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Title : Assessment of Hardy-Weinberg equilibrium and detection of chromosomal deletions in exome-wide 
sequencing data from large datasets  
 
Abstract : 
 
A major focus of human genetics is on the identification of variants that may contribute to human diseases or 
adaptive traits. Next-generation sequencing (NGS) approaches, including whole exome sequencing (WES), provide 
unprecedent opportunities for discovering novel variants that may underlie susceptibility or resistance to disease. 
The basic principle of WES is the sequencing of coding regions, whereby DNA probes or baits are used to hybridize 
with the protein-coding portion of the genome, isolating it from the non-coding portions. After sequencing, millions 
of DNA sequences, known as reads, are aligned to a reference genome and undergo many types of downstream 
analysis, whereby the common goal is to identify novel targets underlying the scientific question that is being asked. 
Since its inception, NGS methods, including WES, have been providing an enormous amount of data at sustainable 
costs but also posing considerable challenges for the analysis and interpretation of the results. These technological 
advances increasingly require the development of sophisticated computational approaches, thus generating new 
research avenues in order to appropriately analyze and interpret enormous amounts of data. In turn, the wealth of 
exome data accumulated over the years has given the opportunity to pose scientific questions in ways that could not 
be possible earlier. My thesis took advantage from both these aspects.  
 
First, I developed a computational approach that allows filtering of false positive variants that cannot be discarded 
with traditional bioinformatic approaches. We collectively referred to these variants as ‘blacklist’ and characterized 
them computationally and experimentally, discovering that a subset is out of Hardy-Weinberg (HW) equilibrium, a 
fundamental population genetic principle typically used as a filtering criterion in large-scale genotyping studies 
(e.g. GWAS). Based on these initial findings, we are currently studying HW equilibrium systematically and at a 
larger scale to determine whether HW equilibrium could be used not only to detect technical errors but also to 
inform about important phenomena relevant to population genetics. Our preliminary data focusing on variants with 
an excess or loss of homozygotes for the minor allele revealed promising candidate variants that could be indicative 
of protection (eg in FUT2, SMN2)  or disadvantage (eg in FANCD2) to disease.  
 
Second, I tackled the question of detection of copy number variants (CNVs) in WES data. CNVs are a specific class 
of variants traditionally difficult to detect in exome data of typical laboratory cohorts that are generated over time. 
In my thesis, I developed HMZDelFinder-opt, an algorithm that allows identification of partial exon homozygous 
and hemizygous deletions. Using HMZDelFinder_opt with both validated disease-causing deletions and simulated 
data, we demonstrated that the a priori selection of a reference control set with a coverage profile similar to that of 
the WES sample studied reduced the number of deletions detected, while improving the ranking of the true 
homozygous deletion. HMZDelFinder_opt also fills the gap in the study of deletions spanning less than an exon, 
by providing the first tool for the systematic identification of partial exon deletions. Collectively, these projects 
tackle heretofore-unexamined topics and hold promise to discover novel causal determinants of human diseases or 
traits. 
 
Keywords : Hardy-Weinberg, whole exome sequencing, homozygous and hemizygous deletions, disease-causing 
mutations, blacklist. 
  



 
Titre: Intérêt de l'équilibre de Hardy-Weinberg et détection des délétions chromosomiques dans les données 
de séquençage d’exome à partir de grands ensembles de données 
 
Résume : 
 
Un des principaux centres d'intérêt de la génétique humaine est l'identification des variants qui peuvent contribuer 
aux maladies humaines ou aux traits adaptatifs. Les approches de séquençage de nouvelle génération (NGS), y 
compris le séquençage de l'exome entier (WES), offrent des opportunités sans précédent pour découvrir de 
nouveaux variants impliqués dans la sensibilité ou la résistance à une pathologie. Le principe de base du WES est 
le séquençage des régions codantes, grâce auquel des sondes ADN sont utilisées pour s'hybrider avec la partie 
codante du génome. Après le séquençage, des millions de séquences d'ADN, appelées reads, sont alignées sur un 
génome de référence et sont analysées par différents outils, avec l'objectif d'identifier de nouvelles cibles pertinentes 
pour la question scientifique posée. Depuis leur création, les méthodes NGS, y compris le WES, ont fourni une 
énorme quantité de données qui posent des défis considérables pour leur analyse et l'interprétation des résultats 
correspondants. Ces avancées technologiques nécessitent de plus en plus le développement d'approches 
méthodologiques sophistiquées, générant ainsi de nouvelles questions de recherche afin d'optimiser l’analyse de ces 
données. Ainsi, les volumes de données d'exome accumulées au fil des ans permet  de poser des questions 
scientifiques nouvelles. Ma thèse a porté sur ces aspects. 
 
 
Tout d'abord, j'ai développé une approche qui permet de filtrer les variants qui sont des faux positifs et qui n’étaient 
pas éliminés avec les approches bioinformatiques classiques. Nous avons regroupé ces variants dans une 
« blacklist » et les avons caractérisés in silico et de façon expérimentale. Nous avons en particulier montré qu'un 
sous-ensemble de ces variants ne respectaient pas l'équilibre de Hardy-Weinberg (HW), un principe fondamental 
de génétique des populations généralement utilisé comme critère de filtre dans les études de génotypage à grande 
échelle ( par exemple les études d’association génome entier). Sur la base de ces résultats initiaux, nous avons 
débuté une étude plus systématique de l'équilibre HW à plus grande échelle pour déterminer si ce test pourrait être 
utilisé non seulement pour détecter des erreurs techniques, mais aussi pour informer sur des phénomènes importants 
et pertinents en termes de génétique des populations. Nos données préliminaires se concentrant sur les variants avec 
un excès ou une perte d'homozygotes pour l'allèle mineur ont révélé certains variants candidats prometteurs qui 
pourraient indiquer un effet protecteur (dans FUT2, et SMN2) ou désavantageux (dans FANCD2) vis-à-vis ce 
certaines pathologies. 
 
Au cours de cette thèse, j'ai également abordé la question de la détection des variations du nombre de copies (CNV) 
dans les données WES. Les CNV sont une classe spécifique de variants traditionnellement difficiles à détecter dans 
les données d'exome de cohortes de laboratoire qui sont générées au fil du temps. Dans ma thèse, j'ai développé 
HMZDelFinder-opt, un algorithme qui permet d’optimiser la détection de délétions homozygotes et hémizygotes et 
d'identifier des délétions partielles d'exons. En utilisant HMZDelFinder_opt avec à la fois des délétions pathogènes 
validées et des données simulées, nous avons démontré que la sélection optimisée d'un ensemble d’exomes contrôles 
de référence avec un profil de couverture similaire à celui de l'échantillon WES étudié réduisait le nombre de 
délétions faussement détectées, tout en améliorant l’identification des véritables délétions homozygotes. 
HMZDelFinder_opt permet également de fournir un nouvel outil pour l'identification systématique des délétions 
partielles d'exon. Au total, les questions traités dans ma thèse ont permis de proposer des approches nouvelles afin 
d’améliorer l’identification de nouveaux déterminants génétiques de pathologies humaines. 
 
Mots clés: Equilibre de Hardy-Weinberg, séquençage d'exome entier, délétions homozygotes et hémizygotes, 
mutations pathogènes, liste noire. 
  



Essai 
 
Un des principaux centres d'intérêt de la génétique humaine est l'identification des variants qui peuvent contribuer 
aux maladies humaines ou aux traits adaptatifs. Les approches de séquençage de nouvelle génération (NGS), y 
compris le séquençage de l'exome entier (WES), offrent des opportunités sans précédent pour découvrir de 
nouveaux variants impliqués dans la sensibilité ou la résistance à une pathologie. Le principe de base du WES est 
le séquençage des régions codantes, grâce auquel des sondes ADN sont utilisées pour s'hybrider avec la partie 
codante du génome. Après le séquençage, des millions de séquences d'ADN, appelées reads, sont alignées sur un 
génome de référence et sont analysées par différents outils, avec l'objectif d'identifier de nouvelles cibles pertinentes 
pour la question scientifique posée. Depuis leur création, les méthodes NGS, y compris le WES, ont fourni une 
énorme quantité de données qui posent des défis considérables pour leur analyse et l'interprétation des résultats 
correspondants. Ces avancées technologiques nécessitent de plus en plus le développement d'approches 
méthodologiques sophistiquées, générant ainsi de nouvelles questions de recherche afin d'optimiser l’analyse de ces 
données. Ainsi, les volumes de données d'exome accumulées au fil des ans permettent de poser des questions 
scientifiques nouvelles. Ma thèse a porté sur ces aspects.  
 
Tout d'abord, j'ai développé une approche computationnelle qui permet de filtrer les variants génétiques faussement 
positifs (FP) dans les données d'exome qui ne peuvent pas être éliminés avec les approches bioinformatiques 
traditionnelles. Les analyses informatiques des exomes de patients humains visent à filtrer autant de F que possible, 
sans supprimer les véritables mutations pathogènes. Cela implique de comparer l'exome du patient avec des bases 
de données publiques pour supprimer les variants rapportés incompatibles avec la prévalence de la maladie, le mode 
d'hérédité ou la pénétrance clinique. Cependant, des variants fréquents dans une cohorte donnée d'exomes, mais 
absents ou rares dans les bases de données publiques, ont également été rapportés et traités comme des FP, sans 
exploration rigoureuse. Nous avons rassemblé ces variants et nous les appelons la «liste noire». Cette liste noire n'a 
pas éliminé les mutations pathogènes connues des exomes de 129 patients et a diminué le nombre de FP restant 
dans un panel de 3 104 exomes d'une médiane de 62%. Nous avons démontré que les variants sur liste noire ne 
diffèrent pas des variants non sur liste noire en termes de scores de qualité et de métriques de prédiction des effets 
délétères. En outre, les approches de filtrage standard, telles que le classificateur Random Forest (RF) et le 
recalibrage du score de qualité des variantes (VQSR), n'ont pas réussi à faire la distinction entre les variantes sur 
liste noire et les variants vraiment positives (VP), suggérant que la méthode de la liste noire peut être utilisée en 
parallèle avec ces filtrages. L'efficacité de l'élimination d'une grande proportion de FP a été reproduite dans trois 
panels indépendants. Ensuite, nous avons caractérisé les variants de la liste noire de manière informatique et 
expérimentale. La plupart des variants de la liste noire correspondaient à de faux signaux générés par l'assemblage 
incomplet du génome de référence, la localisation dans les régions de faible complexité du génome et un mauvais 
traitement bioinformatique. La liste noire peut être utilisée comme une approche rapide et efficace pour filtrer les 
FP à partir des données d'exome. 
 
Dans la suite de ce travail, j'ai découvert qu'un sous-ensemble spécifique de variants de la liste noire était en 
déséquilibre de Hardy-Weinberg (HW), un principe génétique fondamental de la population affirmant que les 
fréquences des allèles et des génotypes dans une population donnée sont constantes de génération en génération, en 
l'absence d'influences évolutives (ex: pas de migration, pas de mutation, pas de sélection naturelle). Dans le cas le 
plus simple d'un locus avec deux allèles, l'équilibre HW est utilisé pour estimer le nombre attendu de génotypes 
pour les génotypes homozygotes de type sauvage, hétérozygotes et homozygotes sur la base des fréquences 
alléliques. Ces génotypes attendus sont ensuite comparés aux génotypes observés dans la population pour évaluer 
si le locus donné est en équilibre ou en déséquilibre HW. Étant donné que les conditions d'absence d'influences 
évolutives sont généralement considérées comme valables, les écarts par rapport à l'équilibre HW dans les 
échantillons témoins ont été traditionnellement considérés comme indicatifs d'erreurs techniques. Ce principe a été 
à l'origine utilisé comme critère de filtrage dans les études de génotypage à grande échelle (par exemple les études 
d'association à l'échelle du génome ou GWAS) et utilisé dans les études d'exomes sans investigation rigoureuse. 
Sur la base des résultats initiaux du projet de liste noire, nous étudions actuellement l'équilibre HW de manière 
systématique et à plus grande échelle pour déterminer si l'équilibre HW pourrait être utilisé non seulement pour 



détecter des erreurs techniques, mais aussi pour informer sur des phénomènes importants liés à la génétique des 
populations. Nos données préliminaires se concentrant sur les variants avec un excès ou une perte d'homozygotes 
pour l'allèle mineur ont révélé des variants candidats prometteurs qui pourraient indiquer une protection (par 
exemple dans FUT2, SMN2) ou un désavantage (par exemple dans FANCD2) à la maladie. 
 
Enfin, j'ai abordé la question de la détection des variants du nombre de copies (CNV) dans les données WES. Les 
CNV sont des réarrangements déséquilibrés, couvrant classiquement plus de 50 paires de bases (pb), qui augmentent 
ou diminuent le nombre de copies de régions d'ADN spécifiques. Les méthodes basées sur le WES pour la détection 
des CNV ont rencontré un succès limité, principalement en raison de la nature des protocoles d'enrichissement 
ciblés. Les méthodes NGS courantes utilisent des points d'arrêt, les régions dans lesquelles les réarrangements se 
produisent, pour détecter les CNV. En revanche, le WES se concentre sur des cibles génomiques non contiguës (les 
exons), et la plupart des points de rupture ne sont pas séquencés. Par conséquent, les approches actuelles basées sur 
WES pour détecter les CNV utilisent la couverture comme un proxy pour les informations sur le nombre de copies. 
Cependant, étant donné le problème connu de non-uniformité de la couverture, les méthodes basées sur WES sont 
confrontées à des défis importants. Ce problème est encore exacerbé dans les panels de laboratoire typiques, qui 
comprennent des données d'exome générées au fil du temps, souvent dans des conditions différentes. Dans ma thèse, 
j'ai développé HMZDelFinder-opt, un algorithme qui permet d'identifier des délétions partielles d'exons 
homozygotes et hémizygotes. En utilisant HMZDelFinder_opt avec à la fois des délétions pathogènes validées et 
des données simulées, nous avons démontré que la sélection a priori d'un jeu de contrôle de référence avec un profil 
de couverture similaire à celui de l'échantillon WES étudié réduisait le nombre de délétions détectées, tout en 
améliorant le classement des véritables délétions homozygotes. HMZDelFinder_opt permet également l'étude des 
délétions s'étendant sur moins d'un exon, en fournissant le premier outil pour l'identification systématique des 
délétions partielles d'exon. HMZDelFinder_opt est une approche rapide et puissante pour détecter les délétions de 
HMZ, en particulier les délétions partielles d'exons, dans des panels de laboratoire, qui sont généralement 
hétérogènes. 
 
Les nouvelles méthodes développées dans cette thèse fourniront à la communauté scientifique des outils utiles pour 
faciliter l'analyse des données WES. L'utilisation d'approches WES a considérablement alimenté la découverte de 
la base génétique de maladies rares (et principalement monogéniques). Cependant, il est toujours difficile 
d'identifier efficacement tous les différents types de variations génétiques (SNP, Indels et CNV) à partir des données 
d'exome, et aussi de les réduire à une courte liste de variants candidats pour l'inspection manuelle et la validation 
fonctionnelle. Un défi majeur dans l'analyse des données d'exome est dû à l'évolution continue de la technologie 
(séquençage et outils bio-informatiques correspondants) qui se traduit à la fois par des ensembles de données 
d'exomes hétérogènes avec des fluctuations extrêmes de la couverture et des faux signaux dépendants de la 
technologie. Nous démontrons que l'approche de la liste noire peut détecter de tels FP et les filtrer de manière rapide, 
efficace et personnalisable. Cette approche peut être utilisée en combinaison avec d'autres méthodes de pointe (telles 
que les outils VQSR et RF) car nous constatons qu'elles sont mutuellement exclusives dans la capture des FP. 
L'autre aspect critique dans l'analyse des données d'exome est la capacité des outils bioinformatiques actuels à 
identifier tout le spectre des variations génétiques.. Nous avons proposé une méthode (HMZDelFinder-opt) qui 
résout ces problèmes et sert de premier outil pour l'identification systématique des délétions partielles d'exons. Le 
génome humain contient environ 235 000 exons, dont environ 20% sont supérieurs à 200 pb. Par conséquent, 
HMZDelFinder_opt rend possible la découverte systématique de délétions HMZ actuellement inconnues dans ~ 47 
000 exons qui ne sont pas détectables avec d'autres outils. 
 
Une conséquence de l'adoption généralisée des approches WES en génétique humaine est l'accumulation rapide de 
données d'exome. Plusieurs groupes, dont le Broad Institute, ont entrepris la collecte et l'harmonisation de milliers 
de données d'exome dans le but de fournir aux chercheurs un référentiel public qui pourrait être utilisé pour faciliter 
l'interprétation médicale et fonctionnelle de la variation génétique. Ces grands ensembles de données sont non 
seulement aujourd'hui essentiels dans l'analyse des exomes (par exemple: pour évaluer les fréquences dans la 
population générale), mais peuvent également être réutilisés pour permettre une enquête systématique sur des 
questions théoriques spécifiques, ce qui n'était pas possible auparavant en raison de la puissance statistique limitée. 



Un exemple est l'étude de l'équilibre HW que j'ai commencé à aborder au cours de ma thèse. Bien que nos résultats 
préliminaires sur les variants candidats prometteurs qui pourraient sous-tendre la sensibilité (par exemple FANCD2) 
ou la résistance (par exemple: FUT2 et SMN2) à certaines pathologies nécessitent des recherches et des preuves 
plus approfondies, ils justifient fortement l'utilisation de données d'exome de grande taille et facilement disponibles. 
 
Le travail décrit dans cette thèse se prête à un certain nombre de directions futures. Par exemple, dans 
HMZDelFinder-opt, nous nous sommes concentrés jusqu'à présent sur les délétions homozygotes dans les 
chromosomes autosomiques et les délétions hémizygotes chez les hommes sur le chromosome X; dans les travaux 
futurs, il sera intéressant d'adapter HMZDelFinder-opt à la détection des délétions hétérozygotes. Étant donné que 
la couverture des délétions  hétérozygotes devrait être la moitié de celle sans délétion, cette direction impliquera 
probablement le réglage fin du seuil pour appeler une délétion et l'inclusion d'autres mesures, en plus de la 
couverture. Une approche similaire pourrait également être appliquée à la détection des duplications. En outre, le 
WGS devient de plus en plus attrayant comme alternative, en raison de la couverture plus homogène, du coût en 
baisse constante et de la possibilité d'étudier des variants situés en dehors des régions codant les protéines du 
génome. Il sera donc intéressant d'évaluer et d'adapter les méthodes proposées ici aux données WGS. Enfin, pour 
le projet HW, il sera essentiel d'utiliser les données WGS pour confirmer et reproduire les résultats, et il sera 
intéressant d'étudier plus en profondeur les événements de sélection. Collectivement, ces projets abordent des sujets 
non encore examinés et promettent d'aider à la découverte de nouveaux déterminants causaux de maladies ou de 
traits humains. Ils jetteront également les bases de recherches futures pour étudier les classes spécifiques de rôle de 
la variation génétique (c'est-à-dire: délétions partielles et variants en fort excès / déplétion d'homozygotes pour 
l'allèle mineur) dans les maladies humaines. 
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1  Introduction 

The purpose of this chapter is to introduce the reader to the context in which the thesis evolves, 

that is the study of genetic variants and their deleterious or protective role in human diseases, 

particularly rare diseases. The chapter also summarizes the state-of-the-art in the field, 

highlighting not only the opportunities, but also some of the challenges that my thesis tackled. 

Finally, the chapter ends with a short synopsis of the main objectives of the thesis. 

1.1 Human genetics and genetic variation 

Human genetics entails the study of the human genome and its basic unit, the gene (1, 2). 

Nowadays the field encompasses a variety of subdisciplines, including classical or Mendelian 

genetics, which focuses on how specific genes are involved in the etiology of human diseases 

or traits (1-3). It is fascinating noting that theories and studies in human genetics originate from 

simple observations that date back to ancient times. From Hippocrates’s “pangenesis” theory 

and Aristotle’s basic inheritance principle, classical genetics had a major shift with the studies 

of inheritance in garden peas by Gregor Mendel(1) (Figure 1). A very important step in the 

development of this discipline came with Archibald Garrod’s demonstration of the first known 

Mendelian inborn error of humankind, alkaptonuria, in 1902 (4). This breakthrough discovery 

suggested, for the first time, that genetic traits are a predisposing factor for human diseases, and 

paved the way for decades of research in understanding the genetic basis of human traits and 

diseases (5). 

 

  

Figure 1. Classical or Mendelian genetics.  
The studies of inheritance in garden peas by Gregor Mendel paved the way to understand how specific genes 
contribute to human diseases or traits. 
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Genetic traits are transmitted within every organism, including the human species (1, 2). 

The human genome includes 23 pairs of chromosomes: 22 pairs of homologous chromosomes 

and one pair of sex chromosomes (XX in women or XY in men). Each chromosome contain 

several genes, which are sequences of DNA that code for specific proteins. On all homologous 

chromosome pairs, there are two forms of the same gene that are known as alleles, with one 

allele inherited from each parent. Each pair of alleles represents a specific genotype for a given 

gene. In humans, the vast majority of the genome is the same across individuals. The human 

genetic variation accounts for less than 1% of each person's DNA and contributes to the huge 

phenotypic variation between individuals (6). The non-mutant form of a gene, encoding the 

normal genetic function, is called wild-type (WT) allele. For a given locus/loci, individuals can 

be homozygous WT (both non-mutant alleles referred, as AA), heterozygous (one mutant allele 

and one non-mutant allele, referred as Aa) or homozygous alternate (both mutant alleles, 

referred as aa).  

 
Genetic variation occurs in many forms (Figure 2), which include base differences known as 

single nucleotide polymorphisms (SNPs), small insertions/deletions (Indels), or large variation 

in structure of chromosomes (structural variations), the latter including differences in the 

number of copies of a given sequence or gene (copy number variations or CNVs) (7-10). 

Genetic variation is very common in humans, with a typical difference between the genomes 

of two individuals being  ~4 million base pairs, although most genetic variation is expected to 

have no consequence on the phenotype (6, 7). Each given variation may affect a different 

proportion of individuals, with frequencies (minor allele frequency or MAF) ranging from 0 

(private variation) to 50%. Occurrence and frequency of variations vary also as function of the 

population. Ethnic groups such as Africans have a greater gene diversity (11, 12) than other 

more homogeneous ethnicities, including Europeans and Asians. In addition to within-

population variability, there is also between-population genetic variability. For example, 

populations that are more geographically and ancestrally remote tend to differ more, and a given 

variant that is common in one geographical or ethnic group may be much rarer in another (13, 

14). A small proportion of genetic variations has been linked to a given phenotypic trait, and 

only a few variants are known causal determinants of human diseases (7).  
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Figure 2. Types of genetic variations 
Genetic variation occurs in many forms, including single nucleotide polymorphisms or SNPs, small 
insertions/deletions or Indels, copy number variations or CNVs (differences in the number of copies of a given 
sequence/gene). 
 

An increasing number of rare diseases have now an identified genetic cause (3).  Albeit not 

exclusively, rare diseases are often attributable to single gene mutations in a Mendelian 

(monogenic with complete penetrance, i.e., all of the individuals in a population who carry a 

specific genotype express the corresponding phenotype) or non-mendelian (monogenic with 

incomplete penetrance) manner (15, 16). The MAF of these mutations is typically less than 1% 

and depends on the prevalence, mode of inheritance, and clinical penetrance of the disease (17). 

As often occurs in science, methodological advances led the way to discover monogenic inborn 

errors underlying a variety of rare human conditions. Most notably, the discovery of the chain-

termination technique to sequence DNA by Sanger and the introduction of positional cloning 

in 1986 have significant fueled gene discovery (18-21). However, these techniques were mainly 

based on a candidate approach and remained not scalable. Only in the 2000s with the 

introduction of next generations sequencing (NGS), DNA sequencing became accessible at 

large scale (18, 22). Today, NGS-based approaches are the state-of-the-art to discover genetic 

mutations underlying human traits or diseases. 

1.2 Whole exome sequencing (WES): opportunities and challenges 

The advent of NGS approaches has revolutionized genomic research, allowing interrogation 

of the genome at single-base resolution with limited time and affordable costs, and posing the 

basis for personalized medicine (18, 23). In parallel, this technological advance has resulted in 

important initiatives for the field of classical genetics, including the launch of the Human 

Genome Project, that culminated in the release of the sequencing of the entire human genome 



 7 

(24). Unsurprisingly, these innovations have been paralleled by an accelerating pace of 

discoveries in genetics of human diseases, particularly of mutations underlying rare diseases 

(Figure 3) (3). The two main NGS approaches are whole genome and whole exome sequencing 

(WGS and WES, respectively) that differ for sequencing strategy (entire genome versus coding 

regions); in addition, costs and computational load are higher in WGS than WES (18, 25). The 

basic principle of the NGS approaches is the concurrent generation of millions of DNA 

sequences, known as reads, that are then aligned to a reference genome. Following alignment, 

variant calling analysis is used to determine the portions of the genome (e.g.: SNPs, indels, 

CNVs) that deviate from the reference genome. Next, investigators employ a variety of 

downstream analyses, including at patient- and cohort-level, to answer specific scientific 

questions with the ultimate goal to identify novel candidate variants or genes for the phenotype 

under study. 

 

 

Figure 3. NGS and the growth in the discovery of disease-associated genetic variations 
The advent of NGS approaches has revolutionized genomic research, allowing interrogation of the genome at 
single-base resolution with limited time and affordable costs, accelerating pace of discoveries in genetics of human 
diseases (especially rare diseases) and ultimately posing the basis for personalized medicine. Figure from 
Claussnitzeret al (3). 
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Whole exome sequencing (WES) is an NGS approach that has been recently optimized for 

sequencing of coding regions (~200,000 exons of the human genome)(26-28). In WES, a set of 

DNA probes or baits, called capture kit, is used to hybridize with the protein-coding portion of 

the genome, isolating it from the non-coding portion, in order to selectively capture the coding 

regions of the genome (29, 30). This target enrichment strategy is then followed by sequencing 

procedures and bioinformatic pipelines (29). After the alignment and calling procedures are 

performed, variants are annotated with various level of information (e.g., gene and gene 

function, predictive damage, quality metrics), that are used for the interpretation of the resulting 

detailed catalogues of genetic variations (31) (Figure 4). The candidate causing mutations 

detected by exome sequencing are validated by Sanger sequencing. The exome accounts for 

~2% of the genome thus limiting the sequencing load, time and cost as compared to whole 

genome sequencing (18). Furthermore, it has been shown that the vast majority of exonic 

variants is evolutionary recent, rare and enriched for deleterious alleles, thus likely contributing 

significantly to phenotypic variation and diseases (32). Lastly it remains difficult to interpret 

variants lying outside the protein-coding regions of the genome (25). For these reasons, WES 

is nowadays the reference method used to discover genetic causes of rare diseases. 
 

A         B 

 

 

 

Figure 4. General workflow for whole exome sequencing (WES) approaches 
(A) Whole exome sequencing (WES) is an NGS approach optimized for sequencing of coding regions (~200,000 
exons of the human genome). A set of DNA probes or baits, called capture kit, is used to hybridize with the protein-
coding portion of the genome, isolating it from the non-coding portion, in order to selectively capture the coding 
regions of the genome. This target enrichment strategy is then followed by sequencing procedures and 
bioinformatic pipelines. After the alignment and calling procedures are performed, variants are annotated with 
various level of information (e.g., gene and gene function, predictive damage, quality metrics), that are used for 
the interpretation of the resulting detailed catalogues of genetic variations. (B) The GenomeAnalysisToolkit 
(GATK) Best practice pipeline is the state-of-the-art for the analysis of SNPs and Indels. Figures from Goh et 
al.(29) and from the GATK(33) website (https://gatk.broadinstitute.org/hc/, tab pipeline). 
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1.2.1 False positive variants and filtering tools: the Blacklist 

Despite its extensive use, the analysis of WES data still presents considerable challenges 

(18, 31). The mean number of exonic coding variants per individual relative to the reference 

human genome is about 100,000-150,000, of which 20,000 are high quality variants (25, 34). 

Thus, there is a real need for computational tools to effectively filter out as many false positive 

(FPs) as possible and also to prioritize the remaining true variants to efficiently separate 

nonpathogenic variants from candidate disease-causing mutations (31). A number of technical 

issues affects the sequencing data thus reducing the reliability of the called variants with 

consequences on the proportions of erroneous calls (FPs), and missed variants (false negative 

or FN). In addition, data analysis needs to address variants that are true signals but are not 

actually causative for the disease or phenotype under investigation. Typical prioritization 

approaches for the latter aspect include variant- and gene-levels tools that address population 

frequency, conservation and predicted damaging effects (31) (Figure 5); for example, the first 

step usually involves comparing the individual’s exome with public databases to remove 

reported variants inconsistent with disease prevalence, mode of inheritance, or clinical 

penetrance (17).  

 

Figure 5. Filtering strategy of variants in WES data 
Typical filtering strategy in exome data includes computational tools to filter out as many false positive (FPs) as 
possible and also to prioritize the remaining true variants to efficiently separate nonpathogenic variants from 
candidate disease-causing mutations. 
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Among the technical issues affecting the reliability of exome data, the most important is the 

non-uniformity of coverage (35). The coverage is defined as the number (or median number) 

of reads that cover a given nucleotide (or a given portion of the exome). Exome data of good 

quality have a typical median coverage of 40-60X. Within an exome, the coverage may span 

from abnormally low covered regions (~10X) to ‘hot spots’ with abnormally high coverage 

(>90X). One of the factors determining this unevenness of coverage is the enrichment strategy 

employed in the first steps of the WES protocol (36, 37). For example, a region dense with 

SNPs can interfere with the capture process, as the hybridization of the enrichment of the probes 

may not occur as efficiently. The coverage issue is further complicated by the between-exome 

differences generated when using different target enrichment strategies(38-40). While the basic 

preparation steps are similar among the various platforms, there are major differences in the 

design of the DNA probes, including selection of target genomic regions, relative location of 

the probes (e.g.: overlapping, tiling or gapped probes), and the exome capture mechanisms(38, 

41). Another major technical issue, which also affects the exome coverage, originates from the 

inherent structure of the human genome. The presence of low-complexity regions in the genome 

(i.e., repeats of single amino acids or short amino acid motifs) greatly influences the exome 

capture and calling process resulting in bioinformatic misprocessing. Furthermore, the human 

reference genome is still not completely assembled and annotated, thus complicating the 

alignment procedures(42). 

 

Several computational approaches have been proposed to alleviate these technical issues 

with the goal to filter FP variants(31). Two well-known methods are the locus-specific variant 

quality score recalibration (VQSR) approach from the GATK suite(33, 43) and the variant-

specific random forest classifier used in the Genome Aggregation Database (gnomAD) (44). 

They are both machine learning-based methods which use a clustering score to determine 

whether a called variant is true. Variants can also be flagged based on hard filtering, which use 

hard cutoffs for specific quality metrics. These computational approaches are not mutually 

exclusive but are often used in combination, although machine-learning approaches are time-

consuming and are based on the entire sample, thus presenting important limitations in typical 

laboratory panels that constantly evolve over time. The first part of my thesis’s work focused 

on the development of a time-effective method to filter FP variants that could not be filtered 

with other available tools(45). These FP variants were systematically investigated, 

characterized and collected for use as a ‘blacklist’ in WES analysis. As elaborated in chapter 2, 

these variants were mostly artifacts generated as a consequence of incomplete reference genome 
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assembly, location in low-complexity regions or deviation from Hardy-Weinberg (HW) 

equilibrium, a basic principle of genetics discussed in the next paragraph. Based on these initial 

findings, we decided to study HW equilibrium systematically and at a larger scale. 

1.2.2 Hardy-Weinberg disequilibrium: opportunities beyond its utility as a filtering 

tool 

The occurrence of Hardy-Weinberg (HW) disequilibrium is another metric that signals FP 

variants (44, 46, 47). The HW law or equilibrium is a basic principle of genetics; it states that 

allele and genotype frequencies in a given population are constant from generation to 

generation, in the absence of evolutionary influences (e.g.: no migration, no mutation, no 

natural selection, very large population and random mating)(48, 49). In the simplest case of a 

locus with two alleles, the HW equilibrium is used to estimate the expected number of 

genotypes for homozygous wild type, heterozygous and homozygous alternate genotypes based 

on the allele frequencies (Figure 6).  

A C 

 
 B 

 

D 

 

Figure 6. Hardy-Weinberg equilibrium 
(A-B) Hardy and Weinberg independently elaborated the HW law or equilibrium. It is a basic principle of genetics 
stating that allele and genotype frequencies in a given population are constant from generation to generation, in 
the absence of evolutionary influences.(C-D) In the simplest case of a locus with two alleles, the HW equilibrium 
is used to estimate the number of genotypes for homozygous wild type (AA), heterozygous (Aa) and homozygous 
alternate genotypes (aa) based on the allele frequencies (p and q). 
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These expected genotypes are then compared with the genotypes observed in the population 

to assess if the given locus is in HW equilibrium or disequilibrium. Given the conditions of 

absence of evolutionary influences are usually considered to hold, deviations from HW 

equilibrium (or HW disequilibrium) in control samples have been traditionally considered 

indicative of technical errors (50-52). This principle was originally employed as filtering 

criterion in large-scale genotyping studies (e.g. genome-wide association studies or GWAS) 

and “lent” to exome studies without rigorous investigation. In WES approaches, variants in HW 

disequilibrium due to very extreme excess heterozygosity (i.e.: the observed number of 

heterozygous genotypes is statistically greater than the expected number of heterozygous 

genotypes) are filtered in large population databases, including gnomAD, the largest available 

dataset that includes 125,748 exomes (44, 47). This assumption is reasonable because it has 

been shown that variants with extreme heterozygosity are enriched in low-complexity regions 

of the genome, which are especially prone to sequencing and alignment errors. 

