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Chapitre 0

Résumé étendu en français

0.1 Cohomologie Weil-étale

0.1.1 La fonction zêta de Dedekind et la formule analytique du
nombre de classes

La fonction zêta de Riemann est la somme infinie

ζ(s) =
∞∑
n=1

1

ns
,

qui converge pour ℜ(s) > 1. Cette somme a une expression alternative, cette fois comme
produit infini (une expression de ce genre est appelée produit eulérien) portant sur
l’ensemble des nombres premiers

ζ(s) =
∏
p

1

1− p−s
.

Cette seconde formule exprime un lien profond entre le comportement des nombres premiers
et la fonction zêta de Riemann, et place cette dernière au centre de la théorie des nombres.
Avec l’étude de la théorie algébrique des nombres, de nouvelles fonctions similaires sont
apparues, les fonctions zêta de Dedekind. Soit K un corps de nombres dont on dénote
l’anneau d’entiers OK . La fonction zêta de Dedekind associée à K est donnée par la série
de Dirichlet

ζK(s) =
∑

I idéal de OK

card(OK/I)−s,

qui converge pour ℜ(s) > 1. Elle a, elle aussi, une expression en produit eulérien

ζK(s) =
∏
p

1

1− card(OK/p)−s

portant sur les idéaux premiers non nuls p de OK (de manière équivalente, sur les points fer-
més du spectre de OK). Comme pour la fonction zêta de Riemann, comprendre les fonctions
zêta de Dedekind permet entre autres d’obtenir des informations sur les comportement
des idéaux premiers dans les corps de nombres.

Une des premières occurrences du problème de la détermination des valeurs de fonctions
zêta est le problème de Bâle, qui demande de déterminer une formule close pour la valeur
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ζ(2) ; Euler a prouvé la fameuse formule ζ(2) = π2/6, et a plus généralement donné des
formules pour ζ(2n), lorsque n ≥ 1, en termes de nombres de Bernoulli. On sait, par le
travail de Hecke, que la fonction zêta de Dedekind a un prolongement méromorphe au plan
complexe tout entier, avec un pôle simple en s = 1 ; on peut donc chercher à déterminer
une formule close pour son résidu en s = 1. La formule analytique du nombre de classes
est une telle formule :

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hKRK

ωK
√
|DK |

, (0.1.1)

où r1 est le nombre de plongements réels de K, 2r2 est le nombre de plongements complexes,
hK = card(Cl(OK)) est le nombre de classes, RK est le régulateur, ωK est le nombre de
racines de l’unité dans K et DK est le discriminant (absolu) de K. Cette formule est
surprenante : la fonction zêta est construite uniquement à partir de données locales en
chaque premier (c’est-à-dire à partir de données venant des points fermés de Spec(OK))
mais son résidu en 1 a une expression en termes de quantités définies globalement à partir
de l’anneau des entiers OK ; toutes ces quantités sont importantes pour comprendre la
structure de celui-ci.

Soit X une variété sur un corps fini. On peut alors imiter la définition de la fonction
zêta de Dedekind, en utilisant les points fermés de X ; on définit ainsi la fonction zêta
(arithmétique) de X par

ζX(s) =
∏
x∈X0

1

1−N(x)−s
,

où N(x) est le cardinal du corps résiduel en un point fermé x ∈ X0. La cohomologie étale
a été développée en partie comme un outil pour comprendre cette fonction et ses valeurs.
Plus précisément, la cohomologie étale est une théorie cohomologique : étant donné un
objet « géométrique » (ici la variété X) et des coefficients F (ici, les « faisceaux étales
sur X »), elle donne des groupes abéliens H i

et(X,F ) pour tout entier i ≥ 0. Ces groupes
abéliens sont appelés groupes de cohomologie, et ils décrivent souvent des obstructions
à certaines constructions : quand ils sont triviaux, la construction est possible, sinon ils
donnent une certaine quantification de l’obstruction à la construction.

Revenons à la fonction zêta de Dedekind. En utilisant l’équation fonctionnelle, prouvée
par Hecke, on peut reformuler la formule analytique du nombre de classes en une formule
en s = 0 :

ζ∗K(0) := lim
s→0

s1−r1−r2ζK(s) = −
hKRK

ωK
.

Dans cette formule, on peut observer que toutes les quantités sont en fait des invariants
venant de la cohomologie étale :

hK = card
(
H1

et(Spec(OK),Gm)
)
,

le régulateur RK est le discriminant de l’accouplement

H0
et(X,Gm)×H1

et,c(X,Z)→ R

et
ωK = card

(
H0

et(X,Gm)tor
)
.

Mais cette interprétation, bien qu’intéressante, n’est pas complètement satisfaisante : la
formule est en effet obtenue en prenant des morceaux par-ci, par-là de divers groupes
de cohomologie étale, et en multipliant lesdits morceaux entre eux ; on voudrait une
explication plus systématique. Avec le développement de la cohomologie Weil-étale, on
peut affirmer qu’une telle explication est accessible.
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0.1.2 Cohomologie Weil-étale et valeurs spéciales en s = 0 pour
les variétés sur des corps finis

Dans le cas particulier du spectre Spec(k) d’un corps k, la cohomologie étale se calcule
via la cohomologie du groupe de Galois de k, c’est-à-dire du groupe Gk = Gal(ksep/k) des
automorphismes k-linéaires d’une clôture séparable ksep de k. Pour une variété X sur k,
un faisceau étale sur X s’identifie à un faisceau Gk-équivariant sur la fibre géométrique
X ×k ksep. A l’aide de la suite spectrale de Hochschild–Serre, on peut alors comprendre
la cohomologie étale de X en fonction de la cohomologie du groupe de Galois de k, avec
pour coefficients la cohomologie étale de la fibre géométrique.

Dans l’article [Lic05], Lichtenbaum a fait l’observation suivante : étant donnée une
variété X sur un corps fini k, remplacer le groupe de Galois de k par son groupe de Weil
mène à une théorie cohomologique avec des propriétés assez favorables, en tout cas plus
favorables que la cohomologie étale. Plus précisément, soit Wk = Z ⊂ Ẑ = Gk le groupe de
Weil de k, c’est-à-dire le sous-groupe de Gk engendré par le Frobenius. On définit alors la
catégorie des faisceaux Weil-étale sur X comme la catégorie des faisceaux Wk-équivariants
sur la fibre géométrique X ×k ksep ; c’est un topos. Comme on l’a dit, un faisceau étale
sur X s’identifie à un faisceau Gk-équivariant sur la fibre géométrique, et obtient donc
une structure canonique de faisceau Weil-étale via l’inclusion Wk ⊂ Gk. Cette opération
définit un morphisme géométrique depuis le topos des faisceaux Weil-étale sur X vers le
topos des faisceaux étales.

Lorsque X est projective et lisse, Lichtenbaum montre que les groupes de cohomologie
correspondantsH i

W (X,Z) sont de type fini, et nuls pour des indices suffisamment grands. Un
exemple facile qui met déjà en lumière des phénomènes intéressants est le cas X = Spec(k).
En effet, dans ce cas on a H i

et(X,Z) = H i(Gal(ksep/k),Z) = Z, 0,Q/Z, 0 en degrés
respectifs i = 0, i = 1, i = 2, i ≥ 3, tandis que H i

W (X,Z) = H i(Wk,Z) = Z,Z, 0 en degrés
i = 0, i = 1, i ≥ 2. On observe que Q/Z est remplacé par Z, mais décalé un degré plus bas.
C’est un phénomène qu’on observera de manière systématique en cohomologie Weil-étale :
les termes de la forme Q/Z en cohomologie étale auront tendance à être remplacés en
cohomologie Weil-étale par Z, un degré plus bas. Le même phénomène survient usuellement
lorsque l’on calcule une complétion ℓ-adique dérivée : la complétion ℓ-adique (dérivée) de
Q/Z est

Q/Z∧
ℓ := R lim

n
(Q/Z⊗L Z/ℓnZ) = R lim

n
Z/ℓnZ[1] = Zℓ[1];

autrement dit Q/Z est remplacé par Zℓ, décalé un degré plus bas. Comme la cohomologie
Weil-étale est souvent finiment engendrée, il s’ensuit qu’elle forme aussi souvent un modèle
entier pour la cohomologie ℓ-adique (voir par exemple [Gei04, 8.4]).

Notons rX l’ordre d’annulation en 0 de ζX et

ζ∗X(0) = lim
s→0

ζX(s)s
−rX

sa valeur spéciale en s = 0. De la cohomologie Weil-étale, Lichtenbaum extrait une
caractéristique d’Euler χX(Z) et prouve la formule

ζ∗X(0) = ±χX(Z)
en utilisant une autre formule, prouvée par Milne [Mil86], exprimant ζ∗X(0) en fonction de
la cohomologie étale de X. C’est encore une fois surprenant : la fonction zêta est définie en
utilisant des données locales uniquement, tandis que la caractéristique d’Euler Weil-étale
est un invariant global. Elle contient des informations sur les comportements globaux sur
X. Lichtenbaum conjecture aussi une formule similaire pour des schémas plus généraux
sur k et une cohomologie Weil-étale à support compact.
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0.1.3 Cohomologie Weil-étale pour les schémas arithmétiques et
les coefficients motiviques

Dans des travaux ultérieurs, Flach, Geisser, Lichtenbaum, B. Morin, et d’autres auteurs se
sont efforcés de généraliser les résultats précédents à des schémas arithmétiques quelconques
(c’est-à-dire des schémas séparés de type fini sur Spec(Z)) et à des coefficients motiviques
Z(n) ; voir par exemple [Lic09 ; Gei04 ; GS20] pour la situation au-dessus d’un corps fini
et [Mor14 ; FM18] pour des schémas arithmétiques généraux. L’état de l’art est dû à B.
Morin et Flach–B. Morin [FM18 ; Mor21] ; dans ce qui suit, X est un schéma arithmétique
de dimension d :

1. Supposons que X est propre et régulier. Pour n ≥ 0, on dénote par Z(n) le complexe
de cycles de Bloch et pour n < 0 on pose Z(n) := Q/Z(n)[−1] = ⊕pjp,!µ⊗n

p∞ [−1], où
jp : X[1/p]→ X est l’immersion ouverte. Flach–B. Morin introduisent dans [FM18]
un complexe de cohomologie étale à support compact

RΓet,c(X,Z(n)) := fib
(
RΓet(X,Z(n))→ RΓGR(X(C), (2iπ)nZ)

)
,

où RΓGR(X(C),−) dénote la cohomologie GR-équivariante sur l’espace topologique
X(C) des points complexes de X, muni de sa topologie analytique. L’objectif de
l’introduction de ce complexe est de corriger les phénomènes de 2-torsion qui se pro-
duisent en cohomologie motivique étale. Sous des hypothèses conjecturales dénotées
AV(X,n) (sur la dualité d’Artin–Verdier), L(X,n) et L(X, d− n) (sur la génération
finie de la cohomologie motivique étale en certains degrés), ils construisent aussi un
complexe de cohomologie Weil-étale à support compact RΓW,c(X,Z(n)), défini par
un triangle distingué (dans la 1-catégorie dérivée) :

RHom(RΓ(X,Q(n− d)),Q[−2d− 2])→ RΓet,c(X,Z(n))→ RΓW,c(X,Z(n))→ .

Plus généralement, pour tout schéma arithmétique X et pour chaque entier n ∈ Z,
il devrait exister un complexe parfait de groupes abéliens, le complexe Weil-étale à
support compact RΓW,c(X,Z(n)) ; on parlera parfois du « complexe multiplicatif ».

2. Pour tout schéma arithmétique X, B. Morin définit dans [Mor21] un complexe LΩ<nX/S,
appelé le complexe de de Rham dérivé relatif à la sphère en spectres modulo le
n-ième terme de la filtration de Hodge ; on parlera parfois du « complexe additif ».

3. Supposons que X est propre et régulier. La droite fondamentale est définie comme
le groupe abélien libre de rang 1

∆X,n = det
Z

(
RΓW,c(X,Z(n))

)
⊗ det

Z

(
RΓ(X,LΩ<n

X/S)
)
,

où detZ est la construction du déterminant d’un complexe de [KM76], qui généra-
lise l’application « puissance extérieure en degré maximal » M 7→ ΛrankMM aux
complexes parfaits de groupes abéliens. La droite fondamental a une partie « multi-
plicative » detZ(RΓW,c(X,Z(n))) et une partie « additive » detZ(RΓ(X,LΩ

<n
X/S)).

Plus généralement, pour tout schéma arithmétique X, la droite fondamentale devrait
être définie en fonction du complexe conjectural RΓW,c(X,Z(n)) et d’une cohomologie
à support compact sur X à coefficients dans LΩ<n

X/S adéquatement définie.
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4. Supposons que X est propre et régulier et considérons la fibre

RΓc(X,R(n)) := fib
(
RΓ(X,R(n))→ RΓ(GR, X(C),R(n)D)

)
de l’application qui va de la cohomologie étale à coefficients R(n) vers la cohomologie
GR-équivariante du complexe de Deligne R(n)D := fib((2iπ)nR→ Ω<n

X(C)). Flach–B.
Morin introduisent une conjecture B(X,n), affirmant qu’un accouplement construit
canoniquement

RΓc(X,R(n))⊗L RΓ(X,R(d− n))→ RΓc(X,R(d))
τ≥2d

−−→ H2d
c (X,R(d))[−2d]

tr−→ R[−2d]

est un accouplement parfait de complexes parfaits de R-espaces vectoriels. Sous la
conjecture B(X,n), on peut construire une trivialisation canonique

λ : R ≃−→ ∆X,n ⊗ R

de la droite fondamentale.1 En d’autres termes, le complexe additif et le complexe
multiplicatif devraient être fortement liés après changement de base à R.

Plus généralement, pour tout schéma arithmétique, il devrait exister une trivialisation
canonique de la droite fondamentale, venant d’un théorème de dualité à coefficients
réels.

5. En utilisant la trivialisation, on peut identifier ∆X,n à un réseau dans R, et il est
conjecturé que la valeur spéciale

ζ∗X(n) := lim
s→n

ζX(s)(s− n)−ords=nζX

de ζX en s = n est donnée au signe près par la formule suivante :23

λ(ζ∗X(n)
−1) · Z = ∆X,n. (0.1.2)

En d’autres termes, le covolume du réseau ∆X,n à l’intérieur du R-espace vectoriel
1-dimensionnel ∆X,n ⊗ R est ζ∗X(n)−1. Si X est lisse et propre sur l’anneau d’entiers
OK d’un corps de nombres, il a été montré par Flach–B. Morin qu’une variante
de (0.1.2) (impliquant le complexe de de Rham dérivé relatif à Z et un facteur
correcteur venant de la théorie de Hodge p-adique, plutôt que le complexe LΩ<nX/S) est
équivalente à la conjecture de valeurs spéciales de Bloch–Kato et Fontaine–Perrin-
Riou. Cette variante est donc connue pour X = Spec(OK) lorsque n = 0, 1, ce qui
donne une ré-interprétation Weil-étale de la formule analytique du nombre de classes
équation (0.1.1), ou bien si K/Q est une extension abélienne [FM18, 5.34]. Dans
ces cas, par [Mor21, 1.6] et [FM18, 5.33], la conjecture (0.1.2) est aussi valide. Si X
est lisse et propre sur un corps fini, la formule est valide si l’on suppose B(X,n),
L(X,n) et L(X, d− n) vraie, par réduction aux travaux de Lichtenbaum et Geisser
([Gei04], voir [FM18, 5.31] pour la réduction).

1Dans ce manuscrit, la trivialisation sera plutôt écrite dans l’autre sens : λ : ∆X,n ⊗ R ≃−→ R.
2Il y a aussi une conjecture sur l’ordre d’annulation
3Dans ce manuscrit, on écrira plutôt λ(∆X,n) = ζ∗X(n)−1 · Z.

11



Une idée importante dans la construction de Flach–B. Morin est de construire le
complexe Weil-étale en utilisant la dualité d’Artin–Verdier (la conjecture AV(X,n)),
plutôt qu’en essayant de définir un topos Weil-étale et en prenant la théorie cohomologique
associée. L’idée de cette définition un peu tortueuse, qui est apparue initialement dans
[Mor14], provient du calcul, réalisé par Geisser [Gei04] sur les corps finis et par B. Morin
[Mor11, §8, §9] pour le spectre d’un anneau d’entiers dans un corps de nombres, du foncteur
dérivé du poussé en avant depuis le topos Weil-étale vers le topos étale. En souscrivant à la
philosophie que « la cohomologie Weil-étale remplace la torsion de forme Q/Z par Z[1] »,
essayons de motiver la définition : si l’on suppose les conjectures AV(X,n), L(X,n) et
L(X, d− n) valides, la torsion dans la cohomologie motivique RΓet,c(X,Z(n)) en twist n
s’identifie comme provenant du Q/Z-dual de la partie finiment engendrée de la cohomologie
motivique RΓet(X,Z(d− n)) en twist d− n, et le reste du complexe RΓet,c(X,Z(n)) est
en fait de type fini. On veut obtenir un complexe de cohomologie Weil-étale parfait en
remplaçant la torsion par quelque chose de type fini. En utilisant le triangle distingué
Q→ Q/Z→ Z[1], cet objectif peut être atteint si l’on construit un morphisme

RHom(RΓet(X,Z(d− n)),Q[−2d− 2])→ RΓet,c(X,Z(n))

qui « envoie le Q-dual de la partie finiment engendrée de RΓet(X,Z(d − n)) sur son
Q/Z-dual, via la projection canonique, dans RΓet,c(X,Z(n)) », et que l’on considère son
cône. La construction de Flach–B. Morin réalise exactement cela.4

Une autre observation fondamentale est qu’en caractéristique 0, contrairement à
la caractéristique p, les droites detZRΓW,c(X,Z(n)) et detZRΓ(X,LΩ

<n
X/S) n’ont pas de

trivialisations respectives, et on ne peut donc pas exprimer la valeur spéciale comme le
produit d’une caractéristique d’Euler « multiplicative » et d’une « additive ». La droite
fondamentale doit être considérée dans son ensemble pour construire une trivialisation.
Remarque ([FM18, §3.2]). Soit X une schéma arithmétique propre et régulier de dimension
d. La conjecture AV(X,n) est connue si :

• X/OK est lisse ;
• X/Fq est lisse ;
• X est une surface arithmétique (i.e X est connexe régulière de dimension 2, propre

et plate sur Z) [FS22] ;
• n ≤ 0 ou n ≥ d.

La conjecture L(X,n) est connue si :

• d ≤ 1 ;
• n = 1 et X est une surface arithmétique ou un schéma de dimension 2, connexe,

régulier et propre sur un corps fini, dans tous les cas avec un groupe de Brauer
fini (de manière équivalente, la Jacobienne de la fibre générique a un groupe de
Tate-Shafarevich fini [Gro68, §4]) ;

• n ≤ 0 et X projectif lisse sur un corps fini, cf. [Gei04, 9.2] et [FM18, 3.17] ;
• n ≥ d− 1 ou n ≤ 1, lorsque X est projectif lisse sur un corps fini k, et est « construit

à partir de produits de courbes projectives lisses sur k » (plus précisément, lorsque
X appartient à la classe A(k) de[Gei04]), cf. [Gei04, 9.5] et [FM18, 3.17] ;

• n ≥ d ou n ≤ 0 lorsque X est régulier et « construit à partir de variétés sur les corps
finis et de spectres d’anneaux d’entiers » (plus précisément, lorsque X appartient à
la classe L(Z) de [Mor14]), cf. [Mor14, §5.3].

