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Resumé

Les tissus conjonctifs sont des tissus biologiques qui permettent de main-
tenir la forme du corps et de ses organes ; ils assurent leur cohésion ainsi
que leur soutien interne. La plupart des tissus conjonctifs mous sont fibreux,
comme par exemple les artères, l’annulus fibrosus, les tendons et ligaments,
etc. L’étude des coefficients de Poisson de tissus mous fibreux a depuis
peu retenu l’attention de nombreux auteurs de travaux dans le domaine
de la modélisation mécanique, car des valeurs élevées et/ou négatives
ont été mesurées expérimentalement. Ce travail de thèse se concentre
principalement sur les évolutions des coefficients de Poisson dans les tissus
mous fibreux en fonction de l’arrangement des fibres, et plus spécifiquement,
de leurs ondulations et de leur organisation spatiale.

Le manuscrit est organisé en quatre chapitres.

Le premier a un pour objectifs de décrire la microstructure et de présenter
un état de l’art sur la mesure expérimentale et la prédiction par modèles des
coefficients les Poisson de tissus mous conjonctifs fibreux (artère, annulus
fibrosus, tendon et ligament).

Dans un premier temps, la microstructure et les composants des tissus de
l’artère, de l’annulus fibrosus, des tendons et des ligaments sont présentés.
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Dans ces tissus, la structure des fibres de collagène est ondulée ainsi que le
montre l’exemple de l’annulus fibrosus, illustré sur la Figure 1.

Figure 1: Structure des fibres de collagène dans l’annulus fibrosus. Reproduit de Pezowicz
et al. [2005].

Puis, une revue bibliographique sur la mesure expérimentale de coefficients
de Poisson de tissus mous fibreux est proposée, suivie d’une synthèse des
modèles mécaniques permettant de prédire ces coefficients de Poisson.

Par la suite, on considèrera les tissus mous fibreux comme un matériau
composite avec des fibres ondulées. On résume ici des modèles composite
mécaniques présentant ce type de structure.

On y justifie ainsi l’intérêt et les motivations des travaux présentés dans
les chapitres suivants. Un modèle micromécanique analytique de l’annulus
fibrosus est proposé dans le deuxième chapitre, basé sur des observations
issues de la littérature. Ce tissu est constitué de plusieurs lamelles où
les fibres de collagène sont disposées en parallèle dans chaque lamelle.
L’orientation des fibres diffère d’une lamelle à l’autre comme montré dans
la Figure 2a. Dans ce modèle, la fibre a une microstructure ondulée
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et sa forme est considérée comme étant sinusoïdale. L’ondulation des
fibres et de la structure lamellaire est montrée sur la Figure 2b. L’effet
de la structure des fibres ondulées sur le coefficient de Poisson est alors
étudié. Nous modélisons la structure lamellaire du tissu annulus fibrosus
comme un composite stratifié renforcé par des fibres parallèles ondulées.
Ce modèle prend en compte la dispersion des fibres dans les différentes
couches. Afin de comprendre transformation de la matrice de rigidité
effective orientée, nous présentons dans un premier temps la méthode de
transformation de la matrice de rigidité. Ensuite, nous introduisons en détail
la transformation de la matrice de rigidité effective du composite renforcé
par des fibres à ondulations sinusoïdales qui est proposée et vérifiée par Xiao
et al. [2020]. Puis, une solution analytique, qui prend en compte les multiples
couches et leur orientation pour trouver la matrice de rigidité élastique
effective, est présentée. Enfin, en tenant compte du domaine physiologique
étendu du tissu de l’annulus fibrosus, une étude paramétrique du modèle
micromécanique est menée pour analyser l’influence de chaque paramètre
sur les propriétés mécaniques globales ainsi que l’effet des fibres ondulées
sur le coefficient de Poisson du composite.

(a) (b)

Figure 2: (a) Schéma des composants et de la microstructure du disque intervertébral. (b)
Structure composite lamellaire.
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(a) (b)

(c)

Figure 3: (a) Volume élémentaire représentatif (VER) du composite renforcé par un
arrangement périodique de fibres hélicoïdales non connectées. (b) VER des fibres
hélicoïdales reliées entre elles par des liens mais sans matrice. (c) VER du composite
fibres/matrice renforcé par des fibres hélicoïdales avec liens.

Suite à des observations issues de la littérature, nous nous intéressons
ensuite aux tissus fibreux mous tels que les artères et les tendons qui
possèdent une microstructure de fibres de collagène en hélices interconnectées.
Trois microstructures sont proposées et étudiées : un composite renforcé par
un arrangement périodique de fibres hélicoïdales non connectées, des fibres
hélicoïdales reliées entre elles par des liens mais sans matrice et un composite
fibres/matrice renforcé par des fibres hélicoïdales avec liens. Les volumes
élémentaires représentatifs (VER) des trois matériaux sont représentés sur
la Figure 3. Dans un premier temps, la théorie de l’homogénéisation
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asymptotique et son implémentation numérique avec validation sont pré-
sentées. Une étude paramétrique est ensuite menée afin de comprendre
l’influence des connexions entre fibres sur les propriétés mécaniques globales
des matériaux modèles proposés. Cette étude paramétrique montre les effets
de la fraction volumique de fibres, de l’angle d’hélice et de la position des
liens sur les propriétés mécaniques macroscopiques. De plus, le rôle de la
matrice sur le comportement mécanique global est également étudié. Enfin,
les effets de la matrice et des fibres hélocoïdales avec liens sur le coefficient
de Poisson global sont montrés.

Suite aux deux études précédentes concernant des composites renforcés
par des fibres ondulées, où les fibres et la matrice supposent des conditions
d’interface parfaites et ont une grande différence de rigidité, nous nous
interessons à leur étude expérimentale, ce type de travaux sont actuellement
encore très rares dans la litterature. Le dernier chapitre de ce manuscrit
présente donc un travail exploratoire sur un procédé de fabrication de
matériaux modèles composés de silicone et de fibres hélicoïdales, permettant
d’explorer leurs comportements mécaniques. Une méthode de fabrication de
matériau modèle composite renforcé par des fibres hélicoïdales est développée.
Une analyse par éléments finis est également présentée pour prédire le
comporte-ment mécanique du composite à fibre helicoïdale.

Finalement, d’après ce travail de thèse , on conclut que la microstructure
des fibres ondulées influence sensiblement les coefficients de Poisson globaux
du tissu mou fibreux. L’amplitude d’ondulation des fibres 2D réduit la
réponse auxétique dans la structure stratifiée ; la position des liens entre les
fibres change du tout au tout les coefficients de Poisson effectifs (de négatifs
< 0 à positifs > 0.5) ; et la matrice réduit l’effet auxétique.
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Introduction

The tissues and cell biomechanics (BIOTIC) team of the mechanical and civil engineering
laboratory (LMGC) in Montpellier, France, has been studying the intervertebral disc for
more than 10 years. Over this time, the auxetic behavior of annulus fibrosus tissue has
been described several times (Baldit et al. [2014]; Dusfour et al. [2020]). As the auxetic
response is nonintuitive and its mechanics are unknown in annulus fibrosus tissue, we
tried to find the mechanical explanation for the auxetic behavior. In addition, the auxetic
bahavior has been reported in artery and tendon tissue. Therefore, the subject of this thesis
was proposed in order to find an explanation for the counterintuitive volume changes of
soft tissue during their mechanical solicitation. A study of the Poisson’s ratio values in
annulus fibrosus and their mechanical explanation could be of importance in the domain
of biomechanical modeling of soft fibrous tissues, as most of the corresponding models
developed until now have been based on the assumption of a quasi-incompressible behavior
of these living materials (i.e., a value of Poisson’s ratio ≈ 0.5 for isotropic material). Here,
we aim to uncover information useful for further modeling developments in the study of
the mechanical behaviour of soft living tissues. This thesis mainly focuses on the role of
fibre microstructure arrangement in the behavior of the Poisson’s ratio in soft tissue. Here,
particular attention is given to the feature of fibre corrugation. We apply the linear elastic
model because the determination of Poisson’s ratios is clearer in the framework of a linear
model than in a nonlinear model.

Chapter 1 mainly provides a literature review on the Poisson’s ratio of fibrous, soft
connective tissue and outlines our motivation for the work in the following chapters. First,
we present the most up-to-date understanding of the microstructure and components of
fibrous soft tissue. We then provide a summary of the literature on the Poisson’s ratio of
fibrous soft tissues and the predictions of mechanical models. Finally, we present composite
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models involving crimped structures and their applications.
In Chapter 2, we present an analytical micromechanical model for studying the lamellar

composite structure of annulus fibrosus tissue. Annulus fibrosus tissue is made up of several
lamellae (hereafter also referred to as layers). The collagen fibres are arranged in parallel in
each lamella and the fibre orientation differs from one lamella to its neighbors. The parallel
fibres in each lamella have been observed to have a crimped microstructure. The proposed
model takes into account the fibre dispersion in different layers and considers fibre waviness
as a sinusoidal shape. First, we outline and demonstrate the stiffness matrix transformation
method. We then provide details of how we deduce an effective stiffness matrix of composite
reinforced by fibres characterised by a sinusoidal waviness. Subsequently, we propose an
analytical solution that takes into account the multiple layers and the orientation of the
parallel fibres of each layer in order to find the effective elastic stiffness matrix. Finally, we
study various parameters of the model over the extended physiological range of annulus
fibrosus tissue in order to analyze the influence of each parameter on the global mechanical
properties of the proposed micromechanical model.

In chapter 3, we study the soft fibrous tissues by considering them as helical-fibre-
reinforced composite, and study the effects of cross-linking between fibres and the presence
of a matrix thereof. The assumption of the helical fibre structure is based on observations
in the literature of tissue from tendon and the arterial wall. First, we present asymptotic
homogenization theory and a numerical implementation method. We then validate this
method. Finally, we study the properties of helical-fibre-reinforced composite and helical
fibres with cross-links separately, before amalgamating the two to study composite reinforced
with cross-linked helical fibres.

In chapter 4, we show how we developed a method for manufacturing helical-fibre-
reinforced-composite model material. We also present a finite element analysis that we
use to predict the mechanical behavior of the fabricated composite. In the last section, we
summarize the main results of the thesis and propose perspectives for further work.
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CHAPTER 1

Scientific context

The connective tissues are a group of tissues that maintain the form of the body and its
organs, and provide cohesion and internal support. Of the many types of connective tissue
of the human body, fibrous connective soft tissue contains many fibres, and is found for
example in the arterial wall, annulus fibrosus, tendons, and ligaments. Classically, most
models developed so far to describe the mechanical behavior of such soft tissues have been
based on the assumption of quasi-incompressibility of the material: a Poisson’s ratio ≈
0.49. This assumption was probably mainly related to the predominance of the liquid phase
within biological tissues, which is known to be quasi-incompressible. However, recently,
the Poisson’s ratio of fibrous soft tissue has received increasing attention in the field of
mechanical modeling because values of greater than 0.5 as well as negative values have
both been measured experimentally. Such a large range of Poisson’s ratios reported in the
literature could be due to experimental conditions or tissue microstructure. The present
thesis mainly focuses on changes in the Poisson’s ratio of fibrous soft tissue attributable to
characteristics of their fibre structure, and more specifically, to the effects of corrugation.

This chapter mainly provides a review of the literature on Poisson’s ratios of fibrous
soft connective tissue in order to explain the motivations of the work presented in the
following chapters. To this end, first the micro-structure and components of artery, annulus
fibrosus, tendon, and ligament tissues are presented in section 1.1, in which the structure
of corrugated collagen fibre is emphasized. A summary of the literature on the Poisson’s
ratio of fibrous soft tissues is then provided in section 1.2 together with a review of the
predictions provided by mechanical models. Subsequently, as we consider the fibrous soft
tissue as composite material containing crimped fibres, in section 1.3 we describe some of
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the various mechanical composite models involving crimped fibre structures. Finally, the
motivation behind this work and the aims of this thesis are outlined in section 1.4.

1.1 Fibrous soft tissues: micro-structure and components

1.1.1 Artery tissue

The artery is a kind of vessel, transporting blood from the heart to the other tissues or
organs of the body. The healthy artery wall is composed of three layers: intima, media,
and adventitia. Figure 1.1 shows a diagrammatic model of the major components of arterial
tissue.

Figure 1.1: Diagrammatic model of the major components of arterial tissue. The tissue
consists of three layers: intima, media, and adventitia. Diagram reproduced from Holzapfel
et al. [2000].

1.1.1.1 Intima

The intima is the inner layer of the artery and consists of a single layer of endothelial cells
and an internal elastic lamina. It is the interface between blood vessel walls and the flowing
blood itself. The internal elastic lamina provides structural cohesion and support for axial
pretension (Farand et al. [2007], Timmins et al. [2010]), and is mainly composed of dispersed,
oriented collagen fibres (Canham et al. [1989]; Finlay et al. [1995]) and elastin fibres, which are
made of a rubber-like protein arranged in a three-dimensional network.
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1.1.1.2 Media

The media is the middle layer of the artery and consists of collagen, elastin, and smooth
muscle cells (Holzapfel et al. [2000]). Collagen in media is made up of 30% type I and 70%
type III (von der Mark [1981]; Shekhonin et al. [1985]). The media has a varying number
of medial lamellar units, each of which is about 10 µm thick (Bohr et al. [1980]). From
a morphological point of view, the media has a periodical concentric separation between
the lamellar units (Morin et al. [2019]). The elastin, bundles of collagen fibres, and smooth
muscle cells together constitute a continuous fibrous helix (Staubesand [1959]). The wavy
form of collagen fibres (Morin et al. [2019]; Niestrawska et al. [2022]), as shown in Figure 1.2, is
oriented cricumferentially (O’Connell et al. [2008]; Timmins et al. [2010]; Hill et al. [2012]) and
is closely associated with the lamellae (Dingemans et al. [2000]). Upon loading, the collagen
fibres relax, or "decrimp", and stretch to prevent over distension of the vessel (Morin et al.
[2019]). Moreover, there are cross-links between collagen fibres and the morphology of the
elastic lamellae presents a fibrous texture suggestive of a crisscrossed scaffold (Ushiki [2002]).

Figure 1.2: Collagen and elastin fibre microstrucutre in media and adventitia layers. Image
reproduced from Morin et al. [2019].
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1.1.1.3 Adeventita

The adventitia is the outer layer of the artery and consists of fibroblasts, fibrocytes,
histological ground substance, elastin, and collagen fibres. The collagen fibres of the
adventitia are primarily Type II (von der Mark [1981]) and pack into thick bundles (Morin
et al. [2019]) of helical form (Roy et al. [2010]; Rezakhaniha et al. [2012]; Schrauwen et al. [2012];
Morin et al. [2019]), as shown in Figure 1.2. The elastin of the adventitia takes the form of a
low-density meshwork made of variously oriented fibres. Due to the corrugation or crimped
nature of the collagen in the adventitia, the collagen network is capable of undergoing
important morphological rearrangements under mechanical loading (Billiar and Sacks [1997];
Billiar and Sacks [1997]).

1.1.2 Annulus fibrosus tissue

Before describing the annulus fibrosus tissue, let us begin by describing the vertebral column
to better understand its location and function. The vertebral column, also known as the
spine, is part of the axial skeleton. The human spine consists of 33 bony vertebrae with 23
cartilaginous intervertebral discs – 6 in the cervical region (neck), 12 in the thoracic region
(middle back), and 5 in the lumbar region (lower back) as shown in Figure 1.3.

Figure 1.3: Anatomical diagram with a description of the location and components of the
intervertebral disc. Image reproduced from Barreto Henriksson [2010].
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There are 7 cervical vertebrae, 12 thoracic, 5 lumbar, 5 sacral, and 4 caudal, of with those
of the lumbar being the largest. The vertebrae bear the load applied to the spine, and support
and protect the spinal cord. The vertebrae consist of a vertebral body and laminae that
extend from this latter and enclose the spinal cord.

The intervertebral discs are flattened and cylindrical. Together, these elements support
the movements of the spine, as well as the transmission and damping of mechanical effort.
The intervertebral disc is composed of outer annulus fibrosus (AF) and inner nucleus
pulposus (NP), and the endplates – one at the superior end of the disc and one at the inferior
end – serve as interfaces with the two adjacent vertebrae (see Figure 1.3).

The central nucleus pulposus is composed of 80%− 90% water, with the remainder made
up of extra cellular matrix and cellular elements that have a distribution of 4 ∗ 103/mm3. The
collagen of the extra cellular matrix is mainly type II, with small amounts of types VI and
XI (Barreto Henriksson [2010]).

Figure 1.4: Diagram of the annulus fibrosus lamellae. Image reproduced from Pezowicz
[2010]

The annulus fibrosus (AF) is a fibrosus soft tissue containing 60% − 85% water, with the
remainder made up of cellular elements, collagen fibres, microfibrilles, and proteoglycans.
The AF consists of several concentric lamellae, with the collagen fibres of each individual
lamina being arranged in parallel. As shown in Figure 1.4, the parallel collagen fibres
within each lamella are of an opposing orientation from one lamella to the next. The outer
annulus fibrosus, which is made up of Type I and Type II collagen, dominates the inner
AF [Bhattacharya and Dubey, 2021]. The parallel fibres in each lamella are observed to have a
crimped microstructure, as shown in Figure 1.5a, and cross-links are found between crimped
fibres at a smaller scale, as shown in Figure 1.5b.
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(a) (b)

Figure 1.5: (a) Collagen fibre structure in the annulus fibrosus. (b) Schematic diagram of
interconnectivity involving mono-cross-over of collagen in the annulus fibrosus. Diagram
reproduced from Pezowicz et al. [2005].

1.1.3 Tendons and ligaments

Tendons are tough bands of dense fibrous connective tissue connecting muscle to bone, as
shown in Figure 1.6a, while ligaments are structures that connect bone to bone, as shown in
Figure 1.6b, but their histological properties are similar. Tendon transmits the mechanical
forces of muscle contraction to the skeletal system, allowing mobility in and of the body,
and maintains joint stability (Jozsa et al. [1991]), whereas ligaments limit the mobility of
articulations and prevent certain movements.

(a) (b)

Figure 1.6: Anatomy and function of (a) tendons and (b) ligaments. Image reproduced from
Im and Kim [2020].
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The human tendons and ligaments normally consist of both collagen and elastin
embedded in a proteoglycan–water matrix with fibroblasts and fibrocytes between the
collagen fibres Kannus [2000]. Ligament has a similar hierarchical structure to tendon, but
with different fibre volume fractions and proteoglycan matrix percentages.

Figure 1.7: Schematic diagram of the organization of the structure of tendon, from the
collagen fibrils to the entire tendon. The crimp waveform is shown at the fibril and fibre
level. Image reproduced from Schlecht [2012].

Tendon and ligament are hierarchically organized in several distinct levels, as shown for
tendon in Figure 1.7. The first unit of the mature tendon is formed from collagen I molecules,
which organized as triple-helix polypeptide chains (Asahara et al. [2017]). The stacking of
microfibrils leads to the assembly of fibrils, which are arrayed in a parallel mode to form
collagen fibres. The collagen fibres are then packed into larger units called fascicles, and
these bundles are wrapped to form the complete tendon. Moreover, the collagen fibres and
fibrils of tendons and ligaments both show a wavy configuration. This corrugation feature
of collagen fibres and fibrils is widely reported in the literature, in which both 2D crimp
(Yahia and Drouin [1989]; Diamant et al. [1972]; Liao and Vesely [2003]; Kastelic et al. [1978]), as
shown in Figure 1.8a, and helix-like structure (Verzár [1964]; Evans and Barbenel [1975]; Liao
[2003]; de Campos Vidal and Mello [2009]) are observed, as shown in Figure 1.8b.

35



(a) (b)

Figure 1.8: (a) Polarized light image of mitral valve chordae tendineae (tendons of the heart).
Image reproduced from Liao and Vesely [2003]. (b) Scanning electron micrograph of human
tendon. Image reproduced from Evans and Barbenel [1975].

1.2 Poisson’s ratio of fibrous soft tissues and its predictions by
mechanical models

In the sciences of materials and solid mechanics, the Poisson’s ratio is used to describe
the relation between the deformation of a material in one direction and its deformation
in a perpendicular direction, and is the ratio of the relative contraction strain (normal to
an applied load) to the relative extension strain (the direction of the applied load). The
Poisson’s ratio term νij characterizes the strain in the j direction produced by the loading in
the i direction Boresi et al. [1985], and can be expressed as:

νij = −
ε j

εi
(1.1)

where εi and ε j are the strains along mutually perpendicular axes i and j, respectively.
The positive strain indicates extension and the negative strain indicates contraction.

Figure 1.9 shows the behavior of a conventional material under tension and compression
loading. Generally, when a material is expanded (respectively, compressed) along the
direction i, it contracts (respectively, expands) in the perpendicular direction j.
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Figure 1.9: Behavior of conventional material under tension (left) and compression (right)
loading

For a linear isotropic material in a three-dimensional (3D) coordinate system (x, y, z), the
Poisson’s ratios νij (i, j = x, y, z) are the same in all directions. Most isotropic materials have
Poisson’s ratio values ranging from 0 to 0.5; for example, most steels and rigid polymers
exhibit Poisson’s ratio values of about 0.3, and rubber has a Poisson ratio of nearly 0.5.

For an orthotropic material with three mutually perpendicular planes of symmetry,
the Poisson’s ratios νij (i, j = x, y, z) are specific for each direction. Therefore, when
characterizing the strain in the j (j = x, y, z) direction produced by the loading in the i
(x, y, z) direction, six Poisson ’s ratios can be defined: νxy, νyx, νxz, νzx, νyz, and νzy . However,
with the symmetry of the stress–strain relations, the Poisson’s ratios follow the relationships
(Boresi et al. [1985]):

νxy

Ex
=

νyx

Ey

νxz

Ex
=

νzx

Ez

νyz

Ey
=

νzy

Ez
(1.2)

where Ex, Ey, and Ez denote the orthotropic elastic moduli in the coordinate system
(x, y, z).

Some materials or structures exhibit negative Poisson’s ratios, and are therefore described
as having an auxetic property, showing unusual and counterintuitive mechanical behavior.
As shown in Figure 1.10, when stretched (respectively, compressed), an auxetic material
becomes thicker (respectively, thinner) in the direction perpendicular to that of the load.

37



Figure 1.10: Behavior of auxetic material under tension (left) and when compressed (right).

1.2.1 Artery tissue

Artery tissue is usually considered an orthotropic material. The Poisson’s ratio of the
arterial wall has motivated studies of its internal microstructure, and more specifically of
the collagen fibre structure and arrangement. Several studies have reported measurements
of the Poisson’s ratio of arteries, with the first such study performed in 1969 (Patel et al.
[1969]). The published experimental results are summarized in Table 1.1 in the framework
of a unifying coordinate system; the cylindrical coordinate system setting used to define the
Poisson’s ratios of this tissue is shown in Figure 1.11. In most studies, arteries are stretched in
an in vitro environment, except for those of Patel et al. [1969] and Hasegawa et al. [1997], who
evaluated the Poisson’s ratio of dog and human arteries, respectively, in vivo. However,
the Poisson’s ratios of arteries reported so far are inconsistent (see Table 1.1), and both
positive (ν > 1.0) and negative (ν < 0.0) values have been measured (Liu et al. [2011]), while
arteries have been widely observed to be orthotropic along the longitudinal, circumferential,
and radial directions. The causes for this large difference in experimental results could be
due to many factors, such as the different types of artery tissue studied (Hasegawa et al.
[1997]) or the different layers (media or intact vessel) studied, or differences in extension
conditions, strain measurement techniques, test specimen conditions (fresh, or frozen and
thawed), and so on. As the arterial tissue can be divided into three main parts (intima,
media, and adventitia), rather than studying the intact arterial wall, more recently the media
and adventitia layers were isolated and studied separately (Timmins et al. [2010]; Liu et al.
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[2011]; Skacel and Bursa [2016]; Santamaría et al. [2020]; Skacel and Bursa [2022]). Comparing
the experimental extension conditions in the literature, the strain velocity, loading pressure,
and the maximum stretch strain might also affect the measured values (Patel et al. [1969];
Nahon et al. [1986]; Cox [1975]; Karimi et al. [2016]; Santamaría et al. [2020]). Both Santamaría
et al. [2020] and Skacel and Bursa [2022] noted that frozen and thawed artery specimens show
different experimental results compared to when using fresh tissue. Indeed, Santamaría
et al. [2020] note that frozen and thawed tissues may have nonphysiological hydraulic
permeability properties, and that freezing and thawing may cause the destruction of cell
membranes. Moreover, several individual negative out-of-plane Poisson’s ratios (νθr, νzr)
were measured with frozen and thawed test specimens among the 12 specimens used in
experiments (Skacel and Bursa [2016]; Skacel and Bursa [2022]), but no negative Poisson’s ratio
was found in tests with fresh specimens (Skacel and Bursa [2022]).

Recently, the auxetic behavior of soft tissue has received increased attention (Piao et al.
[2021]). Negative Poisson’s ratios were measured by Timmins et al. [2010], Lillie et al. [2010],
Skacel and Bursa [2016], and Santamaría et al. [2020] in arterial tissues, and Skacel and Bursa
[2022] reject their previous experimental observations. Timmins et al. [2010] proposed that
the auxetic response could be due to the variable and inhomogeneous alignment of elastin
and collagen fibres in the arterial wall. Such lateral expansion was predicted by a nonlinear
hyperelastic anisotropic model of arterial wall with two families of perfectly aligned
collagen fibres (Holzapfel et al. [2000], known as the HGO model), as presented by Gasser
et al. [2006], who further proposed a GOH model with dispersed fibre orientations. Skacel
and Bursa [2016] reported a negative Poisson’s ratio exhibited by a GOH model and provided
a comprehensive analysis of the auxetic response with distributed fibre orientations. Nolan
et al. [2014] also identified auxetic behavior with a compressible form of the HGO model,
called HGO-C , analyzing the predicted lateral stresses induced during uniaxial stretching,
and proposed a modified anisotropic model (MA model) to avoid them. Similarly, Latorre
et al. [2016] noticed an unrealistic transversal deformation response predicted by the HGO
and GOH models, and proposed their What-You-Prescribe-Is-What-You-Get (WYPIWYG)
model as a solution. Volokh [2017] applied the HGO model to study auxetic behavior based
on the angular integration (AI) approach. Fereidoonnezhad et al. [2020] consider that auxetic
behavior is primarily influenced by the ratio of fibre-to-matrix stiffness and is accentuated
by strain-stiffening fibres in a constant stiffness matrix. These authors propose a bilinear
strain-stiffening fibre and matrix model (BLFM), which allows close control of the fibre–
matrix stiffness ratio to eliminate auxetic behavior.
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Figure 1.11: Segment of the artery showing the cylindrical coordinate system (⃗θ, z⃗, r⃗) used to
study its mechanics. Image reproduced from Bai and Bai [2014].