While HW disequilibrium may truly indicate technical errors in specific circumstances, 

some studies cautioned against blinded exclusion of loci deviating from HW equilibrium that 

could instead signal causative mutations. For example, a population-based study designed to 

investigate the causes of deviation from HWE failed to find an explanation for about 30% of 

loci found to be in disequilibrium, suggesting there may be other reasons beyond actual errors 

to cause deviations from HWE(52). Another report investigating HW equilibrium in a Japanese 

sample of 104 individuals from 1000Genome (a large dataset collected by EMBL-EBI) 

suggested that HW disequilibrium in NGS data seems to be a major indicator for CNV(53). In 

line with these findings, a separate study has used deviations from HW equilibrium, and 

particularly loss of heterozygosity, as indicator of a specific class of CNVs, common 

deletions(54). Lastly, a recent report investigated HW disequilibrium in the whole set of exome 

data in gnomAD (cases and controls) (55). Authors mainly focused on excess heterozygosity 

with the main objective to identify variants and genes associated with autosomal recessive 

disorders. With the exception of very few classical examples (rs334 in HBB, which causes 

recessive sickle cell disease in homozygous status and confers protection from malaria in 

heterozygous status; rs1801178 in CFTR, which causes recessive cystic fibrosis disease in 

homozygous status and is hypothesized to be protective from cholera in heterozygous status), 

this study did not find candidates mutations. Furthermore, the authors recognized that the 

significance cutoff used in their study was lenient (0.05 without correction for multiple testing) 

in contrast to previous studies(53), and therefore the results from this study should be taken 
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with caution. Nevertheless, this last study strongly supports the timeliness of our project. A 

part of my thesis’s work, for which I present preliminary results in the last chapter, was aimed 

to investigate the distribution of genotypes across populations in gnomAD, the largest available 

dataset of exome data, with the two-fold goal to determine variants that are in true HW 

disequilibrium possibly underlying susceptibility or resistance to disease, and to investigate the 

underlying origin in relation to specific population events (e.g.: natural selection)(56-58). 

1.2.3 An overlooked type of variants in WES data: copy number variations (CNVs) 

As mentioned above, prior studies have suggested HW disequilibrium as a major indicator 

of CNVs (53, 54). For example, common deletions (a specific class of CNVs) results in an 

apparent loss of heterozygosity (and, by symmetry, excess of homozygosity) thus violating HW 

equilibrium. CNVs are unbalanced rearrangements, classically covering more than 50 base 

pairs (bp), that increase or decrease the number of copies of specific DNA regions (59, 60). 

There is growing evidence to implicate CNVs in disease states (59, 61, 62). While other genetic 

variants, such as small variations (SNPs and Indels) have been well-studied as contributors of 

human diseases or traits, especially after the introduction of WES approaches, CNVs have 

received little attention in human genetics. This in part due to the limited availability of 

computational approaches to detect CNVs from exome data. It has been recently estimated that 

CNVs affect ~5–10% of the genome, suggesting that a number of potentially disease-causing 

CNVs have yet to be discovered (59, 63). The development of improved WES-based tools to 

identify novel CNVs would be pivotal to harness already-available large datasets of exome data 

for discovery of novel determinants of human diseases. This is especially important considering 

that, even after a detailed analysis of SNPs and indels as candidate disease-causing mutations, 

some patients with suspected syndromic conditions are left without a conclusive diagnosis. 

 

In contrast to computational tools using data from WGS, WES-based methods for detection 

of CNVs have met with more limited success, mostly due to the nature of targeted enrichment 

protocols (64-66). Common WGS-based methods use breakpoints, the regions in which the 

rearrangements occur, to detect CNVs. By contrast, WES focuses on noncontiguous genomic 

targets (the exons), and most breakpoints are not sequenced. Hence, current WES-based 

approaches for detecting CNVs use the coverage as a proxy for copy number information. 

However, given the issue of non-uniformity of coverage, WES-based methods face important 

challenges. The exome coverage is heavily dependent on sequencing conditions, which are 
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continually evolving in typical laboratories that recruit patients and perform exome sequencing 

over several years. Thus, the exome data generated over time are inevitably heterogeneous, 

complicating the discovery of CNVs. In addition, widely used and actively maintained 

detection tools focus on detection of CNVs spanning one or more exons (67, 68), while no tool 

to date can detect smaller CNVs. Within the CNVs, rare homozygous and hemizygous (HMZ) 

deletions are of particular relevance for rare diseases because they may result in null alleles and 

a complete loss of gene function (Figure 7). The second part of my thesis’s work focused on 

developing and testing HMZDelFinder_opt, a method that improves the performance the 

calling of HMZ deletions in typical laboratory panels, which are generated over time, and 

allows the systematic detection of partial exon deletions (i.e. deletions spanning less than one 

exon) (69). 

 

Figure 7. CNVs, and particularly HMZ deletions, in WES data 
CNVs have received little attention in human genetics, in part due to the limited availability of computational tools 
to detect CNVs from WES data. Within the CNVs, rare homozygous and hemizygous (HMZ) deletions are of 
particular relevance for rare diseases because they may result in null alleles and a complete loss of gene function. 
Exome data are expected to show no coverage (red cross) in correspondence of HMZ deletions. 
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1.3 Aims of the thesis 

The field of classical genetics has been experiencing a vigorous momentum since the advent 

of WES approaches. These technological advances increasingly require the development of 

sophisticated computational approaches, thus generating new research avenues in order to 

appropriately analyze and interpret enormous amounts of data. In turn, the wealth of exome 

data accumulated over the years has given the opportunity to pose scientific questions in ways 

that could not be possible earlier. My thesis took advantage from both these aspects and set out 

to: 

1. Develop a novel filtering approach to blacklist FP variants for prioritizing candidate 

disease-causing variants in WES analysis (presented in Chapter 2, article published in 

PNAS in 2019 (45)) 

2. Develop a novel WES-based algorithm to detect CNVs, particularly homozygous and 

hemizygous deletions spanning less than one exon (presented in Chapter 3, article under 

review and available in BioRxiv (69), https://doi.org/10.1101/2020.07.23.217976) 

3. Investigate HW equilibrium across different ethnicities in gnomAD to determine variants 

in true HW disequilibrium possibly underlying susceptibility or resistance to disease, and 

their underlying origin in relation to specific population events (preliminary findings 

presented in Chapter 4). 

 

Collectively, these projects tackle heretofore-unexamined topics and hold promise to discover 

novel causal determinants of human diseases or traits. 
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2 Blacklisting false positive variants  

2.1 Introduction: reducing the number of false positives in exome data  

NGS approaches, particularly WES and WGS, are increasingly being used for the discovery 

and diagnosis of human genetic disorders(34, 70, 71). The number of new disease-causing 

genetic variants logged by the Human Gene Mutation Database (HGMD) is currently increasing 

at a rate of ∼10% per annum(72). This increase has coincided with an expansion of the use of 

WES and WGS(70, 71). The mean number of high-quality exonic coding variants per individual 

relative to the reference human genome is about 20,000(34, 71), but monogenic disease in any 

given individual is generally driven by at most two variants. The remaining variants may be 

real (rare or common, deleterious or neutral), or false/low-quality signals [sequencing artifacts, 

bioinformatic misprocessing of raw sequencing data, or resulting from limitations to the 

performance of current quality control (QC) methods]. In practice, analyses of individual 

exomes aim to generate a short list of high-quality candidate variants by filtering out as many 

FP as possible, while minimizing the risk of false negatives (FNs) due to the removal of true 

disease-causing mutations. The first step in this process typically involves the use of public 

databases to identify and remove variants through comparisons of their frequency in the general 

population with the prevalence of the disease considered, its proposed mode of inheritance, and 

its estimated clinical penetrance. The largest public database available at the time this project 

was undertaken (2017-2018) was the Genome Aggregation Database (gnomAD), which 

includes 123,136 exomes and 15,496 genomes from a total of 138,632 individuals (73). For the 

remaining variants, including those not reported in public databases, various variant-level and 

gene-level metrics can be used to predict deleteriousness and to select a smaller set of candidate 

variants for further experimental analysis (74-78). For example, the combined annotation 

dependent depletion (CADD) score is a variant-level metric to predict the impact of a given 

variant and the gene damage index (GDI) is a gene-level metric to assess the mutational load 

in each protein-coding gene. 

In studies of rare genetic diseases, public databases are widely used for the initial 

elimination of common variants [minor allele frequency (MAF) > 0.01] (71, 79). However, 

some common variants within private databases may be absent from public databases, and most 

such variants are likely FPs (LFP) (31, 71). The efficacy with which such LFP variants are 

identified and used for analyses of exomes from panels of patients studied by a particular 
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research group has never been assessed in detail. An approach (defined as DFS) for detecting 

false-positive signals based on an internal panel of 118 whole-exome sequences from different 

individuals generated a shortlist of variants found to be in Hardy–Weinberg (HW) 

disequilibrium due to excess hetero- zygosity (the DFS list; 23,389 variants) (80). However, 

most of these variants (68%) had already been reported in dbSNP (80). Machine learning-based 

methods, such as variant quality score recalibration (VQSR), which uses a clustering score to 

determine whether a called variant is true(81), can limit the number of FPs in exome data. 

However, these methods are subject to several limitations: (i) they are computationally 

intensive and time-consuming; (ii) they often require a large number of samples; (iii) parameter 

optimization requires extensive testing; and (iv) the addition of new samples requires 

reprocessing of the entire panel. These methods are therefore little used by most researchers, 

who have small- or medium-sized exome panels evolving over time and may not have access 

to powerful computing resources. It has been suggested that variants common within a 

homogeneous panel and absent from public databases could be filtered out(71),  but this 

approach has not been validated and there are currently no tools for the easy identification and 

compilation of such variants. In this context, we sought to establish a “blacklist” of LFP variants 

too frequent in our panel of 3,104 exomes to be causative from patients with severe infectious 

diseases(5, 82, 83). 

2.2 Methods 

2.2.1 Description of the samples: PID, Neuro, Infection and Africa  

In this study, we used WES data from four different sets of samples, here referred as 

PID, Neuro, Infection and Africa. The PID panel was the main sample which was investigated 

and consisted of 3,104 individuals samples of diverse ancestral origins (North African: 

n=1,053; Caucasian: n=1,150; African: n=297; Middle Eastern: n=395; Asian: n=55; 

American: n=145; unknown: n=9) obtained by our laboratories and recruited with the help of 

clinicians. Most of the individuals had a wide range of different infectious diseases and immune 

deficiency phenotypes, and probands’ family members accounted for the rest. All study 

participants provided written informed consent for the use of their DNA in studies aiming to 

identify genetic risk variants for disease. IRB approval was obtained from The Rockefeller 

University and Necker Hospital for Sick Children, along with a number of collaborating 

institutions. The exomes of 3,869 individuals suffering from neurological disease (“Neuro” 
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panel) were obtained from the GME Consortium, with recruitment according to a similar 

protocol (84). The exomes of 902 individuals suffering from severe infectious diseases 

(“Infection” panel) were obtained from patients enrolled in studies coordinated by Dr. Jacques 

Fellay’s laboratory at EPFL, Switzerland. The exomes of 400 individuals in the “Africa” panel 

were provided by Dr. Lluis Quintana-Murci’s laboratory at the Pasteur Institute, Paris, France. 

Table 1 describes the main sequencing and bioinformatic parameters of the four panels. 

2.2.2 WES, bioinformatics analysis and quality control 

Rockefeller PID exome sequences: genomic DNA from peripheral blood mononuclear 

cells was extracted and sheared with a Covaris S2 Ultrasonicator. An adaptor-ligated library 

(Illumina) was generated, and exome capture was performed with SureSelect Human All Exon 

37, 50, or 71 Mb kits (Agilent Technologies). Massively parallel whole-exome sequencing was 

performed on a HiSeq 2000 or 2500 machine (Illumina), generating 72-, 100- or 125-base reads. 

Quality controls were applied at the lane and fastq levels. Specifically, the cutoff used for a 

successful lane is Pass Filter > 90%, with over 250 M reads for the high-output mode. The 

fraction of reads in each lane assigned to each sample (no set value) and the fraction of bases 

with a quality score >Q30 for read 1 and read 2 (above 80% expected for each) were also 

checked. In addition, the FASTQC tool kit 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to review base quality 

distribution, representation of the four nucleotides of particular k-mer sequences (adaptor 

contamination). We used the Genome Analysis Software Kit (GATK, version 3.4-46) best-

practice pipeline to analyze our WES data(81). Reads were aligned with the human reference 

genome (GRCh37), using the maximum exact matches algorithm in Burrows-Wheeler Aligner 

(BWA) (85). PCR duplicates were removed with Picard tools (http://picard.sourceforge.net/). 

The GATK base quality score recalibrator was applied to correct sequencing artifacts. GATK 

HaplotypeCaller was used to identify variant calls at the individual level (one VCF per 

individual). DP >=5 and MQ >=30 were used as standard hard filtering criteria (86). Variants 

were annotated with SnpEff (http://snpeff.sourceforge.net/). Exomes were annotated for PASS 

and non-PASS variants in gnomAD r2.0.2 (Exome Aggregation Consortium, Broad Institute) 

and the 1000 Genomes Project Phase 3 (http://www.1000genomes.org/) databases. Joint 

genotyping followed by VQSR filtering was not used because there have been reports of 

fractions of variants unique to individual samples being missed 

(http://gatkforums.broadinstitute.org/gatk/discussion/4150/should-i-analyze-my-samples-
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alone-or-together), rendering this approach unsuitable for our studies. For the purpose of 

comparison between the blacklist and VQSR approaches, VQSR was calculated with 

VariantRecalibrator and ApplyRecalibration for both SNPs and indels, with ts_filter_level set 

to 99.0 and other settings as specified by GATK recommendations. We did not use the 

InbreedingCoeff as this is discouraged in situations in which the sample includes members of 

the same family, as in our sample. Similarly, we did not include DP among the parameters of 

the VQSR, as it is not suitable for targeted exome sequencing samples.  

Neuro (GME Consortium neurological exome sequences): whole-exome sequencing for 

the GME Consortium was performed as previously described (84). Briefly, genomic DNA was 

extracted from peripheral blood mononuclear cells with Qiagen reagents and captured with the 

Agilent SureSelect Human All Exome 50 Mb kit. WES was performed on an Illumina HiSeq 

2000. The GATK best-practice pipelines were used to analyze WES data(81). BWA was used 

to align reads with human reference genome GRCh37(85). The variant-call format files 

generated were annotated with the Rockefeller pipeline, as described above. 

"Infection" exome sequences: whole-exome sequencing for the Infection panel was 

performed as previously described(87, 88). In brief, genomic DNA was extracted from whole 

blood with the QIAamp DNA blood kit and captured with the Agilent SureSelect Human All 

Exome 50 Mb kit (Agilent SureSelect Human all exon V4 or V5) or Illumina Truseq 65 Mb 

enrichment kit. WES was performed on an Illumina HiSeq 2000 or Illumina HiSeq 2500 

machine. BWA-MEM was used to map reads onto the human reference genome GRCh37 

decoy, and GATK v3.8 (or an earlier version of this software) was used for data processing and 

analysis, according to GATK best practice. 

"Africa" exome sequences: whole-exome sequences were obtained for 300 African 

samples(89), and these data were processed together with those for 100 European 

individuals(90). All samples were sequenced with the Nextera Rapid Capture Expanded Exome 

kit, which delivers 62 Mb of genomic content per individual, including exons, untranslated 

regions (UTRs), and microRNAs. Using the GATK Best Practice recommendations(91), we 

first mapped read-pairs onto the human reference genome (GRCh37) with BWA v.0.7.7(85), 

and reads duplicating the start position of another read were marked as duplicates with Picard 

Tools v.1.94 (http://picard.sourceforge.net/). GATK v.3.5(81) was then used for base quality 

score recalibration (“BaseRecalibrator”), insertion/deletion (indel) realignment 

(“IndelRealigner”), and SNP and indel discovery for each sample (“Haplotype Caller”). 
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Panel               

  Size Kit Sequencer Aligner Reference 

Genome 

Caller Annotator 

PID 3,104 Agilent 37, 50, 71 Mb 
Hiseq 2000, 

2500 
bwa(v0.7.12) hg19 GATK (v3.4-46) snpEff 

Neuro 3,869 Agilent 50 Mb Hiseq 2000 bwa (v0.7.5) GRCh37 GATK (v.3.1-1) snpEff 

Africa 400 
Nextera Rapid Capture 

Expanded Exome 61 Mb 
Hiseq 2500 bwa (v0.7.7) GRCh37 GATK (v.3.5 ) snpEff 

Infection 902 Agilent 50 Mb, Illumina  65Mb 
Hiseq 2000, 

500 
bwa (v0.7.10) hg19 decoy GATK (v3.8 ) snpEff 

Table 1: Summary of the technology employed for each panel of the Blacklist. 

2.2.3 Algorithm and statistics 

2.2.3.1 Blacklist creation and Refine algorithm 

The blacklists used in and provided with this manuscript were created by first collecting 

unique variants from 3,104 patient exomes and counting the occurrence of each variant (the 

number of patients reported to have the variant). The QC criteria used to collect these variants 

were equivalent to those used in gnomAD (MQ³30). However, we used a lower DP (DP³5), 

compatible with research approaches in which investigators wish to retain as much information 

as possible. These criteria correspond to a high degree of QC despite low coverage, but may 

allow the discovery of true disease-causing variants, as illustrated by the example of the deletion 

of ISG15, which was initially identified by exome analysis despite a low DP of 4(92). We did 

not use the QD value as a QC criterion due to the erroneous calls for some variants 

(https://gatkforums.broadinstitute.org/gatk/discussion/8912/most-variants-called). We 

explored the FN rate of the blacklists in the HGMD database and excluded variants that were 

present in the set of true disease-causing variants in HGMD according to further analyses(93). 

The measurement of variation at multiallelic sites was rendered more effective by separating 

variants into biallelic and multiallelic variant groups. Multiallelic variants represent a very 

specific challenge for the elimination of nonpathogenic variants from exomes, as variants at 

multiallelic positions may occur individually in a small number of samples. Collectively, 

however, these variants may occur in a large proportion of the members of the panel (i.e. many 

individuals may contain one of a number of variants at the position). The variants at multiallelic 

sites are often similar (e.g. G in the reference and an alternative of GA, GAA, GAAA, GAAAA, 

GAAAAA, etc.) but have remained resistant to removal from exomes by bioinformatic 

methods. For the capture of these variants, we collapsed all variants at multiallelic sites to a 
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single value by calculating the total number of patients with any variant at the multiallelic 

position. When this number exceeded 1% of our panel, all variants at the position concerned 

were included in the full blacklist. This procedure can thus identify variants present in only a 

few individuals but nevertheless occurring at positions with a high cumulative burden of 

variation in a panel. We then considered biallelic variants. If the number of patients with any 

individual biallelic variant exceeded 1% of our panel, the variant concerned was included in the 

full blacklist. For a schematic diagram of this pipeline, see Figure 8.  

 

 

Figure 8. Methodology for blacklist generation 
The blacklist was generated by first collecting unique high- quality variants (DP>=5, MQ>=30) from patient 
exomes and counting the occurrence of each variant. These variants were assembled into two classes: (1) biallelic, 
with a single alternative allele in our panel; and (2) multiallelic, with two or more alternative alleles in the panel, 
for which we collapsed all variants at a unique chromosomal position and summed the total number of patients 
containing these variants. We then collected the variants that had a frequency >=1% in the panel (the Blacklist: 
“Common in-house variants”). Of these variants, 21.4% (167,144) were absent from gnomAD exome and genome 
databases. We considered these 167,144 variants to be “blacklist-annotated” (BL-A). 

 

 

We designed ReFiNE (Reducing False Positives in NGS Elucidation) software, an easy-to-

use tool for extracting a blacklist of LFP variants from internal panels of WES or WGS data on 
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the basis of a user-defined frequency cutoffusing Python programming language (version 

2.7.14, https://www.python.org/) and R, using both default and publicly available libraries. The 

Python Tkinter module was used to design and implement the graphical interface for ReFiNE. 

ReFiNE is available as a graphical interface program (including a command-line option) that 

can be run on a standard laptop and is compatible with comma-separated (CSV) files. ReFiNE 

can also generate blacklists from WGS data, although this application has yet to be extensively 

tested. ReFiNE includes an optional parameter for the exclusion of a list of variants from the 

blacklist regardless of their frequency in the in-house database. This option can be used to 

remove a small number of known true disease-causing HGMD variants, for example. We also 

provide precalculated blacklists generated from our panel of 3,104 PID exomes with cutoffs of 

1%, 3%, 5% and 10%. These blacklists can be used for small panels for which it may not be 

possible to generate custom blacklists. We also provide the PID, Neuro, Infection, Africa and 

combined blacklists used in this manuscript, annotated with gnomAD MAFs. Finally, we have 

constructed a public server (http://lab.rockefeller.edu/casanova/BL) containing all the 

supplemental files, the ReFiNE program, and a user-friendly online tool that can be used to 

query whether a variant is included in our blacklist or to annotate lists of variants in a similar 

manner. ReFiNE and pre-calculated blacklists: http://lab.rockefeller.edu/casanova/BL 

2.2.3.2 Simulating minimum sample size and sample size saturation for blacklists 

We determined the minimum number of samples required for the creation of safe blacklists 

by generating random blacklists based on 10, 50, 100, 250, 500, 1000, 1500, 2000, 2500, 3000, 

3500, 4000, 4500, 5000, 5500, 6000, or 6500 individuals from the PID and Neuro panels. We 

weighted the random selection of individuals for the blacklists by project size (i.e. for a sample 

size of 10, we picked 4 individuals at random from the PID panel and 6 at random from the 

Neuro panel). The selection of individuals for each sample size was repeated 30 times, and full 

blacklists for each iteration were generated with ReFiNE. The median number of blacklist-

annotated variants and a 99% confidence interval based on a normal distribution were 

calculated for each sample size and plotted. The number of samples required to reach saturation 

for blacklist variants was predicted by fitting a logarithmic trendline to the blacklist dataset 

based on the coefficient of determination (R2). The equation for this line was: 

" = 2801.1 × ln(-) + 3466.3 
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where R2 = 0.7088. We defined saturation as the number of samples for which less than one 

cohort-specific variant was added to the blacklist per new exome. Based on the best-fit equation, 

we calculated the saturation point as 2,801 individuals. 

2.2.3.3  Statistics and figures 

The Scipy library (https://www.scipy.org/) was used for statistical analyses performed in 

Python. Seaborn (https://web.stanford.edu/~mwaskom/software/seaborn/) was used to generate 

figures in Python, together with matplotlib (https://matplotlib.org). Venn diagrams were 

generated with jvenn software(94). Wordclouds were generated with the WordCloud library 

(https://github.com/amueller/word_cloud). Prism (Graphpad) was also used for figure 

generation and statistical analysis. 

2.2.4 Characterization of blacklisted variants and Sanger sequencing 

The blacklisted variants were characterized according to various metrics, including by HW 

equilibrium/disequilibrium, occurrence in low-complexity regions, and allelic distribution 

across genetic ancestries. HW disequilibrium was calculated for the blacklisted variants found 

to be present in the European population (n=1150), which constituted the largest population of 

the PID panel. Chi-squared tests were used to assess HW equilibrium. Given the large number 

of tests performed and the heterogeneity of European origins in our European panel, a stringent 

threshold of 10-8 for significance was used for significance. A total of 106 variants with a p-

value below 10-8 were considered to be in HW disequilibrium and were stratified by excess 

genotype as follows: excess of heterozygotes (observed no. of heterozygotes > expected no. of 

heterozygotes, 57 variants), excess wild-type homozygotes (observed no. of wild-type 

homozygotes > expected no. of wild-type homozygotes, and chi-squared for the wild-type 

homozygote > chi-squared for the alternative homozygote, 13 variants), excess alternative 

homozygotes (observed no. of alternative homozygotes > expected no. of alternative 

homozygotes and chi-squared for alternative homozygotes > chi-squared for wild-type 

homozygotes, 36 variants). 

The occurrence of the variants in low-complexity regions was assessed with the following 

tracks from the UCSC Genome Browser: RepeatMasker and Simple Repeats (group: Repeats), 

and GC percent (group: Mapping and Sequencing). RepeatMasker was created from the 

RepeatMasker program, which screens DNA sequences for interspersed repeats and low-
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complexity DNA sequences; Simple Repeats reports simple tandem repeats located by Tandem 

Repeats Finder (TRF), which was designed especially for this purpose. Variants were 

considered to occur in GC-rich regions in which the G+C content exceeded 80%. 

The heterogeneity of ethnicity was assessed in the four largest genetic ancestry groups in our 

panel (European (E), African (A), North African (nA) and Middle Eastern (ME)), for the 

variants found to be in HW equilibrium in the European population. Chi-squared tests were 

used to test the allelic distribution. In total, 203 variants with a p-value below 10-8 were 

considered to be heterogeneous across ancestries. The ancestry driving heterogeneity was 

unequivocally determined for 67 variants, by testing the allelic distributions of four 

combinations of three populations from those mentioned above (E-A-nA, E-A-ME, E-nA-ME, 

A-nA-ME), determining the combination among these four combinations that did not reach 

significance, and identifying the population that was missing in the non-significant 

combination. For example, if a variant was found to be in allelic heterogeneity in E-A-nA, E-

A-ME and A-nA-ME but not in E-nA-ME, the ancestry driving heterogeneity was determined 

to be A. For Sanger sequencing, DNA was extracted from 10 SV40-fibroblast cell lines from 

patients included in our panel. PCR amplification was performed with Hot-Start Taq Blue DNA 

Polymerase (Denville Scientific, Inc.), 85 ng of template genomic DNA and specific primers. 

Sanger sequencing was performed with the BigDye Terminator kit (Perkin Elmer). 

2.2.5 Analysis of variation in patient exomes 

We identified the disease-causing mutation in patient D2 from a previous study(95),  using 

a standard filtration pipeline. In brief, we removed variants with low-quality metrics (DP<4, 

MQ<40, QD<2) that were common in public databases (variant frequency in gnomAD < 

0.0001), variants of high-GDI genes (74), and variants with CADD scores below their gene-

specific mutation significance cutoff (77). Gene burden was analyzed in our chronic 

mucocutaneous candidiasis (CMC) panel by first filtering each exome, as described above. We 

then compared the numbers of individuals with at least one variant for each mutated gene in the 

patient group between the patient (n=208) and control (n=960) groups in a one-tailed Fisher’s 

exact test. The resulting p-values were used to rank genes, to identify those with the highest 

levels of enrichment in patients.  
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2.3 Results 

2.3.1 Generating the blacklist 

We observed that numerous candidate variant calls (see Materials & Methods) (96)  

predicted to be damaging to the corresponding transcript or protein were present in >1% of our 

panel of 3,104 in-house exomes from primary immune deficiency (PID) patients with 

heterogeneous ancestral background(97) (i.e. too common to cause PID) but absent from public 

databases (e.g. 1KG, ExAC, gnomAD). These variants are poor candidates for involvement in 

rare diseases and likely false positive variants but are impossible to eliminate by current 

methods based on variant frequencies in public databases(71). We therefore sought to classify 

and characterize these variants in a rigorous and comprehensive manner, to enable users to 

remove them from their WES/WGS analyses. First, we determined a statistical cutoff frequency 

above which in-house variants should be considered too frequent to cause rare diseases. We 

found that the MAF of all experimentally validated disease-causing mutations in HGMD 

followed a Gilbrat distribution(98). We then calculated the 99% Gilbrat distribution confidence 

interval (CI) for these frequencies and found that the upper boundary of the CI for the frequency 

of known disease-causing mutations was 0.01 (1%). We therefore used this cutoff as a criterion 

for LFP variants occurring in too many patients in our database to explain a rare monogenic 

illness. The MAF>0.01 cutoff used here is an example of the blacklist approach to removing 

LFP variants in studies of rare genetic disorders. The cutoff can be adjusted according to the 

mode of inheritance and genetic architecture, assumed penetrance, disease prevalence, and the 

phenotypic homogeneity of the panel (17). For example, assuming complete penetrance and 

allelic homogeneity, a rare recessive genetic disorder with a prevalence of 1 in 100,000 could 

be analyzed with a MAF cutoff of 0.0033, whereas a more common recessive genetic disorder 

with a prevalence of 1 in 1,000 should be analyzed with a MAF cutoff of 0.033.  Some caution 

may be needed for specific cases. For example, if the sample contains an high proportions of 

patients with the same disease and therefore could potentially be enriched with the same allele 

(hypothesis of strong allelic homogeneity), one should consider higher cutoffs. Similarly, the 

assumption of incomplete penetrance may lead to the definition of higher cutoffs, whereas the 

assumption of allelic/genetic heterogeneity may lead to the use of lower cutoffs.  

We first designed the ReFiNE (Reducing False Positives in NGS Elucidation) software, an 

easy-to-use tool for extracting a blacklist of LFP variants from internal panels of WES or WGS 

data on the basis of a user-defined frequency cutoff (see Materials and Methods for details). 
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ReFiNE creates a blacklist consisting of the full set of variants occurring in >1% (or any user-

defined cutoff) of an investigated panel, which can then be further filtered separately by the 

user, using MAF cutoffs from a population genetic database of choice. Using ReFiNE, we first 

collated all variants present at a frequency >1% in our PID WES panel of 3,104 exomes (Fig. 

8, Materials & Methods) with a depth of coverage (DP) ³ 5 and mapping quality (MQ)³ 30 (see 

Materials and Methods(73, 86)). A large number of multiallelic variants in our panel were 

absent from gnomAD for specific chromosomal positions. ReFiNE therefore collapsed all 

variants at a unique chromosomal position and summed the total number of patients at each of 

these positions. This generated a list of 780,956 LFP variants, defined as the blacklist. This 

blacklist is the full list of variants occurring at single chromosomal positions for which >1% of 

patients had an alternative allele. These LFP variants belonged to two classes: (1) biallelic, with 

a single alternative allele in our panel; and (2) multiallelic, with two or more alternative alleles 

in our panel. The blacklist includes variants already reported in public databases, so we needed 

to extract the subset of variants unique to our method for further analysis. We thus annotated 

the blacklist with gnomAD, currently the most extensive public population genetics database 

available (6, 73). We found that 21.4% (167,144) of these 780,956 variants were absent from 

the gnomAD full exome and genome databases. As these 167,144 LFP variants are not captured 

by the most extensive public database available, we focused the analysis of our method on this 

subset of variants, which, for simplicity, we will refer to as blacklist-annotated (BL-A): 

common in-house LFP variants absent from gnomAD that cannot, therefore, be filtered out of 

analyses based on gnomAD.  

2.3.2 Efficacy of the blacklist filtering  

We then assessed the efficacy of BL-A for filtering out LFP variants from patient exome 

data. We first applied the standard procedure for rare genetic disorders, by removing variants 

with a MAF>0.01 in gnomAD from our 3,104 exomes (31, 34). This reduced the median 

number of variants in the patients’ exomes by 90% (Fig. 9A). Subsequent filtering with BL-A 

removed 62% of the remaining variants that could not be removed by other means (Fig. 9A, a 

median of 9,056 variants removed per exome). By comparison, the DFS list (80) decreased the 

median number of these variants by only 1.8% (median of 260 variants removed per exome). 

BL-A filtering was effective for both coding sequences (CDS), including indel, exon-deleted, 

non-synonymous, synonymous and essential splicing variants, and for non-CDS variants, 

including UTR, non-essential splicing, intronic, downstream and upstream variants, and for all 
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three exome kits available for our panel (37 Mb, 50 Mb, and 71 Mb). We then assessed the 

performance of BL-A filtering for variants absent from the gnomAD database (i.e. variants 

private to the PID database), which would be considered among the strongest candidates for a 

causal role in disease. This approach decreased the number of cohort-private variants 

potentially associated with PID in each exome by 86%, versus only 2.2% for the DFS list, and 

was similarly effective for CDS and non-CDS variants (Fig. 9B). Thus, when used as a filtering 

tool, our blacklist was able to remove LFP variants absent from public databases and to decrease 

the number of candidate variants per exome considerably. 

 

 

Figure 9. Blacklist filtering of 3,104 PID exomes with the PID blacklist. 
(A) Filtering of all variants in each exome by first removing those common in gnomAD exome and genome 
databases (MAF greater than 0.01). The remaining variants were subsequently filtered with the blacklist. (B) 
Filtering of cohort- specific variants in each exome with the blacklist. Filtering with the DFS list is shown for 
comparison. Error bars represent the 10th to 90th percentiles. 
 

We then explored whether the quality control (QC) scores for BL-A variants were similar 

to those for polymorphic variants (MAF>0.01) reported in gnomAD. By comparing the median 

MQ and DP scores for blacklisted variants and polymorphic variants from our panel (Fig. 10A-

B), we demonstrated that none of these QC metrics could differentiate between these two sets 

of variants (especially when considering commonly used criteria for hard filtration, see 

Materials and Methods for further details). We then investigated whether machine learning QC 

metrics could classify these variants. With variant quality score recalibration (VQSR), only 

25% of BL-A variants were annotated as “non-pass” (not shown). One of the key goals of the 

blacklist approach is providing an efficient tool for researchers who cannot easily perform 
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VQSR. We therefore retained these VQSR “non-pass” variants in the blacklist. We also 

assessed the ability of a random forest classifier trained on polymorphic variants from the 

gnomAD dataset well-characterized by different methods to separate true variants from FP 

artifacts called by the variant-calling pipeline(73). We then used the same method to construct 

a new scoring function with the gnomAD dataset. We applied both scoring functions to the LFP 

blacklisted variants and a set of variants present in both the gnomAD dataset and our panel, 

with a minor allele frequency of more than 1% in each dataset. The score distributions obtained 

were almost identical (Fig. 10C), demonstrating an inability of this standard classification 

method to distinguish between the LFP blacklisted variants and true positive (TP) variants.  

