Recapitulation of the deformation properties experimentally observed . . .

Résumé

Dans cette thèse est proposé une analyse interdisciplinaire de Gorgonia ventalina, un organisme modulaire sessile marin de faible profondeur et fortement déformable par la houle. L'une des spéci cité de Gorgonia ventalina par rapport aux autres gorgones est son très fort taux d'anastomose, donc de branches qui réticulent : au lieu d'une forme d'arbre en trois dimension, l'organisme prend la forme de réseaux 2D vertical avec un pied.

L'objectif général de cette thèse est de comprendre le lien entre la forme et l'environnement mécanique, pour déterminer si la perception de l'environnement par la gorgone impacte la croissance de manière à permettre une bonne acclimatation. Pour ce, il faut d'abord trouver un moyen pertinent de décrire la forme des gorgones, trouver des indicateurs permettant d'en faire l'allometrie, comprendre les mécanismes de croissances qui permettent d'obtenir de telles formes, comment ce mécanisme de croissance est in uencé par l'environnement, ainsi que les propriétés mécaniques des gorgones in ne.

Deux approches sont principalement utilisées : une caractérisation numérique de la forme des gorgones via une approche en réseaux spatiaux, ainsi qu'un ensemble d'expérience mécanique de déformation et dissipation sur des gorgones dans des écoulements.

La thèse est découpée en 8 chapitres :

• Le chapitre 0 pose les bases des notions de complexité, d'émergence, de système dynamique, de morphogénèse et d'adaptation. Il est accompagné par l'annexe A qui développe toutes ces notions de manière pédagogiques et illustrées, explorant des sujets comme le jeu de la vie de Conway, les formes obtenues par accrétiondi usion, les formes de Turing par réaction-di usion, le rapport entre forme et propriété, ainsi qu'entre perception, reaction et optimisation dans des systèmes biologiques. Le chapitre se conclu sur les caractéristiques idéale d'un système biologique permettant d'étudier des phénomènes d'acclimatation de la forme. • L'objet de l'étude de la thèse Gorgonia ventalina (G. ventalina) est présenté dans le chapitre 1. La présentation est basée tout d'abord sur une approche phylogénétique pour comprendre les caractéristiques communes avec les espèces apparentées, puis par une approche environnementale et fonctionnelle basée sur la convergence évolutive et le rapport entre forme et fonctions. On introduit le couplage entre la forme, la déformation mécanique et la perception pour les gorgones, ainsi que les problématiques de travail. • Le chapitre 2 est consacré à la description qualitative de G. ventalina a n de proposer une méthode d'analyse de la forme qui soit simple à mettre en place, réduise un maximum le nombre de caractéristiques à prendre ne compte, et mettre en avant le processus de croissance qui permet de lire la forme. Pour ce, réalise une banque de données d'image de formes de Gorgones, et on analyse les di érents squelettes à l'échelle du millimetre. On y met en avant la notion de voies (ways), inspiré de la lecture des réseaux viaires urbains, dé ni comme la continuité entre plusieurs éléments d'un réseau spatial comme clef de lecture pour la suite. On introduit aussi la notion de branche, de collision/réticulation et de plumes, permettant de faire le lien entre les formes fortement réticulées comme G. ventalina et les autres formes de gorgone.

• Le chapitre 3 explique le code PySkelWays développé pendant cette thèse, permettant de passer d'une image de gorgone à un réseau de voie numérique de manière automatique. Après justi cation de l'intérêt d'approche en voies dans les réseaux spatiaux en général, puis le manque de tels programme dans la littérature de l'analyse d'image, la méthode est introduite. Cette dernière est basée sur une binarisation, une extraction de contours puis la création du squelette par diagramme de Voronoï des points des contours, avec récupération uniquement des points pertinents. Ce squelette permet de reconstituer des arcs, équivalent des côtés dans un réseau classique. On applique en n un ensemble de méthodes locales de connexions d'arc 2 à 2 basé sur des critères de continuité et de propagation de droites dans le squelette semblable aux méthodes graphiques de Ray-Marching. • Dans le chapitre 4 sont développé plusieurs indicateurs sur la notion de voies dans les réseaux spatiaux. On montre l'existance de lois de puissances dans la répartition du nombre d'arc par voies (indicateur de degré) avec un coe cient entre 2 et 3 pour chaque gorgone, propriété commune avec les réseaux de craquelures, la structure des villes et les ailes de libellules. Il existe aussi une loi de puissance pour le degré des voies en croissance des gorgones avec un coe cient plus faible. On explore un ensemble de modèles simple de croissance et de structuration des réseaux, a n de comprendre d'où vient cette propriété, sans aboutir de manière analytique. On observe aussi une distribution gaussienne de la taille des arcs centré sur la taille d'un arc médian pour chaque gorgone, ainsi qu'une distribution log-normale de la taille des voies, que l'on peut expliquer par convolution de la distribution de degrée et de taille des arcs. On en déduit l'importance d'indicateurs sur des structure plus élaborées pour éviter les forts invariants dans une démarche allométrique : soit un indicateur multi-objet soit un indicateur sur un objet plus spéci que comme la branche ou la plume • Le chapitre 5 explore des versions ra né des voies ainsi que les indications qu'elle donne sur la forme. On montre comment la notion de branche permet de déréticuler le réseau et donc le traiter avec les approches allométriques conventionelles, bien que celles-ci manquent de pertinence car aveugles aux phénomènes de collisions. On montre l'existence d'une distribution Gaussienne sans paramètre au sein du réseau de la gorgone lorsque l'on compte pour chaque voie le nombre de tournant necessaire à accéder à l'enveloppe, que l'on peut retrouver dans les réseaux bien structuré comme celui de certaines villes vis à vis de leur périphérique. On montre aussi que les branches, à moyenne longueur, suivent toute le meme type de loi de tropisme vers l'extérieur de la gorgone et vers le haut. Une explication pourrait être un tropisme vers les plus fort courant, modulé par la couche limite crée par la gorgone. On en déduit que l'un des paramêtres clefs de la croissance et la modulation de la vitesse de croissance des branches en fonction de la structure et du courant observé. En n, on montre que dans une approche allométrique la plume, par le découpage de la forme, ainsi que par ses di érentes caractéristiques et intéractions 2 à 2, est l'élément idéal à considérer pour de futures études. • Les zones de non-contact entre plumes (les failles dans la formes), nous permette de mettre en avant un nouveau mécanisme d'inhibition de croissance par frottement et desynchronisation du mouvement. Ce mécanisme permet de faire de la déformation en plaque une déformation en 3D, ce qui limite les chocs inertiels et augmente la capacité de la forme à être plus aérodynamique lorsque déformée. Le pro l de ses failles permet de lire une déformation depuis la forme plane des gorgones. On crée un modèle de déformation basé sur la forme, un renforcement moyen, et une approche en poutre pour faire le lien entre forme, environnement et déformation qui nous permet de réduire le problème à des pro ls adimensionné et deux nombres hydrodynamiques. En n on propose une méthode de mesure de la rigidité via analyse d'image, basée sur l'extrapolation de la profondeur des branches depuis leur pro l et un modèle bimatériel de branche. On montre ainsi que l'évolution des renforcements en fonction de la taille des gorgones est un processus de réponse à la déformation due à l'écoulement. • Le chapitre 7 est consacré à l'étude mécanique du problème uide-structure par une série d'expériences réalisées en Guadeloupe. à l'aide d'un mésocosme, un bassin de 8 metres de longueur on mesure comment di érentes gorgones frottent et se déforme en fonction de leur vitesse. Deux types de mouvements sont étudiés : les déformations à vitesse constante via un rail, et les mouvements oscillatoire via un pendule pesant de 5m70. Les informations sont extraites par analyse d'image. On montre que la gorgone se recon gure suivant la théorie de Vogel avec un exposant ν = -1, avec une vitesse de déclenchement indépendante de la taille des gorgones U 0 ≈ 0.1m.s -1 . On montre que les e ets inertiels dans la déformation s'ampli ent avec la taille des gorgones, ce qui implique qu'elles nissent par se faire arracher dans les écoulements de tempêtes avec une portion du récif. • Le manuscrit se conclue sur une vision globale apportée par chaque chapitre, un ensemble de proposition de réutilisation des di érents outils développé ici dnas d'autres cadres, ainsi qu'un ensemble de préconisation sur de futures expériences envisageable sur Gorgonia ventalina.

General Outline

Chapter 0 opens with our take on notions of complexity, structure, emergence, and morphogenesis. The shape of Gorgonia ventalina is introduced as a subject of choice to study the link between growth, perception, and acclimation through the lens of dynamical systems. We show through examples some key concepts of morphogenesis, and explain how we consider that using dynamical systems on shape can enlighten the main properties of growth and perception, and in consequence acclimation.

On chapter 1, we introduce G. ventalina and its main characteristics. We put an emphasis on its exposition to its mechanical environment, its lineage, and its speci city in terms of reticulated tree, to formulate the problematic of this thesis.

On chapter 2, we present a qualitative study of G. ventalina. We strip of the structure of its di erent layers, to create a basic set of vocabulary, concept and a framework for growth models, that we explore with a simple numerical model for morphogenesis, and experiments in vivo.

On chapter 3, we develop a general method for image analysis of 2D network structure, using the software PySkelWays that we created. We put the emphasis on the notion of ways, an element extracted from cities plan analysis that allows new approaches to spatial network shapes.

On chapter 4, we focus on the properties of ways, in the case of G. ventalina, but also in the case of other systems such as crack patterns, cities and dragon y wings, to determine some of the general spatial properties they share, and if simple allometry elements can distinguish the di erent structures. We also look at morphogenetic toy models that can recreate our measured properties.

On chapter 5, we examine the shape of G. ventalina using a more speci c vocabulary than ways. We reconstruct partially the reconstruct partially temporal information on the growth, and show how this type of network can be seen as a tree-structure. Through branch direction, we characterize the tropism behavior for local growth.

On chapter 6, we introduce the notions linked to deformation, then we show that there are macroscopic splits into the structure of G. ventalina that can be read as a signature of the deformation, and that in consequence we should consider the shape of G. ventalina as a deformed structure that can be unfolded. We also show preliminary calculation on rigidity using beam models, to show how the reinforcements can be linked to the pro le of deformation.

On chapter 7, we show the mechanical properties of gorgonian that we measured experimentally in a controlled environment, in terms of deformation and drag, both in steady and periodical movement. We deduce from them how does the growth and environment perception of G. ventalina impact its acclimation to its mechanical environment.

On chapter 8, we conclude on what properties we have put in emphasis through this study, how they can be useful for other member of the community, and what we can say about the ability of gorgonians to be acclimated to their mechanical environment.

In addition to the manuscript, the following resources are available :

• PySkelWays : code for ways extraction and analysis https://github.com/DaluS/ PySkelWays • Datas : The collection of HD images of gorgonians, Videos of Gorgonian deformation, and all other ressources https://frama.link/Form-Formation-Deformation-Gorgonia_Ventalina_Full. • The other data are available on demand at paul.valcke@cri-paris.org

Glossary

These terms are usually de ned the rst time they are used in the text. It can be useful for someone reading only one or two chapters of this thesis to check each de nition here.

• Anastomosis : Connection between two structures (here branches). These connections create reticulations in the network of branches. • Arc : Edge of the spatial network. Associated with a path, an ensemble of radius along that path, and two extremities (places, on which two adjacent arcs meet) • Branch : On a network approach, a branch is an directed way, with a rst and last element (in term of date of creation), and a local classi cation or hierarchy with its neighbor (daughter/mother/killer/killed). On an anatomical approach, a branch is the ensemble of elements that had been the same tip before. Its orientation is continuous, and it can creates other branches. In the case of gorgonians, the gorgonin bers under the sclerite layer are aligned when not reinforced. • Beam : a 1D elongated structure, used for mechanical models. A plate can be seen as a beam if we neglect 3D e ects. • Complicated : Di cult to deal with, to understand • Complex : Said of a System with components interacting with each others, sometimes on themselves 1 . The system cannot always be described explicitly but its components, and its temporal evolution can. Computational complexity : number of operations per number of elements for a given function. • Degree : For a classical network, the degree of a node is the number of edges that are associated to it. For a hyper-graph of ways, the degree of a way is the number of arcs that constitute the way. • Envelope : growth front of the gorgonian. Exterior contour, along which the branches are still growing. • Extension : normalized distance between the foot and the tip (normalized by to total length). If the curvature keeps the same sign, the extension is de ned between π/4 and 1. • Foot : Origin of the gorgonian ( rst elements to appear), connexion between the reef and the structure. Narrowest part of the structure, but also the most rigid usually. • Fiber : Gorgonin element of branches. There are to layer of bers, di cult to distinguish. One is created with the branch and follow its orientation, and the second is increased with reinforcement growth, and doesn't necessary follow the branches.

• Flabellum : Specie of gorgonian, that might belong to a complex of cryptic species with G. ventalina. It is not clear if their distinct shapes correspond to any acclimation to a distinct environment. The di erence between G. ventalina and G. abellum is typically the pro le of branch sections : circular for ventalina and elliptic for abellum. With the same quantity and type of material, a branch of abellum will be more rigid than for ventalina.

• Gorgonin : Keratin-like substance, here in bers on the axis of branches to create reinforcements. • Holes : Empty zones of the structure, often lled with polyps. Represent ∼ 30% of the surface. • Hierarchy : Associated number to a way or branch, in term of distance (in number of turns) to an element of reference. • Hyper-Graph : Graph based on elements of the graph. Here, ways are the hypergraph of arcs. • Link : Local association between two arcs belonging to the same place. Two linked arcs belong to the same way. • Modular : A structure is modular if its local characteristics do not depend on the placement in the structure. • Meshwork : Network with spatial properties, here used as the description of the branch network. • Metabranch : an ensemble of branches well connected to each other, creating a at nger-like shape, delimited by the envelope and splits on the sides. • Network : Ensemble of connexions between arcs, topological structure of the branches reticulations. • Polyp : Biological unit of gorgonians.

• Plume : Ensemble of branches, composed of a mother branch and all its daughter branches that are of the same length. Best unit to describe the shape. • Reinforcement : Local increase of rigidity, due to additional gorgonin bers on the skeleton. • Reticulation : Loop in a network, allowing at least two path to connect two points.

• Remodeling : Modi cation of the shape properties already present, that can be done by removal or displacement. This type of process blurs the growth history; and can be often seen as e cient for acclimation. • Sessile : cannot move, xed to its support.

• Sclerite : S calcium carbonate structures generated by the gorgonian, in a sparse layer around the gorgonin skeleton. We often refer to the sclerite layer simply as sclerites. • Structure : One colony of polyps creating G. ventalina seen as one individual, and only in reference to its geometrical or mechanical properties. Constituted of all the branches and their reinforcements. • Split : Macroscopic event on the envelope, with the envelope locally going closer to the foot than on a regular basis. At rst sight, could be thought as a cut in the structure • Steady : Movement with no variation in time. the ow speed U can be non-zero but all its derivatives along t are zero. • Tip : Extremity of a branch, still growing and often connected to the envelope.

Newest point of a branch

• Tropism : Preferred direction of local growth for a branch. Modulates the curvature and the growth speed. Typically depend of the shear stress, light, or gravity. • Vogel coe cient : Measure of how e cient is the deformation of a structure in term of drag reduction F/F rigid = U ν , ν being the Vogel coe cient. Typically between 0 (rigid structure) and -2 (totally exible structure) • Way : Ensemble of arcs connected locally through links, creating an hype-graph.

Can be seen as a street in the case of cities, going through crossroads.

Visualization between reticulated network elements of construction

We use multiple types of elements to analyze the network of G. ventalina, based on three vocabulary :

• Classical non-spatial network • Taxonomy of branching gorgonians • Urban road network The four most important elements are arcs, ways, branches, and plumes represented in gure 1. The other elements of construction are detailed in gures 3.9 and 3.10. The construction and justi cation of such vocabulary is spread in the manuscript. The Chapter 2 shows how we can construct these elements from anatomical observation, Chapter 3 how we can create arc and ways from a numerisation of the skeleton, and chapter 5 how we recreate branch and plume from ways, with their speci city.

Chapter 0

Choosing an object of study

This chapter synthesizes the state of mind and a personal view regarding the approach undertaken in this thesis. For anyone curious or having enough time, a development of the di erent points of this chapter is available in A A. A reader who has little experience with complex systems and dynamical approach should begin this adventure by the lecture of the appendix.

Contents 1

Studying complex systems, using morphogenesis

1 2
The need and di iculty of systemic approaches

2 3
Typical picture of our subject 4 "The phenomena are not hidden; it's the concept that's hidden. And the concept is surrounded by other concepts. He intervenes in a conceptual eld, and his relations give us a hard time. " Wittgenstein, (Wittgenstein 1922)

1 Studying complex systems, using morphogenesis

Complexity emerges through interactions, spontaneously. It is a fantastic domain as it is very rich in properties and objects, yet di cult to understand. We need concepts to manipulate their properties and do e ective reductionism. Life is among the most complex and organized systems we know. A living organism is going from an initial state as a single cell to a fully developed structure, as an accumulation of growth steps, and each of these steps must be valid: it is a dynamical process that we call morphogenesis.

Thinking with dynamical system is looking at how the system changes, to its processes, rather than looking at the nal state or the result. A growth process is linking the environment, the perception of an organism of its environment, its response in terms of growth to this logic, and the consequence on its environment and on itself. The link between the process and the properties of the grown shape is not trivial, and it is one of the keys to understand complex systems. Some of the morphogenetic processes and logic, even with very di erent conditions, can only give a nite quantity of shapes. If some logic can give a wide variety of states, they need to emerge spontaneously and be resilient to uctuation to appear in life, as seen in the case of the "game of life". Very simple processes such as aggregation or Laplacian processes create tree-like structures. The role of the interface and boundaries is preponderant. This logic is very simple and found in a lot of di erent domains, such as electric discharge, corals or bacteria colonies. One shape can be obtained through multiple logic, and one logic can create multiple shapes, as in the case of Turing Patterns. Looking at the nal state can give insight into what is behind in terms of morphogenetic process, and the growth can not always be read by looking at the nal state. Constraining growth to respect the law of physics and continuity implies that the shape of obtainable shapes is particularly restraint. It goes beyond the idea that "all organisms are beautifully designed for the functions they perform": if a shape, and in consequence the growth process behind, is "good enough" even with multiple aws, it can still be selected.

Shapes have properties and functions, sometimes well de ned as in the case of resisting strain forces on a rigid object. These properties can be a direct consequence of the growth process as an optimization, like soap bubble surface tension creating minimal surface linking boundaries, or simply as an emergent property, an artifact of the growth.

Some nal shapes have interesting properties, but it doesn't mean that there is optimization as in the case of pine cones: some growth processes need to be simple and resilient and are good enough to be validated. The simpler the growth process giving a correct result, the more it can appear spontaneously.

There are living organisms that seem to optimize complex problems, as Physaraum. Even if they are modular, they have important feedback on their shape through perception.

The questions of optimization can be studied in evolution: every generation accumulates changes that can be either conserved or not, depending on their impact on survivability. If they improve it, they are conserved such that it is a step toward local optimum. Yet, the tness of an organism is not well de ned, evolution is out of equilibrium in an environment itself out of equilibrium so talking about optimization is limited: everything can change, and we don't always know what is optimized.

Acclimation is the ability of an organism to change its phenotype, its properties, to correspond better to its environment. For a non-moving organism, it means that it can have a good perception of its environment, and have a response in a way that e ectively increases its chances of survival. For an organism that cannot modify its environment, it means that it modi es its properties.

The amount of processes that create properties, in a way that can appear through evolution in a limited amount of time, is limited. Some "recipes" being easier to access and more e cient than others, similar organizations can appear in di erent organisms that are not related.

The question of adaptation and acclimation can be seen as a question of growth logic, and perception of their environment. more di cult to drive them into what we think is the right direction. It is mandatory for the scienti c community to understand their logic, develop concepts and tools to tackle this complexity, and thus open new approaches to tackle the main challenges of the 21st century (Meadows 2009). Among these challenges is the understanding of the climate system, of our economical system (AFD 2019), of our distribution of resources [START_REF] Motesharrei | Human and nature dynamics (HANDY): Modeling inequality and use of resources in the collapse or sustainability of societies[END_REF], and of the biodiversity massacre we are committing (Meadows 1972). These three angles share this notion of complexity and dynamic and the recent problems we face as humans are for an important part based on our lack of understanding of them.

There are several approaches to such problems, and their diversity might be one of the keys resolve them. Thinking in complex systems, at least in physics, is quite new for the community. The di erent tools and theories are for an important part from the middle of the 20th century, and we can safely guess that an important number of them should still be developed in the next years. The domain of biology has an important experience of complex systems, and a lot of their notions should be generalized to other disciplines as tools to tackle more e ciently the complexity. Reciprocally, a physicist can also bring a wide variety of tools for biologists, to push limits of the understanding of various living systems.

A dynamical approach, with morphogenesis and geometry, is one of them: it links a simpli ed version of the genotype (the logic of the system), to a simpli ed version of the phenotype (reduced to the shape), through the environment. Using morphogenetical approaches can be very powerful, as it uses a logic with far fewer elements than emergent results: the perceived complexity is highly reduced.

Analyzing a nal state is often too much information, yet if one can reconstruct the history from the nal state, one has access to the process, and in consequence, doesn't have to take into account the complexity emerging from the temporal accumulation of each growth step. The information on the process emphasizes the perception of the environment, the inner logic and thus the ensemble of possible shapes. Understanding a growth process is a way to understand the acclimation process and its limits. This is limited to systems that can be written with few elements: the simpli cation of the logic, and the resulting shape when analyzed, needs huge hypotheses to stay in a domain of comprehension. The biggest di culty is to nd the right subject for such an experiment, and the right approach that can be simple enough for human comprehension, and accurate enough for an e cient description as a result (Hoep ner 2015). In consequence, the choice of the subject, and the approach, is the most important element to construct comprehensible, accurate, and in consequence useful science for further analyses of more complex systems.

Ultimately, extending our understanding of growth following a logic according to the perception of an environment, and the consequence in terms of acclimation could be a way to select which type of information, which type of structuration and dynamic can lead to acclimation on a general case. As we face the limits of the organization of human society and its perception of the environment, new processes could bring a more e cient approach. Collapse theories, predicting a rather apocalyptic future which are now popular in France, are often based on a scenario in which the limits of our environment are exceeded, with a lack of perception, and response in terms of reorganization of the society causing this overshoot (Diamond 2005).

Typical picture of our subject

We need to focus on a subject at the right amount of complexity that can be tackle partially with a simple approach, and di erent enough from what is usually done so that we can add new approaches for the community as a contribution. Focusing on living systems seems thus relevant, as the biologist community already developed an important ensemble of knowledge, and even if this domain of physical biology skyrocketed last decades, it is still limited due to the lack of interdisciplinarity.

We can establish some of our criteria the following way: 1. We are looking for an organism with a growth model that could require a small number of ingredients, as tools from physics are limited in their complexity. In consequence, a modular shape should be preferential compared to growth in embryo, or metamorphosis process. 2. We want an organism that remains in the same environment for two reasons:

• There are fewer variables to take into account, as only one environment has to be described • The only acclimation mechanisms are through either the modi cation of the environment or the modi cation of the organism 3. We want to minimize the retroaction of the individual on the environment to remove interactions that could blur our approach, thus we want to focus on organisms that have little impact on their surrounding. As a consequence of such an organism, they need to have an important perception of their environment and a growth strategy that can lead to acclimation processes in terms of shape. 4. If the main interactions with the environment are well de ned physically and closer to perception processes such as light perception, gravity, food gathering, electromagnetism or mechanical forces (strain and deformations), then it is easier to integrate them into our models. 5. We want to base the description of their shape to something already known so that we can construct from existing knowledge of the community.

It happens that I, with a juvenile version of this scienti c approach, met in 2016 a team at the laboratory Matières et systèmes complexes that had worked with scientists of the laboratory Borea from the Museum National d'Histoire Naturelle on the species Gorgonia ventalina, which happens to correspond well to this description. In particular, its shape, considered by a part of the community to be optimized for its mechanical environment, seems to be a particularly appealing subject. After more than three years studying it, it is di cult to say if my approach was already this one, causing this choice of subject, or if working on the shape of G. ventalina has in uenced my perception of complex systems.

In all cases, this thesis is about this organism, its shape, its growth, and its mechanical relation to its environment, as a part of a bigger scienti c path trying to link growth and local perception to global properties and maybe acclimation.

Chapter 1

Gorgonia ventalina, a complicated shape The gorgonian presented in gure 1.1 is an example of Gorgonia ventalina (G. ventalina): an animal corresponding to a modular colony composed by a network of thin branches. These gorgonians species live in shallow waters where they are strongly exposed to the swell and thus are highly deformed by the water ow.

This one is maybe one of the most complicated gorgonian shapes we ever encountered, and our goal was to understand that type of shape.

In this chapter, we are going to describe G. ventalina and its relations to its mechanical environment, using di erent properties shared with other organisms. We will:

• First, learn more about the classi cation of living species to show the particularities of G. ventalina • Then, present previous studies exploring the link between living organisms and their mechanical environment, particularly as it relates to growth • Finally, formulate the problem studied in this thesis.

Contents 1

G. ventalina in the organization of living organisms 

Problematic

"La vie est un phénomène dont la mécanique ne peut être que purement physique; elle est produite par les mêmes forces, régie par les mêmes lois qui agissent sur le monde non vivant" Leduc 1912 When discovering a new organism, a way to understand its origin and evolution is to look for its place within the general classi cation of living organisms. Indeed, organisms might share an important part of their genotype due to the common history of their evolutionary trajectories. The closer the species are in evolution, the more properties they might have retained in common. We will then look at the properties of various organisms that are exposed to the same type of constraints as Gorgonians, here focusing on the mechanics of sessile organisms, and nally, we will focus on the common properties that organisms might share due to convergent evolution.

G. ventalina in the organization of living organisms

The rst known attempt to classify living structures came from Aristotle in -343. He classi ed, at that time, around 500 species. Our modern classi cation was conceptualized by Carl Linné in his "Systema Naturae" (Linnaeus 1735), which subdivided life forms into a branched structure. Now, it contains more than one million species, with an expectation of ∼ 8 × 10 6 species on Earth. An illustration of such a tree can be seen in gure 1.2: Depending on the representation, each layer of nodes corresponds to a more speci ed subclass, from kingdoms to species. Nodes correspond to a theoretical common ancestor with which the genotype and phenotype can be partially shared between species, and thus the distance in the tree corresponds roughly to the parentage between di erent species. We will, starting from the last universal common ancestor, describe how G. ventalina is related to other species, and thus what properties we can expect it to exhibit. The classical classi cation of G. ventalina is shown in gure 1.3. 

The animal kingdom in opposition to plants

Gorgonians, and corals in general, belong to the animal kingdom. However, misclassi cation was proposed during a long period of time, and gorgonians were thought to belong to plants. A proper classi cation came from a declaration of the physicist and naturalist Jean André Peyssonnel in 1725 and was accepted by the scienti c community nearly 20 years later (Manfred et al. 2001). Such misclassi cation can be explained by the fact that gorgonians share several properties with plants: they are sessile (they are attached to the reef), have an important surface and thus interface with their surroundings, they share their environment with algae, and are deformed by the swell in similar ways. They were named as stone ower, 'hard vegetal', which might illustrate some of their apparent characteristics.

Since gorgonians and algae can be exposed to similar environmental conditions with the same type of strategy, we can expect convergent constrains and for them to share multiple properties with sessile species belonging to the plant kingdom. Their lack of ability to migrate or change their environment forces them to be particularly sensitive so that they can be better at acclimation.

Plants cells are surrounded by a cell wall that gives rigidity to their structure and does not exist in animal cells. The rigidity of animals comes from other structures, such as bones in the case of humans.

G. ventalina cannot synthesize chloroplasts and thus cannot perform photosynthesis directly. They are indirectly capable to use solar energy thanks to endosymbiosis with zooxanthellae. Zooxanthellae are microalgae, photosynthetic dino agellate of the genus Symbiodinium, which live inside the cells of some corals including gorgonians, with ≈ 10 6 algae per cm 2 . They can be responsible for up to 90 % of their energy input (F. P.

2009).

Even though G. ventalina are radically di erent from plants, several approaches that are used to describe plant growth and responses can be useful for their study. 1.2 The Cnidarian phylum, between sponges and bilaterians Among animals, G. ventalina belongs to the Cnidarian phylum. There are around 10 4 species, with 99% of them in oceans. They correspond to anemones, jelly sh, corals, or gorgonians. Current taxonomic data are compiled by the WoRMS system (World Register Marine Species), even if their classi cation is constantly evolving and modi ed. The Cnidaria phylum was estimated to appear ∼ 580.10 6 years ago.

They diverged early in evolution:

• Sponges, which are pluricellular organisms with only one type of cells, appeared before • Bilaterians, which possess an axial asymmetry as most animals, diverged just after Cnidaria. Cnidarians are among the most simple types of organisms, characterized by modular growth and a small number of cell types.

Cnidarians exist in two forms: free (jelly shes) and sessile (polyps), and some species alternate between these two forms. Polyps can catch prey in the water ow and digest them in a stomach.

G. ventalina can be found in the Caribbean sea, a region with a, particularly high endemism rate. There is a wide variety of coral species in general in that area as shown in gure 1.4, and it is a place of choice for the French community to do ecological studies, as it is one of the French oversea territories under tropical climate. 1. 3 The Anthozoa group, sessile organisms Anthozoans are Cnidarians, with only a sessile organism state. Anthozoa means "animalower": in this analogy the owers are the polyps, growing to a "tree" which is their common structure, an exoskeleton mostly made of calcium carbonate. There are more than 7,500 di erent Anthozoa species. They cannot migrate once the larvae are implanted.

They create colonies of clones of the same individual (polyp) through asexual reproduction, and create new colonies through sexual reproduction. One colony can contain thousands of polyps with the same genotype. The Anthozoa Class can represent more than 90 % of species in some coral reefs. These reefs rst appeared 500 × 10 6 years ago, and the worth of their ecosystem service is evaluated to ≈ 172 billion dollars a year [START_REF] Platt | How much are coral ecosystems worth? Try 172 billion dolla-A year[END_REF]. They cover 0.02 % of the ocean oor surface but correspond to 25 % of the marine biodiversity: there are as many species in 1 km 2 of coral reef as on the entire French metropolitan coasts.

There is a strong correlation between the number of Anthozoa species and the number of sh species in the same environment.

Their environment requires mostly:

• A temperature between 18 and 32 degrees, with an optimum around 26 degrees • A salinity of 28-40 PSU (Practical Salinity Unit; grams of salt per kilogram of water)

• A stable environment with nutrients and a low amount of sedimentation. Most of their diversity can be found in the coral triangle around Indonesia, which has been a particularly stable area in terms of temperature over the di erent glaciations (Yudiarso 2019), with a mean temperature of 28°C.

One of the most famous Anthozoan species is certainly the Red coral Corralium rubrum, which can be found between 5 m and 800 m of depth, and has no endosymbiotic zooxanthellae. In a typical year, their diameter grows can vary from 1.28 ± 0.3 mm, and their length by 5.0 ± 3.0 mm (Pratlong 2016).

There is an enormous diversity of life forms within this family, and di erent species mostly coexist in the same physical environment: either multiple strategies in terms of polyp size, type of structure, general shape are working well, either none of them is particularly an optimization for the local environment. Shape plasticity is important in this group, and water ow has an important in uence on it. An illustration is shown in gure 1.6: 

Gorgoniidae, standing in the flow

The Gorgoniidae family belongs to the Octocorallia subclass of the Anthozoa class.

Gorgoniidae are colonies of polyps with eight-fold symmetry. The other major subclass in the Anthozoans is the Hexacorallia (six-fold symmetry), which contains most stony corals and reef constructors.

In some environments, gorgonians can represent up to 40 % of the biomass (Philippot 2018).

Their central axis is made of gorgonin, a protein equivalent in properties to the keratin of chitin. The main mechanical properties of gorgonians are explained by gorgonin, as this material o ers an important rigidity while also allowing bending without breaking at a high curvature. Consequently, gorgonians can reach an important height above the sea oor.

While most hexacorals grow horizontally, gorgonians stand up vertically, which increases their exposition to the water ow. Moreover, they are found only in places in which there is a discernible ow, "in one of those rare, straightforward correlations seldom encountered in nature" (J. T. Rees 1972).

As with most biomineralizing organisms, there is no or little removal or displacement of elements of gorgonians' structures apart from relatively rare evens of external predation or partial breaking: their growth has no remodeling mechanism, it only adds layers.

Their structure is modular, with the polyp being considered as the biological unit.

Metabolite transport capability of gorgonians appears to be poor (Murdock 1978), thus most nutrients are produced and consumed locally. But unfortunately, this aspect of the gorgonian's physiology has been relatively poorly investigated.

The nomenclature to describe their shapes has been built using their external characteristics, and mostly by botanists. Consequently, this vocabulary is often reminiscent of plants and includes trunks, branches, rami cations, and nodes. This nomenclature has been standardized and mutualized by (Bayer 1983). The diversity of shapes goes from a simple trunk to a highly reticulated network of branches, as illustrated in gure 1.7. Between these two extremes, two phenomena occur in growth: interssuception (rami cation of one branch), and anastomosis (fusion of two branches).

This continuum between two extreme shapes is particularly interesting: assuming that all these species are close enough genetically, it is possible that the same morphological process could create all of these di erent patterns. The vocabulary for the microscopic description of gorgonians used in this thesis is taken from Philippot 2018, in the Bayer classi cation (Bayer 1983), and we added new terms when no equivalent could be found. In the community, the identi cation of species is often done by molecular analysis.

There is important plasticity in their shape, depending on the environment Skoufas 2000, and it was shown that the same species Eunicella stricta could present three di erent shape types (whip, concave or fan).

While arborescent structures have a well-established description vocabulary, reticulated networks have been less well described: species such as G. ventalina remains vaguely described as fan or plates, with no precise allometry beyond their width and height. Yet, the structuration of the meshwork of di erent species does not follow a unique pattern, as shown in gure 1.8: better description is needed because it might be used as identi cation key, and/or a sign of acclimation strategy. Although it has not been really measured, there might be a correlation between the degree of anastomosis and the projection into the same plane of the whole gorgonian structure: arborescent structures are 3D and reticulated structure mostly 2D. 

G. ventalina, a highly reticulated gorgonian

Among the di erent species of gorgonians, G. ventalina stands out through the intensity of its reticulation. The meshwork they form is complete, as there are almost no branches with a free ending which is not found at the extremity, most of the extremity being very thin (≈ 1 mm), and few of them being larger.

Figure 1.9.: On the left, appearance of G. ventalina network when the polyps and the tentacles are extended outside the core structure. On the right, the polyps are retracted, partially into the coenencyme. As the coenencyme is often very thin on G. ventalina, an important part of polyps stay exposed even when retracted.

Their color can vary from white to yellow or purple, but it is not a taxonomic trait. Yellow tints are less intense in deeper corals. The purple pigmentation is caused by carotenoid pigments, which have antiseptic properties and are locally produced when an area of gorgonian experiences stress. Yet, some can be purple without any particular and apparent sign of infection as shown in gure 1.10. Figure 1.10.: Two gorgonians, at less than 1 m depth, with two di erent colors. Note that, in both cases, their structure is not one plate but rather multiple split ngers.

While the structure of G. ventalina is mostly 2D, some small growth elements can also be perpendicular to the main structure. They are usually negligible in terms of mass or size, compared to the other parts of the network. Still, cases with complicated multi-planar shapes exist.

The density of G. ventalina can be very high as shown in gure 1.11, and they usually share their environment with other species of gorgonians, algae, and hexocorallians. In that case, they are particularly big ≥ 1 m for a large portion, with many perpendicular plants that stopped growing, for example in the case of the white one. G. ventalina is widely spread around the French Antilles, colonizing reefs, sedimentary and volcanic substrates. They are rarely found in zones with high turbidity.

G. ventalina is usually found at low depth (down to -20 m)in the Caribbean sea, where it's one of the most abundant species.

Since new individuals are transported by the water ow essentially during their larval state, there are only small displacements and propagation of adults. It is consequently possible, in the case of Guadeloupe, that the populations on the north and south sides of the island have evolved independently.

The meshwork and the splits in the structure of G. ventalina are not the only things that make its shape interesting: some of its parts are particularly well reinforced, with large branches on the structure as seen in gure 1.12. This particular study has been conducted on 60 colonies, of which one quarter died during the study, and 20 % did not grow due to deterioration. The growth rate was measured vertically and horizontally with no information on the meshwork, with 7.50 ± 0.35 cm/year of growth in optimal conditions, and no di erence between big and small gorgonians. G. ventalina is oriented, and this orientation is the most common subject of research about this species [START_REF] Brazeau | Inter-and intraspeci c variation in gorgonian colony morphology: quantifying branching patterns in arborescent animals[END_REF][START_REF] Wainwright | Mechanomics: An emerging eld between biology and biomechanics[END_REF][START_REF]Orientation and growth form of sea fans[END_REF][START_REF] Michael | Correspondence of sea fan orientations with measured currents on hard bottom habitats of the Mississippi/Alabama continental shelf[END_REF]. Studies have noted that it faces the usual swell orientation, and consequently that the exposed surface is maximal [START_REF] Michael | Correspondence of sea fan orientations with measured currents on hard bottom habitats of the Mississippi/Alabama continental shelf[END_REF]. This orientation might be the consequence of a stable mechanical con guration: in the same way that falling leaves tend to be falling perpendicular to gravity and wind, a plate in a ow eld is only stable when perpendicular to the ow.

G. ventalina are always in movement, following water ows caused by the waves. Their base (the foot) stays in the same place, and the tip travels from one side to the other, while the rest of the structure is constantly deformed.

During extreme weather events, the swell can be strong enough to dislodge, or partially break gorgonians and other corals. As both the number and the intensity of hurricanes in the Caribbean sea are estimated to increase due to the climate disruption caused by our thermo-industrial society, ability to withstand extreme mechanical events is becoming a major threat and should be taken into account when evaluating the resilience of an organism to its environment.

Deformation of polyps

Polyps are the biological units of gorgonians.

They can retract into the structure of gorgonians but are the part that is the most exposed to the water ow when not retracted. Depending on the swell intensity, polyps are exposed to di erent ow speeds:

• If the structure is moving in the same direction as the ow, then the speed felt by polyps is lowered • If the polyps are not directly exposed to the ow (sheltered by the branches), then they are exposed to an even more lowered speed • If the deformation creates recirculation of water around its structure (typically on the sides), then the exposition is also smaller The ability of polyps to capture food as particles (algae ...) depends on the ow intensity: if there is no ow, there is a decrease in the probability of each polyp to be exposed to food, and therefore of the particle to be caught [START_REF] Leversee | Flow and Feeding in Fan-Shaped Colonies of the Gorgonian Coral, Leptogorgia[END_REF]. If the ow is too strong, then polyps are might be too much deformed to be able to properly catch a particle, as shown in gure 1.14 It can even be harmful to their structure, and they are often seen retreating inside the structure when exposed to ow they cannot handle.

Figure 1.14.: Flow pattern around an arti cial polyp. Depending on the ow speed, there can be a recirculation of the ow in the area where the polyp can grab suspended particles. This passive use of recirculation might allow passive polyps to be in contact with suspensions particles. Note that in this experiment, the structure of the colony is not studied, while in reality, it can destabilize the ow and already create recirculation and instabilities. [START_REF] Sponaugle | Flow patterns and velocities around a suspension-feeding gorgonian polyp" evidence from physical models[END_REF] In consequence, there is an optimal ow speed for polyps to catch food, and having a deformable structure might saturate that exposed speed, thus improving the range of swell intensities they can e ectively catch food. However, we have to keep in mind that G. ventalina might also be able to sustain only autotrophic growth thanks to the presence of zooxanthellae, and it has been reported (with no peer-review) that it could survive with only light during more than one month in an aquarium. Thus depending on the conditions, photosynthesis can be considered as the main source of energy; somehow lowering the importance of the mechanical forces.

Deformation of sclerites

The core of gorgonians is composed of a gorgonin (keratin-like) bers structure, covered by a thin ( ≈ .5mm ) layer of sclerites. The sclerites are made of calcium carbonate, with an elongated and rough shape, and contains most of G. ventalina's chemical defenses against predators [START_REF] Alstyne | Chemical and structural defenses in the sea fan Gorgonia ventalina: e ects against generalist and specialist predators[END_REF]). An important part of modern gorgonian species identi cation is based on sclerites (Philippot 2018). Their growth has been extensively studied [START_REF] Grassho | The gorgonians of the Sinai coast and the Strait of Gubal, Red Sea (Coelenterata, Octocorallia)[END_REF].

The shapes of gorgonian surface sclerites (spicules) can often be used alone to identify specimens to the genus level. In most gorgonians, surface sclerites di er from those of deeper layers, and these combinations are used for identi cation to the species level (Manfred et al. 2001).

As mentioned hereabove the sclerites layer is thought to protect gorgonians, as it contains antiseptic elements such as carotenoids. While calcium carbonate is very rigid, (its Young modulus, quanti cation of rigidity is 70 GPa (A. P. [START_REF] Articles | General Monetary and Multisecotral Macrodynamics for the ecological Shift[END_REF])), by itself the layer of sclerite is not. This can be explained by the fact that sclerites do not ll all the available space (about 20% WEST 1998) and that they are partially mobile (measures of the e ective Young Modulus of the layer are around 0.1 GPa E. [START_REF] Esford | Sti ness of Caribbean gorgonians (Coelenterata,Octocorallia) and CaIMg content of their axes[END_REF]. In consequence, the rigidity of gorgonians is caused in most areas by their inner gorgonin skeleton, which has a Young modulus of 10 GPa.

This does not mean that sclerites should not be taken into account in studies of gorgonians' deformation. As the sclerite layer is deformed, the sclerites are locally reorganized, depending on whether the deformation is locally an elongation or a contraction of the layer. [START_REF] Lewis | The Function of Surface Sclerites in Gorgonians (Coelenterata, Octocorallia)[END_REF].

Since they are linked with biological deformable elements, these links could act as deformation and stress gauges, and thus locally perceive the mechanical environment. Depending on the type of sclerite shape and con guration, di erent types of deformation/strain signals can be perceived, and impact the biological retroaction in terms of growth, as seen on gure 1.15. We know that the link between mechano-perception and gene expression is important in many biological systems, and it is studied by the eld of mechanomics (Wang 2014). The transcriptome of G. ventalina was sequenced and candidate genes for the perception of the deformation should be explicitly investigated.

In consequence, deformation and deformation signalization are both strong for G. ventalina, and could be an important part of its perception of its environment, and thus of its acclimation process to its mechanical environment.

Flabellum and ventalina

Two species are morphologically very similar in the Antilles: G. ventalina, and G. abellum. The main di erence between them is not the appearance of their network but the pro le of their gorgonin layer: G. ventalina branches are mostly circular even when they are larger or reinforced, while G. abellum branches are wider in the direction of the ow, as schematized in gure 1.16. This di erence, at an equal quantity of matter invested, drastically changes their resistance to deformation, as the rigidity of a branch is at rst order proportional to its width, and proportional to the cube of its depth. abellum morphology, as a cross section of branches perpendicular to the plan of the gorgonian structure, in the direction of the ow.

The genetic study of Caribbean G. ventalina has shown a strong genetic variability, due to a narrow larval dispersion of fewer than two kilometers (Jason P. Andras 2012). F. M. [START_REF] Bayer | The mineral component of the axis and holdfast of some gorgonacean octocorals (Coelenterata: Anthozoa), with special reference to the family Gorgoniidae[END_REF] show that there is an important confusion between G. ventalina and G. abellum, and that there is a morphological continuum between these two species: if we use our representation in an ellipse for branches section, we nd a continuum of eccentricity values between the two species. Furthermore, additional studies on various markers such as (J. A. [START_REF] Sánchez | Molecular phylogenetic analyses of shallow-water Caribbean octocorals[END_REF] were not able to distinguish G. ventalina from G.

abellum. There seems to be a continuum between the two apparent species. Yet, we do not know if this continuum is due to their genotype or due to their environment. We might have only one species, and on this point, the notion of species might not be as relevant as elsewhere [START_REF] Cartens | How to fail at species delimitation[END_REF]).

3 The mechanical environment and the acclimation

Guadeloupe

Guadeloupe is an archipelago separating the Atlantic ocean (east) and the Caribbean sea (west). It is constituted of two main parts Basse-Terre and Grande-Terre with two di erent geology (respectively volcanic and limestone), separated by a salt river in the middle (Rivière salée). The exposition to the swell is mostly on the Atlantic facade, with a long swell of important amplitude.

Most of the di erent studies performed there had required the help of Claude Bouchon and Sébastien Cordonnier from the Université des Antilles, who helped us access to the necessary materials and chose the diving sites.

We focus our attention on two di erent sites represented in gure 1.17. 1. Cochon islet Situated next to Pointe-à-Pitre, the main city of Guadeloupe. The place is well exposed to oceanic swell, with a large amplitude and long period. 2. Cola island: Situated in the north of the "Grand Cul-de-sac Marin", on the inner reef. The swell is mostly local, with a small amplitude, small period oscillations. Both sites have very di erent conditions: the site of Cola for gorgonian studies is very shallow, with most studied gorgonians at one to two meters of depth. The spot is situated in the Grand Cul-de-sac Marin, which is protected from Atlantic swell by the Grande-Terre island. The water movement is mostly due to local wind, and in consequence, the waves have small amplitude ≈ 30 cm, with small periods of 2 -3 seconds. When the oceanic swell is big enough, waves break on the outside reef, and the spot is exposed to the highly turbulent remains of the broken wave. The site of Cochon islet is exposed to Atlantic swell and is therefore subject to long waves with an important period ≈ 6 seconds with around one meter of amplitude for the typical conditions. Most gorgonians we have studied there were from a depth between to 4 to 8 meters.

Since the amplitude of movement decreases exponentially as schematized on gure 1.18 with the depth and the frequency, the same order of magnitude for typical speed can be observed in both places.

Figure 1.18.: A: Creation of oceanic swell, due to wind in one direction (from left to right, not represented). B: propagation of wave on shallow water: the vertical amplitude is rapidly damped, and the movement becomes horizontal. Few centimeters to the ground is the boundary layer, which can be neglected on the size of our system The wave breaking zone D) occurs typically when the water depth is twice the amplitude of the wave (Holthuijsen 2007).

In consequence, the gorgonians are typically exposed to horizontal movements in shallow waters, with a sinusoidal movement.

Impact of the mechanical environment

Although there is little bibliography about deformation and adaptation of gorgonians to their mechanical environment, we can infer to related domains of study.

Unfortunately, most reciprocal transplantation studies were done without particular focus on the mechanical environment by itself, and thus one cannot extract precise information about acclimation to a new environment, even if there is an important number of such experiments (Pratlong 2016).

The mechanical environment of shallow water coast habitats is well described, with for example reviews for coral reef [START_REF] Monismith | Hydrodynamics of Coral Reefs[END_REF] or for algae growth [START_REF] Doty | Measurement of Water Movement in Reference to Benthic Algal Growth[END_REF]. The dynamics of sediment and suspension have also been well studied [START_REF] Jumars | A computational method for quantifying morphological variation in scleractinian corals[END_REF]. General information on the hydrodynamics of the coastal zone in a more general approach can also be found in Holthuijsen 2007. Some species seem to need an agitated environment to grow, as seen by the correlation between agitation, currents, and the species density. The impact of the ow can produce partial breaking, which can be interpreted as a strategy for acclimation [START_REF] Black | The E ects of Grazing by the Limpet, Acmaea Insessa, on the Kelp, Egregia Laevigata, in the Intertidal Zone[END_REF]) and reproduction (H. R. [START_REF] Lasker | A Comparison of the Particulate Feeding Abilities of Three Species of Gorgonian Soft Coral[END_REF][START_REF] Highsmith | Reproduction by Fragmentation in Corals[END_REF]. The main risk for species is still to be uprooted or broken at the foot. Some species have developed a strategy to self-prune so that they do not get uprooted such as the boa kelp Egregia menziesii [START_REF] Burnett | Mechanical properties of the waveswept kelp Egregia menziesii change with season, growth rate and herbivore wounds[END_REF]. M. Denny 1999 shows that there is an upper size for corals, yet we do not know whether this upper size is due to anthropic removal of the biggest as for red corals, mechanical removal due to extreme events or a saturation size mechanism.

There have been multiple observation of the impact of wave and currents on the shape of hard corals such as Pocillopora damicornis [START_REF] Schmidt-Roach | Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia[END_REF], or in the case of benthic feeders (Wildish et al. 2005[START_REF] Eckman | E ects of Flow Speed on Growth of Benthic Suspension Feeders[END_REF]. For example, the placement of polyps and stolon branches can be modi ed by ow distribution and intensity [START_REF] Blackstone | Experimental heterochrony in hydractiniid hydroids: Why mechanisms matter[END_REF]. The idea that such modi cation is an adaptation process has been explicit since 1972 [START_REF] Chamberlain | Water Flow and Hydromechanical Adaptations of Branched Reef Corals[END_REF]).