Furthermore, the subject of Poisson’s ratio of arterial wall study is closely related to its
compressibility feature. In mechanical modeling, the tissue of the artery wall is commonly
considered as incompressible; although this assumption is still under investigation because
of inconsistencies in experimental results (Carew et al. [1968]; Chuong and Fung [1984]; Volokh
[2006]; Di Puccio et al. [2012]; Yosibash et al. [2014]).

1.2.2 Annulus fibrosus tissue

The annulus fibrosus (AF) tissue consists of several lamellae, with the collagen fibres
arranged in parallel within each one. The parallel fibres have been observed to have a
crimped microstructure (Pezowicz et al. [2005]). Similarly to the arteries, the tissue of AF
also exhibits an orthotropic behavior.

Most of the tensile experiments reported in the literature for AF are uniaxial tests (Elliott
and Setton [2001]; Guerin and Elliott [2006]; Guerin and Elliott [2006]; Lewis et al. [2008];
O’Connell et al. [2009]; Cherblanc et al. [2011]; Baldit et al. [2014]; Dusfour et al. [2020]), although
biaxial tensile tests have also been performed (Bass et al. [2004]; O’Connell et al. [2012]). The
Poisson’s ratio measurements obtained so far for AF are summarized in Table 1.2 within
a unified coordinate system; see Figure 1.11 for the cylindrical coordinate system used
to study the Poisson’s ratio in AF. These latter measurements of the Poisson’s ratio for
AF show a large range, from -0.57 (νθr, Derrouiche et al. [2019a]) to 2.32 (νθz, Wagner and
Lotz [2004]). The difference in experimental results could be due to many factors, such
as differences in: the types of AF tissue analyzed, the subsections of AF tissue analyzed
(inner or outer AF; Elliott and Setton [2001]), extension conditions, test specimen status
(degenerated or non-degenerated AF), strain measurement techniques, specimen-storage-
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solution osmolarity, and so on. Both Guerin and Elliott [2006] and O’Connell et al. [2009] found
that AF degeneration influences Poisson’s ratio measurement results. Moreover, Wagner
and Lotz [2004] showed that the loading type, that is, tension or compression, has an effect
on Poisson’s ratio results. Furthermore, Derrouiche et al. [2019a] presented results showing
that the different saline concentrations and strain rates used in extension tests also affect
such measurements (see details in Table 1.3). As the strain rate decreases, both νθz and νθr

decrease, and as specimen storage NaCl concentration increases, both νθz and νθr increase.

NaCl concentration (g/L) strain rate (s−1) Poisson’s ratio νθz Poisson’s ratio νθr

0 2 ∗ 10−3 0.887 ± 0.19 −0.468 ± 0.1
2 ∗ 10−4 0.74 ± 0.16 −0.574 ± 0.12

9 2 ∗ 10−3 0.92 ± 0.2 −0.2 ± 0.0.04
2 ∗ 10−4 0.74 ± 0.16 −0.387 ± 0.08

18 2 ∗ 10−3 0.963 ± 0.21 −0.146 ± 0.03
2 ∗ 10−4 0.811 ± 0.17 −0.29 ± 0.06

Table 1.3: Experimental Poisson’s ratio for different saline concentrations and strain rates.
Table reproduced from Derrouiche et al. [2019a].

Although the range of reported Poisson’s ratio results is considerable, the orthotropic
features of AF along the longitudinal, circumferential, and radial directions are consistently
observed. Comparing all the experimental results in the literature, values of νθr are usually
much lower than those of νθz (Elliott and Setton [2001]; Wagner and Lotz [2004]; Baldit et al.
[2014]; Derrouiche et al. [2019a]), and even negative νθr values (auxetic behavior) were
recently reported by Baldit et al. [2014], Derrouiche et al. [2019a], and Dusfour et al. [2020].
In other words, with extension along the circumferential direction, AF is rarely seen to
shrink in the radial direction but is observed to expand in some cases. Interpretations of
such observations were proposed by Derrouiche et al. [2019b] and Derrouiche et al. [2020],
who invoke mechanical-based and chemical-based fluid flow interactions until chemo-
mechanical equilibrium. We note that Derrouiche et al. [2019a] reported an auxetic behavior
in the plane of the lamellae only, but Dusfour et al. [2020] found such a behavior in both the
radial and longitudinal directions.

In order to predict AF Poisson’s ratios using mechanical modeling, Elliott and Setton
[2001] implemented a linear anisotropic material model of the AF to determine a complete
set of model properties and to predict the behaviors of AF tissue under idealized kinematic
states. According to the model predictions presented by these latter authors, interactions
between fibre populations in the multilamella AF contribute significantly to the mechanical
behavior of the material, suggesting that a model for AF made up of physically isolated
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concentric lamellae may not be appropriate. Derrouiche et al. [2019a] presented a chemo-
mechanical approach to studying the intrinsic osmo-inelastic response of the annulus
fibrosus in relation to the microstructure of the layered, reinforced soft tissue, the biochemical
environment, and the mechanical loading conditions, which successfully captures the
variations in osmolarity, strain rate, and auxeticity. Kandil et al. [2019] proposed a chemo-
viscoelastic model as part of a microstructure-based approach in order to predict the
regional dependency of the annulus response, in which the auxetic behavior is identified
in the plane of the lamellae. Comparing their measurements with predictions of the HGO
model (Holzapfel et al. [2000]), Dusfour et al. [2020] found an auxetic response, but poor
agreement between model and experimental results. Furthermorethe AF is widely modeled
by applying a fibre-induced anisotropic hyperelastic material (Wu and Yao [1976]; Eberlein
et al. [2001]; Peng et al. [2006]; O’Connell et al. [2009]). These models describe the fibres and
the matrix using the principle invariants of the Green deformation tensor and structural
tensors representing the collagen fibre populations (O’Connell et al. [2012]).

1.2.3 Tendon

Several studies have investigated the Poisson’s ratio of tendons experimentally. Most of
these studies were conducted in vitro (Lynch et al. [2002]; Lynch et al. [2003]; Cheng and Screen
[2007]; Vergari et al. [2011]; Chernak and Thelen [2012]; Thorpe et al. [2013]; Thorpe et al. [2014];
Vella Wood et al. [2019]), but several measurements of tendon deformation have been made
in vivo (Maganaris et al. [2001]; Iwanuma et al. [2011]; Obst et al. [2014]), and Gatt et al. [2015]
estimated human Achilles tendon deformations by performing both in vitro and in vivo
tests. Some values from Poisson’s ratio measurements for tendon are summarized in Table
1.4 in the framework of a unified coordinate system, and the coordinate system used to
study Poisson’s ratios of the Achilles tendon is shown in Figure 1.12. The reported Poisson’s
ratios for tendon show a similarly large spread to the ratios for artery and AF. The difference
in experimental results could again be due to many factors, such as differences in the: types
of tendon tissue analyzed (Thorpe et al. [2013]; Gatt et al. [2015]), loading conditions (Thorpe
et al. [2014]), strain measurement techniques, and so on.

Although the published Poisson’s ratios cover a significant range, the orthotropic feature
of tendon is demonstrated by Lynch et al. [2002] and Lynch et al. [2003], and the fibre-aligned
Poisson’s ratio is found to be larger than the transverse Poisson’s ratio from their tests on
rabbit patellar tendon and sheep flexor tendon, respectively. Comparing all the reported
Poisson’s ratio measurements in the literature, both large positive (νyx > 2, Lynch et al.
[2003]) and negative values are observed, even descending to -9.86 (Gatt et al. [2015]). The
negative Poisson’s ratio is unexpected for tendon, but such auxetic behavior was recently
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reported by Thorpe et al. [2014], Gatt et al. [2015], and Vella Wood et al. [2019] in several tests
among all the measurements. Gatt et al. [2015] speculate that the crimped microstructure
of the fibres of tendons is likely to play a role in the generation of their anomalous, auxetic
behavior.

Figure 1.12: Segment of tendon showing the X-Y coordinate system used in studies of the
Poisson’s ratio. Image reproduced from Marino and Vairo [2013].

In an attempt to predict the Poisson’s ratios of tendon, Yin and Elliott [2004] used a
transversely isotropic biphasic mixture model and simultaneously studied the viscoelastic
mechanical behavior of tendon under uniaxial tensile loading. Reese et al. [2010] constructed
a micromechanical finite element model to represent crimped fibres with a super-helical
organization. The model was composed of fibrils embedded within a matrix material, and a
homogenization procedure was performed to determine both the effective Poisson’s ratio
and the Poisson function. Xiao et al. [2020] studied the Poisson’s ratios of tendons and
ligaments using an analytical microstructure model, in which the form of the collagen fibres
is sinusoidal.

1.3 Mechanical models of composite with crimp fibre structure

Crimped structures commonly exist in biological materials, from nanoscale to macroscale.
For example, at the nanoscale, deoxyribonucleic acid (DNA) has a double helix structure;
at the microscale, collagen fibrils are in the form of triple helix polypeptide chains; and at
the macroscale, ventricular myocardial bands and the human umbilical cord have a helical
structure Carpi et al. [2010]. In addition, the helical structure on the fibre scale is observed
both in connective tissues and wood (Freed and Doehring [2005]; Zorzetto and Ruffoni [2019]).

46



The reason for the preference for helical structures in biological materials is not yet clear,
although Snir and Kamien [2005] found that the helix structure allows the entropy of an object
to be maximized. Moreover, Moulton et al. [2020] presented various examples of curvature
and torsion generation and demonstrated the impact of residual stress on the generation of
curvature.

As presented in the previous sections, collagen fibre corrugation, or crimping, is widely
reported in fibrous soft tissues such as artery, annulus fibrosus, tendon, and ligament.
In mechanical models proposed so far in the literature, fibrous soft tissues are usually
considered as composite materials reinforced by fibres. In the present work, we focus in
particular on the crimped fibre structure. Below, we summarize the composite models that
have been presented so far in the literature – with specific attention to reinforced composites
and those including crimped structures–, and their applications.

In 1973, Mori and Tanaka [1973] first proposed a method to calculate the average internal
stress in the matrix of a material containing inclusions with transformation strain, which
is widely used to estimate the constitutive relationships of composites. Hashin [1983]
reviewed the analytical solutions regarding the effective modulus of composites reinforced
with straight fibres. Hsiao and Daniel [1996] proposed an analytical model for determining
elastic properties and compressive strength as a function of fibre waviness. Garnich and
Karami [2004] studied the stiffness and strength of composites reinforced with wavy fibres
using a finite element micromechanics approach. Karami and Garnich [2005a] and Karami
and Garnich [2005b] studied effective moduli and the thermoelastic behavior of composites
reinforced with fibres with periodic waviness using a finite element micromechanical
model. Kashtalyan [2005] presented an analytical approach to determining the stresses
in laminated composites with ply waviness subjected to compressive or flexural loading.
Drago and Pindera [2007] calculated the macroscopic effective moduli of the statistically
homogeneous and periodically heterogeneous materials in unidirectional composites with
large fibre/matrix property. Gattu et al. [2008] proposed a finite-volume direct averaging
micromechanics (FVDAM) theory for periodically heterogeneous materials, and Khatam and
Pindera [2009] applied this theory to investigate the effective moduli and thermal expansion
coefficients of lamellar composites with wavy architectures. Abdin et al. [2016] described
a method for extending mean-field theory to discontinuous composites reinforced with
wavy fibres. Xiao et al. [2020] presented an analytical solution for describing the effects of
embedded microstructures on the macroscopic elastic properties of tendons and ligaments,
which are considered as planar composites reinforced with crimped fibres. Reese et al. [2010]
used homogenization methods and finite element micromechanical models to study a helical
fibril organization and to find the large Poisson’s ratios in biological tissues. Khani et al.
[2016] studied the mechanical elastic properties of composites reinforced by helical fibres,
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and finally, Karami et al. [2009] and Kuksenko et al. [2018] studied the large deformation
homogenized mechanical response of composites reinforced by wavy fibres.

1.4 Conclusion and discussion

In this chapter, we present a summary of the literature on Poisson’s ratios for artery,
annulus fibrosus, and tendon tissues, emphasizing that both large positive and negative
Poisson’s ratios have been found experimentally. The negative Poisson’s ratio, also known
as the auxetic behavior, appears counterintuitive, and has also been reported for skin tissue
(Veronda and Westmann [1970]; Lees et al. [1991]), tibia bone (Williams and Lewis [1982]), axoloti
embryonic epithelia (Wiebe and Brodland [2005]), and for the bovine cornea (Patten and Wess
[2013]). Lees et al. [1991] proposed that the highly corrugated microstructure of the material
in skin tissue might be the cause of the auxetic behavior of this latter. Gatt et al. [2015]
speculated that the crimped fibre structure might be the cause of the auxetic behavior in
tendons. Timmins et al. [2010] described that the variable and inhomogeneous alignment of
elastin and collagen fibres in arterial wall might be causing the observed auxeticity in that
tissue.

Although it has been suggested that the crimped fibre structure may be the key driver
of the negative Possion’s ratios observed in soft tissues, there is currently little evidence
of the link between the two. On the contrary, Reese et al. [2010] show that helical fibres
may contribute to larger Poisson’s ratios. The chemo-mechanical approach proposed by
Derrouiche et al. [2019a] can be used to estimate the auxetic behavior linked to local changes
in osmolarity in annulus fibrosus tissue. The negative Poisson’s ratio of arterial walls is
also predicted by the HGO and HGO-like models (Holzapfel et al. [2000]), and was found by
these authors to be linked to the levels of fibre–matrix material stiffness and fibre dispersion.
However, as the auxetic behavior is not always found in arterial tissue, Nolan et al. [2014],
Latorre et al. [2016], Volokh [2017], and Fereidoonnezhad et al. [2020] proposed their HGO-based
model to avoid the auxetic response.

So far, there have been relatively few studies on the nature of auxetic behavior in
soft tissue. Nevertheless, synthetic structures known to show an auxetic behavior are
increasingly being applied in tissue engineering scaffolds (Jin et al. [2021]; Mardling et al.
[2020]; Kim et al. [2021]; Jiang et al. [2023]). The purpose of this thesis is to study changes in
the Poisson’s ratio of fibrous soft tissue as a function of the microstructure of this latter, and
specifically of the level of corrugation of the crimped fibres. This work is designed to help
us to better understand the role of microstructure in soft tissues and to serve as a reference
for further tissue engineering and scaffold development.
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CHAPTER 2

Micromechanical model of lamellar structure
in the annulus fibrosus tissue

2.1 Introduction

The intervertebral disc consists of the nucleus pulposus and the annulus fibrosus (AF) with
an endplate at both the top and bottom end, serving as the interface between vertebra and
the intervertebral discs. The nucleus pulposus is the inner gel-like part, which is surrounded
by the annulus fibrosus as shown in Figure 2.1. The AF consists of several lamellae, where
the collagen fibres are arranged in parallel in each lamella and the fibre orientation differs
from one lamella to its neighbors. The outer AF is made up of Type I collagen and Type II
collagen dominates the inner AF ([Bhattacharya and Dubey, 2021]). The parallel fibres in each
lamella have been found to have a crimped microstructure (Pezowicz et al. [2005]), as shown
in Figure 2.1.
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Figure 2.1: Scheme of intervertebral disc components and microstructure.

Consequently, we propose to model the lamellar structure in AF tissue as a fibre-
reinforced composite whose fibres have a crimped microstructure as shown in Figure 2.2.
In particular, we consider an analytical micromechanical model to study the effective elastic
parameters of lamellar structure in AF tissue. This model takes into account the dispersion
of the fibres in different layers and considers fibre waviness as a sinusoidal shape.

Figure 2.2: Lamellar composite structure under consideration.
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2.2 Stiffness matrix transformation

In order to better understand the development of the oriented effective stiffness matrix,
which is presented in more detail in sections 2.3 and 2.4, we introduce the stiffness matrix
transformation method in this section. First, we outline the general transformation matrix in
section 2.2.1; details can also be found in the reviews by Daniel et al. [2006] and Sinha [2006].
We then present our transformation of the stiffness matrix in section 2.2.2.

2.2.1 Transformation relation

2.2.1.1 Transformation of coordinates

Figure 2.3: Two mutually perpendicular systems, x, y, z and a, b, c.

The rules associated with transformation of vectors are followed to find the transformation
of coordinates. Let us consider two perpendicular coordinate systems x, y, z and a, b, c,
as shown in Figure 2.3. A geometrical point respects the following relationship in these
systems:
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
a
b
c

 =
[

Tcoor

]
x
y
z

, (2.1)

where
[

Tcoor

]
represents the coordinate transformation matrix and is defined as:

[
Tcoor

]
=

m1 n1 p1

m2 n2 p2

m3 n3 p3

, (2.2)

where mi, ni ,and pi are the direction cosines of axis i, that is,

m1 = cosθxa n1 = cosθya p1 = cosθza

m2 = cosθxb n2 = cosθyb p2 = cosθzb

m3 = cosθxc n3 = cosθyc p3 = cosθzc.

(2.3)

The angles θij are measured from axis i to axis j as shown in Figure 2.3.

2.2.1.2 Transformation of strains

We consider that ux, uy, and uz are displacement components of a given geometrical domain
with respect to the coordinate system x, y, z, and ua, ub, uc are the displacement components
corresponding to the a, b, c system. Similarly to the transformation of coordinates, we have

ua

ub

uc

 =
[

Tcoor

]
ux

uy

uz

. (2.4)

Thus, the corresponding strain components εxyz in the x, y, z coordinates and εabc in the
a, b, c system satisfy the following relations:

εa =
∂ua

∂a
εx =

∂ux

∂x
, (2.5)

∂ua

∂a
= m1

∂ux

∂a
+ n1

∂uy

∂a
+ p1

∂uz

∂a
. (2.6)

Following the chain rule, we have

∂ux

∂a
=

∂ux

∂x
∂x
∂a

+
∂ux

∂y
∂y
∂a

+
∂ux

∂z
∂z
∂a

= m1
∂ux

∂x
+ n1

∂ux

∂y
+ p1

∂ux

∂z
, (2.7)
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with ∂x
∂a = m1, ∂y

∂a = n1, and ∂z
∂a = p1.

In a similar way, we have

∂uy

∂a
= m1

∂uy

∂x
+ n1

∂uy

∂y
+ p1

∂uy

∂z
, (2.8)

∂uz

∂a
= m1

∂uz

∂x
+ n1

∂uz

∂y
+ p1

∂uz

∂z
. (2.9)

By substituting Equations 2.6, 2.7, 2.8, and 2.9 into Equation 2.5, we obtain

∂ua

∂a
= m2

1
∂ux

∂x
+ n2

1
∂uy

∂y
+ p2

1
∂uz

∂z
+ n1p1(

∂uy

∂z
+

∂uz

∂y
) + p1m1(

∂ux

∂z
+

∂uz

∂x
) + m1n1(

∂ux

∂y
+

∂uy

∂x
)

(2.10)

or

εa = m2
1εx + n2

1εy + p2
1εz + n1p1γyz + p1m1γxz + m1n1γxy. (2.11)

We set εxyz = {εx εy εz γyz γxz γxy}T , which are the strain components in x, y, z
coordinates and εabc = {εa εb εc γbc γac γab}T, which are the strain components in a, b, c
coordinates. Proceeding with the same calculation, we have



εa

εb

εc

γbc

γac

γab


=

[
Tε

]


εx

εy

εz

γyz

γxz

γxy


, (2.12)
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where the strain transformation matrix
[

Tε

]
is given by

[
Tε

]
=



m2
1 n2

1 p2
1 n1p1 p1m1 m1n1

m2
2 n2

2 p2
2 n2p2 n2m2 m2n2

m2
3 n2

3 p2
3 n3p3 p3m3 m3n3

2m2m3 2n2n3 2p2p3 n2p3 + n3p2 p2m3 + p3m2 m2n3 + m3n2

2m3m1 2n3n1 2p3p1 n3p1 + n1p3 p3m1 + p1m3 m3n1 + m1n3

2m1m2 2n1n2 2p1p2 n1p2 + n2p1 p1m2 + p2m1 m1n2 + m2n1


. (2.13)

2.2.1.3 Transformation of Stresses

We set σxyz = {σx σy σz τyz τxz τxy}T as the stress components in x, y, and z coordinates and
σabc = {σa σb σc τbc τac τab}T as the stress components in a, b, and c coordinates. Let δεabc

and δεxyz be the virtual strains in the coordinates a, b, and c and x, y, and z, respectively. The
work done by stress in the two coordinate systems is the same, and therefore

δεT
abcσabc = δεT

xyzσxyz, (2.14)

δεT
abc = (Tεδεxyz)

T = δεT
xyzTT

ε . (2.15)

Substituting Equation 2.15 into Equation 2.14, we have

σabc = T−T
ε σxyz. (2.16)

We note the stress transformation matrix Tσ = T−T
ε , with

[
Tσ

]
=



m2
1 n2

1 p2
1 2n1p1 2p1m1 2m1n1

m2
2 n2

2 p2
2 2n2p2 2n2m2 2m2n2

m2
3 n2

3 p2
3 2n3p3 2p3m3 2m3n3

m2m3 n2n3 p2p3 n2p3 + n3p2 p2m3 + p3m2 m2n3 + m3n2

m3m1 n3n1 p3p1 n3p1 + n1p3 p3m1 + p1m3 m3n1 + m1n3

m1m2 n1n2 p1p2 n1p2 + n2p1 p1m2 + p2m1 m1n2 + m2n1


. (2.17)

We take Tσ as the general transformation matrix and denote it as Tij, which satisfies
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

σa

σb

σc

τbc

τac

τab


=

[
Tij

]


σx

σy

σz

τyz

τxz

τxy


, (2.18)

and [
Tε

]
=

[
Rij

] [
Tij

] [
R−1

ij

]
, (2.19)

where Rij can be expressed as

[
Rij

]
=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


. (2.20)

Therefore, we can use Tij as 

εa

εb

εc
1
2 γbc
1
2 γac
1
2 γab


=

[
Tij

]


εx

εy

εz
1
2 γyz
1
2 γxz
1
2 γxy


, (2.21)

or as 

εa

εb

εc

γbc

γac

γab


=

[
Rij

] [
Tij

] [
R−1

ij

]


εx

εy

εz

γyz

γxz

γxy


, (2.22)
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with

[
Tij

]
=



m2
1 n2

1 p2
1 2n1p1 2p1m1 2m1n1

m2
2 n2

2 p2
2 2n2p2 2n2m2 2m2n2

m2
3 n2

3 p2
3 2n3p3 2p3m3 2m3n3

m2m3 n2n3 p2p3 n2p3 + n3p2 p2m3 + p3m2 m2n3 + m3n2

m3m1 n3n1 p3p1 n3p1 + n1p3 p3m1 + p1m3 m3n1 + m1n3

m1m2 n1n2 p1p2 n1p2 + n2p1 p1m2 + p2m1 m1n2 + m2n1


. (2.23)

2.2.2 Transformation of stiffness matrix

The stress-strain relations in the x, y, z coordinate system are

εa

εb

εb

γbc

γac

γab


=

[
Sij

]


σa

σb

σc

τbc

τac

τab


(2.24)

and 

σa

σb

σc

τbc

τac

τab


=

[
Cij

]


εa

εb

εc

γbc

γac

γab


, (2.25)

where Sij is the compliance matrix, which is the inverse of the stiffness matrix Cij.

It is noted that the strain tensor used is written in a contracted notation as

γbc = 2εbc, γac = 2εac, γab = 2εab, (2.26)

where

εbc =
1
2
(

∂ub
∂c

+
∂uc

∂b
), εac =

1
2
(

∂ua

∂c
+

∂uc

∂a
), εab =

1
2
(

∂ua

∂b
+

∂ub
∂a

), (2.27)
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as we have



σa

σb

σc

τbc

τac

τab


=

[
Tij

]


σx

σy

σz

τyz

τzx

τxy


(2.28)

and



εa

εb

εc

γbc

γac

γab


=

[
Rij

] [
Tij

] [
R−1

ij

]


εx

εy

εz

γyz

γxz

γxy


. (2.29)

Applying the stress-strain relations to the transformation relations in the x, y, z coordinate
system, we have



εx

εy

εz

γyz

γxz

γxy


=

[
Rij

] [
T−1

ij

] [
R−1

ij

] [
Sij

] [
Tij

]


σx

σy

σz

τyz

τxz

τxy


. (2.30)

We set the transformed compliance matrix as

[
Ŝij

]
=

[
Rij

] [
T−1

ij

] [
R−1

ij

] [
Sij

] [
Tij

]
, (2.31)

and the transformed stiffness matrix is

[
Ĉij

]
=

[
Ŝij

]−1
. (2.32)
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2.3 Effective mechanical behavior of composite reinforced by
corrugated fibres

In this section, we provide a detailed introduction to the development of an effective
stiffness matrix of composite reinforced by fibres of a particular sinusoidal waviness as
shown in Figure 2.8a, which was first proposed and verified by Xiao et al. [2020]. To this
end, in section 2.3.1 we first present an analytical solution based on the Mori and Tanaka
[1973] Eshelby equivalent inclusion method for a stiffness matrix of composite reinforced by
straight fibres as shown in Figure 2.4. A transformation matrix of straight and corrugated
fibre arrangements is then presented in section 2.3.2. Finally, an effective stiffness matrix of
composite reinforced by fibres of sinusoidal waviness is deduced in section 2.3.3.

2.3.1 Effective stiffness matrix of composite reinforced by straight fibres

Here, we present an analytical solution based on the Eshelby equivalent inclusion method
for the effective stiffness matrix of composite reinforced by straight fibres, as shown in
Figure 2.4.

Figure 2.4: Composite reinforced by straight fibres.
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The effective elastic constitutive relation of composite material is written as follows:

σ̄ = C̄ : ε̄ ε̄ = S̄ : σ̄, (2.33)

where C̄ is the stiffness matrix of the composite reinforced by the straight fibres and S̄
is the inverse matrix of C̄. Also, σ̄ and ε̄ represent the average stress and strain tensors
respectively in the composite.

We set

σ̄ = Vmσ̂m + Vf σ̂f ε̄ = Vm ε̂m + Vf ε̂ f , (2.34)

where σ̂f and ε̂ f are the average stress and strain tensors in the fibres, and σ̂m and ε̂m

are the average stress and strain tensors in the matrix. Moreover, Vf and Vm are the volume
fractions of the fibres and the matrix, respectively.

