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Resumé

Les tissus conjonctifs sont des tissus biologiques qui permettent de maintenir la forme du corps et de ses organes ; ils assurent leur cohésion ainsi que leur soutien interne. La plupart des tissus conjonctifs mous sont fibreux, comme par exemple les artères, l'annulus fibrosus, les tendons et ligaments, etc. L'étude des coefficients de Poisson de tissus mous fibreux a depuis peu retenu l'attention de nombreux auteurs de travaux dans le domaine de la modélisation mécanique, car des valeurs élevées et/ou négatives ont été mesurées expérimentalement. Ce travail de thèse se concentre principalement sur les évolutions des coefficients de Poisson dans les tissus mous fibreux en fonction de l'arrangement des fibres, et plus spécifiquement, de leurs ondulations et de leur organisation spatiale.

Le manuscrit est organisé en quatre chapitres.

Le premier a un pour objectifs de décrire la microstructure et de présenter un état de l'art sur la mesure expérimentale et la prédiction par modèles des coefficients les Poisson de tissus mous conjonctifs fibreux (artère, annulus fibrosus, tendon et ligament).

Dans un premier temps, la microstructure et les composants des tissus de l'artère, de l'annulus fibrosus, des tendons et des ligaments sont présentés.

Dans ces tissus, la structure des fibres de collagène est ondulée ainsi que le montre l'exemple de l'annulus fibrosus, illustré sur la Figure 1. Puis, une revue bibliographique sur la mesure expérimentale de coefficients de Poisson de tissus mous fibreux est proposée, suivie d'une synthèse des modèles mécaniques permettant de prédire ces coefficients de Poisson.

Par la suite, on considèrera les tissus mous fibreux comme un matériau composite avec des fibres ondulées. On résume ici des modèles composite mécaniques présentant ce type de structure.

On y justifie ainsi l'intérêt et les motivations des travaux présentés dans les chapitres suivants. Un modèle micromécanique analytique de l'annulus fibrosus est proposé dans le deuxième chapitre, basé sur des observations issues de la littérature. Ce tissu est constitué de plusieurs lamelles où les fibres de collagène sont disposées en parallèle dans chaque lamelle. L'orientation des fibres diffère d'une lamelle à l'autre comme montré dans la Figure 2a. Dans ce modèle, la fibre a une microstructure ondulée et sa forme est considérée comme étant sinusoïdale. L'ondulation des fibres et de la structure lamellaire est montrée sur la Figure 2b. L'effet de la structure des fibres ondulées sur le coefficient de Poisson est alors étudié. Nous modélisons la structure lamellaire du tissu annulus fibrosus comme un composite stratifié renforcé par des fibres parallèles ondulées. Ce modèle prend en compte la dispersion des fibres dans les différentes couches. Afin de comprendre transformation de la matrice de rigidité effective orientée, nous présentons dans un premier temps la méthode de transformation de la matrice de rigidité. Ensuite, nous introduisons en détail la transformation de la matrice de rigidité effective du composite renforcé par des fibres à ondulations sinusoïdales qui est proposée et vérifiée par [START_REF] Xiao | A micromechanical model of tendon and ligament with crimped fibers[END_REF]. Puis, une solution analytique, qui prend en compte les multiples couches et leur orientation pour trouver la matrice de rigidité élastique effective, est présentée. Enfin, en tenant compte du domaine physiologique étendu du tissu de l'annulus fibrosus, une étude paramétrique du modèle micromécanique est menée pour analyser l'influence de chaque paramètre sur les propriétés mécaniques globales ainsi que l'effet des fibres ondulées sur le coefficient de Poisson du composite. Suite à des observations issues de la littérature, nous nous intéressons ensuite aux tissus fibreux mous tels que les artères et les tendons qui possèdent une microstructure de fibres de collagène en hélices interconnectées.

Trois microstructures sont proposées et étudiées : un composite renforcé par un arrangement périodique de fibres hélicoïdales non connectées, des fibres hélicoïdales reliées entre elles par des liens mais sans matrice et un composite fibres/matrice renforcé par des fibres hélicoïdales avec liens. Les volumes élémentaires représentatifs (VER) des trois matériaux sont représentés sur la Figure 3. Dans un premier temps, la théorie de l'homogénéisation asymptotique et son implémentation numérique avec validation sont présentées. Une étude paramétrique est ensuite menée afin de comprendre l'influence des connexions entre fibres sur les propriétés mécaniques globales des matériaux modèles proposés. Cette étude paramétrique montre les effets de la fraction volumique de fibres, de l'angle d'hélice et de la position des liens sur les propriétés mécaniques macroscopiques. De plus, le rôle de la matrice sur le comportement mécanique global est également étudié. Enfin, les effets de la matrice et des fibres hélocoïdales avec liens sur le coefficient de Poisson global sont montrés.

Suite aux deux études précédentes concernant des composites renforcés par des fibres ondulées, où les fibres et la matrice supposent des conditions d'interface parfaites et ont une grande différence de rigidité, nous nous interessons à leur étude expérimentale, ce type de travaux sont actuellement encore très rares dans la litterature. Le dernier chapitre de ce manuscrit présente donc un travail exploratoire sur un procédé de fabrication de matériaux modèles composés de silicone et de fibres hélicoïdales, permettant d'explorer leurs comportements mécaniques. Une méthode de fabrication de matériau modèle composite renforcé par des fibres hélicoïdales est développée.

Une analyse par éléments finis est également présentée pour prédire le comporte-ment mécanique du composite à fibre helicoïdale.

Finalement, d'après ce travail de thèse , on conclut que la microstructure des fibres ondulées influence sensiblement les coefficients de Poisson globaux du tissu mou fibreux. L'amplitude d'ondulation des fibres 2D réduit la réponse auxétique dans la structure stratifiée ; la position des liens entre les fibres change du tout au tout les coefficients de Poisson effectifs (de négatifs < 0 à positifs > 0.5) ; et la matrice réduit l'effet auxétique. 
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Introduction

The tissues and cell biomechanics (BIOTIC) team of the mechanical and civil engineering laboratory (LMGC) in Montpellier, France, has been studying the intervertebral disc for more than 10 years. Over this time, the auxetic behavior of annulus fibrosus tissue has been described several times [START_REF] Baldit | Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue[END_REF]; [START_REF] Dusfour | Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach[END_REF]). As the auxetic response is nonintuitive and its mechanics are unknown in annulus fibrosus tissue, we tried to find the mechanical explanation for the auxetic behavior. In addition, the auxetic bahavior has been reported in artery and tendon tissue. Therefore, the subject of this thesis was proposed in order to find an explanation for the counterintuitive volume changes of soft tissue during their mechanical solicitation. A study of the Poisson's ratio values in annulus fibrosus and their mechanical explanation could be of importance in the domain of biomechanical modeling of soft fibrous tissues, as most of the corresponding models developed until now have been based on the assumption of a quasi-incompressible behavior of these living materials (i.e., a value of Poisson's ratio ≈ 0.5 for isotropic material). Here, we aim to uncover information useful for further modeling developments in the study of the mechanical behaviour of soft living tissues. This thesis mainly focuses on the role of fibre microstructure arrangement in the behavior of the Poisson's ratio in soft tissue. Here, particular attention is given to the feature of fibre corrugation. We apply the linear elastic model because the determination of Poisson's ratios is clearer in the framework of a linear model than in a nonlinear model.

Chapter 1 mainly provides a literature review on the Poisson's ratio of fibrous, soft connective tissue and outlines our motivation for the work in the following chapters. First, we present the most up-to-date understanding of the microstructure and components of fibrous soft tissue. We then provide a summary of the literature on the Poisson's ratio of fibrous soft tissues and the predictions of mechanical models. Finally, we present composite models involving crimped structures and their applications.

In Chapter 2, we present an analytical micromechanical model for studying the lamellar composite structure of annulus fibrosus tissue. Annulus fibrosus tissue is made up of several lamellae (hereafter also referred to as layers). The collagen fibres are arranged in parallel in each lamella and the fibre orientation differs from one lamella to its neighbors. The parallel fibres in each lamella have been observed to have a crimped microstructure. The proposed model takes into account the fibre dispersion in different layers and considers fibre waviness as a sinusoidal shape. First, we outline and demonstrate the stiffness matrix transformation method. We then provide details of how we deduce an effective stiffness matrix of composite reinforced by fibres characterised by a sinusoidal waviness. Subsequently, we propose an analytical solution that takes into account the multiple layers and the orientation of the parallel fibres of each layer in order to find the effective elastic stiffness matrix. Finally, we study various parameters of the model over the extended physiological range of annulus fibrosus tissue in order to analyze the influence of each parameter on the global mechanical properties of the proposed micromechanical model.

In chapter 3, we study the soft fibrous tissues by considering them as helical-fibrereinforced composite, and study the effects of cross-linking between fibres and the presence of a matrix thereof. The assumption of the helical fibre structure is based on observations in the literature of tissue from tendon and the arterial wall. First, we present asymptotic homogenization theory and a numerical implementation method. We then validate this method. Finally, we study the properties of helical-fibre-reinforced composite and helical fibres with cross-links separately, before amalgamating the two to study composite reinforced with cross-linked helical fibres.

In chapter 4, we show how we developed a method for manufacturing helical-fibrereinforced-composite model material. We also present a finite element analysis that we use to predict the mechanical behavior of the fabricated composite. In the last section, we summarize the main results of the thesis and propose perspectives for further work.

CHAPTER 1

Scientific context

The connective tissues are a group of tissues that maintain the form of the body and its organs, and provide cohesion and internal support. Of the many types of connective tissue of the human body, fibrous connective soft tissue contains many fibres, and is found for example in the arterial wall, annulus fibrosus, tendons, and ligaments. Classically, most models developed so far to describe the mechanical behavior of such soft tissues have been based on the assumption of quasi-incompressibility of the material: a Poisson's ratio ≈ 0.49. This assumption was probably mainly related to the predominance of the liquid phase within biological tissues, which is known to be quasi-incompressible. However, recently, the Poisson's ratio of fibrous soft tissue has received increasing attention in the field of mechanical modeling because values of greater than 0.5 as well as negative values have both been measured experimentally. Such a large range of Poisson's ratios reported in the literature could be due to experimental conditions or tissue microstructure. The present thesis mainly focuses on changes in the Poisson's ratio of fibrous soft tissue attributable to characteristics of their fibre structure, and more specifically, to the effects of corrugation.

This chapter mainly provides a review of the literature on Poisson's ratios of fibrous soft connective tissue in order to explain the motivations of the work presented in the following chapters. To this end, first the micro-structure and components of artery, annulus fibrosus, tendon, and ligament tissues are presented in section 1.1, in which the structure of corrugated collagen fibre is emphasized. A summary of the literature on the Poisson's ratio of fibrous soft tissues is then provided in section 1.2 together with a review of the predictions provided by mechanical models. Subsequently, as we consider the fibrous soft tissue as composite material containing crimped fibres, in section 1.3 we describe some of the various mechanical composite models involving crimped fibre structures. Finally, the motivation behind this work and the aims of this thesis are outlined in section 1.4.

1.1 Fibrous soft tissues: micro-structure and components

Artery tissue

The artery is a kind of vessel, transporting blood from the heart to the other tissues or organs of the body. The healthy artery wall is composed of three layers: intima, media, and adventitia. Figure 1.1 shows a diagrammatic model of the major components of arterial tissue. 

Intima

The intima is the inner layer of the artery and consists of a single layer of endothelial cells and an internal elastic lamina. It is the interface between blood vessel walls and the flowing blood itself. The internal elastic lamina provides structural cohesion and support for axial pretension [START_REF] Farand | Structure of large arteries: orientation of elastin in rabbit aortic internal elastic lamina and in the elastic lamellae of aortic media[END_REF], [START_REF] Timmins | Structural inhomogeneity and fiber orientation in the inner arterial media[END_REF]), and is mainly composed of dispersed, oriented collagen fibres [START_REF] Canham | Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure[END_REF]; [START_REF] Finlay | Three-dimensional collagen organization of human brain arteries at different transmural pressures[END_REF]) and elastin fibres, which are made of a rubber-like protein arranged in a three-dimensional network.

Media

The media is the middle layer of the artery and consists of collagen, elastin, and smooth muscle cells [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF]). Collagen in media is made up of 30% type I and 70% type III [START_REF] Von Der Mark | Localization of collagen types in tissues[END_REF]; [START_REF] Shekhonin | Distribution of type i, iii, iv and v collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristics[END_REF]). The media has a varying number of medial lamellar units, each of which is about 10 µm thick [START_REF] Bohr | Handbook of physiology. section 2: The cardivoascular system. volume ii: Vascular smooth muscle[END_REF]). From a morphological point of view, the media has a periodical concentric separation between the lamellar units [START_REF] Morin | Multiscale mechanical behavior of large arteries[END_REF]). The elastin, bundles of collagen fibres, and smooth muscle cells together constitute a continuous fibrous helix [START_REF] Staubesand | Anatomie der blutgefäße. i. funktionelle morphologie der arterien, venen und arterio-venösen anastomosen[END_REF]). The wavy form of collagen fibres [START_REF] Morin | Multiscale mechanical behavior of large arteries[END_REF]; [START_REF] Niestrawska | Differences in collagen fiber diameter and waviness between healthy and aneurysmal abdominal aortas[END_REF]), as shown in Figure 1.2, is oriented cricumferentially [START_REF] O'connell | The three-dimensional micro-and nanostructure of the aortic medial lamellar unit measured using 3d confocal and electron microscopy imaging[END_REF]; [START_REF] Timmins | Structural inhomogeneity and fiber orientation in the inner arterial media[END_REF]; [START_REF] Hill | A theoretical and nondestructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall[END_REF]) and is closely associated with the lamellae [START_REF] Dingemans | Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media, The Anatomical Record: An Official Publication of the American Association of Anatomists[END_REF]). Upon loading, the collagen fibres relax, or "decrimp", and stretch to prevent over distension of the vessel [START_REF] Morin | Multiscale mechanical behavior of large arteries[END_REF]). Moreover, there are cross-links between collagen fibres and the morphology of the elastic lamellae presents a fibrous texture suggestive of a crisscrossed scaffold [START_REF] Ushiki | Collagen fibers, reticular fibers and elastic fibers. a comprehensive understanding from a morphological viewpoint[END_REF]). 

Adeventita

The adventitia is the outer layer of the artery and consists of fibroblasts, fibrocytes, histological ground substance, elastin, and collagen fibres. The collagen fibres of the adventitia are primarily Type II [START_REF] Von Der Mark | Localization of collagen types in tissues[END_REF]) and pack into thick bundles [START_REF] Morin | Multiscale mechanical behavior of large arteries[END_REF]) of helical form [START_REF] Roy | Experimental characterization of the distribution of collagen fiber recruitment[END_REF]; [START_REF] Rezakhaniha | Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy[END_REF]; [START_REF] Schrauwen | A method for the quantification of the pressure dependent 3d collagen configuration in the arterial adventitia[END_REF]; [START_REF] Morin | Multiscale mechanical behavior of large arteries[END_REF]), as shown in Figure 1.2. The elastin of the adventitia takes the form of a low-density meshwork made of variously oriented fibres. Due to the corrugation or crimped nature of the collagen in the adventitia, the collagen network is capable of undergoing important morphological rearrangements under mechanical loading [START_REF] Billiar | A method to quantify the fiber kinematics of planar tissues under biaxial stretch[END_REF]; [START_REF] Billiar | A method to quantify the fiber kinematics of planar tissues under biaxial stretch[END_REF]).

Annulus fibrosus tissue

Before describing the annulus fibrosus tissue, let us begin by describing the vertebral column to better understand its location and function. The vertebral column, also known as the spine, is part of the axial skeleton. The human spine consists of 33 bony vertebrae with 23 cartilaginous intervertebral discs -6 in the cervical region (neck), 12 in the thoracic region (middle back), and 5 in the lumbar region (lower back) as shown in Figure 1.3. There are 7 cervical vertebrae, 12 thoracic, 5 lumbar, 5 sacral, and 4 caudal, of with those of the lumbar being the largest. The vertebrae bear the load applied to the spine, and support and protect the spinal cord. The vertebrae consist of a vertebral body and laminae that extend from this latter and enclose the spinal cord.

The intervertebral discs are flattened and cylindrical. Together, these elements support the movements of the spine, as well as the transmission and damping of mechanical effort. The intervertebral disc is composed of outer annulus fibrosus (AF) and inner nucleus pulposus (NP), and the endplates -one at the superior end of the disc and one at the inferior end -serve as interfaces with the two adjacent vertebrae (see Figure 1.3).

The central nucleus pulposus is composed of 80% -90% water, with the remainder made up of extra cellular matrix and cellular elements that have a distribution of 4 * 10 3 /mm 3 . The collagen of the extra cellular matrix is mainly type II, with small amounts of types VI and XI (Barreto Henriksson [2010]). The annulus fibrosus (AF) is a fibrosus soft tissue containing 60% -85% water, with the remainder made up of cellular elements, collagen fibres, microfibrilles, and proteoglycans. The AF consists of several concentric lamellae, with the collagen fibres of each individual lamina being arranged in parallel. As shown in Figure 1.4, the parallel collagen fibres within each lamella are of an opposing orientation from one lamella to the next. The outer annulus fibrosus, which is made up of Type I and Type II collagen, dominates the inner AF [START_REF] Bhattacharya | Radial variations in mechanical behaviour and fibrillar structure in annulus fibrosus has foundations at molecular length-scale: Insights from molecular dynamics simulations of type i and type ii collagen molecules[END_REF]. The parallel fibres in each lamella are observed to have a crimped microstructure, as shown in Figure 1.5a, and cross-links are found between crimped fibres at a smaller scale, as shown in Figure 1.5b. 

Tendons and ligaments

Tendons are tough bands of dense fibrous connective tissue connecting muscle to bone, as shown in Figure 1.6a, while ligaments are structures that connect bone to bone, as shown in Figure 1.6b, but their histological properties are similar. Tendon transmits the mechanical forces of muscle contraction to the skeletal system, allowing mobility in and of the body, and maintains joint stability [START_REF] Jozsa | Three-dimensional infrastructure of human tendons[END_REF]), whereas ligaments limit the mobility of articulations and prevent certain movements. The human tendons and ligaments normally consist of both collagen and elastin embedded in a proteoglycan-water matrix with fibroblasts and fibrocytes between the collagen fibres [START_REF] Kannus | Structure of the tendon connective tissue[END_REF]. Ligament has a similar hierarchical structure to tendon, but with different fibre volume fractions and proteoglycan matrix percentages. Tendon and ligament are hierarchically organized in several distinct levels, as shown for tendon in Figure 1.7. The first unit of the mature tendon is formed from collagen I molecules, which organized as triple-helix polypeptide chains [START_REF] Asahara | Tendons and ligaments: connecting developmental biology to musculoskeletal disease pathogenesis[END_REF]). The stacking of microfibrils leads to the assembly of fibrils, which are arrayed in a parallel mode to form collagen fibres. The collagen fibres are then packed into larger units called fascicles, and these bundles are wrapped to form the complete tendon. Moreover, the collagen fibres and fibrils of tendons and ligaments both show a wavy configuration. This corrugation feature of collagen fibres and fibrils is widely reported in the literature, in which both 2D crimp [START_REF] Yahia | Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture[END_REF]; [START_REF] Diamant | Collagen; ultrastructure and its relation to mechanical properties as a function of ageing[END_REF]; [START_REF] Liao | A structural basis for the size-related mechanical properties of mitral valve chordae tendineae[END_REF]; [START_REF] Kastelic | The multicomposite structure of tendon[END_REF]), as shown in Figure 1.8a, and helix-like structure [START_REF] Verzár | Aging of the collagen fiber[END_REF]; [START_REF] Evans | Structural and mechanical properties of tendon related to function[END_REF]; [START_REF] Liao | Mechanical and structural properties of mitral valve chordae tendineae[END_REF]; [START_REF] De Campos Vidal | Structural organization of collagen fibers in chordae tendineae as assessed by optical anisotropic properties and fast fourier transform[END_REF]) are observed, as shown in Figure 1.8b. 

Poisson's ratio of fibrous soft tissues and its predictions by mechanical models

In the sciences of materials and solid mechanics, the Poisson's ratio is used to describe the relation between the deformation of a material in one direction and its deformation in a perpendicular direction, and is the ratio of the relative contraction strain (normal to an applied load) to the relative extension strain (the direction of the applied load). The Poisson's ratio term ν ij characterizes the strain in the j direction produced by the loading in the i direction [START_REF] Boresi | Advanced mechanics of materials[END_REF], and can be expressed as:

ν ij = - ε j ε i (1.1)
where ε i and ε j are the strains along mutually perpendicular axes i and j, respectively. The positive strain indicates extension and the negative strain indicates contraction. Figure 1.9 shows the behavior of a conventional material under tension and compression loading. Generally, when a material is expanded (respectively, compressed) along the direction i, it contracts (respectively, expands) in the perpendicular direction j. For a linear isotropic material in a three-dimensional (3D) coordinate system (x, y, z), the Poisson's ratios ν ij (i, j = x, y, z) are the same in all directions. Most isotropic materials have Poisson's ratio values ranging from 0 to 0.5; for example, most steels and rigid polymers exhibit Poisson's ratio values of about 0.3, and rubber has a Poisson ratio of nearly 0.5.

For an orthotropic material with three mutually perpendicular planes of symmetry, the Poisson's ratios ν ij (i, j = x, y, z) are specific for each direction. Therefore, when characterizing the strain in the j (j = x, y, z) direction produced by the loading in the i (x, y, z) direction, six Poisson 's ratios can be defined: ν xy , ν yx , ν xz , ν zx , ν yz , and ν zy . However, with the symmetry of the stress-strain relations, the Poisson's ratios follow the relationships [START_REF] Boresi | Advanced mechanics of materials[END_REF]):

ν xy E x = ν yx E y ν xz E x = ν zx E z ν yz E y = ν zy E z (1.2)
where E x , E y , and E z denote the orthotropic elastic moduli in the coordinate system (x, y, z). Some materials or structures exhibit negative Poisson's ratios, and are therefore described as having an auxetic property, showing unusual and counterintuitive mechanical behavior. As shown in Figure 1.10,when stretched (respectively,compressed), an auxetic material becomes thicker (respectively, thinner) in the direction perpendicular to that of the load. 

Artery tissue

Artery tissue is usually considered an orthotropic material. The Poisson's ratio of the arterial wall has motivated studies of its internal microstructure, and more specifically of the collagen fibre structure and arrangement. Several studies have reported measurements of the Poisson's ratio of arteries, with the first such study performed in 1969 [START_REF] Patel | Static anisotropic elastic properties of the aorta in living dogs[END_REF]). The published experimental results are summarized in Table 1.1 in the framework of a unifying coordinate system; the cylindrical coordinate system setting used to define the Poisson's ratios of this tissue is shown in Figure 1.11. In most studies, arteries are stretched in an in vitro environment, except for those of [START_REF] Patel | Static anisotropic elastic properties of the aorta in living dogs[END_REF] and [START_REF] Hasegawa | Non-invasive evaluation of poisson's ratio of arterial wall using ultrasound[END_REF], who evaluated the Poisson's ratio of dog and human arteries, respectively, in vivo. However, the Poisson's ratios of arteries reported so far are inconsistent (see Table 1.1), and both positive (ν > 1.0) and negative (ν < 0.0) values have been measured [START_REF] Liu | A linearized and incompressible constitutive model for arteries[END_REF]), while arteries have been widely observed to be orthotropic along the longitudinal, circumferential, and radial directions. The causes for this large difference in experimental results could be due to many factors, such as the different types of artery tissue studied [START_REF] Hasegawa | Non-invasive evaluation of poisson's ratio of arterial wall using ultrasound[END_REF]) or the different layers (media or intact vessel) studied, or differences in extension conditions, strain measurement techniques, test specimen conditions (fresh, or frozen and thawed), and so on. As the arterial tissue can be divided into three main parts (intima, media, and adventitia), rather than studying the intact arterial wall, more recently the media and adventitia layers were isolated and studied separately [START_REF] Timmins | Structural inhomogeneity and fiber orientation in the inner arterial media[END_REF]; Liu et al.

[2011]; [START_REF] Skacel | Poisson s ratio of arterial wall-inconsistency of constitutive models with experimental data[END_REF]; [START_REF] Santamaría | Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography[END_REF]; [START_REF] Skacel | Poisson's ratio and compressibility of arterial wall-improved experimental data reject auxetic behaviour[END_REF]). Comparing the experimental extension conditions in the literature, the strain velocity, loading pressure, and the maximum stretch strain might also affect the measured values [START_REF] Patel | Static anisotropic elastic properties of the aorta in living dogs[END_REF]; [START_REF] Nahon | A two-dimensional incremental study of the static mechanical properties of vascular grafts[END_REF]; [START_REF] Cox | Anisotropic properties of the canine carotid artery in vitro[END_REF]; [START_REF] Karimi | Experimental verification of the healthy and atherosclerotic coronary arteries incompressibility via digital image correlation[END_REF]; [START_REF] Santamaría | Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography[END_REF]). Both [START_REF] Santamaría | Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography[END_REF] and [START_REF] Skacel | Poisson's ratio and compressibility of arterial wall-improved experimental data reject auxetic behaviour[END_REF] noted that frozen and thawed artery specimens show different experimental results compared to when using fresh tissue. Indeed, [START_REF] Santamaría | Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography[END_REF] note that frozen and thawed tissues may have nonphysiological hydraulic permeability properties, and that freezing and thawing may cause the destruction of cell membranes. Moreover, several individual negative out-of-plane Poisson's ratios (ν θr , ν zr ) were measured with frozen and thawed test specimens among the 12 specimens used in experiments [START_REF] Skacel | Poisson s ratio of arterial wall-inconsistency of constitutive models with experimental data[END_REF]; [START_REF] Skacel | Poisson's ratio and compressibility of arterial wall-improved experimental data reject auxetic behaviour[END_REF]), but no negative Poisson's ratio was found in tests with fresh specimens [START_REF] Skacel | Poisson's ratio and compressibility of arterial wall-improved experimental data reject auxetic behaviour[END_REF]).