The bifurcation rate can be also seen as an adaptive strategy [START_REF] Whitney | The Bifurcation Ratio as an Indicator of Adaptive Strategy in Woody Plant Species[END_REF], and their compactness in the case of Pocillopora damicornios increases with the ow. On the contrary, the branches of the same species seem thinner and easier to break in environments with small mechanical solicitation (John T. Rees 1972).

In consequence, multiple species can be considered as bio-indicators of the mechanical environment, such as Coralline algae (Bosence 1977), or Kelp [START_REF] Starko | A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem[END_REF]. kelp blades morphology depends on the environment and this plasticity leads to better suitability in mechanically constrained environments: and suggests acclimation strategies (M. A. R. [START_REF] Koehl | Ecological biomechanics of benthic organisms : life history, mechanical design and temporal patterns of mechanical stress[END_REF].

A general review of mechanical perception and consequence in terms of growth for plants (C. 2017) has shown the general importance of mechanical stress for acclimation.

Another, yet older review and synthesis of the subject can be found in Life in moving uids S. Vogel 1994. The concept of recon guration in mechanical deformation will be more detailed in chapter 6.

We can conclude this section with this citation of The algorithmic beauty of seaweeds, sponges, and corals (Kaandorp 2001): "It becomes clear that the exibility in many of the marine organisms and the physical stress due to hydrodynamic forces have a major impact on the growth process".

A tradeo in the shape?

Having important mechanical solicitation implies also important mechanical stress locally. And that, in heavy ows, can break the structure of the curvature is high enough locally. Changing the mechanical properties of the gorgonian (typically, the radius of arcs, surface exposed to the ow, the repartition of rigid areas) can change the rigidity.

Assuming that shapes are "good enough" for their environment implies that there are multiple strategies to acclimate to mechanical stress. In the case of gorgonians, we have seen that there is a continuum between species, from thick shapes with no branches to thin plates with a lot of reticulation as G. ventalina. The rigidity seems to imply a trade-o :

• If the gorgonian is too rigid (which needs a lot of material for a sti structure, going against the general principle of maximizing properties for a minimum of material cost, which explain why most growing structure in nature are exible (S. Vogel 1994)), then big swell can exert a force big enough to uproot them: G. ventalina should, if adapted, be highly deformed in huge ows such ones create by hurricanes to reduce its exposition. • If the gorgonian is too thin and soft, the shape will always be bent next to the oor, with a huge curvature close to the foot, that would break it. Also, the gorgonian could have important contact with its surrounding, adding shear stress. Furthermore, An upright posture exposes organisms to faster water velocities higher in (or above) the benthic boundary layer, enhancing rates of mass transfer of essential gases and nutrients [START_REF] Bilger | E ects of nutrient loading on masstransfer rates to a coral-reef community[END_REF]. The structure must be rigid enough to access such areas. • If the structure has too much inertia on top, it will have shocks every time the tip is at its maximum elongation. • If the deformation is not regular, polyps might be in very di erent conditions with a di erent swell, inferring how they can or not grab food in the ow. Still, G. ventalina is not equipped with stinging cells and are not considered as particularly good suspension feeders (H. R. [START_REF] Lasker | A Comparison of the Particulate Feeding Abilities of Three Species of Gorgonian Soft Coral[END_REF]: their ability to catch suspensions should not be that critical for their capability to survive, or be a remnant of the time there was no symbiosis with zooxanthellae. Assuming there is an acclimation mechanism to the mechanical environment, one should see some of its impact in the deformation, with well-determined properties, changing with the environment. Di erent scenarios about this relationship with deformation are possible, depending on the constraint :

1. Deformation properties are well suited for very intense ow and not particularly depending on the environment, there is an adaptation in general to extreme currents caused by hurricanes. 2. Deformation properties are well suited for most occurrent ow in the local environment. The properties of gorgonians depend on where they are and acclimation processes are prevalent. 3. Deformation properties are not particularly suited for the local environment, nor extreme events: they are the consequences of other processes more prevalent in the survival, reproduction, and growth of gorgonians. The acclimation or adaptation of gorgonians is not in that case due to the sensing ability of their mechanical environment, the optimization is only due to a passive selection depending on where larvae land and metamorphosis occur.

As seen in the previous section, there is important plasticity in the shapes of gorgonians: the last hypothesis looks more relevant.

A vision with interaction scheme

The previous ideas can be resumed on this simpli ed interaction scheme represented in gure 1.19: The swell is deforming the gorgonian, and the deformation is perceived locally. The ow behavior is modi ed and change the ability to grab food and be exposed to light. This component of energy and perception will in uence the way the gorgonian grows, and the newly grown shape will have a new type of interaction, retroacting on the two previous loops.

The tness of gorgonian, in terms of acclimation, is hard to de ne: is it in terms of energy gathering on a daily basis (condition of usual ows) or capability to survive to extreme events (typically, avoiding to be uprooted)? At the center of this approach, is the shape of G. ventalina. Understanding the shape, and its relation to its mechanical environment is thus mandatory to assess whether there is or not an acclimation process.

The situation of coral reefs today

In this thesis, we work on individuals, that we mostly reduce to their mechanical and geometrical properties.

These living individuals are part of an ecosystem we interact with. The situation of most ecosystems on earth is now severely impacted by humanity, and the prediction of our impact on biodiversity is very pessimistic, with more than one million species expected to disappear during the XXI century as shown by the 2019 report of the IPBES. The population of arthropods on earth has already collapsed, with more than 60% of the population disappeared during the second part of the XX century. The same thing goes to shes, birds, mammals. It is now scienti cally acceptable to talk about the sixth extinction (R 2020).

two-third of the oceans are "severely altered" by anthropic impact, and coral reefs are severely a ected. We estimate that 25% of coral reef coverage has been lost during the XX century, 50% are at high risk during the XXI. Corals are among the most exposed environment to climate change (Rowley 2014).

The situation in the Caribbean sea is no di erent, with 25% of lost coverage. Gorgonia ventalina has almost completely disappeared in several of the main coral areas such as the Rosario Islands, Santa Marta, and Tayrona National Park, Cayes de Albuquerque and Courtown.

There are multiple reasons, and if coral bleaching is the main cause on the great coral reef with 50% of mortality between 2016 and 2017, the main causes in the Caribbean seem to be the hypoxia, as in the case of the Mexico gulf, with 7800 square miles of "dead zone" caused by the Mississippi river ow of nutrients (Brian E. Lapointe 2019). The acidi cation of oceans is also an important risk, as it among many e ects slows down biomineralization and thus growth process [START_REF] Kurihara | Ocean acidi cation reduces biomineralization-related gene expression in the sea urchin, Hemicentrotus pulcherrimus[END_REF].

500 million people are directly dependent on coral reefs, through shing or tourism.

If the situation on climate begins to percolate in the debates of our society, mostly due to our enhanced perception of climate catastrophes thanks to general media, it is not the case yet for biodiversity.

In the case of corals, some vulgarization initiatives such as the lm Chasing Corals (Eakin 2018), has a big impact on the non-scienti c community. We can also cite the "Silent Spring" campaign, which aims to sensibilize the population to the destruction of our biodiversity.

It seems, at least for the author of this thesis, that our biggest defy as scientists working on living systems is to allow a better perception of ecosystems for a non-scienti c audience. G. ventalina, through its distinctive shape, is among the symbols of coral reefs as seen in gure 1.20. Getting the public interested in its curious shape, then alert them on the current situation could be an approach to protect ecosystems. Understanding all the fantastic properties of G. ventalina without nding a way to save them from the menace of the future would be a failure. Sea fans such as Gorgonia ventalina are among the emblem of the former colonial empire overseas. it is one of the most notorious and important in shallow areas (Cairns, 1977, Lasker and Co roth, 1983, Botero, 1987) 4 Problematic G. ventalina is a particularly interesting organism for shape, growth, and acclimation study. Although an animal, it shares a lot of properties with the vegetal reign. The exposition to its mechanical environment from the swell and its strategy as a sessile organism with photosynthesis can be compared to plants or algae. As a Cnidarian it is among the earliest organism in evolution, with an a priori modular shape, and thus should have fewer processes to be taken into account when understanding its physiology. Among Gorgonidae, it has one of the thinnest inner branches and the biggest exposition to the swell, implying important deformation that has to be taken into account to understand its behavior.

It is also among the most reticulated structure within the family of gorgonidae. The continuity that can be observed in the rate of reticulation might imply that the same morphogenetical process is behind this diversity and that in consequence, the same process can give trees and networks. This continuity is still hard to conceptualize through physical models, nding an approach that can do both types through a growth process would be a great contribution.

Because of the strong uid-structure interaction, the adaptation of the shape to the environment is one of the most important factors for the survivability of G. ventalina. In consequence, if there is a perception of mechanical constraint and a retraction mechanism that can be observed on gorgonians, G. ventalina seems to be among the best species to do such studies.

There is evidence on many marine species that the mechanical environment has feedback on the growth. Yet, the bene t of this feedback, at least on G. ventalina is not necessarily shown. With all of these elements, we want to aim the following question:

Is the shape of G. ventalina the consequence of an acclimation process to the mechanical environment?

This question is extremely vast, and there is no direct path from the current state of the art to give an answer. If this path exists, one has to admit that a thesis is clearly not enough to get extensive coverage of all necessary characteristics. Furthermore, it is possible that a "bad design" in terms of shape still works well in the ecosystem (M. [START_REF] Koehl | Ecological biomechanics of benthic organisms : life history, mechanical design and temporal patterns of mechanical stress[END_REF].

In consequence, the goal of this thesis is not to directly answer that question, but to test many of the approaches one could have of such subject, and nd which should be extended. We also aim at linking tools that seems relevant to approach such interdisciplinary subject, and in consequence prepare the eld for deeper, more precise investigation on well-identi ed points.

Among all these approaches, our study has lead us to study mostly the skeleton of G. ventalina, with rather few information on the environment they came from, and no information on their growth. In consequence, we decided to try the challenge of using them as our basis of information with limited information on what they have been exposed to. The meshwork seems to follow a logic, as it is geometrically beautiful, at least for the author. Yet this logic is not explicit, and if we can understand its logic we might understand the growth and the environment.

The question thus becomes:

Can we read the shape of Gorgonia ventalina? Can we read the growth, and read the mechanical environment from the shape? What can we deduce from these analyses as direction for further studies?

We begin by an observation of the meshwork, and the creation of concepts for the growth of G. ventalina in chapter 2. We then create software inspired by the analysis of cities pattern in chapter 3. We look at the general properties of the main element of this numerical analysis, the way, and its properties in the spatial network in chapter 4. We then develop more specialized objects for gorgonians with plumes and branches to understand the growth and the tropisms in chapter 5. We show that splits in the structure of gorgonians are a mark of the deformation and that the deformation and mechanical properties such as reinforcement should be taken into account in chapter 6. We nish with chapter 7 by measures of the overall mechanical properties of G. ventalina in terms of drag and deformation, both in steady and periodical movement.

Chapter 2 Extraction of growth principle from shape

In this chapter, we will focus on the qualitative description of the meshwork of G. ventalina. We will describe the gorgonians shapes dataset we collected, and present the vocabulary we elaborated to describe these shapes. We will begin with a small general study of a set of gorgonians shapes, then zoom into the details of their meshwork. We will discuss the ways in which gorgonin patterns, once made visible by removing the sclerites, allows us to recreate growth history, at least locally, as well as to de ne branches in the context of a reticulated network. We will nish by showing that the elementary pattern of G. ventalina corresponds to a plume pattern with anastomosis, and that its growth can be conceptualized as the combination of two growth modes: a primary growth mode which, locally, is a repeated plume pattern, and a secondary growth mode which is a reinforcement of the network.

We will also show attempted mechanical transplantation studies and a preliminary numerical growth study, which we will expand later through developing an automatic method of allometry, based on the continuity of ways in the meshwork. We want to understand the shape of Gorgonia ventalina. To do so we have to describe it, nd or create an adequate vocabulary, and test preliminary ideas to decide which approach we should follow to understand its growth.

As said in chapter 1, the vocabulary for describing the shape of gorgonians is mostly extracted from botany, and thus not always adapted to structures with reticulation or networks. In particular, a branch is well de ned in a tree-like (or branched) structure but it is not well de ned in a network. Gorgonians species show varying degrees of anastomosis in their shapes. Branch vocabulary is appropriate for species without anastomosis, but it is not su cient for G. ventalina, which is one of the most reticulated species of gorgonians. We will thus try to describe their network using a branch vocabulary that we will extend with some notions of reticulation, and see how well it can describe G. ventalina.

Our rst step was to create a dataset of shapes that we could describe and analyze. Then, we identi ed the particularities of the di erent parts of a G. ventalina skeleton. We then discovered the di culty of doing a continuous survey of their growth and environment, and in consequence explored other approaches that we could take to tackle the study of their growth.

Collection of a dataset

Since gorgonians' structure is mostly at, an image of each side contains much information about its shape. Even though a CT-scan approach would have allowed us to collect information on the full 3D shape and would have been more complete, we considered that at image data would contain enough information for our analysis. As this was our main material for analysis, we put extra consideration into their digital scanning.

We created a dataset of gorgonians structures that can be used anywhere, comprised of images made from samples taken from Guadeloupe to Paris and of images taken in Guadeloupe. For some cases, we were able to collect information on samples collection place and depth. The scan process is detailed in A B. This protocol, although heavy, provided us with excellent quality large-scale images and minimized the need for further corrections. We show an example image at maximal magni cation in gure 2.1.

A total of 64 gorgonians were measured and scanned on a corrected (noiseless) background. Of these, 44 gorgonians came from 3 identi ed sites, while 20 were collected at unknown locations and depths in Guadeloupe. The resolution was adjusted in order to maximize available details while keeping le sizes reasonable. Right: some sclerites of di erent colors can still be seen on top of the gorgonin skeleton.

2 Description of the shape : redefining branches

Vocabulary

We name a few parts of gorgonians, to create a common vocabulary in gure 2.2: The overall structure is the skeleton The green part is the foot, the part that connects the gorgonian to the reef The black line correspond to a split in the structure The red zone is a thicker part of the gorgonian, which we name a reinforcement. There are multiple reinforcements on a gorgonian. The purple zone shows a pattern of branches, which is repeated all over the skeleton and is called the meshwork The splits and reinforcement properties will be mostly be discussed and analyzed during chapter 6, and the meshwork allometry in chapter 5.

Branches cannot be properly de ned yet. They are the constitutive elements of the meshwork, and each branch constits of an ensemble of small junctions between nodes of the meshwork that are continuous in their orientation. These small junctions are called arcs. This notion will be more detailed as we zoom into the shape.

Example of gorgonian shapes and diversity

We introduce to the reader 24 gorgonians which were used for the mechanical experiment exposed in chapter eight. Their main characteristics are shown in table 2.1, and their appearance in gure 2.3. We named them for an easier classi cation, although these names are purely arbitrary. We recommend looking at the gure on a computer screen for an enhanced de nition. The individual images are also available online. ------------------------------------------------------------------------------- Center:Photographs of the 11 gorgonians sampled from the site "Cola" for mechanical studies. The scale is the same as the previous section. Bottom: Photographs of the 5 gorgonians sampled from the site "Cochon" in 2013 for mechanical studies. The scale is di erent from the two previous sections. The rst observation is that the shape is very narrow close to the foot, then gets wider in a few centimeters. Only the case of "B" and "E" of the Cochon 2013 group here, has a large foot.

Reinforcement gets thinner when further from the foot, becoming almost invisible when close to the envelope.

The envelope is mostly continuous when looked at a large scale (≈ 2cm), but can be interrupted by:

• local branches going out of the structure, showing that the structure is based on branches • macroscopic discontinuities (splits), as shown on the gorgonian "C". The placement and number of splits do not seem to follow any macroscopic logic that can be simply understood by looking at the collection on a large scale.

The meshwork is continuous at a large scale (≈ 2cm): there are mostly no gaps in the structure. Some can be seen in "Parasite", "MoyenneTrouee", "GrandeDouble", "moyennemangee", or even "Beaucoupmange". We interpret this as an attack on the gorgonian from the outside. Some parasites can be seen integrated under the sclerite layer, and the outside attack is made apparent by the local purple color which is due to a high concentration in carotenoids, a class of molecules with antiseptic properties.

Only "megareticulee" is growing out of its plane and showing outgrowth perpendicular to the plane of its mesh. "Ondulée" and "Parasite", although growing in one single layer, have a spontaneous curvature and cannot be laid at. Both of them show parasites aggregated to their skeleton. Locally (<2cm), there seems to be an organized pattern of arcs on the meshwork. This organization will be our main focus in our study shape.

Foot

For the simplicity of the 2D representation, we removed the section of each gorgonian connecting to the reef, which we call the foot. We show an example on gure 2.4.

Figure 2.4.: Foot of the gorgonian "C". The foot is generally composed of only one branch, although it can be composed of multiple branches (here 2). The part of the gorgonian interfacing with the reef corresponds exactly to its shape, lling all the available space. Usually for G. ventalina, uprooted gorgonian are found with their foot intact and connected to pieces of substrate, which means that the substrate breaks, and not the gorgonian.

The meshwork

General aspect

The skeleton is composed of two layers: an exterior layer composed of sclerites and an interior layer composed of gorgonin bers. The polyps are in the exterior layer, and they ll the holes of the meshwork when extended, as shown in gure 2.5. Looking at gorgonians on the bench instead of in vivo allows us to remove the polyps layer, and to look at the meshwork.

We do not nd polyps in areas corresponding to the thicker parts of the meshwork (typically, when two branches become so wide that they fuse into one).

Figure 2.5.: left: polyps implementation next to the envelope of a gorgonian. We see few polyps on the outer edges of branches, as they seem to appear later in the growth process. We never observed polyps at the tip of branches in G. ventalina , while it is often seen in species with thicker branches. Scale not measured here. right: Zoom on a reinforcement of "C". The reinforcement lled the holes of the meshwork. The density of polyps is very small in these fused sections, as evidenced by the scarcity of polyp calices. This could imply that new polyps appear only after the skeleton has grown, as shown in gure 2.5 (right), and will disappear in some areas due to reinforcement. In consequence, meshwork seems to be a major factor in understanding the growth of gorgonians, which deserves to be studied independently from polyps. We do not know why we observe growth of the meshwork at a distance from polyps, and what the biological mechanisms for this phenomenon are, but we consider that understanding the growth of the meshwork could bring insights into these mechanisms. Meshwork growth will thus be our focus for the rest of this manuscript.

Sclerites layer

The sclerite layer completely covers the gorgonin layer. Its color is not homogeneous, and purple zones can be observed in splits areas as shown on zoom in gure 2.6, at a macroscopic scale in gure 2.7, or on the bottom part of gorgonians, in the part in which the skeleton gets wider. As this corresponds to a stress signalization, we consider that it is due to mechanical stress such as overlapping movement and local shearing between either two parts of the gorgonian in both sides of the split, or to friction with the reef. In gure 2.8, we can distinguish branches, although the small size of the arcs makes this continuity di cult to catch. This di culty increases as the ratio (branch width) / (branch length) increases, and the meshwork in gure 2.9 is therefore easier to read in terms of continuity. Assuming that this is not a consequence of randomness, we want to determine whether this continuity is a real property of the meshwork. It can be seen either as an ensemble of holes, or an ensemble of linking elements (that we will call arcs). The darker dots correspond to polyps placement. They are not evenly distributed, as it can be seen on the right. The white-beige elements are sclerites which can be partially distinguished on the left image. We added a red line on the right image to show the continuity between arcs, which correspond to branches. On the left image, two curved branches can be seen going from the lower-right part of the image to the top-left of the image. 

Reinforcements

The reinforcements do not necessary follow this continuity of branches. They seem to follow another logic, as shown in gure 2.10. We added the continuity of some branches in various colors. The width of branches, according to this type of observation, implies that the width of a branch and its direction are not necessarily linked. Bottom: A reinforcement on a gorgonian with sclerites partially removed, which is locally split in two then do a fusion.

Gorgonin skeleton

We have observed so far the sclerite layer which covers the gorgonin skeleton of gorgonians, but it can be removed simply by letting the gorgonian soak in hot water during one night, then brushing the surface with a soft toothbrush. We can add bleach to accelerate the process. This way, we can get access to the gorgonin skeleton.

Fibers

When we remove the sclerite layer, only the gorgonin ber skeleton is left. We see in gure 2.11 that the gorgonin bers seem to follow di erent directions and paths: the continuity and the reinforcement as ber overlay should be considered as a di erent thing. We notice that on all the not reinforced sections, branches seem to follow a general pattern, at least locally. They intersect with each other creating the meshwork. Removing the sclerite layer show a di erence between both side of each branch element between two intersections, that can be useful to orient these elements.

tips and branch orientation

In the middle of the gorgonin layer is a di erent, lighter ber in color: the axis. At the tip extremity, there is only the axis and no gorgonin ber, thus the tip is thinner. We can see close to the envelope that there is a repeated pattern, with one branch and its tip, and other branches leaving orthogonally, as shown in gure 2.12: Figure 2.12.: Right: a tip of branches (on the envelope) with sclerite. left: Detail on the tip with sclerites partially removed. We recognize vertical branches, with the beginning of new branches on the sides, and the tips. Some of the details of the tips such as the axis can also be visible on gure 2.13 This growth seems to be only by elongation of the tip. If it was otherwise, elongation on a 2D meshwork would imply a local curvature and the surface would not be plate anymore. The only case in which non-local elongation would keep the shape at would be that the local elongation is proportional to the distance to the foot but it seems unlikely that such mechanism exists, and would be visible in the size of arcs.

Locally, we can determine "Mother" (here vertical) branches that create new "Daughter" branches (sprouts in this state), that begin their growth orthogonally rst (as far as possible from the original branch) and then directed to the exterior.

These daughter branches are also growing, at a slower rate when they are small, which produces the pattern observed on the right with long "mother branches" and small "daughter branches", which elongates along with their distance to the mother branch extremity.

When a branch collides on another one, the one colliding stops its growth and both branch fuse locally. In consequence, if a branch arrives at one point in space later than another one, it stops its growth. The type of intersection is thus a marker of temporal inequality in the growth of both branches. On gure 2.12, we can observe on the left the beginning of a collision close to the extremity of mother branches, and fusion further to the bottom. On the right, we can observe multiple fusion between "daughter branches".

This analysis is rather simple when we are close to the envelope, due to the low number of collisions, and the clear hierarchy in terms of mother and daughter branch. When we are further from the envelope (thus further in the time of growth appearance), this lecture is harder, yet still possible. With this approach in mind, we can analyze the rest of the network.

We represent this orientation on a portion of branches which collided in each other on gure 2.13, using the logic of curvature and width of branches tips to determine the orientation of growth: Figure 2.13.: Orientation of the meshwork when we remove the sclerites, based on the criteria from gure 2.12 with a red arrow the orientation of the last section/arc of each branch (some of them are only constituted of one arc). Some sections are di cult to determine in terms of orientation and not represented.

In consequence, we can extract the orientation of branches, understand their continuity, and determine which branch is the "daughter" of which branch.

we can read on it is that there are two di erent types of intersections, in their morphology:

• diverging areas, in which the branches seem to leave from another one (mother branch creating daughter branches) • converging areas, in which two branches seem to collide We represent the orientation of branches, and the classi cation of intersection based on these criteria on gure 2.14: with their continuity by colored arrows. The criteria used are rst orthogonality, then the aspect of the axis and its width evolution, then the curvature. The curvature is slowly evolving compared to the size of branch portions (arcs), and this is more a criterion on the continuity than on the orientation on small branches.

Elementary pa ern, unit and growth : local plumes

We can extend the reading of the growth at the extremity, to the whole structure. Still, we have "mother" branches and "daughter" branches, well de ned locally. This notion of hierarchy works badly in a network, and a daughter branch can create at its turn new daughter branch, and thus becomes a mother branch. Worse, it is possible that a "daughter branch" can grow faster than a mother branch and interrupt its growth. In consequence, the intersection hierarchy in terms of "which branch can stop the growth of which branch", can gather another information than the hierarchy in terms of branch creation.

This pattern of one branch creating daughter branches, that begin orthogonally then curved is the elementary pattern and is repeated all along with the structure. This branch with all its daughter branch can be seen as a plume, as seen on gure 2.15 Figure 2.15.: Coloration in terms of "plume" pattern. There is a main "daughter" branch (in the center of each), with the branches which grew from it: a local hierarchy "motherdaughter". In the case of the blue plume, we can observe that the "mother" branch in blue is a "daughter" of the red main branch. Inside the plume are also branches that connect two daughter branches, which we did not color here. At the intersection between red and blue plume, there is a small area in which daughter branches overlap. It is di cult to consider

The pattern in plumes is easier to "read" close to the envelope usually, yet this approach can be done everywhere in the structure, with more ore less di culty depending on the individual and of the importance of reinforcements. We can in consequence look at the meshwork of G. ventalina as an ensemble of 2D plumes that have local fusions when they overlap. This is, in fact, classic for gorgonians, this pattern is exactly what we nd for species such as Pseudopterogorgia bipinnata, or other species regrouped under the term "sea plumes" as seen in gure 2.16. "Sea fans" such as G. ventalina meshwork have yet di erent properties compared to "sea plumes":

• There are small branches linking two parts of the plume branches • Two plumes can do a local fusion on the extremity when they are in contact. When the extremity of a branch is in a collision, it stops its growth and fuse with the collided branch. Here contact between two branches can exist without their fusion or their growth inhibition. • Here we have 3 or 4 generations of branches in maximal. In G. ventalina, all branches long enough creates daughter branches, which reinforce the modular aspect of the shape.

Conclusion

4.1 Branches as the unit of the shape, usable with anastomosis As suggested by [START_REF] Sánchez | Evolution and dynamics of branching colonial form in marine modular cnidarians: gorgonian octocorals[END_REF]), polyps might be the biological unit but are not the relevant unit for the structural analysis in terms of growth. Indeed, they appear after branches and can disappear in favor of reinforcement.

The layer of sclerite is hiding the gorgonin skeleton, which is the easiest to read in terms of shape and growth. Keeping this layer allows more general studies on polyp repartition, stress repartition with tannins, and a nicer look for conservation. When we understand how to read the shape, we can keep the layer in most cases.

The elementary pattern looks relevant as a key to understand the growth since we can observe it everywhere in gorgonians. This is for us one of the keys to describe e ectively the shape and should be used in our vocabulary. From this pattern, we can create an ensemble of small segments linked between each anastomosis, that makes sense visually and anatomically.

The unit of our description is thus the branch, which corresponds to the trajectory of growth for one tip, from its creation on its mother branch to its end either by a collision on a branch already there, or simply the tip still growing. There are very few cases of branches crossing each other while both continue growing.

The meshwork pattern can be seen as a plume composition, themselves composed of branches. We can thus have a continuity of the vocabulary used for branched shape, simply by adding this notion of collision/fusion that we can identify from the geometry of the intersection between the two branches.

Transforming our observations into two growth mechanisms

Reinforcement and branches seem to follow two di erent logics in terms of orientation. Reinforcement appears later in the growth as they are not seen on the smallest gorgonians, nor at the tips on the envelope.

This principle of two di erent mechanisms exist for most plants [START_REF] Speck | Modelling primary and secondary growth processes in plants: a summary of the methodology and new data from an early lignophyte[END_REF], with two growth modes:

• The primary growth, which is the elongation of the meristem, often localized at the tip of branches (Riviere 2017) • The secondary growth, which is the mechanical reinforcement of lower branches. We can also conceptualize the growth of gorgonian with the same logic as shown in gure 2.17: Figure 2.17.: Schematization of a proposed process to approach gorgonian growth These two growth modes are coupled: elongation modi ed the exposed surface, which changes the mechanical strain on the structure. Reinforcement changes the posture in the ow, which changes the local perception of the constraints.

If the growth speed and orientation seem to change from branches to branches, they can be either modulated by an internal logic (due to local or global exchanges inside the gorgonians), or due to a perception of their environment. We have an insight into what type of constraints can be sensed and monitored, for example from the plant thighmomorphogenesis community with "sum of strain sensing models" [START_REF] Moulia | Integrative Mechanobiology of Growth and Architectural Development in Changing Mechanical Environments[END_REF], the structuration of sclerites seen in the previous chapter, and mechanomics studies. Yet, we do not have proof that deformation is a perceived signal of the environment. More importantly, gorgonians are living in an environment with periodical solicitation. The temporal integration of the signal, of the uctuations, the reading of the average value (or of the quadratic value), or of the standard deviation will change its perception DENNY 1994. Also, if the temporal integration is very slow, they might be partially blind to extreme events that are integrated in time thus neglected in terms of impact.

Studying the role of the environment while not being on the eld adds a lot of complexity to the approach. In situ data, on the mechanical environment and on its temporal evolution during the year is not accessible for us this time. We decide in consequence to focus on the grown shape and gather as much data as we can from them.

We also do an important hypothesis on remodeling: we safely assume that create matter in the shape will not be redistributed nor destructed, in opposition to organisms such as physaraum. We have an important impact on the limitation of acclimation strategy, as one can only add matter to the system. This e ect is mitigated, as reinforcement appears later in the process and thus can, if their logic is adequate, have this role of acclimation.

Even if we do not see the growth of the organism, we have even qualitatively information on its growth temporality: analyzing the obtained form allows us to analyze the formation at the same time, indirectly.

Extrapolating the approach to an automatic extraction

We have described qualitatively the shape, but only with a description of local parts. When looking at the whole individual, we have to take into account more than 10 3 intersections on a medium (≈ 20cm) gorgonian. In consequence, a method of analysis by hand is limited: the extraction of the information would be long and tedious.

Visually, we can see the prolongation and distinguish the branches, even with the sclerite layer. In consequence, we can develop a method to do this numerically, and develop allometry on the obtained results. This will be done in Chapter 3, then the results will be analyzed in Chapter 4 and 5

What we know we are missing from our models

The hypotheses and results shown before are only partial coverage of the diversity of gorgonian shapes. Two important points are missing, and should not be forgotten when we look at how well we understand the shape of gorgonians:

Brutal changes in shape properties

For now, the shape properties seem continuous during the growth. Yet, as always when studying biological properties, we can nd plenty of counterexamples to such properties. An example can be seen in the shape of "1bras" from the spot of Cola, as shown in gure 2.18. : We see on this example a clear line with, on each sides two di erent growth pattern, size and density. Furthermore, there is a high density of 3D sprout, that we have no explanation for their apparition in the shape.

We can try to interpret such properties, yet we have no proof of them. Our understanding is the following:

• The line between the two states correspond to a temporal indication: it was the limit of the envelope at one instant • The environment drastically changed at this instant, and thus the ow the gorgonian is perceiving. In consequence, di erent growth is put into place. • 3D sprouts would correspond to destabilized parts of the ow (turbulence, local recirculations...), due to this change of environment. It could be also possible that it is due to internal signalization that has nothing to do with the mechanical environment and caused by a bacterial infection which changed the growth behavior. There is no sign on the shape of such aggression, but we do not have enough information to reconstruct the event. This is a limitation of just seeing the skeleton without the total history of the gorgonian and its environment.

3D growth

We have seen in the previous example that 3D sprouts could appear. The gorgonian from cola "megareticulée" shows large elements that are not contained in the plane as if 3D sprouts could grow bigger and create new modules of G. ventalina. We can have cases in which it is even more prevalent as shown in gure 2.19 We do not know why the growth of G. ventalina produces 2D planes. It can be seen as an optimization [START_REF] Kim | Geometric Theory Predicts Bifurcations in Minimal Wiring Cost Trees in Biology Are Flat[END_REF] of cost in terms of materials. It can also be seen as a consequence of "links" between branches: when two branches touch another, they fuse projecting locally the two plumes in a plan, forcing the structure iteration by iteration to be in a plan.

Still, it does not explain the condition for this type of 3D growth, or if this type of shape has an advantage compared to classical planes. One of our hypotheses is that these gorgonians shapes (quite rarely found in vivo) correspond to turbulent areas in which there is no preferential direction of the ow due to the presence of local obstacles (a nearby gorgonian creating turbulence, an arrangement of boulder destabilizing the ow).

We have observed that when two gorgonians are parallel, one behind the other one and close, they have often more 3D sprouts on the side closer to the other gorgonians. Our hypothesis is that this destabilization of the ow by their neighbor induces a misreading of the environment, but we did not push this hypothesis further.

Perspective and trials

There is already an important number of approaches that would be inspired by these results, that we developed in parallel with the anatomy and shape analyses. They gave preliminary results and interesting consideration, but are yet not mature enough, or not adapted for concrete results on this thesis. The two most important are:

• In vivo growth studies • Numerical morphogenesis models

in vivo growth studies

It seems logical, in an attempt to look at the growth of G. ventalina in its environment and its acclimation to new conditions, to establish a protocol of growth and transplantation monitoring, in situ. Since we are based in Paris and thus at an 8-hours ight of their natural habitat, it would be di cult to focus all our data on such experiment, yet they can highlight some of the main growth and acclimation events: we decided to launch a campaign of growth and acclimation study on ≈ 40gorgonians. The populations were selected as follow:

• A control group of 10 gorgonians from the site Cochon (period ∼ 7s,amplitude ∼ 1m, depth ∼ 4m), with a size between 10 and 40 cm • A control group of 10 gorgonians from the site Cola (period ∼ 2s,amplitude ∼ 0.2m, depth ∼ 1m), with the same range of size • A group of 10 transplanted gorgonians from the site Cochon to Cola • A group of 10 transplanted gorgonians from the site Cola to Cochon With the goal of measuring the di erence in the growth of the envelope, and of the branches reinforcements, and the impact of the size. We also tested on one gorgonian for each site:

• to put them perpendicularly to the usual direction • to cut a part of a reinforced branch to change the stress repartition. The main problem is that most protocols of transplantations are requiring a long underwater immobilization of the subject to implement them. This immobilization is impossible due to the water ow in the environment, and therefore we had to nd another approach.

We decided to create bases in which we could strap the gorgonians, using plastic grass slab (used as an overlay on grass for cars, not to mire) that we cut, and Colson necklace for the strap. The xation on the reef is done with concrete nails strapped to the slab with Colson necklaces. The main advantage of this procedure is that it is fast to put into place: one just has to place 4 to 6 Nails, and the structure is long enough to have an e cient repartition of the mechanical constraint and minimize its movement. We removed the gorgonians with a part of their reef not to damage them.

An example is shown in gure 2.20: The control gorgonians are signalized using a breadcrumb between them, and a plastic card is nailed at their feet with their number, written using a slot system to be readable after being recovered by algae.

Unfortunately, the transplantation has twice failed. Our hypothesis for the rst try is that we spent too much time between the two spots (the gorgonians stayed during the night in a mesocosm). The second try has been done with no pause between the two sites, yet has led to the same result. One of the main hypotheses would be that the Colson necklaces are not keeping the gorgonian perfectly motionless, and thus are scrubbing the foot, removing the layer of sclerite and in consequence break the biological defenses of the gorgonians.

Moreover, it seems complex ethically to introduce dissolving plastic into the ocean as there is already abundant contamination of microplastic in Guadeloupe. In consequence, we stopped using such protocol and removed what we implemented in the environment.

We still have seen one interesting result with these experiments, on the decomposition of dead G. ventalina: a part of their structure will remain untouched by the environment, typically branches that are highly reinforced. This observation has been realized in three other situations, illustrated in gure 2.21:

• On the remains of the transplantation • On old remains of dead gorgonians, recovered by a Millepora.

• Living gorgonians, with unusual repartition of reinforcement and patterns. Realizing the di culty of local gorgonians to grow in this environment, we considered that the environment, and not our protocol, would be the cause of the death of the transplanted one.

The third category of observation means that G. ventalina can regrow from removed areas. The cause of this removal can be either by a bacterial attack or by predators' consumption. The ability to regrown is particularly interesting considering the actual infatuation to recolonize reefs using coral fragments, which has proven to accelerate by around 40 the speed of growth of these elements compared to entire corals, using their modular constitution. However, experiments were done on G. ventalina has not yet permitted to apply such a process on gorgonians. The other interest of such regrowth processes is that it changes the growth dynamics. We saw in chapter one that a growth process is usually continuous and that in consequence an iteration is highly in uenced by the previous state. Removing an important of the structure modify the "previous state", and in consequence, the growth dynamics and the create shape in this area should be di erent from a "business as usual" situation. This type of "pathological cause" is this of particular interest to understand growth, as they show unusual behaviors with the same growth logic.

Still, following growth in situ from France, with no working transplantation experiments, seems rather irrelevant in terms of both economical and ecological impact. We, in consequence, decide to focus exclusively on the shape of G. ventalina, and try to recover information on the environment from the shape itself. The temporal information is not accessible, nor is the response to the environment: we will try to reconstruct the temporal information from the shape, and the acclimation from the overall mechanical properties.

This approach, which has proven to be inadequate in our conditions, would be an excellent complement to this analysis. We will, for now, not follow this path and concentrate on analysis in the laboratory with no monitoring.

Numerical modelization of growth

If we cannot test the growth in situ, we can test our idea on a computer, by writing the logic in equations, and implement them numerically.

We can test already where some of our hypotheses conduct us in terms of grown shape. Especially, the primary growth mode based on branches can be easily written in logic and tested numerically. Can we reconstruct simple shapes of gorgonians, or simply verify that this logic is not too absurd in terms of growth?

As a rst approach, we thus develop a numerical model, based on the simpli cation of the previous hypotheses:

• Each branch grows individually, with no resources repartition. They grow at a constant speed. • When a growing branch touch an existing branch in shape, it stops its growth • The branches have a tropism: they want to be in a privileged direction, following the logic of equation 2.1. • After a length L, a branch create two new branches orthogonal to itself, with the same tropism logic as the mother branch • We can add Gaussian noise on every parameter (angle variation, initial angle when there is a branch creation, growth speed) The equation of tropism for branches is:

∂θ ∂s = θ -θ 0 K (2.1)
with θ the angle to the vertical of the branch, θ 0 the privileged direction, ∂θ ∂s the variation of angle during a growth of length s or the local curvature, K the inverse of the amplitude of the tropism, or the typical length of curvature correction. One can consider that after a length K, the branch is in the right direction. We represent an element of growth on gure 2.22: In red and orange, the typical length L after which a branch creates new branches. θ correspond locally to the angle between the branch tangent and the vertical. in blue is the perpendicular angle between a branch and the one creating it. in green is the local curvature radius when the angle to the vertical correspond to a perpendicular angle.

We have in consequence two lengths in the system, K, and L. the case K L will conduct to branches that are all vertical, K L will conduct to straight branches thus creating a grid.

θ 0 can be de ned as a constant (typically θ 0 = 0, so that there is a vertical tropism), but we can also do models in which θ 0 depends on space. Behind this parameter can be the following idea:

• Tropism to go far from the ground ( vertical tropism )

• Tropism to go far from obstacles ( local tropism )

• Tropism to go far from the gorgonian (radial tropism ) As a consequence, this eld angle θ can be seen as a highly simpli ed model of ow constraint and in formations perceived by the gorgonian. However, the method of calculation for this orientation eld is based on totally arbitrary models, as it is not a true resolution of the ow around the structure.

Numerical implementation

We code each branch as an object, that grows separately, and creates new branches after a distance L. At each iteration, they grow of a typical distance δs. We decide of δs value such as δs min(L, K) (typically, one order of magnitude), to solve e ectively the tropism equation.

The part requiring the most attention is the detection of collisions. Indeed, We introduce a lot of segments in this approach. Verifying the collision between each segment is very heavy since every new segment must be tested for every existing one. There is a wide variety of approaches to reduce the number of tests, such as k-d trees (spatial subdivisions of space to only test the closest neighbors), or iterative box superposition. Since we developed this algorithm during the rst image analysis we had done, we decided to take instead an approach on image: each segment is drawn on a grid, with a value corresponding to the label of its branch. If we draw a segment on an already lled case, there is a collision and we know the label of the colliding branch. The ner the grid, the more precise are the collision detection. The process is present in gure 2.23.

We use sparse 2D array in python of 16-bit integers, allowing us to limit the quantity of memory used. The line is drawn on the grid with a thickness of 2 pixels to detect every collision, and the typical size of a pixel is of δl/3

In consequence, a 10000 branches structure can be created in the order of magnitude of one minute. In blue resp. green, branches 1 resp. 2. Dashed blue cases correspond to an iteration of branch 1 growth. These four cases value are read, and a value of 2 is obtained. In consequence branch 1 stop its growth, then the two lower cases are lled with 1.

The eld θ is calculated when necessary using distance map to obstacles on the grid: we calculate the distance eld from each object separately (the ground D f , the gorgonian D g , the obstacles D o ), then for each calculate the gradient of the distance so we have a vector eld, and the orientation of each vector θ f , θ g , θ o . The nal orientation being a linear combination of each led θ 0 = aθ f + bθ g + cθ o , with a + b + c = 1. in the case b = c = 0, we have simply a constant eld θ 0 = 0.

an example of θ 0 eld is presented in gure 2.24

Figure 2.24.: Representation of a θ 0 eld with no gorgonians (a = c = 0.5), with as an obstacle a box represented in orange. The value of angle are represented in radiant using the red-to-blue colormap, and the isoline correspond to the addition of both distance functions from the two elds.

alitative results

There is already with this minimal model a lot of parameters. We present some examples of type of shapes we can obtain through the domain, in gure 2.25: There is a little number of emergent properties appearing spontaneously in the system. We have a modelization at "high integration level" since we integrate inside our parameters the polyp activity, the branch local growth indication, the bifurcation mechanism... Still, we nd back an envelope as an emergent property, and we can evaluate the ration maximal height/maximal width according to the tropism intensity T = L K , going from 0 at T = 0, to ≈ 2 at lim T →∞ (or 1 if it cannot go under the root). The shape of the envelope should be compared to growth models that work only on the envelope such as (growthenvelope) in which branches are "integrated" inside the growth process.

The cases T ≈ 1 looks like G. ventalina, at least qualitatively, in terms of envelope shape. The case of high T value tends to grow under the foot height, which can be sometimes observed on gorgonians on a promontory, or gorgonians with tannin indication on their lower part that they touch the reef in their movement, inhibiting their growth.

On 'B', we see well the main plume, and the intermediary branches connecting two branches from the same plume.

We only create in each case one plume at the center, the sides of plumes corresponding here to half-plumes (one side looks like a plume and the other one is not grown). There is only in the case of "D" a beginning of a new plume on the left side. This makes us think that there is more in the speed of growth, and local interaction, that we cannot take into account yet.

These comparisons are qualitative and would be interesting to be done with quantitative criteria well-chosen to describe the shape of gorgonians. But this requires the development of other tools, that we will do in the next chapters.

In the history of this Ph.D., we did not have the time to come back to this idea with our new allometry concepts, and measure of individual branch behavior, but this modelization looks like a good base for further analyses. The θ map hides a lot of the physics on the system, and using branches to create branches might be at a level too high of complexity to really see emergence.

Still, this model consolidates our belief in our hypotheses and motivates us to do allometry on branches as it will be done in the next chapters.

Chapter 3 Ways extraction from image analysis

In this chapter, we develop a new method for image analysis of 2D spatial networks and tree-like structures.

We introduce the general notion of ways in spatial networks as an extension of elements in cities description and explain why it can be useful for gorgonian allometry.

We develop the methodology of our analysis software PySkelWays, based on binarized images, Voronoï arcs extraction, and local links strategies to creates ways as ensembles of arcs.

We show on a few examples comparison between structures of di erent natures such as crack patterns in clay, then show how manual corrections a ect the overall network. We nish by listing di erent upgrades and alternatives that we could apply to this code for a broader range of applications.
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Motivation : a resilient description of spatial networks Mal nommer un objet, c'est ajouter au malheur de ce monde.
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1 Motivation : a resilient description of spatial networks

1.1 The importance of shape quantification

The shape is the rst property we usually perceive of an object, our rst interaction with it. Yet, de ning, describing and characterizing a shape is often complex. We often compare it to the shape of other objects and use a speci c geometrical vocabulary to describe its property.

Finding the right vocabulary, the right tools to characterize shape is the key to an e cient description: with them, we can reduce the characteristics of a shape to a few wellchosen parameters. Depending on the type of analysis, this vocabulary can be di erent: a nalist read of a shape to determine its function might be di erent from a historical approach looking at how the structure appeared.

Each type of shape has its lexical eld and tools that can be shared with similar structures of di erent nature. Expending one's vocabulary is of utmost importance: if the vocabulary of the user is limited, he may then become blind to some properties.

Describing a shape e ciently in nding the right reductionism one has to use to extract its pertinent properties, all the while staying as simple as possible.

Trees to Networks

Branching structures are well de ned and characterized, with an established vocabulary. At the basis of this vocabulary is the Strahler number measurement for a hierarchy, combined with a local radius, curvature orientation and length for each branch, and local angles for each node. A logic between the di erent components of the node, typically in terms of angle and radius, must also be used for each branch division. Although originally introduced for rivers (HORTON 1945), this description is also used in numerous arborescent structures such as trees, roots or some corals morphology H. Lasker 2003. Applications to numerized data in 3D have been performed on gorgonians K. J. Kruszyjski 2007.

This notion of hierarchy, which is very powerful for tree-shaped structures, is illde ned in reticulated networks since two di erent paths can lead from the same origin to the same destination. For systems with few reticulations, one can remove the loops using local criteria, and then use tree approaches. For simple networks, it is also possible to remove these loops to get a minimal spanning tree, assuming that we can associate a weight to each edge [START_REF] Mileyko | Hierarchical Ordering of Reticular Networks[END_REF].

When a network is highly reticulated or when there is no clear weight de nition, such a method cannot be applied: we need other approaches and vocabulary to describe the structure.

Network structures: geometric graph

Graph theory is the basic tool for network analysis, introduced by Euler and Königsberg. One of the main features of such a type of structure compared to trees is their resilience: removing a looped edge does not mean removing the possibility to connect two points of the same structure, thus maintaining most connectivity between elements of the structure.

Spatial networks are graphs associated with geometrical properties, such as length for edges, in addition to the topological information. Their description has been initiated by Bil Hillier.

These networks are often spatially constrained to a plan, for example in the case of urban road networks, crack patterns [START_REF] Bohn | Hierarchical crack pattern as formed by successive domain divisions. I. Temporal and geometrical hierarchy[END_REF]) and leaf venation [START_REF] Perna | Characterization of spatial networklike patterns from junction geometry[END_REF][START_REF] Bohn | Constitutive property of the local organization of leaf venation networks[END_REF], or physaraum [START_REF] Tero | Flow-network adaptation in Physarum amoebae[END_REF]. Due to their restriction to one plan, they share some universal properties [START_REF] Viana | The simplicity of planar networks[END_REF].

In this context, we will refer to the edges as arcs, since they also carry a local curvature. Planar branched structures are often reticulated. An explanation of this fact can be made by looking at the probability of branches intersection. If the tip of branches is exploring space randomly, the probability of their intersection will asymptotically be of 1 in 2D, yet it will go to zero on higher dimensions such as 3D. There is a need for either an important tropism in one direction or of a repulsion interaction between branches to limit reticulation, as in the case of Laplacian growth in which branches inhibit the growth of their neighbors.

Local properties for each element of the graph, which take into account their neighbors, can be calculated as local indicators. Yet, they do not usually take into account the similarity in geometrical properties between two sides of a node. Moreover, in a dynamic network, an edge can be split in two due to a new edge connection, as illustrated in 3.2. The two sides of each collided element still belong together and should be considered as one for an easier understanding of the structure, yet this is not possible while only using edges.

We need to introduce a new layer of the object to take into account this continuity of properties through edges: a hyper-graph of elements Courtat et al. 2011. Figure 3.2.: Impact of a new connection in an edge network. Adding the teal edge on the right splits the black edge in two (gold and purple here), although they initially share the same properties. An analysis based on edges won't be able to take into account this continuity and would be blind to its consequences. Similarly, if branches emerge from an initially existing edge, they would break their continuity. As a consequence, we need an element of vocabulary not sensible to these two phenomenons.

From now on we will refer to edges with spatial information (length, radius, curvature) as arcs, and to nodes with spatial information as places, to enrich these notions from the classic network and apply them to spatial networks.

Ways, a hyper-graph description

When we walk in a city, we stay on the same road despite crossing another street as long as we keep going straight ahead: there is a continuity along intersections. This notion has been rst used in the '70s for the perception and behavior of pedestrians in the study of their displacement using street names, to create a hyper-graph. This notion has been generalized by [START_REF] Bohn | Hierarchical crack pattern as formed by successive domain divisions. I. Temporal and geometrical hierarchy[END_REF] for crack patterns analysis, using visual and geometrical criteria.

We call this ensemble of consecutive arcs ways, and an ensemble of ways creates a hyper-graph based on the arcs graph.

Calculating indicators, scores based on a given logic, using ways instead of arcs prevents unwanted e ects such as boundary conditions on a network, and allow us to take into account the impact of branch prolongation on the network. It also greatly reduces the number of elements one has to compare by creating clusters of arcs. Analyses based on ways are also much clearer than analysis based on arcs, as shown in gure 3.3. Without the width of street information or one-way speci cations, such an approach is good enough to read the properties of an urban network, such as the use, the dynamic of a neighbor, or even the history of the structure emergence as shown in (Lagesse 2015).