The mechanical strain interaction of fibres and matrix based on the Eshelby equivalent
inclusion method can be expressed as

ε̂ f = B : ε̂m, (2.35)

where B is the concentration tensor whose details can be found in Parnell [2016], which
can be expressed as

B = [I + P : (C f − Cm)]−1, (2.36)

where I is the identity tensor, C f and Cm are the elastic stiffness tensor of isotropic fibre
and matrix media, respectively, and P is the polarization tensor. We refer to Hill [1965] for a
thorough explanation of this latter, but note here that it has the following relation:

P = SE : Sm, (2.37)

where Sm is the elastic compliance of the isotropic matrix media (Sm = [Cm]−1), which
can be expressed as

[
Sm

]
=



Sm
11 Sm

12 Sm
13 0 0 0

Sm
12 Sm

22 Sm
23 0 0 0

Sm
13 Sm

23 Sm
33 0 0 0

0 0 0 Sm
44 0 0

0 0 0 0 Sm
55 0

0 0 0 0 0 Sm
66


, (2.38)
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and SE is the Eshelby tensor, which can be expressed as

[
SE

]
=



SE
1111 SE

1122 SE
1133 0 0 0

SE
2211 SE

2222 SE
2233 0 0 0

SE
3311 SE

3322 SE
3333 0 0 0

0 0 0 SE
2323 0 0

0 0 0 0 SE
1313 0

0 0 0 0 0 SE
1212


. (2.39)

The average stress σ̂f is

σ̂f = C f : ε̂ f = C f : B : ε̂m. (2.40)

The average stress and strain tensors in the composite can be written in terms of σ̂m as

σ̄ = Vmσ̂m + Vf σ̂f = Vmσ̂m + Vf C f : B : ε̂m = Vmσ̂m + Vf C f : B : (Sm : σ̂m) (2.41)

ε̄ = Vm ε̂m + Vf ε̂ f = Vm(Sm : σ̂m) + Vf B : (Sm : σ̂m). (2.42)

From Equations 2.41 and 2.42, the compliance matrix S̄ of the composite can be obtained
as

S̄ = (Vm I + Vf B) : (VmCm + Vf C f : B)−1. (2.43)

The Eshelby tensor SE for an ellipsoidal inclusion —as shown in Figure 2.5a, where
a1, a2, and a3 are half the ellipsoidal length along the x, y, and z axis, respectively— in a
homogeneous matrix is constant and depends solely on the form of the inclusion and the
matrix material.

The Eshelby tensor for the elliptic cylinder inclusion (which means a1 = ∞) is given by
Mura [2013] as

SE
1111 = SE

1122 = SE
1133 = 0, (2.44)

SE
2222 =

1
2(1 − νm)

[
a2

3 + 2a3a2

(a3 + a2)2 + (1 − 2νm)
a3

a3 + a2
], (2.45)

SE
3333 =

1
2(1 − νm)

[
a2

2 + 2a3a2

(a3 + a2)2 + (1 − 2νm)
a2

a3 + a2
], (2.46)
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(a) (b)

Figure 2.5: (a) Ellipsoidal inclusion with coordinates. (b) Straight-fibre-reinforced composite
plane y-z section.

SE
2233 =

1
2(1 − νm)

[
a2

3
(a3 + a2)2 − (1 − 2νm)

a3

a3 + a2
], (2.47)

SE
3322 =

1
2(1 − νm)

[
a2

2
(a3 + a2)2 − (1 − 2νm)

a2

a3 + a2
], (2.48)

SE
2211 =

1
2(1 − νm)

2νma3

a3 + a2
, (2.49)

SE
3311 =

1
2(1 − νm)

2νma2

a3 + a2
, (2.50)

SE
2323 =

1
2(1 − νm)

[
a2

3 + a2
2

2(a3 + a2)2 +
1 − 2νm

2
], (2.51)

SE
1212 =

a3

2(a2 + a3)
, (2.52)

SE
1313 =

a2

2(a2 + a3)
, (2.53)

where νm is the Poisson’s ratio of a matrix.
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The fibres in the matrix are considered to have a circular cross-section, which means
a3 = a2, and therefore the Eshelby tensor can be derived as

SE
2222 = SE

3333 =
1

2(1 − νm)
(

5
4
− νm), (2.54)

SE
2233 = SE

3322 =
1

2(1 − νm)
(νm − 1

4
), (2.55)

SE
2211 = SE

3311 =
νm

2(1 − νm)
, (2.56)

SE
2323 =

1
2(1 − νm)

(
3
4
− νm), (2.57)

SE
1212 = SE

1313 =
1
4

. (2.58)

We assume the composite to be transversally isotropic material in the y-z plane with an
elastic compliance S̄ that can be expressed as

[
S̄
]
=



S̄11 S̄12 S̄12 0 0 0
S̄12 S̄22 S̄23 0 0 0
S̄12 S̄23 S̄22 0 0 0
0 0 0 S̄44 = 2(S̄22 − S̄23) 0 0
0 0 0 0 S̄66 0
0 0 0 0 0 S̄66


. (2.59)

Inserting Equations 2.36, 2.54, 2.55, 2.56, 2.57, and 2.58 into Equation 2.43, we get the
following equivalent compliance matrix element:

S̄11 =
E f (1 + νm) [−2 + 2νm + Vm(1 − 2νm)]− VmEm(1 + ν f )(1 − 2ν f )

b1
, (2.60)

S̄12 =
VmνmEm(1 + ν f )(1 − 2ν f ) + E f (1 + νm)[2ν f (1 − νm) + Vm(νm − 2ν f + 2νmν f )]

b1
,

(2.61)

S̄22 =
b2

b3
+

b4

4
, (2.62)
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S̄23 =
b2

b3
− b4

4
, (2.63)

S̄66 =
2(1 + νm)

[
VmE f (1 + νm) + Em(1 + ν f )(2 − Vm)

]
Em

[
VmEm(1 + ν f ) + E f (1 + νm)(2 − Vm)

] , (2.64)

where E f and Em represent the Young’s modulus of fibre and matrix, respectively; ν f is
the Poisson’s ratio of the fibre; b1, b2, b3, and b4 are expressed as

b1 =− V2
mE2

m(1 + ν f )(1 − 2v f ) + E2
f (1 + νm)(1 − Vm) [−2 + 2νm + Vm(1 − 2νm)] +

VmEmE f
[
−3 + ν f + 4νmν f + Vm(2 − νm − ν f − 4νmν f )

]
,

(2.65)

b2 =EmE f (1 + νm){−2 + 2ν f + 2νm − 2νmν f+

Vm[3 − 2νm − 3ν f − 2νmν f + Vm(−2 + νm + ν f + 4νmν f )]}−
VmE2

f (1 + νm)
2(1 − Vm)(1 − 2νm) + VmE2

m(1 + ν f )(1 − 2ν f )(−2 + Vm + Vmνm),

(2.66)

b3 =2Em{−V2
mE2

m(1 + v f )(1 − 2v f ) + E2
f (1 + vm)(1 − Vm)[−2 + 2νm + Vm(1 − 2νm)]+

VmEmE f [−3 + ν f (1 + 4νm) + Vm(2 − νm − ν f − 4νmν f )]},

(2.67)

b4 =
2(1 + νm)[VmE f (1 + νm)(3 − 4νm) + Em(1 + ν f )(4 − 3Vm − 4νm + 4Vmνm)]

Em[VmEm(1 + ν f ) + E f (1 + νm)(4 − Vm − 4νm)]
. (2.68)

2.3.2 Transformation matrix of fibre arrangement

2.3.2.1 Straight fibre transformation

The fibres are set to be straight and arranged in parallel, and θ represents the angle between
the fibre orientation and the x-axis of the Cartesian coordinates as shown in Figure 2.6.
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Figure 2.6: Straight fibre orientation and Cartesian coordinates.

The principle fibre orientation is along axis a and the fibre orientation coordinates are
defined as


a = cos(θ)x + sin(θ)z

b = y

c = −sin(θ)x + cos(θ)z.

(2.69)

The transformation component of fibre orientation and Cartesian coordinates can be
obtained as:

m1 = cosθxa =
1 ∗ (cos(θ))√

12 ·
√

cos2(θ) + sin2(θ)
= cos(θ). (2.70)

The other components are obtained in the same manner.

m2 = cosθxb = 0 m3 = cosθxc = sin(θ)

n1 = cosθya = 0 n2 = cosθyb = 1 n3 = cosθyc = 0

p1 = cosθza = 0 p2 = cosθzb = 0 p3 = cosθzc = cos(θ).

(2.71)

Thus, the general transformation matrix Tst
ij for the parallel straight fibres is
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[
Tst

ij

]
=



cos2(θ) 0 sin2(θ) 0 2cos(θ)sin(θ) 0
0 1 0 0 0 0

sin2(θ) 0 cos2(θ) 0 −2cos(θ)sin(θ) 0
0 0 0 cos(θ) 0 −sin(θ)

−sin(θ)cos(θ) 0 sin(θ)cos(θ) 0 cos2(θ)− sin2(θ) 0
0 0 0 sin(θ) 0 cos(θ)


. (2.72)

The inverse transformation matrix Tst
ij
−1 is:

[
Tst

ij
−1

]
=



cos2(θ) 0 sin2(θ) 0 −2cos(θ)sin(θ) 0
0 1 0 0 0 0

sin2(θ) 0 cos2(θ) 0 2cos(θ)sin(θ) 0
0 0 0 cos(θ) 0 sin(θ)

sin(θ)cos(θ) 0 −sin(θ)cos(θ) 0 cos2(θ)− sin2(θ) 0
0 0 0 −sin(θ) 0 cos(θ)


. (2.73)

2.3.2.2 Corrugated fibre transformation

The fibre corrugation is assumed to be planar sinusoidal in the x-z plane. Here, β represents
the angle between the principle fibre direction and the x-axis of the Cartesian coordinates as
shown in Figure 2.7.

Figure 2.7: Corrugated fibre and Cartesian coordinates.
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The crimped fibre shape is defined as

z = Asin(
2π

L
x), (2.74)

where A is the amplitude and L represents the wavelength of the wavy fibre as shown in
Figure 2.7.

From Equation 2.74, we have

tanβ =
dz
dx

=
2πA

L
cos(

2π

L
x) β = arctan(

2πA
L

cos(
2π

L
x)). (2.75)

Therefore,

cosβ = [1 + (
2πA

L
cos(

2π

L
x))2]−

1
2 , (2.76)

sinβ =
2πA

L
cos(

2π

L
x)[1 + (

2πA
L

cos(
2π

L
x))2]−

1
2 . (2.77)

The general transformation matrix Tsin
ij for the corrugated fibres can be derived with the

same calculation as before.

[
Tsin

ij

]
=


cos2(β(x)) 0 sin2(β(x)) 0 2cos(β(x))sin(β(x)) 0

0 1 0 0 0 0
sin2(β(x)) 0 cos2(β(x)) 0 −2cos(β(x))sin(β(x)) 0

0 0 0 cos(β(x)) 0 −sin(β(x))
−sin(β(x))cos(β(x)) 0 sin(β(x))cos(β(x)) 0 cos2(β(x))− sin2(β(x)) 0

0 0 0 sin(β(x)) 0 cos(β(x))

.

(2.78)
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2.3.3 Effective stiffness of composite reinforced by fibres of sinusoidal waviness

(a) (b)

Figure 2.8: (a) Composite reinforced by fibres of uniform sinusoidal waviness. (b)
Composite x-z plane section and axis.

We present the analytical solution to find the effective stiffness matrix Ĉsin
ij (i, j = 1, 2, 3, 4, 5, 6)

of composite reinforced by fibres of uniform sinusoidal waviness as shown in Figure 2.8.
The average transformed inverse compliance matrix Ŝsin

ij is obtained by integrating the
compliance matrix S̄ along one wavelength of the sinusoidal shape in the x-direction as

Ŝsin
ij (β(A, L)) =

∫ L

0
Ŝij(β(A, L))dx, (2.79)

where

[
Ŝij

]
=

[
Rij

] [
Tsin

ij

]−1[
Rij

]−1 [
S̄ij

] [
Tsin

ij

]
, (2.80)

and β = arctan(2πA
L cos(2π

L x)) and x ∈ [0, L].
We then have

[
Ĉsin

ij

]
=

[
Ŝsin

ij

]−1
. (2.81)

We set

g =
1
L

∫ L

0
cos4βdx =

1
L

∫ L

0
[[1 + (

2πA
L

cos(
2π

L
x))2]−

1
2 ]4dx =

2A2Lπ2 + L3
√

4A2π2 + L2(L2 + 4A2π2)
,

(2.82)
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h =
1
L

∫ L

0
sin4βdx =

(L2 + 4A2π2)
√

4A2π2 + L2 − 6A2Lπ2 − L3
√

4A2π2 + L2(L2 + 4A2π2)
, (2.83)

m =
1
L

∫ L

0
sin2βcos2βdx =

2A2Lπ2

(L2 + 4A2π2)
√

4A2π2 + L2
, (2.84)

n =
1
L

∫ L

0
cos2βdx =

L√
4A2π2 + L2

, (2.85)

p =
1
L

∫ L

0
sin2βdx =

√
4A2π2 + L2 − L√

4A2π2 + L2
, (2.86)

q =
1
L

∫ L

0
(cos2(β)− sin2(β))2dx = g − 2m + h. (2.87)

We note that, before integration, terms Ŝ15, Ŝ25, Ŝ35, and Ŝ46 are not zero, but these terms
become zero during integration over the period.

The non-zero element of matrix Ŝsin
ij can be expressed as

[
Ŝsin

ij

]
=



Ŝsin
11 Ŝsin

12 Ŝsin
13 0 0 0

Ŝsin
12 Ŝsin

22 Ŝsin
23 0 0 0

Ŝsin
13 Ŝsin

23 Ŝsin
33 0 0 0

0 0 0 Ŝsin
44 0 0

0 0 0 0 Ŝsin
55 0

0 0 0 0 0 Ŝsin
66


, (2.88)

where

Ŝsin
11 = gS̄11 + m(2S̄12 + S̄66) + hS̄22, (2.89)

Ŝsin
12 = nS̄12 + pS̄23, (2.90)

Ŝsin
13 = m(S̄11 + S̄22 − S̄66) + (h + g)S̄12, (2.91)

Ŝsin
22 = S̄22, (2.92)

Ŝsin
23 = pS̄12 + nS̄23, (2.93)
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Ŝsin
33 = m(2S̄12 + S̄66) + hS̄11 + gS̄22, (2.94)

Ŝsin
44 = 2n(S̄22 − S̄23) + pS̄66, (2.95)

Ŝsin
55 = 4m(S̄11 + S̄22 − 2S̄12) + qS̄66, (2.96)

Ŝsin
66 = 2p(S̄22 − S̄23) + nS̄66. (2.97)

2.4 Effective mechanical behavior of lamellar composite reinforced
by corrugated fibres with alternatively oriented layers

In this section, we propose an analytical solution that takes into account the multiple
layers and the orientation of each layer to find the effective elastic stiffness matrix. The
single-lamella and multiple-lamellae solutions are presented in sections 2.4.1 and 2.4.2,
respectively.

2.4.1 Single layer

Figure 2.9: Composite orientation in the Cartesian coordinate system.
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One layer (or lamella) of the composite reinforced by fibres of uniform sinusoidal waviness
is rotated by an angle of θ around the Y-axis as shown in Figure 2.9. The effective stiffness
matrix of this layer C̃layer1

ij and its inverse compliance S̃layer1
ij can be deduced as

[
S̃layer1

ij

]
=

[
Rij

] [
Tst

ij

]−1[
Rij

]−1 [
Ŝsin

ij

] [
Tst

ij

] [
C̃layer1

ij

]
=

[
S̃layer1

ij

]−1
. (2.98)

The nonzero element of matrix S̃layer1
ij can be expressed as

[
S̃layer1

ij

]
=



S̃layer1
11 S̃layer1

12 S̃layer1
13 0 S̃layer1

15 0
S̃layer1

12 S̃layer1
22 S̃layer1

23 0 S̃layer1
25 0

S̃layer1
13 S̃layer1

23 S̃layer1
33 0 S̃layer1

35 0
0 0 0 S̃layer1

44 0 S̃layer1
46

S̃layer1
15 S̃layer1

25 S̃layer1
35 0 S̃layer1

55 0
0 0 0 S̃layer1

46 0 S̃layer1
66


, (2.99)

where

S̃layer1
11 = Ŝsin

11 cos4θ + Ŝsin
33 sin4θ + (2Ŝsin

13 + Ŝsin
55 )cos2θsin2θ, (2.100)

S̃layer1
12 = Ŝsin

12 cos2θ + Ŝsin
23 sin2θ, (2.101)

S̃layer1
13 = Ŝsin

13 (sin4θ + cos4θ) + (Ŝsin
11 + Ŝsin

33 − Ŝsin
55 )cos2θsin2θ, (2.102)

S̃layer1
15 = (2Ŝsin

11 − 2Ŝsin
13 − Ŝsin

55 )sinθcos3θ + (2Ŝsin
13 − 2Ŝsin

33 + Ŝsin
55 )sin3θcosθ, (2.103)

S̃layer1
22 = Ŝsin

22 , (2.104)

S̃layer1
23 = Ŝsin

12 sin2θ + Ŝsin
23 cos2θ, (2.105)

S̃layer1
25 = 2(Ŝsin

12 − Ŝsin
23 )cosθsinθ, (2.106)

S̃layer1
33 = Ŝsin

11 sin4θ + Ŝsin
33 cos4θ + (2Ŝsin

13 + Ŝsin
55 )cos2θsin2θ, (2.107)
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S̃layer1
35 = (2Ŝsin

13 − 2Ŝsin
33 + Ŝsin

55 )sinθcos3θ + (2Ŝsin
11 − 2Ŝsin

13 − Ŝsin
55 )sin3θcosθ, (2.108)

S̃layer1
44 = Ŝsin

66 sin2θ + Ŝsin
44 cos2θ, (2.109)

S̃layer1
46 = (Ŝsin

66 − Ŝsin
44 )sinθcosθ, (2.110)

S̃layer1
55 = 4(Ŝsin

11 + Ŝsin
33 − 2Ŝsin

13 )sin2θcos2θ + Ŝsin
55 (cos2θ − sin2θ)2, (2.111)

S̃layer1
66 = Ŝsin

44 sin2θ + Ŝsin
66 cos2θ. (2.112)

2.4.2 Multiple layers

(a) (b)

Figure 2.10: Organization of the synthetic laminate (a) Multilayer laminate with coordinate
system. Two lamellae are shown, the first and second layers are orientated by θ1 and θ2
around the y-axis with respect to the x-axis, respectively. (b) Schema of laminate layer
thickness.

We introduced an analytical approach to find the effective elastic stiffness of a matrix of
multiple layers by applying Sun and Li [1988] formulations. Each considered layer or
"lamella" is a thick composite reinforced by fibres of uniform sinusoidal waviness, as shown
in section 2.4.1. The coordinate system is set so that the x- and z-axes lie in the plane of
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the lamella and the y-axis is perpendicular to that plane. The laminate composite contains
r orthotropic fibre composite lamellae and each lamella is rotated by a corresponding angle
θk, (k = 1, 2, 3 · · · ) around the y-axis as shown in Figure 2.10a.

The effective macro-stresses σtotal and macro-strains εtotal are defined as

σtotal
ij =

1
V

∫
V

σijdV, (2.113)

and

εtotal
ij =

1
V

∫
V

εijdV, (2.114)

where V is the volume that contains the total thickness of one lamella.

The in-plane dimensions are kept infinitesimal so that the stresses and strains in each
layer are uniform in the planar directions. As the stresses and strains in each lamella are
constant, Equations 2.113 and 2.114 can be integrated as

σtotal
ij =

r

∑
k=1

Vk(σij)k, (2.115)

and

εtotal
ij =

r

∑
k=1

Vk(εij)k, (2.116)

where (σij)k and (εij)k are the stresses and strains in the kth (k = 1, 2, 3 · · · ) layer, and

Vk =
ek
h

, (2.117)

where ek is the thickness of the kth lamella, and h is the total thickness of the laminate as
shown in Figure 2.10b.

We assume the following in terms of the stress and displacement conditions at the
interfaces of the layers: 

(εxx)k = εtotal
xx

(εzz)k = εtotal
zz

(γxz)k = γtotal
xz

(σyy)k = σtotal
yy

(σxy)k = σtotal
xy

(σyz)k = σtotal
yz

. (2.118)
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The effective elastic stiffness matrix of the multilayer laminate C̃total
ij can be expressed as

[
C̃total

ij

]
=



C̃total
11 C̃total

12 C̃total
13 0 C̃total

15 0
C̃total

12 C̃total
22 C̃total

23 0 C̃total
25 0

C̃total
13 C̃total

23 C̃total
33 0 C̃total

35 0
0 0 0 C̃total

44 0 C̃total
46

C̃total
15 C̃total

25 C̃total
35 0 C̃total

55 0
0 0 0 C̃total

46 0 C̃total
66


. (2.119)

The nonzero element of C̃total
ij can be obtained from Equations 2.115, 2.116, and 2.118 as

(Sun and Li [1988]):

C̃total
11 =

r

∑
k=1

Vk(C̃
layer1
11 )k +

r

∑
k=2

((C̃layer1
12 )k − λ12)Vk((C̃

layer1
12 )1 − (C̃layer1

12 )k)/(C̃
layer1
22 )k (2.120)

C̃total
12 =

r

∑
k=1

Vk(C̃
layer1
12 )k +

r

∑
k=2

((C̃layer1
22 )k − λ22)Vk((C̃

layer1
12 )1 − (C̃layer1

12 )k)/(C̃
layer1
22 )k (2.121)

C̃total
13 =

r

∑
k=1

Vk(C̃
layer1
13 )k +

r

∑
k=2

((C̃layer1
12 )k − λ12)Vk((C̃

layer1
23 )1 − (C̃layer1

23 )k)/(C̃
layer1
22 )k (2.122)

C̃total
22 = 1/(

r

∑
k=1

Vk/(C̃layer1
22 )k), (2.123)

C̃total
23 =

r

∑
k=1

Vk(C̃
layer1
23 )k +

r

∑
k=2

((C̃layer1
22 )k − λ22)Vk((C̃

layer1
23 )1 − (C̃layer1

23 )k)/(C̃
layer1
22 )k (2.124)

C̃total
33 =

r

∑
k=1

Vk(C̃
layer1
33 )k +

r

∑
k=2

((C̃layer1
23 )k − λ23)Vk((C̃

layer1
23 )1 − (C̃layer1

23 )k)/(C̃
layer1
22 )k (2.125)

C̃total
15 =

r

∑
k=1

Vk(C̃
layer1
15 )k +

r

∑
k=2

((C̃layer1
12 )k − λ12)Vk((C̃

layer1
25 )1 − (C̃layer1

25 )k)/(C̃
layer1
22 )k (2.126)
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C̃total
25 =

r

∑
k=1

Vk(C̃
layer1
25 )k +

r

∑
k=2

((C̃layer1
22 )k − λ22)Vk((C̃

layer1
25 )1 − (C̃layer1

25 )k)/(C̃
layer1
22 )k (2.127)

C̃total
35 =

r

∑
k=1

Vk(C̃
layer1
35 )k +

r

∑
k=2

((C̃layer1
23 )k − λ23)Vk((C̃

layer1
25 )1 − (C̃layer1

25 )k)/(C̃
layer1
22 )k (2.128)

C̃total
55 =

r

∑
k=1

Vk(C̃
layer1
55 )k +

r

∑
k=2

((C̃layer1
25 )k − λ25)Vk((C̃

layer1
25 )1 − (C̃layer1

25 )k)/(C̃
layer1
22 )k (2.129)

C̃total
44 = (

r

∑
k=1

Vk(C̃
layer1
44 )k/∆k)/∆ (2.130)

C̃total
46 = (

r

∑
k=1

Vk(C̃
layer1
46 )k/∆k)/∆ (2.131)

C̃total
66 = (

r

∑
k=1

Vk(C̃
layer1
66 )k/∆k)/∆ (2.132)

where

λ12 = C̃total
12 , (2.133)

λ23 = C̃total
23 , (2.134)

λ22 = C̃total
22 , (2.135)

λ25 = C̃total
25 , (2.136)

∆ = (
r

∑
k=1

Vk(C̃
layer1
44 )k/∆k)(

r

∑
k=1

Vk(C̃
layer1
66 )k/∆k)− (

r

∑
k=1

Vk(C̃
layer1
46 )k/∆k)

2, (2.137)

∆k = (C̃layer1
44 )k(C̃

layer1
66 )k − (C̃layer1

46 )2
k. (2.138)
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The effective elastic compliance matrix of multiple layer S̃total
ij is

[S̃total
ij ] = [C̃total

ij ]−1. (2.139)

2.5 Model limit verification

We further verify the proposed model by considering a special case, A = 0, where the fibres
contained in the laminate are straight. When A = 0, from Equation 2.82 - 2.87, we have{

g = 1 h = 0 m = 0

n = 1 p = 0 q = 1.
(2.140)

Then, from Equation 2.89 - 2.97, we have
Ŝsin

11 = S̄11 Ŝsin
12 = S̄12 Ŝsin

13 = S̄12

Ŝsin
23 = S̄23 Ŝsin

33 = S̄22 Ŝsin
55 = S̄66

Ŝsin
66 = S̄66 Ŝsin

44 = 2n(S̄22 − S̄23),

(2.141)

and therefore

[Ŝsin
ij ] = [S̄ij]. (2.142)

As shown from Equation 2.142, when A = 0, all terms in Ŝsin
ij are equal to the

corresponding terms in S̄ij, which verifies our model for the special limit case for straight
fibres.

We also verify our model by considering the special case θ = 0, which represents the case
where the layers are not rotated with respect to one another. When θ = 0, we have

cosθ = 1 sinθ = 0. (2.143)

The terms in S̃layer1
ij can then be deduced from Equation 2.100 - 2.112, as

S̃layer1
11 = Ŝsin

11 S̃layer1
12 = Ŝsin

12 S̃layer1
13 = Ŝsin

13

S̃layer1
22 = Ŝsin

22 S̃layer1
23 = Ŝsin

23 S̃layer1
33 = Ŝsin

33

S̃layer1
44 = Ŝsin

44 S̃layer1
55 = Ŝsin

55 S̃layer1
66 = Ŝsin

66

S̃layer1
15 = 0 S̃layer1

25 = 0 S̃layer1
35 = 0 S̃layer1

46 = 0

, (2.144)
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and therefore we have

[S̃layer1
ij ] = [Ŝsin

ij ]. (2.145)

When θ = 0, all the terms in S̃layer1
ij are equal to the corresponding terms in Ŝsin

ij , which
also further verifies the model for the limit case for nonrotated layers.