Recently, the auxetic behavior of soft tissue has received increased attention [START_REF] Piao | Auxetic behavior in fibrous soft tissues[END_REF]). Negative Poisson's ratios were measured by [START_REF] Timmins | Structural inhomogeneity and fiber orientation in the inner arterial media[END_REF], [START_REF] Lillie | Mechanical anisotropy of inflated elastic tissue from the pig aorta[END_REF], [START_REF] Skacel | Poisson s ratio of arterial wall-inconsistency of constitutive models with experimental data[END_REF], and [START_REF] Santamaría | Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography[END_REF] in arterial tissues, and [START_REF] Skacel | Poisson's ratio and compressibility of arterial wall-improved experimental data reject auxetic behaviour[END_REF] reject their previous experimental observations. [START_REF] Timmins | Structural inhomogeneity and fiber orientation in the inner arterial media[END_REF] proposed that the auxetic response could be due to the variable and inhomogeneous alignment of elastin and collagen fibres in the arterial wall. Such lateral expansion was predicted by a nonlinear hyperelastic anisotropic model of arterial wall with two families of perfectly aligned collagen fibres [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF], known as the HGO model), as presented by [START_REF] Gasser | Hyperelastic modelling of arterial layers with distributed collagen fibre orientations[END_REF], who further proposed a GOH model with dispersed fibre orientations. [START_REF] Skacel | Poisson s ratio of arterial wall-inconsistency of constitutive models with experimental data[END_REF] reported a negative Poisson's ratio exhibited by a GOH model and provided a comprehensive analysis of the auxetic response with distributed fibre orientations. [START_REF] Nolan | A robust anisotropic hyperelastic formulation for the modelling of soft tissue[END_REF] also identified auxetic behavior with a compressible form of the HGO model, called HGO-C , analyzing the predicted lateral stresses induced during uniaxial stretching, and proposed a modified anisotropic model (MA model) to avoid them. Similarly, [START_REF] Latorre | The relevance of transverse deformation effects in modeling soft biological tissues[END_REF] noticed an unrealistic transversal deformation response predicted by the HGO and GOH models, and proposed their What-You-Prescribe-Is-What-You-Get (WYPIWYG) model as a solution. [START_REF] Volokh | On arterial fiber dispersion and auxetic effect[END_REF] applied the HGO model to study auxetic behavior based on the angular integration (AI) approach. [START_REF] Fereidoonnezhad | A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour[END_REF] consider that auxetic behavior is primarily influenced by the ratio of fibre-to-matrix stiffness and is accentuated by strain-stiffening fibres in a constant stiffness matrix. These authors propose a bilinear strain-stiffening fibre and matrix model (BLFM), which allows close control of the fibrematrix stiffness ratio to eliminate auxetic behavior. Porcine aortic wall (media)

In vitro

In-plane value (ν θz , ν zθ ): 0.2 -0.5 Out-of-plane value (ν θr , ν zr ): Mostly positive mean values not exceeding 0.5 with individual negative value [START_REF] Santamaría | Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography[END_REF] Porcine thoracic aorta

In vitro

With tensile strain along circumferential direction about 13 % Strain along the radial direction for intima: 4.58 % Strain along the radial direction for adventitia: 3.80 % Swelling effect (auxetic behavior) on the radial direction for media [START_REF] Skacel | Poisson's ratio and compressibility of arterial wall-improved experimental data reject auxetic behaviour[END_REF] Porcine arterial wall (media)

In vitro

For the fresh specimens In-plane value (ν θz , ν zθ ): 0.3 -0.4 Out-of-plane value (ν θr , ν zr ): 0.5 -0.7 No negative Poisson's ratio observed with fresh test specimens Individual negative ν zr measured with frozen & thawed test specimens Table 1.1: Experimental results of Poisson's ratio reported in the literature on arteries. Furthermore, the subject of Poisson's ratio of arterial wall study is closely related to its compressibility feature. In mechanical modeling, the tissue of the artery wall is commonly considered as incompressible; although this assumption is still under investigation because of inconsistencies in experimental results [START_REF] Carew | Compressibility of the arterial wall[END_REF]; [START_REF] Chuong | Compressibility and constitutive equation of arterial wall in radial compression experiments[END_REF]; Volokh 

Annulus fibrosus tissue

The annulus fibrosus (AF) tissue consists of several lamellae, with the collagen fibres arranged in parallel within each one. The parallel fibres have been observed to have a crimped microstructure [START_REF] Pezowicz | Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state[END_REF]). Similarly to the arteries, the tissue of AF also exhibits an orthotropic behavior.

Most of the tensile experiments reported in the literature for AF are uniaxial tests [START_REF] Elliott | Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions[END_REF]; [START_REF] Guerin | Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load[END_REF]; [START_REF] Guerin | Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load[END_REF]; [START_REF] Lewis | Investigation of nano-mechanical properties of annulus fibrosus using atomic force microscopy[END_REF]; O' Connell et al. [2009]; [START_REF] Cherblanc | Mechanical behaviour of annulus fibrosus: the role of the fluid phase[END_REF]; [START_REF] Baldit | Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue[END_REF]; [START_REF] Dusfour | Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach[END_REF]), although biaxial tensile tests have also been performed [START_REF] Bass | Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation[END_REF]; O' Connell et al. [2012]). The Poisson's ratio measurements obtained so far for AF are summarized in Table 1.2 within a unified coordinate system; see Figure 1.11 for the cylindrical coordinate system used to study the Poisson's ratio in AF. These latter measurements of the Poisson's ratio for AF show a large range, from -0.57 (ν θr , Derrouiche et al. [2019a]) to 2.32 (ν θz , [START_REF] Wagner | Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus[END_REF]). The difference in experimental results could be due to many factors, such as differences in: the types of AF tissue analyzed, the subsections of AF tissue analyzed (inner or outer AF; [START_REF] Elliott | Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions[END_REF]), extension conditions, test specimen status (degenerated or non-degenerated AF), strain measurement techniques, specimen-storage-Author Type of annulus fibrosus tissue Poisson's ratio range [START_REF] Elliott | Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions[END_REF] Human AF Inner AF: ν θz = 1.86 ± 2.06, ν θr = 0.88 ± 0.71, ν zθ = 1.58 ± 0.67 Outer AF: ν θz = 1.77 ± 0.65, ν θr = 0.33 ± 0.68, ν zθ = 0.66 ± 0.22 ν zr = 0.14 ± 0.10, ν rθ = 0.51 ± 0.20 [START_REF] Wagner | Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus[END_REF] Human AF In tension: ν θr = 0.40 ± 0.15, ν θz = 2.32 ± 0.87 In compression: ν θr = 0.73 ± 0.21, ν θz = 0.87 ± 0.49 [START_REF] Guerin | Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load[END_REF] Outer human AF Non-degenerated: ν θz = 4.64 ± 4.12 Degenerated: ν θz = 2.08 ± 0.88 [START_REF] Lewis | Investigation of nano-mechanical properties of annulus fibrosus using atomic force microscopy[END_REF] Outer rabbit AF Ratio of transverse to axial indentation a semblance of the Poisson's ratios ν zθ : 0.33 -0.47 [START_REF] O'connell | Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration[END_REF] Human AF Nondegenerate AF: ν rθ = 0.79 ± 0.42, ν zθ = 0.61 ± 0.35, ν θz = 2.27 ± 0.87 Degenerate AF: ν rθ = 0.46 ± 0.31, ν zθ = 0.61 ± 0.28, ν θz = 1.88 ± 1.01 [START_REF] Cherblanc | Mechanical behaviour of annulus fibrosus: the role of the fluid phase[END_REF] Pig AF ν θz = 0.9 ± 0.25 [START_REF] Baldit | Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue[END_REF] Pig AF ν θz : 0.8 -1.1 ν θr not given but wide range are observed even negative ν θr (auxetic behavior) Derrouiche et al. [2019a] Bovine AF Details see Table 1.3 [START_REF] Dusfour | Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach[END_REF] pig AF Poisson's ratio not given, with dilatation along the circumferential direction auxetic behaviors observed in both axial and radial directions Table 1.2: Experimental results of Poisson's ratio reported in the literature on annulus fibrosus tissue. solution osmolarity, and so on. Both Guerin and[START_REF] Guerin | Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load[END_REF][START_REF] O'connell | Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration[END_REF] found that AF degeneration influences Poisson's ratio measurement results. Moreover, [START_REF] Wagner | Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus[END_REF] showed that the loading type, that is, tension or compression, has an effect on Poisson's ratio results. Furthermore, Derrouiche et al. [2019a] presented results showing that the different saline concentrations and strain rates used in extension tests also affect such measurements (see details in Table 1.3). As the strain rate decreases, both ν θz and ν θr decrease, and as specimen storage NaCl concentration increases, both ν θz and ν θr increase.

NaCl concentration (g/L) strain rate (s Although the range of reported Poisson's ratio results is considerable, the orthotropic features of AF along the longitudinal, circumferential, and radial directions are consistently observed. Comparing all the experimental results in the literature, values of ν θr are usually much lower than those of ν θz [START_REF] Elliott | Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions[END_REF]; [START_REF] Wagner | Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus[END_REF]; [START_REF] Baldit | Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue[END_REF]; Derrouiche et al. [2019a]), and even negative ν θr values (auxetic behavior) were recently reported by [START_REF] Baldit | Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue[END_REF], Derrouiche et al. [2019a], and [START_REF] Dusfour | Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach[END_REF]. In other words, with extension along the circumferential direction, AF is rarely seen to shrink in the radial direction but is observed to expand in some cases. Interpretations of such observations were proposed by Derrouiche et al. [2019b] and [START_REF] Derrouiche | The two poisson's ratios in annulus fibrosus: relation with the osmo-inelastic features[END_REF], who invoke mechanical-based and chemical-based fluid flow interactions until chemomechanical equilibrium. We note that Derrouiche et al. [2019a] reported an auxetic behavior in the plane of the lamellae only, but [START_REF] Dusfour | Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach[END_REF] found such a behavior in both the radial and longitudinal directions.

In order to predict AF Poisson's ratios using mechanical modeling, [START_REF] Elliott | Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions[END_REF] implemented a linear anisotropic material model of the AF to determine a complete set of model properties and to predict the behaviors of AF tissue under idealized kinematic states. According to the model predictions presented by these latter authors, interactions between fibre populations in the multilamella AF contribute significantly to the mechanical behavior of the material, suggesting that a model for AF made up of physically isolated concentric lamellae may not be appropriate. Derrouiche et al. [2019a] presented a chemomechanical approach to studying the intrinsic osmo-inelastic response of the annulus fibrosus in relation to the microstructure of the layered, reinforced soft tissue, the biochemical environment, and the mechanical loading conditions, which successfully captures the variations in osmolarity, strain rate, and auxeticity. [START_REF] Kandil | Interlamellar-induced timedependent response of intervertebral disc annulus: A microstructure-based chemoviscoelastic model[END_REF] proposed a chemoviscoelastic model as part of a microstructure-based approach in order to predict the regional dependency of the annulus response, in which the auxetic behavior is identified in the plane of the lamellae. Comparing their measurements with predictions of the HGO model [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF]), [START_REF] Dusfour | Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach[END_REF] found an auxetic response, but poor agreement between model and experimental results. Furthermorethe AF is widely modeled by applying a fibre-induced anisotropic hyperelastic material [START_REF] Wu | Mechanical behavior of the human annulus fibrosus[END_REF]; [START_REF] Eberlein | An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies[END_REF]; [START_REF] Peng | An anisotropic hyperelastic constitutive model with fibermatrix shear interaction for the human annulus fibrosus[END_REF]; O' Connell et al. [2009]). These models describe the fibres and the matrix using the principle invariants of the Green deformation tensor and structural tensors representing the collagen fibre populations [START_REF] O'connell | Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration[END_REF]).

Tendon

Several studies have investigated the Poisson's ratio of tendons experimentally. Most of these studies were conducted in vitro [START_REF] Lynch | Poisson's ratio and modulus for tendon transverse and longitudinal fiber orientations[END_REF]; [START_REF] Lynch | Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon[END_REF]; [START_REF] Cheng | The micro-structural strain response of tendon[END_REF]; [START_REF] Vergari | True stress and poisson's ratio of tendons during loading[END_REF]; [START_REF] Chernak | Tendon motion and strain patterns evaluated with twodimensional ultrasound elastography[END_REF]; [START_REF] Thorpe | Helical substructures in energy-storing tendons provide a possible mechanism for efficient energy storage and return[END_REF]; [START_REF] Thorpe | Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons[END_REF]; [START_REF] Vella Wood | 3d printed clamps to study the mechanical properties of tendons at low strains[END_REF]), but several measurements of tendon deformation have been made in vivo [START_REF] Maganaris | Changes in aponeurotic dimensions upon muscle shortening: in vivo observations in man[END_REF]; [START_REF] Iwanuma | Longitudinal and transverse deformation of human achilles tendon induced by isometric plantar flexion at different intensities[END_REF]; [START_REF] Obst | In vivo measurement of human achilles tendon morphology using freehand 3-d ultrasound[END_REF]), and [START_REF] Gatt | Negative poisson's ratios in tendons: an unexpected mechanical response[END_REF] estimated human Achilles tendon deformations by performing both in vitro and in vivo tests. Some values from Poisson's ratio measurements for tendon are summarized in Table 1.4 in the framework of a unified coordinate system, and the coordinate system used to study Poisson's ratios of the Achilles tendon is shown in Figure 1.12. The reported Poisson's ratios for tendon show a similarly large spread to the ratios for artery and AF. The difference in experimental results could again be due to many factors, such as differences in the: types of tendon tissue analyzed [START_REF] Thorpe | Helical substructures in energy-storing tendons provide a possible mechanism for efficient energy storage and return[END_REF]; [START_REF] Gatt | Negative poisson's ratios in tendons: an unexpected mechanical response[END_REF]), loading conditions [START_REF] Thorpe | Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons[END_REF]), strain measurement techniques, and so on.

Although the published Poisson's ratios cover a significant range, the orthotropic feature of tendon is demonstrated by [START_REF] Lynch | Poisson's ratio and modulus for tendon transverse and longitudinal fiber orientations[END_REF] and [START_REF] Lynch | Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon[END_REF], and the fibre-aligned Poisson's ratio is found to be larger than the transverse Poisson's ratio from their tests on rabbit patellar tendon and sheep flexor tendon, respectively. Comparing all the reported Poisson's ratio measurements in the literature, both large positive (ν yx > 2, [START_REF] Lynch | Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon[END_REF]) and negative values are observed, even descending to -9.86 [START_REF] Gatt | Negative poisson's ratios in tendons: an unexpected mechanical response[END_REF]). The negative Poisson's ratio is unexpected for tendon, but such auxetic behavior was recently [START_REF] Gatt | Negative poisson's ratios in tendons: an unexpected mechanical response[END_REF] speculate that the crimped microstructure of the fibres of tendons is likely to play a role in the generation of their anomalous, auxetic behavior.

Figure 1.12: Segment of tendon showing the X-Y coordinate system used in studies of the Poisson's ratio. Image reproduced from [START_REF] Marino | Multiscale elastic models of collagen bio-structures: from cross-linked molecules to soft tissues[END_REF].

In an attempt to predict the Poisson's ratios of tendon, [START_REF] Yin | A biphasic and transversely isotropic mechanical model for tendon:: application to mouse tail fascicles in uniaxial tension[END_REF] used a transversely isotropic biphasic mixture model and simultaneously studied the viscoelastic mechanical behavior of tendon under uniaxial tensile loading. [START_REF] Reese | Micromechanical models of helical superstructures in ligament and tendon fibers predict large poisson's ratios[END_REF] constructed a micromechanical finite element model to represent crimped fibres with a super-helical organization. The model was composed of fibrils embedded within a matrix material, and a homogenization procedure was performed to determine both the effective Poisson's ratio and the Poisson function. [START_REF] Xiao | A micromechanical model of tendon and ligament with crimped fibers[END_REF] studied the Poisson's ratios of tendons and ligaments using an analytical microstructure model, in which the form of the collagen fibres is sinusoidal.

Mechanical models of composite with crimp fibre structure

Crimped structures commonly exist in biological materials, from nanoscale to macroscale. For example, at the nanoscale, deoxyribonucleic acid (DNA) has a double helix structure; at the microscale, collagen fibrils are in the form of triple helix polypeptide chains; and at the macroscale, ventricular myocardial bands and the human umbilical cord have a helical structure [START_REF] Carpi | Natural and artificial helical structures[END_REF]. In addition, the helical structure on the fibre scale is observed both in connective tissues and wood [START_REF] Freed | Finite element micromechanics for stiffness and strength of wavy fiber composites[END_REF]; [START_REF] Zorzetto | Wood-inspired 3d-printed helical composites with tunable and enhanced mechanical performance[END_REF]).

The reason for the preference for helical structures in biological materials is not yet clear, although [START_REF] Snir | Entropically driven helix formation[END_REF] found that the helix structure allows the entropy of an object to be maximized. Moreover, [START_REF] Moulton | Morphoelastic rods iii: Differential growth and curvature generation in elastic filaments[END_REF] presented various examples of curvature and torsion generation and demonstrated the impact of residual stress on the generation of curvature.

As presented in the previous sections, collagen fibre corrugation, or crimping, is widely reported in fibrous soft tissues such as artery, annulus fibrosus, tendon, and ligament. In mechanical models proposed so far in the literature, fibrous soft tissues are usually considered as composite materials reinforced by fibres. In the present work, we focus in particular on the crimped fibre structure. Below, we summarize the composite models that have been presented so far in the literature -with specific attention to reinforced composites and those including crimped structures-, and their applications.

In 1973, [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] first proposed a method to calculate the average internal stress in the matrix of a material containing inclusions with transformation strain, which is widely used to estimate the constitutive relationships of composites. [START_REF] Hashin | Analysis of composite materials-a survey[END_REF] reviewed the analytical solutions regarding the effective modulus of composites reinforced with straight fibres. [START_REF] Hsiao | Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading[END_REF] proposed an analytical model for determining elastic properties and compressive strength as a function of fibre waviness. Garnich and [START_REF] Freed | Finite element micromechanics for stiffness and strength of wavy fiber composites[END_REF] studied the stiffness and strength of composites reinforced with wavy fibres using a finite element micromechanics approach. Karami and Garnich [2005a] and Karami and Garnich [2005b] studied effective moduli and the thermoelastic behavior of composites reinforced with fibres with periodic waviness using a finite element micromechanical model. [START_REF] Kashtalyan | Application of the boundary shape perturbation method to stress analysis of laminated composites with ply waviness[END_REF] presented an analytical approach to determining the stresses in laminated composites with ply waviness subjected to compressive or flexural loading. [START_REF] Drago | Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures[END_REF] calculated the macroscopic effective moduli of the statistically homogeneous and periodically heterogeneous materials in unidirectional composites with large fibre/matrix property. [START_REF] Gattu | Parametric finite-volume micromechanics of uniaxial continuously-reinforced periodic materials with elastic phases[END_REF] proposed a finite-volume direct averaging micromechanics (FVDAM) theory for periodically heterogeneous materials, and [START_REF] Khatam | Thermo-elastic moduli of periodic multilayers with wavy architectures[END_REF] applied this theory to investigate the effective moduli and thermal expansion coefficients of lamellar composites with wavy architectures. [START_REF] Abdin | Mean-field based micro-mechanical modelling of short wavy fiber reinforced composites[END_REF] described a method for extending mean-field theory to discontinuous composites reinforced with wavy fibres. [START_REF] Xiao | A micromechanical model of tendon and ligament with crimped fibers[END_REF] presented an analytical solution for describing the effects of embedded microstructures on the macroscopic elastic properties of tendons and ligaments, which are considered as planar composites reinforced with crimped fibres. [START_REF] Reese | Micromechanical models of helical superstructures in ligament and tendon fibers predict large poisson's ratios[END_REF] used homogenization methods and finite element micromechanical models to study a helical fibril organization and to find the large Poisson's ratios in biological tissues. [START_REF] Khani | Elastic properties of coiled carbon nanotube reinforced nanocomposite: A finite element study[END_REF] studied the mechanical elastic properties of composites reinforced by helical fibres, and finally, [START_REF] Karami | A micromechanical hyperelastic modeling of brain white matter under large deformation[END_REF] and [START_REF] Kuksenko | Effect of micromechanical parameters of composites with wavy fibers on their effective response under large deformations[END_REF] studied the large deformation homogenized mechanical response of composites reinforced by wavy fibres.

Conclusion and discussion

In this chapter, we present a summary of the literature on Poisson's ratios for artery, annulus fibrosus, and tendon tissues, emphasizing that both large positive and negative Poisson's ratios have been found experimentally. The negative Poisson's ratio, also known as the auxetic behavior, appears counterintuitive, and has also been reported for skin tissue [START_REF] Veronda | Mechanical characterization of skin-finite deformations[END_REF]; [START_REF] Lees | Poisson's ratio in skin[END_REF]), tibia bone [START_REF] Williams | Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis[END_REF]), axoloti embryonic epithelia [START_REF] Wiebe | Tensile properties of embryonic epithelia measured using a novel instrument[END_REF]), and for the bovine cornea [START_REF] Patten | Suprafibrillar structures of collagen, evidence for local organization and auxetic behaviour in architectures[END_REF]). [START_REF] Lees | Poisson's ratio in skin[END_REF] proposed that the highly corrugated microstructure of the material in skin tissue might be the cause of the auxetic behavior of this latter. [START_REF] Gatt | Negative poisson's ratios in tendons: an unexpected mechanical response[END_REF] speculated that the crimped fibre structure might be the cause of the auxetic behavior in tendons. [START_REF] Timmins | Structural inhomogeneity and fiber orientation in the inner arterial media[END_REF] described that the variable and inhomogeneous alignment of elastin and collagen fibres in arterial wall might be causing the observed auxeticity in that tissue.

Although it has been suggested that the crimped fibre structure may be the key driver of the negative Possion's ratios observed in soft tissues, there is currently little evidence of the link between the two. On the contrary, [START_REF] Reese | Micromechanical models of helical superstructures in ligament and tendon fibers predict large poisson's ratios[END_REF] show that helical fibres may contribute to larger Poisson's ratios. The chemo-mechanical approach proposed by Derrouiche et al. [2019a] can be used to estimate the auxetic behavior linked to local changes in osmolarity in annulus fibrosus tissue. The negative Poisson's ratio of arterial walls is also predicted by the HGO and HGO-like models [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF]), and was found by these authors to be linked to the levels of fibre-matrix material stiffness and fibre dispersion. However, as the auxetic behavior is not always found in arterial tissue, [START_REF] Nolan | A robust anisotropic hyperelastic formulation for the modelling of soft tissue[END_REF], [START_REF] Latorre | The relevance of transverse deformation effects in modeling soft biological tissues[END_REF], [START_REF] Volokh | On arterial fiber dispersion and auxetic effect[END_REF][START_REF] Fereidoonnezhad | A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour[END_REF] proposed their HGO-based model to avoid the auxetic response.

So far, there have been relatively few studies on the nature of auxetic behavior in soft tissue. Nevertheless, synthetic structures known to show an auxetic behavior are increasingly being applied in tissue engineering scaffolds [START_REF] Jin | Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering[END_REF]; [START_REF] Mardling | The use of auxetic materials in tissue engineering[END_REF]; [START_REF] Kim | Auxetic structures for tissue engineering scaffolds and biomedical devices[END_REF]; [START_REF] Jiang | 3d-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc[END_REF]). The purpose of this thesis is to study changes in the Poisson's ratio of fibrous soft tissue as a function of the microstructure of this latter, and specifically of the level of corrugation of the crimped fibres. This work is designed to help us to better understand the role of microstructure in soft tissues and to serve as a reference for further tissue engineering and scaffold development. 

Stiffness matrix transformation

In order to better understand the development of the oriented effective stiffness matrix, which is presented in more detail in sections 2.3 and 2.4, we introduce the stiffness matrix transformation method in this section. First, we outline the general transformation matrix in section 2.2.1; details can also be found in the reviews by [START_REF] Daniel | Engineering mechanics of composite materials[END_REF] and [START_REF] Sinha | Composite materials and structures[END_REF]. We then present our transformation of the stiffness matrix in section 2.2.2. 

Transformation relation 2.2.1.1 Transformation of coordinates

     a b c      = T coor      x y z      , ( 2.1) 
where T coor represents the coordinate transformation matrix and is defined as:

T coor =    m 1 n 1 p 1 m 2 n 2 p 2 m 3 n 3 p 3    , (2.2) 
where m i , n i ,and p i are the direction cosines of axis i, that is,

m 1 = cosθ xa n 1 = cosθ ya p 1 = cosθ za m 2 = cosθ xb n 2 = cosθ yb p 2 = cosθ zb m 3 = cosθ xc n 3 = cosθ yc p 3 = cosθ zc .
(2.

3)

The angles θ ij are measured from axis i to axis j as shown in Figure 2.3.

Transformation of strains

We consider that u x , u y , and u z are displacement components of a given geometrical domain with respect to the coordinate system x, y, z, and u a , u b , u c are the displacement components corresponding to the a, b, c system. Similarly to the transformation of coordinates, we have

     u a u b u c      = T coor      u x u y u z      . (2.4)
Thus, the corresponding strain components ε xyz in the x, y, z coordinates and ε abc in the a, b, c system satisfy the following relations:

ε a = ∂u a ∂a ε x = ∂u x ∂x , (2.5) ∂u a ∂a = m 1 ∂u x ∂a + n 1 ∂u y ∂a + p 1 ∂u z ∂a . (2.6)
Following the chain rule, we have

∂u x ∂a = ∂u x ∂x ∂x ∂a + ∂u x ∂y ∂y ∂a + ∂u x ∂z ∂z ∂a = m 1 ∂u x ∂x + n 1 ∂u x ∂y + p 1 ∂u x ∂z , (2.7) 
with ∂x ∂a = m 1 , ∂y ∂a = n 1 , and ∂z ∂a = p 1 .

In a similar way, we have

∂u y ∂a = m 1 ∂u y ∂x + n 1 ∂u y ∂y + p 1 ∂u y ∂z , (2.8 
)

∂u z ∂a = m 1 ∂u z ∂x + n 1 ∂u z ∂y + p 1 ∂u z ∂z .
(2.9)

By substituting Equations 2.6, 2.7, 2.8, and 2.9 into Equation 2.5, we obtain .11) We set ε xyz = {ε x ε y ε z γ yz γ xz γ xy } T , which are the strain components in x, y, z coordinates and ε abc = {ε a ε b ε c γ bc γ ac γ ab } T , which are the strain components in a, b, c coordinates. Proceeding with the same calculation, we have .12) where the strain transformation matrix T ε is given by 2m 2 m 3 2n 2 n 3 2p 2 p 3 n 2 p 3 + n 3 p 2 p 2 m 3 + p 3 m 2 m 2 n 3 + m 3 n 

∂u a ∂a = m 2 1 ∂u x ∂x + n 2 1 ∂u y ∂y + p 2 1 ∂u z ∂z + n 1 p 1 ( ∂u y ∂z + ∂u z ∂y ) + p 1 m 1 ( ∂u x ∂z + ∂u z ∂x ) + m 1 n 1 ( ∂u x ∂y + ∂u y ∂ x ) (2.10) or ε a = m 2 1 ε x + n 2 1 ε y + p 2 1 ε z + n 1 p 1 γ yz + p 1 m 1 γ xz + m 1 n 1 γ xy . ( 2 
                   ε a ε b ε c γ bc γ ac γ ab                    = T ε                    ε x ε y ε z γ yz γ xz γ xy                    , ( 2 
T ε =           m 2 1 n 2 1 p 2 1 n 1 p 1 p 1 m 1 m 1 n 1 m 2 2 n 2 2 p 2 2 n 2 p 2 n 2 m 2 m 2 n 2 m 2 3 n 2 3 p 2 3 n 3 p 3 p 3 m 3 m 3 n 3
2 2m 3 m 1 2n 3 n 1 2p 3 p 1 n 3 p 1 + n 1 p 3 p 3 m 1 + p 1 m 3 m 3 n 1 + m 1 n 3 2m 1 m 2 2n 1 n 2 2p 1 p 2 n 1 p 2 + n 2 p 1 p 1 m 2 + p 2 m 1 m 1 n 2 + m 2 n 1           .
(2.13)

Transformation of Stresses

We set σ xyz = {σ x σ y σ z τ yz τ xz τ xy } T as the stress components in x, y, and z coordinates and

σ abc = {σ a σ b σ c τ bc τ ac τ ab } T
as the stress components in a, b, and c coordinates. Let δε abc and δε xyz be the virtual strains in the coordinates a, b, and c and x, y, and z, respectively. The work done by stress in the two coordinate systems is the same, and therefore

δε T abc σ abc = δε T xyz σ xyz , (2.14) δε T abc = (T ε δε xyz ) T = δε T xyz T T ε . (2.15)
Substituting Equation 2.15 into Equation 2.14, we have

σ abc = T -T ε σ xyz . (2.16)
We note the stress transformation matrix

T σ = T -T ε , with T σ =           m 2 1 n 2 1 p 2 1 2n 1 p 1 2p 1 m 1 2m 1 n 1 m 2 2 n 2 2 p 2 2 2n 2 p 2 2n 2 m 2 2m 2 n 2 m 2 3 n 2 3 p 2 3 2n 3 p 3 2p 3 m 3 2m 3 n 3 m 2 m 3 n 2 n 3 p 2 p 3 n 2 p 3 + n 3 p 2 p 2 m 3 + p 3 m 2 m 2 n 3 + m 3 n 2 m 3 m 1 n 3 n 1 p 3 p 1 n 3 p 1 + n 1 p 3 p 3 m 1 + p 1 m 3 m 3 n 1 + m 1 n 3 m 1 m 2 n 1 n 2 p 1 p 2 n 1 p 2 + n 2 p 1 p 1 m 2 + p 2 m 1 m 1 n 2 + m 2 n 1           .
(2.17)

We take T σ as the general transformation matrix and denote it as T ij , which satisfies

                   σ a σ b σ c τ bc τ ac τ ab                    = T ij                    σ x σ y σ z τ yz τ xz τ xy                    , ( 2.18) 
and

T ε = R ij T ij R -1 ij , (2.19)
where R ij can be expressed as

R ij =           1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 2           . (2.20)
Therefore, we can use T ij as .21) or as

                   ε a ε b ε c 1 2 γ bc 1 2 γ ac 1 2 γ ab                    = T ij                    ε x ε y ε z 1 2 γ yz 1 2 γ xz 1 2 γ xy                    , ( 2 
                   ε a ε b ε c γ bc γ ac γ ab                    = R ij T ij R -1 ij                    ε x ε y ε z γ yz γ xz γ xy                    , ( 2.22) 
with

T ij =           m 2 1 n 2 1 p 2 1 2n 1 p 1 2p 1 m 1 2m 1 n 1 m 2 2 n 2 2 p 2 2 2n 2 p 2 2n 2 m 2 2m 2 n 2 m 2 3 n 2 3 p 2 3 2n 3 p 3 2p 3 m 3 2m 3 n 3 m 2 m 3 n 2 n 3 p 2 p 3 n 2 p 3 + n 3 p 2 p 2 m 3 + p 3 m 2 m 2 n 3 + m 3 n 2 m 3 m 1 n 3 n 1 p 3 p 1 n 3 p 1 + n 1 p 3 p 3 m 1 + p 1 m 3 m 3 n 1 + m 1 n 3 m 1 m 2 n 1 n 2 p 1 p 2 n 1 p 2 + n 2 p 1 p 1 m 2 + p 2 m 1 m 1 n 2 + m 2 n 1           .
(2.23)

Transformation of stiffness matrix

The stress-strain relations in the x, y, z coordinate system are

                   ε a ε b ε b γ bc γ ac γ ab                    = S ij                    σ a σ b σ c τ bc τ ac τ ab                    (2.24)
and

                   σ a σ b σ c τ bc τ ac τ ab                    = C ij                    ε a ε b ε c γ bc γ ac γ ab                    , (2.25)
where S ij is the compliance matrix, which is the inverse of the stiffness matrix C ij .