Ways in gorgonians?

At rst sight, it is surprising to get inspiration from urbanism to study gorgonians. We have seen in chapter 1 that gorgonians can often be described as a tree-like structure, with reticulation. In the case of G. ventalina, we have so many reticulations that a tree approach seems irrelevant. Yet, we can visualize the continuity of branches along an intersection in the network as presented in chapter 2. There is in literature no precise description of the mesh-work for highly reticulated gorgonians, nor their links to tree-like structures of other species. If there is continuity within the evolution of gorgonians, there should be an approach adapted to the shape of both types of structures.

Moreover, branches seem to carry growth, as seen in our anatomical observation. We can consider that ways are branches with no orientation, and look at the information the organization of ways gives about gorgonians. A way is thus a weaker descriptor than a branch, as it carries less information, but is easier to reconstruct.

Since it is very di cult to do growth experiments, especially for us in Paris, and since indicators on ways can give information about the development of cities, we want to establish a grammar of the gorgonian network that allows the reading of growth from the nal shape. We consider that such an approach to ways and indicators will allow us to highlight new properties that are invisible with usual indicators.

Publish then perish in image analysis, developing new so ware? There are plenty of image analysis models existing in the literature, in particular for botany. Most of them are referenced here http://plant-image-analysis.org/ (Guillaume Lobet, Draye, and Périlleux 2013). Yet, none of them has an approach based on ways. Studies on cities are based on GIS coordinates and do not need any extraction from an image, and thus are treated di erently. Consequently, we need to develop our approach to create the graph and construct the hyper-graph.

It is sadly known in such community that there are a lot of image analysis software developed, and that very few are maintained or validated, as shown in the article "Image Analysis in Plant Sciences: Publish Then Perish" (G. Lobet 2017), which reviewed 97 of them.

Image analysis is based on general methods, yet is full of small details that highly hinder the development of a general software which would work for every kind of analysis. Since none of the currently developed ones correspond to our needs we will do the same as everyone and develop our own: we understand the aws of such an approach, as developed in our scope statement. The software itself might not be considered as our main contribution since it risks following the same fate as the others. In consequence, we will put here the accent on the general methods and strategies we developed for the creation of this software.

2 PySkelWays, a hyper-graph extraction code from images 

Scope statement of the code

Before creating the code, we decided on the characteristics the code should have to be as useful as possible, both in terms of performance quality and use by other users.

The scope statement of PySkelWays is:

• While the main goal is to be used on G. ventalina, the code should be usable on any similar network of connected branches, or even 2D tree-like structures • The number of parameters has to be as minimal as possible, with a preference for topology instead of distance calculation • Since there is no existing database, the structure cannot be based on machinelearning. However, it should be easily adaptable to a machine-learning approach if need be • The algorithm should typically perform its task in a few minutes so that the user can interact with the result to improve the network • The output format should be usable in other structures than the code itself for a cross-platform analysis with already existing tools • The code has to be open-source, well documented and easy to understand • The code should be as modular as possible so that any changes can be performed easily • Handmade correction should be possible on critical steps

We chose to code it in Python, using all advantages of vectorization, existing fast libraries (such as Open-CV or numpy), and its readability. Using C++ or Fortran would have eventually meant faster computation times, yet it would have taken a lot more time to be coded. As our goal is to use the tool and not only to develop the tool itself, we consider that the developer time is more important than the user time, within limits. Still, the development of this part of the project ended up taking much more time than expected.

Image Acquisition

G. ventalina is a complex structure, with a very dense network of short and large branches. The di culty of the network extraction can be roughly measured as the typical arc width divided by the typical arc length. If this ratio is small, then it is easy to see through places how arcs are linked together: the structure is mostly composed of arcs far from the place. In the other case, the structure is mostly composed of places.

For a city such as Paris, this ratio, that we will call di culty, is typical of about ≈ 0.05. However, it can be close to 0.5 in the case of some gorgonians. As a consequence, the raw data (image) has to be as well-de ned as possible. In the case of gorgonians, 1pixel/mm is the right order of precision.

Binarization

For way extraction, we just need the information of boundaries between the object and the background. The general case (segmentation) with multiple objects can be handled well with a machine-learning approach now as shown in gure 3.5, yet this was not as accessible at the beginning of the thesis as it is now. The images are taken with the protocol described in chapter 2, then binarized for a simpler approach of the shape: the contrast between the object and the background should be strong.

We will use a simpler process of binarization. Its quality is still critical is important, since all our analysis is based on its contours. The process we follow is:

• We maximize the contrast (minimum luminance at 0 and maximum at 255) • We maximize the contrast once again but this time after decomposing the image in three channels (Red, Green, Blue), and create one gray-scale as the linear combination of the three components. • We do the rst binarization using the Otsu Method to determine the threshold value to separate the luminance histogram into two distributions, thus minimizing the variance between both. The limitations of such a method are illustrated on a badly taken image in terms of contrast, on gure 3.6. To increase the quality of the binarization, we perform a few additional steps:

• If the two distributions are too close, we apply a Gaussian blur on the binarized image and then apply a new binarization. This acts as a low-pass lter, which decreases the number of image details but increases the coherence of the binarization. • We calculate the contours and reverse the binarized values inside the incoherent contours. These incoherent contours can be:

-Too small contours for the gure, identi ed by setting a minimal perimeter value -Weird contours, typically hairs or other artifacts, with a ratio √ surf ace perimeter too low. The impact of this process can be seen in gure 3.7. It is not perfect, but there is enough information for further reconstruction. Left : is before the threshold (opacity 50% for visualisation). Right : after a blur-threshold e ect. The improvement is enough to get the overall properties, even if the shape is not perfectly respected in these areas.

We then select all pixels belonging to the same structure and remove everything else. This removes the remaining dust or big objects on the image which are not part of our skeleton.

For better visualization, we use the binary as a mask for the Gorgonian image, keeping the structure detail for visualization with now well-de ned contours. 

Vocabulary

To describe the spatial graph we introduce the following terms, following Claire Lagesse's thesis convention Lagesse 2015. Each of them is illustrated in gure 3.10, with elements details in gure 3.9. 

Arc extraction approach, through Voronoï

In a binarized image, branches are not identi ed. We want to extract the network of the structure, and thus reduce branches to an ensemble of lines with a width property. We want them de ned as an ensemble of points (vertices) which are linked together two by two (segments), with potentially some cross points linked to more than two segments (places center). We want the vertices points location to correspond to the middle width of the branches (so that the width is well de ned) as a basis coordinates that can be corrected later.

There are two families of algorithms that can allow us to do so: skeletonization algorithms, and Voronoï extractions.

A skeletonization process involves an iterative thinning process. It takes the binarized image and then removes the boundary pixels if they do not locally form a line, and repeat it until there is no removal of matter (Saha et al. 2017).

It has multiple drawbacks:

• Iterative process, long for a thick object • Points of the skeleton (vertices) generated by the process are not linked locally when de ned • Dependent on image resolution • Complexity increases as O(n 2 ) (n pixels of the image): the computation time increases as the square of the image resolution. A faster method giving the same kind of result is simply to calculate the Laplacian of that distance image and only keep the positive values. Unfortunately, it has the same drawbacks in terms of precision and adds noisy points on high curvature pro les depending on the precision of the distance image

The method we used instead is based on Voronoï diagrams. Initially, they are partitions of space made according to an ensemble of points so that each part of the space corresponds to the zone closest to a given point. Each point is thus associated with a domain, with borders and neighbors.

Using this method, we extract a full diagram from contour points and select the borders created by two contours of di erent labels: they are the elements we build our arcs on.

The advantages and inconvenient of doing so are the following:

• Subpixellar de nition • Segments (the local link between vertices) are de ned • Every vertices are equidistant to the contours • The information of the contour label initiating the segment is de ned • The process (with arc reconstruction) is faster than previous processes and scales better with bigger images • The quality/speed is easy to change, simply by using fewer points from contours in the input of the Voronoï algorithm • Complexity O(n log(n)) (n number of points in the contours) In consequence, we rst need to get the contours and label them. Each contour, de ned as the boundary between the gorgonian structure and the outside is associated with a label, the position of the n points (X i , Y i , i ≤ n) it is constituted of, its surface, perimeter, and curvature.

We can diminish the number of points to accelerate the process, reducing the image size by a factor f , extracting the contours from it and multiplying all coordinates by a factor f . We remove vertices from the Voronoï diagram if they are not belonging to two di erent contours labels. This method is fast and e cient in cleaning the network, but cannot keep branches that are not reticulated since both of their sides belong to the same contours. To avoid this problem, we take the curvature of our contours, nd all extremum and attribute a new label to every portion between two extremums. Changing the characteristic length of the low-pass lter will change the number of sprouts/branches the Arc diagram will generate.

The local curvature is calculated as

κ i = ∂θ i ∂s i with θ i = arctan X i+1 -X i-1 Y i+1 -Y i-1 , s i = (X i-1 + X i+1 ) 2 + (Y i-1 + Y i+1 ) 2 .
Two consecutive points being separated from one pixel, the angle can only be a multiple of π/4. Then the curvature is sent through a zero-phase low-pass lter with a characteristic length of 10 pixels in order to remove that pixelization e ect. Method 1. We generate the Voronoï diagram from all of the points of the contour. The information we generate that way are:

• The position of all vertices • The segments, link between two vertices (borders)

• The two contour labels the segment is equidistant to. 2. We remove all vertices out of the image 3. We remove all vertices out of the structure 4. We link the segments and the label of the contours they originate from 5. We remove all segments that are not linked to two di erent contours. Orange: Vertices are equidistant to two points of the same contours Pink: Vertices are equidistant to two di erent contours and will be part of Arcs Teal: Vertices are at equidistant to three or more points and will be the center of elementary places At this stage we have all valid segments, but not the arcs which are the ensemble of segments two by two connected. The reconstruction goes as follow:

• We classify the number of occurrence of each vertex in segments: vertices appearing once are dead ends (end of branches), those appearing twice are inside an arc, and those appearing 3 or more times are part of an intersection. We associate the 2occurrences points to a Boolean, in order to check that they have all been added to the list of arcs. • We begin at intersection points, and follow the segment using a non-used vertice, each time up to the moment we arrive on a vertice with an occurrence di erent from 2

• We do that for every 3+ intersection points. This way, we reconstruct the reticulated network, but also a tree-like shape as shown in gure 3.12.

Figure 3.12.: Arcs obtained with the splitting of only one contour (here the envelope), applied here on a radial Sa man-Taylor instability. Each arc is of a di erent color. The bigger the cuto length, the smaller the number of arcs in this kind of branched structure. This method thus works either on totally branched, totally reticulated, or hybrid structures.

Places

Every arc is now linking two nodes, each of them having at least 3 arcs connected to it. Because of the width of arcs and the spatiality of our pattern, we will need to create an element based on nodes that takes them into account when looking at arcs interaction.

We call each of these nodes elementary place center and associate them with the distance to neighboring contours (one per arcs coming), the center being equidistant by construction between all of them at the distance range named D.The ensemble of these two information, with the arcs connected to the nodes, is what we call an elementary place.

Every point on an arc is equidistant to every close contour. When the points are close to 3 contours, which means that a branch is typically perpendicular to another branch, the equidistant point meeting the three arcs is displaced by the intersecting branch. We call this "soap bubble e ect" as it tends to give locally the same angles between the arcs at the intersection. We show an example on gure 3.13. In the case of thin and long arcs, this e ect is negligible. In the case of gorgonians, the "soap bubble e ect" modify the local angle on the place and thus we cannot associate arcs with. Since we want to use Arcs properties to recreate ways, we have to take into account this e ect: we introduce the notion of place in our method.

Since two places can be very close to each other, we need to unify them as a bigger place, so that we can associate arcs together with local rules.

• We associate to every elementary place the elementary places they are at one topological distance (one arc), and the Euclidian distance between each of them. • If the Euclidian distance between two places is smaller than the radius of one place (if the center of one elementary place in contained in a neighboring elementary place), we link them together. • We create bigger places containing all elementary places chained together. The arcs chaining them are not considered anymore, as shown in gure 3.14. The criteria for bigger places can look weak, as some places can be superposed. Yet if we consider that superposed elementary places belong to the same bigger place, we lose too much information and the associations of arcs are impossible. When two places overlap, we only consider one point belonging to the Arc as valid, located at the barycentre of the two elementary places it belongs to, weighted by their size. 

Linking arcs to create ways

How well-defined is a way?

With the arcs we have the graph of a gorgonian, and we now want to know what arcs are associated in a same branch through crossings.

A way is a global object that is de ned on more than one or two arcs. Because of our local approach, we are facing limitations on ways reconstruction.

For urbanists, a way is well de ned as the name is kept through intersections. Usually, it keeps the same width, the same number of vehicle lines, and the same orientation. The best way to create a way in the case of a city is simply to associate arcs through the name of the street they represent.

On a spatial network of long and thin arcs, the local association between arcs is easily done as the angle between two arcs is well de ned. In the case of gorgonians, all vertices in a place range are deformed, and thus cannot give information on links. We create ways as the association of arcs through links. A link corresponds to two arcs belonging to the same place.

This approach is, in consequence, useful because of its speed, simplicity, and versatility, but will necessarily cause some errors. One should see it as a way to reduce the number of e orts for way reconstruction, and not as an exact result. The criteria we will use to locally de ne the way is the most determinant parameter of the process.

In the case of gorgonians, and for anatomical reasons that we have seen in chapter 2, it is a reasonable assumption to consider that only one way goes through a place. It is of course not the case for cities, as two streets can cross each other and both keep their name on the other side of the crossroad.

On what can we base our criteria ?

To each place, we are going to associate 2 arcs (link) and recreate afterward the way as an ensemble of arcs linked two-by-two.

We have to calculate a score, for each couple of arcs, and then keep the bests scores as our links.

If the place has n links, then there are n(n -1)/2 associations to test.

We introduce the following nomenclature in gure 3.16: . Visually, we see that the "correct link" would be 1 with 3

The place is associated with a center (purple circle), a radius D to the border (black circle), and a safe circle of radius kD.

On the intersection between each arc (here labeled from 1 to 3) and the safe circle, we determine an emissary that carries the properties of its arc.

We link the emissary points, by a segment on the inside (dotted points), and the outside (straight line). These link propagation extremities are determined using the method shown in gure 3.17

We can, from these elements, quantify di erent link properties, to establish from these quantities a global score:

• Angles: we calculate the angle between both tangents. This method is widely used for thin arcs, as in [Claire] • Angles (alternative:) we calculate the angle between the tangent and the link inside and look at the maximal value • Link inside Minimal distance: we read, on each pixel covered by the "Link inside", the distance value. The score is the minimum value. In all cases, if a Link inside is going out of the skeleton, then the association is rejected. • Link inside distance variation: same as the previous one, but we take the di erence between the maximal and minimal distance to the border. • Link propagation length: We propagate the Link inside on both sides, up to the collision with the skeleton. The score is the length of the propagation. As will be shown in the next section, we mostly use this one. • Link propagation integrated distance: The score is now L r(l)dl, L being the length of the propagation, and r(l) the local distance map value along the prolonga-tion. Compared to the previous score, it gives more importance to zones in which the propagation is closer to the middle of the branch.

The following cases have to be taken into account:

• If a place is composed of multiple elementary places, the emissary is calculated on the elementary place linked to the arc • If the safe radius is bigger than the Arc length, then the emissary is the Arc point furthest from the place.

The Link propagation is done using an equivalent to the "Ray Marching method", used in the 3D graphic rendering of simple objects associated with a signed distance function, illustrated in gure 3.17. This method is particularly e cient here since the distance function, which is usually hard to determine in complex rendering, is directly given by the distance map of the image. The line is elongated of the distance to the closest obstacle (here in pink), and iterated until there is a collision.

Determining the criteria of link selection

To determine which criteria are the best, we look at the places for which di erent criteria give di erent link choices. Then, we compare visually the di erent choices and note which one ts the best with our perception.

Criteria on an angle are too tributary to the length of arcs outside of places due to the "soap bubble e ect", and thus are irrelevant in our method. Moreover, they give the same result as the Link propagation length when the angles are well de ned.

We show one example of a di erence between the criteria in gure 3.18 on a complicated example, in order to show the diversity of selections according to the criteria. From the complexity of gure 3.18 we see:

• Even when visually looking at the places, it is hard to extract which link is the right one • Depending on the criteria, 3 di erent links can be selected.

Each criteria calculated here has its defaults and advantage, that we can resume as:

• InVarDistance (Link inside distance variation) is not robust on big places since the way it follows tends to be the smallest one (this e ect could be tempered by the distance inside the place) • InMinDistance (Link inside the minimal distance) is getting most places right if only checked locally, but when unzoomed some of the links it creates seem surprising. It is the closest criteria to typical angle calculation on easy cases. • Out-D-Integral (Link propagation integrated distance) is the best criterion for the creation of large ways, with very few errors. Yet on some networks the radius evolution of branches is not following the way, and thus tends to follow reinforcements instead of branches in gorgonians. We decided after testing multiple approaches to use only the Link propagation length (OutLength): it has no big defaults and we consider that it is the closest to our "visual criteria", using more than the local information with the prolongation to check if the link is coherent. It also corresponds well to straight, long branches that we observe anatomically, with a slight default on the curved part at the beginning of each branch.

We conducted numerous tests on linear combinations of scores, and their logarithm (product of the score with power coe cients), yet the improvement on the quality of the construction is not signi cant. We prefer to keep to a simple technique with a unique score and an additional layer of correction, since the cost of developing better criteria in a feasible amount of time was bigger than correcting everything manually.

Ways reconstruction

When all links are established for each place we look for arcs with one extremity, which will each be the end of one way. We check whether they are already in a way, and if not we create a new way. We add to this way every arc connected to the previous one, until the moment we reach a new extremity.

We also reconstruct the extremity of ways as the prolongation of the rst/last arc direction, given that there is enough point to connect them (typically, arcs that are not under the superposition of two places). Otherwise, they are connected to the middle of the way going through the place. If there is no link in that place, all extremities are connected to the place center.

Both principles are illustrated in gure 3.19. 

Corrections

This method, as previously stated, is not without aw. We have not found a perfect criterion that produces no link selection error.

A rst approach to correcting these methods is to break links that are producing discontinuities in the way property, such as its curvature.

The most e cient method, unfortunately, is to correct by hand the network using an interface we created for the task.

We separate the correction process into a split-phase and a link phase.

Split phase

On the image of the structure, we plot each way with a random color (random saturation value, with constant saturation and luminance), and each link in black. The link is also drawn in another 2D array of same dimension, replacing the color value with the link label. Since displacement operations of the interface are done with openCV which handle only uint8 number (between 0 and 255), we decompose the number in three parts (in channels R,G,B). If i is the link number, then we decompose it as:

i%255, (i//255)%255, (i//255 When the user considers that a link is wrong, they simply have to click on it. The coordinate of the mouse position is read and the value corresponding to this position on the back-end array is then removed: for the place and the Arcs concerned we thus replace everything by extremities.

Link phase

We display the area of each place with no link, with all Arc emissary represented by a disk. The user chooses which emissary should be linked together, and this adds the link to the place and Arcs related objects. If the place should have no Links according to the user, then it can be removed from the list of places. 

Export

A pipeline of exportation of this data to the python library NetworkX has been implemented by us.

A module to export the spatial properties into SIG-type data (shape les) is added for visualization in software for QGIS, and can be treated in ways analysis such as the QGIS module "Morpheo". As the coordinate system of the GIS system is not Cartesian, the reference coordinate system used is EPSG:2154, RGF93 / Lambert93 3 antification of the algorithm

Time benchmark

We measured the time of computation in the case of four structures: three gorgonians and one cracks network, presented in gure 3.22: The split of the contours and the score calculation can still be optimized within the code, and the automatic calculation can still be improved. Yet the longest process in all of these is, by far, the corrections we add to the structure. We decided to correct them up to until we judged them perfect, which is why it took so long.

The use of correction

We compare the network of ways obtained before and after corrections in gure 3.23 Even with no correction, the network is well de ned since the longest ways are already here. If we do not take into account the shortest ways (blue and teal), most of the ways are already de ned and very few corrections are needed.

The zone close to the foot is ill-de ned, and none of the longest ways is linked to the bottom part directly. This zone, even for the user, is hard to de ne, as too many branches fusion in width and thus cannot be de ned with our vocabulary. We will discuss its importance in chapter 6 on reinforcements.

The network of small ways is the hardest to correct, as the meshwork is thin and complex. We will detail its structure and its correction in chapter 5, when looking at the elementary pattern and the catastrophes (special spatial events changing the dynamic of the growth).

Discussion

A new protocol in a code ready to use

We have developed a protocol for the over-graph (ways) extraction from a 2D image, following our prerequisites exposed in section 2.1. Using Voronoï (instead of skeletonization), places and local criteria, the automatic part of the code is fast and creates an e cient work ow. The modular aspect is still in place, and corrections are easy to implement when needed. We have mixed approaches from leaf and coral allometry with city analysis to create such a method.

The use of length propagation from a place, with ray tracing, allows for a better perception of the overall structure than when using usual criteria. It can be seen as a generalization of the angle notion : both give the same result on simple structures, but the propagation stays correct in many places where the angle fails. As this type of algorithm is widely implemented for graphic calculation, one could use another implementation to accelerate the score calculation, which is still among the slowest part of the process.

Generalization of uses

The algorithm has been developed with the extraction of data for gorgonians in mind, but it incidentally happens that gorgonians are the most complex structure that we have tested, due to the number of crossings and large branches. A simpler network such as veins or cracks is both easy to analyze and requires very little correction.

In the case of gorgonians, we have realized that the image quality in situ is not usable for big (≥ 20cm) structure, both in resolution and with our segmentation method. Using a higher resolution camera, a movable background, and segmentation with machine learning would overcome such problems.

A solution for gorgonians out of the water would be to remove the sclerite layers which reduce drastically the di culty parameter. This being a destructive method, we preferred to employ it as little as possible. Since we have not used the information of the color texture on our segmented images, using other approaches that would integrate such information might improve the hyper-graph creation. Yet, such a method would loose in polyvalence since it would not be done using a general approach.

This method, along with its software implementation, is now ready for use on a wide category of subjects.

Improving the method

If this rst approach gives good results, we can make small additions to it, or rethink the method entirely using our results for Benchmarking.

Ways automatic recombination

Using the algorithm as a base we could add automatic split and link methods, depending on the link impact on the way created. We implemented it for local angles to create bigger places than needed, and it marginally reduced the number of errors. The problem is that we have to know well what we expect from the ways beforehand, thus making this kind of approach look like a machine learning one with a global score overlay.

Also, randomly changing local links, observing the results and keeping the best improvements would be another solution. However the main obstacle is that we need an e cient score measurement for a globally reticulated structure. As we will see in the next chapter, we have found that the topological length of ways (number of arcs in a way) distribution could be a good criterion. Yet is it not sure that local modi cations would lead to the optimization of the score.

Machine learning

Now that an important number of networks have been corrected, an approach using machine learning could be used for:

• Local approach: Finding the right function mixing the di erent score calculated locally. We tried linear combinations, both in normal and log scale, and have not found real improvement. The interactions between the variables should be more subtle than just one type of operation to link them • Global approach: Using the ways we created as training, one could generate an algorithm using non-local approaches. We are not expert enough to show a method yet.

Ray tracing based map

A last idea of method emerged that could be promising, using non-local approach and distance map:

• For each pixel, we calculate four rays propagation, corresponding to the cardinal coordinates (N-S, W-E, NW-SE, NE, SW), then apply dichotomy research to nd the best angle and length. • We create three maps, corresponding to 1. The maximal length of the Ray 2. The angle corresponding to that ray 3. The asymmetry of the ray Thanks to modern acceleration on the graphic card, and the distance map we have calculated on the binarized image, this process would be almost instantaneous. How we use these maps is not clear yet, but it might remove the need for most steps used in our method.

Such a method would be much closer to our approach through vision and thus correspond much more to what we expect to nd, looking at the overall structure.

Generalisation for other systems

PySkelWays can be extended to other spatial networks than Gorgonians, as we have shown in the case of cracks patterns. We can take into account other properties, using the concept of ways.

3D Structures

Structural data of complex 3D shapes are often acquired through CT-scan or other equivalent methods. If we de ne an equivalent to the contour in 3D, we can apply the same approach for Arcs extraction, and, assuming we can generate a 3D distance map, use the same type of criteria in 3D. This is limited as most spatial networks are in 2D, but if such need exist, the structure could be adapted at few costs.

Multiple types of places

Neuronal cultures create complex networks, partially 2D. Neurons are connected by Axon and dendrites, which can overlap. Depending on the way neurons are connected, the system can have di erent behavior, as shown in []. With the creation of two types of places (cell bodies for a large radius, and overlaps of Axon/dendrites), we can reconstruct the spatial network of neurons, assuming that the network is sparse enough for wellde ned intersection, that there are few cases of overlaps and an e cient method for binarization. 

Monitoring the growth

One of the di culties for gorgonians is that we cannot monitor the growth of shape. In the case of many other spatial networks, we can monitor the growth through video. In consequence, we can add the information of when an Arc is created, and in consequence have a direct measure of the correlation between the size of the way, its speed creation, and its nal size.

We have developed an image analysis software to get this information, based on when each pixel has the maximal luminosity change, an example is presented on gure 3.25: Chapter 4

Statistical properties of ways on spatial networks

In this chapter, we explore simple indicators on ways, to characterize spatial networks we numerized with PySkelWays. We use the general approach of ways to use it on gorgonians, cracks patterns created by Philippe Bonnin (see A D), dragon y wings venation and cities urban network, as conceptualized in chapter 2 for gorgonians. We focus on simple indicators such as topological and Euclidian length distributions.

We show that all of these patterns share a power law distribution for the number of arcs in ways, with a coe cient between two and three. For gorgonians, we show that considering the growing branches of gorgonians also gives a power law, with a smaller coe cient.

We discuss the consequences of such properties and use a wide range of toy models to explore which growth processes can lead to such distributions. We show that iterative construction, and collisions seems to be the preponderant ideas to obtain power-law distribution. We also emphasized the link between the distributions we measure and free-scale network.

We also show that the distribution of Euclidean distances is spread along log-normal curves and that this distribution is more complex than a pure convolution between arc size distribution and the distribution of the number of arcs of the ways of a spatial network.

We conclude that our indicators on ways are powerful elements to characterize spatial networks, as they emphasized strong geometrical properties of construction that should be determined theoretically in further studies. Ways should be seen as an approach to compare di erent types of spatial network types and might be less suited for quanti cation of the shape properties within one type of spatial network: allometry on G. ventalina should be done on a more speci c element of measure as it will be presented in chapter 5. If visually, the shape of an object is a rst approach to de ne its properties and function, it can be di cult to extract and quantify its properties. Yet, it is what our visual perception is trained for on numeral objects: if we cannot always determine how we extract qualitatively or quantitatively properties from a shape, we are processing the visual signal to do so.

The vocabulary to describe shapes can be either qualitative or quantitative: the rst category being more straight-forward for a simple categorization, the second allows one to compare them quantitatively. Qualitative properties are often an ensemble of quantitative notion implicitly linked, with arbitrary threshold and weights to each of them, distinct for every user.

Today, most conventional approaches tend to be intensive classi cation with machine learning and deduce the "function" of an object from their category, as illustrated in gure 4.1. As for every system one can consider, manipulating the ensemble of every properties is too heavy to be practical. It is the base of the scienti c approach to nding ways of reducing the information to a few relevant parameters, without losing the essential information and properties. We want to nd well-de ned characteristics, that describe the speci c properties of gorgonians and develop an ensemble of indicators that allow a precise comparison of their shape. Yet, we want also our indicators to distinguish the di erent types of spatial networks that exist in nature.

We saw in gure 4.1 that the shape analysis (purely based on an image) was a powerful approach for classi cation. Yet, this type of example is only possible with two elements:

• When we know what we are looking for as information (in this context, elements related to driving such as a car, person...) • When we can have extensive training of the algorithm on multiple subjects to catch such properties.

It could be tempting to take every information we have on each shape, look at the distribution of the values and reduce the dimensionality using a principal component analysis approach to nd the biggest modi cation, or classi er algorithm to nd the principal axis of the distribution of the variables, and thus nd a signi cant signal in measurement. Yet, we nd that this method is here irrelevant, as we do not exactly know what type of signal to look for: spatial networks, using ways, are not that much described in the literature, even geometrically. We need rst to determine what they can have in common, then look at the subtle variation, then link them to the environment. Since we cannot clearly de ne the mechanical environment, we will focus here on the three points:

1. What are the common characteristics of spatial networks? 2. how can we use them to describe gorgonians? 3. and what varies between them? The natural extension of this work would be, once we have a quantity well de ned that vary between di erent gorgonians, to look at the correlation between this value and the environment's properties.

We can categorize the shape of G. ventalina as a spatial network, as well as a heavilyreticulated tree. Trees are often analyzed using a hierarchy (such as the Strahler approach), yet this method cannot deal with loops in a network. One has to reduce the network to treelike architecture to do so. Networks are often analyzed through nodes and connectivity, but most approaches are irrelevant for spatial networks, heavily constrained by a 2D planar structure.

Spatial networks have proven to be e cient in cities' descriptions C Lagesse 2015. We have shown that this notion of ways could be used on a broader diversity of shapes, as suggested by [START_REF] Perna | Characterization of spatial networklike patterns from junction geometry[END_REF] with a non-automatic approach on cracks pattern, cities, and leaves. As seen in chapter 2, ways are a more general version of branches, and thus correspond to the primary growth patterns we can obtain. As they are close to the morphogenetic process, determining their characteristics might be a good approach to determine the characteristics of the growth process itself.

Can we use ways indicators to describe and compare the shape of gorgonians? Are they measuring the common properties of spatial networks? Can we extract information relative to the environment or species?

Method and conventions for the chapter

In this chapter, we will use mostly histograms to describe the distributions. We use the following convention for our representation, method of acquisition for our ts:

• Our bins are often in log scale and not uniform if the property is on a large range of values. Log scales have a constant ratio of size between two adjacent bins. • Our population is also often represented on a log scale.

• When in the log-log scale, the size of each decade will be the same for both axes.

• When a distribution in log-log bins shows a line, it is a power-law with an expression equivalent to P (X) ∝ X -a-1 , a being the slope we measure graphically. the -1 in the exponent value is due to the growing size of bins, which permit a constant space between bins on the log scale and thus better readability. The physical parameter that should be interpreted is -a -1 and will be called the exponent. A justi cation for this calculation is shown in annex B. • Fit values are calculated with the least square method on the relative error, and the ± value is the standard deviation of the parameter. The explicit score value of the t is not presented, the relative error for each value is shown on the histogram with a line.

• When multiple histograms are on the same graph, we will represent only the top of the bins, and link them through a line One should also remember that a power law x k = e k ln(x) is di erent from an exponential law k x = e x ln(k) .

2 Degree distribution as a general indicator for spatial network 2.1 A notion from non-spatial graphs

In classical (non-spatial) networks vocabulary, the degree of a node is the number of edges it is consisted of. Ways are created as an ensemble of arcs, and, as suggested by [START_REF] Courtat | Hypergraphs and City Street Networks[END_REF], we can consider that the number of arcs in a way is analogous to a degree. When we do so, we in fact consider each way to be a node, connected to its neighboring ways with an edge. We illustrate the equivalence in gure 4.2 and apply it on a gorgonian in gure 4.3 : The non-spatial degree (seen as node connections), is the same as the spatial degree (the number of arcs in the way), with a correction of ±1 if the way has no or two connections at its extremity. To minimize numerization e ects, we only count arcs that are not linking elementary places, and thus only the one connecting two places. This slightly changes the analogy between node degree and ways degree as we are not counting elements, yet the measure is more robust to our numerization process.

Therefore, we call the number of arcs in a way 'degree'. We can see it as a topical length if we set the length of every arc to one. The distribution of degrees is a rst indication of the structure of a spatial network, which appears naturally from the way we created ways in chapter 3.

In the case of gorgonians, we have shown in chapter 2 that the primary growth (extension of branches) could be considered as only happening on the tip of branches. Thus the only growing branches are connected to the envelope. We will in consequence look at their degree distribution for this category only, as a measure of the local growth properties.

Degree distributions of several spatial networks: power-law Gorgonians

We present here some relevant cases, with their degree distribution for the complete network (named all ways), and the degree distribution for the ways connected to the envelope, and thus that can still grow (named growing ways). In this rst example, gure 4.4, we see that the degree distributions seem to follow in rst approximation a power-law distribution, P (degree) ∝ degree -2.5 . The ratio di erence between the real distribution and the power law-t behave as noise (no clear score variation changing with the degree), so the power-law approach seems relevant.

Ways connected to the exterior are also following distribution of their degree in powerlaw with a smaller coe cient, although there seems to be in this case a problem in the distribution for the longest ways, as shown by the important augmentation of error for ways of ≈ 30 arcs. Around both sides (left and right) of the foot (at the bottom), we have mostly small exiting ways, while most of the structure is going straight up in this case. In gure 4.5 we have both the overall distribution with a bigger slope (more small branches in proportion), and a smaller slope for growing branches, yet the distribution is not that well described by a power law. All the longest branches are still connected to the exterior, even if they are connected to the foot area. The case illustrated in gure 4.7 is more complex, as the gorgonian has been eaten: the shape does not correspond to one history but a regrowing shape on a grown shape, with an almost arbitrary state between, decided by the environment. We divided it into two parts (grey and pink). For the grey part most connected to the foot, ways are following the same direction as the pink part, then the extreme part is following a di erent tropism.

The values of slopes are not that di erent between both sides, the growing/leaving branches having the same slope with a bigger error.

We have seen that for gorgonians, ways degree have a power-law distribution of around ≈ 2.5. This rst observation can lead to multiple possibilities:

• Only a few gorgonian structures behave that way, and we did a cherry-picking in our examples without realizing it, caused by the criteria of selection • Only gorgonian structures behave that way, and we obtained one of their signature with this property • This property is not linked directly to gorgonians, but rather to a bigger family of structures. In that case, we should determine what this family is and how are these structures related to their growth process. To test the third hypothesis, we will look at the distribution for other structures, such as cracks patterns, made by desiccation of clay. As cracks patterns are not our primary subject, the information on its formation and the creation of our database are described in A E.

Cracks degree distribution

Crack patterns are easy to analyze and thus good examples to enlarge the analysis. In the "real structure", ways might be crossing each other and this is not taken into account here (one of the ways is split into two), which might have a small impact on the degree distribution. The crack pattern is illustrated in gure 4.8. We still have a power law, in this case, close to 2.2. The value might have been overestimated, due to the high proportion of ways with a degree 1, it can be seen in the error, which is more important on the smallest values (< 5). Ways with a high degree correspond to the rst one which appeared historically, at least with a qualitative comparison.

We also tried to measure an equivalent of exiting/growing ways, yet the distribution is mostly noise. This was expected: it corresponds for gorgonian to the growth process, and here it does not correspond to any property except boundary e ects. In gure 4.9, we still have distribution in power law, with approximately the same slope as for gorgonians (within 2 and 3 with the slope correction due to the logarithmic bins). In this experiment, although the size of the domain is larger (4 times the previous size), the maximal length is not that changed: the power-law distribution has a cuto value. If we do the hypothesis that each arc has a typical size, it implies that there is a maximal value of the degree on this crack formation mechanism. The previous case might be simply with dimensions smaller than this value.

Depending on the material properties, and the drying process, the qualitative aspect of cracks will change from intersecting straight lines to noisy hexagonal shapes. We cannot reduce all cracks pattern to one logic, as the physics behind is rich in mechanisms. Our understanding that if the process is on a uniform medium, and that cracks occur one at a time, they will have a pure power-law degree distribution. If there are simultaneous growth, the distribution loses its longest contributions. The two limiting factors that could explain this cuto are:

• Non-uniformity in the wetness of the material, changing the main direction and creating petal-shapes (curvature of the same sign) • Ways creation interaction: when multiple ways are created at the same time, they cannot propagate on all the surface in front of them This would be our hypothesis to explain this cuto at 30 topological length We can also look at the impact of the uniformity of the material, here qualitatively in the experiment 139 illustrated in gure 4.10: In this experiment which is number 139, the thickness of clay is an a ne function of the radius. The arcs are smaller at the center, yet the distribution of degree still correspond to a power law. We have no information here about the relation between the time of appearance and the degree of ways. A deeper study of such process could be to consider a non-euclidian geometry, with an expansion factor inversely proportional to the with of the clayr layer, that should give back a more uniform arc size.

Dragonfly wing:

Up to now, we have tested the degree distribution of modular architectures. It is interesting to test if their famous venation patterns, which correspond to functional demands [START_REF] Blanke | Analysis of modularity and integration suggests evolution of dragony wing venation mainly in response to functional demands[END_REF] are also corresponding to the same kind of logic. We have created a bank of HD numerization for 14 dragon y wings, yet only tested one on its network illustrated gure 4.11. What we see here is that we have two distinct phenomena:

• The veins are, at rst order, following a power-law distribution • There is ten times more ways of degree one than ways of degree two, corresponding to another phenomenon One of the reasonable interpretation of it is that the main veins are created in a rst growth process, then the di erent sections of the wings with an important distance to the borders are subdivided at the same time. It corresponds to the main paradigm of insect wing venation morphogenesis as seen in (Ho mann et al. 2018) which resumes well the state of art in geometrical and biological properties.

We, therefore, think that Ways are a good tool for such systems description, and the power found in the degree distribution could be used as a minimal indicator to di erentiate wings, assuming that they have enough ways in their structure for statistical approaches.

Cities

For anyone driving through a city, orientation and structuration of space are more thought in terms of the number of crossroads (topological length) associated with the number of turns (topological distance) one goes through. It is an e ective way to remember an itinerary in a network: the euclidian distance has little impact compared to the structure.

Since the rst ways degrees were calculated on the cities network, it seems relevant to look at their distribution and impact, as illustrated in gure 4.12: For cities, this degree of distribution is also well tted by power laws. The smallest coe cient goes for San Francisco (with a coe cient of 2.4) which is mostly a grid-based architecture with a lot of crossing ways, to London (almost 3) which has the less global organization in its urban plans.

These examples seem to show that there is a strong signal in this degree distribution: is it true for all the gorgonians and other structures or just an implicit cherry-picking we have done?

Comparison of Degree distributions

In 4.13 we represent the distributions of our 23 gorgonians (left panel) and 12 cracks (right panel) in the same graph. We normalize the distributions by scaling the whole population of each distribution so that they all have the same number of ways with a degree of 2. We can do the same type of analysis for the growing branches of gorgonians, and then compare the slopes of the distributions of all ways degree and growing ways degree in 4.14: Even if the size highly varies between gorgonians, the distribution of the degree is stable: it does not depend on the rst order to the size of the structure. The slope is yet quite di erent in both types of structure: in the case of cracks patterns, we measure a smaller coe cient ( 2.21 ± 0.06 compared to 2.40 ± 0.08).

In the case of growing branches, the signal is noisier due to the smaller number of branches, yet the main tendency remains as a power-law with a slope around 2.15 for growing ways, and 2.65 for the overall degree when we give the same weight for each gorgonian in the mean measurement. We have not found any relation between the basic variables of the shape and the slope. Yet, there is a small tendency for an a ne relation between the full degree distribution and the growing branches degree distribution. Tests on a simple environment variable such as depth or location are not giving more precise clustering of the gorgonians.

To resume this section, power-law distribution on the degree seems to appear in every spatial pattern we are looking at. It is a solid property working even on imperfect network, and inhomogeneous space as in gure 4.10. The power coe cient seems to be mostly de ned between two and three, with yet no clear explanation on the signi cation of this value in terms of organization: gorgonian is around one value, cracks around another one. For the moment, cities appear to be the studied structure with the largest spread of coe cients.

The power coe cient in the power law of the degree distribution is not moving with the size of gorgonians, yet it might depend on the exposition to the environment: our only signal on this is for gorgonians which have been damaged then regrown, not following the traditional scheme and giving two di erent slopes for both sides.

It is also very surprising that all grown structure distribution follows a power law, but so do the growing ways, with another slope. This must carry information about how the growing ways collide with each other while keeping the slope values constant.

Interpretation of the power-law degree distribution

The degree distributions of our studied spatial networks follow all a power law with a coe cient between two and three. Such mathematical property being so widely spread around shapes must be a consequence of either spatial constraint or of their growth process. In consequence, it is necessary to understand where it comes from, and what simple geometrical morphogenetic process could give us a power-law distribution in such a domain.

Zipf law

Power-law distributions are quite common and widely spread in many di erent domains [START_REF] Clauset | Power-Law Distributions in Empirical Data[END_REF]. Known in some communities as Zipf law, we nd them in the city size distribution of a country, the frequency of words appearance in a language, the structuration of tra c for internet, the magnitude-frequency of seisms, the H-index of researchers, or even the number of citations of an article. A more extensive list is available here [START_REF] Li | Zipf's Law Everywhere[END_REF].

Such a law implies that there is no dimensional nor typical scale, only a critical behavior with an exponent. Nor there is any characteristic number of arcs, as it would be the case in an exponential distribution: we have a fractal shape according to this criteria.

Interpretation of the exponent

The main interpretation of power-law distribution is "the rich get richer": the biggest elements are the one growing the fastest, or the bigger you are the more chance you will get a new element of the distribution.

Using this indicator, we reduce the shape to one value: the slope coe cient. The smaller the exponent value, the more inequality there is in the distribution in terms of size. Said otherwise, a higher slope means a feedback mechanism saturating the size growth of bigger elements, bringing uniformity and distribution along the branches.

It seems that qualitatively, small slopes correspond to shapes with a wider range of direction explored such as "radial shapes" or the envelope, whereas gorgonians with a network aligned in one direction have bigger coe cient: this untested hypothesis would imply that branches, when growing close to each other, are regulating the growth of each other, while diverging branches are simply doing their own business in their direction. We need more adequate descriptors to test such hypotheses, such as plumes introduced in the next chapter.

Power law in graphs theory

Among all domains with power-law, one is for us particularly interesting: graph theory. The reason is three-fold :

• We can nd power-laws in graph distribution, for example on the degree • We have established a link between the notion of degree in a graph and the notion of degree for ways • There has been established an ensemble of logical mechanisms that explains how a graph can grow with a power-law distribution of degree There is a wide family of networks called "scale-free Network". Their main characteristic is that some of their properties such as the degree of nodes are following a power-law distribution. The most basic and famous model "Barabási-Albert model" [START_REF] Albert | Statistical mechanics of complex networks[END_REF] giving a coe cient 3, a slightly more developed model known as Price model gives a coe cient between 2 and 3 (Solla Price 1965).

The method to construct them is iterative: at each iteration, we add one node and vertices between this node and the other ones of the network. The probability of association is proportional to the degree of the node it could be connected to. This concept is called preferential attachment. These systems are unstable: the nodes with the highest degree have a higher chance to create a connection with new nodes, increasing the disproportion in the distribution. Even if the relative distribution (the slope) is at equilibrium and stable in the system, the proportion of links with high degree nodes will increase with the number of iteration. There are multiple logic of association that can be used, which modify the slope coe cient, and it is possible to associate the parameters of the logic (initial score of a node without connection for example) with the slope.

Doing the link between our primary growth (which is spatial) and these network creation is particularly tempting: it would increase the relationship between nodes in classical networks and ways in spatial networks. If we can create the bridge between these spatial and non-spatial networks, we could use a certain part of their tools and translate the useful concepts, instead of recreating them one by one. It would also give another point of view on the notion of space of networks and improve our understanding of their properties. As power-law is often associated in physics with critical processes and renormalization (for example, phase transition exponents), translating the growth process into a logic that can be tackled by statistical physics would be powerful to understand the growth properties.

Yet, this analogy on the degree and equivalence between spatial and non-spatial graph is not proven in the processes of construction: in the way we model the primary growth in chapter 2, we cannot nd an equivalence with descriptions of iterative construction from scale-free networks. Our approach in chapter 2 might not be the one, and in consequence, we should look at simpler models formulation to see if they can create the properties we measure on the spatial network of gorgonians.

Explaining the distribution with preferential a achment

It is di cult to rephrase the growth rules into preferential attachment, even in terms of ideas.

The rst di culty is to modify the notion of time, in the creation of scale-free networks elements are added one by one, and for gorgonians, each way is growing at the same time. The case of cracks patterns is also tricky, as ways are often created one by one and rarely in a simultaneous process.

For a gorgonian, the elongation for a way of one degree (adding one arc) creates one new way (see the L-system model just afterward for more complete explanations), and there is a notion of stopping the growth that is di cult to translate into non-spatial networks.

For a crack, if a crack appears rst, its degree can increase due to connections being created all along the crack. Thus, the rst created will ultimately be of higher degree, following the same kind of logic as a preferential attachment with the events in a strange order.

This problem is the same as in the case of Turing patterns or the superformula in the case of diatoms, that are both described in Appendix A: if the result, the shape or the properties obtained are the same as another morphogenetic process, it does not mean that the morphogenetic process is the same: two processes can lead to the same characteristics.

In consequence, we should instead focus on the growth process with notions of spatiality to understand where this power-law comes from: we have not found yet an approach that can get rid of space to explain the organization of spatial networks, even if it is very tempting to explore that approach.

Minimal growth models

There are multiple approaches with toy model we can test, either based on places link, space distribution, lling process, or simpli ed growth in space, to try to nd this type of distribution.

Links on a grid

This rst one is based on the notion of way itself: is this property of power-law caused by the method of way creation? It is normal, that doing associations of arcs on a grid creates power-law, or is the because of the speci city of our de nition, and because of the network organization of gorgonians that we nd a power-law?

In Chapter 3, we de ned ways as the local unions of linked arcs at each place, so an ensemble of 2-by-2 arcs association. These associations are creating the way. We can modify the method to do these associations: for example by doing random associations in each place. By doing so, there is no dynamic: all the associations are created at once, with no propagation or growth.

To rst test this idea on simple networks such as uniform grids. We rst generate grids as images and use PySkelWays to detect arcs and places. Instead of using the criteria of scores we detailed in chapter 3, we choose a random association between two arcs connected to each place. Each place has the same number of arcs connected to them which is n. We represent 3 di érent grids (n=4,n=3,n=6) with their degree distribution based on this method of ways creation, in gure 4.15 : These distributions are not power-law "x k ", but exponential "k x : there is a typical size introduced in the system, inversely proportional to the number of arc per elementary place. This is easy to understand: let's k be the number of elements in a chain. The probability of being of k + 1 elements is the probability of being a chain of k elements, multiplied the probability P of being linked in the place. P = 2/n (probability of being one of the two elements selected among n), which corresponds to our slope values in these cases.

Gorgonians are not regular grids, and there is a distribution of the number of arcs per place to be taken into account. the simplest way to do that mathematically is to check if the consequence of the power-law can be seen in the distribution of places degree, by stacking exponential ways degree distribution P ways (k) = i N i e -nk/2 , N i being the number of places of degree n, P ways (k) the distribution of ways with a degree k. A more practical approach is to create ways with the "random association rule" of arc but on the grid of a gorgonian. For all our tests, there is no correlation between this theoretical distribution and the one we observe. The notion of ways "makes sense" and is not simply caused by random associations of arcs, it's not particularly surprising news as we have constructed it on the logic of the growth, but it is a nice con rmation that we are working with notions that carry a real signal of the shape.

Cu ing grids

The growth of gorgonians is an expansion of the network to the exterior, and when a hole is created (a reticulation), it won't be divided into two. A family of processes to create networks, such as cracks pattern is based on the contrary: we keep a nite space, that we divide by creating ways. Instead of making ways grow, we cut the surface and each cut is a way.

The simple process to do so on a square would be to do iteratively, as illustrated in gure 4.16 :

• We take one square of size 1, and divide it in two. The cut we have created is of length 1. • We take our new area and cut them in two again. We obtain 4 square of length 1/2 and two borders of length 1/2 • We reiterate this in the 4 smaller squares, as many times as needed. 4 l -2 : we nd back our distribution with a power of -2. The power -2 can thus be seen as the signature of a cut process, with no particular interaction between ways. One should note that this only works if we consider that there is only one way per place: the ways of higher iterations are still aligned on both sides of the previous split as the result is a grid. The family of models that can be done on this cut idea is widely explored in Romain Pousse thesis with interactions between ways, used in this case to nd a minimal model for city structure, as shown in gure 4.17. .17.: Cutting grid process, with two mechanisms implemented to determine which is cut: the element (rectangle) i with highest potential is cut, and the potential is calculated as

U i = j d -α ij L β i , d ij
topological distance between two elements, α being thus the attractiveness of the neighborhood, and L i the longest side of the element: β correspond thus to the uniformity of the grid. By changing the value of coe cients coefcient one stays on a power law distribution and change the coe cient. Here calculated on logarithmic bin so it correspond to 2.75. By Romain Pousse.

Filling process

The previous process would introduce smaller and smaller elements in the network with the number of iteration which is unrealistic in our phenomena with nite sizes, and the notion of collisions, which seems important to stop the growth of a way, was implicit as we forced the size.