 
A                                B                                       C 

 

 

Figure 10. Comparison of quality metrics and machine learning-based filtering methods. 
Quality metrics for blacklisted and non-blacklisted variants: mean (A) read depth (DP) and (B) mapping quality 
(MQ) were calculated for common variants present in gnomAD with a MAF>1% (blue bar), and for blacklist-
annotated variants (green bar). Error bars represent the upper and lower limits of 1.5 times the interquartile 
range. Score distributions at random forest scoring functions for blacklist-annotated variants and for a set of true-
positive (TP) variants present in both the gnomAD dataset and our panel with a MAF exceeding 1% in each 
dataset.  
 

We then characterized the variants and genes included in BL-A with computational damage 

prediction metrics. A variant-level analysis revealed that the combined annotation-dependent 

depletion (CADD) scores for LFP blacklisted variants were not significantly different from 

those for variants not included in the blacklist. A gene-level analysis (74) of all genes with 

blacklist variants (n=13,665 genes) showed them to have low gene damage index (GDI) values. 

However, some genes with a high GDI have many BL-A variants (e.g. HLA-DRB1: 658 
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variants, MUC16: 455 variants). Filtration methods based on QC and variant- and gene-level 

damage prediction metrics would not efficiently detect and remove the LFP blacklisted variants 

absent from gnomAD. These results demonstrate the value of blacklisting as a complementary 

approach to analyses based on standard public databases, including gnomAD, QC filtering, and 

damage prediction metrics. 

We estimated the proportion of TP disease-causing mutations removed by the blacklist 

approach, by screening 129 exomes from patients in our panel for whom the TP mutations had 

been validated experimentally. Filtering these exomes with the complete blacklist did not 

remove any of the known TP mutations (0% FN rate). Even though most variants in any patient 

are not pathogenic, our analysis indicates that it is very safe to apply the blacklist to patient 

exomes. We also compared the complete blacklist with the list of 144,641 disease-causing 

mutations in HGMD and noted an overlap of only 263 variants (0.18% FN rate). These variants 

are listed as disease-causing in the HGMD dataset, but 47% have a MAF > 0.01 in the gnomAD 

exome or genome databases, suggesting that are unlikely to be the cause of a rare disorder. 

These findings indicate that our FN rate is probably lower than the rate of 0.18% for HGMD in 

the context of rare disorders. Only eight BL-A variants were present in HGMD (0.001% FN 

rate), indicating that the FN rate for our specific BL-A list was lower than that for gnomAD. 

Together, these results suggest that the FN rate is very low for this technique. We also screened 

3,731,152 somatic cancer-causing or cancer-associated variants available from TCGA 

(http://cancergenome.nih.gov/). We found that 59,151 of these TCGA variants (1.5%) were 

present in the complete blacklist and 2,471 (0.07%) were present in BL-A. As our blacklist was 

derived from germline exome data, the presence of these blacklist variants in the TCGA 

database suggests that they may be FPs that could be removed, as previously reported(99). 

Together, these data indicate that the blacklist approach results in an extremely low FN rate 

when applied to patients with rare diseases, and that it is therefore safe to use this approach to 

remove LFP variants from patient exome data. 

2.3.3 Practical applications of the blacklist to the analysis of exome data 

We assessed the use of blacklisting for practical analyses of patient exomes. We selected a 

case from our panel with an autosomal dominant disease-causing mutation described in a 

previous study (Patient D2 from(95)). We filtered this patient’s exome with a standard pipeline 

to identify disease-causing mutations (Fig. 11). This standard approach reduced the number of 

candidate variants from 142,473 to 3,526. Taking known mode of inheritance into account and 
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restricting the analysis to CDS variants (excluding synonymous alterations), the number of 

candidate variants was reduced further, to 231. The inclusion of BL-A in the pipeline decreased 

the final number of candidate variants to 109 (Fig. 11), with retention of the known IKZF1 

mutation. Overall, this corresponds to a 53% decrease in the number of variants from this 

patient’s exome to be considered. The remaining variants were high-quality candidates that 

would probably merit rigorous analysis in exome analyses for patients with diseases of 

unknown etiology. Thus, blacklisting greatly decreases the number of candidate variants for 

further study in practice, in exome analyses on individual patients. 

 

 

Figure 11. Practical analysis of a single patient exome by blacklisting. 
The practical utility of the blacklist approach was demonstrated with the exome of a patient with a published 
disease-causing mutation. The patient’s exome was filtered with a standard pipeline with and without application 
of the blacklist-annotated. The numbers in each box represent the number of variants remaining in the exome after 
each filtering step. GDI: gene damage index; MSC: mutation significance cutoff. 
 

We then explored the use of our blacklist for gene burden analysis for genetic homogeneity 

at the population level. We compared the number of patients with at least one variant of any 

given gene between a panel of 202 patients suffering from CMC and 852 phenotypically 

unrelated controls(100). When standard filtering with public databases was applied in the 

absence of blacklisting, the enrichment observed for the known disease-causing gene in the 

CMC panel, STAT1 (p-value=3.32 x10-6), was not significant considering the corrected 

threshold at the genome-wide level (p-valuethreshold = 0.05 ÷ 20,554 = 2.43 x10-6, Fig. 12A). 

However, following the addition of BL-A to the pipeline, STAT1 was correctly identified as a 

gene displaying strong and significant genome-wide enrichment in the disease panel (p-value 

Total	Unfiltered	Exome	Variants	

Remove	DP<5,	MQ<30	

Remove	gnomAD	>	0.0001	

Remove	GDI	High	

Remove	MSC	Low	

Remove	Blacklisted	Variants	

142,473	

123,162	

8,053	

6,745	

142,473	

123,162	

8,053	

6,745	

474	

With	Blacklist	Without	Blacklist	

Remove	Homozygous	 2,665	 2,665	

Restrict	to	CDS	&	non-synonymous	 231	 109	 53%	Reduc[on	

3,526	 3,526	
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= 4.63x10-10; Fig. 12B). In this instance, our blacklist removed two variants present in a large 

proportion of our PID exomes (both cases and controls) that confounded the statistical 

comparison between the CMC and control groups. Together with the previous practical 

example, these analyses demonstrate the power of blacklisting for removing LFP variants from 

patient exomes, both to simplify candidate variant identification in patients and for other large-

scale statistical analyses of patient groups. 

 

 

Figure 12. Application of the blacklisting approach to enrichment analysis 
Quantile–quantile plots depicting the analysis of genetic homogeneity for a panel of 202 patients with chronic 
mucocutaneous candidiasis (CMC) before (A) and after (B) application of the blacklist. The control panel 
consisted of 852 unrelated individuals. In each panel, the red arrows indicate STAT1, the known cause of CMC in 
our panel, before and after blacklist application. 

2.3.4 Characterization and experimental validation of the LFP blacklisted variants 

We then characterized the PID panel BL-A variants (n= 167,144). Most of the variants 

(91.5%) in the blacklist were multiallelic (Fig. 13A). The cohort-specific variants present in the 

blacklist were therefore due to multiallelic sites displaying high levels of variation in our panel. 

We began by hypothesizing that the multiallelic variants might lie in low-complexity regions 

of the human genome, leading to sequencing errors. The annotation of all these variants with 

RepeatMasker, Simple Repeats, and GC percent tracks from UCSC Genome confirmed that 

118,154 of the 152,915 variants (77.3%) occurred in repetitive or GC-rich regions, and that 

most (65,646; 56%) were located in short tandem repeat (STR) regions (Fig. 13A-C).  

 

b With Blacklista Without Blacklist

STAT1
p = 3.32E-06

STAT1
p 2.69E-10
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Figure 13. Characterization of the blacklisted variants in low-complexity regions of the genome 
Occurrence of the blacklisted multiallelic (red) and biallelic (blue) variants in repetitive [short tandem re- peats 
(STRs), Alu elements, other repetitive regions] and GC-rich regions; percent relative to the total number of 
blacklisted variants (A) or the total number of biallelic (B) or multiallelic (C) blacklisted variants.  

 

We analyzed the biallelic variants, which were also found to be located in repetitive or GC-

rich regions, albeit to a lesser extent (6,711; 47.2%) (Fig. 13A-B). We also characterized these 

biallelic variants, focusing on those located in CDS regions, in the 1,150 individuals of 

European origin according to PCA analysis(97), to determine whether these variants were under 

Hardy-Weinberg (HW) equilibrium. In total, 388 CDS variants were found to be located in 
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repetitive or GC-rich regions; 339 (87.4%) of these variants were in HW equilibrium and 49 

(13.6%) were in HW disequilibrium (threshold of p<10-8; Table 2). An investigation of the 

biallelic variants not present in repetitive regions (7,518; 52.8%) yielded a similar distribution, 

with 209 (89.3%) and 25 (10.7%) of the 234 CDS variants in HW equilibrium and 

disequilibrium, respectively. Overall, 74 CDS variants were in HW disequilibrium, and, in 39 

of these variants (52.7%), the cause was an excess of homozygous wild-type (28, 14.9%) or 

homozygous alternative (11, 37.8%) genotypes (Table 2). Most of these 39 variants had low 

coverage (wild-type=15.6x, alternative=20.5x; Table 2), which may have led to miscalls for a 

homozygous genotype. Most of the variants (35, 47.3%) in HW disequilibrium presented 

heterozygote excess, with high mean coverage rates of 163x (much higher than the 42.5x 

coverage of the 548 CDS variants in HW equilibrium), suggesting an excess of reads wrongly 

mapped to the region (Table 2).  
 

Hardy-Weinberg equilibrium in CDS bi-allelic variants in Caucasian Individuals (n = 1150) 

Total <10^-8 >=10^-8 % Disequilibrium 

622 74 548 12 

        

Cause of HW disequilibrium  by excess genotype 

  excess het excess hom alt excess hom WT 

Counts 35 28 11 

% 47.3 37.8 14.9 

DP 163.0 20.5 15.6 

Table 2. Hardy-Weinberg of Bi-allelic CDS Variants in Caucasian Individuals. 
Breakdown of the 662 CDS bi-allelic variants in the Caucasian individuals by HW disequilibrium and cause of 
disequilibrium. 

 

We also studied the 548 biallelic CDS variants in HW equilibrium, to evaluate their 

distribution across ethnicities. We focused the analysis on the four largest genetic ancestry 

groups in our panel: European (n=1,150), African (n=297), North African (n=1,053), and 

Middle Eastern (395), as determined by PCA analysis. In total, 200 (36.5%) of these variants 

were heterogeneously distributed across genetic ancestries (threshold of p<10-8; Table 3). The 

observed heterogeneous distribution was probably due to one specific genetic ancestry in 46 

(23%) of the variants (Table 3). In 20 variants (43.5%), the individual genetic ancestry was 

Middle Eastern (Table 3), which is poorly represented in public databases (84) suggesting that 

these variants are true variants that are more common in this population.  
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Ethnicity Distribution of CDS bi-allelic variants in HW equilibrium 

  Total <10-8 >10-8 Ethnical Disequilibrium (%) 

Counts 548 200 348 36.5 

 

Causal Ethnicity for Disequilibrium 

 Middle Eastern African Caucasian 

Counts 20 20 6 

% 43.5 43.5 13.0 

Table 3. Ethnicity distribution of Bi-allelic CDS Variants in HW equilibrium  
 

We further investigated the features of BL-A variants. We first focused on biallelic blacklist 

CDS variants in HW disequilibrium displaying excess heterozygosity and absent from 

repetitive regions in individuals of European ancestry (n=35). We found that 48.6% of these 

variants (n=17) mapped to four chromosomal regions, in the HLA-DRB1, MUC6, OR8U1, 

TAS2R43 genes with consecutive blacklist variants (less than 300 base pairs). Most of these 

regions contain flagged variants annotated in gnomAD (47% in Exome and 65% in Genome, 

annotated as AC0, RF and/or InbreedingCoeff). For the remaining variants (referred to as 

“unique”), we found that the blacklist variants were at the same location (but with different 

genotypes) as flagged variants annotated in gnomAD, like the consecutive variants (28% in 

Exome and 50% in Genome, annotated as AC0, RF and/or InbreedingCoeff). Integrative 

Genomics Viewer (IGV) (101)  showed that the consecutive variants in these regions belonged 

to the same reads, suggesting the existence of an “alternative” sequence (referred to as a 

segmental duplication by gnomAD or as an alternative haplotype). These observations strongly 

suggest that some blacklist biallelic variants define alternative haplotypes belonging to 

unmapped regions absent from the human reference genome. These variants were probably 

incorrectly mapped to the region of the reference genome for which the best match was 

obtained, leading to a mixture of wild-type and alternative alleles in these regions, resulting in 

higher coverage and a final erroneous heterozygous call. In a second analysis, we focused on 

multiallelic variants. Most of these variants (77%) were located in low-complexity regions 

(short tandem repeats, Alu elements, GC-rich regions, or other repetitive regions; Fig. 13). IGV 

analysis of three multiallelic variants absent from these regions and common in our panel 

(MAF>0.9) revealed that they were located in the vicinity of a small stretch of repeated 

nucleotides. Extending the analysis to the 23% of multiallelic variants not previously detected 

in low-complexity regions (n=34,761), we found that 83.3% were also located close to 

mononucleotide repeats (26,165; 75.3%) or to small repetitive stretches (two or more 
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nucleotides; 2,802; 8.1%). Attempts to confirm these variants by Sanger sequencing failed, due 

to the mononucleotide repeat, strongly suggesting that the WES approach may have been 

affected by a polymerase artifact similar to that reported in previous studies(102, 103). This 

exploration of blacklist variants suggests that the multiallelic variants probably resulted from 

sequencing/calling errors during WES on low-complexity regions, whereas a proportion of the 

blacklist biallelic variants, particularly those in HW disequilibrium, were due to mapping errors 

resulting from the incomplete nature of the GRCh37/GRCh38 genome assembly. Overall, these 

analyses demonstrated that the majority of blacklisted variants are FP.  

2.3.5 Testing the blacklist approach in three unrelated panels 

We assessed the suitability of the blacklist approach for filtering in other private databases. 

We used three unrelated independently processed exome panels (from DNA preparation to VCF 

data): (1) 3,869 exomes from patients suffering from neurological diseases (“Neuro”) (84); (2) 

902 exomes from patients suffering from diseases with an infectious phenotype 

(“Infection”)(87, 88); and (3) 400 exomes (100 from Europeans and 300 from Africans) from 

a study on the demographic history of Central Africans (“Africa”)(89),(90). We first generated 

separate blacklists for the Neuro, Infection, and Africa panels, according to the pipeline 

described above. After filtering on the basis of MAF>1% (in the specific panel) in gnomAD, 

the application of the cohort-specific blacklists for the Neuro, Infection, and Africa panels 

decreased the number of variants retained by 35%, 57% and 51%, respectively (a median of 

3,160, 3,462 and 7,905 variants per exome, respectively; Fig. 14A,C,E). Considering only 

cohort-private variants (i.e. those appearing in the specific panel but absent from gnomAD 

exomes and genomes), applying the cohort-specific blacklists to the Neuro, Infection and Africa 

panels reduced the number of variants in each exome by 90%, 92% and 93%, respectively, 

eliminating a median of 3,195, 3,418 and 7,861 variants per exome, respectively (Fig. 14B,D,F). 

This filtering was effective for both CDS and non-CDS variants.  

A comparison of the four blacklists revealed that a substantial number of variants were 

unique to each blacklist (Fig. 15), demonstrating the panel specificity of the blacklisted variants, 

particularly for the Africa panel, probably due to ancestry. Specifically, each blacklist contained 

63% to 91% of the unique biallelic variants (Fig. 15A) and 46% to 92% of the unique 

multiallelic variants (Fig. 15B). A similar pattern was observed when the analysis was restricted 

to biallelic and multiallelic CDS variants (Fig. 15C-D). Thus, the efficacy of blacklist filtering 

in our PID panel was not due to specific pipeline settings or enrichment within our exomes. 
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Instead, our results suggest that the blacklist method should effectively remove a substantial 

proportion of the FP variants not already removed by public database analysis from any panel 

of exomes considered. 

 
 

Figure 14. Blacklist filtering of unrelated panel exomes 
(A, C, and E) Filtering of all variants in the neurological (A), infectious disease (C), and central African (E) 
exomes by first removing those common in gnomAD exome and genome databases (MAF greater than 0.01). The 
remaining variants were subsequently filtered with the Neuro (A), Infection (C), or Africa (E) blacklists (red 
boxes), or the PID blacklist (blue boxes). (B, D, and F) Filtering of exomes restricted to cohort-specific variants, 
with the Neuro (B), Infection (D), or Africa (F) blacklists (red boxes), or the PID blacklist (blue boxes). Error bars 
represent the 10th to 90th percentiles. 

A B
All Neuro variants Neuro cohort-specific variants

0

5000

10000

15000
50000

62500

75000

# 
of

 v
ar

iat
ion

s 
in 

in
div

idu
al 

ex
om

es

gnomAD (Ex&Gn, <1%)
Neuro Blacklist-Annotated
PID Blacklist-Annotated

-
-
-

+
-
-

+
+
-

+
-
+

0

2000

4000

6000

8000

10000

# 
of

 v
ar

iat
ion

s 
in 

in
div

idu
al 

ex
om

es

gnomAD (Ex&Gn, <1%)
Neuro Blacklist-Annotated
PID Blacklist-Annotated

+
-
-

+
+
-

+
-
+

0

5000

10000

15000
50000
90000

130000

# 
of

 v
ar

iat
ion

s 
in 

in
div

idu
al 

ex
om

es

C D
All Infection variants Infection cohort-specific variants

0

2000

4000

6000

8000

10000

# 
of

 v
ar

iat
ion

s 
in 

in
div

idu
al 

ex
om

es

0

5000

10000

15000

20000
50000
65000

80000

# 
of

 v
ar

iat
ion

s 
in 

in
div

idu
al 

ex
om

es

E F
All Africa variants Africa cohort-specific variants

0

2000

4000

6000

8000

10000

# 
of

 v
ar

iat
ion

s 
in 

in
div

idu
al 

ex
om

es

35%
8%

90%

19%

gnomAD (Ex&Gn, <1%)
Infection Blacklist-Annotated
PID Blacklist-Annotated

-
-
-

+
-
-

+
+
-

+
-
+

gnomAD (Ex&Gn, <1%)
Infection Blacklist-Annotated
PID Blacklist-Annotated

+
-
-

+
+
-

+
-
+

gnomAD (Ex&Gn, <1%)
Africa Blacklist-Annotated
PID Blacklist-Annotated

-
-
-

+
-
-

+
+
-

+
-
+

gnomAD (Ex&Gn, <1%)
Africa Blacklist-Annotated
PID Blacklist-Annotated

+
-
-

+
+
-

+
-
+

41%

92%

65%

6%

93%

11%

57%

51%



 37 

 

 

Figure 15. Relationship between the four blacklists 
Common and unique biallelic (A), multiallelic (B), biallelic restricted to CDS (C), and multiallelic restricted to 
CDS (D) variants from the Blacklist-Annotated in the PID, Neuro, Africa and Infection panels. 

 

We then assessed whether the originally generated PID blacklist would effectively filter 

exomes from the unrelated Neuro, Infection, and Africa panels used above. We removed 

variants with a MAF>0.01 in gnomAD from the Neuro, Infection, and Africa exomes and then 

applied the PID BL-A. This reduced the median number of remaining variants in the Neuro, 

Infection and Africa exomes by 8%, 41%, and 6%, respectively (median of 715, 2,487, and 947 

variants per exome, respectively; Fig. 14A,C,E, blue box). When the analysis was restricted to 

cohort-private variants in the Neuro, Infection, and Africa exomes, the PID blacklist decreased 

the number of variants in individual exomes by 19%, 65%, and 11%, respectively (median of 

673, 2,439, and 957 variants per exome, respectively, Fig. 14B,D,F blue box). The superior 
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efficiency of the PID blacklist for the Infection panel may reflect the library preparation 

technique (SureSelect) and sequencing technology (HiSeq sequencer) used. Nevertheless, the 

PID blacklist was shown to be a useful filtering approach in unrelated panels in which exomes 

were captured with different kits and sequencing technologies (SureSelect or Nextera kits and 

HiSeq 2000 or HiSeq 2500 sequencing, respectively). We also found that filtering our PID 

exomes with the blacklist from the Neuro panel did not remove any TP variants from the 129 

PID exomes with proven disease-causing mutations. Blacklists are, therefore, effective for 

filtering exomes other than those with which they were developed and including cohort-private 

FP variants. However, generating internal blacklists from the panel under investigation was 

found to be the most effective approach to removing FP variants. 

We sought to determine the minimum sample size appropriate for the generation of a custom 

blacklist for a panel of interest. We combined the two largest panels studied here — our PID 

panel (3,104) and the Neuro panel (3,869) — and simulated blacklists by randomly sampling 

various numbers of individuals relative to panel size, with 30 iterations for each sample size. 

As the Neuro panel was captured with the 50 Mb kit, which targets CDS, we focused this 

analysis exclusively on CDS variants. The number of CDS variants in the simulated BL-A 

increased rapidly with sample size between 10 and 500 individuals, whereas the number of 

variants increased more slowly when sample size exceeded 500 individuals. We therefore 

propose the use of samples of at least 500 heterogeneous unrelated individuals, to ensure the 

reliable capture of common cohort-specific variants. We estimated the saturation point for the 

blacklist’s CDS variants (less than 1 new variant added per new individual) at a sample size of 

approximately 2,801 individuals. Thus, a blacklist generated with the pipeline described here 

could be considered “saturated” for the purpose of capturing most of the cohort-specific CDS 

variants that cannot be removed by public database analysis. 

2.3.6 Efficacy of the combined blacklist 

Finally, we explored the efficacy of a “universal” blacklist generated by combining the four 

BL-As presented in this study. We reasoned that the aggregation of blacklists obtained from 

different panels (and different samples/data processing methods) would result in a “universal 

blacklist” with the number of filtered variants eventually converging. We tested this hypothesis 

by aggregating either a) the four blacklists (PID, Neuro, Infection, and Africa blacklists) into a 

single ‘combined blacklist’; or b) four combinations from the set of blacklists (Neuro, Infection, 

Africa) into four combined blacklists (i.e.: Neuro-Africa, Neuro-Infection, Africa-Infection, 
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Neuro-Africa-Infection), and applying the combined blacklists obtained in a) and b) to the PID 

panel. As the PID blacklist was not included in the four combined blacklists in b), we refer to 

these blacklists as ‘non-cohort-specific combined blacklists’. These blacklists removed a 

decreasing number of variants with increasing size of the sets making up the blacklists (Fig. 

16). After standard filtering with public databases, the ‘Neuro-Africa’ non-cohort-specific 

blacklist removed a median of 1,102 (8%) variants, the ‘Neuro-Infection’ non-cohort-specific 

blacklist removed a median of 3,833 (26%) variants, the ‘Africa-Infection’ non-cohort-specific 

blacklist removed a median of 3,886 (27%) of variants, and the ‘Neuro-Africa-Infection’ non-

cohort-specific blacklist removed a slightly larger number of variants (median of 4,078, or 28% 

of variants). By contrast, the PID blacklist removed a median of 9,056 variants. The ‘four 

combined’ blacklist removed a median of 25 (0.45%) additional variants not captured by the 

PID blacklist alone (Fig. 16). Overall, these findings suggest that the number of variants filtered 

by the blacklist approach converges with the inclusion of blacklists from additional panels, 

consistent with the results for blacklist saturation. This universal filtering by blacklisting can 

be effectively applied to other individuals/panels, provided that the sequencing technology 

used, and the genetic ancestries of the panel are homogeneous. Moreover, the efficiency of a 

cohort-specific panel applied to a different panel (e.g. PID and infection panels) was greater for 

panels similar in terms of ethnic background and sequencing procedure (both mostly European 

and capture with similar kits), consistent with the results in Fig. 14C. Finally, although cohort-

specific blacklists maximize the efficiency of this approach, the use of non-cohort-specific 

combined blacklists is nevertheless a very useful approach for filtering out a large number of 

unwanted variants, reinforcing the power of blacklist filtering even in the absence of a custom 

blacklist for the panel.  

 

 

Figure 16. Efficiency of various combinations of the four blacklists. 
Filtering of all variants in each PID exome with combinations of the various blacklists, with and without inclusion 
of the PID blacklist. Error bars represent the 10th to 90th percentiles. 
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2.4 Discussion 

An essential step in the analysis of exomes from patients with rare genetic disorders is the 

removal of FP variants common in public databases (such as gnomAD, Bravo, and TopMed) at 

frequencies inconsistent with the prevalence, mode of inheritance, and penetrance of the 

disease(79). In principle, variants found to be common in a private panel but absent from public 

databases should also be filtered out. However, only one other previous study has explored the 

generation of filtering lists based on internal panels(80). Moreover, there are currently no tools 

available for filtering based on allele frequencies in internal panels. We report here the 

identification of in-house variants too common to cause rare monogenic illnesses (typically 

with a population prevalence of <10-4) in a panel of 3,104 exomes. We assembled these variants 

into a blacklist and subsequently explored the use of this blacklist for filtering FPvariants from 

exome sequencing data, using the subset of variants that makes our approach unique (blacklist-

annotated: those that are absent from public databases). These variants had high-quality metrics 

and 75% of them would not be captured by the rigorous application of available software, such 

as VQSR. We further validated this approach in three other independently processed and 

unrelated panels, demonstrating that our blacklist approach is generally, and perhaps 

universally, effective for filtering variants, and that the generation of blacklists specific to a 

given panel significantly increases the number of variants filtered out. We provide a 

computational tool (ReFiNE) for automatically generating in-house cohort-specific blacklists. 

We show that our blacklist can be used in synergy with standard public database filtering, to 

remove variants displaying disproportionate enrichment in an internal panel.  

Public databases such as gnomAD, which represent major population groups (about half of 

individuals are of European ancestry and the others are a mixture of Admixed Americans, 

Africans/African Americans, South Asians, East Asians and Others), are an invaluable resource 

for estimating the frequency of variants in the general population and in different genetic 

ancestry groups. However, cohort-specific exomes may contain common variants (e.g. >1%) 

that are absent from or rare in public databases, partly because they are population-specific 

variants less represented in gnomAD (as observed for African(89) and Middle-Eastern 

individuals(84)). Moreover, public databases, such as gnomAD, make considerable efforts to 

ensure the rigorous removal of FP variants to ensure that they provide high-quality, high-

stringency information about variants. However, these public databases do not provide a list of 

filtered FP variants and their summary statistics for filtration purposes. We demonstrated this 

with 113 1KG genomes generated by our in-house pipeline, showing that 23% of the variants 
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were absent from the public 1KG database, highlighting discrepancies between the analyzed 

and released data due to different bioinformatic procedures. Moreover, resources such as 

dbSNP are difficult to use for FP filtering because their FP variant rate is high(104). Therefore, 

even when using the latest versions of public databases and gene-level filtration(74, 75), 

ReFiNE is an effective tool for collecting data independently from external resources. 

The technology associated with the NGS analyses (sequencing platform, targeting 

procedures and software) is strongly associated with the calling of the variants. We and others 

have previously observed biases specific for WES and WGS(96) or variant-calling 

pipelines(105). Differences in technology can therefore lead to the mis-annotation of variants 

in a given panel. The main sources of mis-annotation are as follows: (i) variants in gnomAD 

collected by different technologies (PCR for WES and PCR-free + PCR for WGS) apply 

rigorous QC cutoffs based on high-quality technologies, resulting in higher proportions of 

variants from lower-quality technologies being removed; (ii) despite the presence of 15,496 

genomes in gnomAD, some genomic regions  remain poorly covered or not covered at all, 

whereas these regions are covered by our panel and contain variants (2% of our BL-A); (iii) a 

recent comparative studied revealed strong discrepancies between the variant callers used in 

NGS analyses(106); these discrepancies have been highlighted by the differences between the 

gnomAD and ExAC databases (https://macarthurlab.org/2017/02/27/the-genome-aggregation-

database-gnomad/); and (iv) the annotation of NGS variants in multiallelic positions is often 

problematic(107) because current annotation software (SNPeff (108), VEP(109), 

ANNOVAR(110)) cannot identify these variants efficiently. Indeed, 91.5% of our blacklist 

variants were located at multiallelic sites according to gnomAD’s genome annotation. Each 

panel is unique (in terms of technology, quality, ethnicities). Our blacklisting resource is 

intended to fill this gap, particularly for researchers without the large exome or genome 

databases required for filtering with computationally intensive methods, such as VQSR. 

ReFiNE can, thus, overcome anomalies in sequence alignment or variant-calling processes, 

such as large indel events(111).   

We show here that analyses of variant frequency within internal panels constitute an 

additional method for filtering out variants too common to cause rare disease. The blacklists 

generated by ReFiNE are easy to use and rapidly identify FPs that may confound the dissection 

of patient exomes. As WES and WGS are increasingly widely used for the investigation of 

genetic disorders in patients, it will be possible to apply the blacklisting approach described 

here and ReFiNE software to larger panels of patients, facilitating the effective identification 

of FPs in these panels. However, caution is required when generating blacklists with ReFiNE 
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from phenotypically homogeneous panels, particularly if of the same underrepresented ethnic 

origin, as this approach may remove TP variants in such conditions. Finally, such extensive, 

rapidly generated blacklists (1 hour for 3,104 exomes) should increase the efficiency of FPs 

elimination from exomes and genomes, without the need for the large computer clusters 

required by current machine-learning algorithms, such as VQSR (a month for 3,104 exomes). 

As exome capture kits become increasingly efficient, and with the widespread adoption of 

WGS, the blacklists generated by ReFiNE will facilitate efficient noise reduction in NGS data, 

independently of the technology used, making it easy to find the needles in increasingly large 

haystacks of genetic variants in patients. 
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3 Identification of homozygous and hemizygous (HMZ) 

partial exon deletions 

3.1 Introduction: identification of CNVs from WES data 

Copy number variations (CNVs) are unbalanced rearrangements, classically covering more 

than 50 base pairs (bp), that increase or decrease the number of copies of specific DNA 

regions(59, 60). There is growing evidence to implicate CNVs in common and rare diseases(59, 

61, 62, 112). CNVs have also been linked to adaptive traits, in environmental contexts for 

example(112). It has been recently estimated that CNVs affect ~5–10% of the genome, 

suggesting that a number of potentially disease-causing CNVs have yet to be discovered(59, 

63). Next-generation sequencing (NGS) techniques, such as whole-genome and whole-exome 

sequencing (WGS and WES), provide unprecedent opportunities for studying CNVs. 

Computational tools using data from WGS have been successfully used to detect CNVs(25, 

113-115), but WES-based methods have met with more limited success, mostly due to the 

nature of targeted enrichment protocols(64-66). Common WGS-based methods use 

breakpoints, the regions in which the rearrangements occur, to detect CNVs. By contrast, WES 

focuses on noncontiguous genomic targets (the exons), and most breakpoints are not sequenced. 

Hence, current WES-based approaches for detecting CNVs use the read depth (or coverage 

information) as a proxy for copy number information.  

The HMZDelFinder algorithm is a recently developed coverage-based method for detecting 

rare homozygous and hemizygous (HMZ) deletions(67). This subset of CNVs may result in 

null alleles and a complete loss of gene function. Their identification may, therefore, lead to the 

discovery of novel genes or variations underlying Mendelian diseases. HMZDelFinder jointly 

evaluates the normalized per-interval coverage of all the samples of the entire dataset, making 

it possible to detect rare exonic HMZ deletions while minimizing the number of false-positive 

calls due to low-coverage regions. HMZDelFinder outperformed other CNV-calling tools, such 

as CONIFER(116), CoNVex(117), XHMM(118), ExonDel(119), CANOES(120), 

CLAMMS(121) and CODEX(122), particularly for the detection of single-exon deletions (i.e. 

deletions spanning only one exon)(67). However, two major limitations remain to be addressed. 

First, HMZDelFinder has been optimized to detect HMZ deletions from an entire dataset (>500) 

of homogeneous exome data. Its performance for typical laboratory panel, which include exome 
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data generated over time, often under different conditions, is, therefore, not optimal. Second, 

HMZDelFinder was not designed for the systematic detection of partial exon deletions (i.e. 

deletions spanning less than one exon). Here, we provide HMZDelFinder_opt, a method that 

extends the scope of HMZDelFinder by improving the performance of the algorithm for the 

calling of HMZ deletions in typical laboratory panels, which are generated over time, and by 

allowing the systematic detection of partial exon deletions. 

3.2 Methods 

3.2.1 Description of the panel 

The 3,954 individuals used in this study were recruited in collaborations with clinicians, 

and most of them present different severe infectious diseases. Probands’ family members 

account for the rest. Although these individuals do not form a random sample, they were 

ascertained through a number of distinct phenotypes and in different countries. Cohort-specific 

effects are, therefore, not expected to bias patterns of variation. All study participants provided 

written informed consent for the use of their DNA in studies aiming to identify genetic risk 

variants for disease. IRB approval was obtained from The Rockefeller University and Necker 

Hospital for Sick Children, along with a number of collaborating institutions.  

WES and bioinformatics analysis were performed as previously described(45). Briefly, 

genomic DNA was extracted and sheared with a Covaris S2 Ultra-sonicator. An adaptor-ligated 

library (Illumina) was generated, and exome capture was performed with either SureSelect 

Human All Exon kits (V5-50Mb, V4-50Mb, V4-71Mb, or V6-60Mb) from Agilent 

Technologies, or xGen Exome Research 39Mb Panel from Integrated DNA Technologies (IDT 

xGen) (Table 4). Massively parallel WES was performed on a HiSeq 2500 machine (Illumina), 

generating 100- or 125-base reads. Quality controls were applied at the lane and fastq levels. 