It is noted that the strain tensor used is written in a contracted notation as

γ bc = 2ε bc , γ ac = 2ε ac , γ ab = 2ε ab , (2.26) 
where

ε bc = 1 2 ( ∂u b ∂c + ∂u c ∂ b ), ε ac = 1 2 ( ∂u a ∂c + ∂u c ∂ a ), ε ab = 1 2 ( ∂u a ∂b + ∂u b ∂ a
), (2.27) as we have

                   σ a σ b σ c τ bc τ ac τ ab                    = T ij                    σ x σ y σ z τ yz τ zx τ xy                    (2.28)
and

                   ε a ε b ε c γ bc γ ac γ ab                    = R ij T ij R -1 ij                    ε x ε y ε z γ yz γ xz γ xy                    . (2.29)
Applying the stress-strain relations to the transformation relations in the x, y, z coordinate system, we have

                   ε x ε y ε z γ yz γ xz γ xy                    = R ij T -1 ij R -1 ij S ij T ij                    σ x σ y σ z τ yz τ xz τ xy                    .
(2.30)

We set the transformed compliance matrix as (2.31) and the transformed stiffness matrix is

Ŝij = R ij T -1 ij R -1 ij S ij T ij ,
Ĉij = Ŝij -1
.

(2.32)

Effective mechanical behavior of composite reinforced by corrugated fibres

In this section, we provide a detailed introduction to the development of an effective stiffness matrix of composite reinforced by fibres of a particular sinusoidal waviness as shown in Figure 2.8a, which was first proposed and verified by [START_REF] Xiao | A micromechanical model of tendon and ligament with crimped fibers[END_REF]. To this end, in section 2.3.1 we first present an analytical solution based on the [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] Eshelby equivalent inclusion method for a stiffness matrix of composite reinforced by straight fibres as shown in Figure 2.4. A transformation matrix of straight and corrugated fibre arrangements is then presented in section 2.3.2. Finally, an effective stiffness matrix of composite reinforced by fibres of sinusoidal waviness is deduced in section 2.3.3.

Effective stiffness matrix of composite reinforced by straight fibres

Here, we present an analytical solution based on the Eshelby equivalent inclusion method for the effective stiffness matrix of composite reinforced by straight fibres, as shown in Figure 2.4. The effective elastic constitutive relation of composite material is written as follows:

σ = C : ε ε = S : σ, (2.33)
where C is the stiffness matrix of the composite reinforced by the straight fibres and S is the inverse matrix of C. Also, σ and ε represent the average stress and strain tensors respectively in the composite.

We set

σ = V m σm + V f σf ε = V m εm + V f ε f , (2.34)
where σf and ε f are the average stress and strain tensors in the fibres, and σm and εm are the average stress and strain tensors in the matrix. Moreover, V f and V m are the volume fractions of the fibres and the matrix, respectively.

The mechanical strain interaction of fibres and matrix based on the Eshelby equivalent inclusion method can be expressed as

ε f = B : εm , (2.35)
where B is the concentration tensor whose details can be found in [START_REF] Parnell | The eshelby, hill, moment and concentration tensors for ellipsoidal inhomogeneities in the newtonian potential problem and linear elastostatics[END_REF], which can be expressed as (2.36) where I is the identity tensor, C f and C m are the elastic stiffness tensor of isotropic fibre and matrix media, respectively, and P is the polarization tensor. We refer to [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF] for a thorough explanation of this latter, but note here that it has the following relation:

B = [I + P : (C f -C m )] -1 ,
P = S E : S m , (2.37)
where S m is the elastic compliance of the isotropic matrix media (S m = [C m ] -1 ), which can be expressed as .38) and S E is the Eshelby tensor, which can be expressed as

S m =           S m 11 S m 12 S m 13 0 0 0 S m 12 S m 22 S m 23 0 0 0 S m 13 S m 23 S m 33 0 0 0 0 0 0 S m 44 0 0 0 0 0 0 S m 55 0 0 0 0 0 0 S m 66           , ( 2 
S E =           S E 1111 S E 1122 S E 1133 0 0 0 S E 2211 S E 2222 S E 2233 0 0 0 S E 3311 S E 3322 S E 3333 0 0 0 0 0 0 S E 2323 0 0 0 0 0 0 S E 1313 0 0 0 0 0 0 S E 1212           . (2.39)
The average stress σf is

σf = C f : ε f = C f : B : εm . (2.40)
The average stress and strain tensors in the composite can be written in terms of σm as

σ = V m σm + V f σf = V m σm + V f C f : B : εm = V m σm + V f C f : B : (S m : σm ) (2.41) ε = V m εm + V f ε f = V m (S m : σm ) + V f B : (S m : σm ). (2.42)
From Equations 2.41 and 2.42, the compliance matrix S of the composite can be obtained as

S = (V m I + V f B) : (V m C m + V f C f : B) -1 .
(2.43)

The Eshelby tensor S E for an ellipsoidal inclusion -as shown in Figure 2.5a, where a 1 , a 2 , and a 3 are half the ellipsoidal length along the x, y, and z axis, respectively-in a homogeneous matrix is constant and depends solely on the form of the inclusion and the matrix material.

The Eshelby tensor for the elliptic cylinder inclusion (which means a 1 = ∞) is given by [START_REF] Mura | Micromechanics of defects in solids[END_REF] as

S E 1111 = S E 1122 = S E 1133 = 0, (2.44) S E 2222 = 1 2(1 -ν m ) [ a 2 3 + 2a 3 a 2 (a 3 + a 2 ) 2 + (1 -2ν m ) a 3 a 3 + a 2
],

(2.45) 

S E 3333 = 1 2(1 -ν m ) [ a 2 2 + 2a 3 a 2 (a 3 + a 2 ) 2 + (1 -2ν m ) a 2 a 3 + a 2 ], (2.46) 
S E 2233 = 1 2(1 -ν m ) [ a 2 3 (a 3 + a 2 ) 2 -(1 -2ν m ) a 3 a 3 + a 2
],

(2.47)

S E 3322 = 1 2(1 -ν m ) [ a 2 2 (a 3 + a 2 ) 2 -(1 -2ν m ) a 2 a 3 + a 2
],

(2.48)

S E 2211 = 1 2(1 -ν m ) 2ν m a 3 a 3 + a 2 , (2.49) S E 3311 = 1 2(1 -ν m ) 2ν m a 2 a 3 + a 2 , (2.50) S E 2323 = 1 2(1 -ν m ) [ a 2 3 + a 2 2 2(a 3 + a 2 ) 2 + 1 -2ν m 2 ],
(2.51)

S E 1212 = a 3 2(a 2 + a 3 ) , (2.52) S E 1313 = a 2 2(a 2 + a 3 ) , (2.53)
where ν m is the Poisson's ratio of a matrix.

The fibres in the matrix are considered to have a circular cross-section, which means a 3 = a 2 , and therefore the Eshelby tensor can be derived as

S E 2222 = S E 3333 = 1 2(1 -ν m ) ( 5 4 -ν m ), (2.54 
)

S E 2233 = S E 3322 = 1 2(1 -ν m ) (ν m - 1 4
), (2.55)

S E 2211 = S E 3311 = ν m 2(1 -ν m ) , (2.56 
)

S E 2323 = 1 2(1 -ν m ) ( 3 4 -ν m ), (2.57 
)

S E 1212 = S E 1313 = 1 4 . (2.58)
We assume the composite to be transversally isotropic material in the y-z plane with an elastic compliance S that can be expressed as 

S =           S11 S12 S12 0 0 0 S12 S22 S23 0 0 0 S12 S23 S22 0 0 0 0 0 0 S44 = 2( S22 -S23 ) 0 0 0 0 0 0 S66 0 0 0 0 0 0 S66           . ( 2 
= E f (1 + ν m ) [-2 + 2ν m + V m (1 -2ν m )] -V m E m (1 + ν f )(1 -2ν f ) b 1 , (2.60) S12 = V m ν m E m (1 + ν f )(1 -2ν f ) + E f (1 + ν m )[2ν f (1 -ν m ) + V m (ν m -2ν f + 2ν m ν f )] b 1 , (2.61) S22 = b 2 b 3 + b 4 4 , (2.62) 62 S23 = b 2 b 3 - b 4 4 , (2.63) S66 = 2(1 + ν m ) V m E f (1 + ν m ) + E m (1 + ν f )(2 -V m ) E m V m E m (1 + ν f ) + E f (1 + ν m )(2 -V m ) , ( 2 
b 1 = -V 2 m E 2 m (1 + ν f )(1 -2v f ) + E 2 f (1 + ν m )(1 -V m ) [-2 + 2ν m + V m (1 -2ν m )] + V m E m E f -3 + ν f + 4ν m ν f + V m (2 -ν m -ν f -4ν m ν f ) , (2.65) b 2 =E m E f (1 + ν m ){-2 + 2ν f + 2ν m -2ν m ν f + V m [3 -2ν m -3ν f -2ν m ν f + V m (-2 + ν m + ν f + 4ν m ν f )]}- V m E 2 f (1 + ν m ) 2 (1 -V m )(1 -2ν m ) + V m E 2 m (1 + ν f )(1 -2ν f )(-2 + V m + V m ν m ), (2.66) b 3 =2E m {-V 2 m E 2 m (1 + v f )(1 -2v f ) + E 2 f (1 + v m )(1 -V m )[-2 + 2ν m + V m (1 -2ν m )]+ V m E m E f [-3 + ν f (1 + 4ν m ) + V m (2 -ν m -ν f -4ν m ν f )]}, (2.67) b 4 = 2(1 + ν m )[V m E f (1 + ν m )(3 -4ν m ) + E m (1 + ν f )(4 -3V m -4ν m + 4V m ν m )] E m [V m E m (1 + ν f ) + E f (1 + ν m )(4 -V m -4ν m )] . (2.68)

Transformation matrix of fibre arrangement

Straight fibre transformation

The fibres are set to be straight and arranged in parallel, and θ represents the angle between the fibre orientation and the x-axis of the Cartesian coordinates as shown in Figure 2.6. The principle fibre orientation is along axis a and the fibre orientation coordinates are defined as

       a = cos(θ)x + sin(θ)z b = y c = -sin(θ)x + cos(θ)z.
(2.69)

The transformation component of fibre orientation and Cartesian coordinates can be obtained as:

m 1 = cosθ xa = 1 * (cos(θ)) √ 1 2 • cos 2 (θ) + sin 2 (θ) = cos(θ). (2.70)
The other components are obtained in the same manner.

m 2 = cosθ xb = 0 m 3 = cosθ xc = sin(θ) n 1 = cosθ ya = 0 n 2 = cosθ yb = 1 n 3 = cosθ yc = 0 p 1 = cosθ za = 0 p 2 = cosθ zb = 0 p 3 = cosθ zc = cos(θ).
(2.71) Thus, the general transformation matrix T st ij for the parallel straight fibres is

T st ij =           cos 2 (θ) 0 sin 2 (θ) 0 2cos(θ)sin(θ) 0 0 1 0 0 0 0 sin 2 (θ) 0 cos 2 (θ) 0 -2cos(θ)sin(θ) 0 0 0 0 cos(θ) 0 -sin(θ) -sin(θ)cos(θ) 0 sin(θ)cos(θ) 0 cos 2 (θ) -sin 2 (θ) 0 0 0 0 sin(θ) 0 cos(θ)           . (2.72)
The inverse transformation matrix T st ij -1 is:

T st ij -1 =           cos 2 (θ) 0 sin 2 (θ) 0 -2cos(θ)sin(θ) 0 0 1 0 0 0 0 sin 2 (θ) 0 cos 2 (θ) 0 2cos(θ)sin(θ) 0 0 0 0 cos(θ) 0 sin(θ) sin(θ)cos(θ) 0 -sin(θ)cos(θ) 0 cos 2 (θ) -sin 2 (θ) 0 0 0 0 -sin(θ) 0 cos(θ)           . (2.73)

Corrugated fibre transformation

The fibre corrugation is assumed to be planar sinusoidal in the x-z plane. Here, β represents the angle between the principle fibre direction and the x-axis of the Cartesian coordinates as shown in Figure 2.7. The crimped fibre shape is defined as

z = Asin( 2π L x), (2.74)
where A is the amplitude and L represents the wavelength of the wavy fibre as shown in Figure 2.7.

From Equation 2.74, we have

tanβ = dz dx = 2πA L cos( 2π L x) β = arctan( 2πA L cos( 2π L x)). (2.75) Therefore, cosβ = [1 + ( 2πA L cos( 2π L x)) 2 ] -1 2 , (2.76) sinβ = 2πA L cos( 2π L x)[1 + ( 2πA L cos( 2π L x)) 2 ] -1 2 .
(2.77)

The general transformation matrix T sin ij for the corrugated fibres can be derived with the same calculation as before. We present the analytical solution to find the effective stiffness matrix Ĉsin ij (i, j = 1, 2, 3, 4, 5, 6) of composite reinforced by fibres of uniform sinusoidal waviness as shown in Figure 2.8. The average transformed inverse compliance matrix Ŝsin ij is obtained by integrating the compliance matrix S along one wavelength of the sinusoidal shape in the x-direction as

T sin ij =         cos 2 (β(x)) 0 sin 2 (β(x)) 0 2cos(β(x))sin(β(x)) 0 0 1 0 0 0 0 sin 2 (β(x)) 0 cos 2 (β(x)) 0 -2cos(β(x))sin(β(x)) 0 0 0 0 cos(β(x)) 0 -sin(β(x)) -sin(β(x))cos(β(x)) 0 sin(β(x))cos(β(x)) 0 cos 2 (β(x)) -sin 2 (β(x)) 0 0 0 0 sin(β(x)) 0 cos(β(x))         . ( 2 
Ŝsin ij (β(A, L)) = L 0 Ŝij (β(A, L))dx, (2.79) 
where

Ŝij = R ij T sin ij -1 R ij -1 Sij T sin ij , (2.80) and β = arctan( 2π A L cos( 2π L x)) and x ∈ [0, L]. We then have Ĉsin ij = Ŝsin ij -1
.

(2.81)

We set

g = 1 L L 0 cos 4 βdx = 1 L L 0 [[1 + ( 2πA L cos( 2π L x)) 2 ] -1 2 ] 4 dx = 2A 2 Lπ 2 + L 3 √ 4A 2 π 2 + L 2 (L 2 + 4A 2 π 2 ) , (2.82) h = 1 L L 0 sin 4 βdx = (L 2 + 4A 2 π 2 ) √ 4A 2 π 2 + L 2 -6A 2 Lπ 2 -L 3 √ 4A 2 π 2 + L 2 (L 2 + 4A 2 π 2 ) , (2.83) m = 1 L L 0 sin 2 βcos 2 βdx = 2A 2 Lπ 2 (L 2 + 4A 2 π 2 ) √ 4A 2 π 2 + L 2 , (2.84) n = 1 L L 0 cos 2 βdx = L √ 4A 2 π 2 + L 2 , (2.85) p = 1 L L 0 sin 2 βdx = √ 4A 2 π 2 + L 2 -L √ 4A 2 π 2 + L 2 , (2.86) q = 1 L L 0 (cos 2 (β) -sin 2 (β)) 2 dx = g -2m + h. (2.87)
We note that, before integration, terms Ŝ15 , Ŝ25 , Ŝ35 , and Ŝ46 are not zero, but these terms become zero during integration over the period.

The non-zero element of matrix Ŝsin ij can be expressed as 

Ŝsin ij =          
          , ( 2 

Effective mechanical behavior of lamellar composite reinforced by corrugated fibres with alternatively oriented layers

In this section, we propose an analytical solution that takes into account the multiple layers and the orientation of each layer to find the effective elastic stiffness matrix. The single-lamella and multiple-lamellae solutions are presented in sections 2.4.1 and 2.4.2, respectively.

Single layer

Figure 2.9: Composite orientation in the Cartesian coordinate system.

One layer (or lamella) of the composite reinforced by fibres of uniform sinusoidal waviness is rotated by an angle of θ around the Y-axis as shown in Figure 2.9. The effective stiffness matrix of this layer Clayer1 ij and its inverse compliance Slayer1 ij can be deduced as

Slayer1 ij = R ij T st ij -1 R ij -1 Ŝsin ij T st ij Clayer1 ij = Slayer1 ij -1
.

(2.98)

The nonzero element of matrix Slayer1 ij can be expressed as We introduced an analytical approach to find the effective elastic stiffness of a matrix of multiple layers by applying [START_REF] Sun | Three-dimensional effective elastic constants for thick laminates[END_REF] formulations. Each considered layer or "lamella" is a thick composite reinforced by fibres of uniform sinusoidal waviness, as shown in section 2.4.1. The coordinate system is set so that the x-and z-axes lie in the plane of the lamella and the y-axis is perpendicular to that plane. The laminate composite contains r orthotropic fibre composite lamellae and each lamella is rotated by a corresponding angle θ k , (k = 1, 2, 3 • • • ) around the y-axis as shown in Figure 2.10a. The effective macro-stresses σ total and macro-strains ε total are defined as

Slayer1 ij =           
           , ( 2 
σ total ij = 1 V V σ ij dV, (2.113) 
and

ε total ij = 1 V V ε ij dV, (2.114)
where V is the volume that contains the total thickness of one lamella.

The in-plane dimensions are kept infinitesimal so that the stresses and strains in each layer are uniform in the planar directions. As the stresses and strains in each lamella are constant, Equations 2.113 and 2.114 can be integrated as

σ total ij = r ∑ k=1 V k (σ ij ) k , (2.115) 
and .116) where (σ ij ) k and (ε ij ) k are the stresses and strains in the kth (k = 1, 2, 3 • • • ) layer, and

ε total ij = r ∑ k=1 V k (ε ij ) k , ( 2 
V k = e k h , (2.117) 
where e k is the thickness of the kth lamella, and h is the total thickness of the laminate as shown in Figure 2.10b.

We assume the following in terms of the stress and displacement conditions at the interfaces of the layers: (2.119)

                         (ε xx ) k = ε total xx (ε zz ) k = ε total zz (γ xz ) k = γ total xz (σ yy ) k = σ total yy (σ xy ) k = σ total xy (σ yz ) k = σ total yz . ( 2 
The nonzero element of Ctotal ij can be obtained from Equations 2.115, 2.116, and 2.118 as [START_REF] Sun | Three-dimensional effective elastic constants for thick laminates[END_REF]):

Ctotal 11 = r ∑ k=1 V k ( Clayer1 11 ) k + r ∑ k=2 (( Clayer1 12 ) k -λ 12 )V k (( Clayer1 12 ) 1 -( Clayer1 12 ) k )/( Clayer1 22 ) k (2.120) Ctotal 12 = r ∑ k=1 V k ( Clayer1 12 ) k + r ∑ k=2 (( Clayer1 22 ) k -λ 22 )V k (( Clayer1 12 ) 1 -( Clayer1 12 ) k )/( Clayer1 22 ) k (2.121) Ctotal 13 = r ∑ k=1 V k ( Clayer1 13 ) k + r ∑ k=2 (( Clayer1 12 ) k -λ 12 )V k (( Clayer1 23 ) 1 -( Clayer1 23 ) k )/( Clayer1 22 ) k (2.122) Ctotal 22 = 1/( r ∑ k=1 V k /( Clayer1 22 ) k ), (2.123) Ctotal 23 = r ∑ k=1 V k ( Clayer1 23 ) k + r ∑ k=2 (( Clayer1 22 ) k -λ 22 )V k (( Clayer1 23 ) 1 -( Clayer1 23 ) k )/( Clayer1 22 ) k (2.124) Ctotal 33 = r ∑ k=1 V k ( Clayer1 33 ) k + r ∑ k=2 (( Clayer1 23 ) k -λ 23 )V k (( Clayer1 23 ) 1 -( Clayer1 23 ) k )/( Clayer1 22 ) k (2.125) Ctotal 15 = r ∑ k=1 V k ( Clayer1 15 ) k + r ∑ k=2 (( Clayer1 12 ) k -λ 12 )V k (( Clayer1 25 ) 1 -( Clayer1 25 ) k )/( Clayer1 22 ) k (2.126) = r ∑ k=1 V k ( Clayer1 25 ) k + r ∑ k=2 (( Clayer1 22 ) k -λ 22 )V k (( Clayer1 25 ) 1 -( Clayer1 25 ) k )/( Clayer1 22 ) k (2.127) Ctotal 35 = r ∑ k=1 V k ( Clayer1 35 ) k + r ∑ k=2 (( Clayer1 23 ) k -λ 23 )V k (( Clayer1 25 ) 1 -( Clayer1 25 ) k )/( Clayer1 22 ) k (2.128) Ctotal 55 = r ∑ k=1 V k ( Clayer1 55 ) k + r ∑ k=2 (( Clayer1 25 ) k -λ 25 )V k (( Clayer1 25 ) 1 -( Clayer1 25 ) k )/( Clayer1 22 ) k (2.129) Ctotal 44 = ( r ∑ k=1 V k ( Clayer1 44 ) k /∆ k )/∆ (2.130) Ctotal 46 = ( r ∑ k=1 V k ( Clayer1 46 ) k /∆ k )/∆ (2.131) Ctotal 66 = ( r ∑ k=1 V k ( Clayer1 66 ) k /∆ k )/∆ (2.132)
where

λ 12 = Ctotal 12 , (2.133 
)

λ 23 = Ctotal 23 , (2.134 
)

λ 22 = Ctotal 22 , (2.135 
)

λ 25 = Ctotal 25 , (2.136) ∆ = ( r ∑ k=1 V k ( Clayer1 44 ) k /∆ k )( r ∑ k=1 V k ( Clayer1 66 ) k /∆ k ) -( r ∑ k=1 V k ( Clayer1 46 ) k /∆ k ) 2 ,
(2.137)

∆ k = ( Clayer1 44 ) k ( Clayer1 66 ) k -( Clayer1 46 ) 2 k .
(2.138)

The effective elastic compliance matrix of multiple layer Stotal ij is

[ Stotal ij ] = [ Ctotal ij ] -1 .
(2.139)

Model limit verification

We further verify the proposed model by considering a special case, A = 0, where the fibres contained in the laminate are straight. When A = 0, from Equation 2.82 -2.87, we have

g = 1 h = 0 m = 0 n = 1 p = 0 q = 1. (2.140)
Then, from Equation 2.89 -2.97, we have

       Ŝsin 11 = S11 Ŝsin 12 = S12 Ŝsin 13 = S12 Ŝsin 23 = S23 Ŝsin 33 = S22 Ŝsin 55 = S66 Ŝsin 66 = S66 Ŝsin 44 = 2n( S22 -S23 ), (2.141) 
and therefore

[ Ŝsin ij ] = [ Sij ]. (2.142)
As shown from Equation 2.142, when A = 0, all terms in Ŝsin ij are equal to the corresponding terms in Sij , which verifies our model for the special limit case for straight fibres.

We also verify our model by considering the special case θ = 0, which represents the case where the layers are not rotated with respect to one another. When θ = 0, we have

cosθ = 1 sinθ = 0. (2.143)
The terms in Slayer1 ij can then be deduced from Equation 2.100 -2.112, as and therefore we have

              
[ Slayer1 ij ] = [ Ŝsin ij ].
(2.145)

When θ = 0, all the terms in Slayer1 ij are equal to the corresponding terms in Ŝsin ij , which also further verifies the model for the limit case for nonrotated layers.

Parameter study

We consider the lamellar structure in annulus fibrosus tissues as corrugated-fibre-reinforced composite and study the composite mechanical behavior by applying the micromechanical model introduced in section 2.4. The aim of our parameter study is to explore whether or not it is possible to use our model, within the extended physiological range, to analyze the influence of each parameter on the global mechanical properties of the annulus fibrosus tissue. Furthermore, we want to prioritize the parameters that influence the negative Poisson's effect on tissues as reported in the literature.

Our parameter study of annulus fibrosus tissue is based on parameters reported in the literature (see Table 2.1). Collagen has the elastic modulus from the molecular to tissue scale, and the mechanical stiffness decreases as the hierarchy scale increases; in other words, [START_REF] Zhang | Effect of the structural water on the mechanical properties of collagen-like microfibrils: a molecular dynamics study[END_REF]). Although the collagen elastic modulus is most often reported at the lamella scale [START_REF] Skaggs | Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus[END_REF]; [START_REF] Holzapfel | Single lamellar mechanics of the human lumbar anulus fibrosus[END_REF]), there are examples in the literature of the elastic modulus studied at the single collagen fibre scale. [START_REF] Ambard | Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation[END_REF] showed the collagen fibre elastic modulus to range from 6.6MPa to 12.3MPa using a tensile test on lamb and pig annulus fibrosus tissues as part of their development of a rheological model. Also, the collagen Type I singlefibre elastic modulus was measured to between 100 MPa and 360 MPa in rat tail tendon using an approach combining optical tweezers, atomic force microscopy, and exploitation of Euler-Bernoulli elasticity theory. As Type I collagen fibres are the most prevalent fibres [START_REF] Sharabi | The mechanical role of collagen fibers in the intervertebral disc[END_REF]) in annulus fibrosus tissue, we consider that the measured collagen fibre modulus can also be applied in annulus fibrosus tissue. The mechanical properties of the ground matrix of bovine annulus fibrosus were measured by [START_REF] Cortes | Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression[END_REF] using tensile and confined compression tests, revealing an aggregate modulus of 10.18 ± 3.32KPa. The fibre volume fractions have been found to range from 0.05 to 0.245 based on the description that AF comprises 65% -90% wet weight (water) and 50% -70% dry weight (collagen) (see Ducheyne [2015]). The Poisson's ratio range of the fibre and matrix used in our model is based on a previous modeling study, which is summarized by [START_REF] Sharabi | The mechanical role of collagen fibers in the intervertebral disc[END_REF]. The layer orientation angle used in the present study, that is the angle between the fibres of one lamella and those of its neighbors, is based on the findings of [START_REF] Baldit | Micromechanics of the intervertebral disk[END_REF]; namely that the fibre orientation in the circumferential direction varies between lamellae by 25 • to 45 • . The fibre crimp angle is assumed to vary between 20 • and 45 • as described by [START_REF] Sharabi | Structural mechanisms in soft fibrous tissues: A review[END_REF]; that is, the range of the fibre crimp angle is level is taken as arctan20 • < 4A L < arctan45 • (0.08 < A L < 0.25). Furthermore, the annulus fibrosus consists of 7 -25 lamellae [START_REF] Daroff | Encyclopedia of the neurological sciences[END_REF]; [START_REF] Baldit | Micromechanics of the intervertebral disk[END_REF]), and the layers are 0.14 -0.52 mm in thickness and grow thicker in the lateral portion and inner layers of the annulus [START_REF] Daroff | Encyclopedia of the neurological sciences[END_REF]).