Instead of lling everything at the same time, we can iteratively ll a domain on a square grid of n by n cases. The logic is the following:

1. We select a case (a pixel) on the grid that is not lled yet (value 0 on the case) randomly and ll it with the value i 2. We select a direction (either left, right, up or down) 3. If the neighbor point in the corresponding direction is not lled, we ll it with i and then reiterate step 3 from this new point. 4. When we get an already lled case or a border, we "stop the growth" of the value i (collision). We go back to step 1 with an increment of i 5. We reiterate the process until all space is lled. We create a continuous chain of pixels with the same value, that collides into each other. Those chains can be seen as ways, and the number of pixels of the same color as the degree. We represent the obtain lling pattern, and distribution on gure 4.18 : Every hundred elements added we calculate the distribution of length from this distribution. If the rst distribution of degree is at, then it slowly converges to a power-law distribution of slope 2. Each new element grows in a smaller and smaller rectangular box, at each iteration.

We can do the same process with another lling method, in which we can change direction (north-south-east-west) at every iteration (in step 3, we go back to step 2 instead of a loop on step 3 only). We simply avoid a direct return to the previous place and stop at intersections with any objects, even themselves. We illustrate the lling pattern and distribution evolution in gure 4.19 In this case, the typical length n of the system is not obtained (40 out of 100 in this example), even if these line degrees could be bigger than n. The initial distribution is rather uniform on the domain and slowly converge to a power-law distribution with a slope -2.

Even if the nature of the lling process is di erent, the two criteria of lling and colliding ways are enough to create these power-law distributions of coe cient 2. The same idea has already been studied by [START_REF] Hassan | Scale-free network topology and multifractality in a weighted planar stochastic lattice[END_REF], for 2D lling of a square with rectangles, and he introduces the dual of the sites, which can be seen as ways topologically.

Simplified growth in space (L-system approach)

If a way is extended with one arc length, it has to generate both an arc in itself, but also at least an arc orthogonal to it: otherwise, it would be still one arc twice as long as before. It thus creates a branched structure. We thus have a grammar: Each branch, when growing of 1 element, creates β new branches of 1 element. Two cases of β values seem reasonable by looking at the shape or G. ventalina : either there is one daughter branch created at each unit (β = 1), either there is two (β = 2). There are no collisions here as if it grows in an in nite-dimensional space), with no tropism, each way grows of one unit at every iteration.

We illustrate β = 2 case in gure 4.20 Let P (k, i) the number of branches with a degree k at the iteration i. We can write our rules mathematically as :

P (k, i + 1) = P (k -1, i)
each way gains one degree (4.1) P (1, i + 1) = β k P (k, t) each way creates β ways of degree one (4.2)

P (1, 0) = 1
One way at the beginning (4.3)

We list rst values obtained with this iterative logic in the table 4.2: The degree repartition doesn't correspond to a power-law process with P (k) ∝ k -α but in an exponential process α k = e k ln (α) . Since this model corresponds to the elementary pattern, it implies that either collision or tropism should be the key ingredient to reproduce the degree property of spatial networks.

β = 1 t k=1 2 3 4 5 6 7 0 2 0 1 2 0 2 0 2 2 1 2 0 2 0 3 2 2 2 1 2 0 2 0 4 2 3 2 2 2 1 2 0 2 0 5 2 4 2 3 2 2 2 1 2 0 2 0 6 2 5 2 4 2 3 2 2 2 1 2 0 2 0 β = 2 t k=1 2 3 4 5 6 7 0 2 0 1 2 1 3 0 2 2 1 3 1 2 1 3 0 2 0 3 2 1 3 2 2 1 3 1 2 1 3 0 2 0 4 2 1 3 3 2 1 3 2 2 1 3 1 2 1 3 0 2 0 5 2 1 3 4 2 1 3 3 2 1 3 2 2 1 3 1 2 1 3 0 2 0 6 2 1 3 5 2 1 3 4 2 1 3 3 2 1 3 2 2 1 3 1 2 1 3 0 2 0 Table 4.
If we do our model in a 2D geometry, and consider that new ways are created perpendicular each time, then only the initial way and the horizontal one it generates can grow (with a lot of ways with a degree one, vertical). This is not what we observe.

If such an initial approach makes sense according to the elementary pattern and the ways creations seen in chapter 2, the behavior of ways is more complex than a simple elongation. There is a need for tropism, in the orientation, and/or in the speed of growth that should be taken into account.

Euclidean length : lognormal distribution in spatial networks

Up to now, we only focused on a network approach, without taking into account the Euclidian length of each of the elements. Yet, each arc and in consequence each way has a Euclidian length and curvature in space. Also, each hole in the structure has a perimeter, surface, and other geometrical properties. These have to be taken into account when looking for signals and properties in the network.

Arc length distribution

We consider, to remove reconstruction and soap-bubble e ects, only arcs not belonging inside a place, and we give them the curvilinear length associated with the "way reconstruction" they belong to. We represent the distribution for every gorgonian in gure 4.21. The distribution, when normalized on the typical size of arcs for each gorgonian, collapses well on a master curve which is a log-normal or normal distribution. it implies two things:

• There is a well-de ned length for each gorgonian l arc , which is easily calculated as the median value of each distribution. This length is well de ned on almost all individuals and does not change during growth. • There is a well-de ned distribution with the same parameter σ = 0.2 for each gorgonian: they all belong to the same family according to this indicator. The length is di erent for each system, and carry signal from either the environment or the genotype. Yet, it does not change the logic of growth.

This distribution is thin around 1, and in consequence, can be tted as well by a normal or log-normal distribution. We recall the formulas for each

P (x) = 1 σ √ 2π e - (x -µ) 2 2σ 2
with µ mean value and σ standard deviation. This is a distribution obtained "by default" in most measures, as this type of distribution is obtained by summing the contribution of many uncorrelated variables, according to the central limit theorem. Log-normal distribution correspond to

P (x) = 1 xσ √ 2π e - (log(x) -log(µ)) 2 2σ 2
We can represent it in log-log space with X = log(x) as a parabola:

log(P (X)) = aX 2 + bX + c with c = -µ 2 2σ 2 -log σ √ 2π , b = ( µ σ -1), a = 1 2σ 2
We can interpret log-normal distribution as equivalent to the central limit theorem ( the sum of independent random variables distribution becomes closer to a normal distribution the more random variables you have) with multiplication instead of summation due to the log. In this case, we have chosen a log-normal approach due to the results on the ways we present in the next section, but a log-normal distribution of small standard deviation also corresponds to a normal distribution [START_REF] Limpert | Log-normal Distributions across the Sciences: Keys and Clues[END_REF].

We can explain this distribution with the following ingredients:

• If an arc is long enough, he will create two new orthogonal branches, which determine its growth. The cause of this split would, in consequence, be internal to the growth and the size l arc de ned in the growth process logic. • If an arc collides an already existing arc, its growth is stopped before the typical size, and the collided arc is split into two, which add noise to our measure of arc length as they are split in two (see the introduction of chapter 3). A way to explore in-depth the rst point would be to remove each arc considered as causing a collision, then recalculate the length of arcs. We can recognize, by looking at the direction, and the extremities of ways, the beginning and end of each way and thus access to stopping arc. This idea of orienting arc will be explored in the next chapter.

From now on we will normalize all our length by the characteristic length of each gorgonian extracted from its arcs l arc to compare them. A length of 1 is thus a length of one typical arc of its structure.

Ways length distribution

We can with the same approach measure the distribution of ways lengths, as presented on gure 4.22: As before, we observe a collapse of all the curves, on a typical length of one arc (so a length 1 in our units). The size of the structure has no impact, and would only be a vertical shift in this case. If each distribution taken separately is not a log-normal, the summation of all normalized ways lengths (the dashed line), correspond well to a log-normal distribution as shown in gure 4.23: This distribution is lognormal is already known for cities, as already shown by (Lagesse 2015) in gure 4.24. It is thus a common feature of the spatial network, here once again shared within our di erent networks. In the case of gorgonians, the standard deviation on the ways log-normal distribution is of one magnitude higher than for arcs length distribution. This log-normal distribution of Euclidian length, along with a log-normal/normal distribution of arc, and a power-law distribution of way degree is surprising: a naive approach of ways length would be to convolve the size of one arc with the number of arc per way, yet this gives a power law with a growing tail on the left, that does not t at all our distribution.

Indeed, this distribution is not exactly a log-normal: there is an asymmetry in both sides with a well-working power-law description, the exponent of 2.5 found on the right side correspond well to the slope found for ways degree in gure 4.13.

We can look at the impact of the degree in terms of length, here shown in gure 4.25: x axis correspond to the degree in log-scale, y axis to the di erence between the normalized length L/l arc and the degree Narcs. The pink line correspond to the mean value for each degree. Here presented on the gorgonian "5". If there was no correlation between the way degree and the size of the arc, we should only observe a symetric distribution of noise, with the pink line following the black line Most small ways are composed of bigger arcs than typical arcs: this could imply that arcs at the beginning of ways have a di erent shape (typically, curvature which elongates it between the two extremities).

This di erence increases with the number of elements, it is a signal that the shape of component evolves with the place in the way, the contribution of this di erence being smaller with the size. This observation will be developed more in the next chapter, as we develop more e cient tools for such analysis.

A note on holes:

We tested di erent approaches on holes (complement to the 2D structure), measuring their di erent geometrical properties, on the original image, and on the regularized image (with all branches numerically set to the same width) to remove reinforcement e ects, here shown in gure 4.26. The information we can get from this is scarce: the typical width of arc for the regularization gives the thinnest distribution of holes surface (a log-normal centered on l 2 arc ), most distribution correspond to log-normal, and the only local correlation corresponds either to the distance to the foot or the closeness to one of the main way: in both cases a way approach is more pertinent, assuming that the information is available.

4 Conclusion: toward a unifying approach for spatial growing networks ?

Ways simplify the reading, and shows strong, resilient and non-trivial statistical properties

It is stupefying to see how the shape of gorgonian meshwork, chaotic at rst sight within the di erent individuals, is regular when it is described in ways. There is nothing evident about a power-law distribution in the degree of ways, nor that there is a log-normal distribution in their length. Geometrical constraints of spatial networks project the possible shape space of growth to few cases well de ned: it seems that growth by elongation of ways can only produce some precise type of network, such as one with a power-law distribution of their arc degree. If it is surprising to consider at rst sight that there are analogies between exteriorgrowing shapes such as gorgonians and interior-desiccation growth shapes such as cracks, their properties share a lot of common properties when grown.

The properties we measured are not in uenced by the size of the network, and can be easily normalized by the size of one typical element: we face modular organism, and the modularity of the growth is conserved with the size.

There are hints to explain power-laws in the degree repartition

The degree power-law distribution seems understandable with an iterative approach even with toy models, and add insight to the importance that spatial networks are the consequence of a dynamical process, continuous in time created by iteration. This temporal evolution is an important part of these network structuration. The representation in the log-log scale hides imperfections and facilitates the perception of a power-law, as "everything looks like a line in log-log scale". There is a need for a more precise measure of these distributions, such as with the use of Q-Q plots and other statistical analysis methods to have a more precise measure of "how close are we to a power law".

The approach with ways might allow us to link spatial networks with classic/nonspatial network theory. If this suggestion already existed with weighted planar stochastic lattice, using ways explicitly in multiple systems now strongly reinforce this idea, but is not a proof of the link. We have not found yet the Rosetta stone that could translate spatial ways into non-spatial ways in general, and such translation might not exist. Approaches of statistical physics with renormalization theory could also be an e cient approach to nd critical coe cients such as the slope in this distribution and should be a good complement. Explaining the properties of spatial gorgonians network with a preferential attachment could open a broader range of tools for spatial network analysis, yet we have found no satisfying explanation for Gorgonians. In the case of cracks, the use of time information of appearance, presented in the last gure of the previous chapter, should be a good link to verify if we can use such an approach for this simpler system. These approaches will be explored by a new Ph.D. student of the team, which will explore spatial patterns in a more general way than what we introduced here.

We need more specific elements for allometry measures If we introduced ways in a general lecture element for spatial networks, the case of gorgonian allows an even more detail pattern: every way creating new ways orthogonal to the main branch, there is a pattern of multiple ways that can be analyzed, and will be the object of the next chapter, looking to gorgonians as directed branches and plumes.

In this chapter, we present a panel of more advanced and speci c objects based on ways that improve the reading of the shape. Especially, we reconstruct the branch introduced in chapter 2 and reduced to ways in chapter 3 and 4, by reintroducing a direction to ways.

We show that the curvature pro le of branches follows the same behavior to get oriented on a typical length of 10 arcs. The envelope shape thus depends mostly on the growth speed of branches and not of their geometry on small to medium ≈ 20 Arc distance.

From the direction, we can determine which arcs correspond to a collision on another arc, and by removing them we can recreate a tree-like rami ed structure, which allows the use of more classical allometry methods. We explore the hierarchy structuration which highlights the structuring branches of the gorgonian, and the disordered areas of the shape.

Finally, we reintroduce the notion of plumes, which reduce the number of elements to be compared when characterizing the gorgonian, and highlight special events of plumes creation and collision, that lead to a new reading of the temporality of the growth at large scale, and lead to a lecture of the shape dynamic as plumes interactions, as a promising tool for future works. 1 Motivation : specific indicators for allometry

In the previous chapter, we have shown that looking at ways instead of arcs or edges was unifying properties within families of growing spatial networks. One of the reasons for the e ciency in such an approach is that it is closer to the morphogenetic process of growth: we describe the elements with a vocabulary close to the dynamic of growth.

Yet, the notion of ways contains no explicit temporal information in general. In the case of cities and cracks, history can be partially reconstructed due to the intersection of the way. The temporal information for such systems is also well-known from other sources, as archives exist for cities in the rst case, and we can extract temporal information of cracks pattern using video, most experiments being about one week.

In the case of gorgonians, looking at the growth dynamics and the history in the structure is much more complicated: the growth is slow, highly anisotropic, and there is yet no method to age e ciently each branch: we have no archive. A rst approach is to consider that as gorgonians are modular they are the same at a di erent stage of growth, yet it is blind to environmental in uence en genetic variability: we compare di erent gorgonians allometric properties to see how their length impact them. Yet, we can nd temporal information inside the network structure, which gives us an alternative to numerical archives.

On chapter 2, we introduced the notion of branches in a network, that can be seen numerically as a way with a direction of growth. Each element of the same branch has a di erent age, the closer to the tip the younger. We had extracted the following rules :

• The gorgonian grows from an initial point (the foot), from tip elongation creating way. In consequence, ways are oriented: they are branches • Branches are created from older, already existing branches • a branch collide into an already existing branch, it fuses and stops its growth In consequence, we construct branches as direct ways.

Reconstructing the direction of ways allows us to be closer to the growth process, and thus gives us better access to its dynamics and sensibility. Instead of ways, we can identify the direction of branches, and the relation between adjacent branches. We can only keep arcs that do not collide on another branch and use classic allometry criteria from tree-structures on G. ventalina, which thus reunites both tree-shaped structure and reticulated structure into a more general category of spatial structure.

We can even go further, looking to the pattern of "plumes" as seen in chapter 2. This object is restricted to gorgonians, yet is even integrating more information on the morphogenetic process. We can thus reduce the number of elements we have to take into account when analyzing the shape: instead of an astonishing number of ≈ 10000 holes on a 30 by 30 cm gorgonian, we can look at a small one (≈ 100) plumes that are interacting by contact with each other.

In this chapter, we will create one by one these objects from ways, and take a rst look at the potential they can have. If the de nition of arcs, ways, branches, and plumes are still blurry for the reader, please take a look at the gure 1 of the glossary at the beginning of the manuscript.

2 Branches tropism: unifying the behavior through curvature profile

For each way, we look at the distance of each extremity to the foot. We simply orient it so that the beginning of each branch is closer to the foot than the end. A more precise approach based on curvature or relation with neighboring ways could be used, especially in small ways and ways on sides of the structures. Yet, this rather simple approach is precise enough in our case.

We have seen in chapter 2 that branches are going to align in a certain direction, that they begin orthogonal to their mother branch (which might be aligned in a preferential direction, which implies that new branches would not be aligned), and that their growth speed might di er. Now that we have the information on the orientation, can we use it to extract local tropisms in terms of orientation?

The monitoring of the direction is quite direct: one just has to look at angles and curvature. The monitoring of the speed (and its integration, which is the length) will require more subtle approaches.

Qualitatively, branches begin almost orthogonal to their mother branch, then seems aligned to a certain eld. At rst sight, they all behave following the same type of trajectory, so it is reasonable to expect a logic of growth behind the individual. Two simple families of models should be considered:

• Accretion models often used for corals formation (K. J. Kruszyjski 2007), in which the notion of branches is emergent, as described through Laplacian growth in A A. • Perception models used for plants, with an explicit behavior of branches, using gravitropism and phototropism as a key direction (Bastien 2010). In the case of plant elongation and direction, modi cations can occur outside of the tip area, but it doesn't seem to be the case in gorgonians, as seen in the discussion on the conservation of the surface's planarity and the de nition of a typical arc size L arc . The main advantage of the second category is that the notion of branches is wellde ned in the mechanism itself. These two approaches are complementary, the rst one emphasizing the retroaction of the environment on the structure and the second on the perception of the system to its environment. Both might occur in every growth process, yet we consider the quantity of anastomosis as a factor for the prevalence of the second type of growth when assuming that the growth is in 2D.

Indeed, the rst category tends to add a lot of competition for resources between emergent branches, which avoid any reconnection. Growth in 3D of 1D element will statistically produce no reticulation if there is no attractive attraction between them, where the growth of 1D element (branches) in a 2D space will produce reticulation.

In consequence, we choose to focus only on tropism to an external eld or directions, with no retro-actions to be taking into account. This approximation will be discussed in the conclusion of the next chapter.

Data extraction

As done in the previous chapter, we will only use dimensionless length, so that a length of 1 corresponds to the median arc length l arc which di er for every gorgonian.

As each way is a collection of points {X, Y }, we extract the local orientation (angle θ), and its variation (the curvature κ = ∂θ ∂s = K, with K -1 being the local curvature radius; s the curvilign coordinate, the distance from the branch origin to the current point). Since we know X(s), Y (s), we can extract directly the curvature as:

κ = δθ δs = x y -x y (x 2 + y 2 ) 3/2
with corresponding to a derivate along s. This formula involves second derivatives and will thus strongly amplify any type of noise we introduced with the ways extraction in the positions. Using directly the points of P ySkelW ays conduct to unreadable data as the curvature pro les is too noisy. As we simply want the rst-order approach, capturing the main properties and not details, we use a smooth pro le that ts our way. Moreover, a simple look at branches shows that the order of curvature radius is K ≈ 10: we are looking for a signal which cannot be read on arcs alone, but rather on long ways.

The best method we experimentally found to get the right t is the following:

• We have chosen to work with Bezier curves: this family of parametric curves allows a lot of di erent shape with a small number of parameters, and have a curvature de ned for any curve of order ≥ 3. The parameters are control points, and the curve is going through the rst and last one. Over families of curves needed a lot of parameters, and had a bad repartition of error along the curve. More information are detailed in annex E. • We focus only on ways with a length bigger than 20, as we have seen that most of the curvature dynamic was in this part. We will only t points in the range [0, 20] of length, even if the way is longer so that the total length is not in uencing our t. This length is long enough to bypass local arc in uence and short enough to avoid tropism changes of a higher order. We t only the part closest to the foot, which is the most curved part. 1. We rede ne our initial points with one-dimensional interpolation of the P ySkelW ay points of the way which are at a curvilinear distance inferior to 20 from the origin of the branch. We use a repartition proportional to the squared curvilinear coordinate so that the zone closest to its origin and more curved has a bigger weight in the t. The choice of the square function is arbitrary but works well experimentally with a repartition on 100 points. 2. We introduce n Bezier control points, that we initially place on the interpolated curve at an equidistance of each other. 3. We calculate the Bezier curve created with these points, then the mean distance to the interpolated curve. We do a gradient descent optimization on the position of the Bezier control points, while we force both extremities to stay at the same place. Best results were obtained with 5 Bezier control points (so 3 movable points), as adding more makes the gradient descent algorithm unstable in a few cases. 

Curvature-angle analysis

There are two main properties we want to emphasize:

• What is the general curvature pattern? Does it correspond to logic easy to understand? • Can we link the variation of this pattern to placement in space, as indications of an external tropism?

In terms of privileged directions, assuming that tropisms are mostly from the mechanical environment, one of the qualitative observation is that "branches are oriented in the direction to the higher ow velocity". Exploring this idea, shear stress is the perceived signal. As the ow a the boundary of an obstacle is zero and grows as we go further from the obstacle, we expect two types of tropism:

• a radial tropism: branches are escaping from the foot origin as the structure creates shielding e ects in the ow. The shear ow is normal to the envelope, and thus branches are radial. It's a pure retroaction of the gorgonian on itself, and the e ects are local. • a vertical tropism: as the oor boundary e ect implies no water movement just next to it, the shear ow is vertical in the boundary layer, and branches should be oriented vertically to correspond. The further we are from the ground, the less the e ects of a boundary layer should be felt. The two e ects should be mixed, depending on the local conditions. The interpretation, assuming that this mechanical tropism is the most preponderant is: "Radial gorgonians are in an open environment with no obstacles, and longitudinal gorgonians are in an obstructed environment" as shown in gure 5.2.

Figure 5.2.:

A gorgonian on an environment with multiple obstacles. Behind is the disposal of a tennis ball with positive buoyancy, indicating the vertical and the amplitude of the ow in their movement. We are here in the direction of the current, and they show the vertical direction. The lower part of the gorgonian is slowly getting vertical in the branching pattern, and the higher part in vertical to the reef plan, not to the true vertical direction.

In consequence, we associate to each branch a distance to the foot (Euclidian distance between the beginning of the branch and the foot), and an angle of based on the foot direction. We now de ne θ is the angle di erence between the branch and the foot orientation: a branch with an angle θ of zero will be radially oriented.

We represent in gure 5.3 for one gorgonian, all the di erent branches long enough to be studied in terms of curvature along the curvilinear coordinate, and the same for their angle. We also represent κ = ∂θ ∂s = f (θ), as a phase-space representation of the curvature dynamics according to the angle. There is a common behavior: The branch begins with an important angle of θ ≈ π/2, as it grows from a branch that might already be long and aligned to its tropism direction. The curvature near its beginning is important, the typical radius of curvature K can be smaller than one typical arc, but on a very small length (less than one arc). The second part corresponds to an exponential attenuation of the curvature, typically on ≈ 10 arcs, and the curvature is afterward very small ≤ 3.10 -2 and thus the t might not be relevant in such section. It seems that a vertical shift of the angle curves could make all the trajectory to be even closer. We can do that by looking at the nal angle value, depending on the original orientation of the branch beginning to the foot as suggested by the color. We can represent this property as the correlation between the shift in nal angle θ and the angle with the foot as in gure 5.4: One can see a slight correlation between both angles (in consequence, a "V" shape centered on zero, yet the signal is lost in the noise for the gorgonian presented here, and an approach more in detail is required to go further in the analysis. For few gorgonians, this signal is clean enough as in the case of "10" to do a t of both sides, yet this method remains a qualitative measurement of the exterior tropism. If the correlation value is 0, then the tropism is purely longitudinal with one direction, the value of 1 means that the tropism is purely radial. We are on all our measurements in mixed cases.

Adding temporal information could allow us to compare with models such as (Bastien 2010), which is working well for plant gravitropism relaxation using:

∂κ ∂t = Aκ + Bθ
With A and B two parameters. In the case of uniform speed for every branch, we have s ∝ t, and thus the equation becomes a standard second-order di erential equation, hence giving an exponential attenuation qualitatively equivalent to what we measure here. In that case, the rst part on the curvature values could be interpreted as non-linearity not taken into account in such model, or an error of approximation due to our t method, which lack of points of control at the beginning due to the large branches and bubble e ect presented on chapter 3.

The angle θ going to zero seems to imply that branches are oriented so that they leave the structure with a pure radial orientation. Yet, we observe that the structure tends to be more elongated in the vertical direction, which means that this curvature at the beginning of long branches is not enough to fully describe the dynamic. Especially, we do not read here the temporal information, and branches might grow faster on top, which implies that even a radial tropism in direction can lead to an elongated structure as observed.

It is important to note that the curvature of very long branches still varies in some cases such as "canonique", and our approach is blind to such phenomena. Moreover, we have done strong hypotheses on the type of tropism and the modelization of the ow, and the choice of our variables to track the properties might not be the best suited. Yet, this model is useful due to its simplicity, coherence with the other existing ones, and already giving interesting properties. It should be seen as a base for further construction and not as a nished product.

Hierarchies as an example of branches allometry 3.1 Representing G. ventalina as a tree structure

In a tree structure, the hierarchy is well de ned as there is no loop: at each rami cation, the value is increased. The di culty to use such a notion in networks is to remove the loops as they break the unicity of such enumeration. One of the reasons the shape of G. ventalina has not been more studied compared to other species is that most allometry methods for gorgonians are based on concepts incompatible with reticulation. Instead of developing a totally new approach, we can try to extend the concepts to reticulated networks. And instead of modifying the concepts, we can nd an acceptable method to remove reticulations on the network then use a more classic allometry method.

As the end of a branch is a collision to an already existing branch that creates a reticulation, we can remove the last arc of each branch and get to a non-reticulated structure coherent with the growing process. We show an example in gure 5.5. This representation is very e cient to read the shape, especially for people accustomed to arborescent structures such as drainage systems, trees, or lungs.

Each branch can be associated with its neighboring branches:

• It has one mother branch (only the foot does not)

• It has one killer branch which stops its growth (branches connected to the envelope does not) • It can have a number daughter branches • It can have some killed branches In consequence, following only a certain type of relation between branches can guide our reading of the shape, orienting the network.

Figure 5.5.: Representation of the meshwork of "B", with arcs colliding to another arc removed, transforming the network into a tree-like structure. We show in red few of the errors in ways creation, which impact the properties we can explore on branches and plumes.

Adding a quantification on the tree: Hierarchy

Following the local hierarchy from the foot In analogy to a transport network, we can consider that branch can be run through in only one direction. From this, we can now use the network for Hierarchies. We associate a number (its hierarchy) to each way, based on the propagation of this number from a point: the hierarchy number depends on the hierarchy number of the neighbors, and of the rules of propagation. It is a way to determine the complexity of a tree-structure, and also the main branches.

As Strahler hierarchy is based on arcs, we explore other types of hierarchy based on ways, inspired by [START_REF] Perna | Characterization of spatial networklike patterns from junction geometry[END_REF]): we begin from reference elements (for example, the branch going through the foot) and the hierarchy is the number of branch changes to access the branch. For example, the hierarchy of a street is the number of other streets you have to take to access it from a reference point. For a decentralized network, this notion is less pertinent.

We can thus explore the shape from the foot following the historical direction of branches. In the case of a "perfectly structured" network, it has been observed in the same article of [START_REF] Perna | Characterization of spatial networklike patterns from junction geometry[END_REF] that the hierarchy number i repartition follows a Gaussian, with only the number of Ways C as parameter:

N (i) = N 0 e - (i -n) 2 2σ 2 Gaussian function (5.1) σ = 1/4 log 2 C + 1 Standard deviation (5.2) n = 2 + log 2 C -2 6
Mean value (5.3)

N 0 = 2C √ 1 + log 2 C Normalization (5.4)
We should note that the most present hierarchy scale as log 2 C, and that the maximal typical value n + 3σ scale also in log 2 C and log 2 C: The values are particularly compressed, with few big values (for 1000 ways, n ≈ 3.3, σ ≈ 0.82)

This approach is particularly eloquent in special transportation networks: in Venice, the distribution of hierarchy for roads is not tted at all by the Gaussian, yet it works well when taking into account the canals of the city, with 0 associated to the main canal.

Using the ways going through the foot as a reference, we can calculate the hierarchy of all the ways of the network. We do so with the following approach:

1. Initialisation: We associate to the "reference ways" (the one of the foot here) the value of i=0 2. Propagation : We create a list of the valid neighboring branches (daughter branches in that case) that have no hierarchy number and give them a value of i+1 3. For each branch of step 2, we reiterate step 2 4. Finalisation : We stop when the list is empty. This approach can be applied to other "reference ways", or "neighboring branches" depending on the property studied: we can do the propagation on all the neighboring branches for example, or not beginning with the foot as reference. We show the result for a daughter propagation from the foot in 5.6 : We are not on the expected Gaussian distribution. To understand the type of distribution, it is interesting to look at which ways are attained at each step: a longer branch will more rapidly give access to broad regions of the network. To do so, we represent the hierarchy distribution in a 2D histogram, with also the degree distribution of the corresponding ways with the same hierarchy number, on gure 5.7: The pro le of Hierarchy distribution has a pallier value when it should have its maximum, which extends on the higher hierarchy values. This would mean that instead of having most of the areas covered by hierarchical ways as a distribution network, the hierarchy propagates as a front on sides, which is visible on the second gorgonian (9), like a gradient of colors. The same phenomena can be also observed on "Cochon-Canonique" on the left side, with converging fronts. During this plateau, there are still ways with an important degree that are attained, so the constitutive elements of the shape are not accessible even far from the beginning. When only small ways are aggregated in the hierarchy, we observe the expected diminution.

In consequence, the growth from the foot is not as organized as expected, and the structure should not necessarily be read from its temporal point of view to establish which elements are the most important.

Another structure from the envelope

We can modify our approach, with a modi cation of the reference and of the propagation rules : instead of beginning at the foot we begin on the envelope, and we only go from branches to their mother. In consequence, most branches will not be explored as only the one creating the connection to the exterior does. We represent the distribution on gure 5.8: As we cover only a small part of the network the Gaussian t would have no sense. Since each branch has only one mother and multiple branches can have the same mother, the number of branches diminishes at each iteration. Since the same mother branch can be attained from multiple of its daughters, the decrease is even more pronounced. Most of the biggest ways are directly attained with a very low hierarchy number.

This visualization is particularly interesting: we only see the branches that structure the envelope, and thus the growing part. As the branches connected to the envelope are statistically of higher degree (as seen in chapter 4, with the comparison of power laws for degree distribution between growing branches and the full gorgonian), most of the reachable areas are very rapidly reached.

We can see on "9" a long tail which correspond to the rainbow part of the distribution (low-center), this is a default of numerization of the network. This method is e cient to nd such problems, but only concern small sections of the network. We can see on "Cochon-Canonique" left part how the dominance is propagated through small ways with the same pro le (with a slight rainbow e ect).

The most important particularity we can observe here is that there is reticulation in this network: some of the branches are stopped by branches that are also connected to the exterior. There is a sign that something happened in these parts of the growth history.

This method hierarchy highlights the main network structure in terms of growth, and some special events that happened during the growth process. Yet, they only cover a small part of the branches. As the structure is modular, if we consider all these "structuring branches" to be the base of a module, can we recover the rest of the network logic?

Back to a network approach

We can take the hierarchy from the envelope-mother propagation, and use it as a basis for a foot-daughter propagation: for each branch, we reiterate the algorithm of propagation, as if each branch covered by the rst hierarchy is a reference with a value i. This process is equivalent to simply calculating the hierarchy from the envelope without taking into account the orientation: we come back to a way network. We obtain the distributions shown in 5.9: Figure 5.9.: Same representation as 5.7, here on the envelope with non-oriented propagation. The axis for the hierarchy population and the t is in linear scale,

We have a clear Gaussian behavior veri ed in this case. This is the case of all the gorgonians we test, as shown in gure 5.10: Figure 5.10.: Representation of 6 gorgonians with their respective hierarchy from exterior in non-oriented approach. If MSC-4 distribution does not correspond, it seems that the cause is more from the numerization than the gorgonian itself The case of "MSC-4" might be due to errors in the numerization, as the center of the gorgonian is here not accessible in a big way. Apart from this case, this property is even "stronger" as a network characterization than for the degree: there is not even a tting parameter. It shows that the network is structured from its envelope, which is growing through the branch elongation as a consequence of the primary growth. We also observe that there is a tessellation of the network: big constituting ways are separated by areas less organized, with a progression of the hierarchy between them. This property of "interspace" between these structuring ways can be explored with other descriptors, associating the branches with an equivalent to the local surface through their connected elements: the plumes.

4 Plumes: a promising element for shape comparison

Reconstructing plumes

We have seen in chapter 2 that plumes were a pertinent approach to understand the global structure of the shape. From the local relationship daughter-mother-killed-killer between branches, we can give the rst de nition of plumes as a branch with all its daughter branches. We show a representation on gure 5.11: Figure 5.11.: Example of plume and branches: the horizontal thick black branch is the main one, directed from left to right. teal color corresponds to daughter branches, pink to killed branches. red way corresponds to the killer branch, green to the mother branch. We can see on this one that there is a section ill-de ned in the middle and that the two main sections of the plume might be two di erent ones. We can see that one of the daughter branches from the plume on the center-left the cluster and created another plume (to the top-right corner) and that one branch on the center collided back to its mother branch on the bottom, enveloping spatially the other daughter branches. The same phenomena can be observed on the other side. This example shows a lot of defaults in the numerical version of the network, yet the properties still work well with them.

With this de nition, every branch can be a plume with its daughters, and belong to the plume of its mother. In consequence, the notion of plumes is not perfectly de ned, and we should add a threshold to when a branch should be the base of a plume or not: some of the plumes are more interesting than others. We can determine the interesting plume, by looking at the distribution of daughter branches for one branch. If some branches are far bigger than most of the distribution, they are surely their own interesting plume, and should not be accounted for in the previous one. We can begin on the biggest branch, select which of the daughter branch belong to the plume (the cluster of the length distribution) and which are their own plume (the big outlay), then iterate to create the whole structure. That way, a branch can only belong to one interesting plume. We illustrate the statistic of one plume on gure 5.12: Figure 5.12.: A plume, and the statistic repartition if it daughter branch degree. The outlay branches are not considered after this step as belonging to the interesting plume but create their own. The delimitation of the outlay branches is not always well de ned either. We typically use degrees bigger than two median of the length distribution. We can thus represent the gorgonian as a superposition of plumes as in 5.13: 

Highlighting the characteristics

We have reduced the number of elements to take into account (for the example of "Cochon-canonique", we have 34130 arcs and 17454 places, 11230 ways, and 86% of ways are covered with 200 plumes), and we can directly read the "events" in the shape, which are plumes creation and plumes interruption. Red and green points on gure 5.12 correspond in consequence to the special events that shape the gorgonian.

This classi cation in plumes also create subcategories of branches:

• Driving branches, which are the core of the plume and are the backbone of the shape • Constitutive branches, which are the daughter of the Driving branches, and constitute an envelope around the driving branch • Linking branches, which are daughters of the Constitutive branches, typically of length ≈ 1 arc, and linking two constitutive branches of the same plume We can represent this classi cation on a gorgonian as in gure 5.14, which can be seen as an analogy to root networks (Guillaume Lobet and Draye 2013) distribution and function of its branches : We observe that all the driving branches are connected due to our method of construction. Reticulations on the network of driving branches are an indicator that one branch took a longer path from the side, and grew faster up to the point of collision. In consequence, this is the easiest way to determine the speed of the respective branches' growth.

With this categorization in mind, the special events are the creation of a constitutive branch that will become a driving branch (green star on gure 5.13) and the collision of a driving branch on another branch (red star). One preliminary observation is that for the typical " abellum" network type of shape, driving branch collide driving branch as seen in gure 5.14, and for "ventalina" network type of shape, driving branches collide on constitutive branches.

Unfortunately, nding the right concepts that we should use, and developing the numerical tools to extract them has taken more time than we could spend during a thesis. If these tools are ready, they have not been used yet for deeper allometry.

Conclusion

Branches and plumes: e icient elements for specific description If ways were too general for a precise allometry measure as seen in chapter 4, branches allow the use of more classic methods of allometry, especially as it transforms the network to a tree-like structure with collision points. The plumes seem to be the best way to "read" G. ventalina: it drastically diminish the number of objects to be taken into account, and the beginning/end of each plume can be seen as the characteristic points to compare gorgonians, like a ngerprint.

Such an approach requires the network to be perfectly reconstructed. If defaults have little impact on zones hard to read (as branches and plumes are ill-de ned in such places), defaults on a well-de ned zone has a huge impact in terms of hierarchy and plume size properties.

A common logic in branches orientation

Branches follow a common behavior when growing, with a dependency of the curvature depending on the orientation with the foot. The measures we have done are still preliminary into determining the type of tropism, yet give a rst approximation of their shape, and show that they follow the same logic. The biological origin and mechanism of growth at a microscopic scale is not determined yet and should be explored more in-depth. Especially, we lack the information about the growth speed dependency of branches when looking at the shape.

A growth from the foot, but an organization from the exterior

The structure of the network should be read from the envelope and not from the foot. Even if the foot can be determined by hierarchy propagation through daughter branches (the way of the foot correspond to the one creating the smallest median hierarchy value), the best reading of the shape is to study it from the envelope. We can both get the main structuring ways, and nd back a Gaussian distribution of the hierarchy with no parameter: seen that way the gorgonian is perfectly "structured". Why this repartition is Gaussian has no explanation yet, and what is this "structure" measure either. But such elegant t with no parameter, with a geometric point of view, hints that there is something in the logic of the network and in consequence in its properties that we have not found yet theoretically and conceptually. It is also a question of use: if the network of the city has a clear goal ( navigation and distribution ), it is less the case of the network of branches for G. ventalina: is it simply to grow, with no functionality? Has it a mechanical goal in acclimation? We will explore a part of this idea in the next chapter, linking the network shape to the mechanics.

Toward allometry on gorgonians with plumes ?

Plumes can be recreated from the branches. If the de nition of plumes is not perfectly de ned as every branch can be a plume itself, we can with criteria on their degree distribution recreate the most "interesting plumes" of the network. This opens entirely new ways of approaching the morphogenesis, especially the changes of dominance in the network: we visualize directly where plumes are born and die, how their width evolves and how they compete for space with each other. The network can thus be seen as three types of branches: the structuring/driving branches at the center of plumes, the Constitutive branches that extend laterally the plume, and linking branches that ensure the coherency of the network. The notion of plume for allometry is promising and exploring the logic of plumes instead of branches could be the best way to smart allometry measures on G. ventalina.

A blind spot of our approach: splits in the structure There are areas on the structure with space, and no plumes growing in it. How can we explain it in terms of growth? We will describe this in chapter 6, leading us from the at shape to its mechanics and deformation, with plumes and linking branches as the main object for such a description.

Perspective Allometry on plumes

It is, of course, frustrating to have developed the tools to reconstruct plumes, and not be able to use them due to the lack of time. They have revealed on our preliminary exploration of their properties that they are particularly interesting and e cient to read the shape, tropism, and competition between each part. As we lack environment information, it seemed more reasonable for us to push the concepts of allometry on gorgonians so that we nd the best tool one can use, rather than focus on the correlation between shape and environment.

This choice has been at the center of our strategy to explore the shape, and if it might seem frustrating at the moment, it is for the author the best one on a long-term strategy, assuming that this work will motivate similar approaches, deepening the use of these results. We, of course, fear that the situation will be the same as in the case of most image analysis software ("publish then perish"), and that these tools will be forgotten by the community, which is unfortunately probable due to the long protocol to access plumes from the image.

Something that should be done in terms of gorgonian characterization is looking at how well a description in terms of plumes works, the number of plumes needed to cover most of the network or the repartition of each plume weight in term of ways number.

To improve the notion of plumes, and study their relations, we could associate them the following properties :

• The number of constitutive branches, of killed branches, of linking branches.

• The evolution of the constitutive branches length on each side of the driving branch.

• A surface, so an element of the same dimension as the structure.

• The neighboring plumes in competition, and the correlation between their properties.

Reconstructing the history from intersection

We have not reconstructed the history and the dynamic of the network yet. But there is more information that we could use from branches and collisions. A place is created by a mother branch. From the place can emerge daughter branches, and can collide killed branches. In consequence, there is temporal information:

• The arc of the mother branch before the place is older, the arcs leaving the place from the daughter and the mother has the same age • Killed branch arrive on a place later • Arcs of a branch closer to the foot are older than closer to the tip Each of these properties can be seen as equality or inequality for the age of each arc. There is thus a well de ned local hierarchy. Can we use these equalities to create a global hierarchy and thus the time of the creation for each arc? We show an example on gure 5.15: We represent by < a branch which appear before the other one (temporal hierarchy). We extract the information from branches: C00 < C01 , C10 < C11 < C12 , C20 < C21 < C22 , C30 < C31 < C32. We extract the information from the daughter-mother relation: C01 = C00 , C20 = C01 , C40 = C12,C50 = C22, C60 = C11 We extract the information from the killed branches: C21 < C60 , C31 < C50 , C41 < C22 , C32 < C41 These local inequalities are not enough to create one chain of inequalities, that would correspond to the temporal creation of all the shapes. It would be interesting to add hypotheses on the growth (typically the time so that one branch grows of one arc, for example, C01 = C00 + 1), and determine the growth speed of branches according to how they respect the previous inequalities, and how they reduce the number of chains of inequalities.

5 Conclusion 

Deformation and its conceptual implications

In Chapters 4 and 5, we have mostly described gorgonians as growing shapes based on a primary growth, with no explicit relationship with their movement, or mechanical properties. Yet, we have seen in Chapter 1 that gorgonians, even when sessile, are always moving in the currents: they are constantly deformed. We have also seen in Chapters 1 and 2 that the deformation should be an important signal to take into account the perception of G. ventalina.

What are the implications of this deformation? Can we read it in the shape of gorgonians? So far, we have explained meshwork formation mostly through the anastomosis, but we can observe splits in the structure, entire macroscopic sections with no connection between branches as shown in gure 6.1. Can we explain these gaps by movement? Can we read deformation in shape? Figure 6.1.: We encountered multiple gorgonians showing multiple splits in their structure (especially on large gorgonians like this one, with width ≈ 1m). These splits are not necessarily visible at the branch scale (typically 10 arcs), but they are visible when looking at the overall structure. We will now concentrate on this larger scale to understand this phenomenon. Some areas of gorgonians are reinforced. How are these reinforcements spread out in the structure, what is their impact in terms of deformation and on mechanical properties? Can we read a perception of deformation or a secondary growth ensemble of logic and laws from it?2 In the fable of "The oak and the reed" written by the french poet Jean de La Fontaine (De la Fontaine 1694), the oak taunts the reed because of its exibility. This term can have at least two meanings:

1. Bending easily to a mechanical constraint. 2. Accommodating easily to circumstances.

The oak is referring to the rst property. Reeds cannot withstand any weight without being deformed. Thus, they are weak and untrustworthy, changing their properties according to solicitations. Most traditional engineering applications are sti , allowing us to expect consistent behavior and shape while not taking into account the mechanical load on them. Unfortunately, extreme events can still be strong enough to create deformations, typically if the solicitation is at the resonance frequency of the structure. This can cause disasters when it is not taken into account in the design ( Figure 6.2). 3Everything is exible if the load is big enough, but we perceive an object as mechanically exible only when it bends in its expected domain of solicitation. We can de ne the amount of deformation through indicators such as the Cauchy number (C Y ) in the case of uid solicitation, which compares the mechanical load on a structure to its rigidity: The reed answers the oak, talking about the second de nition of exibility. Deformation implies new properties, which in that case are more suitable to survive high winds. Elastic structures react to a new mechanical environment with new properties and shapes, caused by deformation. If the deformation is an accommodation to the mechanical environment, then it can be seen as a passive mechanism of acclimation.

C Y ∝ load rigidity ; if C Y 1 the structure is rigid in the environment, if C Y 1
There are some eloquent biological examples of exibility allowing to reach a better adaptation to a mechanical environment, such as sh going upstream with no apparent e orts (Figure 6.2).4 Extreme events such as category 1+ hurricanes (winds with a speed over 33 m.s -1 ) are quite common in the lifespan of gorgonians with ≈ 1/6 years of frequency for Guadeloupe [START_REF] Desarthe | Ouragans et submersions dans les Antilles françaises (xviie -xxe siècle)[END_REF]. At high Reynolds (high speed), the drag force on a structure is mostly due to the pressure drop on both sides of the structure. The overall force exerted by a ow of density ρ at a speed U is:

| - → F | = 0.5ρC D SU 2
(6.1) C D being a coe cient of aerodynamic, and S the surface exposed to the ow. The mechanical exposition of gorgonians during such an event is comparable to that of terrestrial plants during a similar event. At the same speed, water transports 1000 more kinetic energy than air due to its mass. Even if the speed of water is slower than the speed of air in a storm both are "as violent" in terms of pressure for both underwater and at the surface structures.

The deformation of the reed saves him from being uprooted in this case. For an elastic material, the deformation and the mechanical stress are two faces of the same phenomenon, from two di erent points of view. In a linear (elastic) case, the local deformation tensor and the mechanical stress tensor are linked by a linear tensor relation known as Hooke's law.

Flexibility can drastically change the e ective drag on the structure and the di erent local properties, because of various mechanisms:

• The surface exposed to the ow S is reduced • The aerodynamic of the deformed surface gets better (streamlining process), reducing the parameter C D • When in unsteady movement, the deformation changes the local referential, thus the local speed felt on the surface: since the element is moving, the relative speed of water is slower locally. • The exposed porosity decreases, changing the ow at the surface • Change of shape can cause a change in ow topology. Typically, the recirculation of water can be sustained behind the structure following its curve. Yet, these e ects are not necessarily positive in terms of drag. These e ects are usually grouped under the Vogel exponent ν (Steven [START_REF] Vogel | Drag and Flexibility in Sessile Organisms[END_REF], and they correspond to what is called recon guration in mechanics. The overall e ect of the recon guration of the shape is often presented with a slight modi cation of equation 6.1 into the equation 6.2:

| - → F | = 0.5ρC D ρSU 2+ν (6.2)
Behind the coe cient ν, is aggregated the evolution of

C D (U ) = C D (U = 0)f (U ), S(U ) = S(U = 0)g(U )
, with f and g two functions, that we can write in the approach 6.2 as g(U )f (U ) = U ν . ν ∈ [-2, 0]: 0 correspond to a rigid structure and -2 to a 1D or 2D structure with no rigidity. While this form is convenient and is an excellent rst approximation, it hides how the deformation occurs and its ner characteristics.

1.2 G. ventalina, always deformed G. ventalina are always in movement, following water ows caused by the swell. The deformation is not negligible, as seen on the selected images from gure 6.3: Figure 6.3.: Two example of in vivo deformation. Left: an example of G. ventalina from above, the lateral curvature being relatively constant and following the dashed black circle. Right: the vertical curvature is low at the base, increase then saturate as it becomes constant the second part following the path of the black dashed circle. The red pro le is a Bézier t of 4 points. The measures are slightly deteriorated by the fact that we are not lming exactly perpendicular to the structure. It is also interesting to note that the extremity has an angle of over π/2. Also, we qualitatively note that most gorgonians in the background behave in the same way, even if their size might not be the same.

The movement of the gorgonian on the right of gure 6.3, on a day of normal swell, can be seen here5 . We extracted the pro les of two periods in gure 6.4: In gure 6.4, we have a wide variety of pro les and deformation, with an almost unmovable foot and a exible extremity. In gure 6.3, we observe that both pro les are smooth, and almost correspond to a constant curvature. We observe this property on di erent gorgonians, in the direction of the width (left case), and the height (right case). This observation might just be due to a cherry-picking e ect, in which we are looking at the combination of gorgonian, movement amplitude, and phase. This still reinforces our motivation to search for deformation perception and acclimation, as this might not simply be a lucky pick. Getting a constant deformation on a non-uniform material in a non-uniform ow is not trivial: is this state of deformation a consequence of environment acclimation by G. ventalina?

2 A flat structure made by and for deformation 2.1 Splits: the scars of deformation When looking at the shape of some gorgonians, we observe clusters of plume patterns (that we call meta-branches) which are not locally connected. If the gorgonian is not deformed (no waves in situ, or put on a table), we observe that an important portion of the surface is empty, as if the growth could not access these areas. At rst sight, an analogy with a leaf shape is tempting. However, empty areas in leaves shapes are due to steric constraints in the bud (Couturier 2009), and we have no equivalent to a bud here. We have not found any trace of this particularity in the literature, yet it is present on almost all gorgonians we observed. We present the di erent splits observed on the gorgonian "C" on gure 6.5 for better visualization: Figure 6.5.: Image of the gorgonian "C", with annotations: Blue lines indicate the di erent splits we observe. Even if there is no space between the two "meta-branches" (clusters of plumes) on both sides, they are not connected. The one on the bottom left even shows overlapping growth from both sides. In violet are the zones where we observe an intense purple coloration (tannins) in sclerites. This coloration is often present on both sides of the split and is almost always located on a split if not corresponding to a parasite attack. In green are indicated 3D developments or sprouts, small branches beginning a growth perpendicular to the body, yet not growing further than few millimeters.

We observe a correlation between the presence of tannins and splits. They are usually signs of stress. They are mostly studied as signs of pathogen infection [START_REF] Burge | Immune response of the Caribbean sea fan, Gorgonia ventalina, exposed to an Aplanochytriumparasite as revealed by transcriptome sequencing[END_REF], but they could also be a sign of mechanical stress such as two sides rubbing each other. On the smallest splits, both sides are almost touching each other and it is not surprising to nd tannins on both sides, but it also occurs on big splits in which the two sides are far from each other.