Specifically, the cutoff used for a successful lane is Pass Filter > 90%, with over 250 M reads 

for the high-output mode. The fraction of reads in each lane assigned to each sample (no set 

value) and the fraction of bases with a quality score > Q30 for read 1 and read 2 (above 80% 

expected for each) were also checked. In addition, the FASTQC tool kit 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to review base quality 

distribution, representation of the four nucleotides of particular k-mer sequences (adaptor 

contamination). We used the Genome Analysis Software Kit (GATK) (version 3.2.2 or 3.4-46) 
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best-practice pipeline to analyze our WES data(33). Reads were aligned with the human 

reference genome (hg19), using BWA(123). PCR duplicates were removed with Picard tools 

(picard.sourceforge.net/). The GATK base quality score recalibrator was applied to correct 

sequencing artifacts.  
 

Kit Kit (full name) Number (Percentage) 
of Exomes 

Median 
Coverage (SD) 

% bases 
above 10X 

IDT-xGen xGen Exome Research Panel v2 from 
Integrated DNA Technologies  

188 (4.8%) 41.7 (9.5) 91.4 

V4-50Mb Agilent SureSelect Human All Exon V4 354 (9.0%) 50.0 (15.5) 83.2 
V4-71Mb Agilent SureSelect Human All Exon 

V4+UTRs  
3095 (78.3%) 47.4 (10.2) 81.0 

V5-50Mb Agilent SureSelect Human All Exon V5  101 (2.6%) 72.4 (43.7) 70.3 
V6-60Mb Agilent SureSelect Human All Exon V6 216 (5.5%) 125.9 (38.6) 99.0 

Table 4. Distribution of the capture kit in the 3,954 exomes and corresponding coverage metrics 

3.2.2 Positive controls 

The five WES samples used as positive controls carry rare HMZ disease-causing deletions 

that were confirmed with state-of-the-art molecular approaches(124-126). Specifically, these 

HMZ deletions comprise one or more exons and have different lengths as follows (Table 5). P1 

carries a deletion of exons 21 to 23 in DOCK8 (10,800 bp) that was validated by multiplex 

ligation-dependent probe amplification (MLPA). The deletion in DOCK8 was functionally 

linked to staphylococcus infection(124). P2 had a deletion of exon 5 in NCF2 (134 bp) that was 

also validated by MLPA and found to be causal in chronic granulomatous disease (manuscript 

in preparation). P3’s deletion spanned exons 2 to 8 in IL12RB1 (13,000 bp) and was validated 

by sanger sequencing. This deletion was demonstrated to be causal for a Mendelian 

susceptibility to mycobacterial disease(125). P4 has a deletion of the entire CYBB (3,400,000 

bp) validated by MLPA and CGH array that resulted in chronic granulomatous disease(126). 

Finally, P5 is a patient with hyper IgE syndrome carrying a deletion of exons 7 to 15 in entire 

DOCK8 (28,000 bp) that was validated by Sanger sequencing. CYBB is on the X chromosome 

while all other genes are autosomal. 
 

Patient Confirmed Homozygous Deletion Exome  
Location Gene Size (kbp) Validation method Mean 

Coverage 
% Bases 
above 10% P1 Chr 9, Exons 21 to 23 DOCK8 10.8 MLPA 23 68.9 

P2 Chr 1, Exon 5 NCF2 0.13 MLPA 115 99.5 
P3 Chr 19, Exons 2 to 8 IL12RB1 13 Sanger sequencing 206 99.5 
P4 Chr X, Whole gene CYBB 3,400 MLPA and CGH array 156 99.2 
P5 Chr 9, Exons 7 to 15 DOCK8 28 Sanger sequencing 66 99.5 

Table 5. Validated rare HMZ disease-causing deletions and exome coverage in the five exomes used as 
positive controls 
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3.2.3 HMZDelFinder-opt 

The general workflow used in HMZDelFinder-opt is depicted in Figure 17. First, 

HMZDelFinder_opt computes coverage profiles from the BAM files of the entire dataset. 

Second, the Principal component analysis (PCA) is calculated from a covariance matrix based 

on standardized coverage profiles and a k nearest neighbors algorithm is used to select the 

reference control set. Third, the BAM file of a given sample and the BAM files of the reference 

control set are used as input of HMZDelFinder to detect HMZ deletions. Fourth, when 

HMZDelFinder_opt is provided with the parameter -sliding_window_size and the related size, 

it will employ a sliding window approach for identification of partial deletions of exons. Each 

of these steps is described in the following paragraphs. 

 

 

Figure 17. Schematic representation of the method employed by HMZDelFinder_opt to detect partial-
exon homozygous and hemizygous deletions 

First, HMZDelFinder_opt computes coverage profiles from the BAM files. The PCA is then calculated from a 
covariance matrix based on standardized coverage profiles and a k nearest neighbors algorithm is used to select 
the reference control set. The BAM file of a given sample and the BAM files of the reference control set are used 
as input of HMZDelFinder to detect homozygous and hemizygous deletions. In addition, HMZDelFinder_opt 
accepts a parameter (-sliding_window_size) to employ a sliding window approach for identification of partial-
exon deletions. 

3.2.3.1 Principal component analysis (PCA) and k nearest neighbors algorithm 

The PCA was performed on the coverage profile of the 3,954 WES using per-exon 

coverage. Specifically, for each sample, the coverage profile was calculated using the mean 

depth of coverage of the 194,528 exons from the consensus coding sequences (CCDS) 

annotation of GRCh37 obtained using biomaRt(127). The PCA was then performed using the 

‘prcomp’ function from R 3.5.1 on the scaled coverage profiles. To select the reference control 

set for a given sample, we computed pairwise weighted Euclidean distances between 
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individuals i and j based on the first 10 principal components from the PCA using the ‘dist’ 

function of R 3.5.1, using the formula: 

4567(5, 9) = :;<=

>?

=@>

ABC=D − BC=FG
H
 

where PC is the matrix of principal components (PCs) calculated on the coverage of common 

variants and λk the eigenvalue corresponding to the k-th principal component PCk. 

3.2.3.2 HMZDelFinder 

We used the HMZDelFinder algorithm as described(67). In brief, HMZDelFinder calculates 

per-exon read depth (reads per thousand base pairs per million reads; RPKM) to detect HMZ 

deletions. For our purpose of covering all the coding regions, we employed an interval file 

containing all coding sequences from Gencode. For a given interval, the criteria to call a 

deletion are as follows: 1) RPKM < 0.65 and 2) frequency of the deletion within the dataset £ 

0.5%. Filtering criteria at the interval and sample levels include removal of low quality intervals 

(RPKM median < 7 across all samples) and removal of low quality samples (2% with highest 

number of calls). When using the optional absence of heterozygosity (AOH) step, 

HMZDelFinder uses VCF files to filter out deletions not falling in AOH regions, assuming that 

rare and pathogenic homozygous deletions are likely to be located within larger AOH regions 

due to the inheritance of a shared haplotype block from both parents. Finally, to prioritize 

deletions, z-scores are computed. The z-score of a deletion measures the number of standard 

deviations between the coverage of the deleted interval in a given sample compared to the mean 

coverage of the same interval in the rest of the dataset. A very low z-score indicates high mean 

coverage with low variance in the dataset and very low (or no coverage at all) in a given sample. 

Hence, lower z-scores denote higher confidence in a given deletion. 

3.2.3.3 Sliding window approach and simulated data 

We simulated deletions of variable size in 200 randomly selected individuals among our in-

house panel but excluding the oldest samples (V4-50Mbp capture kit), due to a lower quality 

than present standards. Two different exons were selected to undergo simulated deletions: a 

favorable case, exon 11 from LIMCH1 gene (409bp) with a mean coverage of approximately 

85X in our samples, and an unfavorable case, exon 4 from RPL15 gene (406 bp) with a mean 
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coverage of 15X in our samples. For both exons, we deleted a segment of 25%, 50%, 75% or 

100% of the exon size, using the ‘-v’ argument of the ‘bedtools intersect’ command (bedtools 

v1.9) on the BAM file to remove all reads overlapping the segment. We then ran 

HMZDelFinder and HMZDelFinder_opt (with and without the --sliding_windows parameter) 

on the whole BAM files. Specifically, we applied a sliding window approach, in which each 

exon was divided into 100 bp  windows, with 50 bp overlaps, and BAM files for individual 

exomes were transformed into per-window read depths. In a separate analysis, we used 50 bp 

windows, with 25 bp overlaps. 

3.2.4 Analysis of common deletions 

To determine whether some of the called deletions were previously reported as common 

deletions, we utilized the CNVs from the Gold Standard track (hg19 version dated 2016-05-15) 

of the Database of Genomic Variants (DGV), a highly curated resource that collects CNVs in 

the human genome(128). We retained only entries with field ‘variant_sub_type’ equal to ‘Loss’ 

and frequency greater than 1%. We then crossed the retained entries with the deletions called 

by HMZDelFinder and HMZDelFinder_opt in the positive controls. Deletions were considered 

common in the DGV database when they overlapped at least 50% with the retained entries from 

the DGV database. 

3.3 Results 

3.3.1 Determination of the reference control set 

We first aimed to improve the performance of HMZDelFinder for detecting HMZ deletions 

in typical heterogeneous laboratory panels, which were generated over time and in different 

experimental settings (e.g. capture kit). We reasoned that comparing a given sample with an 

optimized reference control set would limit the impact of the background variability intrinsic 

to exome data, thereby improving the performance of HMZDelFinder. We designed the 

optimized reference control set as a selection of samples with similar coverage profiles (Figure 

17). We did this by first performing a principal component analysis (PCA) of the depth of 

coverage for consensus coding sequences (CCDS) for 3,954 exomes from our in-house panel, 

including mostly patients with severe infectious diseases. As expected, given the different 
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sequencing conditions used for whole-exome sequencing (Table 4), the coverage profiles of the 

samples were highly variable (Figure 18). The first two principal components (PCs) of the PCA 

identified six distinct clusters, mostly reflecting the capture kit used (Figure 18).  

 

 

Figure 18. Principal Component Analysis (PCA) of the WES coverage 
The PCA was computed from the coverage profiles of consensus coding sequences (CCDS) from 3,954 individuals. 
Dots are color-coded by the type of the capture kit used for sequencing. Two different clusters (clusters 1 and 2) 
corresponded to the V4-71Mb capture kit.  

 

Interestingly, two different clusters (clusters 1 and 2 on Figure 1) corresponded to the V4-

71Mb capture kit, the difference between these clusters being associated mostly with a minor 

change in the sequencing chemistry of the kit, leading to a significant improvement in coverage 

profile for the more recently generated exome data (not shown). We then used the first 10 PCs 

to calculate the pairwise weighted Euclidean distances between all samples(97) (see methods). 

We used this metric to determine, for each sample of interest, the closest neighbors, for use as 

the reference control set in HMZDelFinder_opt. 

3.3.2 Optimization of the reference control set in HMZDelFinder_opt 

We then compared the performances of HMZDelFinder_opt and HMZDelFinder, using five 

WES samples carrying validated rare HMZ disease-causing deletions of different lengths as 

positive controls (Table 5, methods). Specifically, we tested the ability of HMZDelFinder_opt 
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and HMZDelFinder to detect the validated deletions, and we also compared the total numbers 

of deletions called and their z-scores (see Methods). In HMZDelFinder_opt, we compared 

reference control sets of different size (ranging from 50 to 500, Figure 19), selected for each 

sample as described above. In HMZDelFinder, we used the entire dataset, consisting of 3,954 

WES samples. For both approaches, the final set of called deletions for each sample was 

narrowed down to the capture kit corresponding to the patient WES data. We chose to 

benchmark HMZDelFinder because it has been shown to perform at least as well as, and 

sometimes better than several widely used and actively maintained detection tools(67).  
 

 

Figure 19. Closest neighbors of the positive controls as function of the size of the reference control set 
A total of 100 and 500 neighbors are showed for P1 (A), P2 (B), P3 (C), P4 (D), and P5 (E). 
 

Both HMZDelFinder and HMZDelFinder_opt successfully detected all five confirmed 

HMZ deletions in the positive controls, regardless of the size of the reference control set (Table 

6). However, HMZDelFinder_opt detected a smaller total number of deletions than 

HMZDelFinder (Table 6). Specifically, the total number of deletions ranged from one to 21 

deletions for HMZDelFinder_opt, and from 11 to 2,586 for HMZDelFinder, suggesting that a 

smaller number of false-positive calls were obtained with HMZDelFinder_opt.  Using the 

optional filtering step based on the absence of heterozygosity (AOH) information for 

HMZDelFinder (see methods) decreased the number of deletions detected, but this number 

nevertheless remained much higher than that for HMZDelFinder_opt (Table 6). We 

hypothesized that the large difference between the two methods for P1 reflected the low quality 
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of exome data for this patient. Indeed, the mean coverage and the proportion of bases with 

coverage above 10x were much lower for P1 than for the other four patients (e.g. only 68.9% 

of bases had a coverage above 10x for P1, versus >99% for the other patients) (Table 4), leading 

to a large number of likely false positive deletions detected when not using an appropriate 

reference control set with similar coverage. Consistently, the number of deletions detected for 

P1 with HMZDelFinder_opt was larger with the largest reference sample size (500) (Table 6). 

We therefore performed subsequent HMZDelFinder_opt analyses with a reference sample size 

of 100, which provided a good compromise between the algorithm performance and 

computation time.  
 

  
P1 P2 P3 P4 P5 

 
KIT V4-50MB V6-60MB V5-50MB V5-50MB V6-60MB 

METHOD N NEIGHBORS Confirmed deletion (Rank/Total number of deletions) 

HMZDelFinder_opt 

50 DOCK8 

(1/11) 

NCF2 

(1/2) 

IL12RB1 

(1/1) 

CYBB 

(3/5) 

DOCK8 

(1/3) 

100 DOCK8 

(1/11) 

NCF2 

(1/2) 

IL12RB1 

(1/1) 

CYBB 

(4/5) 

DOCK8 

(1/2) 

200 DOCK8 

(1/11) 

NCF2 

(1/3) 

IL12RB1 

(1/1) 

CYBB 

(4/5) 

DOCK8 

(1/3) 

500 DOCK8 

(4/21) 

NCF2 

(1/2) 

IL12RB1 

(1/3) 

CYBB 

(3/5) 

DOCK8 

(1/2) 

HMZDelFinder 
 

All DOCK8 

(1/2586) 

NCF2 

(120/120) 

IL12RB1 

(4/11) 

CYBB 

(7/13) 

DOCK8 

(1/163) 

HMZDelFinder 

AOH 

All DOCK8 

(1/457) 

NCF2 

(37/37) 

IL12RB1 

(2/5) 

CYBB 

(4/7) 

DOCK8 

(1/46) 

Table 6. Comparison of the deletions called by HMZDelFinder_opt and HMZDelFinder.  
Comparison between HMZDelFinder_opt and HMZDelFinder by using five positive controls carrying validated 
rare HMZ disease-causing deletions. The table reports the confirmed deletion for each positive control with the 
rank and total number of called deletion in parenthesis. 
 

We then compared the rankings of the confirmed deletions between the two algorithms, 

using the z-score provided by HMZDelFinder (see method). While the two approaches ranked 

the confirmed disease-causing deletions for P1 and P5 first, HMZDelFinder_opt ranked higher 

the confirmed disease-causing deletions for P2, P3 and P4 than HMZDelFinder (Table 6; Figure 

20). Moreover, z-scores were consistently better with HMZDelFinder_opt (Figure 20) than with 

HMZDelFinder, leading to a more specific discovery of true HMZ deletions. Again, using the 

AOH option for HMZDelFinder slightly removed the number of deletions, thus slightly 

improving the ranking (Table 6), but not changing the absolute the z-score value. Together, 
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these results suggest that HMZDelFinder_opt gives better z-scores for deletions than 

HMZDelFinder, which should lead to higher sensitivity in the general case. 

 

Figure 20. Comparison of the ranking of the deletions called by HMZDelFinder_opt and HMZDelFinder. 
The ranking is expressed as - z-score. Lower z-scores (and higher ranking) indicate more confidence in a given 
deletion. The confirmed deletions ranked 1st in P1, P2, P3, P5 with HMZDelFinder_opt while they ranked 1st  only 
in  P1 and P5 with HMZDelFinder as shown by the red dots in the blue (HMZDelFinder) and yellow 
(HMZDelFinder_opt) distributions. The ranking was consistently higher with HMZDelFinder_opt than with 
HMZDelFinder. Results are shown for HMZDelFinder_opt using 100 as size of the reference control set. 
 

Finally, we studied the HMZ deletions called by both approaches, in addition to the 

validated ones, to determine whether some of the deletions identified were reported as common 

deletions. We used the CNVs from the gold standard track of the Database of Genomic Variants 

(DGV), a highly curated resource containing CNVs from the human genome(128). We focused 

on the positive controls with high data quality (P2, P3, P4 and P5), and found that the HMZ 

deletions called by HMZDelFinder_opt were more enriched in common deletions (frequency > 

1%) than those called by HMZDelFinder (Table 7). Among the 6 and 303 additional HMZ 

deletions called by HMZDelFinder–opt (with the reference control set of 100 exomes) and 

HMZDelFinder, 50% and 1%, respectively, were present in the DGV database (Table 7), 

suggesting that the deletions called by HMZDelFinder_opt were enriched in true deletions. 

Overall, these findings demonstrate that the use of an appropriate reference control set of WES 

data based on a PCA-derived coverage distance improves the performance of HMZDelFinder. 
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These results also provided a first validation of HMZDelFinder_opt for five confirmed disease-

causing HMZ deletions.  
  

P2 P3 P4 P5 TOTAL 

 
KIT V6-60MB V5-50MB V5-50MB V4-71MB  

METHOD N 

NEIGHBORS 

(COMMON DELETIONS/NUMBER OF OTHER DETECTED DELETIONS) 

HMZDelFinder_opt  

50 0/1 (0%) 0/0 (-) 2/4 (50%) 2/2 (100%) 4/7 (60%) 

100 0/1 (0%) 0/0 (-) 2/4 (50%) 1/1 (100%) 3/6 (50%) 

200 0/2 (0%) 0/0 (-) 2/4 (50%) 2/3 (67%) 4/9 (44%) 

500 0/1 (0%) 0/2 (0%) 2/4 (50%) 1/1 (100%) 3/8 (38%) 

    HMZDelFinder all 0/119 (0%) 0/10 (0%) 1/12 (8%) 2/162 (1%) 3/303 (1%) 

Table 7. Comparison of the number and percentage of common deletions. 
Number and percentage of common deletions (>1% frequency in DGV) among the detected deletions (other than 
the confirmed deletion). 

3.3.3 Detection of HMZ partial exon deletions by HMZDelFinder_opt  

In HMZDelFinder, individual exome BAM files are transformed into per-exon read depths, 

facilitating a more efficient detection of single-exon HMZ deletions than can be achieved with 

other classical CNV-calling algorithms(67). Here, we aimed to address the need for the 

identification of even smaller HMZ deletions, spanning less than an exon (partial exon 

deletions). To this end, we used HMZDelFinder_opt with a sliding window approach, in which 

each exon was divided into 100 bp  windows, with 50 bp overlaps, and BAM files for individual 

exomes were transformed into per-window read depths. We tested this approach by simulating 

deletions in two exons of similar size (~400 bp) but with different mean coverages in a 

randomly selected dataset of 200 WES samples from our in-house panel. The deletions spanned 

100%, 75%, 50% or 25% of either exon 11 of LIMCH1 (409 bp, ~85x mean coverage) or exon 

4 of RPL15 (406 bp, ~15x mean coverage). We used these datasets to compare the performances 

of HMZDelFinder_opt with sliding windows of 100 bp (HMZDelFinder_opt+sw100), 

HMZDelFinder_opt without sliding windows (HMZDelFinder_opt), and the original 

HMZDelFinder. For HMZDelFinder_opt+sw100 and HMZDelFinder_opt ,we used reference 

control sets of size 100.  

For deletions spanning the full exon (100%), we confirmed that HMZDelFinder_opt had a 

detection rate (98% and 93% for exons with higher and lower coverage, respectively; Figure 
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21) similar to that of HMZDelFinder (98% and 93% for exons with higher and lower coverage, 

respectively). However, the total number of HMZ deletions called by HMZDelFinder_opt was 

only one eighth the total number of HMZ deletions called by HMZDelFinder (median number 

of HMZ deletions: 2 vs. 13 Figure 22) The detection rate was slightly higher when sliding 

windows were used (detection rate for HMZDelFinder_opt+sw100 of 99% and 94% for exons 

with a higher and lower coverage, respectively), but at the cost of a slightly larger total number 

of HMZ deletions called than for HMZDelFinder_opt (median number of deletions: 5 vs. 2). 

Nevertheless, the total number of HMZ deletions called by HMZDelFinder_opt+sw100 

remained lower than the total number of HMZ deletions called by HMZDelFinder.  

 

 

Figure 21. Comparison of the proportion of deletions detected between HMZDelFinder_opt with or 
without sliding windows and HMZDelFinder. 

Proportions of deletions detected in simulated data in the higher (LIMCH1) or lower (RPL15) covered exons by 
using HMZDelfinder (yellow), HMZDelFinder_opt (orange), HMZDelFinder_opt+sw100 (red), 
HMZDelFinder_opt+sw50 (pink).   

 

For partial exon deletions, the detection rates of HMZDelFinder and HMZDelFinder_opt 

were much lower, at less than 10% for deletions spanning 75% of the exon and 0% for deletions 

spanning 25% or 50% of the exon. Conversely, HMZDelFinder_opt+sw100 succeeded in 

detecting simulated deletions spanning 50% or 75% (200 bp or ~300 bp) of both exon 11 of 

LIMCH1 and exon 4 of RPL15 in 99% of the samples, with a median number of called HMZ 

deletions of 5 (Figure 21 and 22).  For deletions spanning 25% of the exon (~100 bp), 

HMZDelFinder_opt+sw100 had a detection rate of 74% for the exon with the highest coverage 

LIMCH1 RPL15

100 75 50 25 100 75 50 25
0

25

50

75

100

Proportion of exon size deleted (%) 

Se
ns

iti
vi

ty
 (%

)

HMZDelFinder

HMZDelFinder_opt

HMZDelFinder_opt+sw100

HMZDelFinder_opt+sw50



 55 

in LIMCH1, but it failed to detect the deletions in the exon with the lowest coverage in RPL15. 

We assessed the performance of this method further, using a smaller sliding window of 50 bp 

in size, and a step size of 25 bp, to improve granularity. We found that the use of smaller sliding 

windows with HMZDelFinder_opt+sw50 greatly increased the detection rate for deletions 

spanning 25% of the exon with the lowest coverage, exon 4 of RPL15 (93% for sw50 vs. 1% 

for sw100) and of the exon with the highest coverage in LIMCH1 (98% for sw50 vs. 74% for 

sw100) (Figure 21). Thus, the use of a sliding window makes it possible to detect HMZ partial 

exon deletions that would otherwise be missed, and the use of simulated data further validated 

HMZDelFinder_opt. 

 

 

Figure 22. Comparison of the number of deletions detected between HMZDelFinder_opt with or without 
sliding windows and HMZDelFinder. 

Median number of detected deletions in the simulated data in the higher (LIMCH1) or lower (RPL15) covered 
exons by using HMZDelfinder (yellow), HMZDelFinder_opt (orange), HMZDelFinder_opt+sw100 (red), 
HMZDelFinder_opt+sw50 (pink).   

3.4 Discussion 

WES offers unprecedent opportunities for identifying HMZ deletions as novel causal 

determinants of human diseases, but it poses a number of computational challenges. Most 

current methods for detecting HMZ deletions compare the depth of coverage between a given 

exome and the rest of the exomes in the dataset. However, coverage depth is heavily dependent 
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on sequencing conditions, which are continually evolving in typical laboratory settings. Thus, 

the exome data generated over time are inevitably heterogeneous, complicating the discovery 

of deletions. Using HMZDelFinder_opt with both validated disease-causing deletions and 

simulated data, we demonstrated that the a priori selection of a reference control set with a 

coverage profile similar to that of the WES sample studied reduced the number of deletions 

detected, while improving the ranking of the true HMZ deletion. These results are consistent 

with a recent report showing that the selection of an appropriate reference control set with 

multidimensional scaling significantly improves the sensitivity of various CNV callers(129). In 

further support for our findings, the ranking of the known deletion and the number of additional 

deletions detected by HMZDelFinder_opt start worsening with increasing numbers of controls 

in the reference set, including neighbors with a less similar coverage profile, as illustrated, for 

P1, in Fig 19A.  

In addition to providing an optimized tool for detecting deletions in typical laboratory 

panels, HMZDelFinder_opt also fills the gap in the study of deletions spanning less than an 

exon, by providing the first tool for the systematic identification of partial exon deletions. 

Existing CNV callers are optimized for the detection of either large deletions (usually spanning 

more than three exons), or deletions of full single exons(67, 68). Other established callers, such 

as GATK, are not designed to detect CNVs and can therefore identify deletions of only a few 

dozen base pairs (typically up to 50 bp, 

https://gatkforums.broadinstitute.org/gatk/discussion/5938/using-gatk-tool-how-long-

insertion-deletion-could-be-detected and (130)). The human genome contains ~235,000 exons, 

about 20% of which are larger than 200 bp(131). HMZDelFinder_opt therefore makes possible 

the systematic discovery of currently unknown HMZ deletions in ~47,000 exons that are not 

detectable with other tools. In sum, we describe HMZDelFinder_opt, a method for improving 

the detection of HMZ deletions in heterogeneous exome data that can be used to identify partial 

exon deletions that would otherwise be missed, through an extension of the scope of 

HMZDelFinder.  
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4 HW equilibrium and implications for population 

genetics events: preliminary findings 

4.1 Introduction: what HW equilibrium hints beyond the technical errors 

The Hardy-Weinberg (HW) law or equilibrium is a basic principle of genetics(48, 49). It 

states that allele and genotype frequencies in a given population are constant from generation 

to generation, in the absence of evolutionary influences (e.g.: no migration, no mutation, no 

natural selection, very large population and random mating). Given the conditions of absence 

of evolutionary influences are usually considered to hold, deviations from HW equilibrium (or 

HW disequilibrium) have been traditionally considered indicative of technical errors(50-52). 

This principle was originally employed as filtering criterion in large-scale genotyping studies 

(e.g. genome-wide association studies or GWAS) and “lent” to exome studies without rigorous 

investigation.  

In the simplest case of a locus with two alleles, the HW equilibrium is used to estimate the 

expected number of genotypes for homozygous wild type (or major allele), heterozygous and 

homozygous alternate (or minor allele) genotypes based on the allele frequencies. These 

expected genotypes are then compared with the genotypes observed in the population to assess 

if the given locus is in HW equilibrium or disequilibrium. In WES approaches, variants in HW 

disequilibrium due to very extreme excess heterozygosity (i.e.: the observed number of 

heterozygous genotypes is significantly greater than the expected number of heterozygous 

genotypes) are filtered in large population databases, including gnomAD, the largest available 

dataset that includes 125,748 exomes (44, 47). This assumption is reasonable because it has 

been shown that variants with extreme heterozygosity are enriched in low-complexity regions 

of the genome, which are especially prone to sequencing and alignment errors. 

While HW disequilibrium may truly indicate technical errors in specific circumstances, 

some studies cautioned against blinded exclusion of loci deviating from HW equilibrium that 

could instead signal causative mutations. For example, a population-based study designed to 

investigate the causes of deviation from HWE failed to find an explanation for about 30% of 

loci found to be in disequilibrium, suggesting there may be other reasons beyond actual errors 

to cause deviations from HWE(52). Another report investigating HW equilibrium in a Japanese 

sample of 104 individuals from 1000Genome (a large dataset collected by EMBL-EBI) 
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suggested that HW disequilibrium in NGS data seems to be a major indicator for CNV(53). In 

line with these findings, a separate study has used deviations from HW equilibrium, and 

particularly loss of heterozygosity, as indicator of a specific class of CNVs, common 

deletions(54). Lastly, a recent report investigated HW disequilibrium in the whole set of exome 

data in gnomAD (cases and controls)(55). Authors mainly focused on excess heterozygosity 

with the main objective to identify variants and genes associated with autosomal recessive 

disorders. With the exception of very few classical examples (rs334 in HBB, which causes 

recessive sickle cell disease in homozygous status and confers protection from malaria in 

heterozygous status; rs1801178 in CFTR, which causes recessive cystic fibrosis disease in 

homozygous status and is hypothesized to be protective from cholera in heterozygous status), 

this study did not find candidates mutations. Furthermore, the authors recognized that the 

significance cutoff used in their study was lenient (0.05 without correction for multiple testing) 

in contrast to previous studies(53), and therefore the results from this study should be taken 

with caution. Nevertheless, this last study strongly supports the timeliness of our project.  

Here I present very preliminary findings from a study aimed at investigating the distribution 

of genotypes across populations in the control set of gnomAD, with the two-fold goal to 

determine variants that are in true HW disequilibrium possibly underlying susceptibility or 

resistance to disease, and to investigate the underlying origin in relation to specific population 

events (e.g.: natural selection). We elected to use the control set of gnomAD to avoid the 

heterogeneity that results from the aggregation of different categories of cases in the complete 

gnomAD database. In addition, we use stringent thresholds with particular attention to the 

number of conditions being tested. Our preliminary data focus on two categories that we think 

are especially important for the goal of the study to identify variants and gene underlying 

susceptibility or resistance to diseases. Specifically, after investigating for possible technical 

errors, we focus on variants in HW disequilibrium due to strong excess or depletion of 

homozygotes for the minor allele (as defined in the methods) as they might have a protective 

or deleterious role, respectively. The rationale for this specific focus stems from evidence that 

homozygous mutations can have a broad range of effect on the phenotype, spanning from 

deleterious effects on multiple phenotypes (low redundancy) or on a single phenotype (high 

redundancy), to no detectable effect on the phenotype (complete redundancy), or to 

advantageous effects conferring resistance to given phenotypes (beneficial redundancy)(56). 
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4.2 Methods 

4.2.1 Description of the panel: gnomAD 

The Genome Aggregation Database (gnomAD)(44) consists of 125,748 exomes from seven 

populations. In the most recent version of the database, authors made available a subset of 

control exomes only (no cases from common disease case/control studies that contributed data 

to gnomAD). This subset of controls consists of 54,704 exomes. The breakdown by the seven 

populations is as follows: African/African American (AFR, n = 3,582),  Latino/Admixed 

American (AMR, n = 8,556), Ashkenazi Jewish (ASJ, n = 1,160), East Asian (EAS, n = 4,523), 

Finnish (FIN, n = 6,697), Non- Finnish European (NFE, n = 21,384), and South Asian (SAS, n 

= 7,845) (Figure 23). We elected to use the control-only subset for our study to avoid the 

heterogeneity that results from the aggregation of different categories of cases in the complete 

gnomAD database and thus aiding the interpretation of the final set of variants in HW 

disequilibrium. The initial variant dataset consisted of more than 17 million variants. 

 

Figure 23. Breakdown of the control population in the gnomAD database. 
The gnomAD dataset is the largest available collection of exome data and includes a breakdown by population. 
The latest release comprises a control-only subset (n=54,704) no cases from common disease case/control studies 
that contributed data to gnomAD) 

4.2.2 Determination of the high-quality subsets of variants for the HW analysis 

We determined the high-quality sets of variants to be used in the study as follows (Figure 

24): 1) bi-allelic variants restricted to the coding regions (including all isoforms) with 2 base 

pairs (bp) padding to include splicing variants (Gencode); 2) variants deemed as high-quality 
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(“PASS” status in the gnomAD dataset) defined as passing the random forest (RF), allele count, 

and inbreeding coefficient filtering; 3) variants in an autosomal chromosome; 4) MAF > 0.001 

in at least one population, 4) ethnic-specific call rate >85%.  

 

Figure 24. Schematic of the workflow 
We determined the high-quality sets of variants to be used in the study by 1) restricting our study to exonic or 
splicing variants in autosomal chromosomes (using the Gencode interval list), 2) reducing the number of false 
positives (random forest and call rate filtering), 3) retaining variants with genotype distributions to enable 
sufficient power (MAF filtering). These steps reduced the number of variants from 17,209,905 to 375,698. This 
high-quality set was tested for Hardy-Weinberg equilibrium, using a p-value cutoff of 10-.7 

4.2.3 Methodological and statistical approach 

4.2.3.1 Hardy-Weinberg equilibrium 

Within each ethnic group, we computed the observed genotype counts (homozygous wild-

type or HOM_WT, heterozygous or HET) from the appropriate fields provided in the gnomAD 

dataset (homozygous alternate or HOM_ALT, alternate allele count or AC, total number of 

alleles or AN) with the following formulae: 

 

HET = AC − 2	HOM_ALT 

HOM_WT = AN − (HOM_ALT + HET) 

Next, we used the HardyWeinberg package(132) in R to calculate the expected genotypes 

(from the MAF) and to assess HW disequilibrium. Specifically, the HW equilibrium was 

calculated using the exact test for loci with at least one expected genotype less or equal to 5 

because the exact test is more robust with low number of expected genotypes, and chi-square 
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test otherwise. To determine HW disequilibrium, we set the significance threshold to 10-7 to 

account for multiple testing using the Bonferroni correction (0.05/375,698).  

4.2.3.2 Cause of Hardy-Weinberg disequilibrium and annotation 

For all variants found to be in HW disequilibrium, we first defined two categories: variants 

in which the number of observed heterozygous is greater than the number of expected 

heterozygous (excess heterozygosity or E_HET), and, conversely, variants in which the number 

of observed heterozygous is lower than the number of expected heterozygous (loss of 

heterozygosity or L_HET). Next, for these preliminary analyses, we focused on two categories 

in which we are particularly interested: loss of homozygotes for the minor allele (within the 

E_HET) and excess of homozygotes for the minor allele (within the L_HET), which are 

especially important for the goal of the study to identify HW disequilibrium underlying 

susceptibility or resistance to diseases. Specifically: i) within the variants in E_HET, we define 

variants for which there is loss of the homozygotes for the minor allele alleles (retaining only 

variants where the observed number of minor allele was lower or equal to 5), ii) within the 

variants in L_HET, we define variants for which there is excess of the homozygotes for the 

minor allele. 