E monomer > E f ibril > E f ibre > E tissue
The effective moduli for a laminate of one or multiple layers are obtained from Sij (here, Sij represents Slayer1 ij or Stotal ij according to the particular application) as: .146) where the terms Ẽx , Ẽy , and Ẽz are the effective elastic modulus along the x, y, and z directions, respectively. Also, the term νij is the effective Poisson's ratio, which characterizes the strain in the j direction produced by the loading in the i direction. 

                 Ẽx = 1 S11 Ẽy = 1 S22 Ẽz = 1 S33 νxy = -S21 S11 νxz = -S31 S11 νyz = -S32 S22 νyx = -S12 S22 νzx = -S13 S33 νzy = -S23 S33 , ( 2 

Results of the parametric study

In this section, the effective elastic properties of composites of single or multiple layers are quantified using a theoretical analysis. Parametric analyses of the Poisson's ratio and elastic modulus are also presented. L and layer orientation θ. We note that ν ij represents the effective Poisson's ratio that characterizes the strain in the j direction produced by loading in the i direction, as mentioned above. Interestingly, due to the strongly anisotropic composites under study, all the ν ij (i, j = x, y, z) appear different from each other. However, ν xy and ν zy , ν xz and ν zx , and ν yz and ν yx are symmetrical regardless of crimp level when θ = 45 • . This symmetrical feature can also be verified in Figure 2.13b, which shows how ν ij varies with changes to θ when A L is set to 0.01. Figure 2.15 shows how the axial elastic modulus varies with changes to fibre crimp level A L and fibre volume fraction V f . Of the two, V f has the greater impact on elastic modulus. E x and E z increase as V f increases. E y is not affected by A L according to Equations 2.92, 2.104, and 2.146. E x increases at small crimp levels and then declines as A L increases, as shown in Figure 2.15a, and E z gradually increases as A L increases from 0.01 to 0.3 as shown in Figure 2.15b when the V f ranges from 0.05 to 0.3. Figure 2.16 shows how the effective Poisson's ratio ν ij varies with changes to A L and V f . Fibre volume fraction V f has little influence on effective Poisson's ratios ν ij . When A L increases, ν xy and ν yx rise, but ν xz and ν yz decline. As A L increases, ν zx first decreases and then increases, whereas ν zy increases first and then decreases. It is noted that the maximum and the minimum values of each of the effective Poisson's ratios ν ij are outside of the range of 0.3 -0.4 (range of the Poisson's ratio of the fibre and matrix). Also, the maximum value of the effective Poisson's ratio ν xz is even higher than 0.5. 

Effect of matrix Poisson's ratio and fibre crimp level

In order to test the effects of matrix Poisson's ratio and fibre crimp level, we applied the following constraints to our model, setting the elastic modulus of fibres E f to 100MPa and the elastic modulus of the matrix E m to 10KPa. The Poisson's ratio of fibre ν f is set to 0.3; the layer orientation angle θ is set to 30 • ; and the fibre volume fraction is set to 20%. With these parameters, the model is able to predict the axial effective elastic modulus and effective Poisson's ratio as a function of fibre crimp level (0.01 < A L < 0.3) and matrix Poisson's ratio (0.3 < ν m < 0.5) as shown in Figures 2.17 

E f = 100MPa, E m = 10KPa, ν f = 0.3, V f = 20%, θ = 30 • .

Effect of fibre crimp level and elastic modulus ratio of the materials

The elastic modulus of the matrix E m is set to 10KPa. The Poisson's ratios of fibre ν f and matrix ν m are set to 0.3 and 0.4, respectively. The layer orientation angle θ is set to 30 • and the fibre volume fraction is set to 20%. The parameters predict the axial effective elastic modulus and effective Poisson's ratio as a function of fibre crimp level in the range of 0.01 < A L < 0.3 and elastic modulus ratios of the fibre and matrix in the range 10 1 < E f E m < 10 5 , as shown in Figure 2.19 and 2.20. In order to test the effects of fibre crimp level and layer orientation for double layers, we applied the following constraints to our model. In this analysis, the number of layers r is set to 2, both layers have the same thickness of 0.5 mm (e 1 = e 2 ), and the orientation of the first and second layers is symmetrical either side of the x-axis, which means θ 1 = -θ 2 . The elastic modulus of the fibres E f is set to 100MPa, the elastic modulus of the matrix E m is set to 10KPa, and the fibre volume fraction V f is 20%. The Poisson's ratio of fibre ν f and matrix ν m are set to 0.3 and 0.4, respectively. These parameters predict the axial effective elastic modulus and effective Poisson's ratio as a function of fibre crimp level over the range 0.01 < A L < 0. Figure 2.22 shows that, for the double layer arranged symmetrically on the x-axis, the axial elastic modulus is jointly influenced by the fibre crimp level A L and layer orientation angle θ. We note that the logarithm values of E x , E y , and E z are used to draw the figure. Similar to the observation for the analysis of a single layer in section 2.7.1.1, the effective elastic modulus E x has a maximum value when A L and θ decrease simultaneously; the effective elastic modulus E z has a maximum value when A L is small and θ is large; and the effective elastic moduli E x and E z are symmetrical at each fibre crimp level when θ = 45 • . However, unlike the observations in section 2.7.1.1, the maximum values of E x and E z are much higher than for single-layer situation, and E y is significantly affected by relative layer orientation when A L is small. Also, E y increases as θ increases until 45 • after which it declines. 

E f = 100Mpa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, θ 1 = -θ 2 .

Effect of layer thickness and fibre crimp level

In order to test the effects of layer thickness and fibre crimp level, we applied the following constraints to our model. The elastic modulus of fibres E f is set to 100MPa, the elastic modulus of the matrix E m is set to 10KPa, and the fibre volume fraction V f is 20%. The Poisson's ratio of fibre ν f and matrix ν m are set to 0.3 and 0.4, respectively. The number of layers r is set to 2. The thickness of the first layer is set to 0.3 mm and that of the second layer is set to range from 0.1 to 0.6 mm (parameters in the physiological range). The orientation angles of the first layer θ 1 and second layer θ 2 with respect to the x-axis are equal and opposite and are set to 30 

= 2, E f = 100Mpa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = 0.3mm, θ 1 = -θ 2 = 30 • .
Figure 2.25 shows how ν ij varies with changes to A L and e 2 e 1 for the two layers arranged symmetrically on either side of the x-axis. The layer-thickness ratio e 2 e 1 has little effect on ν ij .

When A L increases, ν xy and ν yx rise, but ν xz and ν yz decline. As e 2 e 1 increases in the range from 0.01 to 0.3, ν zx first increases, then decreases, and then increases again slightly, whereas ν zy first decreases, then increases, and then slightly decreases again.

Effect of fibre crimp level and elastic modulus ratio of the materials

In order to test the effects of fibre crimp level and elastic modulus ratio of the materials, we applied the following constraints to our model. The elastic modulus of the matrix E m is set to 10KPa, and the fibre volume fraction V f is 20%. The Poisson's ratio of fibre ν f and matrix ν m are set to 0.3 and 0.4, respectively. The number of layers r is set to 2 and both layers have the same thickness of 0.5 mm (e 1 = e 2 ). The orientation angles of the first layer θ 1 and second layer θ 2 are as above, in section 2.7.2.2, and are symmetrical about the x-axis. With these parameters, the model is able to predict the axial effective elastic modulus and effective Poisson's ratio as a function of fibre crimp level (0.01 < A L < 0.3) and elastic modulus ratio of the fibre and matrix (10 1 < E f E m < 10 5 ), as shown in Figure 2.26 and 2.27. 

= 2, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = e 2 = 0.5mm, θ 1 = -θ 2 = 30 • .
Figure 2.27 shows how the effective Poisson's ratios ν ij vary with changes to fibre crimp level A L and elastic modulus ratio

E f E m . When E f E m > 10 3 , E f
E m has little impact on effective 93

Poisson's ratios ν ij . However, when

E f E m < 10 3 , as E f
E m rises, ν xy , ν yx and ν zx decrease, and ν xz , ν yz , and ν zy increase. As A L increases, ν x y and ν yx rise, and ν xz and ν yz decline. As A L increases, ν zx first decreases and then increases, whereas ν zy increases first and then decreases.

Effect of layer orientation symmetry

The relative orientation of the successive layers of the AF changes from the inner layer closest to the nucleus pulposus to the outer layer, as reported by [START_REF] Marcolongo | 11 trends in materials for spine surgery[END_REF] and [START_REF] Baldit | Micromechanics of the intervertebral disk[END_REF]. Therefore, there should be asymmetrically arranged layers in the AF as a whole. In this analysis, we study the effect of layer orientation symmetry on the axial elastic modulus of our model AF by changing the respective orientation of the layers. The elastic modulus of fibres E f is set to 100MPa, elastic modulus of the matrix E m is set to be 10KPa, and the fibre volume fraction V f is 20%. The Poisson's ratio of fibre ν f and matrix ν m are set to 0.3 and 0.4, respectively, and the fibre crimp level As |θ 1 | and |θ 2 | increase, ν xy , ν yx , and ν zy increase, and ν xz , ν yz , and ν zy decrease. Compared with the impact of layer orientation angle θ presented in section 2.7.2.1, where the two layers are always symmetrically oriented with respect to the x-axis, the asymmetry has less of an impact on the Poisson's ratios.

Multiple layers

In this analysis, we study the effective mechanical properties of a composite model with ten layers (r = 10) as a function of the relative orientation of the successive layers and fibre crimp level; a laminate schematic diagram and the coordinate system are shown in Figure 2.30 and the layer orientation angle settings are shown in Table 2.2. We note that the properties of the ten-layer symmetrically arranged laminate with the constant angle between successive layers are exactly the same as those of the two-layer laminate, and can be obtained by calculation. The different angle settings are based on the nature of AF, in which the relative orientation of successive layers varies from the inner layer closest to the nucleus to the outer layer. In cases 1 and 2, the average orientation angle of 10 layers is |40 • |, and in case 1, a wider range of orientation angles is tested. In case 3, the orientation angle is set at a constant 40

• between successive layers |θ k | =40 • , (k = 1, 2, 3 • • • ).
The thickness of each layer is set to 0.5 mm. The elastic modulus of fibres E f is set to 100MPa, the elastic modulus of the matrix E m is set to 10KPa, and the fibre volume fraction V f is set to 20%. The Poisson's ratio of fibre ν f and matrix ν m are set to 0.3 and 0.4, respectively. These parameters predict the axial effective elastic modulus and effective Poisson's ratio as a function of the relative orientation of the successive layers as well as fibre crimp level in the range 0.01 < A L < 0.3, as shown in Figures 2.31 Layer number θ 1 E x and E z stabilize in all three cases at about the same value. The values of E y and its behavior with increasing A L are very similar in all three cases. Interestingly, the values of E x , E y and E z for case 2 are always in between those of cases 1 and 3, which shows that even if the average orientation angle between successive layers is the same for all cases, the larger the range of layer orientation angles in the laminate, the larger the difference between the global effective modulus and the constantly oriented case (the constant oriented angle is the average oriented angle in the other cases) modulus. 

θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 Case 1 20 • -20 • 30 • -30 • 40 • -40 • 50 • -50 • 60 • -60 • Case 2 30 • -30 • 35 • -35 • 40 • -40 • 45 • -45 • 50 • -50 • Case 3 40 • -40 • 40 • -40 • 40 • -40 • 40 • -40 • 40 • -40 •
E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e k = 0.5mm.
Figure 2.32 shows how the effective Poisson's ratios ν ij of a ten-layer laminate model vary with changes to the fibre crimp level A L in the laminate as a whole and changes to orientation angle between each of its ten successive layers (or no change as in case 3). The behavior of the Poisson's ratios in cases 1 and 2 is the same as that of case 3 where the orientation angle between successive layers is constant. Each effective ν ij value in case 2 is always between the values of cases 1 and 3 at each increment in A L , which indicates that the trend seen for the Poisson's ratios is the same as that seen for the effective elastic modulus: the larger the range of layer orientation angles in the laminate, the larger the difference between the global effective Poisson's ratio and the average case Poisson's ratio.

Discussion

In this chapter, we use an analytical micromechanical model to study the effective mechanical properties of the lamellar composite structure of annulus fibrosus tissue, with a focus on the roles of the orientation angle between the parellel fibres of successive lamellae and the corrugation, or crimp level, of those fibres. The lamellar structure of composite has been studied by [START_REF] Remund | A novel finite element model for annulus fibrosus tissue engineering using homogenization techniques[END_REF] and [START_REF] Zhou | Multiscale composite model of fiber-reinforced tissues with direct representation of sub-tissue properties[END_REF], for example, but the collagen-fibre crimp level was not considered in those studies.

For a single-layer composite, when the value of crimp level A L is small ( A L < 0.1), it has a large influence on E x and E z but has no effect on E y , and all of the Poisson's ratios ν ij are affected by A L . The orientation angle between successive layers θ affects E x and E z as well as each ν ij . In addition, ν xy and ν zy , ν xz and ν zx , ν yz and ν yx , and E x and E z are symmetrical if θ = 45 • . The fibre volume fraction V f has little influence on ν ij but does impact on the effective elastic modulus. Moreover, the Poisson's ratio of the matrix ν m influences each ν ij but has little impact on the effective elastic modulus. Interestingly, each effective elastic modulus and ν ij change significantly with changing elastic modulus ratio of fibre and matrix

E f E m only when E f E m < 10 2 .
For a two-layer laminate, as opposed to the single-layer case, θ and A L both influence E y . In addition, the range of ν ij is significantly expanded: the minimum value is even negative and the maximum value is close to 5. The ratio of the thickness of the first layer to that of the second, that is, the layer thickness ratio e 2 e 1 , has little effect on both effective elastic modulus and ν ij . The same trends are seen for the two-layer laminate as for the single-layer case: each effective elastic modulus and ν ij change significantly only when E f E m < 10 3 . Compared with the impact of layer orientation angle θ, the asymmetry of the layer orientation either side of the x-axis, as shown in Figure 2.21, has less impact on the Poisson's ratio. Testing the effects of incrementally increasing the relative orientation angle of the successive layers of a ten-layer laminate from one end to the other and within different ranges on both effective elastic modulus and ν ij , we observe that the size of the range impacts on the global effective mechanical behavior, causing it to deviate from that of a laminate with a constant orientation angle between the fibres of one layer and those of the next. Further, the larger the range, the larger difference between the global effective mechanical properties of the laminate and those of the laminate with constant orientation angle.

It is known that, for isotropic solids, the Poisson's ratio is in general smaller than 0.5, but the Poisson's ratio in certain microstructures of the composites under study can be significantly larger than 0.5, as shown in Figures 2.14 and 2.23. This is because of the effects of corrugated fibres and alternately oriented layer. In section 2.7.2.1, negative Poisson's ratios are observed in a two-layer laminate when the fibre crimp level A L is small, which is not found in the single-layer laminate in section 2.7.1.1. Materials with negative Poisson's ratios, also known as auxetic materials, show unusual and counterintuitive mechanical behaviour, namely they become thicker perpendicular to the loading direction. The negative Poisson's ratios are seen in the x-y and y-z planes but not in the x-z plane. Such a situation might be caused by a specific fibre-matrix stiffness ratio and fibre dispersion. As fibres are considered slightly corrugated when A L is small, when the dispersed fibres are stretched, the fibre-matrix stiffness ratio causes the matrix between the fibres to be compressed, which can lead to expansion in the x-y and y-z planes. Similar observations were reported by [START_REF] Herakovich | Composite laminates with negative through-the-thickness poisson's ratios[END_REF] and [START_REF] Sun | Three-dimensional effective elastic constants for thick laminates[END_REF] based on analytical analysis, and by [START_REF] Volokh | On arterial fiber dispersion and auxetic effect[END_REF] and [START_REF] Fereidoonnezhad | A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour[END_REF] based on numerical simulation tests, and by [START_REF] Baldit | Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue[END_REF], [START_REF] Dusfour | Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach[END_REF], and Derrouiche et al. [2019a] based on tensile experiments on AF. Larger negative maximum Poisson's ratios are observed in Figures 2.23a and 2.23f, which is likely due to the larger fibre-matrix stiffness ratio ( E f E m = 10 4 ) compared to that reported in [START_REF] Herakovich | Composite laminates with negative through-the-thickness poisson's ratios[END_REF] and [START_REF] Sun | Three-dimensional effective elastic constants for thick laminates[END_REF]. As A L increases, the negative Poisson's ratios gradually disappear, that is to say, one of the mechanical effects of the corrugated fibres in the microstructure of the laminate model studied here is to reduce its auxetic behavior. In conclusion, because of the fibre-matrix stiffness ratio and fibre dispersion, the laminate composite shows an auxetic behavior in the planes perpendicular to the plane of the lamellae. However, this behavior is not easily constrained because of the joint influence of fibre crimp level and successive layer orientation.

The proposed micromechanical model can be used to quickly estimate the mechanical properties of alternately oriented laminates embedded with crimped fibres using theoretical calculations only, and can easily be used to analyze the influence of each of the parameters discussed above on the effective mechanical properties of the modeled material. The modulus of fibre E f and matrix E m , the Poisson's ratios of fibre ν f and matrix ν m , volume fraction of the fibres V f and matrix V m , fibre crimp level A L , relative orientation angle of successive layers θ k , layer thickness e k , and total number of layers r are taken into account as parameters potentially modifying the mechanical properties of the laminate studied here.

The model described has been designed to mimic and therefore study the morphological aspects of AF but the approaches and techniques employed are also applicable to other fibre-reinforced biological tissues and biocomposites.

The stress-strain curve of AF tissue is usually J-shaped [START_REF] Vergari | Bovine and degenerated human annulus fibrosus: a microstructural and micromechanical comparison[END_REF]) and the collagen fibres reorient in response to load [START_REF] Cassidy | Hierarchical structure of the intervertebral disc[END_REF]; [START_REF] Marchand | Investigation of the laminate structure of lumbar disc anulus fibrosus[END_REF]; [START_REF] Ambard | Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation[END_REF]). However, the present study is limited to testing the effects of the weak strain of the laminate material, which is considered a linear behavior, and the effects of reorientation of the crimped fibres while the modeled tissue is stretching are not taken into account. As mentioned in section 1.1.2, cross-links are found between crimped fibres at a smaller scale, and these are also not taken into account in the proposed model. It is also noted that the [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] Eshelby equivalent inclusion method provides the best estimates when the fibre volume fractions are relatively low (below 60%) [START_REF] Kwon | Effective moduli of high volume fraction particulate composites[END_REF]; [START_REF] Ju | Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions[END_REF]; [START_REF] Saadat | Effective elastic properties of a composite containing multiple types of anisotropic ellipsoidal inclusions, with application to the attachment of tendon to bone[END_REF]). The fibre volume fraction of AF tissue is estimated to range from 5% to 24.5%, as shown in Table 2.1. Therefore, we consider the Eshelby method to be suitable for use in conjunction with the proposed AF model, but for other applications, the limits of fibre volume fraction should be reconsidered and an alternative method for estimation of fibre volume fraction may be needed. Furthermore, in our model, the strain experienced by each layer along the x-axis and z-axis is assumed to be equal to the global strain on the multi-layer laminate along the x-axis and z-axis, respectively, and the stress on each layer along the y-axis is assumed to be the same as the global stress acting along the y-axis, as shown in Equation 2.118, but no accepted methods exist at present to verify these assumptions for AF tissue. Moreover, the fibres and matrix are assumed to have perfect interface conditions, but the true nature of these conditions has not yet been determined for AF tissue.

CHAPTER 3

Study of soft tissues with helical fibre structure

Introduction

As introduced in chapter 1, many soft tissues, such as aortic wall [START_REF] Niestrawska | Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling[END_REF], [START_REF] Morin | Multiscale mechanical behavior of large arteries[END_REF] and tendon [START_REF] Verzár | Aging of the collagen fiber[END_REF], [START_REF] Evans | Structural and mechanical properties of tendon related to function[END_REF], [START_REF] Liao | Mechanical and structural properties of mitral valve chordae tendineae[END_REF], [START_REF] Harvey | Helical crimp model predicts material properties from tendon microsctructure[END_REF], are found to incorporate a microstructure of helical collagen fibres, as shown in Figure 3.1. Cross-links are also widely observed between the collagen fibres ( [START_REF] Giudici | Review of the techniques used for investigating the role elastin and collagen play in arterial wall mechanics[END_REF][START_REF] Pezowicz | Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state[END_REF]) and the impact of these features on the mechanical performance of a bottom-up spring-node model of collagen [START_REF] Chen | Effect of crosslinking in cartilage-like collagen microstructures[END_REF] has been explored.

Considering that helical structures exist in soft tissue, here we present a numerical study of their effects on the mechanical properties of a soft-tissue model using a double-scale asymptotic homogenization method. We model soft tissue here as a composite material of a matrix reinforced with helical fibres. We assume a perfect bind between the matrix and the embedded fibres. We consider a periodic arrangement of helical fibres, with or without cross-links and with or without matrix, with the aim being to investigate their specific implication on the overall mechanical properties of the composite tissue. To this end, we first present the asymptotic homogenization theory and numerical implementation method in section 3.2, which can also be found in [START_REF] Vasquez-Villegas | Exploration des propriétés des microstructures tpms pour mimer le comportement mécanique du disque intervertébral cervical humain dans l'objectif de réaliser une prothèse par fabrication additive[END_REF]. We then present our study of the properties of composite reinforced with helical fibres, helical fibres with cross-links alone, and composite reinforced with helical fibres with cross-links in sections 3.3, 3.4, and 3.5, respectively. Finally, we discuss our results in section 3.6. 

Calculation of the effective elastic tensor for the periodic microstructure

As a first approximation of soft tissue reinforced with helical fibres, we assume a composite model with a periodic structure. We use the double-scale asymptotic homogenization method to derive the effective behavior and elastic stiffness tensor. In this section, first we present the homogenization theory of linear elastic behavior over a periodic material in section 3.2.1, and then we discuss the numerical solution of the homogenization equation in section 3.2.2. Finally, we validate the finite element analysis method by comparing both analytical and numerical results in the section 3.2.3.

Homogenization theory of linear elastic behavior for a periodic material

The homogenization method is used to determine the effective mechanical properties of heterogeneous periodic media from the properties of the constitutive materials and their microstructure. For the case of a linear elastic model, these effective properties can be determined by the asymptotic expansion homogenization method at multiple scales. The method accounts for the scale separation by introducing a separation parameter ε, which represents the ratio of the period of the structure to a typical length in the region. The method, which is based on asymptotic expansions in powers of the small parameter ε, was specifically developed for periodically distributed medium [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]; [START_REF] Sánchez-Palencia | Non-homogeneous media and vibration theory[END_REF]). In this section, we present the steps we take to derive a macroscopic description of the effective four-order elastic tensor for the case of a two-phase periodic cell material [START_REF] Caillerie | Homogenization in elasticity[END_REF]).

Description of the medium under consideration

We consider a periodic two-phase medium that has a macroscopic characteristic size L. We then define a periodic cell Ω, noted as a representative elementary volume (REV) with a characteristic size l, as shown in Figure 3. We use ⃗ X as the physical spatial variable, and ⃗ y, ⃗ x as dimensionless space variables that respectively describe variations on the microscopic and macroscopic scales; we introduce relations for these in Equation 3.1. We define ε to formulate the separation condition of different scales, with the REV for the medium being small compared to the macroscopic volume. See the relation between these in Equation 3.2.

⃗ y = ⃗ X l ⃗ x = ⃗ X L . (3.1) ε = l L << 1. (3.2)
Due to the two spatial variables with respect to ⃗ X, the gradient operator can be written as

∂ ∂X i = ∂ ∂y i ∂y i ∂X i + ∂ ∂x i ∂x i ∂X i , (3.3) ⃗ ∇ X = 1 l ⃗ ∇ y + 1 L ⃗ ∇ x . (3.4)
We take the macroscopic viewpoint and reintroduce Equation 3.4 by inserting the dimensionless number as:

⃗ ∇ = L ⃗ ∇ X = ε -1 ⃗ ∇ y + ⃗ ∇ x . (3.5)
Due to the separation of scales, the quantity Φ = Φ(⃗ x,⃗ y) appears as a function of two dimensionless variables, and Φ is looked for in the form of an asymptotic expansion in power of ε as:

Φ = Φ 0 (⃗ x,⃗ y) + εΦ 1 (⃗ x,⃗ y) + ε 2 Φ 2 (⃗ x,⃗ y) + ... (3.6)
The method we follow to look for Φ is described here. We assume the local description to be given and we look for the equivalent macroscopic description. First of all, we choose the macroscopic or microscopic viewpoint. The expansions are made in the form of Eq.3.6 with y = x ε or x = εy. We then proceed to the nondimensionless local description. The dimensionless numbers are evaluated as functions of powers of ε, where the physical problem is taken into account. Finally, the asymptotic expansions are substituted as in Eq.3.6 into the normalized description.

Dimensionless local description

For the two-phase medium under consideration, the period Ω is composed of two elastic materials occupying the domains Ω 1 and Ω 2 . The elastic tensors associated with these domains are A 1 and A 2 , respectively. The microscopic description on the periodic cell Ω, is given by: (3.10) where σ α represents the stress tensor, ⃗ u α is the displacement, ⃗ n 1 and⃗ n 2 are the unit normal vectors and satisfy ⃗ n 1 = -⃗ n 2 over Γ , and e is the strain tensor defined by:

⃗ ∇ • σ α = 0 within Ω α , (α = 1, 2), (3.7) σ α = A α : e(⃗ u α ) within Ω α , (α = 1, 2), (3.8) σ 1 • ⃗ n 1 + σ 2 • ⃗ n 2 = 0 over Γ, (3.9) ⃗ u 1 = ⃗ u 2 over Γ,
e(⃗ u α ) = 1 2 ( ⃗ ∇⃗ u α + ⃗ ∇ T ⃗ u α ). (3.11)
The elastic tensor A α is a fourth-order tensor and satisfies the symmetries:

(A ijkh ) α = (A khij ) α = (A jikh ) α = (A ijhk ) α .
(3.12)

Our description of the modeled material assumes perfect adhesion between the two domains and their respective elastic properties are of the same order of magnitude.

Asymptotic expansion

To proceed in the homogenization of the microscopic description, we look for σ α and u α in the form of asymptotic expansions. The expansion of ⃗ u α is written as: (3.13) where the function u i α is periodic with respect to the local variable ⃗ y = ⃗ X l of period 1. The strain tensor 3.11 can be deduced by applying the derivation rule 3.5 as follows.

⃗ u α (⃗ x,⃗ y) = ⃗ u 0 α (⃗ x,⃗ y) + ε⃗ u 1 α (⃗ x,⃗ y) + ε 2 ⃗ u 2 α (⃗ x,⃗ y) + ...,
e(⃗ u α ) = ε -1 e y (⃗ u α ) + e x (⃗ u α ).

(3.14)

Therefore, Equation 3.8 indicates that the asymptotic expansion of σ α starts in ε -1 as: (3.15) where the function σ i α is Ω-periodic in ⃗ y.

