≤ 1

1− e−C
2

16
d2

+
1

1− e−2C1/3 d
4/3

n2/3

+
1

1− e−
C
2
d2√
n

(2.225)

≤ 32

C2d2
+

n2/3

C1/3d4/3
+

4
√
n

Cd2
since 1− e−x ≥ x/2 for 0 < x < 1

(2.226)

≤ Nd . (2.227)

For the case d = TV(D1,D2) > ε. By the definition of τ2, τ2 ≥ s implies |Zs−1| ≤ Ψs−1

hence by triangle inequality |Zs−1 −E(Zs−1)| ≥ E(Zs−1)−Ψs−1 ≥ ∆s−1 −Ψs−1 therefore

|Zs−1 − E(Zs−1)| ≥ C
2

min
{

(s− 1)d, (s−1)2d2

n
, (s−1)3/2d2√

n

}
by Lemma 2.6.1. Hence

∑
s>Nε

P(τ2 ≥ s) ≤
∑
t≥Nε

P

(
|Zt − E(Zs−1)| > C

2
min

{
td,

t2d2

n
,
t3/2d2

√
n

})
(2.228)

(McDiarmid’s inequality)

≤
∑

t≥Nd−1

e
−C

2

16
min

{
td2, t

3d4

n2
, t

2d4

n

}
≤ Nd . (2.229)

The latter inequality is proven in Lemma 2.6.3. Finally E(τ2) ≤ Nd +
∑

s>Nd
P(τ2 ≥ s) ≤

2Nd.

Similar to uniformity testing, we show that we cannot improve the dependency on n
found in the batch setting more than a constant and replacing ε by ε ∨ TV(D1,D2). We
can prove the following lower bounds for testing closeness in the worst case setting.

Theorem 2.6.3. There is no stopping rule T for the problem of testing D1 = D2 vs
TV(D1,D2) > ε with an error probability δ such that

P

(
τ2(T,D1,D2) ≤ c

√
n log(1/3δ)

TV(D1,D2)2

)
≥ 1− δ if TV(D1,D2) > ε and (2.230)

P

(
τ1(T,D1,D2) ≤ c

√
n log(1/3δ)

ε2

)
≥ 1− δ if D1 = D2, (2.231)

where c a universal constant. We have similar statement if we replace

√
n log(1/3δ)

(ε∨TV(D1,D2))2
by

log(1/3δ)
(ε∨TV(D1,D2))2

or n2/3 log(1/3δ)1/3

(ε∨TV(D1,D2))4/3
.
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Proof. We can use the same techniques as the previous proof of Theorem 2.5.2, by taking
the KL between samples from Un × Un and samples from Un ×D.

On the other hand, we can deduce from Theorem 2.6.2’s proof that with high
probability we have τ2 ≤ NTV(D1,D2) and this upper bound has the equivalent

O
(

log log(1/d)
d2

∨ n2/3 log log(1/d)1/3

d4/3
∨ n1/2 log log(1/d)1/2

d2

)
for d = TV(D1,D2) → 0 . If we take

ε = 0 the Algorithm 4 provides stopping rules for which it does not stop if D1 = D2 and
rejects if D1 6= D2 with probability at least 1− δ.

Theorem 2.6.4. There is a stopping rule that can decide D1 6= D2 with probability at

least 9/10 using at most O
(

log log(1/d)
d2

∨ n2/3 log log(1/d)1/3

d4/3
∨ n1/2 log log(1/d)1/2

d2

)
samples where

d = TV(D1,D2).

This improves the results of [DK17] where the dependency in n is n/ log n. Further-
more, we cannot find stopping rules whose sample complexity is tighter than this upper
bound as stated in the following theorem.

Theorem 2.6.5. There is no stopping rule T for the problem of testing D1 = D2 vs
D1 6= D2 with an error probability 1/16 such that

P

(
τ2(T,D1,D2) ≤ C

n1/2 log log(1/d)1/2

d2

)
≥ 15

16
, (2.232)

where d = TV(D1,D2) and C a universal constant. We have similar statements if we

replace n1/2 log log(1/d)1/2

d2
by log log(1/d)

d
or n2/3 log log(1/d)1/3

d4/3
.

To sum up, a number Θ
(

log log(1/d)
d2

∨ n2/3 log log(1/d)1/3

d4/3
∨ n1/2 log log(1/d)1/2

d2

)
of samples is

necessary and sufficient to decide whether D1 = D2 or D1 6= D2 with probability 15/16.

Proof. We use ideas similar to [KK07]. We prove only the first statement, the others
being similar. Let’s start by a lemma:

Lemma 2.6.4. Let X and Y two random variables and E some event verifying PX(E) ≥
1/3 and PY (E) < 1/3, we have

KL(PX ,PY ) ≥ −1

3
log(3PY (E))− 1

e
. (2.233)

Proof. By data processing property of Kullback-Leibler’s divergence:

KL(PX ,PY ) ≥ KL(PX(E),PY (E)) (2.234)

≥ PX(E) log

(
PX(E)

PY (E)

)
+ (1− PX(E)) log

(
1− PX(E)

1− PY (E)

)
(2.235)

≥ −1

3
log(3PY (E)) + (1− PX(E)) log(1− PX(E)) (2.236)

≥ −1

3
log(3PY (E))− 1

e
. (2.237)
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Suppose by contradiction that there is a stopping rule such that

P

(
τ2(T,D1,D2) >

n1/2 log log(1/d)1/2

Cd2

)
≤ 1

16
, (2.238)

whenever d = TV(D1,D2) > 0. Let ε1 = 1/3, we construct recursively Tk =⌈
n1/2 log log(1/εk)1/2

Cε2k

⌉
= C′

√
n

ε2k+1
where C and C ′ are constants defined later. For each inte-

ger j, we take mj ∼ Poi(j). Let Un the uniform distribution and Dk a uniformly chosen
distribution where Dk,i = 1±2εk

n
with probability 1/2 each. With the work of [DK16]

(Section 3), we can show that KL(U
×mj
n × D×mjk , U

×mj
n × U

×mj
n ) ≤ C ′′

j2ε4k
n

where C ′′ is
a constant. Since TV(Un,Dk) = εk > 0, P (τ2(T, Un,Dk) > Tk) ≤ 1/16. Let Ek be the
event that the stopping rule decides that the distributions are not equal between Tk−1

and Tk. We have P (τ2(T, Un,Dk) ≤ Tk−1) ≤ 1/3 since otherwise Lemma 2.6.4 implies:

−1

3
log (3P (τ2(T, Un, Un) ≤ Tk−1))− 1

e
≤ KL(U

×mTk−1
n ×D

×mTk−1

k , U
×mTk−1
n × U

×mTk−1
n )

(2.239)

≤ C ′′
T 2
k−1ε

4
k

n
≤ C ′′C ′ , (2.240)

thus

P (τ2(T, Un, Un) ≤ Tk−1) ≥ e−3C′′C′−3/e/3 > 0.1, (2.241)

for good choice of C ′ and this contradicts the fact the the stopping rule is infinite with a
probability at least 0.9. The stopping rule is 0.1 correct so P (τ2(T, Un,Dk) < +∞) ≥ 0.9
then

P (Tk−1 < τ2(T, Un,Dk) ≤ Tk) ≥ 0.9− 1/3− 1/16 > 0.5. (2.242)

The same inequalities for the Kullback-Leibler’s divergence as above permits to deduce:

1 ≥
∑
k≥1

P (Tk−1 < τ2(T, Un, Un) ≤ Tk) ≥
∑
k≥1

1

3
e−3C′′T 2

k ε
4
k/n−3/e (2.243)

≥
∑
k≥1

1

3e2
e−3C′′/C2 log log(1/εk) ≥

∑
k≥1

1

3e2

1√
log(1/εk)

(2.244)

where we choose C such that 3C ′′/C2 = 1/2. But the latter sum is divergent because if
we denote ak = log(1/εk), we have ak+1 ≤ ak + 1

4
log log ak +O(1) thus ak = O(k log log k)

therefore 1√
log(1/εk)

≥ c
k

which is divergent.

Remark 2.6.1. We note that we can transform the batch algorithms to sequential ones
using the doubling search technique. For instance, we can use the algorithm of [DGKPP20]
as a black box and test sequentially for 1 ≤ t ≤ log(1/ε) whether D1 = D2 or TV(D1,D2) >
2−t with a probability of failure no more than δt = δ/t2. If at some step the batch-algorithm
rejects we reject and halt, otherwise we accept. Note that one could think, at first sight,
that this reduction even permits to estimate TV(D1,D2); it is however not the case, since
we cannot ensure for different distributions of TV distance less than ε that the proposed
algorithm will respond with the right answer (the black box algorithm can return any
hypothesis H1 or H2 if the TV distance is strictly between 0 and ε) hence the doubling
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search algorithm (as described) cannot be used for tolerant testing. On the other hand, the
doubling search method can lead to the same order of sample complexity as Theorem 2.6.2
for testing closeness problem. Nevertheless, when it comes to multiplicative constants, the
two algorithms appear to have significantly different behaviours. In all experiments the
actual sample complexity of Algorithm 4 appears to be better by an important constant
factor. This does not show off in the bounds (since the multiplicative constants are not
known), but this can be understood at least when the TV distance d satisfies ε < 2−k−1 <
d = 2−k(1 − η) < 2−k, when the doubling search obviously requires ≈ 4 times more
samples than necessary. Actually, even without this discretization effect, the difference is
significant. This sub-optimality of the doubling search algorithm can be seen clearly for
small alphabets where we can characterize the sample complexity to the constant: We gain
a factor 4 using our approach while using doubling search algorithm requires up to 4 times
more than the batch sample complexity when the TV distance is strictly greater than ε.

2.7 General lower bounds and their proofs

In this section we present lower bounds for testing identity and testing closeness in the
general case of n ≥ 2 and provide the proofs of the lower bounds presented in this chapter.

2.7.1 Lower bound for testing identity in the general case n ≥ 2

We first provide and prove a lower bound result for testing identity.

Lemma 2.7.1. Let D be a known distribution on [n]. Let T a stopping rule for testing
identity: D′ = D vs TV(D′,D) > ε with an error probability δ. Let τ1 and τ2 the associated
stopping times. We have

• E(τ1(T,D)) ≥ log(1/3δ)
infD′′s.t.TV(D′′,D)>ε KL(D,D′′) if D′ = D.

• E(τ2(T,D′)) ≥ log(1/3δ)
KL(D′,D)

if TV(D′,D) > ε.

Proof. We consider the two different cases D′ = D and TV(D′,D) > ε.

The case D′ = D. We denote by PD the probability distribution on [n]N with indepen-
dent marginals Xi of distribution D. Let Z = (X1, . . . , Xτ1) and D′′ be a distribution such
that TV(D′′,D) > ε. The data processing property of the Kullback-Leibler divergence
implies

KL
(
PZD,P

Z
D′′
)
≥ KL (PD(τ1 <∞),PD′′(τ1 <∞)) . (2.245)

But PD(τ1 <∞) ≥ 1− δ and PD′′(τ1 <∞) ≤ δ. Moreover, x 7→ KL(x, y) is increasing on
(y, 1) and y 7→ KL(x, y) is decreasing on (0, x) hence KL (PX(E),PY (E)) ≥ KL(1− δ, δ).
Tensorization property and Wald’s lemma (Lemma 1.2.1) lead to

KL
(
PZD,P

Z
D′′
)

= E(τ1(T,D)) KL(D,D′′) . (2.246)

The inequality Equation (2.245) becomes

E(τ1(T,D) KL(D,D′′) ≥ KL(1− δ, δ) ≥ log(1/3δ) , (2.247)

which is valid for all distribution D′′, consequently

E(τ1(T,D) ≥ log(1/3δ)

infD′′:TV(D,D′′)>ε KL(D,D′′)
. (2.248)
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The case TV(D′,D) > ε. With similar notations and techniques we find for Z =
(X1, . . . , Xτ2)

E(τ2(T,D′) KL(D′,D) = KL
(
PZD′ ,P

Z
D
)

(2.249)

≥ KL (PD′(τ2 <∞),PD(τ2 <∞)) (2.250)

≥ KL(1− δ, δ) (2.251)

≥ log(1/3δ) . (2.252)

Finally we can deduce

E(τ2(T,D′)) ≥ log(1/3δ)

KL(D′,D)
. (2.253)

2.7.2 Lower bound for testing closeness in the general case n ≥ 2

We propose the following lower bounds for testing closeness in general case

Lemma 2.7.2. Let T a stopping rule for testing D1 = D2 vs TV(D1,D2) > ε with an
error probability δ. Let τ1 and τ2 the associated stopping times. We have

• E(τ1(T,D1,D2)) ≥ log(1/3δ)
infD′1,2s.t.TV(D′1,D

′
2)>ε

KL(D1,D′1)+KL(D2,D′2)
if D1 = D2.

• E(τ2(T,D1,D2)) ≥ log(1/3δ)
infD KL(D1,D)+KL(D2,D)

if TV(D1,D2) > ε.

Proof. Similarly as in the previous proof, we consider the two different cases D′ = D and
TV(D′,D) > ε.

The case D1 = D2. We denote by PD1,D2 the probability distribution on ([n] × [n])N

with independent marginals (Xi, Yi) of distributionD1×D2. Let Z = (X1, Y1 . . . , Xτ1 , Yτ1).
Let D′1,D′2 be two distributions such that TV(D′1,D′2) > ε. Data processing property of
Kullback-Leibler’s divergence implies

KL
(
PZD1,D2

,PZD′1,D′2

)
≥ KL

(
PD1,D2(τ1 <∞),PD′1,D′2(τ1 <∞)

)
. (2.254)

By definition of τ1 we have PD1,D2(τ1 <∞) ≥ 1−δ and PD′1,D′2(τ1 <∞) ≤ δ. Tensorization
property and Wald’s lemma (Lemma 1.2.1) lead to

KL
(
PZD1,D2

,PZD′1,D′2

)
= E(τ1(T,D1,D1)) KL(D1,D′1) + E(τ1(T,D1,D2)) KL(D2,D′2) .

(2.255)

The inequality Equation (2.254) becomes

E(τ1(T,D1,D2)) KL(D1,D′1) + E(τ1(T,D1,D2)) KL(D2,D′2) ≥ KL(1− δ, δ) ≥ log(1/3δ) ,
(2.256)

which is valid for all distribution D′1 and D′2 such that TV(D′1,D′2) > ε, consequently

E(τ1(T,D1,D2)) ≥ log(1/3δ)

infD′1,2s.t. TV(D′1,D′2)>ε KL(D1,D′1) + KL(D2,D′2)
. (2.257)
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The case TV(D1,D2) > ε. Likewise we prove for Z = (X1, Y1 . . . , Xτ2 , Yτ2) and D a
distribution on [n].

E(τ2(T,D1,D2)) KL(D1,D) + E(τ2(T,D1,D2)) KL(D2,D) = KL
(
PZD1,D2

,PZD,D
)

(2.258)

≥ KL (PD1,D2(τ2 <∞),PD,D(τ2 <∞)) ≥ KL(1− δ, δ) ≥ log(1/3δ) . (2.259)

which is valid for all distribution D, consequently

E(τ2(T,D1,D2)) ≥ log(1/3δ)

infDKL(D1,D) + KL(D2,D)
. (2.260)

2.8 Conclusion

We have provided a tight analysis of the complexity of testing identity and closeness for
small n, where the importance of sequential procedures is clearly exhibited.
For the general case, we proposed tight algorithms for testing identity and closeness where
the complexity can depend on the actual TV distance between the two distributions. We
note that for some specific families of distributions the improvement can be much more
than the general one. This is the case of distributions concentrated in small sets which
can be tested rapidly by sequential strategies.



Chapter 3

On adaptivity in quantum testing

3.1 Introduction

We consider the hypothesis selection problem using independent measurements, where the
tester is asked to determine the hypothesis set containing the unknown quantum state ρ
with high probability. This problem is ubiquitous in the quantum learning theory litera-
ture, and several variants are considered: testing identity [OW15; BCL20; CLO22], testing
closeness [Yu20], binary hypothesis testing [HP91], [ACMTBMAV07; NS09], composite
quantum hypothesis testing [BDKSSSS05]. If the tester is limited to independent mea-
surements, the problem is very related to classical testing problems. Indeed, on the one
hand, every classical testing problem on discrete distributions can be cast into a quantum
testing problem by taking diagonal quantum states corresponding to the discrete distri-
butions. Measuring these quantum states is equivalent to sampling from the classical
distributions. On the other hand, the quantum hypothesis selection problem can be seen
as a bandit problem (see e.g. [GK19; LHT22b; BLT23]). Born’s rule defines exactly the
classical distribution of the reward when pulling a particular arm (performing a measure-
ment). Note that these probability distributions are not arbitrary: they are governed
by the unknown quantum state. This connection leads to an important question: Can
sequential strategies outperform non-sequential ones for some hypothesis selection prob-
lem with independent measurements? In other words, if the tester is allowed to choose
the measurement device at a given step depending on the previous observations, would it
require fewer copies of the unknown quantum state?

Moreover, measurements come with a considerable cost, so we would like to reduce the
number of measurements. Besides using entangled measurements which require a large
quantum memory, one idea is to focus on independent measurements and try to adapt the
new devices according to the accumulated information given by the previous outcomes.

Classically, sequential strategies prove to have an advantage over non-sequential ones
for instance for binary hypothesis testing problems (see [Wal45]), testing continuous dis-
tributions (see [ZZSE16; BR15]), testing identity and closeness problems with small al-
phabet size (see Chapter 2). This speedup comes, mainly, from the fact that a sequential
algorithm can make comparisons at each step and can respond earlier once it has the
enough confidence. However, sequential strategies in the quantum setting have not only
the capacity to choose the stopping time, but also to change the measurement devices
adaptively. We expect then a larger gap between sequential and non-sequential strate-
gies. To avoid confusion, sequential strategies can choose the stopping time according
to the previous observations and thus they have random stopping times, while adaptive

76
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strategies are allowed to adapt their measurement devices at each step according to past
observations. With these definitions, a strategy can be sequential and adaptive, sequen-
tial and non-adaptive, non-sequential and adaptive, or non-sequential and non-adaptive
(see Section 1.3.4). When we do not specify whether the strategy is non-sequential or
sequential (resp. non-adaptive or adaptive), it can be either and the statement remains
true.

On the other hand, non-adaptive strategies have been shown to be optimal for many in-
teresting quantum testing problems, including testing identity by [CHLL22], purity testing
and shadow tomography by [CCHL22], tomography by [CHLLS22]. These works suggest
that adaptive/sequential strategies cannot outperform non-adaptive non-sequential ones.
The goal of the chapter is to show the contrary: there are some situations where sequen-
tial or adaptive strategies require fewer measurements than non-adaptive non-sequential
ones.

Let d the dimension of quantum states, ε > 0 the precision parameter and δ ∈ (0, 1/2)
the error probability.

Contributions When the number of hypotheses m is equal to 2 and the hypotheses
are simple (i.e., only one possible state), we can precisely characterize the optimal worst
case complexity for non-sequential and sequential strategies. We show that sequential
strategies outperform non-sequential ones by a factor 4. For the lower bounds, we show
how to reduce this problem to the classical testing identity problem, then apply the lower
bounds of Chapter 2. For the sequential upper bound, we design stopping rules inspired
by time uniform concentration inequalities.

Moreover, we show that sequential algorithms can adapt to the actual difficulty for
the testing mixedness and testing closeness problems. For this, we show a lower bound on
the TV-distance between the probability distributions after measurement depending on
the actual 1-norm between the quantum states (see Lemma 3.3.3). This inequality helps
to reduce quantum testing to classical testing at the cost of a factor 1/

√
d and can be

useful for other applications.

For a number of hypotheses m ≥ 2, we prove a separation between adaptive and
non-adaptive strategies for a specific problem. The learner has the information that the
unknown quantum state can be diagonalised in a basis amongst m known orthonormal
bases and would like to approximate it. We show that this problem can be solved by
adaptive algorithms using O(d log(m)/ε2) copies of ρ. On the other hand, every non-
adaptive algorithm solving this problem will require Ω(min{md/ log(m)ε2, d2/ε2}) copies
of ρ. The upper bounds follows from the shadow tomography algorithm of [HKP20].
For the lower bounds, we construct an ε-separated family of quantum states close to the
maximally mixed state (I/d) and use it to encode a message from [meΩ(d)]. A learning
algorithm can be used to decode this message with the same success probability. Hence,
the encoder and decoder should share at least Ω(log(m) + d) bits of information (Fano’s
inequality [Fan61]). On the other hand, after each step, we show that the correlation
between the encoder and decoder can only increase by at most O(ε2 log(m)/m + ε2/d)
bits for non-adaptive strategies and it can only increase by at most O(ε2) bits for adap-
tive strategies. We obtain an improvement by a factor d or m/ log(m) for non-adaptive
strategies by exploiting the randomness in the construction and the independence of the
observations at different steps.

Related work Quantum testing identity using entangled measurements is well under-
stood [OW15] and [BOW19]: it is known that Θ(d/ε2) copies are necessary and sufficient.
For independent measurements, it starts with the work of [BCL20] where we have two
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different lower bounds for testing mixedness problem using independent adaptive and
non-adaptive measurements. This result is generalized for general testing identity to
some quantum state σ by [CLO22]. Recently [CHLL22] show that adaptive algorithms
cannot significantly outperform non-adaptive ones neither for testing mixedness nor test-
ing identity.
If entangled measurements are allowed, the quantum hypothesis selection problem can be
solved using poly(log(m)) copies of ρ (see [BO21]). This poly-logarithmic complexity in
m can be explained by the fact that ρ⊗N can be reused after measurement. In contrast,
this is not possible using independent measurement for which the state collapses after per-
forming the measurement. In general, the quantum hypothesis selection problem, where
each hypothesis contains only one quantum state, is highly related to the shadow tomog-
raphy problem where the learner is asked to uniformly approximate the expected values
{Tr(ρOi)}i∈[m] of m known observables {Oi}i∈[m] by measuring the unknown quantum
state ρ. A popular algorithm for the shadow tomography problem is given by [HKP20]
and uses at most O(log(m)d/ε2) non-sequential non-adaptive independent measurements.
On the other hand, independent adaptive strategies are shown to be useless for shadow
tomography (and purity testing) by [CCHL22].
Moreover, sequential adaptive strategies have been used by [LTT22] (see [LHT22a] for
quantum channel discrimination) to achieve the optimal rates given by the quantum rel-
ative entropy for both type I and type II errors at the same time for binary hypothesis
testing problem using entangled measurements.
Adaptive strategies have been considered for testing quantum channels in [HHLW10;
PLLP19; SHW22]. In particular, [HHLW10] and [SHW22] provide examples for which
adaptive strategies outperform non-adaptive ones for testing quantum channels. We note
that for channels, one has the possibility to adapt the input of the channel to the previous
observations, but this is not the case for testing states. As such, it is more challenging
to find a separation between adaptive and non-adaptive strategies for testing quantum
states than it is for channels.
Finally, for the tomography problem, [CHLLS22] shows that adaptive independent strate-
gies cannot beat non-sequential non-adaptive ones and thus need at least Ω(d3/ε2) copies
to learn the quantum state ρ. However, it is unclear whether adaptivity can help for
learning restricted families of states such as graph states [OT22]. On the other hand, se-
quential strategies were used for (online) state tomography by [KF15; YFT19; SMPE+22;
RYTR22].

3.2 Preliminaries

Throughout the chapter, d is the dimension of the quantum states. An observable is a
Hermitian matrix O satisfying O < 0 and I−O < 0 where I is the identity matrix.
All the problems discussed in this chapter are special cases of the general hypothesis
selection problem. Given an unknown quantum state ρ ∈ Cd×d and m hypothesis classes
{Hi}i∈[m], the learner is asked to find one of the hypothesis classes containing ρ with high
probability. Formally, we have the promise that at least one of the following assertions is
satisfied:

ρ ∈ H1, ρ ∈ H2, . . . , ρ ∈ Hm. (3.1)
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An algorithm A is δ-correct for this problem if it verifies the following property:

∀i ∈ [m] : ρ /∈ Hi =⇒ P (A = i) ≤ δ. (3.2)

The difference between quantum and classical testing is that in the quantum case we
have the possibility to choose a measurement (given by positive operators summing to
the identity). If the quantum states are restricted to be diagonal, we may assume the
measurement is always the same and so the problem becomes a classical testing problem
(see Lemma 3.3.1).

The quantum state ρ is unknown, but the learner can extract classical information from
it by performing a measurement. The way the unknown quantum state ρ is measured is
important and can lead to different results about the number of copies needed for this
task. Recall that for testing states, we can distinguish between two types of measurements
depending on the considered Hilbert space:

1. An entangled measurement is given by a POVM on the Hilbert space H =
(Cd)⊗N , where N is the number of copies available of the quantum state ρ. We can
measure the whole state ρ⊗N at once. An interesting POVM related to the observ-
able O on Cd is given byM(O) = {Mk}0≤k≤N where Mk =

∑
x∈{0,1}N ,|x|=k O

x1⊗· · ·⊗
OxN . Measuring ρ⊗N with the POVM M(O) outputs a sample from the binomial
distribution Bin(n,Tr(ρO)).

2. An independent (or incoherent) measurement is given by a sequence of
POVMs {Mt}t∈[N ], each of them acts on the Hilbert space H = Cd. In this case, we
measure at step t the quantum state ρ using the POVM Mt. For instance, for an
observable O, measuring ρ with the POVM M(O) = (I − O,O) outputs a sample
from the Bernoulli distribution Bern(Tr(ρO)). If the POVMs {Mt}t are fixed in
advance (i.e., do not depend on the outcomes of the previous measurements), the
procedure is called non-adaptive; whenMt can be chosen depending on the results
of the previous measurements with the {Ms}s<t, we call it an adaptive algorithm.
If the number of measurements is not fixed beforehand and can be chosen as a func-
tion of the previous measurement outcomes, the algorithm is called sequential and
has a random stopping time N . In this case, the expected copy complexity of the
procedure is E (N). Otherwise, the algorithm has a fixed number of measurements
N and is called non-sequential.

In this chapter, we focus on algorithms using independent measurements and our goal is
to assess the potential improvement of sequential/adaptive algorithms over non-adaptive
non-sequential ones.

3.3 Sequential improvement for problems involving

two hypotheses

In this section, we focus on sequential algorithms for problems having only two hypotheses
(m = 2), which can be simple or not.

3.3.1 Provable constant improvement of sequential strategies

The simplest case for hypothesis selection problem with m = 2 corresponds to hypoth-
esis sets containing only one known quantum state. Formally, the learner would like
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to distinguish two hypothesis: H1 = {σ1} and H2 = {σ2}. We want to characterize
the exact number of copies the learner needs to solve this problem using sequential and
non-sequential independent measurements.

Non-adaptive strategies

The tester knows the quantum states σ1 and σ2 and can hence calculate the actual 1-norm
between them, denoted by ε = ‖σ1 − σ2‖Tr. The optimal POVM to distinguish between
σ1 and σ2 is thus given byM = (I−O,O) (Holevo-Helstrom theorem, see [Wat18]) where
0 4 O 4 I satisfies

ε = ‖σ1 − σ2‖Tr = Tr((σ1 − σ2)O). (3.3)

Let X1, . . . , XN be the outcomes of measuring ρ by the POVM M. By Born’s rule, they
follow the Bernoulli distribution of parameter Tr(ρO). Let S be the statistic given by the
difference between the empirical mean and the actual mean under H2: S = 1

N

∑N
i=1 Xi −

Tr(σ2O). Its expected value is Tr((ρ − σ2)O) which is ε under H1 and 0 under H2. The
learner can measure ρ a sufficient number of times, compare the statistic S with ε/2 and
decide accordingly: If S ≥ ε/2 it accepts H1, otherwise it accepts H2. Following the
Chernoff-Hoeffding inequality ([Hoe63]), the sufficient number of measurement for the
learner to be δ-correct is

max

{
log(1/δ)

KL(Tr((σ1 + σ2)O)/2‖Tr(σ1O))
,

log(1/δ)

KL(Tr((σ1 + σ2)O)/2‖Tr(σ2O))

}
≤ 2 log(1/δ)

ε2
.

(3.4)

The latter inequality follows from Pinsker’s inequality ([FHT03]). Note that this previous
upper bound is optimal in the worst case setting where we fix ε and take the infimum over
all σ1 and σ2 satisfying ‖σ1 − σ2‖Tr = ε. This first result is summarized in the following
proposition:

Proposition 3.3.1. There is a non sequential algorithm for testing H1 : ρ = σ1 vs
H2 : ρ = σ2 using 2 log(1/δ)

ε2
measurements. Moreover, there exists two quantum states σ1

and σ2 satisfying ‖σ1 − σ2‖Tr = ε so that every non sequential algorithm distinguishing

between H1 : ρ = σ1 and H2 : ρ = σ2 with high probability needs an equivalent of 2 log(1/δ)
ε2

measurements.

Proof. The correctness of the batch algorithm presented above can be done using Chernoff-
Hoeffding inequality, if ρ = σ1 the error probability can be upper bounded as follows:

P (S − Tr(σ2O) ≤ ε/2) = P (S − Tr(σ1O) ≤ ε/2− ε) (3.5)

≤ P (S − Tr(σ1O) ≤ −ε/2) (3.6)

≤ exp(−N KL(Tr(σ1O)− ε/2‖Tr(σ1O))). (3.7)

On the other hand, if ρ = σ2:

P (S − Tr(σ2O) ≥ ε/2) ≤ exp(−N KL(Tr(σ2O) + ε/2‖Tr(σ2O))). (3.8)

Therefore to ensure that the batch algorithm is δ-correct we need N to satisfy

N ≥ max

{
log(1/δ)

KL(Tr(σ1O)− ε/2‖Tr(σ1O))
,

log(1/δ)

KL(Tr(σ2O) + ε/2‖Tr(σ2O))

}
. (3.9)
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Moreover by Pinsker’s inequality ([FHT03]), the right hand side is upper bounded by:

max

{
log(1/δ)

KL(Tr(σ1O)− ε/2‖Tr(σ1O))
,

log(1/δ)

KL(Tr(σ2O) + ε/2‖Tr(σ2O))

}
≤ 2 log(1/δ)

ε2
.

(3.10)

For the lower bound, we construct two quantum states, σ1 = I2/d and σ2 = diag((1 +
2ε)/2, (1 − 2ε)/2) = I/2 + εO where O = diag(1,−1). The reduction to classical testing
can be proven using the following lemma on measurements of diagonal quantum states.

Lemma 3.3.1. Let D1 and D2 be two discrete distributions and ρ1 and ρ2 their corre-
sponding diagonal quantum states. Let M be a POVM. Measuring the quantum state ρ1

(resp. ρ2) with the POVMM can be seen as post-processing (independent of the quantum
states) of samples from the distribution D1 (resp. D2).

Proof. Let M = {M i}i∈[k]. For each i ∈ [k], we can write

M i =
∑
x,y

M i
x,y |x〉 〈y| . (3.11)

By Born’s rule, the probability distribution of the outcomes of the measurement of ρ by
the POVM M is:

M(ρ) = {Tr(ρM i)}i∈d =

{
Tr

(∑
x

Dx |x〉〈x|
∑
x,y

M i
x,y |x〉 〈y|

)}
i∈d

(3.12)

=

{∑
x

M i
x,xDx

}
i∈d

= PD, (3.13)

where P = (M i
x,x)i,x is a stochastic matrix. Indeed, M i < 0 implies M i

x,x = 〈x|M i |x〉 ≥ 0
and

∑
iM

i = I implies ∑
i

M i
x,x =

∑
i

〈x|M i |x〉 = 〈x|x〉 = 1. (3.14)

Now we move to show how the reduction works for entangled strategies. We have
σ⊗N1 = I

2N
and σ⊗N2 = 1

2N
diag

(
(1 + 2ε)|i|(1− 2ε)N−|i|

)
i∈{0,1}N where |i| = i1 + · · · + iN .

By Lemma 3.3.1, measuring the quantum states σ⊗N1 (resp. σ⊗N2 ) can be seen as
post-processing of samples from the distribution D1 = {1/2N}i∈{0,1}N (resp. D2 ={

(1/2− ε)|i|(1/2 + ε)N−|i|
}
i∈{0,1}N ). Observe that a sample i = (i1, . . . , iN) ∼ D1 is given

by N i.i.d. random variables {ik ∼ Bern(1/2)}k∈[N ]. Similarly, a sample i = (i1, . . . , iN) ∼
D2 is given by N i.i.d. random variables {ik ∼ Bern(1/2− ε)}k∈[N ]. Therefore, distin-
guishing σ1 from σ2 using N entangled copies can be reduced to testing Bern(1/2) vs
Bern(1/2− ε) using N samples. Once the reduction to classical testing identity is done,
we can invoke the lower bound of Theorem 2.3.1.
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Sequential strategies

If we allow the tester to adapt the measurements and choose its stopping time according to
previous observations, it can outperform (in expectation) every non-sequential algorithms
by a factor 4. Precisely, it can be proven that an expected number of measurements
equivalent to log(1/δ)

2ε2
is sufficient to distinguish between H1 : ρ = σ1 and H2 : ρ = σ2 with

probability at least 1−δ. We use again the optimal POVMM defined in Equation (3.3) to
distinguish between σ1 and σ2. Let X1, . . . , Xt ∼ Bern(Tr(ρO)) the outcomes of measuring
ρ by the POVM M. Let St = 1

t

∑t
i=1 Xi the empirical mean until the time t. Contrary

to the algorithm described in the previous subsection, a sequential algorithm can make
comparisons at each time t until the tester is confident enough to answer the correct
answer H1 or H2. Under H1, the statistic St has an expected value Tr(σ1O). On the
other hand, under H1, the statistic St has an expected value Tr(σ2O). These expected
values are known to the tester, so it can compare at each time the statistic St with two

thresholds: Tr(σ1O) − φ(δ, t) and Tr(σ2O) + φ(δ, t) where φ(δ, t)2 = log
(

2t(t+1)
δ

)
/2t. If

St ≤ Tr(σ1O) − φ(δ, t), the tester can answer H2 confidently. Similarly, it would answer
H1 if St ≥ Tr(σ2O) + φ(δ, t). However if none of these inequalities is verified it does
not answer and makes a new measurement, and so forth until the regions defined by the
thresholds coincide. The idea of comparing the statistic with time dependent thresholds
has been previously used for classical testing identity and closeness in Chapter 2, where
it is proven that in expectation this algorithm outperform the non sequential one by a
factor 4. We adapt this result to the quantum setting in the following proposition.

Proposition 3.3.2. There is a sequential algorithm for testing H1 : ρ = σ1 vs H2 : ρ = σ2

using an expected number of measurements:

lim sup
δ→0

E (N)

log(1/δ)
≤ 1

2ε2
. (3.15)

Moreover, for small enough ε, there are two quantum states σ1 and σ2 satisfying ‖σ1 −
σ2‖Tr = ε so that every sequential algorithm distinguishing between H1 : ρ = σ1 and

H2 : ρ = σ2 with high probability needs, in expectation, an equivalent a number log(1/δ)
2ε2

of
measurements.

Note that we can obtain non asymptotic upper bound depending on σ1 and σ2 by
carefully choosing the thresholds of the algorithm. For the sake of simplicity, we prefer
to present the asymptotic worst case complexities that can be easily compared. The
correctness of the algorithm presented here is proved using the following time uniform
concentration inequality which is an application of union bound and Hoeffding’s inequality
([Hoe63]):

P (∃t ≥ 1 : |St − E (St) | > φ(δ, t)) ≤ δ. (3.16)

The lower bound follows from the previous proof’s reduction and the lower bound on the
expected number of samples for testing uniform using sequential algorithms: Bern(1/2) vs
Bern(1/2±ε) (see Lemma 2.3.1). We note that [LTT22; LHT22a] have also established an
advantage of sequential strategies over non-adaptive ones in terms of the error exponents.

Proof. We use a similar approach as in Chapter 2:
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Correctness. Let’s start by showing that the algorithm presented above is δ-correct.
To this end, we need a time uniform concentration inequality which can be obtained
by Hoeffding inequality along with the union bound, recall that St = 1

t

∑t
i=1Xi and

Xi ∼ Bern(Tr(ρO)):

P (∃t ≥ 1 : |St − E (St) | > φ(δ, t)) ≤
∑
t≥1

P (|St − E (St) | > φ(δ, t)) (3.17)

≤
∑
t≥1

exp(−2tφ(δ, t)2) (3.18)

≤
∑
t≥1

δ

t(t+ 1)
(3.19)

≤ δ. (3.20)

Complexity. To obtain an upper bound on the complexity, we use the following lemma:

Lemma 3.3.2. N a random variable taking values in N∗, we have for all k ∈ N∗

E(N) ≤ k +
∑
t≥k

P(N ≥ t) . (3.21)

This inequality can be proved by writing E(N) =
∑

t≥1P(N ≥ t) then upper bounding
the first k − 1 terms by 1.
Let α ∈ (0, 1) and k the smallest integer so that for all t ≥ k : φ(δ, t) ≤ αε. We focus only
on the case ρ = σ1 (the other being similar), the expected stopping time of the algorithm
can be controlled as follows:

E (N) ≤ k +
∑
t≥k

P(N ≥ t) ≤ k +
∑
t≥k

P(St−1 < Tr(σ2O) + φ(δ, t− 1)) (3.22)

≤ k +
∑
t≥k−1

P(St − Tr(σ1O) < −ε+ αε) ≤ k +
∑
t≥k−1

P(St − Tr(σ1O) < −(1− α)ε)

(3.23)

≤ k +
∑
t≥k−1

2 exp(−2t(1− α)2ε2) ≤ k +
2 exp(−2(k − 1)(1− α)2ε2)

1− exp(−2(1− α)2ε2)
(3.24)

≤ k +
2 exp(−2(k − 1)(1− α)2ε2)

(1− α)2ε2
. (3.25)

On the other hand we have φ(δ, k) ≤ αε and φ(δ, k − 1) ≥ αε so

log

(
(k − 1)k

δ

)
≥ 2(k − 1)α2ε2. (3.26)

Therefore:

k − 1 ≤ log(1/δ)

2α2ε2
+ 2

log(log(1/δ)/(αε)2)

α2ε2
. (3.27)

Hence:

E (N)

log(1/δ)
≤ 1

2α2ε2
+ 2

log(log(1/δ)/(αε)2)

log(1/δ)α2ε2
+

1

log(1/δ)
+

2 exp(−2(k − 1)(1− α)2ε2)

log(1/δ)(1− α)2ε2
,

(3.28)
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and by taking δ → 0, then α→ 1 we obtain:

lim sup
δ→0

E (N)

log(1/δ)
≤ 1

2ε2
. (3.29)

3.3.2 Sequential strategies adapt on the actual difficulty of the
problem without prior knowledge

In this section, we change the previous setting by letting the second hypothesis be multiple.
Precisely, we consider the problem of testing identity with H1 = {I/d} and H2 = {ρ :
‖ρ− I/d‖Tr ≥ ε} where ε is a positive parameter. [CHLL22] has proved that the optimal
adaptive copy complexity is Θ(d3/2/ε2). We show that while adaptive algorithms cannot
improve the copy complexity, sequential algorithms can be used to adapt to the actual
difficulty of the problem. Mainly we show the following result:

Proposition 3.3.3. There is a sequential algorithm for testing identity problem using a
number of measurements satisfying:

E (N) = O
(

min

{
d3/2 log(1/δ)

ε2
,
d1/2 log(1/δ)

‖ρ− I/d‖2
2

})
. (3.30)

In particular, the expected copy complexity can be reduced to O(rd1/2 log(1/δ)) if the

quantum state ρ has low rank r ≤ d/2 or O
(
rd1/2 log(1/δ)

‖ρ−I/d‖2Tr

)
if the trace-less matrix ρ− I/d

has low rank r even if the algorithm does not have any information about these ranks (see
Section 3.3.2). The algorithm uses random measurements and a time-dependent stopping
rule. Since we have already sequential algorithms for the classical testing identity problem,
it is sufficient to show how to reduce the quantum problem to the classical one. For a
POVMM and a quantum state ρ, let ρ(M) denotes the classical probability distribution
{Tr(ρMi)}i. The following lemma captures the main ingredient of the reduction:

Lemma 3.3.3. For all δ > 0, let l = 3072 log(2/δ) and U1, U2, . . . , U l ∈ Cd×d be Haar-
random unitary matrices of columns {

∣∣U j
i

〉
}1≤i≤d,1≤j≤l, M = {1

l

∣∣U j
i

〉〈
U j
i

∣∣}i,j is a POVM
and for all quantum states ρ and σ we have with a probability at least 1− δ:

TV(ρ(M), σ(M)) ≥ ‖ρ− I/d‖2

16
≥ ‖ρ− σ‖Tr

16
√
r

, (3.31)

where r is the rank of (ρ− σ).

A similar statement can be found in [MWW09] where the authors analyze the uni-
form POVM and a POVM defined by a spherical 4-designs. However, for our reduction,
it is important to minimize the number of outcomes of the POVM. Performing measur-
ment with a random basis is well known in the quantum learning literature (see e.g.,
[EFHKPVZ23]).

Proof. Let ξ = ρ − σ, we have U |ei〉 = |Ui〉 and we use Weingarten calculus [Gu13;



3.3. TWO HYPOTHESES 85

CMS12] to calculate

E
[
〈Ui| ξ |Ui〉2

]
= E [〈Ui| ξ |Ui〉 〈Ui| ξ |Ui〉] = E [Tr(ξ |Ui〉〈Ui| ξ |Ui〉〈Ui|)] (3.32)

= E [Tr(ξU |ei〉〈ei|U∗ξU |ei〉〈ei|U∗)] = E [Tr(U∗ξU |ei〉〈ei|U∗ξU |ei〉〈ei|)]
(3.33)

=
∑

α,β∈S2

Wg(βα−1, d)Trβ−1(ξ, ξ)Trα(|ei〉〈ei| , |ei〉〈ei|) =
1

d(d+ 1)
Tr(ξ2).

(3.34)

Similarly

E
[
〈Ui| ξ |Ui〉4

]
= E [〈Ui| ξ |Ui〉 〈Ui| ξ |Ui〉 〈Ui| ξ |Ui〉 〈Ui| ξ |Ui〉] (3.35)

= E [Tr(ξ |Ui〉〈Ui| ξ |Ui〉〈Ui| ξ |Ui〉〈Ui| ξ |Ui〉〈Ui|)] (3.36)

= E [Tr(ξU |ei〉〈ei|U∗ξU |ei〉〈ei|U∗ξU |ei〉〈ei|U∗ξU |ei〉〈ei|U∗)] (3.37)

= E [Tr(U∗ξU |ei〉〈ei|U∗ξU |ei〉〈ei|U∗ξU |ei〉〈ei|U∗ξU |ei〉〈ei|)] (3.38)

=
∑

α,β∈S4

Wg(βα−1, d)Trβ−1(ξ, ξ, ξ, ξ)Trα(|ei〉〈ei| , |ei〉〈ei| , |ei〉〈ei| , |ei〉〈ei|)

(3.39)

=
1

d(d+ 1)(d+ 2)(d+ 3)
(6Tr(ξ2)2 + 6Tr(ξ4)). (3.40)

≤ 12

d(d+ 1)(d+ 2)(d+ 3)
Tr(ξ2)2. (3.41)

We can now conclude by Hölder’s inequality:

2E [TV(ρ(M), σ(M))] =
d∑
i=1

E [| 〈Ui| ξ |Ui〉 |] ≥
d∑
i=1

√√√√(E [〈Ui| ξ |Ui〉2])3

E
[
〈Ui| ξ |Ui〉4

] (3.42)

≥
d∑
i=1

√
(d−1(d+ 1)−1Tr(ξ2))3

12d−1(d+ 1)−1(d+ 2)−1(d+ 3)−1Tr(ξ2)2
(3.43)

≥
d∑
i=1

√
Tr(ξ2)

4d
≥ 1

4

√
Tr(ρ− σ)2. (3.44)

Let f(U) = TV(ρ(M), σ(M)), we first show that f is Lipschitz by using the triangular
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and Cauchy Schwarz inequality:

2|f(U)− f(V )| =

∣∣∣∣∣ ∑
1≤i≤d,1≤j≤l

1

l
|Tr(

∣∣U j
i

〉〈
U j
i

∣∣ ξ)| − |Tr(
∣∣V j
i

〉〈
V j
i

∣∣ ξ)|∣∣∣∣∣ (3.45)

≤
∑

1≤i≤d,1≤j≤l

1

l

∣∣Tr((
∣∣U j

i

〉〈
U j
i

∣∣− ∣∣V j
i

〉〈
V j
i

∣∣)ξ)∣∣ (3.46)

≤
∑

1≤i≤d,1≤j≤l

1

l

√
Tr(ξ2)

√
Tr((

∣∣U j
i

〉〈
U j
i

∣∣− ∣∣V j
i

〉〈
V j
i

∣∣)2) (3.47)

≤
√
d

l

√
Tr(ξ2)

√ ∑
1≤i≤d,1≤j≤l

Tr((
∣∣U j

i

〉〈
U j
i

∣∣− ∣∣V j
i

〉〈
V j
i

∣∣)2) (3.48)

≤
√
d

l

√
Tr(ξ2)

√∑
1≤j≤l

Tr((U j − V j)2) (3.49)

≤
√
d

l

√
Tr(ξ2)‖U − V ‖2,HS, (3.50)

hence f is L =
√

d
4l

√
Tr(ξ2)-Lipschitz. Therefore by Theorem 1.4.2:

P

(
|f(U)− E (f(U))| > 1

16

√
Tr(ξ2)

)
≤ e−

dTr(ξ2)

48·162L2 = e−l/3072 = δ/2, (3.51)

for l = 3072 log(2/δ). Finally with high probability (at least 1− δ/2) we have

TV(ρ(M), σ(M)) ≥ E (TV(ρ(M), σ(M)))− |TV(ρ(M), σ(M))− E (TV(ρ(M), σ(M))) |

(3.52)

≥ 1

8

√
Tr(ξ2)− 1

16

√
Tr(ξ2) ≥ 1

16

√
Tr(ξ2) ≥ 1

16

‖ρ− σ‖Tr√
r

, (3.53)

where r is the rank of (ρ− I/d).

Let η = ‖ρ − I/d‖2. Under the alternative hypothesis H2, the TV distance between
P and Un can be lower bounded by TV(P,Un) ≥ 1

16
‖ρ − I/d‖2. So Lemma 3.3.3 gives

a POVM for which our problem reduces to testing identity: P = Un vs TV(P,Un) ≥ η
16

with high probability, where n = 1
4
d log(2/δ) and P = M(ρ). Therefore we can apply

the classical testing uniform result of [DGPP17] to obtain a non sequential algorithm for
testing identity in the 2-norm with a copy complexity:

O

(√
d log(1/δ)

η2

)
. (3.54)

Moreover we can apply the sequential upper bound for classical testing uniform (see
Algorithm 3 and Theorem 2.5.1) to obtain a sequential testing identity in the 1-norm with
an expected copy complexity:

Õ
(

d3/2 log(1/δ)

max{ε2, d‖ρ− I/d‖2
2}

)
. (3.55)
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Algorithm 5 Testing whether ρ = I/d or ‖ρ − I/d‖2 ≥ η with an error probability at
most δ.

l = 3072 log(2/δ).
Sample U1, U2, . . . , U l ∈ Cd×d from Haar(d) distribution.
Let

{∣∣U j
i

〉}
1≤i≤d,1≤j≤l be the columns of the unitary matrices U1, U2, . . . , U l

Measure the quantum state ρ using the POVM M =
{

1
l

∣∣U j
i

〉〈
U j
i

∣∣}
i,j

and observe

O
(√

d log(1/δ)/η2
)

samples from ρ(M).