Looking at the shape and its splits on a at surface might not be the right approach. We printed the previous image and looked at the correspondence between both sides of each split. What we observe is that, at rst order, we can remove all space by transforming the at shape into a curved object, as shown in gure 6.6.

Figure 6.6.: Images of a print of "C" (shown not deformed in gure 6.5), in which the sides of the splits have been manually reunited with tape. Each cluster of plumes on each state remains curved in only one direction, and all inter-space inside splits are lled. The cluster on each side of the splits (the "meta-branch") is only curved in one dimension. The approach shown here is not precise, but e cient to get the overall lled shape and curvature. It could be done automatically with a numerical approach, but we did not consider it to be necessary for a rst-order approach.

Experimentally, we can always nd a local curvature so that all the empty areas between the meta-branches are lled, and thus recreate a continuous structure.6 

Split shape and local curvature

We can from deform a shape so that two points determined are now next to each other. The logic behind this transformation is heavy if we take into account the rigidity, and will not be useful in our case. We can instead work on a simpli ed approach based here on a curvilinear approach represented on gure 6.7: Figure 6.7.: Schematic representation of a split, each side labelled 1 and 2. We associate to each side a curvilign length to the beginning of the split s 1 (resp s 2 ), and a normalized tangeantial vector t 1 (resp t 2 ) and normal vector n 1 (resp n 2 ), depending of the curvlign coordinate s.

We base our approach on sewing pattern and clothes shapes: when two edges with di erent shapes are sewed together, they create a 3D shape depending on the edges shape di erence [START_REF] Berthouzoz | Parsing sewing patterns into 3D garments[END_REF] 7 . If we do the hypothesis that two points of s 1 and s 2 with the same curvilinear coordinate s are in contact and that there is no curvature in the direction of n, we get:

κ(s) = ∂∠( t 1 (s), t 2 (s)) ∂s (6.3)
with κ the curvature along the trajectory s and in its local direction, ∠ the angle between the two vectors in the plane containing them. κ is in the plane containing n 1 and n 2 when the points are reunited. This is not the only solution, as adding mechanical constraints can change the curvature (as illustrated in Derr2018, or experimentally by moving your clothes) while keeping the two sides glued along the line. This geometric relation 6.3 is still a rst information to nd which curvature corresponds to this deformed, lled shape this split corresponds.

If this state of deformation corresponds to one shape, it is one among the many the gorgonian can have according to the incoming ow. We also do not know if all the splits are lled at the same time or if each lling/deformation process occurs in di erent conditions.

As this conceptualization came late in the thesis, we chose not to develop this point further. We only consider here the fact that the shape of splits is information on a deformed state, showing that the shape of a gorgonian has two references:

• The at shape, corresponding to our previous analyses of the primary growth with forced anastomosis when two branches collide • The deformed shape, corresponding to all split lled giving a rst measure of the local curvature along the split lines.

Consequence in terms of movement

A 3D movement, locally 2D

The example of gure 6.3 shows that the overall deformation of G. ventalina is 3D: if we de ne coordinates on the gorgonian as radial and orthoradial with a center on the foot when it is not deformed, then the deformed shape has curvature both radially and orthoradially. In consequence, it appears at rst sight that the Gaussian curvature, the product of both curvatures is di erent from zero. Yet, the undeformed structure has no curvature: there should be a change of the Gaussian curvature, which is the product of local curvatures in orthogonal directions.

If we assume that the deformation is isometric (no local extension), which is coherent with what we observed, it goes against the Theorema egregium formulated by Gauss, which implies that the Gauss curvature remains constant during an isometric transformation. In consequence, a gorgonian cannot be continually curved along both axes at the same time if there is no elongation.

The consequence is that the deformation of gorgonians should always be in only one direction locally: orthogonal to this direction, the shape should be locally at.

It is an approximation, and few counter-example can be observed with a fast buckling e ect of the shape as shown in gure 6.8: Figure 6.8.: example of qualitative property observed on small gorgonians: when the speed of the ow change of sign, there is a wave of curvature inversion, occurring in a short instant (≈ 0.2s). There is an important energy contribution needed to bring the rst local sign inversion, which is then propagated in the structure. There is a very small state in which there is a change of Gaussian curvature, although very unstable and in consequence negligible for long-term: we can consider G. ventalina has no local elongation. We observed this phenomenon on small gorgonians L ≤ 10cm, even if some big one ≈ 40cm can exhibit a small mean Gaussian curvature: points at the extremity can be at ≈ 1cm out of the plane when putting on a at surface. We can also note that most of the curvature on the third image is radial in this case.

The observation of gure 6.3 and 6.8 seems incoherent: how can we obtain a 3D deformation with no elongation ? Splits in the structure behave as aggregates of the orthoradial curvature, with a discontinuity of the shape orientation on their edges. The most practical approach is to look at the " lled" gorgonian shape as deformed. In that case, we have generated a curvature (that we can approximate as radial), but also an angle between both sides of the split, with an angle φ = ∠( t 1 (s), t 2 (s)) if we reuse the notations of equation 6.3. in consequence, there is no orthoradial curvature as φ = κ φ ds can be constant by parts on the splits, and discontinuous between them. This is illustrated in gure 6.9: One of the consequences of the splits is that, compared to a plate, the deformation and movement can be in three dimensions at a macroscopic shape, without local elongation. The reduction of the surface can be done in height and width, and the shape is more streamlined: a 3D recon guration is more e cient than a recon guration in two dimensions. We expect in consequence that the gorgonians with more splits will be more e cient in terms of recon guration (drag reduction by deformation), according to this observation.

A desynchronized movement

When a structure is exposed to oscillation, it will also oscillate in response. The amplitude of the response will depend on the amplitude of the solicitation, but also the frequency. When a structure is exposed to its "natural frequencies" which depend on the constitution of the structure, the oscillation will be maximal: their inertia moves enter in resonance with the solicitation as seen with the Takoma bridge on gure 6.2. The oscillation of a structure composed of di erent sub-structure will depend on the natural frequencies of the global structure. We show an illustration of the concept in gure 6.10: Figure 6.10.: left: Illustrations of the concept of frequency in uence of a structure with a trunk and two branches, with an exchange of energy between them, implying changes of natural frequencies, from (Theckes 2012). Right: illustration of the response to an oscillatory movement of a Hornbeam tree, by (M. 2009). 5Hz is the natural frequency of the trunk, 6.75Hz the frequency of the right branch, and 6.75Hz the frequency of the center branch.

For a circular branch of diameter d, length l, density ρ, Young modulus E, the main natural frequency is:

f 0 ∝ E 1/2 ρ -1/2 dl -2 (6.4)
We can extrapolate this approach to gorgonians: the skeleton is composed of a basic section close to the foot, then "meta-branches" which correspond to clusters of branches on each side of splits. Each of them has a length and an "equivalent diameter" (although this diameter is particularly ill-de ned, as it will be shown in section 4). In consequence, the movement of each meta-branch will be di erent due to each of their inertia, and the natural frequency of the gorgonian will be modi ed due to the splits, and the ampli cation due to resonance will be damped.

The desynchronization of the movement can be observed on big split gorgonians for example in gure 6.11, as each meta-branch will have a di erent movement speed in the ow. The movement of the di erent parts is not synchronized, as the smallest one close to the reef have already changed side on the second snap (green), whereas the second highest change side on the fth (purple) and the highest part on the sixth (yellow).

We have not measured precisely the impact so all these reasoning is theoretical, but follow our understanding of mechanics and seems to have an impact on the movement, overall stress of the gorgonian: Splits modify the natural frequency of the gorgonian, limiting the amplitude of resonance and increasing the duration of the movement, limiting, in consequence, the number of constraints accumulated on the foot.

Split creation

If the splits have a consequence in terms of the mechanics of gorgonians, we need to understand how they can appear. Is it an active process di erent than the primary growth, or a consequence of passive growth, a case we have not described on the anastomosis process?

three mechanical hypotheses

We decided to look at three simple hypotheses, based on mechanical design and interaction that we can illustrate in gure 6.12, and chosen in accordance to the Occam razor: the simplest explanations are the most interesting to investigate 8 . There might be other hypotheses we did not think about, yet we consider these as the most coherent with our observation of growth and network properties. Figure 6.12.: Left: A branch of the envelope breaks, due to shear stress. The tangential constraint is then redistributed on the lower branches which breaks at their turn, as the movement of both meta-branch is increased by their increased size due to the rift elongation. The rift created that way propagate in the structure up to reinforcement or a branch solid enough to stop it.

Center: Propagation to the exterior. A branch of the network locally breaks, and the constraints are spread on its neighbors, which breaks afterward. The rift created propagate up to the envelope.

Right: growth inhibition. Growing branches from both sides of the split stop doing anastomosis, and thus the two parts are not linked anymore. There is an area between both meta-branches (dashed in black) in which branches of the envelope have their growth inhibited, thus creating the split.

The rst and second hypotheses where historically ours. Yet, we observe splits of every size in growth also very small ones. The shear stress needed to manually dislocate a branch is orders of magnitude higher than what we observe, and the last branch before the split is rarely reinforced.

Our main hypothesis is, in consequence, a growth inhibition that we explore in detail.

Growth inhibition

The shape of gorgonian corresponds to the nearby environment such as hard parts of the reef, or another gorgonian as illustrated in gure 6.13. The shape correspondence is not a property of only one gorgonian between its parts, but rather a consequence of contacts. In the case on the right of gure 6.13, the shape brushes the reef when in movement, which is immobile. The case on the left is more complex as the two gorgonians are both in movement. We have the same properties as the split of only one gorgonian: both sides of the split between them correspond when deformed, and ll the gap between them. This type of observation, which shapes boundaries corresponding to other local shapes, can be observed also in the vegetal domain. The phenomenon of crown shyness illustrated in gure 6.14, which corresponds for treetops to a band unoccupied, has sensibly the same properties.9 We do not exactly know where crown shyness comes from. Yet, the explanation of physical contacts between the branches on a windy day would be convincing, as these contacts imply strong mechanical signals, which could easily lead to growth inhibition and reinforcement. The idea that the same thing would happen for gorgonians, is appealing. Indeed, we have seen in the example of gure 6.11 that two meta-branches are not moving in synchronicity. If the two shapes can overlap, they would scrub and deform each other, triggering mechanical solicitation. This would also damage the sclerite layer, which explains the presence of tannins in both sides of the split as shown in gure 6.5.

The longer the split, the longer meta-branches, the more di erent their movement will be, and in consequence, this split mechanism seems stable. We have found on few gorgonians, such as "C" on the bottom left, two extremities of splits that fused afterward, so it seems that they may get synchronized again.

A meshwork pa ern at the origin ?

Yet, this mechanism has to begin, so there must be a type of situation in which two neighboring branches collide and cannot do anastomosis, as they are not immobile next to each other in their referential. We often observe that, before the split, two plumes do anastomosis on each other, and then the leading branch of each diverge as seen in gure 6.15. We can interpret this as two di erent tropism directions.

Figure 6.15.: Split of the gorgonian "9". We can see on the plume representation that the dark blue and light blue that both are going into two di erent directions. The pattern of symmetric collision is broken just before the beginning of the split.

We can also see that the di culty to have a fusion between the two plumes increase in some cases, up to a moment in which they cannot fuse anymore and the split is created, as seen in 6.16: The mechanism that creates split seems according to these observations, the diverging direction of two plumes.

We also observe on very long splits (> 10cm) close to the foot, that there are branches which are in a di erent direction or tropism than the main branches of the "meta-branch", as illustrated on the biggest on gure 6.17: . Figure 6.17.: Zoom on the biggest split of C. We see that there is a clear direction of tropism closer to the foot (in red), then a new direction (in blue) we go higher. This change of tropism seems to be continuous, as shown on the long branches on the left (section with no color). Inside the split, we observe, on the left, that there is a section corresponding to the new tropism.

We have seen that damaged branches could regrow, as in the case of eaten gorgonians shown in chapters 1 and 4. One of the interpretations we can have is that, if space is available for growth, then there will be growth later in it. To liberate this space, it means that the movement is locally, from the foot to the point, more rigid. This can be understood with secondary growth and reinforcement. A branch usually in the middle of the meta-branch will get larger and thus more rigid and will carry the structure. Locally, the region is less deformed, and thus there can be more space in a split during a typical oscillation. In consequence, new branches can grow in it. 10Although we have created a coherent story and an ensemble of hypothesis working well together, we cannot go further with only an analysis of the meshwork. The last part of our approach adds the reinforcements as an element changing the deformation pro le during the growth, adding a supplementary retroaction on the growth process. We have to understand how the reinforcement impacts the posture of gorgonians.

3 Linking flow, shape, and deformation

Preliminary hypotheses for reductionism

The deformation is a reaction to the mechanical solicitation of the environment. We have seen that the macroscopic shape has particular properties in terms of deformation, as seen in the splits repartition, and cases of constant curvature. Moreover, these splits are coupled with reinforcements, which change the rigidity, stress repartition, and in consequence deformation.

Yet, to understand such relation, we need a minimal framework in which we can couple the shape (a width pro le), the rigidity (the reinforcements), and the deformation.

Approaching uid-structure interaction of gorgonians with theoretical model or simulation is complex since:

1. They are porous, ≈ 30% of the surface being holes when polyps are replied 2. The skeleton is composed of two di erent materials (gorgonin and spicules) 3. The thickness is highly varying through regions (reinforcements) 4. The movement is 3D 5. The ow can be turbulent, highly in uenced by the environment (presence of screening object, placement on top of a rock changing ow intensity) 6. Behind the gorgonian can be created eddies as large as the gorgonian, changing the downstream ow A high-performance nite element simulation on a huge computer could handle such a problem with su cient simulation time, but will not give hardly readable information on the problem in general. We do not aim to get the perfect picture of deformation and its consequence, but rather a global understanding of the shape/deformation/drag properties for numerous cases, theoretically and experimentally. 11We will thus make several hypotheses to simplify as much as possible the problem. The edge between precision and clarity between thin, we will try various approaches to get as much information, in the correct domain of each model. We respond to the di culty previously said point by point, with the following simpli cations :

1. The holes in gorgonian are small enough so that the porosity can be considered as negligible. 2. The skeleton is mostly be supported by the gorgonin skeleton and considered as one material on important mechanical parts 3. and 4. The thickness is spread on the gorgonian so that the deformation is homogeneous, the curvature being mostly dependent on the Foot distance. 5. The ow is at high enough Reynold that viscous e ects are negligible in terms of deformation and stress on the structure 6. Shape deformation on ow topology is neglected.

Gorgonian as a beam in a steady flow

When modeling deformable structure, we usually use elasticity theory, a part of continuum mechanics. The equations are in all three directions of space, with a variation of the di erent elds (deformation stress and so on) within the structure. Beams are a particular case of such theories, in which we consider that we can integrate all the quantities along two dimensions of space, and in result having only one dimension to take into account. It is a simpler case valid on certain conditions, and its simplicity allows us to have a better understanding of how their di erent properties are related.

Beams are elongated structures so that one dimension is big compared to the two others. At rst sight, it should be surprising to see such a theory in the case of G. ventalina, because the width W 0 is the same order of magnitude as the size L. Yet, the mechanical load is proportional to the width, and as a consequence, that dimension is not relevant. That's why when we study surface loading, plate theory and beam theory are approximately the same. As if many small beams were aligned, not interacting with each other. We can consider, using a radial approach, that the splits are multiple beams that are only curved into one direction: we thus focus on the radial coordinate to model the 3D deformation.

It is worth noting that, when gorgonians have no split in their structure and become large, their reinforcements are not the only radial but also orthoradial, as seen in gure 6.18. Still, there is a core part of the gorgonian close to the foot where there are no rifts. Three possibilities exist in that part:

• The structure is mostly vertical: lateral deformation is negligible • There are lateral reinforcement: there can be no orthoradial deformation • There is deformation in both directions: if there is an orthoradial deformation then the structure is less deformed radially, standing in the ow and our model is not valid for such area.

As a consequence, we can reduce gorgonians to a model with one-coordinate (foot distance) mechanical systems, with properties varying along with it. We will call this coordinate S, varying between 0 (foot origin) to L (furthest part of the gorgonian). Beam models, often used for recon guration study, is, in consequence, a great framework. Even if the gorgonian is highly elongated, s = Y 2 + Z 2 ) on 6.19 won't be that di erent to Y : using a radial system of coordinate (s,sθ) as we do is not changing much the results compared to a description along y, z12 . The convention we use for notation is that capital letters are dimensional sizes, and lower case letters their dimensionless equivalent, with a dimensionless number taking into account ratios. We introduce a model of deformation, assuming that the gorgonian behave as a nonuniform beam/plate in a ow. All our quantity are going to vary along the curvilign coordinate S, the other coordinates being de ned as:

Coordinates: • θ angle to the horizontal • κ = ∂θ ∂S Curvature • R(s) = κ -1 Local curvature radius • x(S) = S 0 sin(θ(s ))ds lateral extension • y(S) = S 0 sin(θ(s ))ds height Dimensional quantities: • L Total length of gorgonian • S ∈ [0, L] curvilign coordinate along the gorgonian • W (S) local width • d(S, z) local thickness • E Young Modulus of the material • I Second geometrical moment I(S) = W (S)/(2S) -W (S)/(2S) d(s, θ) 3 (sdθ) • C D drag coe cient.
The width is the length of arcs of the same radius on a gorgonian, with holes considered as lled. The arcs can be in multiple parts if going through a rift.

The Young modulus E is the link between deformation and mechanical constraint typically E gorgonin ≈ 10 10 P a, E sclerites ≈ 10 8 P a. I, the second geometrical moment, is dimensioned as L 4 where L is a length. for a beam, it is calculated as I = XY y 2 dydx, y being normal to the direction of deformation. For a cylinder of diameter d, I= d 4 64 . This scaling in d 4 is very important: the contribution of thick arcs will be the most important compared to the rest of the branches.

C D is the drag coe cient, usually obtained experimentally. Although a theoretical formula to calculate it exists (see appendix A), it requires to get the exact speed and pressure eld surrounding the structure. No theory we know allows us to get an evaluation according to the shape of the structure. The values vary usually from 5.10 -2 (Streamlined body) to 2 (plate in a con ned ow). In literacy, there is a wide range of values for plates with measures at C D = 1.15 to C D = 2. We will keep the order of magnitude C D ≈ 1.5.

We introduce also the rigidity B = EI. Since we have two constitutive materials ( sclerites and gorgonin ) but E sclerite ≈ 0.01E gorgonin , the e ects of sclerites on any part with reinforcement will be negligible. Yet, it should be taken into account in the calculation of B.

We derivation of the steady deformation pro le is explained in :A F, the result being:

∂ 2 BW ∂θ ∂S ∂S 2 = - 1 2 ρC D U 2 W sin 2 (θ) (6.5)
We have a non-linear equation with a solution qualitatively changing with the value of the di erent parameters. The dimensionless equation, with the di erent ratios of quantities presented as governing numbers, will give us a more precise vision of the equation. We introduce them:

• B = b(s)B 0 with B 0 the typical rigidity, not explicit here • S = sL with L the typical length • W = w(s)W 0 W 0 the typical width of the gorgonian (we take the largest width we measure) • U = u(y)U ∞ , U ∞ being the ow velocity far from the reef and the gorgonian The equation becomes:

∂ 2 bw ∂θ ∂s ∂s 2 = - ρC D U 2 0 L 3 2B 0 u 2 w sin 2 (θ) (6.6)
As said previously about multiple beams aligned simulate a plate, W 0 disappear from both sides of the equation, only the pro le and its second derivative remain. Our dimensioned quantities altogether create the number that we call Cauchy number

C Y = ρC D U 2 0 L 3 2B 0 .

What is the Cauchy number ?

The Cauchy Number is the ratio between destabilizing forces (created by the pressure on the gorgonian), and the stabilizing force (rigidity of the gorgonian

B = EI). If C Y 1 the structure is rigid, C Y
1 the structure is bent. Recon guration e ects starts around C Y ≈ 1. If the Cauchy number is well de ned for uniform, homogeneous material, it is not in our case since E, I, W or even U might vary on the structure.

Cauchy number as a speed ratio

We can view the Cauchy number as

C Y = U 2 U 2 0
, creating a characteristic speed:

U 0 = 2EI ρC D L 3 (6.7)
With ρ = 10 3 kg.m -3 , C D ≈ 2 (rough plate), E ≈ 10 10 P a (gorgonin-dominated resistance), I ≈ d 3 /12W 0 (rectangular uniform plate), we nd U 0 ≈ 10 3

d 3 L 3 W 0 m.s -1 .
One should be able to estimate the characteristic speed of a gorgonian just looking at the structure if we can estimate a mean diameter of d. 13In consequence, we can see that the recon guration threshold depends on speed, which is well de ned for a uniform structure.

A second dimensionless parameter: the typical curvature K θ can be also rede ned for clearer comprehension. The main idea is to focus on the curvature instead, and then getting it dimensionless. For a vertically-clamped beam, we get θ = K s 0 κds, with K = Lθ m , θ m being the angle with the vertical of the tip. This way, we get κ(s)O1, and K -1 is the typical dimensionless radius of the beam curvature. K ≈ 0 mean that the structure is at/rigid, and K ≈ -π/2 that the tip is horizontal to the oor.

The equation is thus :

∂ 2 bwκ ∂s 2 = - C Y K u 2 w cos 2 K s 0 κds (6.8)
The equation now link our three variation of our relevant quantities:

• The shape variation w(s)

• The reinforcement variation b(s)

• The deformation variation κ(s) The variation of the environment is reduced to one variable u(y), depending on height. This will be later considered as uniform (we neglect the boundary layer of the reef), u ≈ 1.

We have two adimensional parameters:

• The curvature number K, which is the characteristic amplitude of relative deformation • The Cauchy number C Y , which contains the other parameters of the system

Archetypes and properties

Equation F.5 is complex, and admit no analytical solution even with every characteristic put as constant but θ. Still, with an assumption on the evolution of some of the variables, we can extract behaviors from the model, such as the one we measured experimentally on gorgonians. We focus on:

• Where is localized the most deformed point on the structure ? • How evolve that stress with C Y ? • How uniform is the curvature reparted, depending of B and W ? • How evolve the lateral extension ? • How evolve the deformed height ?

We will compare four families of beams pro les:

• uniform beans • power-law beams on I(s) and W(s)

• Beams which exhibit a constant curvature K at a certain Cauchy C 0

For the theoretical families, we will use numerical simulation of F.5, using the method described in annex.

Constant beam model

Taking everything but κ = ∂θ ∂s as constant ( b(s) = 1, w(s) = 1, u(s) = 1)gives: . For the lateral extension and height, we can solve numerically the equation, using centered nite di erences, with a gradient descent to determine the origin curvature so that the extremity is curvature-free.

∂ 3 θ ∂s 3 = C Y sin 2 (θ) (6.
We get the following pro les:

Figure 6.20.: Lateral extension (X), Height (Y), and extension (distance between foot and extremity) for a uniform beam in a uniform ow.

The extension e is a good indicator of the shape: at 1 the beam is either up straight or totally laying down on the bottom. the minimal value would be for a beam with constant curvature forming a quarter of a circle. Thus

e = √ X 2 + Y 2 ∈ [π/2, 1]
The deformation is minimal before C Y = 10 0 . The extension reduces 5% at its minimum C Y ≈ 10 2 , which corresponds to the biggest magnitude of ν coe cient. For bigger C Y , the structure regains slowly its full extension, with X, and Y not changing much.

Power-law model

Power-law models are always e cient to extract global behavior, as they usually simplify equations and are a good family of function for tting real properties. A study has been conducted by (Tristan Leclercq et al. 2016) on beams in ow, and we will recall the results here, taking I = I 0 s β and W = W 0 s γ , and keeping the other quantities constant:

• l = C - 1 3 + γ -β Y
, characteristic length of the beam on which the ow mostly interact with. It can be seen as an equivalent to the total height. l 1 giving the asymptotic regime criteria.

• ν ∞ = -2

1 + γ 3 + γ -β
, Vogel coe cient at the asymptotic domain.

As a consequence, the convergence to an asymptotic value, and the value itself both depends of width and rigidity repartition. A structure with a growing width γ ≥ 0 and shrinking reinforcements β < 0 will have a long asymptotic regime. A radial shape (fan) get γ = 1 with β = -1 will get l = C -0.2 Y and ν ∞ = -0.8.

Constant curvature model: analytical derivation for the constant width case

The motivation for such a model is three-fold:

• We can do the hypothesis that the deformation signal is used for mechanotransduction as in S3M (sum of strain sensing, described in chapter 1) models for plants. • An equilibrium reinforced state for a gorgonian in a constant ow would be with a constant curvature or lower on the tip, since S3M models assume a threshold value to trigger mechanotransduction signal. Having a constant curvature implies that every section is as deformed as the others, the load repartition can be seen as optimal.

• It allows us to have an analytical resolution on that special case of F.5 • It seems a good approximation of some observed snapshots if we neglect the steady approximation 6.3

Analytically, there is a problem forcing the curvature to be constant on the extremity, since the moment at extremity must be zeros, implying b(1) = Ei(1) = 0. Since extremities are mostly sclerites and thus have E sclerites E gorgonin , b(1) = 0 is acceptable even if we do not take E as a variable in our model. 14It seems that there can only be one couple of values of C Y , K, b(s), w(s) which corresponds to a constant curvature pro le, the deformation for other couples of these variables (for example, if we increase C Y would not be necessary a constant curvature. We name C 0 the Cauchy number corresponding to the constant curvature pro le of dimensionless curvature K.

We take i(s) are our unknown variable, with a constant curvature κ = 1 at the Cauchy C Y = C 0 . and we have the equation:

∂ 2 w(s)b(s) ∂s 2 = ∂ 2 j(s) ∂s 2 = - 2C 0 K 0 sin 2 K 0 s 2 = -w(s) C 0 K 0 (1 + cos(K 0 s)) (6.10) K 0 ∈ [0, -π/2]
, the lower bound is a straight structure and the higher bound being a quarter of circle shape. We note j(s) = b(s)w(s), for easier integration. We do not have a di erential equation like in F.5, we just have to integrate twice from s = 0, and then x the two constant introduced with our boundary conditions j(1) = 0, ∂j ∂s | s=1 = 0.

b(s) and w(s) are linked, and in this case, for each pro le of width, there will be a pro le of rigidity associated. We note b a in these cases for the pro le b(s) corresponding to a width pro le w(s) = s a

The derivation of the equation for w = 1 0 is in A F:

b 0 (s) = C 0 K cos(Ks) -cos(K) K 2 + (s -1) sin(K) K - s -1 2 (6.11)
The pro le is not varying much with K ∈ [0, -π/2] if we rescale b 0 (s) at s = 0 (by C 0 /K), with a maximum relative di erence of 4% as shown below: It means that a pro le i 0 (s) in any uniform ow will mostly behave at constant curvature, with its characteristic curvature K ∝ C Y . for C Y 1, the curvature K cannot go over π/2: it means that θ ≈ π/2 for most part of the gorgonian. It is not possible to read experimentally from a rigidity pro le of constant curvature what was the curvature K it could have acclimated to since the di erence of pro le for di erent

K at C Y K constant is minimal. One big advantage is that since i ∝ C Y K
, one can expect that the pro le of such type of beam will remain close to a constant curvature, with only

K ∝ C -1 Y . 15

Numerical comparison of profiles

We can explore equation F.5 numerically, by xing two of the three variables (w(s),b(s),κ(s)) or by xing K with κ(s) = 1 and w(s) for our constant curvature at one speci c Cauchy C 0 case), b(s), the remaining one and compare how the curvature evolves for di erent C Y . For pro les extracted from constant curvature, we x C 0 = 1.

Developping the derivatives of equation F.5. Our equation we solve is as follow:

∂ 3 θ ∂s 3 = - C Y w cos(θ) 2 + 2(b w + bw ) ∂θ ∂s + (b w + 2b w + bw ) ∂θ ∂s bw (6.12)
The pro les we test are represented on gure 6.22 : We observe that the curvature repartition and related properties highly vary with the di erent types of reinforcement and width repartition. We can look at them in gure 6.24 on which we show the evolution of characteristics that are both easy to measure experimentally (as done in chapter 7) and good reductionism of the deformation's characteristics. The eventail and bilinear shape, due to their small width on the foot and rapid enlargement, has the biggest curvature at their feet, with values out of the linear elasticity hypothesis even at small Cauchy. The bilinear pro le yet has a relatively well-reported curvature compared to Uniform or eventail shape on s between 0.3 and 0.8. We note that bilinear behavior in terms of tip position X, Y corresponds to well to constant curvature model, compared to uniform beam and eventail.

• Uniform w = 1, b = 1 • Eventail w = 0.01 + 0.
In our case, the maximum curvature position is either at the center in our constant curvature models, but always at the foot otherwise.

The behavior of a uniform beam with κ(s = 0) ∝ C

1/3 Y in the reinforced pro le is also respected on the constant curvature pro les and a smaller slope of C 1/6 Y in the case of eventail or bilinear shapes.

The repartition of the rigidity and width has in such model an important consequence on the biggest stress value if we look at κ, surface exposition to the ow if we look at Y , and regularity of repartition according to the curvature pro le: as expected the "constant curvature" family of pro les are the most regular in deformations repartition.

4 Rigidity and width of real gorgonians: a study using image analysis

Now that we have this background, we can do the link between the shape w, b, and the type of deformation in a very simpli ed case of steady, uniform ow. What is the pro le of such quantities on gorgonian? How are these characteristics evolving with the size, how do they vary between gorgonians? What can we understand from them in terms of acclimation?

4.1 Reinforcements in the structure: local branches and global e ect

We saw in chapter 2 that reinforcements appear as a secondary growth: we do not observe them next to the envelope nor on small gorgonians. They follow partially the branches organization, as they are bers of gorgonin added to branches. Typically, they follow the same direction as branches when the branches are with no curvature in the middle of the structure, and change from branches to branches on the sides. It seems that their privileged direction is slightly di erent than the tropism of the primary growth. If we see reinforcement as an acclimation mechanism to regulate the deformation repartition, it is a mechanism that can only develop on the grid created by the primary growth.

It is interesting to draw a parallel with the organism physaraum, as the structures can look-alike as an example of physaraum development in gure 6.2516 : Figure 6.25.: Left : Example of Physaraum growth (≈ 20cm), which grew from one point which can be analogous to a gorgonian foot (an example is shown on the right). The analogy is limited as the two organisms are completely di erent, yet we can nd common properties between the shape of G. ventalina and this organism. Image of physaraum given by M. Durand.

It is tempting to approach reinforcement the same way we did in the previous chapter, through branches by looking at the variation of their characteristics (here, their radius). Unfortunately, we have seen in chapter 2 that the reinforcement was not following the same logic, could change branches during their repartition. An example of reinforcement evolution through branches is presented in gure 6.26: Figure 6.26.: Evolution of the branch radius with their distance to the foot (small green circle on the gorgonian representation), on the 50 biggest branches. The color is the angle to the vertical between the branch tip and the foot, shown on the right. The three red points correspond to the reinforcement changing branch, which is not necessarily the end of a branch.

We cannot, from the branch distribution, read a local reinforcement evolution or repartition in detail. Qualitatively, we observe that the reinforcements are in the center of a meta-branch if this one is thin, and the reinforcements are regularly spaced if the meta-branch is large. The pattern they create on the meshwork is arborescent in the case of thin meta-branches (see gure 6.18 and reticulated in the case of large meta-branches (see gure 6.1).

Since the deformation is smooth, we need a global approach to the whole structure equivalent to the models of rigidity we developed in the previous section.

As the rigidity evolves as r 4 , r being the radius of a circular beam, a branch two times larger will be 16 times more di cult to deform. In consequence, reinforced parts of the gorgonian will carry the whole structure, which can be seen as a sail with a mat: the sail is the part with non-reinforced branches, an almost uniform meshwork that behaves as an exposed surface on the ow, and the mat which is composed of the reinforced branches, giving the overall rigidity of the structure and carrying the mechanical constraints.

Extraction through image analysis

In this section and the associated G, we use the gorgonian "Cochon-Canonique", a gorgonian of length ≈ 40cm with splits and a typical G. ventalina shape17 .

We have mostly worked with image analysis, and we can continue this way for rigidity extraction. The main advantage of such a method is that goes well into our work ow since it does not require much more data as the previous approaches, yet we need to do assumption on the branch pro le in terms of section pro le. It is a rst approach to the rigidity, but will not replace in the long run a mechanical study of gorgonians to extract the exact properties.

We are looking for three measures: W (s), E(s) and I(s), with s = 0 on the foot, s = 1 at the furthest point of the structure from the foot. We represent on gure 6.27 how all the variable are intertwined and how we can calculate them separately : We develop the method to extract W (s) and B(s) in G. The method is based on the reconstruction of the depth of gorgonian, based on the hypothesis that branches have an elliptical section for I(s), and the measure of E using a bimaterial cylinder model, the outer material corresponding to a sclerite layer of constant width.

Profiles of rigidity

We can now quantify the di erent contribution to B(s) along the gorgonian. To do so, we d the histogram of dB(s)∆ s , ∆ s being the size of our bins and dB(s) the contribution of each pixel at a distance s of the foot. B(s)∆ s is the summation of all these elements. We can distinguish two type of contribution, based on wether their are reinforcement or not (and thus caused by the secondary growth):

• Non-reinforced contribution, with dB ≤ dB 0 • Reinforced contributions, with dB ≤ dB 0

With dB 0 = I 0 E 0 = r 3 med 8 E c (1 -(r med )) = r 3 med 8 E c 1 -(1 - δ r med
) 4 , as I 0 is the geometrical moment for a typical branch, and E 0 its Young Modulus. We represent the typical 2D distribution on gure 6.28 of 200 bins (∆ s = L/200):

Figure 6.28.: Distribution of the contributions to B with the dependency in s on the gorgonian "9", the black line represent the limit of B 0 distinguishing contribution between base and reinforcement. The color scale is is logarithmic value of the number of pixel corresponding to this couple of s, dB/dB 0 value.

We see that most pixels are located under the demarcation line, although they are small values of dB. The biggest contribution to B quickly reduce with s, although defaults on the binarization are often creating important contribution which is not real one but artifacts (for example here at a 20-foot distance). As this gorgonian is small, the reinforcement is not predominant. We can observe them easier on a bigger gorgonian such as the one we use for the illustration of this chapter. We show the 2D distribution of B(s) and the obtained rigidity B renf and B base on gure G.6, obtained by a summation of each contribution on the vertical line, on each side of the demarcation. As one can expect, B base corresponds very well to the width pro le W , scaled to correspond to the typical branches contribution. B base is smaller for very small values of s as the structure is only reinforcement at the foot. The reinforcement are not the biggest contribution to the rigidity: in this case B renf > B base for s ≤ 0.4, and B base B renf for s > 0.65. The foot is well reinforced and thus rigid, whereas the tip and neighboring area are constituted mostly of typical branches. The structure is deformed, the upper section has a bigger angle θ to the incident ow, hence less stress and thus no need to be reinforced there.

To fully characterize the rigidity, we compare both contributions scaling with the size

Scaling of rigidity profiles

As we do not have the growth evolution of these gorgonians, we will look at how their reinforcement scale with their length and compare them on this criteria. Those gorgonians are not the same and were not necessary for the same environment: there will be multiple confounding factors that might blur our reading of the properties. This is thus only a preliminary approach to secondary growth.

Scaling of the base

We represent for each gorgonian B base B 0 W α on gure 6.30: Most gorgonians base contribution corresponds well to the pro le, with a reinforced part that decreases the contribution close to the foot. We only have one pro le which does not correspond, which is an eaten gorgonian with multiple parts of its tissues removed. Thus, we should look at the reinforcement contribution only

Scaling of the reinforcement

We represent the reinforcement width various scaling, on gure:

• B renf W as calculated for constant width models • B renf as the pure contribution of reinforcements • B renf /W as the ratio between the reinforcement contribution and the base contribution These curves are rather blurry and di cult to interpret. We see that the rigidity increase with the size of gorgonians, and that in rst approximation B renf /W diminish as an inverse function of s. It seems that B renf W oscillates around a constant value, although the signal is too blurry to say anything about.

The logic of reinforcements might be obtainable in another approach, looking precisely at the 3D deformation map in a typical ow with an experimental approach.

Conclusion

5.1 Splits: the first link between shape and deformation Splits de ne the shape of G. ventalina. From their shape, we can read a pro le of deformation which might be an indication of their environment. They allow the deformation to be in three dimensions, increasing the streamlining and recon guration e ciency. They also de-synchronize the movement, which in consequence could mitigate the inertia e ects in the oscillatory movement.

We only have hypotheses of split formation as we cannot reconstruct the dynamic of their growth due to its potential to be a remodeling e ect, still assuming that it is a growth inhibition due to friction between the branches of two size, as a consequence of a local desynchronization is coherent with our observations on the shape and the meshwork. It is still possible that there is a split propagation by shearing the meshwork.

This idea of inhibition due to steric and mechanical constraints is particularly interesting to understand the growth of gorgonian shapes. We have seen in chapter 2 that G. ventalina has no polyps at the top of their tips when growing, which is the case for most species having wider branches. This could be explained with a phyllotaxy approach: there is no place yet to allow the creation of a polyp. If we consider the polyps as a "collision detector" among other properties, the lack of their presence allows a branch to grow into the neighboring branch, which creates anastomosis if they move in the same referential, as illustrated on 6.32. It is coherent with general consideration on gorgonian shapes, as two branches have very rarely their polyps overlapping between them, and that they curve to avoid each other when they get too close. Deformation and steric constraints should be more taken into account to understand the shape of gorgonians in general, on top of the di erent tropisms.

A representation of these new ideas is shown in gure 6.33. This approach still lacks experiments to con rm, and we need to nd what is threshold size or distance to determine whether two branches can fuse or not. Also, we state that we can read the deformation from the split shape, derivated the formula to link the shape and the deformation, yet we have not created the process to numerically extract such information. It could be interesting to characterize the contour with LOCO-EFA analysis (a Fourier analysis e cient to do morphometric on complex contours, see [START_REF] Sánchez-Corrales | Morphometrics of complex cell shapes: lobe contribution elliptic Fourier analysis (LOCO-EFA)[END_REF] ) and deduce each split automatically, and their characteristics with these smoothed pro les. In particular, it could give information about the curvature along s (the radial curvature) and the ortho-radial curvature obtained from the split angles, to compare their values and verify if the spherical deformation we observed is only lucky cherry-picking. Figure 6.32.: Illustration of how "shyness" of branches can be illustrated in Gorgonian branches. We can observe for example a sprout which might have stopped its growth, even if there is no contact. Compared to G. ventalina, there is no typical pro le of curvature. Species and origin unknown Figure 6.33.: Growth model with polyps as a sensor: The tip growth speed and direction v will depend on exterior tropism as shown in Chapter 2, with additional e ects of polyps. We introduce two lengths: δ the length between the tip of the branch and the rst polyps, L the extension of polyps. If a polyp (represented in grey) overlaps with a polyp from another branch (the overlap zone is represented in purple), then the growth of the tip is changed to take into account this contact. This model is inspired partially of neuron growth: at their tip are sensor (in opposition to here, in which polyps are on sides), which detect obstacles and take their direction (also in opposition, are we expect a repulsion interaction), as shown in (Fardet 2018).

A beam model to link rigidity, width, and deformation

We have seen that we can conceptualize the deformation, using a blade/beam model as usually done for multiple wave or wind-swept organisms. We can from the simpli ed beam model in steady ow extract a simple link between the width, the reinforcement, and the deformation along one axis from the foot to the longest tip.

We have shown that we could test easily di erent families of pro les, and especially test how a pro le of b(s), w(s) chosen for a constant deformation at one Cauchy number behaves at di erent Cauchy number. These families of pro les keep a smooth deformation with di erent Cauchy numbers, which makes them particularly resilient to local breaking. Their pertinence for G. ventalina is limited in terms of survivability, as we observed that they rarely break their structure but rather get uprooted with a part of the reef.

Reinforcement and rigidity on real gorgonians

The rigidity pro le of gorgonians can be in a rst approach obtained from their image. This method is cheap and fast but relies on a hypothesis about the pro le of branches sections. We restrained ourselves to the simplest case of circular branches which is not consistent with gorgonians of type abellum. As there is a continuity between the type ventalina and abellum, we only did our measurements on the simplest one. There is a need for further measures of branches sections pro les, and experimental measurement of rigidity to complete this rst approach.

It is mandatory to take into account the impact of the bi-layer structure of sclerite and gorgonin bers, which change the e ective Young modulus. Is it simpler, of course, to study gorgonians with the sclerite removed.

If our analysis shows that there are indeed two types of branches that contribute to the rigidity, we do not have a clear enough picture of the reinforcement logic in our measurements. Our method might not be adequate, and thus should be completed with experiments of deformation to look at their impact instead of their pure measure. If the two should theoretically be linked in our models, we have done multiple hypothesis and simpli cation to create a simple framework that might be too simple to capture the complexity of their properties.

Perspective 6.1 Models for secondary growth

We have no model or logic for the growth of reinforcement. We can still do hypotheses about their growth that should be tested, and that should be explored:

Let's assume a model of a ne response to deformation such as a sum of strain sensing model. The reinforcement growth G is proportional to the local curvature over a threshold G ∝ |κ -κ 0 |. The lower part has before the reinforcement the biggest deformation (as it has the biggest exposition section dS cos(θ)) and thus will be reinforced and rigid. The next section is thus more vertical, with a bigger exposition section due to θ = κds, and thus is more deformed then reinforced. We have a propagation of the reinforcement from the foot to the top, which is coherent with our observations. This reinforcement process would only begin after the curvature is over the threshold, and as the tip has the smallest exposition due to the angle θ(s) increasing with s, they are mostly un-reinforced. The local direction of the reinforcement could be driven by the local direction of the maximal curvature, which explains the di erence between the branch meshwork and the reinforcement propagation pattern.

The biggest question is why is there only one branch which is locally reinforced. One of our hypotheses is that as the branches grow, the sclerite layer is further from the axis of the branch. The perceived deformation distance between two sclerites is proportional to the radius of the branch, thus there is an instability in the signal. We are not convinced by these explanations yet it is our best one yet. Looking at the signalization path of sclerite and deformation sensing would be a good way to elude such a question.

Reinjecting measures of B and W in beam model equation

We have the logic linking b(s),w(s) and κ(s) for various C Y . We also have the code to take any type of pro le using the two derivatives of b and w, and we also have the b(s) and w(s) for real gorgonians. The next natural step is thus to mix all of this, to look at the expected family of deformation pro les we obtain with, and then to compare with the real pro les of deformation, as veri cation of both our modelization and our rigidity measurement at the same time.

Chapter 7

Drag and deformation of gorgonians

In this chapter, we establish a setup to measure experimentally the properties of the uid-structure interaction of gorgonians such as drag and deformation according to the ow, to see how the size and the growth process impact the mechanical behavior in an acclimation framework.

We rst describe our setup which is a rail with a gorgonian tracked by weight on a swimming pool, then look at the case of steady movements, measuring the properties of steady deformation and steady drag. We show that the behavior corresponds well to recon guration theory, with consistent values of the Vogel coe cient of ν = -0.9 ± .08 and drag coe cient C D = 1.5 ± .19 among the 17 gorgonians we tested. We show that there is a threshold speed of recon guration ≈ 0.1m.s -1 that does not depend on the size nor the location of the gorgonian we measured. We have also done measurement on oscillatory movement, consistent with our steady study, and show that there is an unsteady regime for the biggest gorgonians that change the stress repartition on the structure.

Contents 1

Measuring experimentally the impact of the shape on the mechanical properties 1 Measuring experimentally the impact of the shape on the mechanical properties

We have seen that the shape of gorgonians had marks of the deformation through the split and that the shape had particular mechanical properties dues to the reinforcements, that could be conceptualized through a Beam model approach and recon guration as explained in chapter 6. We can verify it experimentally by measuring the mechanical properties of G. ventalina such as drag and deformation, and compare them to the di erent organisms known to follow classic behavior.

It is now time to check whether this shape, as special as it has been described, corresponds indeed to special properties in terms of drag and deformation, and thus if we can measure an acclimation to its mechanical environment.

Mechanical studies, if di cult to do in situ 18 due to the important uctuations or confounding factors due to the complexity of the environment, can be done if we control the ow. We decided to emphasize this type of measurement, looking at the general mechanical properties of gorgonian instead of one of their environment. Our measurement will thus lack the impact of the correlation between the local shielding e ects of other corals or stream that has on the shape, as they will all be tested in the same environment. In consequence, the goal of these measurements will be to nd the main elastic properties of gorgonians, with the idea that the results could be a basis for further in situ studies.

We chose to begin this study with a measure of well-de ned properties on the deformation and drag of gorgonians, for a steady movement. Then, we create an oscillatory movement to look at the impact of unsteady elements in the movement, to get closer to in situ conditions. 18 One of the main constraints of this thesis has been the distance between the Ph.D. student and the environment of gorgonians. Only 2 missions in situ has been conducted, for an overall time of 25 days.

In consequence, the data had to be collected as fast as possible, with a well-controlled environment to minimize noise on our measures and simplify the analysis. As much information had to be acquired for further analysis in the lab in Paris.

It was not possible to test the movement in situ of gorgonians for di erent conditions. Since the experimenter has to be on the eld during the conditions, measurement in extreme situations with large currents is not possible in situ. During the rst mission, an unfortunate underwater encounter between the Ph.D. student and an urchin Diadema antillarum due to a big wave passage while manipulating a DSLR on a 20kg tripod has implied an important restriction of one hand movement during around one month.

Concepts of the setup for drag and deformation measurement

The speci cations of our setup are the following:

• The measurements have to be easy to reproduce and at a low price conditions • Allowing speeds on a large range of values, from U ≈ 0.02m.s -1 to U ≥ 1m.s -1 • Being as close as possible to real conditions • Having disposal to monitor the deformation • Having disposal to monitor the total drag of the structure • The setup has to be the same for gorgonians of various sizes and shapes.

We chose to create a mesocosm, with two main di erences with in situ environments:

• Instead of moving the water and keep the foot of the gorgonian xed, we move the gorgonian. The two are equivalent mechanically speaking, as the relative speed between the ow and the structure is the important one. • Instead of imposing the speed of the movement (in the case of swell) and measure the overall drag on the structure as a force, we impose the force on the gorgonian and measure the speed of the foot. Imposing a force is easier than imposing a velocity. • The reef boundary condition on the ow speed (U = 0) is replaced by free surface ( ∂U ∂y = 0), the ow speed is uniform: there is no boundary layer which would be due to the reef.

Two archetypes of movement will be studied: 1. Rail movement: Constant force, the goal is to reach a steady speed and deformation pro le 2. Pendulum movement: Oscillatory movement, with slow damping.

We extract most of our information from image analysis. The setup can be schematized as follow: The rst experiments were conducted in 2013, so without the Ph.D. students which only analyzed the data. Another campaign of measurement has been conducted in 2018 to complete previous data.

Setup description

We detail here each part represented in gure 7.1, with the same color code, and illustrate each point on the right side with real images.

• Mesocosm: Our mesocosm is a circular swimming pool with a diameter of 8m and a depth of 1.4m. It is lled with seawater, with the same parameters as in situ of di erent spots ( pH: 8.1, salinity: 35 PSU, temperature ≈ 27 • C). a • Rail: The rail is composed of 3 Norcan aluminum sections of 3 meters length and 45 mm thick, with lateral reinforcement pro led for wheels to roll on it. We add a suspended structure to compensate for the de ection of the rail caused by its weight. • Trolley: The trolley is made of Norcan material, in two parts.

1. The upper one has four wheels spread in square and rolling on the rail reinforcement, the Arduino receipting the signal of the force captors, and a vertical bar for a connection with the lower part. 2. The lower one is a vertical bar with the clamp for gorgonians at the bottom and connected to the upper part by the four captors. The length of the bar can be adjusted. • Captors: All captors are deformation gauge for 50N . Each of them is connecting both parts of the trolley at one square corner. b • Clamp system: The clamp is in three parts, a ceiling adjustable in height, and two aluminum V-shape with gliding rail. We recreate a at substratum for gorgonians foot with plaster, and jam it into our system, ensuring the cohesion with screws, and an extra layer of cable tie on the clamp. • Weights and pulley: The pulley is linked with an inextensible string to both rail extremity, then go through a pulley system, place at 3.30m. We attach shing weight at the extremities to add a force on the trolley. Since we use a gun tackle con guration, the maximal displacement is 6.60m, and the e ective weight on the trolley is divided by two. • Exterior camera: The exterior camera is a canon PowerShot G9, lming in 720p (1080*720 pixel) at 15 frames per second.