σ α (⃗ x,⃗ y) = ε -1 σ -1 α (⃗ x,⃗ y) + ε 0 σ 0 α (⃗ x,⃗ y) + ε 1 σ 1 α (⃗ x,⃗ y) + ...,

Perturbation equation

Introducing the asymptotic expansions 3.13 and 3.15, the gradient expression 3.5, and the strain tensor 3.14 into the Equations 3.7, 3.8, 3.9, and 3.10, we obtain the following cascade of developments in power of ε:

• For Equation 3.7:

(ε -1 ⃗ ∇ y + ⃗ ∇ x ) • (ε -1 σ -1 α + ε 0 σ 0 α + ε 1 σ 1 α + • • • ) = 0, (3.16) O(ε -2 ) ⃗ ∇ y • σ -1 s = 0, (3.17) O(ε -1 ) ⃗ ∇ y • σ 0 α + ⃗ ∇ x • σ -1 α = 0, (3.18) O(ε 0 ) ⃗ ∇ y • σ 1 α + ⃗ ∇ x • σ 0 α = 0, (3.19)
• • •

• For Equation 3.8:

ε -1 σ -1 α + ε 0 σ 0 α + ε 1 σ 1 α + • • • = A α : (ε -1 e y + e x )(⃗ u 0 α + ε⃗ u 1 α + ε 2 ⃗ u 2 α + ...), (3.20) O(ε -1 ) σ -1 α = A α : e y (⃗ u 0 α ), (3.21) O(ε 0 ) σ 0 α = A α : [e y (⃗ u 1 α ) + e x (⃗ u 0 α )], (3.22) O(ε 1 ) σ 1 α = A α : [e y (⃗ u 2 α ) + e x (⃗ u 1 α )],
(3.23)

• • •

• For Equation 3.9:

(ε -1 σ -1 1 + ε 0 σ 0 1 + ε 1 σ 1 1 + • • • ) • ⃗ n 1 + (ε -1 σ -1 2 + ε 0 σ 0 2 + ε 1 σ 1 2 + • • • ) • ⃗ n 2 = 0, (3.24) O(ε -1 ) σ -1 1 • ⃗ n 1 + σ -1 2 • ⃗ n 2 = 0, (3.25) O(ε 0 ) σ 0 1 • ⃗ n 1 + σ 0 2 • ⃗ n 2 = 0, (3.26) O(ε 1 ) σ 1 1 • ⃗ n 1 + σ 1 2 • ⃗ n 2 = 0, (3.27)

• • •

• For Equation 3.10:

⃗ u 0 1 + ε⃗ u 1 1 + ε 2 ⃗ u 2 1 + • • • = ⃗ u 0 2 + ε⃗ u 1 2 + ε 2 ⃗ u 2 2 + • • • , (3.28) ⃗ u 0 1 = ⃗ u 0 2 (3.29) ⃗ u 1 1 = ⃗ u 1 2 (3.30) ⃗ u 2 1 = ⃗ u 2 2 (3.31) • • •
where O is the term of relative order ε. From the developments above, we can determine the following boundary value problem.

Homogenization

Determination of σ -1

α and ⃗ u 0 α From Equations 3.17, 3.21, 3.25, and 3.29, the boundary first-order value problem reads as follows: (3.34) where ⃗ u 1 and ⃗ u 2 are Ω-periodic in ⃗ y. Therefore, the displacement is constant over the period Ω, which means that it only depends on the macroscopic variable ⃗ x:

       ⃗ ∇ y • (A α : e y (⃗ u 0 α )) = 0 within Ω α , (α = 1, 2), (3.32) (A 1 : e y (⃗ u 0 1 )) • ⃗ n 1 + (A 2 : e y (⃗ u 0 2 )) • ⃗ n 2 = 0 over Γ, (3.33) ⃗ u 0 1 = ⃗ u 0 2 over Γ,
⃗ u 0 α = ⃗ u 0 ⃗ x . (3.35)
Consequently, we can deduce from Equation 3.21 that

σ -1 α = 0. (3.36) Determination of σ 0 α and ⃗ u 1 α 109
For the following order value problem, from Equations 3. 18, 3.22, 3.26, 3.30, and 3.36, we have:

       ⃗ ∇ y • (A α : [e y (⃗ u 1 α ) + e x (⃗ u 0 α )]) = 0 within Ω α , (α = 1, 2), (3.37) (A 1 : [e y (⃗ u 1 1 ) + e x (⃗ u 0 1 )]) • ⃗ n 1 + (A 2 : [e y (⃗ u 1 2 ) + e x (⃗ u 0 2 )]) • ⃗ n 2 = 0 over Γ, (3.38) ⃗ u 1 1 = ⃗ u 1 2 over Γ. (3.39)
The unknown problem is determined to be u 1 α . The elastic tensor A α ensures the existence of the unique solution, which is a linear function of e x (⃗ u 0 ):

u 1 α i = ξ lm α i (⃗ y)e x lm (⃗ u 0 ) + ũ1 α i (⃗ x), (3.40)
where ũ1 α i (⃗ x), (α = 1, 2), are additive functions and the functions ξ lm α i , (α = 1, 2) represent the third-order tensor components. ξ lm α i is the particular solution of u 1 α i = ξ lm α i for the boundary value problem 3.32, 3.33, and 3.34 when e xij (⃗ u 0 α ) = δ il δ jm , where l and m are fixed. The functions ξ lm α i satisfy: (3.43) where ⃗ ξ kh α , (α = 1, 2) are Ω-periodic in ⃗ y. The unique solution requires that ξ lm α i has a zero mean over the periodic cell Ω:

           ∂ ∂ y j (A α ijkh e y kh ( ⃗ ξ lm α ) + A α ijlm ) = 0 within Ω α , (α = 1, 2). (3.41) (A 1 i jkh e y kh ( ⃗ ξ lm 1 ) + A 1 ijlm ) • n 1 j + (A 2 i jkh e y kh ( ⃗ ξ lm 2 ) + A 2 ijlm ) • n 2 j = 0 over Γ, (3.42) ⃗ ξ kh 1 = ⃗ ξ kh 2 over Γ,
< ξ kh α > Ω = 0, (3.44)
where < • > is the cell volume average described as:

< • > Ω α = 1 |Ω| Ω α • dΩ (α = 1, 2). (3.45)
We therefore have:

σ 0 α = (A α ijlm e y lm ( ⃗ ξ lm ) + A ijkh )e x kh (⃗ u 0 α ). (3.46)

First-order compatibility condition

Let us consider the next order boundary value problem from 3.19 and 3.27:

⃗ ∇ y • σ 1 α + ⃗ ∇ x • σ 0 α = 0 within Ω α , (α = 1, 2), (3.47) σ 1 1 • ⃗ n 1 + σ 1 2 • ⃗ n 2 = 0 over Γ. (3.48)
Integrating the Equation 3.47 over the period Ω leads to a necessary and sufficient condition for the solution of ⃗ u 1 α . The volume average constitutes the first-order macroscopic behavior noted as:

1 |Ω| Ω 1 ⃗ ∇ y • σ 1 1 dΩ + 1 |Ω| Ω 1 ⃗ ∇ x • σ 0 1 dΩ + 1 |Ω| Ω 2 ⃗ ∇ y • σ 1 2 dΩ + 1 |Ω| Ω 2 ⃗ ∇ x • σ 0 2 dΩ = 0.
(3.49) Applying divergence theorem, some members of Equation 3.49 can be transformed as follows:

1 |Ω| Ω 1 ⃗ ∇ y • σ 1 1 dΩ = 1 |Ω| ∂Ω 1 σ 1 1 • ⃗ n 1 dS, (3.50) 1 |Ω| Ω 2 ⃗ ∇ y • σ 1 2 dΩ = 1 |Ω| ∂Ω 2 σ 1 2 • ⃗ n 2 dS, (3.51) 
where ∂Ω α = Γ ∪ S α , (α = 1, 2), and S α , (α = 1, 2) is the external boundary surface over the periodic cell Ω as shown in Figure 3.2. Equation 3.50 and 3.51 can therefore be written as:

1 |Ω| ∂Ω 1 σ 1 1 • ⃗ n 1 dS = 1 |Ω| S 1 σ 1 1 • ⃗ n 1 dS + 1 |Ω| Γ σ 1 1 • ⃗ n 1 dS, (3.52) 1 |Ω| ∂Ω 2 σ 1 1 • ⃗ n 2 dS = 1 |Ω| S 2 σ 1 2 • ⃗ n 2 dS + 1 |Ω| Γ σ 1 2 • ⃗ n 2 dS. (3.53)
Due to the periodicity of the cell, integrating over S α , (α = 1, 2) is zero:

1 |Ω| S 1 σ 1 1 • ⃗ n 1 dS = 0, (3.54) 1 |Ω| S 2 σ 1 2 • ⃗ n 2 dS = 0. (3.55)
From Equation 3.48, we have:

1 |Ω| Γ σ 1 1 • ⃗ n 1 dS + 1 |Ω| Γ σ 1 2 • ⃗ n 2 dS = 0. (3.56)
Therefore, Equation 3.49 becomes:

1 |Ω| Ω 1 ⃗ ∇ x • σ 0 1 dΩ + 1 |Ω| Ω 2 ⃗ ∇ x • σ 0 2 dΩ = ⃗ ∇ x • < σ 0 1 > Ω 1 + ⃗ ∇ x • < σ 0 2 > Ω 2 = 0. (3.57)
Let us define

σ 0 T = σ 0 1 within Ω 1 σ 0 2 within Ω 2 .
(3.58) Equation 3.57 therefore becomes:

⃗ ∇ x • < σ 0 T > Ω = 0 (3.59) , < σ 0 T > Ω =< σ 0 T > 1 + < σ 0 T > 2 .
(3.60)

The Equation 3.22 can then be written as:

< σ 0 T ij > Ω =< A 1 : [e y (⃗ u 1 1 ) + e x (⃗ u 0 1 )] > Ω 1 + < A 2 : [e y (⃗ u 1 2 ) + e x (⃗ u 0 2 )] > Ω 2 .
(3.61)

If we take into account the form of ⃗ u 1 α 3.40, then we have:

< σ 0 T > Ω =< A 1 ijkh : [e y kh (ξ lm 1 e x lm (⃗ u 0 1 )) + e x kh (⃗ u 0 1 )] > Ω 1 + < A 2 ijkh : [e y kh (ξ lm 2 e x lm (⃗ u 0 2 )) + e x kh (⃗ u 0 2 )] > Ω 2 =< A 1 ijkh + A 1 ijlm e y lm (ξ kh 1 ) > Ω 1 e x kh (⃗ u 0 1 )+ < A 2 ijkh + A 2 ijlm e y lm (ξ kh 2 ) > Ω 2 e x kh (⃗ u 0 2 ) = C ijkh e x kh (⃗ u 0 α ), (3.62 
) where C ijkh is the effective elastic tensor defined by:

C ijkh =< A 1 ijkh + A 1 ijlm e y lm (ξ kh 1 ) > Ω 1 + < A 2 ijkh + A 2 ijlm e y lm (ξ kh 2 ) > Ω 2 .
(3.63)

First-order macroscopic description

The first-order equivalent macroscopic behavior of periodic cell material is written as:

       ⃗ ∇ x • < σ 0 T > Ω = 0, (3.64) < σ 0 T ij > Ω = C ijkh e x kh (⃗ u 0 α ), (3.65) 
C ijkh =< A 1 ijkh + A 1 ijlm e y lm (ξ kh 1 ) > Ω 1 + < A 2 ijkh + A 2 ijlm e y lm (ξ kh 2 ) > Ω 2 .
(3.66)

The macroscopic behavior is equivalent to that of a homogeneous elastic material and the effective elastic tensor is given by Equation3.66.

Porous empty medium case

We also investigate the mechanical properties of modeled empty porous material [START_REF] Boutin | Homogenization of coupled phenomena in heterogenous media[END_REF]). To this end, we consider the phase Ω 2 as empty in the periodic cell as shown in Figure 3.2. The microscopic description of the problem on the periodic cell Ω can be deduced as:

⃗ ∇ • σ 1 = 0 within Ω 1 , (3.67 
)

σ 1 = A 1 : e(⃗ u 1 )
within Ω 1 , (3.68)

σ 1 • ⃗ n 1 = 0 over Γ, (3.69) ⃗ u 1 = 0 over Γ. (3.70) 
By homogenizing this microscopic description, we obtain the macroscopic behavior, which can be written in the same form as Equations 3.65 and 3.66, where the macroscopic stress at the first order is defined by:

< σ 0 T ij > Ω =< A 1 : [e y (⃗ u 1 1 ) + e x (⃗ u 0 1 )] > Ω 1 , (3.71) 
where

σ 0 T = σ 0 1 within Ω 1 , 0 within Ω 2 .
(3.72)

The effective elastic tensor C ijkh is therefore defined as:

C ijkh =< A 1 ijkh + A 1 ijlm e y lm (ξ kh 1 ) > Ω 1 , (3.73) 
where the function ξ kh 1 satisfies:

           ∂ ∂ y j (A 1 ijkh e y kh ( ⃗ ξ lm 1 ) + A 1 ijlm ) = 0 within , (3.74) (A 1 i jkh e y kh ( ⃗ ξ lm 1 ) + A 1 ijlm ) • n 1 j = 0 over Γ, (3.75) 
⃗ ξ kh 1 = 0 over Γ.

(3.76)

K α = Ω α B T A α ijkh BdΩ, (3.82) 
and the force vector has the form:

⃗ f α = Ω α B T a α kh dΩ.
(3.83)

The force vector implies a unitary macroscopic deformation for the case kh. This force vector corresponds to the initial deformation. We consider the nodal force of an element e induced by the initial strain:

( ⃗ f ε 0 α ) e = Ω e α (B T ) e A α kh ε 0 dΩ, (3.84) 
where ε 0 represents the initial strain.

If we consider one case, kh = 11, the force vector defined by Equation 3.83 becomes:

( ⃗ f e α ) 11 = Ω e α (B T ) e a α 11 dΩ. (3.85) 
Comparing Equations 3.84 and 3.85 allows us to verify that:

A α ε 0 = a α 11 . (3.86)
In this case, ε 0 is defined as:

ε 0 =    1 0 0 0 0 0 0 0 0    . (3.87)
Furthermore, by considering the other loading cases, it is possible to find all of the elastic coefficients. Now that the force vector is defined, let us determine the solution for ξ kh α . From Equation 3.77, we notice that ξ kh α is similar to a displacement, e y lm (ξ kh α ) is similar to a strain, and A α ijlm e y lm (ξ kh α ) is similar to a stress:

σ kh α ij = A α ijlm e y lm (ξ kh α ). (3.88)
In practice, discretizing the periodic domain of the cell, it is possible to run the finite element program for the each initial unit strain. The required boundary conditions and the stress calculation steps are discussed in the following section.

Integral of stress

The stress σ kh ij is obtained from the nodal force field, which itself is obtained by imposing a unit strain ε 0 kh = 1. The sign of the strain ε 0 kh does not change the solution because the mechanical model is the linear elastic model. For a "kh" loading, the stress calculation steps are as follows:

1. Application of a displacement field corresponding to ε kh = ±1 on the coordinates of each node.

2. Calculation of the stress field associated with the displacement field without boundary conditions.

3. Calculation of the nodal force field by integrating the stress field.

4. With the periodic conditions, calculation of the displacement field by applying the force field computed previously.

5. Calculation of the stress field associated with the new displacement field.

6. Calculation of the integral of the stress field from Equation 3.88.

These steps should be repeated for each load kh. Steps 1, 2, and 3 are used to determine the field of the nodal forces.

Step 4 is then used to determine the displacement solution with consideration of the periodic conditions; the required boundary conditions are introduced in the following section. Finally, steps 5 and 6 are used to calculate the second term of the integral Equation 3.77.

Periodic boundary conditions

To calculate the second term of the integral Equation 3.88, it is necessary to apply the particular periodic boundary conditions. These boundary conditions are described as:

⃗ u = E • ⃗ x + ⃗ v, (3.89) 
where E =< ε > is the macroscopic strain tensor, ⃗ v is an Ω-periodic variation, and ⃗ x is the position of a point of Ω. The periodic boundary conditions imply that for opposite surfaces:

• the strains should be identical;

• in order to satisfy stress continuity, the stress vector ⃗ t = σ • ⃗ n takes opposite values.

As ⃗ v is generally unknown, the condition Equation 3.89 cannot be applied directly. By applying the condition to the opposite surfaces " + " and " -", we have:

⃗ u + =< E > •⃗ x + ⃗ v, (3.90) ⃗ u -=< E > •⃗ x + ⃗ v. (3.91)
Subtracting Equation 3.90 by Equation 3.91, we can eliminate the unknown ⃗ v as:

⃗ u + -⃗ u -=< E > •(⃗ x + -⃗ x -).
(3.92)

The signs " + " and " -" represent the opposite surface of the period. The condition Equation 3.91 expresses the periodicity of the displacement field. A schema of an example 2D cell is shown in Figure 3.3, where we indicate the periodic boundary conditions. The continuity of the stress throughout the material is represented in Figure 3.4 and the periodicity of the stress implies that:

σ -• ⃗ n -= σ + • ⃗ n + .
(3.93)

Figure 3.4: Schema of periodic boundary conditions for the stress.

In order to easily and straightforwardly impose the periodic boundary conditions, it is required that the mesh of the opposite surfaces be identical.

Finite element analysis method and validation

In this section, we present the finite element analysis method. We then discuss a verification step that we take to validate the method, whereby we compare an analytical solution and a numerical solution.

In our finite element study, the REV geometric design is built in SolidWorks; then FreeCAD takes the "STEP" format file exported from SolidWorks and optimizes the contact surface of two materials into one common interface using a "boolean fragments" function; subsequently, the mesh is generated by Gmsh; and finally, the finite element analysis is calculated using the numerical software Cast3M Charras. After calculation, the data analysis is carried out using Python programming and the resulting data are visualized in ParaView in order to verify whether or not the results satisfy periodic boundary conditions. The finite element analysis process and the output file format are shown in Figure 3.5. We consider a well-known analytical solution structure for the verification step, which consists in straight-fibre-reinforced composite. The numerical solution of this case is shown in section 3.2.3.1, and the analytical method is presented in section 2.3.1 of Chapter 2. We reformulate the analytical equations in section 3.2.3.2 to unify the coordinate system with the numerical solution. We note that the analytical solution assumes a random and homogenized distribution of fibres in the plane perpendicular to the fibre orientation, whereas the numerical solution assumes a strong periodic arrangement of fibres in this plane. However, by experience [START_REF] Chen | Analytical homogenization method for periodic composite materials[END_REF]), when the volume fraction of fibres is small, there is little difference between a periodic distribution of fibres and a homogenized distribution. For our validation study example, the fibre volume fraction is set to 3.14%, the Young's moduli of fibre and matrix are set to 100MPa and 10KPa, respectively, and the Poisson 's ratios of fibre and matrix are set to 0.3 and 0.4, respectively.

Numerical solution

Representative elementary volume

The material under consideration is a straight-fibre-reinforced composite as shown in Figure 3.6a, and its relative REV is shown in Figure 3.6b. The green structures represent fibres, the matrix material is set to be transparent, and the fibre orientation is set parallel to the z-axis. 

Boundary conditions and mesh convergence study

In order to impose the periodic boundary condition as shown in equation 3.92, an example of a finite element mesh of the REV generated by the GMSH software is shown in Figure 3.7a, where each 3D element is set to the tetrahedron and the meshes on opposite boundary surfaces are identical. Figure 3.7b shows the mesh of the fibre. Here, the fibre and the matrix are bound to each other, which means the nodes on their contact surfaces belong of each component of the effective elastic tensor for each different mesh are shown in Figure 3.9. As the material is transverse isotropic in the x-y plane, the numerical results of the effective elastic tensor C n ij can be expressed as follows. As shown in Figure 3.9, as the number of elements increases, C 11 , C 13 , C 44 , and C 66 decrease, while C 12 and C 33 increase, and all stabilize when the number of elements in the mesh is greater than 390000. We therefore consider our calculations of the effective elastic tensor to be reliable when the number of elements in the mesh is greater than 390000.

C n =           C n 11 C n 12 C n 13 0 0 0 C n 12 C n 11 C n 13 0 0 0 C n 13 C n 13 C n 33 0 0 0 0 0 0 C n 44 0 0 0 0 0 0 C n 44 0 0 0 0 0 0 C n 66           . ( 3 

Analytical solution

As the composite is transverse isotropic material in the y-z plane, we reformulate the analytic elastic compliance S a ij as follows.

S a =           S a 11 S a 12 S a 13 0 0 0 S a 12 S a 11 S a 13 0 0 0 S a 13 S a 13 S a 33 0 0 0 0 0 0 S a 44 0 0 0 0 0 0 S a 44 0 0 0 0 0 0 S a 66           (3.95)
The respective stress-strain relation is therefore

                   ε x ε y ε z γ yz γ zx γ xy                    = S a ij                    σ x σ y σ z τ yz τ zx τ xy                    , ( 3.96) 
and the further analytical elastic tensor is calculated as

C a = S a -1
.

(3.97)

The nonzero elements of S a are described as

S a 11 = c 2 c 3 + c 4 4 , (3.98) S a 12 = c 2 c 3 - c 4 4 , (3.99) S a 13 = V m ν m E m (1 + ν f )(1 -2ν f ) + E f (1 + ν m )[2ν f (1 -ν m ) + V m (ν m -2ν f + 2ν m ν f )] c 1 ,
(3.100)

E f (1 + ν m ) [-2 + 2ν m + V m (1 -2ν m )] -V m E m (1 + ν f )(1 -2ν f ) c 1 , (3.101) S a 44 = 2(1 + ν m ) V m E f (1 + ν m ) + E m (1 + ν f )(2 -V m ) E m V m E m (1 + ν f ) + E f (1 + ν m )(2 -V m ) , (3.102) S a 66 = 2(S 11 -S 12 ), (3.103) 
where E f and E m represent the Young's moduli of fibre and matrix, respectively, ν f is the Poisson's ratio of the fibre, and c 1 , c 2 , c 3 , and c 4 are expressed as

c 1 = -V 2 m E 2 m (1 + ν f )(1 -2v f ) + E 2 f (1 + ν m )(1 -V m ) [-2 + 2ν m + V m (1 -2ν m )] + V m E m E f -3 + ν f + 4ν m ν f + V m (2 -ν m -ν f -4ν m ν f ) , (3.104) c 2 =E m E f (1 + ν m ){-2 + 2ν f + 2ν m -2ν m ν f + V m [3 -2ν m -3ν f -2ν m ν f + V m (-2 + ν m + ν f + 4ν m ν f )]} -V m E 2 f (1 + ν m ) 2 (1 -V m )(1 -2ν m ) + V m E 2 m (1 + ν f )(1 -2ν f )(-2 + V m + V m ν m ), (3.105) c 3 =2E m {-V 2 m E 2 m (1 + v f )(1 -2v f ) + E 2 f (1 + v m )(1 -V m )[-2 + 2ν m + V m (1 -2ν m )] + V m E m E f [-3 + ν f (1 + 4ν m ) + V m (2 -ν m -ν f -4ν m ν f )]}, (3.106) c 4 = 2(1 + ν m )[V m E f (1 + ν m )(3 -4ν m ) + E m (1 + ν f )(4 -3V m -4ν m + 4V m ν m )] E m [V m E m (1 + ν f ) + E f (1 + ν m )(4 -V m -4ν m )].
(3.107)

Validation results

The effective elastic tensor results calculated using the analytical method C a and the numerical method C n are shown in equations 3.108 and 3.109, respectively.

123

C a =          
0.02229 0.01475 0.01468 0 0 0 0.01475 0.02229 0.01468 0 0 0 0.01468 0.01468 3.16291 0 0 0 0 0 0 0.00380 0 0 0 0 0 0 0.00380 0 0 0 0 0 0 0.00377

          MPa , (3.108) 
C n =          
0.02234 0.01476 0.01470 0 0 0 0.01476 0.02234 0.01470 0 0 0 0.01470 0.01470 3.14890 0 0 0 0 0 0 0.00381 0 0 0 0 0 0 0.00381 0 0 0 0 0 0 0.00377

          MPa . (3.109)
As shown in equations 3.108 and 3.109, all the elements of the effective elastic tensor calculated by the analytical and numerical methods are similar. To further quantify the difference between the two results, we calculated the error as follows:

error ij = |C a ij -C n ij | C a ij .
(3.110)

The difference between each of the elements of the two methods is shown in 3.111. In this simple example of our calculation, comparing the difference between each corresponding element shows that the maximum error does not exceed 0.5%, and we therefore consider our method to be reliable.

error =           0.22% 0.07% 0.14% 0 0 0 0.07% 0.22% 0.14% 0 0 0 0.14% 0.14% 0.44% 0 0 0 0 0 0 0.26% 0 0 0 0 0 0 0.26% 0 0 0 0 0 0 0%           (3.111)

Composite reinforced by helical fibres

In this section, we study the mechanical properties of the helical-fibre-reinforced composite model shown in Figure 3.10 using a double-scale asymptotic homogenization method.

Similar composite materials were studied by [START_REF] Khani | Elastic properties of coiled carbon nanotube reinforced nanocomposite: A finite element study[END_REF], but the effective Poisson's ratio of the composite was not determined. Based on published measurements, we set the elastic modulus of the fibres to 100 MPa [START_REF] Dutov | Measurement of elastic modulus of collagen type i single fiber[END_REF] and the elastic modulus of the matrix to 10 KPa [START_REF] Cortes | Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression[END_REF]. The Poisson's ratio of both the fibres and the matrix is set to 0.3 [START_REF] Reese | Micromechanical models of helical superstructures in ligament and tendon fibers predict large poisson's ratios[END_REF].

Figure 3.10: Periodically arranged helical-fibre-reinforced composite.

Representative elementary volume

The REV of the helical-fibre-reinforced composite is set as shown in Figure 3.11a, where the red structures represent the helical fibres and the matrix is transparent. The helical fibres are characterized by their helix pitch H 0 , helix radius R 0 , helix angle θ, helix period length L 0 , and fibre diameter d 0 as shown in Figs. 3.11b,3.11c,and 3.11d. In the present study, we assess the effects of changes to the fibre volume fraction ρ f and helix angle β on the macroscopic mechanical properties of the composite model. The results are discussed in section 3.6.1.

The fibre volume fraction ρ f is defined as 

ρ f = F v F v + M v , ( 3 

Mesh convergence study

An example of a generated finite element mesh of one REV of helical-fibre-reinforced composite is shown in Figure 3.12, where the blue part represents the matrix mesh, the yellow component is the helical-fibre mesh, and each 3D element is a tetrahedron. The meshes on the opposite boundary surfaces are identical so as to impose the periodic boundary condition. The fibre and the matrix have a common surface mesh which means the nodes on the common mesh surface belong to both the fibre and matrix volumes; the local boundary condition set by Equation 3.10 is therefore satisfied. As for the straight-fibre-reinforced composite, in order to optimize our mesh, and therefore the results that we obtain when studying its mechanical behavior in response to applied forces, we carried out a mesh-convergence study as shown in Figure 3.13, where the number of elements of each mesh is also presented. The mesh convergence study is accurate to 10 -4 MPa and the computed values of each component of the effective elastic tensor for the different meshes are shown in Figure 3.14. We consider the material as an anisotropic composite and the effective elastic stiffness tensor C H ij is expressed as:

C H =           C H 11 C H 12 C H 13 0 0 0 C H 12 C H 22 C H 23 0 0 0 C H 13 C H 23 C H 33 0 0 0 0 0 0 C H 44 0 0 0 0 0 0 C H 55 0 0 0 0 0 0 C H 66           . (3.114)
As shown in Figure 3.14, when the number of elements in the mesh is greater than 860000, each parameter of the effective elastic stiffness tensor is stable. We therefore consider our calculations of the effective elastic tensor to be reliable when the number of elements in the mesh is greater than 860000. 