4On peut observer que RHom(RΓet(X,Z(d−n)),Q[−2d−2]) = RHom(RΓet(X,Z(d−n))⊗Q,Q[−2d−
2]) = RHom(RΓ(X,Q(d− n)),Q[−2d− 2]).
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La conjecture B(X,n) :

• se réduit, sous la conjecture de Parshin, à la conjecture de Beilinson sur la coïncidence
des équivalences numérique et rationnelle, lorsque X est propre et lisse sur un corps
fini [FM18, 2.7] ;

• est une version de la conjecture de Beilinson sur le comportement du régulateur,
lorsque X est régulier, propre et plat sur Z [FM18, §2.2] ;

• est connue si X est le spectre d’un anneau d’entiers dans un corps de nombres.

0.1.4 Faisceaux Z-constructibles en cohomologie Weil-étale

Soit X un schéma arithmétique irréductible de dimension 1. Un faisceau étale F sur
X est dit Z-constructible si sa restriction à un ouvert dense est localement constante,
associée à un groupe abélien de type fini, et si ses germes en tout point sont des groupes
abéliens de type fini. L’étude de la cohomologie Weil-étale avec des coefficients plus
généraux que les coefficients motiviques a été initiée par Geisser dans l’article [Gei12],
dans lequel il prouve un théorème de dualité pour la cohomologie Weil-étale à coefficients
des faisceaux Z-constructibles sur une courbe au-dessus d’un corps fini. Dans la thèse de
Tran [Tra15], celui-ci propose une construction de cohomologie Weil-étale pour certains
faisceaux Z-constructibles (qu’il nomme faisceaux « fortement Z-constructibles ») et leurs
Gm-duaux sur le spectre d’un anneau d’entiers dans un corps de nombres totalement
imaginaire. Tran fait ensuite le lien, pour les faisceaux provenant du point générique par
poussé en avant, avec les valeurs spéciales en s = 0, 1 de fonctions L d’Artin associées à
des représentations rationnelles (du groupe de Galois d’un corps de nombres totalement
imaginaire). Il fait aussi une conjecture sur les 1-motifs et leurs fonctions L. Dans l’article
[Tra16], Tran généralise sa construction (pour les faisceaux Z-constructibles) au cas d’un
corps de nombres quelconque (ce qui nécessite d’ailleurs de gérer correctement la 2-torsion)
et prouve à nouveau une formule de valeurs spéciales en s = 0 pour les fonctions L d’Artin
de représentations rationnelles ; en utilisant l’équation fonctionnelle, il prouve aussi une
formule de valeurs spéciales en s = 1 pour des fonctions L de tores, en termes d’invariants
de ceux-ci. Dans l’article [GS20], Geisser–Suzuki étudient la cohomologie Weil-étale d’une
courbe lisse et propre sur un corps fini, à coefficients dans des modèles de Néron de 1-motifs
sur le corps de fonctions, ou bien à coefficients des faisceaux Z-constructibles. Ils prouvent
une formule de valeur spéciale en s = 0 pour les fonctions L de faisceaux Z-constructibles,
en s = 1 pour les fonctions L de tores, et ils conjecturent une formule Weil-étale de valeur
spéciale en s = 1 pour la fonction L d’un 1-motif, qu’ils montrent être équivalente à la
conjecture de Birch–Swinnerton-Dyer pour la partie abélienne de ce denier.

0.2 Description des travaux
Ce travail consiste en l’extension de la formule sus-mentionnée de valeur spéciale, due à
Flach–B. Morin, pour n = 0, 1 aux faisceaux Z-constructibles sur un schéma arithmétique
intègre X de dimension 1. On s’inspirera du travail de Tran et Geisser–Suzuki mais on
utilisera les méthodes de Flach–B. Morin qui donnent un cadre de travail plus robuste.

0.2.1 Valeurs spéciales en s = 0

Le chapitre II a sa propre introduction plus détaillée et contient l’article publié [Mor23],
légèrement retravaillé. On définit la fonction L d’un faisceau Z-constructible F sur X par
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le produit eulérien

LX(F, s) =
∏

x∈X(0)

det
(
1−N(x)−sFrob | i∗xF ⊗ C

)−1

où ix est l’inclusion du point fermé x ∈ X0 et Frob est le Frobenius géométrique, qui agit
sur i∗xF . On note L∗

X(F, 0) = lims→0 LX(F, s)s
− ords=0 LX(F,s) la valeur spéciale de LX(F, s)

en s = 0. Un cas particulier de cette fonction L est le suivant : soit g : Spec(K) → X
l’inclusion du point générique ; si M est un Gal(Ksep/K)-module discret de type fini, alors
g∗M est un faisceau Z-constructible sur X et, lorsque X est propre et régulier, LX(g∗M, s)
est la fonction L d’Artin de M ⊗Q, i.e.

LX(g∗M, s) = LK(M ⊗Q, s) :=
∏

v place de K

det
(
1−N(v)−sFrob | (M ⊗Q)Iv

)−1
.

En enlevant des points à X, on peut aussi naturellement considérer des fonctions L d’Artin
partielles.

Lorsque X est régulier, en utilisant le cadre de travail de Flach–B. Morin, on définit
dans la section II.3.1 un complexe Weil-étale à support compact RΓW,c(X,F ) pour certains
faisceaux Z-constructibles, appelés faisceaux « gros » et « petits »5. On obtient une suite
exacte longue en cohomologie pour les suites exactes courtes « gros-vers-petit »6. Comme
n = 0, il n’y a pas de complexe de de Rham, donc la droite fondamentale est simplement

∆X(F ) := det
Z
RΓW,c(X,F ).

On prouve un théorème de dualité à coefficients réels, le théorème II.4.4, qui fait le lien entre
la cohomologie à support compact à coefficients un faisceau étale F et les groupes de Ext
de F vers le groupe multiplicatif Gm. Ce théorème généralise la conjecture B(X, 0) en un
énoncé pour tous les faisceaux étales sur X. On déduit du théorème une trivialisation de la
droite fondamentale ∆X(F )⊗R ≃ R lorsque F est gros ou petit. Cela permet de construire,
pour tout faisceau gros ou petit F , une caractéristique d’Euler Weil-étale χX(F ) qui est
multiplicative pour les suites exactes courtes de faisceaux gros ou petits. Tout faisceau
Z-constructible F peut se placer dans une suite exacte courte 0→ G→ F → H → 0 avec
G gros et H petit. En imposant la multiplicativité on obtient donc une caractéristique
d’Euler Weil-étale définie pour tous les faisceaux Z-constructibles et multiplicative pour
les suites exacte courtes de faisceaux Z-constructibles. Si le schéma X n’est pas régulier, il
possède tout de même un morphisme quasi-fini f : X → Y vers un schéma arithmétique Y
intègre régulier et de dimension 1, et on peut définir χX(F ) := χY (f!F ) pour un faisceau
Z-constructible sur X, où f! dénote le foncteur de poussé en avant propre le long de f . On
prouve alors la formule de valeur spéciale (théorème II.6.24)

L∗
X(F, 0) = ±χX(F ) (0.2.1)

en se réduisant à la formule analytique du nombre de classes, qui avait déjà une interpré-
tation Weil-étale par l’article [Mor14]. L’outil principal permettant cette réduction est
l’induction d’Artin, qui énonce que les représentations rationnelles d’un groupe fini se
comprennent essentiellement en termes des représentations induites de représentations
triviales des sous-groupes.

5« big » et « tiny » dans la suite du texte.
6« big-to-tiny » dans la suite du texte
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La caractéristique d’Euler Weil-étale a une expression explicite en termes de cohomologie
étale à support compact à coefficients dans F et en termes de groupes d’Ext de F vers le
groupe multiplicatif Gm (ou bien plus généralement dans le cas singulier, vers le complexe
de Deninger GX , voir [Den87a]). Le formalisme Weil-étale donne une manière d’assembler
toutes ces données, qui étaient déjà disponibles, en un seul objet cohérent avec de bonnes
propriétés de fonctorialité.

La formule (0.2.1) généralise aux schémas arithmétiques la formule similaire obtenue
par Geisser–Suzuki dans l’article [GS20] pour les courbes propres et lisses sur un corps
fini, et améliore tout en les généralisant les travaux de Tran [Tra16]. Si F est un faisceau
constructible, la formule (0.2.1) est une généralisation de la formule de Tate pour la
caractéristique d’Euler d’un corps global. Si M est un Gal(Ksep/K)-module discret de
type fini et si X est propre, le théorème donne une formule de valeur spéciale pour la
fonction L d’Artin de M ⊗Q :

L∗
K(M ⊗Q, 0) = ±χX(g∗M).

Un autre cas particulier intéressant du théorème est la généralisation suivante de la formule
analytique du nombre de classes aux schémas singuliers : si X est affine, on a

ζ∗X(0) = ±
[CH0(X)]RX

ω
,

où CH0(X) est le 0-ième groupe de Chow, RX est un régulateur et ω est le nombre de
racines de l’unité dans le corps de fonction de X. Si X est une courbe propre sur un corps
fini, avec pour corps de constantes Fq, on a d’autre part

ζ∗X(0) = ±
[CH0(X)tor]RX

ω log(q)
.

Le régulateur RX a une définition similaire dans les deux cas, mais il est uniquement
contrôlé par les singularités dans le cas d’une courbe propre ; en particulier, il s’annule si la
courbe est régulière. En caractéristique 0, le régulateur est une modification du régulateur
usuel (i.e. du régulateur de la normalisation), qui prend en compte les singularités.

Dans le chapitre III, on formalise la partie formelle de la preuve du théorème II.6.24,
et on simplifie l’argument utilisé dans le chapitre II pour gérer les faisceaux constructibles,
via un théorème de Swan. Soit A une catégorie abélienne. Une caractéristique d’Euler
χ sur A est une application χ depuis les classes d’isomorphismes d’objets de A vers
un groupe abélien Γ, qui vérifie χ(B) = χ(A) + χ(C) pour toute suite exacte courte
0→ A→ B → C → 0. On montre les deux résultats suivants :

Théorème. Soit χ une caractéristique d’Euler sur la catégorie des faisceaux Z-constructibles
sur un schéma arithmétique X. Si χ est à valeurs dans un groupe abélien sans torsion,
alors elle s’annule sur les faisceaux constructibles.

Théorème. Soit χ, χ′ deux caractéristiques d’Euler sur la catégorie des faisceaux Z-
constructibles sur un schéma arithmétique X, à valeurs dans un même groupe abélien
sans torsion. Si χ(π∗Z) = χ′(π∗Z) pour tout morphisme fini π : Y → X de schémas
arithmétiques avec Y normal et irréductible, alors χ = χ′.

La stratégie de preuve est de généraliser le procédé de dévissage (§ II.2.0.1) déjà mis
en place au chapitre II, tout en utilisant l’induction d’Artin et le théorème de Swan
sus-mentionné.
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0.2.2 Valeur spéciale en s = 1

Le chapitre IV est constitué de l’article [Mor22], et a sa propre introduction détaillée.
Notons Zc

X le complexe de cycles de Bloch, avec l’indexation cohomologique (cf § IV.1.3.2).
Lorsque X est régulier, on a Zc

X ≃ Z(1)[2]. On travaille dorénavant en caractéristique 0,
et donc X est le spectre d’un ordre dans un corps de nombres K. On note

FD := RH omX(F,Zc
X);

que l’on considère comme une généralisation, contravariante en F , du twist motivique Z(1)
(tout du moins lorsque X est régulier, et a un décalage près). La dualité d’Artin–Verdier
permet de considérer FD comme le dual de F . Lorsque F est Z-constructible, on définit la
fonction L de FD sur X par

LX(F
D, s) :=

∏
x∈X0

det
(
1−N(x)−sFrob | (i∗xFD)⊗̂Qℓx

)−1
.

où ℓx est un nombre premier, premier à la caractéristique résiduelle en x, et où pour un
complexe M de faisceaux étales on a noté M⊗̂Qℓ :=

(
R limn(M ⊗L Z/ℓnZ)

)
⊗Q, calculé

sur le site pro-étale. Pour F = Z et X régulier, on obtient LX(ZD, s) = ζX(s + 1). Si
F = i∗M est le poussé en avant d’un Gal(k(x)sep/k(x))-module discret de type fini M le
long de l’inclusion i : x→ X d’un point fermé, on a LX

(
(i∗M)D, s

)
= LX

(
i∗(M

∨), s
)

où
le second terme est la fonction L d’un faisceau Z-constructible, comme définie au chapitre
II, et (−)∨ := H om(−,Z) est le dual Z-linéaire. Lorsque X est régulier, si l’on note
g : Spec(K)→ X l’inclusion du point générique de X et si M est un Gal(Ksep/K)-module
discret de type fini, on a LX(g∗M, s) = LK(M ⊗Q, s+ 1), une fonction L d’Artin. Ainsi,
génériquement la fonction L que l’on considère se comporte comme un fonction L d’Artin
en la variable s+ 1, mais localement elle se comporte plutôt comme un facteur local en la
variable s. Ceci est cohérent avec les diverses propriétés de fonctorialité de la construction
(−)D : on a ZD = Z(1)[2] lorsque X est régulier, et l’on sait que Z(1) est lié à la valeur
spéciale en s = 1 de ζX , tandis que pour l’inclusion i : x → X d’un point fermé on a
(i∗Z)D = i∗Z∨ = i∗Z, qui est lié à la valeur spéciale en 0 de ζx.

On définit et étudie d’abord la cohomologie à support compact à coefficients FD, en
corrigeant la cohomologie étale du complexe FD par la cohomologie de Betti aux places
archimédiennes. En combinant la dualité d’Artin–Verdier usuelle avec la dualité pour la
cohomologie de Tate du groupe de Galois aux places archimédiennes, on obtient une version
« tordue » de la dualité d’Artin–Verdier faisant le lien entre la cohomologie à support
compact de FD et la cohomologie étale de F . A nouveau, suivant le formalisme établi par
Flach–Morin, on définit alors la cohomologie Weil-étale à support compact à coefficients
FD pour certains faisceaux Z-constructibles, les faisceaux « rouges » et « bleus »7 (def.
IV.3.1). Les résultats comme les méthodes sont semblables à ceux du chapitre II : en
particulier, on obtient une suite exacte longue de cohomologie Weil-étale pour les suites
exactes courtes « rouge-vers-bleu ». 8 Comme n = 1, cette fois-ci la droite fondamentale
a une partie additive : lorsque F est modérément ramifié (def. IV.4.1), on définit un
complexe LieX(F

D), le « complexe tangent de FD », qui généralise d’une part le complexe
de de Rham dérivé utilisé dans [FM18] et d’autre part dans certains cas l’algèbre de Lie
du modèle de Néron d’un tore, comme utilisé dans [GS20]. Si F est modérément ramifié,
on peut alors définir la droite fondamentale :

∆X(F
D) = det

Z
RΓW,c(X,F

D)⊗ det
Z

LieX(F
D).

7« Red » et « blue » dans la suite du texte.
8« Red-to-blue » dans la suite du texte.
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On prouve un théorème de dualité à coefficients réels faisant le lien entre la cohomologie
de Deligne à support compact à coefficients FD (c’est-à-dire la cohomologie étale, corrigée
aux places archimédiennes par la cohomologie de Deligne, cf. def. IV.5.1) et la cohomologie
étale de F . Ce théorème généralise la conjecture B(X, 1). On obtient ainsi une trivialisation
∆X(F

D)⊗R ≃ R de la droite fondamentale. Cela donne une caractéristique d’Euler χX(FD)
pour F modérément ramifié et rouge ou bleu ; cette dernière est multiplicative pour les
suites exactes courtes rouge-vers-bleu de faisceaux modérément ramifiés. Tout faisceau
Z-constructible modérément ramifié peut être inséré dans une suite exacte courte entre
deux faisceaux rouges et bleus modérément ramifiés, et donc en imposant la multiplicativité
on obtient formellement une caractéristique d’Euler pour tous les faisceaux Z-constructibles
modérément ramifiés. Celle-ci a une expression explicite en fonction de puissances de 2 et
de 2π, de quantités « additives » définies à partir de F (en particulier une quantité du
type « racine carré du discriminant »), de groupes de cohomologie étale à coefficients F et
de groupes d’Ext de F vers le groupe multiplicatif Gm. L’expression dans son ensemble
ressemble beaucoup à la formule analytique du nombre de classes. On peut alors montrer
la formule de valeurs spéciales pour les faisceaux Z-constructibles modérément ramifiés :

L∗
X(F

D, 0) = ±χX(FD).

En particulier, si M est un Gal(Ksep/K)-module discret de type fini, la fonction L de
LX((g∗M)D, s) est la fonction L d’Artin L(M ⊗Q, s+ 1) et le théorème énonce alors la
formule

L∗(M ⊗ C, 1) = ±χX
(
(g∗M)D

)
.

Pour F = Z lorsque X est régulier, on retrouve la formule analytique du nombre de classes
en s = 1, comme dans [FM18]. Par les résultats du chapitre III, cela est essentiellement
suffisant pour prouver la formule de valeurs spéciales. Celle-ci est de plus l’analogue
dans le cas d’un corps de nombres du travail de Geisser–Suzuki dans le cas des corps de
fonctions sur les valeurs spéciales de fonctions L de tores s = 1 [GS20]. Enfin, si F est
constructible, les deux complexes RΓW,c(X,FD) et LieX(FD) sont des complexes parfaits
à groupes de cohomologie finis, et le théorème de valeurs spéciales énonce alors que leurs
caractéristiques d’Euler multiplicatives, c’est-à-dire le produit alterné de l’ordre de leurs
groupes de cohomologie, sont égales

χ×(RΓW,c(X,FD)
)
= χ×(LieX(FD)

)
= [Fη]

[K:Q].

Dans le chapitre V, on suit une remarque faite par T. Suzuki pour définir de manière
inconditionnelle la partie additive de la droite fondamentale. L’observation de T. Suzuki
est la suivante : même si le foncteur qui à un tore associe l’algèbre de Lie de son modèle de
Néron n’est pas exact, son déterminant se comporte tout de même de manière multiplicative
vis-à-vis des suites exactes courtes de tores. Notons g : Spec(K)→ X l’inclusion du point
générique. Pour un faisceau étale F sur X modérément ramifié et sans torsion, le complexe
LieX(F

D) coïncide (à un décalage près) avec l’algèbre de Lie du modèle de Néron du
tore sur K dont le groupe de caractères est g∗F . Ainsi, dans le cas général d’un faisceau
Z-constructible, il est censé de définir la partie additive de la droite fondamentale en
considérant une résolution à 2 termes de g∗F par des Gal(Ksep/K)-modules discrets de
type fini sans torsion, et en prenant ensuite le déterminant du complexe formé par les
algèbres de Lie des modèles de Néron des tores associés aux termes de la résolution. Ceci
définie un Z-fibré en droite gradué qui est multiplicatif vis-à-vis des suites exactes courtes,
qui a le bon changement de base à Q (c’est-à-dire l’algèbre de Lie du tore de groupe
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de caractères g∗F ), et qui coïncide avec detZ LieX(F
D) (à un décalage près) dans le cas

modérément ramifié. Avec cette définition inconditionnelle de la droite fondamentale à
notre disposition, on peut définir inconditionnellement la caractéristique d’Euler Weil-
étale χX(FD) ce qui permet d’étendre la formule de valeurs spéciales à tous les faisceaux
Z-constructibles :

L∗
X(F

D, 0) = ±χX(FD).
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Chapter I

Introduction

I.1 Weil-étale cohomology

I.1.1 The Dedekind zeta function and the analytic class number
formula

The Riemann zeta function is the infinite sum

ζ(s) =
∞∑
n=1

1

ns
,

which converges for ℜ(s) > 1. It has an alternate expression as an infinite product (which
is called an Euler product) ranging over all prime numbers

ζ(s) =
∏
p

1

1− p−s
.