Calibration was made at every session.

a Still, we did not succeed in keeping them healthy in the long run, after three or four days necrosis appeared. Since our analyses of the mechanical properties are not in uenced by polyps, it did not impact our measurements. b One of the captors was not working, so it has been removed to keep all force transmission through the other working captors.

gray: norcan sections green: captors black: screws

• Interior camera: Interior camera system di er depending on the experiments:

-2013: the camera was a Canon G9 in a waterproof box place perpendicular to the movement, lming in 720p 15 frames per second. Due to its heavyweight and important volume, the absence of acceleration captors, the strain its products are not negligible, and experiments have to be done with and without the camera to get deformation then drag information. -2018: cameras are a couple of Hawkeye Fire y 8s (action camera with very little distortion, a focal length equivalent to 22mm Full Frame), placed in front and on the side of the gorgonian. Because of their small size, weight and the presence of the captors, experiments of drag and deformation can be conducted at the same time.

• Pendulum: Experiments of pendulums has been conducted in 2013, using a 5.7 m beam linked to the roof, with 60 kg at the tip. The clamp system and the interior camera are the same setups as previously • Wheel and link: Experiments have been tried to create a sinusoidal solicitation using a wheel linked to the trolley with a beam. The drag of that system implied a bad transmission to the trolley and has been disused.

Selecting gorgonians for a broad and reproducible range of measures

For each mission and site, we have to sample di erent gorgonians. The rst mission (2013) was focused on ve gorgonians, we then expanded the number to eleven for each site during the second mission. We selected them with as much variety in size and shape as possible from each location, with a height from 8cm to ≈ 1m. For 2018, we did three categories of sizes with 3 samples from each size (≤ 20cm, 20 ≤ L ≤ 40, ≥ 40cm), and two gorgonians with exotic shapes and properties such as 3D parts, or partially eaten. Their characteristics are listed in table 2.1 and in image in gure 2.3 from chapter 2.

Steady deformations

Gorgonians are always in a periodical movement, which is complex to characterize since unsteady with resonances and dephasing e ects: it is characterized by its amplitude, frequency, and shape (sinusoidal or with added harmonics) which is a lot to take into account. A rst approach is to study steady movement which means that the deformation is stable in constant ow speed. We will focus on the following point:

• How does the maximal height of the gorgonian evolves with the speed?

• How does the lateral extension evolve?

• Where is the maximal curvature on the gorgonian? How does it scale with the speed? • How does the curvature on the foot evolves?

The deformation pro le is extracted in 1D following the mid-line of the gorgonian, as detailed in A E with the speed extraction. We focus here on the four rst gorgonians of Cochon 2013. We will use the following convention:

• All the positions are along an axis going from the foot to the furthest tip of the gorgonian, as done in chapter 6. All positions are normalized by the total length of the gorgonian so that they evolve between 0 and 1. • Colormap "jet" (from blue to red through green) represents the speed value of the pro le. • When a curve is of one color, it corresponds to a property de ned once for the deformation experiment (for example in gure 7.2, the color corresponds to the magnitude of the ow speed). For point clouds, to colors looking alike correspond to each side of the same gorgonian (or, to the deformation with a negative speed). Multiple properties can be already seen from this representation, as seen in gure 7.2:

Profiles

• Pro le with no ow is not exactly straight. There is a constant current in our measure environment, created by the puri cation system and the natural curvature of small gorgonians. There can be a sign change for this curvature, for example in A. The impact of this curvature is negligible for higher speed.

• C has bigger angle values than π/2. That can be due to an interaction with the free surface: the wake of the trolley can create a depression behind, inducing an attractive interaction with the deformed gorgonian. This has only been observed for our highest speeds on big gorgonians in 2013. Experiments conducted in 2018 were done further from the surface, with two plates of polystyrene on the side to break gorgonian-surface waves, but has not been that critical to improving results. • C seems to behave di erently: the deformation is important even at low speeds, the extension if varying more with the speed, and the curvature seems more spread along with the structure. The initial angle for all gorgonians is correctly set, with θ(s = 0) = 0 ± 0.05rad. We consider both sides separately in the next results.

Tip movement

The tip of the gorgonian position will integrate all the deformation and constraint of everything under since it is the free point of the structure. Its height is a good indicator of the overall surface of the gorgonian when deformed, and the lateral extension (the euclidian distance between the foot and the tip in dimensionless unit), give us an indication of the curvature on the gorgonian: if = 1, the pro le is mostly straight (either straight up or crouched to the ground), and smaller values of indicate a more uniform deformation of the pro le: in a hypothesis that the curvature remains always of the same sign, ≥ π/4 ≈ 0.78 (constant curvature, with an end, parallel to the incoming ow). As represented in gure 7. 3 The dimensionless height of the gorgonian remains constant, close to 1 at slow speed. It then reduces, slowly for all of them but C for which there is a clear transition between U = 0.08m.s -1 and 0.2m.s -1 . for U ≥ 0.3m.s -1 , there seem to be a Power-law with Y ∝ U 1/2 on about a decade. No collapse has been found, but qualitatively, it looks like the smaller the surface, the softer the transition. There is still, for the extension, the same trend as shown in gure 7.4: at low speed, the extension is maximal (upright pose), begin slowly decreasing after U ≥ 0.08m.s -1 . The bigger the slope the lowest the minimal value, with the lowest of C being close to the minimal extension π/4 ≈ 0.78. Also, the higher the value, the higher the speed it is obtained. The value then increases and goes slowly back to 1 (crouched pose). There is no correlation between the gorgonian dimensions and that position. In most cases, we are not going at high enough speed to go back to an extension of 1, the asymptotic result.

Maximal height

Extension

Curvature

Our pro les being parametric curves, we can extract easily the curvature as:

κ = x y -x y (x 2 + y 2 ) 3/2 = ∂θ ∂s
With x(t), y(t), t ∈ [0, 1] being the coordinates of the Bezier pro le, t = 0 the foot, t = 1 the tip and x = ∂x ∂t as the convention for derivative notation here. We can look closer at the curvature pro le along the arclength coordinate s. We stay in dimensionless values. We show here the di erence between the deformed curvature (pro le of color) and the base pro le (dashed line, with no speed). The fact that pro les are not symmetric give a hard time to interpret the data, since the corresponding section on both sides is not exposed to the ow at the same angle, and thus change the deformation. This e ect can be seen the same way as if the gorgonian was xed on the reef without being vertical at the foot, or even as if both sides were not facing the same speed of ow. Either way, one must be cautious about the interpretation of local curvature value in that case, and we use multiple indicators to check the consistency of our results. We can already see multiple properties:

• Curvature increases this the of ow speed • The maximum of curvature seems to move closer to the foot with an increase of the speed magnitude and is not necessary at the foot • C Behave di erently as said for 7.2, with a curvature more spread along with the structure • In all cases, the curvature at the tip of the gorgonian is saturated to the same low values: it is not a zone of deformation in any ow.

Three characteristics can be extracted from the curvature:

• The curvature at the foot gure 7.6 and 7.7

• The position of the maximum of curvature g 7.8

• The value of this maximum 7.8

Curvature at the foot The C curve collapses well with B and D even if the slopes of it alone was di erent, and considering that they follow the same trend is reasonable from these graphs. For the maximum of curvature of all other gorgonians, we have the same Power-law with the power of 0.5. The same scaling as the foot curvature gives us a good general behavior, with only A not being scaled correctly. The dimensionless position, nor the distance to the foot allow a collapse for the behavior in this zone. B has always the maximum of curvature close to the foot, and C is the one with the biggest dimensionless distance, as seen in 7.2.

Maximum of curvature

Cauchy evolution with uniform beams

It is interesting to compare the pro les we have obtained, and compare them to beam deformation pro les we can obtain numerically. Due to the precision of our data, adding too many t parameters would not be pertinent, as it would imply over tting, and unnatural solutions physically speaking. In consequence, we decided after multiple tests to restrain ourselves to the simplest model we could in opposition tour our model of chapter 6: a uniform beam in a uniform ow. This should be seen as a " rst-order model" to verify that we are not too far from a beam behavior.

We take two di erent scores for the best t, variables with lower n are numerical calculations, exp values extracted from Bezier pro les:

1. Distance between each pro le e xy = (X n -

X exp ) 2 + (Y n -Y exp ) 2 )
2. Score on curvature e κ = |κ exp -κ n |, the curvature from the t not being corrected by the default curvature The rst score is mostly what we would naturally use with a visual approach: how close on average are both pro les. A score on the curvature is the most exigent on the foot area since its the less integrated, but the end of the pro le will not be impacted as much.

We consider the error of the measure to be inversely proportional to the second derivative at the lower (best) score, multiplied by the normalized best score itself. As the second derivative informs us of how fast the score evolves from the optimum, a at evolution of score close to the best t shows that we don't catch the C Y well with our method.

We get the following curves showed in gure 7.9: In black,

U U 0 2 ∝ C 2 Y , with U 0 = 0.1m.s -1
As expected, the blue pro les on the positions are visually better, even if the t on the foot is better with the red t on the angle. The gorgonian C is not well tted on most pro les, which might be due to a limitation in the model: the bigger the gorgonian the further the behavior is from a uniform beam, as B(s) and W (s) are less uniform with the increase of the gorgonian size.

The Cauchy-Speed tting curves from both sides of the gorgonian are on both sides of the line Cy = (U/U 0 ) 2 , not tting well value for low speeds, getting for higher values and getting aligned with the curve. The typical speed of U 0 = 0.1 is the same as the previous ts. The ts of D are very e cient but gives on both sides a di erent pow-law relation between the Cauchy of the t and the experimental ow speed. It is quite expected: the deformation of the pro le at low speed is mostly integration of ow uctuation. Having both sides of gorgonians on both sides of the main curve could be due to the o set of angle on the clamp.

Recapitulation of the deformation properties experimentally observed

Even though the natural limitation of experimental measures, we have consistent observations of many properties, which are coherent between them:

• There is a change of behavior at U 0 = 0.1m.s -1 , on most properties we measure. We consider this as the recon guration threshold. • Most of our properties admit Power-law on the recon guration part U ≥ U 0 , with the following properties:

-Foot curvature: ∝ LU 2/3 , it scale thus as C -Behavior: Correspond in rst approximation to a beam in an uniform ow, with U 0 ≈ 0.1m.s -1 This typical speed does not depend on rst sight to the size. It corresponds also to the threshold speed measured by [START_REF] Sponaugle | Drag-induced deformation: a functional feeding strategy in two species of gorgonians[END_REF] on P. acerosa and P. americana. There is a need for more data of di erent environments, and more sizes to verify that U 0 is indeed constant.

Steady drag

Deformation is caused by the local exposition to the ow, which implies shearing forces on the structure as seen in the construction of the beam model deformation in chapter 6. The integration of the ow contribution on the structure integration leads to the total drag force, which is a piece of overall information about the uid-structure interaction. We also have the information on the weight pulling the gorgonian, and even in the "2018 setup" directly the force applied to it with no friction to take into account from the rail. In a steady regime, the acceleration is zero everywhere and thus all the force applied by the weight is counterbalanced by drag and friction. Treatment of both experimental setups for steady drag di ers on how to get the drag value, as explained in the A H.19 

Drag evolution with speed

We show for every gorgonian the evolution of the maximal speed with the force exerted on it on gure 7.12: We can rescale all the curves of 7.12 dividing the force with the surface, as F S -1 ρ -1 = C D U 2+ν . Fitting corresponding curves gives us both ν and C D parameter. All C D in these sections correspond to the shape with no recon guration. All the di erent points are following the same trend, around a slope of 1, with a translation around 1.5. With all gorgonians together, it is not possible to read any critical speed. Right: result of the t with all the points (even when not recon gured), with separate values for each gorgonian. To show how the impact of the shape and location properties, the color is the surface of the gorgonian, the point size is their height, the symbol the place they come from.

There is a di erence between values presented in table 7.1 and gure 7.13: The measure on the gure show t not taking into account the critical speed U 0 , as if gorgonians were always recon gured. That global t instead of the recon gured part increases C D and ν.

In contrary to the deformation properties, the are no di erences measured in drag from the inversion of the movement and are superposed on the same curves.

For all these measurements, we comment on the properties on U 0 , C D , and ν for each gorgonian in the next part.

Place

Name Size 

U 0 ν C D (cm) (m.s -

Critical speed of reconfiguration

The critical speed of U 0 is not always determined during our experiments. The reason can be either due to the nature of the phenomena or to our measures. Especially if we do not have enough points under U 0 , or if the force o set is ill-de ned, there will not be any possibility to determine it with our experiment, as we can see here on a theoretical case illustrated in gure 7.14 : When looking at this U 0 , we have here the following cases:

• Not enough points: B,1bras and longue has a recon guration threshold, but not well de ned since there is only two values under it, ≈ 0.1m.s -1 . Also we do not have enough point at low speeds to determine the threshold on Ondulee, Mega and Petite2Branches. • Always recon gured: C, Canonique and petite1branche have no threshold even at very low speeds, they are always recon gured with ν ≈ -1 • Never recon gured: parasite is in our speeds never recon gured, with a ν ≈ 0.

• Well de ned: The critical speed is well de ned in the case of 7 gorgonians, from the 3 series of sampling. The values of U 0 for our well de ned category is mostly centered around U 0 = 0.11 ± 0.02m.s -1 .

All gorgonians in the always recon gured category have multiple rifts on their surface, with a radial evolution of the shape.

The gorgonian we name parasite has been partially eaten by the fauna (typically by Cyphoma gibbosum see chapter 2 perspective), and has even some shells attached to its structure and might have been infected by fungi. When they are attacked by their environment, predators are never destroying big reinforcements, which thus correspond to the mechanical load of a healthy, complete gorgonian before its partial destruction. Even if some parts have regrown, the surface exposed to the ow is still small compared to what it was. This unfortunate event has led to mechanical properties very di erent from what we measure for other gorgonians, and make us think that the reinforcements are linked to the surface exposed to the ow, which would imply a critical speed not depending on the ow. The case of GrandeDouble is intermediary, since the shape shows sign of exterior aggression, yet on a smaller scale than parasite, explaining why U 0 ≈ 0.3 in that case. This would imply that reinforcements repartition would be correlated to the critical speed of a gorgonian.

ν and C D coe icient Based on our sampling, there is no direct correlation between the C D and the ν coe cient. Nor is there any correlation between the site of sampling and the overall properties.

The gorgonians with important lengths seem to have a bigger C D coe cient, which might be due to the interaction with the bottom of the swimming pool, as the depth is ≈ 1.10m and the biggest size ≈ 90cm. Yet, the biggest one (Megareticulee) has a C D very close to the mean value 1.48. The value of Grandedouble is abhorrent as a C D of 2.7 for a 3D ow is di erent from what we would expect from such an object, and the value is almost twice as high as the mean value for all other gorgonians one. The error could come from the calibration of the force captor but the cause has not been found. We cannot link the C D value with any qualitative nor quantitative properties of the shape here.

The values of C D are in the usual range for such an object between 1.19 and 1.92 depending on the measurements.

There is no particular correlation between the shape and the Vogel coe cient, nor the place, which is mostly between 0.66 and 1 as usual for recon gured structures.

Alterations of gorgonians

As shown in chapter 6, the sclerites account for very little of the rigidity, due to their small Young Modulus as a sparse layer. One way to verify this hypothesis experimentally is to remove the sclerite layer and measure the impact on the drag and deformation.

Removing the sclerite imply a lower rigidity, and also a slightly lower exposed surface as the porosity of the structure increases, and might lower capillary e ects.

We removed the sclerites from Canonique and Moyennetrouee, by letting them rot during one day in mildly hot water ≈ 40 °C then brushing it with a toothbrush. The measurement of C D and ν have not changed in a signi cant way, with the following variation:

Name

C D C D no sclerites ν ν no sclerites Canonique 1.57 ± 0.14 1.52 ± 0.12 -0.66 ± 0.07 -0.7 ± 0.09 Moyennetrouee 1.24 ± 0.07 1.22 ± 0.11 -0.97 ± 0.06 -0.91 ± 0.11

This was expected, as the young modulus (the rigidity of the material) of sclerite is ≈ 100 time lower than for gorgonin. It is expected that the only modi cation of the shape deformation is on non-reinforced extremities, which contribute very little to the drag since they are always aligned with the ow due to the deformation of the structure.

The same types of measurements have been conducted, on adding arti cial splits on the structure of gorgonians (Mega and Master), with no signi cant change of C D nor ν. The deformation in 3D is the same, with no superposition of the di erent parts of the gorgonian in the movement Figure 7.15.: splits added on gorgonians (next to the white line), and snapshot from the deformation at ≈ 0.8m.s -1 . We observe on the snapshot that all the metabranches are not with the same angle, but there is not much 3D e ects measured.

The way we have done our splits is important here: they are mostly parallel to the closest well-reinforced branches, thus they would have less impact on the shape of the deformation: the zones we split were not carrying the mechanical constraints before the cut. It is coherent with what we saw in chapter 6: if the split shape is due to 3D e ects, and that the secondary growth process (reinforcement) is a feedback loop on the deformation, then adding arti cial splits on a non-reinforced region do not modify the overall mechanical properties.

Oscillation

Steady pro le and drag are easier to understand and characterize, but lack of realism when we compare to the real mechanical environment, which imply unsteady movement, with oscillatory motion. If the deformation is slow enough, the deformation might be quasi-steady, but it is not what we see in situ for biggest gorgonians, as shown in gure 6.4. To correctly characterize the properties of gorgonians in their mechanical environment, we have to reproduce an oscillatory movement corresponding to the swell, both in period and amplitude.

We chose to use a pendulum of length R = 5.7m, with M = 60kg attached at its end for better inertia despite damping e ects, on top of the water. The movement imposed is the one of a harmonic oscillator with a period T = 1 2π g R ≈ 4.7s. We attach the gorgonian at the tip of the pendulum so that the gorgonian stays in the water.

Damping

The extraction of X(t) and its derivative is explained in A E. The curves we get look-alike damped pendulums, both in Spatio-temporal (T, X) and phase space (X, V) representation as shown in gure 7.16: We can rewrite the equation as:

θ + 2 τ θ2+ν + ω 2 0 θ = 0 (7.2)
with our new variables:

• ω 0 = g L pulsation of the pendulum • τ = 4M ρC D(U =0) S (U =0) L 1+ν damping coe cient
We have two initial conditions: initial angle θ(t = 0) = θ 0 and initial angular speed θ(t = 0). The initial speed is close to 0, but since we are manually launching the movement, we keep it as a free parameter.

Linear damping (ν = -1) has the following solution:

X(t) = X 0 e -t/τ cos(ω 1 t + φ) (7.3)
With φ dephasing between speed and position, ω1 = ω 2 0 -τ -2 . We can create a quantity not oscillating in time:

X(t) 2 + U (t) 2 ω 1 = X 2 0 e -t/τ (7.4)
This quantity is analogous to energy up to a multiplicative constant (a mass), that we will note as E. The evolution of this quantity gives us a good indication of the damping coe cient.

-∂ log(E) ∂t = 1 τ (7.5)
The evolution of log(E) gives us the following pro le: imply that the damping is linear with the speed, implying ν = -1 for each case. The pendulum with no gorgonian has non-linear damping (ν = 0 as expected), shown in gure 7.18.

Re-injecting this in the expression of τ gives us:

C D = 4M ρSτ
We get the following t value and scaling with S:

A: τ = 50.0s, C D(U =0) = 0.30 B: τ = 24.3s, C D(U =0) = 0.31 C: τ = 12.1s, C D(U =0) = 0.32
The regularity of value is surprisingly strong between the three shapes, yet very far from what we would expect from a plate, which C D is much closer to 1.5.

We can do also t of on the trajectory. Here is a compilation of all the experiments, with linear t lin corresponding to the previous ν = -1, and a t with ν free with su x ν .

In most cases, the non-linear t gives us a better result (worse t are shown in red). The closer is ν to zero, the higher τ ν to compensate the increase of θ2+ν . The expected correction τ lin = τ ν /R 1+ν is not giving a good correlation but in few cases. All values are compiled in table 7.2

Figure 7.18.: Attenuation of the pendulum, with no gorgonian, represented in log-log. A small part is still underwater and damp the movement, with drag clearly scaling as U -2 , as expected for rigid body moving in water (equivalent to ν = 0). Although this drag still exist when there is a gorgonian on the pendulum, its intensity is totally negligible in comparison with the phenomenon we are measuring. we minimize the di erence between our experimental and numerical points by doing a gradient descent on the parameter space, the numerical resolution being done with an euler method integration on a constant time step dt = 0.01s, reinterpolated on the experimental times for di erence calculation. In red, the non-linear resolution with one more parameter is not nding the best minimum of score and thus the non linear t is worse than the linear one.

The values of ν measured here are consistent with our measures in steady deformations in terms of ν values, reinforcing our interpretations from the steady movement.

Deformation with periodical forcing

Adding a camera to the pendulum adds a lot of energy dissipation and despite the 60 kg of mass for inertia, but we are still in the pseudo-periodical movement of a damping oscillator. We can extract the deformation pro le, from di erent size and amplitudes of movement, and determine how the shape impact the movement in an environment.

Profiles of deformation

We get the pro le evolution as done in chapter 6, for the three gorgonians A B and C in gure 7.19.

Figure 7.19.: Superposition of all pro les, during experiment each. The line red is the trajectory of the tip. C is presented twice: on the left there is a classic experiment on the pendulum, on the right the same pro le with a constant manual reinjection of energy for a purely sinusoidal motion, followed by a damping regime.

• The tip of A is always moving along the same path no matter the amplitude of the movement. There is a slight variation for B at the biggest amplitude, and the tip trajectory for C is clearly not following the same path, although the tip is sometimes on an arc similar to A and B. In the case of the constant amplitude, the movement is not following the same trajectory, but the type is mostly following an ∞ shape, with the horizontal amplitude smaller with the movement amplitude, and the average mean height getting higher. • The equilibrium pro le is not straight as seen in the steady deformation part, and the oscillation is along that pro le. A is in the quasi-steady situation of deformation, B is at the frontier where the deformation pro les begin to di er from the steady experiments, due to inertia. C is totally in the inertial regime.

With these three cases of movement, we nd analogous movements with what has been shown in (Tristan Leclercq et al. 2018) in the case of uniform beam deformation in periodical ow numerically simulated. The qualitative types of movement explored, in this case, depends on the three following dimensionless parameter :

•

ω ∝ L 2 ρ 1/2 W 1/2 E -1/2 d -3/2 T -1 0
ratio between the natural frequency of a blade and the one of the ow • α ∝ A L : the ratio between blade length and ow particle movement amplitude during a period

• λ ∝ L W
: slenderness of the blade The transition between the uniform case to ours is not trivial. For example, no simulation they have done shows a deformation angle over π/2, which is something we observe quite often for large amplitude and fast ow on gorgonians. Still, the general shape of motion characteristics is correctly reproduced as seen in gure 7.20. 

Lag in the movement

We can have a direct look at the temporality of the deformation, as illustrated in gure 7.21, by representing how displaced are each point on the gorgonian like we did in Chapter 6. In black are de ned the moment the position of the local point is undisturbed. Vertical lines correspond to the delay between the beginning of the side of the extension between the foot and the tip. We do not measure from the foot but from the area where the extension is larger to 2.5% for more robustness.

The pro le of A is moving in one block with the ow, in a quasi-equilibrium state. In the case of the gorgonian C, there is a dephasing of ≈ π/2 between the foot reversal and the tip reversal.

Measurement on 30 oscillations at constant amplitude gives us for C a delay of 1.11 ± 0.13s between the two positions, for a period of 4.7s.

Out of equilibrium oscillation

The dynamic of our movement depending on the curvature, the angle, the speed of the incoming ow, and the local speed. We represent the di erent pertinent values through a couple of oscillations in gure 7.22. On gure 7.22, we can measure the following behaviors:

• The pendulum movement is here slightly non-sinusoïdal, yet stay smooth enough for our degree of precision into understanding the behavior • The tip movement is as seen in gure 7.21 dephased and late on the movement.

Based on the blue line, the tip lateral extension stay immobile during almost half a run, then exponentially accelerate, due to the tension in the gorgonian, and is then brutally stopped at the end of the run, once again due to the tension of the structure which is the maximal extension. • We can follow the tension propagation as the curvature evolution along s, which propagates from the foot to the tip. • As the tip is slowed down in speed, it is also going vertically closer to the foot just afterward, as seen on the quivers. This movement due to the maximal elongation reached creates just afterward the maximum of curvature we measured, which is on the tip and not on the foot. observation

We observe the e ects of inertia and momentum here. One of the main surprises compared to the steady model is that the maximum curvature is now on the tip and not on the foot.

As suggested in numerous articles (Mark Denny et al. 1998), the momentum of the structure is the cause of the extremes values we measure. In consequence, we should focus more on out of equilibrium movement measurement for acclimation discussions in general. Yet, the inertial regimes are only observed for the biggest gorgonians, with multiple splits in conditions close to the one they can encounter in vivo.

The type of regime a blade-like structure movement will be is well de ned for uniform blade, as seen in 7.23, with the following parameters: Leclercq et al. 2018) in consequence, depending on the way W ,B grows with L, the gorgonian will change of regime. We are in the case of non-uniform shape so the approach here is limited, yet give a rst insight into the di erent regimes a gorgonian will encounter. For gorgonians, we are only in the fully static regime and large-amplitude regime static recon guration with a fast reversal.

• ω = ΩT C = ΩL 2 m a /B = L 2
It is worth mentioning that structure with multiple split can be dephased in their movement between each meta-branch and thus the impact of inertia and tension is damped.

Conclusion

Steady reconfiguration : a well defined C D , U 0 and ν independant of the size For a rst mechanical approach of drag and deformation, a uniform beam model is valid for gorgonians. We nd back classic properties such as a well-de ned Vogel coe cient, a C D coe cient, and a U 0 critical speed. Our measurement is coherent between the di erent variables we look at in drag or deformation, and also between our di erent setups. We also observe di erent regimes of movement depending on the solicitation, coherent with the literature of oscillatory models in periodical movement. Two things are here important and that should be considered regarding our previous work: how these variables depend on the size of the gorgonians.

Especially, we identify through our di erent measurements of deformation characteristics a well-determined speed U 0 ≈ 0.1m.s -1 . The same speed has been identi ed on the steady drag, for gorgonians of the two sites with totally di erent hydrodynamic conditions, with two samplings were done at ve years of di erence at various depth on the site of Cochon: it seems that this speed does not di er from the environment. This typical speed has been also measured in the species Plexaura acerosa, and Plexaura americana [START_REF] Sponaugle | Drag-induced deformation: a functional feeding strategy in two species of gorgonians[END_REF]. There is no reason that the same typical speed would be common to all the corresponding ecosystems.

As U 0 = 2E ρC D W d 3 L 3 , it would imply that W d 3 L 3 is
a constant in the growth of gorgonians. This is particularly surprising, as it is di cult for us to conceptualize a global speed sensor according to the local signalization available in the gorgonian. We expected properties conserving deformation properties such as a typical radius curvature.

The reinforcements shape the deformation profile

The curvature pro le of gorgonians in the steady case is surprisingly regular, with a little dependency of the length L.

Compared to the theoretical case shown in chapter 6, the maximum curvature is here not located on the foot which only happened in the case of constant curvature pro les. We also measure in the case of "C" a minimal extension close to the minimum possible value of π/4, which corresponds for steady pro les to constant curvature pro les of a couple b(s), w(s).

As expected from our rigidity measurement, removing the sclerites or adding splits on the structure is not changing the mechanical properties. The reinforcements and the shape are coherent with the split repartition, and thus arti cial splits are not changing the deformation. It would have an impact if we disconnected an area from the local reinforced branch, and if we looked at their unsteady properties.

Inertial e ects in the oscillatory movement are depending on the size

For larger structures, we observe inertial e ects that should be taken into account for extreme conditions and large gorgonians. Especially, inertia chocs in extreme conditions happen for large gorgonians, according to how B scale with L: if the second growth mechanism ensures regular, soft deformation for usual conditions, the shape of gorgonians is not acclimated to extreme events in which uprooting indeed occurs. The limitation of the size observed in vivo might be caused by the removal of the biggest gorgonians during hurricanes, and not by a mechanism of self-limitation. It seems that they perceive their local everyday conditions, and are not prepared for extreme events when they have grown too much. 

Tilted gorgonians

The swell is not always perpendicular as it depends on where it originates in the sea, temporal uctuations are implying a deviation from the mean direction, and causing some other kind of deformations.

We always kept θ(s = 0) = 0, as a vertical xation. Changing this angle would change the overall deformation, displacing the maximum of curvature even on a uniform beam. This has been done in part for a model in gosselin1 and could be applied as gorgonians are not always xed vertically in the ow they are exposed to.

Surface-reduced gorgonians

We saw that partially eaten gorgonians had a critical speed higher than healthy gorgonians. A con rmation that surface and reinforcement are in accordance to control that speed would be to remove the un-reinforced section on a gorgonian and look how it modi es the mean pressure F/S in the function of the speed, the same way we tested sclerite-removed, and arti cially-rifted gorgonians. We expect U 0 to increase with the removed surface, as U 0 ∝ (1 -dS) -3/2 dS being the surface ratio we remove, assuming the gorgonian behaves as a uniform gorgonian or uniformly removed along s. The impact is expected to be higher if the surface is removed close to the foot, and negligible at the tip.

Reinforcement-broken gorgonians

The reinforcement impact is not local, although often only one branch is reinforced on a meta-branch. removing a part of a reinforcement, would modify the deformation, hence the impact of the drag and the movement. It would be interesting to measure such impact, and also to measure the response in terms of growth for in situ gorgonians, as a way to decipher the dynamic of the secondary growth in situ deformation for multiple conditions

We have qualitative lms of deformation, but only for one mechanical condition of the swell. Comparing on multiple kinds of weather the movement and the consequence would give more precise information about how the e ective ow taking into account the boundary layer and the local obstacles a ect the deformation for multiple conditions but would require longer missions and more complex dives for heavy-swell measurement.

Transitory rail

We have the information on the response in terms of speed U of gorgonians submitted to an echelon of force, we characterized the steady regime but not the transitory one. As imposing such condition is way easier than oscillatory ones, transforming [ Leclerq ch 3 eq ] into an echelon model would give an e ective method to characterize any exible beam-like structure. The transitory trajectories on the phase-space (v,x) on gure 7.25: We have slightly a global curve, yet it is, for now, di cult to determine if the di erence is due to U max here ill-de ned, or if it is due to a non-linearity of the movement equation.

PIV measurements

The water movement is not solved in all our models, as we consider the incident ow to be uniform, and the water is not moving behind the gorgonian in the case of steady of periodical movement. We observe recirculations behind gorgonians which can have a huge impact on the deformation, the stress of the structure, and local speed for polyps. As the complexity of a numerical resolution of the complete uid-deformed structure interaction would be too high, Particle-Image-Velocity experiments would show that part of the system we neglect here and give a better insight of the local speed reduction for polyps.

Chapter 8 Conclusion

" Concepts lead us to make investigations; are the expression of our interest, and direct our interest. " Wittgenstein, (Wittgenstein 1953)

1 The contribution of this thesis to the community

We started with a general set of questions in mind, that were all about the theme "how does G. ventalina get its shape ?" It included, in consequence, the description of the shape (the form), its environment, and its impact (we focused on the deformation), to drive the growth process (the formation). Such questions arise a wide number of domains, types of studies, and strategies.

As the speci c literature on this speci c subject is not wide, we decided to multiply the approaches and methods we could test to decipher this enigma, expecting only a part of them to give results, and expecting the one working would not necessarily be the one we expected. In consequence, we have explored multiple facets of this problematic such as the branches network, the reticulation mechanism, the split mechanism, the reinforcement mechanism, and deformation properties.

We smoothly went from one topic to the other, as :

• We began with philosophical and dynamical concepts in Chapter 0

• We continued with biological concepts to place our subject in Chapter 1

• We transformed our questions into geometrical concepts in Chapter 2

• We transformed our geometrical concepts into numerical operations and data in Chapter 3 • We used these data to arise general mathematical properties in Chapter 4 • We get speci c mathematical properties, relevant for gorgonian allometry of the shape in Chapter 5 • We show how a blind spot in our allometry model (splits) links the shaped envelope to the deformation and how we can mechanically model the deformation from the shape in Chapter 6 • We test our mechanical approach with experimental measures to improve our understanding in this mindset of "growth from deformation" in Chapter 7

From all of these topics, we recall here are the key relevant concepts and results.

Analysis of reticulated networks using continuity

Using the continuity of branches in the network, we created ways (an ensemble of small elements), branches (directed ways), and plumes (logical ensemble of branches) as a reading grammar for the shape.

Using ways structure the network and brings clarity into the organization of the shape, and exhibit strong power-law distribution in the most elemental characteristics of the network (the degree, which is the number of elements per way). If the exponent of the power-law can vary (mostly between 2 and 2.5), we can determine other criteria (number of ways run through from a point to get to the envelope), which is always a Gaussian distribution with no free t parameters. These properties are also observed in various networks such as city road networks and could be expanded to other systems.

Using branches, we have shown that we could consider the network as an arborescent structure, which will allow further analysis using standard grammar for gorgonian allometry. We have also shown that the pro le of curvature of branches followed the same logic between gorgonians, exhibiting tropism that we can explain with the local ow. We can infer from this observation and the shape of the envelope that branches are not all growing at the same speed.

Mechanical properties of gorgonians partially suited to its shape

Splits are the scars of the deformations and show that the shape is linked to its deformation. The shape is even easier to understand (as there are no visible empty parts in the envelope) when deformed as it is in the environment.

The analysis of deformable structure in ows is often e cient using beam and reconguration theory, and Gorgonia ventalina is no exception. Yet, it is one of the rare cases which belong to animals and not to the plant life form. Moreover, the typical properties are the same for most gorgonians we experimentally measured, not depending on the location they lived on nor their size which is particularly surprising. It shows that the growth process takes into account the mechanical environment. Yet, these properties are not conserved with the growth for periodical motions: the growth of G. ventalina goes into inertial regimes which might lead to their wrenching from the reef.

How is our understanding of the subject changed ?

We can e ectively reduce the growth of G. ventalina to two mechanisms: the primary growth (branches extension, division, anastomosis, and friction inhibition), the secondary growth (reinforcements) to explain most of the characteristics we have focused on. If the perception of the environment linked to the growth process creates uniform properties for steady ows which might have an interesting impact on the polyps feeding ability, it will not protect gorgonians from inertial deformation: we can infer from this that the typical maximal size of gorgonians one can observe in the environment is not an acclimation process, but rather a survivorship bias. G. ventalina has no e cient acclimation mechanism to extreme mechanical events such as hurricanes.

2 What now ? Such a wide approach as our necessary lead to many possibilities. There are two categories: deepening the knowledge on G. ventalina or expanding the developed concepts of this thesis to other materials, such as other species of gorgonians, or even further subjects such as spatial networks in general. We recall here the most important, as they can be found at the end of each chapter.

Understanding G. ventalina

Back to biology, integrating polyps and sclerites

We have found good reductionism of the growth logic of G. ventalina. Now, we need to understand what is the molecular and cellular mechanisms that allow such logic to emerge. We have voluntarily neglected sclerites and polyps from our analysis to simplify our approaches, but we might need to take them into account now. For polyps especially, it would be interesting to see how a constant recon guration threshold speed U 0 impacts their local ow perception and thus their feeding ability. Since the structure is not acclimated for extreme event survival, is it for the common conditions? And if it is, does the acclimation is in terms of mechanical stress in the structure or in terms of food acquisition?

Going deeper into the study of the shape for G. ventalina Branches carry local time information with branching, collision, and continuity, and we might not be far from nding additional hypothesis that gets global time information from them. This would allow us to measure the growth speed of branches, and thus have a better understanding of tropisms.

Plumes allow a very e cient reduction of the number of elements one has to take into account to describe gorgonians and should be the approach to compare gorgonians. Allometry on plumes should be easy to create and our code is ready for such an approach to be explored.

Mechanical measurements

We only scratched the surface on the measures of reinforcements and the secondary growth remains on many points mysterious. Experimental validation of the measures proposed in chapter 6 is needed, and testing the real pro les of rigidity and width into the equation linking them to the deformation pro le would be equally interesting.

We have focused on steady movement, and now that its characteristics are clear we should go on to periodical movement that we have studied for speci c frequency only in a few cases. A theory for non-uniform beam would be also necessary to understand better the properties of gorgonians in the ow, and in consequence that is the increase of the risk of uprooting with their growth.

Environmental measurements

We decided to focus on the shape with little environmental properties as a rst approach, but now that we have identi ed e cient elements for allometry, we should compare them to environmental properties such as the typical ow frequency and amplitude distribution, depth, and local obstacles.

Generalizing the tools and concepts

Comparing with other gorgonians G. ventalina is among the most reticulated species of gorgonians, and now that we have uni ed the approaches for allometry with branches, we should use them to compare the di erent species.

Especially, it would be interesting to compare them in terms of growth: does the morphogenesis process we described in chapter 6 with polyps perception can create purely arborescent structures as it can be found in gorgonians? Can we nd a morphogenesis process from which the notion of branch emerges? Spatial networks analysis PySkelWays, our ways-extraction software can work e ectively on more general subjects than gorgonians. We have tested on the subject we could reach easily in the lab, but there are many others that one could consider.

One of the appealing hypothesis that should be tested is that the power-law distribution of degree in ways is a sign of a growth process with primary growth in branches and little/no remodeling (or secondary growth). Where do these properties come from theoretically, can we connect it to the classical complex system with power-law distribution are two points that crave for answers, at least for the author of this thesis. The same reasoning goes for the Gaussian distribution of the hierarchy.

Doing what's best for corals

In this section, I would like to give my personal direction, and how this thesis has led me in a slightly unexpected direction in research.

This thesis has been an exciting adventure. Discovering new domains of science, relearning biology, learning interdisciplinary projects, creating models, and indicators... The whole process has led way more than knowledge on gorgonians. Two things have struck me along this experiment :

• The terrifying state of biodiversity, climate, and many correlated subjects about our environment. • The counterpart of the hypothesis and the reductionism they create. Reductionism is a simpli cation, blinkers we put to simplify our world and process more easily the information. We need them, but we always need to remember that they create a blind spot in our perception. One of them is to "think in silos" in opposition to a systemic approach: we neglect retroactions, and cannot have a global view of problems. As a society, we behave like an organism in an environment, with a perception, a response to this perception, and in consequence an acclimation process. The response to the perception might not work well and that's a question of societal organization, but if the perception is also awed due to excessive reductionism, then we have no idea what we should adapt to. One of the key elements is that the hypothesis we are using in some of the models, especially in Economy, makes absolutely no sense today.

I truly loved working on the shape of gorgonians, and my deepest wish is that I won't be the only one working on it. Especially, I don't want to be the last one. And to do so, we must nd ways to protect biodiversity, gorgonians, and other unsuspected fascinating subjects that are the necessary bricks of our ecosystem. As a researcher in the XXI st century I feel that my role is to be sure, through my research, that future researchers will be able to work on Gorgonia ventalina.

My future work as a researcher will keep many similarities with what I have done in my thesis, but at another scale by working on the coupling between climate and economics: taking two complex systems, nding minimal useful models, and do an interdisciplinary coupling between them to have a more systemic and complete approach, with new indicators that I hope will improve our perception of the biggest problem we are facing today.

1 Structured ma er 1.1 The organization of ma er

Complexity

The universe is made of matter, which appeared approximately 13,7 billion years ago.

Progressively, elements created at that moment organized themselves into gradually bigger structures, and with every new structure, new properties and behaviors emerged [START_REF] Goldstein | Emergence in complex systems[END_REF]. This auto-organization process leads to the creation of more and more complex structure, with more and more complex properties.

Complexity is a notion with an important polysemy, and often ill-de ned. We will use in this thesis complexity in two ways:

• From its elements: A complex system is a system with emergent properties which are not simply deduced of its part separately. These properties are a consequence of interactions between its constitutive elements and thus are non-linear (Johnson 2009). • Perception, description: A system is said to be complex if there is a need for many elements to describe its constitution and behavior. It can be interpreted as the Kolmogorov complexity (Burgin 1982)

A simple example of a complex system with emergent properties is water and its movement: by looking at one molecule, one cannot see the emergence of turbulence when particles are in movement. Turbulence is highly complex, as we have no exact resolution of turbulence nor a perfect description. Mathematically, the description of the turbulence mechanism remains incomplete and is considered as a problem of the millennial, despite the compactness of the uid movement equation and logic. Understanding the logic of complex systems in general, and not only turbulence is one of the keys to understand our universe.

From complexity emerge the notion of organization in a system, showing how are the elements related to each other. Understanding how a system is structured is thus a key to understand its properties, both at the microscopic and macroscopic scale.

Dissipation and organization

Physics is the branch of science focused on the properties of matter and energy. If the notion of energy is a well-described quantity, it is hard to describe it outside of equations, even qualitatively. It corresponds roughly to the e ort made for an action, either to change something or keep it constant through temporal uctuations.

Organized systems are dissipative: they transform entropy-free energy into heat, to maintain their own state. The more organized and complex a system is, the more energy it needs to sustain itself in its state. A classi cation of dissipative structures has been proposed by (Chaisson 2001), shown here in gure A.2. It places living organisms and multiple living structures among the most e cient dissipating structure weight-wise in our universe. It might be presumptuous to try to tackle the most complex systems rst. Science is built as an accumulation of small steps, "Sur les épaules d'un géant" (Leima 1993) and every step gives a better understanding of the previous one, and allow to develop a comprehension of more and more complex systems: an e cient approach is to nd the right amount of complexity according to the power of the tools we are using. With enough concepts, tools, and vocabulary, one can reduce his perceived complexity. It is thus necessary to focus either on a subject simple enough to be handled with existing concepts or to develop such concepts to get a better understanding of such systems.

From there, one can step by step to understand the behavior of more and more complex systems, and thus be able to use systemic approach on fundamental problems of our society and environment. Yet, the path is long to go from a perfect gas complexity to the climate, a trophic chain or our economy.

Living systems

Among all organized complex system, one category stands out: living systems, spread almost everywhere on our planet. The eld of biology is focused on their studies and developed tools to apprehend their complexity.

Life appeared on earth approximately 4.5 billion years ago and has been yet only observed on earth. Living systems are not totally de ned and an exact de nition would not be pertinent as Claude Bernard (Bernard 1885) suggests. Yet, most approaches rely on the following ideas:

1. They are autonomous: they create by themselves their substance from their environment 2. They can reproduce and transmit information to their o spring 3. They can regenerate if altered to a certain extent 4. They have a semi-porous membrane which de nes its limit with the environment and allows exchanges 5. They are based on DNA or RNA molecule, as a basis for their information location Some systems can share a lot of these properties, such as barchan and colloidal magnetic aggregates, as presented in gure A. Living systems, due to their omnipresence in our environment, the already existing knowledge and tools we have, and their high degree of organization are an excellent subject of study to tackle complexity. If the study of complexity in physics or mathematics is quite new, there have been centuries of various approaches to complex systems in biological studies (Kampourakis 2013). We will here focus on two important concepts in biology: growth in section 2, and evolution in section 4.

2 Morphogenesis, growth and auto-organization

Growth of organisms

Before reaching maturity and the full potential of its properties, a system goes through an ensemble of intermediary states, from one cell to the mature organism: it grows.

This process is among the most important for a living organism since the mature, nal state is an accumulation of all the growth steps, modulated by their environment and inner properties. An excellent example of emergence and growth is the embryogenesis of chicken, as schematized in gure A.5 Between the embryo and mature state, a lot of new properties emerge from growth, and every intermediary state must be valid. The transition is not trivial and the study of such processes is one of the keys to understand the property of a grown individual, as the temporal consequence of short-term processes.

The concept of morphogenesis

Morphogenesis is the study of "the emergency of shape properties through growth process", it links:

• The environment E(x, t) at the moment t and position x • The shape (organism) itself S(x, t), often represented by its interface for simple system • A logic of growth G which link the shape evolution between two instant, depending of the environment and the organism

Morphogenesis is a eld of study in physics and biology, both communities having a slightly di erent approach. In biology, it is often considered as the growth phase temporally situated between the regional speci cation and the homothetic growth. Thus, it is the moment in which the shape property emerges. We will here present the approach commonly used in physics which is the relation between a growth process logic and the nal shape, using dynamical systems. We can summarize the evolution of shapes with the type of logic A.1:

∂S(x, t) ∂t = G(E(x, t), S(x, t)) (A.1)
the shape S(x, t) dependency to time in such process is not directly de ned, only is its temporal evolution. It is the typical writing form of dynamical systems, the main domain studying such mathematical objects. The environment evolution has also its own logic, that will also depend on the frontier between the organism and the environment

The function G is very general, and not necessarily explicitly de ned. Depending on the logic behind that function, a wide range of shapes can be obtained.

For the same logic, the qualitative states obtained through its parameters variations are often limited, for example in the case of the deposit of slender deformable bodies on a moving substrate at gure A.6: The main question behind such an approach is: How is a growth logic linked to the shape properties resulted through time integration?. What is the link between the process, instantaneous in time and space, often well de ned, and the overall properties of the grown system? The link between a process and its emergent properties is often not trivial at all, yet is one of the keys to understanding a complex system: instead of trying to understand the properties of grown systems which is often complex and blurry, understanding the growth process has a huge potential to reduce the perceived complexity of a system.

We will here present some simple morphogenetical process as examples, with their logic and consequences for a better understanding of general properties one encounter in morphogenesis.

Cellular automata: The Game of Life

With simple local rules of evolution, one can obtain a wide diversity of behaviors and shape. The most famous example is certainly the game of life, created by John Horton Conway [START_REF] Gardner | Mathematical Games: The fantastic combinations of John Conway's new solitaire game "life[END_REF].

The game is "played" on a cartesian grid, each cell can be in two states (dead and alive). At each turn, they can change state (death, birth or maintaining their state) based on the number of neighbors:

• If a dead cell has three living neighbors, it becomes alive (white on representation)

• If a living cell has two or three neighbors, it stays alive • If a living cell has one or more than four neighbors, it dies (starvation, or local overpopulation) and thus is represented in black Iterating these rules over time, some multi-cellular structures can be observed, and be classi ed according to their behavior: some are translating in space, some are stable, some are oscillating, some are generating translating structures as illustrated in gure A.7: With these rules, some people have been able to code the logic of the game of life, on meta-cells (≈ 10 4 cells) to create the game of life, inside the game of life, with simply a meta-cell actualization frequency ≈ 5.10 4 times slower, as illustrated in gure A.8. The game of life, with just these small evolution properties, can create a lot of di erent shapes and behaviors, with exploration and reproduction. It can even be considered as a complete Turing Machine for computation, although highly ine cient (R. P. 2011).

One of the di erences with other morphological processes we present here is that there is no stable emergence of properties from noise: most situations of the system lead to the death of all cells, and interesting behavior require a lot of prepatterning and is not resilient to external alterations.

Boundary condition and Laplacian growth

DLA: discrete approach let is consider particles evolving randomly in space, and aggregating when they touch an already existing aggregate. The process has been described by Witten in 1981 in an article titled "Di usion-Limited Aggregation, a Kinetic Critical Phenomenon" [START_REF] Witten | Di usion-Limited Aggregation, a Kinetic Critical Phenomenon[END_REF]. He wrote in 2010 another article with the same name and a "?" at the end: despite the simplicity of the description, the shape created and the dynamics are extremely complex, overwhelming the mathematical tools conceptualized for the moment [START_REF] Sander | Di usion-Limited Aggregation, a Kinetic Critical Phenomenon ?[END_REF].

The gures created correspond to branched structures, with no width, exploring space in the direction of particle introduction as shown in gure A.9. 

Laplacian process

This process can be transformed from a discrete approach to a continuous one and becomes what we call growth in Laplacian process. With C being the concentration of free particles di using in space

∂C ∂t ∝ ∆C = 0 (A.2) u ∝ ∇C (A.3)
Equation A.2 implies that The environment is at equilibrium, so the Laplacian of the concentration is zero everywhere, Equation A.3 the interface growth is proportional to the ux traversing it. The same equations correspond to a uid expanding into a more viscous uid inside a Hele-Shaw cell (two plates with a thin gap). In uid dynamics, the corresponding process gives Sa man-Taylor Instability with viscous ngering M Rabaud 1991. It has also been observed that the same shape, in circular geometry, corresponds to the isotropic growth of bacteria. What is particularly interesting in this model is that the boundaries have the leading role in the dynamic of the system, and not the logic itself.

Di erent elements of the frontier/shape will have non-local shielding e ects, getting more ux and then growing faster, therefore being closer to the interface. It is a good system to monitor the impact of each iteration, here presented in a planar growth in gure A.12. Branches are an emergent property from this morphogenetic process, with this type of structure resilient from uctuations, and growing from noise.

Figure A.12.: Simulation of a DLA growth with moving boundaries, with the initial interface as a plane. Each line corresponds to an iteration. First, the interface is destabilized, then the emerging ngers are shielding the one under, stopping their growth. Then the competition between growth ngers occurs, and each one shielded will stop growing, getting their column of nutrients C consumed by the neighbor, which develops on its side. From a personal code (Valcke 2016).

This model is also a good description of the structure and evolution of numerous aquatic shapes as shown in gure A.13 Figure A.13.: From left to right, section of a unbranched stromatolite formed by cyanobacteria [START_REF] Horodyski | Stromatolites of the upper Siyeh Limestone (Middle Proterozoic), Belt Supergroup, Glacier National Park, Montana[END_REF]. Section of a sponge branch Haliclona oculata. Section of a stony coral branch Porites porites [START_REF] Martin | Skeletal correlates of coral density banding and an evaluation of radiography as used in sclerochronology[END_REF]. Section through a branch of the coralline algaeo Lithothamnion coraliodes. Al redrawn from pictures, with an emphasis to the growth rings.