Test whether h0 : ρ(M) = Uld or h1 : TV(ρ(M), Uld) ≥ η/16 using the testing
identity of discrete distributions of [DGPP17], with an error probability δ, and answer
accordingly.

A matching lower bound can be obtained in the worst case setting where we are interested
only in the parameters d, ε and ‖ρ− I/d‖Tr. This can be done using Markov’s inequality
to transform the algorithm to a deterministic-time one then invoking the lower bound of
[CHLL22]: Any adaptive algorithm for testing identity would require Ω(d3/2/ε2) copies of
ρ.
Once we have the lower bound on the TV distance between the distributions obtained
after performing the measurements, we can deduce upper bounds on sequential algorithms
for testing identity depending on the rank of ρ or ρ− I/d.

Dependence in the rank of ρ − I/d: From the previous lower bound on the TV-
distance, we can achieve an upper bound using the sequential tester of uniform (Theo-
rem 2.5.1):

Õ
(

min

{
n1/2 log(1/δ)1/2

(max{ε/
√
d, ‖ρ− I/d‖2})2

,
log(1/δ)

(max{ε/
√
d, ‖ρ− I/d‖2})2

})
(3.56)

= Õ
(

d3/2 log(1/δ)

max{ε2, d‖ρ− I/d‖2
2}

)
= Õ

(
min

{
d3/2 log(1/δ)

ε2
,
rd1/2 log(1/δ)

‖ρ− I/d‖2
Tr

})
, (3.57)

where r is the rank of (ρ−I/d) and we use Cauchy Schwarz to obtain the latter inequality.

Dependence in the rank of ρ The proof of Lemma 3.3.3 permits to deduce that with
high probability:

TV(P,Un) ≥ 1

16
‖ρ− I/d‖2 ≥

1

16

√√√√ r∑
i=1

(
λi −

1

d

)2

+
d− r
d2

(3.58)

≥ 1

16

√√√√ r∑
i=1

λ2
i −

1

d
≥ 1

16

√
1

r
− 1

d
≥ 1

16

√
1

2r
, (3.59)

where r is the rank of ρ supposed to be less than d/2 and we use Cauchy Schwarz inequality.
Therefore we can test whether ρ = σ or ‖ρ−σ‖Tr > ε with probability at least 1−δ using

Õ

 d1/2 log(1/δ)(
max

{
ε/
√
d, 1/
√

2r
})2

 = Õ
(

min

{
d3/2 log(1/δ)

ε2
, rd1/2 log(1/δ)

})
(3.60)
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copies of ρ.

Observe that, using Lemma 3.3.3 and the sequential tester of closeness for classical
distributions (see Algorithm 4 and Theorem 2.6.2), we obtain the same copy complexity for
testing closeness (i.e., testing ρ = σ vs ‖ρ− σ‖Tr ≥ ε where we can measure the unknown
quantum states ρ and σ) as for testing identity. This is different from the classical case
where testing identity can be done with much less copies than testing closeness (see
[DGPP17] and [DGKPP20]).

3.4 Provable separation between adaptive and non-

adaptive strategies

In this section, we focus only on adaptive algorithms meaning that the number of mea-
surements is always deterministic.

We construct a problem for which we have a separation between adaptive and non-
adaptive algorithms. Let {σ1, . . . , σm} be a set of ε-separated known quantum states.
The unknown quantum state ρ is ε/3-close to (at most) one of the quantum states
σi? ∈ {σ1, . . . , σm} and has the same diagonalisation basis than σi? . We aim to learn
the quantum state ρ to within ε/10 with high probability. Formally, the goal is to design
an algorithm that measures a number of copies of ρ and returns a quantum state ρ̃ (an
ε/10-approximation of ρ) such that with probability (the randomness comes from the
measurements and possibly the algorithm) at least 1− δ:

‖ρ̃− ρ‖Tr ≤ ε/10. (3.61)

The problem described above is not a hypothesis selection problem in the strict sense of the
term. However it is equivalent to the following hypothesis selection problem which has the
same order of copy complexity. For i ∈ [m], let σi =

∑
λk |φik〉〈φik| and {σi,j}j∈[M ] an ε/10-

covering of the set {ρ =
∑

k µk |φik〉〈φik| : 2 TV(λ, µ) ≤ ε/3}. Our problem is equivalent to
the hypothesis selection problem for {Hi,j = {B(σi,j, ε/10)}∩{ρ : ρσi,j = σi,jρ}}i∈[m],j∈[M ].
For simplicity, we use the first formulation of the problem and refer to it as (P ).

3.4.1 Upper bound

In this section, we present an adaptive algorithm for the problem (P ) achieving a copy
complexity strictly less than the lower bound which holds for all non-adaptive algorithms.
The first step is to determine with high probability the closest quantum state σi? to ρ,
then it remains to approximate ρ by measuring it in its basis of diagonalization.

Adaptive strategies.

The quantum state σi? has the property to minimize the 1-norm between ρ and {σi}i,
so it is natural to take the state minimizing the statistics of expected value roughly
maxi,j Tr Oi,j(ρ − σl) for l ∈ [m]. To do this, we need to approximate Tr ρOi,j for all
i 6= j. We can use the classical shadow tomography algorithm of [HKP20] to predict all
these events using a few number of copies of ρ:

Theorem 3.4.1 ([HKP20]). Let (O1, . . . , Om) be a tuple of observables. There is an
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algorithm using non-adaptive independent measurements requiring:

N = O
(
d log(m/δ)

ε2

)
(3.62)

copies of ρ to predict Tr(ρOi) to within ε-error for all i = 1, . . . ,m with at most an error
probability of δ.

Once we find the quantum state σi? , we know the basis of diagonalization of ρ and we
can learn the eigenvalues using O(d/ε2) independent copies. The algorithm is summarized
in Algorithm 6. This algorithm is δ-correct. We need to show that with probability at

Algorithm 6 Hypothesis selection problem (P ).

Require: N = O(d log(m/δ)/ε2) independent measurement on ρ and m quantum states
σ1, . . . , σm.

Ensure: Two quantum states σi? and ρ̃ satisfying with a probability at least 1 − δ:
‖σi? − ρ‖Tr ≤ ε/3 and ‖ρ̃− ρ‖Tr ≤ ε/10 .
For all i 6= j ∈ [m], let Oi,j an observable satisfying ‖σi − σj‖Tr = Tr Oi,j(σi − σj).
For all i 6= j ∈ [m], let µi,j an ε/10 approximation of Tr(ρOi,j) given by classical shadow
tomography of [HKP20].
Let k? = arg minl maxi,j µi,j − Tr(σlOi,j).
LetM = {|φi〉〈φi|}i∈[d] the POVM corresponding to the basis of diagonalisation of σk? .

Measure ρ independentlyM = 200 log(2d+2/δ)/ε2 times using the POVMM and denote
the outcomes {Ei}1≤i≤M .

Return ρ̃ =
∑

i∈[d]

(∑
j∈[M ] 1Ej=i

M

)
|φi〉〈φi|.

least 1− δ/2, Algorithm 6 finds the closest quantum state σi? to ρ.

Lemma 3.4.1. For all i 6= j ∈ [m], let µi,j an ε/10 approximation of Tr(ρOi,j) given by
classical shadow tomography of [HKP20]. Let k? = arg minl maxi,j µi,j − Tr(σlOi,j). We
have with at least a probability 1− δ/2:

‖ρ− σk?‖Tr ≤ ε/3. (3.63)

Proof. Classical shadow tomography of [HKP20] permits to have the following approxi-
mations

∀i 6= j ∈ [m] : |µi,j − Tr(ρOi,j)| ≤ ε/10, (3.64)

with a probability at least 1− δ/2 using only N = O(d log(m)/ε2) copies of ρ.
Let σi? the closest quantum state to ρ. We want to prove that with high probability
k? = i?. We have for all l 6= i?: ‖σi? − σl‖Tr > ε hence:

max
i,j

µi,j − Tr(σlOi,j) ≥ µi?,l − Tr(σlOi?,l) ≥ Tr(ρOi?,l)− Tr(σlOi?,l)− ε/10 (3.65)

≥ Tr(σi?Oi?,l)− Tr(σlOi?,l) + Tr(ρOi?,l)− Tr(σi?Oi?,l)− ε/10
(3.66)

≥ ‖σi? − σl‖Tr − ‖ρ− σi?‖Tr − ε/10 ≥ ε− ε/3− ε/10 > ε/2.
(3.67)
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On the other hand

max
i,j

µi,j − Tr(σk?Oi,j) ≤ max
i,j

µi,j − Tr(σi?Oi,j) (3.68)

≤ max
i,j

Tr(ρOi,j)− Tr(σi?Oi,j) + ε/10 (3.69)

≤ ‖ρ− σi?‖Tr + ε/10 ≤ ε/3 + ε/10 < ε/2. (3.70)

Therefore, with high probability, k? cannot be different from i?.

Once we know, with high probability, the closest quantum state to ρ we can read
its basis and use it to to learn ρ. The following lemma indicates how to construct this
approximation along with the number of copies/measurements needed for this learning
task.

Lemma 3.4.2. Let ρ =
∑d

i=1 λi |φi〉〈φi|. Let A1, . . . , AN the outcomes of the measurement
of ρ independently by the POVM M = {|φi〉〈φi|}i. The quantum state

ρ̃ =
d∑
i=1

(∑N
j=1 1Aj=i

N

)
|φi〉〈φi| (3.71)

is ε/10-close in 1-norm to ρ with a probability at least 1− δ/2 if N = 200 log(2d+2/δ)/ε2.

Proof. ρ is a quantum state so it is a Hermitian matrix positive semi definite of trace 1.
Hence, we can write ρ =

∑d
i=1 λi |φi〉〈φi| where{λi}i is a probability distribution and {φi}i

is an orthonormal basis. Therefore
∑d

i=1 |φi〉〈φi| = I andM is a valid POVM. Measuring
ρ via the POVM M is equivalent to sampling from the distribution {Tr(|φi〉〈φi| ρ}i =
{
∑

j λjTr(|φi〉〈φi| |φj〉〈φj|}i = {λi}i hence

A1, . . . , AN
i.i.d.∼ {λi}i. (3.72)

On the other hand ρ and ρ̃ have the same basis of diagonalization so the 1 norm between
them is simply

‖ρ− ρ̃‖Tr =

∥∥∥∥∥
d∑
i=1

λi |φi〉〈φi| −
d∑
i=1

λ̃i |φi〉〈φi|

∥∥∥∥∥
Tr

=

∥∥∥∥∥
d∑
i=1

(λi − λ̃i) |φi〉〈φi|

∥∥∥∥∥
Tr

(3.73)

=
d∑
i=1

|λi − λ̃i| = 2 TV(λ, λ̃), (3.74)

where {λ̃i}i =

{∑N
j=1 1Aj=i

N

}
i

. It is well known that the TV distance can be written as:

TV(λ, λ̃) = max
B⊂[d]

(λ̃(B)− λ(B)). (3.75)

Chernoff-Hoeffding([Hoe63]) inequality implies for all B ⊂ [d] :

P

(∣∣∣∣∣
∑N

j=1 1Aj∈B

N
− λ(B)

∣∣∣∣∣ > ε

20

)
≤ 2 exp

(
−2N

( ε
20

)2
)
. (3.76)
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Therefore by union bound we obtain

P (‖ρ− ρ̃‖Tr > ε/10) = P
(

2 TV(λ, λ̃) > ε/10
)

(3.77)

= P

(
∃B ⊂ [d] :

∣∣∣∣∣
∑N

j=1 1Aj∈B

N
− λ(B)

∣∣∣∣∣ > ε

20

)
(3.78)

≤ 2d+1 exp

(
−2N

( ε
20

)2
)
. (3.79)

Finally for N = 200 log(2d+1/δ)/ε2, we have with at least a probability 1−δ : ‖ρ− ρ̃‖Tr ≤
ε/10.

Grouping the two previous Lemmas, Algorithm 6 finds the closest quantum state σi?
and returns an ε/10-approximation of ρ with a probability at least 1−(δ/2+δ/2) = 1−δ.

Algorithm 6 can be split in two parts for which we independently upper bound the copy
complexity. The first part relies on the shadow tomography algorithm of [HKP20] and

needs a number N1 = O
(
d log(m(m−1)/δ)

(ε/10)2

)
= O

(
d log(m/δ)

ε2

)
of copies of ρ. The second part

requires a number N2 = 200 log(2d+1/δ)
ε2

of copies of ρ. Finally, the total copy complexity of

Algorithm 6 is N = N1 +N2 = O
(
d log(m/δ)

ε2

)
.

Non-adaptive strategies.

We can slightly modify Algorithm 6 to have a non-adaptive algorithm for the problem
(P ) with independent measurements. It amounts to first measuring ρ in all the basis
corresponding to the known quantum states (σi)i and preparing m approximated quantum
states (ρ̃i)i. Then the tester can look for the closest quantum state σi? and finally returns
the approximated quantum state ρ̃i? . This non-adaptive algorithm has a copy complexity

mN2 + N1 = O
(
md+m log(1/δ)+d log(m/δ)

ε2

)
. This complexity is almost optimal for m ≤ d

(see Theorem 3.4.2). However, it is no longer optimal for m ≥ d since md/ε2 ≥ d2/ε2.
In that case, we can still design an almost optimal non-adaptive algorithm as follows: for
each k ∈ [m], let {

∣∣φki 〉}i an orthonormal basis of diagonalization for σk. For each k ∈ [m]
and B ⊂ [m], let Ok

B =
∑

i∈B

∣∣φki 〉〈φki ∣∣. We use the classical shadow tomography of
[HKP20] to predict (Tr(ρOi,j))i,j∈[m] ∪ (Tr(ρOk

B)k∈[m],B⊂[m] to within ε/40 simultaneously
using O(d log(m2 + m2d)/ε2) = O((d2 + log(m))/ε2) copies of ρ. We find the closest
quantum state σi? to ρ the same way as the Algorithm 6 does. Next, we look for a

probability distribution λ̃ satisfying for all B ⊂ [m] :
∣∣∣λ̃(B)− µi?B

∣∣∣ ≤ ε/40, where µi
?

B

is the prediction of shadow tomography algorithm for Tr(ρOi?

B ). Such λ̃ exists since the
vector λ of eigenvalues of ρ satisfies the following property:

Tr(ρOi?

B ) = Tr

∑
i∈[d]

λi
∣∣φi?i 〉〈φi?i ∣∣∑

i∈B

∣∣φi?i 〉〈φi?i ∣∣
 (3.80)

=
∑

i∈[d],j∈B

λi|〈φi
?

i |φi
?

j 〉|2 =
∑
i∈B

λi = λ(B), (3.81)

and
∣∣λ(B)− µi?B

∣∣ =
∣∣Tr(ρOi?

B )− µi?B
∣∣ ≤ ε/40. We can thus return the quantum state

ρ̃ =
∑

i∈[d] λ̃i
∣∣φi?i 〉〈φi?i ∣∣ as an approximation of ρ. We can verify that it is indeed an ε/10
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approximation of ρ:

‖ρ− ρ̃‖Tr ≤
d∑
i=1

|λi − λ̃i| = 2 max
B⊂[d]

λ(B)− λ̃(B) (3.82)

≤ 2 max
B⊂[d]

λ(B)− µi?B + 2 max
B⊂[d]

µi
?

B − λ̃(B) (3.83)

≤ 2ε/40 + 2ε/40 ≤ ε/10. (3.84)

The copy complexity of this algorithm is O((d2 + log(m))/ε2 which matches (up to loga-
rithmic factors) the lower bound for m ≥ d.

3.4.2 Lower bound

In this section, we derive lower bounds for the problem (P ) both with adaptive and
non-adaptive independent measurements.

We start with a lower bound for non-adaptive algorithms that matches the copy com-
plexity of the algorithm presented in Section 3.4.1. For this section, we fix the error
probability to δ = 1/3.

Theorem 3.4.2. There is a tuple of quantum states (σ1, . . . , σm) such that any learning
algorithm with non-adaptive independent measurements requires

N = Ω

(
min

{
md

log(m)ε2
,
d2

ε2

})
copies of ρ to approximate ρ to at most ε/10 with at least a probability 2/3.

This result with m = d, together with the analysis of the adaptive Algorithm 6 gives
a nearly quadratic advantage for adaptive algorithms over non-adaptive ones.

Proof. We start by constructing the quantum states (σ1, . . . , σm). We choose m unitary
matrices {Uy}y chosen randomly from the Haar(d) distribution, then we choose for each
unitary (orthonormal basis) random eigenvalues:

Lemma 3.4.3. Let m ≤ exp(d2/3000). Let {Uy}y∈[m/2] be m/2 unitaries distributed
according to the Haar(d) distribution. For y ∈ [m/2], let σy = 2I/d − σm+1−y = UyΛU

†
y

where Λ = I
d

+ diag
(
{λi}i∈[d]

)
= diag

({
1+(−1)i10ε

d

}
i∈[d]

)
. We have with a probability at

least 9/10, for all y 6= z ∈ [m]:

‖σy − σz‖Tr ≥ ε. (3.85)

Proof. Let y 6= z ∈ [m/2] and 0 4 O 4 I satisfying Tr diag
(
{λi}i∈[d]

)
O = −5ε. Let

f(U) = Tr
(
U diag

(
{λi}i∈[d]

)
U † − diag

(
{λi}i∈[d]

))
O where U ∼ Haar(d), we have

E (f(U)) = −Tr diag
(
{λi}i∈[d]

)
O = 5ε (see Weingarten calculus [Gu13]). The function
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f is 20ε√
d
-Lipschitz. Indeed, recall that Λ = I/d+ diag

(
{λi}i∈[d]

)
we have:

|f(U)− f(V )| (3.86)

=
∣∣Tr
(
U(Λ− I/d)U † − (Λ− I/d)

)
O − Tr

(
V (Λ− I/d)V † − (Λ− I/d)

)
O
∣∣ (3.87)

≤ |Tr(U diag
(
{λi}i∈[d]

)
U † − V diag

(
{λi}i∈[d]

)
V †)O| (3.88)

≤ ‖(U − V ) diag
(
{λi}i∈[d]

)
U †‖Tr + ‖V diag

(
{λi}i∈[d]

)
(U − V )†‖Tr (3.89)

≤ ‖U − V ‖2‖ diag
(
{λi}i∈[d]

)
U †‖2 + ‖V diag

(
{λi}i∈[d]

)
‖2‖(U − V )†‖2 (3.90)

≤ 10ε

d
(‖U − V ‖2‖ diag

({
(−1)i

}
i∈[d]

)
U †‖2 + ‖V diag

({
(−1)d

}
i∈[d]

)
‖2‖(U − V )†‖2)

(3.91)

≤ 20ε√
d
‖U − V ‖2, (3.92)

where we have used Cauchy Schwarz inequality.
Using the fact that the Haar distribution is invariant under the multiplication by

a unitary and the concentration inequality of Lipschitz functions of Haar unitary ma-
trices [MM13], the probability that the states {σy}y∈[m/2] are not ε-separated is upper
bounded by

P (∃y, z ∈ [m/2] : ‖σy − σz‖Tr ≤ ε) ≤ m2

4
P (‖σy − σz‖Tr ≤ ε) (3.93)

≤ m2

4
P
(
‖Uy diag

(
{λi}i∈[d]

)
U †y − Uz diag

(
{λi}i∈[d]

)
U †z‖Tr ≤ ε

)
(3.94)

≤ m2

4
P
(
‖U †zUy diag

(
{λi}i∈[d]

)
U †yUz − diag

(
{λi}i∈[d]

)
‖Tr ≤ ε

)
(3.95)

≤ m2

4
P
(
‖U diag

(
{λi}i∈[d]

)
U † − diag

(
{λi}i∈[d]

)
‖Tr ≤ ε

)
(3.96)

≤ m2

4
P
(

Tr
(
U diag

(
{λi}i∈[d]

)
U † − diag

(
{λi}i∈[d]

))
O ≤ ε

)
(3.97)

≤ m2

4
P (f(U)− E (f(U)) ≤ ε− 5ε) =

m2

4
P (E (f(U))− f(U) ≥ 4ε) (3.98)

≤ m2

4
exp

(
− −16d2ε2

12× 400ε2

)
≤ m2

4
exp

(
− d2

1000

)
, (3.99)

which is smaller than 1/10 if m2 ≤ 2 exp(d2/1000)/5.
For the case when y ∈ [m/2] and z ∈ [m] \ [m/2], let x = m+ 1− z ∈ [m/2] we have

‖σy − σz‖Tr = ‖σy − 2I/d+ σx‖Tr (3.100)

≥ ‖σx − 2I/d+ σx‖Tr − ‖σy − σx‖Tr (3.101)

= 2‖σx − I/d‖Tr − ‖σy − σx‖Tr ≥ ε. (3.102)

Finally, for the case when y ∈ [m]\[m/2] and z ∈ [m]\[m/2], let y′ = m+1−y ∈ [m/2]
and z′ = m+ 1− z ∈ [m/2] we have

‖σy − σz‖Tr = ‖2I/d− σy′ − 2I/d+ σz′‖Tr ≥ ‖σy′ − σz′‖Tr ≥ ε. (3.103)
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We have shown how to construct the unitaries, we move to prove the existence of the
eigenvalues:

Lemma 3.4.4. There exists family of quantum states {ρx,y}|x|∈[ecd],y∈[m] (where c is a
universal constant) such that for each y ∈ [m], {ρx,y}|x|∈[ecd] is ε/5-separated and commute.

Proof. We start by writing the eigen-decomposition of the known quantum states σy as

σy = Uy

(
d∑
i=1

λyi |i〉〈i|

)
U †y . (3.104)

We claim that we can choose αxi to construct an ε/5-separated family of mecd quantum
states (c is a constant to be chosen later) of the form

ρx,y = Uy

(
d∑
i=1

(
λyi +

αxi (2ε/3)

d

)
|i〉〈i|

)
U †y , (3.105)

for |x| ∈ [ecd] and y ∈ [m]. Note that for convenience of notation, the labels x can be
positive and negative. Moreover the distance between ρx,y and σy is exactly:

‖ρx,y − σy‖Tr =
ε

3
. (3.106)

Concretely, we look for {αxi }1≤i≤d,1≤|x|≤ecd/2 such that

1. αxi = ±1,

2. α−xi = −αxi ,

3. αxi + αxi+d/2 = 0 (we suppose d is even) and

4. ∀x 6= x′ :
∑d/2

i=1 |αxi − αx
′
i | > d(1/2− 1/200).

The third point ensures that ρ has trace 1 while the fourth one implies ‖ρx,y −
ρx′,y‖Tr > ε/3 − ε/100 > ε/5. Starting by the simple quantum states ρ1,y = σy +∑d/2

i=1
(2ε/3)
d
Uy |i〉〈i|U †y −

∑d
i=d/2+1

(2ε/3)
d
Uy |i〉〈i|U †y and ρ−1,y = 2I/d − ρ1,y = σm+1−y −∑d/2

i=1
(2ε/3)
d
Uy |i〉〈i|U †y +

∑d
i=d/2+1

(2ε/3)
d
Uy |i〉〈i|U †y and we suppose that we have con-

structed Q an ε-separated family of the form described above of cardinality M < ecd.
Let α1, . . . , αd/2 i.i.d. random variables taken values in {±1} with probability 1/2 each.
We have by Hoeffding’s inequality

P

∃ρx ∈ Q :

d/2∑
i=1

|αxi − αi| ≤ d(1/2− 1/200) ∨
d/2∑
i=1

|α−xi − αi| ≤ d(1/2− 1/200)


(3.107)

= P

∃ρx ∈ Q :

d/2∑
i=1

|αxi − αi| ≤ d(1/2− 1/200) ∨
d/2∑
i=1

|αxi + αi| ≤ d(1/2− 1/200)


(3.108)

≤ M

2
P

 d/2∑
i=1

1αi=αxi > d/4 + d/400

+
M

2
P

 d/2∑
i=1

1αi=αxi ≤ d/4− d/400

 (3.109)

≤Me−d/2000, (3.110)
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which is strictly less than 1 if M < ed/2000. So let’s take c = 1/2000, we deduce that

P

∀ρx ∈ Q :

d/2∑
i=1

|αxi − αi| > d(1/2− 1/200)

 > 0. (3.111)

therefore there exists some α ∈ {±1}d verifying the desired conditions. We can repeat
this construction until Card(Q) ≥ ecd.

We have constructed the ε-separated family of quantum states {σy}y an the corre-
sponding ε/5-separated {ρx,y}x for all y, we can use tools from communication theory
to deduce the lower bound (see e.g., [FGLE12; HHJWY16]). Alice encodes a message
(X, Y ) ∈ {1, . . . , ecd}× [m] in ρx,y and sends it to Bob. To read the message, Bob tries to
approximate the quantum state that he received from Alice. We suppose that Bob can
approximate (up to ε/10 in trace norm) a state ε/3 close to one of {σy} and diagonalized
in the same basis of this quantum state with a probability at least 2/3. Bob uses N copies
to decode Alice’s message and returns (X ′, Y ′) ∈ {1, . . . , ecd} × [m] , therefore by Fano’s
inequality ([Fan61]) we have the following lower bound on the mutual information:

Lemma 3.4.5 (Fano). The mutual information between the encoder and the decoder can
be lower bounded:

I(X, Y : X ′, Y ′) ≥ 2/3 log(mecd)− log(2) ≥ Ω(log(m) + d). (3.112)

On the other hand we can upper bound the mutual information between (X, Y ) and
(X ′, Y ′). Let I1, . . . , IN be the outcomes of a non adaptive algorithm solving the problem
(P ). By using the data-processing inequality for the Kullback-Leibler divergence and the
fact that every non adaptive algorithm for the problem (P ) can be used as a 2/3-correct
decoder we can upper bound the mutual information as follows:

Lemma 3.4.6 (Data-processing). The mutual information between (X, Y ) and (X ′, Y ′)
is smaller than the mutual information between (X, Y ) and (I1, . . . , IN):

I(X, Y : X ′, Y ′) ≤ I(X, Y : I1, . . . , IN). (3.113)

The next step is to upper bound the mutual information between (X, Y ) and
(I1, . . . , IN). This latter depends on the quantum states {σy}y, therefore it is a ran-
dom variable. We will show that with at least a probability 9/10, it is upper bounded
by an expression involving the parameters of the problem. First we start by proving the
following upper bound relating the mutual information with the unitaries {Uy}y defining
the quantum states {σy}y.

Lemma 3.4.7. For all unitaries {Uy}y, we have:

I(X, Y : I1, . . . , IN) ≤ 4N sup
φ,‖φ‖2≤1

1

M

∑
|x|,y≤m/2

〈φ|UyOx,yU
†
y |φ〉

2 ε2, (3.114)

where for (x, y), Ox,y = U †y(dρx,y − I)Uy.
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Proof. We suppose that the eigenvalues of σy have the form

λyi =
1 + 10βyi ε

d
, (3.115)

where βyi = ±1 satisfying
∑

i β
y
i = 0 (exactly half are equal to +1) and βy = −βm+1−y

(we suppose m even). The diagonalizing matrices {Uy}y are chosen randomly so as they
satisfy Um+1−y = Uy for all y ≤ m/2 and other conditions to be specified later.

Let us denote by Mt the POVM used at step t. Without loss of generality, we can
suppose that the non-adaptive algorithm performs only measurements of the following
form:

Mt = {
∣∣φti〉〈φti∣∣}i. (3.116)

where we have the condition
∑

i |φti〉〈φti| = I implying for all i and t: ‖φti‖2 ≤ 1.
Let M = 2mecd, we can write the mutual information as follows:

I(X, Y : I1, . . . , IN) =
1

M

∑
x,y

∑
i1,...,iN

N∏
t=1

〈
φtit
∣∣ ρx,y ∣∣φtit〉 log

 ∏N
t=1

〈
φtit
∣∣ ρx,y ∣∣φtit〉

M∑
x,y

∏N
t=1

〈
φtit
∣∣ ρx,y ∣∣φtit〉


(3.117)

= Σ1 + Σ2, (3.118)

where Σ1 and Σ2 are defined as follows:

Σ1 =
1

M

∑
x,y

∑
i1,...,iN

N∏
t=1

〈
φtit
∣∣ ρx,y ∣∣φtit〉 log

(
N∏
t=1

〈
φtit
∣∣ dρx,y ∣∣φtit〉

)
, (3.119)

Σ2 = − 1

M

∑
x,y

∑
i1,...,iN

N∏
t=1

〈
φtit
∣∣ ρx,y ∣∣φtit〉 log

(
1

M

∑
x,y

N∏
t=1

〈
φtit
∣∣ dρx,y ∣∣φtit〉

)
. (3.120)

Since

ρx,y = Uy diag

{1 + (10βyi + 2αxi /3)ε

d

}
i∈[d]

U †y

we can write 〈
φtit
∣∣ ρx,y ∣∣φtit〉 =

1 + ut,x,yit
ε

d
, (3.121)

where ut,x,yit
=
〈
φtit
∣∣Uy diag

(
{10βyi + 2αxi /3}i∈[d]

)
Uy
∣∣φtit〉 ∈ (−11, 11). Denote by Ox,y =

diag
(
{10βyi + 2αxi /3}i∈[d]

)
, we remark that

d∑
it=1

ut,x,yit
=

d∑
it=1

〈
φtit
∣∣Uy diag

(
{10βyi + 2αxi /3}i∈[d]

)
Uy
∣∣φtit〉 (3.122)

= TrUy diag
(
{10βyi + 2αxi /3}i∈[d]

)
Uy = Tr diag

(
{10βyi + 2αxi /3}i∈[d]

)
(3.123)

=
d∑
i=1

10βyi + 2αxi /3 = 0. (3.124)
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Moreover, the couples of quantum states (ρx,y, ρ−x,y) and (ρx,y, ρx,m+1−y) are symmetric
with respect to I/d by the construction of (αxi )i,x and (βxi )i,x hence

ut,−x,m+1−y
it

=
〈
φtit
∣∣Um+1−y diag

({
10βm+1−y

i + 2α−xi /3
}
i∈[d]

)
Um+1−y

∣∣φtit〉 (3.125)

=
〈
φtit
∣∣Uy diag

(
{−10βyi − 2αxi /3}i∈[d]

)
Uy
∣∣φtit〉 (3.126)

= −
〈
φtit
∣∣Uy diag

(
{10βyi + 2αxi /3}i∈[d]

)
Uy
∣∣φtit〉 (3.127)

= −ut,x,yit
. (3.128)

Suppose that ε ≤ 0.05. We can start by controlling Σ2 using Jensen’s inequality:

Σ2 = − 1

M

∑
x,y

∑
i1,...,iN

N∏
t=1

(
1 + ut,x,yit

ε

d

)
log

(
1

M

∑
x,y

N∏
t=1

(1 + ut,x,yit
ε)

)
(3.129)

≤ − 1

M

∑
x,y,i

N∏
t=1

(
1 + ut,x,yit

ε

d

)(
1

M

∑
x,y

log

(
N∏
t=1

(1 + ut,x,yit
ε)

))
(3.130)

= − 1

M

∑
x,y,i

N∏
t=1

(
1 + ut,x,yit

ε

d

)(
1

M

∑
x,y,t

log
(
1 + ut,x,yit

ε
))

(3.131)

= − 1

M

∑
x,y,i

N∏
t=1

(
1 + ut,x,yit

ε

d

) 1

M

∑
|x|,y≤m/2,t

log
(
1 + ut,x,yit

ε
)

+ log
(
1− ut,x,yit

ε
)
(3.132)

= − 1

M

∑
x,y,i

N∏
t=1

(
1 + ut,x,yit

ε

d

) 1

M

∑
|x|,y≤m/2,t

log
(
1− (ut,x,yit

)2ε2
) . (3.133)

Now, we can use the inequality − log(1− x2) ≤ 2x2 for |x| ≤ 1/
√

2:

Σ2 ≤ −
1

M

∑
x,y,i

N∏
t=1

(
1 + ut,x,yit

ε

d

) 1

M

∑
|x|,y≤m/2,t

log
(
1− (ut,x,yit

)2ε2
) (3.134)

≤ 1

M

∑
x,y,i

N∏
t=1

(
1 + ut,x,yit

ε

d

) 1

M

∑
|x|,y≤m/2,t

2(ut,x,yit
)2ε2

 (3.135)

≤ 1

M

∑
x,y,i

N∏
t=1

(
1 + ut,x,yit

ε

d

)∑
t

sup
φ,‖φ‖2≤1

1

M

∑
|x|,y≤m/2

2 〈φ|UyOx,yU
†
y |φ〉

2 ε2

 (3.136)

≤ N sup
φ,‖φ‖2≤1

1

M

∑
|x|,y≤m/2

2 〈φ|UyOx,yU
†
y |φ〉

2 ε2. (3.137)

Using the fact that
∑

it
ut,x,yit

= 0 for all t, x, y along with the inequality (1 + x) log(1 +

x) + (1− x) log(1− x) ≤ 2x2 for |x| ≤ 1/
√

2 we can upper bound the first sum Σ1:
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Σ1 =
1

M

∑
x,y,i

N∏
t=1

(
1 + ut,x,yit

ε

d

)
log

(
N∏
t=1

(
1 + ut,x,yit

ε
))

(3.138)

≤ 1

M

∑
x,y,i

N∏
t=1

(
1 + ut,x,yit

ε

d

)∑
k

log
(

1 + uk,x,yik
ε
)

(3.139)

≤ 1

M

∑
x,y,k

∑
ik

∑
i1,...,ik−1,ik+1,...,iN

N∏
t=1

(
1 + ut,x,yit

ε

d

)
log
(

1 + uk,x,yik
ε
)

(3.140)

≤ 1

M

∑
x,y,k

∑
ik

(
1 + uk,x,yik

ε

d

)
log
(

1 + uk,x,yik
ε
)

(3.141)

≤ 1

Md

∑
|x|,y≤m/2,k

∑
ik

(
1 + uk,x,yik

ε
)

log
(

1 + uk,x,yik
ε
)

+
(

1− uk,x,yik
ε
)

log
(

1− uk,x,yik
ε
)

(3.142)

≤ 1

Md

∑
|x|,y≤m/2,k,ik

2(uk,x,yik
ε)2 (3.143)

≤ 1

d

∑
k,ik

sup
φ,‖φ‖2≤1

1

M

∑
|x|,y≤m/2

2 〈φ|UyOx,yU
†
y |φ〉

2 ε2 (3.144)

≤ 2N sup
φ,‖φ‖2≤1

1

M

∑
|x|,y≤m/2

〈φ|UyOx,yU
†
y |φ〉

2 ε2. (3.145)

Finally the upper bounds on Σ1 and Σ2 imply the required upper bound on their sum
Σ1 + Σ2 = I(X, Y : I1, . . . , IN).

Note that we need to take a supremum over all possible vectors φ because the learner
knows the quantum states {σy}y and so it can choose measurements dependent on the
unitaries {Uy}y. We can now show that with high probability on the choice of the unitaries
{Uy}y, the latter supremum can bounded and so the mutual information too.

Lemma 3.4.8. Let {Uy}y be m unitary matrices distributed according to the Haar(d)
distribution. We have with a probability at least 9/10:

4N sup
φ,‖φ‖2≤1

1

M

∑
|x|,y≤m/2

〈φ|UyOx,yU
†
y |φ〉

2 ε2 = O
(
Nε2 log(m)

m
+
Nε2

d

)
. (3.146)

Proof. To upper bound the previous supremum, we use a similar approach to [CCHL22]:
For U ∼ Haar(d), φ such that ‖φ‖2 ≤ 1 and a trace-less Hermitian matrix O, let f(φ, U) =
〈φ|UOU † |φ〉, we have E (f(φ, U)) = 1

d
Tr(O)Tr(|φ〉〈φ|) = 0 (see Weingarten calculus

[Gu13]) and f is 2‖O‖-Lipschitz:

|f(U)− f(V )| ≤ 2| 〈φ| (U − V )OU † |φ〉 | ≤ 2‖O‖‖U − V ‖2. (3.147)

Therefore by the concentration inequality of Lipschitz functions of Haar unitary matri-
ces [MM13]:

P (|f(U)| > t) ≤ exp(−dt2/48). (3.148)
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Hence

P
(
|f(U)|2 > t

)
≤ exp(−dt/48). (3.149)

For m/2 unitaries U1, . . . , Um/2 and λ = 2d/C for sufficiently large C. Denote by X =
|f(U)|2, by Markov’s inequality:

P

 2

m

∑
1≤y≤m/2

|f(Uy)|2 > t

 ≤ exp(−λmt/2)E
(
eλX
)m/2

(3.150)

≤ exp(−λmt/2)

(
1 +

∫ ∞
0

dxλeλxe−dx/48

)m/2
(3.151)

≤ exp(−dmt/2C) (C ′)
m/2 ≤ exp(−dmt/C +m log(C ′)),

(3.152)

with C ′ another constant. In order to prove an inequality valid for all φ in the unit ball.
Let’s take an η-net {φi}i of the unit ball of size at most (1 + 2/η)2d. For φ such that
‖φ‖2 ≤ 1, there is φi in the net such that ‖φ− φi‖2 ≤ η. Moreover |f(φ, U)| ≤ ‖O‖ so∣∣∣∣∣∣ 2

m

∑
1≤y≤m/2

f(φ, Uy)
2 − f(φi, Uy)

2

∣∣∣∣∣∣ ≤ 2

m

∑
1≤y≤m/2

|f(φ, Uy)
2 − f(φi, Uy)

2| (3.153)

≤ 2

m

∑
1≤y≤m/2

2‖O‖|(〈φ| − 〈φi|)UyOU †y |φ〉 | ≤ 2η‖O‖2.

(3.154)

Therefore

P

∃φ :
2

m

∑
1≤y≤m/2

|f(φ, Uy)|2 > t+ 2η‖O‖2

 ≤ P(∃φi :
1

m

m∑
k=1

|f(φi, Uk)|2 > t

)
(3.155)

≤ (1 + 2/η)2d exp(−dmt/C +m log(C ′)).
(3.156)

Taking η = 1/m yields:

P

∃φ :
2

m

∑
1≤y≤m/2

|f(φ, Uy)|2 > t+ 2‖O‖2/m

 ≤ (1 + 2m)2d exp(−dmt/C +m log(C ′)).

(3.157)

Applying the union bound, we can obtain:

P

∃φ,∃x, 2

m

∑
y≤m/2

〈φ|UyOx,yU
†
y |φ〉

2 ≥ t+
2‖Ox,y‖2

m

 (3.158)

≤ 4ecd(1 + 2m)2d exp(−dmt/C +m log(C ′)). (3.159)
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Let’s take t = C log(40)+cd+2d log(1+2m)+m log(C′)
dm

in order to have

P

∀φ, 1

M

∑
|x|,y≤m/2

〈φ|UyOx,yU
†
y |φ〉

2 ≤ t+
2‖Ox,y‖2

m

 (3.160)

≥ P

∀φ,∀x, 1

m

∑
y≤m/2

〈φ|UyOx,yU
†
y |φ〉

2 ≤ t+
2‖Ox,y‖2

m

 ≥ 9/10. (3.161)

Therefore we have the existence of {Uy}y such that for all y 6= z, ‖σy − σz‖Tr > ε, and

sup
φ,‖φ‖2≤1

1

M

∑
|x|,y≤m/2

〈φ|UyOx,yU
†
y |φ〉

2 ≤
Tr(O2

x,y)

d(d+ 1)
+ t+

2‖Ox,y‖2

m
(3.162)

≤ 201

d+ 1
+ C

log(40) + cd+ 2d log(1 + 2m) +m log(C ′)

dm
+

242

m
. (3.163)

Finally, we have shown the existence of quantum states {σx,y}x,y such that:

I(X, Y : I1, . . . , IN) = O
(

1

d
+

log(m)

m

)
Nε2. (3.164)

To sum up, we have shown the existence of quantum states {σx,y}x,y such that:

Ω(log(m) + d) ≤ I(X, Y : X ′, Y ′) ≤ I(X, Y : I1, . . . , IN) ≤ O
(

1

d
+

log(m)

m

)
Nε2.

(3.165)

We conclude that N = Ω
(

min
{

md
log(m)ε2

, d
2

ε2

})
.

A similar proof strategy allows to derive a lower bound on the copy complexity of
adaptive strategies. The result is stated in the next proposition.

Proposition 3.4.1. There is a tuple of quantum states (σ1, . . . , σm) such that any learning
algorithm with possibly adaptive independent measurements requires

N = Ω

(
d+ log(m)

ε2

)
copies of ρ to approximate ρ to at most ε/10 with at least a probability 2/3.

Proof. Recall that the mutual information between (X, Y ) and (I1, . . . , IN) can be ex-
pressed as:

I(X, Y : I1, . . . , IN) = Σ1 + Σ2. (3.166)

The second sum can be upper bounded by the same technique as before (using for example
Jensen’s inequality and the inequality − log(1 − x2) ≤ 2x2) and yields the same upper
bound. The first sum is more involved because the product cannot be simplified due to
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the dependence between the POVMs and the previous outcomes. To see this, we can try
to simplify the first sum as far as possible:

Σ1 =
1

M

∑
x,y

∑
u1,...,uN

N∏
t=1

〈
φu<tut

∣∣ ρx,y ∣∣φu<tut

〉
log

(
N∏
t=1

〈
φu<tut

∣∣ dρx,y ∣∣φu<tut

〉)
(3.167)

=
1

M

∑
x,y

∑
u1,...,uN

N∏
t=1

〈
φu<tut

∣∣ ρx,y ∣∣φu<tut

〉 N∑
t=1

log
(〈
φu<tut

∣∣ dρx,y ∣∣φu<tut

〉)
(3.168)

=
1

M

∑
x,y,k

∑
u1,...,uN

N∏
t=1

〈
φu<tut

∣∣ ρx,y ∣∣φu<tut

〉
log
(〈
φu<kuk

∣∣ dρx,y ∣∣φu<kuk

〉)
(3.169)

=
1

M

∑
x,y,k

∑
u1,...,uk

k∏
t=1

〈
φu<tut

∣∣ ρx,y ∣∣φu<tut

〉
log
(〈
φu<kuk

∣∣ dρx,y ∣∣φu<kuk

〉)
, (3.170)

where the last equality follows from the fact that

∑
ut

〈
φu<tut

∣∣ ρx,y ∣∣φu<tut

〉
= Tr(ρx,y) = 1, (3.171)

for t > k and log
(〈
φu<kuk

∣∣ dρx,y ∣∣φu<kuk

〉)
is independent from ut. But we are stuck at k, we

cannot simplify the sums on us for s < k since
〈
φu<sus

∣∣ ρx,y ∣∣φu<sus

〉
has common terms with〈

φu<kuk

∣∣ ρx,y ∣∣φu<kuk

〉
which is inside the log function.

In order to circumvent this difficulty, we can upper bound the kth term which poses
the obstacle of simplification. Using the inequality log(x) ≤ x − 1 for all x > −1 we
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obtain:

Σ1 =
1

M

∑
x,y,k

∑
u1,...,uk

k∏
t=1

〈
φu<tut

∣∣ ρx,y ∣∣φu<tut

〉
log
(〈
φu<kuk

∣∣ dρx,y ∣∣φu<kuk

〉)
(3.172)

=
1

M

∑
x,y,k

∑
u1,...,uk

k∏
t=1

〈
φu<tut

∣∣ ρx,y ∣∣φu<tut

〉
(
〈
φu<kuk

∣∣ dρx,y ∣∣φu<kuk

〉
− 1) (3.173)

=
1

M

∑
x,y,k

∑
u1,...,uk

k∏
t=1

〈
φu<tut

∣∣ ( I
d

+ ε
Ox,y

d

) ∣∣φu<tut

〉 〈
φu<kuk

∣∣ εOx,y

∣∣φu<kuk

〉
(3.174)

=
1

M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

〈
φu<tut

∣∣ ( I
d

+ ε
Ox,y

d

) ∣∣φu<tut

〉∑
uk

1

d

〈
φu<kuk

∣∣ εOx,y

∣∣φu<kuk

〉
(3.175)

+
1

M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

〈
φu<tut

∣∣ ( I
d

+ ε
Ox,y

d

) ∣∣φu<tut

〉∑
uk

1

d

〈
φu<kuk

∣∣ εOx,y

∣∣φu<kuk

〉2
(3.176)

≤ 1

M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

〈
φu<tut

∣∣ ( I
d

+ ε
Ox,y

d

) ∣∣φu<tut

〉
× 1

d
× Tr(εOx,y) (3.177)

+
1

M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

〈
φu<tut

∣∣ ( I
d

+ ε
Ox,y

d

) ∣∣φu<tut

〉
× 1

d
× Tr(ε2O2

x,y) (3.178)

≤ 1

M

∑
x,y,k

∑
u1,...,uk−1

k−1∏
t=1

〈
φu<tut

∣∣ ( I
d

+ ε
Ox,y

d

) ∣∣φu<tut

〉
× 1

d
× 112dε2 (3.179)

≤ 1

M

∑
x,y,k

1× 112ε2 ≤ 112Nε2, (3.180)

where we use again
∑

ut

〈
φu<tut

∣∣Ox,y

∣∣φu<tut

〉
= Tr(Ox,y) = 0 for all t and∑

uk

〈
φu<kuk

∣∣Ox,y

∣∣φu<kuk

〉2
=
∑
uk

Tr(Ox,y

∣∣φu<kuk

〉〈
φu<kuk

∣∣Ox,y

∣∣φu<kuk

〉〈
φu<kuk

∣∣) (3.181)

≤
∑
uk

Tr(O2
x,y

∣∣φu<kuk

〉〈
φu<kuk

∣∣) = Tr(O2
x,y) ≤ 112d. (3.182)

Therefore the mutual information can be upper bounded by

I(X, Y : X ′, Y ′) ≤ 121Nε2 + 2N sup
φ,‖φ‖2≤1

1

M

∑
|x|,y≤m/2

〈φ|UyOx,yU
†
y |φ〉

2 ε2 (3.183)

≤ 123Nε2. (3.184)

Since the mutual information is always lower bounded by Ω(log(m) +d) we conclude that
N = Ω((d + log(m)/ε2). Finally, we have proven the following lower bound on adaptive
strategies for hypothesis selection problem:

This proposition along with the analysis of Algorithm 6 show that the near optimal
copy complexity of the problem (P ) using adaptive independent measurements is Θ̃

(
d
ε2

)
.

This latter along with Theorem 3.4.2 imply the separation between adaptive and non-
adaptive strategies for the problem (P ) for m � 1. In other words, knowing that the
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eigenbasis of the quantum state belongs to some family of bases gives an advantage to
adaptive strategies since they can find the eigenbasis, and then focus on measuring the
quantum state with the corresponding POVM. Up to our knowledge, this is the first exam-
ple for which adaptive independent strategies outperform non-adaptive ones for quantum
testing problems.

3.5 Conclusion

We have constructed hypothesis selection problems for which sequential strategies are
more efficient than non-adaptive ones. The problem for which the advantage is the most
significant is the one presented in Section 3.4. However, this problem is quite contrived
and it would be interesting to see if there is another more natural problem for which
such a separation exists. We conjecture the separation would be polynomial in m for
the composite hypothesis selection problem: distinguishing between ρ ∈ {σ1, . . . , σm} and
ρ ∈ {σm+1, . . . , σ2m} with high probability.