This second formula expresses a deep link between the Riemann zeta function and the
behaviour of prime numbers and makes the former a central object of study in number
theory. With the study of algebraic number theory, new similar functions emerged, called
Dedekind zeta functions. For a number field K with ring of integers OK , the Dedekind
zeta function associated to K is given by the Dirichlet series

ζK(s) =
∑

I ideal of OK

card(OK/I)−s,

converging for ℜ(s) > 1, and has an Euler product expression

ζK(s) =
∏
p

1

1− card(OK/p)−s

ranging over the non-zero prime ideals p of OK (that is, over the closed points of the
spectrum of OK). Similarly to the Riemann zeta function, understanding the Dedekind
zeta functions gives an insight into the behavior of prime ideals in number fields.

The first instance of the problem of understanding the values of zeta functions is
the Basel problem, which asks for a closed form for ζ(2); Euler proved the celebrated
formula ζ(2) = π2/6, and gave more generally formulas for ζ(2n) when n ≥ 1 in terms of
Bernouilli numbers. By work of Hecke, it is known that the Dedekind zeta functions have
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a meromorphic continuation on the whole complex plane with a simple pole at s = 1 so
one can ask about their residue at s = 1. The analytic class number formula gives the
answer:

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hKRK

ωK
√
|DK |

, (I.1.1)

where r1 is the number of real embeddings of K, 2r2 is the number of complex embeddings,
hK = card(Cl(OK)) is the class number, RK is the regulator, ωK is the number of roots of
unity in K and DK is the (absolute) discriminant of K. This formula is striking: the zeta
function is assembled only from local data at each prime (i.e. from knowledge on the closed
points of Spec(OK)) but its residue at 1 has an expression in terms of quantities defined
from the whole ring of integers OK ; all those quantities are important to understand the
structure of the ring of integers.

When X is a variety over a finite field, one can mimic the definition of the Dedekind
zeta function using the (closed) points of X; thus the zeta function of X is defined by

ζX(s) =
∏
x∈X0

1

1−N(x)−s
,

where N(x) is the cardinality of the residue field at a closed point x ∈ X0. Étale
cohomology was developped in part as a tool to understand this function and its values.
Étale cohomology is a cohomology theory: given a geometric object (here the variety
X) and some coefficients F (here called “étale sheaves on X”), it outputs abelian groups
H i

et(X,F ) for all integers i ≥ 0. These abelian groups are called cohomology groups
and they often describe the obstruction to some constructions: when they are 0, the
construction is possible, otherwise they give some sort of quantification of what goes
wrong.

Coming back to the Dedekind zeta function, using its functional equation (proved by
Hecke) we can reformulate the analytic class number formula as a formula at s = 0:

ζ∗K(0) := lim
s→0

s1−r1−r2ζK(s) = −
hKRK

ωK
.

In this formula, one can observe that all the invariants come from étale cohomology:

hK = card
(
H1

et(Spec(OK),Gm)
)
,

the regulator RK is the discriminant of a pairing

H0
et(X,Gm)×H1

et,c(X,Z)→ R

and
ωK = card

(
H0

et(X,Gm)tor
)
.

But this interpretation is not completely satisfying: the formula is obtained by takings bits
and pieces from various étale cohomology groups and taking their products; we would like
a systematic explanation. This was arguably achieved with the development of Weil-étale
cohomology.
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I.1.2 Weil-étale cohomology and special value at s = 0 for varieties
over finite fields

In the particular case of the spectrum Spec(k) of a field k, étale cohomology is computed
in terms of the cohomology of the Galois group of k, that is of the group Gk = Gal(ksep/k)
of k-linear automorphisms of a separable closure ksep of k. For a variety X over k, an étale
sheaf on X identifies with a Gk-equivariant sheaf on the base change X ×k ksep. Using the
Hochschild-Serre spectral sequence, the étale cohomology of X can then be understood in
terms of the cohomology of the Galois group of k, with coefficients the étale cohomology
of X ×k ksep.

In [Lic05], Lichtenbaum made the following observation: for a variety X over a finite
field k, replacing the Galois group of k by the Weil group of k leads to a cohomology
theory with favourable properties, better behaved than étale cohomology. Namely, let
Wk = Z ⊂ Ẑ = Gk be the Weil group of k, that is the subgroup generated by the Frobenius.
Then the category of Weil-étale sheaves on X is defined as the category of Wk-equivariant
étale sheaves on X×k ksep; this is a topos. As we said, a Gk-equivariant sheaf on X×k ksep
identifies with a sheaf on X, and has thus a canonical structure of Wk-equivariant sheaf
through the inclusion Wk ⊂ Gk. This defines a geometric morphism from the topos of
Weil-étale sheaves to the topos of étale sheaves.

For X smooth projective, the corresponding cohomology groups H i
W (X,Z) are shown

to be finitely generated, and zero for large indexes. An easy example that already
showcases some interesting phenomenon is the case X = Spec(k). In this case one has
H i

et(X,Z) = H i(Gal(ksep/k),Z) = Z, 0,Q/Z, 0 in degree i = 0, i = 1, i = 2, i ≥ 3, while
H i
W (X,Z) = H i(Wk,Z) = Z,Z, 0 in degree i = 0, i = 1, i ≥ 2. We see that Q/Z gets

replaced by Z, shifted down by one degree. This will be a general phenomenon in Weil-étale
cohomology: the terms Q/Z in étale cohomology will tend to get replaced by Z, shifted
one degree down, in Weil-étale cohomology. The same phenomenon happens usually when
taking a derived ℓ-adic completion: the (derived) ℓ-adic completion of Q/Z is

Q/Z∧
ℓ := R lim

n
(Q/Z⊗L Z/ℓnZ) = R lim

n
Z/ℓnZ[1] = Zℓ[1],

so Q/Z gets replaced by Zℓ, shifted one degree down. As Weil-étale cohomology is often
finitely generated, it turns out that it is thus also often an integral model for ℓ-adic
cohomology1.

Denote by rX the vanishing order at 0 of ζX and

ζ∗X(0) = lim
s→0

ζX(s)s
−rX

its special value at s = 0. Lichtenbaum extracts from the Weil-étale cohomology groups a
Weil-étale Euler characteristic χX(Z) and shows the formula

ζ∗X(0) = ±χX(Z)

by using a formula, proven by Milne [Mil86], expressing ζ∗X(0) in terms of étale cohomology.
Again this is striking: the zeta function is defined using local data only and the Weil-étale
Euler characteristic is a global invariant, it contains informations about global phenomena
on X. Lichtenbaum also conjectures a similar formula for more general schemes over k
and Weil-étale cohomology with compact support.

1See for instance [Gei04, 8.4]
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I.1.3 Weil-étale cohomology for arithmetic schemes and motivic
coefficients

In subsequent work, Flach, Geisser, Lichtenbaum, B. Morin, and others have strived to
generalize these results to arbitrary arithmetic schemes X (finite type separated schemes
over Spec(Z)) and motivic coefficients Z(n); see e.g. [Lic09; Gei04; GS20] for the situation
over finite fields and [Mor14; FM18] for general arithmetic schemes. The state of the art is
due to B. Morin and Flach–B. Morin [FM18; Mor21]; in what follows, X is an arithmetic
scheme of dimension d:

1. Suppose that X is proper and regular. For n ≥ 0, denote by Z(n) Bloch’s cycle
complex and for n < 0 put Z(n) := Q/Z(n)[−1] = ⊕pjp,!µ⊗n

p∞ [−1] where jp : X[1/p]→
X is the open immersion. Flach–B. Morin introduce in [FM18] a complex of étale
cohomology with compact support

RΓet,c(X,Z(n)) := fib
(
RΓet(X,Z(n))→ RΓGR(X(C), (2iπ)nZ)

)
where RΓGR(X(C),−) denotes GR-equivariant cohomology on the topological space
X(C) of complex points of X, endowed with its analytic topology. The aim of this
complex is to correct the 2-torsion phenomena happening in étale motivic cohomology.
Under some conjectural hypotheses AV(X,n) (on Artin–Verdier duality), L(X,n)
and L(X, d− n) (on finite generation of étale motivic cohomology in certain degrees)
they also construct a Weil-étale complex with compact support RΓW,c(X,Z(n)),
defined by a distinguished triangle (in the derived 1-category):

RHom(RΓ(X,Q(n− d)),Q[−2d− 2])→ RΓet,c(X,Z(n))→ RΓW,c(X,Z(n))→ .

More generally, for every arithmetic scheme X and for each n ∈ Z, there should exist
a perfect complex of abelian groups, the Weil-étale complex with compact support
RΓW,c(X,Z(n)); we also refer to it as the “multiplicative complex”.

2. B. Morin defines in [Mor21] for every arithmetic scheme X a complex LΩ<n
X/S called

the derived de Rham complex relative to the sphere spectrum modulo the n-th step
of the Hodge filtration; we refer to it as the “additive complex”.

3. When X is proper regular, the fundamental line is then defined as the free abelian
group of rank 1

∆X,n = det
Z

(
RΓW,c(X,Z(n))

)
⊗ det

Z

(
RΓ(X,LΩ<n

X/S)
)
,

where detZ is the determinant construction of [KM76], which generalizes the top exte-
rior power map M 7→ ΛrankMM to perfect complexes of abelian groups. It has a “mul-
tiplicative” part detZ(RΓW,c(X,Z(n))) and an “additive” part detZ(RΓ(X,LΩ

<n
X/S)).

More generally, for every arithmetic schemeX, the fundamental line should be defined
in terms of the conjectural complex RΓW,c(X,Z(n)) and an appropriately-defined
compactly supported cohomology on X of LΩ<n

X/S.

4. Suppose that X is regular and proper and consider the fiber

RΓc(X,R(n)) := fib
(
RΓ(X,R(n))→ RΓ(GR, X(C),R(n)D)

)
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of the map from étale cohomology with R(n)-coefficients to GR-equivariant coho-
mology of the Deligne complex R(n)D := fib((2iπ)nR → Ω<n

X(C)). Flach–B. Morin
introduce a conjecture B(X,n), stating that a canonically constructed pairing

RΓc(X,R(n))⊗L RΓ(X,R(d− n))→ RΓc(X,R(d))
τ≥2d

−−→ H2d
c (X,R(d))[−2d]

tr−→ R[−2d]

is a perfect pairing of perfect complexes of R-vector spaces. Under B(X,n), a
canonical trivialization

λ : R ≃−→ ∆X,n ⊗ R

of the fundamental line can be defined.2 In other words, the additive complex and
the multiplicative complex should be strongly related after tensoring with R.

More generally, for every arithmetic scheme there should exist a canonical trivializa-
tion of the fundamental line, coming from some duality with R-coefficients.

5. Using the trivialization, ∆X,n identifies with a lattice inside R, and the special value

ζ∗X(n) := lim
s→n

ζX(s)(s− n)−ords=nζX

of ζX at s = n is conjectured to be given up to sign by the following formula:34

λ(ζ∗X(n)
−1) · Z = ∆X,n. (I.1.2)

In other words, the covolume of the lattice ∆X,n inside the 1-dimensional R-vector
space ∆X,n ⊗ R is ζ∗X(n)−1. For X smooth proper over the ring of integers OK of a
number field, a variant of (I.1.2) (involving the derived de Rham complex LΩ<n

X/Z
relative to Z and a correction factor coming from p-adic Hodge theory, instead
of LΩ<n

X/S) is shown by Flach–B. Morin to be compatible with the special value
conjecture of Bloch-Kato and Fontaine–Perrin-Riou. This variant is thus known for
X = Spec(OK) if n = 0, 1, giving a Weil-étale interpretation of the analytic class
number formula Equation (I.1.1), or if K/Q is abelian [FM18, 5.34]. By [Mor21,
1.6] and [FM18, 5.33], (I.1.2) also holds in this case. For X smooth proper over a
finite field, the formula holds under B(X,n), L(X,n) and L(X, d− n) by reduction
to work of Lichtenbaum and Geisser ([Gei04], see [FM18, 5.31] for the reduction).

One important idea of the construction of Flach–B. Morin is that the Weil-étale complex
is constructed using Artin–Verdier duality (conjecture AV(X,n)), instead of trying to
define a Weil-étale topos and taking the corresponding cohomology theory. The idea of
this definition, which first appeared in [Mor14], comes from the computation of the derived
pushforward functor from the Weil-étale topos to the étale topos, by Geisser [Gei04] over
finite fields and B. Morin [Mor11, §8, §9] for the spectrum of a ring of integers in a number
field. With the Weil-étale philosophy that “Q/Z-shaped torsion gets replaced by Z[1]”, let
us try to motivate how one could re-discover this definition: under conjectures AV(X,n),
L(X,n) and L(X, d−n), the torsion in motivic cohomology RΓet,c(X,Z(n)) is identified as
coming from the Q/Z-dual of the finite type part of motivic cohomology RΓet(X,Z(d−n)),
and the rest of RΓet,c(X,Z(n)) is actually of finite type. We want to obtain a perfect

2In this manuscript, the trivialization will instead be written λ : ∆X,n ⊗ R ≃−→ R.
3There is also a conjecture for the vanishing order
4In this manuscript λ(∆X,n) = ζ∗X(n)−1 · Z.
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complex of Weil-étale cohomology by replacing the torsion by something of finite type;
using the fiber sequence Q→ Q/Z→ Z[1], this can be done if we can construct a map

RHom(RΓet(X,Z(d− n)),Q[−2d− 2])→ RΓet,c(X,Z(n))

that “sends the Q-dual of the finite type part of RΓet(X,Z(d− n)) to its Q/Z-dual, via
the canonical projection, inside RΓet,c(X,Z(n))”, and consider its mapping cone. The
construction of Flach–B. Morin achieves this.5

Another fundamental observation is that in characteristic 0, contrarily to the char-
acteristic p case, detZRΓW,c(X,Z(n)) and detZRΓ(X,LΩ

<n
X/S) do not have trivializations

on their own, so we cannot express the special value as the product of a “multiplicative”
Euler characteristic and an “additive” Euler characteristic. The fundamental line must be
considered as a whole.
Remark ([FM18, §3.2]). Let X be a regular proper arithmetic scheme of dimension d.
Conjecture AV(X,n) is known if:

• X/OK is smooth;
• X/Fq is smooth;
• X is an arithmetic surface (i.e X is connected regular of dimension 2 and flat and

proper over Z) [FS22];
• n ≤ 0 or n ≥ d.

Conjecture L(X,n) is known if:

• d ≤ 1;
• n = 1 and X is an arithmetic surface or connected regular of dimension 2 and proper

over a finite field, with finite Brauer group (equivalently the Jacobian of the generic
fiber has finite Tate-Shafarevich group by [Gro68, §4]);

• n ≤ 0 and X smooth projective over a finite field, see [Gei04, 9.2] and [FM18, 3.17];
• n ≥ d− 1 or n ≤ 1 where X is smooth projective over a finite field k, and is “built

from products of smooth projective curves over k” (more precisely in the class A(k)
of [Gei04]), see [Gei04, 9.5] and [FM18, 3.17];

• n ≥ d or n ≤ 0 and X regular “built from varieties over finite fields and spectra
of number rings” (more precisely, X belongs to the the class L(Z) of [Mor14]), see
[Mor14, §5.3].

Conjecture B(X,n):

• reduces under Parshin’s conjecture to Beilinson’s conjecture on the coincidence of
rational and numerical equivalence when X is smooth proper over a finite field
[FM18, 2.7];

• is a version of Beilinson’s conjectures on the behaviour of the regulator for X regular
flat and proper over Z [FM18, §2.2];

• is known if X is the spectrum of a number ring.

I.1.4 Z-constructible sheaves in Weil-étale cohomology

If X is an irreducible arithmetic scheme of dimension 1, an étale sheaf F on X is Z-
constructible if on a dense open subscheme it is locally constant associated to a finite type

5Observe that RHom(RΓet(X,Z(d−n)),Q[−2d− 2]) = RHom(RΓet(X,Z(d−n))⊗Q,Q[−2d− 2]) =
RHom(RΓ(X,Q(d− n)),Q[−2d− 2]).
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abelian group, and if its stalks at all points are finite type abelian groups. The study of
Weil-étale cohomology with coefficients more general than motivic coefficients was initiated
by Geisser in [Gei12], where a duality theorem for Weil-étale cohomology with coefficients
in Z-constructible sheaves on a curve over a finite field is proven. In his thesis [Tra15],
Tran proposes a construction of Weil-étale cohomology for some Z-constructible sheaves
(which he calls “strongly Z-constructible sheaves”) and their Gm-duals on the spectrum
of the ring of integers in a totally imaginary number field. He then links it, for those
sheaves coming by pushforward from the generic point, to special values at s = 0, 1 of
Artin L-functions of rational representations. He also makes a conjecture for 1-motives
and their L-function. In [Tra16], Tran refines his construction for Z-constructible sheaves
to arbitrary number fields (which necessitates to handle correctly the 2-torsion) and proves
again a special value formula for Artin L-functions of rational representations; using the
functional equation he also proves a special value formula at s = 1 for L-functions of tori.
In [GS20], Geisser–Suzuki study the Weil-étale cohomology on the smooth proper curve
over a finite field with coefficients in Néron models of 1-motives over the function field and
in Z-constructible sheaves. They prove special value formulas at s = 0 for L-functions of
Z-constructible sheaves, at s = 1 for L-functions of tori, and they conjecture a Weil-étale
special value formula at s = 1 for the L-function of a 1-motive, which they prove to be
equivalent to the Birch–Swinnerton-Dyer conjecture for its abelian part.

I.2 Outline
This work consists in extending the above-mentioned special value formula of Flach–B.
Morin (I.1.2) for n = 0, 1 to Z-constructible coefficients on an integral arithmetic scheme
X of dimension 1, by taking inspiration from the work of Tran and Geisser–Suzuki but
using the methods of Flach–B. Morin which give a more robust framework to work in.