2.6 Parameter study

We consider the lamellar structure in annulus fibrosus tissues as corrugated-fibre-reinforced
composite and study the composite mechanical behavior by applying the micromechanical
model introduced in section 2.4. The aim of our parameter study is to explore whether or
not it is possible to use our model, within the extended physiological range, to analyze the
influence of each parameter on the global mechanical properties of the annulus fibrosus
tissue. Furthermore, we want to prioritize the parameters that influence the negative
Poisson’s effect on tissues as reported in the literature.

Our parameter study of annulus fibrosus tissue is based on parameters reported in the
literature (see Table 2.1). Collagen has the elastic modulus from the molecular to tissue
scale, and the mechanical stiffness decreases as the hierarchy scale increases; in other words,
Emonomer > E f ibril > E f ibre > Etissue (Zhang et al. [2007]). Although the collagen elastic
modulus is most often reported at the lamella scale (Skaggs et al. [1994]; Holzapfel et al.
[2005]), there are examples in the literature of the elastic modulus studied at the single
collagen fibre scale. Ambard and Cherblanc [2009] showed the collagen fibre elastic modulus
to range from 6.6MPa to 12.3MPa using a tensile test on lamb and pig annulus fibrosus
tissues as part of their development of a rheological model. Also, the collagen Type I single-
fibre elastic modulus was measured to between 100 MPa and 360 MPa in rat tail tendon
using an approach combining optical tweezers, atomic force microscopy, and exploitation
of Euler-Bernoulli elasticity theory. As Type I collagen fibres are the most prevalent fibres
(Sharabi et al. [2018]) in annulus fibrosus tissue, we consider that the measured collagen fibre
modulus can also be applied in annulus fibrosus tissue. The mechanical properties of the
ground matrix of bovine annulus fibrosus were measured by Cortes and Elliott [2012] using
tensile and confined compression tests, revealing an aggregate modulus of 10.18 ± 3.32KPa.
The fibre volume fractions have been found to range from 0.05 to 0.245 based on the
description that AF comprises 65% - 90% wet weight (water) and 50% - 70% dry weight
(collagen) (see Ducheyne [2015]). The Poisson’s ratio range of the fibre and matrix used in our
model is based on a previous modeling study, which is summarized by Sharabi et al. [2018].
The layer orientation angle used in the present study, that is the angle between the fibres of
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one lamella and those of its neighbors, is based on the findings of Baldit [2018]; namely that
the fibre orientation in the circumferential direction varies between lamellae by 25◦ to 45◦.
The fibre crimp angle is assumed to vary between 20◦ and 45◦ as described by Sharabi [2022];
that is, the range of the fibre crimp angle is level is taken as arctan20◦ < 4A

L < arctan45◦

(0.08 < A
L < 0.25). Furthermore, the annulus fibrosus consists of 7 - 25 lamellae (Daroff and

Aminoff [2014]; Baldit [2018]), and the layers are 0.14 - 0.52 mm in thickness and grow thicker
in the lateral portion and inner layers of the annulus (Daroff and Aminoff [2014]).

The effective moduli for a laminate of one or multiple layers are obtained from S̃ij (here,

S̃ij represents S̃layer1
ij or S̃total

ij according to the particular application) as:

Ẽx =
1

S̃11
Ẽy =

1
S̃22

Ẽz =
1

S̃33

ν̃xy = − S̃21

S̃11
ν̃xz = − S̃31

S̃11
ν̃yz = − S̃32

S̃22

ν̃yx = − S̃12

S̃22
ν̃zx = − S̃13

S̃33
ν̃zy = − S̃23

S̃33

, (2.146)

where the terms Ẽx, Ẽy, and Ẽz are the effective elastic modulus along the x, y, and z
directions, respectively. Also, the term ν̃ij is the effective Poisson’s ratio, which characterizes
the strain in the j direction produced by the loading in the i direction.

Parameter Meaning Value References

E f Collagen fibre modulus 6.6 MPa - 360 MPa Ambard and Cherblanc [2009]ï 1
4 ŒSharabi et al. [2018]

Em Extracellular matrix modulus 10.18 ± 3.32 KPa Cortes and Elliott [2012]
Vf Collagen fibre volume fraction 0.05 - 0.245 Ducheyne [2015]
Vm Matrix volume fraction 0.755 - 0.95 Vm = 1 − Vf

ν f Collagen fibre Poisson’s ratio 0.3 - 0.35 Sharabi et al. [2018]
νm Extracellular matrix Poisson’s ratio 0.4 - 0.48 Sharabi et al. [2018]
θ Layer orientation angle 25◦ - 45◦ Baldit [2018]
A
L Collagen fibre crimp level 0.08 - 0.25 Sharabi [2022]
ek Thickness of each layers 0.14 - 0.52 mm Daroff and Aminoff [2014]
r Total number of layer 7 - 25 Daroff and Aminoff [2014], Baldit [2018]

Table 2.1: Mechanical parameters of annulus fibrosus tissues reported in the literature.

2.7 Results of the parametric study

In this section, the effective elastic properties of composites of single or multiple layers are
quantified using a theoretical analysis. Parametric analyses of the Poisson’s ratio and elastic
modulus are also presented.
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2.7.1 Single layer

2.7.1.1 Effects of fibre crimp level and layer orientation

In order to test the effects of fibre crimp level and layer orientation, we applied the following
constraints to our model. The elastic modulus of fibres E f is set to 100MPa and that of the
matrix Em is set to 10KPa. The Poisson’s ratio of fibre ν f and matrix νm are set to 0.3 and
0.4, respectively. The fibre volume fraction Vf is set to 20 % in this analysis. With these
parameters, the model is able to predict the axial effective elastic modulus and effective
Poisson’s ratio as functions of fibre crimp level (0.01 < A

L < 0.3) and layer orientation angle
(20◦ < θ < 70◦), as shown in Figure 2.12 and 2.14. The orientation angle θ and coordinate
system settings are represented in Figure 2.11.

Figure 2.11: Single layer composite orientation in the given coordinate systems.

Figure 2.12 shows that the axial elastic modulus is jointly influenced by fibre crimp level
A
L and layer orientation angle θ. The effective elastic modulus Ex has a maximum value
when both A

L and θ decrease simultaneously and the effective elastic modulus Ez has a
maximum value when A

L is small and θ is large. As expected, Ex and Ez are symmetrical
at each fibre crimp level on the axis of θ = 45◦. This is clearly shown in Figure 2.13a for a
given A

L = 0.01. From Equations 2.92, 2.104, and 2.146, we can see that for the single layer,
the effective elastic modulus Ey is not affected by the fibre crimp level or layer orientation.
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(a) (b)

Figure 2.12: Effective axial elastic modulus under load applied along (a) the x-axis and (b)
the z-axis as a function of fibre crimp level and alternative layer orientation. Value settings
for each parameter are E f = 100MPa, Em = 10KPa, ν f = 0.3, νm = 0.4, and Vf = 20%
(parameters taken in the physiological range).

(a) (b)

Figure 2.13: Effects on axial elastic moduli when A
L is set to 0.01. (a) Effective axial elastic

moduli Ex and Ez versus layer orientation angle θ. (b) Effective Poisson’s ratio νij versus
layer orientation angle θ in the physiological range of the annulus fibrosus. Value settings
for each parameter are E f = 100MPa, Em = 10KPa, ν f = 0.3, νm = 0.4, A

L = 0.01, and
Vf = 20%.

Figure 2.14 shows how the effective Poisson’s ratio νij varies with changes to fibre crimp
level A

L and layer orientation θ. We note that νij represents the effective Poisson’s ratio that
characterizes the strain in the j direction produced by loading in the i direction, as mentioned
above. Interestingly, due to the strongly anisotropic composites under study, all the νij(i, j =
x, y, z) appear different from each other. However, νxy and νzy, νxz and νzx, and νyz and νyx

are symmetrical regardless of crimp level when θ = 45◦. This symmetrical feature can also
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be verified in Figure 2.13b, which shows how νij varies with changes to θ when A
L is set to

0.01.

(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Effective Poisson’s ratio (a) νxy, (b) νyx, (c) νxz, (d) νzx, (e) νyz and (f) νzy with
respect to different fibre crimp level and different layer orientation. Values setting of each
parameter: E f = 100MPa, Em = 10KPa, ν f = 0.3, νm = 0.4, Vf = 20% (Parameters in the
physiological range).
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2.7.1.2 Effect of fibre volume fraction and fibre crimp level

In order to test the effects of fibre volume fraction and fibre crimp level, we applied the
following constraints to our model, setting the elastic modulus of fibres E f to 100MPa and
the elastic modulus of the matrix Em to 10KPa. The Poisson’s ratios of fibre ν f and matrix
νm are set to 0.3 and 0.4, respectively. The layer orientation angle θ is set to 30◦. With these
parameters, the model is able to predict the axial effective elastic modulus and effective
Poisson’s ratio as a function of fibre crimp level in range of 0.01 < A

L < 0.3 and fibre volume
fraction in the range of 0.05 < Vf < 0.3, as shown in Figures 2.15 and 2.16.

(a) (b)

Figure 2.15: Effective axial elastic modulus under load applied along (a) the x-axis, (b) the
y-axis, and (c) the z-axis as a function of fibre crimp level and fibre volume fraction. The
value settings for each parameter are E f = 100MPa, Em = 10KPa, ν f = 0.3, νm = 0.4, and
θ = 30◦ (parameters in the physiological range).

Figure 2.15 shows how the axial elastic modulus varies with changes to fibre crimp level
A
L and fibre volume fraction Vf . Of the two, Vf has the greater impact on elastic modulus.
Ex and Ez increase as Vf increases. Ey is not affected by A

L according to Equations 2.92, 2.104,
and 2.146. Ex increases at small crimp levels and then declines as A

L increases, as shown in
Figure 2.15a, and Ez gradually increases as A

L increases from 0.01 to 0.3 as shown in Figure
2.15b when the Vf ranges from 0.05 to 0.3.

Figure 2.16 shows how the effective Poisson’s ratio νij varies with changes to A
L and

Vf . Fibre volume fraction Vf has little influence on effective Poisson’s ratios νij. When A
L

increases, νxy and νyx rise, but νxz and νyz decline. As A
L increases, νzx first decreases and

then increases, whereas νzy increases first and then decreases. It is noted that the maximum
and the minimum values of each of the effective Poisson’s ratios νij are outside of the range
of 0.3 − 0.4 (range of the Poisson’s ratio of the fibre and matrix). Also, the maximum value
of the effective Poisson’s ratio νxz is even higher than 0.5.

81



(a) (b)

(c) (d)

(e) (f)

Figure 2.16: Effective Poisson’s ratio (a) νxy, (b) νyx, (c) νxz, (d) νzx, (e) νyz and (f) νzy with
respect to different fibre crimp level and different fibre volume fraction. Values setting of
each parameter: E f = 100MPa, Em = 10KPa, ν f = 0.3, νm = 0.4, θ = 30◦ (Parameters in the
physiological range).

2.7.1.3 Effect of matrix Poisson’s ratio and fibre crimp level

In order to test the effects of matrix Poisson’s ratio and fibre crimp level, we applied the
following constraints to our model, setting the elastic modulus of fibres E f to 100MPa and
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the elastic modulus of the matrix Em to 10KPa. The Poisson’s ratio of fibre ν f is set to 0.3; the
layer orientation angle θ is set to 30◦; and the fibre volume fraction is set to 20%. With these
parameters, the model is able to predict the axial effective elastic modulus and effective
Poisson’s ratio as a function of fibre crimp level (0.01 < A

L < 0.3) and matrix Poisson’s ratio
(0.3 < νm < 0.5) as shown in Figures 2.17 and 2.18

(a) (b)

(c)

Figure 2.17: Effective axial elastic modulus under load applied along (a) the x-axis, (b) the
y-axis, and (c) the z-axis as a function of fibre crimp level and matrix Poisson’s ratio. The
value settings for each parameter are E f = 100MPa, Em = 10KPa, ν f = 0.3, Vf = 20%, and
θ = 30◦.

Figure 2.17 shows how axial elastic modulus varies with changes to fibre crimp level
A
L and matrix Poisson’s ratio νm. Ey is not affected by A

L and increases with increasing
νm as shown in Figure 2.17b. Ez slightly increases as νm increases from 0.3 to 0.48, and
rises gradually with increasing A

L as shown in Figure 2.17c. Ex increases at small A
L and

then declines for large values of A
L . Ex decreases as νm increases for small values of A

L , but
increases as νm increases for large values of A

L , as shown in Figure 2.17a.
Figure 2.18 shows how the effective Poisson’s ratio νij varies with changes to fibre crimp

level A
L and matrix Poisson’s ratio νm. Each effective Poisson’s ratio νij increases with
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increasing νm at all values of A
L within the range tested. When A

L increases, νxy and νyx

rise, but νxz and νyz decline. As A
L increases, νzx first decreases and then increases, whereas

νzy increases first and then decreases. When νm = 0.5, the effective Poisson’s ratios νxy, νxz,
νyz and νzy can be very high, with values of up to 0.75. We note that maximum values of νxy

and νyx are obtained for highly crimped fibres ( A
L = 0.3), whereas maximum values for νxz

and νyz are obtained for only slightly corrugated fibres ( A
L = 0.01). A maximum value for

νzy is attained at a specific value of A
L = 0.18.

(a) (b)

(c) (d)

(e) (f)

Figure 2.18: Effective Poisson’s ratio (a) νxy, (b) νyx, (c) νxz, (d) νzx, (e) νyz and (f) νzy with
respect to different fibre crimp level and different matrix Poisson’s ratio. Values setting of
each parameter: E f = 100MPa, Em = 10KPa, ν f = 0.3, Vf = 20%, θ = 30◦.
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2.7.1.4 Effect of fibre crimp level and elastic modulus ratio of the materials

The elastic modulus of the matrix Em is set to 10KPa. The Poisson’s ratios of fibre ν f and
matrix νm are set to 0.3 and 0.4, respectively. The layer orientation angle θ is set to 30◦ and the
fibre volume fraction is set to 20%. The parameters predict the axial effective elastic modulus
and effective Poisson’s ratio as a function of fibre crimp level in the range of 0.01 < A

L < 0.3

and elastic modulus ratios of the fibre and matrix in the range 101 <
E f
Em

< 105, as shown in
Figure 2.19 and 2.20.

(a) (b)

(c)

Figure 2.19: Effective axial elastic modulus under load applied along (a) the x-axis, (b) y-
axis, and (c) z-axis as a function of fibre crimp level and elastic modulus ratio. The value
settings for each parameter are Em = 10KPa, ν f = 0.3, νm = 0.4, Vf = 20%, and θ = 30◦.

Figure 2.19 shows how axial elastic modulus varies with changes to fibre crimp level A
L

and elastic modulus ratio of the fibre and matrix
E f
Em

. We note that the logarithm values of
E f
Em

were used to draw the figure. Ey is not affected by A
L . As

E f
Em

rises, Ey increases significantly

when
E f
Em

is less than about 102, but the behavior of Ey changes slightly when
E f
Em

is greater

than 102, as shown in Figure 2.19b. Ez rises gradually with increasing A
L and

E f
Em

, as shown in
Figure 2.19c. Ex increases at small A

L and then declines at larger A
L , and increases significantly
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with increasing
E f
Em

until about
E f
Em

= 102 at all levels of A
L in the range tested as shown in

Figure 2.19c.

(a) (b)

(c) (d)

(e) (f)

Figure 2.20: Effective Poisson’s ratios (a) νxy, (b) νyx, (c) νxz, (d) νzx, (e) νyz, and (f) νzy
as a function of fibre crimp level and elastic modulus ratio. The values settings for each
parameter are Em = 10KPa, ν f = 0.3, νm = 0.4, Vf = 20%, and θ = 30◦.

Figure 2.20 shows how effective Poisson’s ratio νij varies with changes to fibre crimp

level A
L and elastic modulus ratio

E f
Em

. Changes in
E f
Em

above and beyond about 102 have little
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effect on effective Poisson’s ratios νij. However, when
E f
Em

< 102, as
E f
Em

rises, νxy, νyx, and
νzx decrease, and νxz, νyz, and νzy increase. As A

L increases, νxy and νyx rise, and νxz and νyz

decline. As A
L increases, νzx first decreases and then increases, whereas νzy increases first and

then decreases.

2.7.2 Double layers

2.7.2.1 Effect of fibre crimp level and layer orientation

Figure 2.21: Double-layer laminate within the Cartesian coordinate system. The first and
second layers are orientated by θ1 and θ2 around the y-axis with respect to the x-axis,
respectively.

In order to test the effects of fibre crimp level and layer orientation for double layers, we
applied the following constraints to our model. In this analysis, the number of layers r is
set to 2, both layers have the same thickness of 0.5 mm (e1 = e2), and the orientation of the
first and second layers is symmetrical either side of the x-axis, which means θ1 = −θ2. The
elastic modulus of the fibres E f is set to 100MPa, the elastic modulus of the matrix Em is
set to 10KPa, and the fibre volume fraction Vf is 20%. The Poisson’s ratio of fibre ν f and
matrix νm are set to 0.3 and 0.4, respectively. These parameters predict the axial effective
elastic modulus and effective Poisson’s ratio as a function of fibre crimp level over the range
0.01 < A

L < 0.3 and layer orientation angle in the range 20◦ < θ1 < 70◦ (and therefore -20◦

< θ2 < -70◦), as shown in Figures 2.22 and 2.23. The orientation angle of the two layers
with respect to the x-axis, θ1 and θ2, and the reference coordinate system are represented in
Figure 2.21.
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(a) (b)

(c)

Figure 2.22: Effective axial elastic modulus under load applied along (a) the x-axis, (b) y-axis,
and (c) z-axis as a function of fibre crimp level and relative orientation of the two layers.
Values setting of each parameter: r = 2, e1 = e2 = 0.5mm, E f = 100Mpa, Em = 10KPa,
ν f = 0.3, νm = 0.4, Vf = 20%, and θ1 = −θ2.

Figure 2.22 shows that, for the double layer arranged symmetrically on the x-axis, the
axial elastic modulus is jointly influenced by the fibre crimp level A

L and layer orientation
angle θ. We note that the logarithm values of Ex, Ey, and Ez are used to draw the figure.
Similar to the observation for the analysis of a single layer in section 2.7.1.1, the effective
elastic modulus Ex has a maximum value when A

L and θ decrease simultaneously; the
effective elastic modulus Ez has a maximum value when A

L is small and θ is large; and
the effective elastic moduli Ex and Ez are symmetrical at each fibre crimp level when θ =
45◦. However, unlike the observations in section 2.7.1.1, the maximum values of Ex and Ez

are much higher than for single-layer situation, and Ey is significantly affected by relative
layer orientation when A

L is small. Also, Ey increases as θ increases until 45◦ after which it
declines.

Figure 2.23 shows how the effective Poisson’s ratio νij varies with changes to fibre crimp
level A

L and layer orientation θ for the two layers arranged symmetrically on the x-axis.
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The change of each νi f is similar to that observed in section 2.7.1.1, νxy and νzy, νxz and
νzx, and νyz and νyx are symmetrical at all values of A

L in the range tested when θ = 45◦.
Interestingly, when A

L is small, νxy, νyx, νyz, and νzy have negative values. As A
L increases,

the negative Poisson’s ratio gradually disappears, and over the range of A
L = 0.01 - 0.3, νij is

never negative.

(a) (b)

(c) (d)

(e) (f)

Figure 2.23: Effective Poisson’s ratio (a) νxy, (b) νyx, (c) νxz, (d) νzx, (e) νyz and (f) νzy with
respect to different fibre crimp level and different layer orientation for double layers. Values
setting of each parameter: r = 2, e1 = e2 = 0.5mm, E f = 100Mpa, Em = 10KPa, ν f = 0.3,
νm = 0.4, Vf = 20%, θ1 = −θ2.
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2.7.2.2 Effect of layer thickness and fibre crimp level

In order to test the effects of layer thickness and fibre crimp level, we applied the following
constraints to our model. The elastic modulus of fibres E f is set to 100MPa, the elastic
modulus of the matrix Em is set to 10KPa, and the fibre volume fraction Vf is 20%. The
Poisson’s ratio of fibre ν f and matrix νm are set to 0.3 and 0.4, respectively. The number of
layers r is set to 2. The thickness of the first layer is set to 0.3 mm and that of the second layer
is set to range from 0.1 to 0.6 mm (parameters in the physiological range). The orientation
angles of the first layer θ1 and second layer θ2 with respect to the x-axis are equal and
opposite and are set to 30◦ and -30◦, respectively; the two layers are alligned at an angle
of 60◦ and have a line of symmetry in the x-axis. With these parameters, the model is able
to predict the axial effective elastic modulus and effective Poisson’s ratio as a function of
fibre crimp level in the range 0.01 < A

L < 0.3 and layer-thickness ratio over the range of
0.33 < e2

e1
< 2.0, as shown in Figures 2.24 and 2.25.

(a) (b)

Figure 2.24: Effective axial elastic modulus under load applied along (a) the x-axis, (b) y-axis,
and (z) z-axis as a function of fibre crimp level and layer-thickness ratio between two layers.
The value settings for each parameter are r = 2, E f = 100Mpa, Em = 10KPa, ν f = 0.3,
νm = 0.4, Vf = 20%, e1 = 0.3mm, and θ1 = −θ2 = 30◦.
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Figure 2.24 shows how the axial elastic modulus varies with changes to A
L and e2

e1
for the

two layers alligned at an angle of 60 degrees with respect to one another. Ex, Ey, and Ez are
less affected by e2

e1
and as A

L increases, Ex and Ey decline but Ez increases.

(a) (b)

(c) (d)

(e) (f)

Figure 2.25: Effective Poisson’s ratio (a) νxy, (b) νyx, (c) νxz, (d) νzx, (e) νyz and (f) νzy with
respect to different fibre crimp level and different layer thickness ratio for double layers.
Values setting of each parameter: r = 2, E f = 100Mpa, Em = 10KPa, ν f = 0.3, νm = 0.4,
Vf = 20%, e1 = 0.3mm, θ1 = −θ2 = 30◦.

Figure 2.25 shows how νij varies with changes to A
L and e2

e1
for the two layers arranged

symmetrically on either side of the x-axis. The layer-thickness ratio e2
e1

has little effect on νij.
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When A
L increases, νxy and νyx rise, but νxz and νyz decline. As e2

e1
increases in the range from

0.01 to 0.3, νzx first increases, then decreases, and then increases again slightly, whereas νzy

first decreases, then increases, and then slightly decreases again.

2.7.2.3 Effect of fibre crimp level and elastic modulus ratio of the materials

In order to test the effects of fibre crimp level and elastic modulus ratio of the materials, we
applied the following constraints to our model. The elastic modulus of the matrix Em is set
to 10KPa, and the fibre volume fraction Vf is 20%. The Poisson’s ratio of fibre ν f and matrix
νm are set to 0.3 and 0.4, respectively. The number of layers r is set to 2 and both layers
have the same thickness of 0.5 mm (e1 = e2). The orientation angles of the first layer θ1 and
second layer θ2 are as above, in section 2.7.2.2, and are symmetrical about the x-axis. With
these parameters, the model is able to predict the axial effective elastic modulus and effective
Poisson’s ratio as a function of fibre crimp level (0.01 < A

L < 0.3) and elastic modulus ratio

of the fibre and matrix (101 <
E f
Em

< 105), as shown in Figure 2.26 and 2.27.

(a) (b)

(c)

Figure 2.26: Effective axial elastic modulus under load applied along (a) the x-axis (b), y-axis,
and (d) z-axis as a function of fibre crimp level and elastic modulus ratio. The value settings
of each parameter are r = 2, Em = 10KPa, ν f = 0.3, νm = 0.4, Vf = 20%, e1 = e2 = 0.5mm,
and θ1 = −θ2 = 30◦.
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Figure 2.26 shows how axial elastic modulus varies with changes to fibre crimp level
A
L and elastic modulus ratio of the fibre and matrix

E f
Em

. Here, Ex, Ey, and Ez increase

significantly as
E f
Em

rises until 103, but their behaviour changes slightly when
E f
Em

is greater
than 103. As A

L increases, Ex and Ey decline, but Ez increases.

(a) (b)

(c) (d)

(e) (f)

Figure 2.27: Effective Poisson’s ratio (a) νxy, (b) νyx, (c) νxz, (d) νzx, (e) νyz and (f) νzy with
respect to different fibre crimp level and different elastic modulus ratios. Values setting of
each parameter: r = 2, Em = 10KPa, ν f = 0.3, νm = 0.4, Vf = 20%, e1 = e2 = 0.5mm,
θ1 = −θ2 = 30◦.

Figure 2.27 shows how the effective Poisson’s ratios νij vary with changes to fibre crimp

level A
L and elastic modulus ratio

E f
Em

. When
E f
Em

> 103,
E f
Em

has little impact on effective
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Poisson’s ratios νij. However, when
E f
Em

< 103, as
E f
Em

rises, νxy, νyx and νzx decrease, and νxz,
νyz, and νzy increase. As A

L increases, νxy and νyx rise, and νxz and νyz decline. As A
L increases,

νzx first decreases and then increases, whereas νzy increases first and then decreases.

2.7.2.4 Effect of layer orientation symmetry

The relative orientation of the successive layers of the AF changes from the inner layer
closest to the nucleus pulposus to the outer layer, as reported by Marcolongo et al. [2017]
and Baldit [2018]. Therefore, there should be asymmetrically arranged layers in the AF as a
whole. In this analysis, we study the effect of layer orientation symmetry on the axial elastic
modulus of our model AF by changing the respective orientation of the layers. The elastic
modulus of fibres E f is set to 100MPa, elastic modulus of the matrix Em is set to be 10KPa,
and the fibre volume fraction Vf is 20%. The Poisson’s ratio of fibre ν f and matrix νm are set
to 0.3 and 0.4, respectively, and the fibre crimp level A

L is set to 0.1. The number of layers r is
set to 2, and they have the same thickness of 0.5 mm (e1 = e2). The orientation angles of the
first layer θ1 are set to -20◦, -30◦, -45◦, -60◦ and -70◦ in separate test runs. These parameters
predict the axial effective elastic modulus and effective Poisson’s ratio as a function of θ2 in
the range from 20◦ to 70◦ as shown in Figures 2.28 and 2.29.