Chapter 4

Quantum Channel Certification with
Incoherent Measurements

4.1 Introduction

We consider the problem of quantum channel certification which consists in verifying
whether a quantum process to which we have black box access behaves as intended. A
valid process in quantum theory is modelled by a quantum channel. Given a complete
description of a known quantum channelN0 and N copies of an unknown quantum channel
N that can be either N0 or ε-far from it, at each step 1 ≤ t ≤ N , we can choose an input
quantum state, send it through the unknown processN then measure the output quantum
state. After collecting a sufficient amount of classical observations, our goal is to decide
in which case is the quantum channel N with high probability and while minimizing N .
We also call this problem testing identity to the quantum channel N0.

This testing task is important for many reasons. Firstly, the building blocks of a quan-
tum computation are unitary gates. It is thus important to understand the complexity of
checking that an unknown channel implements a given gate as specified. Secondly, quan-
tum channel certification is the natural generalization of the quantum state certification.
Indeed, if the channels are constant quantum states, then testing them becomes equiva-
lent to testing those states. Besides, using the Choi–Jamio lkowski isomorphism, quantum
channel certification can be obtained by applying quantum state certification protocols on
the Choi states. However, since we do not allow the use of an auxiliary system and we use
a notion of distance adapted for channels that does not correspond to the trace distance
between Choi states, channel certification is strictly more general than state certification.
Finally, quantum process tomography, the problem of learning completely a channel in
the diamond norm is costly (Chapter 5) and our hope is that certification can be done
with fewer copies than full tomography.

In this chapter, we focus on two extreme cases, N0(ρ) = NU(ρ) = UρU † is a unitary
channel where U is a unitary matrix and N0(ρ) = D(ρ) = Tr(ρ) I

dout
is the completely

depolarizing channel.

Contribution. We propose an ancilla-free testing algorithm for testing identity to a
fixed unitary channel NU in the trace distance using O(d/ε2) independent measurements
(here din = dout = d). The tester chooses a random input state and measures with the cor-
responding POVM conjugated by the unitary U . This result is stated in Theorem 4.3.1.
The standard inequality relating the 1-norm of a Choi state and the diamond norm of the
channel only implies an upper bound O(d2/ε2). We obtain the quadratic improvement in

104
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the dimension dependency by proving a new inequality between the entanglement fidelity
and the trace distance to the identity channel (Lemma 4.3.3). Moreover, we establish a
matching lower bound of Ω(d/ε2) for testing identity to a fixed unitary channel in the
trace distance. For this, we construct a well-chosen distribution of channels ε-far from the
identity channel. After a sufficient number of measurements, the observations under the
two hypotheses should be distinguishable, i.e., the (Kullback-Leibler) KL divergence is
Ω(1). However, we can show that for this particular choice of distribution over channels,
any ancilla-free adaptive tester can only increase the KL divergence by at most O(ε2/d)
after a measurement no matter the dependence on the previous observations. The lower
bound is stated and proved in Theorem 4.3.2.
Concerning the certification of the completely depolarizing channel D(ρ) = Tr(ρ) I

dout
,

we propose an ancilla-free strategy to distinguish between N = D and N is ε-far from
it in the diamond distance using O(d2

ind
1.5
out/ε

2) independent measurements (see Theo-
rem 4.4.2). For this we show how to reduce this certification problem to the certifica-
tion of the maximally mixed state (testing mixedness) I

dout
. We choose the input state

|φ〉〈φ| randomly and we compare the 2-norm between the output state N (|φ〉〈φ|) and
the maximally mixed state I

dout
. We show that with at least a probability Ω(1), we have

Y = ‖N (|φ〉〈φ|) − I/dout‖2
2 ≥ ε2/(4doutd

2
in). This inequality is sufficient to obtain the

required complexity, however, it requires some work to be proved. First, we show a simi-
lar inequality in expectation using Weingarten calculus. Then we control the variance of
the random variable Y carefully in a way that this upper bound depends on the actual
difficulty of the problem, mainly the expectation of Y and the diamond distance between
N and D. Next, we obtain the anti-concentration inequality using the Paley-Zygmund
inequality.

On the other hand, we establish a lower bound of Ω (d2
ind

1.5
out/(log(dindout/ε)

2ε2)) for
testing identity to the depolarizing channel with ancilla-free non-adaptive strategies (The-
orem 4.4.3). For this, we construct a random quantum channel whose output states are
almost O(ε/din)-close (in the 1-norm) to the maximally mixed state I

dout
except for a

neighborhood of an input state chosen randomly whose output is ε-far from I
dout

in the 1-
norm. Then we use LeCam’s method [LeC73] as in [BCL20] with some differences. First,
we need to condition on the event that the input states chosen by the testing algorithm
have very small overlaps with the best input state. This conditioning is the main reason
for the additional logarithmic factor we obtain in the lower bound. Next, with a construc-
tion using random matrices with Gaussian entries rather than Haar distributed unitaries,
we can invoke hypercontractivity [AS17, Proposition 5.48] which allows us to control all
the moments once we upper bound the second moment. In the special case din = 1, this
recovers a result of [BCL20] while significantly simplifying their analysis. Furthermore, a
lower bound of Ω(d2

indout/ε
2) is proved for ancilla-free adaptive strategies (Theorem 4.4.4)

using the same construction. In this proof, we use Kullback-Leibler divergence instead of
the Total-Variation distance. We refer to Table 4.1 for a summary of these results.

Related work. Testing identity to a unitary channel can be seen as a generaliza-
tion to the usual testing identity problem for discrete distributions [VV16] and quantum
states [CLO22]. However, in the worst-case setting, testing identity to the identity chan-
nel requires Ω(d/ε2) measurements in the contrast to testing identity to a rank 1 quantum
state or a Dirac distribution which can be done with only O(1/ε2) measurements/samples.
Also, in the definition of testing identity to a unitary channel problem, we do not require
the unknown tested channel to be unitary. In this latter setting, efficient tests can be
designed easily if an auxiliary system is allowed. This can be found along with other tests
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Testing id. to N0 Lower bound Upper bound

N0 = NU Ω
(
d
ε2

)
, Theorem 4.3.1 O

(
d
ε2

)
, Theorem 4.3.1

adaptive, dTr

N0 = NU Ω
(
d
ε2

)
, Theorem 4.3.1 O

(
d
ε4

)
, Theorem 4.3.1

adaptive, d�

N0 = D
Ω
(

d2ind
1.5
out

log(dindout/ε)2ε2

)
, Theorem 4.4.3 O

(
d2ind

1.5
out

ε2

)
, Theorem 4.4.2

non-adaptive
N0 = D

Ω
(
d2indout+d

1.5
out

ε2

)
, Theorem 4.4.4 O

(
d2ind

1.5
out

ε2

)
, Theorem 4.4.2

adaptive

Table 4.1: Lower and upper bounds for testing identity of quantum channels in the
diamond and trace distances using incoherent ancilla-free strategies. NU is the unitary
quantum channel NU(ρ) = UρU † and D is the depolarizing channel D(ρ) = Tr(ρ) I

dout
.

on properties of unitary channels in [Wan11]. We also refer to the survey [MW13] for
other examples of tests on unitary channels. Since a unitary channel has a Choi rank
equal to 1 and the depolarizing channel has a Choi rank equal to dindout, the results of
this chapter can be seen as a first step to obtain instance-optimal quantum channel certi-
fication as for the classical case [VV16] or quantum states [CLO22]. On the other hand,
testing identity to the completely depolarizing channel is a generalization of the testing
uniform of distributions [DGPP17] and testing mixedness of states [BCL20; CHLL22]. In
particular, if the input dimension is din = 1, the channels are constant and the problem
reduces to a testing mixedness of states of dimension dout. In this case, we recover the op-
timal complexity of [BCL20; CHLL22]. Another noteworthy work is unitarity estimation
of [CWLY22]. In this work, it is shown that ancilla-free non-adaptive strategies could
estimate Tr(J 2

N ) to within ε using O(d0.5/ε2) independent measurements where JN is the
Choi state of the channel N . In particular, this estimation can be used to distinguish
between N = NU for which Tr(J 2

N ) = 1 and N = D for which Tr(J 2
N ) = 1/d2. A

matching lower bound (in d) is given for adaptive strategies in [CWLY22] improving the
previous lower bound of [CCHL22]. This complexity may seem to contradict our results
which is not the case. Indeed, such a test cannot be used for testing identity to a fixed
unitary channel for instance since we can have two unitary channels (same unitarity) that
are ε-far in the diamond distance.

4.2 Preliminaries

We consider quantum channels of input dimension din and output dimension dout. The

fidelity between two quantum states is defined F(ρ, σ) =
(
Tr
√√

ρσ
√
ρ
)2

. It is symmet-
ric and admits the simpler expression if one of the quantum states ρ or σ has rank 1:
F(ρ, |φ〉〈φ|) = 〈φ| ρ |φ〉. Recall that we denote by Haar(d) the Haar probability measure
over the compact group of unitary d × d matrices. A Haar random vector is then any
column vector of a Haar distributed unitary.

We define the trace distance between two quantum channels N and M as the trace
norm of their difference: dTr(N ,M) := maxρ ‖(N −M)(ρ)‖1 where the maximization is
over quantum states. In some situations, it can be helpful to allow an auxiliary system
and apply the identity on it. In this case, we obtain the diamond distance which is
defined formally as d�(N ,M) := maxρ ‖idd ⊗ (N −M)(ρ)‖1 where the maximization is
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over quantum states ρ ∈ Cd×d⊗Cdin×din . Note that because of the Schmidt decomposition
we can always suppose that d = din. The trace/diamond distance can be thought of as a
worst-case distance, while we can define an average case distance by the Schatten 2-norm
between the corresponding Choi states.

We consider the problem of testing identity to a fixed channel. Given a fixed quantum
channel N0 and a precision parameter ε > 0, the goal is to test whether an unknown
quantum channel N is exactly N0 or ε-far from it with at least a probability 2/3:

H0 : N = N0 vs. H1 : dist(N ,N0) ≥ ε (4.1)

where dist ∈ {d�, dTr}. H0 is called the null hypothesis while H1 is called the alternate
hypothesis. An algorithmA is 1/3-correct for this problem if it outputsH1 whileH0 is true
with a probability at most 1/3 and outputs H0 while H1 is true with a probability at most
1/3. If 0 < dist(N ,N0) < ε, the algorithm A can output any hypothesis. The natural
figure of merit for this test is the diamond (resp. trace) distance because it characterizes
the minimal error probability to distinguish between two quantum channels when auxiliary
systems are allowed (resp. not allowed) [Wat18]. A testing algorithm can only extract
classical information from the unknown quantum channelN by performing a measurement
on the output state. Moreover, we only consider ancilla-free incoherent/independent
strategies. That is, the tester can only use d-dimensional input states and measure with
d-dimensional measurement devices. In fact, for ancilla-free strategies we do not need to
assume that we have access to a perfect channel and we do not need to be able to keep
entanglement between this ancilla system and the channel we are testing. We refer to
Section 1.4.3 for the definition of different types of strategies.

4.3 Testing identity to a unitary channel

In this section, we focus on the problem of testing identity to a fixed unitary channel
in the diamond and trace distances. Given a fixed unitary U and a precision parameter
ε > 0, the goal is to distinguish between the hypotheses:

H0 : N = NU = U · U † vs. H1 : dist(N ,NU) ≥ ε (4.2)

with at least a probability 2/3 where dist ∈ {d�, dTr}. Since we consider a unitary channel,
the input and output dimensions should be equal din = dout = d.
Reduction to the case U = I. Knowing the unitary channel NU is equivalent to
knowing U . We can thus reduce every testing identity to NU to testing identity to
NI = idd by conjugating the measurement device by U . This is possible because
the trace/diamond distance is unitary invariant: dist(N ,NU) = dist(U †NU, id) and
Tr(U †N (ρ)UM) = Tr(N (ρ)UMU †) for all ρ and M . From now on, we only consider
the case U = I and we call this particular testing problem to NI = idd simply “testing
identity to identity”.
Given the nature of the diamond and trace distances, under the alternate hypothesis, a
channel N could be equal to the identity channel except on a neighbourhood of some
state. In addition, this state is unknown to the learner. When the algorithm is al-
lowed to use an auxiliary system, it can prepare the Choi state JN of the channel N
(which essentially captures everything about the channel) by taking as input the maxi-
mally entangled state |Ψ〉〈Ψ|. Under the null hypothesis H0, the Choi state is exactly



108 CHAPTER 4. QUANTUM CHANNEL CERTIFICATION

Jid = id ⊗ id(|Ψ〉〈Ψ|) = |Ψ〉〈Ψ| while under the alternate hypothesis H1, the Choi state
JN has a fidelity with |Ψ〉〈Ψ| satisfying:

Tr(id⊗N (|Ψ〉〈Ψ|) |Ψ〉〈Ψ|) = F(JN , |Ψ〉〈Ψ|) ≤ 1− 1

4
‖JN − Jid‖2

1 ≤ 1− d�(N , id)2

4d2

(4.3)

where we use a Fuchs–van de Graaf inequality [FVDG99] and the standard inequality
relating the diamond norm between two channels and the trace norm between their corre-
sponding Choi states: ‖JN −JM‖1 ≥ d�(N ,M)

d
(e.g., [JP16]). Thus, a measurement using

the POVMMΨ = {|Ψ〉〈Ψ| , I−|Ψ〉〈Ψ|} can distinguish between the two situations. How-
ever, if the tester is not allowed to use an auxiliary system it can neither prepare the Choi
state JN nor measure using the POVM MΨ. Instead, we use a random d-dimensional
rank-1 input state. Indeed, this choice is natural because the expected fidelity between
the input state |φ〉〈φ| and the output state N (|φ〉〈φ|) can be easily related to the fidelity
between Choi states:

Lemma 4.3.1. Let |φ〉 be a random Haar vector of dimension d. We have

Eφ [F(N (|φ〉〈φ|), |φ〉〈φ|))] =
1 + d F(JN , |Ψ〉〈Ψ|)

1 + d
. (4.4)

Proof. Using Weingarten calculus [Gu13; CMS12], we have

Eφ [F(N (|φ〉〈φ|), |φ〉〈φ|))] =
∑
k

EU

[
〈0|U †AkU |0〉〈0|U †A†kU |0〉

]
(4.5)

=
∑
k

(Tr(AkA
†
k) + Tr(Ak)Tr(A†k))

d(d+ 1)
(4.6)

=
d+

∑
k |Tr(Ak)|2

d(d+ 1)
=

1 + d F(JN , |Ψ〉〈Ψ|)
1 + d

(4.7)

where we use Lemma 4.3.2.

Lemma 4.3.2. Let N be a quantum channel of Kraus operators {Ak}k. Let S =∑
k |Tr(Ak)|2. We can relate the average fidelity and S as follows:

F(JN , |Ψ〉〈Ψ|) =
S

d2
. (4.8)

Proof. We have:

F(JN , |Ψ〉〈Ψ|) =
1

d2

∑
i,j,k,l

〈ii| id⊗N (|kk〉 〈ll|) |jj〉 =
1

d2

∑
i,j,k,l

〈i| I |k〉 〈l| |j〉 〈i| N (|k〉 〈l|) |j〉

=
1

d2

∑
i,j

〈i| N (|i〉 〈j|) |j〉 =
1

d2

∑
i,j,k

〈i|Ak |i〉 〈j|A†k |j〉 =
1

d2

∑
k

|Tr(Ak)|2 =
S

d2
.

(4.9)
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Algorithm 7 Testing identity to identity in the diamond/trace distance

N = O(d/ε4) (replace with N = O(d/ε2) for testing in the trace distance).
for k = 1 : N do

Sample φk a Haar random vector in Sd.
Measure the output state N (|φk〉〈φk|) using the POVM {|φk〉〈φk| , I− |φk〉〈φk|}.
Observe Xk ∼ Bern(1− 〈φk| N (|φk〉〈φk|) |φk〉).

end for
if ∃k : Xk = 1 then return N is ε-far from id else return N = id.

This Lemma is well known because it relates the average fidelity
E|φ〉∼Haar [F(N (|φ〉〈φ|), |φ〉〈φ|))] and the entanglement fidelity F(JN , |Ψ〉〈Ψ|). If we
measure using the measurement device Mφ = {|φ〉〈φ| , I − |φ〉〈φ|}, the error probability
under H0 is 0, and under H1 is 〈φ| N (|φ〉〈φ|) |φ〉 = F(N (|φ〉〈φ|), |φ〉〈φ|). The algorithm
is detailed in Algorithm 7. The following Lemma relates the entanglement fidelity and
the diamond/trace distance which is crucial for the correctness of Algorithm 7.

Lemma 4.3.3. We have for all quantum channels N :

F(JN , |Ψ〉〈Ψ|) ≤ 1− dTr(N , id)2

4d
≤ 1− d�(N , id)4

16d
. (4.10)

Proof. The following inequality permits to prove the second inequality [Wat18, Theorem
3.56, rephrased]

dTr(N , id) ≥ d�(N , id)2

2
. (4.11)

It remains to prove the first inequality. For this, let ε = dTr(N , id) =
max|φ〉∈Sd ‖N (|φ〉〈φ|) − |φ〉〈φ| ‖1. Let |φ〉 be a unit vector satisfying the previous maxi-
mization, we show that using Fuchs–van de Graaf inequality [FVDG99]:

〈φ| N (|φ〉〈φ|) |φ〉 = F(N (|φ〉〈φ|), |φ〉〈φ|) ≤ 1− 1

4
‖N (|φ〉〈φ|)− |φ〉〈φ| ‖2

1 ≤ 1− ε2

4
.

(4.12)

On the other hand, we use the Kraus decomposition to describe the quantum channel
N (ρ) =

∑
k AkρA

†
k. We can write the previous fidelity in terms of the Kraus operators:

〈φ| N (|φ〉〈φ|) |φ〉 =
∑
k

〈φ|Ak |φ〉〈φ|A†k |φ〉 =
∑
k

| 〈φ|Ak |φ〉 |2. (4.13)

Hence: ∑
k

| 〈φ|Ak |φ〉 |2 ≤ 1− ε2

4
. (4.14)

Let |φ1〉 = |φ〉 and we can complete it to have an ortho-normal basis {|φi〉}di=1. Moreover,
we have F(JN , |Ψ〉〈Ψ|) = 1

d2

∑
k |Tr(Ak)|2 (Lemma 4.3.2). By applying the Cauchy-
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Schwarz inequality and using Equation (4.14):

∑
k

|Tr(Ak)|2 =
∑
k

∣∣∣∣∣
d∑
i=1

〈φi|Ak |φi〉

∣∣∣∣∣
2

≤
∑
k,i

d| 〈φi|Ak |φi〉 |2 (4.15)

= d
∑
k

| 〈φ1|Ak |φ1〉 |2 + d

d∑
i=2

∑
k

| 〈φi|Ak |φi〉 |2 (4.16)

≤ d(1− ε2/4) + d(d− 1) = d(d− ε2/4) (4.17)

because for all i ≥ 2:∑
k

| 〈φi|Ak |φi〉 |2 ≤
∑
k

〈φi|A†kAk |φi〉 = 〈φi|
∑
k

A†kAk |φi〉 = 1. (4.18)

Finally, F(JN , |Ψ〉〈Ψ|) = 1
d2

∑
k |Tr(Ak)|2 ≤ 1− ε2

4d
.

We can upper bound the error probability under H1 using the well-known Lemma 4.3.1
and our Lemma 4.3.3:

Eφ [F(N (|φ〉〈φ|), |φ〉〈φ|)] =
1 + d F(JN , |Ψ〉〈Ψ|)

1 + d
≤ 1− dTr(N , id)2

4(d+ 1)
≤ 1− d�(N , id)4

16(d+ 1)
.

(4.19)

Observe that the standard inequality ‖JN − JM‖1 ≥ d�(N ,M)
d

implies:

Eφ [F(N (|φ〉〈φ|), |φ〉〈φ|)] ≤ 1 − d�(N ,id)2

4d(d+1)
which has a better dependency in the di-

amond distance but a worst dependency in the dimension d. This simple lemma
(Lemma 4.3.3), which relates the entanglement fidelity and the trace/diamond distance
when one of the channels is unitary might be of independent interest. To obtain a
1/3 correct algorithm it suffices to repeat the described procedure using N = O(d/ε2)
independent copies of |φ〉〈φ| in the case of trace distance and N = O(d/ε4) independent
copies of |φ〉〈φ| in the case of diamond distance. Indeed, for instance for the trace
distance, the probability of error under H1 can be controlled as follows:

PH1(error) = PH1(∀k ∈ [N ] : Xk = 0) =
N∏
k=1

PH1(Xk = 0) (4.20)

≤
(

1− ε2

4(d+ 1)

)N
≤ exp

(
− ε2N

4(d+ 1)

)
≤ 1

3
(4.21)

for N = 4 log(3)(d + 1)/ε2 = O(d/ε2). A similar proof shows that O(d/ε4) copies are
sufficient to test in the diamond distance. This concludes the correctness of Algorithm 7.

We summarize the main upper bound of this section in the following theorem.

Theorem 4.3.1. There is an ancilla-free algorithm for testing identity to identity in the
trace distance using only N = O

(
d
ε2

)
incoherent measurements. Moreover, this algorithm

can also solve the testing identity to identity problem in the diamond distance using only
N = O

(
d
ε4

)
incoherent measurements.

A matching lower bound of N = Ω
(
d
ε2

)
can be proved in the worst case setting.
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Theorem 4.3.2. Any adaptive ancilla-free strategy using incoherent measurements re-
quires a number of steps satisfying:

N = Ω

(
d

ε2

)
(4.22)

to distinguish between N = id and d�(N , id) > ε with a probability at least 2/3.

This theorem shows that Algorithm 7 has an optimal complexity. Interestingly, the
analogous classical problem, testing identity to identity has a complexity Θ(d/ε). Thus,
for this task, when going to the quantum case, the dependence on the dimension d remains
the same whereas the dependency in the precision parameter ε changes from ε to ε2. In
fact, obtaining the correct ε2 dependence is the main difficulty in this lower bound. It
requires a carefully chosen construction inspired by the skew divergence [Aud14] and a
fine analysis using Weingarten calculus. Even though here we are interested in ancilla-free
strategies, this lower bound applies also for ancilla assisted strategies.

Proof. Under the null hypothesis H0, the quantum channel N = id. Under the alternate
hypothesis H1, we can choose N so that d�(N , id) ≥ dTr(N , id) ≥ ε. A difficult to test
channel is a channel sending almost every vector of a basis to itself. With this intuition,
we choose V ∈ Haar(d), and construct the channel NV (ρ) = 1

2
ρ + 1

2
UV ρU

†
V where UV

satisfies:

UV V |l〉 =


√

1− ε2V |0〉+ εV |1〉 if l = 0
√

1− ε2V |1〉 − εV |0〉 if l = 1

V |l〉 otherwise.

Taking a mixture of the identity channel and the unitary channel UV ·U †V in the definition
of NV is crucial in this proof and is inspired by the quantum skew divergence [Aud14].
We need to show first that such a channel is ε-far from the identity channel. Indeed, let
|φ〉 = V |0〉, we have:

d�(NV , id) ≥ dTr(NV , id) ≥ ‖ NV (|φ〉〈φ|)− id(|φ〉〈φ|)‖1

=

∥∥∥∥1

2
|φ〉〈φ|+ 1

2
UV |φ〉〈φ|U †V − |φ〉〈φ|

∥∥∥∥
1

(4.23)

=
1

2

∥∥∥V |0〉〈0|V † − UV V |0〉〈0|V †U †V ∥∥∥
1

(4.24)

=
1

2

∥∥∥|0〉〈0| − (√1− ε2 |0〉+ ε |1〉
)(√

1− ε2 〈0|+ ε 〈1|
)∥∥∥

1
(4.25)

=
1

2

∥∥∥ε2 |0〉〈0| − ε
√

1− ε2(|0〉 〈1|+ |1〉 〈0|)− ε2 |1〉〈1|
∥∥∥

1
= ε.

Hence a 1/3-correct algorithm should distinguish between the identity channel and NV
with at least a probability 2/3 of success. This algorithm can only choose an input ρt at
each step t and perform a measurement using the POVM Mt = {λi |φi〉〈φi|}i∈It on the
output quantum state N (ρt). These choices can depend on the previous observations,
that is, the algorithm can be adaptive. Let I≤N = (I1, . . . , IN) be the observations of this
algorithm where N is a sufficient number of steps to decide correctly with a probability at
least 2/3. We can compare the distributions of the observations under the two hypotheses
using the Kullback-Leibler divergence. Let P (resp. Q) be the distribution of (I1, . . . , IN)
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under H0 (resp. H1). The distribution of (I1, . . . , IN) under H0 is:

P :=

{
N∏
t=1

λit 〈φit| ρt |φit〉

}
i1,...,iN

. (4.26)

Moreover, the distribution of (I1, . . . , IN) under H1 conditioned on V is:

QV :=

{
N∏
t=1

λit 〈φit | NV (ρt) |φit〉

}
i1,...,iN

. (4.27)

The KL divergence between P and QV can be expressed as follows:

KL(P‖QV ) = Ei∼P (− log)

(
QV,i

Pi

)
(4.28)

=
N∑
t=1

Ei≤N(− log)

(
〈φit | NV (ρt) |φit〉
〈φit| ρt |φit〉

)
=

N∑
t=1

Ei≤t(− log)

(
〈φit | NV (ρt) |φit〉
〈φit | ρt |φit〉

)
(4.29)

where we use the notation for t ∈ [N ], Ei≤t(X(i1, . . . , it)) =∑
i1,...,it

∏t
k=1 λik 〈φik | ρk |φik〉X(i1, . . . , it) and the fact that the term

〈φit |NV (ρt)|φit〉
〈φit|ρt|φit〉

depends only on (i1, . . . , it).
Let E be the event that the algorithm accepts H0, we apply the Data-Processing
inequality on the KL divergence:

KL(P‖QV ) ≥ KL(P (E) ‖QV (E)) (4.30)

≥ KL(2/3‖1/3) =
2

3
log(2)− 1

3
log(2) =

1

3
log(2) (4.31)

where KL(p||q) = KL(Bern(p)‖Bern(q)). Hence

EV∼Haar(d) KL(P‖QV ) ≥ 1

3
log(2). (4.32)

Let MV = I − UV and SV = I − 1
2
MV . We can write the logarithmic term in the

expression of KL(P‖QV ) as follows:

(− log)

(
〈φit| NV (ρt) |φit〉
〈φit | ρt |φit〉

)
= (− log)

(
〈φit| (1

2
ρt + 1

2
UV ρtU

†
V ) |φit〉

〈φit | ρt |φit〉

)
(4.33)

= (− log)

(
1− Re(〈φit |MV ρt |φit〉)

〈φit| ρt |φit〉
+

1

2

〈φit |MV ρtM
†
V |φit〉

〈φit | ρt |φit〉

)
(4.34)

= (− log)

(
1− 1

2

〈φit |MV ρtS
†
V |φit〉

〈φit | ρt |φit〉
− 1

2

〈φit|SV ρtM
†
V |φit〉

〈φit | ρt |φit〉

)
.

(4.35)
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For t ∈ [N ] and i≤t = (i1, . . . , it), define the event G(t, i≤t) =
{
〈φit | ρt |φit〉 ≤ ε2

d2

}
. We

can distinguish whether the event G is satisfied or not:

EV∼Haar(d) KL(P‖QV ) (4.36)

=
N∑
t=1

EV∼Haar(d)Ei≤t(1{G(t, i≤t)}+ 1{Gc(t, i≤t)})(− log)

(
〈φit| NV (ρt) |φit〉
〈φit | ρt |φit〉

)
. (4.37)

Let us first analyze the setting when the event G holds. Fix t ∈ [N ], observe that we have
the inequality:

(− log)

(
〈φit | NV (ρt) |φit〉
〈φit | ρt |φit〉

)
= (− log)

(
〈φit | (1

2
ρt + 1

2
UV ρtU

†
V ) |φit〉

〈φit | ρt |φit〉

)

= (− log)

(
1

2
+
〈φit | (1

2
UV ρtU

†
V ) |φit〉

〈φit | ρt |φit〉

)
≤ log(2) ≤ 1.

(4.38)

Then we can control the expectation under the event G as follows:

EV∼Haar(d)Ei≤t1{G(t, i≤t)}(− log)

(
〈φit | NV (ρt) |φit〉
〈φit| ρt |φit〉

)
≤ EV∼Haar(d)Ei≤t−1

∑
it

λit 〈φit | ρt |φit〉1{G(t, i≤t)}

≤ EV∼Haar(d)Ei≤t−1

∑
it

λit

(
ε2

d2

)
1{G(t, i≤t)}

(
under G : 〈φit| ρt |φit〉 ≤

ε2

d2

)
≤ EV∼Haar(d)Ei≤t−1

∑
it

λit

(
ε2

d2

)
=
ε2

d
(4.39)

where we use
∑

it
λit = d which is an implication of the fact that Mt = {λi |φi〉〈φi|}i∈It

is a POVM.
On the other hand under Gc(t, i≤t), we will use instead the inequality (− log)(x) ≤ −(x−
1) + (x− 1)2 valid for all x ∈ [1

2
,+∞). We apply this inequality for x =

〈φit|NV (ρt)|φit〉
〈φit |ρt|φit〉

=

1
2

+
〈φit|( 1

2
UV ρtU

†
V )|φit〉

〈φit |ρt|φit〉
≥ 1

2
, the first term of the upper bound is:

−(x− 1) = 1− 〈φit | NV (ρt) |φit〉
〈φit| ρt |φit〉

=
1

2

〈φit |MV ρtS
†
V |φit〉

〈φit | ρt |φit〉
+

1

2

〈φit|SV ρtM
†
V |φit〉

〈φit | ρt |φit〉
= Re

〈φit |MV ρtS
†
V |φit〉

〈φit| ρt |φit〉
(4.40)

and by using first the inequality (x + y)2 ≤ 2(x2 + y2) and then the Cauchy Schwarz
inequality applied for the vectors

√
ρt |φit〉 and

√
ρtM

†
V |φit〉 we can upper bound the
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second term as follows:

(x− 1)2 =

(
〈φit | NV (ρt) |φit〉
〈φit | ρt |φit〉

− 1

)2

=

(
Re(〈φit |MV ρt |φit〉)
〈φit| ρt |φit〉

− 1

2

〈φit|MV ρtM
†
V |φit〉

〈φit | ρt |φit〉

)2

≤ 2

(
| 〈φit |MV ρt |φit〉 |
〈φit | ρt |φit〉

)2

+ 2

(
1

2

〈φit |MV ρtM
†
V |φit〉

〈φit| ρt |φit〉

)2

≤ 2

(
〈φit|MV ρtM

†
V |φit〉

〈φit | ρt |φit〉

)
+ 2

(
1

2

〈φit |MV ρtM
†
V |φit〉

〈φit | ρt |φit〉

)2

. (4.41)

Let us compute the expectation of (4.40). Let M,S such that MV = VMV † and SV =
V SV †. Concretely

M =


1−
√

1− ε2 −ε
ε 1−

√
1− ε2

0

0 0d−2

 and S =


1
2

+
√

1−ε2
2

ε
2

−ε
2

1
2

+
√

1−ε2
2

0

0 Id−2

 .

Note that Tr(M) = 2(1 −
√

1− ε2), Tr(S) = d − 1 +
√

1− ε2, Tr(MS†) = Tr(M †S) = 0
and MM † = M + M † = M †M . Let ε′ = (1−

√
1− ε2) = Θ(ε2), we have by Weingarten

calculus [Gu13]:

∣∣∣∣∣EV∼Haar(d)

(
Re
〈φit|MV ρtS

†
V |φit〉

〈φit | ρt |φit〉

)∣∣∣∣∣
=

∣∣∣∣ 1

〈φit | ρt |φit〉
ReEV∼Haar(d)

(
〈φit |VMV †ρtV S

†V † |φit〉
)∣∣∣∣

=

∣∣∣∣∣ 1

〈φit | ρt |φit〉
Re

∑
α,β∈S2

Wg(αβ)Trα(M,S†)Trβ(12)(ρt, |φit〉〈φit |)

∣∣∣∣∣
=

∣∣∣∣ 1

〈φit | ρt |φit〉
Re

(
dTr(M)Tr(S) 〈φit | ρt |φit〉 − Tr(M)Tr(S†)

d(d2 − 1)

)∣∣∣∣
=

∣∣∣∣ 1

〈φit | ρt |φit〉
Re

(
2dε′(d− ε′) 〈φit| ρt |φit〉 − 2ε′(d− ε′)

d(d2 − 1)

)∣∣∣∣
≤ 2ε2

d
+

2ε4

d3 〈φit | ρt |φit〉
+

2ε2

(d2 − 1) 〈φit| ρt |φit〉
≤ 2ε2

d
+

4ε2

d2 〈φit| ρt |φit〉
. (4.42)

Recall the notation Ei≤t(X(i1, . . . , it)) =
∑

i1,...,it

∏t
k=1 λik 〈φik | ρk |φik〉X(i1, . . . , it). If we
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take the expectation Ei≤t under the event Gc(t, i≤t), we obtain

EV∼Haar(d)Ei≤t1{Gc(t, it)}

(
Re
〈φit |MV ρtS

†
V |φit〉

〈φit| ρt |φit〉

)

≤ Ei≤t1{Gc(t, it)}

∣∣∣∣∣EV∼Haar(d)

(
Re
〈φit|MV ρtS

†
V |φit〉

〈φit | ρt |φit〉

)∣∣∣∣∣
≤ Ei≤t1{Gc(t, it)}

(
2ε2

d
+

4ε2

d2 〈φit| ρt |φit〉

)
≤ Ei≤t

(
2ε2

d
+

4ε2

d2 〈φit | ρt |φit〉

)
=

2ε2

d
+ Ei≤t−1

∑
it

λit 〈φit | ρt |φit〉 ×
4ε2

d2 〈φit | ρt |φit〉
=

6ε2

d
(4.43)

where we use
∑

it
λit = d. We move to the expectation Ei≤t of the first term of (4.41), it

is non negative so we can safely remove the condition 1{Gc(t, it)}:

EVEi≤t1{Gc(t, it)}
2 〈φit |MV ρtM

†
V |φit〉

〈φit| ρt |φit〉
≤ EVEi≤t

2 〈φit |MV ρtM
†
V |φit〉

〈φit | ρt |φit〉
= EVEi≤t−1

∑
it

2λit 〈φit |MV ρtM
†
V |φit〉

= Ei≤t−1EV 2Tr(MV ρtM
†
V ) = Ei≤t−1EV 2Tr((MV +M †

V )ρt)

= Ei≤t−1
8ε′

d
≤ 8ε2

d
(4.44)

because EVMV = 2(1−
√

1−ε2)
d

I 4 2ε2

d
I.

Concerning the expectation of the second term of (4.41), we apply again the Weingarten
calculus [Gu13] to have:

EV∼Haar(d)
1

2

(
〈φit|MV ρtM

†
V |φit〉

〈φit | ρt |φit〉

)2

=
1

2

EV∼Haar(d) 〈φit |MV ρtM
†
V |φit〉

2

〈φit | ρt |φit〉
2 (4.45)

=
1

2

EV∼Haar(d)Tr(|φit〉〈φit |VMV †ρtVM
†V † |φit〉〈φit|VMV †ρtVM

†V †)

〈φit | ρt |φit〉
2 (4.46)

=
1

2 〈φit | ρt |φit〉
2

∑
α,β∈S4

Wg(αβ)Trβ(M,M †,M,M †)Trαγ(ρt, |φit〉〈φit | , ρt, |φit〉〈φit|).

(4.47)

Note that Trαγ(ρt, |φit〉〈φit | , ρt, |φit〉〈φit |) ∈ {1,Tr(ρ2
t ), 〈φit | ρ2

t |φit〉 , 〈φit| ρt |φit〉 , 〈φit | ρt |φit〉
2},

Tr(ρ2
t ) ≤ 1 and 〈φit| ρ2

t |φit〉 ≤ 〈φit | ρt |φit〉 ≤ 1. Moreover, it is clear that when β is not
a 4-cycle, we have |Trβ(M,M †,M,M †)| ≤ O(ε4) since it can be written as a product
of at least two elements each of them is O(ε2). In the case β is a 4 cycle we have
Tr(MM †MM †) = Tr(MMM †M †) = Tr((M + M †)2) = 2(2 − 2

√
1− ε2)2 ≤ 8ε4. On the

other hand, we know that for all (α, β) ∈ S2
4 : |Wg(αβ)| ≤ 2

d4
[CŚ06] so

|Wg(αβ)Trβ(M,M †,M,M †)Trαγ(|φit〉〈φit | , ρt, |φit〉〈φit| , ρt)| ≤ O
(
ε4

d4

)
.
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Therefore we have:

EV∼Haar(d)
1

2

(
〈φit |MV ρtM

†
V |φit〉

〈φit | ρt |φit〉

)2

≤ O
(

ε4

d4 〈φit | ρt |φit〉
2

)
. (4.48)

Now if we take the expectation Ei≤t under the event Gc(t, i≤t) =
{
〈φit | ρt |φit〉 > ε2

d2

}
, we

obtain:

Ei≤tEV∼Haar(d)1{Gc(t, i≤t)}
1

2

(
〈φit|MV ρtM

†
V |φit〉

〈φit | ρt |φit〉

)2

≤ Ei≤t1{G
c(t, i≤t)}O

(
ε4

d4 〈φit | ρt |φit〉
× 1

〈φit| ρt |φit〉

)
≤ Ei≤t1{G

c(t, i≤t)}O
(

ε4

d4 〈φit | ρt |φit〉
× d2

ε2

) (
under Gc :

1

〈φit | ρt |φit〉
<
d2

ε2

)
= Ei≤t−1

∑
it

λit 〈φit | ρt |φit〉1{Gc(t, i≤t)}O
(

ε2

d2 〈φit | ρt |φit〉

)
≤ Ei≤t−1

∑
it

λitO
(
ε2

d2

)
= Ei≤t−1

O
(
dε2

d2

)
= O

(
ε2

d

)
(4.49)

where we use
∑

it
λit = d. By adding up (4.43), (4.44) and (4.49), we obtain:

Ei≤tEV∼Haar(d)1{Gc(t, i≤t)}(− log)

(
〈φit | NV (ρt) |φit〉
〈φit | ρt |φit〉

)
(4.50)

≤ Ei≤tEV∼Haar(d)1{Gc(t, i≤t)}

(
Re(〈φit|MV ρtS

†
V |φit〉)

〈φit | ρt |φit〉
+

1

2

〈φit |MV ρtM
†
V |φit〉

2

〈φit | ρt |φit〉
2

)
(4.51)

+ Ei≤tEV∼Haar(d)1{Gc(t, i≤t)}

(
2
〈φit|MV ρtM

†
V |φit〉

〈φit | ρt |φit〉

)
= O

(
ε2

d

)
. (4.52)

Therefore using this upper bound and the upper bound (4.39) we get an upper bound on
the expected KL divergence:

EV∼Haar(d) KL(P‖QV ) (4.53)

=
N∑
t=1

Ei≤tEV∼Haar(d)(1{G(t, i≤t)}+ 1{Gc(t, i≤t)})(− log)

(
〈φit| NV (ρt) |φit〉
〈φit | ρt |φit〉

)
(4.54)

≤
N∑
t=1

O
(
ε2

d

)
+O

(
ε2

d

)
= O

(
Nε2

d

)
. (4.55)

Finally since EV∼Haar(d) KL(P‖QV ) ≥ log(2)
3

we conclude:

N = Ω

(
d

ε2

)
. (4.56)
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4.4 Testing identity to the depolarizing channel

In this section, we move to study the problem of testing identity to the completely de-
polarizing channel N0 = D in the diamond distance. Given a precision parameter ε > 0
and an unknown quantum channel N , we would like to test whether H0 : N = D or
H1 : d�(N ,D) ≥ ε with a probability of error at most 1/3. If N = D, the tester should
answer the null hypothesis H0 with a probability at least 2/3 whereas if d�(N ,D) ≥ ε,
the tester should answer the alternate hypothesis H1 with a probability at least 2/3. The
alternate condition means that

d�(N ,D) ≥ ε⇐⇒ ∃ |φ〉 ∈ Sdin×din : ‖iddin ⊗N (|φ〉〈φ|)− iddin ⊗D(|φ〉〈φ|)‖1 ≥ ε. (4.57)

This inequality implies a lower bound of the 1-norm between the Choi states: ‖JN −
JD‖1 ≥ ε

din
. The simplest idea would be to use this inequality and reduce the prob-

lem of testing channels to testing states. Actually, this kind of reduction from chan-
nels to states has been used for quantum process tomography [SSKKG22] and shadow
process tomography [KTCT21]. The Choi state of the depolarizing channel D is

JD = 1
din

∑din
i,j=1 |i〉 〈j| ⊗ Tr(|i〉 〈j|) I

dout
=

Idin⊗Idout
dindout

=
Idindout
dindout

, so by applying the previous
inequality, we obtain for a quantum channel N ε-far from the depolarizing channel D:∥∥∥JN − I

dindout

∥∥∥
1
≥ ε

din
. Then, we can apply a reduction to the testing mixedness of quantum

states [BCL20] to design an ancilla-assisted strategy requiring O
(
d1.5in d1.5out

(ε/din)2

)
= O

(
d3.5in d1.5out

ε2

)
independent measurements since the dimension of the states JN and I

dindout
is dindout and

the precision parameter is ε
din

. However, this approach has two problems. First, we need
to be able to use an auxiliary system to prepare the Choi state JN , which cannot be done

in the ancilla-free model we consider. Next, the complexity O
(
d3.5in d1.5out

ε2

)
, as we shall see

later, is not optimal. If one tries to reduce to testing identity of states in the 2-norm
(Section 3.3.2) one obtains a slightly better bound but still not optimal and still using an
auxiliary system.

Inspired by the testing identity to identity problem (Section 4.3), when we do not
know one of the optimal input states, we choose it to be random. Let |φ〉 be a Haar
random vector. If the input state is |φ〉〈φ|, the output state under H0 is D(|φ〉〈φ|) = I

dout
and under H1 is N (|φ〉〈φ|). So it is natural to ask what would be the distance between
N (|φ〉〈φ|) and I

dout
. Note that in general, it is much easier to compute the expectation of

the 2-norms than the 1-norms. For this reason, we start by computing the expectation of
the 2-norm between N (|φ〉〈φ|) and I

dout
.

Lemma 4.4.1. Let M = N −D and JM = id⊗M(|Ψ〉〈Ψ|). We have:

E|φ〉∼Haar

(
‖M(|φ〉〈φ|)‖2

2

)
=
‖M(I)‖2

2 + d2
in ‖JM‖

2
2

din(din + 1)
≥ din

din + 1
‖JM‖2

2 . (4.58)

Proof. We write

E

(∥∥∥∥N (|φ〉〈φ|)− I
dout

∥∥∥∥2

2

)
= E

(
Tr(N (|φ〉〈φ|)2)

)
− 1

dout

. (4.59)

then if we use the Kraus decomposition of the quantum channel N (ρ) =
∑

k AkρA
†
k, we
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can compute the following expectation using Weingarten calculus [Gu13; CMS12]:

E
(
Tr(N (|φ〉〈φ|)2)

)
= E

Tr

(∑
k

Ak |φ〉〈φ|A†k

)2
 =

∑
k,l

E
(

Tr(Ak |φ〉〈φ|A†kAl |φ〉〈φ|A
†
l )
)

(4.60)

=
1

din(din + 1)

(∑
k,l

Tr(A†kAlA
†
lAk) +

∑
k,l

|Tr(AkA
†
l )|

2

)
(4.61)

=
1

din(din + 1)

Tr

(∑
k

AkA
†
k

)2

+
∑
k,l

|Tr(AkA
†
l )|

2

 (4.62)

=
1

din(din + 1)

(
Tr(N (I)2) +

∑
k,l

|Tr(AkA
†
l )|

2

)
(4.63)

Observe that Tr(N (I)2) = Tr
(
N (I)− din

dout
I
)2

+
d2in
dout

. Moreover,

Tr(J 2) = Tr

(
1

din

∑
i,j

|i〉 〈j| ⊗ N (|i〉 〈j|)

)2

=
1

d2
in

∑
i,j

Tr(N (|i〉 〈j|)N (|j〉 〈i|)) (4.64)

=
1

d2
in

∑
i,j,k,l

Tr(Ak |i〉 〈j|A†kAl |j〉 〈i|A
†
l ) =

1

d2
in

∑
k,l

|Tr(A†kAl)|
2 (4.65)

hence:

E
(
Tr(N (|φ〉〈φ|)2)

)
= E

Tr

(∑
k

Ak |φ〉〈φ|A†k

)2
 (4.66)

=
1

din(din + 1)

(
Tr

(
N (I)− din

dout

I
)2

+
d2

in

dout

+ d2
inTr(J 2)

)
(4.67)

Finally,

E

(∥∥∥∥N (|φ〉〈φ|)− I
dout

∥∥∥∥2

2

)
= E

(
Tr(N (|φ〉〈φ|)2)

)
− 1

dout

(4.68)

=
1

din(din + 1)

(
Tr

(
N (I)− din

dout

I
)2

+
d2

in

dout

+ d2
inTr(J 2)

)
− 1

dout

(4.69)

=
1

din(din + 1)

(
Tr

(
N (I)− din

dout

I
)2

+ d2
inTr(J 2)− din

dout

)
(4.70)

=
1

din(din + 1)

(
Tr

(
N (I)− din

dout

I
)2

+ d2
in

∥∥∥∥J − I
dindout

∥∥∥∥2

2

)
. (4.71)

We now need to relate the 2-norm between the Choi state of the channel N and the
Choi state of the depolarizing channel ‖JN − JD‖2 with the diamond distance between
two channels d�(N ,D). This is done in the following Lemma:
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Lemma 4.4.2. Let N1 and N2 be two (din, dout)-quantum channels. We have:

‖JN1 − JN2‖2 ≥
d�(N1,N2)

din

√
dout

. (4.72)

Proof. Denote by M = N1 − N2 and J = JM = JN1 − JN2 . Let |φ〉 be a maximizing
unit vector of the diamond norm, i.e., ‖id ⊗M(|φ〉〈φ|)‖1 = d�(N1,N2). We can write
|φ〉 = A⊗ I |Ψ〉 where |Ψ〉 = 1√

din

∑din
i=1 |i〉 ⊗ |i〉 is the maximally entangled state. |φ〉 has

norm 1 so Tr(A†A) = din 〈Ψ|A†A ⊗ I |Ψ〉 = din〈φ|φ〉 = din. We can write the diamond
distance as follows:

d�(N1,N2) = ‖id⊗M(|φ〉〈φ|)‖1 = ‖id⊗M(A⊗ I |Ψ〉〈Ψ|A† ⊗ I)‖1 (4.73)

= ‖(A⊗ I)id⊗M(|Ψ〉〈Ψ|)(A† ⊗ I)‖1 = ‖(A⊗ I)JM(A† ⊗ I)‖1. (4.74)

JM is Hermitian so can be written as : JM =
∑

i λi |ψi〉〈ψi|. Using the triangle inequality
and the Cauchy Schwarz inequality, we obtain:

‖(A⊗ I)JM(A† ⊗ I)‖1 =

∥∥∥∥∥(A⊗ I)
∑
i

λi |ψi〉〈ψi| (A† ⊗ I)

∥∥∥∥∥
1

(4.75)

≤
∑
i

|λi|‖(A⊗ I) |ψi〉〈ψi| (A† ⊗ I)‖1 ≤
√∑

i

λ2
i

√∑
i

〈ψi| (A†A⊗ I) |ψi〉2 (4.76)

≤ ‖J ‖2

√∑
i

〈ψi| (A†AA†A⊗ I) |ψi〉 = ‖JM‖2

√
Tr(A†AA†A⊗ I) (4.77)

= ‖JM‖2

√
doutTr(A†AA†A) ≤ ‖JM‖2

√
dout(Tr(A†A))2 = din

√
dout‖JM‖2. (4.78)

Let N be a channel satisfying d�(N ,D) ≥ ε and X =
∥∥∥N (|φ〉〈φ|)− I

dout

∥∥∥2

2
, we obtain

from Lemmas 4.4.1 and 4.4.2:

E (X) = E|φ〉∼Haar

(∥∥∥∥N (|φ〉〈φ|)− I
dout

∥∥∥∥2

2

)
≥ din

din + 1

∥∥∥∥JN − I
dindout

∥∥∥∥2

2

≥ ε2

2d2
indout

.