I.2.1 Special value at s = 0

Chapter II consists of the published article [Mor23], slightly reworked, and has its own
more detailed introduction. The L-function of a Z-constructible sheaf F on X is defined
by the Euler product

LX(F, s) =
∏

x∈X(0)

det
(
1−N(x)−sFrob | i∗xF ⊗ C

)−1

where ix is the inclusion of the closed point x and Frob is the geometric Frobenius, which
acts on i∗xF . Let L∗

X(F, 0) = lims→0 LX(F, s)s
− ords=0 LX(F,s) denote the special value at

s = 0. A particular case of this L-function is the following: let g : Spec(K)→ X be the
inclusion of the generic point; if M is a discrete Gal(Ksep/K)-module of finite type, then
g∗M is a Z-constructible sheaf on X and, if X is regular and proper, LX(g∗M, s) is the
Artin L-function of M ⊗ C, i.e.

LX(g∗M, s) = LK(M ⊗ C, s) :=
∏

v place of K

det
(
1−N(v)−sFrob | (M ⊗ C)Iv

)−1
.

By removing points from X we can also naturally consider partial Artin L-functions.
When X is regular, using the framework of Flach–B. Morin we define in Subsection II.3.1

a Weil-étale complex with compact support RΓW,c(X,F ) for certain Z-constructible sheaves,
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the big sheaves and the tiny sheaves (Definition II.3.1), that yields a long exact cohomology
sequence for “big-to-tiny” short exact sequences. Since n = 0, there is no de Rham complex,
so the fundamental line is

∆X(F ) := det
Z
RΓW,c(X,F ).

We prove a duality theorem for R-coefficients, Theorem II.4.4, relating compactly supported
cohomology with coefficients in a Z-constructible sheaf F to Ext groups from F to the
multiplicative group Gm, and generalizing B(X, 0) to a statement for all étale sheaves on
X. We deduce a trivialization of the fundamental line ∆X(F ) ⊗ R ≃ R. From this we
obtain for any big or tiny sheaf F a Weil-étale Euler characteristic χX(F ), multiplicative
with respect to short exact sequences of big or tiny sheaves. As any Z-constructible sheaf
F fits in a short exact sequence 0 → G → F → H → 0 with G big and H tiny, by
enforcing multiplicativity we get a Weil-étale Euler characteristic for any Z-constructible
sheaf, multiplicative with respect to short exact sequences. If X is not necessarily regular,
it has nonetheless a quasi-finite morphism f : X → Y to a regular integral arithmetic
scheme of dimension 1 and we can put χX(F ) := χY (f!F ), where f! denotes the proper
pushforward functor along f . We then show the special value formula (Theorem II.6.24)

L∗
X(F, 0) = ±χX(F ) (I.2.1)

by reducing to the analytic class number formula, which already had a Weil-étale interpre-
tation by [Mor14]. The main tool for the reduction is Artin induction, which states that
one essentially understands a rational representation of a finite group from the induced
representations of the trivial representation along all subgroups. The Weil-étale Euler
characteristic has an explicit expression in terms of étale cohomology with compact support
with coefficients in F and étale Ext groups from F to the multiplicative group Gm (or
Deninger’s complex GX in the singular case, see [Den87a]). The Weil-étale formalism
gives a way to package this already available information into one object with good
functoriality properties. Formula (I.2.1) generalizes to arithmetic schemes the similar
formula obtained by Geisser and Suzuki in [GS20] for smooth proper curves over finite
fields, and improves and generalizes also the work of Tran [Tra16]. If F is constructible,
(I.2.1) is a generalization of Tate’s formula for the Euler characteristic of a global field. If
M is a discrete Gal(Ksep/K)-module of finite type and X is proper, the theorem gives a
special value formula for the Artin L-function

L∗
K(M ⊗ C, 0) = ±χX(g∗M).

Another special case of the theorem is the following generalization to singular schemes of
the analytic class number formula: if X is affine one has

ζ∗X(0) = ±
[CH0(X)]RX

ω
,

where CH0(X) is the 0-th Chow group, RX is a regulator and ω is the number of roots
of unity in the function field of X. If X is a proper curve over a finite field with field of
constants Fq, one has

ζ∗X(0) = ±
[CH0(X)tor]RX

ω log(q)
.

The regulator RX has a similar definition in both cases but in the proper curve case it
is only controlled by the singularities; in particular it vanishes if the curve is regular. In
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characteristic 0 it is a modification of the classical regulator that takes into account the
singularities.

In Chapter III, we abstract away the formal part of the proof of Theorem II.6.24, and
simplify the argument used to handle constructible sheaves using a theorem of Swan. Let
A be an abelian category. An Euler characteristic χ on A is a map χ from the isomorphism
classes of A to an abelian group Γ, such that χ(B) = χ(A) + χ(C) for every short exact
sequence 0→ A→ B → C → 0. We show the two following results:

Theorem. Let χ be an Euler characteristic on the category of Z-constructible sheaves
on an arithmetic scheme X. If χ takes its values in a torsion-free abelian group then it
vanishes on constructible sheaves.

Theorem. Let χ, χ′ be two Euler characteristics on the category of Z-constructible sheaves
on an arithmetic scheme X, with values in a torsion-free abelian group. If χ(π∗Z) = χ′(π∗Z)
for π : Y → X any finite morphism of arithmetic schemes with Y normal and irreducible,
then χ = χ′.

The method is to generalize the dévissage process already used in Chapter II, together
with Artin induction and the aforementioned theorem of Swan.

I.2.2 Special value at s = 1

Chapter IV consists of the article [Mor22] and has its own more detailed introduction.
Denote by Zc

X Bloch’s cycle complex with cohomological indexing (see § IV.1.3.2); then
Zc
X ≃ Z(1)[2] when X is regular. We work in characteristic 0; thus X = Spec(O) is the

spectrum of an order in a number field K. Put

FD := RH omX(F,Zc
X);

we see it as a generalization, contravariant in F , of Z(1) (at least when X is regular, and
up to a shift). Moreover, Artin–Verdier duality tells us that we can rightfully consider FD

as the dual of F . When F is Z-constructible, we define the L-function of FD on X by

LX(F
D, s) :=

∏
x∈X0

det
(
1−N(x)−sFrob | (i∗xFD)⊗̂Qℓx

)−1
.

where ℓx is a prime number coprime to char(κ(x)) and for a complex of étale sheaves M ,
we put M⊗̂Qℓ :=

(
R limn(M ⊗L Z/ℓnZ)

)
⊗Q computed on the proétale site. For F = Z

and X regular we have LX(ZD, s) = ζX(s + 1). If F = i∗M , where i : x → X is the
inclusion of a closed point and M a finite type discrete Gal(k(x)sep/k(x))-module, we have
LX
(
(i∗M)D, s

)
= LX

(
i∗(M

∨), s
)

where the latter is the L-function of a Z-constructible
sheaf as defined above and (−)∨ := H om(−,Z). If X is regular, g : Spec(K)→ X denotes
the inclusion of the generic point and M is a finite type discrete Gal(Ksep/K)-module,
we have LX(g∗M, s) = LK(M ⊗Q, s+ 1), an Artin L-function. Thus the L-function we
introduce behaves generically like an Artin L-function in the variable s+ 1 but locally it
behaves more like a local factor in the variable s. This is coherent with the behaviour of
the construction (−)D: we have ZD = Z(1)[2] when X is regular, which must be related
to the special value at s = 1 of ζX , while for the inclusion of a closed point i : x→ X we
have (i∗Z)D = i∗(Z∨) = i∗Z, which must be related to the special value at 0 of ζx.

We first define and study cohomology with compact support with coefficients in FD by
correcting the étale cohomology of FD by Betti cohomology at the archimedean places. The
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combination of usual Artin–Verdier duality and duality for Tate cohomology of the Galois
group at archimedean places gives a “twisted” Artin–Verdier duality relating compactly
supported étale cohomology for FD with the étale cohomology for F . Again following
the framework of Flach–B. Morin we then define Weil-étale cohomology with compact
support with coefficients in FD for some Z-constructible sheaves, the red sheaves and the
blue sheaves (Definition IV.3.1). The results and methods are similar to Chapter II: in
particular, we obtain a long exact Weil-étale cohomology sequence for “red-to-blue” short
exact sequences. As n = 1, this time the fundamental line should have an additive part:
when F is tamely ramified (Definition IV.4.1), we define a complex LieX(F

D), the “tangent
complex of FD” which generalizes both the derived de Rham complex used in [FM18] for
n = 1 and in some cases the Lie algebra for the Néron model of a torus used in [GS20]; in
that case, if F is moreover red or blue the fundamental line is

∆X(F
D) = det

Z
RΓW,c(X,F

D)⊗ det
Z

LieX(F
D).

We prove a duality theorem for R-coefficients, relating Deligne compactly supported
cohomology of FD (meaning étale cohomology corrected at the archimedean places by
Deligne cohomology, see Definition IV.5.1) to étale cohomology of F and generalizing
B(X, 1). We thus obtain a trivialization ∆X(F

D)⊗ R ≃ R of the fundamental line. This
yields an Euler characteristic χX(FD) for F tamely ramified and red or blue, multiplicative
in red-to-blue short exact sequence. Any tamely ramified Z-constructible sheaf fits in a
short exact sequence between two red an blue tamely ramified sheaves, so by enforcing
multiplicativity we obtain an Euler characteristic for all tamely ramified Z-constructible
sheaves. It has an explicit expression in terms of powers of 2, 2π, “additive” quantites
derived from F including a square-root-of-discriminant type quantity, étale cohomology
groups with coefficients in F and Ext groups from F into the multiplicative group Gm;
the whole expression is reminiscent of the analytic class number formula. We can then
show the special value formula for tamely ramified Z-constructible sheaves:

L∗
X(F

D, 0) = ±χX(FD).

In particular, when M is a discrete Gal(Ksep/K)-module of finite type, the L-function
LX((g∗M)D, s) equals the Artin L-function L(M ⊗ C, s+ 1) and the theorem is

L∗(M ⊗ C, 1) = ±χX
(
(g∗M)D

)
.

When F = Z and X is regular, one recovers the analytic class number formula at s = 1,
as in [FM18]. By the results of Chapter III, this is essentially sufficient to prove the result.
This formula is also the analogue in the number field case of the work of Geisser–Suzuki
on special value formulas for tori over function fields at s = 1 [GS20]. If F is constructible
tamely ramified, both RΓW,c(X,F

D) and LieX(F
D) are perfect complexes with finite

cohomology groups, and the theorem says that their multiplicative Euler characteristic,
that is the alternating product of the order of their cohomology groups, are equal:

χ×(RΓW,c(X,FD)
)
= χ×(LieX(FD)

)
= [Fη]

[K:Q].

In Chapter V, we follow a remark made by T. Suzuki to define unconditionally the
additive part of the fundamental line. The observation of T. Suzuki is the following:
although the Lie algebra of the Néron model of a torus is not an exact functor, its
determinant still behaves multiplicatively with respect to short exact sequences of tori.
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Denote by g : Spec(K) → X the inclusion of the generic point. For F tamely ramified
and torsion-free, LieX(FD) coincides6 with the Lie algebra of the Néron model of the
torus with character group g∗F on Spec(K); thus in the general case we can define the
additive part of the fundamental line by taking a 2-step resolution of g∗F by torsion-
free discrete Gal(Ksep/K)-modules and taking the determinant of the corresponding
complex of Lie algebras for the Néron models of the associated tori. This defines a
graded Z-line that is multiplicative with respect to short exact sequences, has the correct
base-change to Q (namely the Lie algebra of the torus with character group g∗F ), and
which coincides7 with detZ LieX(F

D) in the tamely ramified case. Having an unconditional
construction of the fundamental line, we deduce an unconditional definition of the Weil-
étale Euler characteristic χX(FD) which allows us to extend the special value formula to
all Z-constructible sheaves:

L∗
X(F

D, 0) = ±χX(FD).

6up to a shift
7up to a shift
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Chapter II

Special values of L-functions on regular
arithmetic schemes of dimension 1

II.1 Introduction

II.1.1 Context

In [Lic09], Lichtenbaum conjectured the existence of a Weil-étale topology for arithmetic
schemes and that the Euler characteristic of the corresponding cohomology with compact
support, constructed via a determinant, should give special values of zeta functions at
s = 0. Lichtenbaum then gave a tentative definition of the cohomology groups in the
case of the spectrum Spec(OK) of the ring of integers in a number field and showed that
the conjecture holds if the cohomology groups vanish in degrees strictly greater than 3;
unfortunately, they were shown to be non-vanishing in [Fla08].

In [Mor14] and [FM18], Flach and B. Morin used a new approach by defining a
Weil-étale complex in the derived category of abelian groups, as the fiber of a morphism
constructed via Artin–Verdier duality; they also introduced some higher regulator pairings.
On the other hand, in [Tra16], Tran constructed a Weil-étale cohomology with compact
support for a certain class of Z-constructible sheaves on the spectrum U = Spec(OK,S) of
the ring of S-integers in a number field K and used it to prove a formula for the special
values at s = 0 of Artin L-functions associated to rational representations of the absolute
Galois group of K. Other relevant works include Chiu’s thesis [Chi11], Beshenov’s thesis
[Bes18] and Geisser and Suzuki’s recent paper [GS20].

II.1.2 Results

In this chapter, using the approach of Flach–B. Morin we both improve and generalize
all results of [Tra16] and treat also smooth curves over finite fields as in [GS20]: we
construct a Weil-étale complex for a larger class of Z-constructible sheaves, and deduce
an Euler characteristic defined for all Z-constructible sheaves and with good functoriality
properties. This enables us to prove a formula for the special value of the L-function of a
Z-constructible sheaf at s = 0. We deduce a special value formula for Artin L-functions
of rational representations of the Galois group of a global field K; as a special case, we
obtain a special value formula for the arithmetic zeta function of X, which generalizes to
the singular case the analytic class formula and its function field variant.

Let U be a 1-dimensional regular irreducible scheme of finite type over Z, with function
field K, and denote by S the set of missing places of U (including archimedean ones). We
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recall in Section II.2 the compactly supported cohomology RΓc(U,−) (resp. RΓ̂c(U,−)),
defined as in [Mil06] by correcting étale cohomology with Galois cohomology (resp. Tate
cohomology) at the places in S; we write H i

c(U,−) (resp. Ĥ i
c(U,−)) for the corresponding

cohomology groups. A Z-constructible sheaf F on U will be called big if Ext1U(F,Gm)
is finite and tiny if H1

c (U, F ) is finite; a morphism F → G is big-to-tiny if F and G
are big, F is big and G is tiny or both F and G are tiny. A short exact sequence
0→ F → G→ H → 0 will be called big-to-tiny if all morphisms are big-to-tiny. We prove
in Subsections II.3.3 and II.6.3:

Theorem II.A. For every big or tiny sheaf F on U , there exists a Weil-étale complex
with compact support RΓW,c(U, F ), well-defined up to unique isomorphism. It sits in a
distinguished triangle

RHom(RHomU(F,Gm),Q[−3])→ RΓc(U, F )→ RΓW,c(U, F )→ .

It is a perfect complex, functorial in big-to-tiny morphisms, and it yields a long exact coho-
mology sequence for big-to-tiny short exact sequences. If π : U ′ → U is the normalization
in a finite Galois extension of K and j : V ⊂ U is an open immersion, we have canonical
isomorphisms RΓW,c(U, π∗F ) ≃ RΓW,c(U

′, F ) and RΓW,c(U, j!F ) ≃ RΓW,c(V, F ).

This distinguished triangle was inspired by [Mor14]: for U proper and F = Z this
is exactly the distinguished triangle in B. Morin’s article. Unfortunately, the defects
of the derived 1-category prevented us from obtaining a well-defined complex for every
Z-constructible sheaf, and we only got a long exact cohomology sequence instead of a
distinguished triangle.

Next, following [FM18], we construct in Section II.4 a regulator pairing, for a complex
F in the left bounded derived category of étale sheaves D+(Uet), that generalizes the
logarithmic embedding of the Dirichlet S-units theorem. We show that this pairing is
perfect after base change to R:

Theorem II.B. Let F be a Z-constructible sheaf on U . There is a regulator pairing

RΓc(U, F )⊗RHomU(F,Gm)→ R[−1],

functorial in F . The induced map after base change to R

RHomU(F,Gm)R → RHom(RΓc(U, F ),R[−1])

is a natural isomorphism for F ∈ D+(Uet).

The method we use to prove the theorem was inspired by [Tra16]; it relies on dévissage
of Z-constructible sheaves via Artin induction at the generic point. This method was also
used in [GS20] to treat the case of curves over a finite field.

We show in Section II.5 that the perfectness of the regulator pairing gives a canonical
trivialization of the R-determinant of the Weil-étale complex

λ : det
R
(RΓW,c(U, F )⊗ R) ≃−→ R.

The Z-determinant detZ(RΓW,c(U, F )) is a lattice in the 1-dimensional R-vector space
detR(RΓW,c(U, F )⊗ R) and we define in Section II.6:
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Definition. • Let F be a big or tiny sheaf on U . The (Weil-étale) Euler characteristic
of F is the positive real number χU(F ) such that

λ(det
Z
(RΓW,c(U, F )) =

1

χU(F )
Z ↪→ R.

We denote by EU(F ) the secondary Euler characteristic

EU(F ) :=
∑
i

(−1)i · i · dimR(H
i
W,c(U, F )⊗ R),

where H i
W,c(U, F ) denotes hypercohomology of RΓW,c(U, F ).

• Let F be a Z-constructible sheaf on U . There exists a short exact sequence 0 →
F ′ → F → F ′′ → 0 with F ′ big and F ′′ tiny; define

χU(F ) := χU(F
′)χU(F

′′).

It does not depend on the chosen sequence. Proceed similarly to define EU(F ).

The point of this construction, and its main advantage over the construction of Tran,
is the good functoriality properties of the Euler characteristic which are inherited from
the functoriality properties of the Weil-étale complex:

Proposition (II.6.19, II.6.20, II.6.21). If 0→ F → G→ H → 0 is a short exact sequence
of Z-constructible sheaves on U , then

χU(G) = χU(F )χU(H).

Moreover, if π : U ′ → U is the normalization in a finite Galois extension of K (resp.
j : V → U is an open subscheme) and F is a Z-constructible sheaf on U ′ (resp. V ), we
have χU(π∗F ) = χU ′(F ) (resp. χU(j!F ) = χV (F )).

For a Z-constructible sheaf F on U , define the L-function associated to F by the usual
Euler product with local factors given by the action of the geometric1 Frobenius on Fv⊗C,
where Fv is the pullback of F at a closed point v ∈ U . Denote by n = ords=0LU(F, s) the
vanishing order of LU(F, s) at s = 0 and

L∗
U(F, 0) = lim

s→0
LU(F, s)s

−n

the special value of LU(F, s) at s = 0. Our main theorem then is:

Theorem II.C (Special value formula). Let F be a Z-constructible sheaf on a 1-dimensional
regular irreducible scheme U of finite type over Spec(Z). Then

ords=0LU(F, s) =
∑
i

(−1)i · i · dimR(H
i
W,c(U, F )⊗ R),

L∗
U(F, 0) = ±χU(F ).