(a) (b)

(c)

Figure 2.28: Effective axial elastic modulus under load applied along (a) the x-axis, (b) y-
axis, and (c) z-axis as a function of relative layer orientation in a two-layer model. The value
settings for each parameter are r = 2, E f = 100MPa, Em = 10KPa, ν f = 0.3, νm = 0.4,
Vf = 20%, e1 = e2 = 0.5mm, and A

L = 0.1.

94



Figure 2.28 shows how the axial elastic modulus varies with changes to the orientation
angle of the second layer θ2 with respect to the x-axis for different values of θ1. The first layer
angle θ1 is set to -20◦, -30◦, -45◦, -60◦, -70◦ and -θ2, providing six different cases to analyze.
For each case, as |θ1| and |θ2| increase, Ex decreases and Ez increases, and when |θ1| + |θ2| =
90◦, Ey reaches its maximum value.

(a) (b)

(c) (d)

(e) (f)

Figure 2.29: Effective Poisson’s ratios (a) νxy, (b) νyx, (c) νxz, (d) νzx, (e) νyz, and (f) νzy as
a function of relative layer orientation for a two-layer model. The value settings for each
parameter are r = 2, E f = 100MPa, Em = 10KPa, ν f = 0.3, νm = 0.4, Vf = 20%, e1 = e2 =

0.5mm, and A
L = 0.1.

Figure 2.29 shows how the effective Poisson’s ratios νij vary with changes to the
orientation angle of the second layer θ2 with respect to the x-axis for different values of θ1.
As |θ1| and |θ2| increase, νxy, νyx, and νzy increase, and νxz, νyz, and νzy decrease. Compared
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with the impact of layer orientation angle θ presented in section 2.7.2.1, where the two layers
are always symmetrically oriented with respect to the x-axis, the asymmetry has less of an
impact on the Poisson’s ratios.

2.7.3 Multiple layers

In this analysis, we study the effective mechanical properties of a composite model with
ten layers (r = 10) as a function of the relative orientation of the successive layers and
fibre crimp level; a laminate schematic diagram and the coordinate system are shown in
Figure 2.30 and the layer orientation angle settings are shown in Table 2.2. We note that the
properties of the ten-layer symmetrically arranged laminate with the constant angle between
successive layers are exactly the same as those of the two-layer laminate, and can be obtained
by calculation. The different angle settings are based on the nature of AF, in which the
relative orientation of successive layers varies from the inner layer closest to the nucleus to
the outer layer. In cases 1 and 2, the average orientation angle of 10 layers is |40◦|, and in
case 1, a wider range of orientation angles is tested. In case 3, the orientation angle is set at
a constant 40◦ between successive layers |θk| =40◦, (k = 1, 2, 3 · · · ). The thickness of each
layer is set to 0.5 mm. The elastic modulus of fibres E f is set to 100MPa, the elastic modulus
of the matrix Em is set to 10KPa, and the fibre volume fraction Vf is set to 20%. The Poisson’s
ratio of fibre ν f and matrix νm are set to 0.3 and 0.4, respectively. These parameters predict
the axial effective elastic modulus and effective Poisson’s ratio as a function of the relative
orientation of the successive layers as well as fibre crimp level in the range 0.01 < A

L < 0.3,
as shown in Figures 2.31 and 2.32.

Figure 2.30: Schema of multi-layer laminate, showing the reference coordinate system. h
represents the total thickness of the laminate, θk (k = 1,2,3 · · · ) is the orientated angle around
the y-axis with respect to the x-axis for the kth layer and ek is the thickness of the kth lamella.
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Layer number θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

Case 1 20◦ -20◦ 30◦ -30◦ 40◦ -40◦ 50◦ -50◦ 60◦ -60◦

Case 2 30◦ -30◦ 35◦ -35◦ 40◦ -40◦ 45◦ -45◦ 50◦ -50◦

Case 3 40◦ -40◦ 40◦ -40◦ 40◦ -40◦ 40◦ -40◦ 40◦ -40◦

Table 2.2: Layer orientation angle settings for each of the ten lamellae of the model. Three
cases are studied.

(a) (b)

(c)

Figure 2.31: Effective axial elastic modulus of a ten-layer laminate model under load applied
along (a) the x-axis, (b) the y-axis, and (c) the z-axis as a function of fibre crimp level and
relative orientation of the successive layers. The value settings for the fixed parameters are
r = 10, E f = 100MPa, Em = 10KPa, ν f = 0.3, νm = 0.4, Vf = 20%, and ek = 0.5mm.

Figure 2.31 shows how the axial elastic modulus varies with changes to fibre crimp level
A
L throughout the laminate and orientation angle between each of its ten layers (or no change
as in case 3). Each effective elastic modulus changes significantly when A

L < 0.1, and as
A
L increases, each effective elastic modulus gradually stabilizes. The values of Ex and Ez

differ significantly between cases 1, 2, and 3 when A
L < 0.1, but when A

L > 0.1, Ex and
Ez stabilize in all three cases at about the same value. The values of Ey and its behavior
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with increasing A
L are very similar in all three cases. Interestingly, the values of Ex, Ey

and Ez for case 2 are always in between those of cases 1 and 3, which shows that even if
the average orientation angle between successive layers is the same for all cases, the larger
the range of layer orientation angles in the laminate, the larger the difference between the
global effective modulus and the constantly oriented case (the constant oriented angle is the
average oriented angle in the other cases) modulus.

(a) (b)

(c) (d)

(e) (f)

Figure 2.32: Effective Poisson’s ratios (a) νxy, (b) νyx, (c) νxz, (d) νzx, (e) νyz, and (f) νzy for
a ten-layer laminate model as a function of fibre crimp level and relative orientation of the
successive layers of the laminate model. The value settings for the parameters are r = 10,
E f = 100MPa, Em = 10KPa, ν f = 0.3, νm = 0.4, Vf = 20%, ek = 0.5mm.

98



Figure 2.32 shows how the effective Poisson’s ratios νij of a ten-layer laminate model vary
with changes to the fibre crimp level A

L in the laminate as a whole and changes to orientation
angle between each of its ten successive layers (or no change as in case 3). The behavior of
the Poisson’s ratios in cases 1 and 2 is the same as that of case 3 where the orientation angle
between successive layers is constant. Each effective νij value in case 2 is always between
the values of cases 1 and 3 at each increment in A

L , which indicates that the trend seen for
the Poisson’s ratios is the same as that seen for the effective elastic modulus: the larger the
range of layer orientation angles in the laminate, the larger the difference between the global
effective Poisson’s ratio and the average case Poisson’s ratio.

2.8 Discussion

In this chapter, we use an analytical micromechanical model to study the effective mechanical
properties of the lamellar composite structure of annulus fibrosus tissue, with a focus on
the roles of the orientation angle between the parellel fibres of successive lamellae and the
corrugation, or crimp level, of those fibres. The lamellar structure of composite has been
studied by Remund et al. [2011] and Zhou et al. [2020], for example, but the collagen-fibre
crimp level was not considered in those studies.

For a single-layer composite, when the value of crimp level A
L is small ( A

L < 0.1), it has
a large influence on Ex and Ez but has no effect on Ey, and all of the Poisson’s ratios νij are
affected by A

L . The orientation angle between successive layers θ affects Ex and Ez as well
as each νij. In addition, νxy and νzy, νxz and νzx, νyz and νyx, and Ex and Ez are symmetrical
if θ = 45◦. The fibre volume fraction Vf has little influence on νij but does impact on the
effective elastic modulus. Moreover, the Poisson’s ratio of the matrix νm influences each
νij but has little impact on the effective elastic modulus. Interestingly, each effective elastic
modulus and νij change significantly with changing elastic modulus ratio of fibre and matrix
E f
Em

only when
E f
Em

< 102.

For a two-layer laminate, as opposed to the single-layer case, θ and A
L both influence Ey.

In addition, the range of νij is significantly expanded: the minimum value is even negative
and the maximum value is close to 5. The ratio of the thickness of the first layer to that of the
second, that is, the layer thickness ratio e2

e1
, has little effect on both effective elastic modulus

and νij. The same trends are seen for the two-layer laminate as for the single-layer case:

each effective elastic modulus and νij change significantly only when
E f
Em

< 103. Compared
with the impact of layer orientation angle θ, the asymmetry of the layer orientation either
side of the x-axis, as shown in Figure 2.21, has less impact on the Poisson’s ratio. Testing the
effects of incrementally increasing the relative orientation angle of the successive layers of a
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ten-layer laminate from one end to the other and within different ranges on both effective
elastic modulus and νij, we observe that the size of the range impacts on the global effective
mechanical behavior, causing it to deviate from that of a laminate with a constant orientation
angle between the fibres of one layer and those of the next. Further, the larger the range,
the larger difference between the global effective mechanical properties of the laminate and
those of the laminate with constant orientation angle.

It is known that, for isotropic solids, the Poisson’s ratio is in general smaller than 0.5,
but the Poisson’s ratio in certain microstructures of the composites under study can be
significantly larger than 0.5, as shown in Figures 2.14 and 2.23. This is because of the effects
of corrugated fibres and alternately oriented layer. In section 2.7.2.1, negative Poisson’s
ratios are observed in a two-layer laminate when the fibre crimp level A

L is small, which is not
found in the single-layer laminate in section 2.7.1.1. Materials with negative Poisson’s ratios,
also known as auxetic materials, show unusual and counterintuitive mechanical behaviour,
namely they become thicker perpendicular to the loading direction. The negative Poisson’s
ratios are seen in the x-y and y-z planes but not in the x-z plane. Such a situation might be
caused by a specific fibre–matrix stiffness ratio and fibre dispersion. As fibres are considered
slightly corrugated when A

L is small, when the dispersed fibres are stretched, the fibre-matrix
stiffness ratio causes the matrix between the fibres to be compressed, which can lead to
expansion in the x-y and y-z planes. Similar observations were reported by Herakovich [1984]
and Sun and Li [1988] based on analytical analysis, and by Volokh [2017] and Fereidoonnezhad
et al. [2020] based on numerical simulation tests, and by Baldit et al. [2014], Dusfour et al.
[2020], and Derrouiche et al. [2019a] based on tensile experiments on AF. Larger negative
maximum Poisson’s ratios are observed in Figures 2.23a and 2.23f, which is likely due to the
larger fibre–matrix stiffness ratio (

E f
Em

= 104) compared to that reported in Herakovich [1984]
and Sun and Li [1988]. As A

L increases, the negative Poisson’s ratios gradually disappear,
that is to say, one of the mechanical effects of the corrugated fibres in the microstructure of
the laminate model studied here is to reduce its auxetic behavior. In conclusion, because of
the fibre-matrix stiffness ratio and fibre dispersion, the laminate composite shows an auxetic
behavior in the planes perpendicular to the plane of the lamellae. However, this behavior is
not easily constrained because of the joint influence of fibre crimp level and successive layer
orientation.

The proposed micromechanical model can be used to quickly estimate the mechanical
properties of alternately oriented laminates embedded with crimped fibres using theoretical
calculations only, and can easily be used to analyze the influence of each of the parameters
discussed above on the effective mechanical properties of the modeled material. The
modulus of fibre E f and matrix Em, the Poisson’s ratios of fibre ν f and matrix νm, volume
fraction of the fibres Vf and matrix Vm, fibre crimp level A

L , relative orientation angle of
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successive layers θk, layer thickness ek, and total number of layers r are taken into account
as parameters potentially modifying the mechanical properties of the laminate studied here.
The model described has been designed to mimic and therefore study the morphological
aspects of AF but the approaches and techniques employed are also applicable to other
fibre-reinforced biological tissues and biocomposites.

The stress-strain curve of AF tissue is usually J-shaped (Vergari et al. [2017]) and the
collagen fibres reorient in response to load (Cassidy et al. [1989]; Marchand and Ahmed [1990];
Ambard and Cherblanc [2009]). However, the present study is limited to testing the effects
of the weak strain of the laminate material, which is considered a linear behavior, and the
effects of reorientation of the crimped fibres while the modeled tissue is stretching are not
taken into account. As mentioned in section 1.1.2, cross-links are found between crimped
fibres at a smaller scale, and these are also not taken into account in the proposed model. It
is also noted that the Mori and Tanaka [1973] Eshelby equivalent inclusion method provides
the best estimates when the fibre volume fractions are relatively low (below 60%) (Kwon and
Dharan [1995]; Ju and Yanase [2010]; Saadat et al. [2015]). The fibre volume fraction of AF
tissue is estimated to range from 5% to 24.5%, as shown in Table 2.1. Therefore, we consider
the Eshelby method to be suitable for use in conjunction with the proposed AF model, but
for other applications, the limits of fibre volume fraction should be reconsidered and an
alternative method for estimation of fibre volume fraction may be needed. Furthermore,
in our model, the strain experienced by each layer along the x-axis and z-axis is assumed
to be equal to the global strain on the multi-layer laminate along the x-axis and z-axis,
respectively, and the stress on each layer along the y-axis is assumed to be the same as the
global stress acting along the y-axis, as shown in Equation 2.118, but no accepted methods
exist at present to verify these assumptions for AF tissue. Moreover, the fibres and matrix
are assumed to have perfect interface conditions, but the true nature of these conditions has
not yet been determined for AF tissue.

101





CHAPTER 3

Study of soft tissues with helical fibre structure

3.1 Introduction

As introduced in chapter 1, many soft tissues, such as aortic wall [Niestrawska et al., 2016],
[Morin et al., 2019] and tendon [Verzár, 1964], [Evans and Barbenel, 1975], [Liao, 2003], [Harvey
et al., 2010], are found to incorporate a microstructure of helical collagen fibres, as shown in
Figure 3.1. Cross-links are also widely observed between the collagen fibres ([Giudici et al.,
2020] [Pezowicz et al., 2005]) and the impact of these features on the mechanical performance
of a bottom-up spring-node model of collagen Chen et al. [2017] has been explored.

Considering that helical structures exist in soft tissue, here we present a numerical study
of their effects on the mechanical properties of a soft-tissue model using a double-scale
asymptotic homogenization method. We model soft tissue here as a composite material
of a matrix reinforced with helical fibres. We assume a perfect bind between the matrix
and the embedded fibres. We consider a periodic arrangement of helical fibres, with or
without cross-links and with or without matrix, with the aim being to investigate their
specific implication on the overall mechanical properties of the composite tissue. To this
end, we first present the asymptotic homogenization theory and numerical implementation
method in section 3.2, which can also be found in Vasquez-villegas [2022]. We then present
our study of the properties of composite reinforced with helical fibres, helical fibres with
cross-links alone, and composite reinforced with helical fibres with cross-links in sections
3.3, 3.4, and 3.5, respectively. Finally, we discuss our results in section 3.6.
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Figure 3.1: Crimped collagen fibrils in chordæ tendineæ. (Reproduced from Liao [2003])

3.2 Calculation of the effective elastic tensor for the periodic
microstructure

As a first approximation of soft tissue reinforced with helical fibres, we assume a composite
model with a periodic structure. We use the double-scale asymptotic homogenization
method to derive the effective behavior and elastic stiffness tensor. In this section, first
we present the homogenization theory of linear elastic behavior over a periodic material in
section 3.2.1, and then we discuss the numerical solution of the homogenization equation
in section 3.2.2. Finally, we validate the finite element analysis method by comparing both
analytical and numerical results in the section 3.2.3.

3.2.1 Homogenization theory of linear elastic behavior for a periodic material

The homogenization method is used to determine the effective mechanical properties of
heterogeneous periodic media from the properties of the constitutive materials and their
microstructure. For the case of a linear elastic model, these effective properties can be
determined by the asymptotic expansion homogenization method at multiple scales. The
method accounts for the scale separation by introducing a separation parameter ε, which
represents the ratio of the period of the structure to a typical length in the region. The
method, which is based on asymptotic expansions in powers of the small parameter ε,
was specifically developed for periodically distributed medium (Bensoussan et al. [1978];
Sánchez-Palencia [1980]). In this section, we present the steps we take to derive a macroscopic
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description of the effective four-order elastic tensor for the case of a two-phase periodic cell
material (Caillerie [1987]).

3.2.1.1 Description of the medium under consideration

We consider a periodic two-phase medium that has a macroscopic characteristic size L. We
then define a periodic cell Ω, noted as a representative elementary volume (REV) with a
characteristic size l, as shown in Figure 3.2. Ω1 and Ω2 represent the two phases in the
periodic cell and Γ represents the common interface between them. The periodic interfaces
(S1 and S2) are associated with the phases Ω1 and Ω2, respectively, as shown in Figure 3.2.

Figure 3.2: Diagram of the periodic medium, showing the REV cell with period Ω, and the
periodic phases Ω1 and Ω2 and interfaces S1 and S2.

We use X⃗ as the physical spatial variable, and y⃗, x⃗ as dimensionless space variables that
respectively describe variations on the microscopic and macroscopic scales; we introduce
relations for these in Equation 3.1. We define ε to formulate the separation condition of
different scales, with the REV for the medium being small compared to the macroscopic
volume. See the relation between these in Equation 3.2.

y⃗ =
X⃗
l

x⃗ =
X⃗
L

. (3.1)

ε =
l
L
<< 1. (3.2)

Due to the two spatial variables with respect to X⃗, the gradient operator can be written
as
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∂

∂Xi
=

∂

∂yi

∂yi

∂Xi
+

∂

∂xi

∂xi

∂Xi
, (3.3)

∇⃗X =
1
l
∇⃗y +

1
L
∇⃗x. (3.4)

We take the macroscopic viewpoint and reintroduce Equation 3.4 by inserting the
dimensionless number as:

∇⃗ = L∇⃗X = ε−1∇⃗y + ∇⃗x. (3.5)

Due to the separation of scales, the quantity Φ = Φ(x⃗, y⃗) appears as a function of two
dimensionless variables, and Φ is looked for in the form of an asymptotic expansion in
power of ε as:

Φ = Φ0(x⃗, y⃗) + εΦ1(x⃗, y⃗) + ε2Φ2(x⃗, y⃗) + ... (3.6)

The method we follow to look for Φ is described here. We assume the local description
to be given and we look for the equivalent macroscopic description. First of all, we choose
the macroscopic or microscopic viewpoint. The expansions are made in the form of Eq.3.6
with y = x

ε or x = εy. We then proceed to the nondimensionless local description.
The dimensionless numbers are evaluated as functions of powers of ε, where the physical
problem is taken into account. Finally, the asymptotic expansions are substituted as in Eq.3.6
into the normalized description.

3.2.1.2 Dimensionless local description

For the two-phase medium under consideration, the period Ω is composed of two elastic
materials occupying the domains Ω1 and Ω2. The elastic tensors associated with these
domains are A1 and A2, respectively. The microscopic description on the periodic cell Ω,
is given by:

∇⃗ · σα = 0 within Ωα, (α = 1, 2), (3.7)

σα = Aα : e(u⃗α) within Ωα, (α = 1, 2), (3.8)

σ1 · n⃗1 + σ2 · n⃗2 = 0 over Γ, (3.9)

106



u⃗1 = u⃗2 over Γ, (3.10)

where σα represents the stress tensor, u⃗α is the displacement, n⃗1 and n⃗2 are the unit normal
vectors and satisfy n⃗1 = −n⃗2 over Γ , and e is the strain tensor defined by:

e(u⃗α) =
1
2
(∇⃗u⃗α + ∇⃗Tu⃗α). (3.11)

The elastic tensor Aα is a fourth-order tensor and satisfies the symmetries:

(Aijkh)α = (Akhij)α = (Ajikh)α = (Aijhk)α. (3.12)

Our description of the modeled material assumes perfect adhesion between the two
domains and their respective elastic properties are of the same order of magnitude.

3.2.1.3 Asymptotic expansion

To proceed in the homogenization of the microscopic description, we look for σα and uα in
the form of asymptotic expansions. The expansion of u⃗α is written as:

u⃗α(x⃗, y⃗) = u⃗0
α(x⃗, y⃗) + εu⃗1

α(x⃗, y⃗) + ε2u⃗2
α(x⃗, y⃗) + ..., (3.13)

where the function ui
α is periodic with respect to the local variable y⃗ = X⃗

l of period 1.
The strain tensor 3.11 can be deduced by applying the derivation rule 3.5 as follows.

e(u⃗α) = ε−1ey(u⃗α) + ex(u⃗α). (3.14)

Therefore, Equation 3.8 indicates that the asymptotic expansion of σα starts in ε−1 as:

σα(x⃗, y⃗) = ε−1σ−1
α (x⃗, y⃗) + ε0σ0

α(x⃗, y⃗) + ε1σ1
α(x⃗, y⃗) + ..., (3.15)

where the function σi
α is Ω-periodic in y⃗.

3.2.1.4 Perturbation equation

Introducing the asymptotic expansions 3.13 and 3.15, the gradient expression 3.5, and the
strain tensor 3.14 into the Equations 3.7, 3.8, 3.9, and 3.10, we obtain the following cascade
of developments in power of ε:

• For Equation 3.7:

(ε−1∇⃗y + ∇⃗x) · (ε−1σ−1
α + ε0σ0

α + ε1σ1
α + · · · ) = 0, (3.16)
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O(ε−2) ∇⃗y · σ−1
s = 0, (3.17)

O(ε−1) ∇⃗y · σ0
α + ∇⃗x · σ−1

α = 0, (3.18)

O(ε0) ∇⃗y · σ1
α + ∇⃗x · σ0

α = 0, (3.19)

· · ·

• For Equation 3.8:

ε−1σ−1
α + ε0σ0

α + ε1σ1
α + · · · = Aα : (ε−1ey + ex)(u⃗0

α + εu⃗1
α + ε2u⃗2

α + ...), (3.20)

O(ε−1) σ−1
α = Aα : ey(u⃗0

α), (3.21)

O(ε0) σ0
α = Aα : [ey(u⃗1

α) + ex(u⃗0
α)], (3.22)

O(ε1) σ1
α = Aα : [ey(u⃗2

α) + ex(u⃗1
α)], (3.23)

· · ·

• For Equation 3.9:

(ε−1σ−1
1 + ε0σ0

1 + ε1σ1
1 + · · · ) · n⃗1 + (ε−1σ−1

2 + ε0σ0
2 + ε1σ1

2 + · · · ) · n⃗2 = 0, (3.24)

O(ε−1) σ−1
1 · n⃗1 + σ−1

2 · n⃗2 = 0, (3.25)

O(ε0) σ0
1 · n⃗1 + σ0

2 · n⃗2 = 0, (3.26)

O(ε1) σ1
1 · n⃗1 + σ1

2 · n⃗2 = 0, (3.27)

· · ·
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• For Equation 3.10:

u⃗0
1 + εu⃗1

1 + ε2u⃗2
1 + · · · = u⃗0

2 + εu⃗1
2 + ε2u⃗2

2 + · · · , (3.28)

u⃗0
1 = u⃗0

2 (3.29)

u⃗1
1 = u⃗1

2 (3.30)

u⃗2
1 = u⃗2

2 (3.31)

· · ·

where O is the term of relative order ε. From the developments above, we can determine
the following boundary value problem.

3.2.1.5 Homogenization

Determination of σ−1
α and u⃗0

α

From Equations 3.17, 3.21, 3.25, and 3.29, the boundary first-order value problem reads
as follows:


∇⃗y · (Aα : ey(u⃗0

α)) = 0 within Ωα, (α = 1, 2), (3.32)

(A1 : ey(u⃗0
1)) · n⃗1 + (A2 : ey(u⃗0

2)) · n⃗2 = 0 over Γ, (3.33)

u⃗0
1 = u⃗0

2 over Γ, (3.34)

where u⃗1 and u⃗2 are Ω-periodic in y⃗. Therefore, the displacement is constant over the
period Ω, which means that it only depends on the macroscopic variable x⃗:

u⃗0
α = u⃗0

x⃗. (3.35)

Consequently, we can deduce from Equation 3.21 that

σ−1
α = 0. (3.36)

Determination of σ0
α and u⃗1

α
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For the following order value problem, from Equations 3.18, 3.22, 3.26, 3.30, and 3.36, we
have:


∇⃗y · (Aα : [ey(u⃗1

α) + ex(u⃗0
α)]) = 0 within Ωα, (α = 1, 2), (3.37)

(A1 : [ey(u⃗1
1) + ex(u⃗0

1)]) · n⃗1 + (A2 : [ey(u⃗1
2) + ex(u⃗0

2)]) · n⃗2 = 0 over Γ, (3.38)

u⃗1
1 = u⃗1

2 over Γ. (3.39)

The unknown problem is determined to be u1
α. The elastic tensor Aα ensures the existence

of the unique solution, which is a linear function of ex(u⃗0):

u1
αi
= ξ lm

αi
(⃗y)exlm(u⃗

0) + ũ1
αi
(x⃗), (3.40)

where ũ1
αi
(x⃗), (α = 1, 2), are additive functions and the functions ξ lm

αi
, (α = 1, 2) represent

the third-order tensor components. ξ lm
αi

is the particular solution of u1
αi

= ξ lm
αi

for the
boundary value problem 3.32, 3.33, and 3.34 when exij(u⃗0

α) = δilδjm, where l and m are
fixed. The functions ξ lm

αi
satisfy:


∂

∂yj

(Aαijkh eykh(ξ⃗
lm
α ) + Aαijlm) = 0 within Ωα, (α = 1, 2). (3.41)

(A1i jkheykh(ξ⃗
lm
1 ) + A1ijlm) · n1j + (A2i jkheykh(ξ⃗

lm
2 ) + A2ijlm) · n2j = 0 over Γ, (3.42)

ξ⃗kh
1 = ξ⃗kh

2 over Γ, (3.43)

where ξ⃗kh
α , (α = 1, 2) are Ω-periodic in y⃗. The unique solution requires that ξ lm

αi
has a zero

mean over the periodic cell Ω:

< ξkh
α >Ω= 0, (3.44)

where < • > is the cell volume average described as:

< • >Ωα
=

1
|Ω|

∫
Ωα

• dΩ (α = 1, 2). (3.45)

We therefore have:

σ0
α = (Aαijlm eylm(ξ⃗

lm) + Aijkh)exkh(u⃗
0
α). (3.46)

First-order compatibility condition
Let us consider the next order boundary value problem from 3.19 and 3.27:
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{
∇⃗y · σ1

α + ∇⃗x · σ0
α = 0 within Ωα, (α = 1, 2), (3.47)

σ1
1 · n⃗1 + σ1

2 · n⃗2 = 0 over Γ. (3.48)

Integrating the Equation 3.47 over the period Ω leads to a necessary and sufficient
condition for the solution of u⃗1

α. The volume average constitutes the first-order macroscopic
behavior noted as:

1
|Ω|

∫
Ω1

∇⃗y · σ1
1 dΩ +

1
|Ω|

∫
Ω1

∇⃗x · σ0
1 dΩ +

1
|Ω|

∫
Ω2

∇⃗y · σ1
2 dΩ +

1
|Ω|

∫
Ω2

∇⃗x · σ0
2 dΩ = 0.