(4.79)

If we could show that X is larger than Ω(E (X)) with constant probability, then we
can reduce our problem to the usual testing identity of quantum states in the 2-norm
(quantum state certification in Section 3.3.2) and obtain an ancilla-free algorithm using

O
( √

dout
(ε/din

√
dout)2

)
= O

(
d2ind

1.5
out

ε2

)
independent measurements. Establishing this turns out to

be the most technical part of the proof as is summarized in the following theorem.

Theorem 4.4.1. Let |φ〉 be a Haar distributed vector in Sd (or any 4-design). Let X =∥∥∥N (|φ〉〈φ|)− I
dout

∥∥∥2

2
. We have:

Var(X) = O
(
[E (X)]2

)
. (4.80)
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This theorem is the most technical part of this chapter and we believe that it can be
generalized for any difference of channels with a similar approach. Moreover, applying
this inequality along with the Paley-Zygmund inequality are sufficient for our reduction:
we only need to repeat our test O(1) times to reduce the error probability to 1/3 for
testing identity to the depolarizing channel.

Outline of the proof. We use the Kraus decomposition for the quantum channel
N :

N (ρ) =
∑
k

AkρA
†
k. (4.81)

We observe first that Var(X) = Var
(
Tr
[

(N (|φ〉〈φ|))2 ]). Then using Weingarten calculus
[Gu13; CMS12], we can compute the expectation

E
((

Tr
[

(N (|φ〉〈φ|))2 ])2
)

=
1

din(din + 1)(din + 2)(din + 3)

∑
α∈S4

F (α) (4.82)

where for α ∈ S4,

F (α) =
∑

i,j,k,l,k′,l′

Trα(A†l′ |j〉 〈i|Ak, A
†
kAl, A

†
l |i〉 〈j|Ak′ , A

†
k′Al′) (4.83)

and Trα(M1, . . . ,Mn) = ΠjTr(Πi∈CjMi) for α = ΠjCj and Cj are cycles. Let m =∥∥∥N (I)− din
dout

I
∥∥∥

2
and η = din

∥∥∥JN − I
dindout

∥∥∥
2
. Next, we upper bound the function F as

shown in Table 4.2. This is the hardest step of the proof and requires a fine analysis

Permutation α Upper bound on F (α) Reference

(13)
(
din
dout

+ η2
)2

id, (132), (314), (24)(13) din/dout+η
2

dout
+ η2

dout
+ 5η4 (Lemma 4.4.7)

(312), (134)
(
d2in
dout

+m2
)(

din
dout

+ η2
)

(1234)
(
d2in
dout

+m2
)2

(24), (1432)
d2in
d2out

+ 2m2

dout
+ 25η4 (Lemma 4.4.8)

(142), (243) din/dout+η
2

dout
+ η2

dout
+ 5η4 (Lemma 4.4.6)

(14), (12), (23), (34), (1324), d2in
d2out

+ din
dout

η2 + m2

dout
+ 5mη3 (Lemma 4.4.10)

(1423), (1243), (1342)

(12)(34), (14)(23), (234), (124)
d3in
d2out

+ 2 din
dout

m2 +m2η2 (Lemma 4.4.9)

Table 4.2: Upper bounds on the function F (defined in (4.83)) for different input permu-
tations.

for many of the F (α)′s. A particularly useful trick we use repeatedly is known as the
replica trick and says that if F =

∑d
i,j=1(|i〉 ⊗ |j〉)(〈j| ⊗ 〈i|) is the flip operator then

we have for all A,B ∈ Cd×d : Tr((A ⊗ B)F) = Tr(AB) and similarly Tr(A ⊗ B) =
Tr(A)Tr(B). Moreover, another trick we need frequently is to use the partial transpose to
make appear the positive semi-definite matrices M †M =

∑
k,lA

†
kAl ⊗A>k Āl and MM † =∑

k,lAkA
†
l ⊗ ĀkA>l where M =

∑
k Ak⊗ Āk is defined using the Kraus operators {Ak}k of
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the channel N . Furthermore we can prove the approximation
∥∥∥M †M − din

dout
|Ψ〉〈Ψ|

∥∥∥
1
≤

5η2 where |Ψ〉 = 1√
din

∑din
i=1 |i〉 ⊗ |i〉 is the maximally entangled state (see Lemma 4.4.5).

This is used for α = (142) and (24). An application of the data processing inequality

on the previous approximation gives:
∥∥∥Tr2(M †M)− 1

dout
I
∥∥∥

1
≤ 5η2 which is used for the

permutations α = id and (14) . It turns out that applying such approximation will
not give a sufficiently good upper bound of F ((12)(34)) because it can be written as

F ((12)(34)) = Tr
((
MM †)>2 · M(I)⊗2F

)
+

d3in
d2out

+ 2 din
dout

Tr(M(I)2) which depends instead

on the matrix MM †. In this case we proceed by projecting MM † onto the hyperplane
orthogonal to |Ψ〉. This can be interpreted using representation theory. In fact, the space
spanned by |Ψ〉 and its complementary are irreducible representations that decompose

the space
(
Cd
)⊗2

for the action of U ⊗ Ū where U is a unitary matrix. On the other
hand, changing the Kraus operators Ak ↔ UAk or Ak ↔ AkU in the expression of the
channel N does not affect the variance of X because Haar measure is invariant under left
and right multiplication with a unitary matrix. Now, we give the detailed proof of this
theorem.

Proof. Recall that X =
∥∥∥N (|φ〉〈φ|)− I

dout

∥∥∥2

2
. We can observe that:

Var(X) = Var

(
Tr (N (|φ〉〈φ|))2 − 1

dout

)
= Var

(
Tr (N (|φ〉〈φ|))2) . (4.84)

Let d = din. We use the Kraus decomposition for the quantum channel N :

N (ρ) =
∑
k

AkρA
†
k. (4.85)

By Weingarten calculus [Gu13; CMS12], we can compute the expectation:

E
((

Tr (N (|φ〉〈φ|))2)2
)

= E

(Tr
∑
k,l

Ak |φ〉〈φ|A†kAl |φ〉〈φ|A
†
l

)2
 (4.86)

=
∑
i,j

∑
k,l,k′,l′

E
(

TrA†l′ |j〉 〈i|Ak |φ〉〈φ|A
†
kAl |φ〉〈φ|A

†
l |i〉 〈j|Ak′ |φ〉〈φ|A

†
k′Al′ |φ〉〈φ|

)
(4.87)

=
∑
i,j

∑
k,l,k′,l′

1

d(d+ 1)(d+ 2)(d+ 3)

∑
α∈S4

Trα(A†l′ |j〉 〈i|Ak, A
†
kAl, A

†
l |i〉 〈j|Ak′ , A

†
k′Al′)

(4.88)

=
1

d(d+ 1)(d+ 2)(d+ 3)

∑
α∈S4

∑
i,j,k,l,k′,l′

Trα(A†l′ |j〉 〈i|Ak, A
†
kAl, A

†
l |i〉 〈j|Ak′ , A

†
k′Al′)

(4.89)

=
1

d(d+ 1)(d+ 2)(d+ 3)

∑
α∈S4

F (α) (4.90)

where for α ∈ S4 we adopt the notation F (α) =∑
i,j,k,l,k′,l′ Trα(A†l′ |j〉 〈i|Ak, A

†
kAl, A

†
l |i〉 〈j|Ak′ , A

†
k′Al′) where Trα(M1, . . . ,Mn) =

ΠjTr(Πi∈CjMi) for α = ΠjCj and Cj are cycles. It is thus necessary to control
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each of these 24 terms in order to upper bound the variance. Furthermore, we need to
be careful so that our upper bounds on {F (α)}α∈S4 depend on the actual parameters of
the testing problem. Recall that the expected value of X can be expressed as follows:

E (X) =
1

din(din + 1)

(
Tr

(
N (I)− din

dout

I
)2

+ d2
in

∥∥∥∥J − I
dindout

∥∥∥∥2

2

)
. (4.91)

Let us defineM = N −D, m = ‖M(Idin)‖2 =
∥∥∥N (I)− din

dout
I
∥∥∥

2
and η = din

∥∥∥J − I
dindout

∥∥∥
2
.

We state a useful Lemma relating η,M and the Kraus operators {Ak}k (defined in (4.85)):

Lemma 4.4.3. Let η = din‖J − I/(dindout)‖2 and M = N −D, we have:

• η2 =
∑

k,l |Tr(A†kAl)|2 −
din
dout

,

• η2 =
∑

x,y ‖M(|x〉 〈y|)‖2
2.

Proof. Recall that we use the Kraus representation of the channel N (ρ) =
∑

k AkρA
†
k.

We can express η2:

η2 =

∥∥∥∥dinJ −
I
dout

∥∥∥∥2

2

= d2
inTr(J 2)− din

dout

= Tr

(∑
i,j,k

|i〉 〈j| ⊗ Ak |i〉 〈j|A†k

)2

− din

dout

(4.92)

=
∑
i,j,k,l

Tr(Ak |i〉 〈j|A†kAl |j〉 〈i|A
†
l )−

din

dout

=
∑
k,l

|Tr(A†kAl)|
2 − din

dout

. (4.93)

We move to the second point, we have J −I/(dindout) = JN−JD = JM = id⊗M(|Ψ〉〈Ψ|)
so

η2 = d2
inTr(id⊗M(|Ψ〉〈Ψ|))2 = Tr(id⊗M(din |Ψ〉〈Ψ|))2 = Tr

(∑
x,y

|x〉 〈y| ⊗M(|x〉 〈y|)

)2

(4.94)

=
∑
x,y

Tr(M(|x〉 〈y|)M(|y〉 〈x|)) =
∑
x,y

‖M(|x〉 〈y|)‖2
2. (4.95)

On the other hand, when dealing with some F (α)’s, we will need to have some prop-
erties of the matrix

∑
k Ak ⊗ Āk where {Ak}k are defined in (4.85).

Lemma 4.4.4. Let M =
∑

k Ak ⊗ Āk. Let {λi}i be the set of the eigenvalues of M †M
(in a decreasing order) corresponding to the eigenstates {|φi〉}i. We have:

•
∑

i λi = din
dout

+ η2,

• λ1 ≥ din
dout

,
∑

i>1 λi ≤ η2,

• d2in
d2out

(1− |〈φ1|Ψ〉|2) ≤ 2m2η2

d
+ 2η4,

• 〈Ψ|MM † |Ψ〉 = din
dout

.
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Proof. We have
∑

i λi = Tr(M †M) =
∑

k,l Tr(A†kAl)Tr(A>k Āl) =
∑

k,l |Tr(A†kAl)|2 =
din
dout

+ η2 by Lemma 4.4.3. Recall the definition of the maximally entangled state

|Ψ〉 = 1√
din

∑
i |i〉 ⊗ |i〉, we can compute its image by the matrix M †M :

M †M(
√
din |Ψ〉) =

∑
i,k,l

A†kAl |i〉 ⊗ A
>
k Āl |i〉 =

∑
x,y,i,k,l

〈x|A†kAl |i〉 〈y|A
>
k Āl |i〉 |xy〉 (4.96)

=
∑

x,y,i,k,l

〈x|A†kAl |i〉 〈i|A
†
lAk |y〉 |xy〉 =

∑
x,y,k

〈x|A†kN (I)Ak |y〉 |xy〉

(4.97)

therefore

〈Ψ|M †M |Ψ〉 =
1

din

∑
i,k

〈i|A†kN (I)Ak |i〉 =
Tr(N (I)2)

din

≥ d2
in

dindout

=
din

dout

(4.98)

where we used the Cauchy-Schwarz inequality. This implies that the largest eigenvalue
verifies λ1 ≥ din

dout
thus

∑
i>1 λi = din

dout
+ η2 − λ1 ≤ η2.

We move to prove the third point. Recall the notation M(ρ) = (N − D)(ρ) =∑
k AkρA

†
k − Tr(ρ) I

dout
. We have on the one hand:

M †M(
√
din |Ψ〉) =

∑
x,y,k

〈x|A†kN (I)Ak |y〉 |xy〉 =
∑
x,y

Tr(N (I)N (|y〉 〈x|)) |xy〉 (4.99)

=
∑
x,y

Tr(N (I)M(|y〉 〈x|)) |xy〉+
∑
x,y

Tr(N (I)D(|y〉 〈x|)) |xy〉 (4.100)

=
∑
x,y

Tr(M(I)M(|y〉 〈x|)) |xy〉+
∑
x

1

dout

Tr(N (I)I) |xx〉 (4.101)

=
∑
x,y

Tr(M(I)M(|y〉 〈x|)) |xy〉+
din

dout

√
din |Ψ〉 . (4.102)

On the other hand, using the spectral decomposition of M †M , we can write:

∑
x,y

Tr(M(I)M(|y〉 〈x|)) |xy〉+
din

dout

√
din |Ψ〉 = M †M(

√
din |Ψ〉) =

∑
i

λi
√
din〈φi|Ψ〉 |φi〉 .

(4.103)

Therefore

λ1〈φ1|Ψ〉 |φ1〉 −
din

dout

|Ψ〉 =
1√
din

∑
x,y

Tr(M(I)M(|y〉 〈x|)) |xy〉 −
∑
i>1

λi〈φi|Ψ〉 |φi〉 .

(4.104)
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Taking the 2-norm squared on both sides, we obtain by the Cauchy-Schwarz inequality:

λ2
1|〈φ1|Ψ〉|2 +

d2
in

d2
out

− 2
din

dout

λ1|〈φ1|Ψ〉|2 (4.105)

=

∥∥∥∥∥ 1√
d

∑
x,y

Tr(M(I)M(|y〉 〈x|)) |xy〉 −
∑
i>1

λi〈φi|Ψ〉 |φi〉

∥∥∥∥∥
2

2

(4.106)

≤

∥∥∥∥∥ 1√
d

∑
x,y

Tr(M(I)M(|y〉 〈x|)) |xy〉

∥∥∥∥∥
2

+

∥∥∥∥∥∑
i>1

λi〈φi|Ψ〉 |φi〉

∥∥∥∥∥
2

2

(4.107)

≤ 2

∥∥∥∥∥ 1√
d

∑
x,y

Tr(M(I)M(|y〉 〈x|)) |xy〉

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥∑
i>1

λi〈φi|Ψ〉 |φi〉

∥∥∥∥∥
2

2

(4.108)

≤ 2

d

∑
x,y

|Tr(M(I)M(|y〉 〈x|))|2 + 2
∑
i>1

λ2
i (4.109)

≤ 2

d

∑
x,y

‖M(I)‖2
2‖M(|y〉 〈x|)‖2

2 + 2

(∑
i>1

λi

)2

=
2m2η2

din

+ 2η4. (4.110)

Observe that the LHS can be lower bounded as follows:

λ2
1|〈φ1|Ψ〉|2 +

d2
in

d2
out

− 2
din

dout

λ1|〈φ1|Ψ〉|2 =

(
λ1 −

din

dout

)2

|〈φ1|Ψ〉|2 +
d2

in

d2
out

− d2
in

d2
out

|〈φ1|Ψ〉|2

(4.111)

≥ d2
in

d2
out

(1− |〈φ1|Ψ〉|2). (4.112)

Finally, we deduce from the two previous inequalities:

d2
in

d2
out

(1− |〈φ1|Ψ〉|2) ≤ 2m2η2

din

+ 2η4. (4.113)

We move to the fourth point. We have:

MM †(
√
din |Ψ〉) =

∑
i,k,l

AkA
†
l |i〉 ⊗ ĀkA

>
l |i〉 =

∑
x,y,i,k,l

〈x|AkA†l |i〉 〈y| ĀkA
>
l |i〉 |xy〉

(4.114)

=
∑

x,y,i,k,l

〈x|AkA†l |i〉 〈i|AlA
†
k |y〉 |xy〉 =

∑
x,y

〈x| N (I) |y〉 |xy〉 (4.115)

=
∑
x,y

〈x|M(I) |y〉 |xy〉+
din

dout

√
din |Ψ〉 . (4.116)

Hence:

〈Ψ|MM † |Ψ〉 =
1

din

∑
x

〈x|M(I) |x〉+
din

dout

〈Ψ|Ψ〉 =
1

d
Tr(M(I)) +

din

dout

=
din

dout

. (4.117)

The first and fourth points will be used in the proof of Lemma 4.4.9. The first three
points imply that the matrixM †M is close to the maximally entangled state in the 1-norm.



4.4. TESTING IDENTITY TO THE DEPOLARIZING CHANNEL 125

Lemma 4.4.5. Let M =
∑

k Ak ⊗ Āk and |Ψ〉 = 1√
din

∑din
i=1 |i〉 ⊗ |i〉. We have:

∥∥∥∥M †M − din

dout

|Ψ〉〈Ψ|
∥∥∥∥

1

≤ 5η2. (4.118)

Proof. Let |φ1〉 the eigenvector of M †M corresponding to the largest eigenvalue. Using
the Fuchs–van de Graaf inequality [FVDG99] and Lemma 4.4.4:

‖ |φ1〉〈φ1| − |Ψ〉〈Ψ| ‖1 ≤ 2
√

1− |〈φ1|Ψ〉|2 ≤ 2
dout

din

√
2m2η2

din

+ 2η4 ≤ 4
dout

din

η2 (4.119)

where we use the Cauchy Schwarz inequality and Lemma 4.4.3:

m2 = Tr(M(I)2) =
∑
i,j

Tr(M(|i〉〈i|)M(|j〉〈j|)) (4.120)

≤
∑
i,j

Tr(M(|i〉〈i|)2) = din

∑
i

Tr(M(|i〉〈i|)2) ≤ dinη
2. (4.121)

By the triangle inequality and Lemma 4.4.4 we deduce:∥∥∥∥M †M − din

dout

|Ψ〉〈Ψ|
∥∥∥∥

1

≤
∥∥∥∥M †M − din

dout

|φ1〉〈φ1|
∥∥∥∥

1

+
din

dout

∥∥ |φ1〉〈φ1| − |Ψ〉〈Ψ|
∥∥

1
(4.122)

≤ λ1 −
din

dout

+
∑
i>1

λi + 4η2 ≤ 5η2. (4.123)

This Lemma will be used in the proofs of Lemmas 4.4.6 to 4.4.8 and 4.4.10. We move
now to upper bound different values of the function F .

Lemma 4.4.6. We can upper bound F ((142)) and F ((243)) as follows:

F ((142)) = F ((243)) ≤ din/dout + η2

dout

+
η2

dout

+ 5η4. (4.124)

Proof. Recall the notation M(ρ) = (N − D)(ρ) =
∑

k AkρA
†
k − Tr(ρ) I

dout
. We will first

write F ((142)) as a sum of an ideal term reflecting the null hypothesis (N = D) and
an error term reflecting the difference between N and D. The ideal term is computed
exactly and depends on dimensions din and dout. The error term can also be splited to
a simple error depending on η and dout and a more involved term that depends on the
Kraus operators {Ak}k and the difference of channelsM. To control this latter error, we
first write it in a closed form in terms of M, M =

∑
k Ak ⊗ A

†
k and the flip operator F.

Then we can use the spectral decomposition of the matrix M †M − din
dout
|Ψ〉〈Ψ| in order

to decompose this error term into a combination of negligible elements. The final step
requires to control the `1 norm of the coefficients of this combination which is done using
Lemma 4.4.5.
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We have:

F ((142)) =
∑
k,l,k′,l′

Tr(AkA
†
k′Al′A

†
kAlA

†
l′Ak′A

†
l ) =

∑
k,l

Tr(N (A†lAk)N (A†kAl)) (4.125)

=
∑
k,l

Tr(M(A†lAk)N (A†kAl)) + Tr((D(A†lAk)N (A†kAl))) (4.126)

=
∑
k,l

Tr(M(A†lAk)M(A†kAl)) + Tr((D(A†lAk)N (A†kAl))) + Tr(M(A†lAk)D(A†kAl))

(4.127)

=
∑
k,l

Tr(M(A†lAk)M(A†kAl)) +
Tr(A†lAk)

dout

Tr((N (A†kAl))) +
Tr(A†kAl)

dout

Tr(M(A†lAk))

(4.128)

=
∑
k,l

Tr(M(A†lAk)M(A†kAl)) +
Tr(A†lAk)

dout

Tr(A†kAl) (4.129)

=
∑
k,l

Tr(M(A†lAk)M(A†kAl)) +
η2 + din/dout

dout

. (4.130)

It remains to control the sum
∑

k,l Tr(M(A†lAk)M(A†kAl)) . Let T2 : X ⊗ Y 7→ X ⊗ Y >

be the partial transpose operator and M =
∑

lAl ⊗ Āl. Let F =
∑d

i,j=1(|i〉 ⊗ |j〉)(〈j| ⊗
〈i|) be the flip operator, we have Tr(A ⊗ BF) =

∑
i,j,k,lAi,jBk,lTr(|i〉 〈j| ⊗ |k〉 〈l|F) =∑

i,j,k,lAi,jBk,lTr(|i〉 〈l| ⊗ |k〉 〈j|) =
∑

i,j Ai,jBj,i = Tr(AB) which is known as the replica
trick. We have using the replica trick:

∑
k,l

Tr(M(A†lAk)M(A†kAl)) =
∑
k,l

Tr(M(A†lAk)⊗M(A†kAl)F) (4.131)

= Tr

(
M⊗M

(∑
k,l

A†lAk ⊗ A
†
kAl

)
F

)
(4.132)

= Tr

(
M⊗M◦ T2

(∑
k,l

A†lAk ⊗ A
>
l Āk

)
F

)
(4.133)

= Tr
(
M⊗M◦ T2(M †M)F

)
(4.134)
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Let |φ〉 be a unit vector, we can write |φ〉 =
∑

x,y φx,y |x〉 ⊗ |y〉 then we can express:

|Tr (M⊗M◦ T2(|φ〉〈φ|)F) | =

∣∣∣∣∣∑
x,y,z,t

φx,yφ̄z,tTr (M⊗M◦ T2(|x〉 〈z| ⊗ |y〉 〈t|)F)

∣∣∣∣∣
(4.135)

=

∣∣∣∣∣∑
x,y,z,t

φx,yφ̄z,tTr (M⊗M(|x〉 〈z| ⊗ |t〉 〈y|)F)

∣∣∣∣∣ (4.136)

=

∣∣∣∣∣∑
x,y,z,t

φx,yφ̄z,tTr (M(|x〉 〈z|)⊗M(|t〉 〈y|)F)

∣∣∣∣∣ (4.137)

=

∣∣∣∣∣∑
x,y,z,t

φx,yφ̄z,tTr (M(|x〉 〈z|)M(|t〉 〈y|))

∣∣∣∣∣ (4.138)

≤
√∑

x,y,z,t

|φx,yφ̄z,t|2
∑
x,y,z,t

|Tr (M(|x〉 〈z|)M(|t〉 〈y|)) |2

(4.139)

=

√∑
x,y,z,t

‖M(|x〉 〈z|)‖2
2‖M(|t〉 〈y|)‖2

2 = η2 (4.140)

where we use the Cauchy Schwarz inequality and Lemma 4.4.3. On the other hand, we
can compute:

Tr(M⊗M◦ T2(|Ψ〉〈Ψ|)F) =
1

din

∑
i,j

Tr(M⊗M◦ T2(|i〉 ⊗ |i〉 〈jj|)F) (4.141)

=
1

din

∑
i,j

Tr(M(|i〉 〈j|)M(|j〉 〈i|)) =
η2

din

. (4.142)

Then, we can decompose the Hermitian matrix M †M− din
dout
|Ψ〉〈Ψ| =

∑
i µi |ψi〉〈ψi|. Hence

Lemma 4.4.5 implies:∑
k,l

Tr(M(A†lAk)M(A†kAl)) = Tr
(
M⊗M◦ T2(M †M)F

)
(4.143)

=
din

dout

Tr (M⊗M◦ T2(|Ψ〉〈Ψ|)F) +
∑
i

µiTr (M⊗M◦ T2(|ψi〉〈ψi|)F) (4.144)

≤ η2

dout

+
∑
i

|µi|η2 =
η2

dout

+ Tr

∣∣∣∣M †M − din

dout

|Ψ〉〈Ψ|
∣∣∣∣ η2 ≤ η2

dout

+ 5η4. (4.145)

Finally,

F ((142)) =
∑
k,l

Tr(M(A†lAk)M(A†kAl)) +
din
dout

+ η2

dout

≤
din
dout

+ η2

dout

+
η2

dout

+ 5η4. (4.146)

Lemma 4.4.7. We can upper bound F (id), F ((132)), F ((314)) and F ((24)(13)) as follows:

F (id) = F ((132)) = F ((314)) = F ((24)(13)) ≤ din/dout + η2

dout

+
η2

dout

+ 5η4. (4.147)
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Proof. For the identity permutation, the function F can be expressed as follows:

F (id) =
∑
k,l,k′,l′

Tr(AkA
†
l′Ak′A

†
l )Tr(A†k′Al′)Tr(A†kAl) (4.148)

=
∑
k,l,k′,l′

∑
i,j

Tr(|j〉 〈i|A†l′Ak′A
†
lAk |i〉 〈j|A

†
kAl)Tr(A†k′Al′) (4.149)

=
∑
k′,l′

∑
i,j

Tr(N (|j〉 〈i|A†l′Ak′)N (|i〉 〈j|))Tr(A†k′Al′) (4.150)

=
∑
k′,l′

∑
i,j

Tr(N (|j〉 〈i|A†l′Ak′)M(|i〉 〈j|))Tr(A†k′Al′) +
∑
k′,l′

∑
i,j

Tr(N (|j〉 〈i|A†l′Ak′)D(|i〉 〈j|))Tr(A†k′Al′)

(4.151)

=
∑
k′,l′

∑
i,j

Tr(N (|j〉 〈i|A†l′Ak′)M(|i〉 〈j|))Tr(A†k′Al′) +
∑
k′,l′

∑
i

1

dout

Tr(N (|i〉 〈i|A†l′Ak′))Tr(A†k′Al′)

(4.152)

=
∑
k′,l′

∑
i,j

Tr(N (|j〉 〈i|A†l′Ak′)M(|i〉 〈j|))Tr(A†k′Al′) +
∑
k′,l′

1

dout

Tr(A†l′Ak′)Tr(A†k′Al′)

(4.153)

=
∑
k′,l′

∑
i,j

Tr(M(|j〉 〈i|A†l′Ak′)M(|i〉 〈j|))Tr(A†k′Al′) +
din/dout + η2

dout

(4.154)

=
∑
i,j

Tr(M(|j〉 〈i|N)M(|i〉 〈j|)) +
din/dout + η2

dout

(4.155)

where N =
∑

k,l Tr(A†kAl)A
†
lAk. Let us introduce Ñ = N − I

dout
=
∑

i µx |ψx〉〈ψx| (this is
possible because N is Hermitian) so that we can write using Lemma 4.4.3:

∑
i,j

Tr(M(|j〉 〈i|N)M(|i〉 〈j|)) (4.156)

=
∑
i,j

Tr(M(|j〉 〈i| Ñ)M(|i〉 〈j|)) +
1

dout

∑
i,j

Tr(M(|j〉 〈i|)M(|i〉 〈j|)) (4.157)

=
∑
i,j,x

µxTr(M(|j〉 〈i| |ψx〉〈ψx|)M(|i〉 〈j|)) +
η2

dout

(4.158)

=
∑
i,j,x

µx〈i|ψx〉Tr(M(|j〉 〈ψx|)M(|i〉 〈j|)) +
η2

dout

(4.159)

=
∑
i,j,x,k

µxTr(〈i|ψx〉M(|j〉 〈k|)〈ψx|k〉M(|i〉 〈j|)) +
η2

dout

(4.160)

≤ 1

2

∑
i,j,x,k

|µx|(‖〈i|ψx〉M(|j〉 〈k|)‖2
2 + ‖〈ψx|k〉M(|i〉 〈j|)‖2

2) +
η2

dout

(4.161)

= Tr|Ñ |η2 +
η2

dout

. (4.162)
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We can see the matrix N =
∑

k,l Tr(A†kAl)A
†
lAk as a partial trace of M †M :

Tr2(M †M) = Tr2

(∑
k,l

A†lAk ⊗ A
>
l Āk

)
=
∑
k,l

Tr(A>l Āk)A
†
lAk (4.163)

=
∑
k,l

Tr(AlA
∗
k)A

†
lAk = N. (4.164)

Moreover I
din

= Tr2(|Ψ〉〈Ψ|) so by the data processing inequality (the partial trace is a
valid quantum channel) and Lemma 4.4.5, we deduce:

Tr|Ñ | =
∥∥∥∥Tr2(M †M)− din

dout

Tr2(|Ψ〉〈Ψ|)
∥∥∥∥

1

≤
∥∥∥∥M †M − din

dout

|Ψ〉〈Ψ|
∥∥∥∥

1

≤ 5η2. (4.165)

Finally,

F (id) =
∑
i,j

Tr(M(|j〉 〈i|N)M(|i〉 〈j|)) +
din/dout + η2

dout

≤ din/dout + η2

dout

+
η2

dout

+ 5η4.

(4.166)

Lemma 4.4.8. We can upper bound F ((24)) and F ((1432)) as follows:

F ((24)) = F ((1432)) ≤ d2
in

d2
out

+
2m2

dout

+ 25η4. (4.167)

Proof. Recall that 〈Ψ|M †M |Ψ〉 = Tr(N (I)2)
din

= din
dout

+ m2

din
. We use the fact that

Tr(X)Tr(Y ) = Tr(X ⊗ Y ):

F ((24)) =
∑
k,l,k′,l′

Tr(A†kAlA
†
k′Al′)Tr(AkA

†
l′Ak′A

†
l ) =

∑
k,l,k′,l′

Tr(A†kAlA
†
k′Al′ ⊗ A

†
lAkA

†
l′Ak′)

(4.168)

= Tr

(∑
k,l

A†kAl ⊗ A
†
lAk

)(∑
k,l

A†kAl ⊗ A
†
lAk

)
(4.169)

= Tr

(∑
k,l

A†kAl ⊗ A
>
k Āl

)>2
(∑

k,l

A†kAl ⊗ A
>
k Āl

)>2

(4.170)

= Tr(M †M)>2(M †M)>2 = Tr(M †M)(M †M) (4.171)

= Tr

(
M †M − din

dout

|Ψ〉〈Ψ|
)
M †M +

din

dout

Tr(|Ψ〉〈Ψ|M †M) (4.172)

= Tr

(
M †M − din

dout

|Ψ〉〈Ψ|
)(

M †M − din

dout

|Ψ〉〈Ψ|
)

(4.173)

+
din

dout

〈Ψ|
(
M †M − din

dout

|Ψ〉〈Ψ|
)
|Ψ〉+

d2
in

d2
out

+
m2

dout

(4.174)

≤
(

Tr

∣∣∣∣M †M − din

dout

|Ψ〉〈Ψ|
∣∣∣∣)2

+
d2

in

d2
out

+
2m2

dout

≤ d2
in

d2
out

+
2m2

dout

+ 25η4 (4.175)

where we have used the fact that Tr
(
A>2B>2

)
= Tr(AB) and Lemma 4.4.5.
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Lemma 4.4.9. We can upper bound F ((12)(34)), F ((14)(23)), F ((234)) and F ((124)) as
follows:

F ((12)(34)) = F ((14)(23)) = F ((234)) = F ((124)) ≤ d3
in

d2
out

+ 2
din

dout

m2 + η2m2. (4.176)

Proof. Using the expression of F (α) for the permutation α = (12)(34) and the fact that∑
k A
†
kAk = I, we have:

F ((12)(34)) =
∑
k,l,k′,l′

Tr(AkA
†
kAlA

†
l′Ak′A

†
k′Al′A

†
l ) =

∑
k,l

Tr(A†lN (I)AlA†kN (I)Ak) (4.177)

=
∑
k,l

Tr(A†lM(I)AlA†kN (I)Ak) +
din

dout

∑
k,l

Tr(A†lAlA
†
kN (I)Ak) (4.178)

=
∑
k,l

Tr(A†lM(I)AlA†kM(I)Ak) +
din

dout

∑
k,l

Tr(A†lM(I)AlA†kAk) +
din

dout

∑
k

Tr(A†kN (I)Ak)

(4.179)

=
∑
k,l

Tr(A†lM(I)AlA†kM(I)Ak) +
din

dout

Tr(M(I)N (I)) +
din

dout

Tr(N (I)2) (4.180)

=
∑
k,l

Tr(A†lM(I)AlA†kM(I)Ak) +
d3

in

d2
out

+ 2
din

dout

Tr(M(I)2) (4.181)

Then, if we focus on the first term,

we can use the replica trick again to obtain:∑
k,l

Tr(A†lM(I)AlA†kM(I)Ak) =
∑
k,l

Tr(AkA
†
lM(I)⊗ AlA†kM(I)F) (4.182)

= Tr

(∑
k,l

AkA
†
l ⊗ AlA

†
k · M(I)⊗2F

)
= Tr

(
T2

(∑
k,l

AkA
†
l ⊗ ĀkA

>
l

)
· M(I)⊗2F

)
(4.183)

= Tr
((
MM †)>2 · M(I)⊗2F

)
(4.184)

= Tr
((

(I− |Ψ〉〈Ψ|)MM †(I− |Ψ〉〈Ψ|)
)>2 · M(I)⊗2F

)
+ Tr

((
MM † |Ψ〉〈Ψ|

)>2 · M(I)⊗2F
)

(4.185)

+ Tr
((
|Ψ〉〈Ψ|MM †)>2 · M(I)⊗2F

)
− Tr

((
|Ψ〉〈Ψ|MM † |Ψ〉〈Ψ|

)>2 · M(I)⊗2F
)
.

(4.186)

We can simplify the latter terms. First we have |Ψ〉〈Ψ|>2 = F and F2 = I so

Tr
((
|Ψ〉〈Ψ|MM † |Ψ〉〈Ψ|

)>2 · M(I)⊗2F
)

= 〈Ψ|MM † |Ψ〉Tr
(

(|Ψ〉〈Ψ|)>2 · M(I)⊗2F
)

(4.187)

= 〈Ψ|MM † |Ψ〉Tr
(
FM(I)⊗2F

)
= 〈Ψ|MM † |Ψ〉Tr

(
M(I)⊗2

)
= 〈Ψ|MM † |Ψ〉Tr (M(I))2 = 0.

(4.188)
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Next by Lemma 4.4.4 we have MM † |Ψ〉 = 1√
din

∑
x,y 〈x| N (I) |y〉 |xy〉 so

Tr
((
MM † |Ψ〉〈Ψ|

)>2 · M(I)⊗2F
)

=
1

din

∑
x,y,z

〈x| N (I) |y〉Tr
(

(|xy〉 〈zz|)>2 · M(I)⊗2F
)

(4.189)

=
1

din

∑
x,y,z

〈x| N (I) |y〉Tr
(
|x〉 〈z| ⊗ |z〉 〈y| · M(I)⊗2F

)
(4.190)

=
1

din

∑
x,y,z

〈x| N (I) |y〉Tr (|x〉 〈z|M(I) |z〉 〈y|M(I))

(4.191)

=
1

din

∑
x,y

〈x| N (I) |y〉Tr (|x〉Tr(M(I)) 〈y|M(I)) = 0.

(4.192)

Similarly we prove:

Tr
((
|Ψ〉〈Ψ|MM †)>2 · M(I)⊗2F

)
=

1

din

∑
x,y,z

〈x| N (I) |y〉Tr
(

(|zz〉 〈xy|)>2 · M(I)⊗2F
)

(4.193)

=
1

din

∑
x,y,z

〈x| N (I) |y〉Tr
(
|z〉 〈x| ⊗ |y〉 〈z| · M(I)⊗2F

)
(4.194)

=
1

din

∑
x,y,z

〈x| N (I) |y〉Tr (|z〉 〈x|M(I) |y〉 〈z|M(I))

(4.195)

=
1

din

∑
x,y

〈x| N (I) |y〉 〈y|M(I) |x〉Tr(M(I)) = 0.

(4.196)

Now the matrix (I− |Ψ〉〈Ψ|)MM †(I− |Ψ〉〈Ψ|) is Hermitian and positive semi-definite so
can be written as (I − |Ψ〉〈Ψ|)MM †(I − |Ψ〉〈Ψ|) =

∑
i λi |φi〉〈φi|, and for each i, we can
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write the Schmidt’s decomposition of |φ〉 =
∑

x,y φx,y |xy〉. Therefore

∑
k,l

Tr(A†lM(I)AlA†kM(I)Ak) = Tr
((

(I− |Ψ〉〈Ψ|)MM †(I− |Ψ〉〈Ψ|)
)>2 · M(I)⊗2F

)
(4.197)

=
∑
i

λiTr
(
T2 (|φi〉〈φi|) · M(I)⊗2F

)
=
∑
i

∑
x,y,z,t

λiφx,yφ̄z,tTr
(
T2 (|xy〉 〈zt|) · M(I)⊗2F

)
(4.198)

=
∑
i

∑
x,y,z,t

λiφx,yφ̄z,tTr
(
|x〉 〈z| ⊗ |t〉 〈y| · M(I)⊗2F

)
(4.199)

=
∑
i

∑
x,y,z,t

λiφx,yφ̄z,tTr (|x〉 〈z|M(I)⊗ |t〉 〈y|M(I)F) (4.200)

=
∑
i

∑
x,y,z,t

λiφx,yφ̄z,tTr (|x〉 〈z|M(I) |t〉 〈y|M(I)) (4.201)

=
∑
i

∑
x,y,z,t

λiφx,yφ̄z,t 〈z|M(I) |t〉 〈y|M(I) |x〉 (4.202)

≤
∑
i

∑
x,y,z,t

λi|φx,y|2| 〈z|M(I) |t〉 |2 +
∑
i

∑
x,y,z,t

λi|φz,t|2| 〈y|M(I) |x〉 |2 (4.203)

≤
∑
i

∑
x,y,z,t

λi|φx,y|2| 〈z|M(I) |t〉 |2 +
∑
i

∑
x,y,z,t

λi|φz,t|2| 〈y|M(I) |x〉 |2 (4.204)

= Tr
∣∣(I− |Ψ〉〈Ψ|)MM †(I− |Ψ〉〈Ψ|)

∣∣Tr(M(I)2) (4.205)

By Lemma 4.4.4 we have 〈Ψ|MM † |Ψ〉 = din
dout

and Tr(MM †) = din
dout

+ η2 so we have:

Tr
∣∣(I− |Ψ〉〈Ψ|)MM †(I− |Ψ〉〈Ψ|)

∣∣ = Tr(I− |Ψ〉〈Ψ|)MM †(I− |Ψ〉〈Ψ|) = η2. (4.206)

Finally

F ((12)(34)) ≤ d3
in

d2
out

+ 2
din

dout

m2 + η2m2. (4.207)

This concludes the proof for F ((12)(34)).

Lemma 4.4.10. We can upper bound F ((14)), F ((12)), F ((23)) and F ((34)) as follows:

F ((14)) = F ((12)) = F ((23)) = F ((34)) ≤ d2
in

d2
out

+
din

dout

η2 +
m2

dout

+ 5mη3. (4.208)

Proof. Recall the notation N =
∑

k,l Tr(AkA
†
l )A

†
kAl. We can write the spectral decompo-

sition of the Hermitian matrix:

N − I
dout

= Tr2

(∑
k,l

A†lAk ⊗ A
>
l Āk −

din

dout

|Ψ〉〈Ψ|

)
=
∑
i

λi |φi〉〈φi| . (4.209)



4.4. TESTING IDENTITY TO THE DEPOLARIZING CHANNEL 133

Then using the triangle inequality and the fact that
∑

k A
†
kAk = I:

F (14) =
∑
k,l,k′,l′

Tr(A†kAl)Tr(A†lAkA
†
k′Al′A

†
l′Ak′) =

∑
k′

Tr(NA†k′N (I)Ak′) (4.210)

=
∑
k′

Tr(NA†k′M(I)Ak′) +
din

dout

Tr(N) = Tr(N (N)M(I)) +
din

dout

Tr(N) (4.211)

= Tr(M(N)M(I)) +
din

dout

Tr(N) (4.212)

= Tr

(
M
(
N − I

dout

)
M(I)

)
+

Tr(M(I)2)

dout

+
din

dout

Tr(N) (4.213)

=
din

dout

(
din

dout

+ η2

)
+

Tr(M(I)2)

dout

+
∑
i

λiTr(M(|φi〉〈φi|)M(I)) (4.214)

≤ din

dout

(
din

dout

+ η2

)
+

Tr(M(I)2)

dout

+
∑
i

|λi|‖M(|φi〉〈φi|)‖2‖M(I)‖2 (4.215)

≤ din

dout

(
din

dout

+ η2

)
+
m2

dout

+mη
∑
i

|λi| (4.216)

=
din

dout

(
din

dout

+ η2

)
+
m2

dout

+mη · Tr

∣∣∣∣N − I
dout

∣∣∣∣ (4.217)

because for all unit vector |φ〉 =
∑

i φi |i〉 we have using the Cauchy Schwarz inequality,
the AM-GM inequality, and Lemma 4.4.3:

‖M(|φ〉〈φ|)‖2
2 =

∑
i,j,k,l

φiφ̄jφkφ̄lTr (M(|i〉 〈j|)M(|k〉 〈l|)) (4.218)

≤
∑
i,j,k,l

|φiφ̄jφkφ̄l|‖M(|i〉 〈j|)‖2‖M(|k〉 〈l|)‖2 (4.219)

≤ 1

2

∑
i,j,k,l

|φi|2|φj|2‖M(|k〉 〈l|)‖2
2 +

1

2

∑
i,j,k,l

|φk|2|φl|2‖M(|i〉 〈j|)‖2
2 = η2.

(4.220)

Moreover, using the data processing inequality and Lemma 4.4.5 :

Tr

∣∣∣∣N − I
dout

∣∣∣∣ = Tr

∣∣∣∣∣Tr2

(∑
k,l

A†lAk ⊗ A
>
l Āk −

din

dout

|Ψ〉〈Ψ|

)∣∣∣∣∣ (4.221)

≤ Tr

∣∣∣∣∣∑
k,l

A†lAk ⊗ A
>
l Āk −

din

dout

|Ψ〉〈Ψ|

∣∣∣∣∣ = Tr

∣∣∣∣M †M − din

dout

|Ψ〉〈Ψ|
∣∣∣∣ ≤ 5η2.

(4.222)

This concludes the proof.

For the remaining permutations, we can obtain a closed form for the function F . For
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the transposition (13), the image of the function F can be expressed as follows:

F ((13)) =
∑

i,j,k,l,k′,l′

Tr(A†l′ |j〉 〈i|AkA
†
l |i〉 〈j|Ak′)Tr(A†kAl)Tr(A†k′Al′) (4.223)

=
∑
k,l,k′,l′

Tr(Ak′A
†
l′)Tr(AkA

†
l )Tr(A†kAl)Tr(A†k′Al′) (4.224)

=

(∑
k,l

|Tr(AkA
†
l )|

2

)2

=

(
din

dout

+ η2

)2

. (4.225)

Then, we remark that the permutations (312) and (134) have the same image:

F ((312)) = F ((134)) =
∑

i,j,k,l,k′,l′

Tr(A†l |i〉 〈j|Ak′A
†
l′ |j〉 〈i|AkA

†
kAl)Tr(A†k′Al′) (4.226)

=
∑
k,l,k′,l′

Tr(Ak′A
†
l′)Tr(AkA

†
kAlA

†
l )Tr(A†k′Al′) (4.227)

=
∑
k,l

Tr(AkA
†
kAlA

†
l )
∑
k,l

|Tr(AkA
†
l )|

2 (4.228)

= Tr(N (I)2)

(
din

dout

+ η2

)
=

(
d2

in

dout

+m2

)(
din

dout

+ η2

)
. (4.229)

Next, the image of the cycle (1234) has also a closed expression:

F ((1234)) =
∑

i,j,k,l,k′,l′

Tr(A†l′ |j〉 〈i|AkA
†
kAlA

†
l |i〉 〈j|Ak′A

†
k′Al′) (4.230)

=
∑
k,l,k′,l′

Tr(AkA
†
kAlA

†
l )Tr(Ak′A

†
k′Al′A

†
l′) (4.231)

= (Tr(N (I)2))2 =

(
d2

in

dout

+m2

)2

. (4.232)

To sum up, we have proved so far that:

Lemma 4.4.11. Let m = ‖M(I)‖2 = ‖N (I) − D(I)‖2 and η = din

∥∥∥J − I
dindout

∥∥∥
2
. We

have:

Therefore we have the following upper bound on the second moment using the in-
equality m2 ≤ dη2:

E
((

Tr(N (|φ〉〈φ|)2)
)2
)

=
1

din(din + 1)(din + 2)(din + 3)

∑
α∈S4

F (α) (4.233)

≤ d4
out + 6d3

in + 2d2
indoutm

2 + 2d2
indoutη

2 + 11d2
in + 10dindoutm

2 + 10dindoutη
2

d2
outdin(din + 1)(din + 2)(din + 3)

(4.234)

+
6din + d2

outm
4 + 2d2

outη
2 + 12doutm

2 + 40d2
outmη

3 + 81d2
outη

4 + 12doutη
2

d2
outdin(din + 1)(din + 2)(din + 3)

(4.235)

Recall that for the random variable X = Tr
(
N (|φ〉〈φ|)− I

dout

)2

= Tr (N (|φ〉〈φ|))2 − 1
dout
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Permutation α Upper bound on F (α) Reference

(13)
(
din
dout

+ η2
)2

id, (132), (314), (24)(13) din/dout+η
2

dout
+ η2

dout
+ 5η4 (Lemma 4.4.7)

(312), (134)
(
d2in
dout

+m2
)(

din
dout

+ η2
)

(1234)
(
d2in
dout

+m2
)2

(24), (1432)
d2in
d2out

+ 2m2

dout
+ 25η4 (Lemma 4.4.8)

(142), (243) din/dout+η
2

dout
+ η2

dout
+ 5η4 (Lemma 4.4.6)

(14), (12), (23), (34), (1324), d2in
d2out

+ din
dout

η2 + m2

dout
+ 5mη3 (Lemma 4.4.10)

(1423), (1243), (1342)

(12)(34), (14)(23), (234), (124)
d3in
d2out

+ 2 din
dout

m2 +m2η2 (Lemma 4.4.9)

we have:

E (X) =

(
Tr
(
N (I)− din

dout
I
)2

+ d2
in

∥∥∥J − I
dindout

∥∥∥2

2

)
din(din + 1)

(4.236)

=
1

din(din + 1)

(
Tr(M(I)2) + η2

)
=

m2 + η2

din(din + 1)
. (4.237)

Since Var(X) = Var
(
X + 1

dout

)
, it can be upper bounded as follows:

Var(X) = E
((

Tr(N (|φ〉〈φ|)2)
)2
)
−
(
E
(
Tr(N (|φ〉〈φ|)2)

))2
(4.238)

≤ d4
out + 6d3

in + 2d2
indoutm

2 + 2d2
indoutη

2 + 11d2
in + 10dindoutm

2 + 10dindoutη
2

d2
outdin(din + 1)(din + 2)(din + 3)

(4.239)

+
6din + d2

outm
4 + 2d2

outη
2 + 12doutm

2 + 40d2
outmη

3 + 81d2
outη

4 + 12doutη
2

d2
outdin(din + 1)(din + 2)(din + 3)

(4.240)

−
(

m2 + η2

din(din + 1)
+

1

dout

)2

(4.241)

≤
(

80d2
inη

4 + 10d2
inm

2η2 + 40d2
inη

3m

d2
in(din + 1)2(din + 2)(din + 3)

)
. (4.242)

Therefore the upper bound on the variance becomes using the inequalities (m2 + η2)2 ≥
4m2η2 and (m2 + η2)2 ≥ 2mη3 (successive AM-GM):

Var(X)

E (X)2 ≤
(

80d2
inη

4 + 10d2
inm

2η2 + 40d2
inη

3m

(din + 2)(din + 3)(η2 +m2)2

)
(4.243)

≤ 80
d2

inη
4

d2
inη

4
+ 10

d2
inm

2η2

4d2
inm

2η2
+ 40

d2
inη

3m

2d2
inmη

3
≤ 105. (4.244)

We have now the required tools to design and prove the correctness of an algorithm
for testing identity to the depolarizing channel.
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Theorem 4.4.2. There is an ancilla-free algorithm requiring a number of incoherent

measurements N = O
(
d2ind

1.5
out

ε2

)
to distinguish between N = D and d�(N ,D) ≥ ε with a

success probability 2/3.