More ingredients

This model being created with a small number of elements (only a di usion), one can add few to get more complex behavior: The e ects two to ve in the previous list has been used by [START_REF] Merks | Models of coral growth: spontaneous branching, compactication and the Laplacian growth assumption* 1[END_REF] to simulate hard coral growth, presented in gure A.15: Here, the higher on the gure the more intense the mechanism. The color correspond the the gradient intensity. Left: surface tension as a di usion, Right:, tropism to the top. (J. A. [START_REF] Kaandorp | Macroscopic Modelling of Environmental In uence on Growth and Form of Sponges and Corals Using the Accretive Growth Model[END_REF] We can also quote Clément 2010 with Lung morphogenesis through the same type of models, associated with biological observation of the concentration eld C 1 , which is, in that case, is Fibroblast growth factor 10 FGF10. Implication in growth process Di usion is naturally occurring everywhere since it is only thermal agitation. One di usion in space is enough, with aggregation, to be a growth mechanism creating very complex shapes. We have seen that this type of growth is present in many domains, from a pure physics phenomenon to corals and lungs.

If the growth is de ned from the outside (only one phase), the shapes are restrained to branching patterns, even with some other mechanism.

Chemical basis of Morphogenesis: Turing's pa ern

In 1952, Alan Turing is wondering what kind of problems computer can solve that are blocked with pen-and-paper approach. The most famous of them is The chemical basis of morphogenesis, an article being now the basis of many morphogenetic approaches in theoretical biology Turing 1952 . He wrote a coupled system of di erential equations inspired from chemistry (and that has been observed experimentally 40 years later), that we can write in one of its form (Gray-Scott Model) as [START_REF] Je | Pattern formation in the Gray-Scott model[END_REF]:

∂C 1 ∂t = D 1 ∆C 1 -C 1 C 2 2 -C 1 F + F (A.4) ∂C 2 ∂t = D 2 ∆C 2 + C 1 C 2 2 -(F + k)C 2 (A.5)
This describe the evolution of two concentration C 1 , C 2 in time and space, with four phenomenon occurring:

• Di usion, isotropic smoothing repartition of the concentration, with a rate D 1,2

• Reaction, The probability of a collision being C 1 C 2 and the rate of reaction proportional to C 2 . The reaction is, through multiple step, the transformation of the species 1 into 2, hence the di erence of sign in both equations. • Disparition, These term correspond either to a rate of apparition (if positive) or rate of disparition (if negative) of the chemical compound. There is a constant • Production, correspond to a constant introduction of C 1 in the system According to the values of the di erent parameter D 1 , D 2 , F, k the repartition of C 1 and C 2 in space will di er, and auto-organize into well de ned shapes, as illustrated in gure A.17: In total, Pearson's Classi cation shows 17 di erent patterns at equilibrium in the k, f shape-space. Numerous alternatives to this writing of reaction-di usion process, with di erent growth/death rates, exist and can give even di erent shapes.

Turing patterns are found everywhere in the animal kingdom, with for example: leaves, hair follicles (B.L. Bard 1973), spots on deer and gira e (B.L. Bard 1981), veins on leaf [START_REF] Meinhardt | Models of Biological Pattern Formation[END_REF], Butter y wings [START_REF] Murray | On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings[END_REF],Mollusc shells [START_REF] Kyoung | Pattern Formation by Interacting Chemical Fronts[END_REF],Leopard, jaguar, zebra [START_REF] Pearson | Complex Patterns in a Simple System[END_REF] Figure A.18.: Comparison between sh eye's pattern and simulation. One of the interests here is that the eye is simulated as a boundary condition, and is thus in uencing locally the pattern. Far from the boundary, the type of pattern di er. The same process is observed of spotted-skin felines, as they got closer to the tail (boundary condition), the pattern changes from dot to stripes.

The patterns are the same, yet di erent logic and growth systems can give the same shape: the shape is an insight to the growth process categories but is not necessarily giving the chemical or physical properties happening at rst sight.

Final state shape

In some cases, no growth logic has been found to explain some shapes. Yet, in the case of diatoms, there is a surprising t between the various shape one can nd in diatoms (microalgeas) and the superformula with the equation: r(θ) n 1 = cos(0.25m 1 θ) a This t is thus not giving information on the growth process of diatoms but could be an approach for such a study. Finding a logic that leads to such geometrical solutions through iterations could give an insight into the type of morphogenetic regulation there is biologically in the growth process.

Unexpected communities

Creating shape from growth can give artistically interesting results, and some people are applying the same process to create art with no scienti c approach behind, using morphogenetic processes. A lot of these people have no particular background in physics or biology and are thus often using original methods, with a growth process that has never been presented in the scienti c community, and that can give new approaches for models. Most of these people belong to the "Creative Coding community", and there is real feedback to get from them, as they are of well-skilled in computer science, compared to a pure physicist or biologist. 

Shape and function

The shape can have many functions, from explicit properties such as mechanical properties (rugosity, rigidity, strain in a ow), to more implicit functions in the case of zebra stripes.

Shape and drag

When a structure is placed in a ow, it will change the uid trajectory. This redirection implies an exchange of impulsion, and thus a force is exerted on the structure. One can write it the following way:

|F | = ρC D S U 2 2 (A.6)
|F | the magnitude of the strain, ρ the uid density, S the surface exposed, U the uid speed out of the structure in uence, and C D the drag coe cent. This coe cient is often obtained experimentally, yet it can be analytically expressed as: The interaction with the ground (here drawn as a mass) will change the coe cient value. Relevant magnitudes are .05 for a streamlined shape, .5 for a sphere, 1.3 for a place, 2 for a plate clamped on the ground.

C D = C P + C f = 1 ρU 2 S
Optimizing the shape according to the drag coe cient is an important domain in aerodynamics, especially in the case of cars, train or planes.

Shape as Opimization

Some shapes can directly minimize a related quantity, as the potential energy of a physical system is minimal at its equilibrium. A pendant chain minimizes its energy forming a hyperbolic cosine, while a soap lm from the minimal surface connecting all the boundary points.

Figure A.23.: Soap lm shape on a rigid structure, composed here of three rings. Because of the surface tension, the stable surface corresponds to a local minimum of the energy. The result can be a complex structure, such as this one called Costa's surface, which is the absolute minimum of energy with three rings [START_REF] Costa | Example of a complete minimal immersion in R3 of genus one and three embedded ends[END_REF]. The lm movement being continuous, obtaining this precise shape from an initial one through deformation is tricky, and the system would likely be trapped at a local minimum shape, which does not correspond to this one.

We saw previously that arborescent structures could be created through Laplacian growth. The smaller the surface tension, the bigger the ratio exposed surface / occupied volume. In the case of lungs typically ≈ 100m 2 for 10 -3 m 3 .

Numerous examples of shape in nature are claimed to be the consequence of the optimization process. Yet, we do not necessarily know what is optimized, and if the optimal reached correspond to a global optimum, or just a local con guration "good enough". In such an optimization process, the important is not only how good is the optimal point, but also the number of initial situations that directly lead to it, i.e. the accessibility of such a state.

Pine cones

When looking at a pine cone or a sun ower, two sets of spirals turning clockwise and counterclockwise are well de ned. The two number of spirals are two following terms of the Fibonacci sequences u n+2 = u n+1 + u n (1,2,3,5,8,13,21...). The ratio of these two consecutive terms goes to the golden number lim n∞ u n+1 u n = 1+

√ 5

2 . In consequence, the rotation angle between two sprouts is now an irrational, thus no leaves can cast a total shadow on the previous one. The response to such property with a dynamical approach is simpler: this pattern appears spontaneously if you add repulsive elements (apex here) on a growing surface. The number of spirals simply depends on the speed of the process. Such pattern formation can be replicated with a simple chemical experiment as shown as seen in gure A.24. While some people argued that the shape corresponded to an optimization of the enlightenment, of space compaction, the reason might be that this shape is good enough for the environment. Because of the simplicity of the growth mechanism, the growth is resilient and the overall result always appearing even in a uctuating environment. The same argument of simplicity/robustness occurs also in plant growth: the rst leaves are very primitive in their shape, not as e cient as the mature one but will give a more reliable ux of energy depending on the environment.

Zebra stripes

Zebra stripes are a famous example of an optimization debate. They can be easily produced with Turing's pattern as seen in the previous section, although we have no chemical con rmation that it is indeed the right type of reaction which is behind.

If it has been shown that stripes were e ective to reduce the number of y bites when applied on cows [START_REF] Kojima | Cows painted with zebra-like striping can avoid biting y attack[END_REF], the other explanations (blurring movement when in groups, creating thermal gradient and convection...) might be also true, yet not necessary relevant (Brenda Larison 2015): the fact that the growth process is simple, and that it gives improvement can be considered as enough. The complexi cation of the process to get a more optimized shape, in the sense adding more ingredients, should be also taken as a barrier for optimization. Because the process is simple in its ingredients, it can appear more spontaneously through evolution.

Networks of Physaraum and complex optimization

Among the living organism, the unicellular amoebozoa Physaraum Polycephalum has a stunning ability to create a network in its structure to exchange nutrients. That network seems to be an optimization of transport-network between food points. The network is constantly remolded, according to the local ux transported.

Figure A.25.: physarum polycephalum, inspiring networkoptimization problems, here with a map of Tokyo area, and food to represent each main cities, here 26 hours after the introduction of of physaraum in its environment. Mathematically, optimization of a network is a NP-complex problem, needing a lot of computation in each case. Moreover, as illustrated by the Route inspection problem (aka Chinese postman problem), adding a node to the network can totally remodel the optimal solution. Sun 2019

In this case, the constant corrections brought by the perception of local variables bring the optimization of the overall property. The shape is a consequence of the growth process, and there is a feedback of its function and property, for a constant evolution of the di erent parameters.

This organism alone raise an important number of question for optimization process in general: what local perception of the environment, combined with a response in terms of growth process (and consequence inner logic), can give optimization properties? Can local perception in time and space give a global optimization at the scale of one complete system? 4 Evolution, adaptation, acclimatation "Nothing in Biology Makes Sense Except in the Light of Evolution" Theodosius Dobzhansky

Evolution is the main concept of modern biology. It is the transformation through time, of the phenotypical (observable) traits of an organism. The time scale of this evolution is often multiple cycles of reproduction, as the changes are done at the scale of DNA, either by the modi cation of its bases or its expression (epigenetic).

The main motor of evolution seems to be an aleatory modi cation. The one improving the reproduction is kept as their o spring is larger and thus more transmitted as an instability in the population, while modi cation damaging their ability to survive is going extinct since they reproduce less. bene cial alleles are selected, non-modifying (cryptic) mutations will also stay in a meta-stable way. There is no need for a will or a perception, only an impact on the tness of the individual, based on its environment. The mutation is not necessarily modifying one aspect or parameters, as one allele can have an impact on multiple zones of a living being.

It allows us to understand the modi cation in morphology, physiology, and behavior of the organism, concerning their environment in the long run.

Accumulating modi cations with not enough reproduction between two di erent populations leads to an increased di erentiation, incompatibility to the reproduction, and thus di erent species. Yet, they both carry the same heritage from their previous ancestor.

It this explain not only why there is much di erence in the di erent form of life, but their remarkable adjustment to their environment as they evolve in it.

The link between the genotype (pool gene contained in DNA) and the phenotype is not trivial: it is mostly the consequence of a growth process which is in uenced by the environment. As such, two individuals growing with the same genotype in two di erent environments will have two di erent phenotypes: this is phenotypic plasticity. On the inverse case, several genotypes can give the same phenotype, if the mutations are not in uencing that case.

Phenotypic plasticity can be formulated in a very broad de nition (West-Eberhard 2003) as "the ability of an organism to react to an environmental input with a change in form, state, movement, or rate of activity». Reading the shape of an individual and its plasticity can be a way to read the environment.

Acclimation and adaptation

Every organism has the interest to have a phenotype well-tting to its environment: a polar bear is well tted to an XVIII century polar climate at the pole, but would not correspond to a warmer environment. We can distinguish di erent methods to improve this t:

1. Being well specialized to such environment, through native traits: it is adaptation.

2.

Moving to an environment more adapted to our phenotype (for example, migration when the weather change in the case of birds) 3. Changing the environment so that it is more tted to our phenotype (for example, using air conditioner when the weather is not right in the case of a human) 4. Having a good perception of the environment, and depending on its parameter being able to change the phenotype through plasticity: it is acclimation.

The fourth category is particularly interesting, as an individual must have a good perception of their environment, and also the good response according to their perception.

The traits caused by acclimation are acquired through the growth process and might change if the environment changes.

At the equilibrium and in a static environment, it is hard to distinguish the di erence between acclimation and adaptation. Acclimation is especially useful in a diverse, changing environment, as the best strategy for tting well might change.

Generalist species are not well-tted spontaneously to any environment, but can easily change their phenotype according to their perception of their environment. Acclimation can be seen as a meta-adaptation: being adapted to changing its method for adaptation. One often nds specialized species in a very stable environment and precise place, as generalist species can be found almost everywhere.

Evolution as a general concept

Although the notion of evolution has been conceptualized for living systems, it is a process and thus can be applied to any system with di erent elements and a tness estimation. The modi cations will be propagated in space through time and adopted depending on the environment.

Evolution in innovation

Innovations are mostly continuous modi cations of existing technology, through trial and error process. When a modi cation increases the e ciency of the object, it is progressively transmitted to other designs. Functional and cultural traits has evolved, and can be compared to evolutionnary process often seen in biology in terms of spatio-temporal repartition [START_REF] Rogers | Natural selection and cultural rates of change[END_REF].

This idea can be generalized to much di erent technology, for example in the case of bicycles in [START_REF] Oa | The Evolution of the Bicycle: A Dynamic Systems Approach[END_REF].

Evolution as an optimization tool for engineers: Generative design The idea of evolution can be used to optimize a tness function, through modication of all variables. If we can get an explicit tness function, and the variables, then evolutionary logic can be used as an optimization process. This has been now implemented in mechanical design, for example in the case of autodesk. It works well for a very simple case but is not usable yet for uid-structure interaction or complex tness function. If there is optimization in such systems, it is for the moment more interesting to use a biomimicry approach on marine organisms assuming that their morphogenetic process allows some optimization in uid-structure problems and that their tness is related to how well they are interacting with the ow. It is often dangerous to use a biomimetic approach as a direct solution, as long as we have not determined what is optimized for the organism.

Limits in evolution

The case of wheels in living

The wheel has been one of the most in uential invention for human civilization, up to ve times more e cient than walking in terms of Energy/(kg.kilometers) in the case of bikes. We know only one freely-rotating structure in a living organism in a gastropod, apart from molecular-scale rotating structures. One of the reasons is that creating a rotating structure through a continuous morphogenetic process would be very di erent from humans in "in multiple parts process", and thus would require a new approach, with no continuous bene t for the tness of the structure. To quote Richard Dawkins [[[]]]: "Why Don't Animals Have Wheels [on] the other side of a deep valley, cutting unbridgeably across the massif of Mount Improbable. " Also, wheels are a very specialized structure compared to legs, as they cannot be used for direct manipulation of the environment [START_REF] Dawkins | Why Don't Animals Have Wheels?[END_REF].

Biological adaptation is limited to the growth or dynamical process it has available, which is restrained itself in the type of shapes or behavior it can create.

The fishes of D'Arcy Thompson

In one of the most fundamental book on morphogenesis, On growth and forms, D'Arcy Thompson compares the shape of multiple shes, and shows that their shapes are simply geometrical transformations of the same grid, as presented in gure A.28: (Thompson 1917) As such, minor properties are changing between these species, that can explain that either they live in the same environment, or that they are constrained in a type of shape and properties due to the core logic of their growth process, which is the same in all these cases.

Convergent evolution

Evolution being a for most of its components a continuous process, it mostly follow the local optimization in an environment, with a limited possibility in the possible explorations. Thus, at two di erent instant, environment and species, the same type of modi cation can occurs. Since the growth process are typically limited in the type of shape and properties they can make emerge, the same type of property can appear. It is for example the case for eyes, which appeared in many branches due to the bene cial continuity of their creation: photo-sensible cells, multiple at the same time, migration on the most mobile part (the head).

The same process can explain why is there so many Laplacian-growth processed shape in living systems: they can be created easily with very few ingredients, and lead to interesting interface properties. This phenomenon of recurrent forms in di erent taxonomic groups was also observed by [START_REF] Jackson | Morphological strategies of sessile animals[END_REF].

Once you're here, it is reasonable to go back to the chapter 0, and continue your reading Appendix B

Scan process

Our scan process is based on image acquisition with a camera, and not a scanner. Indeed, we often have gorgonians not tting with a scanner, and our subject are sometimes not at enough to be in the focus distance of a scanner, there is also on some cases shadow projection on the background that complexify image analysis.

The protocol with camera acquisition is the following :

• Skeletons are taken in photo totally dry (in studio) or totally wet, as air-water interface re ects light • The skeleton has to be as at as possible to limit projection errors. If the skeleton has no foot or 3D part, it is e cient to put it behind a glass to force the atness of the structure • The light has to be as di use as possible (softbox, or multiple sources) to diminish projected shadows in the background. Lateral single sources of light cast shadows on the other size of reinforced branches, which enlarge the distribution of luminance on the skeleton. • The light has to be uniform to remove gradient of exposure. We mostly used 2 ceiling LED panels on each side, as their light is uniform, di use, and their price very low • The background should be uniform, and of an opposite color. When the sclerites are still on the gorgonian, a black tissue background appeared to work well for us illustrated in gure B.1. For the gorgonin skeleton without sclerites, which is dark, using backlight give enough contrast, illustrated in gure B.2. • The camera is mounted on a tripod to ensure stability. The setting we recommend :

-The camera should have a large captor, for a better dynamic and image quality.

A canon 5DmkII and a canon 6DmkII has been mostly used in our case. We would recommend a canon 5D as it is cheap on second-hand market with the best quality/price ratio. The iso should be as small as possible (typically 100-400) -The tripod head is mounted on a rail to facilitate multi-shot reconstruction if one image is not de ned enough. Depending on the panoramic mode (displacing the camera with translation, or using rotations), the projection has to be changed when reconstructed. -The lens should have a good magni cation factor (typically bigger than x. 3) or if needed with elongation rings, cheaper than a macro lens. Typically, a 100mm f2.8L macro, a 135mm f2 L with extension tube, and a Canon 50mm f2.5 macro has been mostly used. The aperture should be under f/5.6, with an ideal between f8 and f11 depending of the captor to minimize di raction. The bigger the focal length, the smaller impact of projections on the sides during panorama creation.

Chapter B. Scan process -Extension tubes reduce the minimal distance between the camera and the subject, thus increase the resolution. Yet they reduce light transmission (Tnumber) even at a constant aperture (F-number), and has to be taken into account when the manual setting are given.

-If a multi-image acquisition is needed because of the object complexity, the manual mode is best to minimize exposition di erences between image for the reconstruction. -For close details, a focus stacking might be needed for best quality. If so, multiple images at di erent focus distances with the same frame are needed, to be reconstructed in only one image. The gorgonian is placed on a LED panel, and is thus blocking the light. This method is particularly e cient to get precise contours coordinates, as the background exposition value is constant. Since sclerites are not opaque, we get also information on internal structure to some extent. The image seen on the computer screen is the live view of the camera.

Using small focal length give a great depth of eld for macro photography, but the camera is very close to the subject since L subject = L captor d f , with L subject size of the subject, L captor the size of the captor. This cause shading e ects from the exterior lights, and thus add complexity to panoramic reconstruction.

The use of extension lens is taken into account simply by replacing d by d -T , T being the length of the extension. The lens autofocus is not made to take into account the extension, and thus won't be e ective.

The focus-stacking are mounted with a personal python program, stacking the Laplacian of the grey-scale images on a numpy 3 dimensionnal array (X-Y-image), and determining which image is the sharpest ( biggest Laplacian value ) for each pixel.

The panorama are mounted with the open-source software Hugin, using projective perspective.

The used dynamic of the image (lowest to highest Luminance) is often small, thus it is important either to work in raw (to reduce luminance compression), or to rescale the luminance on the whole range of values You can nd the latest version of the code here : https://github.com/DaluS/PySkelWays

• IMG, it contains all the map and general information on the gorgonian.

• AllContours, which contains all the di erent contours/holes and the envelope. All the di erent contours are stocked in AllContours.list • AllArcs, with the same approach as AllContours but on Arcs • AllPlaces, same approach • AllVoies, same approach. We used the french name of "Voies" instead of ways. Usually, ways are regenerated from the information on Arcs and places at the beginning of each analyze, and thus not stocked as such.

All the parameters are stocked inside a le "parameters.p", which is generated at the beginning of a Extraction.py run. Most elements are accessible inside the code.

6 Generation of the objects 

Works on cracks

There has been extensive studies of cracks pattern [START_REF] Bucklow | The Description of Craquelure Patterns[END_REF]. Although the vision in term of ways exist since a long time in eastern culture, there are little traces in the literature [START_REF] Bohn | Hierarchical crack pattern as formed by successive domain divisions. I. Temporal and geometrical hierarchy[END_REF]. The image analysis of cracks patterns is often done [START_REF] Taylor | Art Forgery Detection via Craquelure Pattern Matching[END_REF], [START_REF] Gillooly | Path Opening for Hyperspectral Crack Detection of Cultural Heritage Paintings[END_REF]), but most of these are either based on places or arcs [START_REF] Sidorov | Craquelure as a Graph: Application of Image Processing and Graph Neural Networks to the Description of Fracture Patterns[END_REF]. A more general approach, and comparison to city pattern can be found in (Pousse 2020). 

Temporal interpolation

As tting, every frame would be too long (15 per second), and the local speed highly di erent between moments of the movement, we choose which frame we t. We decide by comparing the actual frame and the previous t. We get intermediate points between two ts using spline interpolation of the bezier coordinates. Splines are t with polynomials, on small portions through the initial points (typically a third order, on 5 points). The main advantage is that they give smooth curves, e ciently tting our points with no high order uctuations between two close points. (F.8)

Our limit conditions gives us :

δ q1 = sin(K) K - 1 
(F.9)

q 1 = -δ q -1/2 + cos(K) K 2 = 1/2 - sin(K) K + cos(K) K 2
(F.10)

We thus have the equation for the pro le i(s) :

i(s) = C Y K cos(Ks) -cos(K) K 2 + (s -1) sin(K) K - s -1 2 
(F.11)

Linear Width

Now we have w = s, so that equation [[[]]] becomes :

∂ 2 (is) ∂s 2 = - C Y K (s + s cos(Ks)) = - C Y K Q 1 (s) (F.12)
We will work with the variable j = is, and will solve Q 1 = s + s cos(Ks) the same way as in the previous section, with this time by part integration on the right term : + q s (F.14)

Q 1 (s) =
Our limit conditions are :

δ qs = -1 2 - sin(K) K - cos(K) K 2
(F.15)

q s = -δ qs -1 6 -2 sin(K) K 3 + cos(K) K 2 =
(F.16)

q s = 2 6 + sin(K) K + 2 cos(K) K 2 - sin(K) K 3
(F.17 Considering the branches as an ellipse x 2 + (y/a) 2 = r 2 as in the case of individual type abellum, we have to simply multiply equation G.1 right term by a factor a. In the case of branches with a radius bigger than the size between two branches 2l med (meaning that two parallel branches fuse into one large zone), we limit the depth to 2l med . This limitation is chosen according to our observation: if it is possible to have a region with a depth bigger than 2l med as shown on the rst gure of chapter 1, the depth increase very slowly in this case with the width of the branch after this value. Furthermore, experimental manipulations show that these regions are totally rigid and will not impact the deformation.

The typical distribution of Arc radius r is shown in gure G.2:

Normalized Arc width to determine y, we extract the map of r for each pixel by coloring the intersection between the two contours creating an arc by its median radius value, and calculate the map of y = min( (2rx -x 2 ), 2l med .

To extract the local contribution to I of each pixel, we simply have to calculate dI, with I = dIdx = y 2 dxdy, so dI = y 

Calculation of the Young modulus

As the structure of one branch is in two-layer, we have to take into account the Young modulus of both materials, with their respective radius, when estimating the rigidity B = E w I. A direct method would be to calculate the young modulus equivalent for each pixel, we calculate an equivalent E w for the whole arc so that we can compare branches and reinforcement contributions more easily.

We have observed a constant width of sclerites δ = 0.31 ± 0.04mm, measured on 6 gorgonians on ve branches each time.

We calculate the Young Modulus equivalent E w , according to r w the radius of the branch, r c = r w -δ the radius of gorgonin, E c Young modulus of sclerites, E g Young modulus of gorgonin. The Parent-Coulomb formula gives (summation of a hollow cylinder and a cylinder inside) :

E w r 4 w = r 4 c E c + r 4 w -r 4 c E g (G.2)
As : B equivalent of the structure, Contribution of the gorgonin cylinder inside, Contribution of the sclerite layer between r c and r w . We can reorganize G.2 as :

E w = 1 - δ r w 4 E g + 1 -1 - δ r w 4 E c (G.3)
replacing with = (1 -δ rw ) 4 -1, we nally have:

E w = E g + (1 -)E c (G.4)
In our case :

• E c = 0.1Gdyn.cm -2 ,

• E g = 10Gdyn.cm -2

• δ = 0.3 mm If 1 (which correspond to r w δ) E w = E g so only gorgonin contribute, = 1 (r w ≥ δ) we get E w = E c . We represent the evolution of with We can simplify all this approach using skeletons of gorgonians cleaned from their sclerite to only look at the gorgonin, and we advise such an approach for further studies. Still, with this method, we can conserve the skeleton in its ensemble.

8. Time bounds : We take the time in the middle of the rail, then we continue on both time direction while the low-passed acceleration is positive. The lowpass we use is nondephasing and the cut frequency is typically at 1/15Hz. For pendulum experiments, we stop when the amplitude of the movement is at the same order of length as the colored marker used to detect the position. Since we are measuring the position with a non-negligible noise, derivatives of the position amplify the noise. In consequence, we should as much as possible rely on position and speed instead of acceleration. 

Force signal extraction

The captors are monodirectional constraint jauge of reference CZL635-5 for a constraint up to 5kg, ampli ed and converted with ampli er SEN-13879, sent to an Arduino. A pre-treatment is applied on the Arduino and data are gathered on a computer, connected to the Arduino by a 10m USB cable, through the serial channel.

The calibration of the captor is done at each experiment, by placing the chariot at the extremity so that it cannot move and applying a weight for 30 seconds each time. Our signal is the sum of the two captors on the same side, minus two times the captor alone. We have a calibration method for the three captors together (force) but not for the torque, which thus will be only qualitative. An a ne law is then extracted, with less than 1% of error in usual cases. The constant value depends on how we tightened the screws on the captors, and the slope is the same at 17 ± 0.5values/g.

Signal synchronization

Position-Force synchronization is realized by manually nding the correlation between dx dt and the strongest signal, the precision being around 1/15ms (time between two frames). Automatic synchronization with correlation function has been tested, but are not giving much more precision and are slower to implement. Deformation-Position synchronization is realized on extreme events (collision of the trolley with the end of the rail, or rst movement in case of a pendulum).

Determination of F,V for rail runs

For each run, we calculate the terminal speed V from multiple approaches :

• Maximal speed of the run, in the last 10% of the trajectory V last • Statistically most present value in the last 10% of the run, with a histogram of theses values of N points /10 bins, V stat • With an exponential t of the run as V (t) τ + V (t) = V exp , with the score calculated on the position. Although the dynamic of this equation is not representing the real movement, the result is a surprisingly coherent with our data, even if we only use the pro le with only points under 0.7V max The mean value of these three values gives us our representing the speed and the mean absolute variation that value our standard deviation.

The force is calculated the same way for experiments of 2018, with the exponential t value replaced by the mean value during the run. For 2013, the value of σ F if the threshold value.

Determination of force and speed for rail runs

For each run, we calculate the terminal speed V from multiple approaches :

• Maximal speed of the run, in the last 10% of the trajectory V last • Statistically most present value in the last 10% of the run, with a histogram of theses values of N points /10 bins, V stat • With an exponential t of the run as V (t) τ + V (t) = V exp , with the score calculated on the position. Although the dynamic of this equation is not representing the real movement, the result is a surprisingly coherent with our data, even if we only use the pro le with only points under 0.7V max The mean value of these three values gives us our representing the speed and the mean absolute variation that values our standard deviation.

The force is calculated the same way for experiments of 2018, with the exponential t value replaced by the mean value during the run. For 2013, the value of σ F if the threshold value. , where R, B, and G are respectively Red, Blue, and Green channel so that we have the position of the red tape on the bar of the pendulum. The bottom is the image we extracted it from. The crop has been done to be sure that we keep the signal of the same tape. Note that the camera support hide the tape on the lowest part of the bar, and is sensible to parallax e ects since it is closer of one meter to the camera

Methode detection des extrenums

Figure 1 .

 1 Figure 1.: Representation of the main elements we use for spatial network description , with on A) the complete numerical network as result from chapter 3 protocol B) Arc, the basic unit (edge of a spatial network) C) Way, as an ensemble of arcs D) Branch, here shown as a directed way E) Plume, as an ensemble of plumes
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 1 Figure 1.1.: An example of Gorgonia ventalina, shot at the "îlet à Cochons" at -4 m, on the side of the island exposed to the ocean swell, facing the main swell direction. This sample is particularly large (width ≥ 1.5 m).
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 1 Figure 1.2.: Anthropocentric vision of the Classical classi cation, where radial distance represents the date of the apparition. We will here focus mostly on the yellow part (Corals) and their surroundings. Taken from https://www.evogeneao.com/ .
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 1 Figure 1.3.: G. ventalina in the classical classi cation, which is the outline of our section. Adapted from wikicommons.
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 1 Figure 1.4.: Diversity of coral species around the world. The black arrow shows the location of Guadeloupe. adapted from (J. Veron 2015)

Figure 1 .

 1 Figure 1.5.: Zoom on polyps of G. ventalina. Each yellow unit is a polyp. These ones are particularly small, while some Anthozoan polyps can be up to 10 cm wide.

Figure 1 .

 1 Figure 1.6.: Example of growth form of the hexacorallian Pocillopora damicornis, which is organized in small colonies of ≈ 30 cm. Examples (a) to (f) correspond to environments with less and less water ow. Adapted from (J. E. Veron et al. 1976).

Figure 1 .

 1 Figure 1.7.: Classi cation of shapes, by their degree of reticulation: A and B: Briareum asbestinum, C: Euniceopsis exuosa, D: Antillogorgia sp., E: Iciligorgia schrammi, F: Gorgonia subergorgia, G: Gorgonia ventalina. Adapted from Philippot 2018
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 1 Figure 1.8.: Examples of reticulated gorgonians, with di erent meshwork patterns. From left to right: G. anella, showing great diversity across di erent shapes. black and white again, zoom on A. reticulata. Annella reticulata, 60 cm tall. Melithaeca caledonia, symmetric mesh with no continuity in branches. Gorgonia mariae. Pictures from Manfred et al. 2001.
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 1 Figure 1.11.: High density of gorgonians on the south-east coast of Guadeloupe, at 8 meters depth. In that case, they are particularly big ≥ 1 m for a large portion, with many perpendicular plants that stopped growing, for example in the case of the white one. G. ventalina is widely spread around the French Antilles, colonizing reefs, sedimentary and volcanic substrates. They are rarely found in zones with high turbidity.
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 1 Figure1.12.: G. ventalina found close to the one illustrated in gure 1.1. The lighter parts are thick branches which locally increase rigidity. This example is particularly impressive in terms of reinforcement: lateral reinforcement in particular is rare on most individuals.
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 1 Figure 1.13.: Measure of the growth by (Manrique-Rodríguez 2006), based on height and width

Figure 1 .

 1 Figure 1.15.: Left: Schematic drawing of sclerites, linked by collagenous bers, seen from top and lateral view, when deformed. Right: E ect of deformation on the sclerite ber. The exact composition and width of layers depend of the species, here not explicitly de ned. From (Manfred et al. 2001)
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 1 Figure 1.16.: Very schematic visualization of the di erence between G. ventalina and G.abellum morphology, as a cross section of branches perpendicular to the plan of the gorgonian structure, in the direction of the ow.
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 1 Figure1.17.: Map of principal coral reefs of Guadeloupe with in red the studied sites. Adapted from(Philippot 2018) 

Figure 1 .

 1 Figure 1.19.: Representation of the interaction between G. ventalina and its environment.The swell is deforming the gorgonian, and the deformation is perceived locally. The ow behavior is modi ed and change the ability to grab food and be exposed to light. This component of energy and perception will in uence the way the gorgonian grows, and the newly grown shape will have a new type of interaction, retroacting on the two previous loops.

Figure 1 .

 1 Figure 1.20.: Painting "Panaches de mer, lithophytes et coquilles exposed at the Louvre, from Anne Vallayer-Coster (1744-1818).Sea fans such as Gorgonia ventalina are among the emblem of the former colonial empire overseas. it is one of the most notorious and important in shallow areas(Cairns, 1977, Lasker and Co roth, 1983, Botero, 1987) 

Figure 2 .

 2 Figure 2.1.: Example of zooms on the structure. Left: the structure is covered with white sclerites, in which calices are embedded (individual polyps calcium carbonate skeleton).Right: some sclerites of di erent colors can still be seen on top of the gorgonin skeleton.

Figure 2 . 2 .

 22 Figure 2.2.: preliminary vocabulary for gorgonian shape description:The overall structure is the skeleton The green part is the foot, the part that connects the gorgonian to the reef The black line correspond to a split in the structure The red zone is a thicker part of the gorgonian, which we name a reinforcement. There are multiple reinforcements on a gorgonian. The purple zone shows a pattern of branches, which is repeated all over the skeleton and is called the meshwork

Chapter 2 .

 2 Extraction of growth principle from shape

-Figure 2

 2 Figure 2.3.: Top: Photographs of the 11 gorgonians sampled from the site "Cochon" for mechanical studies. The scale is the same for the rst two sections.Center:Photographs of the 11 gorgonians sampled from the site "Cola" for mechanical studies. The scale is the same as the previous section. Bottom: Photographs of the 5 gorgonians sampled from the site "Cochon" in 2013 for mechanical studies. The scale is di erent from the two previous sections.

Figure 2 .

 2 Figure 2.6.: Zoom on the innermost part (closest to the foot) of a split of the gorgonian "C".

Figure 2 .

 2 Figure 2.7.: Shape of a split, with tannins on both sides, and a padding-like sclerite layer which does not match the usual meshwork pattern

Figure 2 .

 2 Figure2.8.: Zooms on the meshwork. It can be seen either as an ensemble of holes, or an ensemble of linking elements (that we will call arcs). The darker dots correspond to polyps placement. They are not evenly distributed, as it can be seen on the right. The white-beige elements are sclerites which can be partially distinguished on the left image. We added a red line on the right image to show the continuity between arcs, which correspond to branches. On the left image, two curved branches can be seen going from the lower-right part of the image to the top-left of the image.

Figure 2 .

 2 Figure 2.9.: Example of zoom on the meshwork, with thin and long branches. In teal, we represented some continuous lines in the network.

Figure 2 .

 2 Figure 2.10.: Top: A reinforcement along the skeleton, with its two borders shown in white.We added the continuity of some branches in various colors. The width of branches, according to this type of observation, implies that the width of a branch and its direction are not necessarily linked. Bottom: A reinforcement on a gorgonian with sclerites partially removed, which is locally split in two then do a fusion.

Figure 2 .

 2 Figure 2.11.: Detail of the gorgonin ber skeleton, under the layer of sclerites. We see that bers follow the direction of reinforced parts, and thus not the branch continuity.

Figure 2 .

 2 Figure 2.14.: In green, diverging places which are the beginning of "daughter branches", in red converging place which are the end of one branch. The branches have been representedwith their continuity by colored arrows. The criteria used are rst orthogonality, then the aspect of the axis and its width evolution, then the curvature. The curvature is slowly evolving compared to the size of branch portions (arcs), and this is more a criterion on the continuity than on the orientation on small branches.

Figure 2 .

 2 Figure 2.16.: The shape of Pseudopterogorgia bipinnata, a "sea plume" species.

Figure 2 .

 2 Figure 2.18.: We see on this example a clear line with, on each sides two di erent growth pattern, size and density. Furthermore, there is a high density of 3D sprout, that we have no explanation for their apparition in the shape.

Figure 2 .

 2 Figure 2.19.: This gorgonian has multiple plans of growth, each being locally perpendicular to the other one they are connected.

Figure 2 .

 2 Figure 2.20.: transplantation of gorgonians from the site of Cochon to the site of Cola.

Figure 2 .

 2 Figure 2.21.: First transplantation experiment, at Cola. Top left: "cadaver" of transplanted gorgonians one year after the beginning of the transplantation. We can nd which gorgonian they belong according to the reinforcement. Top right: image of a nearby gorgonian from the site of transplantation (Cola). we can recognize the shape of G. ventalina reinforcement, yet colonized by a re coral. Bottom left: this one (still on the same site), is at both time eaten by a Cyphoma gibbosum, and infected by a fungus which has destroyed a part of the meshwork. Bottom right: complete colonization by a re coral of a skeleton of G. ventalina. We can see another example of G. ventalina behind, partially eaten but still alive.Realizing the di culty of local gorgonians to grow in this environment, we considered that the environment, and not our protocol, would be the cause of the death of the transplanted one.

Figure 2 .

 2 Figure 2.22.: Representation of the local growth and values: the black line correspond to branches, the dotted line to potential branches, only represented for a better understanding. In red and orange, the typical length L after which a branch creates new branches. θ correspond locally to the angle between the branch tangent and the vertical. in blue is the perpendicular angle between a branch and the one creating it. in green is the local curvature radius when the angle to the vertical correspond to a perpendicular angle.

Figure 2 .

 2 Figure 2.23.: Representation of the 2D array for collision. In blue resp. green, branches 1 resp. 2. Dashed blue cases correspond to an iteration of branch 1 growth. These four cases value are read, and a value of 2 is obtained. In consequence branch 1 stop its growth, then the two lower cases are lled with 1.

Figure 2 .

 2 Figure 2.25.: Example of simulations. For each, red branches have been stopped, green branches continue to grow. A without noise on direction, small noise on the probability of creating a new branch T = L K = 0.1. θ 0 = 0 B no noise, T = 10. The pattern looks more like gorgonia mariae. θ 0 = 0 C high noise on branch creation and tropism, θ 0 = 0 D T = 1, The obstacle is taken into account in θ 0 with a coe cient of 0.8 (only 20%) of the tropism is from the oor. Small noise on branching probability E T = 1 The obstacle is taken into account in θ 0 with, a coe cient of 0.5

Figure 3 . 1 .:

 31 Figure 3.1.: From left to right: the network of roads in Avignon, crack patterns created by the desiccation of clay, from Philippe Bonnin, leaf venation patterns, network of Physaraum, from []. They are all planar spatial networks that are evolving through time.

Figure 3 .

 3 Figure 3.3.: Closeness indicator calculation, on Arcs (left) or on Ways (right), in ten categories (not same scales). For Arcs, the closeness indicator simply means measuring the boundary e ects, while for ways it indicates the e ective closeness of each way.Measures taken from(Lagesse 2015) 

Figure 3 . 4 .:

 34 Figure 3.4.: The code we have developed: going from an image to the hyper-graph of arcs, here applied on the name of the code. Published here: https://github.com/DaluS/ PySkelWays. A short code-oriented guide is available in C.

Figure 3 .

 3 Figure 3.5.: Example of segmentation using machine learning classi cation and computer vision. This type of method is extremely fast and e ective, but requires a trained algorithm and thus an already existing dataset. As machine learning evolves, this type of solution should become the norm but it is still not usable on our speci c case. Image extracted from Analytic Vidhya

Figure 3 .

 3 Figure 3.6.: Top left: histogram of luminance repartition before ampli cation. Top right: photo taken on the terrain with no proper setup. Bottom: intermediary luminance pixel corresponding to the junction between the background and the gorgonian luminance distribution, between the two red bars)

Figure 3 .

 3 Figure 3.7.: Blur-threshold e ect, with the threshold at the upper frontier of the histogram junction.Left : is before the threshold (opacity 50% for visualisation). Right : after a blur-threshold e ect. The improvement is enough to get the overall properties, even if the shape is not perfectly respected in these areas.

Figure 3 .

 3 Figure 3.8.: Left: binarized image, with the texture reapplied to the image. Right: purely binarized image.

Figure 3 .

 3 Figure 3.9.: Left: in gray are the holes in the structure, in black their contours. Colored lines are arcs (each of them is of a di erent color), The red dashed line is a way, uniting multiple arcs.Triangles correspond to places centers, and their radius correspond to the distance with their (at least 3) adjacent contours. Right: Red crosses are vertices and are linked two-by-two by segments (here in blue, with a black dot and an arrow). The ensemble of segments between two points connected by two segments constitutes arcs. By construction, all vertices are equidistant to both contours and segments perpendicular to the local contour tangents, as seen in the Voronoï section.

Figure 3 .

 3 Figure 3.10.: The di erent elements we use for the Ways extraction process A: Contours: delimitation between the skeleton and the exterior, as a closed line B: Enveloppe: Exterior contours C: Arc: edges of the branch graph. These edges end either by an elementary place (intersection of arcs) or a dead end (in the case of a branch). Arcs being their spatial equivalent, they carry an ensemble of position, and by consequence a curvature D: Elementary place: intersection of at least 3 arcs. They are associated with the smallest distance to the contours D (circle radius). E: Ensemble of contours, colored by their surface F: Ensemble of arcs, each colored aleatory G: Places, colored by the number of arc they are connected to H: Ways, ensemble of arcs linked together, here colored by length

Figure 3 .

 3 Figure 3.11.: Zoom on a Voronoï diagram of contours points, before cleaning. In blue, the points of contours, in light green the inside of contours. In orange, pink and violet, the Voronoï Vertices created, linked by black segments. Orange: Vertices are equidistant to two points of the same contours Pink: Vertices are equidistant to two di erent contours and will be part of Arcs Teal: Vertices are at equidistant to three or more points and will be the center of elementary places

Figure 3 .

 3 Figure 3.13.: Elementary place (red circle), with three arcs. The way would be composed of the orange and blue arcs, yet the part close to the circle is deformed due to the presence of the green branch.

Figure 3 .

 3 Figure 3.14.: Complex place, composed of 3 elementary places: two of them are really close (bottom white stars). They are linked by Arcs inside (dashed lines), and the arc linking di erent places. This case is particularly di cult in terms of links afterward, since two branches are intersecting almost in a parallel approach at the top (orange and blue arcs).

Figure 3 .

 3 Figure 3.15.: Example of parts on a big ≥ 40cm Gorgonian: green parts are inside of places. The position of the zoom is signalized by the red box on gorgonian image

Figure 3 .

 3 Figure 3.16.: Elements to determine the link of a simple place (3 Arcs, one elementary place). Visually, we see that the "correct link" would be 1 with 3 The place is associated with a center (purple circle), a radius D to the border (black circle), and a safe circle of radius kD. On the intersection between each arc (here labeled from 1 to 3) and the safe circle, we determine an emissary that carries the properties of its arc. We link the emissary points, by a segment on the inside (dotted points), and the outside (straight line). These link propagation extremities are determined using the method shown in gure 3.17

Figure 3 .

 3 Figure 3.17.: Concept of ray marching:The line is elongated of the distance to the closest obstacle (here in pink), and iterated until there is a collision.

Figure 3 .

 3 Figure 3.18.: Comparison between criteria, on a big place. The distance map is the blue-to green color, elementary places are red circles, Arcs in black. In white is the chosen Link, in green all the link propagation.

Figure 3 .

 3 Figure 3.19.: Removal of the "bubble e ect" seen on the arcs in violet, by skipping points inside places when connecting the arcs. The reconstructed ways are shown in black and are now going straight through places.

Figure 3 .

 3 Figure 3.20.: Split interface: the user can zoom/de-zoom and translate the camera along the structure, as well as click on the links (in black). The removed links are shown in white. The color of each way is random.

Figure 3 .

 3 Figure 3.21.: Link interface: for each split place, the extremities of all arcs can be connected to the one the user want. When a link is manually done, it automatically switches to the next one.

Figure 3 .

 3 Figure 3.22.: Networks we compare in computation time and complexity. Bottom right is a cracks pattern created with clay that we present in A D.

Figure 3 .

 3 Figure 3.23.: Comparison between automatic construction (Top), and corrected network (Bottom). Colors correspond to the length in log scale, from blue (short) to red (long). The visualization is made in the software QGIS.

Figure 3 .

 3 Figure 3.24.: Images of neurons, left in neuronal culture. Right, snapshot of a minimal neural device with 700 neurons, using the network properties to create logical doors. Adapted from renault 2015.

Figure 3 .

 3 Figure 3.25.: Time creation for each pixel, in color from blue to red. Here applied on cracks experiment 119 from Philippe Bonnin, in the middle of the process. The drying process began on top-right. Bottom-left coloration corresponds to parts in which the process did not occur yet, and thus the time measure is only noise for the moment. On the top right, we can see that between two old (blue ways), are added green and red ways, corresponding to the second wave of desiccation.

Figure 4 .

 4 Figure 4.1.: Example of object recognition and classi cation, here in the context of autonomous driving. This type of approach is based on heavy training of image analysis, extracting the visual characteristics of each object. Identi ed elements are thus associated with a function (moving obstacle, legal wall...) to improve the car movement. From OpenCV classi cation.

Figure 4 .

 4 Figure 4.2.: Analogy between the ways spatial representation (left), and as a non-spatial graph. The way w1 for example has three arcs, and corresponds non-spatially to a node of degree two (two edges).

Figure 4 .

 4 Figure 4.3.: left: Visualization of a gorgonian as ways. Right: ways connection as nodes, the color corresponding to the type of relations (green: creation of way, red, collision with the existing one). By Paul Jeammet during his internship. The principle of ways orientation will be explored in the next chapter.

Figure 4 .

 4 Figure 4.4.: Degree distribution for the gorgonian "A". Large ways with a black contour are connected to the exterior and considered as growing. The color code corresponds to the distribution values on the right. In black is represented the power-law t of the log-bin distribution and in dashed line the error between the t and the distribution in log coordinates. The t is done on the log of the population with bins of log size underestimate the slope of the real distribution of -1.

Figure 4 .

 4 Figure 4.5.: Degree distribution for the gorgonian "10"

Figure 4 .

 4 Figure 4.6.: Degree distribution for the gorgonian "B"

Figure 4 .

 4 Figure 4.7.: Degree distribution for the gorgonian "MSC3", following same convention as 4.4. This one has been eaten at multiple time, thus the highly assymetric shape, with an arbitrary orientation (the foot is top right here). Each side has its own distribution (sharing the background color), white background correspond to both sides together.

Figure 4 .

 4 Figure 4.8.: Cracks pattern for "experiment 59". The convention is the same as before

Figure 4 .

 4 Figure 4.9.: Cracks pattern for experiment 36 (bottom).

Figure 4 .

 4 Figure4.10.: In this experiment which is number 139, the thickness of clay is an a ne function of the radius. The arcs are smaller at the center, yet the distribution of degree still correspond to a power law. We have no information here about the relation between the time of appearance and the degree of ways. A deeper study of such process could be to consider a non-euclidian geometry, with an expansion factor inversely proportional to the with of the clayr layer, that should give back a more uniform arc size.

Figure 4 .

 4 Figure 4.11.: Distribution of degree on dragon y wings. The t has been calculated without taking into account the ways of degree one, on 15 bin. There are clear defaults on the ways reconstructions, adding noise to the measure.

Figure 4 .

 4 Figure 4.12.: Degree distribution for the way graph of Avignon (top left), Paris (top right), London (bottom left), San Francisco (Top right), with their respective slope using the same method as in our case. Figure created by Claire Lagesse and Stephane Douady (Preprint data).

Figure 4 .

 4 Figure 4.13.: Left: Distribution for all numerized networks of gorgonians. Right:, Distribution for all numerized cracks. In both cases, all distribution are normalized on their population. Colors correspond to the number of ways, from blue (few ways in the structure) to red.

Figure 4 .

 4 Figure 4.14.: Left: Distribution of growing branches degrees, for each gorgonian with the same notation as the gure 4.13. Right: Relation between the distribution of degree for the full distribution and the growing ways. The values are the ones corresponding to the real distribution taken into account the measurement in logarithmic bins of the previous case. The size is proportional to the number of ways, and the aspect ratio is de ned as the log of the ratio length/width (negative values correspond to wider than longer gorgonians)

Figure 4 .

 4 Figure 4.15.: For each, column, on top the elementary place, second line the degree distribution in semilog (linear for the x-axis, log in the y-axis), bottom the grid used with PySkelWays, using a random link selection.

Figure 4 .