Helical fibres with cross-links

In this section, we study helical fibres cross-linked by straight fibres using the double-scale asymptotic homogenization method. The leading direction of the helix is set parallel to the z-axis and the cross-links are set perpendicular to the z-axis (see Fig. 3.15). The helical fibres and the cross-link fibres are set to be made from the same material, of which the elastic modulus is set to 100MPa and the Poisson's ratio is set to 0.3. the distance between two adjacent helices d h , which is set to the same value as helix pitch H 0 , d h = H 0 , and the position of the cross-link fibres. The cross-linking fibres are set to connect helical fibres at either their closest points (cross-link of minimum length) or farthest points (cross-link of maximum length) as two study cases. The REV in Figure 3.15 shows an example of helical fibres connected at their farthest points. In our study, we investigate the effects of fibre volume fraction ρ f , helix angle β, and cross-link position (closest vs farthest) on the macroscopic mechanical properties of our modeled materials. The calculation results are discussed in the section 3.6.2.

Representative elementary volume

As the REV under study in this case contains just one material, the fibre volume fraction ρ f is defined as

ρ f = F v V rev , (3.115)
where V rev is the volume of the periodic 3D cuboid.

Mesh convergence study

Figure 3.16 shows the finite element analysis mesh of one REV of cross-linked helical fibres.

The surface meshes on opposite boundary surfaces are set to be identical and each 3D element of mesh is a tetrahedron. As for the straight-fibre-and helical-fibre-reinforced composites, in order to optimize the results that we obtain for the helical fibres with cross-links but no matrix, we carried out a mesh convergence study as shown in Figure 3.16, where the number of elements of each mesh is also presented. This mesh convergence study is accurate to 10 -5 MPa and the computed values of each component of the effective elastic tensor for different mesh sizes are shown in Figure 3.17. We consider the material as an anisotropic composite and the effective elastic stiffness tensor C c has the same form as the tensor shown in Equation 3.114.

As shown in Figure 3.17, each parameter of the effective elastic stiffness tensor either increases or decreases as the mesh fineness increases, until the number of elements in the mesh is greater than about 500000, after which all parameters stabilize and mesh fineness no longer has an effect. We therefore consider our calculations of the effective elastic tensor of this particular mesh to be reliable when the number of elements in the mesh is greater than 500000.

Composite reinforced by cross-linked helical fibres

In this section, we use the double-scale asymptotic homogenization method to study the mechanical properties of a composite reinforced by helical fibres with cross-links. As above, the helix lead direction is set parallel to the z-axis, the cross-links are set perpendicular to the z-axis, and the helical fibres and cross-links are set to be made from the same material, as in section 3.4. The elastic modulus of the fibres is set to 100MPa and the elastic modulus of the matrix is set to 10KPa. The Poisson's ratio of both the fibres and the matrix is set to 0.3. In the present study, we study the effects of fibre volume fraction ρ f , helix angle β, and crosslink position (closest vs farthest) on the macroscopic mechanical properties of the composite. The calculation results are discussed in the section 3.6.3.

Representative elementary volume

Mesh convergence study

As in Section 3.3.2, we generated a REV of the finite element mesh of the composite reinforced by cross-linked helical fibres (Figure 3.19). Figure 3.19a shows a global view of the mesh of one REV and 3.19b shows just the mesh of the cross-linked helical fibres embedded within. Each 3D element of the mesh is a tetrahedron and the meshes on the opposite boundary surfaces are identical so as to impose the periodic boundary condition. The fibre and the matrix have a common surface mesh that shares the nodes of the fibre volume and those of the matrix so that the local boundary condition is satisfied. Again, in order to optimize the results calculated using the mesh for this particular composite, we carried out a mesh convergence study, as shown in Figure 3.20, where the number of elements of each mesh is also presented. The mesh convergence study is accurate to 10 -4 MPa, and Figure 3.21 shows the computed values of each component of the effective elastic tensor for meshes of increasing fineness. We consider the material as an anisotropic composite and the effective elastic stiffness tensor C HC has the same form as the tensor shown in equation 3.114. As shown in Figure 3.21, when the number of elements in the mesh is greater than about 10 6 , each parameter of the effective elastic stiffness tensor stabilizes. Therefore, we consider that our evaluation of these parameters is reliable when the number of the elements is greater than 10 6 . 

Results

Here, we present the results of simulations of the effective mechanical properties of composite reinforced by helical fibres, helical fibres with cross-links and no matrix, and composite reinforced by helical fibres with cross-links in Sects. 3.6.1,3.6.2,and 3.6.3,respectively. The effective engineering moduli are obtained from the effective elastic tensor C ij (here, C ij represents C H ij , C c ij , or C HC ij according to the application needs) as where S ij is the inverse effective elastic tensor C ij expressed as

               E x = 1 S 11 E y = 1 S 22 E z = 1 S 33
S ij = C -1 ij .
(3.117)

Composite reinforced by helical fibres

Figure 3.22 shows the effective elastic modulus of composite reinforced by helical fibres as a function of fibre volume fraction ρ f and helix angle β. The red points are the results calculated using the double-scale asymptotic homogenization method, and the surface is the predicted trend surface passing through each red point. Compared with helix angle β, the fibre volume fraction ρ f has a greater impact on the elastic moduli E H

x and E H y ; as the fibre volume fraction increases, E H

x and E H y also increase, but as helix angle increases, E H

x and E y decline slightly. As ρ f grows, E H z also grows, but unlike E H

x and E H y , E z grows with increasing β. 

Helical fibres with cross-links alone

In this section, we present the results of our calculations of the mechanical properties of helical fibres with cross-links (no matrix). In order to study the effect of cross-link position (closest vs farthest) on the mechanical properties of our model, we tested two extremes, with straight cross-links between helical fibres connecting the nearest helical fibres at the furthest possible points or at the nearest possible points; one REV of each case is shown in Figure 3.24. 

Farthest connection points case

Figure 3.25 shows how the effective elastic modulus E c of helical fibres with the longest cross-links (furthest cross-link positions) varies with changes to fibre volume fraction ρ f and helix angle β. As the fibre volume fraction ρ f grows, E c

x , E c y and E c z increase. As helix angle β rises, E c

x , E c y , and E c z also increase slightly. both rise with increasing ρ f when β takes large values, but as β decreases, ν c zx and ν c zy are decreasingly sensitive to changes in ρ f . We note that the structure studied here shows some negative Poisson's ratios when the helical fibres are cross-linked at the furthest possible points; that is, ν c xz , ν c yz , ν c zx and ν c zy are observed to have a negative value. Furthermore, the values of ν c xz and ν c yz are at a minimum when ρ f and β are small, and ν c zx and ν c zy are at their minimum when ρ f is small and β is large. As apposed to the fibres shown in Sect. 3.6.2.1, where the cross-links are as long as possible between helical fibres, the structure studied here, where the cross-links are as short as possible, shows no negative Poisson's ratios. Indeed, larger effective Poisson's ratios (> 0.5) are observed. ν c xz and ν c yz are found at their maximum values when ρ f and β are small, and ν c zx and ν c zy are found to be at their maximum values when ρ f is small and β is large.

Composite reinforced by helical fibres with cross-links

In this section, we present our calculations of the mechanical behavior of our model composite reinforced by helical fibres with cross-links. Here, we again test the same two cross-link positions as tested in Sect 3.6.2. Figure 3.29 shows REVs of the two composites studied here, with the longest-and shortest-possible cross-links between helical fibres, respectively. 

Nearest connection points case

Figure 3.32 shows how the effective elastic modulus E HC of our matrix composite reinforced by helical fibres with the shortest possible cross-links, which connect adjacent fibres at the nearest points, varies with changes to fibre volume fraction ρ f and helix angle β. The results show the same tendencies as those seen for helical fibres with cross-links in either position and without matrix in Sections 3.6.2.1 and 3.6.2.2 and the helical fibres in matrix with longer cross-links in Section 3.6.3.1. As the fibre volume fraction ρ f grows, E HC

x , E HC y , and E HC z increase. As helix angle β rises, E HC

x , E HC y , and E HC z also increase slightly. reinforced by helical fibres with the shortest possible cross-links, which connect adjacent fibres at the nearest points, varies with changes to fibre volume fraction ρ f and helix angle β. Compared with helix angle β, the fibre volume fraction ρ f has little influence on the effective Poisson's ratios ν HC ij . As β increases, ν HC xy , ν HC yx , ν HC zx , and ν HC zy decrease, but ν HC zx and ν HC zy increase. Our matrix composite reinforced by helical fibres with the shortest possible crosslinks shows no negative Poisson's ratios. However, it does show larger effective Poisson's ratios (> 0.5). ν HC xz and ν HC yz are found at maximum values when ρ f and β are small, which is the same tendency observed for helical fibres with the shortest possible cross-links but without matrix, presented in section 3.6.2.2

Discussion

In this chapter, we study the mechanical properties of matrix composite reinforced by helical fibres, helical fibres with cross-links alone, and matrix composite reinforced by helical fibres with cross-links using a double-scale asymptotic homogenization method. These model structures are designed to mimic the possible structures that exist in soft tissues, which are outlined in the literature review provided in Section 3.1 of this thesis.

As shown in Figure 3.22 of section 3.6.1, helix angle β has little effect on the effective moduli E H

x and E H y of a matrix composite reinforced by helical fibres without cross-links but does affect E H z . For this same model, as β increases, E H z also increases. In other words, the larger the fibre corrugation level, the smaller the effective elastic modulus in the direction of the principle fibre orientation, which is the same trend as that observed for the composite reinforced by 2D corrugated fibres presented in Chapter 2. In addition, as fibre volume fraction ρ f increases, the effective elastic modulus increases along all three axes, that is, E H

x , E H y , and E H z all increase, because the elastic modulus of the fibre is set to 100MPa, which is significantly higher than the elastic modulus of the matrix 10KPa. As shown in Figures 3. 25, 3.27, 3.30, and 3.32 in sections 3.6.2.1, 3.6.2.2, 3.6.3.1 and 3.6.3.2, respectively, the effective modulus of helical fibres with cross-links shows the same tendency: as fibre volume fraction ρ f and helix angle increase, the three effective elastic moduli along the axes x, y, and z increase regardless of the cross-link position or the presence of matrix. In addition, the matrix composite reinforced by helical fibres with no cross-links exhibits the behavior of a transverse isotropic material, with identical mechanical properties in the directions of the x and y axes but different mechanical properties in the direction of the z-axis, as shown in Figure 3.22. As we place cross-links at the same positions on adjacent helical fibres in the x-y plane, helical fibres with cross-links (with or without matrix) also show transverse isotropic mechanical behavior, as shown in Figures 3.25,3.27,3.30,and 3.32. As the modeled materials studied here show identical transverse isotropic behavior in the x-axis and y-axis, the effective Poisson's ratios are related as follows: ν xy = ν yx , ν xz = ν yz , and ν zx = ν zy , as shown in Figures 3.23,3.26,3.28,3.31,and 3.33. As introduced in Sect. 2.6, the term ν ij is the effective Poisson's ratio that characterizes the strain in the j direction produced by the load in the i direction. The Poisson's ratios of both the fibre and the matrix are set to 0.3, but the effective Poisson's ratios of the composite or helical fibres with cross-links vary with the helix angle β and the fibre volume fraction ρ f . Negative effective Poisson's ratios are found in helical fibres with the longest possible cross-links -where adjacent helical fibres are connected at the furthest points-with or without the presence of matrix. Negative Poisson's ratios have also been reported in soft tissues such as skin [START_REF] Veronda | Mechanical characterization of skin-finite deformations[END_REF], carotid arteries [START_REF] Timmins | Structural inhomogeneity and fiber orientation in the inner arterial media[END_REF], tendons [START_REF] Gatt | Negative poisson's ratios in tendons: an unexpected mechanical response[END_REF], and annulus fibrosus tissues [START_REF] Baldit | Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue[END_REF]][Derrouiche et al., 2019a[START_REF] Dusfour | Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach[END_REF] based on uni-axial tests. On the other hand, our modeled helical fibres with the shortest possible cross-links -where adjacent helical fibres are connected at the nearest points-show larger effective Poisson's ratios (> 0.5). Such larger Poisson's ratios are also widely reported in tendons [START_REF] Lynch | Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon[END_REF][START_REF] Cheng | The micro-structural strain response of tendon[END_REF][START_REF] Vergari | True stress and poisson's ratio of tendons during loading[END_REF], ligament [START_REF] Hewitt | Regional material properties of the human hip joint capsule ligaments[END_REF], and arterial wall [START_REF] Skacel | Poisson's ratio and compressibility of arterial wall-improved experimental data reject auxetic behaviour[END_REF].

Neither negative Poisson's ratios nor larger Poisson's ratios are observed in the helical-fibrereinforced composite without cross-links in the cases we studied. However, Reese et al.

[2010] found larger Poisson's ratios in their uni-helical fibres reinforced composite, which might be due to one or more of the particular characteristics of their mechanical model or its helical fibre arrangement. In our study, we find the two cross-link positions we test lead to strikingly opposing Poisson's ratios, that is, larger positive and negative ratios. Crosslinking in collagen fibres is considered to be an age-related feature [START_REF] Hayashi | Age-related changes of wall composition and collagen crosslinking in the rat carotid artery-in relation with arterial mechanics[END_REF] and its effects on the stiffness of soft tissues were studied by [START_REF] Holzapfel | An arterial constitutive model accounting for collagen content and cross-linking[END_REF]. However, the effects of cross-linking on the geometrical form of soft tissue has not been studied before. Interestingly, in the absence of matrix, the helical fibres with the longest possible cross-links, which connect adjacent helical fibres at furthest points, show a large negative Poisson's ratio of about -2.5, as presented in Figure 3.26. Such negative Poisson's ratios are significantly smaller in composites where the fibres are surrounded by matrix, as shown in Figure 3.31. This might suggest that the presence of matrix weakens the auxetic behavior. This may explain why negative Poisson's ratios are more rarely observed than larger positive Poisson's ratios. In order to mimic soft tissue, [START_REF] Yan | Soft threedimensional network materials with rational bio-mimetic designs[END_REF] proposed a network material based on helical microstructure. Their material shows a good stress-strain curve match to real soft tissue, but no matrix is included in their design.

In conclusion, in the present study we focus on the helical fibre structure of soft tissue and use a modeling approach to study the effects of the presence of matrix and crosslinks between helical fibres on the mechanical properties of soft fibrilar tissue. Our results show that the position of the cross-links between helical fibres has no effect on the effective elastic modulus of a group of fibres with or without the presence of a surrounding matrix. However, cross-link position does appear to have an influence on the geometrical form of the material modeled here, and the Poisson's ratio of our model can be positive or negative depending on the position of the cross-links between helical fibres. Further, the matrix might control the auxetic behavior. We think that considering cross-links associated with specific and more realistic structural arrangements of fibres may allow greater insights to be gained from soft tissue models. In addition, the present work could become a reference for further biomimetic material design.

CHAPTER 4

Fabrication and modeling of helical-fibre-reinforced soft composite materials

Introduction

In chapters 2 and 3, we focus on the structure of 2D (sinusoid) planar and 3D (helix) fibre corrugation in soft tissue using analytical model calculations and finite element analysis, respectively. The materials under study are considered as composites reinforced by corrugated fibres, where perfect interface conditions as well as a large stiffness difference are assumed for the fibres and matrix. Such materials have received little attention so far in terms of experimental study.

In this chapter, we present our development of silicone-based helical-fibre-reinforced composite materials. Our aim here is to find a method to manufacture such model materials that satisfy the fibre and matrix boundary conditions, and to verify that our method meets the requirements for finite element analysis. In addition, the elastic modulus ratio of fibre and matrix E f E m varies from 10 3 to 10 5 in the literature. Model material with such a large modulus ratio and perfect interface conditions is not easy to fabricate. However, as demonstrated in section 2.7.1.4, changes in modulus ratio when this value is larger than 10 2 have little effect on the overall mechanical properties. We, therefore, consider the modulus ratio E f E m at this value (e.g., E f E m = 10 2 in section 2.7.1.4) can be applied to study the mechanical properties of materials with higher modulus ratios E f E m . In our present work, several types of silicone are tested to reach the highest possible modulus ratio.

Materials and methods

We used soft and hard silicone to fabricate matrix and fibre materials, respectively. We first manufactured the fibre and matrix test samples to characterize their mechanical parameters, and then we manufactured and modeled soft composite according to these characterizations. Max™ series silicone. Due to the binding properties of silicone, the material of the matrix needs to be cured first: First, a metal helix with a smooth surface is used as a support and Ecoflex™ 00-10 is injected into the mold as shown in Figure 4.1a 4.1b. When the curing process is complete, the metal helix is removed and the Mold Max™ series series silicone is injected with a syringe into the cavity left behind, as shown in The section dimensions of the matrix test specimens are 20*2.9 mm 2 and the section dimensions of the fibre test specimens are 20*3.9 mm 2 . The useful test part of the helical-
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I 1 = Tr(B) (4.3) I 2 = 1 2 [I 2 1 -tr(B 2 )] (4.4) I 3 = det(B) (4.5)
Where F is the deformation gradient.

The constitutive equation for an incompressible, isotropic, hyperelastic material is given by [START_REF] Avril | Material parameter identification and inverse problems in soft tissue biomechanics[END_REF] as:

σ = -p1 + 2 ∂ψ ∂I 1 B -2 ∂ψ ∂I 2 B -1 (4.6)
Where p is an undetermined scalar.

A particular type of strain energy functions can be written as:

ψ = N j ∑ j=0 N i ∑ i=0 C ij (I 1 -3) i (I 2 -3) j (4.7)
where when N i = 1, and N j = 0 is the Neo-Hookean strain energy function, and when N i = 3, N j = 0 is the Yeoh model strain energy function, and we take N i = 2 for our Yeoh model material.

The Neo-Hookean and Yeoh models for predicting mechanical behavior under uniaxial tension can be reduced as:

σ Neo-Hookean = 2C 10 (λ 2 - 1 λ ) (4.8) σ Yeoh = 2(C 10 + 2C 20 (I 1 -3))(λ 2 - 1 λ ) (4.9)
where λ is the stretch along the loading direction λ 1 and we assume that the stretch perpendicular to the loading direction λ 2 and λ 3 satisfies the following relationship:

λ = λ 1 λ 2 = λ 3 = 1 √ λ (4.10)
The hyperelastic model parameters of materials are determined by the least squares method.

Finite element analysis

A finite element analysis method is used to study the manufactured composite numerically and also to verify that the composite fabrication method meets the fibre and matrix interface requirement. In our finite element study, the composite geometric design is built in FreeCAD, the mesh is generated by Gmsh, the finite element analysis is calculated by the free and open-source software LMGC901 , and the data analysis is carried out using the Python programming language. The finite element analysis process and the output file format are shown in Figure 4.6. In our study, a linear elastic model and two nonlinear hyperelastic models are applied to study the force-strain response of the soft composite. The fibre and matrix model material parameters used in the finite analysis are determined from tensile tests on the material specimens. The strains taken in the numerical analysis are the average values of the node strains in the z-y plane on the surface of the middle section of the composite, which is where the strain measurement is taken using image analysis (see Figure 4.5). The forces used in the finite element study are the sum of the node internal forces on the end plane of the composite. 

Mesh

A four-node tetrahedron finite element is used in our finite element study, in which the displacements are linearly interpolated over the element from their nodal values. The motivation for this choice is that a tetrahedron element is a close match to the curved fibrematrix interface. The mesh elements are generated by GMSH software as shown in Figure 4.7. The yellow mesh as shown in Figure 4.7a is the middle middle section of the composite where the strain is estimated. The fibre and the matrix are bound to each other, which means the nodes on their contact surfaces belong to two volumes at the same time, and the inner fibre mesh is shown in 

Boundary conditions

For the boundary conditions of the finite element analysis, the bottom surface of the composite is blocked, and a displacement loading along the z-axis is applied on the top surface with a constant velocity of 0.57 mm/s until 10 % global strain.

Results

Mesh convergence study

In order to optimize the finite element analysis, meshes of different fineness are studied as shown in Figure 4.8. The number of nodes and tetrahedral elements of each of the meshes studied in this respect are presented in Table 4.8. At the end of the tensile simulation tests, we calculated the strains and forces acting on the meshes of different fineness; these are shown in Figure 4.9. As the number of nodes in the mesh increases, the forces and strains calculated using the finite element method gradually stabilize. The force is stabilized at about 0.4 N as shown in Figure 4.9a, and the strain on the middle surface of the composite test specimen reaches an approximate plateau at 0.0874, as shown in Figure 4.9b. We consider the calculated results to be reliable when the number of nodes is greater than 74919, and therefore we chose to use the mesh shown in Figure 4.8c (column (c) of Table 4.2) for all further calculations of stress and strain. 

Experimental material parameter identification

The fibre and matrix materials are characterized by linear elastic, hyperelastic Yeoh, and hyperelastic Neo-Hookean models. The hyperelastic model parameters are determined by the least squares method. The experimental stress-strain curves for the matrix and fibre test samples are shown in Figure 4.10. The parameters of both the fibre and the matrix materials are determined for strains of up to 10 % of its original length. The stress taken in the process of material characterization is the first Piola-Kirchhoff stress (see details in [START_REF] Hackett | Stress measures, in Hyperelasticity primer[END_REF]). We fed the nonlinear Yeoh and Neo-hookean models with material parameters for the fibre and matrix materials calculated using the least squares method (see details in [START_REF] Humphrey | Cardiovascular solid mechanics: cells, tissues, and organs[END_REF]). We fitted the predicted curves from these models to the experimental data we obtained for stress and strain as described above. Figure 4.10 shows that the predicted curves are a good match to the experimental data for both the fibre and matrix material. The parameters characterizing these materials are presented in 

Finite element analysis results

The relation between the force-strain curve calculated from the linear and nonlinear models with the material parameters as input and experimental results is shown in Figure 4.11. As mentioned above, the strain on the surface of the composite material is obtained by image analysis and calculations using Green-Lagrangian formulations, which are the same formulations used to obtain the numerical strains in our finite element analysis. The forces acting on our composite material are measured using a force sensor during the tensile test, and the force calculated from the elastic and hyperelastic models is the sum of the node internal forces on the upper surface of the composite. A 10% strain is applied to the composite as the load for the finite element study, and the strain is measured on the upper surface of the middle part of the composite. The same is true for the tensile test; strain is measured from images of the surface of the middle section of the composite material. Interestingly, the finite element analysis shows that when the composite is stretched by 10% along the z-axis, the surface of the middle part of the composite is stretched by about 9% as shown in 

Discussion

In this chapter, we present our development of a soft helical-fibre-reinforced composite from silicone-based materials. We present a finite element analysis used to predict the mechanical behavior of the soft composite, which shows a good fit to experimental results from a tensile test carried out on samples of our reinforced composite. The fibre and the matrix in the composite bond well to one another, which agrees with assumptions made in the modeling. [START_REF] Chanda | Tissue anisotropy modeling using soft composite materials[END_REF] developed an elastomer-based soft-composite material in order to study tissue anisotropy experimentally. Their fabricated composite was made with straight fibres of different orientations and different fibre volume fractions. [START_REF] Bailly | In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes[END_REF] studied silicone rubber membranes reinforced with straight fibre networks with a dedicated apparatus. So far, few modeling studies have focused on soft tissue. To our knowledge, here we make the first attempt to fabricate and model soft composite containing corrugated fibres.

In this work, the developed reinforced composite contains only one helical fibre, but the studies in chapters 2 and 3 focus on soft fibrous tissue, which is assumed to contain many fibres. We show that the composite fabrication method proposed here is able to provide sample composites that can be studied experimentally. However, such samples are not easy to fabricate. We tested several types of silicone for use as the fibre material in order to reach the largest possible E f E m , obtaining E f E m = 28 in the present work. The modulus ratio achievable using Mold Max™ 60 series silicone and Ecoflex™ 00-10 silicone can easily reach about 100, but during the composite fabrication process, the Max™ 60 series silicone often contains residual air bubbles even though it is placed in the vacuum chamber. Moreover, it is difficult to fill a syringe with Max™ 60 series silicone and inject it due to its short curing time. Furthermore, it is not easy to leave a perfect interface when removing the metal helix from the cured matrix silicone. Therefore, further work is required to optimize the fabrication process and to produce soft composite with more fibres. model for AF tissue presented by Derrouiche et al. [2019b] and [START_REF] Derrouiche | The two poisson's ratios in annulus fibrosus: relation with the osmo-inelastic features[END_REF], who consider them to be driven by mechanical-and chemical-based fluid flow interactions until chemo-mechanical equilibrium. Moreover, the HGO model [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF]) and HGO-like models are capable of estimating the auxetic behavior for arterial wall as a function of fibre-matrix material stiffness and fibre dispersion. As the auxetic response is not always found in arterial tissue, several HGO-based models [START_REF] Nolan | A robust anisotropic hyperelastic formulation for the modelling of soft tissue[END_REF]; [START_REF] Latorre | The relevance of transverse deformation effects in modeling soft biological tissues[END_REF]; [START_REF] Volokh | On arterial fiber dispersion and auxetic effect[END_REF]; [START_REF] Fereidoonnezhad | A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour[END_REF]) are proposed to avoid auxetic behaviors. Inspired by the speculations in the literature over auxetic behavior related to wavy microstructure, and given the corrugated collagen fibre structure of soft fibrous tissue, we decided to take a mechanical modeling approach to quantitatively study changes in the Poisson's ratio of fibrous soft tissue and their relation to certain characteristics of the crimped fibre microstructure. To this end, we consider the fibrous soft tissues as composite materials reinforced by crimped fibres. We therefore also present a review of the literature on composite models involving crimped structures in chapter 1.

We then propose an analytical micromechanical model with which to study the lamellar composite structure of annulus fibrosus tissue. The model is based on the crimped-fibrereinforced composite model proposed by [START_REF] Xiao | A micromechanical model of tendon and ligament with crimped fibers[END_REF], although here we pay particular attention to the multiplicity of the layers and the relative orientation of the parallel fibres between successive layers. Although the lamellar composite structure has already been widely studied [START_REF] Remund | A novel finite element model for annulus fibrosus tissue engineering using homogenization techniques[END_REF]; [START_REF] Zhou | Multiscale composite model of fiber-reinforced tissues with direct representation of sub-tissue properties[END_REF]), the novelty of our approach is to specifically consider fibre corrugation in conjunction with the relative orientation of the fibres in successive layers and their affects on the Poisson's ratios of the composite material. We consider crimped fibres of sinusoidal form in light of observations of AF tissue in the literature. The proposed micromechanical model is capable of quickly estimating the mechanical properties of layer-dispersed laminates reinforced with crimped fibre structures based solely on theoretical calculations. It can also be used to analyze the influence of changes to each parameter on the effective mechanical properties of the laminate. The following parameters are taken into account in these estimates: modulus of fibre E f and matrix E m , the Poisson's ratio of fibre ν f and matrix ν m , volume fraction of fibre V f and matrix V m , fibre crimp level A L , the relative orientation angle θ k and thickness e k of each layer of the laminate, and the total number of layers r. In our parameter study (see Figure C.1 for a reminder of the coordinate system used in this thesis), within a single-layer composite, when the fibre crimp level A L is small ( A L < 0.1), it has a strong influence on the effective elastic moduli E x and E z , but has no effect on E y , and each ν ij is affected by A L . The layer orientation angle θ also affects E x and E z as well as each ν ij . The effective elastic modulus E x has a maximum value when A L and θ decrease simultaneously, and E z has a maximum value when A L is small and θ is large. In addition, whenever θ = 45 • , ν xy and ν zy , ν xz and ν zx , ν yz and ν yx , and E x and E z are symmetrical irrespective of A L . The fibre volume fraction V f has little influence on ν ij but affects the effective elastic moduli. Moreover, the matrix Poisson's ratio ν m affects each effective ν ij but has little impact on the effective elastic moduli. It is noted that each effective elastic modulus and ν ij change significantly with changes to the elastic modulus ratio of fibre and matrix E f E m , but only when E f E m < 10 2 . For double layer laminate on the other hand, A L has a measurable influence on E y . Also, compared to a single-layer laminate, the range of ν ij is significantly expanded; the minimum value is even negative and the maximum value is close to 5. The layer thickness ratio e 2 e 1 has little effect on either the effective elastic moduli or ν ij . As in the single layer case, each effective elastic modulus and ν ij significantly changes only when E f E m < 10 3 . Compared with the impact of layer orientation angle θ, the symmetry of the layer orientation either side of the x-axis has less impact on the Poisson's ratio. In a multi-layer laminate with a range of orientation angles between the successive layers, the gradient of that range is seen to influence the global effective mechanical behavior, with this latter deviating from that of a laminate with a constant orientation between successive layers. Moreover, the larger the range of θ, the larger the difference between the global effective mechanical properties of the laminate and those of the laminate with constant orientation angle. From our parameter studies, both large positive and negative Poisson's ratios are observed. For a double layer laminate, negative Poisson's ratios are observed when the fibre crimp level A L is small. In these cases, the fibres are considered to be only slightly corrugated and the negative Poisson's ratios are only seen in the plane of the laminate, that is, in the x-y and y-z planes. Such results are in line with the findings of simulation studies using a nonlinear hyperelastic anisotropic HGO model [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF]). However, as the fibre crimp level A L increases, the negative Poisson's ratio gradually disappears, which means the fibre crimp feature reduces the auxetic response in the composite material model studied here. In the context of the current literature [START_REF] Nolan | A robust anisotropic hyperelastic formulation for the modelling of soft tissue[END_REF]; [START_REF] Latorre | The relevance of transverse deformation effects in modeling soft biological tissues[END_REF]; [START_REF] Volokh | On arterial fiber dispersion and auxetic effect[END_REF]; [START_REF] Fereidoonnezhad | A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour[END_REF]), the work in chapter 2 provides a new method to avoid auxetic behavior and explains why the auxetic effect is not always easy to observe.