(3.49)
Applying divergence theorem, some members of Equation 3.49 can be transformed as

follows:

1
|Ω|

∫
Ω1

∇⃗y · σ1
1 dΩ =

1
|Ω|

∫
∂Ω1

σ1
1 · n⃗1 dS, (3.50)

1
|Ω|

∫
Ω2

∇⃗y · σ1
2 dΩ =

1
|Ω|

∫
∂Ω2

σ1
2 · n⃗2 dS, (3.51)

where ∂Ωα = Γ ∪ Sα, (α = 1, 2), and Sα, (α = 1, 2) is the external boundary surface over
the periodic cell Ω as shown in Figure 3.2. Equation 3.50 and 3.51 can therefore be written
as:

1
|Ω|

∫
∂Ω1

σ1
1 · n⃗1 dS =

1
|Ω|

∫
S1

σ1
1 · n⃗1 dS +

1
|Ω|

∫
Γ

σ1
1 · n⃗1 dS, (3.52)

1
|Ω|

∫
∂Ω2

σ1
1 · n⃗2 dS =

1
|Ω|

∫
S2

σ1
2 · n⃗2 dS +

1
|Ω|

∫
Γ

σ1
2 · n⃗2 dS. (3.53)

Due to the periodicity of the cell, integrating over Sα, (α = 1, 2) is zero:

1
|Ω|

∫
S1

σ1
1 · n⃗1 dS = 0, (3.54)

1
|Ω|

∫
S2

σ1
2 · n⃗2 dS = 0. (3.55)

From Equation 3.48, we have:

1
|Ω|

∫
Γ

σ1
1 · n⃗1 dS +

1
|Ω|

∫
Γ

σ1
2 · n⃗2 dS = 0. (3.56)

Therefore, Equation 3.49 becomes:
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1
|Ω|

∫
Ω1

∇⃗x · σ0
1 dΩ +

1
|Ω|

∫
Ω2

∇⃗x · σ0
2 dΩ = ∇⃗x· < σ0

1 >Ω1 +∇⃗x· < σ0
2 >Ω2= 0. (3.57)

Let us define

σ0
T =

{
σ0

1 within Ω1

σ0
2 within Ω2

. (3.58)

Equation 3.57 therefore becomes:

{
∇⃗x· < σ0

T >Ω= 0 (3.59)

,< σ0
T >Ω=< σ0

T >1 + < σ0
T >2 . (3.60)

The Equation 3.22 can then be written as:

< σ0
Tij

>Ω=< A1 : [ey(u⃗1
1) + ex(u⃗0

1)] >Ω1 + < A2 : [ey(u⃗1
2) + ex(u⃗0

2)] >Ω2. (3.61)

If we take into account the form of u⃗1
α 3.40, then we have:

< σ0
T >Ω =< A1ijkh : [eykh(ξ

lm
1 exlm(u⃗

0
1)) + exkh(u⃗

0
1)] >Ω1 + < A2ijkh : [eykh(ξ

lm
2 exlm(u⃗

0
2)) + exkh(u⃗

0
2)] >Ω2

=< A1ijkh + A1ijlm eylm(ξ
kh
1 ) >Ω1 exkh(u⃗

0
1)+ < A2ijkh + A2ijlm eylm(ξ

kh
2 ) >Ω2 exkh(u⃗

0
2)

= Cijkhexkh(u⃗
0
α),

(3.62)
where Cijkh is the effective elastic tensor defined by:

Cijkh =< A1ijkh + A1ijlm eylm(ξ
kh
1 ) >Ω1 + < A2ijkh + A2ijlm eylm(ξ

kh
2 ) >Ω2 . (3.63)

First-order macroscopic description
The first-order equivalent macroscopic behavior of periodic cell material is written as:


∇⃗x· < σ0

T >Ω= 0, (3.64)

< σ0
Tij

>Ω= Cijkhexkh(u⃗
0
α), (3.65)

Cijkh =< A1ijkh + A1ijlm eylm(ξ
kh
1 ) >Ω1 + < A2ijkh + A2ijlm eylm(ξ

kh
2 ) >Ω2 . (3.66)

The macroscopic behavior is equivalent to that of a homogeneous elastic material and
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the effective elastic tensor is given by Equation3.66.

3.2.1.6 Porous empty medium case

We also investigate the mechanical properties of modeled empty porous material (Boutin
et al. [2010]). To this end, we consider the phase Ω2 as empty in the periodic cell as shown in
Figure 3.2. The microscopic description of the problem on the periodic cell Ω can be deduced
as:

∇⃗ · σ1 = 0 within Ω1, (3.67)

σ1 = A1 : e(u⃗1) within Ω1, (3.68)

σ1 · n⃗1 = 0 over Γ, (3.69)

u⃗1 = 0 over Γ. (3.70)

By homogenizing this microscopic description, we obtain the macroscopic behavior,
which can be written in the same form as Equations 3.65 and 3.66, where the macroscopic
stress at the first order is defined by:

< σ0
Tij

>Ω=< A1 : [ey(u⃗1
1) + ex(u⃗0

1)] >Ω1 , (3.71)

where

σ0
T =

{
σ0

1 within Ω1,

0 within Ω2.
(3.72)

The effective elastic tensor Cijkh is therefore defined as:

Cijkh =< A1ijkh + A1ijlm eylm(ξ
kh
1 ) >Ω1 , (3.73)

where the function ξkh
1 satisfies:


∂

∂yj

(A1ijkh eykh(ξ⃗
lm
1 ) + A1ijlm) = 0 within , (3.74)

(A1i jkheykh(ξ⃗
lm
1 ) + A1ijlm) · n1j = 0 over Γ, (3.75)

ξ⃗kh
1 = 0 over Γ. (3.76)
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3.2.2 Numerical solution of the homogenization equation

3.2.2.1 Finite element formulation

In order to determine the elastic properties of a periodic material, only the effective elastic
tensor is necessary. From Equation 3.66, each value of the elastic tensor can be calculated as:

Cijkh =
1
|Ω|

∫
Ω1

(A1ijkh + A1ijlm eylm(ξ
kh
1 ))dΩ +

1
|Ω|

∫
Ω2

(A2ijkh + A2ijlm eylm(ξ
kh
2 ))dΩ. (3.77)

The first member of the integral is related to the material microstructure; it corresponds
to the value of the elastic tensor weighted by the volume fraction, written as:

1
|Ω|

∫
Ωα

Aαijkh dΩ = ρα Aαijkh , α = 1, 2, (3.78)

where ρα is the volume fraction of the corresponding α component.
The second member of the integral can be obtained from ξkh, which is the periodic

microscopic displacement solution of the problem 3.41. For a three-dimensional medium,
considering the 21 constants of the fourth-order tensor Cijkh, the problem 3.41 can be
transformed for six loading cases. The indices i, j, h, k, l, m take values from 1 to 3 and the
loading cases are: kh = 11, kh = 22, kh = 33, kh = 12, kh = 13, and kh = 23, which
correspond to three stretches or compress cases and three shear cases.

Based on the work presented by Hassani and Hinton [2012], Equation 3.77 can be written
as:

Cijkh =
1
|Ω|

∫
Ω1

(A1ijkh + aT
1ij

B(ξ̂kh
1 ))dΩ +

1
|Ω|

∫
Ω2

(A2ijkh + aT
2ij

B(ξ̂kh
2 ))dΩ, (3.79)

where B is the global strain matrix, aαij , (α = 1, 2) is the column of the elastic matrix Aαijkh

corresponding to the indices ij, and ξ̂α is the nodal displacement solution.
We take the form presented by Hassani and Hinton [2012] and write Equation 3.41 as:

∫
Ωα

BT Aαijkh BdΩξ̂kh
α =

∫
Ωα

BTaαkh dΩ, (3.80)

which is similar to the stiffness equation:

Kαξ̂kh
α = f⃗α, (3.81)

where the stiffness matrix is written as:
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Kα =
∫

Ωα

BT Aαijkh BdΩ, (3.82)

and the force vector has the form:

f⃗α =
∫

Ωα

BTaαkh dΩ. (3.83)

The force vector implies a unitary macroscopic deformation for the case kh. This force
vector corresponds to the initial deformation. We consider the nodal force of an element e
induced by the initial strain:

( f⃗ ε0

α )e =
∫

Ωe
α

(BT)e Aαkh ε0dΩ, (3.84)

where ε0 represents the initial strain.

If we consider one case, kh = 11, the force vector defined by Equation 3.83 becomes:

( f⃗ e
α)11 =

∫
Ωe

α

(BT)eaα11dΩ. (3.85)

Comparing Equations 3.84 and 3.85 allows us to verify that:

Aαε0 = aα11 . (3.86)

In this case, ε0 is defined as:

ε0 =

1 0 0
0 0 0
0 0 0

. (3.87)

Furthermore, by considering the other loading cases, it is possible to find all of the elastic
coefficients. Now that the force vector is defined, let us determine the solution for ξkh

α . From
Equation 3.77, we notice that ξkh

α is similar to a displacement, eylm(ξ
kh
α ) is similar to a strain,

and Aαijlm eylm(ξ
kh
α ) is similar to a stress:

σkh
αij

= Aαijlm eylm(ξ
kh
α ). (3.88)

In practice, discretizing the periodic domain of the cell, it is possible to run the finite
element program for the each initial unit strain. The required boundary conditions and the
stress calculation steps are discussed in the following section.
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3.2.2.2 Integral of stress

The stress σkh
ij is obtained from the nodal force field, which itself is obtained by imposing

a unit strain ε0
kh = 1. The sign of the strain ε0

kh does not change the solution because the
mechanical model is the linear elastic model. For a "kh" loading, the stress calculation steps
are as follows:

1. Application of a displacement field corresponding to εkh = ±1 on the coordinates of
each node.

2. Calculation of the stress field associated with the displacement field without boundary
conditions.

3. Calculation of the nodal force field by integrating the stress field.

4. With the periodic conditions, calculation of the displacement field by applying the
force field computed previously.

5. Calculation of the stress field associated with the new displacement field.

6. Calculation of the integral of the stress field from Equation 3.88.

These steps should be repeated for each load kh. Steps 1, 2, and 3 are used to determine
the field of the nodal forces. Step 4 is then used to determine the displacement solution with
consideration of the periodic conditions; the required boundary conditions are introduced
in the following section. Finally, steps 5 and 6 are used to calculate the second term of the
integral Equation 3.77.

3.2.2.3 Periodic boundary conditions

To calculate the second term of the integral Equation 3.88, it is necessary to apply the
particular periodic boundary conditions. These boundary conditions are described as:

u⃗ = E · x⃗ + v⃗, (3.89)

where E =< ε > is the macroscopic strain tensor, v⃗ is an Ω-periodic variation, and x⃗
is the position of a point of Ω. The periodic boundary conditions imply that for opposite
surfaces:

• the strains should be identical;

• in order to satisfy stress continuity, the stress vector t⃗ = σ · n⃗ takes opposite values.

116



As v⃗ is generally unknown, the condition Equation 3.89 cannot be applied directly. By
applying the condition to the opposite surfaces ” + ” and ” − ”, we have:

u⃗+ =< E > ·⃗x + v⃗, (3.90)

u⃗− =< E > ·⃗x + v⃗. (3.91)

Subtracting Equation 3.90 by Equation 3.91, we can eliminate the unknown v⃗ as:

u⃗+ − u⃗− =< E > ·(x⃗+ − x⃗−). (3.92)

The signs ” + ” and ” − ” represent the opposite surface of the period. The condition
Equation 3.91 expresses the periodicity of the displacement field. A schema of an example
2D cell is shown in Figure 3.3, where we indicate the periodic boundary conditions.

Figure 3.3: Schema of periodic boundary conditions for the displacement.

The continuity of the stress throughout the material is represented in Figure 3.4 and the
periodicity of the stress implies that:

σ− · n⃗− = σ+ · n⃗+. (3.93)

Figure 3.4: Schema of periodic boundary conditions for the stress.
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In order to easily and straightforwardly impose the periodic boundary conditions, it is
required that the mesh of the opposite surfaces be identical.

3.2.3 Finite element analysis method and validation

In this section, we present the finite element analysis method. We then discuss a verification
step that we take to validate the method, whereby we compare an analytical solution and a
numerical solution.

In our finite element study, the REV geometric design is built in SolidWorks; then
FreeCAD takes the "STEP" format file exported from SolidWorks and optimizes the contact
surface of two materials into one common interface using a "boolean fragments" function;
subsequently, the mesh is generated by Gmsh; and finally, the finite element analysis is
calculated using the numerical software Cast3M Charras. After calculation, the data analysis
is carried out using Python programming and the resulting data are visualized in ParaView
in order to verify whether or not the results satisfy periodic boundary conditions. The finite
element analysis process and the output file format are shown in Figure 3.5.

Figure 3.5: Finite element analysis process.

We consider a well-known analytical solution structure for the verification step, which
consists in straight-fibre-reinforced composite. The numerical solution of this case is shown
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in section 3.2.3.1, and the analytical method is presented in section 2.3.1 of Chapter 2.
We reformulate the analytical equations in section 3.2.3.2 to unify the coordinate system
with the numerical solution. We note that the analytical solution assumes a random and
homogenized distribution of fibres in the plane perpendicular to the fibre orientation,
whereas the numerical solution assumes a strong periodic arrangement of fibres in this
plane. However, by experience (Chen and Schuh [2009]), when the volume fraction of fibres is
small, there is little difference between a periodic distribution of fibres and a homogenized
distribution. For our validation study example, the fibre volume fraction is set to 3.14%,
the Young’s moduli of fibre and matrix are set to 100MPa and 10KPa, respectively, and the
Poisson ’s ratios of fibre and matrix are set to 0.3 and 0.4, respectively.

3.2.3.1 Numerical solution

Representative elementary volume
The material under consideration is a straight-fibre-reinforced composite as shown in

Figure 3.6a, and its relative REV is shown in Figure 3.6b. The green structures represent
fibres, the matrix material is set to be transparent, and the fibre orientation is set parallel to
the z-axis.

(a) (b)

Figure 3.6: (a) Periodically arranged straight-fibre-reinforced composite. (b) REV of the
periodic structure under consideration.

Boundary conditions and mesh convergence study
In order to impose the periodic boundary condition as shown in equation 3.92, an

example of a finite element mesh of the REV generated by the GMSH software is shown
in Figure 3.7a, where each 3D element is set to the tetrahedron and the meshes on opposite
boundary surfaces are identical. Figure 3.7b shows the mesh of the fibre. Here, the fibre and
the matrix are bound to each other, which means the nodes on their contact surfaces belong
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to two volumes at the same time. The type of element used in Cast3M is a tetrahedron
element with four nodes, denoted "TET4".

Figure 3.7: Finite element mesh of the REV under consideration here. The number of
elements here is 83904. (a) Global view of the REV mesh. (b) Mesh of the fibre embedded in
the REV.

Figure 3.8: Meshes of increasing number of elements, as studied in the finite element
analysis.

The number of elements in the mesh has an influence on the results of the homogenization
procedure. In order to quantify this influence and to optimize the results, we carried out
a mesh convergence study; the number of elements of each mesh studied is presented in
Figure 3.8. This mesh convergence study is accurate to 10−5MPa, and the computed values
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of each component of the effective elastic tensor for each different mesh are shown in Figure
3.9. As the material is transverse isotropic in the x-y plane, the numerical results of the
effective elastic tensor Cn

ij can be expressed as follows.

[
Cn

]
=



Cn
11 Cn

12 Cn
13 0 0 0

Cn
12 Cn

11 Cn
13 0 0 0

Cn
13 Cn

13 Cn
33 0 0 0

0 0 0 Cn
44 0 0

0 0 0 0 Cn
44 0

0 0 0 0 0 Cn
66


. (3.94)

(a) Cn
11 (b) Cn

12

(c) Cn
13 (d) Cn

33

(e) Cn
44 (f) Cn

66

Figure 3.9: Elastic tensor parameter value versus number of elements in the mesh.
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As shown in Figure 3.9, as the number of elements increases, C11, C13, C44, and C66

decrease, while C12 and C33 increase, and all stabilize when the number of elements in the
mesh is greater than 390000. We therefore consider our calculations of the effective elastic
tensor to be reliable when the number of elements in the mesh is greater than 390000.

3.2.3.2 Analytical solution

As the composite is transverse isotropic material in the y-z plane, we reformulate the
analytic elastic compliance Sa

ij as follows.

[
Sa
]
=



Sa
11 Sa

12 Sa
13 0 0 0

Sa
12 Sa

11 Sa
13 0 0 0

Sa
13 Sa

13 Sa
33 0 0 0

0 0 0 Sa
44 0 0

0 0 0 0 Sa
44 0

0 0 0 0 0 Sa
66


(3.95)

The respective stress–strain relation is therefore

εx

εy

εz

γyz

γzx

γxy


=

[
Sa

ij

]


σx

σy

σz

τyz

τzx

τxy


, (3.96)

and the further analytical elastic tensor is calculated as[
Ca

]
=

[
Sa
]−1

. (3.97)

The nonzero elements of Sa are described as

Sa
11 =

c2

c3
+

c4

4
, (3.98)

Sa
12 =

c2

c3
− c4

4
, (3.99)

Sa
13 =

VmνmEm(1 + ν f )(1 − 2ν f ) + E f (1 + νm)[2ν f (1 − νm) + Vm(νm − 2ν f + 2νmν f )]

c1
,

(3.100)
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Sa
33 =

E f (1 + νm) [−2 + 2νm + Vm(1 − 2νm)]− VmEm(1 + ν f )(1 − 2ν f )

c1
, (3.101)

Sa
44 =

2(1 + νm)
[
VmE f (1 + νm) + Em(1 + ν f )(2 − Vm)

]
Em

[
VmEm(1 + ν f ) + E f (1 + νm)(2 − Vm)

] , (3.102)

Sa
66 = 2(S11 − S12), (3.103)

where E f and Em represent the Young’s moduli of fibre and matrix, respectively, ν f is the
Poisson’s ratio of the fibre, and c1, c2, c3, and c4 are expressed as

c1 =− V2
mE2

m(1 + ν f )(1 − 2v f ) + E2
f (1 + νm)(1 − Vm) [−2 + 2νm + Vm(1 − 2νm)]

+ VmEmE f
[
−3 + ν f + 4νmν f + Vm(2 − νm − ν f − 4νmν f )

]
,

(3.104)

c2 =EmE f (1 + νm){−2 + 2ν f + 2νm − 2νmν f

+ Vm[3 − 2νm − 3ν f − 2νmν f + Vm(−2 + νm + ν f + 4νmν f )]}
− VmE2

f (1 + νm)
2(1 − Vm)(1 − 2νm) + VmE2

m(1 + ν f )(1 − 2ν f )(−2 + Vm + Vmνm),

(3.105)

c3 =2Em{−V2
mE2

m(1 + v f )(1 − 2v f ) + E2
f (1 + vm)(1 − Vm)[−2 + 2νm + Vm(1 − 2νm)]

+ VmEmE f [−3 + ν f (1 + 4νm) + Vm(2 − νm − ν f − 4νmν f )]},

(3.106)

c4 =
2(1 + νm)[VmE f (1 + νm)(3 − 4νm) + Em(1 + ν f )(4 − 3Vm − 4νm + 4Vmνm)]

Em[VmEm(1 + ν f ) + E f (1 + νm)(4 − Vm − 4νm)].
(3.107)

3.2.3.3 Validation results

The effective elastic tensor results calculated using the analytical method Ca and the
numerical method Cn are shown in equations 3.108 and 3.109, respectively.
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[
Ca

]
=



0.02229 0.01475 0.01468 0 0 0
0.01475 0.02229 0.01468 0 0 0
0.01468 0.01468 3.16291 0 0 0

0 0 0 0.00380 0 0
0 0 0 0 0.00380 0
0 0 0 0 0 0.00377


MPa

, (3.108)

[
Cn

]
=



0.02234 0.01476 0.01470 0 0 0
0.01476 0.02234 0.01470 0 0 0
0.01470 0.01470 3.14890 0 0 0

0 0 0 0.00381 0 0
0 0 0 0 0.00381 0
0 0 0 0 0 0.00377


MPa

. (3.109)

As shown in equations 3.108 and 3.109, all the elements of the effective elastic tensor
calculated by the analytical and numerical methods are similar. To further quantify the
difference between the two results, we calculated the error as follows:

errorij =
|Ca

ij − Cn
ij|

Ca
ij

. (3.110)

The difference between each of the elements of the two methods is shown in 3.111. In this
simple example of our calculation, comparing the difference between each corresponding
element shows that the maximum error does not exceed 0.5%, and we therefore consider
our method to be reliable.

[
error

]
=



0.22% 0.07% 0.14% 0 0 0
0.07% 0.22% 0.14% 0 0 0
0.14% 0.14% 0.44% 0 0 0

0 0 0 0.26% 0 0
0 0 0 0 0.26% 0
0 0 0 0 0 0%


(3.111)

3.3 Composite reinforced by helical fibres

In this section, we study the mechanical properties of the helical-fibre-reinforced composite
model shown in Figure 3.10 using a double-scale asymptotic homogenization method.
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Similar composite materials were studied by Khani et al. [2016], but the effective Poissonâ€™s
ratio of the composite was not determined. Based on published measurements, we set the
elastic modulus of the fibres to 100 MPa [Dutov et al., 2016] and the elastic modulus of the
matrix to 10 KPa [Cortes and Elliott, 2012]. The Poissonâ€™s ratio of both the fibres and the
matrix is set to 0.3 [Reese et al., 2010].

Figure 3.10: Periodically arranged helical-fibre-reinforced composite.

3.3.1 Representative elementary volume

The REV of the helical-fibre-reinforced composite is set as shown in Figure 3.11a, where the
red structures represent the helical fibres and the matrix is transparent. The helical fibres
are characterized by their helix pitch H0, helix radius R0, helix angle θ, helix period length
L0, and fibre diameter d0 as shown in Figs. 3.11b, 3.11c, and 3.11d. In the present study,
we assess the effects of changes to the fibre volume fraction ρ f and helix angle β on the
macroscopic mechanical properties of the composite model. The results are discussed in
section 3.6.1.

The fibre volume fraction ρ f is defined as

ρ f =
Fv

Fv + Mv
, (3.112)
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where Fv and Mv represent the volume of the fibre and matrix, respectively,

and the helix angle β is define as

β = arctan(
H0

2πR0
). (3.113)

(a) (b)

(c) (d)

Figure 3.11: (a) REV of the helical-fibre reinforced composite. (b) Schematic diagram of a
section of helical fibre showing the helix pitch H0. (c) 2D schematic diagram of the geometric
relation between the helix angle β, helix radius R0, helix pitch H0 and helix period length
L0. (d) Schematic diagram showing the helix radius R0 and fibre diameter d0.

3.3.2 Mesh convergence study

An example of a generated finite element mesh of one REV of helical-fibre-reinforced
composite is shown in Figure 3.12, where the blue part represents the matrix mesh, the
yellow component is the helical-fibre mesh, and each 3D element is a tetrahedron. The

126



meshes on the opposite boundary surfaces are identical so as to impose the periodic
boundary condition. The fibre and the matrix have a common surface mesh which means
the nodes on the common mesh surface belong to both the fibre and matrix volumes; the
local boundary condition set by Equation 3.10 is therefore satisfied.

Figure 3.12: An example finite element mesh of one REV of the helical-fibre-reinforced
composite. Here, the number of elements is 168640. (a) Global view of the REV mesh.
(b) Mesh of the helical fibre in the REV.
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Figure 3.13: Meshes of increasing number of elements studied in finite element analysis for
helical-fibres-reinforced composite.

As for the straight-fibre-reinforced composite, in order to optimize our mesh, and
therefore the results that we obtain when studying its mechanical behavior in response to
applied forces, we carried out a mesh-convergence study as shown in Figure 3.13, where the
number of elements of each mesh is also presented. The mesh convergence study is accurate
to 10−4MPa and the computed values of each component of the effective elastic tensor for
the different meshes are shown in Figure 3.14. We consider the material as an anisotropic
composite and the effective elastic stiffness tensor CH

ij is expressed as:

[
CH

]
=



CH
11 CH

12 CH
13 0 0 0

CH
12 CH

22 CH
23 0 0 0

CH
13 CH

23 CH
33 0 0 0

0 0 0 CH
44 0 0

0 0 0 0 CH
55 0

0 0 0 0 0 CH
66


. (3.114)

As shown in Figure 3.14, when the number of elements in the mesh is greater than 860000,
each parameter of the effective elastic stiffness tensor is stable. We therefore consider our
calculations of the effective elastic tensor to be reliable when the number of elements in the
mesh is greater than 860000.
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(a) CH
11 (b) CH

12

(c) CH
13 (d) CH

22

(e) CH
23 (f) CH

33

(g) CH
44 (h) CH

55

(i) CH
66

Figure 3.14: Each nonzero parameter value of the elastic stiffness tensor CH versus the
number of elements in the mesh.
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3.4 Helical fibres with cross-links

In this section, we study helical fibres cross-linked by straight fibres using the double-scale
asymptotic homogenization method. The leading direction of the helix is set parallel to the
z-axis and the cross-links are set perpendicular to the z-axis (see Fig. 3.15). The helical fibres
and the cross-link fibres are set to be made from the same material, of which the elastic
modulus is set to 100MPa and the Poisson’s ratio is set to 0.3.

3.4.1 Representative elementary volume

(a) (b)

(c) (d)

Figure 3.15: (a) REV of helical fibres cross-linked by straight fibres. (b) View of the REV in
the xy plane. (c) View of the REV in the zx plane. (d) View of the REV in the zy plane. The
red structures represent the helical fibres and the cross-links are shown in green.