As explained before, our algorithm is a reduction to the testing identity of quantum
states. Note that we need to test quantum states in the 2-norm which is different than
the usual quantum state certification [BCL20]. The algorithm for testing identity to the
depolarizing channel is described in Algorithm 8.

Algorithm 8 Testing identity to the depolarizing channel in the diamond norm

M = 2200.
for k = 1 : M do

Sample φk a Haar random vector in Sdin .

Test whether h0 : N (|φk〉〈φk|) = I
dout

or h1 :
∥∥∥N (|φk〉〈φk|)− I

dout

∥∥∥
2
≥ ε

2
√
doutdin

using the testing identity of quantum states Algorithm 5, with an error probability
δ = 1/(3M), that answers the hypothesis hik , ik ∈ {0, 1}.

end for
if ∃k : Xk = 1 then return N is ε-far from D else return N = D.

We remark that Algorithm 8 uses the channel only on a constant number of random
input states {|φk〉〈φk|}k. One could think that querying the channel N on more diverse
inputs could lead to a more efficient algorithm. However, it turns out that Algorithm 8
is basically optimal as we prove a matching lower bound up to a poly-logarithmic factor.

Theorem 4.4.3. Let ε ≤ 1/32 and dout ≥ 10. Any ancilla-free non-adaptive algorithm
for testing identity to the depolarizing channel requires, in the worst case, a number of
measurements satisfying:

N = Ω

(
d2

ind
1.5
out

log(dindout/ε)2ε2

)
. (4.245)

This theorem shows that our proposed Algorithm 8 is almost optimal in the dimensions
(din, dout) and the precision parameter ε thus the complexity of testing identity to the
depolarizing channel is Θ̃(d2

ind
1.5
out/ε

2) which is slightly surprising. Indeed, we can remark
that the complexity of testing identity of discrete distributions and quantum states is the
square root (for constant ε) of the complexity of the corresponding learning problems in
the same setting. This rule does not apply for quantum channels since we know from
[SSKKG22; Ouf23] that the complexity of learning quantum channels in the diamond
distance with ancilla-free non-adaptive incoherent measurements is Θ̃(d3

ind
3
out/ε

2).
Outine of the proof. Under the null hypothesis N = D. Under the alter-

nate hypothesis, we construct randomly the quantum channel N ∼ P of the form:
N (ρ) = D(ρ) + ε

dout
〈w| ρ |w〉U where |w〉 is a Haar distributed vector and U has Gaus-

sian entries: for all i, j ∈ [dout], Uj,i = Ui,j ∼ 1{i 6= j}N (0, 16/dout) conditioned on
the event G = {‖U‖1 ≥ dout, ‖U‖∞ ≤ 32}. Note that the usual construction applied
on the Choi state gives a sub-optimal lower bound in the diamond distance. Using a
concentration inequality of Lipschitz functions of Gaussian random variables [Wai19], we
show that with a high probability N is ε-far from D in the diamond distance. Then we
use LeCam’s method [LeC73] to lower bound the TV distance between the distribution

of the observations under the two hypotheses: TV
(
P
I1,...,IN
D

∥∥∥EN∼PPI1,...,INN

)
≥ 1

3
where
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I1, . . . , IN are the observations the algorithm obtains after the measurements and N is a
sufficient number of measurements for the correctness of the algorithm. Next, we condi-
tion on the event E that w satisfies: ∀t ∈ [N ] : 〈w| ρt |w〉 ≤ 20 log(9N)

din
which occurs with

a probability at least 8/9. For this, we take W ∼ Haar(din) such that W |0〉 = |w〉 and
we show that the function W 7→

√
〈0|W ∗ρW |0〉 is 1-Lipschitz using Minkonwski’s in-

equality then we use a concentration inequality of Lipschitz functions of Haar distributed
unitary [MM13]. Under the event E , the channel certification problem becomes similar

to the state certification problem with a precision parameter ε′ ≈ 20 log(9N)ε
din

and thus we
could mimic the proof of [BCL20]. We choose instead to present a shorter proof using
the Hypercontractivity Theorem (see e.g., [Jan97; AS17]) which can simplify significantly
the analysis of [BCL20]. To carry out the analysis, we need to bound the moments of the

random variables: Zt(U, V ) = ε2
(

20 log(9N)
din

)2 (∑
it

λtit
dout

〈
φtit
∣∣U ∣∣φtit〉 〈φtit∣∣V ∣∣φtit〉) where

t ∈ [N ] and
{
λtit
∣∣φtit〉〈φtit∣∣}it is the POVM chosen by the algorithm at step t. Since Zt is

a polynomial of degree 2 (in the entries of U and V ) of expectation 0, the Hypercontrac-

tivity [AS17, Proposition 5.48] implies for all k ∈ {1, . . . , N} : E
(
|Zt|k

)
≤ kkE (Z2

t )
k/2

.
Hence, it is sufficient to upper bound the second moment which can be done easily:

E (Z2
t ) ≤ O

(
ε4 log(N)4

d4ind
3
out

)
. By a contradiction argument and grouping all these elements, we

can prove that N log(N)2 ≥ Ω
(
d2ind

1.5
out

ε2

)
and finally N ≥ Ω

(
d2ind

1.5
out

log(dindout/ε)2ε2

)
. We present

the proof in the following.

Proof. Construction. Under the null hypothesis H0 the quantum channel is N (ρ) =
D(ρ) = Tr(ρ) I

dout
. Under the alternate hypothesis H1, we choose the quantum channel

N ∼ P of the form:

N (ρ) = Tr(ρ)
I
dout

+
ε

dout

〈w| ρ |w〉U (4.246)

where |w〉 = W |0〉 and W ∼ Haar(din) and for all i, j ∈ [dout], Uj,i = Ui,j ∼ 1{i 6=
j}N (0, σ2) where the parameter σ would be chosen later and we condition on the event
G = {‖U‖1 ≥ dout, ‖U‖∞ ≤ 32}. We call this distribution P and use the notation
(w,U) ∼ P . If we do not condition on the event G, the distribution of U is denoted
P0 and we write U ∼ P0. Random constructions with Gaussian random variables were
used for proving lower bounds by [CHLL22; CHLLS22]. Note that N is trace preserving
since Tr(U) = 0. It remains to show that N is completely positive which is equivalent to
proving the corresponding Choi matrix is positive semi-definite. For this we can express
the Choi state of the channel N :

JN =
I

dindout

+
ε

dindout

din∑
i,j=1

|i〉 〈j| ⊗ 〈0|W ∗ |i〉 〈j|W |0〉U (4.247)

=
I

dindout

+
ε

dindout

∑
i,j

|i〉 〈j| ⊗ 〈i| W̄ |0〉 〈0|W> |j〉U (4.248)

=
I

dindout

+
ε

dindout

W̄ |0〉 〈0|W> ⊗ U. (4.249)

Observe that ‖W̄ |0〉 〈0|W>⊗U‖∞ = ‖U‖∞ ≤ 32 thus JN ≥ 0 if ε ≤ 1/32. So under the
event G, the map N is a quantum channel. The parameter σ should be chosen so that
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d�(N ,D) ≥ ε. Recall that |w〉 = W |0〉, the definition of the diamond distance implies

d�(N ,D) = max
ρ
‖id⊗ (N −D)(ρ)‖1 ≥ ‖(N −D)(|w〉〈w|)‖1 =

ε

dout

‖U‖1. (4.250)

Lemma 4.4.12. There is a constant c > 0 such that we have:

P (|‖U‖1 − E (‖U‖1) | > s) ≤ exp

(
− cs2

doutσ2

)
. (4.251)

Proof. The function U 7→ ‖U‖1 is
√
dout-Lipschitz w.r.t. the Hilbert-Schmidt norm.

Indeed, by the triangle inequality and the Cauchy Schwarz inequality |‖U‖1 − ‖V ‖1| ≤
‖U−V ‖1 ≤

√
dout‖U−V ‖2. The concentration of Lipschitz functions of Gaussian random

variables [Wai19, Theorem 2.26] yields exactly the desired statement.

Next, we need a lower bound on the expectation of ‖U‖1. By the Hölder’s inequality:

E (‖U‖1) ≥

√
E (‖U‖2

2)
3

E (‖U‖4
4)
≥

√
(d2

outσ
2)3

4d3
outσ

4
≥ dout

√
doutσ

2
. (4.252)

Since d�(N ,D) ≥ ε
dout
‖U‖1, it is sufficient to choose σ = 4√

dout
so that E (‖U‖1) ≥

2dout and by Lemma 4.4.12, we have ‖U‖1 ≥ dout with a probability 1 − exp(−Ω(d2
out)).

Therefore with an overwhelming probability we have d�(N ,D) ≥ ε
dout
‖U‖1 ≥ ε. It remains

to see that the event {‖U‖∞ ≤ 32} also occurs with high probability. Indeed, let S be a
1/4-net of Sdout of size at most 8dout . By the union bound:

P (‖U‖∞ > 32) = P
(
∃φ ∈ Sdout : 〈φ|U |φ〉 = ‖U‖∞, ‖U‖∞ > 32

)
(4.253)

≤ P
(
∃φ ∈ S : 〈φ|U |φ〉 > 1

2
‖U‖∞, ‖U‖∞ > 32

)
(4.254)

≤ |S|P (〈φ|U |φ〉 > 16) ≤ 8doute−8dout ≤ e−4dout . (4.255)

Finally, with a probability at least 1 − exp(−Ω(d2
out)) − exp(−Ω(dout)) the event G is

satisfied and we have a quantum channel N that is ε-far in the diamond distance from
the depolarizing channel D. A 1/3-correct algorithm A should distinguish between the
channels N and D with a probability of error at most 1/3. Let N be a sufficient number
of measurements for this task and I1, . . . , IN be the observations of the algorithm A. The
Data-Processing inequality applied on the TV-distance gives LeCam’s method [LeC73]:

TV
(
P
I1,...,IN
H0

∥∥∥PI1,...,INH1

)
≥ TV (Bern(PH0(A = 1))‖Bern(PH1(A = 1))) (4.256)

≥ TV(Bern(1/3)‖Bern(2/3)) =
1

3
. (4.257)

Now, we need to upper bound this TV distance with an expression involving N, din, dout

and ε.
Upper bound on the TV distance. The non-adaptive algorithm A would choose

at step t the input ρt and the measurement device Mt = {λti |φti〉〈φti|}i∈It . Observe that
we can always reduce w.l.o.g. to such a POVM. Moreover, we have

∑
i λ

t
i = dout. Under

the null hypothesis H0, the quantum channel N = D so the probability of the outcomes
is exactly:

P
I1,...,IN
H0

=

{
N∏
t=1

λtit
dout

}
i1,...,iN

. (4.258)
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On the other hand, under the alternate hypothesis H1, the probability of the outcomes is
exactly:

P
I1,...,IN
H1

=

{
E(w,U)∼P

N∏
t=1

λtit
dNout

(
1 + ε 〈w| ρt |w〉

〈
φtit
∣∣U ∣∣φtit〉)

}
i1,...,iN

(4.259)

We can express the TV distance as follows:

2 TV
(
P
I1,...,IN
H0

∥∥∥PI1,...,INH1

)
(4.260)

=
∑

i1,...,iN

∣∣∣∣∣E(w,U)∼P

N∏
t=1

λtit
dout

(
1 + ε 〈w| ρt |w〉

〈
φtit
∣∣U ∣∣φtit〉)− N∏

t=1

λtit
dout

∣∣∣∣∣ (4.261)

= E≤N

∣∣∣∣∣E(w,U)∼P

N∏
t=1

(
1 + ε 〈w| ρt |w〉

〈
φtit
∣∣U ∣∣φtit〉)− 1

∣∣∣∣∣ (4.262)

where we use the notation E≤N(X(i1, . . . , iN)) =
∑

i1,...,iN

(∏N
t=1

λtit
dout

)
X(i1, . . . , iN). Now,

we need first to remove the terms {〈w| ρt |w〉}t because, as we will see later, we would like
to construct a polynomial of a small degree. If these terms remain, they would increase
the degree. Since the algorithm is non-adaptive, we have at most N distinct input states
{ρt}t. So let us condition on the event E that w satisfies:

∀t ∈ [N ] : 〈0|W ∗ρtW |0〉 = 〈w| ρt |w〉 ≤
20 log(9N)

din

. (4.263)

The function f : W 7→
√
〈0|W ∗ρW |0〉 is 1-Lipschitz. Indeed, we can write ρ =∑

i λi |φi〉〈φi| then since {λi}i is a probability, we have by Minkowski’s inequality:

|f(W )− f(V )| = |
√
Ei∼λ(| 〈φi|W |0〉 |2)−

√
Ei∼λ(| 〈φi|V |0〉 |2)| (4.264)

≤
√
Ei∼λ(| 〈φi| (W − V ) |0〉 |2) ≤ ‖W − U‖2. (4.265)

Hence by the concentration inequality for Lipschitz functions of a Haar-distributed matrix
[MM13]:

P

|f(W )− E (f) | >

√
12 log(9N)

din

 ≤ exp

(
−12din log(9N)

12din

)
=

1

9N
. (4.266)

Moreover, we can upper bound the expectation E (f(W )) ≤
√
E (f(W )2) =

√
1/din.

Therefore by the union bound:

P
(
Ē
)

= P

(
∃t ∈ [N ] : 〈0|W ∗ρtW |0〉 ≥

20 log(9N)

din

)
≤ NP

f(W ) ≥

√
20 log(9N)

din


(4.267)

≤ NP

f(W )− E (f) ≥

√
12 log(9N)

din

 ≤ 1

9
. (4.268)
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Now, we can distinguish whether the event E is verified or not in the TV distance. Let
Ψi,w,U =

∏N
t=1

(
1 + ε 〈w| ρt |w〉

〈
φtit
∣∣U ∣∣φtit〉), by the triangle inequality:

E≤N

∣∣∣∣∣E(w,U)∼P

N∏
t=1

(
1 + ε 〈w| ρt |w〉

〈
φtit
∣∣U ∣∣φtit〉)− 1

∣∣∣∣∣ (4.269)

≤ E≤N
∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]

∣∣+ E≤N
∣∣E(w,U)∼P

[
1{Ē}(Ψi,w,U − 1)

]∣∣ (4.270)

≤ E≤N
∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]

∣∣+ E≤NE(w,U)∼P
[
1{Ē}(Ψi,w,U + 1)

]
(4.271)

= E≤N
∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]

∣∣+ 2P
(
Ē
)

(4.272)

where we use the fact that E≤NΨi,w,U =
∑

i1,...,iN

(∏N
t=1

λtit
dout

)∏N
t=1

(
1 + ε 〈w| ρt |w〉

〈
φtit
∣∣U ∣∣φtit〉) =∏N

t=1 (1 + ε 〈w| ρt |w〉Tr(U)) = 1. It remains to upper bound this latter expectation.
For this, we follow [BCL20] and apply the Cauchy Schwarz inequality and Hölder’s
inequality:(
E≤N

∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]
∣∣)2

+ P (E) ≤ E≤N
(
E(w,U)∼P [1{E(w)}(Ψi,w,U − 1)]

)2
+ P (E)

(4.273)

= E≤NE(w,U)∼PE(z,V )∼P1{E(w)}Ψi,w,U1{E(z)}Ψi,z,V (4.274)

≤ E(w,U)∼P
(z,V )∼P

1{E(w), E(z)}
N∏
t=1

∑
it

λtit
dout

(
1 + ε 〈w| ρt |w〉

〈
φtit
∣∣U ∣∣φtit〉) (1 + ε 〈z| ρt |z〉

〈
φtit
∣∣V ∣∣φtit〉)

(4.275)

= E(w,U)∼P
(z,V )∼P

1{E(w), E(z)}
N∏
t=1

(
1 + ε2 〈w| ρt |w〉 〈z| ρt |z〉

∑
it

λtit
dout

〈
φtit
∣∣U ∣∣φtit〉 〈φtit∣∣V ∣∣φtit〉

)
(4.276)

≤ EU∼PEV∼P
N∏
t=1

(
1 + ε2

(
20 log(9N)

din

)2
∣∣∣∣∣∑
it

λtit
dout

〈
φtit
∣∣U ∣∣φtit〉 〈φtit∣∣V ∣∣φtit〉

∣∣∣∣∣
)

(4.277)

≤ 1

P (G)
max

1≤t≤N
EU,V∼P0

(
1 + ε2

(
20 log(9N)

din

)2
∣∣∣∣∣∑
it

λtit
dout

〈
φtit
∣∣U ∣∣φtit〉 〈φtit∣∣V ∣∣φtit〉

∣∣∣∣∣
)N

(4.278)

≤ 1

(1− e−Ω(dout))
max

1≤t≤N
EU,V∼P0

(
1 + ε2

(
20 log(9N)

din

)2
∣∣∣∣∣∑
it

λtit
dout

〈
φtit
∣∣U ∣∣φtit〉 〈φtit∣∣V ∣∣φtit〉

∣∣∣∣∣
)N

(4.279)

because for all t ∈ [N ] we have
∑

it

λtit
dout

〈
φtit
∣∣U ∣∣φtit〉 = Tr(U) = 0 and under the event

E , 〈w| ρt |w〉 〈z| ρt |z〉 ≤
(

20 log(9N)
din

)2

. Note that at the last inequality, we do not require

anymore that U satisfies ‖U‖∞ ≤ 32 and ‖U‖1 ≥ dout. This is possible because the
integrand is positive and P (G) ≥ 1− e−Ω(dout).

For t ∈ [N ], let Zt be the polynomial in {Ui,j, Vi,j}douti,j=1 defined as follows:

Zt = ε2

(
20 log(9N)

din

)2
(∑

it

λtit
dout

〈
φtit
∣∣U ∣∣φtit〉 〈φtit∣∣V ∣∣φtit〉

)
. (4.280)
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[BCL20] gives a different method to control the moments of a similar function of Haar
distributed unitaries. However, our method is shorter compared to theirs since we only
need to control the second moment. Note that Zt is a polynomial of degree 2 of expectation
0. The Hypercontractivity [AS17, Proposition 5.48] implies for all k ∈ {1, . . . , N}:

E
(
|Zt|k

)
≤ kkE

(
Z2
t

)k/2
. (4.281)

This means that we only need to control the second moment of Zt. We have:

E
(
Z2
t

)
= ε4

(
20 log(9N)

din

)4

EU,V

(∑
it,jt

λtitλ
t
jt

d2
out

〈
φtit
∣∣U ∣∣φtit〉 〈φtit∣∣V ∣∣φtit〉 〈φtjt∣∣U ∣∣φtjt〉 〈φtjt∣∣V ∣∣φtjt〉

)
.

(4.282)

For given it, jt, we can upper bound the expectation:

E
(〈
φtit
∣∣U ∣∣φtit〉 〈φtjt∣∣U ∣∣φtjt〉) =

∑
x,y,x′,y′

E (Ux,yUx′,y′) 〈φtit |x〉〈y|φ
t
it〉〈φ

t
jt|x

′〉〈y′|φtjt〉

≤ 32

dout

(|〈φtit|φ
t
jt〉|

2 + |〈φtit|φ̄
t
jt〉|

2) (4.283)

Therefore we can upper bound the expectation of Z2
t using the inequality∑

it
λtit |〈φ

t
it |φ

t
jt〉|

4 ≤
∑

it
λtit |〈φ

t
it |φ

t
jt〉|

2 = 1 and the equality
∑

jt
λtjt = dout:

E
(
Z2
t

)
≤ ε4

(
20 log(9N)

din

)4∑
it,jt

λtitλ
t
jt

d2
out

(
32

dout

(|〈φtit |φ
t
jt〉|

2 + |〈φtit|φ̄
t
jt〉|

2)

)2

(4.284)

≤ ε4

(
20 log(9N)

din

)4(
2 · 322

d2
out

)∑
it,jt

λtitλ
t
jt

d2
out

(
|〈φtit |φ

t
jt〉|

4 + |〈φtit |φ̄
t
jt〉|

4
)

(4.285)

≤ Cε4 log(N)4

d4
ind

3
out

(4.286)

where C > 0 is a universal constant. This implies an upper bound for every moment:

E
(
|Zt|k

)
≤ kk

(
Cε4 log(N)4

d4
ind

3
out

)k/2
. (4.287)

Now, grouping the lower bound and upper bounds on the TV distance, we obtain:

(1− e−Ω(dout))

(
42

92
+

8

9

)
≤ max

t
E
(
(1 + |Zt|)N

)
(4.288)

≤ max
t

N∑
k=0

(
N

k

)
kk
(
Cε4 log(N)4

d4
ind

3
out

)k/2
(4.289)

≤ max
t

N∑
k=0

(
C ′Nε2 log(N)2

d2
ind

1.5
out

)k
(4.290)

where we used
(
N
k

)
≤ Nkek

kk
and C ′ =

√
Ce. If N log(N)2 ≤ d2ind

1.5
out

101C′ε2
the RHS is upper

bounded by
∑

k≥0
1

101k
= 1.01 but the LHS is at least (1 − e−Ω(dout))

(
42

92
+ 8

9

)
≥ 1.05 for

dout ≥ Ω(1) which is a contradiction. Hence N log(N)2 ≥ d2ind
1.5
out

101C′ε2
and finally:

N ≥ Ω

(
d2

ind
1.5
out

log(dindout/ε)2ε2

)
. (4.291)
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This proof relies crucially on the non-adaptiveness of the strategy. A natural question
arises then, can adaptive strategies outperform their non-adaptive counterpart? We do
not settle completely this question. Yet, we propose a lower bound for adaptive strategies
showing that, if a separation exists, the advantage would be at most O(

√
dout).

Theorem 4.4.4. Let ε ≤ 1/32 and dout ≥ 10. Any ancilla-free adaptive algorithm for

testing identity to the depolarizing channel requires, in the worst case, N = Ω
(
d2indout+d

1.5
out

ε2

)
incoherent measurements.

Proof. We use the same construction as in the proof of Theorem 4.4.3. Mainly, under the
null hypothesis H0 the quantum channel is N (ρ) = D(ρ) = Tr(ρ) I

dout
. Under the alternate

hypothesis H1, a quantum channel N ∼ P has the form:

N (ρ) = Tr(ρ)
I
dout

+
ε

dout

〈w| ρ |w〉U (4.292)

where |w〉 = W |0〉, W ∼ Haar(din), for all i, j ∈ [dout],

Uj,i = Ui,j ∼ 1{i 6= j}N
(

0, σ2 =
16

dout

)
and we condition on the event G = {‖U‖1 ≥ dout, ‖U‖∞ ≤ 32}. We call this distribution P
and use the notation (w,U) ∼ P . Recall that P (G) ≥ 1− exp(−Ω(dout))− exp(−Ω(d2

out))
and under G, the map N is a valid quantum channel ε-far from the quantum channel D.

Now, given a set of observations i<t = (i1, . . . , it−1). The adaptive algorithm A would
choose at step t the input ρi<tt and the measurement deviceMi<t

t =
{
λi<tit

∣∣φi<tit

〉〈
φi<tit

∣∣}
it∈It

.

Such POVM implies
∑

it
λi<tit

= d. Under the null hypothesis H0, the quantum channel
N = D so the probability of the outcomes is exactly:

P
I1,...,IN
H0

=

{
N∏
t=1

λi<tit

dout

}
i1,...,iN

(4.293)

On the other hand, under the alternate hypothesis H1, the probability of the outcomes is
exactly:

P
I1,...,IN
H1

=

{
E(w,U)∼P

N∏
t=1

λi<tit

dNout

(
1 + ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉)}
i1,...,iN

(4.294)

We can express the KL divergence as follows:

KL
(
P
I1,...,IN
H0

∥∥∥PI1,...,INH1

)
(4.295)

=
∑

i1,...,iN

N∏
t=1

λi<tit

dout

log

 ∏N
t=1

λ
i<t
it

dout

E(w,U)∼P
∏N

t=1

λ
i<t
it

dNout

(
1 + ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉)
 (4.296)

= E≤N(− log)

(
E(w,U)∼P

N∏
t=1

(
1 + ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉))
(4.297)
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where we use the notation E≤N(X(i1, . . . , iN)) =
∑

i1,...,iN

(∏N
t=1

λ
i<t
it

dout

)
X(i1, . . . , iN). The

function (− log) is convex so by Jensen inequality:

KL
(
P
I1,...,IN
H0

∥∥∥PI1,...,INH1

)
= E≤N(− log)

(
E(w,U)∼P

N∏
t=1

(
1 + ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉))
(4.298)

≤ E≤NE(w,U)∼P(− log)
N∏
t=1

(
1 + ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉)
(4.299)

=
N∑
t=1

E≤NE(w,U)∼P(− log)
(
1 + ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉)
.

(4.300)

Using the inequality (− log(1 + x)) ≤ −x+ 2x2 valid for x ≥ −1/2 and since for ε ≤ 64,
we have ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉
≥ −1/2, we can upper bound the previous integrand

as follows:

(− log)
(
1 + ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉)
(4.301)

≤ ε 〈w| ρi<tt |w〉
〈
φi<tit

∣∣U ∣∣φi<tit

〉
+ 2ε2 〈w| ρi<tt |w〉

2 〈φi<tit

∣∣U ∣∣φi<tit

〉2
. (4.302)

Observe that the first term vanishes under the expectation:

E≤N
(
ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉)
= E≤t−1

∑
it

λi<tit

dout

ε 〈w| ρi<tt |w〉
〈
φi<tit

∣∣U ∣∣φi<tit

〉
(4.303)

= E≤t−1ε 〈w| ρi<tt |w〉Tr(U) = 0. (4.304)

For the second term, we will instead upper bound its expectation under U . Observe that
this term is nonnegative, so we can safely remove the condition on the event G and then
we compute the expectation under Haar distributed vector w and Gaussians {Ui,j} similar
to Equation (4.283).

E
(

2ε2 〈w| ρi<tt |w〉
2 〈φi<tit

∣∣U ∣∣φi<tit

〉2
)

= 2ε2E
(
〈w| ρi<tt |w〉

2)
E
(〈
φi<tit

∣∣U ∣∣φi<tit

〉2
)

(4.305)

≤ 2ε2 ·
(

Tr(ρt)
2 + Tr(ρ2

t )

din(din + 1)

)
·
(

64

dout

)
≤ 256ε2

d2
indout

.

(4.306)

Therefore

KL
(
P
I1,...,IN
H0

∥∥∥PI1,...,INH1

)
≤

N∑
t=1

E≤NE(w,U)∼P(− log)
(
1 + ε 〈w| ρi<tt |w〉

〈
φi<tit

∣∣U ∣∣φi<tit

〉)
(4.307)

≤
N∑
t=1

E≤N
256ε2

d2
indout

=
256Nε2

d2
indout

. (4.308)
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On the other hand, the Data-Processing inequality applied on the KL divergence writes:

KL
(
P
I1,...,IN
H0

∥∥∥PI1,...,INH1

)
≥ KL(PH0 (A = 0) ‖PH1 (A = 0)) (4.309)

≥ KL(2/3‖1/3) =
2

3
log(2)− 1

3
log(2) =

1

3
log(2). (4.310)

Grouping the lower and upper bounds on the KL divergence:

256Nε2

d2
indout

≥ KL
(
P
I1,...,IN
H0

∥∥∥PI1,...,INH1

)
≥ 1

3
log(2) (4.311)

which yields the lower bound:

N = Ω

(
d2

indout

ε2

)
. (4.312)

4.5 Conclusion and open problems

We have generalized the problem of testing identity to quantum channels. We have in
particular identified the optimal complexity Θ(d/ε2) for testing identity to a unitary
channel in the adaptive setting. Moreover, we have shown that the complexity for testing
identity to the depolarizing channel in the non-adaptive setting is Θ̃(d2

ind
1.5
out/ε

2). These
results open up several interesting questions: can the gap between non-adaptive and
adaptive strategies for certification of the depolarizing channel be closed? How to achieve
the instance optimality (as in [VV16; CLO22])? This would allow to adapt the complexity
to the tested process N0. Another interesting issue deals with the fact that 4-designs can
replace Haar distributed unitaries in Algorithm 8. But can the same complexity be
achieved for 3 (and lower) designs? Finally, it would be interesting to consider general
strategies allowing entanglement between the uses of the channel, as was done for states
in [OW15].



Chapter 5

Sample-Optimal Quantum Process
Tomography with Non-Adaptive
Incoherent Strategies

5.1 Introduction

In this chapter, we consider the problem of quantum process tomography which con-
sists of approximating an arbitrary quantum channel–any linear map that preserves the
axioms of quantum mechanics. This task is an important tool in quantum information
processing and quantum control which has been performed in actual experiments (see e.g.
[OPGJLRW04; BAHL+10; YW10]). Given a quantum channel N : Cdin×din → Cdout×dout

as a black box, a learner could choose the input state and send it through the unknown
quantum channel. Then, it can only extract classical information by performing a mea-
surement on the output state. It repeats this procedure at different steps. After collecting
a sufficient amount of classical data, the goal is to return a quantum channel Ñ satisfying:

∀ρ ∈ Cdin×din ⊗ Cdin×din : ‖id⊗ (N − Ñ )(ρ)‖1 ≤ ε‖ρ‖1 (5.1)

with high probability. In this chapter, we investigate the optimal complexity of non-
adaptive strategies using incoherent strategies. These strategies can only use one copy of
the unknown channel at each step and must specify the input states and measurement
devices before starting the learning procedure.

Contribution The main contribution of this chapter is to show that the optimal
complexity of the quantum process tomography with non-adaptive incoherent strategies
is Θ̃(d3

ind
3
out/ε

2). First, we prove a general lower bound of Ω(d3
ind

3
out/ε

2) on the number
of incoherent measurements for every non-adaptive process learning algorithm. To do
so, we construct an Ω(ε)-separated family of quantum channels close to the completely
depolarizing channel of cardinal M = exp(Ω(d2

ind
2
out)) by choosing random Choi states

of a specific form. This family is used to encode a message from {1, . . . ,M}. A process
tomography algorithm can be used to decode this message with the same error probability.
Hence, the encoder and decoder should share at least Ω(d2

ind
2
out) nats of information. On

the other hand, we show that the correlation between the encoder and decoder can only
increase by at most O(ε2/dindout) nats after each measurement. Note that the naive
upper bound on this correlation is O(ε2), we obtain an improvement by a factor dindout

by exploiting the randomness in the construction of the quantum channel. This result
is stated in Theorem 5.3.1. Next, we show that the process tomography algorithm of
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[SSKKG22] can be generalized to approximate an unknown quantum channel to within
ε in the diamond norm (5.1) using a number of incoherent measurements Õ(d3

ind
3
out/ε

2)
(Theorem 5.4.2). For this, we relate the diamond norm between two quantum channels
and the operator norm between their corresponding Choi states which improves on the
usual inequality with the 1-norm: ‖M‖� ≤ din‖JM‖1 (see e.g. [JP16]).

Related work The first works on process tomography including [CN97; PCZ97] follow
the strategy of learning the quantum states images of a complete set of basis states then
obtaining the quantum channel by an inversion. The problem of state tomography us-
ing incoherent measurements is fully understood even for adaptive strategies [HHJWY16;
GKKT20; LN22; CHLLS22]: the optimal complexity is Θ(d3/ε2). So, learning a quantum
channel can be done using O(d2

ind
3
out) measurements, but this complexity does not take

into account the accumulation of errors. The same drawback can be seen in the resource
analysis of different strategies by [MRL08]. Another reductive approach is to use the
Choi–Jamio lkowski isomorphism [Cho75; Jam72] to reduce the process tomography to
state tomography with a higher dimension [Leu00; DP01]. However, this requires an an-
cilla and only implies a sub-optimal upper bound O((dindout)

3/(ε/din)2) = O(d5
ind

3
out/ε

2)
for learning in the diamond norm.
For low Kraus rank, [KKEG19] solve quantum process tomography using compressed
sensing-based methods. Moreover, [SSKKG22] propose an algorithm for estimating the
Choi state in the 2-norm that requires only Õ(d4/ε2) ancilla-free incoherent measure-
ments (when din = dout = d). This chapter generalizes this result to the diamond norm
and general input/output dimensions and shows that this algorithm is optimal up to a
logarithmic factor.
A special case of quantum process tomography is learning Pauli channels. These channels
have weighted Pauli matrices as Kraus operators and can be learned in diamond norm
using Õ(d3/ε2) measurements [FW20] (here din = dout = d). Furthermore, it is shown that
Ω(d3/ε2) are necessary for any non-adaptive strategy (Chapter 6). While the techniques
of the lower bound of this chapter are similar to the ones in Chapter 6, we obtain here a
larger lower bound because, in general, we are not restricted to weighted Pauli matrices
in the Kraus operators and these latter are implicitly chosen at random.

5.2 Preliminaries

We consider the problem of learning quantum channels of input dimension din and out-
put dimension dout in diamond distance. The diamond distance can be thought of as a
worst-case distance, while the average case distance is given by the Hilbert-Schmidt or
Schatten 2-norm between the corresponding Choi states. However, to have comparable
distances, we will normalize the 2-norm which is equivalent to unnormalizing the maxi-
mally entangled state and we define the 2-distance between two quantum channels N and
M as follows:

d2(N ,M) := din‖JN − JM‖2 = ‖id⊗ (N −M)(din |Ψ〉〈Ψ|)‖2. (5.2)

This is a valid distance since the map J : N 7→ id⊗N (|Ψ〉〈Ψ|) is an isomorphism [Cho75;
Jam72].
The channel tomography problem consists of learning a quantum channel N in the dia-
mond distance. Given a precision parameter ε > 0, the goal is to construct a quantum
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channel Ñ satisfying with at least a probability 2/3:

d�(N , Ñ ) ≤ ε. (5.3)

An algorithm A is 1/3-correct for this problem if it outputs a quantum channel ε-close to
N with a probability of error at most 1/3. We choose to learn in the diamond distance
because it characterizes the minimal error probability to distinguish between two quan-
tum channels when auxiliary systems are allowed [Wat18].
The learner can only extract classical information from the unknown quantum channel
N by performing a measurement on the output state. Throughout this chapter, we only
consider unentangled or incoherent measurements. That is, the learner can only use din

(or danc × din) input states and measure with a dout (or danc × dout)-dimensional measure-
ment devices. We refer to Section 1.4.3 for the definition of different settings of learning
quantum channels.
Note that ancilla-assisted strategies were proven to provide an exponential (in the number
of qubits n = log2(d)) advantage over ancilla-free strategies for some problems [CZSJ22;
CCHL22]. However, in this chapter, we show that ancilla-assisted strategies cannot
overcome ancilla-free strategies for process tomography. Finally, we only consider non-
adaptive strategies: the input states and measurement devices should be chosen before
starting the learning procedure and thus cannot depend on the observations.

5.3 Lower bound

In this section, we investigate the intrinsic limitations of learning quantum channels using
incoherent measurements. To avoid repetition, we consider only ancilla-assisted strate-
gies since they contain ancilla-free strategies as a special case: one can map every din-
dimensional input state ρ to the d× din-dimensional input state ρ̃ = I

d
⊗ ρ and every dout-

dimensional POVMM = {Mx}x∈X to the d×dout-dimensional POVM M̃ = {Id⊗Mx}x∈X .
Mainly, we prove the following theorem:

Theorem 5.3.1. Let ε ≤ 1/16 and dout ≥ 8. Any non-adaptive ancilla-assisted algorithm
for process tomography in diamond distance requires

N = Ω

(
d3

ind
3
out

ε2

)
(5.4)

incoherent measurements.

Proof. For the proof, we use the construction of the Choi state:

JU =
I

dindout

+
ε

dindout

(U + U †)− ε

dindout

Tr2(U + U †)⊗ I
dout

(5.5)

where U ∼ Haar(dindout). JU is Hermitian and satisfies Tr2(J ) = I
din

. Moreover, JU < 0

for ε ≤ 1/4. Indeed, U is a unitary so it has an operator norm 1 thus ‖U + U †‖∞ ≤ 2.
Besides, ‖Tr2(U+U †)⊗ I

dout
‖∞ = 1

dout
‖Tr2(U+U †)‖∞ ≤ maxi ‖I⊗〈i| (U+U †)I⊗|i〉 ‖∞ ≤ 2.

We claim that:

Lemma 5.3.1. We can construct an ε/2-separated (according to the diamond distance)
family {Nx}x∈[M ] of cardinal M = exp(Ω(d2

ind
2
out)).
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Proof. It is sufficient to show that for U, V ∼ Haar(dindout):

P (‖JU − JV ‖1 ≤ ε/2) ≤ exp
(
−Ω(d2

ind
2
out)
)
. (5.6)

because, once this concentration inequality holds, we can choose our family randomly,
and by the union bound, it will be ε/2-separated with an overwhelming probability (1−
exp (−Ω(d2

ind
2
out))) using the inequality d�(NU ,NV ) ≥ ‖JU − JV ‖1. First, let us lower

bound the expected value.

E (‖JU − JV ‖1) ≥ ε

dindout

E
(
‖U + U † − V − V †‖1

)
(5.7)

− ε

dind2
out

E
(
‖Tr2(U + U † − V − V †)⊗ I‖1

)
. (5.8)

On one hand, we can upper bound the second expectation using the triangle and the
Cauchy-Schwarz inequalities:

E
(
‖Tr2(U + U † − V − V †)⊗ I‖1

)
≤ 4E (‖Tr2(U)⊗ I‖1) (5.9)

≤ 4
√
dindoutE (‖Tr2(U)⊗ I‖2) ≤ 4

√
dindout

√
E (Tr(Tr2(U)Tr2(U †)⊗ I)) (5.10)

= 4
√
dindout

√
dout

√√√√E(∑
i

∑
k,l

〈i| ⊗ 〈k|UI⊗ |k〉 〈l|U † |i〉 ⊗ |l〉

)
(5.11)

= 4
√
dindout

√
dout

√√√√E( din∑
i=1

dout∑
k,l=1

dinδk,l
dindout

)
= 4dindout. (5.12)

On the other hand, we can lower bound the first expectation using Hölder’s inequality.

E
(
‖U + U † − V − V †‖1

)
≥

√
(E (Tr(U + U † − V − V †)2))3

E (Tr(U + U † − V − V †)4)
(5.13)

≥

√
(4dindout)3

28dindout

≥ 3

2
dindout. (5.14)

Therefore:

E (‖JU − JV ‖1) ≥ ε

dindout

E
(
‖U + U † − V − V †‖1

)
− 4ε

dind2
out

E (‖Tr2U ⊗ I‖1) (5.15)

≥ 3

2
ε− 4ε

dout

≥ ε for dout ≥ 8. (5.16)

Now, we claim that the function (U, V ) 7→ ‖JU − JV ‖1 is 8ε√
dindout

-Lipschitz. Indeed, we

have ‖Tr2(X) ⊗ I‖1 ≤
√
dindout‖Tr2(X) ⊗ I‖2 =

√
dindout‖Tr2(X)‖2 ≤

√
dindoutdout‖X‖2

where the last inequality can be found in [LZK08]. Therefore, by letting X = U −U ′ and
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Y = V − V ′ and using the triangle inequality we obtain:

|‖JU − JV ‖1 − ‖JU ′ − JV ′‖1| (5.17)

≤ 2ε

dindout

[
‖X‖1 + ‖Y ‖1 +

∥∥∥∥Tr2(X)⊗ I
dout

∥∥∥∥
1

+

∥∥∥∥Tr2(Y )⊗ I
dout

∥∥∥∥
1

]
(5.18)

≤ 2
√
dindoutε

dindout

(‖U − U ′‖2 + ‖V − V ′‖2) +
2
√
dindoutdoutε

dind2
out

(‖U − U ′‖2 + ‖V − V ′‖2)

(5.19)

≤ 8ε√
dindout

‖(U, V )− (U ′, V ′)‖2 (Cauchy-Schwarz)

(5.20)

so by the concentration inequality for Lipschitz functions of Haar measure [MM13]:

P (‖JU − JV ‖1 ≤ ε/2) (5.21)

≤ P (‖JU − JV ‖1 − E (‖JU − JV ‖1) ≤ −ε/2) (5.22)

≤ exp

(
− dindoutε

2

48× 64ε2/dindout

)
= exp

(
−Ω(d2

ind
2
out)
)
. (5.23)

Now we follow a standard strategy for proving lower bounds of learning problems
(see e.g., [FGLE12; HHJWY16]). We use this ε/2-separated family of quantum channels
{Nx}x∈[M ] (corresponding to the Choi states {Jx}x∈[M ] found in Lemma 5.3.1 and M =
exp(Ω(d2

ind
2
out))) to encode a uniformly random message X ∼ Uniform([M ]) by the map

X 7→ NX . Using a learning algorithm for process tomography with precision ε/4 and an
error probability at most 1/3, a decoder Y can find X with the same error probability
because the family {Nx}x∈[M ] is ε/2-separated. By Fano’s inequality, the encoder and
decoder should share at least Ω(log(M)) nats of information.

Lemma 5.3.2. [Fan61] We have

I(X : Y ) ≥ 2/3 log(M)− log(2) ≥ Ω(d2
ind

2
out). (5.24)

The remaining part of the proof is to upper bound this mutual information in terms of
the number of measurements N , the dimensions din, dout, and the precision parameter ε.
Intuitively, the mutual information, after a few measurements, is very small and then it
increases when the number of measurements increases. To make this intuition formal, let
N be a number of measurements sufficient for process tomography and let (I1, . . . , IN) be
the observations of the learning algorithm, we apply first the data processing inequality
to relate the mutual information between the encoder and the decoder with the mutual
information between the uniform random variable X and the observations (I1, . . . , IN):

I(X : Y ) ≤ I(X : I1, . . . , IN). (5.25)

Then we apply the chain rule for the mutual information:

I(X : I1, . . . , IN) =
N∑
t=1

I(X : It|I≤t−1) (5.26)
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where we use the notation I≤t = (I1, . . . , It) and I(X : It|I≤t−1) is the conditional mutual
information between X and It given I≤t−1. A learning algorithm A would choose the input
states {ρt}t∈[N ] and measurement devices {Mt}t∈[N ] which can be chosen to have the form
Mt = {µti |φti〉〈φti|}i∈It where µti ≥ 0 and 〈φti|φti〉 = 1 for all t, i. Using Jensen’s inequality,
we can prove the following upper bound on the conditional mutual information:

Lemma 5.3.3. For x ∈ [M ], let Mx = Nx−D where D(ρ) = Tr(ρ) I
dout

is the completely
depolarizing channel. We have for all t ∈ {1, . . . , N}:

I(X : It|I≤t−1) ≤ 3

M

∑
i∈It,x∈[M ]

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉(〈φti| id⊗Mx(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

(5.27)

Proof. Let t ∈ {1, . . . , N} and x ∈ [M ]. Let i = (i1, . . . , it) ∈ (I1, . . . , It), we can express
the joint probability p of (X, I1, . . . , It) as follows:

p(x, i1, . . . , it) =
1

M

t∏
k=1

µkik
〈
φkik
∣∣ id⊗Nx(ρk) ∣∣φkik〉 (5.28)

We can remark that, for all 1 ≤ k ≤ t:

p(x, i≤k) = µkik
〈
φkik
∣∣ id⊗Nx(ρk) ∣∣φkik〉 p(x, i≤k−1) (5.29)

= µkik
〈
φkik
∣∣ id⊗D(ρk)

∣∣φkik〉 (1 + Φk
x,ik

)p(x, i≤k−1) (5.30)

where Φk
x,ik

=

〈
φkik

∣∣∣id⊗Mx(ρk)
∣∣∣φkik〉〈

φkik

∣∣∣id⊗D(ρk)
∣∣∣φkik〉 because D +Mx = Nx. So, the ratio of conditional

probabilities can be written as:

p(x, it|i≤t−1)

p(x|i≤t−1)p(it|i≤t−1)
=
p(x, i≤t)p(i≤t−1)

p(x, i≤t−1)p(i≤t)
(5.31)

=
µtit
〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉 (1 + Φt
x,it)p(x, i≤t−1)p(i≤t−1)

p(x, i≤t−1)
∑

y p(y, i≤t)
(5.32)

=
µtit
〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉 (1 + Φt
x,it)p(i≤t−1)∑

y p(y, i≤t)
(5.33)

=
µtit
〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉 (1 + Φt
x,it)p(i≤t−1)∑

y µ
t
it

〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉 (1 + Φt
y,it

)p(y, i≤t−1)
(5.34)

=
(1 + Φt

x,it)p(i≤t−1)∑
y(1 + Φt

y,it
)p(y, i≤t−1)

=
(1 + Φt

x,it)∑
y(1 + Φt

y,it
)p(y|i≤t−1)

(5.35)

Therefore by Jensen’s inequality:

I(X : It|I≤t−1) = E

(
log

(
p(x, it|i≤t−1)

p(x|i≤t−1)p(it|i≤t−1)

))
(5.36)

= E

(
log

(
(1 + Φt

x,it)∑
y p(y|i≤t−1)(1 + Φt

y,it
)

))
(5.37)

≤ E

(
log(1 + Φt

x,it)−
∑
y

p(y|i≤t−1) log(1 + Φt
y,it)

)
(5.38)

= E
(
log(1 + Φt

x,it)
)
−
∑
y

E
(
p(y|i≤t−1) log(1 + Φt

y,it)
)
. (5.39)
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The first term can be upper bounded using the inequality log(1 + x) ≤ x verified for all
x ∈ (−1,∞):

E
(
log(1 + Φt

x,it)
)

= Ex,i∼p log(1 + Φt
x,it) (5.40)

≤ Ex,i∼pΦt
x,it = Ex,i∼p≤tΦ

t
x,it (5.41)

= Ex,i∼p≤t−1

∑
it

µtit
〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉 (1 + Φt
x,it)Φ

t
x,it (5.42)

= Ex,i∼p≤t−1

∑
it

µtit
〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉 (Φt
x,it)

2 (5.43)

=
1

M

M∑
x=1

∑
it

µtit
〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉 (Φt
x,it)

2 (5.44)

because
∑

it
µtit
〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉Φt
x,it = Tr(id⊗Mx(ρt)) = Tr(id⊗Nx(ρt))−Tr(id⊗

D(ρt)) = Tr(ρt)−Tr(ρt) = 0 and we use the condition that the algorithm is non-adaptive
in the last line.
On the other hand, the second term can be upper bounded using the inequality − log(1 +
x) ≤ −x+ x2 verified for all x ∈ (−1/2,∞). Let λtit = µtit

〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉, we have :

E

(
−
∑
y

p(y|i≤t−1) log(1 + Φt
y,it)

)
(5.45)

=
∑
y

Ex,i∼pp(y|i≤t−1)(− log)(1 + Φt
y,it) (5.46)

=
∑
y

Ex,i∼p≤tp(y|i≤t−1)(− log)(1 + Φt
y,it) (5.47)

≤
∑
y

Ex,i∼p≤tp(y|i≤t−1)(−Φt
y,it + (Φt

y,it)
2) (5.48)

≤
∑
y

Ex,i∼p≤t−1
p(y|i≤t−1)

∑
it

λtit((2Φt
x,it)

2 + 2(Φt
y,it)

2) (5.49)

= 4
∑
y

Ex,i∼p≤t−1
p(y|i≤t−1)

∑
it

λtit(Φ
t
x,it)

2 (5.50)

= 4Ex,i∼p≤t−1

∑
it

µtit
〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉 (Φt
x,it)

2 (5.51)

= 4Ex,i∼p≤t−1

∑
it

λtit(Φ
t
x,it)

2 (5.52)

=
4

M

M∑
x=1

∑
it

µtit
〈
φtit
∣∣ id⊗D(ρt)

∣∣φtit〉 (Φt
x,it)

2 (5.53)

where we use the condition that the algorithm is non-adaptive in the last line. Since
the conditional mutual information is upper bounded by the sum of these two terms, the
upper bound on the conditional mutual information follows.