1We explain the choice of the geometric Frobenius and its impact on our results in the remark after
Theorem II.6.24
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We prove the theorem in Section II.6. Again the proof is by dévissage, using the
functoriality properties of the Euler characteristic. This theorem shows in particular that
the Weil-étale Euler characteristic of a constructible sheaf is 1. Suppose that U is either
Spec(OK,S) or an open subcheme of the smooth proper curve with function field K, with
closed complement S. Then for x ∈ U0 we have (g∗M)x = M Ix , where Ix is an inertia
subgroup for the place x, and thus LU(g∗M, s) is the Artin L-function of the rational
GK-representation M ⊗Q, modulo the local factors at S.

Let X be a 1-dimensional irreducible scheme of finite type over Z, with function field
K. Theorem II.C immediately implies:

Corollary II.D. Let f : X → T denote either a quasi-finite morphism X → T := P1
Fp

(in
the function field case), which exists by the projective Noether normalization lemma, or the
quasi-finite structural morphism X → T := Spec(Z) (in the number field case); then f! is
well-defined. Let F be a Z-constructible sheaf on X. We have ords=0LX(F, s) = ET (f!F )
and

L∗
X(F, 0) = ±χT (f!F ).

The Weil-étale Euler characteristic is computed explictly and doesn’t depend on f ;
this is done through the use of Deninger’s complex GX from [Den87a], which identifies
with a shift of Bloch’s cycle complex Zc

X(0).
We deduce from this a special value formula for the arithmetic zeta function of X:

Corollary II.E. Suppose X is affine. We have ords=0ζX = rankZ(CH0(X, 1)) and

ζ∗X(0) = −
[CH0(X)]RX

ω
.

Corollary II.F. Suppose X is a proper curve, and denote by Fq the field of constants of
K. We have ords=0ζX = rankZ(CH0(X, 1))− 1 and

ζ∗X(0) = −
[CH0(X)tor]RX

ω log(q)
.

Here ω is the number of roots of unity in the field of functions, RX is a regulator and
CH0(X, i) denotes higher Chow groups. Those two corollaries give a generalization of the
classical special value formula of the zeta function of a global field at s = 0. The result
seems to be new; we note that a similar formula at s = 1 for X furthermore affine and
reduced was established by Jordan–Poonen in [JP20].

II.1.3 Review of the article of Tran and comparison with his
results

In [Tra16], Tran shows that there should be a generalization of Weil-étale cohomology to
Z-constructible sheaves on an open subscheme U of the spectrum of the ring of integers in
a number field K. Tran defines a Weil-étale complex for every Z-constructible sheaf F on
U :

RΓW (U, F ) = τ≤1RΓ̂c(U, F )⊕ τ≥2RHom(RHomU(F,Gm),Z[−2]).

For a place v of K, let Kv denote the completion of K at v if v is archimedean and the
henselization at v otherwise, and denote by Fηv the pullback of F to Spec(Kv). Via the
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canonical map RΓW (U, F )→ RΓ̂c(U, F )→
∏

v∈S RΓ̂(Kv, Fηv), Tran then constructs the
complex

DF = Cone
(
RΓW (U, F )→

∏
v∈S

RΓ̂(Kv, Fηv)
)
[−1].

Tran defines the concept of strongly Z-constructible sheaf as a Z-constructible sheaf
for which H0

c (U, F ), H1(U, F ) and Ext1U(F,Gm) are finite and the pairing < ·, · >F :∏
v∈S H

0(Kv, Fηv)/H
0(U, F )× HomU(F,Gm)→ R is perfect modulo torsion. Everything

is then done under the hypothesis that the considered sheaf is strongly Z-constructible.
For such a sheaf F , Tran shows that there is an isomorphism Θ(F ) : H1(DF )⊗ R→

H2(DF )⊗ R and defines

χTran,U(F ) =
5∏
i=0

[H i(DF )tor]| det(Θ(F ))|
∏
v real

h(Kv, Fηv)
3,

where | det(Θ(F ))| is computed in bases modulo torsion of H1(DF ) and H2(DF ), and for
an archimedean place v the Herbrand quotient of the Gal(C/Kv)-module Fηv is denoted
by h(Kv, Fηv). Tran then gives an explicit formula ([Tra16, Theorem 4.5]) and this Euler
characteristic is proven to be multiplicative for short exact sequences 0→ F → G→ H → 0
if either K is totally imaginary or H1(U,G) = 0 and H1(Kv, Gηv) = 0 for all v ∈ S ([Tra16,
Prop. 4.17, 4.18]). After some explicit computations of the Euler characteristic, Tran’s
main result is

Theorem ([Tra16, Prop. 3.11, Theorem 5.4]). Let M be a torsion-free discrete GK-module
of finite type and g : Spec(K) → U the inclusion of the generic point. Then g∗M is
strongly Z-constructible, ords=0LS(M, s) = rankZHomU(F,Gm) and

L∗
S(M, 0) = ±χTran,U(g∗M).

This is shown using Artin induction on the generic point to reduce to the case of zeta
functions. The idea of using Artin induction is crucial in this and also in our work, and to
our knowledge Tran was the first to use it. Finally, such a GK-module M is the character
group of a torus T over K, and using the functional equation of Artin L-functions tran
gives formulas for both the special value at s = 0 and s = 1 of LS(M ⊗Q, s) in terms of
invariants of T 2

Let us now describe our improvements:

• The class of strongly Z-constructible sheaves is a proper subset of the class of big
sheaves. Sheaves of the form f∗Z, where f : X → U is finite and X is singular,
irreducible and not unibranch, are big but never strongly Z-constructible: in this
case, H1(U, f∗Z) is infinite and Tran’s pairing < ·, · >f∗Z is not perfect modulo
torsion.

• We are able to handle sheaves of the form i∗M where i : v → U is the inclusion of a
closed point and M is a finite type, not necessarily finite, discrete Gal(κ(v)sep/κ(v))-
module, as those are tiny.

• Our Weil-étale complex with compact support gives a long exact cohomology se-
quence for big-to-tiny short exact sequences. Tran proves that there is a long exact
cohomology sequence for his Weil-étale complex only for short exact sequences of
big sheaves.

2Since M ⊗Q is a rational representation, it is self-dual so the functional equation relates LK(M ⊗Q, s)
with LK(M ⊗Q, 1− s).
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• The pairing < ·, · >F of Tran is corrected and generalized to our regulator pairing, and
we show in theorem II.B that the latter is always perfect and defined unconditionally
on the left bounded derived category. This is what enables us to do away with some
of the restrictions imposed to strongly Z-constructible sheaves and to generalize to
big sheaves.

• Our Weil-étale complex with compact support is a perfect complex cohomologically
concentrated in degree [0, 2d + 1] (where d = 1 is the dimension) and its tensor
product with R has the correct secondary Euler characteristic: it gives the order of
vanishing at s = 0 of the L-function. Those properties are in adequation with the
conjectural framework of Flach–B. Morin.3 On the other hand, the complex of Tran
is unbounded; in particular, Tran’s complex is not quasi-isomorphic to our Weil-étale
complex.

• Our Euler characteristic is given on the nose by the Weil-étale complex with compact
support and fits in the conjectural framework of Flach–B. Morin, as the covolume
of the determinant of Weil-étale cohomology inside its tensor product with R, via
the trivialization induced by the regulator pairing. There is no need for correcting
factors.

• We obtain a multiplicative Euler characteristic defined for all Z-constructible sheaves.
This enables us to have a general special value formula. Tran proves the multi-
plicativity only under some restrictions and thus only has a special value formula
for L-functions of integral GK-representations. In this situation our characteristics
obviously coincide since they both give the special value.

• Our results were initially in characteristic zero only, but the generalization to
characteristic p was straightforward once the formalism was in place. However,
all of our results in characteristic p have already been shown in [GS20], although
the formalism there is slightly different; in particular, their trivialization of the
determinant of the Weil-étale complex tensored with R is done with respect to the
base field Fq and comes from the generator e ∈ H1

W (Fq,Z) = Hom(WFq ,Z) = Z
corresponding to the Frobenius. This explains the presence of a factor log(q) in
their formulas. Our trivialization is done via the regulator pairing, so the factor
log(q) is integrated in the regulator part of the Euler characteristic. See the second
remark after Definition II.6.1. We note that the framework of Geisser and Suzuki
only works in characteristic p, while our framework works in both zero and non-zero
characteristic.

In summary, our Euler characteristic is defined as the determinant of the full Weil-étale
complex, with no correction factor involved. It follows that our method works in complete
generality.

II.2 Étale cohomology with compact support
We will be working with the derived ∞-category of abelian groups D(Z); this is a stable
∞-category whose homotopy category is the ordinary derived category D(Z).4 Moreover,
the projective model structure on unbounded chain complexes of abelian groups is a
symmetric monoidal model structure, hence by [Lur17, 4.1.7.6] the underlying ∞-category

3For an explanation of the presence of this secondary characteristic using Deninger’s conjectural
cohomology H∗

dyn,c(−), see [FM20, Proposition 4.7]
4For the theory of derived and stable ∞-categories, see [Lur17, chap. 1]
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D(Z) is closed symmetric monoidal (see also [NS18, A.7]), with inner hom RHom(−,−)
and tensor product −⊗L−, computed as usual. If C is an∞-category, then the∞-category
of functors Fun(C,D(Z)) is again a stable ∞-category. We denote by fib, cofib and [1] the
fiber, cofiber and shift functors.

Let U be a regular irreducible scheme of finite type over Z and of dimension 1. We
denote by K its function field. It is a global field; either K is a number field and
U = Spec(OK,S) is the spectrum of the ring of S-integers for S a finite set of places of K
including the set S∞ of all archimedean places, or K is a function field of characteristic
p > 0 and U is an open subscheme of the unique connected smooth proper curve C with
function field K, in which case we denote by S the set of missing points5. If S ̸= ∅ then U
is affine [Goo69].

We recall the Milne étale cohomology with compact support from [Mil06]. For each
place v of K, let Kv be the completion of K at v if v is archimedean and the field of
fraction of the henselization Ohv otherwise. We will denote pullback to ηv := Spec(Kv) (via
the composite ηv → Spec(K)→ U) by (−)ηv . Let RΓ(Kv,−) denote the étale cohomology
on Spec(Kv). We have a natural morphism

RΓ(U,−)→ RΓ(Kv, (−)ηv).

Now let RΓ̂(Kv,−) denote the Tate group cohomology of Gal(Ksep
v /Kv) when v is

archimedean, and ordinary cohomology of profinite groups otherwise. We have a natural
morphism

RΓ(Kv,−)→ RΓ̂(Kv,−)
for any place v. We then define

• The (ordinary) étale complex with compact support

RΓc(U,−) := fib(RΓ(U,−)→
∏
v∈S

RΓ(Kv, (−)ηv)).

• The (Tate) étale complex with compact support

RΓ̂c(U,−) := fib(RΓ(U,−)→
∏
v∈S

RΓ̂(Kv, (−)ηv)).

where we take the fiber in the ∞-category Fun(Sh(Uet),D(Z)) of functors from the
category of abelian sheaves on Uet to the derived ∞-category of abelian groups D(Z). The
corresponding cohomology groups are denoted by H i

c(U,−) and Ĥ i
c(U,−).

Remark.

• Only the Tate étale complex with compact support is introduced in [Mil06] but we
will use both crucially.

• If j : U → C is an open subscheme of the proper curve C, RΓc(U,−) is the
usual cohomology with compact support RΓ(C, j!(−)) (see Proposition II.2.1.d) and
RΓc(U,−) = RΓ̂c(U,−).

The various functoriality properties of the étale complex with compact support are
investigated in [Mil06]. Let us recall them (for instance for the ordinary complex with
compact support) :

5see [JP20, 3.1]
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Proposition II.2.1 ([Mil06, II.2.3]).

a. For any sheaf F on U , there is a long exact sequence

· · · → H i
c(U, F )→ H i(U, F )→

∏
v∈S

H i(Kv, Fηv)→ H i+1
c (U, F )→ · · · (II.2.1)

b. A short exact sequence 0→ F → G→ H on U gives a fiber sequence

RΓc(U, F )→ RΓc(U,G)→ RΓc(U,H).

c. For any closed immersion i : Z ↪→ U and sheaf F on Z, we have a natural isomor-
phism

RΓc(U, i∗(−)) ≃ RΓ(Z,−).

d. For any open immersion j : V → U , we have a natural isomorphism

RΓc(U, j!(−)) ≃ RΓc(V,−).

Thus for any sheaf F on U , there is a fiber sequence

RΓc(V, F|V )→ RΓc(U, F )→
⊕
v∈U\V

RΓ(v, i∗vF ),

where iv : v → U is the inclusion of a closed point.

e. For any finite map π : U ′ → U with U ′ regular irreducible, we have a natural
isomorphism

RΓc(U, π∗(−)) ≃ RΓc(U
′,−).

Proof. See [Mil06]. We have to say something about b. ; it follows from the following
lemma.

Lemma II.2.2 (3 × 3 Lemma). Let C be a stable ∞-category and let A → B → C,
A′′ → B′′ → C ′′ be two fiber sequences in C. Consider a commutative diagram

A B C

A′′ B′′ C ′′

Let A′, B′, C ′ denote the respective fibers of A→ A′′, etc. Then there is a commutative
diagram

A′ B′ C ′

A B C

A′′ B′′ C ′′

and A′ → B′ → C ′ is a fiber sequence.

Proof. By [Lur17, 1.1.1.8], the fiber functor fib preserves all limits, hence preserves fiber
sequences.
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Recall that a Z-constructible sheaf on U is an abelian sheaf F on Uet such that U
can we written as the union of locally closed subschemes Zi, with F|Zi

locally constant
associated to an abelian group of finite type. Equivalently, because U is of dimension 1,
this means that there is an open subscheme V ⊂ U with closed complement Z, such that
F|V is locally constant associated to an abelian group of finite type, and on the other hand
for every closed point v ∈ Z, the pullback Fv is a discrete Gv := Gal(κ(v)sep/κ(v))-module
of finite type, where κ(v) is the residue field at v.

II.2.0.1 Dévissage for Z-constructible sheaves Let us discuss the dévissage argu-
ment we will often use ; this methodology comes from [Tra16] and was used in [GS20].
Let F be a Z-constructible sheaf. There is a short exact sequence

0→ Ftor → F → F/Ftor → 0

where Ftor is torsion hence constructible, and F/Ftor is torsion free. We will often be able
to handle constructible sheaves ; let us thus suppose that F is torsion-free. By Artin
induction ([Swa60, 4.1,4.4]), there exists for the pullback Fη to the generic point a short
exact sequence of the form

0→ (Fη)
n ⊕

⊕
ind

GLi
GK

Z→
⊕

ind
GL′

j

GK
Z→ N → 0

where n is an integer, N is a finite GK-module and Li, L′
j are a finite number of finite

Galois extensions of K. By spreading out, there exists a dense open subscheme V ⊂ U ,
finite normalization morphims of V in the above finite Galois extensions of K of the form
πi : Wi → V , π′

j : W
′
j → V and a constructible sheaf G on V such that there is a short

exact sequence
0→ (F|V )

n ⊕
⊕

(πi)∗Z→
⊕

(π′
j)∗Z→ G→ 0.

Finally, for Z the closed complement of V , there is a short exact sequence

0→ j!(F|V )→ F → i∗i
∗F → 0

where j : V ↪→ U is the open inclusion) and i∗i∗F =
⊕

v∈Z(iv)∗i
∗
vF (with i : Z ↪→ U resp.

iv : v ↪→ U the closed inclusion). We can again use Artin induction on each point of Z.
With this dévissage, general arguments about Z-constructible sheaves that are functorial

with respect to the operations j!, i∗, π∗ mentioned above reduce to statements about
constructible sheaves and the constant sheaf Z, on U and on a closed point. Once we have
handled the case of a point, the short exact sequence 0→ j!Z→ Z→ i∗Z→ 0 will enable
us to further suppose that U is either affine or proper, depending on which situation we
prefer.

II.2.0.2 The comparison complex Let v be an archimedean place of K. The
complex RΓ(Kv,−) is represented by the complex of homogeneous cochains C∗(Kv,−),
obtained by taking Hom from the standard free resolution of Z into a given module.
Moreover, the complex RΓ̂(Kv,−) is represented by the complex Ĉ∗(Kv,−) obtained
by taking Hom from the complete standard resolution of Z. There is a natural arrow
C∗(Kv,−)→ Ĉ∗(Kv,−). Let us introduce the “homology complex” C∗(Kv,−), a complex
in negative degree obtained by tensoring a module with the standard free resolution
of Z. The norm map N : M → M for any discrete GKv -module M induces an arrow
C∗(Kv,−)→ C∗(Kv,−), and the sequence

C∗(Kv,−)→ C∗(Kv,−)→ Ĉ∗(Kv,−)
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is a fiber sequence. Let us introduce a “comparison complex”

T := fib

( ∏
v∈S∞

RΓ(Kv, (−)ηv)→
∏
v∈S∞

RΓ̂(Kv, (−)ηv)

)
=
∏
v∈S∞

C∗(Kv, (−)ηv).

Thus T computes homology at the archimedean places.
Applying the 3 × 3 lemma (Lemma II.2.2), we find a commutative diagram of fiber

sequences

fib(RΓc(U,−)→ RΓ̂c(U,−)) 0 T

RΓc(U,−) RΓ(U,−)
∏
v∈S

RΓ(Kv, (−)ηv)

RΓ̂c(U,−) RΓ(U,−)
∏
v∈S

RΓ̂(Kv, (−)ηv)

=

We deduce an isomorphism fib
(
RΓc(U,−)→ RΓ̂c(U,−)

)
= T [−1], that is

cofib
(
RΓc(U,−)→ RΓ̂c(U,−)

)
= T.

We have

H i(T (F )) =


∏

v∈S∞
Ĥ i−1(Kv, Fηv), i < 0,∏

v∈S∞
H0(Kv, Fηv), i = 0,
0, i > 0.

(II.2.2)

Proposition II.2.3. Let F be a Z-constructible sheaf on U . Then H i
c(U, F ) = Ĥ i

c(U, F )
for i ≥ 2 and H1

c (U, F )→ Ĥ1
c (U, F ) is surjective.

Proof. The long exact sequence of cohomology associated to the fiber sequenceRΓc(U, F )→
RΓ̂c(U, F )→ T (F ) gives the claim.

Proposition II.2.4. Let F be a Z-constructible sheaf on U . Then H i
c(U, F ) and Ĥ i

c(U, F )
are of finite type for i = 0, 1.

Proof. The cofiber T (F ) ofRΓc(U, F )→ RΓ̂c(U, F ) computes homology at the archimedean
places, thus its cohomology groups are finite type. We reduce to showing the statement
only for Ĥ i

c(U, F ). By the dévissage argument (§ II.2.0.1) and the functoriality properties
from Proposition II.2.1, we have to treat three cases: the constructible case, the case of
the constant sheaf Z, and the case of Galois cohomology of a discrete Gv-module of finite
type for v a closed point.