Subsequently, variants were annotated according to functional significance, selection scores 

and known associations in genetic diseases. As in our previous reports (45, 69), we used SNPEff 

and a custom script to annotate for functional significance and other variant- and gene-level 

scores (such as GDI). For selection scores we used a newly developed selection score, called 

CoNeS(133), which integrate known negative selection scores through principal component 

projection. CoNeS is a standardized metric in which negative scores correspond to negative 

selection(133). For the known associations with genetic diseases, we used the Human Gene 

Mutation Database (HGMD), the largest catalogue of mutations associated to disease (134). 

HGMD reports both disease-causing and protective variants. These annotation were used for 

further filtering and prioritization of variants. Specifically, among the excess and loss of 

homozygotes for the minor allele, we retained only missense and predicted loss of function 

(LOF, defined as falling in one of the following categories: "frameshift", "stop-gained", "stop-

lost", "start-lost", "splice-donor", "splice-acceptor", "indel-frameshift", or 

“essential_splicing”), and variants present in HGMD and/or sorted by CoNeS score. 
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4.3 Results 

4.3.1 Proportions of HW disequilibrium within ethnic groups by MAF 

We first determined the initial set of high quality variants that could be meaningfully 

interpreted in the subsequent study of HW equilibrium. Specifically (see also methods), we 

aimed at 1) restricting our study to bi-alleic exonic or splicing variants in autosomal 

chromosomes (using the Gencode interval list), 2) reducing the number of false positives 

(random forest and call rate filtering), 3) retaining variants with genotype distributions to enable 

sufficient power (MAF filtering). These steps reduced the number of variants from 17,209,905 

to 375,698 (2.2% of the starting set), with a total of 26,856 common variants (tested in all seven 

populations). The proportion of variants tested in each population ranged from 21.6% (FIN) to 

41.5% (AFR) (Table 8). The majority of variants tested were rare (Fig. 25), especially in the 

AFR population. 
 

 Variants with MAF>0.001 in 
each population 

Variants in HW 
disequilibrium 

ethnicity counts % counts % 

AFR 155,778 41.5 894 0.57 

AMR 110,132 29.3 1,850 1.68 

ASJ 94,857 25.2 395 0.42 

EAS 88,469 23.5 847 0.96 

FIN 81,060 21.6 866 1.07 

NFE 84,799 22.6 1,484 1.75 

SAS 106,729 28.4 1,391 1.30 

Table 8. Number and percentage of variants tested for HW equilibrium within each population 
Summary statistics of the variants tested for HW equilibrium in each of the seven populations. 
 

 

Figure 25. MAF Distribution of the variants tested for HW disequilibrium by ethnic group 
Distribution of MAF of variants tested for HW disequilibrium by each of the seven populations. 
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Depending on the number of expected genotypes (see methods), we used either the chi-square 

or exact test to determine the variants in HW disequilibrium and used a p-value cutoff of 10-7 

(Bonferroni correction). We found 7,727 variants in HW disequilibrium in the seven 

populations. As some variants are in disequilibrium in more than one population, we also 

calculated the number of unique variants in HW disequilibrium that is 3,878. The proportions 

of variants in HW disequilibrium ranged from 0.42% in ASJ to 1.75% in NFE, overall reflecting 

the expected inherent structure of the population (Table 8, Fig. 26A). For example, we found 

one of the greatest proportions of variants in HW disequilibrium (1.68%) in the AMR 

population, which is composed by several subpopulations (i.e.: Colombians, Mexicans, 

Peruvians and Puerto Ricans); this high rate of disequilibrium might be in part due to Wahlund 

effect. Conversely, the proportion of variants in HW disequilibrium was smaller in ASJ, EAS 

and FIN, which are relatively homogeneous populations. However, we found a minor 

proportion of variants in HW disequilibrium than expected in AFR (0.57%), a population also 

composed by several subgroups. These same trends were observed when dichotomizing by 

MAF (below or above 0.01), and were especially evident for common variants (MAF>1%) 

(Fig. 26B-C). The unexpected proportion of variants in HW disequilibrium in AFR could be 

due to limited power resulting from the relatively smaller sample size of AFR as well as to a 

larger number of rare variants in AFR (Fig. 25) as compared to other populations. 
                A 

 
                       B                                          C 

 

Figure 26. Proportions of variants in HW disequilibrium by ethnic group and MAF 
Proportions of variants in HW disequilibrium by population (A) and dichotomized by MAF (<0.01 in B and > 0.01 
in C). 



 64 

4.3.2 Classification by type of HW disequilibrium  

For the 3,878 unique variants found to be in HW disequilibrium, we determined the driving 

cause of disequilibrium according to the two main categories of excess or loss of heterozygosity 

(E_HET or L_HET, respectively). The cause of HW disequilibrium was common across the 

seven populations for almost all variants (99.4%, n=3,853). Of the 3,853 variants, the vast 

majority (n=3,184, 83%) were in HW disequilibrium due to L_HET, while the remaining 669 

(17%) were in HW disequilibrium due to E_HET  (Fig. 27A). Our general strategy is to separate 

HW disequilibrium due to technical errors from potentially true HW disequilibrium in order to 

help identifying variants that could underlie resistance or susceptibility to diseases. To this end, 

we started to look for indicators of technical errors and hence determined the coverage in these 

two categories of HW disequilibrium. The coverage is main indicator of the reliability of 

variants in exome data. Exome data of good quality have a typical median coverage of 40-60X, 

spanning from abnormally low covered regions (~10X) to ‘hot spots’ with abnormally high 

coverage (>90X). We found that the median DP in variants in HW disequilibrium due to E_HET 

was larger than that of variants in HW disequilibrium due to L_HET (73.5X vs 57.9X), and 

even larger than the coverage of variants in HW equilibrium (EQ, DP=43.4X) (Fig. 27B). Albeit 

to a lesser extent, we also observe greater median coverage in L_HET than in variants in HW 

equilibrium (variants with a p-value > 10-2) (Fig. 27B); more in depth investigations will be 

needed to determine if this observation could be indicative of a specific cause. 

 

There might be different explanations for the observed higher coverage in E_HET variants. 

First, similarly to what we found for the blacklisted variants in excess heterozygosity(45), the 

higher coverage could indicate issues in the mapping process. Specifically, it could indicate the 

occurrence of alternative haplotypes belonging to unmapped regions absent from the human 

reference genome that are incorrectly mapped to the region of the reference genome for which 

the best match is obtained, leading to a mixture of wild-type and alternative alleles in these 

regions, and resulting in higher coverage and a final erroneous heterozygous call. Second, the 

higher coverage in E_HET could be linked to issues in sequencing due to low-complexity 

regions of the genome. We are currently testing this hypothesis by determining if variants in 

HW disequilibrium due to E_HET are enriched in variants located in low complexity regions 

of the genome (which are known to be problematic in WES analysis) as compared to variants 

in HW disequilibrium due to L_HET. In regard to L_HET, we expect that a possible reason for 

HW disequilibrium will be the presence of common deletions. Indeed, a visual inspection of 
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the list of variants in L_HET revealed hits in the Complement Factor H–Related Genes 

(CFHR1), a gene known to carry deletions common in the general population. Specifically we 

find 7 variants in L_HET in CFHR1 and that are located within a deletion present in 12.45% of 

the general population(128). 
A    B 

 

Figure 27. HW disequilibrium by excess or loss of heterozygosity 
Proportions (A) and coverage (B) of variants in HW disequilibrium due to excess or loss of heterozygosity. 
Coverage of variants in HW equilibrium (EQ) is reported for comparison. p < 2.2e-16 at t-test (pairwise 
comparison among the 3 groups). Effect size (Cohen’s d) ranges from 0.6 (medium/large) to 1.15 (very large). 
 

Next, we performed a more in depth analysis of the 3,853 unique variants in HW disequilibrium. 

We determined a 7x7 matrix with the number of population in which the variants were tested 

as columns and number of populations in which we detected HW disequilibrium as rows (Table 

9). This analysis showed that most of the variants (n=2,262, 59%) are in HW disequilibrium in 

one population, although this could be due to limited power to detect a significant effect in 

some populations own to sample size  (Table 9). To limit this confounding factor, we focused 

our analysis on two specific categories at the end of the spectrum: variants tested in one 

population and in HW disequilibrium in one population (1/1, n=812) and variants tested in on 

all seven populations and in HW disequilibrium in all seven populations (7/7, n=62). For the 

category 1/1, we cannot exclude that some variants were present in other populations but were 

filtered in the QC steps described above and could not be tested for HW equilibrium. We 

hypothesized that variants in disequilibrium in all seven populations (the 7/7 category) were 

more likely to be false positives. Our analysis of the DP coverage supports our hypothesis by 

showing a greater proportion of E_HET versus L_HET in 7/7 as compared to 1/1 and a greater 

average DP in E_HET versus L_HET within the 7/7 category (Fig. 28). Additional analyses of 
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enrichment in low complexity regions of the genome are warranted to further support this 

postulate. 

 

Table 9. Focus on specific categories of HW disequilibrium 
Matrix of variants in HW disequilibrium by number of population tested (columns) and number of populations in 
which HW disequilibrium was detected (rows). 1/1 indicates variants tested in one population and in HW 
disequilibrium in one population and 7/7 indicates variants tested in on all seven populations and in HW 
disequilibrium in all seven populations 

 

Figure 28. Preliminary analysis of specific categories of HW disequilibrium 
Proportions (left panels) and coverage (right panels) of variants in HW disequilibrium falling in 1/1 and 7/7 
categories. 
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4.3.3 Focus on excess of homozygotes for the minor allele 

Motivated by our interest in identifying mutations that could underlie resistance or 

susceptibility to diseases, we focused our attention on two specific subsets within the main 

categories of L_HET and E_HET. Specifically we studied excess of homozygotes for the minor 

allele within the L_HET and loss of homozygotes for the minor within the E_HET, and 

annotated these two subsets of variants according to known genetic diseases using HGMD and 

selection scores (see methods). Variants with excess of homozygotes for the minor allele could 

indicate mutations that are protective or are in genes with favorable redundancy; conversely, 

variants with loss of homozygotes for the minor allele could indicate mutations that are 

deleterious in genes with low, high or complete redundancy(56). Protection and disadvantage 

to disease could also be reflected in selection events, as variants with a protective role may be 

associated with positive selection, and variants with a deleterious role may be associated with 

negative selection (58, 135, 136).  

First, we started with the category of excess of homozygotes for the minor allele. A total of 

2,703 (85%) variants among the 3,184 variants in HW disequilibrium due to L_HET fell in the 

category. Given the expectation that at least a sizeable proportion of homozygous pre-mature 

stop mutations are likely to result in a complete deficiency of all encoded isoforms in all tissues, 

we initially focused on predicted loss of function (LOF) variants. Among the 2,703 variants in 

excess of homozygotes for the minor allele, we found that 75 unique variants (3%) or 120 

(counting the same variant in disequilibrium in more than one population) in 56 genes were 

predicted to be LOF. We ranked the LOF variants in excess of homozygotes for the minor allele 

by p-value and chi-square term for the heterozygous status. In the top 10 variants(Table 10), 

we found a variant in FUT2 (rs601338, W154X, in SAS, ranked 7/120), well-known to confer 

resistance to viral infection(137). FUT2 regulates the expression of antigens on the surface of 

epithelial cells and mucosal secretions, and is responsible for the secretor phenotype(138). The 

W154X nonsense mutation results in a non-secretor phenotype(139). Non-secretor individuals 

have been shown to be resistant to infections with norovirus(140, 141), and rotavirus(142, 143). 

We also found the W154X FUT2 variant in another population (AMR, not ranked in the top 

10) as well as other FUT2 variants when enlarging to missense mutations (Table 11). 

Specifically, we found the missense rs1047781 (I140F) in SAS, which has been also linked to 

the non-secretor phenotype in HGMD, as well as other two variants (p.Pro112Leu and 

p.Ala104Val) that might also underlie resistance to infection (Pro112Leu was recently shown 

to be causing non-secretor phenotype and associated to enterotoxigenic Escherichia coli 
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infection, and Ala104Val was recently shown to reduce A antigen in mutant-transfected COS-

7 cells)(144, 145). Consistently, the CoNeS score for FUT2 is positive, indicating that this gene 

is not under negative selection. The other variants in the top 10 are currently under 

investigation; the CoNeS scores in these genes are positive, hence not expected to be under 

negative selection which is in line with the possible hypothesized protective role. 
 

Variant Genetic phenotype Selection Hardy-Weinberg 

function AAChange gene HGMD Disease CoNeS eth p.val EXP 
HOM_MINOR 

OBS 
HOM_MINOR maf 

indel-
frameshift p.Ala461fs ZNF626   - 

nfe <E-100 15 514 0.03 
eas <E-100 16 232 0.06 
sas <E-100 9 214 0.03 
fin <E-100 8 181 0.03 
afr <E-100 2 70 0.02 
asj 1.01E-31 0 17 0.02 

indel-
frameshift p.Val234fs PCDHB8   1.84 

fin <E-100 8 193 0.04 
sas <E-100 21 214 0.06 
nfe <E-100 14 207 0.03 
asj 1.36E-10 0 7 0.01 

stop-gained p.Tyr63* OR4P4   1.07 
fin <E-100 47 265 0.09 
afr <E-100 44 125 0.11 
asj <E-100 23 64 0.15 

indel-
frameshift p.Gln502fs MAML3   -0.78 

sas <E-100 428 666 0.24 
fin <E-100 273 477 0.21 
asj <E-100 584 641 0.27 

indel-
frameshift p.Leu187fs POMZP3   0.57 fin <E-100 774 976 0.35 

stop-gained 
(W154X) p.Trp154* FUT2 X Non-secretor 

phenotype 1.26 
sas <E-100 783 979 0.32 
amr 4.25E-12 587 711 0.26 

indel-
frameshift p.Ile83fs OR4L1   2.1 

amr <E-100 1223 1425 0.40 
nfe 2.49E-14 2592 2838 0.37 

stop-gained p.Tyr269* RHD X Rhesus negative 
blood group 3.29 

afr <E-100 7 48 0.05 
amr 2.31E-14 0 7 0.00 

indel-
frameshift p.Ser177fs 

KRTAP5-5   1 

fin <E-100 14 67 0.05 
afr <E-100 6 28 0.04 
nfe <E-100 7 42 0.02 

indel-

frameshift 
p.Gln175fs 

fin 0 13 66 0.04 

afr 0 7 42 0.02 

nfe 0 6 28 0.04 

Table 10. Top 10 variants in excess of homozygotes for the minor allele   
Top 10 variants in excess of homozygotes for the minor allele (sorted by p-value and chi-square term for the 
heterozygous status). For each variant ranking in the top 10, the results of excess of homozygotes for the minor 
allele in the other populations (even if not in the top 10) are also reported. For example, p.Ala461fs is among the 
top 10 only in NFE, EAS, SAS and FIN but the results for AFR and ASJ are also reported. 
 

Variant Genetic Phenotype Selection Hardy Weinberg results 

function AAChange gene HGMD Disease CoNeS eth p.val EXP 
HOM_MINOR 

OBS 
HOM_MINOR maf 

missense 
(I140F) p.Ile140Phe FUT2 X Non-secretor 

phenotype 1.26 SAS 2.7E-10 1 10 0.01 

missense p.Pro112Leu FUT2   1.26 SAS <E-100 138 254 0.13 
missense p.Ala104Val FUT2   1.26 SAS 1.8E-13 3 23 0.02 

Table 11. Other FUT2 variants   
Missense variants in FUT2 found to be in excess of homozygotes for the minor allele. 
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Next, we focused on variants known to be associated to disease and reported in the HGMD 

database, the largest collection of demonstrated (or possible) disease-causing and protective 

variants. To be more inclusive in terms of impact, we included both LOF and missense variants. 

We found a total of 69 unique variants in 41 genes listed as associated to disease in HGMD, 

but only six variants listed as possible pathological/protective (labelled as DM?) and only two 

variants listed as disease-causing/protective (labelled as DM) (Table 12). The two DM variants 

are especially interesting.  The first variant was the p.Pro112Leu in FUT2 that we describe in 

the paragraph above and  is linked to fucosyltransferase deficiency. The second  variant was 

found in SMN2 in NFE, SAS, AMR and ASJ. SMN2 belong to the family of survival motor 

neuron (SMN) genes that have been shown to be the primary determining gene of Spinal 

Muscular Atrophy (SMA). An homozygous deletion in SMN2 has been reported to result in the 

SMA phenotype(146). However, the variant we found in SMN2 (rs121909192, G287R) is listed 

in the HGMD database as a positive modifier of the SMA phenotype. Specifically, it was 

reported that in a patient with a mild form of SMA who carried the SMN1 genotype (predicted 

to lead to a more severe form of the disorder), this SMN2 variant increases the amount of full-

length SMN2 transcripts, thus resulting in less severe phenotypes(147).  

 
Variant Genetic phenotype Selection Hardy-Weinberg 

function AAChange gene Disease Category CoNeS eth p.val EXP 

HOM_MINOR 

OBS 

HOM_MINOR 

maf 

missense p.Pro112Leu FUT2 Fucosyltransferase 
deficiency 

DM 1.26 sas <E-100 138 254 0.133 

missense p.Ala104Val sas 1.84E-13 3 23 0.021 

missense p.Gly287Arg SMN2 Spinal muscular 
Atrophy modifier 

DM   nfe 3.28E-39 0 23 0.004 

sas 2.73E-23 0 15 0.006 

amr 5.69E-12 0 5 0.002 

asj 4.80E-08 0 3 0.004 

stop-lost p.Ter342Arge
xt*? 

KIR2DL3 KIR2DL3 variant DM? 1.48 amr 1.43E-25 0 10 0.002 

missense p.Arg142Cys CFHR3 Haemolytic uraemic 
syndrome atypical 

DM? 1.5 sas 1.53E-19 0 7 0.002 

eas 1.02E-09 2 14 0.020 

missense p.Cys208Tyr CFHR1 Haemolytic uraemic 
syndrome atypical 

DM? 1.38 sas 3.59E-16 0 7 0.002 

missense p.Tyr355Cys CYP2D6 Hypercholesterolae
mia 

DM? 1.87 sas 2.39E-13 0 5 0.001 

missense p.Arg265Gly ABCC6 Pseudoxanthoma 
elasticum autosomal 

recessive 

DM? 0.57 nfe 3.13E-13 71 129 0.059 

missense p.Pro426Leu MYO1A Hearing loss DM? 0.91 amr 2.18E-10 410 510 0.219 

Table 12. Variants in excess of homozygotes for the minor allele and reported in HGMD   
Variants in excess of homozygotes for the minor reported in HGMD as disease-causing/protective mutations (DM) 
or  probable/possible pathological/protective mutation (DM?). 
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4.3.4 Focus on depletion of homozygotes for the minor allele 

Second, we looked at the subset of variants in HW disequilibrium due to depletion of 

homozygotes for the minor allele. A total of 281 variants (42%) among the 669 variants in HW 

disequilibrium due to E_HET fell in the category of depletion of homozygotes for the minor 

allele; we retained only variants where the number of observed minor alleles is lower or equal 

to an arbitrary cutoff of 5 given our interest in identifying variants with a possible deleterious 

role in disease that are expected to be rare. Only 4 LOF variants fell in this category, hence we 

retained missense variants in addition to LOF, and we found that 125 unique variants (45%) or 

280 (counting the same variant in disequilibrium in more than one population) were missense 

or LOF. We ranked these variants by p-value and chi-square term for the heterozygous status. 

In the top 20 variants (Table 13), we found a variant in IRF8 (rs79518337, p.Glu74Asp, in EAS, 

ranked 18/280; the same trends for this variant were also found in NFE, ranked 21/280; AMR 

ranked 123/280, SAS ranked 233/280) that seemed promising. Interferon regulatory factor 8 

(IRF8) regulates the expression of genes stimulated by IFN-α/β, is expressed in macrophages 

and dendritic cells, and plays an important role in several aspects of myeloid cells(148). 

Mutations of the human IRF8 gene underlie mycobacterial disease(148). Given the counts were 

very extreme (0 observed versus 186 expected homozygotes for the minor allele), we decided 

to look at this variant in a separate database (the genome dataset of gnomAD). We found that 

the variant is much less frequent in the second database (global frequency: 0.12 in the exome 

database; 0.003 in the genome database) and also flagged as false positive by the random forest 

classifier, suggesting a specific problem with this variant. This example suggests that the 

comparison of the results between the exome and genome dataset of gnomAD will be very 

important to remove false positives. In addition, these findings should be taken with caution 

because this category also includes some variants in genes known to be polymorphic (e.g.: 

MUC17, FLG) and presumably technical artifacts as suggested by the high number of variants 

and/or high coverage.  

Finally, we focused on variants known to be associated to disease and reported in the 

HGMD database. We found a total of 4 unique variants in 4 genes listed as disease-associated 

in HGMD, but only one variant in FANCD2 (p.Leu456Arg in AFR) listed as possible 

pathological/protective (labelled as DM?)(Table 14). FANCD2 belongs to the family of 

Fanconi anemia complementation group and it is required for maintenance of chromosomal 

stability. This variant is reported in the HGMD database as “possible pathological” and as 
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pathogenic recessive(149) in the Fanconi Anemia Mutation Database hosted by the Leiden 

Open Variation Database  although as hypomorphic. 

 
Variant Selection Hardy-Weinberg Quality 

function AAChange gene CoNeS eth p.val EXP 
HOM_MINOR 

OBS 
HOM_MINOR maf coverage number of variants 

missense p.Thr1686Ser MUC17 4.52 sas <E-100 298 1 0.21 201.5 29 

missense p.Asn23Asp IGKV1D-17  
nfe <E-100 430 3 0.15 150.5 2 

fin 8.88E-16 55 1 0.09 150.5 2 

missense p.Val187Ile SKA3 1 

sas <E-100 298 0 0.20 74.7 3 

nfe <E-100 335 0 0.13 74.7 3 

amr <E-100 217 0 0.16 74.7 3 

missense p.Ile226Asn PRKRA -0.29 

nfe <E-100 416 0 0.14 83.2 5 

amr <E-100 231 0 0.17 83.2 5 

fin <E-100 148 0 0.15 83.2 5 

sas <E-100 93 0 0.11 83.2 5 

asj 1.91E-14 38 0 0.19 83.2 5 

start-lost p.Met1? AL133481.1  
sas <E-100 276 0 0.20 42.5 2 

asj <E-100 55 0 0.24 42.5 2 

missense p.Gly30Arg HLA-DRB5 2.49 
fin <E-100 261 2 0.20 95.7 2 

nfe <E-100 83 0 0.07 95.7 2 

missense p.Lys4Glu TTLL1 -0.16 

afr <E-100 191 0 0.24 78.8 3 

eas <E-100 137 0 0.18 78.8 3 

amr <E-100 109 0 0.11 78.8 3 

missense p.Ser4Pro TNXB 0.05 

sas <E-100 255 0 0.19 59.4 4 

nfe <E-100 198 0 0.10 59.4 4 

amr <E-100 73 0 0.10 59.4 4 

eas 2.39E-08 26 0 0.08 59.4 4 

missense p.Asp2936Gly FLG 10.23 nfe <E-100 376 0 0.14 185.1 14 

missense p.Gln24Leu PPIAL4G 0.82 eas <E-100 211 0 0.22 139.3 11 

missense p.Val930Ala POTEF 0.41 

eas <E-100 205 2 0.22 61.8 4 

amr <E-100 162 2 0.15 61.8 4 

nfe <E-100 149 0 0.09 61.8 4 

sas <E-100 62 1 0.09 61.8 4 

missense p.Arg427Cys PDPR 0.09 

fin <E-100 221 0 0.19 50.3 4 

nfe <E-100 315 0 0.13 50.3 4 

amr <E-100 109 0 0.12 50.3 4 

sas <E-100 96 0 0.12 50.3 4 

missense p.Ile48Phe IGHV1OR21-1  

eas <E-100 2673 2477 0.21 241.4 4 

sas <E-100 5743 5580 0.14 241.4 4 

amr <E-100 6443 6297 0.13 241.4 4 

afr <E-100 2551 2466 0.15 241.4 4 

missense p.Thr2795Pro AKAP13 0.08 
eas <E-100 188 0 0.22 43.7 2 

amr <E-100 115 0 0.12 43.7 2 

missense p.Glu74Asp IRF8 -1.25 

eas <E-100 186 0 0.22 67.8 4 

nfe <E-100 323 0 0.13 67.8 4 

amr <E-100 95 0 0.11 67.8 4 

sas 3.55E-10 34 0 0.07 67.8 4 
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Table 13. Top 20 variants in depletion of homozygotes for the minor allele   
Top 20 variants in depletion of homozygotes for the minor allele (sorted by p-value and chi-square term for the 
heterozygous status). For each variant ranking in the top 20, the results of depletion of homozygotes for the minor 
allele in the other populations (even if not in the top 20) are also reported. Genes in red font are potential technical 
artifacts. No variant was found in HGMD.  

 
While these findings are very preliminary and need to be taken further in terms of filtering and 

annotation, they warrant an in depth study of variants in HW disequilibrium due to excess or 

depletion of homozygotes for the minor allele as it could reveal interesting, novel variants that 

underlie resistance or susceptibility to diseases. 

 

Variant Genetic Phenotype Selection Hardy Weinberg results 

function AAChange gene HGMD Disease Category CoNeS eth p.val EXP 
HOM_MINOR 

OBS 
HOM_MINOR maf 

missense p.Leu456Arg FANCD2 X Fanconi 
Anemia DM? 0.6 AFR 6.1E-10 35 2 0.10 

Table 14. Variants in loss of homozygotes for the minor allele and reported in HGMD   
Examples of variants in HW disequilibrium due to excess of heterozygosity, and specifically with a loss of the 
minor allele. 

4.4 Conclusions and perspective 

The study of HW equilibrium in large exome datasets may reveal interesting candidate 

variants that could underlie susceptibility or resistance to disease. We found that overall 1% 

variants in the control set of the gnomAD database (n=54,704) are in HW disequilibrium with 

a greater proportion of disequilibrium due to L_HET than E_HET (83% vs 17%, although this 

difference could be more marked because gnomAD filters out variants that show very extreme 

excess heterozygosity). A major step to determine true HW disequilibrium is to separate 

technical errors from potential hits as much as possible. Our preliminary findings suggest that 

variants in HW disequilibrium due to E_HET and variants in disequilibrium in all seven 

populations are more likely to be technical errors. While these initial findings are plausible, we 

are continuing to curate the annotation of variants in HW disequilibrium to filter out potential 

artifacts from our analysis of HW disequilibrium.  For example, we will use information on low 

complexity regions of the genome to better define (and filter) the technical errors. Furthermore, 

given common deletions result in an apparent loss of heterozygosity thus violating HW 

equilibrium, we are currently investigating whether HW disequilibrium in the L_HET category 

is due to common deletions in a subset of variants in loss of heterozygosity. 
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Our preliminary data also support the notion of investigating HW disequilibrium to identify 

candidate variants underlying human diseases, especially variants with an excess or loss of 

homozygotes for the minor allele that could be indicative of protection or disadvantage to 

disease. These two categories might also be linked to positive and negative selection, and our 

plan is to use selection scores to investigate this aspect. Our findings confirm known mutations 

in FUT2 that lead to the non-secretor phenotype that is resistant to norovirus and rotovirus (140-

143). We also found other FUT2 variants that might also be involved in resistance to viral 

infections as well as that a mutation in SMN2 (known to lead to a less severe SMA 

phenotype)(147) is in strong excess homozygosity for the minor allele, raising the hypothesis 

it may have a protective effect. Similarly, the mutation found in FANCD2 (149) support the 

investigation of HW disequilibrium due to loss of the minor allele to inform about recessive 

disorders. We confirmed the same pattern of HW disequilibrium for the variants in these three 

promising genes in an independent dataset (i.e.: the genome dataset part of gnomAD), 

suggesting that they are likely to be true hits. Conversely, we could not find confirmation for 

the variant in IRF8 highlighting the importance to independently replicate the findings from 

this project. Given the preliminary nature of these findings, it will be important to perform more 

in depth analysis, determine if some of the variants in HW disequilibrium due to excess or loss 

of homozygotes for the minor allele are present in public databases such as HGMD (93) (as we 

presented here), ClinVar (150) or OMIM (151). 
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5 Final remarks and future directions 

My thesis leveraged the opportunities set out by WES approaches for both the development 

of sophisticated computational approaches to analyze exome data and the formulation of novel 

scientific questions with the use of readily available large exome datasets. Specifically, we 

provide two novel methods to facilitate the identification of disease-causing mutations in 

human diseases, and we investigate HW equilibrium using the largest available dataset of 

exome data. The first method, the Blacklist, considerably decreases the number of false 

positives in exome data thus facilitating the prioritization of the remaining variants as candidate 

disease-causing mutations (45). The second method, HMZDelFinder-opt, provides a timely 

approach to identify partial homozygous and hemizygous deletions, which is a specific class of 

mutations traditionally difficult to detect in exome data of typical, heterogeneous laboratory 

panels that are generated over time (69). Lastly, our preliminary findings of HW disequilibrium 

in the gnomAD database are very promising in supporting the investigation of HW equilibrium 

as a way to determine variants that could underlie resistance or susceptibility to diseases and 

that may be under selection. 

The novel methods we present in this thesis will provide the scientific community with 

timely tools to facilitate the analysis of WES data. The use of WES approaches, which are 

focused on sequencing of the exome (the coding region of the genome), has significantly fueled 

discovery of the genetic basis of rare (and mostly monogenic) diseases (3, 18). There is a solid 

rationale to focus on the study of the exome in rare diseases. The vast majority of exonic 

variants is evolutionary recent, rare and enriched for deleterious alleles, thus likely to contribute 

significantly to diseases(18, 32). In addition, WES approaches are less expensive, faster and 

simpler to analyze as compared to approaches studying the whole genome (WGS) (18, 25). 

However it is still challenging to efficiently determine all of the different types of genetic 

variation (SNPs, Indels and CNVs) from exome data, and also to narrow them to a short list of 

candidate variants for manual inspection and functional validation.  

A major challenge in the analysis of exome data is due to the continuous evolution of 

technology (sequencing and corresponding bioinformatic tools) that results in both 

heterogenous exome datasets with extreme fluctuations in coverage (Fig. 18) and technology-

dependent false signals(31, 35-40). We demonstrate that the Blacklist approach (Chapter 2) can 

detect such FP and filtering them in a fast, efficient and customizable manner (45). This 
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approach can be used in combination with other state-of-the-art methods (such as the VQSR 

and RF tools) as we find they are mutually exclusive in the capture of FP. The other critical 

aspect in analysis of exome data is the ability of current bioinformatics tools to identify the 

whole spectrum of genetic variations. While state-of-the-art approaches such as GATK are well 

calibrated to detect SNPs as well as short (up to 50bp) insertion/deletions (or Indels) (130), the 

development of computations tools to detect larger duplications/deletions (CNVs) is challenged 

by i) the nature of targeted exome data (hence the breakpoints, the parameter commonly used 

to determine CNVs in WGS data, can’t be used because it is not systematically sequenced) and 

ii) the unevenness of exome coverage. We tackle these issues by providing a method 

(HMZDelFinder-opt) that a priori selects a reference control set with a coverage profile similar 

to that of the WES sample under study to reduce the number of called HMZ deletions and 

improve the ranking of the true HMZ deletion (69). Our method also fills the gap in the study 

of deletions spanning less than an exon, by providing the first tool for the systematic 

identification of partial exon deletions. The human genome contains ~235,000 exons, about 

20% of which are larger than 200 bp (131). Therefore HMZDelFinder_opt makes possible the 

systematic discovery of currently unknown HMZ deletions in ~47,000 exons that are not 

detectable with other tools.  

An intriguing consequence of the unprecedent and widespread adoption of WES approaches 

in human genetics is the rapid accumulation of exome data. Several groups, including the Broad 

Institute, have undertaken the collection and harmonization of thousands of exome data in an 

effort to provide investigators with a public repository that could be used to aid the medical and 

functional interpretation of genetic variation (6, 44, 152). These large datasets not only are 

nowadays pivotal in exome analysis (e.g.: to assess frequencies in the general population), but 

can also be repurposed to enable systematic investigation of specific theoretical questions, 

something that was not possible before because of the limited statistical power in small/medium 

panels. One example is the study of HW equilibrium that I started tackling during my thesis. 

While our preliminary results of promising candidate variants that could underlie susceptibility 

(e.g. FANCD2) or resistance (e.g.: FUT2 and SMN2) to disease need further investigation and 

proof, they strongly warrant the use of large and readily available exome data to investigate 

HW equilibrium. 

The work described in this thesis lend itself to a number of future directions. For example, 

in HMZDelFinder-opt, we focused so far on homozygous deletions in autosam chromosomes  
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and hemizygous deletions in males on the X chromosome; in future work it will be interesting 

to adapt HMZDelFinder-opt to the detection of heterozygous deletions. Given the coverage of 

heterozygous deletions is expected to be half of that with no deletion, this direction will likely 

entail the fine-tuning of the cutoff to call a deletion and the inclusion of other measures, in 

addition to coverage. A similar approach could also be applied to detection of duplications. 

Furthermore, WGS is becoming increasingly attractive as an alternative, due to the more 

homogenous coverage, steadily decreasing cost, and the opportunity to study variants lying 

outside the protein-coding regions of the genome (25). Thus it will be interesting to evaluate 

and adapt the methods proposed here to WGS data. We expect that the Blacklist will still be 

highly valuable in the filtering of FP in WGS data, while HMZDelFinder-opt will likely benefit 

from the addition of breakpoint information to improve the sensitivity in detecting HMZ 

deletions. Lastly, for the HW project, it will be critical to use WGS data to confirm and replicate 

the findings, and it will be interesting to study selection events more in depth and try to apply 

the findings of candidate variants/genes to our in-house panel. 