It remains to approximate every mean 1
M

∑M
x=1 by the expectation EU .
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Lemma 5.3.4. We have with at least a probability 9/10:

1

M

∑
t,i,x

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉(〈φti| id⊗Mx(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

(5.54)

≤
∑
t,i

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉EU (〈φti| id⊗MU(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

+ 16Nε2

√
log(10)

M
. (5.55)

Proof. Denote by f tx the function |φ〉 7→ 〈φ|id⊗Mx(ρt)|φ〉2

〈φ|id⊗D(ρt)|φ〉2
. We claim that the functions f tx

are bounded. Indeed, we can write ρt =
∑

i λi |ψi〉〈ψi| and every |ψi〉 can be written as
|ψi〉 = Ai ⊗ I |Ψ〉 so for a unit vector |φ〉, we have:

f tx(|φ〉) =
〈φ| id⊗Mx(ρt) |φ〉2

〈φ| id⊗D(ρt) |φ〉2
(5.56)

=
4ε2
(
〈φ|
∑

i λi(Ai ⊗ I)
(
Ux − Tr2(Ux)⊗ I

dout

)
(A†i ⊗ I) |φ〉

)2

〈φ|
∑

i λiAiA
†
i ⊗ I |φ〉2

(5.57)

≤
4ε2 〈φ|

∑
i λi(Ai ⊗ I)(A†i ⊗ I) |φ〉2

∥∥∥Ux − Tr2(Ux)⊗ I
dout

∥∥∥2

∞

〈φ|
∑

i λiAiA
†
i ⊗ I |φ〉2

(5.58)

≤ 16ε2 〈φ|
∑

i λi(Ai ⊗ I)(A†i ⊗ I) |φ〉2

〈φ|
∑

i λiAiA
†
i ⊗ I |φ〉2

= 16ε2 (5.59)

where we used that ‖Ux‖∞ = 1 and ‖Tr2(Ux)‖∞ ≤ dout for a unitary Ux. But we have∑
i µ

t
i 〈φti| id⊗D(ρt) |φti〉 = Tr(id⊗D(ρt)) = 1 so for all x ∈ [M ]:

∑
t,i

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉(〈φti| id⊗Mx(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

≤ 16Nε2. (5.60)

Therefore, by Hoeffding’s inequality [Hoe63] and the union bound, we have with a prob-
ability at least 9/10:

1

M

∑
x,t,i

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉(〈φti| id⊗Mx(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

(5.61)

≤
∑
t,i

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉EU (〈φti| id⊗MU(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

+ 16Nε2

√
log(10)

M
. (5.62)
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These two Lemmas 5.3.3, 5.3.4 imply:

I(X : I1, . . . , IN) =
N∑
t=1

I(X : It|I≤t−1)

≤ 5

M

∑
x,t,i

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉E(〈φti| id⊗Mx(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

≤ 5
∑
t,i

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉E(〈φti| id⊗MU(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

+ 80Nε2

√
log(10)

M

≤ 5N sup
t,i
E

((
〈φti| id⊗MU(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2
)

+ 80Nε2

√
log(10)

M
(5.63)

where we used that fact that for all t ∈ [N ]:
∑

i µ
t
i 〈φti| id⊗D(ρt) |φti〉 = Tr(id⊗D(ρt)) =

Tr(ρt) = 1. The error probability 1/10 of this approximation can be absorbed in the
construction above by asking the unitaries {Ux}x∈[M ] not only to satisfy the separability
condition, but also to satisfy the inequalities in Lemma 5.3.4:

1

M

∑
t,i,x

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉(〈φti| id⊗Mx(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

(5.64)

≤
∑
t,i

µti
〈
φti
∣∣ id⊗D(ρt)

∣∣φti〉EU (〈φti| id⊗MU(ρt) |φti〉
〈φti| id⊗D(ρt) |φti〉

)2

+ 16Nε2

√
log(10)

M
. (5.65)

Now fix t ∈ [N ], it ∈ It and |φ〉 =
∣∣φtit〉. Recall that we can write ρt =

∑
i λi |ψi〉〈ψi|,

the maximally entangled state is denoted |Ψ〉 = 1√
din

∑din
i=1 |ii〉 and every |ψi〉 can be

written as |ψi〉 = Ai ⊗ I |Ψ〉 so:

id⊗D(ρt) =
∑
i

λi(id⊗D)(Ai ⊗ I |Ψ〉〈Ψ|A†i ⊗ I)

=
∑
i

λi(Ai ⊗ I)id⊗D(|Ψ〉〈Ψ|)(A†i ⊗ I)

=
∑
i

λi(Ai ⊗ I)
I

dindout

(A†i ⊗ I)

=

∑
i λiAiA

†
i

din

⊗ I
dout

. (5.66)

On the other hand, using the notation V = U − Tr2(U)⊗ I
dout

, we can write:

id⊗M(ρt) =
∑
i

λiid⊗M(Ai ⊗ I |Ψ〉〈Ψ|A†i ⊗ I) (5.67)

=
∑
i

λi(Ai ⊗ I)id⊗ (N −D)(|Ψ〉〈Ψ|)(A†i ⊗ I) (5.68)

=
∑
i

λi(Ai ⊗ I)
(
JN −

I
dindout

)
(A†i ⊗ I) (5.69)

=
ε

dindout

∑
i

λiAi ⊗ I
(
U + U † − Tr2(U + U †)⊗ I

dout

)
A†i ⊗ I) (5.70)

=
ε

dindout

∑
i

λi

[
(Ai ⊗ I)V (A†i ⊗ I) + (Ai ⊗ I)V †(A†i ⊗ I)

]
. (5.71)
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By Equation (5.63), we need to control the expectation EU 〈φ| id ⊗MU(ρt) |φ〉2. First,
we replace id⊗M(ρt) with the latter expression, then we apply the inequality (x+ y)2 ≤
2x2 + 2y2 to separate the terms involving U and the terms involving Tr2(U). The first
term can be computed and bounded as follows.

4ε2

d2
ind

2
out

E

∣∣∣∣∣〈φ|
(∑

i

λi(Ai ⊗ I)U(A†i ⊗ I)

)
|φ〉

∣∣∣∣∣
2


=
4ε2

d2
ind

2
out

∑
i,j

λiλj
dindout

∣∣∣Tr
(
A†i ⊗ I |φ〉 〈φ|Aj ⊗ I

)∣∣∣2
(CS)

≤ 4ε2

d2
ind

2
out

∑
i,j

λiλj
dindout

〈φ|AiA†i ⊗ I |φ〉 〈φ|AjA†j ⊗ I |φ〉

=
4ε2

d3
ind

3
out

(
〈φ|
∑
i

λiAiA
†
i ⊗ I |φ〉

)2

. (5.72)

Let’s move to the second term which involves the partial trace. Let Mij = (A†i ⊗
I) |φ〉〈φ| (Aj ⊗ I).

4ε2

d2
ind

2
out

E

∣∣∣∣∣〈φ|∑
i

λi(Ai ⊗ I)
(

Tr2(U)⊗ I
dout

)
(A†i ⊗ I) |φ〉

∣∣∣∣∣
2
 (5.73)

=
4ε2

d2
ind

4
out

∑
i,j

λiλjE
(

Tr
[

(Tr2(U)⊗ I)Mi,j

(
Tr2(U †)⊗ I

)
M †

ij)
])

(5.74)

=
4ε2

d2
ind

4
out

∑
i,j

λiλj

din∑
x,y,z,t=1

dout∑
k,l=1

E
(
〈xk|U |yk〉 〈zl|U † |tl〉

)
Tr
[ (
|y〉 〈x| ⊗ IMij |t〉 〈z| ⊗ IM †

ij

) ]
(5.75)

=
4ε2

d3
ind

5
out

∑
i,j

λiλj

din∑
x=t,y=z=1

dout∑
k=l=1

Tr
[ (
|y〉 〈x| ⊗ IMij |x〉 〈y| ⊗ IM †

ij

) ]
(5.76)

=
4ε2

d3
ind

4
out

∑
i,j

λiλj

din∑
x,y=1

Tr
[ (
|y〉 〈x| ⊗ IMij |x〉 〈y| ⊗ IM †

ij

) ]
. (5.77)

To control the latter expression, we write |φ〉 = B† ⊗ I |Ψ〉 so that Mi,j = (A†i ⊗
I) |φ〉〈φ| (Aj ⊗ I) = (A†iB

† ⊗ I) |Ψ〉〈Ψ| (BAj ⊗ I). Using the property of the maximally
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entangled state 〈Ψ|M ⊗ I |Ψ〉 = 1
din

Tr(M) we obtain:

din∑
x,y=1

Tr
[ (
|y〉 〈x| ⊗ IMij |x〉 〈y| ⊗ IM †

ij

)
(5.78)

=

din∑
x,y=1

Tr
(
|y〉 〈x| ⊗ I(A†iB† ⊗ I) |Ψ〉〈Ψ| (BAj ⊗ I) |x〉 〈y| ⊗ I(A†jB† ⊗ I) |Ψ〉〈Ψ| (BAi ⊗ I)

)
(5.79)

=

din∑
x,y=1

〈Ψ| (BAj ⊗ I) |x〉 〈y| ⊗ I(A†jB† ⊗ I) |Ψ〉 〈Ψ| (BAi ⊗ I)† |y〉 〈x| ⊗ I(A†iB† ⊗ I) |Ψ〉

(5.80)

=
1

d2
in

din∑
x,y=1

Tr(BAj |x〉 〈y|A†jB†)Tr(BAi |y〉 〈x|A†iB†) (5.81)

=
1

d2
in

din∑
x,y=1

〈y|A†jB†BAj |x〉 〈x|A
†
iB
†BAi |y〉 =

1

d2
in

Tr
(
A†jB

†BAjA
†
iB
†BAi

)
. (5.82)

On the other hand, we can write

〈φ|
∑
i

λiAiA
†
i ⊗ I |φ〉 = 〈Ψ|

∑
i

λiBAiA
†
iB
† ⊗ I |Ψ〉 =

1

din

Tr

(∑
i

λiA
†
iB
†BAi

)
. (5.83)

Note that the matrix
∑

i λiA
†
iB
†BAi is positive semi-definite so:

∑
i,j

λiλj
1

d2
in

Tr
(
A†jB

†BAjA
†
iB
†BAi

)
=

1

d2
in

Tr

(∑
i

λiA
†
iB
†BAi

)2

≤

[
1

din

Tr

(∑
i

λiA
†
iB
†BAi

)]2

= 〈φ|
∑
i

λiAiA
†
i ⊗ I |φ〉2 . (5.84)

Hence

4ε2

d2
ind

2
out

E

∣∣∣∣∣〈φ|∑
i

λi(Ai ⊗ I)
(

Tr2(U)⊗ I
dout

)
(A†i ⊗ I) |φ〉

∣∣∣∣∣
2


=
4ε2

d3
ind

4
out

∑
i,j

λiλj

din∑
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Tr
[ (
|y〉 〈x| ⊗ IMij |x〉 〈y| ⊗ IM †

ij

) ]
=

4ε2

d3
ind

4
out

∑
i,j

λiλj
1

d2
in

Tr
(
A†jB

†BAjA
†
iB
†BAi

)
≤ 4ε2

d3
ind

4
out

〈φ|
∑
i

λiAiA
†
i ⊗ I |φ〉2 (5.85)

Using the equality (5.66) and the two inequalities (5.72) and (5.85), we deduce:

E

((
〈φ| id⊗MU(ρt) |φ〉
〈φ| id⊗D(ρt) |φ〉

)2
)
≤

8ε2

d3ind
3
out

(
〈φ|
∑

i λiAiA
†
i ⊗ I |φ〉

)2

〈φ|
∑
i λiAiA

†
i

din
⊗ I

dout
|φ〉2

=
8ε2

dindout

. (5.86)
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Therefore using the inequality (5.63):

I(X : I1, . . . , IN) =
N∑
t=1

I(X : It|I≤t−1) (5.87)

≤ 5N sup
t,it

E

(〈φtit∣∣ id⊗MU(ρt)
∣∣φtit〉〈

φtit
∣∣ id⊗D(ρt)

∣∣φtit〉
)2
+ 80Nε2

√
log(10)

M
(5.88)

≤ 40N
ε2

dindout

+ 80Nε2

√
log(10)

M
≤ O

(
N

ε2

dindout

)
(5.89)

because M = exp(Ω(d2
ind

2
out)). But from the data processing inequality and Lemma 5.3.2,

I(X : I1, . . . , IN) ≥ I(X : Y ) ≥ Ω(d2
ind

2
out), we deduce that:

O
(
N

ε2

dindout

)
≥ I(X : I1, . . . , IN) ≥ Ω(d2

ind
2
out). (5.90)

Finally, the lower bound follows:

N ≥ Ω

(
d3

ind
3
out

ε2

)
. (5.91)

To assess this lower bound, it is necessary to design an algorithm for quantum process
tomography. This will be the object of the following section.

5.4 Upper bound

In this section, we propose an upper bound on the complexity of the quantum process
tomography problem. We generalize the algorithm proposed by [SSKKG22] which is
ancilla-free.

Theorem 5.4.1. [SSKKG22] There is an ancilla-free process tomography algorithm that
learns a quantum channel (of din = dout = d) in the distance d2 using only a number of
measurements:

N = O
(
d6 log(d)

ε2

)
. (5.92)

This algorithm proceeds by providing an unbiased estimator for the Choi state JN ,
then projecting this matrix to the space of Choi states (PSD and partial trace I/d)
and finally by invoking the Choi–Jamio lkowski isomorphism we obtain an approximation
of the channel. This reduction from learning the Choi state in the operator norm to
learning the quantum channel in the d2 distance uses mainly the inequality d2(N ,M) =
d‖JN − JM‖2 ≤ d2‖JN − JM‖∞ when din = dout = d. We generalize this result to
the diamond norm and any input/output dimensions. For this we show the following
inequality:

Lemma 5.4.1. Let N1 and N2 be two quantum channels. We have:

d�(N1,N2) ≤ dindout‖JN1 − JN2‖∞. (5.93)
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This inequality can also be obtained by applying the inequality (3) of [NPPŻ18] and
the triangle inequality. We provide a simpler proof for completeness.

Proof. Denote by M = N1 − N2. Let |φ〉 be a maximizing unit vector of the diamond
norm, i.e., ‖id ⊗M(|φ〉〈φ|)‖1 = d�(N1,N2). We can write |φ〉 = A ⊗ I |Ψ〉 where |Ψ〉 =

1√
din

∑din
i=1 |ii〉 is the maximally entangled state. |φ〉 has norm 1 so 1

din
Tr(A†A) = 〈Ψ|A†A⊗

I |Ψ〉 = 〈φ|φ〉 = 1. On the other hand we can write

d�(N1,N2) = ‖id⊗M(|φ〉〈φ|)‖1 (5.94)

= ‖I⊗M(A⊗ Idin |Ψ〉〈Ψ|A† ⊗ Idin)‖1 (5.95)

= ‖(A⊗ Idout)id⊗M(|Ψ〉〈Ψ|)(A† ⊗ Idout)‖1 (5.96)

= ‖(A⊗ Idout)JM(A† ⊗ Idout)‖1. (5.97)

JM is Hermitian so it can be written as : JM =
∑

i λi |ψi〉〈ψi|. Using the triangle
inequality, we obtain:

‖(A⊗ Idout)JM(A† ⊗ Idout)‖1 (5.98)

=

∥∥∥∥∥(A⊗ Idout)
∑
i

λi |ψi〉〈ψi| (A† ⊗ Idout)

∥∥∥∥∥
1

(5.99)

≤
∑
i

|λi|‖(A⊗ Idout) |ψi〉〈ψi| (A† ⊗ Idout)‖1 (5.100)

≤ max
i
|λi|
∑
i

‖(A⊗ Idout) |ψi〉〈ψi| (A† ⊗ Idout)‖1 (5.101)

= ‖J ‖∞
∑
i

Tr((A⊗ Idout) |ψi〉〈ψi| (A† ⊗ Idout)) (5.102)

= ‖J ‖∞Tr(AA† ⊗ Idout) = dindout‖J ‖∞. (5.103)

This Lemma shows that the diamond and 2 distances satisfy the same inequality with
respect to the infinity norm between the Choi states when din = dout = d. Since the
algorithm of [SSKKG22] approximates first the Choi state in the infinity norm, we obtain
the same upper bound for the diamond distance. For general dimensions, we obtain the
following complexity:

Theorem 5.4.2. There is a non-adaptive ancilla-free process tomography algorithm that
learns a quantum channel in the distance d� using only a number of measurements:

N = O
(
d3

ind
3
out log(dindout)

ε2

)
. (5.104)

This complexity was expected for process tomography with incoherent measure-

ments since the complexity of state tomography with incoherent measurements is Θ
(
d3

ε2

)
[HHJWY16] and learning (din, dout)-dimensional channels can be thought of as learning
states of dimension din × dout. We believe that the log(dindout)-factor can be removed
from the upper bound in Theorem 5.4.2 using the techniques of [GKKT20]. The algo-
rithm is formally described in Algorithm 9 and is similar to the one in [SSKKG22]. By
Theorem 5.3.1, Algorithm 9 is almost optimal.

Its analysis is also similar to the one in [SSKKG22].
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Algorithm 9 Learning a quantum channel in the diamond distance using ancilla-free
independent measurements.

N = O(d3
ind

3
out log(dindout)/ε

2).
for t = 1 : N do

Sample two independent copies of Haar distributed unitaries V ∼ Haar(din) and
U ∼ Haar(dout) .
Let |v〉 = V |0〉 be a Haar distributed vector.
Take the input states ρt = |v〉〈v| and σt = I

din
, the output states are respectively

N (|v〉〈v|) and N
(

I
din

)
.

Perform a measurement on N (|v〉〈v|) and N
(

I
din

)
using the POVM MU :=

{U |i〉〈i|U †}i∈[dout] and observe it ∼ pU,V := {〈i|U †N (|v〉〈v|)U |i〉}i∈[dout] and
jt ∼ qU := {〈i|U †N

( I
d

)
U |i〉}i∈[dout].

Define Jt := (din + 1) |v〉〈v|> ⊗ ((dout + 1)(U |it〉〈it|U †) − I) − I ⊗ ((dout +
1)(U |jt〉〈jt|U †)− I)

end for
Define the estimator Ĵ = 1

N

∑N
t=1 Jt.

Find a valid Choi state JM such that ‖JM − Ĵ ‖∞ ≤ ε
2dindout

.
return the quantum channel M corresponding to the Choi state JM.

Correctness Let us prove that Algorithm 9 is 1/3-correct. First we show that Ĵ =
1
N

∑N
t=1 Jt is an unbiased estimator of JN . For this, we prove the following lemma relating

the Choi state to the average of the tensor product of a random rank-1 projector and its
image by the quantum channel.

Lemma 5.4.2. Let |φ〉 be a Haar-distributed random vector. We have the following
equality:

JN = (din + 1)E
(
|φ〉〈φ|> ⊗N (|φ〉〈φ|)

)
− I⊗N

(
I
din

)
. (5.105)

Proof. We use the Kraus decomposition of the quantum channel N (ρ) =
∑

k AkρA
†
K . We

start by writing the following expectation:

E (|φ〉〈φ| ⊗ N (|φ〉〈φ|)) =
∑
k

E
(
|φ〉〈φ| ⊗ Ak |φ〉〈φ|A†k

)
(5.106)

=
∑
k

I⊗ AkE (|φ〉〈φ| ⊗ |φ〉〈φ|) I⊗ A†k (5.107)

Let F be the flip operator F =
∑din

i,j=1 |ij〉 〈ji|, if we take the transpose on the fist tensor
we obtain the unnormalized maximally entangled state:

F T1 =

din∑
i,j=1

|i〉 〈j|> ⊗ |j〉 〈i| =
din∑
i,j=1

|j〉 〈i| ⊗ |j〉 〈i| = din |Ψ〉〈Ψ| (5.108)

where |Ψ〉〈Ψ| = 1
din

∑din
i,j=1 |ii〉 〈jj| = 1

din

∑din
i,j=1 |i〉 〈j| ⊗ |i〉 〈j| is the maximally entangled

state. It is known that there is constants α and β such that:

E (|φ〉〈φ| ⊗ |φ〉〈φ|) = αI + βF. (5.109)
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Taking the trace we have the first relation 1 = αd2
in +βdin, then taking the trace after mul-

tiplying with F we obtain the second relation Tr(|φ〉〈φ| ⊗ |φ〉〈φ|F ) = Tr(|φ〉〈φ| |φ〉〈φ|) =
1 = αdin + βd2

in. These relations imply α = β = 1
din(din+1)

. Hence:

E (|φ〉〈φ| ⊗ |φ〉〈φ|) =
I + F

din(din + 1)
. (5.110)

Replacing this expectation on the first expectation yields:

E
(
|φ〉〈φ|> ⊗N (|φ〉〈φ|)

)
=
∑
k

E
(
|φ〉〈φ|> ⊗ Ak |φ〉〈φ|A†k

)
(5.111)

=
∑
k

I⊗ AkE
(
|φ〉〈φ|> ⊗ |φ〉〈φ|

)
I⊗ A†k (5.112)

=
1

din(din + 1)

∑
k

I⊗ AkA†k +
1

din(din + 1)

∑
k

I⊗ Ak(din |Ψ〉〈Ψ|)I⊗ A†k (5.113)

=
1

din(din + 1)
I⊗N (I) +

1

din + 1
I⊗N (|Ψ〉〈Ψ|) (5.114)

=
1

din(din + 1)
I⊗N (I) +

1

din + 1
JN . (5.115)

Then we compute another expectation:

Lemma 5.4.3. Let U ∼ Haar(d) and x ∼ pU,ρ := {〈i|U †ρU |i〉}i∈[d], we have

E
(
(d+ 1)U |x〉〈x|U † − I

)
= ρ (5.116)

Proof. Since the equality is linear in ρ we can without loss of generality restrict ourselves
to a pure state ρ = |φ〉〈φ|. Now x ∼ {〈i|U † |φ〉〈φ|U |i〉}i∈[d] hence for k, l ∈ [d], by
Weingarten calculus:

EU,x∼pU,φ
(
〈k|U |x〉〈x|U † |l〉

)
(5.117)

= EU

(
d∑

x=1

〈x|U † |φ〉〈φ|U |x〉 〈k|U |x〉〈x|U † |l〉

)
(5.118)

= EU

(
d∑

x=1

〈x|U † |φ〉〈φ|U |x〉 〈x|U † |l〉 〈k|U |x〉

)
(5.119)

=
d∑

x=1

1

d(d+ 1)
(δl,k + 〈φ|l〉〈k|φ〉) (5.120)

=
1

(d+ 1)
(〈k| I + |φ〉〈φ| |l〉)) (5.121)

Therefore

E
(
(d+ 1)U |x〉〈x|U † − I

)
= |φ〉〈φ| = ρ. (5.122)
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Using Lemmas 5.4.2 and 5.4.3 we deduce:

E
(
Ĵ
)

= E (J1) (5.123)

= EV,U,it,jt
[
(din + 1) |v〉〈v|> ⊗ ((dout + 1)(U |it〉〈it|U †)− I)

]
(5.124)

− EV,U,it,jt
[
I⊗ ((dout + 1)(U |jt〉〈jt|U †)− I)

]
(5.125)

= EV
[
(din + 1) |v〉〈v|> ⊗ EU,it((dout + 1)(U |it〉〈it|U †)− I)

]
(5.126)

−
[
I⊗ EU,jt((dout + 1)(U |jt〉〈jt|U †)− I)

]
(5.127)

= EV

(
(din + 1) |v〉〈v|> ⊗N (|v〉〈v|))− I⊗N

(
I
din

))
= JN . (5.128)

So the estimator Ĵ = 1
N

∑N
t=1 Jt is unbiased. It remains to show a concentration inequal-

ity for the random variable Ĵ so that we can estimate how much steps we need in order
to achieve the precision and confidence we aim to. For this, we use the matrix Bernstein
inequality [Tro12]:

Theorem 5.4.3. [Tro12] Consider a sequence of n independent Hermitian random ma-
trices A1, . . . , An ∈ Cd×d. Assume that each Ai satisfies

E (Ai) = 0 and ‖Ai‖∞ ≤ R as. (5.129)

Let σ2 = ‖
∑n

i=1E (A2
i ) ‖∞. Then for any t ≥ σ2

R
:

P

(∥∥∥∥∥
n∑
i=1

(Ai − E (Ai))

∥∥∥∥∥
∞

≥ t

)
≤ d exp

(
− 3t

8R

)
. (5.130)

Moreover for any t ≤ σ2

R
:

P

(∥∥∥∥∥
n∑
i=1

(Ai − E (Ai))

∥∥∥∥∥
∞

≥ t

)
≤ d exp

(
− 3t2

8σ2

)
. (5.131)

Let J = JN = E (Jt). We apply this theorem to the estimator Ĵ −J = 1
N

∑N
t=1(Jt−

J ). Recall that

Jt = (din + 1) |v〉〈v|> ⊗ ((dout + 1)(U |it〉〈it|U †)− I)− I⊗ ((dout + 1)(U |jt〉〈jt|U †)− I).
(5.132)

Let At = Jt−J
N

, we have proven that E (At) = 1
N
E (Jt − J ) = 0. Moreover

‖At‖∞ =
1

N
‖Jt − J ‖∞ ≤

1

N
(‖Jt‖∞ + ‖J ‖∞) ≤ 8dindout

N
:= R. (5.133)

Besides

σ2 =

∥∥∥∥∥
N∑
t=1

E
(
A2
t

)∥∥∥∥∥
∞

=
1

N

∥∥E ((J1 − J )2
)∥∥
∞ =

1

N

∥∥E ((J1)2
)∥∥
∞ + Θ

(
1

N

)
. (5.134)
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Using the identity (a |φ〉〈φ| − I)2 = (a2 − 2a) |φ〉〈φ|+ I, we have:

E
([

I⊗ ((dout + 1)(U |jt〉〈jt|U †)− I)
]2)

(5.135)

= E
(
(I⊗ ((d2

out − 1)(U |jt〉〈jt|U †) + I)
)

(5.136)

= E
(
(I⊗ ((d2

out − 1)(U |jt〉〈jt|U † − I/(dout + 1)) + dout I)
)

(5.137)

= (dout − 1)I⊗N (I/din) + dout I⊗ I (5.138)

has an operator norm at most O(dout) so we can focus on the first term in the definition
of J1 which has the main contribution. We have using again the identity (a |φ〉〈φ| − I)2 =
(a2 − 2a) |φ〉〈φ|+ I:

E
[
(din + 1) |v〉〈v|> ⊗ ((dout + 1)(U |it〉〈it|U †)− I)

]2
(5.139)

= (din + 1)2E
(
|v〉〈v|> ⊗ ((dout + 1)(U |it〉〈it|U †)− I)2

)
(5.140)

= (din + 1)2E
(
|v〉〈v|> ⊗ ((d2

out − 1)(U |it〉〈it|U †) + I)
)

(5.141)

= (dout − 1)(din + 1)(J + I⊗N (I/din)) +

(
dout(din + 1)2

din

)
I (5.142)

which has an operator norm Θ(dindout). Therefore

σ2 =
1

N

∥∥E (J 2
1

)∥∥
∞ + Θ

(
1

N

)
= Θ

(
dindout

N

)
. (5.143)

Since we have σ2

R
≥ Ω(1) we can use the matrix-Bernstein inequality in the regime t =

ε
2dindout

≤ O(1):

P

(∥∥∥∥∥
N∑
t=1

(At − E (At))

∥∥∥∥∥
∞

≥ ε

2dindout

)
≤ dindout exp

(
− 3ε2

8d2
ind

2
outσ

2

)
(5.144)

≤ dindout exp

(
−CNε

2

d3
ind

3
out

)
(5.145)

where C > 0 is a universal constant. Hence if N = d3
ind

3
out log(3dindout)/(Cε

2) =
O (d3

ind
3
out log(dindout)/ε

2) then with a probability at least 2/3 we have

‖Ĵ − JN‖∞ =

∥∥∥∥∥
N∑
t=1

(At − E (At))

∥∥∥∥∥
∞

≤ ε

2dindout

. (5.146)

This implies that ‖JM − JN‖∞ ≤ ε
dindout

and finally ‖M − N‖� ≤ ε by Lemma 5.4.1.
This finishes the proof of the correctness of Algorithm 9.

5.5 Conclusion and open questions

In this chapter, we find the optimal complexity of quantum process tomography using non-
adaptive incoherent measurements. Furthermore, we show that ancilla-assisted strategies
cannot outperform their ancilla-free counterparts contrary to Pauli channel tomography
[CZSJ22]. Still, many questions remain open. First, it is known that adaptive strategies
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have the same complexity as non-adaptive ones for state tomography [CHLLS22], could
adaptive strategies overcome non-adaptive ones for quantum process tomography? Sec-
ondly, can entangled strategies exploit the symmetry and show a polynomial (in din, dout)
speedup as they do for state tomography [HHJWY16]? Lastly, what would be the poten-
tial improvements for simpler problems such as learning the expectations of some given
input states and observables?



Chapter 6

Lower bounds on learning Pauli
channels

6.1 Introduction

In spite of their impressive progress over the last few years [AABB+19; ZWDC+20;
SSWE+21; EWLK+21], the scaling and effective employment of quantum technologies
still face many challenges. One of the most significant ones is how to tame the noise
affecting such devices. For that, more effective tools are required to characterize and
learn noisy quantum channels [EHWRMPCK20]. As the number of parameters required to
describe a quantum channel scales exponentially in the size of the device, it is challenging
to learn the noise beyond a few qubits.

A class of quantum channels that deserves particular attention is that of Pauli chan-
nels [Wat18, Sec. 4.1.2]. The reasons for that are manifold. First, Pauli channels provide
a simple and effective model of incoherent noise, admitting a representation in terms of
a probability distribution corresponding to different Pauli errors and inheriting the rich
structure of the Pauli matrices. Second, they are a physically relevant noise model and the
noise affecting a device can always be mapped into a Pauli channel by using randomized
compiling [WE16] techniques without incurring a loss in fidelity. These properties make
the problem of Pauli tomography, i.e. learning a Pauli channel, particularly relevant.
Finally, Pauli channel tomography is also known to be a problem for which quantum
resources provide an advantage [CZSJ22].

Furthermore, reliable protocols to learn quantum channels face the additional hurdle
that there might be errors both in the initial state preparation and measurements (SPAM
errors). Thus, it is desirable to design protocols that are robust to such errors. And, of
course, practical protocols should not rely on the preparation of complex states or mea-
surements. A popular and widely used protocol to learn Pauli channels that fulfills these
desiderata is that of randomized benchmarking and its variations [FW20; MGE12; FH18;
HROWE22; HXVW19]. Finally, Pauli noise model reflects experiments that are actually
done in practice (see e.g., [HFW20] which includes an experimental implementation). It
is thus natural to ask to what extent it is optimal or whether we could hope for better
protocols to learn Pauli noise.

Contributions We provide lower bounds on the number of measurements or channel
uses for learning a Pauli quantum channel in diamond norm using incoherent measure-
ments and no auxiliary systems in both non-adaptive and adaptive settings (see Table 6.1

163
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for a summary). Let d = 2n the dimension of the input and output of the unknown Pauli
channel on n qubits and ε > 0 the precision parameter.

• Non-adaptive setting: We show that any non-adaptive learning algorithm of a
Pauli channel should, at the worst case, use at least Ω(d3/ε2) measurements or a
total number Ω(d4/ε6) of channel uses. In particular, this shows that the randomized
benchmarking algorithm of [FW20, Result 1] is almost optimal since the channels
we consider in our construction have a spectral gap ∆ ≥ 1− 4ε and thus the total
number of channel uses is at most twice the number of measurements. This result
is stated in Theorem 6.4.1. For the proof, we construct an ε-separated family of
Pauli channels close to the maximally depolarizing channel and use it to encode a
message from [eΩ(d2)]. A learning algorithm can be used to decode this message with
the same success probability. Hence, the encoder and decoder should share at least
Ω(d2) nats of information. On the other hand, after each step, we show that the
correlation between the encoder and decoder can only increase by at most O(ε2/d)
nats if the channel is used at most 2 times. Moreover, if the channel is used m ≥ 3
times, we show in this case that the correlation between the encoder and decoder
can only increase by at most O(mε6/d2) nats. Note that the naive upper bound
on this correlation is O(ε2), we obtain an improvement by a factor d or d2/m by
exploiting the randomness in the construction of the Pauli channel.

• Adaptive setting: We show that in general, any learning algorithm of a Pauli
channel should use at least Ω(d2/ε2) measurements no matter how many times
the channel is applied and intertwined with other unital operations before each
measurement. For the proof, we can use the same construction to encode a message
in [eΩ(d2)]. In order to decode this message with high probability, a learner needs to
share at least Ω(d2) nats of information with the uniform encoder. Then, we need to
show that, for a Pauli channel close to the maximally depolarizing channel, at each
step, reapplying the channel m ≥ 1 times even intertwined with unital operations
can only add a noise and does not help to extract useful information: the amount
of correlation between the encoder and decoder increases by at most O(ε2m) nats.
This result is stated in Theorem 6.3.1. Furthermore, if the (adaptive) algorithm
could only apply the Pauli channel once per step, it should use at least Ω(d2.5/ε2)
measurements if ε ≤ 1/(20d). This result is stated in Theorem 6.5.1. The strategy
of the proof is the same as in the non-adaptive case. When the learner can adapt its
choices of input and measurement device depending on the previous observations,
we expect that its correlations with the uniform encoder will increase by more than
O(ε2/d) nats per step. Besides the naive upper bound of O(ε2) on this correlation,
we show that if the learner uses the channel once per step, it can only increase its
correlation with the encoder by at most O(kε4/d3) nats at step k. For this, we
change the previous construction and use normalized Gaussian random variables
in the Pauli channel’s coefficients. The Gaussian variables allow us to break the
dependency between the probability of measurements at different steps by applying
Gaussian integration by parts on an upper bound of the mutual information.

Related work Learning Pauli channels has been considered in different settings.
[FW20] provides an algorithm for learning Pauli channels in `2-norm using Õ(d/ε2) mea-
surements. This implies an upper bound of Õ(d3/ε2) for learning Pauli channel in `1-norm.
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Model Lower bound Upper bound

Non-adaptive, `1-distance
N = Ω(d3/ε2) or N = Õ(d3/ε2)∑N

t=1mt = Ω(d4/ε6) [Thm. 6.4.1] [FW20]

Non-adaptive, `∞-distance
N = Ω(1/ε2) N = Õ(1/ε2)

[FO21] [FO21]

Adaptive, `1-distance N = Ω(d2/ε2) [Thm. 6.3.1]
N = Õ(d3/ε2)

[FW20]

Adaptive, `1-distance
N = Ω(d2.5/ε2) [Thm. 6.5.1]

N = Õ(d3/ε2)
ε ≤ 1/(20d), ∀t ∈ [N ] : mt = 1 [FW20]

Table 6.1: Lower and upper bounds for Pauli channel tomography using incoherent mea-
surements. N is the total number of steps or measurements. At each step t ∈ [N ], mt

denotes the total number of channel uses between the (t− 1)th and tth measurements.

For completeness, we reproduce this argument in Section 6.7. In this chapter, we address
an open question posed in [FW20] about a lower bound for learning Pauli channels. In
particular we show that the algorithm of [FW20] is optimal up to logarithmic factors.
Moreover, learning a Pauli channel in `∞-norm was shown to be solved with Θ̃(1/ε2)
measurements in [FO21] and this is optimal up to logarithmic factors. The previous set-
tings did not allow for ancillas. The work of [CZSJ22] shows an exponential separation
between allowing and not allowing ancilla for estimating the Pauli eigenvalues in `∞-norm.
Using the Parseval–Plancherel identity, their upper bound can be translated to learning in
`1-norm with an n-qubit ancilla assisted algorithm using Õ(d2/ε2) measurements. How-
ever, our lower bounds do not apply in this setting since we only consider ancilla-free
strategies. We also note that [CZSJ22] shows a lower bound of Ω(d

1
3/ε2) measurements

to learn the eigenvalues of P in the adaptive setting up to ε in `∞-norm and Ω(d/ε2)
in the non-adaptive setting. However, this is a different figure of merit than the one
we consider. Other noteworthy protocols to learn quantum channels include gate set to-
mography [BKGNMSM13] and techniques based on compressed sensing [RKKLGEK18].
Although they apply to more general classes of channels, they do not offer quantitative
or qualitative advantages over randomized benchmarking in the setting of Pauli channels.
We refer the readers to the survey [MW13] for results on testing quantum channels and
to [SSKKG22] and Chapter 5 for quantum channel learning in the non-adaptive setting.
It is shown that Θ̃(d6/ε2) copies are necessary and sufficient to learn a (d, d)-dimensional
quantum channel in the diamond norm. However, if we add the Pauli structure to the
channel, our lower bound along with the upper bound of [FW20] show that the optimal
copy complexity becomes only Θ̃(d3/ε2). On the other hand, the question of optimal
quantum channel tomography remains open in the adaptive setting.

6.2 Preliminaries

Let d = 2n be the dimension of an n-qubit system. Recall that a quantum channel is a
map N : Cd×d → Cd×d of the form N (ρ) =

∑
k AkρA

†
k where the Kraus operators {Ak}k

satisfy
∑

k A
†
kAk = I. If the quantum channel N satisfies further N (I) = I, it is called

unital. Pauli channels are special quantum channels whose Kraus operators are weighted
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Pauli operators. Formally, a Pauli quantum channel P can be written as follows:

P(ρ) =
∑

P∈{I,X,Y,Z}⊗n
p(P )PρP (6.1)

where the Pauli matrices I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
and {p(P )}P∈{I,X,Y,Z}⊗n is a probability distribution. Let Pn = {I, X, Y, Z}⊗n be the set
of Pauli operators. The elements of Pn either commute or anti commute. Let P and Q be
two Pauli operators, we have PQ = (−1)P.QQP where P.Q = 0 if [P,Q] = 0 and P.Q = 1
otherwise.

We consider the Pauli channel tomography problem which consists of learning a Pauli
channel in the diamond norm. Given a precision parameter ε > 0, the goal is to construct
a Pauli channel P̃ satisfying with at least a probability 2/3:

‖P − P̃‖� ≤ ε. (6.2)

An algorithm A is 1/3-correct for this problem if it outputs a Pauli channel ε-close to P
with a probability of error at most 1/3. We choose to learn in the diamond norm because
it characterizes the minimal error probability to distinguish between two quantum chan-
nels when auxiliary systems are allowed [Wat18]. Since the diamond norm between two
Pauli channels is exactly twice the TV-distance between their corresponding probability
distributions [MGE12], approximating the Pauli channel P in diamond norm is equivalent
to approximating the probability distribution p in TV-distance.

The learner can only extract classical information from the unknown Pauli channel
P by performing a measurement on the output state. Throughout the chapter, we only
consider unentangled or incoherent measurements. That is, the learner can only measure
with an n-qubit measurement device and auxilliary qubits or measuring multiple copies
at once is not allowed. This restriction is natural for the problem at hand, given that
performing measurements on multiple copies requires a quantum memory. We refer to
Section 1.4.3 for the definitions of different settings for learning channels.

For an integer t ≥ 1, we say that the learner is at step t if it has already performed t−1
measurements. With this definition, the total number of steps is exactly the total number
of measurements. However, depending on the setting, the total number of channel uses
could be different than the total number of steps. The goal of the chapter is to show lower
bounds on the total number of steps as well as the total number of the channel uses.

A simple example we can propose to see the effect of reusing the channel is the following
test: H0 : P(ρ) = ρ vs H1 : P(ρ) = (1− ε)ρ+ εTr(ρ) I

d
. We can choose as input the rank

one state ρ = |0〉〈0|. Under the null hypothesis H0, the channel does not affect the state
|0〉〈0|. On the other hand, under H1, if we apply the channel P a number m ∈ N∗ times
the resulting quantum state is P(m)(ρ) = (1 − ε)m |0〉〈0| + (1− (1− ε)m) I

d
. Hence, if

we measure with the POVM M = {|0〉〈0| , I − |0〉〈0|} of outcomes 0 and 1 respectively,
under H0 we will always see 0 while under H1, we will see 0 with probability roughly
(1 − ε)m. Therefore, we can achieve a confidence δ with only one measurement but the
channel is reused log(1/δ)/ε-times. However, if we do not allow reusing the channel, then
the number of measurements needed is approximately log(1/δ)/ε.
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6.3 A general lower bound on the number of steps

required for Pauli channel tomography

In this section, we consider the problem of learning a Pauli quantum channel using inco-
herent measurements. Unlike the usual state tomography problem for which at each step
the learner can only choose the measurement device, for quantum channels, the learner
has additional choices. First, in every setting, the learner can choose the input quantum
state at each step. This choice can be done in an adaptive fashion: the input quantum
state at a given step can be chosen depending on the previous observations (and of course
the previous input states and POVMs). Second, the learner has the ability to reuse the
Pauli quantum channel as much as it wants before performing the measurement. This is
specific to quantum process tomography too since for state tomography using incoherent
measurements, once a measurement is performed, the post-measurement quantum state
is usually useless. Finally, the learner can intertwine arbitrary unital quantum channels
and the unknown Pauli quantum channel before measuring the output of this (possibly
long) sequence of quantum channels. We propose a lower bound on the number of steps
required for the Pauli channel tomography problem in this general setting.

Recall that Pauli channel tomography problem is equivalent to learning the probability
p in the TV-distance. Mainly, the learner would like to construct a probability distribution
p̂ on the set of Pauli operators Pn satisfying with at least a probability 2/3:

TV(p, p̂) ≤ ε (6.3)

with as few steps as possible.
Let N be a sufficient number of steps to learn P as defined in Equation (6.1). At

step t ∈ [N ], the learner has the ability to choose an input quantum state ρt, the number
mt ≥ 1 of uses of the quantum channel P , the unital quantum channels applied in between
N1, . . . ,Nmt−1 and the POVM Mt for measuring the output quantum state ρoutput

t :

ρoutput
t = P ◦ Nmt−1 ◦ P ◦ · · · ◦ P ◦ N1 ◦ P(ρt)︸ ︷︷ ︸

mt times

. (6.4)

All these elements can be chosen adaptively: the choice of mt, ρt,N1, . . . ,Nmt−1 and Mt

can depend on the previous observations I1, . . . , It−1 (see Figure 6.1 for an illustration).
However, to not overload the expressions we do not add the subscript I1, . . . , It−1 on
mt, ρt,N1, . . . ,Nmt−1 or Mt. By Born’s rule, performing a measurement on the output
quantum state ρoutput

t using the POVMMt = {M t
i }i∈I is equivalent to sampling from the

probability distribution

x ∼ {Tr(ρoutput
t M t

i )}i∈I . (6.5)

Note that unital operations cannot be used to prepare a new state and thus have a free
step. In fact, applying a unital operation after a noisy Pauli channel cannot prepare a
rank-1 state for example. We propose the following lower bound on the number of steps
N .

Theorem 6.3.1. The problem of Pauli channel tomography using incoherent measure-
ments requires a number of steps satisfying:

N = Ω

(
d2

ε2

)
. (6.6)
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. . .
M1

ρ1 P N1 P P Nm1−1 P I1

y(I1)

. . .

MI1
2

ρI12 P N I1
1 P P N I1

m2−1 P I2

y...

. . .

MI<N−1

N−1

ρ
I<N−1

N−1 P N I<N−1

1 P P N I<N−1

mN−1−1 P IN−1

yI<N = (I1, . . . , IN−1)

. . .

MI<N
N

ρ
I<N
N P N I<N

1 P P N I<N
mN−1 P IN

Figure 6.1: Illustration of an adaptive strategy for learning Pauli channel.

This Theorem shows that no matter how often the learner reuses the quantum Pauli
channel intertwined with other unital quantum channels on each step, the global number
of steps should be exponential in the number of qubits. This can be explained by the
fact that a Pauli channel adds noise to the input state, so reapplying it further increases
the noise and does not aid in extracting additional information. Although, as we remark
later, this lower bound is weaker in the dependency on the dimension d compared to the
non-adaptive case, it has the particularity of not depending on the number of uses of the
Pauli channel. For the proof, we follow a standard strategy for proving lower bounds of
learning problems (see e.g., [FGLE12; HHJWY16]).

Proof. We will break down the proof into several steps.