The analytical models presented in chapter 2 are designed to broadly represent the morphology of annulus fibrosus, but the approaches and techniques employed here are also applicable to other fibre-reinforced biological tissues (such as arterial media) and biocomposites. In the interest of further applications, we reiterate here that the present work is limited to small initial strain modeled as a linear behavior, and therefore the model does not consider the effect of reorientation of crimped fibres within the matrix as load is applied (stretching). Moreover, the Eshelby equivalent inclusion method provides the best estimates for relatively low (below 60%) fibre volume fractions.

In chapter 3, we use a double-scale asymptotic homogenization method to study helicalfibre-reinforced composite, helical fibres with cross-links (without matrix), and then an amalgamation of the two, that is, helical-fibre-reinforced composite with cross-links between fibres. The crimped fibres are modeled as helical structures, which is based on observations of tendon and arterial wall in the literature. The direction of the helices is set parallel to the z-axis and the cross-links are set perpendicular to that, and are connected to the nearest helix fibre at the furthest or nearest point. In our parameter study, we examine the effects of fibre volume fraction ρ f , helix angle β, and cross-link position on the macroscopic mechanical properties.

For helical-fibre-reinforced composite, helix angle β has little effect on effective moduli E H

x and E H y , but as β increases, E H z increases significantly corresponding to the stiffening behavior of fibrous tissues when stretching them along the direction of the length of the fibres. Furthermore, as fibre volume fraction ρ f increases, E H

x , E H y , and E H z all increase, because the elastic modulus of the fibre is set to a much higher value that of the matrix. For helical fibres with cross-links, the effective moduli show the same tendency: as fibre volume fraction ρ f and helix angle increase, the effective elastic moduli along the x, y, and z axes increase regardless of the cross-link position or whether or not a matrix is also present. Negative effective Poisson's ratios are found in both helical fibres with cross-links (without matrix) and helical-fibre-reinforced composite with cross-links when the crosslinks between helical fibres join the most distant points between any two fibres (longest possible perpendicular cross-links). Conversely, the largest effective Poisson's ratios are observed for the helical fibres with cross-links (with or without matrix) where the cross-links join the points in closest proximity between any two helices (shortest possible perpendicular cross-links). Moreover, in the absence of matrix, the helical fibres cross-linked with the longest possible cross-links show relatively large negative Poisson's ratios. The Poisson's ratios in composites where the same cross-linked fibres are surrounded by matrix, while still negative, are significantly less negative. This may signify that the presence of matrix weakens the auxetic behavior. These effects may also be what is driving the apparent difficulty in observing the negative Poisson's ratio in real tissues compared to the larger Poisson's ratio.

In summary, the study in chapter 3 focuses the helical structure of fibres in soft tissue and entails an evaluation of the effects of matrix and cross-links on the mechanical properties of soft tissue. The results suggest that the position of the cross-links between helical fibres does not affect the effective elastic modulus, but does influence the volume change of the composite model studied here. Further, the presence of matrix might control the auxetic behavior. We believe that further consideration of the cross-links of specific and more realistic structural arrangements of fibres in the development of future soft tissue models may offer greater insight into the behavior of fibre-reinforced soft tissues.

Finally, we present our development of a soft helical-fibre-reinforced composite using silicone-based materials. The composite manufacturing method satisfies our modeling assumption that the fibres and matrix bond with each other. We also present a finite element analysis that we use to predict the mechanical behavior of the soft composite, which shows a good fit with the experimental results. The work in chapter 4 represents the attempt to fabricate soft composite with corrugated fibres. Our results show that the material model of fibre-reinforced soft tissue can be studied experimentally. However, such a material model is not easy to fabricate and increasing the number of fibres within would not be straightforward.

In conclusion, first we introduce what is currently known about the Poisson's ratios of soft fibrous tissue of the human body and some animal models. We then propose an analytical model of the microstructure of the soft tissue of the AF based on observations from the literature. Finally, based on our study, we conclude that the corrugation of fibres within soft tissues influences their global Poisson's ratios. According to our model, twodimensional corrugation of fibres reduces the auxetic behavior of a laminate structure within which they are embedded, but helical fibres with cross-links can confer a large positive or negative Poisson's ratio, depending on the positions of the cross-links, and the presence of matrix surrounding the fibres weakens any inherent auxetic response. In the present thesis, the mechanical behavior of crimped fibre structures that may exist in soft tissue are studied by modeling. In addition, the current work focuses on the changes of Poisson's ratio, which are often ignored in modeling. The novelty of our study compared to the literature is that we consider fibre corrugation and study the effects of changes to parameters related to the nature of this corrugation on the mechanical behavior of a laminate structure designed to broadly represent annulus fibrosus tissue. Moreover, previous studies reported in the literature focused more on the effects of microstructure on stiffness, whereas in the present work, we examine the effects of cross-linking and the presence or not of matrix on changes to the geometry of soft tissues. Furthermore, the present work provides evidence of a link between corrugated fibre structure and auxetic behavior, which goes some way to addressing the speculation in the literature on this topic.

Although there is literature documenting physical measurements of the Poisson ratio of soft fibrous tissue, the reported results vary widely and are even contradictory. In order to understand these discrepancies, it is necessary to identify the factors that cause them, and further measurements of the Poisson's ratio of soft fibrous tissues are needed to confront and thus improve numerical models. Non-linear mechanical models are usually applied in soft tissue modeling, but our proposed models are limited on small initial strain which is considered as linear behavior. Therefore, further work should consider the proposed structure under large deformation. Moreover, the definition of the Poisson's ratio under large deformation also needs to be reconsidered in light of the results of [START_REF] Dusfour | Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach[END_REF], which show that as annulus fibrosus is increasingly dilated, the deformation perpendicular to the loading direction is not linear. In other words, during the stretching process, the Poisson's ratio depends on the level of deformation. Furthermore, the matrix in our mechanical model is considered as an isotropic solid material, but the matrix found in AF tissue contains several components, such as water, cells, proteoglycans, and so on. Future modeling should therefore consider the role of matrix and the effect of fluid content on changes to the volume of soft tissue as well as the potential electro-osmotic effect of proteoglycans. 
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 1 Figure 1: Structure des fibres de collagène dans l'annulus fibrosus. Reproduit de Pezowicz et al. [2005].
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 2 Figure 2: (a) Schéma des composants et de la microstructure du disque intervertébral. (b) Structure composite lamellaire.
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 3 Figure 3: (a) Volume élémentaire représentatif (VER) du composite renforcé par un arrangement périodique de fibres hélicoïdales non connectées. (b) VER des fibres hélicoïdales reliées entre elles par des liens mais sans matrice. (c) VER du composite fibres/matrice renforcé par des fibres hélicoïdales avec liens.

1

  Structure des fibres de collagène dans l'annulus fibrosus. Reproduit de Pezowicz et al. [2005]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 (a) Schéma des composants et de la microstructure du disque intervertébral. (b) Structure composite lamellaire. . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 (a) Volume élémentaire représentatif (VER) du composite renforcé par un arrangement périodique de fibres hélicoïdales non connectées. (b) VER des fibres hélicoïdales reliées entre elles par des liens mais sans matrice. (c) VER du composite fibres/matrice renforcé par des fibres hélicoïdales avec liens. . 14 1.1 Diagrammatic model of the major components of arterial tissue. The tissue consists of three layers: intima, media, and adventitia. Diagram reproduced from Holzapfel et al. [2000]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.2 Collagen and elastin fibre microstrucutre in media and adventitia layers. Image reproduced from Morin et al. [2019]. . . . . . . . . . . . . . . . . . . . . 31 1.3 Anatomical diagram with a description of the location and components of the intervertebral disc. Image reproduced from Barreto Henriksson [2010]. . . . . . 32 1.4 Diagram of the annulus fibrosus lamellae. Image reproduced from Pezowicz [2010] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.5 (a) Collagen fibre structure in the annulus fibrosus. (b) Schematic diagram of interconnectivity involving mono-cross-over of collagen in the annulus fibrosus. Diagram reproduced from Pezowicz et al. [2005]. . . . . . . . . . . . . 34 1.6 Anatomy and function of (a) tendons and (b) ligaments. Image reproduced from Im and Kim [2020]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.13 Effects on axial elastic moduli when A L is set to 0.01. (a) Effective axial elastic moduli E x and E z versus layer orientation angle θ. (b) Effective Poisson's ratio ν ij versus layer orientation angle θ in the physiological range of the annulus fibrosus. Value settings for each parameter are E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, A L = 0.01, and V f = 20%. . . . . . . . . . . . . . . . . . . . . 2.14 Effective Poisson's ratio (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz and (f) ν zy with respect to different fibre crimp level and different layer orientation. Values setting of each parameter:E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20% (Parameters in the physiological range). . . . . . . . . . . . . . . . . 2.15 Effective axial elastic modulus under load applied along (a) the x-axis, (b) the y-axis, and (c) the z-axis as a function of fibre crimp level and fibre volume fraction. The value settings for each parameter areE f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, and θ = 30 • (parameters in the physiological range). 2.16 Effective Poisson's ratio (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz and (f) ν zy with respect to different fibre crimp level and different fibre volume fraction. Values setting of each parameter:E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, θ = 30 • (Parameters in the physiological range). . . . . . . . . . . . . 2.17 Effective axial elastic modulus under load applied along (a) the x-axis, (b) the y-axis, and (c) the z-axis as a function of fibre crimp level and matrix Poisson's ratio. The value settings for each parameter are E f = 100MPa, E m = 10KPa, ν f = 0.3, V f = 20%, and θ = 30 • . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.18 Effective Poisson's ratio (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz and (f) ν zy with respect to different fibre crimp level and different matrix Poisson's ratio. Values setting of each parameter: E f = 100MPa, E m = 10KPa, ν f = 0.3, V f = 20%, θ = 30 • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.19 Effective axial elastic modulus under load applied along (a) the x-axis, (b) yaxis, and (c) z-axis as a function of fibre crimp level and elastic modulus ratio. The value settings for each parameter are E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, and θ = 30 • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.20 Effective Poisson's ratios (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz , and (f) ν zy as a function of fibre crimp level and elastic modulus ratio. The values settings for each parameter are E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, and θ = 30 • . 2.21 Double-layer laminate within the Cartesian coordinate system. The first and second layers are orientated by θ 1 and θ 2 around the y-axis with respect to the x-axis, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.22Effective axial elastic modulus under load applied along (a) the x-axis, (b) yaxis, and (c) z-axis as a function of fibre crimp level and relative orientation of the two layers. Values setting of each parameter: r = 2, e 1 = e 2 = 0.5mm,E f = 100Mpa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%,and θ 1 = -θ 2. . . . 2.23 Effective Poisson's ratio (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz and (f) ν zy with respect to different fibre crimp level and different layer orientation for double layers. Values setting of each parameter: r= 2, e 1 = e 2 = 0.5mm, E f = 100Mpa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, θ 1 = -θ 2 . . . . . . . . . . 2.24 Effective axial elastic modulus under load applied along (a) the x-axis, (b) y-axis, and (z) z-axis as a function of fibre crimp level and layer-thickness ratio between two layers. The value settings for each parameter are r = 2,E f = 100Mpa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = 0.3mm,and θ 1 = -θ 2 = 30 • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25 Effective Poisson's ratio (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz and (f) ν zy with respect to different fibre crimp level and different layer thickness ratio for double layers. Values setting of each parameter: r= 2, E f = 100Mpa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = 0.3mm, θ 1 = -θ 2 = 30 • . . . . . . . . 2.26 Effective axial elastic modulus under load applied along (a) the x-axis (b), y-axis, and (d) z-axis as a function of fibre crimp level and elastic modulus ratio. The value settings of each parameter are r = 2, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = e 2 = 0.5mm, and θ 1 = -θ 2 = 30 • . . . . . . . . . . . . 2.27 Effective Poisson's ratio (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz and (f) ν zy with respect to different fibre crimp level and different elastic modulus ratios. Values setting of each parameter: r = 2, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = e 2 = 0.5mm, θ 1 = -θ 2 = 30 • . . . . . . . . . . . . . . . . . . . . 2.28 Effective axial elastic modulus under load applied along (a) the x-axis, (b) yaxis, and (c) z-axis as a function of relative layer orientation in a two-layer model. The value settings for each parameter are r= 2, E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = e 2 = 0.5mm, and A L = 0.1. . . . . . . 2.29 Effective Poisson's ratios (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz , and (f) ν zy as a function of relative layer orientation for a two-layer model. The value settings for each parameter are r= 2, E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%,e 1 = e 2 = 0.5mm, and A L = 0.1. . . . . . . . . . . . . . . . . . . . . . 2.30 Schema of multi-layer laminate, showing the reference coordinate system. h represents the total thickness of the laminate, θ k (k = 1,2,3 • • • ) is the orientated angle around the y-axis with respect to the x-axis for the kth layer and e k is the thickness of the kth lamella. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.31 Effective axial elastic modulus of a ten-layer laminate model under load applied along (a) the x-axis, (b) the y-axis, and (c) the z-axis as a function of fibre crimp level and relative orientation of the successive layers. The value settings for the fixed parameters are r = 10, E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, and e k = 0.5mm. . . . . . . . . . . . . . . . . . . 2.32 Effective Poisson's ratios (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz , and (f) ν zy for a ten-layer laminate model as a function of fibre crimp level and relative orientation of the successive layers of the laminate model. The value settings for the parameters are r = 10, E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e k = 0.5mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Crimped collagen fibrils in chordae tendineae. (Reproduced from Liao [2003]) . 3.2 Diagram of the periodic medium, showing the REV cell with period Ω, and the periodic phases Ω 1 and Ω 2 and interfaces S 1 and S 2 . . . . . . . . . . . . . 3.3 Schema of periodic boundary conditions for the displacement. . . . . . . . . . 3.4 Schema of periodic boundary conditions for the stress. . . . . . . . . . . . . . 3.5 Finite element analysis process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 (a) Periodically arranged straight-fibre-reinforced composite. (b) REV of the periodic structure under consideration. . . . . . . . . . . . . . . . . . . . . . . 3.7 Finite element mesh of the REV under consideration here. The number of elements here is 83904. (a) Global view of the REV mesh. (b) Mesh of the fibre embedded in the REV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Meshes of increasing number of elements, as studied in the finite element analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Elastic tensor parameter value versus number of elements in the mesh. . . . . 3.10 Periodically arranged helical-fibre-reinforced composite. . . . . . . . . . . . . 3.11 (a) REV of the helical-fibre reinforced composite. (b) Schematic diagram of a section of helical fibre showing the helix pitch H 0 . (c) 2D schematic diagram of the geometric relation between the helix angle β, helix radius R 0 , helix pitch H 0 and helix period length L 0 . (d) Schematic diagram showing the helix radius R 0 and fibre diameter d 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12 An example finite element mesh of one REV of the helical-fibre-reinforced composite. Here, the number of elements is 168640. (a) Global view of the REV mesh. (b) Mesh of the helical fibre in the REV. . . . . . . . . . . . . . . . . 3.13 Meshes of increasing number of elements studied in finite element analysis for helical-fibres-reinforced composite. . . . . . . . . . . . . . . . . . . . . . . . 3.14 Each nonzero parameter value of the elastic stiffness tensor C H versus the number of elements in the mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.15 (a) REV of helical fibres cross-linked by straight fibres. (b) View of the REV in the xy plane. (c) View of the REV in the zx plane. (d) View of the REV in the zy plane. The red structures represent the helical fibres and the cross-links are shown in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.16 Meshes of increasing number of elements studied in a finite element analysis of cross-linked helical fibres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.17 Each non-zero parameter value of the elastic stiffness tensor C c versus number of element in mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18 One REV of the composite of matrix reinforced by helical fibres with cross-links.134 3.19 An example finite element mesh of one REV of matrix composite reinforced by cross-linked helical fibres. Here, the number of elements is 964546. (a) Global view of the REV mesh. (b) Mesh of the cross-linked helical fibres embedded in the REV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.20 Meshes of increasing number of elements studied in a finite element analysis of one REV of composite reinforced by cross-linked helical fibres. . . . . . . . 3.21 Each nonzero parameter value of the elastic stiffness tensor C HC versus number of elements in the mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.22 Effective axial elastic modulus of composite reinforced by helical fibres along (a) the x-axis E H x , (b) y-axis E H y , and (c) z-axis E H z as a function of fibre volume fraction ρ f and helix angle β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.23 Effective Poisson's ratios of composite reinforced by helical fibres, (a) ν H xy , (b) ν H xz , (c) ν H yx , (d) ν H yz , (e) ν H zx , and (f) ν H zy as a function of fibre volume fraction ρ f and helix angle β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.24 REVs of the helical fibres with cross-links showing the two different cross-link positions studied. (a) Straight cross-link fibres connect adjacent helical fibres at the farthest points (longest-possible cross-links). (b) Straight cross-link fibres connect adjacent helical fibres at the nearest points (shortest-possible cross-links). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.25 Effective axial elastic modulus of helical fibres with the longest cross-links (connecting the nearest fibres at the farthest points) along the (a) x-axis E c x , (b) y-axis E c y , and (c) z-axis E c z as a function of fibre volume fraction ρ f and helix angle β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.26 Effective Poisson's ratios of helical fibres with the longest cross-links (connecting the nearest fibres at the furthest points): (a) ν c xy , (b) ν c xz , (c) ν c yx , (d) ν c yz , (e) ν c zx , and (f) ν c zy as a function of fibre volume fraction ρ f and helix angle β. . . . . . 3.27 Effective axial elastic modulus of helical fibres with the shortest possible cross-links (connecting adjacent fibres at the nearest point) along the (a) xaxis E c x , (b) y-axis E c y , and (c) z-axis E c z as a function of fibre volume fraction ρ f and different helix angle β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.28 Effective Poisson's ratios of helical fibres with the shortest possible cross-links (connecting adjacent fibres at the nearest point): (a) ν c xy , (b) ν c xz , (c) ν c yx , (d) ν c yz , (e) ν c zx , and (f) ν c zy as a function of fibre volume fraction ρ f and helix angle β. . 3.29 REVs of the matrix composites reinforced by helical fibres with cross-links, showing the two different cross-link positions studied. (a) Straight cross-link fibres connect adjacent helical fibres at the farthest points (longest-possible cross-links). (b) Straight cross-link fibres connect adjacent helical fibres at the nearest points (shortest-possible cross-links). . . . . . . . . . . . . . . . . . . . 3.30 Effective axial elastic moduli of composite reinforced by helical fibres with the longest possible cross-links (connecting adjacent fibres at the furthest points) along the (a) x-axis E HC x , (b) y-axis E HC y , and (c) z-axis E HC z as a function of fibre volume fraction ρ f and helix angle β. . . . . . . . . . . . . . . . . . . . . . 3.31 Effective Poisson's ratios of composite reinforced by helical fibres with the longest possible cross-links (connecting adjacent fibres at the furthest points): (a) ν HC xy , (b) ν HC xz , (c) ν HC yx , (d) ν HC yz , (e) ν HC zx , and (f) ν HC zy as a function of fibre volume fraction ρ f and helix angle β. . . . . . . . . . . . . . . . . . . . . . . . . 3.32 Effective axial elastic modulus of matrix composite reinforced by helical with the longest possible cross-links (connecting adjacent fibres at the nearest points) along the (a) x-axis E HC x , (b) y-axis E HC y , and (c) z-axis E HC z as a function of fibre volume fraction ρ f and helix angle β. . . . . . . . . . . . . . . 3.33 Effective Poisson's ratios of matrix composite reinforced by helical fibres with the shortest possible cross-links (connecting adjacent fibres at the nearest points): (a) ν HC xy , (b) ν HC xz , (c) ν HC yx , (d) ν HC yz , (e) ν HC zx , and (f) ν HC zy as a function of fibre volume fraction ρ f and helix angle β. . . . . . . . . . . . . . . . . . . . . . 4.1 Fabrication process of soft composites. (a) Smooth surface helix metal is placed in the plastic mold. (b) Ecoflex™ 00-10 (parts A and B mixed) is used to fill the mold and the curing process begins. (c) Helix metal is removed and Mold Max silicone (parts A and B mixed) is injected into the mold with a syringe. (d) Soft composite material sample after curing. . . . . . . . . . . . . 4.2 Photos of the starting materials of the helical-fibre-reinforced soft composite and the final synthesised soft-tissue composite. (a) Soft silicone matrix material, (b) hard silicone fibre material, and (c) soft tissue composites. . . . . 4.3 Helical-fibre-reinforced soft composite dimensions. (a) Helix diameter and fibre diameter. (b) Helical fibre pitch. (c) Soft-composite dimensions. . . . . . 4.4 Tensile test equipment setup. The right panel shows a close-up photo of the Zwick/Roell tensile test machine and the positions of the cameras. . . . . . . 4.5 (a) Displacement field in the image-analysis interface VIC-2D ® . (b) Surface imaged for the numerical analysis, from which we obtain the strain. . . . . . . 4.6 Finite element analysis process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 (a) Finite element mesh of the soft composites. (b) Mesh of the fibre in the composite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Meshes of increasing fineness used in finite element analyses. . . . . . . . . . 4.9 (a) Force (N) versus number of nodes in the mesh. (b) Strain on the middle surface of the composite test specimen versus number of nodes in the mesh. . 4.10 Experimental stress-strain curve of the (a) matrix and (b) fibre test sample with the hyperelastic model fit curve. . . . . . . . . . . . . . . . . . . . . . . . 4.11 Force vs. strain as provided by the finite element analysis of our composite within the framework of the elastic and hyperelastic models and that derived from experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.1 Schematic of a two-layer laminate within the coordinate system used in the present thesis. The angles θ 1 and θ 1 are the orientations of the two layers relative to the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1 . 1 :

 11 Figure 1.1: Diagrammatic model of the major components of arterial tissue. The tissue consists of three layers: intima, media, and adventitia. Diagram reproduced from Holzapfel et al. [2000].
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 12 Figure 1.2: Collagen and elastin fibre microstrucutre in media and adventitia layers. Image reproduced from Morin et al. [2019].
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 1 Figure 1.3: Anatomical diagram with a description of the location and components of the intervertebral disc. Image reproduced from Barreto Henriksson [2010].
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 1 Figure 1.4: Diagram of the annulus fibrosus lamellae. Image reproduced from Pezowicz[2010] 
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 1 Figure 1.5: (a) Collagen fibre structure in the annulus fibrosus. (b) Schematic diagram of interconnectivity involving mono-cross-over of collagen in the annulus fibrosus. Diagram reproduced from Pezowicz et al. [2005].
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 1 Figure 1.6: Anatomy and function of (a) tendons and (b) ligaments. Image reproduced from Im and Kim [2020].
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 17 Figure 1.7: Schematic diagram of the organization of the structure of tendon, from the collagen fibrils to the entire tendon. The crimp waveform is shown at the fibril and fibre level. Image reproduced from Schlecht [2012].

Figure 1

 1 Figure 1.8: (a) Polarized light image of mitral valve chordae tendineae (tendons of the heart). Image reproduced from Liao and Vesely [2003]. (b) Scanning electron micrograph of human tendon. Image reproduced from Evans and Barbenel [1975].
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 1 Figure 1.9: Behavior of conventional material under tension (left) and compression (right) loading
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 1 Figure 1.10: Behavior of auxetic material under tension (left) and when compressed (right).
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 1 Figure 1.11: Segment of the artery showing the cylindrical coordinate system ( ⃗ θ,⃗ z,⃗ r) used to study its mechanics. Image reproduced from Bai and Bai [2014].
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 21 Figure 2.1: Scheme of intervertebral disc components and microstructure.
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 22 Figure 2.2: Lamellar composite structure under consideration.
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 23 Figure 2.3: Two mutually perpendicular systems, x, y, z and a, b, c.
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 2 Figure 2.4: Composite reinforced by straight fibres.
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 2 Figure 2.5: (a) Ellipsoidal inclusion with coordinates. (b) Straight-fibre-reinforced composite plane y-z section.

  .64) where E f and E m represent the Young's modulus of fibre and matrix, respectively; ν f is the Poisson's ratio of the fibre; b 1 , b 2 , b 3 , and b 4 are expressed as
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 2 Figure 2.6: Straight fibre orientation and Cartesian coordinates.
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 2 Figure 2.7: Corrugated fibre and Cartesian coordinates.

  Figure 2.8: (a) Composite reinforced by fibres of uniform sinusoidal waviness. (b) Composite x-z plane section and axis.
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 2 Figure 2.10: Organization of the synthetic laminate (a) Multilayer laminate with coordinate system. Two lamellae are shown, the first and second layers are orientated by θ 1 and θ 2 around the y-axis with respect to the x-axis, respectively. (b) Schema of laminate layer thickness.

1

 1 Effects of fibre crimp level and layer orientationIn order to test the effects of fibre crimp level and layer orientation, we applied the following constraints to our model. The elastic modulus of fibres E f is set to 100MPa and that of the matrix E m is set to 10KPa. The Poisson's ratio of fibre ν f and matrix ν m are set to 0.3 and 0.4, respectively. The fibre volume fraction V f is set to 20 % in this analysis. With these parameters, the model is able to predict the axial effective elastic modulus and effective Poisson's ratio as functions of fibre crimp level (0.01 < A L < 0.3) and layer orientation angle (20 • < θ < 70 • ), as shown in Figure2.12 and 2.14. The orientation angle θ and coordinate system settings are represented in Figure2.11.

Figure 2 .

 2 Figure 2.11: Single layer composite orientation in the given coordinate systems.

Figure 2 .

 2 Figure 2.12 shows that the axial elastic modulus is jointly influenced by fibre crimp level

Figure 2 .

 2 Figure 2.12: Effective axial elastic modulus under load applied along (a) the x-axis and (b) the z-axis as a function of fibre crimp level and alternative layer orientation. Value settings for each parameter are E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, and V f = 20% (parameters taken in the physiological range).

Figure 2 .

 2 Figure 2.13: Effects on axial elastic moduli when A L is set to 0.01. (a) Effective axial elastic moduli E x and E z versus layer orientation angle θ. (b) Effective Poisson's ratio ν ij versus layer orientation angle θ in the physiological range of the annulus fibrosus. Value settings for each parameter are E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, A L = 0.01, and V f = 20%.

Figure 2 .