Figure 3.15a shows an example REV of the helical fibres cross-linked by straight fibres, and
Figures 3.15b, 3.15c and 3.15d show 2D images of this REV in the xy plane, the zx plane,
and the zy plane, respectively. The REV under study can be characterized by the helix
shape, as presented in section 3.3.1, the diameter of the cross-link fibres, which is set to 1

2 d0,
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the distance between two adjacent helices dh, which is set to the same value as helix pitch
H0, dh = H0, and the position of the cross-link fibres. The cross-linking fibres are set to
connect helical fibres at either their closest points (cross-link of minimum length) or farthest
points (cross-link of maximum length) as two study cases. The REV in Figure 3.15 shows an
example of helical fibres connected at their farthest points. In our study, we investigate the
effects of fibre volume fraction ρ f , helix angle β, and cross-link position (closest vs farthest)
on the macroscopic mechanical properties of our modeled materials. The calculation results
are discussed in the section 3.6.2.

As the REV under study in this case contains just one material, the fibre volume fraction
ρ f is defined as

ρ f =
Fv

Vrev
, (3.115)

where Vrev is the volume of the periodic 3D cuboid.

3.4.2 Mesh convergence study

Figure 3.16 shows the finite element analysis mesh of one REV of cross-linked helical fibres.
The surface meshes on opposite boundary surfaces are set to be identical and each 3D
element of mesh is a tetrahedron.

Figure 3.16: Meshes of increasing number of elements studied in a finite element analysis of
cross-linked helical fibres.

131



(a) Cc
11 (b) Cc
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(c) Cc
13 (d) Cc

22

(e) Cc
23 (f) Cc

33

(g) Cc
44 (h) Cc

55

(i) Cc
66

Figure 3.17: Each non-zero parameter value of the elastic stiffness tensor Cc versus number
of element in mesh.
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As for the straight-fibre- and helical-fibre-reinforced composites, in order to optimize
the results that we obtain for the helical fibres with cross-links but no matrix, we carried
out a mesh convergence study as shown in Figure 3.16, where the number of elements of
each mesh is also presented. This mesh convergence study is accurate to 10−5MPa and the
computed values of each component of the effective elastic tensor for different mesh sizes
are shown in Figure 3.17. We consider the material as an anisotropic composite and the
effective elastic stiffness tensor Cc has the same form as the tensor shown in Equation 3.114.

As shown in Figure 3.17, each parameter of the effective elastic stiffness tensor either
increases or decreases as the mesh fineness increases, until the number of elements in the
mesh is greater than about 500000, after which all parameters stabilize and mesh fineness no
longer has an effect. We therefore consider our calculations of the effective elastic tensor of
this particular mesh to be reliable when the number of elements in the mesh is greater than
500000.

3.5 Composite reinforced by cross-linked helical fibres

In this section, we use the double-scale asymptotic homogenization method to study the
mechanical properties of a composite reinforced by helical fibres with cross-links. As above,
the helix lead direction is set parallel to the z-axis, the cross-links are set perpendicular to
the z-axis, and the helical fibres and cross-links are set to be made from the same material,
as in section 3.4. The elastic modulus of the fibres is set to 100MPa and the elastic modulus
of the matrix is set to 10KPa. The Poissonâ€™s ratio of both the fibres and the matrix is set
to 0.3.
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3.5.1 Representative elementary volume

Figure 3.18: One REV of the composite of matrix reinforced by helical fibres with cross-links.

Figure 3.18 shows one REV of the composite of matrix reinforced by helical fibres with
cross-links, where the red structures represent the helical fibres, the green structures are the
straight cross-link fibres, and the matrix is shown in transparent gray. The fibre structure
here is made up of helical fibres cross-linked by straight fibres, as described in section 3.4.1.
In the present study, we study the effects of fibre volume fraction ρ f , helix angle β, and cross-
link position (closest vs farthest) on the macroscopic mechanical properties of the composite.
The calculation results are discussed in the section 3.6.3.

3.5.2 Mesh convergence study

As in Section 3.3.2, we generated a REV of the finite element mesh of the composite
reinforced by cross-linked helical fibres (Figure 3.19). Figure 3.19a shows a global view
of the mesh of one REV and 3.19b shows just the mesh of the cross-linked helical fibres
embedded within. Each 3D element of the mesh is a tetrahedron and the meshes on the
opposite boundary surfaces are identical so as to impose the periodic boundary condition.
The fibre and the matrix have a common surface mesh that shares the nodes of the fibre
volume and those of the matrix so that the local boundary condition is satisfied.
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Figure 3.19: An example finite element mesh of one REV of matrix composite reinforced by
cross-linked helical fibres. Here, the number of elements is 964546. (a) Global view of the
REV mesh. (b) Mesh of the cross-linked helical fibres embedded in the REV.

Again, in order to optimize the results calculated using the mesh for this particular
composite, we carried out a mesh convergence study, as shown in Figure 3.20, where the
number of elements of each mesh is also presented. The mesh convergence study is accurate
to 10−4MPa, and Figure 3.21 shows the computed values of each component of the effective
elastic tensor for meshes of increasing fineness. We consider the material as an anisotropic
composite and the effective elastic stiffness tensor CHC has the same form as the tensor
shown in equation 3.114.
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Figure 3.20: Meshes of increasing number of elements studied in a finite element analysis of
one REV of composite reinforced by cross-linked helical fibres.

As shown in Figure 3.21, when the number of elements in the mesh is greater than
about 106, each parameter of the effective elastic stiffness tensor stabilizes. Therefore, we
consider that our evaluation of these parameters is reliable when the number of the elements
is greater than 106.
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Figure 3.21: Each nonzero parameter value of the elastic stiffness tensor CHC versus number
of elements in the mesh.
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3.6 Results

Here, we present the results of simulations of the effective mechanical properties of
composite reinforced by helical fibres, helical fibres with cross-links and no matrix, and
composite reinforced by helical fibres with cross-links in Sects. 3.6.1, 3.6.2, and 3.6.3,
respectively. The effective engineering moduli are obtained from the effective elastic tensor
Cij (here, Cij represents CH

ij , Cc
ij, or CHC

ij according to the application needs) as



Ex =
1

S11
Ey =

1
S22

Ez =
1

S33

νxy = −S21

S11
νxz = −S31

S11
νyz = −S32

S22

νyx = −S12

S22
νzx = −S13

S33
νzy = −S23

S33

, (3.116)

where Sij is the inverse effective elastic tensor Cij expressed as

Sij = C−1
ij . (3.117)

3.6.1 Composite reinforced by helical fibres

Figure 3.22 shows the effective elastic modulus of composite reinforced by helical fibres
as a function of fibre volume fraction ρ f and helix angle β. The red points are the results
calculated using the double-scale asymptotic homogenization method, and the surface is
the predicted trend surface passing through each red point. Compared with helix angle β,
the fibre volume fraction ρ f has a greater impact on the elastic moduli EH

x and EH
y ; as the

fibre volume fraction increases, EH
x and EH

y also increase, but as helix angle increases, EH
x

and Ey decline slightly. As ρ f grows, EH
z also grows, but unlike EH

x and EH
y , Ez grows with

increasing β.
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(a) EH
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(c) EH
z

Figure 3.22: Effective axial elastic modulus of composite reinforced by helical fibres along
(a) the x-axis EH

x , (b) y-axis EH
y , and (c) z-axis EH

z as a function of fibre volume fraction ρ f
and helix angle β.

Figure 3.23 shows how the effective Poisson’s ratio of composite reinforced by helical
fibres (no cross-links) νH

ij varies with changes to fibre volume fraction ρ f and helix angle β.
Compared with helix angle β, the fibre volume fraction ρ f has more influence on νH

xy and
νH

yx. As ρ f increases, νH
xy and νH

yx increase until an approximate value of 0.1, after which they
decrease. Both νH

xz and νH
yz reach their maximum value when ρ f and β are small.
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Figure 3.23: Effective Poisson’s ratios of composite reinforced by helical fibres, (a) νH
xy, (b)

νH
xz, (c) νH

yx, (d) νH
yz, (e) νH

zx, and (f) νH
zy as a function of fibre volume fraction ρ f and helix angle

β.
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3.6.2 Helical fibres with cross-links alone

In this section, we present the results of our calculations of the mechanical properties of
helical fibres with cross-links (no matrix). In order to study the effect of cross-link position
(closest vs farthest) on the mechanical properties of our model, we tested two extremes, with
straight cross-links between helical fibres connecting the nearest helical fibres at the furthest
possible points or at the nearest possible points; one REV of each case is shown in Figure
3.24.

(a) (b)

Figure 3.24: REVs of the helical fibres with cross-links showing the two different cross-link
positions studied. (a) Straight cross-link fibres connect adjacent helical fibres at the farthest
points (longest-possible cross-links). (b) Straight cross-link fibres connect adjacent helical
fibres at the nearest points (shortest-possible cross-links).

3.6.2.1 Farthest connection points case

Figure 3.25 shows how the effective elastic modulus Ec of helical fibres with the longest
cross-links (furthest cross-link positions) varies with changes to fibre volume fraction ρ f

and helix angle β. As the fibre volume fraction ρ f grows, Ec
x, Ec

y and Ec
z increase. As helix

angle β rises, Ec
x, Ec

y, and Ec
z also increase slightly.
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(a) Ec
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z

Figure 3.25: Effective axial elastic modulus of helical fibres with the longest cross-links
(connecting the nearest fibres at the farthest points) along the (a) x-axis Ec

x, (b) y-axis Ec
y,

and (c) z-axis Ec
z as a function of fibre volume fraction ρ f and helix angle β.

Figure 3.26 shows how the effective Poisson’s ratio νc
ij of helical fibres with the longest

cross-links, which connect the nearest fibre at the furthest point, varies with changes to fibre
volume fraction ρ f and helix angle β. As β increases, νc

yz and νc
xz increase but νc

xy, νc
yx, νc

zx,
and νc

zy decrease. As ρ f rises, νc
xy and νc

yx decrease but νc
xz and νc

yz increase. νc
zx and νc

zy

both rise with increasing ρ f when β takes large values, but as β decreases, νc
zx and νc

zy are
decreasingly sensitive to changes in ρ f . We note that the structure studied here shows some
negative Poisson’s ratios when the helical fibres are cross-linked at the furthest possible
points; that is, νc

xz, νc
yz, νc

zx and νc
zy are observed to have a negative value. Furthermore, the

values of νc
xz and νc

yz are at a minimum when ρ f and β are small, and νc
zx and νc

zy are at their
minimum when ρ f is small and β is large.
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yz

(e) νc
zx (f) νc
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Figure 3.26: Effective Poisson’s ratios of helical fibres with the longest cross-links
(connecting the nearest fibres at the furthest points): (a) νc

xy, (b) νc
xz, (c) νc

yx, (d) νc
yz, (e) νc

zx,
and (f) νc

zy as a function of fibre volume fraction ρ f and helix angle β.
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3.6.2.2 Nearest connection points case

Figure 3.27 shows how the effective elastic modulus Ec of helical fibres with the shortest
possible cross-links, which connect adjacent fibres at the nearest points, varies with changes
to fibre volume fraction ρ f and helix angle β. The results reveal the same tendency as seen
for helical fibres cross-linked a the farthest possible points; see section 3.6.2.1. As the fibre
volume fraction ρ f grows, Ec

x, Ec
y, and Ec

z increase. As helix angle β rises, Ec
x, Ec

y, and Ec
z also

increase slightly.

(a) Ec
x (b) Ec

y

(c) Ec
z

Figure 3.27: Effective axial elastic modulus of helical fibres with the shortest possible cross-
links (connecting adjacent fibres at the nearest point) along the (a) x-axis Ec

x, (b) y-axis Ec
y,

and (c) z-axis Ec
z as a function of fibre volume fraction ρ f and different helix angle β.
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Figure 3.28: Effective Poisson’s ratios of helical fibres with the shortest possible cross-links
(connecting adjacent fibres at the nearest point): (a) νc

xy, (b) νc
xz, (c) νc

yx, (d) νc
yz, (e) νc

zx, and (f)
νc

zy as a function of fibre volume fraction ρ f and helix angle β.

Figure 3.28 shows how the effective Poisson’s ratios νc
ij of helical fibres with the shortest

possible cross-links, which connect adjacent fibres at the nearest points, vary with changes
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to fibre volume fraction ρ f and helix angle β. As β increases, νc
zx and νc

zy also increase but
νc

xy, νc
yx, νc

xz, and νc
yz decrease. As ρ f rises, νc

xy, νc
yx, νc

xz, νc
yz, νc

zx, and νc
zy decrease slightly. As

apposed to the fibres shown in Sect. 3.6.2.1, where the cross-links are as long as possible
between helical fibres, the structure studied here, where the cross-links are as short as
possible, shows no negative Poisson’s ratios. Indeed, larger effective Poisson’s ratios (>
0.5) are observed. νc

xz and νc
yz are found at their maximum values when ρ f and β are small,

and νc
zx and νc

zy are found to be at their maximum values when ρ f is small and β is large.

3.6.3 Composite reinforced by helical fibres with cross-links

In this section, we present our calculations of the mechanical behavior of our model
composite reinforced by helical fibres with cross-links. Here, we again test the same two
cross-link positions as tested in Sect 3.6.2. Figure 3.29 shows REVs of the two composites
studied here, with the longest- and shortest-possible cross-links between helical fibres,
respectively.

(a) (b)

Figure 3.29: REVs of the matrix composites reinforced by helical fibres with cross-links,
showing the two different cross-link positions studied. (a) Straight cross-link fibres connect
adjacent helical fibres at the farthest points (longest-possible cross-links). (b) Straight cross-
link fibres connect adjacent helical fibres at the nearest points (shortest-possible cross-links).

3.6.3.1 Farthest connection points case

Figure 3.30 shows how the effective elastic modulus EHC of our composite reinforced by
helical fibres with the longest possible cross-links, which connect adjacent fibres at the
furthest points, varies with changes to fibre volume fraction ρ f and helix angle β. The
results show the same tendency as seen for our observations of the effective elastic modulus
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of cross-linked helical fibres with no matrix presented in Sects. 3.6.2.1 and 3.6.2.2. As the
fibre volume fraction ρ f grows, EHC

x , EHC
y , and EHC

z increase. As helix angle β rises, EHC
x ,

EHC
y , and EHC

z also increase slightly.

(a) EHC
x (b) EHC

y

(c) EHC
z

Figure 3.30: Effective axial elastic moduli of composite reinforced by helical fibres with the
longest possible cross-links (connecting adjacent fibres at the furthest points) along the (a)
x-axis EHC

x , (b) y-axis EHC
y , and (c) z-axis EHC

z as a function of fibre volume fraction ρ f and
helix angle β.

Figure 3.31 shows how the effective Poisson’s ratios νHC
ij of composite reinforced by

helical fibres with the longest possible cross-links, which connect the nearest fibre at the
furthest point, varies with changes to fibre volume fraction ρ f and helix angle β. As β

increases, νHC
xy , νHC

yx , νHC
zx , and νHC

zy decrease. As ρ f increases, νHC
xy and νHC

yx decrease, νHC
zx

and νHC
zy change slightly, and νHC

xz and νHC
yz decrease until a value of f of about 0.06 and

then increase again. We note that the structure studied here shows some negative Poisson’s
ratios. Our matrix composite reinforced by helical fibres with the longest possible cross-links
shows negative values for the Poisson’s ratios νHC

xz , νHC
yz , νHC

zx , and νHC
zy . As opposed to the
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same fibre structure but without matrix, as shown in section 3.6.2.1, the minimum values of
νHC

xz and νHC
yz (-0.6) are larger than νc

xz and νc
zy (-2.5), and the minimum values do not occur

at the same trend point as in the case without matrix.

(a) νHC
xy (b) νHC

xz

(c) νHC
yx (d) νHC

yz

(e) νHC
zx (f) νHC

zy

Figure 3.31: Effective Poisson’s ratios of composite reinforced by helical fibres with the
longest possible cross-links (connecting adjacent fibres at the furthest points): (a) νHC

xy , (b)
νHC

xz , (c) νHC
yx , (d) νHC

yz , (e) νHC
zx , and (f) νHC

zy as a function of fibre volume fraction ρ f and helix
angle β.
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3.6.3.2 Nearest connection points case

Figure 3.32 shows how the effective elastic modulus EHC of our matrix composite reinforced
by helical fibres with the shortest possible cross-links, which connect adjacent fibres at the
nearest points, varies with changes to fibre volume fraction ρ f and helix angle β. The results
show the same tendencies as those seen for helical fibres with cross-links in either position
and without matrix in Sections 3.6.2.1 and 3.6.2.2 and the helical fibres in matrix with longer
cross-links in Section 3.6.3.1. As the fibre volume fraction ρ f grows, EHC

x , EHC
y , and EHC

z

increase. As helix angle β rises, EHC
x , EHC

y , and EHC
z also increase slightly.

(a) EHC
x (b) EHC

y

(c) EHC
z

Figure 3.32: Effective axial elastic modulus of matrix composite reinforced by helical with
the longest possible cross-links (connecting adjacent fibres at the nearest points) along the
(a) x-axis EHC

x , (b) y-axis EHC
y , and (c) z-axis EHC

z as a function of fibre volume fraction ρ f
and helix angle β.
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Figure 3.33: Effective Poisson’s ratios of matrix composite reinforced by helical fibres with
the shortest possible cross-links (connecting adjacent fibres at the nearest points): (a) νHC

xy ,
(b) νHC

xz , (c) νHC
yx , (d) νHC

yz , (e) νHC
zx , and (f) νHC

zy as a function of fibre volume fraction ρ f and
helix angle β.

Figure 3.33 shows how the effective Poisson’s ratios νHC
ij of our matrix composite
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reinforced by helical fibres with the shortest possible cross-links, which connect adjacent
fibres at the nearest points, varies with changes to fibre volume fraction ρ f and helix angle β.
Compared with helix angle β, the fibre volume fraction ρ f has little influence on the effective
Poisson’s ratios νHC

ij . As β increases, νHC
xy , νHC

yx , νHC
zx , and νHC

zy decrease, but νHC
zx and νHC

zy

increase. Our matrix composite reinforced by helical fibres with the shortest possible cross-
links shows no negative Poisson’s ratios. However, it does show larger effective Poisson’s
ratios (> 0.5). νHC

xz and νHC
yz are found at maximum values when ρ f and β are small, which

is the same tendency observed for helical fibres with the shortest possible cross-links but
without matrix, presented in section 3.6.2.2

3.7 Discussion

In this chapter, we study the mechanical properties of matrix composite reinforced by helical
fibres, helical fibres with cross-links alone, and matrix composite reinforced by helical fibres
with cross-links using a double-scale asymptotic homogenization method. These model
structures are designed to mimic the possible structures that exist in soft tissues, which are
outlined in the literature review provided in Section 3.1 of this thesis.

As shown in Figure 3.22 of section 3.6.1, helix angle β has little effect on the effective
moduli EH

x and EH
y of a matrix composite reinforced by helical fibres without cross-links but

does affect EH
z . For this same model, as β increases, EH

z also increases. In other words, the
larger the fibre corrugation level, the smaller the effective elastic modulus in the direction
of the principle fibre orientation, which is the same trend as that observed for the composite
reinforced by 2D corrugated fibres presented in Chapter 2. In addition, as fibre volume
fraction ρ f increases, the effective elastic modulus increases along all three axes, that is, EH

x ,
EH

y , and EH
z all increase, because the elastic modulus of the fibre is set to 100MPa, which is

significantly higher than the elastic modulus of the matrix 10KPa. As shown in Figures 3.25,
3.27, 3.30, and 3.32 in sections 3.6.2.1, 3.6.2.2, 3.6.3.1 and 3.6.3.2, respectively, the effective
modulus of helical fibres with cross-links shows the same tendency: as fibre volume fraction
ρ f and helix angle increase, the three effective elastic moduli along the axes x, y, and z
increase regardless of the cross-link position or the presence of matrix. In addition, the
matrix composite reinforced by helical fibres with no cross-links exhibits the behavior of a
transverse isotropic material, with identical mechanical properties in the directions of the
x and y axes but different mechanical properties in the direction of the z-axis, as shown in
Figure 3.22. As we place cross-links at the same positions on adjacent helical fibres in the x-y
plane, helical fibres with cross-links (with or without matrix) also show transverse isotropic
mechanical behavior, as shown in Figures 3.25, 3.27, 3.30, and 3.32.

As the modeled materials studied here show identical transverse isotropic behavior
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in the x-axis and y-axis, the effective Poisson’s ratios are related as follows: νxy = νyx,
νxz = νyz, and νzx = νzy, as shown in Figures 3.23, 3.26, 3.28, 3.31, and 3.33. As introduced
in Sect. 2.6, the term νij is the effective Poisson’s ratio that characterizes the strain in the
j direction produced by the load in the i direction. The Poissonâ€™s ratios of both the
fibre and the matrix are set to 0.3, but the effective Poisson’s ratios of the composite or
helical fibres with cross-links vary with the helix angle β and the fibre volume fraction
ρ f . Negative effective Poisson’s ratios are found in helical fibres with the longest possible
cross-links —where adjacent helical fibres are connected at the furthest points— with or
without the presence of matrix. Negative Poisson’s ratios have also been reported in soft
tissues such as skin [Veronda and Westmann, 1970], carotid arteries [Timmins et al., 2010],
tendons [Gatt et al., 2015], and annulus fibrosus tissues [Baldit et al., 2014][Derrouiche et al.,
2019a][Dusfour et al., 2020] based on uni-axial tests. On the other hand, our modeled helical
fibres with the shortest possible cross-links —where adjacent helical fibres are connected at
the nearest points— show larger effective Poisson’s ratios (> 0.5). Such larger Poisson’s
ratios are also widely reported in tendons [Lynch et al., 2003] Cheng and Screen [2007]
[Vergari et al., 2011], ligament[Hewitt et al., 2001], and arterial wall [Skacel and Bursa, 2022].
Neither negative Poisson’s ratios nor larger Poisson’s ratios are observed in the helical-fibre-
reinforced composite without cross-links in the cases we studied. However, Reese et al.
[2010] found larger Poisson’s ratios in their uni-helical fibres reinforced composite, which
might be due to one or more of the particular characteristics of their mechanical model or
its helical fibre arrangement. In our study, we find the two cross-link positions we test lead
to strikingly opposing Poisson’s ratios, that is, larger positive and negative ratios. Cross-
linking in collagen fibres is considered to be an age-related feature [Hayashi and Hirayama,
2017] and its effects on the stiffness of soft tissues were studied by Holzapfel and Ogden [2020].
However, the effects of cross-linking on the geometrical form of soft tissue has not been
studied before. Interestingly, in the absence of matrix, the helical fibres with the longest
possible cross-links, which connect adjacent helical fibres at furthest points, show a large
negative Poisson’s ratio of about −2.5, as presented in Figure 3.26. Such negative Poisson’s
ratios are significantly smaller in composites where the fibres are surrounded by matrix, as
shown in Figure 3.31. This might suggest that the presence of matrix weakens the auxetic
behavior. This may explain why negative Poisson’s ratios are more rarely observed than
larger positive Poisson’s ratios. In order to mimic soft tissue, Yan et al. [2020] proposed a
network material based on helical microstructure. Their material shows a good stress–strain
curve match to real soft tissue, but no matrix is included in their design.

In conclusion, in the present study we focus on the helical fibre structure of soft tissue
and use a modeling approach to study the effects of the presence of matrix and cross-
links between helical fibres on the mechanical properties of soft fibrilar tissue. Our results
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show that the position of the cross-links between helical fibres has no effect on the effective
elastic modulus of a group of fibres with or without the presence of a surrounding matrix.
However, cross-link position does appear to have an influence on the geometrical form of
the material modeled here, and the Poisson’s ratio of our model can be positive or negative
depending on the position of the cross-links between helical fibres. Further, the matrix might
control the auxetic behavior. We think that considering cross-links associated with specific
and more realistic structural arrangements of fibres may allow greater insights to be gained
from soft tissue models. In addition, the present work could become a reference for further
biomimetic material design.
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CHAPTER 4

Fabrication and modeling
of helical-fibre-reinforced soft composite materials

4.1 Introduction

In chapters 2 and 3, we focus on the structure of 2D (sinusoid) planar and 3D (helix)
fibre corrugation in soft tissue using analytical model calculations and finite element
analysis, respectively. The materials under study are considered as composites reinforced
by corrugated fibres, where perfect interface conditions as well as a large stiffness difference
are assumed for the fibres and matrix. Such materials have received little attention so far in
terms of experimental study.

In this chapter, we present our development of silicone-based helical-fibre-reinforced
composite materials. Our aim here is to find a method to manufacture such model materials
that satisfy the fibre and matrix boundary conditions, and to verify that our method meets
the requirements for finite element analysis. In addition, the elastic modulus ratio of
fibre and matrix

E f
Em

varies from 103 to 105 in the literature. Model material with such a
large modulus ratio and perfect interface conditions is not easy to fabricate. However, as
demonstrated in section 2.7.1.4, changes in modulus ratio when this value is larger than 102

have little effect on the overall mechanical properties. We, therefore, consider the modulus
ratio

E f
Em

at this value (e.g.,
E f
Em

= 102 in section 2.7.1.4) can be applied to study the mechanical

properties of materials with higher modulus ratios
E f
Em

. In our present work, several types of
silicone are tested to reach the highest possible modulus ratio.
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4.2 Materials and methods

We used soft and hard silicone to fabricate matrix and fibre materials, respectively. We
first manufactured the fibre and matrix test samples to characterize their mechanical
parameters, and then we manufactured and modeled soft composite according to these
characterizations.

4.2.1 Helical fibre-reinforced soft composite fabrication

(a) (b)

(c) (d)

Figure 4.1: Fabrication process of soft composites. (a) Smooth surface helix metal is placed
in the plastic mold. (b) Ecoflex™ 00-10 (parts A and B mixed) is used to fill the mold and
the curing process begins. (c) Helix metal is removed and Mold Max silicone (parts A and
B mixed) is injected into the mold with a syringe. (d) Soft composite material sample after
curing.
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Silicone product Shore hardness Mix ratio of part A and part B
Fibre material Mold Max™ 29NV 29A 1 : 1

Matrix material Ecoflex™ 00-10 10A 10 : 1

Table 4.1: Silicone material of the fibre and matrix.

The matrix material is Smooth-On Ecoflex™ 00-10 which is characterized by a Shore
(durometer) hardness of 10A. The fibre materials are Mold Max™ 29NV with a Shore
hardness of 29A. The silicone materials are also shown in Table 4.1. The choice of materials
is based on satisfying the criteria that fibres and matrix have a large stiffness difference and
that they stick to each other perfectly. For the matrix, part A and part B of the Ecoflex™
00-10 soft silicone are mixed at a 1 : 1 ratio by weight. For the fibre, part A and part B of
Mold Max™ 29NV are mixed at a 10 : 1 ratio by weight, according to the manufacturers
instructions. The mixed silicone is placed in a vacuum chamber to remove the air bubbles.
Before the composite fabrication, the mixed silicone materials —for both fibre and matrix—
are injected into tensile specimen molds in order to manufacture tensile test specimens for
characterization of material parameters for both components. The silicone is cured at room
temperature (23◦C) and then removed from the molds. The tensile test specimens of matrix
and fibre are shown in Figure 4.2 (a) and 4.2 (b), respectively.