Construction of the family F We start by describing a general construction of a
big family F = {Px}x∈J1,MK constituted of quantum Pauli channels satisfying for all
x 6= y ∈ J1,MK : TV(px, py) ≥ ε, we say that the family F is ε-separated. These quantum
channels have the form for x ∈ J1,MK:

Px(ρ) =
∑

P∈{I,X,Y,Z}⊗n
px(P )PρP =

∑
P∈{I,X,Y,Z}⊗n

(
1 + 4αx(P )ε

d2

)
PρP (6.7)

where αx(P ) = ±1 to be chosen randomly so that αx(P ) = −αx(σ(P )) for some matching
σ of {I, X, Y, Z}⊗n 1. Suppose that we have already constructed an ε-separated family of

1in order to have
∑
P∈Pn

αx(P ) = 0 and thus a quantum channel for ε ≤ 1/4.
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Pauli quantum channels F = {Px}x of cardinality M . We show that we can add another
element to this family as long as M < ecd

2
for some sufficiently small constant c. For this,

we choose α(P ) = −α(σ(P )) = ±1 with probability 1/2 each. This α leads to a quantum

channel P(ρ) =
∑

P∈{I,X,Y,Z}⊗n

(
1+4α(P )ε

d2

)
PρP . Then, we control the probability that

the corresponding Pauli quantum channel is not ε-far from the family F . By the union
bound and Chernoff-Hoeffding inequality [Hoe63]:

P (∃Px ∈ F : TV(p, px) < ε) ≤
M∑
x=1

P

(∑
P∈Pn

|p(P )− px(P )| < 2ε

)
(6.8)

=
M∑
x=1

P

(∑
P∈Pn

4|α(P )− αx(P )| < 2d2

)
(6.9)

=
M∑
x=1

P

(∑
P∈Pn

1α(P )6=αx(P ) <
d2

4

)
(6.10)

=
M∑
x=1

P

 ∑
P∈Pn/σ

E
(
1α(P )6=αx(P )

)
− 1α(P ) 6=αx(P ) >

d2

8


(6.11)

≤
M∑
x=1

exp(−2(d2/2)(1/4)2) = M exp
(
−d2/16

)
(6.12)

which is strictly smaller than 1 if M < exp (d2/16). So far, we have proven the following
lemma:

Lemma 6.3.1. There exists an ε-separated family of quantum Pauli channels of the form
6.7 and size at least ed

2/16.

Hence, we can use this family to encode a message X ∼ Uniform J1,MK to a quantum
Pauli channel P = PX in the family constructed above. The decoder receives this unknown
quantum Pauli channel, chooses its inputs states and performs incoherent measurements
possibly after many uses of the channel intertwined with arbitrary unital quantum chan-
nels, and learns it to within a precision ε/2. It thus produces a Pauli quantum channel P̂
corresponding to a probability distribution p̂ satisfying, with a probability at least 2/3,
TV(p̂, pX) ≤ ε/2. Since the family of probability distributions {px}x∈[M ] is ε-separated,

there is only one X̂ such that TV(p̂, pX̂) ≤ ε/2. Therefore a 1/3-correct algorithm can
decode with a probability of failure at most 1/3. By Fano’s inequality, the encoder and
decoder should share at least Ω(log(M)) = Ω(d2) nats of information.

Lemma 6.3.2 ([Fan61]). The mutual information between the index of the actual channel
X and the estimated index X̂ is at least

I(X : X̂) ≥ 2/3 log(M)− log(2) = Ω(d2). (6.13)

Then we show that no algorithm can extract more than O(ε2) nats of information
at each step. For this, recall that X is the uniform random variable on the set J1,MK
representing the encoder and denote by I1, . . . , IN the observations of the decoder or the
1/3-correct algorithm. The Data-Processing inequality implies:

I(X : X̂) ≤ I(X : I1, . . . , IN). (6.14)
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Moreover, if we denote by I≤k−1 := (I1, . . . , Ik−1) for all 1 ≤ k ≤ N , the chain rule of
mutual information gives:

I(X : I1, . . . , IN) =
N∑
k=1

I(X : Ik|I≤k−1) (6.15)

where I(X : Ik|I≤k−1) denotes the conditional mutual information between X and Ik
giving I≤k−1. We claim that every conditional mutual information I(X : Ik|I≤k−1) can be
upper bounded by O(ε2). To prove this claim, we prove first a general upper bound on
the conditional mutual information.

At step t ∈ [N ] , the 1/3-correct algorithm used by the decoder chooses the input state
ρt, uses the unknown quantum Pauli channel P mt ≥ 1 times, eventually intertwines the
P with unital quantum channels N t

1 ,N t
2 , . . . ,N t

mt−1 and finally measures the output with
a POVM Mt = {λti |φti〉〈φti|}i∈It where 〈φti|φti〉 = 1 and

∑
i λ

t
i |φti〉〈φti| = I. Note that this

implies
∑

i λ
t
i = d. Observe that we can always reduce the measurement with a general

POVM M to the measurement with such a POVM by taking the projectors on the
eigenvectors of each element of the POVMM weighted by the corresponding eigenvalues.
We denote by Pmt(ρt) = P ◦ N t

mt−1 ◦ P . . .P ◦ N t
1 ◦ P︸ ︷︷ ︸

mt times

(ρt) the quantum channel applied

to the input quantum state ρt. We denote by q the joint distribution of (X, I1, . . . , IN):

q(x, i1, . . . , iN) =
1

M

N∏
t=1

λtit
〈
φtit
∣∣Pmtx (ρt)

∣∣φtit〉 . (6.16)

We use the usual notation of marginals by ignoring the indices on which we marginalize.
For instance, for all adaptive algorithms, for all 1 ≤ k ≤ N , we have:

q≤k(x, i1, . . . , ik) =
∑

ik+1,...,iN

1

M

N∏
t=1

λtit
〈
φtit
∣∣Pmtx (ρt)

∣∣φtit〉 (6.17)

=
1

M

k∏
t=1

λtit
〈
φtit
∣∣Pmtx (ρt)

∣∣φtit〉 N∏
t=k+1

∑
it

λtit
〈
φtit
∣∣Pmtx (ρt)

∣∣φtit〉 (6.18)

=
1

M

k∏
t=1

λtit
〈
φtit
∣∣Pmtx (ρt)

∣∣φtit〉 N∏
t=k+1

Tr(Pmtx (ρt)) (6.19)

=
1

M

k∏
t=1

λtit
〈
φtit
∣∣Pmtx (ρt)

∣∣φtit〉 . (6.20)

We sometimes abuse the notation and use q instead of q≤k when it is clear from the context.
In order to simplify the expressions, we introduce the notation uk,xik =

〈
φkik
∣∣ dPmkx (ρk) −

I
∣∣φkik〉. Note that for adaptive strategies the vectors

∣∣φkik〉 =
∣∣φtik(i<k)〉 and the states

ρk = ρk(i<k) depend on the previous observations i<k = (i1, . . . , ik−1) for all k ∈ [N ].
Then the general upper bound on the conditional mutual information is:

Lemma 6.3.3. Let 1 ≤ k ≤ N and uk,xik =
〈
φkik(i<k)

∣∣ dPmkx (ρk(i<k)) − I
∣∣φkik(i<k)〉. We

have for adaptive strategies:

I(X : Ik|I≤k−1) ≤ 5ExEi∼q≤k−1

[∑
ik

λkik
d

(uk,xik )2

]
. (6.21)
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Moreover, for non-adaptive strategies uk,xik =
〈
φkik
∣∣ dPmkx (ρk)− I

∣∣φkik〉 and:

I(X : Ik|I≤k−1) ≤ 5Ex

[∑
ik

λkik
d

(uk,xik )2

]
. (6.22)

Proof. We can remark that, for all 1 ≤ k ≤ N , q(x, i≤k) = λkik

(
1+uk,xik

d

)
q(x, i≤k−1) thus

q(x, ik|i≤k−1)

q(x|i≤k−1)q(ik|i≤k−1)
=
q(x, i≤k)q(i≤k−1)

q(x, i≤k−1)q(i≤k)
=

λkik

(
1+uk,xik

d

)
q(x, i≤k−1)q(i≤k−1)

q(x, i≤k−1)
∑

y q(y, i≤k)
(6.23)

=

λkik

(
1+uk,xik

d

)
q(i≤k−1)∑

y q(y, i≤k)
=

λkik

(
1+uk,xik

d

)
q(i≤k−1)

∑
y q(y, i≤k−1)λkik

(
1+uk,yik

d

) (6.24)

=
(1 + uk,xik )q(i≤k−1)∑
y q(y, i≤k−1)(1 + uk,yik )

=
(1 + uk,xik )∑

y q(y|i≤k−1)(1 + uk,yik )
. (6.25)

Therefore by Jensen’s inequality:

I(X : Ik|I≤k−1) = E

(
log

(
q(x, ik|i≤k−1)

q(x|i≤k−1)q(ik|i≤k−1)

))
(6.26)

= E

(
log

(
(1 + uk,xik )∑

y q(y|i≤k−1)(1 + uk,yik )

))
(6.27)

≤ E

(
log(1 + uk,xik )−

∑
y

q(y|i≤k−1) log(1 + uk,yik )

)
(6.28)

= E
(

log(1 + uk,xik )
)
−
∑
y

E
(
q(y|i≤k−1) log(1 + uk,yik )

)
. (6.29)

The first term can be upper bounded using the inequality log(1 + x) ≤ x verified for all
x ∈ (−1,+∞):

E
(

log(1 + uk,xik )
)

= Ex,i∼q log(1 + uk,xik ) ≤ Ex,i∼quk,xik = Ex,i∼q≤ku
k,x
ik

(6.30)

= Ex,i∼q≤k−1

∑
ik

λkik
d

(1 + uk,xik )uk,xik = Ex,i∼q≤k−1

∑
ik

λkik
d

(uk,xik )2 (6.31)

because
∑

ik

λkik
d
uk,xik = Tr(dPmtx (ρt) − I) = 0. The second term can be upper bounded
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using the inequality − log(1 + x) ≤ −x+ x2 verified for all x ∈ (−1/2,+∞):

E

(
−
∑
y

q(y|i≤k−1) log(1 + uk,yik )

)
= −

∑
y

Ex,i∼qq(y|i≤k−1) log(1 + uk,yik ) (6.32)

= −
∑
y

Ex,i∼q≤k−1
q(y|i≤k−1)

∑
ik

λkik
d

(1 + uk,xik ) log(1 + uk,yik ) (6.33)

≤
∑
y

Ex,i∼q≤k−1
q(y|i≤k−1)

∑
ik

λkik
d

(1 + uk,xik )(−uk,yik + (uk,yik )2) (6.34)

=
∑
y

Ex,i∼q≤k−1
q(y|i≤k−1)

∑
ik

λkik
d

(−uk,yik − u
k,y
ik
uk,xik + (uk,yik )2 + uk,xik (uk,yik )2) (6.35)

≤
∑
y

Ex,i∼q≤k−1
q(y|i≤k−1)

∑
ik

λkik
d

(2(uk,xik )2 + 2(uk,yik )2) (6.36)

= 4
∑
y

Ex,i∼q≤k−1
q(y|i≤k−1)

∑
ik

λkik
d

(uk,xik )2 = 4Ex,i∼q≤k−1

∑
ik

λkik
d

(uk,xik )2. (6.37)

Since the conditional mutual is upper bounded by the sum of these two terms, the upper
bound on the conditional mutual information follows.

The following Lemma permits to conclude the upper bound on the conditional mutual
information and thus the upper bound on the mutual information.

Lemma 6.3.4. Let m ≥ 1, N1, . . . ,Nm−1 be unital quantum channels and P be a Pauli
quantum channel in the family F . We have for all quantum states ρ and vectors |φ〉 ∈ Sd:

| 〈φ| dPNm−1P . . .PN1P(ρ) |φ〉 − 1| ≤ (4ε)m. (6.38)

Proof. For x ∈ J1,MK, we define the map Mx verifying the following equality:

Mx(ρ) = Px(ρ)− Tr(ρ)
I
d

=
∑

P∈{I,X,Y,Z}⊗n

4αx(P )ε

d2
PρP, (6.39)

where we have used the fact (see Lemma 6.6.2) that for all ρ:∑
P∈{I,X,Y,Z}⊗n

PρP = dTr(ρ)I. (6.40)

Note that Tr(Mx(ρ)) = Tr(Px(ρ))− Tr(ρ)Tr( I
d
) = Tr(ρ)− Tr(ρ) = 0. Applying a unital

quantum channel N between two quantum channels Px can be seen as :

PxNPx(ρ) = PxN
(

Tr(ρ)
I
d

+Mx(ρ)

)
= Px

(
Tr(ρ)

I
d

+NMx(ρ)

)
(6.41)

= Tr(ρ)
I
d

+Mx(
I
d

+NMx(ρ)) = Tr(ρ)
I
d

+MxNMx(ρ) (6.42)

because Tr(NMx(ρ)) = Tr(Mx(ρ)) = 0 and

Mx(I) =
∑

P∈{I,X,Y,Z}⊗n

4αx(P )ε

d2
I =

∑
P∈{I,X,Y,Z}⊗n/σ

4αx(P )ε

d2
I +

4αx(σ(P ))ε

d2
I = 0.



6.3. GENERAL LOWER BOUND 173

By induction, we generalize this equality to m applications of the Pauli channel Px:

PxNm−1Px . . .PxN1Px︸ ︷︷ ︸
m times

(ρ) = Tr(ρ)
I
d

+MxNm−1Mx . . .MxN1Mx︸ ︷︷ ︸
m times

(ρ) (6.43)

Therefore

〈φ| dPNm−1P . . .PN1P(ρ) |φ〉 = 〈φ| I + dMNm−1M . . .MN1M(ρ) |φ〉 (6.44)

= 1 + d 〈φ|MNm−1M . . .MN1M(ρ) |φ〉 . (6.45)

On the other hand, for all vectors |φ〉 ∈ Sd and Hermitian matrices X =
∑

i λi |φi〉〈φi|
we have: | 〈φ|X |φ〉 | = |

∑
i λi|〈φ|φi〉|2| ≤

∑
i |λi||〈φ|φi〉|2 = 〈φ| |X| |φ〉 therefore using

Lemma 6.6.2:

| 〈φ|M(X) |φ〉 | =

∣∣∣∣∣〈φ|∑
P∈Pn

4α(P )ε

d2
PXP |φ〉

∣∣∣∣∣ ≤ 4ε

d2

∑
P∈Pn

| 〈φ|PXP |φ〉 | (6.46)

≤ 4ε

d2

∑
P∈Pn

〈φ|P |X|P |φ〉 =
4ε

d2
〈φ| dTr|X|I |φ〉 =

4ε

d
Tr|X|, (6.47)

moreover we can also obtain:

Tr|M(X)| =

∥∥∥∥∥∑
P∈Pn

4α(P )ε

d2
PXP

∥∥∥∥∥
1

≤
∑
P∈Pn

4ε

d2
‖PXP‖1 (6.48)

=
∑
P∈Pn

4ε

d2
Tr|X| = 4εTr|X|, (6.49)

and for a quantum channel Nj:

Tr|Nj(X)| = ‖Nj(X)‖1 =

∥∥∥∥∥∑
i

λiNj(|φi〉〈φi|)

∥∥∥∥∥
1

(6.50)

≤
∑
i

‖λiNj(|φi〉〈φi|)‖1 =
∑
i

|λi| = Tr|X|. (6.51)

Therefore by induction we can prove:

| 〈φ| dPNm−1P . . .PN1P(ρ) |φ〉 − 1| = d| 〈φ|MNm−1M . . .MN1M(ρ) |φ〉 |

≤ d
4ε

d
Tr|Nm−1M . . .MN1M(ρ)|

= 4εTr|M . . .MN1M(ρ)|
≤ (4ε)2Tr|Nm−2 . . .MN1M(ρ)|
≤ (4ε)m . (6.52)

Now we can finally upper bound the mutual information between X and (I1, . . . , IN):

Lemma 6.3.5. The mutual information can be upper bounded as follows:

I(X : I1, . . . , IN) = O(Nε2). (6.53)
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. . .
M1

ρ1 P N1 P P Nm1−1 P I1

y
. . .

M2

ρ2 P N1 P P Nm2−1 P I2

y...

. . .
MN

ρN P N1 P P NmN−1 P IN

Figure 6.2: Illustration of a non-adaptive strategy for learning Pauli channel.

Proof. For all 1 ≤ t ≤ N , we remark that ut,xit =
〈
φtit
∣∣ dPmtx (ρt) − I

∣∣φtit〉 =
(〈φ| dPxNmt−1Px . . .PxN1P(ρt) |φ〉 − 1), so by Lemmas 6.3.3 and 6.3.4:

I(X : It|I≤t−1) ≤ 5Ex,i∼q≤t−1

∑
it

λtit
d

(ut,xit )2 ≤ 5Ex,i∼q≤k−1

∑
it

λtit
d

16ε2 = 80ε2 (6.54)

because
∑

it
λtit = d. Finally:

I(X : I1, . . . , IN) =
N∑
t=1

I(X : It|I≤t−1) = O(Nε2). (6.55)

Using Lemmas 6.3.2 and 6.3.5 we obtain:

Ω(d2) ≤ I ≤ O(Nε2), (6.56)

which yields the lower bound N = Ω(d2/ε2).

To assess a lower bound, we need to compare it with upper bounds. The algorithm

of [FW20] implies an upper bound of O
(
d3 log(d)

ε2

)
(see Section 6.7 for a self contained

proof), so there is a gap between our lower bound and this upper bound. However, note
that the algorithm of [FW20] (and in fact most channel learning protocols we are aware
of) use non-adaptive strategies. We will now show that indeed [FW20] is optimal if we
restrict to non-adaptive protocols.

6.4 Optimal Pauli channel tomography with non-

adaptive strategies

The main difference between non-adaptive and adaptive strategies is that the former
should choose the set of inputs, number of repetition, unital channels applied in between
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and the measurement devices before starting the learning procedure so that they cannot
depend on the actual observations of the algorithm. Concretely, besides fixing the total
number of steps N and the total number of channels uses at each step {mt}t∈[N ], the
non-adaptive algorithm is asked to choose also the inputs {ρt}t∈[N ], the unital channels
{{Nj}j∈[mt−1]}t∈[N ] and the POVMs {Mt}t∈[N ] which we suppose without loss of generality
have the form Mt = {λti |φti〉〈φti|}i∈It where 〈φti|φti〉 = 1 and

∑
i∈It λ

t
i = d. The output

state at step t ∈ [N ] has the form:

ρoutput
t = P ◦ Nmt−1 ◦ P ◦ · · · ◦ P ◦ N1 ◦ P(ρt)︸ ︷︷ ︸

mt times

. (6.57)

Hence, when the algorithm performs a measurement on the output state ρoutput
t using the

POVM Mt = {λti |φti〉〈φti|}i∈It , it observes it ∈ It with probability:

Tr
(
λtit
∣∣φtit〉〈φtit∣∣ ρoutput

t

)
= λtit

〈
φtit
∣∣P ◦ Nmt−1 ◦ P ◦ · · · ◦ P ◦ N1 ◦ P(ρt)

∣∣φtit〉 . (6.58)

We refer to Figure 6.2 for an illustration. We prove the following lower bound on the
total number of measurements and steps:

Theorem 6.4.1. The problem of Pauli channel tomography using non-adaptive incoherent
measurements requires a total number of channel uses verifying:

N∑
t=1

mt = Ω

(
d4

ε6

)
(6.59)

or a total number of steps satisfying:

N = Ω

(
d3

ε2

)
. (6.60)

At a first sight we can think that this Theorem is not comparable to Theorem 6.3.1
since we give lower bounds on different parameters. However, if we ask the algorithm to
only apply the channel once per step, we obtain an improved lower bound on the number
of steps required for Pauli channel tomography using non-adaptive strategies. Moreover,
it shows that the upper bound of [FW20] is almost optimal especially if we know that the
additional uses of channels at each step are only required to make the algorithm resilient

to errors in SPAM. Finally, the optimal complexity Θ
(
d3

ε2

)
for Pauli channel tomography

is quite surprising: We are ultimately interested in learning a classical distribution on

Pn ' [d2] in TV-distance which requires a complexity of Θ
(
d2

ε2

)
in the usual sampling

access model, so our model is strictly weaker than the usual sampling access model.
Furthermore, the quantum process tomography problem has an optimal copy complexity

of Θ
(
d6

ε2

)
(see Chapter 5): this shows that adding an additional structure to the channel

can make the optimal complexity of channel tomography smaller.

Proof. The construction on the family F is similar to the construction in the proof of
Theorem 6.3.1. We only need to add some constraints about the concentration of the
means 1

M

∑M
x=1 g(αx) around their expectations for every function g ∈ G. To see what

are the functions we need to consider in the set G, let us simplify the mutual information
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between X and I1, . . . , IN in the non-adaptive setting. Recall from Lemma 6.3.3 that the
mutual information can be upper bounded as follows:

I(X : I1, . . . , IN) =
N∑
t=1

I(X : It|I≤t−1) ≤ 5
N∑
t=1

Ex,i∼q≤t−1

∑
it

λtit
d

(ut,xit )2. (6.61)

Since now we consider non-adaptive algorithms, this upper bound can be simplified:

5Ex,i∼q≤t−1

∑
it

λtit
d

(ut,xit )2 = 5
1

M

M∑
x=1

∑
it∈It

λtit
d

(ut,xit )2. (6.62)

We remark that we only need to approximate

1

M

M∑
x=1

N∑
t=1

∑
i∈It

λti
d

(〈
φti
∣∣ dPmtx (ρt)

∣∣φti〉− 1
)2
. (6.63)

Note that (〈φ| dPmt(ρt) |φ〉 − 1)2 ∈ [0, (4ε)2] for every |φ〉 ∈ Sd and ε ≤ 1/4 (see (6.52)).

Also, we have for all t ∈ [N ],
∑

i∈It
λti
d

= 1 so

N∑
t=1

∑
i∈It

λti
d

(〈
φti
∣∣ dPmtx (ρt)

∣∣φti〉− 1
)2 ∈ [0, 16Nε2]. (6.64)

Therefore by Hoeffding’s inequality [Hoe63] for s =
√

(16Nε2)2 log(10)
2M

P

(∣∣∣∣∣ 1

M

M∑
x=1

N∑
t=1

∑
i∈It

λti
d

(〈
φti
∣∣ dPmtx (ρt)

∣∣φti〉− 1
)2 − Eα

N∑
t=1

∑
i∈It

λti
d

(〈
φti
∣∣ dPmtα (ρt)

∣∣φti〉− 1
)2

∣∣∣∣∣ > s

)
(6.65)

≤ exp

(
− 2Ms2

(16Nε2)2

)
= exp

(
−

2M (16Nε2)2 log(10)
2M

(16Nε2)2

)
=

1

10
. (6.66)

By a union bound, this error probability 1/10 can be absorbed in the error probability of
the construction by choosing a small enough constant c in the cardinality of the family
M = exp(cd2). To recapitulate, we have proven so far that we can construct the family
of quantum Pauli channels F so that the mutual information satisfies:

Ω(d2) ≤ I ≤ I(X : I1, . . . , IN)

≤ 5
∑
t

∑
it∈It

λtit
d
Eα
(〈
φtit
∣∣ dPmtα (ρt)

∣∣φtit〉− 1
)2

+ 60Nε2 exp(−Ω(d2)). (6.67)

We claim that the RHS can be upper bounded for mt = 1 as follows:

Lemma 6.4.1. For all t ∈ [N ], for all unit vectors |φ〉 ∈ Sd:

Eα (〈φ| dPα(ρt) |φ〉 − 1)2 ≤ 32ε2

d
. (6.68)
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If the claim is true, the inequalities 6.67 imply using the fact that for all t ≤ N ,∑
it∈It λ

t
it = d:

Ω(d2) ≤ I ≤ 5
N∑
t=1

∑
it∈It

λtit
d

ε2

d
+ 60Nε2 exp(−Ω(d2)) ≤ O

(
N
ε2

d

)
(6.69)

and the lower bound of N = Ω(d3/ε2) yields for strategies using only one channel per
step.

Proof. Let t ∈ [N ] and |φ〉 ∈ Sd. We have:

Eα(〈φ| dPα(ρt) |φ〉 − 1)2 = Eα

(∑
P∈Pn

4α(P )ε

d
〈φ|PρtP † |φ〉

)2

(6.70)

= Eα
∑

P,Q∈Pn

16α(P )α(Q)ε2

d2
〈φ|PρtP † |φ〉 〈φ|QρtQ† |φ〉 (6.71)

=
∑
P∈Pn

16ε2

d2
(〈φ|PρtP † |φ〉 〈φ|PρtP † |φ〉 − 〈φ|PρtP † |φ〉 〈φ|σ(P )ρtσ(P )† |φ〉) (6.72)

≤
∑
P∈Pn

32ε2

d2
〈φ|PρtP † |φ〉2 ≤

∑
P∈Pn

32ε2

d2
〈φ|Pρ2

tP
† |φ〉 =

32ε2

d2
〈φ| dTr(ρ2

t )I |φ〉 ≤
32ε2

d
,

(6.73)

where we used the Cauchy-Schwarz inequality.

Now, if we allow multiple uses of the channel at each step, we obtain the following
upper bound depending on the number m ≥ 2 of channel uses:

Lemma 6.4.2. For all t ∈ [N ], m ≥ 2 and unit vectors |φ〉 ∈ Sd:

Eα (〈φ| dPmα (ρt) |φ〉 − 1)2 ≤ 4m · (4ε)2m

dmin{2,m−1} . (6.74)

Proof. Recall that for a Pauli channel Pα, we can define Mα = Pα − Tr() I
d

so that
after m applications of the Pauli channel Pα intertwined by the unital quantum channels
N1, . . . ,Nm−1, we have the following identity:

PαNm−1Pα . . .PαN1Pα(ρ)︸ ︷︷ ︸
m times

= Tr(ρ)
I
d

+MαNm−1Mα . . .MαN1Mα(ρ)︸ ︷︷ ︸
m times

. (6.75)

The definition of Pα implies:

Mα(ρ) = Pα(ρ)− Tr(ρ)
I
d

=
∑
P∈Pn

4α(P )ε

d2
PρP =

∑
P∈Pn

4α(P )ε

d2
NP (ρ) (6.76)

where we use the notation for the unital quantum channel NP (ρ) = PρP for all P ∈
Pn. So, using the notation NP,m = NPmNm−1NPm−1 . . .NP2N1NP1 , we can develop the
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quantity we want to upper bound as follows:

Eα (〈φ| dPmα (ρ) |φ〉 − 1)2 = d2Eα (〈φ|MαNm−1Mα . . .MαN1Mα(ρ) |φ〉)2 (6.77)

= d2Eα

( ∑
P1,...,Pm

4α(P1)ε

d2
· · · 4α(Pm)ε

d2
〈φ| NPmNm−1NPm−1 . . .NP2N1NP1(ρ) |φ〉

)2

(6.78)

=
(4ε)2m

d4m−2

∑
P,Q∈Pn

Eα (α(P1) · · ·α(Pm)α(Q1) · · ·α(Qm)) 〈φ| NP,m(ρ) |φ〉 〈φ| NQ,m(ρ) |φ〉 .

(6.79)

If Q1, σ(Q1) /∈ {P1, . . . , Pm, Q2, . . . , Qm} the expected value
Eα (α(P1) · · ·α(Pm)α(Q1) · · ·α(Qm)) is 0, otherwise, we can upper bound each term
inside the sum by 1 and we count the number of these terms. Moreover we can gain two
factors d by using the properties of Pauli group for m ≥ 3. For example, suppose that
Q1 = P1, we have

∑
P∈Pn NP (ρ) =

∑
P∈Pn PρP = dTr(ρ)I hence for m ≥ 3:

(4ε)2m

d4m−2

∑
P,Q:Q1=P1

Eα (α(P1) · · ·α(Pm)α(Q1) · · ·α(Qm)) 〈φ| NP,m(ρ) |φ〉 〈φ| NQ,m(ρ) |φ〉

(6.80)

≤ (4ε)2m

d4m−2

∑
P,Q:Q1=P1

〈φ| NP,m(ρ) |φ〉 〈φ| NQ,m(ρ) |φ〉 (6.81)

=
(4ε)2m

d4m−2

∑
P,Q<m:Q1=P1

〈φ|
∑
Pm

NP,m(ρ) |φ〉 〈φ|
∑
Qm

NQ,m(ρ) |φ〉 (6.82)

=
(4ε)2m

d4m−2

∑
P,Q<m:Q1=P1

〈φ| dTr(Nm−1,...,1,P1(ρ))I |φ〉 〈φ| dTr(Nm−1,...,1,Q1(ρ))I |φ〉 (6.83)

=
(4ε)2m

d4m−2

∑
P,Q<m:Q1=P1

d2 =
(4ε)2m

d4m−2
(d2)2m−3d2 =

(4ε)2m

d2
. (6.84)

Since we have 2(2m − 1) possibilities for Q1, σ(Q1) ∈ {P1, . . . , Pm, Q2, . . . , Qm}, we con-
clude that:

Eα (〈φ| dPmα (ρ) |φ〉 − 1)2 ≤ 2(2m− 1)
(4ε)2m

d2
≤ 4m

(4ε)2m

d2
. (6.85)

Now, if m = 2, we can have Q1 = Q2 and therefore we cannot gain a factor d when
summing over Q2. In this case, we obtain instead an upper bound:

Eα
(
〈φ| dP2

α(ρ) |φ〉 − 1
)2 ≤ 6

(4ε)4

d
. (6.86)

Using the inequalities 6.67 and the fact that for all t ∈ [N ],
∑

it∈It λ
t
it = d, we deduce:

210
∑
t:mt≤2

ε2

d
+ 4

∑
t:mt≥3

mt
(4ε)2mt

d2
= Ω(d2). (6.87)
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M1

ρ1 P I1

I1
−→

MI1
2

ρI12 P I2
...
I<N
−→

MI<N
N

ρI<NN P IN

Figure 6.3: Illustration of an adaptive strategy for learning Pauli channel using one chan-
nel per step.

Therefore we have either
∑

t:mt≤2
ε2

d
= Ω(d2) or 4

∑
t:mt≥3mt

(4ε)2mt

d2
= Ω(d2). Finally, we

have either N = Ω
(
d3

ε2

)
or
∑N

t=1mt = Ω
(
d4

ε6

)
.

This proof relies crucially on the non-adaptiveness of the strategy. This can be
seen clearly when simplifying the upper bound of the conditional mutual information
in Lemma 6.3.3. For an adaptive strategy, this upper bound contains large products for
which the expectation (under α) can only upper bounded by O(ε2) which implies a lower
bound on N similar to Theorem 6.3.1. In the next section, we explore how to overcome
this difficulty in some regime of ε and improve the general lower bound N = Ω(d2/ε2).

6.5 A lower bound for Pauli channel tomography

with adaptive strategies in the high precision

regime

In this section, we improve the general lower bound of quantum Pauli channel tomog-
raphy in Theorem 6.3.1 for adaptive strategies with one use of the channel each step.
In the adaptive setting, a learner could adapt its choices depending on the previous
observations. It can prepare a large set of inputs and measurements and thus it poten-
tially has more power to extract information much earlier than its non-adaptive coun-
terpart. With this intuition, we expect that lower bounds for adaptive strategies should
be harder to establish. Moreover, in this section, we only consider one use of the chan-
nel for each step, i.e., mt = 1. After observing I1, . . . , It at steps 1 to t, the learner
would choose an input ρ≤tt+1 := ρI1,...,Itt+1 and a measurement device represented by a POVM

M≤t
t+1 :=

{
λI1,...,Itit+1

∣∣∣φI1,...,Itit+1

〉〈
φI1,...,Itit+1

∣∣∣ }
it+1∈I

I1,...,It
t+1

where the rank one matrices are projec-

tors and the coefficients sum to 1. So, the adaptive algorithm extracts classical information
at step t+1 from the unknown Pauli quantum channel P by first applying P to the input
ρI1,...,Itt+1 and then performing a measurement using the POVMMI1,...,It

t+1 (see Figure 6.3 for

an illustration). In this case, it observes it+1 ∈ II1,...,Itt+1 with a probability given by Born’s
rule:

Tr
(
ρI1,...,Itt+1 λI1,...,Itit+1

∣∣∣φI1,...,Itit+1

〉〈
φI1,...,Itit+1

∣∣∣) = λI1,...,Itit+1

〈
φI1,...,Itit+1

∣∣∣ ρI1,...,Itt+1

∣∣∣φI1,...,Itit+1

〉
. (6.88)



180 CHAPTER 6. LOWER BOUNDS ON LEARNING PAULI CHANNELS

We prove the following lower bound on the number of steps. Note that because of the
assumption mt = 1 for all steps t, the number of steps is the same as the number of
channel uses.

Theorem 6.5.1. Let ε ≤ 1/(20d). Adaptive strategies for the problem of Pauli channel
tomography using incoherent measurements require a number of steps satisfying:

N = Ω

(
d5/2

ε2

)
. (6.89)

Furthermore, any adaptive strategy that uses O(d2/ε2) memory requires a number of steps
N satisfying

N = Ω

(
d3

ε2

)
. (6.90)

In this Theorem, we show that we can improve on the general lower bound of The-
orem 6.3.1 by an exponential factor of number of qubits if the precision parameter ε is
small enough. However, this lower bound could be as well not optimal so it remains
either to improve it to match the non-adaptive upper bound of [FW20] or to propose
an adaptive algorithm with a number of steps matching this lower bound. With the
same proof, we can generalize this lower bound to adaptive algorithms with limited mem-
ory. Any strategy that adapts on at most

⌈
H
ε2

⌉
previous observations for the problem of

Pauli channel tomography using incoherent measurements requires a number of steps

N = Ω
(

min
{

d4√
Hε2

, d5

Hε2
, d

3

ε2

})
. For instance, if the algorithm can only adapt its in-

put state and measurement device on the previous
⌈
d2

ε2

⌉
observations then it requires

N = Ω
(
d3

ε2

)
steps to correctly approximate the unknown Pauli channel. The remaining

of this Section is reserved to the proof of this Theorem.

Construction of the family F We start by constructing a family of Pauli quantum
channels that is Ω(ε)-separated. The elements of this family would have the following
form, for all x ∈ F = J1,MK:

Px(ρ) =
∑
P∈Pn

1 + 2α̃x(P )εd/‖αx‖2

d2
PρP =

∑
P∈Pn

px(P )PρP (6.91)

where α̃(P ) = α(P ) − 1
d2

∑
Q∈Pn α(Q) and {α(P )}P are d2 random variables i.i.d. as

N (0, 1) and px(P ) = 1+2α̃x(P )εd/‖αx‖2
d2

. It is not difficult to check that {px}x are valid
probabilities for ε ≤ 1/4d. Indeed, for all P ∈ Pn we have |α̃(P )| ≤ 2‖α‖2 so for ε ≤ 1/4d
we have 1 + 2α̃x(P )εd/‖αx‖2 ∈ [0, 2] thus px(P ) ∈ [0, 2/d2] ⊂ [0, 1) for d ≥ 2. Moreover,
we claim that:

Lemma 6.5.1. Let β be an independent and identically distributed copy of α. We have:

P
(

TV(pα, pβ) <
ε

5

)
≤ exp

(
−Ω(d2)

)
. (6.92)

If this claim is true, then a union bound permits to show the existence of the family
with the property M = exp(Ω(d2)). Let us prove first a lower bound on the expected TV
distance between pα and pβ.
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Lemma 6.5.2. Let β be an independent and identically distributed copy of α. We have:

E (TV(pα, pβ)) ≥ 7ε

20
. (6.93)

Proof. We start by writing:

TV(pα, pβ) =
ε

d

∑
P∈Pn

∣∣∣∣∣ α̃(P )

‖α‖2

− β̃(P )

‖β‖2

∣∣∣∣∣ (6.94)

≥ ε

d

∑
P∈Pn

∣∣∣∣α(P )

‖α‖2

− β(P )

‖β‖2

∣∣∣∣− ε

d

∣∣∣∣
∑

Q∈Pn α(Q)

‖α‖2

−
∑

Q∈Pn β(Q)

‖β‖2

∣∣∣∣ (6.95)

where we use the triangle inequality. We can upper bound the expectation of the second
difference using the fact that ‖α‖2 is independent of {α(P )/‖α‖2}P :

E

(
ε

d

∣∣∣∣
∑

Q∈Pn α(Q)

‖α‖2

−
∑

Q∈Pn β(Q)

‖β‖2

∣∣∣∣) ≤ 2E

(
ε

d

∣∣∣∣∑P∈Pn α(P )

‖α‖2

∣∣∣∣) (6.96)

=
2ε

d

E
(∣∣∑

P∈Pn α(P )
∣∣)

E (‖α‖2)
≤ 4ε

d
. (6.97)

Indeed, by the Cauchy-Schwarz inequality:

E

(∣∣∣∣∣∑
P∈Pn

α(P )

∣∣∣∣∣
)
≤

√√√√√E
(∑

P∈Pn

α(P )

)2
 = d (6.98)

and by the Hölder’s inequality:

E (‖α‖2) ≥

√
E (‖α‖2

2)
3

E (‖α‖4
2)

=

√
(d2)3

d2(d2 − 1) + 3d2
≥ d

2
. (6.99)

We move to lower bound the expectation of the first difference using Hölder’s inequality:

E

(
ε

d

∑
P∈Pn

∣∣∣∣α(P )

‖α‖2

− β(P )

‖β‖2

∣∣∣∣
)

= εdE

(∣∣∣∣α(P )

‖α‖2

− β(P )

‖β‖2

∣∣∣∣) ≥ εd

√√√√√√√√
E

(∣∣∣α(P )
‖α‖2 −

β(P )
‖β‖2

∣∣∣2)3

E

(∣∣∣α(P )
‖α‖2 −

β(P )
‖β‖2

∣∣∣4)
(6.100)

≥ εd

√
8/d6

48/d4
≥ 2ε

5
. (6.101)

because we can compute the numerator using the fact that ‖α‖2 is independent of
{α(P )/‖α‖2}P :

E

(∣∣∣∣α(P )

‖α‖2

− β(P )

‖β‖2

∣∣∣∣2
)

= 2E

(
α(P )2

‖α‖2
2

)
− 2E

(
α(P )β(P )

‖α‖2‖β‖2

)
= 2

E (α(P )2)

E (‖α‖2
2)

=
2

d2
. (6.102)
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Moreover, we can bound the denominator by Hölder’s inequality and the fact that ‖α‖2

is independent of {α(P )/‖α‖2}P :

E

(∣∣∣∣α(P )

‖α‖2

− β(P )

‖β‖2

∣∣∣∣4
)
≤ 16E

(
α(P )4

‖α‖4
2

)
= 16

E (α(P )4)

E (‖α‖4
2)

=
48

d2(d2 − 1) + 3d2
≤ 48

d4
.

(6.103)

Therefore the expected value of the TV-distance satisfies:

E (TV(pα, pβ)) ≥ 2ε

5
− 4ε

d
≥ 7ε

20
. (6.104)

Once we have a lower bound on the expected value of TV(pα, pβ), we can proceed to
prove Lemma 6.5.1.

Proof. We want to show that the function TV(pα, pβ) concentrates around its mean. Let
(α, γ) and (β, δ) be two couples of standard Gaussian vectors. By the reverse triangle
inequality we have:

|TV(pα, pγ)− TV(pβ, pδ)| ≤ |TV(pα, pγ)− TV(pγ, pβ)|+ |TV(pγ, pβ)− TV(pβ, pδ)|
(6.105)

≤ TV(pα, pβ) + TV(pγ, pδ). (6.106)

On the set E2 = {(α, β) : ‖α‖2, ‖β‖2 > d/4} we have

TV(pα, pβ) ≤ ε

d

∑
P∈Pn

∣∣∣∣α(P )

‖α‖2

− β(P )

‖β‖2

∣∣∣∣+
ε

d

∣∣∣∣∣∑
P∈Pn

α(P )

‖α‖2

− β(P )

‖β‖2

∣∣∣∣∣ ≤ 2ε

d

∑
P∈Pn

∣∣∣∣α(P )

‖α‖2

− β(P )

‖β‖2

∣∣∣∣
(6.107)

≤ 2ε

d

∑
P∈Pn

∣∣∣∣α(P )

‖α‖2

− α(P )

‖β‖2

∣∣∣∣+
2ε

d

∑
P∈Pn

∣∣∣∣α(P )

‖β‖2

− β(P )

‖β‖2

∣∣∣∣ (6.108)

≤ 2ε

d

∑
P∈Pn

|α(P )|
∣∣∣∣‖α‖2 − ‖β‖2

‖α‖2‖β‖2

∣∣∣∣+
2ε

d

∑
P∈Pn

∣∣∣∣α(P )− β(P )

‖β‖2

∣∣∣∣ (6.109)

=
2ε

d
‖α‖1

∣∣∣∣‖α‖2 − ‖β‖2

‖α‖2‖β‖2

∣∣∣∣+
2ε

d

∣∣∣∣‖α− β‖1

‖β‖2

∣∣∣∣ (6.110)

≤ 2ε‖α‖2
‖α− β‖2

‖α‖2‖β‖2

+ 2ε
‖α− β‖2

‖β‖2

(6.111)

≤ 2ε
4

d
‖α− β‖2 + 2ε‖α− β‖2

4

d
=

16ε

d
‖α− β‖2. (6.112)

Here we used that ‖α‖1 ≤ d‖α‖2, as α is a vector with d2 entries, and our assumption
on the norms in the last line. Hence, on the set E4, by using the inequality x + y ≤√

2
√
x2 + y2:

|TV(pα, pγ)− TV(pβ, pδ)| ≤ TV(pα, pβ) + TV(pγ, pδ) ≤
16ε

d
‖α− β‖2 +

16ε

d
‖γ − δ‖2

(6.113)

≤ 16
√

2ε

d

√
‖α− β‖2

2 + ‖γ − δ‖2
2 =: L‖(α, γ)− (β, δ)‖2.

(6.114)
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Moreover, the function TV(pα, pβ) can be extended to an L-Lipschitz function on the
whole set Rd2×Rd2 using the following definition for every (α, β) ∈ Rd2×Rd2 (Kirszbraun
theorem, see e.g. [Mat99]):

f(α, β) = inf
(γ,δ)∈E2

{TV(pγ, pδ) + L‖(α, β)− (γ, δ)‖2}. (6.115)

We can control the expected value of f using the lower bound on the expected value of
TV(pα, pβ) (Lemma 6.5.2) as follows:

E (f) = E (f1E2) + E
(
f1(E2)c

)
≥ E (f1E2) ≥ 7ε

20
− 8ε exp(−Ω(d2)) ≥ 3ε

10
(6.116)

because

|E (f(α, β)1E2)− E (TV(pα, pβ)) | = E
(
TV(pα, pβ)1(E2)c

)
≤ 8εP (Ec) ≤ 8ε exp(−Ω(d2))

(6.117)

where we have used the fact that TV(pα, pβ) ≤ 4ε and P (Ec) = P (‖α‖2 ≤ d/4) ≤
exp(−Ω(d2)). Indeed, we can apply the concentration of Lipschitz functions of Gaussian
random variables [Wai19, Theorem 2.26] for the function α → ‖α‖2 which is 1-Lipschitz
by the triangle inequality:

|‖α‖2 − ‖β‖2| ≤ ‖α− β‖2 (6.118)

and its expectation satisfies E (‖α‖2) ≥ d/2, thus:

P (Ec) = P (‖α‖2 ≤ d/4) = P (‖α‖2 − E (‖α‖2) ≤ −d/4) ≤ exp(−Ω(d2)). (6.119)

We proceed with the same strategy for the function f which is L-Lipschitz where
L = 16

√
2ε

d
. By the concentration of Lipschitz functions of Gaussian random variables

[Wai19, Theorem 2.26], we obtain for all s ≥ 0 :

P (|f − E (f) | > s) ≤ exp

(
−cd

2s2

ε2

)
(6.120)

with c > 0 a constant. Then, we can deduce the upper bound on the probability:

P (TV(pα, pβ) < ε/5) (6.121)

= P
(
TV(pα, pβ) < ε/5, (α, β) ∈ E2

)
+ P

(
TV(pα, pβ) < ε/5, (α, β) /∈ E2

)
(6.122)

≤ P
(
f(α, β) < ε/5, (α, β) ∈ E2

)
+ P

(
(α, β) /∈ E2

)
(6.123)

≤ P
(
f(α, β)− E (f) < ε/5− 3ε/10, (α, β) ∈ E2

)
+ 2P (α /∈ E) (6.124)

≤ P (f(α, β)− E (f) < −ε/10) + 2P (α /∈ E) (6.125)

≤ 3 exp(−Ω(d2)) ≤ exp(−Ω(d2)). (6.126)

Hence we construct an ε/5-separated family F of cardinal Ω(d2). By changing ε↔ 5ε
in the definition of {Px}x∈F , the family becomes ε-separated for ε ≤ 1/(20d).

Once the family F is constructed, we can use it to encode a message in J1,MK to
a quantum Pauli channel P = Px in the family F . The decoder receives this unknown
quantum Pauli channel, chooses its inputs states and performs adaptive incoherent mea-
surements and learns it. Therefore a 1/3-correct algorithm can decode with a probability
of failure at most 1/3 by finding the closest quantum Pauli channel in the family F to the
channel approximated by the algorithm. By Fano’s inequality, the encoder and decoder
should share at least Ω(log(M)) = Ω(d2) nats of information.
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Lemma 6.5.3 ([Fan61]). The mutual information between the encoder and the decoder is
at least

I ≥ 2/3 log(M)− log(2) ≥ Ω(d2). (6.127)

Upper bound on the mutual information Since we have a lower bound on the
mutual information, it remains to prove an upper bound depending on the number of
steps N and the precision ε. For this, let us denote by X the uniform random variable
on the set J1,MK representing the encoder and I1, . . . , IN the observations of the decoder
or the 1/3-correct algorithm. The Data-Processing inequality implies:

I ≤ I(X : I1, . . . , IN). (6.128)

By upper bounding the mutual information between X and I1, . . . , IN and using a con-
tradiction argument, we prove Theorem 6.5.1 which we recall:

Theorem. Let ε ≤ 1/(20d). Adaptive strategies for the problem of Pauli channel tomog-
raphy using incoherent measurements requires a number of steps satisfying:

N = Ω

(
d5/2

ε2

)
. (6.129)

Proof. Recall that we can write the mutual information as: I(X : I1, . . . , IN) =∑N
k=1 I(X : Ik|I≤k−1). Fix k ∈ [N ], by Lemma 6.3.3, we can upper bound the condi-

tional mutual information:

I(X : Ik|I≤k−1) ≤ 5ExEi∼q≤k−1

[∑
ik

λkik
d

(uk,xik )2

]
(6.130)

where we use the notation:

uk,xik =
〈
φkik
∣∣ (dPx(ρk)− I)

∣∣φkik〉 =
〈
φkik
∣∣(∑

P∈Pn

2α̃x(P )ε

‖αx‖2

PρkP

)∣∣φkik〉 (6.131)

=
∑
P∈Pn

2αx(P )ε

‖αx‖2

〈
φkik
∣∣PρkP ∣∣φkik〉− ∑

P,Q∈Pn

2αx(Q)ε

d2‖αx‖2

〈
φkik
∣∣PρkP ∣∣φkik〉 (6.132)

=
∑
P∈Pn

2αx(P )ε

‖αx‖2

〈
φkik
∣∣PρkP ∣∣φkik〉− ∑

P∈Pn

2αx(P )ε

d‖αx‖2

. (6.133)

Note that for adaptive strategies the vectors
∣∣φkik〉 =

∣∣φkik(i1, . . . , ik−1)
〉

and the states
ρk = ρk(i1, . . . , ik−1) depend on the previous observations (i1, . . . , ik−1) for all k ∈ [N ].
Similarly, we denote:

uk,αik =
∑
P∈Pn

2α(P )ε

‖α‖2

〈
φkik
∣∣PρkP ∣∣φkik〉− ∑

P∈Pn

2α(P )ε

d‖α‖2

(6.134)

=
2

‖α‖2

∑
P∈Pn

α(P )ε
〈
φkik
∣∣P (ρk − I/d)P

∣∣φkik〉 . (6.135)

We have
∑

ik
λkiku

k,x
ik

= Tr (dPx(ρk)− I) = 0 as∑
ik

λkiku
k,α
ik

=
∑
P∈Pn

2αx(P )ε

‖αx‖2

Tr(PρkP )−
∑
P∈Pn

2αx(P )ε

‖αx‖2

=
∑
P∈Pn

2αx(P )ε

‖αx‖2

−
∑
P∈Pn

2αx(P )ε

‖αx‖2

= 0.
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Note that the cardinal of the constructed family M = |F| is of order exp(Ω(d2)), so
every mean in x can be approximated by the expected value for α following the distribution
explained in the construction, the difference will be, by Hoeffding’s inequality, of order
exp(−Ω(d2)) so negligible. Note that the error probability can be absorbed in the total
error probability by adding these inequalities in the construction of the family F .