Collectively, these projects tackle heretofore-unexamined topics and hold promise to aid 

the discovery of novel causal determinants of human diseases or traits. They will also lay the 

foundation for future research to investigate the role specific classes of genetic variation (i.e.: 

partial deletions and variants in strong excess/depletion of homozygotes for the minor allele) in 

human diseases. 
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Computational analyses of human patient exomes aim to filter out
as many nonpathogenic genetic variants (NPVs) as possible, without
removing the true disease-causing mutations. This involves
comparing the patient’s exome with public databases to remove
reported variants inconsistent with disease prevalence, mode of
inheritance, or clinical penetrance. However, variants frequent in
a given exome cohort, but absent or rare in public databases, have
also been reported and treated as NPVs, without rigorous explora-
tion. We report the generation of a blacklist of variants frequent
within an in-house cohort of 3,104 exomes. This blacklist did not
remove known pathogenic mutations from the exomes of 129 pa-
tients and decreased the number of NPVs remaining in the 3,104 in-
dividual exomes by a median of 62%. We validated this approach
by testing three other independent cohorts of 400, 902, and
3,869 exomes. The blacklist generated from any given cohort re-
moved a substantial proportion of NPVs (11–65%). We analyzed
the blacklisted variants computationally and experimentally. Most
of the blacklisted variants corresponded to false signals generated
by incomplete reference genome assembly, location in low-
complexity regions, bioinformatic misprocessing, or limitations in-
herent to cohort-specific private alleles (e.g., due to sequencing kits,
and genetic ancestries). Finally, we provide our precalculated black-
lists, together with ReFiNE, a program for generating customized
blacklists from any medium-sized or large in-house cohort of exome
(or other next-generation sequencing) data via a user-friendly pub-
lic web server. This work demonstrates the power of extracting
variant blacklists from private databases as a specific in-house but
broadly applicable tool for optimizing exome analysis.

exome | variant | blacklist | WES analysis | WES annotation

Next-generation sequencing (NGS), particularly whole-exome
sequencing (WES) and whole-genome sequencing (WGS),

is increasingly being used for the discovery and diagnosis of
human genetic disorders (1–3). The number of new disease-
causing genetic variants logged by the Human Gene Mutation
Database (HGMD) is currently increasing at a rate of ∼10% per
annum (4). This increase has coincided with an expansion of the
use of WES and WGS (1, 2). The mean number of exonic coding
variants per individual relative to the reference human genome is
about 20,000 (2, 3), but monogenic disease in any given indi-
vidual is generally driven by at most two variants. The remaining
nonpathogenic variants (NPVs) may be real variants (rare or com-
mon, deleterious or neutral), or false/low-quality variants [sequencing
artifacts, bioinformatic misprocessing of raw sequencing data,

or resulting from limitations to the performance of current
quality control (QC) methods]. In practice, analyses of indi-
vidual exomes aim to generate a short list of high-quality can-
didate variants by filtering out as many NPVs as possible, while
minimizing the risk of false negatives (FNs) due to the removal
of true disease-causing mutations. The first step in this process
typically involves the use of public databases to identify and
remove NPVs through comparisons of their frequency in the
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general population with the prevalence of the disease consid-
ered, its proposed mode of inheritance, and its estimated clinical
penetrance. The largest public database currently available is the
Genome Aggregation Database (gnomAD), which includes
123,136 exomes and 15,496 genomes from a total of 138,632 in-
dividuals (5). For the remaining variants, including those not
reported in public databases, various variant-level and gene-level
metrics can be used to predict deleteriousness and to select a
smaller set of candidate variants for further experimental anal-
ysis (6–10).
In studies of rare genetic diseases, public databases are widely

used for the initial elimination of common variants [minor allele
frequency (MAF) > 0.01] (2, 11). However, some common var-
iants within private databases may be absent from public data-
bases, and most such variants are likely to be NPVs (2, 12). The
efficacy with which such variants are identified and used for
analyses of exomes from cohorts of patients studied by a par-
ticular research group has never been assessed in detail. An
approach for detecting false-positive signal (defined as DFS)
based on an internal cohort of 118 whole-exome sequences from
different individuals generated a shortlist of variants found to be
in Hardy–Weinberg (HW) disequilibrium due to excess hetero-
zygosity (the DFS list; 23,389 variants) (13). However, most of
these variants (68%) had already been reported in dbSNP (13).
Machine learning-based methods for removing false positives
(FPs) from sequencing data, such as variant quality score reca-
libration (VQSR), which uses a clustering score to determine
whether a called variant is true (14), can limit the number of
NPVs in exome data. However, these methods are subject to
several limitations: (i) they are computationally intensive and
time-consuming; (ii) they often require a large number of sam-
ples; (iii) parameter optimization requires extensive testing; and
(iv) the addition of new samples requires reprocessing of the
entire cohort. These methods are therefore little used by most
researchers, who have small- or medium-sized exome cohorts
and may not have access to powerful computing resources. It has
been suggested that variants common within a homogeneous
cohort and absent from public databases could be filtered out
(2), but this approach has not been validated and there are
currently no tools for the easy identification and compilation of
such variants. In this context, we sought to establish a “blacklist”
of variants too frequent in our cohort of 3,104 exomes from
patients with severe infectious diseases (15–17).

Results
Determining a Frequency Cutoff for NPVs. We observed that nu-
merous candidate variant calls (Materials and Methods) (18)
predicted to be damaging to the corresponding transcript or
protein were present in >1% of our cohort of 3,104 in-house
exomes from primary immune deficiency (PID) patients with
heterogeneous ancestral backgrounds (19) (i.e., too common to
cause PID) but absent from public databases (e.g., 1KG, ExAC,
gnomAD). These variants are poor candidates for involvement
in rare diseases but are impossible to eliminate by current
methods based on variant frequencies in public databases (2).
We therefore sought to classify and characterize these variants in
a rigorous and comprehensive manner, to enable users to remove
them from their WES/WGS analyses. First, we determined a
statistical cutoff frequency above which in-house variants should
be considered too frequent to cause rare diseases. We found that
the MAF of all experimentally validated disease-causing muta-
tions in HGMD followed a Gilbrat distribution (20). We then
calculated the 99% Gilbrat distribution confidence interval (CI)
for these frequencies and found that the upper boundary of the
CI for the frequency of known disease-causing mutations was
0.01 (1%). We therefore used this cutoff as a criterion for the
nonpathogenicity of variants (occurring in too many patients
in our database to explain a rare monogenic illness). The

MAF > 0.01 cutoff used here is an example of the blacklist ap-
proach to removing FP variants in studies of rare genetic disorders.
The cutoff can be adjusted according to the mode of inheritance
and genetic architecture, assumed penetrance, and prevalence of
the disease, and the phenotypic homogeneity of the cohort (21). For
example, assuming complete penetrance and allelic homogeneity, a
rare recessive genetic disorder with a prevalence of 1 in 100,000
could be analyzed with a MAF cutoff of 0.0033, whereas a more
common recessive genetic disorder with a prevalence of 1 in 1,000
should be analyzed with a MAF cutoff of 0.033. The assumption of
incomplete penetrance may lead to the definition of higher cutoffs,
whereas the assumption of allelic/genetic heterogeneity may lead to
the use of lower cutoffs.

Generating the Blacklist. We first designed the reducing FPs in
NGS elucidation (ReFiNE) software, an easy-to-use tool for
extracting blacklist variants from internal cohorts of WES or
WGS data on the basis of a user-defined frequency cutoff (see
Materials and Methods for details). ReFiNE creates a blacklist
consisting of the full set of variants occurring in >1% (or any
user-defined cutoff) of an investigated cohort, which can then be
further filtered separately by the user, using MAF cutoffs from a
population genetic database of choice. Using ReFiNE, we first
collated all variants present at a frequency >1% in our PID WES
cohort of 3,104 exomes (Materials and Methods and SI Appendix,
Fig. S1) with a depth of coverage (DP) ≥ 5 and mapping quality
(MQ) ≥ 30 (Materials and Methods) (5, 22). A large number of
multiallelic variants in our cohort were absent from gnomAD for
specific chromosomal positions. ReFiNE therefore collapsed all
variants at a unique chromosomal position and summed the total
number of patients at each of these positions. This generated a
list of 780,956 variants, defined as the blacklist. This blacklist is
the full list of variants occurring at single chromosomal positions
for which >1% of patients had an alternative allele. These var-
iants belonged to two classes: (i) biallelic, with a single alterna-
tive allele in our cohort; and (ii) multiallelic, with two or more
alternative alleles in our cohort. The blacklist includes variants
already reported in public databases, so we needed to extract the
subset of variants unique to our method for further analysis. We
thus annotated the blacklist with gnomAD, currently the most
extensive public population genetics database available (5, 23).
We found that 21.4% (167,144) of these 780,956 variants were
absent from the gnomAD full exome and genome databases. As
these 167,144 variants are not captured by the most extensive
public database available, we focused the analysis of our method
on this subset of variants, which, for simplicity, we will refer to as
blacklist-annotated (BL-A): common in-house variants absent
from gnomAD that cannot, therefore, be filtered out of analyses
based on gnomAD.

Blacklist Filtering Removes 62% of the NPVs Remaining After
Standard Public Database Filtering. We then assessed the efficacy
of BL-A for filtering out NPVs from patient exome data. We first
applied the standard procedure for rare genetic disorders, by
removing variants with a MAF > 0.01 in gnomAD from our
3,104 exomes (3, 12). This reduced the median number of vari-
ants in the patients’ exomes by 90% (Fig. 1A). Subsequent fil-
tering with BL-A removed 62% of the remaining variants that
could not be removed by other means (Fig. 1A, a median of
9,056 variants removed per exome). By comparison, the DFS list
(13) decreased the median number of these variants by only
1.8% (median of 260 variants removed per exome). BL-A fil-
tering was effective for both coding sequences [coding DNA
sequences (CDSs)], including indel, exon-deleted, non-
synonymous, synonymous, and essential splicing variants, and for
non-CDS variants, including untranslated region (UTR), non-
essential splicing, intronic, downstream, and upstream variants,
and for all three exome kits available for our cohort (37, 50, and
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71 Mb; SI Appendix, Figs. S2 and S3). We then assessed the
performance of BL-A filtering for variants absent from the
gnomAD database (i.e., variants private to the PID database),
which would be considered among the strongest candidates for a
causal role in disease. This approach decreased the number of
cohort-private variants potentially associated with PID in each
exome by 86%, versus only 2.2% for the DFS list, and was similarly
effective for CDS and non-CDS variants (Fig. 1B and SI Appendix,
Fig. S4). Thus, when used as a filtering tool, our blacklist was able to
remove variants absent from public databases and to decrease the
number of candidate variants per exome considerably.

Metric Characteristics of the Variants and Genes Included in the
Blacklist. We then explored whether the QC scores for BL-A
variants were similar to those for polymorphic variants (MAF >
0.01) reported in gnomAD. By comparing the median MQ and
DP scores for blacklisted variants and polymorphic variants from
our cohort (SI Appendix, Fig. S5), we demonstrated that none of
these QC metrics could differentiate between these two sets of
variants (especially when considering commonly used criteria for
hard filtration; seeMaterials and Methods for further details). We
then investigated whether machine learning QC metrics could
classify these variants. With VQSR, only 25% of BL-A variants
were annotated as “nonpass” (SI Appendix, Table S1). One of the
key goals of this approach is providing an efficient tool for

researchers who cannot easily perform VQSR. We therefore
retained these VQSR nonpass variants in the blacklist. We also
assessed the ability of a random forest classifier trained on poly-
morphic variants from the gnomAD dataset well-characterized by
different methods to separate true variants from FP artifacts
called by the variant-calling pipeline (5). We then used the same
method to construct a new scoring function with the gnomAD
dataset. We applied both scoring functions to the blacklist variants
and a set of variants present in both the gnomAD dataset and our
cohort, with a MAF of more than 1% in each dataset. The score
distributions obtained were almost identical (SI Appendix, Fig.
S6), demonstrating an inability of this standard classification
method to distinguish between the blacklisted variants and true-
positive (TP) variants. We then characterized the variants and
genes included in BL-A with computational damage prediction
metrics. A variant-level analysis revealed that the combined
annotation-dependent depletion (CADD) (8) scores for blacklist
variants were not significantly different from those for variants
not included in the blacklist (SI Appendix, Fig. S7). A gene-level
analysis (6) of all genes with blacklist variants (n = 13,665 genes)
showed them to have low gene damage index (GDI) values (SI
Appendix, Fig. S8). However, some genes with a high GDI have
many BL-A variants (e.g., HLA-DRB1, 658 variants; MUC16,
455 variants). Filtration methods based on QC and variant- and
gene-level damage prediction metrics would not efficiently detect
and remove the blacklist variants absent from gnomAD. These
results demonstrate the value of blacklisting as a complementary
approach to analyses based on standard public databases, in-
cluding gnomAD, QC filtering, and damage prediction metrics.

Determining the FN Rate Associated with Blacklist Use. We esti-
mated the proportion of TP disease-causing mutations removed
by the blacklist approach, by screening 129 exomes from patients
in our cohort for whom the TP mutations had been validated
experimentally. Filtering these exomes with the complete
blacklist did not remove any of the known TP mutations (0% FN
rate). Even though most variants in any patient are not patho-
genic, our analysis indicates that it is very safe to apply the
blacklist to patient exomes. We also compared the complete
blacklist with the list of 144,641 disease-causing mutations in
HGMD and noted an overlap of only 263 variants (0.18% FN
rate). These variants are listed as disease-causing in the HGMD
dataset, but 47% have a MAF > 0.01 in the gnomAD exome or
genome databases, suggesting that are unlikely to be the cause of
a rare disorder. These findings indicate that our FN rate is
probably lower than the rate of 0.18% for HGMD in the context
of rare disorders. Only eight BL-A variants were present in
HGMD (0.001% FN rate), indicating that the FN rate for our
specific BL-A list was lower than that for gnomAD. Together,
these results suggest that the FN rate is very low for this tech-
nique (SI Appendix, Table S2). We also screened 3,731,152 so-
matic cancer-causing or cancer-associated variants available
from TCGA (https://cancergenome.nih.gov). We found that
59,151 of these TCGA variants (1.5%) were present in the
complete blacklist and 2,471 (0.07%) were present in BL-A. As
our blacklist was derived from germline exome data, the pres-
ence of these blacklist variants in the TCGA database suggests
that they may be FPs that could be removed, as previously
reported (24). Together, these data indicate that the blacklist
approach results in an extremely low FN rate when applied to
patients with rare diseases, and that it is therefore safe to use this
approach to remove NPVs from patient exome data.

Practical Application of the Blacklist to the Analysis of Patients’
Exomes. We assessed the use of blacklisting for practical analyses
of patient exomes. We selected a case from our cohort with an
autosomal dominant disease-causing mutation described in a pre-
vious study (patient D2 from ref. 25). We filtered this patient’s

A

B

Fig. 1. Blacklist filtering of 3,104 PID exomes with the PID blacklist. (A) Fil-
tering of all variants in each exome by first removing those common in gno-
mAD exome and genome databases (MAF greater than 0.01). The remaining
variants were subsequently filtered with the blacklist. (B) Filtering of cohort-
specific variants in each exome with the blacklist. Filtering with the DFS list is
shown for comparison. Error bars represent the 10th to 90th percentiles.
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exome with a standard pipeline to identify disease-causing muta-
tions (SI Appendix, Fig. S9). This standard approach reduced the
number of candidate variants from 142,473 to 3,526. Taking known
mode of inheritance into account and restricting the analysis to
CDS variants (excluding synonymous alterations), the number of
candidate variants was reduced further, to 231. The inclusion of
BL-A in the pipeline decreased the final number of candidate
variants to 109 (SI Appendix, Fig. S9), with retention of the known
IKZF1 mutation. Overall, this corresponds to a 53% decrease in
the number of variants from this patient’s exome to be considered.
The remaining variants were high-quality candidates that would
probably merit rigorous analysis in exome analyses for patients
with diseases of unknown etiology. Thus, blacklisting greatly
decreases the number of candidate variants for further study in
practice, in exome analyses on individual patients.

Practical Application of Blacklisting to the Analysis of Population
Exomes. We then explored the use of our blacklist for gene
burden analysis for genetic homogeneity at the population level.
We compared the number of patients with at least one variant of
any given gene between a cohort of 202 patients suffering from
chronic mucocutaneous candidiasis (CMC) and 852 phenotypi-
cally unrelated controls (26). When standard filtering with public
databases was applied in the absence of blacklisting, the en-
richment observed for the known disease-causing gene in the
CMC cohort, STAT1 (P value = 3.32 × 10−6) was not significant
considering the corrected threshold at the genome-wide level (P
valuethreshold = 0.05 ÷ 20554 = 2.43 × 10−6; Fig. 2A). However,
following the addition of BL-A to the pipeline, STAT1 was
correctly identified as a gene displaying strong and significant
genome-wide enrichment in the disease cohort (P value = 4.63 ×
10−10; Fig. 2B). In this instance, our blacklist removed two var-
iants present in a large proportion of our PID exomes (both
cases and controls) that confounded the statistical comparison
between the CMC and control groups. Together with the pre-
vious practical example, these analyses demonstrate the power of
blacklisting for removing NPVs from patient exomes, both to
simplify candidate variant identification in patients and for other
large-scale statistical analyses of patient groups.

Characterization of Multiallelic Variants from the Blacklist. We then
characterized the PID cohort BL-A variants (n = 167,144). Most
of the variants (91.5%) in the blacklist were multiallelic (SI
Appendix, Table S3). The cohort-specific variants present in the
blacklist were therefore due to multiallelic sites displaying high
levels of variation in our cohort (SI Appendix, Table S4). We
began by hypothesizing that the multiallelic variants might lie in
low-complexity regions of the human genome, leading to sequencing
errors. The annotation of all these variants with RepeatMasker,

Simple Repeats, and GC percent tracks from University of
California, Santa Cruz (UCSC) Genome confirmed that 118,154 of
the 152,915 variants (77.3%) occurred in repetitive or GC-rich re-
gions, and that most (65,646; 56%) were located in short tandem
repeat (STR) regions (Fig. 3 and SI Appendix, Table S4).

Characterization of Biallelic Variants from the Blacklist.We analyzed
the biallelic variants, which were also found to be located in
repetitive or GC-rich regions, albeit to a lesser extent (6,711;
47.2%) (Fig. 3 and SI Appendix, Table S4). We also character-
ized these biallelic variants, focusing on those located in CDS
regions, in the 1,150 individuals of European origin according to
principal-component analysis (PCA) (19), to determine whether
these variants were under HW equilibrium. In total, 388 CDS
variants were found to be located in repetitive or GC-rich re-
gions; 339 (87.4%) of these variants were in HW equilibrium and
49 (13.6%) were in HW disequilibrium (threshold of P < 10−8; SI
Appendix, Table S5). An investigation of the biallelic variants not
present in repetitive regions (7,518; 52.8%) yielded a similar
distribution, with 209 (89.3%) and 25 (10.7%) of the 234 CDS
variants in HW equilibrium and disequilibrium, respectively.
Overall, 74 CDS variants were in HW disequilibrium, and in
39 of these variants (52.7%), the cause was an excess of homo-
zygous wild-type (14.9%) or homozygous alternative (37.8%)
genotypes (SI Appendix, Table S5). Most of these 39 variants had
low coverage (wild-type = 15.6×, alternative = 20.5×; SI Ap-
pendix, Table S5), which may have led to miscalls for a homo-
zygous genotype. Most of the variants (35; 47.3%) in HW
disequilibrium presented heterozygote excess, with high mean
coverage rates of 163× (much higher than the 42.5× coverage of
the 548 CDS variants in HW equilibrium), suggesting an excess
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Fig. 2. Application of the blacklisting approach to enrichment analysis.
Quantile–quantile plots depicting the analysis of genetic homogeneity for a
cohort of 202 patients with chronic mucocutaneous candidiasis (CMC) before
(A) and after (B) application of the blacklist. The control cohort consisted of
852 unrelated individuals. In each panel, the red arrows indicate STAT1, the
known cause of CMC in our cohort, before and after blacklist application.

A

B C

Fig. 3. Characterization of the blacklisted biallelic and multiallelic variants
in low-complexity regions of the genome. Occurrence of the blacklisted
multiallelic (red) and biallelic (blue) variants in repetitive [short tandem re-
peats (STRs), Alu elements, other repetitive regions] and GC-rich regions;
percent relative to the total number of blacklisted variants (A) or the total
number of biallelic (B) or multiallelic (C) blacklisted variants.
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of reads wrongly mapped to the region (SI Appendix, Table S5).
We also studied the 548 biallelic CDS variants in HW equilib-
rium, to evaluate their distribution across ethnicities. We focused
the analysis on the four largest genetic ancestry groups in our
cohort (SI Appendix, Fig. S10): European, African, North Afri-
can, and Middle Eastern, as determined by PCA (19). In total,
200 (36.5%) of these variants were heterogeneously distributed
across genetic ancestries (threshold of P < 10−8; SI Appendix,
Table S6). The observed heterogeneous distribution was proba-
bly due to one specific genetic ancestry in 46 (23%) of the var-
iants (SI Appendix, Table S6). In 20 variants (43.5%), the
individual genetic ancestry was Middle Eastern (SI Appendix,
Table S6), which is poorly represented in public databases (27),
suggesting that these variants are true variants that are more
common in this population.

Experimental Investigation of the Blacklisted Variants. We further
investigated the features of BL-A variants. We first focused on
biallelic blacklist CDS variants in HW disequilibrium displaying
excess heterozygosity and absent from repetitive regions in in-
dividuals of European ancestry (n = 35). We found that 48.6% of
these variants (n = 17) mapped to four chromosomal regions, in
the HLA-DRB1, MUC6, OR8U1, and TAS2R43 genes with con-
secutive blacklist variants (less than 300 bp) (SI Appendix, Table
S7). Most of these regions contain flagged variants annotated in
gnomAD (47% in Exome and 65% in Genome, annotated as
AC0, RF, and/or InbreedingCoeff; SI Appendix, Table S7). For
the remaining variants (referred to as “unique”), we found that
the blacklist variants were at the same location (but with dif-
ferent genotypes) as flagged variants annotated in gnomAD, like
the consecutive variants (28% in Exome and 50% in Genome,
annotated as AC0, RF, and/or InbreedingCoeff). Integrative
genomics viewer (IGV) (28) showed that the consecutive vari-
ants in these regions belonged to the same reads, suggesting the
existence of an “alternative” sequence (referred to as a seg-
mental duplication by gnomAD or as an alternative haplotype;
SI Appendix, Figs. S11–S13). These observations strongly suggest
that some blacklist biallelic variants define alternative haplotypes
belonging to unmapped regions absent from the human refer-
ence genome. These variants were probably incorrectly mapped
to the region of the reference genome for which the best match
was obtained, leading to a mixture of wild-type and alternative
alleles in these regions, resulting in higher coverage and a final
erroneous heterozygous call. In a second analysis, we focused on
multiallelic variants. Most of these variants (77%) were located
in low-complexity regions (STRs, Alu elements, GC-rich regions,
or other repetitive regions; Fig. 3). IGV analysis of three mul-
tiallelic variants absent from these regions and common in our
cohort (MAF > 0.9) revealed that they were located in the vi-
cinity of a small stretch of repeated nucleotides (SI Appendix,
Figs. S14–S16). Extending the analysis to the 23% of multiallelic
variants not previously detected in low-complexity regions (n =
34,761), we found that 83.3% were also located close to mono-
nucleotide repeats (26,165; 75.3%) or to small repetitive
stretches (two or more nucleotides; 2,802; 8.1%). Attempts to
confirm these variants by Sanger sequencing failed, due to the
mononucleotide repeat (SI Appendix, Table S8), strongly sug-
gesting that the WES approach may have been affected by a
polymerase artifact similar to that reported in previous studies
(29, 30). This exploration of blacklist variants suggests that the
multiallelic variants probably resulted from—to a large extent—
sequencing/calling errors during WES on low-complexity regions,
whereas a proportion of the blacklist biallelic variants, particularly
those in HW disequilibrium, were due to mapping errors resulting
from the incomplete nature of the GRCh37/GRCh38 genome
assembly.

Testing the Blacklist Approach as a General Filtering Method in Three
Unrelated Cohorts. We assessed the suitability of the blacklist
approach for filtering in other private databases. We used three
unrelated independently processed exome cohorts (from DNA
preparation to VCF data): (i) 3,869 exomes from patients
suffering from neurological diseases (“Neuro”) (27); (ii)
902 exomes from patients suffering from diseases with an in-
fectious phenotype (“Infection”); and (iii) 400 exomes (100 from
Europeans and 300 from Africans) from a study on the de-
mographic history of Central Africans (“Africa”) (31). We first
generated separate blacklists for the Neuro, Infection, and
Africa cohorts, according to the pipeline described above. After
filtering on the basis of MAF > 1% (in the specific cohort) in
gnomAD, the application of the cohort-specific blacklists for the
Neuro, Infection, and Africa cohorts decreased the number of
variants retained by 35%, 57%, and 51%, respectively (a median
of 3,160, 3,462, and 7,905 variants per exome, respectively; Fig. 4
A, C, and E). Considering only cohort-private variants (i.e., those
appearing in the specific cohort but absent from gnomAD
exomes and genomes), applying the cohort-specific blacklists to
the Neuro, Infection, and Africa cohorts reduced the number of
variants in each exome by 90%, 92%, and 93%, respectively,
eliminating a median of 3,195, 3,418, and 7,861 variants per
exome, respectively (Fig. 4 B, D, and F). This filtering was ef-
fective for both CDS and non-CDS variants (SI Appendix, Fig.
S17). A comparison of the four blacklists revealed that a sub-
stantial number of variants were unique to each blacklist (SI
Appendix, Fig. S18), demonstrating the cohort specificity of the
blacklisted variants, particularly for the Africa cohort, probably
due to ancestry. Specifically, each blacklist contained 63–91% of
the unique biallelic variants (SI Appendix, Fig. S18A and Table
S3) and 46–92% of the unique multiallelic variants (SI Appendix,
Fig. S18B). A similar pattern was observed when the analysis was
restricted to biallelic and multiallelic CDS variants (SI Appendix,
Fig. S18 C and D and Table S3). Thus, the efficacy of blacklist
filtering in our PID cohort was not due to specific pipeline set-
tings or enrichment within our exomes. Instead, our results
suggest that the blacklist method should effectively remove a
substantial proportion of the NPVs not already removed by
public database analysis from any cohort of exomes considered.

Application of the Blacklist to Unrelated Cohorts. We then assessed
whether the originally generated PID blacklist would effectively
filter exomes from the unrelated Neuro, Infection, and Africa
cohorts used above. We removed variants with a MAF > 0.01 in
gnomAD from the Neuro, Infection, and Africa exomes and then
applied the PID BL-A. This reduced the median number of
remaining variants in the Neuro, Infection, and Africa exomes by
8%, 41%, and 6%, respectively (median of 715, 2,487, and
947 variants per exome, respectively; Fig. 4 A, C, and E, blue
box). When the analysis was restricted to cohort-private variants
in the Neuro, Infection, and Africa exomes, the PID blacklist
decreased the number of variants in individual exomes by 19%,
65%, and 11%, respectively (median of 673, 2,439, and 957 var-
iants per exome, respectively; Fig. 4 B, D, and F, blue box). The
superior efficiency of the PID blacklist for the Infection cohort
may reflect the library preparation technique (SureSelect) and
sequencing technology (HiSeq sequencer) used. Nevertheless,
the PID blacklist was shown to be a useful filtering approach in
unrelated cohorts in which exomes were captured with different
kits and sequencing technologies (SureSelect or Nextera kits and
HiSeq 2000 or HiSeq 2500 sequencing, respectively). We also
found that filtering our PID exomes with the blacklist from the
Neuro cohort did not remove any TP variants from the 129 PID
exomes with proven disease-causing mutations. Blacklists are,
therefore, effective for filtering exomes other than those with
which they were developed and including cohort-private NPVs.
However, generating internal blacklists from the cohort under
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investigation was found to be the most effective approach to
removing NPVs.

Determining the Minimum Cohort Size and Saturation Point for the
Blacklist. We sought to determine the minimum sample size ap-
propriate for the generation of a custom blacklist for a cohort of
interest. We combined the two largest cohorts studied here—our
PID cohort (3,104) and the Neuro cohort (3,869)—and simu-
lated blacklists by randomly sampling various numbers of indi-
viduals relative to cohort size, with 30 iterations for each sample

size (SI Appendix, Fig. S19). As the Neuro cohort was captured
with the 50-Mb kit, which targets CDS, we focused this analysis
exclusively on CDS variants. The number of CDS variants in the
simulated BL-A increased rapidly with sample size between
10 and 500 individuals, whereas the number of variants increased
more slowly when sample size exceeded 500 individuals. We
therefore propose the use of samples of at least 500 heteroge-
neous unrelated individuals, to ensure the reliable capture of
common cohort-specific variants. We estimated the saturation
point for the blacklist’s CDS variants (less than one new variant
added per new individual) at a sample size of ∼2,801 individuals
(SI Appendix, Fig. S19). Thus, a blacklist generated with the
pipeline described here could be considered “saturated” for the
purpose of capturing most of the cohort-specific CDS variants
that cannot be removed by public database analysis.

Efficacy of the Combined Blacklist. Finally, we explored the efficacy
of a “universal” blacklist generated by combining the four BL-As
presented in this study. We reasoned that the aggregation of
blacklists obtained from different cohorts (and different samples/
data-processing methods) would result in a “universal blacklist”
with the number of filtered variants eventually converging. We
tested this hypothesis by aggregating either (i) the four blacklists
(PID, Neuro, Infection, and Africa blacklists) into a single
“combined blacklist”; or (ii) four combinations from the set of
blacklists (Neuro, Infection, Africa) into four combined black-
lists (i.e., Neuro–Africa, Neuro–Infection, Africa–Infection,
Neuro–Africa–Infection), and applying the combined blacklists
obtained in (i) and (ii) to the PID cohort. As the PID blacklist
was not included in the four combined blacklists in (ii), we refer
to these blacklists as “non–cohort-specific combined blacklists.”
These blacklists removed a decreasing number of variants with
increasing size of the sets making up the blacklists (Fig. 5). After
standard filtering with public databases, the “Neuro–Africa”
non–cohort-specific blacklist removed a median of 1,102 (8%)
variants, the “Neuro–Infection” non-cohort-specific blacklist
removed a median of 3,833 (26%) variants, the “Africa–
Infection” non–cohort-specific blacklist removed a median of
3,886 (27%) of variants, and the “Neuro–Africa–Infection”
non–cohort-specific blacklist removed a slightly larger number of
variants (median of 4,078, or 28% of variants). By contrast, the
PID blacklist removed a median of 9,056 variants. The “four
combined” blacklist removed a median of 25 (0.45%) additional
variants not captured by the PID blacklist alone (Fig. 5). Overall,
these findings suggest that the number of variants filtered by the
blacklist approach converges with the inclusion of blacklists from
additional cohorts, consistent with the results for blacklist satu-
ration. This universal filtering by blacklisting can be effectively
applied to other individuals/cohorts. It is most efficient when the
sequencing technology used, and the genetic ancestries of the
individuals/cohorts under analysis, are similar to the universal
blacklist (SI Appendix, Fig. S19). Moreover, the efficiency of a
cohort-specific cohort applied to a different cohort (e.g., PID and
infection cohorts) was greater for cohorts similar in terms of ethnic
background and sequencing procedure (both mostly European and
capture with similar kits), consistent with the results in Fig. 4C. Fi-
nally, although cohort-specific blacklists maximize the efficiency of
this approach, the use of non–cohort-specific combined blacklists is
nevertheless a very useful approach for filtering out a large
number of unwanted variants, reinforcing the power of blacklist
filtering even in the absence of a custom blacklist for the cohort.