Figure 4.2: Photos of the starting materials of the helical-fibre-reinforced soft composite and
the final synthesised soft-tissue composite. (a) Soft silicone matrix material, (b) hard silicone
fibre material, and (c) soft tissue composites.

We note that Mold Mold Max™ series silicone can perfectly bind with Ecoflex™ series
silicone during the curing process, but Ecoflex™ series silicone does not bind with Mold
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Max™ series silicone. Due to the binding properties of silicone, the material of the matrix
needs to be cured first: First, a metal helix with a smooth surface is used as a support and
Ecoflex™ 00-10 is injected into the mold as shown in Figure 4.1a 4.1b. When the curing
process is complete, the metal helix is removed and the Mold Max™ series series silicone is
injected with a syringe into the cavity left behind, as shown in Figure 4.1c, to form the fibre
material element of the soft-tissue composite. A schematic of the manufactured composite
material is shown in Figure 4.1d and a photo of the final composite is shown in Figure 4.2c.

(a) (b)

(c)

Figure 4.3: Helical-fibre-reinforced soft composite dimensions. (a) Helix diameter and fibre
diameter. (b) Helical fibre pitch. (c) Soft-composite dimensions.

The section dimensions of the matrix test specimens are 20*2.9 mm2 and the section
dimensions of the fibre test specimens are 20*3.9 mm2. The useful test part of the helical-

158



fibre-reinforced composite has section dimensions of 15*15 mm2 and the length is 57 mm.
The helical fibre pitch, helix diameter, and fibre diameter are respectively 16 mm, 6.5 mm,
and 2.25 mm, as shown in Figure 4.3.

4.2.2 Experimental procedure

Each sample is clamped onto the Zwick/Roell tensile test machine (Type : TXT-TROLLEY-
FZ.001, Xforce load cell : 200N) and is stretched at a constant velocity of 5 mm/min. Images
of the samples are recorded during the tensile tests by two cameras (FUJINON/1:1.4 16mm
HF16HA-1B), which are placed perpendicular to each other to record the stretch on the
composite surface perpendicular to the loading direction; the strain is obtained by analysis
of the images with VIC-2D® software. The tensile test equipment and image analysis
interface are shown in Figures 4.4 and 4.5.

Figure 4.4: Tensile test equipment setup. The right panel shows a close-up photo of the
Zwick/Roell tensile test machine and the positions of the cameras.

4.2.3 Models characterization

The fibre and matrix materials are characterized by a linear elastic model and two nonlinear
hyperelastic models, one being the Yeoh model and the other the Neo-Hookean model.

The hyperelastic models are based on the definition of the strain-energy function ψ,
which is dependent on the principal stretches (λ1, λ2, and λ3) as:

ψ = ψ(B) = ψ(I1, I2, I3) (4.1)

B = FFT (4.2)
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I1 = Tr(B) (4.3)

I2 =
1
2
[I2

1 − tr(B2)] (4.4)

I3 = det(B) (4.5)

Where F is the deformation gradient.

The constitutive equation for an incompressible, isotropic, hyperelastic material is given
by Avril and Evans [2017] as:

σ = −p1 + 2
∂ψ

∂I1
B − 2

∂ψ

∂I2
B−1 (4.6)

Where p is an undetermined scalar.

A particular type of strain energy functions can be written as:

ψ =

Nj

∑
j=0

Ni

∑
i=0

Cij(I1 − 3)i(I2 − 3)j (4.7)

where when Ni = 1, and Nj = 0 is the Neo-Hookean strain energy function, and when
Ni = 3, Nj = 0 is the Yeoh model strain energy function, and we take Ni = 2 for our Yeoh
model material.

The Neo-Hookean and Yeoh models for predicting mechanical behavior under uniaxial
tension can be reduced as:

σNeo−Hookean = 2C10(λ
2 − 1

λ
) (4.8)

σYeoh = 2(C10 + 2C20(I1 − 3))(λ2 − 1
λ
) (4.9)

where λ is the stretch along the loading direction λ1 and we assume that the stretch
perpendicular to the loading direction λ2 and λ3 satisfies the following relationship:

λ = λ1 λ2 = λ3 =
1√
λ

(4.10)

The hyperelastic model parameters of materials are determined by the least squares
method.
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4.2.4 Strain measurement

In the tensile test, since the strain at both ends is affected by the clamp, we only take the
strain of the surface measured 20 mm from one end in the middle of the test sample by
image analysis as shown in Figure 4.5. With two cameras, we record the strain on the side
plane z-y and the side plane z-x; these axes are shown in Figure 4.5b. As the z-y and z-
x planes are both parallel to the loading direction, the strain along the z-axis on the z-y
plane and the strain along the z-axis on the z-x plane are identical, and this is verified by
analysis of the results of the tensile test. We therefore take the strain on the z-y plane for
further analysis. It is noted that the strains obtained by image-analysis software VIC-2D®

are calculated with Green-Lagrangian formulations which can be expressed as (for strain
along the z-axis on the z-y plane):

εzz =
dw
dz

+
( dw

dz )
2 + ( dv

dz )
2

2
(4.11)

Where εzz represents the trains along the z direction, and w, v are the displacements
along the z-axis and y-axis, respectively.

Figure 4.5: (a) Displacement field in the image-analysis interface VIC-2D®. (b) Surface
imaged for the numerical analysis, from which we obtain the strain.
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4.3 Finite element analysis

A finite element analysis method is used to study the manufactured composite numerically
and also to verify that the composite fabrication method meets the fibre and matrix interface
requirement. In our finite element study, the composite geometric design is built in
FreeCAD, the mesh is generated by Gmsh, the finite element analysis is calculated by the
free and open-source software LMGC901, and the data analysis is carried out using the
Python programming language. The finite element analysis process and the output file
format are shown in Figure 4.6. In our study, a linear elastic model and two nonlinear
hyperelastic models are applied to study the force-strain response of the soft composite.
The fibre and matrix model material parameters used in the finite analysis are determined
from tensile tests on the material specimens. The strains taken in the numerical analysis are
the average values of the node strains in the z-y plane on the surface of the middle section
of the composite, which is where the strain measurement is taken using image analysis (see
Figure 4.5). The forces used in the finite element study are the sum of the node internal
forces on the end plane of the composite.

Figure 4.6: Finite element analysis process.

4.3.1 Mesh

A four-node tetrahedron finite element is used in our finite element study, in which the
displacements are linearly interpolated over the element from their nodal values. The
motivation for this choice is that a tetrahedron element is a close match to the curved fibre-
matrix interface. The mesh elements are generated by GMSH software as shown in Figure
4.7. The yellow mesh as shown in Figure 4.7a is the middle middle section of the composite
where the strain is estimated. The fibre and the matrix are bound to each other, which means
the nodes on their contact surfaces belong to two volumes at the same time, and the inner
fibre mesh is shown in Figure 4.7b.

1http://hal.archives-ouvertes.fr/hal-01717115/document
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Figure 4.7: (a) Finite element mesh of the soft composites. (b) Mesh of the fibre in the
composite.

4.3.2 Boundary conditions

For the boundary conditions of the finite element analysis, the bottom surface of the
composite is blocked, and a displacement loading along the z-axis is applied on the top
surface with a constant velocity of 0.57 mm/s until 10 % global strain.
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4.4 Results

4.4.1 Mesh convergence study

In order to optimize the finite element analysis, meshes of different fineness are studied as
shown in Figure 4.8. The number of nodes and tetrahedral elements of each of the meshes
studied in this respect are presented in Table 4.8.

Figure 4.8: Meshes of increasing fineness used in finite element analyses.

a b c d
Number of nodes 1309 9660 74919 591661

Number of elements 6857 54856 438848 2.09423*106

Table 4.2: Numbers of nodes and elements producing meshes of increasing fineness from (a)
to (d).

At the end of the tensile simulation tests, we calculated the strains and forces acting on
the meshes of different fineness; these are shown in Figure 4.9. As the number of nodes in the
mesh increases, the forces and strains calculated using the finite element method gradually
stabilize. The force is stabilized at about 0.4 N as shown in Figure 4.9a, and the strain on the
middle surface of the composite test specimen reaches an approximate plateau at 0.0874, as
shown in Figure 4.9b. We consider the calculated results to be reliable when the number of
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nodes is greater than 74919, and therefore we chose to use the mesh shown in Figure 4.8c
(column (c) of Table 4.2) for all further calculations of stress and strain.

(a) (b)

Figure 4.9: (a) Force (N) versus number of nodes in the mesh. (b) Strain on the middle
surface of the composite test specimen versus number of nodes in the mesh.

4.4.2 Experimental material parameter identification

The fibre and matrix materials are characterized by linear elastic, hyperelastic Yeoh, and
hyperelastic Neo-Hookean models. The hyperelastic model parameters are determined by
the least squares method. The experimental stress–strain curves for the matrix and fibre
test samples are shown in Figure 4.10. The parameters of both the fibre and the matrix
materials are determined for strains of up to 10 % of its original length. The stress taken
in the process of material characterization is the first Piola–Kirchhoff stress (see details
in Hackett [2018]). We fed the nonlinear Yeoh and Neo-hookean models with material
parameters for the fibre and matrix materials calculated using the least squares method
(see details in Humphrey [2013]). We fitted the predicted curves from these models to the
experimental data we obtained for stress and strain as described above. Figure 4.10 shows
that the predicted curves are a good match to the experimental data for both the fibre and
matrix material. The parameters characterizing these materials are presented in Table 4.3.
We tested different types of silicone for sample composite fabrication. The results shown in
Table 4.3 are the characterization results of the best shaped sample among the three sample
composites fabricated using Mold Max™ 29NV (fibre) and Ecoflex™ 00-10 (matrix) silicone.
With these types of silicone, material modulus ratio of fibre to matrix

E f
Em

can reach about 28.

165



(a) (b)

Figure 4.10: Experimental stress-strain curve of the (a) matrix and (b) fibre test sample with
the hyperelastic model fit curve.

Model Parameter Matrix Value KPa Fibre Value KPa
Elastic model E 16.1 456.6

Neo-Hookean model C10 2.8 79.53
Yeoh model C10 3.0 85.6

C20 -11.6 -350.16

Table 4.3: Characterised material parameters

4.4.3 Finite element analysis results

The relation between the force–strain curve calculated from the linear and nonlinear models
with the material parameters as input and experimental results is shown in Figure 4.11.
As mentioned above, the strain on the surface of the composite material is obtained by
image analysis and calculations using Green-Lagrangian formulations, which are the same
formulations used to obtain the numerical strains in our finite element analysis. The forces
acting on our composite material are measured using a force sensor during the tensile
test, and the force calculated from the elastic and hyperelastic models is the sum of the
node internal forces on the upper surface of the composite. A 10% strain is applied to the
composite as the load for the finite element study, and the strain is measured on the upper
surface of the middle part of the composite. The same is true for the tensile test; strain
is measured from images of the surface of the middle section of the composite material.
Interestingly, the finite element analysis shows that when the composite is stretched by 10%
along the z-axis, the surface of the middle part of the composite is stretched by about 9% as
shown in Figure 4.11. The predicted results from our numerical simulation test calculated
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by a linear elastic model, the nonlinear Neo-Hookean model, and the nonlinear Yeoh model
all show a good fit to the real force-strain experimental results as shown in Figure 4.11.

Figure 4.11: Force vs. strain as provided by the finite element analysis of our composite
within the framework of the elastic and hyperelastic models and that derived from
experimental results.

4.5 Discussion

In this chapter, we present our development of a soft helical-fibre-reinforced composite from
silicone-based materials. We present a finite element analysis used to predict the mechanical
behavior of the soft composite, which shows a good fit to experimental results from a tensile
test carried out on samples of our reinforced composite. The fibre and the matrix in the
composite bond well to one another, which agrees with assumptions made in the modeling.

Chanda and Callaway [2018] developed an elastomer-based soft-composite material in
order to study tissue anisotropy experimentally. Their fabricated composite was made with
straight fibres of different orientations and different fibre volume fractions. Bailly et al. [2014]
studied silicone rubber membranes reinforced with straight fibre networks with a dedicated
apparatus. So far, few modeling studies have focused on soft tissue. To our knowledge,
here we make the first attempt to fabricate and model soft composite containing corrugated
fibres.

In this work, the developed reinforced composite contains only one helical fibre, but the
studies in chapters 2 and 3 focus on soft fibrous tissue, which is assumed to contain many
fibres. We show that the composite fabrication method proposed here is able to provide
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sample composites that can be studied experimentally. However, such samples are not easy
to fabricate. We tested several types of silicone for use as the fibre material in order to
reach the largest possible

E f
Em

, obtaining
E f
Em

= 28 in the present work. The modulus ratio
achievable using Mold Max™ 60 series silicone and Ecoflex™ 00-10 silicone can easily reach
about 100, but during the composite fabrication process, the Max™ 60 series silicone often
contains residual air bubbles even though it is placed in the vacuum chamber. Moreover, it is
difficult to fill a syringe with Max™ 60 series silicone and inject it due to its short curing time.
Furthermore, it is not easy to leave a perfect interface when removing the metal helix from
the cured matrix silicone. Therefore, further work is required to optimize the fabrication
process and to produce soft composite with more fibres.
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Conclusions and perspectives

The focus of this thesis is on the evolution of Poisson’s ratio of fibrous soft tissues as a
function of the arrangement of fibres, and, more specifically, their corrugation and spatial
organization. Our aim is to gather as much information as possible from a numerical model
of fibre-reinforced composite in order to better interpret the wide range of Poisson’s ratios of
fibrous soft tissue reported in the literature, to predict volume changes in such tissues, and
to find the connection between the microstructure and the global macroscopic mechanical
behavior of the soft fibrous tissue.

In the first part of this thesis, we provide a review of Poisson’s ratio measurements
for fibrous soft connective tissue (artery, annulus fibrosus, tendon, and ligament tissues).
The reported results suggest that the artery, annulus fibrosus, and tendon tissues show
orthotropic material features. Experimental observations reveal both large (larger than
0.5) positive and negative Poisson’s ratios. The negative Poisson’s ratio, also known as
the auxetic effect, is an unusual and counterintuitive behavior, and it is suggested that
the crimped microstructure might be responsible (Lees et al. [1991]; Gatt et al. [2015]). The
large range of Poisson’s ratios published in the literature might be due to the experimental
conditions or to deviations in tissue microstructure. In the present work, we mainly focus
on the influence of tissue microstructure. Therefore, we present the microstructure and
components of artery, annulus fibrosus, tendon, and ligament tissues in chapter 1, in which
we emphasize the corrugated collagen fibre structure in particular. Although it has been
suggested that the crimped fibre structure could be responsible for the observed negative
Possion’s ratios, there is very little evidence in the literature for a link between the two.
On the contrary, Reese et al. [2010] show that fibres with a helical structure may contribute
to larger Poisson’s ratios. Also, negative Poisson’s ratios are predicted by the constitutive
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model for AF tissue presented by Derrouiche et al. [2019b] and Derrouiche et al. [2020], who
consider them to be driven by mechanical- and chemical-based fluid flow interactions
until chemo-mechanical equilibrium. Moreover, the HGO model (Holzapfel et al. [2000])
and HGO-like models are capable of estimating the auxetic behavior for arterial wall as
a function of fibre-matrix material stiffness and fibre dispersion. As the auxetic response is
not always found in arterial tissue, several HGO-based models (Nolan et al. [2014]; Latorre
et al. [2016]; Volokh [2017]; Fereidoonnezhad et al. [2020]) are proposed to avoid auxetic
behaviors. Inspired by the speculations in the literature over auxetic behavior related to
wavy microstructure, and given the corrugated collagen fibre structure of soft fibrous tissue,
we decided to take a mechanical modeling approach to quantitatively study changes in
the Poisson’s ratio of fibrous soft tissue and their relation to certain characteristics of the
crimped fibre microstructure. To this end, we consider the fibrous soft tissues as composite
materials reinforced by crimped fibres. We therefore also present a review of the literature
on composite models involving crimped structures in chapter 1.

We then propose an analytical micromechanical model with which to study the lamellar
composite structure of annulus fibrosus tissue. The model is based on the crimped-fibre-
reinforced composite model proposed by Xiao et al. [2020], although here we pay particular
attention to the multiplicity of the layers and the relative orientation of the parallel fibres
between successive layers. Although the lamellar composite structure has already been
widely studied (Remund et al. [2011]; Zhou et al. [2020]), the novelty of our approach is to
specifically consider fibre corrugation in conjunction with the relative orientation of the
fibres in successive layers and their affects on the Poisson’s ratios of the composite material.
We consider crimped fibres of sinusoidal form in light of observations of AF tissue in
the literature. The proposed micromechanical model is capable of quickly estimating the
mechanical properties of layer-dispersed laminates reinforced with crimped fibre structures
based solely on theoretical calculations. It can also be used to analyze the influence of
changes to each parameter on the effective mechanical properties of the laminate. The
following parameters are taken into account in these estimates: modulus of fibre E f and
matrix Em, the Poisson’s ratio of fibre ν f and matrix νm, volume fraction of fibre Vf and
matrix Vm, fibre crimp level A

L , the relative orientation angle θk and thickness ek of each layer
of the laminate, and the total number of layers r. In our parameter study (see Figure C.1
for a reminder of the coordinate system used in this thesis), within a single-layer composite,
when the fibre crimp level A

L is small ( A
L < 0.1), it has a strong influence on the effective

elastic moduli Ex and Ez, but has no effect on Ey, and each νij is affected by A
L . The layer

orientation angle θ also affects Ex and Ez as well as each νij. The effective elastic modulus
Ex has a maximum value when A

L and θ decrease simultaneously, and Ez has a maximum
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value when A
L is small and θ is large. In addition, whenever θ = 45◦, νxy and νzy, νxz and

νzx, νyz and νyx, and Ex and Ez are symmetrical irrespective of A
L . The fibre volume fraction

Vf has little influence on νij but affects the effective elastic moduli. Moreover, the matrix
Poisson’s ratio νm affects each effective νij but has little impact on the effective elastic moduli.
It is noted that each effective elastic modulus and νij change significantly with changes to

the elastic modulus ratio of fibre and matrix
E f
Em

, but only when
E f
Em

< 102. For double
layer laminate on the other hand, A

L has a measurable influence on Ey. Also, compared to a
single-layer laminate, the range of νij is significantly expanded; the minimum value is even
negative and the maximum value is close to 5. The layer thickness ratio e2

e1
has little effect

on either the effective elastic moduli or νij. As in the single layer case, each effective elastic

modulus and νij significantly changes only when
E f
Em

< 103. Compared with the impact
of layer orientation angle θ, the symmetry of the layer orientation either side of the x-axis
has less impact on the Poisson’s ratio. In a multi-layer laminate with a range of orientation
angles between the successive layers, the gradient of that range is seen to influence the
global effective mechanical behavior, with this latter deviating from that of a laminate with
a constant orientation between successive layers. Moreover, the larger the range of θ, the
larger the difference between the global effective mechanical properties of the laminate and
those of the laminate with constant orientation angle.

Figure C.1: Schematic of a two-layer laminate within the coordinate system used in the
present thesis. The angles θ1 and θ1 are the orientations of the two layers relative to the x-
axis.

From our parameter studies, both large positive and negative Poisson’s ratios are
observed. For a double layer laminate, negative Poisson’s ratios are observed when the
fibre crimp level A

L is small. In these cases, the fibres are considered to be only slightly
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corrugated and the negative Poisson’s ratios are only seen in the plane of the laminate, that
is, in the x-y and y-z planes. Such results are in line with the findings of simulation studies
using a nonlinear hyperelastic anisotropic HGO model (Holzapfel et al. [2000]). However, as
the fibre crimp level A

L increases, the negative Poisson’s ratio gradually disappears, which
means the fibre crimp feature reduces the auxetic response in the composite material model
studied here. In the context of the current literature (Nolan et al. [2014]; Latorre et al. [2016];
Volokh [2017]; Fereidoonnezhad et al. [2020]), the work in chapter 2 provides a new method to
avoid auxetic behavior and explains why the auxetic effect is not always easy to observe.

The analytical models presented in chapter 2 are designed to broadly represent the
morphology of annulus fibrosus, but the approaches and techniques employed here are
also applicable to other fibre-reinforced biological tissues (such as arterial media) and bio-
composites. In the interest of further applications, we reiterate here that the present work
is limited to small initial strain modeled as a linear behavior, and therefore the model does
not consider the effect of reorientation of crimped fibres within the matrix as load is applied
(stretching). Moreover, the Eshelby equivalent inclusion method provides the best estimates
for relatively low (below 60%) fibre volume fractions.

In chapter 3, we use a double-scale asymptotic homogenization method to study helical-
fibre-reinforced composite, helical fibres with cross-links (without matrix), and then an
amalgamation of the two, that is, helical-fibre-reinforced composite with cross-links between
fibres. The crimped fibres are modeled as helical structures, which is based on observations
of tendon and arterial wall in the literature. The direction of the helices is set parallel to the
z-axis and the cross-links are set perpendicular to that, and are connected to the nearest helix
fibre at the furthest or nearest point. In our parameter study, we examine the effects of fibre
volume fraction ρ f , helix angle β, and cross-link position on the macroscopic mechanical
properties.

For helical-fibre-reinforced composite, helix angle β has little effect on effective moduli
EH

x and EH
y , but as β increases, EH

z increases significantly corresponding to the stiffening
behavior of fibrous tissues when stretching them along the direction of the length of the
fibres. Furthermore, as fibre volume fraction ρ f increases, EH

x , EH
y , and EH

z all increase,
because the elastic modulus of the fibre is set to a much higher value that of the matrix.
For helical fibres with cross-links, the effective moduli show the same tendency: as fibre
volume fraction ρ f and helix angle increase, the effective elastic moduli along the x, y,
and z axes increase regardless of the cross-link position or whether or not a matrix is also
present. Negative effective Poisson’s ratios are found in both helical fibres with cross-links
(without matrix) and helical-fibre-reinforced composite with cross-links when the cross-
links between helical fibres join the most distant points between any two fibres (longest
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possible perpendicular cross-links). Conversely, the largest effective Poisson’s ratios are
observed for the helical fibres with cross-links (with or without matrix) where the cross-links
join the points in closest proximity between any two helices (shortest possible perpendicular
cross-links). Moreover, in the absence of matrix, the helical fibres cross-linked with the
longest possible cross-links show relatively large negative Poisson’s ratios. The Poisson’s
ratios in composites where the same cross-linked fibres are surrounded by matrix, while
still negative, are significantly less negative. This may signify that the presence of matrix
weakens the auxetic behavior. These effects may also be what is driving the apparent
difficulty in observing the negative Poisson’s ratio in real tissues compared to the larger
Poisson’s ratio.

In summary, the study in chapter 3 focuses the helical structure of fibres in soft tissue and
entails an evaluation of the effects of matrix and cross-links on the mechanical properties of
soft tissue. The results suggest that the position of the cross-links between helical fibres
does not affect the effective elastic modulus, but does influence the volume change of the
composite model studied here. Further, the presence of matrix might control the auxetic
behavior. We believe that further consideration of the cross-links of specific and more
realistic structural arrangements of fibres in the development of future soft tissue models
may offer greater insight into the behavior of fibre-reinforced soft tissues.

Finally, we present our development of a soft helical-fibre-reinforced composite using
silicone-based materials. The composite manufacturing method satisfies our modeling
assumption that the fibres and matrix bond with each other. We also present a finite element
analysis that we use to predict the mechanical behavior of the soft composite, which shows
a good fit with the experimental results. The work in chapter 4 represents the attempt to
fabricate soft composite with corrugated fibres. Our results show that the material model
of fibre-reinforced soft tissue can be studied experimentally. However, such a material
model is not easy to fabricate and increasing the number of fibres within would not be
straightforward.

In conclusion, first we introduce what is currently known about the Poisson’s ratios
of soft fibrous tissue of the human body and some animal models. We then propose an
analytical model of the microstructure of the soft tissue of the AF based on observations
from the literature. Finally, based on our study, we conclude that the corrugation of fibres
within soft tissues influences their global Poisson’s ratios. According to our model, two-
dimensional corrugation of fibres reduces the auxetic behavior of a laminate structure within
which they are embedded, but helical fibres with cross-links can confer a large positive or
negative Poisson’s ratio, depending on the positions of the cross-links, and the presence
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of matrix surrounding the fibres weakens any inherent auxetic response. In the present
thesis, the mechanical behavior of crimped fibre structures that may exist in soft tissue are
studied by modeling. In addition, the current work focuses on the changes of Poisson’s
ratio, which are often ignored in modeling. The novelty of our study compared to the
literature is that we consider fibre corrugation and study the effects of changes to parameters
related to the nature of this corrugation on the mechanical behavior of a laminate structure
designed to broadly represent annulus fibrosus tissue. Moreover, previous studies reported
in the literature focused more on the effects of microstructure on stiffness, whereas in the
present work, we examine the effects of cross-linking and the presence or not of matrix on
changes to the geometry of soft tissues. Furthermore, the present work provides evidence
of a link between corrugated fibre structure and auxetic behavior, which goes some way to
addressing the speculation in the literature on this topic.

Although there is literature documenting physical measurements of the Poisson ratio
of soft fibrous tissue, the reported results vary widely and are even contradictory. In
order to understand these discrepancies, it is necessary to identify the factors that cause
them, and further measurements of the Poisson’s ratio of soft fibrous tissues are needed to
confront and thus improve numerical models. Non-linear mechanical models are usually
applied in soft tissue modeling, but our proposed models are limited on small initial
strain which is considered as linear behavior. Therefore, further work should consider the
proposed structure under large deformation. Moreover, the definition of the Poisson’s ratio
under large deformation also needs to be reconsidered in light of the results of Dusfour
et al. [2020], which show that as annulus fibrosus is increasingly dilated, the deformation
perpendicular to the loading direction is not linear. In other words, during the stretching
process, the Poisson’s ratio depends on the level of deformation. Furthermore, the matrix
in our mechanical model is considered as an isotropic solid material, but the matrix found
in AF tissue contains several components, such as water, cells, proteoglycans, and so on.
Future modeling should therefore consider the role of matrix and the effect of fluid content
on changes to the volume of soft tissue as well as the potential electro-osmotic effect of
proteoglycans.
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