Proposition 6.5.1. There is a universal constant C > 0 such that with probability at
least 9/10 we have:

N∑
k=1

1

M

M∑
x=1

∑
i1,...,ik−1

(
k−1∏
t=1

λtit

(
1 + ut,xit

d

))∑
ik

λkik
d

(uk,xik )2 (6.136)

≤
N∑
k=1

Eα

[ ∑
i1,...,ik−1

(
k−1∏
t=1

λtit

(
1 + ut,αit

d

))∑
ik

λkik
d

(uk,αik )2

]
+Nε2 exp(−Cd2). (6.137)

Proof. Let k ∈ [N ]. For x ∈ [M ], let fk(x) be the function:

fk(x) =
∑

i1,...,ik−1

(
k−1∏
t=1

λtit

(
1 + ut,xit

d

))∑
ik

λkik
d

(uk,xik )2. (6.138)

Similarly we define:

fk(α) =
∑

i1,...,ik−1

(
k−1∏
t=1

λtit

(
1 + ut,αit

d

))∑
ik

λkik
d

(uk,αik )2. (6.139)

Since for all k ∈ [N ], x ∈ [M ] and ik ∈ Ik, we have (uk,xik )2 ≤ 1,
∑

ik

λkik
d

(uk,xik )2 ≤

16ε2 (Lemma 6.5.4) and
∑

ik

λkik
uk,xik
d

= 0 thus fk(x) ∈ [0, 16ε2]. Therefore the function∑N
k=1

1
M

∑M
x=1 fk(x) is

(
32Nε2

M
, . . . , 32Nε2

M

)
-bounded. Hence Hoeffding’s inequality [Hoe63]

writes:

P

(∣∣∣∣∣
N∑
k=1

1

M

M∑
x=1

fk(x)− E

(
N∑
k=1

1

M

M∑
x=1

fk(x)

)∣∣∣∣∣ > s

)
≤ 2 exp

(
− 2s2∑M

j=1

(
32Nε2

M

)2

)
.

(6.140)

Since for all x ∈ [M ] we have E (fk(x)) = Eα(fk(α)), we deduce:

P

(∣∣∣∣∣
N∑
k=1

1

M

M∑
x=1

fk(x)−
N∑
k=1

Eα(fk(α))

∣∣∣∣∣ > s

)
≤ 2 exp

(
− s2M

512N2ε4

)
. (6.141)

Finally, by taking s = 25Nε2

√
log(20)
M

, with probability at least 9/10, we have:

N∑
k=1

1

M

M∑
x=1

∑
i1,...,ik−1

(
k−1∏
t=1

λtit

(
1 + ut,xit

d

))∑
ik

λkik
d

(uk,xik )2 (6.142)

=
N∑
k=1

1

M

M∑
x=1

fk(x) ≤
N∑
k=1

Eα(fk(α)) + 25Nε2

√
log(20)

M
(6.143)

≤
N∑
k=1

Eα

[ ∑
i1,...,ik−1

(
k−1∏
t=1

λtit

(
1 + ut,αit

d

))∑
ik

λkik
d

(uk,αik )2

]
+Nε2 exp(−Cd2) (6.144)
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where C > 0 is a universal constant and we used the fact that M = exp(Ω(d2)).

Therefore we obtain the upper bound on the mutual information:

N∑
k=1

I(X : Ik|I≤k−1) ≤ 5
N∑
k=1

Ex,i∼q≤k−1

∑
ik

λkik
d

(uk,xik )2

= 5
N∑
k=1

1

M

M∑
x=1

∑
i1,...,ik−1

(
k−1∏
t=1

λtit

(
1 + ut,xit

d

))∑
ik

λkik
d

(uk,xik )2

≤ 5
N∑
k=1

Eα

[ ∑
i1,...,ik−1

(
k−1∏
t=1

λtit

(
1 + ut,αit

d

))∑
ik

λkik
d

(uk,αik )2

]
+ 5Nε2 exp(−Cd2) (6.145)

= 5
N∑
k=1

E≤kEα

[(
k−1∏
t=1

(
1 + ut,αit

))
(uk,αik )2

]
+ 5Nε2 exp(−Cd2)

where we use the notation E≤k[X(i1, . . . , ik)] := 1
dk

∑
i1,...,ik

∏k
t=1 λ

k
ik
X(i1, . . . , ik). Observe

that for non-adaptive strategies, we can simplify these large products using the fact ut,αit
does not depend on (i1, i2, . . . , it−1). We obtain in this case an upper bound on the mutual
information:

I(X : I1, . . . , IN) ≤ 5
N∑
k=1

EkEα

[
(uk,αik )2

]
+ 5Nε2 exp(−Cd2). (6.146)

For this expression, using methods similar to the proof of Theorem 6.4.1, one can obtain

a bound of the form EkEα

[
(uk,αik )2

]
= O( ε

2

d
) which would lead to a lower bound of Ω(d

3

ε2
)

as in Theorem 6.4.1.
However, for adaptive strategies, we can not simplify the terms (1 + ut,αit ) for t < k

because (uk,αik )2 depends on the previous observations (i1, . . . , ik−1). For this reason, we
use Gaussian integration by parts (Theorem 1.4.7) to break the dependency between the
variables in the last expectation. Recall that for all t, it, ρ̃t = ρt − I/d and:

ut,αit =
2

‖α‖2

∑
P∈Pn

α(P )ε
〈
φtit
∣∣P ρ̃tP ∣∣φtit〉 . (6.147)

Using the fact that ‖α‖2 is independent of {α(P )/‖α‖2}P , we can write:

E
(
‖α‖2

2

)
E

((
k−1∏
t=1

(
1 + ut,αit

))
(uk,αik )2

)
(6.148)

= 2ε
∑
P∈Pn

〈
φkik
∣∣P ρ̃kP ∣∣φkik〉E (‖α‖2

2

)
E

(
α(P )

‖α‖2

(
uk,αik

) k−1∏
t=1

(
1 + ut,αit

))
(6.149)

= 2ε
∑
P∈Pn

〈
φkik
∣∣P ρ̃kP ∣∣φkik〉E

(
α(P )

(
‖α‖2u

k,α
ik

) k−1∏
t=1

(
1 + ut,αit

))
(6.150)

= 2ε
∑
P∈Pn

〈
φkik
∣∣P ρ̃kP ∣∣φkik〉E (α(P )F (α)) , (6.151)
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where F (α) =
(
‖α‖2u

k,α
ik

)∏k−1
t=1

(
1 + ut,αit

)
. Gaussian integration by parts (Theorem 1.4.7)

implies:

E (α(P )F (α)) = E (∂PF (α)) (6.152)

= 2ε
〈
φkik
∣∣P ρ̃kP ∣∣φkik〉E

(
k−1∏
t=1

(
1 + ut,αit

))
+

k−1∑
s=1

E

‖α‖2u
k,α
ik
∂Pu

s,α
is

∏
t∈[k−1]\s

(
1 + ut,αit

)
(6.153)

Moreover, we have

‖α‖2∂Pu
s,α
is

= 2

〈
φsis
∣∣P ρ̃sP ∣∣φsis〉 ε‖α‖2 − ∂P‖α‖2

∑
P∈Pn α(P )

〈
φsis
∣∣P ρ̃sP ∣∣φsis〉 ε

‖α‖2

(6.154)

= 2
〈
φsis
∣∣P ρ̃sP ∣∣φsis〉 ε− 1

‖α‖2

α(P )us,αis (6.155)

hence:

E≤kE

((
k−1∏
t=1

(
1 + ut,αit

))
(uk,αik )2

)
= E≤k

2ε

d2

∑
P∈Pn

〈
φkik
∣∣P ρ̃kP ∣∣φkik〉E (α(P )F (α)) (6.156)

= E≤k
4ε2

d2

∑
P∈Pn

〈
φkik
∣∣P ρ̃kP ∣∣φkik〉2

E

(
k−1∏
t=1

(
1 + ut,αit

))
(L1)

+ E≤k
4ε2

d2

∑
P∈Pn

k−1∑
s=1

〈
φkik
∣∣P ρ̃kP ∣∣φkik〉 〈φsis∣∣P ρ̃sP ∣∣φsis〉E

uk,αik ∏
t∈[k−1]\s

(
1 + ut,αit

)
(L2)

− E≤k
2ε

d2

∑
P∈Pn

〈
φkik
∣∣P ρ̃kP ∣∣φkik〉 k−1∑

s=1

E

α(P )

‖α‖2

uk,αik u
s,α
is

∏
t∈[k−1]\s

(
1 + ut,αit

) . (L3)

We analyze the latter expressions line by line. Our goal is to upper bound these terms
better with some expression improving the naive upper bound O(ε2) on the conditional
mutual information. Let us start by line (L1), we have∑

P∈Pn

1

d

∑
ik

λkik
〈
φkik
∣∣P ρ̃kP ∣∣φkik〉2 ≤

∑
P∈Pn

1

d
· Tr(P ρ̃2

kP ) =
∑
P∈Pn

1

d
· Tr(ρ̃2

k) ≤ d, (6.157)

so using 1
d

∑
it
λkik(1 + ut,αit ) = 1 we can upper bound the line (L1) as follows:

(L1) ≤ E≤k−1
4ε2

d
E

(
k−1∏
t=1

(
1 + ut,αit

))
=

4ε2

d
. (6.158)

This upper bound has the same order as for non-adaptive strategies. So we expect that the
contribution of line (L1) will not affect much the overall upper bound on the conditional
mutual information. Next we move to line (L3), first we show a useful inequality:

Lemma 6.5.4. Let t ∈ [N ]. Recall that ut,αit = 2
‖α‖2

∑
P∈Pn α(P )ε

〈
φtit
∣∣P ρ̃tP ∣∣φtit〉. We

have:

1

d

∑
it

λtit(u
t,α
it

)2 ≤ 16ε2. (6.159)
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Observe that if we apply this upper bound directly on the expression of the conditional
mutual information (Lemma 6.3.3) we obtain an upper bound I = O(Nε2) which leads
to a lower bound N = Ω(d2/ε2) similar to Theorem 6.3.1. Still this Lemma will be useful
for controlling intermediate expressions appearing for the upper bound of line (L3).

Proof. We use the fact that every M can be written as M =
∑

R∈Pn
Tr(MR)

d
R and

Lemma 6.6.1

∑
it

λtit(u
t,α
it

)2 =
4ε2

‖α‖2
2

∑
it

λtit
〈
φtit
∣∣(∑

P∈Pn

α(P )P ρ̃tP

)∣∣φtit〉2 ≤ 4ε2

‖α‖2
2

Tr

(∑
P∈Pn

α(P )P ρ̃tP

)2

(6.160)

=
4ε2

‖α‖2
2

Tr

(∑
P∈Pn

α(P )
1

d

∑
R∈Pn

Tr(Rρ̃t)PRP

)2

(6.161)

=
4ε2

‖α‖2
2

Tr

(∑
P∈Pn

α(P )
1

d

∑
R∈Pn

Tr(Rρ̃t)(−1)R.PR

)2

(6.162)

=
4ε2

‖α‖2
2

∑
P,P ′,R,R′∈Pn

α(P )α(P ′)
1

d2
Tr(Rρ̃t)Tr(R′ρ̃t)(−1)R.P (−1)R

′.P ′Tr(RR′)

(6.163)

=
4ε2

‖α‖2
2

∑
P,P ′,R∈Pn

α(P )α(P ′)
1

d
· Tr(Rρ̃t)

2(−1)R.P (−1)R.P
′

(6.164)

=
4ε2

‖α‖2
2

∑
R∈Pn

(∑
P∈Pn

α(P )(−1)R.P

)2
1

d
· Tr(Rρ̃t)

2 (6.165)

≤ 16ε2

‖α‖2
2

∑
P,P ′,R∈Pn

α(P )α(P ′)
1

d
(−1)R.(PP

′) (6.166)

=
16ε2

‖α‖2
2

∑
P,P ′∈Pn

α(P )α(P ′) · d · 1PP ′=I =
16dε2

‖α‖2
2

∑
P=P ′∈Pn

α(P )2 = 16dε2.

(6.167)

In the previous inequality, we used that for all R ∈ Pn: we can write R =
∑

i λi |φi〉〈φi|
where the eigenvalues {λi}i have absolute values 1, then by the triangle inequality:

|Tr(Rρ̃)| =

∣∣∣∣∣∑
i

λiTr(|φi〉〈φi| ρ̃)

∣∣∣∣∣ ≤∑
i

|λiTr(|φi〉〈φi| ρ̃)| ≤
∑
i

|Tr(|φi〉〈φi| (ρ− I/d))|

(6.168)

≤
∑
i

|Tr(|φi〉〈φi| ρ)|+
∑
i

|Tr(|φi〉〈φi| I/d))| = Tr(ρ) + Tr(I/d) = 2. (6.169)

Observe that the condition ε ≤ 1/(4d) implies that for all t ∈ [N ] and it ∈ It we have
1 + ut,αit ≥ 1/16 and recall that Ek(1 + ut,αit ) = 1

d

∑
it
λtit(1 + ut,αit ) = 1. Therefore, if we
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denote Πα
k =

∏
t<k

(
1 + ut,αit

)
, (L3) can be controlled as follows:

(L3) = −E≤k
1

d2

k−1∑
s=1

E

(uk,αik )2

us,αis

∏
t∈[k−1]\s

(
1 + ut,αit

) (6.170)

=
1

d2
E≤k

−E
(∑

s<k

us,αis (uk,αik )2

) ∏
t∈[k−1]\s

(
1 + ut,αit

) (6.171)

≤ 1

d2
E≤k

E
(∣∣∣∣∣∑

s<k

us,αis

∣∣∣∣∣ (uk,αik )2

) ∏
t∈[k−1]\s

(
1 + ut,αit

) (6.172)

≤ 16ε2

d2
E<k

(
E

((∣∣∣∣∣∑
s<k

us,αis
(1 + us,αis )

∣∣∣∣∣
)∏

t<k

(
1 + ut,αit

)))
(Lemma 6.5.4) (6.173)

≤ 16ε2

d2

√√√√√EαE<k
∣∣∣∣∣∑

s<k

us,αis
(1 + us,αis )

∣∣∣∣∣
2

Πα
k

√EαE<kΠα
k (Cauchy-Schwarz)

(6.174)

≤ 16ε2

d2

√√√√EαE<k ∑
s,r<k

us,αis
(1 + us,αis )

·
ur,αir

(1 + ur,αir )

∏
t<k

(
1 + ut,αit

) (
E<k

∏
t<k

(
1 + ut,αit

)
= 1

)
(6.175)

≤ 16ε2

d2

√√√√EαE<k∑
s<k

(us,αis )2

(1 + us,αis )2

∏
t<k

(
1 + ut,αit

)
(E≤max{s,r}

(
us,αis u

r,α
ir

)
= 0 if s 6= r)

(6.176)

≤ 64ε2

d2

√
EαE<k

∑
s<k

(us,αis )2
∏

t∈[k−1]\s

(
1 + ut,αit

)
(1 + ut,αit ≥ 1/16⇐ ε ≤ 1/4d)

(6.177)

≤
√
k

256ε3

d2
, (6.178)

where we use Lemma 6.5.4 for the last inequality. Indeed, we can simplify the expectation
as follows

E<k
∑
s<k

(us,αis )2
∏

t∈[k−1]\s

(
1 + ut,αit

)
=
∑
s<k

E<k(u
s,α
is

)2
∏

t∈[k−1]\s

(
1 + ut,αit

)
(6.179)

=
∑
s<k

E≤s(u
s,α
is

)2
∏

t∈[s−1]

(
1 + ut,αit

)
(6.180)

≤
∑
s<k

E≤s−116ε2
∏

t∈[s−1]

(
1 + ut,αit

)
(Lemma 6.5.4)

(6.181)

=
∑
s<k

16ε2 ≤ 16ε2k. (6.182)

Finally, we control the line (L2) which is more involved. Let us adopt the notation for
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s, k ∈ [N ]:

Ms,k =
∑
P∈Pn

P ρ̃kP
〈
φsis
∣∣P ρ̃sP ∣∣φsis〉 (6.183)

=
1

d2

∑
P,Q,R∈Pn

Tr(ρ̃kQ)Tr(ρ̃sR)PQP
〈
φsis
∣∣PRP ∣∣φsis〉 (6.184)

=
1

d2

∑
P,Q,R∈Pn

Tr(ρ̃kQ)Tr(ρ̃sR)(−1)P.(QR)Q
〈
φsis
∣∣R ∣∣φsis〉 (6.185)

=
∑
Q∈Pn

Tr(ρ̃kQ)Tr(ρ̃sQ)
〈
φsis
∣∣Q ∣∣φsis〉Q (Lemma 6.6.1) (6.186)

so that we can write
∑

P∈Pn

〈
φkik
∣∣P ρ̃kP ∣∣φkik〉 〈φsis∣∣P ρ̃sP ∣∣φsis〉 = Tr(

∣∣φkik〉〈φkik∣∣Ms,k).

Also we use the notation Ψk = E≤kE

((
uk,αik

)2∏
t<k

(
1 + ut,αit

))
so that we have the

(in)equalities:

(L2) =
4ε2

d2
E≤kE

k−1∑
s=1

Tr(
∣∣φkik〉〈φkik∣∣Ms,k)u

k,α
ik

∏
t∈[k−1]\s

(
1 + ut,αit

) (6.187)

=
4ε2

d2
E≤kE

(
Tr

(∣∣φkik〉〈φkik∣∣ k−1∑
s=1

Ms,k

(1 + us,αis )

)
uk,αik

∏
t≤k−1

(
1 + ut,αit

))
(6.188)

≤ 4ε2

d2

√√√√√E≤kE
(Tr

(∣∣φkik〉〈φkik∣∣ k−1∑
s=1

Ms,k

(1 + us,αis )

))2 ∏
t≤k−1

(
1 + ut,αit

)√Ψk (6.189)

≤ 4ε2

d2

√√√√√E≤kE
Tr

∣∣φkik〉〈φkik∣∣
(
k−1∑
s=1

Ms,k

(1 + us,αis )

)2
 ∏

t≤k−1

(
1 + ut,αit

)√Ψk (6.190)

=
4ε2

d2

√√√√√1

d
E≤k−1E

Tr

(k−1∑
s=1

Ms,k

(1 + us,αis )

)2
 ∏

t≤k−1

(
1 + ut,αit

)√Ψk (6.191)

where we use the Cauchy-Schwarz inequality. From the definition of Ms,k we can write
that for s, t < k

Tr(Ms,kMt,k) = d
∑
Q∈Pn

Tr(ρ̃kQ)2Tr(ρ̃sQ)Tr(ρ̃tQ)
〈
φsis
∣∣Q ∣∣φsis〉 〈φtit∣∣Q ∣∣φtit〉 . (6.192)
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Hence

Tr

(
k−1∑
s=1

Ms,k

(1 + us,αis )

)2

=
∑
s,t<k

d
∑
Q∈Pn

Tr(ρ̃kQ)2 Tr(ρ̃sQ)Tr(ρ̃tQ)
〈
φsis
∣∣Q ∣∣φsis〉 〈φtit∣∣Q ∣∣φtit〉

(1 + us,αis )(1 + ut,αit )

(6.193)

= d
∑
Q∈Pn

Tr(ρ̃kQ)2

(∑
s<k

Tr(ρ̃sQ)
〈
φsis
∣∣Q ∣∣φsis〉

(1 + us,αis )

)2

(6.194)

≤ 4d
∑
Q∈Pn

(∑
s<k

Tr(ρ̃sQ)
〈
φsis
∣∣Q ∣∣φsis〉

(1 + us,αis )

)2

(6.195)

note that this step is crucial because ρk depends on (i1, . . . , ik−1) so we need to avoid
it in order to simplify with the expectations Et for t < k. When we want to simplify

the expectation E≤k−1E

(
Tr

((∑k−1
s=1

Ms,k

(1+us,αis )

)2
)∏

t≤k−1

(
1 + ut,αit

))
and we expand the

square of the latter expression, we can see that if s1 < s2 (or s1 > s2), we’ll get 0 because
we can simplify the terms (1 + ut,αit ) in the product for t > s2, the term (1 + us2,αis2

) is
simplified with the denominator so we can take safely the expectation under Es2 :

Es2Tr(ρ̃s2Q)
〈
φs2is2

∣∣∣Q ∣∣∣φs2is2〉 =
1

d

∑
is2

Tr(ρ̃s2Q)λs2is2

〈
φs2is2

∣∣∣Q ∣∣∣φs2is2〉 = Tr(ρ̃s2Q)Tr(Q) = 0

(6.196)

because Tr(Q) = 0 unless Q = I for which Tr(ρ̃s2Q) = Tr(ρ̃s2) = Tr(ρs2 − I/d) = 0.
Therefore using the notation Πα

k =
∏

t<k

(
1 + ut,αit

)
:

(L2) ≤ 4ε2

d2

√√√√√1

d
E≤k−1E

Tr

(
k−1∑
s=1

Ms,k

(1 + us,αis )

)2

Πα
k

√Ψk (6.197)

≤ 4ε2

d2

√√√√√1

d
E≤k−1E

4d
∑
Q∈Pn

(∑
s<k

Tr(ρ̃sQ)
〈
φsis
∣∣Q ∣∣φsis〉

(1 + us,αis )

)2

Πα
k

√Ψk (6.198)

≤ 4ε2

d2

√∑
s<k

16
∑
Q∈Pn

E≤sTr(ρ̃sQ)2
〈
φsis
∣∣Q ∣∣φsis〉2

E (Πα
s )
√

Ψk

(
(1 + us,αis ) ≥ 1

16

)
(6.199)

≤ 4ε2

d2

√∑
s<k

64E≤s
∑
Q∈Pn

〈
φsis
∣∣Q ∣∣φsis〉〈φsis∣∣Q ∣∣φsis〉E (Πα

s )
√

Ψk (|Tr(ρ̃sQ)| ≤ 2)

(6.200)

=
4ε2

d2

√∑
s<k

64E≤s
〈
φsis
∣∣ dTr(

∣∣φsis〉〈φsis∣∣)I ∣∣φsis〉E (Πα
s )
√

Ψk (Lemma 6.6.2)

(6.201)

≤ 32ε2

d
√
d

√
k
√

Ψk. (6.202)
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We have proven so far, for all k ≤ N :

Ψk ≤
4ε2

d
+ 256

√
k
ε3

d2
+

32ε2

d
√
d

√
k
√

Ψk. (6.203)

The first term of the upper bound can be seen as a non-adaptive contribution. The
second one can be thought as a geometric mean of the first and third terms. The last
term represents essentially the contribution of the adaptivity. Our final stage of the
proof is to use these recurrence inequalities to prove the lower bound by a contradiction
argument.

Recall that Ψk = E≤kE

((
uk,αik

)2∏
t<k

(
1 + ut,αit

))
and

∑N
k=1 I(X : Ik|I<k) ≤

5
∑N

k=1 Ψk + 5Nε2 exp(−Cd2). We suppose that N ≤ cd
5/2

ε2
for sufficiently small c > 0.

We know that from Lemmas 6.3.3 and 6.5.3

c0d
2 ≤ I(X : Y ) ≤ 5

∑
k≤N

Ψk + 5Nε2 exp(−Cd2). (6.204)

So
∑

k≤N Ψk ≥ c′d2 (for example c′ = c0/4), on the other hand the inequality (6.203)
implies:

∑
k

Ψk ≤
∑
k

4ε2

d
+ 256

ε3

d2

√
k + 32

ε2
√
k

d
√
d

√
Ψk (6.205)

≤ 4
Nε2

d
+ 256

Nε3

d2

√
N + 32

∑
k

ε2
√
k

d
√
d

√
Ψk (6.206)

≤ 4
Nε2

√
c′d2

√∑
k≤N

Ψk + 256
Nε2

d2

√
cd5/2 + 32

ε2

d
√
d

√∑
k

k

√∑
k

Ψk (Cauchy-Schwarz)

(6.207)

≤
(

8√
c′d

+
512√
c′d1/4

+ 32

)
ε2

d
√
d

√∑
k

k

√∑
k

Ψk (6.208)

≤ C ′
ε2

d
√
d
N

√∑
k

Ψk (6.209)

where C ′ is a universal constant. Therefore:∑
k

Ψk ≤ C ′2
(
N2ε4

d3

)
≤ C ′2c2d2 (6.210)

Hence

c0d
2 ≤ I(X : Y ) ≤

∑
k≤N

5Ψk + 5Nε2 exp(−Cd2) ≤ 10C ′2c2d2 (6.211)

which gives the contradiction for c� √c0/C
′. Finally we deduce N = Ω(d5/2/ε2) and we

conclude the proof of Theorem 6.5.1.
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If the adaptive algorithm has a memory of O(H/ε2), the previous inequalities imply
for all 1 ≤ k ≤ N : ∑

k

Ψk ≤
∑
k

4ε2

d
+ 256

√
H
ε2

d2
+

32ε

d
√
d

√
H
√

Ψk (6.212)

≤
∑
k

4ε2

d
+ 256

√
H
ε2

d2
+

(32ε)2H

d3
+

Ψk

2
(6.213)

where we use AM-GM inequality, hence we deduce:

c0d
2 ≤ I(X : Y ) ≤

∑
k

5Ψk + 5Nε2 exp(−Cd2) (6.214)

≤ 40ε2N

d
+ 10 · 256

√
H
ε2N

d2
+

10 · (32ε)2HN

d3
(6.215)

and finally we obtain:

N = Ω

(
min

{
d4

√
Hε2

,
d5

Hε2
,
d3

ε2

})
. (6.216)

For H = O(d2), this gives Equation (6.90).

6.6 Properties of Pauli operators

In this section, we group some useful properties about the Pauli operators that we need
for the proofs in this chapter.

Lemma 6.6.1. We have for all Q ∈ {I, X, Y, Z}⊗n:∑
P∈Pn

(−1)P.Q = d2 · 1Q=I. (6.217)

Proof. It is clear that for Q = I, Q commutes with every P ∈ Pn and thus the equality
holds. Now, let Q ∈ Pn \ {I} and we write Q = Q1 ⊗ · · · ⊗ Qn where for all i ∈ [n],
Qi ∈ {I, X, Y, Z} is a Pauli matrix. By the same decomposition for P ∈ Pn, we can write:∑

P∈Pn

(−1)P.Q =
∑

P1,...,Pn∈{I,X,Y,Z}

(−1)P1.Q1+2···+2Pn.Qn (6.218)

=
n∏
i=1

∑
Pi∈{I,X,Y,Z}

(−1)Pi.Qi (6.219)

=
n∏
i=1

41Qi=I2 (6.220)

= d21Q=Id (6.221)

where we have used in the third equality the fact that every non identity Pauli matrix Qi

commutes only with the identity and itself (so it anti-commutes with the two other Pauli
matrices) thus the sum

∑
Pi∈{I,X,Y,Z}(−1)Pi.Qi = 0.
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Lemma 6.6.2. We have for all matrices ρ:∑
P∈{I,X,Y,Z}⊗n

PρP = dTr(ρ)I. (6.222)

Proof. Let d = 2n and ρ ∈ Cd×d. It is known that 1√
d
{I, X, Y, Z}⊗n forms an ortho-normal

basis of Cd×d for the Hilbert-Schmidt scalar product. Thus, we can write ρ in this basis:

ρ =
∑

P∈{I,X,Y,Z}⊗n
Tr

(
P√
d
ρ

)
P√
d

=
1

d

∑
P∈{I,X,Y,Z}⊗n

Tr (Pρ)P. (6.223)

Therefore we can simplify the LHS by using the identity PQ = (−1)P.QQP for all P,Q ∈
Pn: ∑

P∈Pn

PρP =
1

d

∑
P,Q∈Pn

Tr(Qρ)PQP =
1

d

∑
P,Q∈Pn

Tr(Qρ)(−1)P.QQPP (6.224)

=
∑
Q∈Pn

Tr(Qρ)Q
1

d

∑
P∈Pn

(−1)P.Q =
∑
Q∈Pn

Tr(Qρ)Q · d · 1Q=I (6.225)

= dTr(ρ)I, (6.226)

where we have used Lemma 6.6.1 to obtain the fourth equality.

6.7 Optimal non-adaptive algorithm for learning a

Pauli channel with incoherent measurements

In this section, we simplify the algorithm of [FW20], and consider only the learning
algorithm. In particular, we show that, if we do not have errors in SPAM, only one
copy per step is needed. Hence, this algorithm can learn a Pauli channel to within ε

in the diamond norm with only O
(
d3 log(d)

ε2

)
measurements/steps. Since we have proved

the lower bound of Ω
(
d3

ε2

)
measurements in Theorem 6.4.1 with one use per step, this

algorithm is thus optimal up to a logarithmic factor. Note that we only add this part
for completeness and we do not claim any new contribution, all the proofs are similar to
those in the mentioned references.

Recall the set of Pauli operators Pn = {I, X, Y, Z}⊗n. Let S be a subset of Pn, we
define the commutant of S as the set of Pauli operators that commute with every element
in S: CS = {P ∈ Pn : ∀Q ∈ S, PQ = QP}.

Before stating the algorithm, we start by some important Lemmas we need:

Lemma 6.7.1. Pn can be covered by d + 1 stabilizer (Abelian) groups G1, . . . , Gd+1 sat-
isfying for all i 6= j:

• |Gi| = d,

• CGi = Gi,

• Gi ∩Gj = {I}.

The proof is taken from [BBRV02] and [WF89].
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Proof. Here we use the correspondence between Pn and (Z2
2)
n ' Z2n

2 . We can encode:

I 7→ (0, 0) ∈ Z2
2, (6.227)

X 7→ (1, 0) ∈ Z2
2, (6.228)

Y 7→ (1, 1) ∈ Z2
2, (6.229)

Z 7→ (0, 1) ∈ Z2
2 (6.230)

and we generalize to Pn by concatenating the encoding of each tensor. We define the
inner product of a = (a1, a2), b = (b1, b2) ∈ Z2

2 as follows:

a× b = a1b2 + a2b1 mod (2). (6.231)

We generalize to a, b ∈ (Z2
2)
n
:

a× b = a1 × b1 + · · ·+ an × bn mod (2). (6.232)

It is not difficult to see that P and Q commute iff their corresponding images a and b have
inner product 0. We group the first coordinates together then the second coordinates by
using the isomorphism (Z2

2)
n ' (Zn2 )2 : a 7→ (α|β) = (((a1)1, . . . (an)1)|((a1)2, . . . (an)2).

Moreover, by specifying an n×(2n) matrix (A|B) we can construct the corresponding set of
Pauli operators as the preimage of the linear combinations of {(Ai|Bi)}i where Mi denotes
the ith row of the matrix M . For instance, the corresponding set of (0n|In) is the Z only
Pauli operators. The partition we are looking for will be given by {Gi}d+1

i=1 = {{1}∪Ci}d+1
i=1

[BBRV02] where {Ci}d+1
i=1 are the sets of non identity Pauli operators corresponding to

matrices of the form:

(0n|In), (In|A1), . . . , (In|Ad). (6.233)

It can be shown that in order to have Gi a stabilizer group, it is sufficient to have Ai a
symmetric matrix and |Ci| = d−1. The former condition implies that for all k, l ∈ [n], the
preimages of (In|Ai)k and (In|Ai)l commute. Indeed, (In|Ai)k×(In|Ai)l = (Ai)k,l+(Ai)l,k =
0 mod (2). The latter condition is satisfied since the matrix (In|Ai) has rank n and thus
generates 2n − 1 non identity Pauli operators (the preimages of

∑n
j=1 αj(In|Ai)j where

{αj}j∈[n] ∈ {0, 1}n \{0} ). Also, the condition of |Ci| = d−1 implies that Gi = {1}∪Ci is
a group, since the maximal cardinal of a stabilizer set is d [BBRV02]. The same argument
shows that the commutant of Gi is itself.

Now, we want to have Ci∩Cj = ∅. If this is not the case, then we can find α ∈ Zn2 such
that α(In|Ai) = α(In|Aj) which is equivalent to α(Ai−Aj) = 0. So in order to avoid this
situation, we would like to have for all i 6= j, det(Ai − Aj) 6= 0. Let B1, . . . , Bn ∈ Zn×n2

be n symmetric matrices. If we have for all α ∈ Zn2 \ {0}:

det

(
n∑
i=1

αiBi

)
6= 0 (6.234)

then we can choose Ai =
∑n

k=1 ikBk where i = (i1, . . . , in) is the expansion of i in the
binary basis. These {Ai}2n

i=1 have the wanted conditions. Such construction of {Bi}ni=1

can be found in [WF89]. Let f1, . . . , fn be a basis of F2n as a vector space over Z2. Then
we can write for all i, j ∈ [n]:

fifj =
n∑
k=1

B
(k)
i,j fk. (6.235)
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Then Bk =
(
B

(k)
i,j

)
i,j∈[n]

satisfy the wanted condition [WF89]. We can verify this, let

α ∈ Zn2 \ {0}, we have:

n∑
k=1

αkBk =

(∑
k

αkB
(k)
i,j

)
i,j∈[n]

. (6.236)

Suppose that det (
∑n

k=1 αkBk) = 0, so there is x ∈ Zn2 \ {0} such that
∑n

k=1 αkBkx
T =

0. Let y = (
∑

k αkfk) (
∑

k xkfk)
−1 =

∑
k ykfk ∈ F2n . We have for all i ∈ [n],∑

k,j αkB
(k)
i,j xj = 0 so

∑
i yi
∑

k,j αkB
(k)
i,j xj = 0 therefore:∑

k,i,j

yiαkB
(k)
i,j xj = 0. (6.237)

On the other hand, the definition of y implies
∑

j,k,i yixjB
(k)
i,j fk =

∑
j (
∑

i yifi)xjfj =∑
k αkfk hence

∑
i,j yixjB

(k)
i,j = αk and therefore

∑
k α

2
k =

∑
k,i,j yiαkB

(k)
i,j xj = 0 finally

α = 0 which is a contradiction.

Lemma 6.7.2. Let G ∈ {G1, . . . , Gd+1}. Denote by AG = Pn/CG, we have Pn = G ⊕
Pn/G, CAG = Pn/G, and

1

|G|
∑
P∈G

(−1)P.Q = 1{Q ∈ CG}. (6.238)

Proof. It is clear that when Q ∈ CG, the identity holds since for all P ∈ G, P.Q = 0. Let
Q /∈ CG, so we can find P ∈ G such that Q.P = 1 i.e. QP = −PQ. Let C (resp. A) be
the set of elements of G that commutes (resp. anti commutes) with Q. By the action of
P , we have the isomorphism C → A : R 7→ PR. Hence G can be partitioned into two
sets C and A of the same size. Therefore:∑

P∈G

(−1)P.Q =
∑
P∈C

(−1)0 +
∑
P∈A

(−1)1 = |C| − |A| = 0. (6.239)

We have G∩Pn/G = {I}. Let P ∈ Pn and Q ∈ Pn/G the class of P . So, P −Q ∈ G and
P can be written as P = (P −Q) +Q ∈ G+ Pn/G. Therefore Pn = G⊕ Pn/G.

Finally since CG = G, we have CAG = CPn/CG = Pn/CCG = Pn/G.

Lemma 6.7.3. Let G ∈ {G1, . . . , Gd+1}. We have

• ρG := 1
d

∑
P∈G P is a rank one quantum state.

• MG := {MQ
G := 1

d

∑
P∈G(−1)P.QP}Q∈AG is a POVM.

Proof. Since G is an Abelian group we have for all Q ∈ G: QρGQ = 1
d

∑
P∈GQPQ =

1
d

∑
P∈G P = ρG so ρG is stabilized by G. Moreover, since |G| = d:

ρ2
G =

(
1

d

∑
P∈G

P

)2

=
1

d2

∑
P,Q∈G

PQ =
1

d2

∑
R∈G

∑
P∈G:PR∈G

R =
1

d

∑
R∈G

R = ρG (6.240)
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therefore ρG is a projector of trace Tr(ρG) = 1
d
· Tr(I) = 1 thus it is a rank 1 quantum

state.
For the second point, we’ll show that each term of MG is a rank one projector and

their sum is I. Let R ∈ AG, we have

(MR
G )2 =

1

d2

∑
P,Q∈G

(−1)(P+Q).RPQ =
1

d2

∑
P∈G

∑
Q∈G:QP∈G

(−1)P.RP (6.241)

=
1

d

∑
P∈G

(−1)P.RP = MR
G (6.242)

and Tr(MR
G ) = 1

d
(−1)R.ITr(I) = 1 so MR

G is a rank 1 projector. Moreover, by using the
fact that CAG = Pn/G and G ∩ Pn/G = {I}, we obtain∑

Q∈AG

MQ
G =

∑
Q∈AG

1

d

∑
P∈G

(−1)P.QP =
∑
P∈G

1

d

∑
Q∈AG

(−1)P.QP (6.243)

=
∑
P∈G

1{P ∈ CAG}P =
∑

P∈G∩Pn/G

P = I. (6.244)

Finally, these two conditions imply that MG is a POVM.

Now, we can state a simplified version of the algorithm proposed by [FW20].

Algorithm 10 Learning a Pauli channel in diamond norm

Require: N = O(d3 log(d)/ε2) independent copies of the unknown Pauli channel P(ρ) =∑
P∈Pn p(P )PρP .

Ensure: An approximated Pauli channel R such that ‖P −R‖� ≤ ε.
for G ∈ {G1, . . . , Gd+1} do

Take the input ρG = 1
d

∑
P∈G P , the output state is P(ρG).

Perform NG = d2 log(2d(d + 1))/(4ε2) measurements on P(ρG) using the POVM
MG := {MQ

G := 1
d

∑
P∈G(−1)P.QP}Q∈AG and observe Q1, . . . , QNG ∈ AG.

For P ∈ G, define q̂(P ) = 1
NG

∑NG
i=1(−1)Qi.P .

end for
Define for P ∈ Pn, q(P ) = 1

d2

∑
Q∈Pn(−1)Q.P q̂(Q).

Let r be the orthogonal projection of q on the set of probability distributions on Pn.
return the Pauli channel R(ρ) =

∑
P∈Pn r(P )PρP .

Theorem 6.7.1. Algorithm 10 performs O (d3 log(d)/ε2) measurements to learn a Pauli
channel to within ε in diamond norm with at least a probability 2/3.

The proof is taken from [FW20].

Proof. If we choose the input ρG for some stabilizer group G, apply the Pauli channel P
and perform the measurement using the POVMMG, the induced probability distribution
is given by:

pG = {Tr(MQ
GP(ρG))}Q∈AG =

{∑
P∈G

p(P +Q)
}
Q∈AG

, (6.245)
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because for Q ∈ AG, we have:

Tr(MQ
GP(ρG)) =

1

d2

∑
P1,P3∈G,P2

(−1)P1.Qp(P2)Tr(P1P2P3P2) (6.246)

=
1

d2

∑
P1,P3∈G,P2

p(P2)(−1)P1.Q+P2.P3Tr(P1P3) (6.247)

=
1

d

∑
P1∈G,P2

p(P2)(−1)P1.(Q+P2) (6.248)

=
∑
P2

p(P2)1(Q+ P2 ∈ CG) (6.249)

=
∑
P∈CG

p(P +Q). (6.250)

Therefore if Q ∼ pG and P ∈ G, then:

E
(
(−1)Q.P

)
=
∑
Q∈AG

pG(Q)(−1)Q.P =
∑
Q∈AG

∑
R∈CG

p(R +Q)(−1)(Q+R).P (6.251)

=
∑
S∈Pn

p(S)(−1)S.P = p̂(P ) (6.252)

because P ∈ G thus P commutes with R ∈ CG and Pn = CG ⊕ AG. Therefore, by
Hoeffding’s inequality [Hoe63], we can estimates {p̂(P ) = EQ∼pG(−1)Q.P}P∈G to within
ε/d with NG = log(2d(d+ 1))/(2(ε/d)2) = O (d2 log(d)/ε2) samples to have a probability
of error at most δ/(d(d + 1)) for each P ∈ G. We repeat this procedure for each G ∈
{G1, . . . , Gd+1} to estimate all {p̂(P )}P∈Pn to within ε/d. The total complexity is thus
N =

∑d+1
i=1 NGi = O (d3 log(d)/ε2). Let {q̂(P )}P∈Pn the approximations of {p̂(P )}P∈Pn

given by the empirical means. We can define {q(P )}P∈Pn as follows:

q(P ) =
1

d2

∑
Q∈Pn

(−1)Q.P q̂(Q) (6.253)

so that we have by the Parseval–Plancherel identity:

d‖q − p‖2 = ‖q̂ − p̂‖2 =

√∑
P∈Pn

(q̂ − p̂)2 ≤
√∑

P∈Pn

(ε/d)2 = ε. (6.254)

However, q is not necessarily a probability distribution. The set of probability distribu-
tions on Pn is convex, hence if we define r as the orthogonal projection on this set, we
have:

‖r − p‖2 ≤ ‖q − p‖2 ≤ ε/d. (6.255)

We conclude by the Cauchy-Schwarz inequality that r is a good approximation of p:

‖r − p‖1 ≤ d‖r − p‖2 ≤ ε. (6.256)
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6.8 Conclusion and open problems

We have provided lower bounds for Pauli channel tomography in the diamond norm using
independent strategies for both adaptive and non-adaptive strategies. In particular, we
have shown that the number of measurements should be at least Ω(d3/ε2) in the non-
adaptive setting and Ω(d2.5/ε2) in the adaptive setting. We would like to finish with
three interesting directions. Finding the optimal complexity of Pauli channel tomogra-
phy using adaptive incoherent measurements remains an open question. We conjecture
this complexity to be Θ(d3/ε2) since we remark that in many situations the adaptive
strategies cannot overcome the non-adaptive ones. Furthermore, we already obtained a
Θ(d3/ε2) bound for adaptive strategies in the high precision and sub-exponential memory
regime, further evidence of this bound. Moreover, since [CZSJ22] established the optimal
complexity for estimating the eigenvalues of a Pauli channel in the l∞-norm using ancilla-
assisted non-adaptive independent strategies, it would be interesting to find the optimal
complexity to learn a Pauli channel in the diamond norm when the algorithm can use
k-qubit ancilla for k ≤ n. Finally, it should be noted that all of the channel construc-
tions used in this chapter have a very large spectral gap, i.e. are very noisy. It would be
interesting to study the sample complexity of Pauli channel tomography in terms of the
spectral gap as well.
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[JP16] Anna Jenčová and Martin Plávala. “Conditions for optimal input
states for discrimination of quantum channels”. In: Journal of Math-
ematical Physics 57.12 (2016), p. 122203.

[KF15] Richard Kueng and Christopher Ferrie. “Near-optimal quantum to-
mography: estimators and bounds”. In: New Journal of Physics 17.12
(2015), p. 123013.

[KK07] Richard M Karp and Robert Kleinberg. “Noisy binary search and its
applications”. In: Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms. 2007, pp. 881–890.

[KKEG19] Martin Kliesch, Richard Kueng, Jens Eisert, and David Gross. “Guar-
anteed recovery of quantum processes from few measurements”. In:
Quantum 3 (2019), p. 171.

[KTCT21] Jonathan Kunjummen, Minh C Tran, Daniel Carney, and Jacob
M Taylor. “Shadow process tomography of quantum channels”. In:
arXiv preprint arXiv:2110.03629 (2021).

[LeC73] Lucien LeCam. “Convergence of estimates under dimensionality re-
strictions”. In: The Annals of Statistics (1973), pp. 38–53.

[Leu00] Debbie Wun Chi Leung. Towards robust quantum computation. stan-
ford university, 2000.

[Leu85] C Leubner. “Generalised Stirling approximations to N!” In: European
Journal of Physics 6.4 (1985), p. 299.

[LHSS06] Nan-Ying Liang, Guang-Bin Huang, Paramasivan Saratchandran,
and Narasimhan Sundararajan. “A fast and accurate online sequen-
tial learning algorithm for feedforward networks”. In: IEEE Transac-
tions on neural networks 17.6 (2006), pp. 1411–1423.

[LHT22a] Yonglong Li, Christoph Hirche, and Marco Tomamichel. “Sequen-
tial Quantum Channel Discrimination”. In: 2022 IEEE International
Symposium on Information Theory (ISIT). IEEE. 2022, pp. 270–275.



BIBLIOGRAPHY 207

[LHT22b] Josep Lumbreras, Erkka Haapasalo, and Marco Tomamichel. “Multi-
armed quantum bandits: Exploration versus exploitation when learn-
ing properties of quantum states”. In: Quantum 6 (2022), p. 749.

[Lid19] Daniel A Lidar. “Lecture notes on the theory of open quantum sys-
tems”. In: arXiv preprint arXiv:1902.00967 (2019).

[LN22] Angus Lowe and Ashwin Nayak. “Lower bounds for learning quan-
tum states with single-copy measurements”. In: arXiv preprint
arXiv:2207.14438 (2022).

[LTT22] Yonglong Li, Vincent YF Tan, and Marco Tomamichel. “Optimal
adaptive strategies for sequential quantum hypothesis testing”. In:
Communications in Mathematical Physics (2022), pp. 1–35.

[LZK08] Daniel A Lidar, Paolo Zanardi, and Kaveh Khodjasteh. “Distance
bounds on quantum dynamics”. In: Physical Review A 78.1 (2008),
p. 012308.

[Mat99] Pertti Mattila. Geometry of sets and measures in Euclidean spaces:
fractals and rectifiability. 44. Cambridge university press, 1999.

[Mec19] Elizabeth S Meckes. The random matrix theory of the classical com-
pact groups. Vol. 218. Cambridge University Press, 2019.

[MGE12] Easwar Magesan, Jay M Gambetta, and Joseph Emerson. “Charac-
terizing quantum gates via randomized benchmarking”. In: Physical
Review A 85.4 (2012), p. 042311.

[MM13] Elizabeth Meckes and Mark Meckes. “Spectral measures of powers
of random matrices”. In: Electronic communications in probability 18
(2013).

[MRL08] Masoud Mohseni, Ali T Rezakhani, and Daniel A Lidar. “Quantum-
process tomography: Resource analysis of different strategies”. In:
Physical Review A 77.3 (2008), p. 032322.

[MS86] Vitali D Milman and Gideon Schechtman. Asymptotic theory of finite
dimensional normed spaces. Vol. 1200. Springer Berlin, 1986.

[MW13] Ashley Montanaro and Ronald de Wolf. “A survey of quantum prop-
erty testing”. In: arXiv preprint arXiv:1310.2035 (2013).

[MWW09] William Matthews, Stephanie Wehner, and Andreas Winter. “Distin-
guishability of quantum states under restricted families of measure-
ments with an application to quantum data hiding”. In: Communi-
cations in Mathematical Physics 291.3 (2009), pp. 813–843.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and
quantum information. 2002.

[NJ13] Mohammad Naghshvar and Tara Javidi. “Sequentiality and adaptiv-
ity gains in active hypothesis testing”. In: IEEE Journal of Selected
Topics in Signal Processing 7.5 (2013), pp. 768–782.
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