 4 Figure 4.16.: Iterative cut process of a square. Left, the color correspond to the length, right the color correspond to the step of the process (order of color black-red-violet-blueteal-green )

Figure 4

 4 Figure 4.17.: Cutting grid process, with two mechanisms implemented to determine which is cut: the element (rectangle) i with highest potential is cut, and the potential is calculated asU i = j d -α ij L β i , d ijtopological distance between two elements, α being thus the attractiveness of the neighborhood, and L i the longest side of the element: β correspond thus to the uniformity of the grid. By changing the value of coe cients coefcient one stays on a power law distribution and change the coe cient. Here calculated on logarithmic bin so it correspond to 2.75. By Romain Pousse.

Figure 4 .

 4 Figure 4.18.: Top left: Filled grid, with on left a pattern of 100 * 100, the color varying from blue ( rst elements) to red (last elements). Bottom left: grid of 1000 * 1000, right: evolution of degree distribution, rst being blue to the latest in red. The colormap of the pixel representation and the statistics are not correlated.

Figure 4 .

 4 Figure 4.19.: top: Filled grid, with on left a pattern of 200 * 200, ). right: evolution of degree distribution, rst being blue to the latest in red, with one line every hundred iterations.

Figure 4 .

 4 Figure 4.20.: iteration process: 1) is only one way of degree 1, which 2) creates 2 ways of size 1 and grows of one degree (β = 2). the case β = 1 would be removing either the red side or the green side. 3) is the second iteration of the process, still for β = 2. Teal circles can be seen as places crossed by the way they create if we follow the logic of PySkelWays creation.

  2.: Values of P calculated for various number of iteration i, degree k, in the case β = 1 (left), and β = 2 (right).

Figure 4 .

 4 Figure 4.21.: Left: Representation of all 23 gorgonian distributions of arc size divided by the median length of the distribution ( horizontal normalisation), with the maximal value of population scaled to 1 in density ( vertical normalisation), by points on a 30 bins statistics. The color correspond to the size of the gorgonian, from smallest (blue) to biggest (red) in number of ways. The black line correspond to a lognormal distribution t of all points. Right: representation of arcs, color according to their size. Arcs in purple are not taken into account, mostly generated due to a splitting of the exterior contour with a lowpass frequency badly chosen, as explained in chapter 3 to create extremities

Figure 4 .

 4 Figure 4.22.: Left: Distribution of all gorgonians way length L/L arc , the population normalized so that the total is one, the color correspond to the number of ways (same convention as in gure 4.13). Dashed line correspond to all log of distribution added. Right: Distribution of ways lengths for cracks,with the same approach.

Figure 4 .

 4 Figure 4.23.: Top: Fit of all the ways normalized length together with a lognormal. black correspond to the overall distribution, red to only values bigger than 10 -1 which correspond to wellde ned ways according to the image resolution. Bottom: mean relative error in function of the standard deviation of the t, in function of the parameter σ value, with µ = 1, on the ensemble of the distribution.

Figure 4 .

 4 Figure 4.24.: Distribution of way length for Avignon, Paris and Manhattan, with their log-normal t. From (Lagesse 2015).

Figure 4 .

 4 Figure 4.25.: Correlation between topological length and normalized Euclidian length: x axis correspond to the degree in log-scale, y axis to the di erence between the normalized length L/l arc and the degree Narcs. The pink line correspond to the mean value for each degree. Here presented on the gorgonian "5". If there was no correlation between the way degree and the size of the arc, we should only observe a symetric distribution of noise, with the pink line following the black line

Figure 4 .

 4 Figure 4.26.: Color by surface of holes, with left the original image, center image regularized on the typical width of arc (median value), right with branches without width. Red points correspond mostly to region in which the places are not well reconstructed, fusing multiple holes.
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 51 Figure 5.1.: 5-points Bezier ts of branches on a length of 20l med

Figure 5 . 3 .

 53 Figure 5.3.: Top-left: map of the studied branches, with each Bezier t colored by the angle with the foot at the beginning of the branch. Top-right, superposition of all pro les κ = ∂θ ∂s along s, s being the curvilign abscisse along the branch in arc length. Bottom left: all pro les of θ along s. Bottom right: all curves as θ = f (κ). For each curve, the color correspond to the color of the Bezier t shown top-right. Curvature is presented on a logarithmic scale.

Figure 5 . 4 .

 54 Figure 5.4.: Top: Di erence between the angle of the branch when it is not curved anymore with the foot for "Cochon-Canonique", shown in gure 5.3. Bottom: Same angles for the gorgonian "10" represented on the right.

Figure 5

 5 Figure 5.6.: Left: Hierarchy number from the foot, branches are colored according to their hierarchy value from blue to red. Branches in black have no hierarchy value. Right: Histogram of the hierarchy distribution, with the Gaussian corresponding with equation 5.1.

Figure 5

 5 Figure 5.7.: Each line is the Hierarchy study from the foot, top "Cochon-Canonique" and bottom "9". Left: Hierarchy number from the foot, branches are colored according to their hierarchy value from blue to red. Branches in black have no hierarchy value. In this version, we also authorized killed branches to transmit the hierarchy to their neighbors, hence the smaller hierarchy number. Right: Repartition of the hierarchy value, with also the information of the degree for each hierarchy values. The color of the 2D histogram corresponds to the repartition in degrees of the way having the same hierarchy number. The summation of each horizontal contribution gives the degree distribution of chapter 4. The vertical distribution shows the degree distribution of each set of branches having the same hierarchy values, with values corresponding to the left y-axis. Red points correspond to the statistic of hierarchy (summation of the vertical contribution), with the axis of reference on the right, in log scale. the black dashed line corresponds to the Gaussian distribution.
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 5 Figure 5.8.: Same convention as in gure 5.7 but for the exterior hierarchy with a propagation on mother branches.
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 5 Figure 5.13.: Left: The network of the gorgonian "7", with each plume of a di erent color. Green dots are representing the points of creation of the plume mother branch, in red the point of collision to an already existing branch. Right: Representation for "Cochon-Canonique".
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 5 Figure 5.14.: Left: root network characterization in three categories by Guillaume Lobet and Draye 2013. Right: categorization of branches of a gorgonian G. abellum

Figure 5 .

 5 Figure 5.15.: The color are ways, arrows are oriented arcs with their number.We represent by < a branch which appear before the other one (temporal hierarchy). We extract the information from branches: C00 < C01 , C10 < C11 < C12 , C20 < C21 < C22 , C30 < C31 < C32. We extract the information from the daughter-mother relation: C01 = C00 , C20 = C01 , C40 = C12,C50 = C22, C60 = C11 We extract the information from the killed branches: C21 < C60 , C31 < C50 , C41 < C22 , C32 < C41
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 6 Figure 6.2.: From left to right: a) The deformation, caused by the resonance of the bridge of Takoma with wind solicitation caused its collapse in 1940. b)The Viaduc de Millau uses the elasticity of its structure to change its resonance frequencies with the amplitude of deformation, avoiding instabilities. In this experiment of[START_REF] Eldredge | Passive locomotion of a simple articulated sh-like system in the wake of an obstacle[END_REF], this dead sh can withstand the current, and even go upstream through a simple passive movement induced by its deformation.

Figure 6

 6 Figure 6.4.: Movement during two periods of waves, for a gorgonian in situ. The extraction of the movement has been manually done with Bézier pro les, as explained in A E. Between each pro le is 1/15 second.
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 6 Figure 6.9.: Angle repartition of a deformed gorgonian, schematized. Left: The at surface, Middle: Angle nomenclature of the deformation, Right: consequence of the split on the angle measure following both lines. The discontinuity corresponds to moment the variation of the coordinate is going from one edge of a split to the other.

Figure 6

 6 Figure 6.11.: Snapshot reconstructed of the movement in gure 6.4, on half a period.The movement of the di erent parts is not synchronized, as the smallest one close to the reef have already changed side on the second snap (green), whereas the second highest change side on the fth (purple) and the highest part on the sixth (yellow).
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 6 Figure6.13.: left: two gorgonians close to each others, with splits close to the foot, but also an equivalent of a split between both of them, located at 1m depth next to Cola's pass. right: The shape of this individual, growing on the side of the ri , correspond well to the reef shape on the right side.

Figure 6 .

 6 Figure 6.14.: Illustration of the crownshyness phenomena, showing an interstice when there is no wind. from wikicommons.
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 6 Figure 6.16.: Split of the gorgonian "2". There is on the meshwork a long zone of anastomosis between the two plumes with multiple traces of stress and shears. When the two plumes converge the anastomosis still occurs, yet on the divergence, the split is created.
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 6 Figure 6.18.: This gorgonian has only one split on the right, the biggest part exhibit reinforcements in the orthoradial direction. Because of the rigidity induced by the reinforcements, the movement is only in one direction.
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 6 Figure 6.19.: Scheme of a gorgonian, seen as a beam, in the ow. All the properties of the gorgonians are going to vary only following s, with no 3D e ects taken into account, and thus are integrated along lines equidistant to the foot, represented as a dashed line on the right. The important deformation variable is θ, the angle with the horizontal plane. a compliment on real data can be seen in gure G.1.
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 33 9) As done by (gosselin1), we can use a new spatial length s = sC 1/, reducing the equation to ∂ 3 θ ∂s = sin 2 (θ), with s ∈ [0, C 1/]. The maximum of curvature will always be at the foot, and the local radius evolves as R(s = 0) ∝ C -1/3 Y
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 6 Figure 6.21.: Normalized pro le i K (s)/i K (0)for the domain of K, blue being K ≈ 0, red K = π/2. The pro le can be considered as constant, with ≈ 5% of maximal di erence between |K| 1 and K = -π/2.

  Figure 6.22.: Schematic representation of the pro les width, with the shade of gray representing the evolution of the rigidity (darker mean more rigid). Interrogation points correspond to pro les found by solving equation 6.10
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 6 Figure 6.23.: First line: Pro les and curvature in function of the Cauchy, for di erent Width and Rigidity pro le, for C Y ∈ [10 -1 , 10 3 ]. Red pro le is C Y = 1, and black pro les at 10 -1 , 10, 100, 1000. Second line: Evolution of the log of the curvature, according to the coordinate s and the Cauchy number. The dashed black line correspond to C Y = 1.
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 6 Figure 6.24.: Evolution of the main characteristic of a beam deformation in function of the Cauchy number and the type of beam.

Figure 6 .

 6 Figure 6.27.: Each properties relevant for a mechanical study, and how they can be obtained : (a) and (b) for deformation, either from the splits as in gure 6.7, or from experimental measures as it will be shown in Chapter 7. (c) width and s measurement, from image analysis as shown in G (d) relation from equation F.5 for steady movement links all relevant variables (e) and (f) are measures through image analysis of B(s) = E(s)I(s), using a method we develop in annex G (g) dimensionless parameters obtained from environmental measures or from the measurement of all variables as it will be done in Chapter 7
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 6 Figure 6.29.: Left: 2D histogram distribution of dB in function of s for the gorgonian "Cochon-Canonique" from gure G.6, the black line represent B 0 . Right: representation of the rigidity, normalized by the maximum value of the total rigidity B total = B renf + B base , its two contributions B total and B base , and the width pro le W scaled by B 0 α, (α being the percentage of the of the structure lled.

Figure 6 .

 6 Figure 6.30.: Pro le of B base according to the scaled Width for each gorgonians. 1 correspond to the exact correspondance between both pro les (dashed black line), and the color of each line correspond to the scaling of the gorgonian length L

Figure 6 .

 6 Figure 6.31.: From left to right B renf W ,B renf ,B renf /W , in Arbitrary units to compare all pro les. The colors correspond to the size, and the name given to each gorgonian is indicated on the right. Both axes are in log scale, although no of same decade size for the rst curve.

Figure 7 . 1 .

 71 Figure 7.1.: Scheme of the structure for drag and deformation measurement. The description of each parts is following, with the color code corresponding between names and scheme parts.

Figure 7 . 2 .:

 72 Figure 7.2.: Deformation of gorgonian along the middle line, as Bezier pro le extracted in the stationary regime of deformation. The color correspond to the speed, and the dashed line to pro le when there is no solicitation.

Figure 7 . 3 .

 73 Figure 7.3.: Heighest point (Y coordinate of the tip) of the pro le in function of speed, for both sides. That point being always but in two marginal cases the tip of the gorgonian.

Figure 7

 7 Figure 7.4.: Dimensionless Euclidian distance between the feet and the tip of the gorgonian, for all the di erent speeds. Diamonds are the position and value of lowest extensions for a same side

Figure 7

 7 Figure 7.5.: Corrected dimensionless curvature, with the steady speed as color.

Figure 7

 7 Figure 7.6.: Evolution of the curvature at the foot (dimensionless unit) with the stationary speed. Each color correspond to one side of the gorgonian.

Figure 7

 7 Figure 7.8.: Maximum of curvature along the gorgonian, with the collapse on recongured part U > 0.1 m.s -1 (but for A, which is at a lower coe cient), and position evolution of the curvature maximum

Figure 7

 7 Figure 7.9.: Pro le of deformation (black) and their t ( XY, κ). Each line correspond to one side of the gorgonian

1 / 3 Y 4 - 0 -

 1340 , consistent with a uniform beam in a uniform ow gosselin1 -Maximum curvature: ∝ U 1/Curvature position: ∝ -log U U Maximal Height: ∝ U -1/2 -Extension: Minimal value ∝ log U U 0

Figure 7 .

 7 Figure 7.11.: Work ow for the drag characterization of gorgonians, as developped in A H. {} sign symbolize accumulation of previous data, with (A) ≈ 15 weights per gorgonians, and (B) 17 gorgonians measured.

Figure 7 .

 7 Figure 7.12.: For each gorgonian represented by its name, evolution of the relation between the drag force and the speed in the steady regime, in a log-log graph with the decade size for both axes. Errorbars are respectively calculated as the standard deviation between our di erent steady speed and force indicators. When two di erent regimes (uncon gured then recon gured) can be distinguished manually, we introduce a recon guration speed of U 0 and measure the slope on the recon gured part. The slope values are obtained with a Power-law t F = ρC D SU 2+ν , giving both C D and ν. All values are compiled in the table 7.1

Figure 7 .

 7 Figure 7.13.: Left: F/S in function of the speed for all the gorgonians, on log-log graph.All the di erent points are following the same trend, around a slope of 1, with a translation around 1.5. With all gorgonians together, it is not possible to read any critical speed. Right: result of the t with all the points (even when not recon gured), with separate values for each gorgonian. To show how the impact of the shape and location properties, the color is the surface of the gorgonian, the point size is their height, the symbol the place they come from.

Figure 7 .

 7 Figure 7.14.: Impact of a bad Force o set selection on the readability of critical speed U 0 and of ν coe cient.The dashed line is asymptotic behaviors, black line the expected behaviors for a thresholded recon guration at speed U = U 0 . The colored line corresponds to the black pro le, with an o set value applied proportional to the minimum strength. If the impact is not perceptible at U min = 0.1U 0 , important o set (O set/min(F)≈ 1) can hide the value of U 0 if too negative. Inversely, positive and too large o set implies a wrong non-recon gured slope with higher values, but U 0 is still well de ned. An o set on F with no recon guration threshold will give a very slow transition easy to identify.

Figure 7 .

 7 Figure 7.16.: Phase diagram of the pendulum movement, with di erent gorgonians attached. The color is the value of the acceleration (color bar corresponding at the bottom of the graph. Very low amplitude (≈ 10cm), is deformed in speed as seen at the center of every spiral, due to the position tracking. The trajectory of a linear pendulum in this choice of the axis should be a circular spiral. There is a slight dephasing for important amplitudes in the case of C already qualitatively readable here.

Figure 7 .

 7 Figure 7.17.: Evolution of the energy in time, in semilog for the three experiments. All lines correspond to a di erent experiment on the same gorgonian A B and C, which has been time-translated to go on a master curve. For amplitudes bigger than a few centimeters, we have a well de ned linear behavior. The curves have been low-passed at 1Hz for a better clarity

Figure 7 .

 7 Figure 7.20.: Phase-averaged oscillation for an uniform beam with α = 0.65, and ω respectively 2.3, 6.4 and 12.0. Qualitatively equivalent to A,B, and C presented here at same relative amplitude of deformation which is di erent from our case since we are at same movement amplitude with di erent lengths. Taken from (T. Leclercq 2018).

Figure 7 .

 7 Figure 7.21.: Comparaison of the lateral extension X(s) evolution along both gorgonians C and A for the same amplitude of movement.In black are de ned the moment the position of the local point is undisturbed. Vertical lines correspond to the delay between the beginning of the side of the extension between the foot and the tip. We do not measure from the foot but from the area where the extension is larger to 2.5% for more robustness.

Figure 7 .

 7 Figure 7.22.: Movement of C during the same sequence as in previous paragraph. Blue and black line respectively are the lateral extension of the gorgonian tip and the pendulum angle. The yellow to red color represend the extension along the gorgonian X(s, t) 2 + Y (s, t) 2 , and black quivers the speed and direction of the local gorgonian movement. The blue to red map shows the curvature pro le evolution ∂θ(s, t) ∂s

  Figure 7.23.: Kinematic regimes for various deformations in amplitude-frequency-space. Figure extracted from (Tristan Leclercq et al. 2018)

Figure 7 .

 7 Figure 7.24.: Left: 3D speed eld calculated from stereo image di erence. The saturation is the angle and the luminance in the module. Right:, an image of the same movement to show the type of signal it is extracted form.

Figure 7 .

 7 Figure 7.25.: Normalized speed U/U max in the function of the distance on the rail for multiple weights.We have slightly a global curve, yet it is, for now, di cult to determine if the di erence is due to U max here ill-de ned, or if it is due to a non-linearity of the movement equation.

  Figure A.1 illustrate the conceptualization of turbulence.

Figure A. 1 .

 1 Figure A.1.: Depending of uid speed, viscosity and the length of the movement, Osborne Reynolds showed in 1887that the behavior of the ow was qualitatively changing, from laminar to turbulence[START_REF] Reynolds | An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels[END_REF] 

Figure A. 2 .

 2 Figure A.2.: Energy dissipation par unit of mass of chosen organized structure, according to their time of apparition, in Log-Log scale (each translation along an axis correspond to a multiplication).

  3 and A.4. The study of such systems at a lower degree of complexity allows the community to understand new concepts and open ways to describe e ectively more complex systems.

Figure A. 3 .

 3 Figure A.3.: Barchane are sand dunes traveling through wind, with a stable asymmetric crescent shape. They appear spontaneously, and they can split in two smaller barchanes that regrow afterward to the original size. There is no organs inside, only sand grains, which comes and go into the barchane through wind. There is a wide variety of dune shape that share this kind of properties. On top, barchanes on mars, left detail of some its components[START_REF] Lucas | Growth mechanisms and dune orientation on Titan[END_REF] 

Figure

  Figure A.5.: Embryo genesis of chicken: emergency of the tubular organization, due to the gradient of lipid between the edge and the corner (degraded enzymatically inside the yellow yolk) which inhibit the cell cycle, and cause, among over factors, the cell di erentiation (F. 2017).

Figure

  Figure A.6.: Depending on the speed of the substrate movement (V), the height of drop (H), the deposit of slender bodies will change qualitative shapes, but the qualitative shapes of the result are limited. U c is a characteristic derived from uid viscosity, density, initial radius, speed, and height. Extracted from P.-T. 2014

Figure

  Figure A.7.: Di erent elementary shapes, that are either stable, periodic or translating in space during their evolution.

Figure

  Figure A.8.: Zoom on a game of life structure, that reproduce the same rules as the original game of life. Each meta-cell are ≈ 10 2 cells size. Movie link: https://www.youtube.com/watch?v=xP5 iIeKXE8

Figure

  Figure A.9.: Typical gure of Di usionlimited-aggregation (DLA), with particles coming from an enclosing circle.

Figure

  Figure A.10.: Scheme of the continuous DLA process, in a nite environment. Here, the aggregate corresponds to the growing structure.

Figure

  Figure A.11.: From left to right: Lichtenberg gures obtained by discharge of an electrostatic potential, middle Sa man-Taylor instability (air injected in a viscous purple uid), right bacteria growth Matsushita 1990

1 .

 1 Adding a second phase C 2 inside the structure, with an proportionality of ux at the boundary M ∇C 1 = ∇C 2 2. A surface tension on the structure, such as a di usion of the curvature over a threshold value 3. Saturation of interfaces if the growth is too fast 4. Convection in the environment, adding a speed and pressure eld, and replacing the di usion with an equation of type ∂C ∂t + u ∂C ∂x = D∆C, governed by a Peclet number (ratio di usion over convection). This change the nutrient repartition, and the equilibrium state of the system 5. Tropism in direction (corresponding to light typically) Adding a second phase has been done by Agnieszka Budek et al. 2017, and shows for intermediate values of M ≈ 100 that loops can be obtained as shown in gure A.14. Such models correspond to propagation in porous media.

Figure

  Figure A.14.: Numerical simulation of two-phase DLA process, with a ux ratio at the interface of 100. Circled in red, a reticulation between ngers.

Figure

  Figure A.15.: Addition of interactions mechanism 2 to 5 in the list (surface tension, saturation, convection in the phase 1, tropism). There are in all cases biological justi cation to add such mechanism.Here, the higher on the gure the more intense the mechanism. The color correspond the the gradient intensity. Left: surface tension as a di usion, Right:, tropism to the top. (J. A.[START_REF] Kaandorp | Macroscopic Modelling of Environmental In uence on Growth and Form of Sponges and Corals Using the Accretive Growth Model[END_REF] 

Figure

  Figure A.16.: A and B: accretion di usion pattern evolution for di erent saturation function. C visualization in 3D. Right, the measured gradient of the eld of the FGF10 through the indicator Spry2

Figure A. 17

 17 Figure A.17.: Simulation of Gray-Scott equations with a personal code in nite di erences, for various values of f and K, on a 256*256 uniform grid. The initial state is a noise, with C 1 = 1 at the center. For each, we can give a description of C 1 repartition,from left to right: Worms: f = 0.05, k = 0.065, lines expanding on sides and avoiding each others, here not at equilibrium Bacteria: f = 0.035, k = 0.065, Points colonizing space, with mitosis-like reproduction and avoidance of neighbors Coral: f = 0.06, k = 0.062, reticulated network of C 1 , stable Waves: f = 0.2, k = 0.5, waves of C 1 pulsing into the domain at a stable period, out of equilibrium Zebra sh: f = 0.35, k = 0.60, avoiding lines, with point of junctions, stable

3 Figure

 3 Figure A.19.: Comparison of diatoms shapes to shapes obtained by superformula equation (a generalisation of superellipse), with m1=m2, free parameters a,b,n1,n2,n3

Figure

  Figure A.20.: Inconvergent. From left to right: space lling with no intersection which remind trees, line di erenciation that looks like corals, partitioning of areas that remind of cracks patterns. https://inconvergent.net

S

  dS(P -P 0 )( n. i) + T w S dS(P -P 0 )( t. i) (A.7)with:• C P pressure drag coe cient • C f friction drag coe cient • T w shear stress • P 0 pressure out of the structure in uence • P Local pressure eld • t, n tangeantial and normal unitary vector to the surface • i direction of the free stream ow This integral is particularly tough to calculate and not trivial at all, since it needs to resolve the eld pressure all around the structure. Experimental measures are integrated through time to take account turbulent uctuations and can vary with the Reynolds number. Tables of measures are often available directly to avoid theoretical calculation. This drag constraint is particularly important in aerodynamics in the case of planes, trains or cars. Skin friction C f is often neglected (T w ≈ 0), as the pressure drag being predominant.

Figure

  Figure A.22.: experimental measures of C D coe cient for various shape with no rugosity, for a Reynold Number ≈ 10 4 . The shapes are represented, with a ow coming from the left to the right. Most C D value will be inferior to 2. The interaction with the ground (here drawn as a mass) will change the coe cient value. Relevant magnitudes are .05 for a streamlined shape, .5 for a sphere, 1.3 for a place, 2 for a plate clamped on the ground.

Figure

  Figure A.24.: Left: spirals on a pine cone (red 8, yellow 13, white 21), right: repartition of magnetic repulsive droplet on an equivalent of a growing substrate (radial magnetic eld). Douady et al. 1992.

Figure

  Figure A.26.: Functional traits of canoes in Polynesia (A outrigger attachment, B and C method of sewing parts), spreading through the di erent islands of the archipelago.Functional and cultural traits has evolved, and can be compared to evolutionnary process often seen in biology in terms of spatio-temporal repartition[START_REF] Rogers | Natural selection and cultural rates of change[END_REF]).

Figure

  Figure A.27.: Exemple of application of genetic algorithm to optimize the calculated tness on a chair. That tness is calculated on the total mass of the chair, and the maximal stress on the structure, for a constant uniform weight on the seat.

Figure

  Figure A.28.: Plane transformation to get from one shape of a sh species another species, with axis rotations, and local homoteties. Linking such transformation in terms of growth logic locally is not trivial, but shows the similarity di erent species can have. A: Polyprion and Pseudopriacanthus altus B: Argyropelecus olfersy and Stepoptyx diaphana, which are in two di erent genres with the classical classi cation C: Scorpaena and Antigona D: Scarup and Pomacanthus E: Diodon and Orthroiscus Adapted from the work of D'Arcy Thompson(Thompson 1917) 

Figure B. 1 .

 1 Figure B.1.: On the side, two led Panels, the camera is on a tripod with two degree of liberty (vertical and lateral translation). The gorgonian is xed vertically upside-down to minimize gravity deformation.

Figure

  Figure B.2.:The gorgonian is placed on a LED panel, and is thus blocking the light. This method is particularly e cient to get precise contours coordinates, as the background exposition value is constant. Since sclerites are not opaque, we get also information on internal structure to some extent. The image seen on the computer screen is the live view of the camera.

Figure D. 2 .

 2 Figure D.2.: Crack pattern obtained on a clay distribution, reparted in two times. By Philippe Bonnin.

Figure E. 2 .

 2 Figure E.2.: Manual t on 5 points, for the gorgon C in multiple deformations. white circle is the third point, and blue lines connect the 2 extreme points on both sides. The rst image show the di erence between a previous t and the new image as explained in the next part

Figure2

  Figure E.3.: Bezier original points, with all ts of the movement. the line between the points corresponds to the spline interpolation. We can see on the bottom left of the orange curve than even spline can create an important uctuation, corrected by looking at the total length of the bezier curve.

  cos(Ks)) = -C Y K Q 0 (s) (F.6) Since our boundary conditions are i(1) = 0, ∂i ∂s | s=1 = 0, it is equivalent to Q 0 (1) = 0, Q 0 (1) = 0Integrating cosinus and trigonometric functions gives us : Q 0 (s) = δ q1 + s -

  Figure G.1.: Left: distance to the closest contours with a log scale for population, in typical Arc length l med unit as introduced in chapter 4. Right: distance of each pixel to the the foot. The statistic represent in consequence a measure of the width pro le w(s), here in arbitrary unit.

Figure G. 2 .:

 2 Figure G.2.: Distribution of the arc Radius r compared to the median value of distribution R med for normalisation, with the population on a log-scale. We clearly have a well de ned typical arc width (whichi is always ≈ 1mm), we have here the ratio between the typical arc length and arc width L med /R med = 3.55. In consequence, the quantity of arcs of width over 2l med is negligible even in large gorgonians such as this one.

3 3 ,

 3 Figure G.3.: Left: depth obtained from equation G.1. Right: Map of dI distribution.

δR

  in gure G.4:

Figure G. 4 .

 4 Figure G.4.: Evolution of in function of the size of branches. Since E g E c , it is reasonable to simplify equation G.4 into E w = E g (1 -)

Figure

  Figure G.6.: Left: correlatio between E and dI values the colormap correspond to the population in log, and the bin distribution on dI in log also. Right Pro le of Rigidity contribution dB on the gorgonian. The population distribution is in log.

Figure H. 1

 1 Figure H.1.: Smoothed (low passed at 10 Hz) signal for a series of manual oscillation, like position and its derivative, with corresponding captor signal. The color corresponds to time evolution, for point tracking in the phase diagram. Signal dephasing correspond to out of equilibrium movement of the gorgonian at amplitude.

Figure H. 2 .

 2 Figure H.2.: Correlation between values of the three captors during a run of 10 experiments, present as 2D histograms. Captors 2 and 3 are on the same side of the rail, in opposition. Captor 1 and 3 are on each side of the rail, in front of the gorgonian.

Figure H. 3

 3 Figure H.3.: Synchronization of captor and positions data : in black is the captor value, in red the rail position, on arbitrary units. Yellow rectangle are constant weight experiments, in purple are oscillations hand-controlled, and in green free movement that have been analysed.

Figure H. 4 .

 4 Figure H.4.: On top, the image composed as R -G+B2 , where R, B, and G are respectively Red, Blue, and Green channel so that we have the position of the red tape on the bar of the pendulum. The bottom is the image we extracted it from. The crop has been done to be sure that we keep the signal of the same tape. Note that the camera support hide the tape on the lowest part of the bar, and is sensible to parallax e ects since it is closer of one meter to the camera
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Table 2 .1.: Name, size, site of extraction and short description of all gorgonians
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	Place	Name	Height (cm) Short description of particularities
	2013	A	16.9	small, radial, almost no reinforcement
	(Cochon)	B	22.2	plate base, beginning of splits
		C	38.2	highly split, radial, asymetric
		D	46.1	important reinforcements, linear, asymetric
		E	32.3	no split, radial, well reparted
	Cola	petitconsistante	19.7	large base, small, begin of splits
	(2018)	parasite	58	partially eaten, with parasites, has regrown
		Beaucoupmange	37.6	Some parts widely eaten, has a lot regrown
		moyennemangee	27.3	few things remains, large base
		Moyennetrouee	42.3	multiple holes, splits, radial
		1Bras	36	Two plates with one rift
		GrandeDouble	73.8	plates of sclerites in a junctions of two parts
		Mega	59.2	large plate, few splits, thick branches
		Timide	24.6	small, curved, with splits
		Ondulee	43.1	Cannot be plate, eaten at the foot
	2018	Canonique	44.6	Split in two, radial, clean network
	(Cochon)	Minuscule	16.1	Very small with weird rift
		Petite2branches	20.2	small with two small splits
		longue	73.5	very linear, one important reinforcement
		petite1branche	15.2	very small, already a rift
		moyenne	39.4	radial, evenly spread, multiple small splits
		master	60.2	large plate, small splits, no reticulation
				of reinforcements
		piedtroplarge	20.5	very large foot, too large for our protocol
		megareticulee	93.5	very long, multiple splits and part.
				reticulated reinforcements
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  the structure is deformed. More details on the Cauchy number are on subsection 3.2, as it depends on the object and formalism we use.

	Flexibility and adaptability	
	[...]Then modestly replied the reed:	
	Your pity, sir, is kind indeed,	[...] Votre compassion, lui répondit le roseau,
	But wholly needless for my sake.	Part d'un bon naturel ; mais quittez ce souci.
	The wildest wind that ever blew	Les vents me sont moins qu'à vous redoutables.
	Is safe to me compared with you.	Je plie, et ne romps pas. Vous avez jusqu'ici
	I bend, indeed, but never break.	Contre leurs coups épouvantables
	Thus far, I own, the hurricane	Résisté sans courber le dos ;
	Has beat your sturdy back in vain;	Mais attendons la n.[...]
	But wait the end. ' [...]	
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Table 7 .

 7 1.: Values of the di erent coe cients for each gorgonians. U 0 is determined by hand, ν and C D with a Power-law t on the recon gured part of the gorgonian.

	1 )

Table 7 .

 7 2.: Numerical values obtained in our t of equation 7.2, for each experiment done multiple time on the same gorgon. Initial conditions are also parameters of the t, and

	name exp E(t = 0)	ω	τ lin	τ ν	ν	lin	ν
			(cm 2 )	s -1	(s)	(s)		(cm) (cm)
	A	1	2465.67 1.28 43.44 73.54 -0.84 0.50 0.30
	A	2	1088.70 1.26 21.96 85.83 -0.57 1.49 0.59
	A	3	869.56	1.27 47.29 67.92 -0.53 1.27 0.30
	A	4	3181.30 1.25 45.78 109.98 -0.35 0.80 0.26
	A	5	5965.90 1.28 35.42 76.84 -0.80 1.33 1.16
	B	1	223.70	1.27 25.33 25.51 -0.98 0.70 0.73
	B	2	1103.13 1.25 24.10 26.79 -0.66 0.63 0.25
	B	3	2397.78 1.25 22.70 35.40 -0.65 0.77 0.65
	C	1	4288.96 1.23 7.37	10.99 -0.89 0.61 0.82
	C	2	4952.16 1.21 7.15	12.39 -0.82 0.65 0.61
	C	3	3768.32 1.23 7.56	11.72 -0.86 0.67 0.76

The signature of a complex system is the emergence of properties one cannot expect only by looking to one component

This Chapter should be seen as a bridge between primary growth (network extension) and secondary growth (mechanical reinforcement), as well as a link between form and deformation. In consequence, this is more a collection of partially explored approaches that seem relevant for a conceptualization of the deformation properties of gorgonians than a collection of nal results.

Engineers have to deal with deformations and vibration implicated in uid-structure interactions (e.g. plane wings and nuclear cooling pipes) and they need to minimize them, mostly to reduce degradation caused over time by movement.

Flexibility is now also used to build wind turbines: the deformation of pales allow them to locally face the wind with the best angle. This way, minimal speed for the startup is lowered, and e ciency is improved at every speed[START_REF] Cognet | Bioinspired turbine blades o er new perspectives for wind energy[END_REF]).

https://frama.link/GorgoInvivo (and other videos on deformation on the folder linked at the beginning of the thesis)

It is a trickier case of shape correspondence than the continent correspondence, that has been rst observed by Alfred Wegener[START_REF] Holmes | Theory of Continental Drift: a Symposium on the Origin and Movement of Land Masses, both Inter-Continental and Intra-Continental, as proposed by Alfred Wegener[END_REF] in the case of West Africa and East South-America. The added complexity here is that the two corresponding shapes are not solid but deformed.

if you sewed your own mask during the pandemic, you might have used one of the 3D patterns, more rigid and e cient to breathe easily without blurring your glasses

Using "Occam Razor" is not a scienti c argument, it is just a way to chose between hypotheses one can explore. If, as seen in chapter 0 simplicity of the mechanism is a good argument in morphogenesis, it is not proof.

The width of the unoccupied layer between the di erent crowns is related to the mechanical properties of trees as seen in[START_REF] Rudnicki | Crown Cover Is Correlated with Relative Density, Tree Slenderness, and Tree Height in Lodgepole Pine[END_REF]. When one takes a walk on a windy day in a forest of trees with branches only at the top of the canopy, one can see that trees oscillate and that this layer is occupied by trees now touching each other.

This can also explain partially why the lowest part of the gorgonian has a messy meshwork: the structure is more rigid, thus the foot and the adjacent parts are less deformed. Thus, there is a bigger gap between the reef and the gorgonian, and thus it is lled continuously with a strange meshwork.

We aim for an "impressionist model", more e cient to understand how variables are interacting with each other rather a "photorealistic model", using the convention of (Hoep ner 2015).

The variation between using radial or vertical coordinate is blurred in our measures by the roughness of our hypotheses. The qualitative results are not modi ed

although an elegant approach, de ning this typical d measurement is complex, due to the important error propagation from the 3 .

i(≈ 1) will be badly described in our model but are not considered as important, since not reinforced and always highly de ected from the vertical and thus bringing the least exposition to the ow.

The same type of integration can be calculated for di erent cases of W (s) in Power-law (starting by a linear, but the solution of such equation is not particularly useful in an analytical case: the equation 6.10 can be solved numerically to compare the di erent results.

The two main di erences here is that larger "branches" for physaraum has a role of uid transport and that its shape can easily remodel and thus are not stuck on a rigid grid. In consequence, one can considerate reinforcement as a partial remodeling approach, here in terms of deformation strategy.

In this section, each quantity locally extracted from the image is shown as a color repartition on a gorgonian took as example (blue minimal value red maximal). The distribution of said local value is shown under the gorgonian, with the same color code. the population of each bin is often represented is log.

This point is rather tricky since some displacement is not exactly steady for biggest speeds in our setup, and the friction of the trolley on the rail determination can impact a lot the interpretation of the data. Extra attention has been made to have a correct methodology for their determination. The Work ow is presented in gure 7.11 and detailed in annex H.

After this is done, the interface for Ways split and Link manual corrections is created, and this can be done as many time as needed. Each time, it regenerate AllPlaces and AllArcs with the new corrections.

When this is done, it removes unnecessary points with M.UpgradeArcsVoies for a lighter result.

At this time, there is little information interaction between elements. Ways are reoriented, and all the connection between elements (local hierarchy, which contour is next to which arc and ways and so on) is generated by Adp.NewAssociatedContours Some new properties are generated inside Analyze.py for the need of the analyzes.

Chapter 6

From shape to movement: splits and reinforcement

In this chapter, we take a look at the relationship between the shape of gorgonians and their deformations, then at the link between deformation and rigidity.

We rst describe the splits in the structure of gorgonians, regions where anastomosis between branches doesn't occur or have been lost. We show that from these splits, we can read a pro le of deformation for the gorgonian. Then, we propose a mechanism for split creation.

We develop a deformation model for G. ventalina based on non-uniform beams, which links width and rigidity properties with beam deformation in a steady ow. We use this model to generate di erent examples to illustrate the types of deformation pro les which can be expected depending on gorgonians' shapes.

We will nish this chapter by proposing a numerical method to extract rigidity and some preliminary measures of reinforcement properties from the image of a gorgonian, and by listing additional properties extracted from this Chapter such as strain inhibition, that we would need to take into account to generalize our model of the morphogenesis of G. ventalina shown in chapter 2 to other gorgonians.

Contents 1

Deformation and its conceptual implications The data and interpretations shown here are only a rst approach to the analysis of the deformation. Some other experiments were designed and data collected, yet have not been used due to technical or time constraint. Among all of them, the following are worth being exposed:

3D deformation

The mission done in 2018 was designed for 3D measurement. The camera was disposed of in pair frames, with a facing view, and a 45-degree view on the side. That way, a reconstruction of half a side could be done, combining stereo images. Unfortunately, the complexity of the images (re ects on the surfaces, changes of background, inhomogeneity of the lighting on the gorgonian ) makes the deformation reconstruction too complex for this thesis. Multiple attempts with various strategies (stereo reconstruction, multiple angle correlation, image di erences at each frame from one camera) with no real new information accessible. Upgrades for the protocol would be for a simple analysis:

• Black painted plates of polystyrene on both sides of the rail, with black strands along the trolley trajectory to remove the light from behind the bar, with a black pool liner • An uniform lighting. The one we used was a diving, directed light beam.

• A setup with more cameras • Reconstruction through motion tracking of color identi ed elements, instead of reconstructing the whole gorgonian as the deformation is smooth In any case, the information it would bring would be most interesting to compare longitudinal gorgonians and radial ones, and the limit of uniform orthoradial deformation we use in our models. It is a re nement to our model that might not be useful in the state of the art, compared to the investment both in time and nances it would demand.

in situ Flow movement

The same type of measurement has been done in vivo, with the use of tennis balls attached with a link to the reef, as indicators of the ow speed.

Unfortunately, the analysis of such data has been too complex for us, and we abandoned 3D movement analysis after multiple months of trials. These data are still accessible to anyone who has the tools to analyze them.

Appendix A Complexity, growth and acclimation

La vie est une formation de formes, la connaissance est analyse des formes informées Georges Canguilhem, la connaissance de la vie This chapter is aimed at general readers, presenting the state of mind and the personal angle of approach for this thesis.

We begin our study with the concept of complexity and its emergence in general, and on some approaches to understanding complex systems. We emphasized morphogenesis, as the study of shape growth with dynamical systems and we explain the concept, some of the main general results and paradigms of such approach. We then present di erent functions of shape and growth in general, some of the links between shape, growth, and how the shape growth can be studied for acclimation and evolution. We conclude on what are the criteria for a good choice of subject to help to reduce the perceived complexity of our environment. How to use PySkelWays

Needed libraries

The library needed are :

• Numpy and scipy for numerical storage and calculation • cv2 (openCV) for image analysis treatment • os,pickle,copy,pathlib for storage and adresses management • matplotlib for gure plot • shape le (pyshp) for conversion in GIS datas

The so ware

PySkelWays is the python software we have created for image analysis of spatial reticulated networks.

The input is an image (binarized or cleaned for a fast binarization), and the output is a serie of classes objects which contains the di erent elements, in python. The output can also be vizualized with QGIS, on the informations we have selected.

The version we worked with (0.99) is named PySkelFrac, and the released version PySkelWays. It is possible that datas extracted previously require that the library is renamed PyskelFrac in consequence to load the di erent classes.

All codes are made to be userfriendly using an IDE based on jupyter (interactive python) such as Anaconda or Atom. The two required functions for a better readability are :

• code folding : there is a lot of "for _ in range( 1):" which are only here to fold sections • Partial execution, to execute relevant part of the code and not everything (although possible)

Composition of the library

It is composed of two type of les :

• The library itself Pyskelways • The executable code Extract.py, and Analyze.py The le Extract.py is the code to create the new classes, generate the ways and correct the links. The le Analyze.py contains all the tools to generate the graphs and the statistics on the di erent objects.

The library is composed of the les : The code began as a class-oriented code but has been mostly developped using functions.

To scan the properties of objects, it is recommended to use the function (M.dirP) on the selected object, which allow the scan of all their properties. Objects are save as pickle les (.p) and can be loaded using pickle.load, and save using pickle.dump function.

Folders and locations

PySkelWays is not exactly coded as a library, as it is not an installation with pip or conda, with an absolute path to the code when used. It is mandatory that the folder PySkelWays containing all the code is located in the same folder as "extract.py" and "analyze.py".

There are Four di erent location of the other les :

• Workfold : location of the image • SavedBase/Savedfold: location of the pickle le • FigureFold : where the gures are saved • QGISFold : Where the shape le are saved

Objects

The objects are : What they have in common is that a layer on the exterior is shrinking locally, due mostly to heat changes of humidity changes.

If a material is homogeneous with no boundary, the tension is well re-parted. If there is a boundary in the material repartition, then there is only tension in one side, leading to a movement.

Cracks appears when the tension is higher than the cohesive force of the material, leading to the creation of a new boundary through a displacement. This boundary breaks locally the symmetry and the tension repartition, leading to a propagation of the boundary in the material : the crack propagate.

Chapter D. Cracks pa erns

The crack is an absence of material locally, and the propagation of a crack is a creation of boundary. This boundary creation is often leading to more exchanges with the exterior as it increase the size of the interface.

If exchange leads to an increase of the shrinking process, then cracks locally generate more cracks.

Cracks on clay

The experiments we analyzed has been done by Philippe Bonnin, with the following protocol :

• The cracking material is a mix of clay and corn starch (usually about 15% of the latter), highly hydrated • A layer of ≈ 5mm is deposited on a horizontal hard substrate (typically, glass) • The layer dry in homogeneous condition of temperature, light and humidity during 5 to 10 days Cracks usually begin on a corner (maximum of boundaries so faster dry process), then evolves in the substrate. As the presence of cracks accelerate the dry process, this zone will create cracks faster, and a gradient of wetness is observed.

Cracks tropism is mostly two component :

• Going in the direction of the closest boundary (a crack or a border) • Going in the direction of the dryest area Due to the in-homogeneity of the dry process, cracks tends to deviate from their original direction, creating a "petal" pattern. When cracks propagate on ceramic material, there is feedback of the crack on the local wetness and, in consequence, they propagate straight.

The total retraction from wet to dry is about 5% of the surface.

Appendix E Bezier profiles of deformation 1 Bezier Curves

Bezier curves were invented to create a wide variety of smooth shapes, for design applications such as car creation. They can be designed in two ways, with recursion on geometrical properties or numerically :

• For a list of N points, get the segment between two consecutive and place a point at the relative distance t ∈ [0, 1] of the rst point from this duo. It generates an ensemble of N -1 point. Reiterate that process until one point is obtained, corresponding to the value t of the bezier curve de ned by the N points • We can extract from this approach a parametrical expression of all points X(t), Y (t) generated from all the X i , Y i points as equation E.2 

Images fit

The t is manually done: we select the number of points we want to use in our bezier curve for the video. Then, we manually click on the image to select the points and check visually with the corresponding bezier curve. 4 points are enough for most ts, and are manipulated the following way :

• The rst point is on the foot. Since the movement is in the local referential, this one will not move. • The last point follows the tip • The second (respectively the penultimate) is used as a handle to control the curvature next to the rst (resp. last ). • If more points are needed, they allow complex changes of curvature in the middle section.

Estimation of the error

As the t is manually done, it is di cult to determine the quality of the t. Three methods to estimate the quality has been used : 1. Multiple ts of the same video, made by the user in di erent days. Then, a comparison of the distance between the positions X(s,t) and Y(s,t). 2. The length of every pro le is checked and gives an estimation on how perpendicular and how consistent is the t 3. The temporal convergence, estimating the di erences when a pro le is added The estimation is not giving us a standard deviation on X or Y , so we simply consider that the t is "good enough" according to these criteria to be interpreted.

possible upgrade

Using the information of previous points (tested on 3 points interpolation ) to extrapolate future bezier points has not given us a good improvement.

A way to accelerate the t process and upgrade the quality would be to add the optic ow from points on the bezier pro les and minimize the distance between the new bezier points we are looking for and the new points translated through the optic ow.

Appendix F

Beams equations 1 General equation

A static con guration can be obtained for a structure with all its local momentum and forces equal to zero. The mechanical load (here, the pressure caused by the ow deformation) produces a structure deformation, and that deformation produces internal forces and moment. We will place ourselves in the case of the Euler-Bernoulli theory, in which the shear stress impact is neglected.

The moment generated by a deformation of curvature κ = ∂θ ∂S is :

The shear force compensating the variation of the bending moment, we have :

That shear force being from the bottom to the point F = -s 0 ρW (S )C D U sin 2 (θ(S ))dS , we get the deformation equation

We have three boundary conditions :

1. The force at the extremity must be null since no further shear can compensate it

In the case of EIW nite, ∂κ ∂s | s=0 = 0. 2. The moment at the extremity must be constant null also : EIW κ| s=0 = 0. Same reasoning gives κ(s = 0) = θ ∂s | s=0 = 0 3. The initial angle is well de ned and xed. In our cases, θ(s = 0) = π/2, the structure is vertical.

Dimensionless equation

Now we can get a dimensionless equation, rewriting our variables as :

A ine Width

Now we have W (s) = W 1 (β + (1 -β)s). If β ≤ 1, the structure is our constant width beam. β = 0 is the linear case. Compared to the writing of [gosselin 2012], we choose to scale on the width at the top and not at the foot, since our beams are mostly larger with s in the important area.

The equation is too complex to be useful analytically, but numerical models of it are e cient for ts and properties as seen in the manuscript.

Numerical resolution

The resolution is using the following method:

• We discretize the distribution of w and b on 1000 points, to limit the e ects of boundary conditions. • We take an initial guess of δθ δs | s=0 , and x θ(s = 0) = 0 • We solve our equation 6.12, and do a gradient descent on δθ δs | s=0 to be sure our limit condition in s = 1. If b(1) = 0, we replace κ(s = 1) = 0 with θ(s = 1) = π/2 the pro le of b for the constant curvature methods are obtained by solving numerically the equation 6.10 then re-injecting b(s) = j(s)/w(s) into the previous method.

Appendix G Mechanical properties through image analysis 0.1 Measurement of the width W (s) is easily calculated:

• We take the binary envelope (binarized image with all contours lled) • We replace each pixel by its distance to the foot • We do the histogram of this distribution.

We obtain these ways W (s)δ s with δ s the size of the bin for the distribution.

Extraction of the geometrical moment I

The rigidity is mainly linked to the second moment of area I = y 2 dxdy in cartesian coordinate, with y in the direction of the movement and x perpendicular to the deformation.

In consequence, if we have the information of the depth on an image, we can extract a map of Î, assuming that the movement is always perpendicular to the surface.

We extract from the binary image the distance map to the closest border which will be useful to deduce the depth of branches in gure G. 1 (left), that we will use afterward to calculate the pro le of branches:

Appendix H

Position and force extraction 1 Protocol

• After calibration with a 1m ruler, we add weight until a movement is noticeable, which de nes our solid friction threshold. • For Rail experiments, we lm every movement for a series of weight spread logarithmically, from usually 30g to 2kg, in 5 to 15 steps. We stops around 2m.s -1 on nal speed. they are all done on both sides of the gorgonian. • For 2013 experiments, they are done two times: one with an internal camera for deformation information, and one without for the drag information. • Pendulum experiments are repeated 3 times for the same initial angle.

Position extraction

The protocol we follow is : 1. Calibration : We calibrate our camera, removing distortion from the lm with the module OpenCV undistort and images of a chessboard. This e ect is negligible on canon G9 camera at the focal length we are using, ≈ 24mm full-frame equivalent. 2. Pixel-size : We determine the size of our pixel on our image, using images of a onemeter ruler in various locations. In our setting, we are perpendicular enough to the rail so that the size is constant. 3. Spatio-temporal diagram : We extract from every frame a line parallel to the rail, going through the colored marker on the trolley, getting a Spatio-temporal representation of the trolley movement.