 2 Figure 2.14 shows how the effective Poisson's ratio ν ij varies with changes to fibre crimp level AL and layer orientation θ. We note that ν ij represents the effective Poisson's ratio that characterizes the strain in the j direction produced by loading in the i direction, as mentioned above. Interestingly, due to the strongly anisotropic composites under study, all the ν ij (i, j = x, y, z) appear different from each other. However, ν xy and ν zy , ν xz and ν zx , and ν yz and ν yx are symmetrical regardless of crimp level when θ = 45 • . This symmetrical feature can also

Figure 2 .Figure 2 .

 22 Figure 2.14: Effective Poisson's ratio (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz and (f) ν zy with respect to different fibre crimp level and different layer orientation. Values setting of each parameter: E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20% (Parameters in the physiological range).
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 2 Figure 2.16: Effective Poisson's ratio (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz and (f) ν zy with respect to different fibre crimp level and different fibre volume fraction. Values setting of each parameter: E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, θ = 30 • (Parameters in the physiological range).
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 2 Figure 2.17: Effective axial elastic modulus under load applied along (a) the x-axis, (b) the y-axis, and (c) the z-axis as a function of fibre crimp level and matrix Poisson's ratio. The value settings for each parameter are E f = 100MPa, E m = 10KPa, ν f = 0.3, V f = 20%, and θ = 30 • .
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 22 Figure2.17 shows how axial elastic modulus varies with changes to fibre crimp level

Figure 2 .

 2 Figure 2.19: Effective axial elastic modulus under load applied along (a) the x-axis, (b) yaxis, and (c) z-axis as a function of fibre crimp level and elastic modulus ratio. The value settings for each parameter are E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, and θ = 30 • .
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 2 Figure 2.19 shows how axial elastic modulus varies with changes to fibre crimp level A L

Figure 2 .

 2 Figure 2.20: Effective Poisson's ratios (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz , and (f) ν zy as a function of fibre crimp level and elastic modulus ratio. The values settings for each parameter are E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, and θ = 30 • .
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 2 Figure 2.20 shows how effective Poisson's ratio ν ij varies with changes to fibre crimp level A L and elastic modulus ratio

Figure 2 .

 2 Figure 2.21: Double-layer laminate within the Cartesian coordinate system. The first and second layers are orientated by θ 1 and θ 2 around the y-axis with respect to the x-axis, respectively.

  3 and layer orientation angle in the range 20 • < θ 1 < 70 • (and therefore -20 • < θ 2 < -70 • ), as shown in Figures 2.22

  and 2.23. The orientation angle of the two layers with respect to the x-axis, θ 1 and θ 2 , and the reference coordinate system are represented in Figure2.21.
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 2 Figure 2.22: Effective axial elastic modulus under load applied along (a) the x-axis, (b) y-axis, and (c) z-axis as a function of fibre crimp level and relative orientation of the two layers. Values setting of each parameter: r = 2, e 1 = e 2 = 0.5mm, E f = 100Mpa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, and θ 1 = -θ 2 .
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 22 Figure 2.23 shows how the effective Poisson's ratio ν ij varies with changes to fibre crimp level A L and layer orientation θ for the two layers arranged symmetrically on the x-axis.

Figure 2 .

 2 Figure 2.24: Effective axial elastic modulus under load applied along (a) the x-axis, (b) y-axis, and (z) z-axis as a function of fibre crimp level and layer-thickness ratio between two layers. The value settings for each parameter are r = 2, E f = 100Mpa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = 0.3mm, and θ 1 = -θ 2 = 30 • .
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 22 Figure 2.24 shows how the axial elastic modulus varies with changes to AL and e 2 e 1 for the two layers alligned at an angle of 60 degrees with respect to one another. E x , E y , and E z are less affected by e 2 e 1 and as A L increases, E x and E y decline but E z increases.

Figure 2 .

 2 Figure 2.26: Effective axial elastic modulus under load applied along (a) the x-axis (b), y-axis, and (d) z-axis as a function of fibre crimp level and elastic modulus ratio. The value settings of each parameter are r = 2, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = e 2 = 0.5mm, and θ 1 = -θ 2 = 30 • .
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 22 Figure 2.26 shows how axial elastic modulus varies with changes to fibre crimp level

  A L is set to 0.1. The number of layers r is set to 2, and they have the same thickness of 0.5 mm (e 1 = e 2 ). The orientation angles of the first layer θ 1 are set to -20 • , -30 • , -45 • , -60 • and -70 • in separate test runs. These parameters predict the axial effective elastic modulus and effective Poisson's ratio as a function of θ 2 in the range from 20 • to 70 • as shown in Figures 2.28

Figure 2 .

 2 Figure 2.28: Effective axial elastic modulus under load applied along (a) the x-axis, (b) yaxis, and (c) z-axis as a function of relative layer orientation in a two-layer model. The value settings for each parameter are r = 2, E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = e 2 = 0.5mm, and A L = 0.1.

Figure 2 .

 2 Figure 2.28 shows how the axial elastic modulus varies with changes to the orientation angle of the second layer θ 2 with respect to the x-axis for different values of θ 1 . The first layer angle θ 1 is set to -20 • , -30 • , -45 • , -60 • , -70 • and -θ 2 , providing six different cases to analyze. For each case, as |θ 1 | and |θ 2 | increase, E x decreases and E z increases, and when |θ 1 | + |θ 2 | = 90 • , E y reaches its maximum value.
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 2 Figure 2.29: Effective Poisson's ratios (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz , and (f) ν zy as a function of relative layer orientation for a two-layer model. The value settings for each parameter are r = 2, E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e 1 = e 2 = 0.5mm, and A L = 0.1.

Figure 2 .

 2 Figure 2.29 shows how the effective Poisson's ratios ν ij vary with changes to the orientation angle of the second layer θ 2 with respect to the x-axis for different values of θ 1 .As |θ 1 | and |θ 2 | increase, ν xy , ν yx , and ν zy increase, and ν xz , ν yz , and ν zy decrease. Compared

  and 2.32.

Figure 2 .

 2 Figure 2.30: Schema of multi-layer laminate, showing the reference coordinate system. h represents the total thickness of the laminate, θ k (k = 1,2,3 • • • ) is the orientated angle around the y-axis with respect to the x-axis for the kth layer and e k is the thickness of the kth lamella.

Figure 2 .

 2 Figure 2.31: Effective axial elastic modulus of a ten-layer laminate model under load applied along (a) the x-axis, (b) the y-axis, and (c) the z-axis as a function of fibre crimp level and relative orientation of the successive layers. The value settings for the fixed parameters are r = 10, E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, and e k = 0.5mm.

Figure 2 .

 2 Figure 2.31 shows how the axial elastic modulus varies with changes to fibre crimp level

Figure 2 .

 2 Figure 2.32: Effective Poisson's ratios (a) ν xy , (b) ν yx , (c) ν xz , (d) ν zx , (e) ν yz , and (f) ν zy for a ten-layer laminate model as a function of fibre crimp level and relative orientation of the successive layers of the laminate model. The value settings for the parameters are r = 10, E f = 100MPa, E m = 10KPa, ν f = 0.3, ν m = 0.4, V f = 20%, e k = 0.5mm.
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 31 Figure 3.1: Crimped collagen fibrils in chordae tendineae. (Reproduced from Liao [2003])

  2. Ω 1 and Ω 2 represent the two phases in the periodic cell and Γ represents the common interface between them. The periodic interfaces (S 1 and S 2 ) are associated with the phases Ω 1 and Ω 2 , respectively, as shown in Figure 3.2.

Figure 3 . 2 :

 32 Figure 3.2: Diagram of the periodic medium, showing the REV cell with period Ω, and the periodic phases Ω 1 and Ω 2 and interfaces S 1 and S 2 .

Figure 3 . 3 :

 33 Figure 3.3: Schema of periodic boundary conditions for the displacement.

Figure 3 . 5 :

 35 Figure 3.5: Finite element analysis process.

  Figure 3.6: (a) Periodically arranged straight-fibre-reinforced composite. (b) REV of the periodic structure under consideration.

  Figure 3.9: Elastic tensor parameter value versus number of elements in the mesh.

  Figure 3.11: (a) REV of the helical-fibre reinforced composite. (b) Schematic diagram of a section of helical fibre showing the helix pitch H 0 . (c) 2D schematic diagram of the geometric relation between the helix angle β, helix radius R 0 , helix pitch H 0 and helix period length L 0 . (d) Schematic diagram showing the helix radius R 0 and fibre diameter d 0 .

Figure 3 .

 3 Figure 3.12: An example finite element mesh of one REV of the helical-fibre-reinforced composite. Here, the number of elements is 168640. (a) Global view of the REV mesh. (b) Mesh of the helical fibre in the REV.

Figure 3 .

 3 Figure 3.13: Meshes of increasing number of elements studied in finite element analysis for helical-fibres-reinforced composite.

  Figure 3.14: Each nonzero parameter value of the elastic stiffness tensor C H versus the number of elements in the mesh. 129

  Figure 3.15: (a) REV of helical fibres cross-linked by straight fibres. (b) View of the REV in the xy plane. (c) View of the REV in the zx plane. (d) View of the REV in the zy plane. The red structures represent the helical fibres and the cross-links are shown in green.

Figure 3 .

 3 Figure 3.15a shows an example REV of the helical fibres cross-linked by straight fibres, and Figures 3.15b,3.15c and 3.15d show 2D images of this REV in the xy plane, the zx plane, and the zy plane, respectively. The REV under study can be characterized by the helix shape, as presented in section 3.3.1, the diameter of the cross-link fibres, which is set to1 2 d 0 ,

  Figure 3.15a shows an example REV of the helical fibres cross-linked by straight fibres, and Figures 3.15b,3.15c and 3.15d show 2D images of this REV in the xy plane, the zx plane, and the zy plane, respectively. The REV under study can be characterized by the helix shape, as presented in section 3.3.1, the diameter of the cross-link fibres, which is set to1 2 d 0 ,

Figure 3 .

 3 Figure 3.16: Meshes of increasing number of elements studied in a finite element analysis of cross-linked helical fibres.

Figure 3 .

 3 Figure 3.18: One REV of the composite of matrix reinforced by helical fibres with cross-links.

Figure 3 .

 3 Figure 3.18 shows one REV of the composite of matrix reinforced by helical fibres with cross-links, where the red structures represent the helical fibres, the green structures are the straight cross-link fibres, and the matrix is shown in transparent gray. The fibre structure here is made up of helical fibres cross-linked by straight fibres, as described in section 3.4.1.In the present study, we study the effects of fibre volume fraction ρ f , helix angle β, and crosslink position (closest vs farthest) on the macroscopic mechanical properties of the composite. The calculation results are discussed in the section 3.6.3.

Figure 3 .

 3 Figure 3.19: An example finite element mesh of one REV of matrix composite reinforced by cross-linked helical fibres. Here, the number of elements is 964546. (a) Global view of the REV mesh. (b) Mesh of the cross-linked helical fibres embedded in the REV.

Figure 3 .

 3 Figure 3.20: Meshes of increasing number of elements studied in a finite element analysis of one REV of composite reinforced by cross-linked helical fibres.

  Figure 3.21: Each nonzero parameter value of the elastic stiffness tensor C HC versus number of elements in the mesh. 137

  Figure 3.22: Effective axial elastic modulus of composite reinforced by helical fibres along (a) the x-axis E H x , (b) y-axis E H y , and (c) z-axis E H z as a function of fibre volume fraction ρ f and helix angle β.

Figure 3 .

 3 Figure 3.23 shows how the effective Poisson's ratio of composite reinforced by helical fibres (no cross-links) ν H ij varies with changes to fibre volume fraction ρ f and helix angle β. Compared with helix angle β, the fibre volume fraction ρ f has more influence on ν H xy and ν H yx . As ρ f increases, ν H xy and ν H yx increase until an approximate value of 0.1, after which they decrease. Both ν H xz and ν H yz reach their maximum value when ρ f and β are small.

  Figure 3.23: Effective Poisson's ratios of composite reinforced by helical fibres, (a) ν H xy , (b) ν H xz , (c) ν H yx , (d) ν H yz , (e) ν H zx , and (f) ν H zy as a function of fibre volume fraction ρ f and helix angle β.

  Figure 3.24: REVs of the helical fibres with cross-links showing the two different cross-link positions studied. (a) Straight cross-link fibres connect adjacent helical fibres at the farthest points (longest-possible cross-links). (b) Straight cross-link fibres connect adjacent helical fibres at the nearest points (shortest-possible cross-links).

Figure 3

 3 Figure 3.25: Effective axial elastic modulus of helical fibres with the longest cross-links (connecting the nearest fibres at the farthest points) along the (a) x-axis E c x , (b) y-axis E c y , and (c) z-axis E c z as a function of fibre volume fraction ρ f and helix angle β.

Figure 3 .

 3 Figure 3.26 shows how the effective Poisson's ratio ν c ij of helical fibres with the longest cross-links, which connect the nearest fibre at the furthest point, varies with changes to fibre volume fraction ρ f and helix angle β. As β increases, ν c yz and ν c xz increase but ν c xy , ν c yx , ν c zx , and ν c zy decrease. As ρ f rises, ν c xy and ν c yx decrease but ν c xz and ν c yz increase. ν c zx and ν c zy

Figure 3 .

 3 Figure 3.26: Effective Poisson's ratios of helical fibres with the longest cross-links (connecting the nearest fibres at the furthest points): (a) ν c xy , (b) ν c xz , (c) ν c yx , (d) ν c yz , (e) ν c zx , and (f) ν c zy as a function of fibre volume fraction ρ f and helix angle β.

  Figure 3.27: Effective axial elastic modulus of helical fibres with the shortest possible crosslinks (connecting adjacent fibres at the nearest point) along the (a) x-axis E c x , (b) y-axis E c y , and (c) z-axis E c z as a function of fibre volume fraction ρ f and different helix angle β.

  Figure 3.28: Effective Poisson's ratios of helical fibres with the shortest possible cross-links (connecting adjacent fibres at the nearest point): (a) ν c xy , (b) ν c xz , (c) ν c yx , (d) ν c yz , (e) ν c zx , and (f) ν c zy as a function of fibre volume fraction ρ f and helix angle β.

Figure 3 .

 3 Figure 3.28 shows how the effective Poisson's ratios ν c ij of helical fibres with the shortest possible cross-links, which connect adjacent fibres at the nearest points, vary with changes

Figure 3 .Figure 3

 33 Figure 3.29: REVs of the matrix composites reinforced by helical fibres with cross-links, showing the two different cross-link positions studied. (a) Straight cross-link fibres connect adjacent helical fibres at the farthest points (longest-possible cross-links). (b) Straight crosslink fibres connect adjacent helical fibres at the nearest points (shortest-possible cross-links).

Figure 3 .

 3 Figure 3.31 shows how the effective Poisson's ratios ν HC ij of composite reinforced by helical fibres with the longest possible cross-links, which connect the nearest fibre at the furthest point, varies with changes to fibre volume fraction ρ f and helix angle β. As β increases, ν HC xy , ν HC yx , ν HC zx , and ν HC zy decrease. As ρ f increases, ν HC xy and ν HC yx decrease, ν HC zxand ν HC zy change slightly, and ν HC xz and ν HC yz decrease until a value of f of about 0.06 and then increase again. We note that the structure studied here shows some negative Poisson's ratios. Our matrix composite reinforced by helical fibres with the longest possible cross-links shows negative values for the Poisson's ratios ν HC xz , ν HC yz , ν HC zx , and ν HC zy . As opposed to the

Figure 3

 3 Figure 3.32: Effective axial elastic modulus of matrix composite reinforced by helical with the longest possible cross-links (connecting adjacent fibres at the nearest points) along the (a) x-axis E HC x , (b) y-axis E HC y , and (c) z-axis E HC z as a function of fibre volume fraction ρ f and helix angle β.

  Figure 3.33: Effective Poisson's ratios of matrix composite reinforced by helical fibres with the shortest possible cross-links (connecting adjacent fibres at the nearest points): (a) ν HC xy , (b) ν HC xz , (c) ν HC yx , (d) ν HC yz , (e) ν HC zx , and (f) ν HC zy as a function of fibre volume fraction ρ f and helix angle β.

Figure 3 .

 3 Figure 3.33 shows how the effective Poisson's ratios ν HC ij

Figure 4 . 1 :

 41 Figure 4.1: Fabrication process of soft composites. (a) Smooth surface helix metal is placed in the plastic mold. (b) Ecoflex™ 00-10 (parts A and B mixed) is used to fill the mold and the curing process begins. (c) Helix metal is removed and Mold Max silicone (parts A and B mixed) is injected into the mold with a syringe. (d) Soft composite material sample after curing.

  Figure 4.3: Helical-fibre-reinforced soft composite dimensions. (a) Helix diameter and fibre diameter. (b) Helical fibre pitch. (c) Soft-composite dimensions.

Figure 4

 4 Figure 4.6: Finite element analysis process.

  Figure 4.7b.

Figure 4

 4 Figure 4.7: (a) Finite element mesh of the soft composites. (b) Mesh of the fibre in the composite.

Figure 4 2 :

 42 Figure 4.8: Meshes of increasing fineness used in finite element analyses.

  Figure 4.9: (a) Force (N) versus number of nodes in the mesh. (b) Strain on the middle surface of the composite test specimen versus number of nodes in the mesh.

  Figure 4.10: Experimental stress-strain curve of the (a) matrix and (b) fibre test sample with the hyperelastic model fit curve.

  Figure 4.11. The predicted results from our numerical simulation test calculated by a linear elastic model, the nonlinear Neo-Hookean model, and the nonlinear Yeoh model all show a good fit to the real force-strain experimental results as shown in Figure 4.11.

Figure 4 .

 4 Figure 4.11: Force vs. strain as provided by the finite element analysis of our composite within the framework of the elastic and hyperelastic models and that derived from experimental results.

Figure C. 1 :

 1 Figure C.1: Schematic of a two-layer laminate within the coordinate system used in the present thesis. The angles θ 1 and θ 1 are the orientations of the two layers relative to the xaxis.
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Table 1 .

 1 3: Experimental Poisson's ratio for different saline concentrations and strain rates. Table reproduced from Derrouiche et al. [2019a].

			-1 ) Poisson's ratio ν θz Poisson's ratio ν θr
	0	2 * 10 -3	0.887 ± 0.19	-0.468 ± 0.1
		2 * 10 -4	0.74 ± 0.16	-0.574 ± 0.12
	9	2 * 10 -3	0.92 ± 0.2	-0.2 ± 0.0.04
		2 * 10 -4	0.74 ± 0.16	-0.387 ± 0.08
	18	2 * 10 -3	0.963 ± 0.21	-0.146 ± 0.03
		2 * 10 -4	0.811 ± 0.17	-0.29 ± 0.06

Table 1 .

 1 

	Poisson's ratio range	ν xy = 0.11 ± 0.106, ν yx = 0.80 ± 0.179	ν yx = 2.98 ± 2.59	ν xy = 0.488 ± 0.653	ν yx ≈ 0.8, with some data exceeding 1	nu yx = 0.55 ± 0.12	Extramuscular free tendinous component ν yx ≈ 0.6	ν yx : 0.82 -1.64	SDFT: ν yx ≈ 1.36	CDET: 2< ν yx < 4.0 (from results figure)	ν yx : 2.0 -2.4	Control sample: ν yx = 0.91 ± 0.45 (4% strain), ν yx = 1.58 ± 0.32(8% strain)	Fatigue loaded sample: ν yx = -0.08 ± 0.38 (4%), ν yx = -0.1 ± 0.41 (8%)	After preconditioned sample: ν yx = 0.46 ± 0.53 (4%), ν yx = 0.10 ± 0.24 (8%)	ν yx : (-1.44) -(-0.39)	ν yx : (-3.81) -(-0.166)	ν yx : (-9.86) -(-0.37), ν yz : 1.217 -3.035	ν yx : (-3.11) -(-0.34)	Not given directly, negative Poisson's ratio (auxetic behavior) are confirmed
	Type of tendon or ligament	Rabbit patellar tendon	Sheep flexor tendon	Rat tail tendon	Horse equine superficial digital flexor tendon	Human Achilles tendon	Porcine flexor tendon	Horse equine superficial digital flexor (SDFT)	Horse common digital extensor (CDET)	Rat tail tendon		Horse superficial digital flexor tendon		Human achilles tendon	Human peroneus brevis	Sheep deep flexor tendon	Pig deep flexor tendon	Pig flexor tendon
	Author	Lynch et al. [2002]	Lynch et al. [2003]	Cheng and Screen [2007]	Vergari et al. [2011]	Iwanuma et al. [2011]	Chernak and Thelen [2012]	Thorpe et al. [2013]	Reese and Weiss [2013]		Thorpe et al. [2014]			Gatt et al. [2015]		Vella Wood et al. [2019]

4: Poisson's ratio values measured for tendon and reported in the literature. reported by Thorpe et al. [2014], Gatt et al. [2015], and Vella Wood et al. [2019] in several tests among all the measurements.

Table 2 .

 2 1: Mechanical parameters of annulus fibrosus tissues reported in the literature.

  rises, ν xy , ν yx , and ν zx decrease, and ν xz , ν yz , and ν zy increase. As A L increases, ν x y and ν yx rise, and ν xz and ν yz decline. As A L increases, ν zx first decreases and then increases, whereas ν zy increases first and then decreases.

	effect on effective Poisson's ratios ν ij . However, when	E f E m < 10 2 , as	E f E
	E f E m . Changes in	E f E m above and beyond about 10 2 have little
	86		

m

Table 2 . 2

 22 

: Layer orientation angle settings for each of the ten lamellae of the model. Three cases are studied.

  Table 4.3.We tested different types of silicone for sample composite fabrication. The results shown in Table4.3 are the characterization results of the best shaped sample among the three sample composites fabricated using Mold Max™ 29NV (fibre) and Ecoflex™ 00-10 (matrix) silicone. With these types of silicone, material modulus ratio of fibre to matrix

	E f
	E

m can reach about 28.
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CHAPTER 2

Micromechanical model of lamellar structure in the annulus fibrosus tissue

Introduction

The intervertebral disc consists of the nucleus pulposus and the annulus fibrosus (AF) with an endplate at both the top and bottom end, serving as the interface between vertebra and the intervertebral discs. The nucleus pulposus is the inner gel-like part, which is surrounded by the annulus fibrosus as shown in Figure 2.1. The AF consists of several lamellae, where the collagen fibres are arranged in parallel in each lamella and the fibre orientation differs from one lamella to its neighbors. The outer AF is made up of Type I collagen and Type II collagen dominates the inner AF ( [START_REF] Bhattacharya | Radial variations in mechanical behaviour and fibrillar structure in annulus fibrosus has foundations at molecular length-scale: Insights from molecular dynamics simulations of type i and type ii collagen molecules[END_REF]). The parallel fibres in each lamella have been found to have a crimped microstructure [START_REF] Pezowicz | Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state[END_REF]), as shown in Figure 2.1.

Numerical solution of the homogenization equation

Finite element formulation

In order to determine the elastic properties of a periodic material, only the effective elastic tensor is necessary. From Equation 3.66, each value of the elastic tensor can be calculated as:

The first member of the integral is related to the material microstructure; it corresponds to the value of the elastic tensor weighted by the volume fraction, written as:

where ρ α is the volume fraction of the corresponding α component.

The second member of the integral can be obtained from ξ kh , which is the periodic microscopic displacement solution of the problem 3.41. For a three-dimensional medium, considering the 21 constants of the fourth-order tensor C ijkh , the problem 3.41 can be transformed for six loading cases. The indices i, j, h, k, l, m take values from 1 to 3 and the loading cases are: kh = 11, kh = 22, kh = 33, kh = 12, kh = 13, and kh = 23, which correspond to three stretches or compress cases and three shear cases.

Based on the work presented by [START_REF] Hassani | Homogenization and structural topology optimization: theory, practice and software[END_REF], Equation 3.77 can be written as:

where B is the global strain matrix, a α ij , (α = 1, 2) is the column of the elastic matrix A α ijkh corresponding to the indices ij, and ξα is the nodal displacement solution.

We take the form presented by [START_REF] Hassani | Homogenization and structural topology optimization: theory, practice and software[END_REF] and write Equation 3.41 as:

which is similar to the stiffness equation:

where the stiffness matrix is written as:

to two volumes at the same time. The type of element used in Cast3M is a tetrahedron element with four nodes, denoted "TET4". The number of elements in the mesh has an influence on the results of the homogenization procedure. In order to quantify this influence and to optimize the results, we carried out a mesh convergence study; the number of elements of each mesh studied is presented in Figure 3.8. This mesh convergence study is accurate to 10 -5 MPa, and the computed values We note that Mold Mold Max™ series silicone can perfectly bind with Ecoflex™ series silicone during the curing process, but Ecoflex™ series silicone does not bind with Mold fibre-reinforced composite has section dimensions of 15*15 mm 2 and the length is 57 mm. The helical fibre pitch, helix diameter, and fibre diameter are respectively 16 mm, 6.5 mm, and 2.25 mm, as shown in Figure 4.3. 

Experimental procedure

Models characterization

The fibre and matrix materials are characterized by a linear elastic model and two nonlinear hyperelastic models, one being the Yeoh model and the other the Neo-Hookean model.

The hyperelastic models are based on the definition of the strain-energy function ψ, which is dependent on the principal stretches (λ 1 , λ 2 , and λ 3 ) as:

Strain measurement

In the tensile test, since the strain at both ends is affected by the clamp, we only take the strain of the surface measured 20 mm from one end in the middle of the test sample by image analysis as shown in Figure 4.5. With two cameras, we record the strain on the side plane z-y and the side plane z-x; these axes are shown in Figure 4.5b. As the z-y and zx planes are both parallel to the loading direction, the strain along the z-axis on the z-y plane and the strain along the z-axis on the z-x plane are identical, and this is verified by analysis of the results of the tensile test. We therefore take the strain on the z-y plane for further analysis. It is noted that the strains obtained by image-analysis software VIC-2D ® are calculated with Green-Lagrangian formulations which can be expressed as (for strain along the z-axis on the z-y plane):

Where ε zz represents the trains along the z direction, and w, v are the displacements along the z-axis and y-axis, respectively. 

Conclusions and perspectives

The focus of this thesis is on the evolution of Poisson's ratio of fibrous soft tissues as a function of the arrangement of fibres, and, more specifically, their corrugation and spatial organization. Our aim is to gather as much information as possible from a numerical model of fibre-reinforced composite in order to better interpret the wide range of Poisson's ratios of fibrous soft tissue reported in the literature, to predict volume changes in such tissues, and to find the connection between the microstructure and the global macroscopic mechanical behavior of the soft fibrous tissue.

In the first part of this thesis, we provide a review of Poisson's ratio measurements for fibrous soft connective tissue (artery, annulus fibrosus, tendon, and ligament tissues). The reported results suggest that the artery, annulus fibrosus, and tendon tissues show orthotropic material features. Experimental observations reveal both large (larger than 0.5) positive and negative Poisson's ratios. The negative Poisson's ratio, also known as the auxetic effect, is an unusual and counterintuitive behavior, and it is suggested that the crimped microstructure might be responsible [START_REF] Lees | Poisson's ratio in skin[END_REF]; [START_REF] Gatt | Negative poisson's ratios in tendons: an unexpected mechanical response[END_REF]). The large range of Poisson's ratios published in the literature might be due to the experimental conditions or to deviations in tissue microstructure. In the present work, we mainly focus on the influence of tissue microstructure. Therefore, we present the microstructure and components of artery, annulus fibrosus, tendon, and ligament tissues in chapter 1, in which we emphasize the corrugated collagen fibre structure in particular. Although it has been suggested that the crimped fibre structure could be responsible for the observed negative Possion's ratios, there is very little evidence in the literature for a link between the two. On the contrary, [START_REF] Reese | Micromechanical models of helical superstructures in ligament and tendon fibers predict large poisson's ratios[END_REF] show that fibres with a helical structure may contribute to larger Poisson's ratios. Also, negative Poisson's ratios are predicted by the constitutive