• The first is part of the statement of Artin–Verdier duality (see Theorem II.3.2),

• The second is a computation using the long exact sequence Equation (II.2.1): we
have H0(U,Z) = Z and H1(U,Z) = Homcont(π

SGA3
1 (U),Z) = 0 because U is normal

and noetherian hence the étale fundamental group πSGA31 (U) = πSGA11 (U) is profinite.
Then Equation (II.2.1) gives an exact sequence

0→ Ĥ0
c (U,Z)→ Z→

⊕
v∈S\S∞

Z⊕
⊕
v real

Z/2Z→ Ĥ1
c (U,Z)→ 0.
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• Let G be a profinite group and M a discrete G-module of finite type (as an abelian
group). It is clear that H0(G,M) = MG is also of finite type. There exists an
open subgroup H such that H acts trivially on G ; then the inflation-restriction
exact sequence reduces us to verifying that H1(G,M) is of finite type for M a
discrete G-module of finite type with trivial action. Here we have G = Gv = Ẑ ;
but H1(Ẑ,Z) = Homcont(Ẑ,Z) = 0 and H1(Ẑ,Z/nZ) = Homcont(Ẑ,Z/nZ) ≃ Z/nZ
so we are done.

II.3 The Weil-étale complex with compact support

II.3.1 Construction of the Weil-étale complex with compact sup-
port

Definition II.3.1. Let F be a Z-constructible sheaf on U . We say that

• F is a big sheaf if Ext1U(F,Gm) is torsion (hence finite) 6

• F is a tiny sheaf if H1
c (U, F ) is torsion (hence finite)

• A big-to-tiny morphism is a morphism of sheaves F → G where either F and G are
both big, or both tiny, or F is big and G is tiny ; a big-to-tiny short exact sequence
is a short exact sequence with big-to-tiny morphisms.

Remark.

• A constructible sheaf is both big and tiny (see Theorem II.3.2)

• A constant sheaf defined by a finite type abelian group is big, except when U = C is a
proper curve. Indeed, this reduces to the case of Z, and Ext1U (Z,Gm) = H1(U,Gm) =
Pic(U) is finite when U is affine7

• Let F be a locally constant sheaf defined by a finite type abelian group. Let
π : V → U be a finite Galois cover with group G trivializing F ; the low degree exact
sequence of the spectral sequence

Hp(G,ExtqV (F|V ,Gm))⇒ Extp+qU (F,Gm)

shows from the constant case that F is big, except when U = C.

• A Z-constructible sheaf supported on a finite closed subscheme is tiny ; indeed, if
i : v ↪→ U is the inclusion of a closed point, we have that H1

c (U, i∗M) = H1(Gv,M)
is finite by the argument given in the proof of Proposition II.2.4.

• On U = C, a locally constant sheaf defined by a finite type abelian group is tiny. This
reduces to the case of Z, and we have H1

c (C,Z) = H1(C,Z) = Homcont(π1(U),Z) = 0.

• By Theorem II.4.4, Ext1U (F,Gm) is finite if and only ifH0
c (U, F ) is finite, and similarly

H1
c (U, F ) is finite if and only if HomU(F,Gm) is finite.

6As noted in the introduction, those are a generalization of the strongly Z-constructible sheaves of
[Tra16] in the number field case

7This is well-known : see for instance [Mor89, 2.3]
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Let F be a big or tiny sheaf. We construct in this section a complex RΓW,c(U, F ) in
the derived category of the integers D(Z), exact and functorial in big-to-tiny morphisms.
We encountered some difficulty and failed to define it for all Z-constructible sheaves, but
this will be sufficient to obtain a well-defined Euler characteristic. Following the approach
of [Mor14] and [FM18], the complex fits in a distinguished triangle

RHom(RHomU(F,Gm),Q[−3])→ RΓc(U, F )→ RΓW,c(U, F )→

where the map RHom(RHomU(F,Gm),Q[−3]) → RΓc(U, F ) is lifted from the canoni-
cal map RHom(RHomU (F,Gm),Q[−3])→ RHom(RHomU (F,Gm),Q/Z[−3]) via Artin–
Verdier duality.

Remark. The point is to use the short exact sequence 0 → Z → Q → Q/Z → 0 to
replace the factors Q/Z appearing in the cohomology groups of RΓc(U, F ) by factors Z:
Artin–Verdier duality (which we’ll state below) says exactly that the factors Q/Z are of
the form HomAb(A,Q/Z) for A going through the factors Z of the cohomology groups of
RHomU(F,Gm). Thus the kernel and cokernel of a well-constructed map

HomAb(Ext
3−i
U (F,Gm),Q)→ HomAb(Ext

3−i
U (F,Gm),Q/Z)→ H i

c(U, F )

should give finite type abelian groups. Our construction will be a derived version of this
observation.

Put

D := RHom(RHomU(−,Gm),Q[−3]),
E := RHom(RHomU(−,Gm),Q/Z[−3]).

Artin–Verdier duality gives a pairing RΓ̂c(U,−) ⊗ RHomU(−,Gm) → Q/Z[−3] that
induces an “Artin–Verdier” arrow

RΓ̂c(U,−)→ E.

We haveH i(D) = Ext3−iU (−,Gm)
† andH i(E) = Ext3−iU (−,Gm)

D, where (−)† := Hom(−,Q)
and (−)D := Hom(−,Q/Z). The cohomology groups of the Artin–Verdier arrow are de-
scribed as following:

Theorem II.3.2 (Artin–Verdier duality, [Mil06, II.3.1]). Let F be a Z-constructible sheaf
on U . The groups ExtiU(F,Gm) and Ĥ i

c(U, F ) are finite for i < 0, i > 4, of finite type for
i = 0, 1 and torsion of cofinite type for i = 2, 3. Moreover Ĥ i

c(U, F ) = 0 for i ≥ 4. The
Artin–Verdier arrow induces an isomorphism for i = 0, 1

Ĥ i
c(U, F )

∧ ≃−→ Ext3−iU (F,Gm)
D

were (−)∧ is the profinite completion with respect to subgroups of finite index, and for
i ̸= 0, 1 an isomorphism

Ĥ i
c(U, F )

≃−→ Ext3−iU (F,Gm)
D.

If F is constructible, all groups are finite and the Artin–Verdier arrow is an isomorphism.

We recall that an abelian group is torsion of cofinite type if it is of the form (Q/Z)n⊕A
where A is finite and n an integer.

The theorem implies in particular that D is cohomologically concentrated in degree 2
and 3.
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Remark. In [Mil06], the theorem is expressed in its dual form ; we obtain the one above by
applying (−)∗ := Homcont(−,R/Z), which coincides with Homcont(−,Q/Z) for profinite
groups (where Q/Z has the discrete topology) and with (−)D for discrete torsion groups.
We use furthermore that for M discrete of finite type, (M∧)∗ =M∗ and the Pontryagin
duality M =M∗∗ for any abelian locally compact M .

The fact that Ĥ4
c (U, F ) = 0 does not appear in [Mil06] but is easily deduced by the

dévissage arguement (§ II.2.0.1) from the functoriality properties of Ĥ i
c(U,−), the case of

Z, which is [Mil06, II.2.11(d)], the case of constructible sheaves, which is [Mil06, II.3.12(a)],
and the case of Galois cohomology of Ẑ, which follows from the strict cohomological
dimension of Ẑ being 2 (see for instance [Ser68, XIII.1]).

We want to construct an arrow βF in D(Z) making the following diagram commute

DF RΓc(U, F ) RΓ̂c(U, F )

EF

βF

π Artin–Verdier

Let us analyze HomD(Z)(DF , RΓc(U,G)) for F big or G tiny. There is a spectral sequence
for HomD(Z)(K,L) ([Ver96, III.4.6.10]) of the form

Ep,q
2 =

∏
i∈Z

Extp(H i(K), H i+q(L))⇒ Hp+q(RHom(K,L)) = Hom(K,L[p+ q]) = Ep+q

For abelian groups, we have ExtiZ = 0 for i ̸= 0, 1 so the sequence degenerates and gives a
short exact sequence

0→
∏
i

Ext1(H i(K), H i−1(L))→ HomD(Z)(K,L)→
∏
i

Hom(H i(K), H i(L))→ 0.

(II.3.1)
In our case, this gives

0→ Ext1(Ext1U(F,Gm)
†, H1

c (U,G))× Ext1(HomU(F,Gm)
†, H2

c (U,G))

→ HomD(Z)(DF , RΓc(U,G))→
∏
i

Hom(H i(DF ), H
i(RΓc(U,G)))→ 0

where (−)† := Hom(−,Q). SinceH2
c (U,−) is torsion of cofinite type and either Ext1U (F,Gm)

or H1
c (U,G) are finite, the two terms in the product on the left vanish and we have an

isomorphism

HomD(Z)(DF , RΓc(U,G))
≃−→ Hom(H2(DF ), H

2
c (U,G))× Hom(H3(DF ), H

3
c (U,G))

because DF is cohomologically concentrated in degree 2 and 3. The Artin–Verdier arrow
is an isomorphism in degree 2 and 3, and Ĥ i

c(U, F ) = H i
c(U, F ) for i ≥ 2, so the arrow βF

exists and is unique: it is given by the composition

Ext3−iU (F,Gm)
† → Ext3−iU (F,Gm)

D ≃←− Ĥ i
c(U, F )

≃←− H i
c(U, F )

for i = 2, 3. Moreover a big-to-tiny morphism f : F → G gives rise to a commutative
square

DF RΓc(U, F )

DG RΓc(U,G)

f∗

βF

f∗

βG
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Indeed by the above isomorphism it suffices to check commutativity on cohomology groups
in degree 2 and 3.

Definition II.3.3. Let F be a big or tiny sheaf on U . We define

RΓW,c(U, F ) := Cone(βF ),

the Weil-étale cohomology with compact support with coefficients in F .

II.3.2 Computing the Weil-étale cohomology with compact sup-
port

Definition II.3.4. Let F be a big or tiny sheaf on U . We denote by H i
W,c(U, F ) :=

H i(RΓW,c(U, F )) the Weil-étale cohomology groups with compact support.

The complex DF is cohomologically concentrated in degree 2 and 3, so the long
exact cohomology sequence gives H i

W,c(U, F ) = H i
c(U, F ) for i ≤ 0, i ≥ 4. In particular

H i
W,c(U, F ) = 0 for i /∈ [0, 3]. The remaining long exact sequence reads

0 H1
c (U, F ) H1

W,c(U, F )

Ext1(F,Gm)
† H2

c (U, F ) H2
W,c(U, F )

Hom(F,Gm)
† H3

c (U, F ) H3
W,c(U, F ) 0.

nat

nat

From the construction, we see that the natural arrows Ext3−iU (F,Gm)
† → H i

c(U, F ) ≃
Ĥ i
c(U, F ) ≃ Ext3−iU (F,Gm)

D for i = 2, 3 identify with the post-composition with the
projection Q→ Q/Z. We thus get short exact sequences and an isomorphism

0→ H1
c (U, F )→ H1

W,c(U, F )→ Hom(Ext1U(F,Gm),Z)→ 0,

0→ (Ext1U(F,Gm)tor)
D → H2

W,c(U, F )→ Hom(HomU(F,Gm),Z)→ 0,

H3
W,c(U, F ) ≃ (HomU(F,Gm)tor)

D.

In particular, all cohomology groups are of finite type, hence RΓW,c(U, F ) is a perfect
complex.

II.3.3 Functoriality of the Weil-étale complex

Theorem II.3.5. Let F be either a big or tiny sheaf on U . The complex RΓW,c(U, F ) is
well-defined up to unique isomorphism, is functorial in big-to-tiny morphisms, and gives a
long exact cohomology sequence for big-to-tiny short exact sequences.

Proof. Let us fix a choice of a cone of βF for every big or tiny sheaf F . Let f : F → G be
a big-to-tiny morphism. We consider the beginning of a morphism distinguished triangle

DF RΓc(U, F ) RΓW,c(U, F ) DF [1]

DG RΓc(U,G) RΓW,c(U,G) DG[1]

βF

f∗ f∗ f∗

βG

43



The groups H i(DF ) are Q-vector spaces and zero for i ̸= 2, 3 and the Weil-étale cohomology
groups with compact support are of finite type and zero for i ̸= 0, 1, 2, 3. The exact sequence
Equation (II.3.1) for HomD(Z) gives

0→
∏
i

Ext1(H i(DF ), H
i
W,c(U, F ))→ HomD(Z)(DF [1], RΓW,c(U, F ))

→
∏
i

Hom(H i+1(DF ), H
i
W,c(U, F ))→ 0,

0→
∏
i

Ext1(H i
W,c(U, F ), H

i−1
W,c(U,G))→ HomD(Z)(RΓW,c(U, F ), RΓW,c(U,G))

→
∏
i

Hom(H i
W,c(U, F ), H

i
W,c(U,G))→ 0,

so that the abelian group HomD(Z)(DF [1], RΓW,c(U,G)) is uniquely divisible and the
abelian group HomD(Z)(RΓW,c(U, F ), RΓW,c(U,G)) is of finite type. In the long exact
sequence obtained by applying HomD(Z)(−, RΓW,c(U,G)) to the upper triangle, the image
of HomD(Z)(DF [1], RΓW,c(U,G)) in HomD(Z)(RΓW,c(U, F ), RΓW,c(U,G)) must be uniquely
divisible and of finite type, hence is trivial and we get an injection

0→ HomD(Z)(RΓW,c(U, F ), RΓW,c(U,G))→ HomD(Z)(RΓc(U, F ), RΓW,c(U,G))

Therefore a morphism completing the morphism of triangles, which exists by axiom, is
uniquely determined by the requirement that it makes the square

RΓc(U, F ) RΓW,c(U, F )

RΓc(U,G) RΓW,c(U,G)

f∗

commute. Thus there is a unique morphism f∗ : RΓW,c(U, F )→ RΓW,c(U,G) completing
the diagram of distinguished triangles above, which gives at the same time the uniqueness
and desired functoriality of RΓW,c(U,−) (for the uniqueness, consider the case of two
different choices of cone of βF and id : F → F ).

Let us show the exactness. Let 0 → F → G → H → 0 be a big-to-tiny short exact
sequence. We obtain a commutative diagram, where the two left columns and all rows are
distinguished triangles.

DF RΓc(U, F ) RΓW,c(U, F ) DF [1]

DG RΓc(U,G) RΓW,c(U,G) DG[1]

DH RΓc(U,H) RΓW,c(U,H) DH [1]

DF [1] RΓc(U, F )[1] RΓW,c(U, F )[1] DF [2]

βF

∃!

βG

∃!

βH

∃!
βF [1]

(II.3.2)
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Actually we still have to construct the expected arrow RΓW,c(U,H)→ RΓW,c(U, F )[1].
We reason as before: the exact sequence Equation (II.3.1) gives

0→Ext1(Ext1U(H,Gm)
†, H2

c (U, F ))× Ext1(HomU(H,Gm)
†, H3

c (U, F ))

→ HomD(Z)(DH , RΓc(U, F )[1])→
∏
i

Hom(H i(DH), H
i+1
c (U, F ))→ 0.

Since H i
c(U, F ) = Ĥ i

c(U, F ) is torsion of cofinite type for i ≥ 2 and zero for i ≥ 4, we
readily see that the left term is 0, hence a canonical isomorphism

HomD(Z)(DH , RΓc(U, F )[1])
≃−→
H2

Hom(H2(DH), H
3
c (U, F )).

Thus in diagram Equation (II.3.2), we can check that the bottom left square commutes on
cohomology groups in degree 2 ; but then the corresponding square is

Ext1U(H,Gm)
† H2

c (U,H) = Ext1U(H,Gm)
D

HomU(F,Gm)
† H3

c (U, F ) = HomU(H,Gm)
D

which clearly commutes. Now the existence and uniqueness of the wanted arrow folllows
by the same methods as for the others.

Let us now take the cohomology groups in the third column; this gives a long sequence

· · · → H i
W,c(U, F )→ H i

W,c(U,G)→ H i
W,c(U,H)→ H i+1

W,c(U, F )→ · · ·

and we have to check that it is exact. We will use results from [Stacks, Tag 0BKH]
regarding derived completions. We have DF ⊗L Z/nZ = 0. This gives an isomorphism

RΓc(U, F )⊗L Z/nZ ≃ RΓW,c(U, F )⊗L Z/nZ

hence by taking derived limits ([Stacks, Tag 0922]) an isomorphism

RΓc(U, F )
∧
p ≃ RΓW,c(U, F )

∧
p ≃ RΓW,c(U, F )⊗ Zp

between the derived p-completions ; the last isomorphism holds because RΓW,c(U, F ) is a
perfect complex and Zp is flat ([Stacks, Tag 0EEV]). Derived p-completion is an exact
functor ([Stacks, Tag 091V]) so the functor RΓc(U,−)∧p is exact. Now we can just check
that our long sequence is exact after tensoring with Zp for each prime p, which follows
from the exactness of RΓW,c(U,−)⊗ Zp.

II.4 The regulator pairing

II.4.1 Construction

We denote by ⊗ the derived tensor product in D(Z) and AR := A ⊗ R for any abelian
group or complex of abelian groups.

Taking inspiration from [FM18, 2.2], we define in this section a pairing on the left
bounded derived ∞-category D+(Uet) of étale sheaves on U

RΓc(U,−)⊗RHomU(−,Gm)→ R[−1]
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with values in the derived ∞-category D(Z), and we show that it is perfect after base
change to R. The pairing is functorial, meaning that the induced morphism

RHomU(−,Gm)→ RHom(RΓc(U,−),R[−1])

is a natural transformation. When U is a curve over Fq, we will be able to define the
pairing with value in Q[−1]8, and its base change to Q will be perfect.

The derived ∞-category D(Uet) is naturally enriched in the symmetric monoidal ∞-
category D(Z) via the complexes RHomU(−,−) ; hence for F,G ∈ D(Uet) we have the
Ext pairings9

RΓ(U, F )⊗RHomU(F,G)→ RΓ(U,G),∏
v∈S

RΓ(Kv, Fηv)⊗RHomU(F,G)→
∏
v∈S

RΓ(Kv, Fηv)⊗
∏
v∈S

RHomKv(Fηv , Gηv)→
∏
v∈S

RΓ(Kv, Gηv).

Since the derived tensor product is exact, we have a commutative diagram

RΓc(U, F )⊗RHomU(F,G) RΓ(U, F )⊗RHomU(F,G) (
∏
v∈S

RΓ(Kv, Fηv))⊗RHomU(F,G)

RΓc(U,G) RΓ(U,G)
∏
v∈S

RΓ(Kv, Gηv)

where both rows are fiber sequences, hence an induced morphism

RΓc(U, F )⊗RHomU(F,G)→ RΓc(U,G).

Specialise for G = Gm[0] ; we now wish to construct a map RΓc(U,Gm)→ R[−1], resp.
a factorization through Q[−1] of that map when U is a curve. We begin by computing
the cohomology groups H i

c(U,Gm).

Definition II.4.1. Define

I ′K = {(αv) ∈
∏

v place de K

K×
v , αv ∈ O×

Kv
for almost all v},

the henselian idele group. Define the henselian idele class group and henselian S-idele
class group

C ′
K = I ′K/K

×,

C ′
K,S = coker(

∏
v∈U0

O×
Kv
→ I ′K → C ′

K),

where U0 denotes the closed points of U .

Remark.

• These differ from the usual definitions because we use for Kv the fraction field of the
henselization at v when v is non-archimedean.

• By the snake Lemma we have C ′
K,S ≃ (

⊕
v∈U0

Z ⊕
∏

v∈SK
×
v )/K

×. It follows that
C ′
K,S = Pic(C) when U = C is a proper curve.