Discussion
An essential step in the analysis of exomes from patients with
rare genetic disorders is the removal of NPVs common in public
databases (such as gnomAD, Bravo, and TopMed) at frequen-
cies inconsistent with the prevalence, mode of inheritance, and
penetrance of the disease (11). In principle, variants found to be
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Fig. 4. Blacklist filtering of unrelated cohort exomes. (A, C, and E) Filtering
of all variants in the neurological (A), infectious disease (C), and central
African (E) exomes by first removing those common in gnomAD exome and
genome databases (MAF greater than 0.01). The remaining variants were
subsequently filtered with the Neuro (A), Infection (C), or Africa (E) blacklists
(red boxes), or the PID blacklist (blue boxes). (B, D, and F) Filtering of exomes
restricted to cohort-specific variants, with the Neuro (B), Infection (D), or
Africa (F) blacklists (red boxes), or the PID blacklist (blue boxes). Error bars
represent the 10th to 90th percentiles.
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common in a private cohort but absent from public databases
should also be filtered out. However, only one other previous
study has explored the generation of filtering lists based on in-
ternal cohorts (13). Moreover, there are currently no tools
available for filtering based on allele frequencies in internal
cohorts. We report here the identification of in-house variants
too common to cause rare monogenic illnesses (typically with a
population prevalence of <10−4) in a cohort of 3,104 exomes. We
assembled these variants into a blacklist and subsequently ex-
plored the use of this blacklist for filtering NPVs from exome
sequencing data, using the subset of variants that makes our ap-
proach unique (BL-A: those that are absent from public data-
bases). These variants had high-quality metrics and 75% of them
would not be captured by the rigorous application of available
software, such as VQSR. We further validated this approach in
three other independently processed and unrelated cohorts,
demonstrating that our blacklist approach is generally, and
perhaps universally, effective for filtering variants, and that the
generation of blacklists specific to a given cohort significantly
increases the number of variants filtered out. We provide a
computational tool (ReFiNE) for automatically generating in-
house cohort-specific blacklists. We show that our blacklist can
be used in synergy with standard public database filtering, to
remove variants displaying disproportionate enrichment in an
internal cohort.
Public databases such as gnomAD, which represent major

population groups (about half of individuals are of European
ancestry and the others are a mixture of Admixed Americans,
Africans/African Americans, South Asians, East Asians, and
Others), are an invaluable resource for estimating the frequency
of variants in the general population and in different genetic
ancestry groups. However, cohort-specific exomes may contain
common variants (e.g., >1%) that are absent from or rare in
public databases, partly because they are population-specific
variants less represented in gnomAD [as observed for African
(31) and Middle Eastern individuals (27)]. Moreover, public
databases, such as gnomAD, make considerable efforts to ensure
the rigorous removal of FP variants to ensure that they provide
high-quality, high-stringency information about variants. How-
ever, these public databases do not provide a list of filtered FP
variants and their summary statistics for filtration purposes. We
demonstrated this with 113 1KG genomes generated by our in-
house pipeline, showing that 23% of the variants were absent
from the public 1KG database, highlighting discrepancies be-
tween the analyzed and released data due to different bio-
informatic procedures. Moreover, resources such as dbSNP are
difficult to use for FP filtering because their FP variant rate is

high (32). Therefore, even when using the latest versions of public
databases and gene-level filtration (6, 7), ReFiNE is an effective
tool for collecting data independently from external resources.
The technology associated with the NGS analyses (sequencing

platform, targeting procedures, and software) is strongly associ-
ated with the calling of the variants. We and others have
previously observed biases specific for WES and WGS (18) or
variant-calling pipelines (33). Differences in technology can
therefore lead to the misannotation of variants in a given cohort.
The main sources of misannotation are as follows: (i) variants in
gnomAD collected by different technologies (PCR for WES and
PCR-free plus PCR for WGS) apply rigorous QC cutoffs based
on high-quality technologies, resulting in higher proportions of
variants from lower-quality technologies being removed; (ii)
despite the presence of 15,496 genomes in gnomAD, some
genomic regions remain poorly covered or not covered at all,
whereas these regions are covered by our cohort and contain
variants (2% of our BL-A); (iii) a recent comparative studied
revealed strong discrepancies between the variant callers used in
NGS analyses (34); these discrepancies have been highlighted by
the differences between the gnomAD and ExAC databases
(https://macarthurlab.org/2017/02/27/the-genome-aggregation-
database-gnomad/); and (iv) the annotation of NGS variants in
multiallelic positions is often problematic (35) because current
annotation software [SNPeff (36), VEP (37), ANNOVAR (38)]
cannot identify these variants efficiently. Indeed, 91.5% of our
blacklist variants were located at multiallelic sites according to
gnomAD’s genome annotation. Each cohort is unique (in terms
of technology, quality, ethnicities). Our blacklisting resource is
intended to fill this gap, particularly for researchers without the
large exome or genome databases required for filtering with
computationally intensive methods, such as VQSR. ReFiNE can,
thus, overcome anomalies in sequence alignment or variant-
calling processes, such as large indel events (39).
We show here that analyses of variant frequency within in-

ternal cohorts constitute an additional method for filtering out
variants too common to cause rare disease. The blacklists gen-
erated by ReFiNE are easy to use and rapidly identify NPVs that
may confound the dissection of patient exomes. As WES and
WGS are increasingly widely used for the investigation of genetic
disorders in patients, it will be possible to apply the blacklisting
approach described here and ReFiNE software to larger cohorts
of patients, facilitating the effective identification of NPVs in
these cohorts. However, caution is required when generating
blacklists with ReFiNE from phenotypically homogeneous co-
horts, particularly if of the same underrepresented ethnic origin,
as this approach may remove TP variants in such conditions.
Finally, such extensive, rapidly generated blacklists (1 h for
3,104 exomes) should increase the efficiency of NPV elimination
from exomes and genomes, without the need for the large
computer clusters required by current machine-learning algo-
rithms, such as VQSR (a month for 3,104 exomes). As exome
capture kits become increasingly efficient, and with the wide-
spread adoption of WGS, the blacklists generated by ReFiNE will
facilitate efficient noise reduction in NGS data, independently of the
technology used, making it easy to find the needles in increasingly
large haystacks of genetic variants in patients.

Materials and Methods
Website Resource. ReFiNE and precalculated blacklists are available on
GitLab (40).

Patient Cohort. The 3,104 individuals studied here were selected from samples
of diverse ancestral origins obtained by our laboratories and recruited with
the help of clinicians. This sample was not random, but cohort-specific effects
should not have biased the results, as the individuals included had a wide
range of different infectious diseases and immune deficiency phenotypes. All
study participants provided written informed consent for the use of their
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DNA in studies aiming to identify genetic risk variants for disease. IRB ap-
proval was obtained from The Rockefeller University and Necker Hospital for
Sick Children, along with a number of collaborating institutions. The exomes
of 3,869 individuals suffering from neurological disease were obtained from
the Greater Middle East (GME) Consortium, with recruitment according to a
similar protocol (27). The exomes of 902 individuals suffering from severe
infectious diseases (Infection cohort) were obtained from patients enrolled
in studies coordinated by the laboratory of J.F. at École Polytechnique
Fédérale de Lausanne (Lausanne, Switzerland). The exomes of 400 individ-
uals in the Africa cohort were provided by the laboratory of L.Q.-M. at the
Pasteur Institute (Paris, France).

WES.A summary of the technologies and pipelines used for the analysis of the
different cohorts is provided in SI Appendix, Table S9.
Rockefeller PID exome sequences. Genomic DNA from peripheral blood
mononuclear cells was extracted and sheared with a Covaris S2 Ultra-
sonicator. An adaptor-ligated library (Illumina) was generated, and exome
capture was performed with SureSelect Human All Exon 37-, 50-, or 71-Mb
kits (Agilent Technologies). Massively parallel WES was performed on a
HiSeq 2000 or 2500 machine (Illumina), generating 72-, 100-, or 125-base
reads. Quality controls were applied at the lane and fastq levels. Specifi-
cally, the cutoff used for a successful lane is Pass Filter > 90%, with over 250M
reads for the high-output mode. The fraction of reads in each lane assigned
to each sample (no set value) and the fraction of bases with a quality score >
Q30 for read 1 and read 2 (above 80% expected for each) were also checked.
In addition, the FASTQC tool kit (www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was used to review base quality distribution, representa-
tion of the four nucleotides of particular k-mer sequences (adaptor contami-
nation). We used the Genome Analysis Software Kit (GATK) (version 3.4–46)
best-practice pipeline to analyze our WES data (14). Reads were aligned with
the human reference genome (hg19), using the maximum exact matches al-
gorithm in Burrows–Wheeler Aligner (BWA) (41). PCR duplicates were removed
with Picard tools (picard.sourceforge.net/). The GATK base quality score
recalibrator was applied to correct sequencing artifacts. GATK HaplotypeCaller
was used to identify variant calls. DP ≥ 5 and MQ ≥ 30 were used as standard
hard filtering criteria (22). Variants were annotated with SnpEff (snpeff.
sourceforge.net/). Exomes were annotated for PASS and non-PASS variants
in gnomAD r2.0.2 (Exome Aggregation Consortium, Broad Institute) and the
1000 Genomes Project Phase 3 (www.internationalgenome.org/) databases.
Joint genotyping followed by VQSR filtering was not used because there
have been reports of fractions of variants unique to individual samples being
missed (https://gatkforums.broadinstitute.org/gatk/discussion/4150/should-i-
analyze-my-samples-alone-or-together), rendering this approach unsuitable
for our studies. For the purpose of comparison between the blacklist and
VQSR approaches, VQSR was calculated with VariantRecalibrator and
ApplyRecalibration for both SNPs and indels, with ts_filter_level set to
99.0 and other settings as specified by GATK recommendations. We did not
use the InbreedingCoeff as this is discouraged in situations in which the
cohort includes members of the same family, as in our cohort. Similarly, we
did not include DP among the parameters of the VQSR, as it is not suitable
for targeted exome sequencing samples.
GME Consortium neurological exome sequences. WES for the GME Consortium
was performed as previously described (27). Briefly, genomic DNA was
extracted from peripheral blood mononuclear cells with Qiagen reagents
and captured with the Agilent SureSelect Human All Exome 50-Mb kit. WES
was performed on an Illumina HiSeq 2000. The GATK best-practice pipelines
were used to analyze WES data (14). BWA was used to align reads with hu-
man reference genome NCBI Build 37 (41). The variant-call format files gen-
erated were annotated with the Rockefeller pipeline, as described above.
Africa exome sequences. Whole-exome sequences were obtained for 300 Af-
rican samples (31), and these data were processed together with those for
100 European individuals (42). All samples were sequenced with the Nextera
Rapid Capture Expanded Exome kit, which delivers 62 Mb of genomic con-
tent per individual, including exons, UTRs, and microRNAs. Using the GATK
Best Practice recommendations (43), we first mapped read-pairs onto the
human reference genome (GRCh37) with BWA, version 0.7.7 (41), and reads
duplicating the start position of another read were marked as duplicates
with Picard Tools, version 1.94 (picard.sourceforge.net/). GATK, version 3.5
(14), was then used for base quality score recalibration (“BaseRecalibrator”),
insertion/deletion (indel) realignment (“IndelRealigner”), and SNP and indel
discovery for each sample (“Haplotype Caller”).
Infection exome sequences. WES for the Infection cohort was performed as
previously described (44, 45). In brief, genomic DNA was extracted from
whole blood with the QIAamp DNA blood kit and captured with the Agilent
SureSelect Human All Exome 50-Mb kit (Agilent SureSelect Human all exon

V4 or V5) or Illumina Truseq 65-Mb enrichment kit. WES was performed on
an Illumina HiSeq 2000 or Illumina HiSeq 2500 machine. BWA-MEM was used
to map reads onto the human reference genome hg19 decoy, and GATK,
version 3.8 (or an earlier version of this software), was used for data pro-
cessing and analysis, according to GATK best practice.

Blacklist Creation. The blacklists used in and provided with this manuscript
were created by first collecting unique variants from 3,104 patient exomes
and counting the occurrence of each variant (the number of patients
reported to have the variant). The QC criteria used to collect these variants
were equivalent to those used in gnomAD (MQ ≥ 30). However, we used a
lower DP (DP ≥ 5), compatible with research approaches in which investi-
gators want to retain as much information as possible. These criteria cor-
respond to a high degree of QC despite low coverage, but may allow the
discovery of true disease-causing variants, as illustrated by the example of
the deletion of ISG15, which was initially identified by exome analysis de-
spite a low DP of 4 (46). We did not use the QD value as a QC criterion due to
the erroneous calls for some variants (https://gatkforums.broadinstitute.org/
gatk/discussion/8912/most-variants-called). We explored the FN rate of the
blacklists in the HGMD database and excluded variants that were present in
the set of true disease-causing variants in HGMD according to further
analyses (47). The measurement of variation at multiallelic sites was ren-
dered more effective by separating variants into biallelic and multiallelic
variant groups. Multiallelic variants represent a very specific challenge for
the elimination of NPVs from exomes, as variants at multiallelic positions
may occur individually in a small number of samples. Collectively, however,
these variants may occur in a large proportion of the members of the cohort
(i.e., many individuals may contain one of a number of variants at the po-
sition). The variants at multiallelic sites are often similar (e.g., G in the ref-
erence and an alternative of GA, GAA, GAAA, GAAAA, GAAAAA, etc.) but
have remained resistant to removal from exomes by bioinformatic methods.
For the capture of these variants, we collapsed all variants at multiallelic sites
to a single value by calculating the total number of patients with any variant
at the multiallelic position. When this number exceeded 1% of our cohort,
all variants at the position concerned were included in the full blacklist. This
procedure can thus identify variants present in only a few individuals but
nevertheless occurring at positions with a high cumulative burden of vari-
ation in a cohort. We then considered biallelic variants. If the number of
patients with any individual biallelic variant exceeded 1% of our cohort, the
variant concerned was included in the full blacklist. For a schematic diagram
of this pipeline, see SI Appendix, Fig. S1.

ReFiNE Generation and Usage. ReFiNE and subsequent analyses were per-
formed in Python programming language (version 2.7.14; https://www.
python.org/) and R, using both default and publicly available libraries. The
Python Tkinter module was used to design and implement the graphical
interface for ReFiNE. ReFiNE is available as a graphical interface program
(including a command-line option) that can be run on a standard laptop and
is compatible with comma-separated (CSV) files. ReFiNE can also generate
blacklists from WGS data, although this application has yet to be extensively
tested. ReFiNE includes an optional parameter for the exclusion of a list of
variants from the blacklist regardless of their frequency in the in-house
database. This option can be used to remove a small number of known
true disease-causing HGMD variants, for example. We also provide pre-
calculated blacklists generated from our cohort of 3,104 PID exomes with
cutoffs of 1%, 3%, 5%, and 10%. These blacklists can be used for small
cohorts for which it may not be possible to generate custom blacklists. We
also provide the PID, Neuro, Infection, Africa, and combined blacklists used
in this manuscript, annotated with gnomAD MAFs. Finally, we have con-
structed a public server (lab.rockefeller.edu/casanova/BL) containing all of
the supplemental files, the ReFiNE program, and a user-friendly online tool
that can be used to query whether a variant is included in our blacklist or to
annotate lists of variants in a similar manner.

Statistics and Figures. The Scipy library (https://www.scipy.org/) was used for
statistical analyses performed in Python. Seaborn (seaborn.pydata.org/) was
used to generate figures in Python, together with matplotlib (https://matplotlib.
org). Venn diagrams were generated with jvenn software (48). Wordclouds
were generated with the WordCloud library (https://github.com/amueller/
word_cloud). Prism (GraphPad) was also used for figure generation and
statistical analysis.
Simulating minimum sample size and sample size saturation for blacklists. We de-
termined the minimum number of samples required for the creation of safe
blacklists by generating random blacklists based on 10, 50, 100, 250, 500,
1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 5,000, 5,500, 6,000, or
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6,500 individuals from the PID and Neuro cohorts. We weighted the random
selection of individuals for the blacklists by project size (i.e., for a sample size
of 10, we picked 4 individuals at random from the PID cohort and 6 at random
from the Neuro cohort). The selection of individuals for each sample size was
repeated 30 times, and full blacklists for each iteration were generated with
ReFiNE. The median number of BL-A variants and a 99% CI based on a normal
distribution were calculated for each sample size and plotted (SI Appendix,
Fig. S18). The number of samples required to reach saturation for blacklist
variants was predicted by fitting a logarithmic trendline to the blacklist
dataset based on the coefficient of determination (R2). The equation for this
line was as follows:

y = 2,801.1× lnðxÞ+3,466.3,

where R2 = 0.7088 (SI Appendix, Fig. S18). We defined saturation as the
number of samples for which less than one cohort-specific variant was added
to the blacklist per new exome. Based on the best-fit equation, we calcu-
lated the saturation point as 2,801 individuals.
Characterization of blacklisted variants by HW equilibrium/disequilibrium, occurrence
in low-complexity regions, and allelic distribution across genetic ancestries. HW
disequilibriumwas calculated for the blacklisted variants found to be present
in the European population (n = 1,150), which constituted the largest pop-
ulation of the PID cohort. χ2 tests were used to assess HW equilibrium. Given
the large number of tests performed and the heterogeneity of European
origins in our European cohort, a stringent threshold of 10−8 for significance
was used for significance. A total of 106 variants with a P value below 10−8

were considered to be in HW disequilibrium and were stratified by excess
genotype as follows: excess of heterozygotes (observed no. of heterozy-
gotes > expected no. of heterozygotes, 57 variants), excess wild-type ho-
mozygotes (observed no. of wild-type homozygotes > expected no. of wild-
type homozygotes, and χ2 for the wild-type homozygote > χ2 for the al-
ternative homozygote, 13 variants), excess alternative homozygotes
(observed no. of alternative homozygotes > expected no. of alternative
homozygotes, and χ2 for alternative homozygotes > χ2 for wild-type
homozygotes, 36 variants).

The occurrence of the variants in low-complexity regions was assessed with
the following tracks from the UCSC Genome Browser: RepeatMasker and
Simple Repeats (group: Repeats), and GC percent (group: Mapping and Se-
quencing). RepeatMasker was created from the RepeatMasker program,
which screens DNA sequences for interspersed repeats and low-complexity
DNA sequences; Simple Repeats reports simple tandem repeats located by

Tandem Repeats Finder (TRF), which was designed especially for this purpose.
Variants were considered to occur in GC-rich regions in which the G+C
content exceeded 80%.

The heterogeneity of ethnicity was assessed in the four largest genetic
ancestry groups in our cohort (European, African, North African, and Middle
Eastern), for the variants found to be in HW equilibrium in the European
population. χ2 tests were used to test the allelic distribution. In total,
203 variants with a P value below 10−8 were considered to be heterogeneous
across ancestries. The ancestry driving heterogeneity was unequivocally
determined for 67 variants, by testing the allelic distributions of four com-
binations of three populations from those mentioned above and deter-
mining the data for the missing population in the combination from the
four that did not reach significance.
Sanger sequencing. DNA was extracted from 10 SV40-fibroblast cell lines
from patients included in our cohort. PCR amplification was performed
with Hot-Start Taq Blue DNA Polymerase (Denville Scientific), 85 ng of
template genomic DNA, and the primers listed in SI Appendix, Table S10.
Sanger sequencing was performed with the BigDye Terminator kit
(Perkin-Elmer).
Analysis of variation in patient exomes. We identified the disease-causing mu-
tation in patient D2 from a previous study (25), using a standard filtration
pipeline. In brief, we removed variants with low-quality metrics (DP < 4,
MQ < 40, QD < 2) that were common in public databases (variant frequency
in gnomAD < 0.0001), variants of high-GDI genes (6), and variants with
CADD scores below their gene-specific mutation significance cutoff (9). Gene
burden was analyzed in our CMC cohort by first filtering each exome, as
described above. We then compared the numbers of individuals with at least
one variant for each mutated gene in the patient group between the pa-
tient (n = 208) and control (n = 960) groups in a one-tailed Fisher’s exact test.
The resulting P values were used to rank genes, to identify those with the
highest levels of enrichment in patients.
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Figure S1. Methodology for blacklist generation. The blacklist was generated by first collecting unique high-
quality variants (DP>=5, MQ>=30) from patient exomes and counting the occurrence of each variant. These 
variants were assembled into two classes: (1) biallelic, with a single alternative allele in our cohort; and (2) 
multiallelic, with two or more alternative alleles in the cohort, for which we collapsed all variants at a unique 
chromosomal position and summed the total number of patients containing these variants. We then collected 
the variants that had a frequency >=1% in the cohort (the Blacklist: “Common in-house variants”). Of these 
variants, 21.4% (167,144) were absent from gnomAD exome and genome databases. We considered these 
167,144 variants to be “blacklist-annotated” (BL-A). 
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Figure S2. Filtering of coding sequence (CDS) or non-CDS variants in 3,104 PID exomes with the PID blacklist-
annotated. Exomes were restricted to CDS (A) or non-CDS (B) variants and filtered by removing variants with a 
MAF greater than 0.01 in gnomAD. The remaining variants were filtered with the blacklist-annotated. Filtering 
with the DFS list is shown for comparison. Error bars represent the 10th-90th percentiles. 
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Figure S3. Filtering of 3,104 PID exomes broken down by the exome capture kit. PID exomes were captured 
with one of three SureSelect kits: 37 Mb (n = 96), 50 Mb (n = 727), or 71 Mb (n = 2,281). (A) Filtering of all 
variants in each exome, using gnomAD and the blacklist-annotated. gnomAD filtering performed by removing 
variants with a minor allele frequency greater than 0.01 in the databases. (B) Filtering of exomes restricted to 
cohort-specific variants with the blacklist-annotated. Error bars represent the 10th-90th percentiles. 
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Figure S4. Filtering of coding sequence (CDS) and non-CDS variants in 3,104 PID exomes restricted to cohort-
specific variations using the blacklist-annotated. DFS list shown for comparison. Error bars represent the 10th-
90th percentiles. 
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Figure S5. Comparison of quality metrics for blacklisted and non-blacklisted variants. Mean (A) read depth (DP) 
and (B) mapping quality (MQ) were calculated for common variants present in gnomAD with a MAF>1% (blue 
bar), and for blacklist-annotated variants (green bar). Error bars represent the upper and lower limits of 1.5 
times the interquartile range. 
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Figure S6. Comparison with machine learning-based filtering methods. We applied random forest scoring 
functions to blacklist-annotated variants and to a set of true-positive (TP) variants present in both the gnomAD 
dataset and our cohort with a MAF exceeding 1% in each dataset. The score distributions are almost identical, 
indicating that the blacklist-annotated variants are not distinguishable from TP variants according to this 
standard classification method. 
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Figure S7. Comparison of CADD scores between blacklisted and non-blacklisted variants. Mean CADD scores 
were calculated for common variants present in gnomAD exome and genome databases with a MAF>1% (blue 
bar), or blacklist-annotated variants (green bar).  Calculations were performed for all (A), CDS (B), and non-CDS 
(C) variants. Error bars represent the upper and lower limits of 1.5 times the interquartile range. 
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Figure S8. Characteristics of the most frequent genes in the blacklist-annotated. (A) Depiction of the top 
ranking genes in the blacklist-annotated according to the number of variants. The size of the text is proportional 
to the number of variants of the gene in the blacklist-annotated. (B) Comparison of GDI scores between the 
1,000 most common genes in all the common in-house variants (gnomAD) and blacklist-annotated variants. 
Error bars represent the upper and lower limits of 1.5 times the interquartile range. 
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Figure S9. Practical analysis of a single patient exome by blacklisting. The practical utility of the blacklist 
approach was demonstrated with the exome of a patient with a published disease-causing mutation. The 
patient’s exome was filtered with a standard pipeline with and without application of the blacklist-annotated. 
The numbers in each box represent the number of variants remaining in the exome after each filtering step. GDI: 
gene damage index; MSC: mutation significance cutoff. 
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Figure S10. Representation of ethnic subgroups in 3,104 PID exomes. The distribution of the genetic ancestry 
groups in the PID cohort, as determined by PCA analysis. 
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Figure S11. Investigation of a biallelic HLA-DRB1 variant: 6-32551960-T-TCC 
IGV screenshot of the WES alignment surrounding position 32,551,960 on chromosome 6. 
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Figure S12. Investigation of a biallelic MUC6 variant: 11-1017470-G-T 
IGV screenshot of the WES alignment surrounding position 1,017,280 on chromosome 11. 
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Figure S13. Investigation of biallelic OR8U1 variants: 11,56143784,C,T and 11,56143803,A,G 
IGV screenshot of the WES alignment surrounding position 11,56143784 on chromosome 11. 
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Figure S14. Investigation of a biallelic HRNR variant: 1-152195728-AT-A  
IGV screenshot of the WES alignment at position 152195728 on chromosome 1. 
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Figure S15. Investigation of a multiallelic TBC1D19 variant: 4-26737063-C-CT   
IGV screenshot of the WES alignment at position 26737063 on chromosome 4. 
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Figure S16. Investigation of a multiallelic FIG4 variant: 6-110053824-G-GT  
IGV screenshot of the WES alignment at position 110053824 on chromosome 6. 
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Figure S17. Filtering of coding and non-coding sequence 
variants in (A) 3,869 Neuro exomes restricted to cohort-
specific variants with the Neuro blacklist-annotated, (B) 902 
Infection exomes restricted to cohort-specific variants with 
the Infection blacklist-annotated, (C) 400 Africa exomes 
restricted to cohort-specific variants with the Africa 
blacklist-annotated. Error bars represent the 10th-90th 
percentiles. 
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Figure S18. Relationship between the four blacklists. Common and unique biallelic (A), multiallelic (B), biallelic 
restricted to CDS (C), and multiallelic restricted to CDS (D) variants from the Blacklist-Annotated in the PID, 
Neuro, Africa and Infection cohorts. 
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Figure S19. Relationship between sample size and number of blacklist variants. Estimation of the number of 
exomes required to create a saturated blacklist for CDS variants. Overlays in red, gray and green indicate that 
blacklist generation is unsafe, safe and optimal, respectively. The green vertical line indicates the suggested 
minimal sample size. 
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Table S1. VQSR status of blacklist-annotated (BL-A) variants 
 

  # of VQSR PASS (%) # of VQSR non-PASS (%) 
Blacklist 125,614 (75.2%) 41,530 (24.8%) 
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Table S2. Blacklist-annotated variants in HGMD or ClinVar database 
 
 

Chr Position Ref. Alt. HGMD ClinVar gnomAD Gene Disease Status Consequence cDNA Protein rs ID Publication (PMID) 

4 88929173 C CGAG x  PASS PKD2   inframe insertion c.307_308insAGG p.Glu102dup rs547253972 

 

8 100844596 G T x x - VPS13B Cohen syndrome  splice acceptor 
variant c.9406-1G>T  rs386834119 

23188044, 16917849, 
15154116 

10 89720633 C CT x x PASS PTEN 
Hereditary cancer-

predisposing 
syndrome 

 intron c.802-18C>T  rs376702513 25394175,  18951446 

12 102796022 A T x x PASS IGF1 Insulin-like growth 
factor I deficiency 

begign/likely 
benign 3' UTR variant c.*297T>A  rs70961704 

 

13 20763685 A AC x x PASS GJB2 Deafness, autosomal 
recessive 1 

2 alleles one 
closed to 1% frameshit c.35dupG p.Val13CysfsTer35 rs398123814 9482292, 24503448 

21 47545369 A AC x  PASS COL6A2   frameshit c.1817-10_1817-9insC p.Asp163ArgfsTer3 rs149954350 

 

X 66765161 A T x x PASS AR Infertility, male Not tested. Missense c.173A>T Gln58Leu rs200185441 

 12801573, 
24737579,  23637914 

X 153006092 C T x  RF;AC0 ABCD1   stop gained c.1699C>T p.Gln567Ter rs201114595 

 

 
 
 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs547253972
https://www.ncbi.nlm.nih.gov/snp/rs386834119
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs376702513
https://www.ncbi.nlm.nih.gov/pubmed/25394175
https://www.ncbi.nlm.nih.gov/pubmed/18951446
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs70961704
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?type=rs&rs=rs398123814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9482292&dopt=Abstract
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=24503448&dopt=Abstract
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs149954350
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?type=rs&rs=rs200185441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12801573&dopt=Abstract
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=24737579&dopt=Abstract
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=23637914&dopt=Abstract
http://gnomad-old.broadinstitute.org/variant/X-153006092-C-T
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Table S3. Biallelic and multi-allelic blacklist-annotated variants in the PID, Neuro, Infection and Africa cohorts 
 

Blacklists             
  Biallelic Multiallelic Total 
  Count % of Total Count % of Total Count % of Total 
PID 14,229 8.5 152,915 91.5 167,144 100 
Neuro 14,860 66.6 7,454 33.4 22,314 100 
Infection 18,717 49.0 19,451 51.0 38,168 100 
Africa 48,999 84.2 9,186 15.8 58,185 100 
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Table S4. Bi-allelic and multi-allelic blacklist-annotated variants by repetitive regions  
(STR: short tandem repeats, Alu, GC-rich regions, other repetitive regions) 
 

Occurrence of blacklisted variants in complex regions       
  Multi-allelic Bi-allelic Total 
  Count % of Total Count % of Total Count % of Total 
In complex regions 118,154 77.3 6,711 47.2 124,865 74.7 
Not in complex 
regions 34,761 22.7 7,518 52.8 42,279 25.3 

 

Breakdown by complex regions   

  
Multi-allelic Bi-allelic Total 

Count % of Total Count % of Total Count % of Total 
STR 65,646 55.6 2,457 36.6 68,103 53.5 

Alu elements 44,866 38.0 1,713 25.5 46,579 36.7 

GC-rich regions 4,314 3.7 1,742 26.0 6,056 6.2 

Other repeat regions 3,328 2.8 799 11.9 4,127 3.6 
 
 
  



 25 

 
Table S5. Hardy-Weinberg of bi-allelic CDS blacklist-annotated (BL-A) variants in Caucasian individuals 
 
 

CDS bi-allelic variants in Caucasian Individuals (n = 1150) 
Total <10-8 >=10-8 % Disequilibrium 

622 74 548 12 

        
CDS bi-allelic variants in disequilibrium by excess genotype 
  excess het excess hom alt excess hom WT 
Counts 35 28 11 
% 47.3 37.8 14.9 
DP 163.0 20.5 15.6 
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Table S6. Ethnicity distribution of bi-allelic CDS blacklist-annotated (BL-A) variants in Hardy-Weinberg equilibrium 
 
 

Ethnicity Distribution of CDS bi-allelic variants in HW equilibrium 

    Total <10-8 >10-8   Ethnical Disequilibrium 
(%) 

Counts 548 200 348 36.5 

  

Causal Ethnicity for Disequilibrium 

  Middle Eastern African Caucasian 
Counts 20 20 6 

% 43.5 43.5 13.0 
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Table S7: Biallelic blacklist annotated CDS variants in Hardy-Weinberg disequilibrium 
 
 

Var Gene Unique Exome_gnomAD Genome_gnomAD Obs 
het 

Obs 
hom 

Obs 
wt 

HW_ 
Disequilibrium DP Avg Figure 

4,88536886,CAGTGACAGCAGCAACAGCAGTGACAGCAGCGAT,C DSPP unique PASS PASS 352 75 150 7.01E-09 50  

6,136599910,T,TGTATCGCTTCTTTCTAGAATGAGATCTTGATCTTGATCA BCLAF1 unique PASS AC0;RF 348 0 797 1.33E-09 210  

6,31324025,G,GT HLA-B unique PASS PASS 689 43 401 3.1E-32 23  

6,31324603,C,T HLA-B unique PASS PASS 717 253 173 1.18E-18 61  

6,32489852,A,ACGG HLA-DRB1 unique PASS RF 608 102 357 9.33E-12 49  

6,32551960,T,TCC HLA-DRB1 multi-01 PASS PASS 631 113 394 1.03E-09 90 Sup. Figure 11 
6,32552056,A,G HLA-DRB1 multi-01 RF InbreedingCoeff;RF 720 0 425 2.62E-54 152 Sup. Figure 11 
6,32552085,G,GC HLA-DRB1 multi-01 PASS InbreedingCoeff 950 47 148 1.35E-114 124 Sup. Figure 11 
6,32552093,A,T HLA-DRB1 multi-01 RF RF 528 0 610 2.2E-24 109 Sup. Figure 11 
6,32552140,T,A HLA-DRB1 multi-01 PASS PASS 846 16 253 3.37E-86 64 Sup. Figure 11 
6,32552144,A,C HLA-DRB1 multi-01 PASS PASS 953 28 119 1.13E-134 58 Sup. Figure 11 
6,32557610,T,C HLA-DRB1 multi-01 . . 451 0 693 1.01E-16 55 Sup. Figure 11 
7,100550245,G,T MUC3A unique InbreedingCoeff InbreedingCoeff 533 0 192 3.3E-55 547  

7,100551331,G,T MUC3A unique PASS PASS 850 0 177 2.49E-113 508  

7,142470773,A,G PRSS3P1 unique . . 992 0 153 1.85E-147 213  

7,142231826,T,C TRBV10-1 unique PASS PASS 1046 0 99 4.59E-178 236  

10,94018,T,G TUBB8 unique RF;AC0 AC0;InbreedingCoeff;RF 404 0 729 2.81E-13 51  

11,1093430,C,CCACCACGGTGACCCCAACCCCAACACCCACCGGCACACAG
ACCCCAACAACGACACCCATCAGCACCAA MUC2 unique PASS PASS 740 0 404 8.39E-59 171  

11,1016961,G,T MUC6 multi-02 RF;AC0 AC0;RF 444 0 700 3.83E-16 306 Sup. Figure 12 
11,1016972,G,A MUC6 multi-02 . InbreedingCoeff;RF 733 0 411 3.16E-57 280 Sup. Figure 12 
11,1017040,G,GA MUC6 multi-02 RF;InbreedingCoeff InbreedingCoeff;RF 863 0 281 3.01E-93 237 Sup. Figure 12 
11,1017458,A,G MUC6 multi-02 RF;AC0 InbreedingCoeff;RF 1055 0 89 3.72E-184 231 Sup. Figure 12 
11,1017470,G,T MUC6 multi-02 . . 908 0 70 1.12E-161 253 Sup. Figure 12 
11,1018483,C,G MUC6 multi-02 InbreedingCoeff InbreedingCoeff 1015 0 129 3.5E-160 110 Sup. Figure 12 
11,48387118,G,A OR4C5 unique InbreedingCoeff InbreedingCoeff 1144 0 0 9.03E-251 125  

11,56143784,C,T OR8U1 multi-03 InbreedingCoeff InbreedingCoeff 1102 0 42 8.52E-217 122 Sup. Figure 13 
11,56143803,A,G OR8U1 multi-03 InbreedingCoeff InbreedingCoeff 1071 0 73 1.1E-194 117 Sup. Figure 13 
12,11244067,A,ATT TAS2R43 multi-04 PASS AC0;RF 660 203 266 6.36E-09 60  

12,11244070,T,C TAS2R43 multi-04 PASS PASS 665 210 251 8.68E-10 60  

15,23685604,TC,T GOLGA6L2 unique InbreedingCoeff InbreedingCoeff 970 1 159 1.23E-140 308  

15,23686113,C,CTGCTCTTACATCTTCTCG GOLGA6L2 unique PASS RF 342 0 785 1.92E-09 401  

15,90294306,C,A MESP1 unique PASS PASS 649 172 270 4.5E-11 23  

19,8999561,G,C MUC16 unique RF InbreedingCoeff;RF 619 0 525 4.27E-36 69  

19,4511350,T,A PLIN4 unique . InbreedingCoeff 713 417 6 1.05E-50 140  

19,50463670,T,G SIGLEC11 unique PASS PASS 404 9 730 3.97E-09 42  
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Table S8. Sanger sequencing of 3 variants from blacklist annotated in patient exomes.  
 