8Though it will depend on q; the R-valued regulator doesn’t depend on q
9coming from the Yoneda pairing, noting that RΓ(U,F ) = RHomU (Z, F )
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Proposition II.4.2 (“Hilbert 90”). We have H0
c (U,Gm) = 0, resp. H0

c (U,Gm) is finite
when U is affine resp. U = C is a proper curve, and H1

c (U,Gm) = C ′
K,S. For i ≥ 2,

H i
c(U,Gm) = Ĥ i

c(U,Gm) =

{
Q/Z, i = 3,
0, i > 3.

Proof. For i = 0 this comes from the defining long exact sequence

0→ H0
c (U,Gm)→ OU(U)× →

∏
v∈S

K×
v → · · ·

and for U = C a proper regular curve of characteristic p > 0, OC(C) is a finite extension
of Fp. We already saw in Proposition II.2.3 that H i

c(U,−) = Ĥ i
c(U,−) for i > 1, thus for

i > 1 see [Mil06, III.2.6].
Let us treat the case i = 1. Define a complex RΓZar,c similarly to RΓc, but using Zariski

cohomology on U and Spec(Kv) instead of étale cohomology. Let ε be the morphism of
sites UZar → Uet. We denote by ε∗ : F 7→ F ◦ ε the direct image functor and ε∗ its left
adjoint. We have ε∗(Gm)Uet = (Gm)UZar

, thus τ≤0Rε∗Gm = Gm and we get a morphism

RΓZar(U,Gm) = RΓZar(U, τ
≤0Rε∗Gm)→ RΓZar(U,Rε∗Gm) = RΓ(U,Gm).

This combined with the similar result on Spec(Kv) induce a canonical morphism

RΓZar,c(U,Gm)→ RΓc(U,Gm).

This induces a commutative diagram in cohomology

0 OU(U)×
∏

v∈SK
×
v H1

Zar,c(U,Gm) H1
Zar(U,Gm) = Pic(U) 0

0 OU(U)×
∏

v∈SK
×
v H1

c (U,Gm) H1(U,Gm) = Pic(U) 0

where the identification on the right follows from Hilbert’s theorem 90. Thus by the five
lemma

H1
Zar,c(U,Gm)

≃−→ H1
c (U,Gm).

On the Zariski site of U , we have a short exact sequence

0→ Gm → g∗Gm →
⊕
v∈U0

(iv)∗Z→ 0,

where g : Spec(K) ↪→ U is the inclusion of the generic point and iv is the inclusion of a
closed point v ∈ U . This gives a distinguished triangle

RΓZar,c(U,Gm)→ RΓZar,c(U, g∗Gm)→
⊕
v∈U0

Z→

For q > 0, the sheaf Rqg∗F is the sheaf associated to

V 7→ Hq
Zar(V ×U Spec(K), F ) = Hq

Zar(Spec(K), F ) = 0,

hence g∗ = Rg∗ is exact and

RΓZar(U, g∗Gm) = RΓZar(Spec(K),Gm) = K×[0].
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Thus there is an identification

RΓZar,c(U, g∗Gm) ≃ fib

(
K×[0]→

∏
v∈S

K×
v [0]

)
=

[
K× →

∏
v∈S

K×
v

]
,

where K× is in degree zero. We find

RΓZar,c(U,Gm) ≃ fib

([
K× →

∏
v∈S

K×
v

]
→
⊕
v∈U0

Z[0]

)
=

[
K× →

⊕
v∈U0

Z⊕
∏
v∈S

K×
v

]
,

hence the result.

The map
∑

v log | · |v is well-defined on the henselian idele group I ′K and by the product
formula induces a map on the henselian S-idele class group tr : C ′

K,S → R. For v /∈ S, we
have in particular on the factor Z associated to v:

tr(1v) = − log(N(v)), (II.4.1)

where N(v) = [κ(v)] is the cardinality of the residue field at v; this follows from the
conventions chosen for the product formula. If U is a curve over Fq, then tr factors through

Z as C ′
K,S

trq−→ Z log(q)−−−→ R with trq the map induced by
∑

v logq | · |v. Then for v /∈ S, we
have trq(1v) = −[κ(v) : Fq]. In particular, if U = C is a proper curve, then trq = deg is
the degree map Pic(C)→ Z.

We can consider the composite10

RΓc(U,Gm)→ τ≥1RΓc(U,Gm)R = H1
c (U,Gm)R[−1] = (C ′

K,S)R[−1]
tr−→ R[−1].

When U is a curve over Fq, we can also consider the composite

RΓc(U,Gm)→ τ≥1RΓc(U,Gm)Q = H1
c (U,Gm)Q[−1] = (C ′

K,S)Q[−1]
trq⊗Q−−−→ Q[−1],

whose composite with Q 17→log(q)−−−−−→ R is the previous map11

Definition II.4.3. The regulator pairing is the pairing for étale sheaves on U

RΓc(U, F )⊗RHomU(F,Gm)→ RΓc(U,Gm)→ R[−1]

induced by tr.
If U is a curve over Fq, the rational regulator pairing is the pairing

RΓc(U, F )⊗RHomU(F,Gm)→ RΓc(U,Gm)→ Q[−1]

induced by trq.

Note that the rational regulator pairing depends on the choice of the base field.
10The R-vector space (C ′

K,S)R is quite big, which can be surprising, but it doesn’t matter since we take
the trace map to R.

11Note that we have to tensor with Q to supress the torsion coming from H3
c (U,Gm) = Q/Z.
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II.4.2 Perfectness of the regulator pairing after base change to R
We call a pairing of perfect complexes A ⊗ B → C perfect if the natural morphism
A→ RHom(B,C) is an isomorphism.

Theorem II.4.4. Let U be a 1-dimensional regular irreducible scheme of finite type over
Spec(Z) and let F be a Z-constructible sheaf on U . The regulator pairing

RΓc(U, F )⊗RHomU(F,Gm)→ RΓc(U,Gm)→ R[−1]

is perfect after base change to R for every Z-constructible sheaf F . More generally, the
map

RHomU(F,Gm)R → RHom(RΓc(U, F )R,R[−1])

is an isomorphism for every F ∈ D+(Uet). When U is a curve over Fq, the theorem holds
over Q.

Remark.

• For U = Spec(OK) and F = Z this is conjecture B(U, 0) of [FM18] (note that d = 1),
which is shown in ibid., section 2.2 to be equivalent to Beilinson’s conjecture. The
latter is known for U = Spec(OK).

• For F ∈ D+(Uet) not Z-constructible, the vector spaces involved may not be finite di-
mensional in which case the dual mapRΓc(U, F )R → RHom(RHomU (F,Gm)R,R[−1])
will not be an isomorphism.

Proof. If U is a curve over Fq, the rational regulator pairing induces the regulator pairing
up to a non-zero factor log(q) ; hence for curves we will only prove the perfectness of the
rational regulator pairing after base change to Q.

We have to show thatRHomU (F,Gm)R → RHom(RΓc(U, F ),R[−1]) is an isomorphism
(resp. RHomU(F,Gm)Q → RHom(RΓc(U, F ),Q[−1]) if U is a curve). This is a natural
transformation that behaves well with fiber sequences and filtered colimits, hence we first
reduce to the case of bounded complexes, then by filtering with the truncations to sheaves,
then to Z-constructible sheaves. By the dévissage argument (§ II.2.0.1), we now have to
check that

1. the regulator pairing behaves well with the pushforward π∗ coming from a finite
generically Galois morphism π : V → U ;

2. the regulator pairing behaves well with the extension by zero j! coming from an open
subscheme j : V ↪→ U ;

3. the regulator pairing for a Z-constructible sheaf supported on a closed point identifies
with a pairing in Galois cohomology that is perfect after base change to Q;

4. the theorem is true for a constructible sheaf;

5. the theorem is true for the constant sheaf Z.
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II.4.2.1 Case of the pushforward by a finite generically Galois cover. Let
π : V → U be the normalization of U in a finite Galois extension L/K and let F be a
Z-constructible sheaf on V . Then V = Spec(OL,S′) or V = C ′\S ′ where S ′ are the places
of L above those of S and C ′ is the connected smooth proper curve with function field
L in the function field case. Denote by gv : Spec(Kv) → U (resp. gw : Spec(Lw) → V )
and πw : Spec(Lw) → Spec(Kv) the natural morphisms for v ∈ S, w ∈ S ′. We remark
that ([Tra16, 3.6]) g∗vπ∗ =

∏
w|v(πw)∗g

∗
w. On the one hand, Proposition II.2.1.e gives a

natural isomorphism RΓc(V,−) = RΓc(U, π∗−). On the other hand, the norm induces a
map Nm : π∗Gm → Gm such that the composite

N : RHomV (F,Gm)
π∗−→ RHomU(π∗F, π∗Gm)

Nm∗−−−→ RHomU(π∗F,Gm)

is an isomorphism ([Mil06, II.3.9]). The following diagrams are commutative by functoriality
of the Yoneda pairing:

RHomV (Z, F )⊗RHomV (F,Gm) RΓ(V,Gm) = RHomV (Z,Gm)

RHomU(Z, π∗F )⊗RHomU(π∗F, π∗Gm) RΓ(U, π∗Gm)

RΓ(U, π∗F )⊗RHomU(π∗F,Gm) RΓ(U,Gm)

id⊗Nm∗ Nm∗

RΓ(Lw, Fηw)⊗RHomLw(Fηw ,Gm) RΓ(Lw,Gm)

RΓ(Kv, (πw)∗Fηw)⊗RHomKv((πw)∗Fηw , (πw)∗Gm) RΓ(Kv, (πw)∗Gm)

RΓ(Kv, (NLw/Kv)∗Fηw)⊗RHomKv((NLw/Kv)∗Fηw ,Gm) RΓ(Kv,Gm)

id⊗(NLw/Kv )∗ (NLw/Kv )∗

RHomV (F,Gm)
∏

w|v RHomLw(Fηw ,Gm)

RHomU(π∗F,Gm)
∏

w|v RHomKv((πw)∗Fηw ,Gm)

Nm∗◦π∗

∏
w|v j

∗
w

∏
w|v(NLw/Kv )∗◦(πw)∗

j∗v

We obtain a diagram:

RΓc(V, F )⊗RHomV (F,Gm) RΓc(V,Gm) (CL,S′)R[−1] R[−1]

RΓc(U, π∗F )⊗RHomU(π∗F,Gm) RΓc(U,Gm) (CK,S)R[−1] R[−1]

≃ Nm∗

tr

tr

The left hand side is commutative by the previous diagrams. The long exact sequence
Equation (II.2.1) gives

0→ OU(U)× →
∏
v∈S

K×
v → C ′

K,S → Pic(U).

50



Thus the map tr factors through

C ′
K,S ⊗ R =

(
(
∏
v∈S

K×
v )/OU(U)×

)
⊗ R

on which it is given by
(αv) 7→

∑
v∈S

log(|αv|v),

so the right hand side is commutative by the following computation:∑
v∈S

log |
∏
w|v

NLw/Kv(αw)|v =
∑
w∈S′

log |NLw/Kv(αw)|v =
∑
w∈S′

log |αw|w.

We have proved that the theorem is true for F if and only if it is true for π∗F ; the reasoning
is exactly the same for the rational regulator pairing when U is a curve, except in the case
where U = C is a proper curve in which case this follows from the compatibility of the
degree maps of U and V with the canonical map Pic(V )→ Pic(U).

II.4.2.2 Case of the extension by zero along an open inclusion. Let j : V ↪→ U
be an open subscheme and let F be a Z-constructible sheaf on V . Write V = SpecOK,S′

or V = C\S ′. Using Proposition II.2.1.d and the identification j∗Gm = Gm, we obtain a
commutative diagram

RΓc(V, F )⊗RHomV (F,Gm) RΓc(V,Gm) (CK,S′)R[−1] R[−1]

RΓc(U, j!F )⊗RHomU(j!F,Gm) RΓc(U,Gm) (CK,S)R[−1] R[−1]

≃

tr

tr

which shows that the theorem is true for F if and only if it is true for j!F . The reasoning
is the same for the rational regulator pairing when U is a curve.

II.4.2.3 Case of a sheaf supported on a closed point. Consider a Z-constructible
sheaf supported on a closed point v. Let Gv = Gal(κ(v)sep/κ(v)). The sheaf is of the form
i∗M where M is a discrete Gv-module of finite type and i : v ↪→ U is the closed inclusion.
The functor i∗ has a right adjoint in the derived category Ri! such that i∗Ri! ≃ id, and
one has an identification ([Maz73, section 1, eq. 1.2])

Ri!Gm ≃ Z[−1]. (II.4.2)

Proposition II.2.1.c gives a natural isomorphism RΓc(U, i∗M) = RΓ(v,M) and we obtain
morphisms

RΓ(v,Z[−1]) = RΓc(U, i∗Z[−1]) = RΓc(U, i∗Ri
!Gm)

η∗−→ RΓc(U,Gm),

RHomv(M,Z[−1]) = RHomv(M,Ri!Gm)
η∗◦i∗−−−→
≃

RHomU(i∗M,Gm),

where η : i∗Ri
!Gm → Gm is the counit of the adjunction. The functoriality of the Yoneda

pairing then implies that the following diagram is commutative:

RΓ(v,M)⊗RHomv(M,Z[−1]) RΓ(v,Z[−1])

RΓc(U, i∗M)⊗RHomU(i∗M,Gm) RΓc(U,Gm)

≃

51



The Galois cohomology groups of Gv ≃ Ẑ with coefficients in Z are given by

H i(Ẑ,Z) =


Z, i = 0,

Homcont(Ẑ,Z) = 0, i = 1,

Homcont(Ẑ,Q/Z) = Q/Z, i = 2,
0, i > 2,

hence
τ≥1RΓ(Gv,Z[−1])Q ≃ H0(Gv,Z)Q[−1] = Q[−1].

The map η∗ : Z = H0(Gv,Z) = H0
c (U, i∗Z) → H1

c (U,Gm) = C ′
K,S sends Z to the

factor indexed by v in C ′
K,S. Following remark II.4.1, we get the commutative diagram

Diagram II.1.

II.4.2.4 Case of the Galois cohomology of a finite field. Since − log(N(v)) ̸= 0,
we are reduced by the previous section (and in particular by Diagram II.1) to showing that

RΓ(v,M)⊗RHomv(M,Z)→ RΓ(v,Z)→ Q[0]

is perfect after base change to Q for any discrete Gv-module M of finite type as an abelian
group; this will imply that it is also perfect after base change to R. We show it on
cohomology groups. Galois cohomology is torsion and Artin–Verdier duality gives that
Extiv(M,Z) = Exti+1

U (i∗M,Gm) (Equation (II.4.2)) is finite for i ≥ 1, so the pairing is
trivially perfect in degree i ≠ 0 after base change to Q. Thus it suffices to show the result
in degree 0, i.e. to show that the pairing

MGv × HomGv(M,Z)→ Q

is perfect after base change to Q. Let H be an open subgroup acting trivially on M ; then
MGv = (M)Gv/H and HomGv(M,Z) = HomGv/H(M,Z), i.e. we reduce to the case of a
cyclic group G := Gv/H acting of the finite type abelian group M . We have furthermore
HomG(M,Z) = Hom(MG,Z) (where MG denotes coinvariants). Let F denote a generator
of G. The exact sequence

0→MG →M
F−1−−→M →MG → 0

gives identifications (MG)Q = (MQ)
G and (MG)Q = (MQ)G by tensoring with Q, and also

gives that those vector spaces have the same dimension. Let N :MG →MG denote the
norm and π : MG → M → MG the restriction of the canonical projection to MG. We
notice that N ◦ π = |G| · Id, so πQ is an isomorphism. In the pairing

MG
Q × Hom(MG,Q,Q)→ Q,

the left hand terms have same dimension, so it suffices to prove that the left kernel is
trivial, which follows immediately for surjectivity of πQ.

II.4.2.5 Case of a constructible sheaf. Let F be a constructible sheaf on U . Then
cohomology with compact support differs from Tate cohomology with compact support by
finite groups. Artin–Verdier duality thus shows that all cohomology groups H i

c(U, F ) and
ExtiU (F,Gm) are finite, hence the pairing is trivial after base change to R (or Q when U is
a curve), so it is perfect.
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τ
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1R

Γ
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[−
1])Q

Q
[−
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)⊗

R
H
om
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R
Γ
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τ
≥
1R

Γ
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,G
m
)R
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R
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−
lo
g
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Diagram II.1
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II.4.2.6 Case of the constant sheaf Z. Consider the constant sheaf Z on U . If U
is a curve over Fq, the previous discussion along with the dévissage argument (§ II.2.0.1)
allows us to suppose that U = C is a proper curve. We will show perfectness of the
regulator pairing on cohomology groups. Since U is noetherian and normal, Hq(U,Z)
is torsion for q > 0 ([Mil06, II.2.10]) and πSGA31 (U) = πSGA11 (U) is profinite, hence
H1(U,Z) = Homcont(π

et
1 (U),Z) = 0. The same argument holds for Z on Spec(Kv) for

v ∈ S. Thus:

• If U = Spec(OK,S), we have the exact sequence Equation (II.2.1)

0→ H0
c (U,Z)→ Z→

∏
v∈S

Z→ H1
c (U,Z)→ 0

and we obtain

H0
c (U,Z) = 0, H1

c (U,Z) = (
∏
v∈S

Z)/Z, H i
c(U,Z)R = 0 for i > 1. (II.4.3)

On the other hand

ExtiU(Z,Gm) = H i(U,Gm) =


O×
K,S, i = 0,

Pic(U), i = 1,
torsion of cofinite type, i ≥ 2.

The pairing H i
c(U,Z)R × Ext1−i(Z,Gm)R → R is thus perfect for i = 0 by finiteness

of the S-ideal class group and trivially perfect for i ̸= 0, 1. In degree i = 1, the
regulator pairing identifies with the map (

∏
v∈S

Z)/Z×O×
K,S −→ R

((αv), u) 7−→
∑
αv log |u|v,

which is non-degenerate modulo torsion by the theorem of S-units of Dirichlet (see
for instance [Nar04, 3.3.12]). Indeed, under the identification

Hom((
∏
v∈S

R)/R,R) ≃ {(xi) ∈ Rs,
∑

xi = 0},

the map
O×
K,S → Hom((

∏
v∈S

R)/R,R) ⊂ Rs

induced by the pairing is the usual logarithmic embedding.

• If U = C is a proper curve over Fq, we have H0(C,Z) = Z, H i(C,Z) torsion for
i > 0 and

ExtiC(Z,Gm) = H i(C,Gm) =


OC(C)× i = 0
Pic(C) i = 1

torsion of cofinite type i ≥ 2

Since C is proper, normal and connected, OC(C) = K ∩ F̄q is the field of constants
of K, and a finite extension of Fq; in particular H0(C,Gm) is finite. The pairing
H i(C,Z)Q × Ext1−i(Z,Gm)Q → Q is thus trivially perfect for i ̸= 0. In degree i = 0,
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the rational regulator pairing identifies with the top row in the following commutative
diagram :

Q× Pic(C)Q Q

Q×Q Q

id×degQ≃

r,s 7→rs

The bottom pairing is perfect, so it remains only to show that the degree map is
an isomorphism rationally, which follows from the exact sequence 0→ Pic0(C)→
Pic(C)

deg−−→ fZ → 0,12 and the finiteness of the class group of degree 0 divisors
Pic0(C).13

II.5 Splitting of the Weil-étale complex after base change
to R

We denote by (−)Q := −⊗L Q (resp. (−)R the base change by Q (resp. R).