Variant Characterization Databases Quality WES Total WES Genotype 
of 10 individuals 

Sanger 
sequence of 

10 individuals 
Variant Status 

Gene Chr Pos Ref Alt BL 
category Diseq. HW Eq. 

p-valuea 
Repeat 
region CCDS Ethnic 

Heterogenity 

% of cohort 
with 

variant 

ExAC 
0.3.1 

GnomAD 
r2.0.2 

Mean 
DP 

Mean 
MQ 

Mean 
QD WTc Het Hom WTc Het Hom WT Het Hom Variant Call 

problem 
Suspected 

reason 

HRNR 1 152,195,728 AT A 
Multi 
allelic nd nd No No nd 98.3 - Yes 42.3 60.2 18.3 44 170 2890 0 0 10 nc nc nc nc Yes 

Short stretch 
of T 

TBC1D19 4 26,737,063 C CT Multi 
allelic nd nd No No nd 91.8 - Yes 24.1 60.2 15.1 210 877 2017 0 5 5 nc nc nc nc Yes Short stretch 

of T 

FIG4 6 110,053,824 G GT Multi 
allelic nd nd No No nd 88.6 - Yes 28.4 60.0 13.9 349 1231 1524 0 6 4 nc nc nc nc Yes Short stretch 

of T 
                             

  nc : Not confirmed by Sanger sequencing due to poor quality.                     
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Table S9. Summary of the technology employed for each cohort 
 
 
 

Cohort        

 Size Kit Sequencer Aligner Reference 
Genome Caller Annotator 

PID 3,104 Agilent 37, 50, 71 Mb Hiseq 2000, 2500 bwa(v0.7.12) hg19 GATK (v3.4-46) snpEff 

Neuro 3,869 Agilent 50 Mb Hiseq 2000 bwa (v0.7.5) GRCh37 GATK (v.3.1-1) snpEff 

Africa 400 Nextera Rapid Capture 
Expanded Exome 61 Mb Hiseq 2500 bwa (v0.7.7) GRCh37 GATK (v.3.5 ) snpEff 

Infection 902 Agilent 50 Mb,  
Illumina 65Mb Hiseq 2000, 2500 bwa (v0.7.10) hg19 

decoy GATK (v3.8 ) snpEff 
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Table S10. Primers for PCR and sanger sequencing 
 

Gene Forward primer (5’ → 3’) Reverse primer (5’ → 3’) 
FIG4 CTGTCTTGCCCAAAGTCTGC TTCTCATTCTGCTTTTACCCGC 

HRNR GGCGTGGAGTTCTTACCTTC CACTCTCTTGCTACATGGCTTG 

TBC1D19 CTTTCTGACATTTATGAACAGAG GTGATTAGAAATAAAGTGGTG 
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ABSTRACT 

 

The detection of copy number variations (CNVs) in whole-exome sequencing (WES) data is important, as CNVs 

may underlie a number of human genetic disorders. The recently developed HMZDelFinder algorithm can detect 

rare homozygous and hemizygous (HMZ) deletions in WES data more effectively than other widely used tools. 

Here, we present HMZDelFinder_opt, an approach that outperforms HMZDelFinder for the detection of HMZ 

deletions, including partial exon deletions in particular, in typical laboratory cohorts that are generated over time 

under different experimental conditions. We show that using an optimized reference control set of WES data, 

based on a PCA-derived Euclidean distance for coverage, strongly improves the detection of HMZ deletions both 

in real patients carrying validated disease-causing deletions and in simulated data. Furthermore, we develop a 

sliding window approach enabling HMZDelFinder-opt to identify HMZ partial deletions of exons that are otherwise 

undiscovered by HMZDelFinder. HMZDelFinder_opt is a timely and powerful approach for detecting HMZ 

deletions, particularly partial exon deletions, in laboratory cohorts, which are typically heterogeneous.  
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INTRODUCTION 
 

Copy number variations (CNVs) are unbalanced rearrangements, classically covering more than 50 base 

pairs (bp), that increase or decrease the number of copies of specific DNA regions (1,2). There is growing 

evidence to implicate CNVs in common and rare diseases (1,3-5). CNVs have also been linked to adaptive traits, 

in environmental contexts for example (3). It has been recently estimated that CNVs affect ~5–10% of the 

genome, suggesting that a number of potentially disease-causing CNVs have yet to be discovered (1,6). Next-

generation sequencing (NGS) techniques, such as whole-genome and whole-exome sequencing (WGS and 

WES), provide unprecedent opportunities for studying CNVs. Computational tools using data from WGS have 

been successfully used to detect CNVs (7-10), but WES-based methods have met with more limited success, 

mostly due to the nature of targeted enrichment protocols (11-13). Common WGS-based methods use 

breakpoints, the regions in which the rearrangements occur, to detect CNVs. By contrast, WES focuses on 

noncontiguous genomic targets (the exons), and most breakpoints are not sequenced. Hence, current WES-

based approaches for detecting CNVs use the read depth (or coverage information) as a proxy for copy number 

information.  

The HMZDelFinder algorithm is a recently developed coverage-based method for detecting rare homozygous 

and hemizygous (HMZ) deletions (14). This subset of CNVs may result in null alleles and a complete loss of 

gene function. Their identification may, therefore, lead to the discovery of novel genes or variations underlying 

Mendelian diseases. HMZDelFinder jointly evaluates the normalized per-interval coverage of all the samples of 

the entire dataset, making it possible to detect rare exonic HMZ deletions while minimizing the number of false-

positive calls due to low-coverage regions. HMZDelFinder outperformed other CNV-calling tools, such as 

CONIFER (15), CoNVex (16), XHMM (17), ExonDel (18), CANOES (19), CLAMMS (20) and CODEX (21), 

particularly for the detection of single-exon deletions (i.e. deletions spanning only one exon) (14). However, two 

major limitations remain to be addressed. First, HMZDelFinder has been optimized to detect HMZ deletions from 

an entire dataset (>500) of homogeneous exome data. Its performance for typical laboratory cohort, which 

include exome data generated over time, often under different conditions, is, therefore, not optimal. Second, 

HMZDelFinder was not designed for the systematic detection of partial exon deletions (i.e. deletions spanning 

less than one exon). Here, we provide HMZDelFinder_opt, a method that extends the scope of HMZDelFinder 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 24, 2020. . https://doi.org/10.1101/2020.07.23.217976doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217976
http://creativecommons.org/licenses/by-nc-nd/4.0/


by improving the performance of the algorithm for the calling of HMZ deletions in typical laboratory cohorts, which 

are generated over time, and by allowing the systematic detection of partial exon deletions. 

 

MATERIALS AND METHODS 

Patient Cohort.  

The 3,954 individuals used in this study were recruited in collaborations with clinicians, and most of them present 

different severe infectious diseases. Probands’ family members account for the rest. Although these individuals 

do not form a random sample, they were ascertained through a number of distinct phenotypes and in different 

countries. Cohort-specific effects are, therefore, not expected to bias patterns of variation. All study participants 

provided written informed consent for the use of their DNA in studies aiming to identify genetic risk variants for 

disease. IRB approval was obtained from The Rockefeller University and Necker Hospital for Sick Children, 

along with a number of collaborating institutions.  

 

WES and bioinformatic analysis 

WES and bioinformatics analysis were performed as previously described (22). Briefly, genomic DNA was 

extracted and sheared with a Covaris S2 Ultra-sonicator. An adaptor-ligated library (Illumina) was generated, 

and exome capture was performed with either SureSelect Human All Exon kits (V5-50Mb, V4-50Mb, V4-71Mb, 

or V6-60Mb) from Agilent Technologies, or xGen Exome Research 39Mb Panel from Integrated DNA 

Technologies (IDT xGen). Massively parallel WES was performed on a HiSeq 2000 or 2500 machine (Illumina), 

generating 100- or 125-base reads. Quality controls were applied at the lane and fastq levels. Specifically, the 

cutoff used for a successful lane is Pass Filter > 90%, with over 250 M reads for the high-output mode. The 

fraction of reads in each lane assigned to each sample (no set value) and the fraction of bases with a quality 

score > Q30 for read 1 and read 2 (above 80% expected for each) were also checked. In addition, the FASTQC 

tool kit (www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to review base quality distribution, 

representation of the four nucleotides of particular k-mer sequences (adaptor contamination). We used the 

Genome Analysis Software Kit (GATK) (version 3.2.2 or 3.4-46) best-practice pipeline to analyze our WES 

data(23). Reads were aligned with the human reference genome (hg19), using the maximum exact matches 

algorithm in Burrows–Wheeler Aligner (BWA)(24). PCR duplicates were removed with Picard tools 

(picard.sourceforge.net/). The GATK base quality score recalibrator was applied to correct sequencing artifacts.  
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Positive controls 

The five WES samples used as positive controls carry rare HMZ disease-causing deletions that were confirmed 

with state-of-the-art molecular approaches (25-27). Specifically, these HMZ deletions comprise one or more 

exons and have different lengths as follows (SI Table 1). P1 carries a deletion of exons 21 to 23 in DOCK8 

(10,800 bp) that was validated by multiplex ligation-dependent probe amplification (MLPA). The deletion in 

DOCK8 was functionally linked to staphylococcus infection (25). P2 had a deletion of exon 5 in NCF2 (134 bp) 

that was also validated by MLPA and found to be causal in chronic granulomatous disease (manuscript in 

preparation). P3’s deletion spanned exons 2 to 8 in IL12RB1 (13,000 bp) and was validated by sanger 

sequencing. This deletion was demonstrated to be causal for a Mendelian susceptibility to mycobacterial disease 

(26). P4 has a deletion of the entire CYBB (3,400,000 bp) validated by MLPA and CGH array that resulted in 

chronic granulomatous disease (27). Finally, P5 is a patient with hyper IgE syndrome carrying a deletion of exons 

7 to 15 in entire DOCK8 (28,000 bp) that was validated by Sanger sequencing. CYBB is on the X chromosome 

while all other genes are autosomal. 

 

HMZDelFinder-opt 

The general workflow used in HMZDelFinder-opt is depicted in SI Figure 1. First, HMZDelFinder_opt computes 

coverage profiles from the BAM files of the entire dataset. Second, the Principal component analysis (PCA) is 

calculated from a covariance matrix based on standardized coverage profiles and a k nearest neighbors 

algorithm is used to select the reference control set. Third, the BAM file of a given sample and the BAM files of 

the reference control set are used as input of HMZDelFinder to detect HMZ deletions. Fourth, when 

HMZDelFinder_opt is provided with the parameter -sliding_window_size and the related size, it will employ a 

sliding window approach for identification of partial deletions of exons. Each of these steps is described in the 

following paragraphs. 

 

Principal component analysis (PCA) and k nearest neighbors algorithm 

The PCA was performed on the coverage profile of the 3,954 WES using per-exon coverage. Specifically, for 

each sample, the coverage profile was calculated using the mean depth of coverage of the 194,528 exons from 

the consensus coding sequences (CCDS) annotation of GRCh37 obtained using biomaRt (28). The PCA was 

then performed using the ‘prcomp’ function from R 3.5.1 on the scaled coverage profiles. To select the reference 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 24, 2020. . https://doi.org/10.1101/2020.07.23.217976doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217976
http://creativecommons.org/licenses/by-nc-nd/4.0/


control set for a given sample, we computed pairwise weighted Euclidean distances between individuals i and j 

based on the first 10 principal components from the PCA using the ‘dist’ function of R 3.5.1, using the formula: 

!"#$(", ') = *+,-
./

-0.
123-4 − 23-67

8
 

where PC is the matrix of principal components (PCs) calculated on common variants and λk the eigenvalue 

corresponding to the k-th principal component PCk. 

 

HMZDelFinder 

We used the HMZDelFinder algorithm as described (14). In brief, HMZDelFinder calculates per-exon read depth 

(reads per thousand base pairs per million reads; RPKM) to detect HMZ deletions. For our purpose of covering 

all the coding regions, we employed an interval file containing all coding sequences from Gencode. For a given 

interval, the criteria to call a deletion are as follows: 1) RPKM < 0.65 and 2) frequency of the deletion within the 

dataset £ 0.5%. Filtering criteria at the interval and sample levels include removal of low quality intervals (RPKM 

median < 7 across all samples) and removal of low quality samples (2% with highest number of calls). When 

using the optional absence of heterozygosity (AOH) step, HMZDelFinder uses VCF files to filter out deletions 

not falling in AOH regions, assuming that rare and pathogenic homozygous deletions are likely to be located 

within larger AOH regions due to the inheritance of a shared haplotype block from both parents. Finally, to 

prioritize deletions, z-scores are computed. The z-score of a deletion measures the number of standard 

deviations between the coverage of the deleted interval in a given sample compared to the mean coverage of 

the same interval in the rest of the dataset. A very low z-score indicates high mean coverage with low variance 

in the dataset and very low (or no coverage at all) in a given sample. Hence, lower z-scores denote higher 

confidence in a given deletion. 

 

Sliding window approach and simulated data 

We simulated deletions of variable size in 200 randomly selected individuals among our in-house cohort but 

excluding the oldest samples (V4-50Mbp capture kit), due to a lower quality than present standards. Two different 

exons were selected to undergo simulated deletions: a favorable case, exon 11 from LIMCH1 gene (409bp) with 

a mean coverage of approximately 85X in our samples, and an unfavorable case, exon 4 from RPL15 gene (406 

bp) with a mean coverage of 15X in our samples. For both exons, we deleted a segment of 25%, 50%, 75% or 
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100% of the exon size, using the ‘-v’ argument of the ‘bedtools intersect’ command (bedtools v1.9) on the BAM 

file to remove all reads overlapping the segment. We then ran HMZDelFinder and HMZDelFinder_opt (with and 

without the --sliding_windows parameter) on the whole BAM files. Specifically, we applied a sliding window 

approach, in which each exon was divided into 100 bp  windows, with 50 bp overlaps, and BAM files for individual 

exomes were transformed into per-window read depths. In a separate analysis, we used 50 bp windows, with 

25 bp overlaps. 

 

Analysis of common deletions 

To determine whether some of the called deletions were previously reported as common deletions, we utilized 

the CNVs from the Gold Standard track (hg19 version dated 2016-05-15) of the Database of Genomic Variants 

(DGV), a highly curated resource that collects CNVs in the human genome (29). We retained only entries with 

field ‘variant_sub_type’ equal to ‘Loss’ and frequency greater than 1%. We then crossed the retained entries 

with the deletions called by HMZDelFinder and HMZDelFinder_opt in the positive controls. Deletions were 

considered common in the DGV database when they overlapped at least 50% with the retained entries from the 

DGV database. 

 

RESULTS 
 
Optimization of the reference control set in HMZDelFinder_opt  

We first aimed to improve the performance of HMZDelFinder for detecting HMZ deletions in typical 

heterogeneous laboratory cohorts, which were generated over time and in different experimental settings (e.g. 

capture kit). We reasoned that comparing a given sample with an optimized reference control set would limit the 

impact of the background variability intrinsic to exome data, thereby improving the performance of 

HMZDelFinder. We designed the optimized reference control set as a selection of samples with similar coverage 

profiles (SI Figure 1). We did this by first performing a principal component analysis (PCA) of the depth of 

coverage for consensus coding sequences (CCDS) for 3,954 exomes from our in-house cohort, including mostly 

patients with severe infectious diseases. As expected, given the different sequencing conditions used for whole-

exome sequencing (SI Table 2), the coverage profiles of the samples were highly variable (Figure 1). The first 

two principal components (PCs) of the PCA identified six distinct clusters, mostly reflecting the capture kit used 

(Figure 1). Interestingly, two different clusters (clusters 1 and 2 on Figure 1) corresponded to the V4-71Mb 
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capture kit, the difference between these clusters being associated mostly with a minor change in the sequencing 

chemistry of the kit, leading to a significant improvement in coverage profile for the more recently generated 

exome data (SI Figure 2). We then used the first 10 PCs to calculate the pairwise weighted Euclidean distances 

between all samples (30) (see methods). We used this metric to determine, for each sample of interest, the 

closest neighbors, for use as the reference control set in HMZDelFinder_opt. 

We then compared the performances of HMZDelFinder_opt and HMZDelFinder, using five WES samples 

carrying validated rare HMZ disease-causing deletions of different lengths as positive controls (SI Table 1, 

methods). Specifically, we tested the ability of HMZDelFinder_opt and HMZDelFinder to detect the validated 

deletions, and we also compared the total numbers of deletions called and their z-scores (see Methods). In 

HMZDelFinder_opt, we compared reference control sets of different size (ranging from 50 to 500, SI Figure 3), 

selected for each sample as described above. In HMZDelFinder, we used the entire dataset, consisting of 3,954 

WES samples. For both approaches, the final set of called deletions for each sample was narrowed down to the 

capture kit corresponding to the patient WES data. We chose to benchmark HMZDelFinder because it has been 

shown to perform at least as well as, and sometimes better than several widely used and actively maintained 

detection tools (14).  

Both HMZDelFinder and HMZDelFinder_opt successfully detected all five confirmed HMZ deletions in the 

positive controls, regardless of the size of the reference control set (Table 1). However, HMZDelFinder_opt 

detected a smaller total number of deletions than HMZDelFinder (Table 1). Specifically, the total number of 

deletions ranged from one to 21 deletions for HMZDelFinder_opt, and from 11 to 2,586 for HMZDelFinder, 

suggesting that a smaller number of false-positive calls were obtained with HMZDelFinder_opt.  Using the 

optional filtering step based on the absence of heterozygosity (AOH) information for HMZDelFinder (see 

methods) decreased the number of deletions detected, but this number nevertheless remained much higher than 

that for HMZDelFinder_opt (Table 1). We hypothesized that the large difference between the two methods for 

P1 reflected the low quality of exome data for this patient. Indeed, the mean coverage and the proportion of 

bases with coverage above 10x were much lower for P1 than for the other four patients (e.g. only 68.9% of bases 

had a coverage above 10x for P1, versus >99% for the other patients) (SI Table 1), leading to a large number of 

likely false positive deletions detected when not using an appropriate reference control set with similar coverage. 

Consistently, the number of deletions detected for P1 with HMZDelFinder_opt was larger with the largest 
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reference sample size (500) (Table 1). We therefore performed subsequent HMZDelFinder_opt analyses with a 

reference sample size of 100, which provided a good compromise between the algorithm performance and 

computation time.  

We then compared the rankings of the confirmed deletions between the two algorithms, using the z-score 

provided by HMZDelFinder (see method). While the two approaches ranked the confirmed disease-causing 

deletions for P1 and P5 first, HMZDelFinder_opt ranked higher the confirmed disease-causing deletions for P2, 

P3 and P4 than HMZDelFinder (Table 1; Figure 2). Moreover, z-scores were consistently better with 

HMZDelFinder_opt (Figure 2) than with HMZDelFinder, leading to a more specific discovery of true HMZ 

deletions. Again, using the AOH option for HMZDelFinder slightly improved the ranking (Table 1), but did not 

change the z-score ranking. Together, these results suggest that HMZDelFinder_opt gives better z-scores for 

deletions than HMZDelFinder, which should lead to higher sensitivity in the general case. 

Finally, we studied the HMZ deletions called by both approaches, in addition to the validated ones, to 

determine whether some of the deletions identified were reported as common deletions. We used the CNVs from 

the gold standard track of the Database of Genomic Variants (DGV), a highly curated resource containing CNVs 

from the human genome (29). We focused on the positive controls with high data quality (P2, P3, P4 and P5), 

and found that the HMZ deletions called by HMZDelFinder_opt were more enriched in common deletions 

(frequency > 1%) than those called by HMZDelFinder (SI Table 3). Among the 6 and 303 additional HMZ 

deletions called by HMZDelFinder–opt (with the reference control set of 100 exomes) and HMZDelFinder, 50% 

and 1%, respectively, were present in the DGV database (SI Table 3), suggesting that the deletions called by 

HMZDelFinder_opt were enriched in true deletions. Overall, these findings demonstrate that the use of an 

appropriate reference control set of WES data based on a PCA-derived coverage distance improves the 

performance of HMZDelFinder. These results also provided a first validation of HMZDelFinder_opt for five 

confirmed disease-causing HMZ deletions. 

 

Detection of HMZ partial exon deletions by HMZDelFinder_opt  

In HMZDelFinder, individual exome BAM files are transformed into per-exon read depths, facilitating a more 

efficient detection of single-exon HMZ deletions than can be achieved with other classical CNV-calling algorithms 

(14). Here, we aimed to address the need for the identification of even smaller HMZ deletions, spanning less 
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than an exon (partial exon deletions). To this end, we used HMZDelFinder_opt with a sliding window approach, 

in which each exon was divided into 100 bp  windows, with 50 bp overlaps, and BAM files for individual exomes 

were transformed into per-window read depths. We tested this approach by simulating deletions in two exons of 

similar size (~400 bp) but with different mean coverages in a randomly selected dataset of 200 WES samples 

from our in-house cohort. The deletions spanned 100%, 75%, 50% or 25% of either exon 11 of LIMCH1 (409 

bp, ~85x mean coverage) or exon 4 of RPL15 (406 bp, ~15x mean coverage). We used these datasets to 

compare the performances of HMZDelFinder_opt with sliding windows of 100 bp (HMZDelFinder_opt+sw100), 

HMZDelFinder_opt without sliding windows (HMZDelFinder_opt), and the original HMZDelFinder. For 

HMZDelFinder_opt+sw100 and HMZDelFinder_opt ,we used reference control sets of size 100.  

For deletions spanning the full exon (100%), we confirmed that HMZDelFinder_opt had a detection rate (98% 

and 93% for exons with higher and lower coverage, respectively; Figure 3) similar to that of HMZDelFinder (98% 

and 93% for exons with higher and lower coverage, respectively). However, the total number of HMZ deletions 

called by HMZDelFinder_opt was only one eighth the total number of HMZ deletions called by HMZDelFinder 

(median number of HMZ deletions: 2 vs. 13 SI Figure 4). The detection rate was slightly higher when sliding 

windows were used (detection rate for HMZDelFinder_opt+sw100 of 99% and 94% for exons with a higher and 

lower coverage, respectively), but at the cost of a slightly larger total number of HMZ deletions called than for 

HMZDelFinder_opt (median number of deletions: 5 vs. 2). Nevertheless, the total number of HMZ deletions 

called by HMZDelFinder_opt+sw100 remained lower than the total number of HMZ deletions called by 

HMZDelFinder.  

For partial exon deletions, the detection rates of HMZDelFinder and HMZDelFinder_opt were much lower, at 

less than 10% for deletions spanning 75% of the exon and 0% for deletions spanning 25% or 50% of the exon. 

Conversely, HMZDelFinder_opt+sw100 succeeded in detecting simulated deletions spanning 50% or 75% (200 

bp or ~300 bp) of both exon 11 of LIMCH1 and exon 4 of RPL15 in 99% of the samples, with a median number 

of called HMZ deletions of 5 (Figure 3, SI Figure 4).  For deletions spanning 25% of the exon (~100 bp), 

HMZDelFinder_opt+sw100 had a detection rate of 74% for the exon with the highest coverage in LIMCH1, but it 

failed to detect the deletions in the exon with the lowest coverage in RPL15. We assessed the performance of 

this method further, using a smaller sliding window of 50 bp in size, and a step size of 25 bp, to improve 

granularity. We found that the use of smaller sliding windows with HMZDelFinder_opt+sw50 greatly increased 
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the detection rate for deletions spanning 25% of the exon with the lowest coverage, exon 4 of RPL15 (93% for 

sw50 vs. 1% for sw100) and of the exon with the highest coverage in LIMCH1 (98% for sw50 vs. 74% for sw100) 

(Figure 3). Thus, the use of a sliding window makes it possible to detect HMZ partial exon deletions that would 

otherwise be missed, and the use of simulated data further validated HMZDelFinder_opt. 

 
 
DISCUSSION 
 

WES offers unprecedent opportunities for identifying HMZ deletions as novel causal determinants of 

human diseases, but it poses a number of computational challenges. Most current methods for detecting HMZ 

deletions compare the depth of coverage between a given exome and the rest of the exomes in the dataset. 

However, coverage depth is heavily dependent on sequencing conditions, which are continually evolving in 

typical laboratory settings. Thus, the exome data generated over time are inevitably heterogeneous, complicating 

the discovery of deletions. Using HMZDelFinder_opt with both validated disease-causing deletions and 

simulated data, we demonstrated that the a priori selection of a reference control set with a coverage profile 

similar to that of the WES sample studied reduced the number of deletions detected, while improving the ranking 

of the true HMZ deletion. These results are consistent with a recent report showing that the selection of an 

appropriate reference control set with multidimensional scaling significantly improves the sensitivity of various 

CNV callers (31). In further support for our findings, the ranking of the known deletion and the number of 

additional deletions detected by HMZDelFinder_opt start worsening with increasing numbers of controls in the 

reference set, including neighbors with a less similar coverage profile, as illustrated, for P1, in SI Fig. 3A.  

In addition to providing an optimized tool for detecting deletions in typical laboratory cohorts, 

HMZDelFinder_opt also fills the gap in the study of deletions spanning less than an exon, by providing the first 

tool for the systematic identification of partial exon deletions. Existing CNV callers are optimized for the detection 

of either large deletions (usually spanning more than three exons), or deletions of full single exons (14,32). Other 

established callers, such as GATK, are not designed to detect CNVs and can therefore identify deletions of only 

a few dozen base pairs (typically up to 50 bp, https://gatkforums.broadinstitute.org/gatk/discussion/5938/using-

gatk-tool-how-long-insertion-deletion-could-be-detected and (33)). The human genome contains ~235,000 

exons, about 20% of which are larger than 200 bp (34). HMZDelFinder_opt therefore makes possible the 

systematic discovery of currently unknown HMZ deletions in ~47,000 exons that are not detectable with other 
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tools. In sum, we describe HMZDelFinder_opt, a method for improving the detection of HMZ deletions in 

heterogeneous exome data that can be used to identify partial exon deletions that would otherwise be missed, 

through an extension of the scope of HMZDelFinder.  
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TABLES AND FIGURES 

 
 
 
 

 
 
Figure 1: Principal Component Analysis (PCA) of the WES coverage. The PCA was computed from the 

coverage profiles of consensus coding sequences (CCDS) from 3,954 individuals. Dots are color-coded by the 

type of the capture kit used for sequencing. ). Two different clusters (clusters 1 and 2) corresponded to the V4-

71Mb capture kit. See also SI Figure 2. 
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Figure 2: Comparison of the ranking of the deletions called by HMZDelFinder_opt and HMZDelFinder in  
five positive controls carrying validated rare HMZ disease-causing deletions. The ranking is expressed as 

- z-score. Lower z-scores (and higher ranking) indicate more confidence in a given deletion. The confirmed 

deletions ranked 1st in P1, P2, P3, P5 with HMZDelFinder_opt while they ranked 1st  only in  P1 and P5 with 

HMZDelFinder as shown by the red dots in the blue (HMZDelFinder) and yellow (HMZDelFinder_opt) 

distributions. The ranking was consistently higher with HMZDelFinder_opt than with HMZDelFinder. Results are 

shown for HMZDelFinder_opt using 100 as size of the reference control set. 
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Figure 3: Comparison of HMZDelFinder_opt with or without sliding windows and HMZDelFinder by using 
simulated data. Proportions of deletions detected in simulated data in the higher (LIMCH1) or lower (RPL15) 

covered exons by using HMZDelfinder (yellow), HMZDelFinder_opt (orange), HMZDelFinder_opt+sw100 (red), 

HMZDelFinder_opt+sw50 (pink).   
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P1 P2 P3 P4 P5 

 
KIT V4-50MB V6-60MB V5-50MB V5-50MB V6-60MB 

METHOD N NEIGHBORS Confirmed deletion (Rank/Total number of deletions) 

HMZDelFinder_opt 

50 DOCK8 
(1/11) 

NCF2 (1/2) IL12RB1 
(1/1) 

CYBB 
(3/5) 

DOCK8 
(1/3) 

100 DOCK8 
(1/11) 

NCF2 (1/2) IL12RB1 
(1/1) 

CYBB 
(4/5) 

DOCK8 
(1/2) 

200 DOCK8 
(1/11) 

NCF2 (1/3) IL12RB1 
(1/1) 

CYBB 
(4/5) 

DOCK8 
(1/3) 

500 DOCK8 
(4/21) 

NCF2 (1/2) IL12RB1 
(1/3) 

CYBB 
(3/5) 

DOCK8 
(1/2) 

HMZDelFinder 
 

All DOCK8 
(1/2586) 

NCF2 
(120/120) 

IL12RB1 
(4/11) 

CYBB 
(7/13) 

DOCK8 
(1/163) 

HMZDelFinder AOH All DOCK8 
(1/457) 

NCF2 (37/37) IL12RB1 
(2/5) 

CYBB 
(4/7) 

DOCK8 
(1/46) 

 
Table 1: Comparison of the results between HMZDelFinder_opt and HMZDelFinder by using five positive 
controls carrying validated rare HMZ disease-causing deletions. Both HMZDelFinder_opt and 

HMZDelFinder (with or without AOH filtering step) detect the confirmed deletions. HMZDelFinder_opt detects a 

lower number of other deletions and ranks higher the confirmed deletion as compared to HMZDelFinder with or 

without AOH filtering step.      
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SI Figure 1: Schematic representation of the method employed by HMZDelFinder_opt to detect partial-
exon homozygous and hemizygous deletions. First, HMZDelFinder_opt computes coverage profiles from 

the BAM files. The PCA is then calculated from a covariance matrix based on standardized coverage profiles 

and a k nearest neighbors algorithm is used to select the reference control set. The BAM file of a given 

sample and the BAM files of the reference control set are used as input of HMZDelFinder to detect 

homozygous and hemizygous deletions. In addition, HMZDelFinder_opt accepts a parameter (-

sliding_window_size) to employ a sliding window approach for identification of partial-exon deletions. 

  



 

 

SI Figure 2: Coverage in the two exome clusters revealed by PCA  within the exomes generated by 
the V4-71Mb capture kit. Both the number of CCDSs with at least 10X (A) and the depth of coverage per 

exon (B) are significantly higher (p<2-16) in the most recent V4-71Mb exomes (Cluster 2) than in the oldest 

V4-71Mb exomes (Cluster 1). Effect size: A, Cohen's d=0.45; B, Cohen's d=0.8.
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SI Figure 3: Closest neighbors of the positive controls as function of the size of the reference control set. A total of 100 and 500 neighbors are showed 
for P1 (A), P2 (B), P3 (C), P4 (D), and P5 (E).
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SI Figure 4: Median number of detected deletions in the simulated data in the higher (LIMCH1) or lower 

(RPL15) covered exons by using HMZDelfinder (yellow), HMZDelFinder_opt (orange), 

HMZDelFinder_opt+sw100 (red), HMZDelFinder_opt+sw50 (pink).   
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Patient Confirmed Homozygous Deletion Exome 

 
Location Gene Size (kbp) Validation method Mean Coverage % Bases above 10% 

P1 Chr 9, Exons 21 to 23 DOCK8 10.8 MLPA 23 68.9 

P2 Chr 1, Exon 5 NCF2 0.13 MLPA 115 99.5 

P3 Chr 19, Exons 2 to 8 IL12RB1 13 Sanger sequencing 206 99.5 

P4 Chr X, Whole gene CYBB 3,400 MLPA and CGH array 156 99.2 

P5 Chr 9, Exons 7 to 15 DOCK8 28 Sanger sequencing 66 99.5 

 

SI Table 1:  Validated rare HMZ disease-causing deletions and exome coverage in the five exomes used as 
positive controls. 

  



Kit Kit (full name) Number (Percentage) 
of Exomes 

Median Coverage 
(SD) 

% bases 
above 10X 

IDT-xGen xGen Exome Research Panel v2 from 
Integrated DNA Technologies  

188 (4.8%) 41.7 (9.5) 91.4 

V4-50Mb Agilent SureSelect Human All Exon V4 354 (9.0%) 50.0 (15.5) 83.2 

V4-71Mb Agilent SureSelect Human All Exon V4+UTRs  3095 (78.3%) 47.4 (10.2) 81.0 

V5-50Mb Agilent SureSelect Human All Exon V5  101 (2.6%) 72.4 (43.7) 70.3 

V6-60Mb Agilent SureSelect Human All Exon V6 216 (5.5%) 125.9 (38.6) 99.0 

 

SI Table 2: Distribution of the capture kit in the 3,954 exomes and corresponding coverage metrics. 

  



  
P2 P3 P4 P5 TOTAL 

 
KIT V6-60MB V5-50MB V5-50MB V4-71MB  

METHOD N NEIGHBORS (COMMON DELETIONS/NUMBER OF OTHER DETECTED DELETIONS) 

HMZDelFinder_opt  
50 0/1 (0%) 0/0 (-) 2/4 (50%) 2/2 (100%) 4/7 (60%) 

100 0/1 (0%) 0/0 (-) 2/4 (50%) 1/1 (100%) 3/6 (50%) 

200 0/2 (0%) 0/0 (-) 2/4 (50%) 2/3 (67%) 4/9 (44%) 

500 0/1 (0%) 0/2 (0%) 2/4 (50%) 1/1 (100%) 3/8 (38%)       
 

    HMZDelFinder all 0/119 (0%) 0/10 (0%) 1/12 (8%) 2/162 (1%) 3/303 (1%) 

 

SI Table 3: Number and percentage of common deletions (>1% frequency) among the detected deletions 
(other than the confirmed deletion)  
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