Proposition II.5.1. Let F be a big or tiny sheaf on U . The Weil-étale complex with
compact support splits rationally, naturally in big-to-tiny morphisms and big-to-tiny short
exact sequences:

RΓW,c(U, F )Q = RΓc(U, F )Q ⊕DF,Q[1].

Moreover, by the perfectness of the regulator pairing after base change to R, there is an
isomorphism, natural in big-to-tiny morphisms and big-to-tiny short exact sequences:

τF : RΓW,c(U, F )R
≃−→ DF,R[1]⊕DF,R[2]. (II.5.1)

Proof. By tensoring with Q the defining triangle of RΓW,c(U, F ) and rotating once, we
obtain a distinguished triangle

RΓc(U, F )Q
iF−→ RΓW,c(U, F )Q

pF−→ DF,Q[1]→ RΓc(U, F )Q[1].

Let us show that this triangle splits canonically. We will prove the existence of a section
of p:

s : DF [1]Q → RΓW,c(U, F )Q.

Let G be another big or tiny sheaf. Consider the exact sequence obtained by applying
Hom(DF,Q[1],−) to the above triangle for G :

Hom(DF,Q[1], RΓc(U,G)Q) Hom(DF,Q[1], RΓW,c(U,G)Q

Hom(DF,Q[1], DG,Q[1]) Hom(DF,Q[1], RΓc(U,G)Q[1]).

Since DF,Q[1] is cohomologically concentrated in degrees 3 and 4 and RΓc(U,G)Q is con-
centrated in degrees 0 and 1, the usual argument with the exact sequence Equation (II.3.1)
shows that both left and right terms are zero, hence a canonical isomorphism:

Hom(DF,Q[1], RΓW,c(U,G)Q)
≃−→ Hom(DF,Q[1], DG,Q[1]).

12We have f = [OC(C) : Fq], see for instance [Wei95, VII.5, cor. 5]
13See for instance [Wei95, IV.4 Thm 7]; the group k1A/k

×Ω(∅) of ibid. identifies with Pic0(C), as
discussed at the beginning of ibid., Ch. VI
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The same argument also gives

Hom(DF,Q[1], RΓW,c(U,G)Q[1])
≃−→ Hom(DF,Q[1], DG,Q[2]).

Let sF be the inverse image of the identity under

Hom(DF,Q[1], RΓW,c(U, F )Q)
≃−→ Hom(DF,Q[1], DF,Q[1]).

The following diagram gives a morphism of distinguished triangles (note that the right
square does commute, since Hom(DF,Q[1], RΓc(U, F )Q[1]) = 0):

RΓc(U, F )Q RΓc(U, F )Q ⊕DF,Q[1] DF,Q[1] RΓc(U, F )Q[1]

RΓc(U, F )Q RΓW,c(U, F )Q DF,Q[1] RΓc(U, F )Q[1]

(iF ,sF )

i p

hence by the five lemma an isomorphism

(iF , sF ) : RΓc(U, F )Q ⊕DF,Q[1]
≃−→ RΓW,c(U, F )Q.

Let us see the naturality of the above isomorphism. Let F → G be a big-to-tiny
morphism. We have already proved that i is natural (see the proof of Theorem II.3.5),
so it suffices to show that s is a natural transformation, i.e. that the following diagram
commutes:

DF,Q[1] RΓW,c(U, F )

DG,Q[1] RΓW,c(U,G)

sH

sG

The horizontal arrows in the following diagram are isomorphisms, and the diagram is
commutative by commutativity of Equation (II.3.2), whence we conclude with a simple
diagram chasing:

Hom(DF,Q[1], RΓW,c(U, F )Q) Hom(DF,Q[1], DF,Q[1])

Hom(DF,Q[1], RΓW,c(U,G)Q) Hom(DF,Q[1], DG,Q[1])

Hom(DG,Q[1], RΓW,c(U,G)Q) Hom(DG,Q[1], DG,Q[1])

≃

≃

≃

Let 0 → F → G → H → 0 be a big-to-tiny short exact sequence. Similarly to the
previous step, i is natural, and it remains to see that the diagram

DH,Q[1] RΓW,c(U,H)

DF,Q[2] RΓW,c(U, F )[1]

sH

sF [1]
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commutes. We conclude by a similar diagram chasing in the diagram

Hom(DH,Q[1], RΓW,c(U,H)Q) Hom(DH,Q[1], DH,Q[1])

Hom(DH,Q[1], RΓW,c(U, F )Q[1]) Hom(DH,Q[1], DF,Q[2])

Hom(DF,Q[2], RΓW,c(U, F )Q[1]) Hom(DF,Q[2], DF,Q[2])

≃

≃

≃

.

The regulator pairing gives an isomorphism, natural in complexes of étale sheaves
F ∈ D+(U)

RΓc(U, F )R
≃−→ RHom((RHomU(F,Gm),R[−1]) = RHom(RHomU(F,Gm),Q[−1])⊗ R

= DF,R[2],

hence the claimed isomorphism natural in big-to-tiny morphisms and big-to-tiny short
exact sequences

τF : RΓW,c(U, F )R
≃−→ DF,R[1]⊕DF,R[2].

Remark.

• If U is a curve the same holds over Q, using the rational regulator pairing.

• The above isomorphism implies that the functor RΓW,c(U,−)R is exact in big-to-tiny
short exact sequences.

II.6 The Weil-étale Euler characteristic

II.6.1 Construction

In this section we will use the determinant construction of Knudsen-Mumford [KM76],
and the subsequent work of Breuning, Burns and Knudsen, in particular [Bre08]. Let
R be a Noetherian ring; denote by ProjR the exact category of projective finite type
R-modules, Grb(ModftR ) the bounded graded abelian category of finite type R-modules and
Dperf (R) the derived category of perfect complexes. For P a Picard groupoid, the Picard
groupoid of determinants det(C,P) for C an exact or triangulated category is defined in
[Knu02] and [Bre11] respectively. Their objects are determinants, that is pairs f = (f1, f2)
where f1 is a functor Ciso → P and f2 maps each exact sequence/distinguished triangle
∆ : X → Y → Z to an isomorphism f2(∆) : f1(Y ) → f1(X) ⊗ f1(Z), satisfying certain
axioms. When the context is clear we’ll abuse notation and write f for both f1 and f2.
There is a canonical inclusion I : ProjR ↪→ Grb(ModftR ) where I(A) is A in degree 0 and 0
elsewhere. We extend I naturally to exact sequences. Thus I defines a restriction functor

I∗ : det(Grb(ModftR ),P)→ det(ProjR,P)

for any Picard groupoid P , given by f = (f1, f2) 7→ (f1◦I, f2◦I). On the other hand, there
is a functor H : Dperf (R)→ Grb(ModftR ) given by X 7→ (H i(X))i, and for a distinguished
triangle

∆ : X
u−→ Y

v−→ Z
w−→
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we define H(∆) to be the following exact sequence, induced by the long exact cohomology
sequence:

0→ ker(H(u))→ H(X)→ H(Y )→ H(Z)
∂−→ ker(H(u))[1]→ 0.

Thus H defines an extension functor H∗ : det(Grb(ModftR ),P)→ det(Dperf(R),P), map-
ping a determinant (g1, g2) to (g1 ◦ H, f2) where f2 is deduced from applying g2 to the
exact sequences of the form H(∆) for ∆ a distinguished triangle [Bre11, Prop. 5.8].

The functor I factors as ProjR → ModftR → Grb(ModftR ) hence for R a regular ring,
I∗ is an equivalence of categories for any Picard category P by [Bre11, Prop. 5.5] and
Quillen’s resolution Theorem [Qui73, Cor. 2 in §4] (see also the proof of [Bre08, Prop. 3.4]).
Note that by [Bre11, Lemma 5.10, Prop. 5.11], H∗ is also an equivalence of categories
since there is an identification Dperf (R) ≃ Db(ModftR ).

Consider the usual determinant functor

detR ∈ det(ProjR,PR), M 7→ (ΛtopM, rankM)

of [KM76] with values in the Picard groupoid of graded R-lines, that is of pairs (L, n)
where L is an invertible R-module and n : Spec(R)→ Z a locally constant function, with
morphisms (L, n)→ (L′,m) the isomorphisms L→ L′ if n = m and none otherwise.

Remark ([BF03, Section 2.5]). We have π0PR = H0(Spec(R),Z)⊕Pic(R) and π1PR = R×.
Hence by K-theoretic computations, detR is the universal determinant for R local, or
semi-simple, or the ring of integers in a number field.

For basic properties of determinant functors on triangulated categories, see [Bre11,
Section 3]. Let gR ∈ det(Grb(ModftR ),PR) be a determinant functor extending detR, i.e.
such that I∗(gR) = detR. Define then fR := H∗(gR) ∈ det(Dperf (R),PR).

We specialize now to R = Z, R. Whenever it makes sense, denote by B the base
change functor X 7→ X ⊗Z R. The following diagram is commutative

ProjZ Grb(ModftZ ) Dperf (Z)

ProjR Grb(ModftR ) Dperf (R)

I

B B

H

B

I

H

and there is a natural symmetric monoidal functor B : PZ → PR, hence we obtain a
commutative diagram

det(ProjZ,PZ) det(Grb(ModftZ ),PZ) det(Dperf (Z),PZ)

det(ProjZ,PR) det(Grb(ModftZ ),PR) det(Dperf (Z),PR)

det(ProjR,PR) det(Grb(ModftR ),PR) det(Dperf (R),PR)

B∗

I∗

B∗

H∗

B∗

I∗
H∗

B∗

I∗

B∗

H∗

B∗

where upper stars denote precomposition and lower stars denote postcomposition. From
this diagram, we see that there is an isomorphism of determinants γ : B ◦ gZ ≃ B∗(gR)
inducing an isomorphism

H∗(γ) : B ◦ fZ ≃ B∗(fR). (II.6.1)
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Applying the determinant construction to the isomorphism Equation (II.5.1), we get a
trivialization

λF : fR(RΓW,c(U, F )R) ≃ fR(DF,R[1]⊕DF,R[2])
≃←− fR(DF,R[1]])⊗ fR(DF,R[2])

≃−→ R,

where the last isomorphism holds because for any perfect complex X, the distinguished
triangle X → 0→ X[1]→ gives an isomorphism

fR(X)⊗ fR(X[1])
≃−→ fR(0) = R.

The canonical isomorphism

H∗(γ)RΓW,c(U,F ) : fZ(RΓW,c(U, F ))⊗Z R
≃−→ fR(RΓW,c(U, F )R)

gives a natural embedding

fZ(RΓW,c(U, F )) ↪→ fR(RΓW,c(U, F )R)

of the underlying (ungraded) lines, i.e. of abelian groups.
Remark. Define the Picard groupoid of embedded graded lines PZ→R, whose objects
are pairs (f : L → V, n) where L is a free Z-modules of rank 1, V an R-vector space
of dimension 1 and n ∈ Z, with a map f : L → V of abelian groups such that the
induced map L⊗ R→ V is an isomorphism. The projection PZ→R → PZ and the functor
PZ → PZ→R, (L, n) 7→ (L→ L⊗ R, n) are inverse equivalences of Picard groupoids. The
above embedding can be seen as an object in PZ→R.

Definition II.6.1. Let F be a big or tiny sheaf on U . The (Weil-étale) Euler characteristic
of F is the positive real number χU(F ) such that

λ(fZ(RΓW,c(U, F ))) = (χU(F ))
−1Z ↪→ R.

Definition II.6.2. Let F be a big or tiny sheaf on U . We define the secondary Euler
characteristic

EU(F ) :=
∑
i

(−1)i · i · dimR(H
i
W,c(U, F )R).

Remark. By Theorem II.4.4 and the computations of subSubsection II.3.2 we have

EU(F ) = −1(rankZH1
c (U, F ) + rankZ Ext

1
U(F,Gm)) + 2(rankZHomU(F,Gm))

= rankZ(HomU(F,Gm))− rankZ(Ext
1
U(F,Gm))

= rankZ(H
1
c (U, F ))− rankZ(H

0
c (U, F )).

Remark. Denote by ∪θ the map

RΓW,c(U, F )R ≃ DF,R[1]⊕DF,R[2]→ DF,R[2]→ DF,R[2]⊕DF,R[3] ≃ RΓW,c(U, F )R[1].

Then ∪θ induces an exact sequence

· · · → H i−1
W,c(U, F )R

∪θ−→ H i
W,c(U, F )R

∪θ−→ H i+1
W,c(U, F )R → · · ·

which gives a trivialization

λ :
⊗
i∈Z

det
R
(H i

W,c(U, F )R)
(−1)i ≃−→ R,
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and we can define alternatively χU(F ) such that

λ(
⊗
i∈Z

det
Z
(H i

W,c(U, F ))
(−1)i) = (χU(F ))

−1Z ↪→ R.

When X is a proper smooth curve over Fq, Flach and B. Morin have shown that
RΓW,c(X,Z) = RΓc(XW ,Z) ([FM18, Theorem 3.20]), in which case they observed further-
more that ∪θ = log(q) ∪ e where e ∈ H1(WFq ,Z) = Hom(WFq ,Z)) sends the Frobenius to
1 ([FM20, The map ∪θ versus ∪e], see also [Mor16]).

Theorem II.6.3. The secondary Euler characteristic and the Weil-étale Euler charac-
teristic are respectively additive and multiplicative with respect to big-to-tiny short exact
sequences. That is, given a big-to-tiny short exact sequence

0→ F → G→ H → 0,

we have

EU(G) = EU(F ) + EU(H),

χU(G) = χU(F )χU(H).

Proof. The result for EU is immediate given the remark above, the long exact sequence of
Ext groups and the fact that Exti(F,Gm) is zero for i < 0 and torsion for i > 1.

Let ∆ denote the (non-distinguished) triangle

RΓW,c(U, F )→ RΓW,c(U,G)→ RΓW,c(U,H)→ .

By Theorem II.3.5, H(∆) is an exact sequence in Grb(ModftZ ), and we can consider the
following diagram:

fZ(RΓW,c(U, F ))⊗ fZ(RΓW,c(U,H)) fZ(RΓW,c(U,G))

(fZ(RΓW,c(U, F )))R ⊗ (fZ(RΓW,c(U,H))R (fZ(RΓW,c(U,G))R

fR(RΓW,c(U, F )R)⊗R fR(RΓW,c(U,H)R) fR(RΓW,c(U, F )R)

fR(DF,R[1]⊕DF,R[2])⊗R fR(DH,R[1]⊕DH,R[2]) fR(DG,R[1]⊕DG,R[2])

fR(DF,R[1])⊗R fR(DF,R[2])⊗R fR(DH,R[1])⊗R fR(DH,R[2]) fR(DG,R[1])⊗ fR(DG,R[2])

R⊗R R R

gZ(H∆)

(gZ(H∆))R

H∗(γ)RΓW,c(U,F )⊗H∗(γ)RΓW,c(U,H) H∗(γ)RΓW,c(U,G)

gR(H(∆R))=fR(∆R)
fR(τF )⊗fR(τH) fR(τG)

mult

(II.6.2)

• Recall that we have set fZ := H∗(gZ), hence the top arrow would be fZ(∆) if ∆
was actually distinguished. Note that ∆⊗ R is distinguished. The top square is a
well-defined map in PZ→R, in particular it is a commutative square of abelian groups.

• Put H∗
W,c(U,−) := H∗(RΓW,c(U,−)). Since γ is a morphism of determinants, there

is a commutative diagram associated to the exact sequence H∆:

B ◦ gZ(H∗
W,c(U, F ))⊗B ◦ gZ(H∗

W,c(U,H)) B ◦ gZ(H∗
W,c(U, F ))

gR(H
∗
W,c(U, F )R)⊗R gR(H

∗
W,c(U,H)R) gR(H

∗
W,c(U, F )R)

B◦gZ(H∆)

γH∗
W,c

(U,F )⊗γH∗
W,c

(U,H) γH∗
W,c

(U,G)

gR((H∆)R)
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Unwinding the definitions, we see that the above diagram is exactly the second
square.

• The third square commutes because τ defines an isomorphism of distinguished
triangles.

• The commutativity of the fourth square is a formal consequence of the associativity
and commutativity axioms of the determinant, as we prove in the next Lemma II.6.4.

• The last square commutes by [Bre11, Lemma 3.6(ii) and its proof], and the fact that
the unit structure on R = fR(0) coming from the distinguished triangle 0→ 0→ 0→
is given by the multiplication map. Since the image by the multiplication map of
xZ⊗ yZ ⊂ R⊗ R is xyZ ⊂ R, we are done.

Lemma II.6.4. Let [−] : T → P be a determinant functor on a triangulated category. Let
∆ : A→ B → C → and ∆′ : A′ → B′ → C ′ → be distinguished triangles. The following
diagram, coming from the 3× 3 diagram with columns ∆,∆⊕∆′, ∆′, commutes:

[B ⊕B′] [B] [B′]

[A⊕ A′] [C ⊕ C ′]

[A] [A′] [C] [C ′] [A] [C] [A′] [C ′]
flip

We will follow below the convention that unmarked arrows will be obtained by functo-
riality of the determinant, applied to a distinguished triangle, and will go from the middle
term to the product of the outer terms. We write the products as concatenations for
compactness.

Proof. Consider diagram Diagram II.2: The outer diagram is exactly the one we want to
prove to be commutative. Square 1 commutes by associativity, applied to the octahedron
diagram

A⊕ A′ B ⊕ A′ C

A⊕ A′ B ⊕B′ C ⊕ C ′

C ′ C ′

Square 2 similarly commutes by the octahedron diagram

B B ⊕ A′ A′

B B ⊕B′ B′

C ′ C ′
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[B
⊕
B

′]
[B

][B
′]

[A
⊕
A

′][C
⊕
C

′]
[B
⊕
A

′][C
′]

[B
][A

′][C
′]

[A
⊕
A

′][C
][C

′]
[A

][A
′⊕

C
][C

′]

[A
][A

′][C
⊕
C

′]
[A

][A
′][C

][C
′]

[A
][C

][A
′][C

′]

1

2

3
4

5

6f
lip

Diagram II.2
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Square 3 is trivially commutative. Square 4 is obtained by tensoring on the right with [C ′]
the associativity diagram coming from the following octahedron:

A A⊕ A′ A′

A B ⊕ A′ A′ ⊕ C

C C

Square 5 is obtained by tensoring on the right with [C ′] the associativity diagram coming
from the following octahedron:

A B C

A B ⊕ A′ A′ ⊕ C

A′ A′

Finally, square 6 is commutative by the commutativity axiom.

II.6.2 Computations

We now use the results from Subsection II.3.2 and Appendix A to compute the Weil-étale
characteristic.

Definition II.6.5 (The regulator). Let F be a Z-constructible sheaf. Fix bases modulo
torsion of H0

c (U, F ), H1
c (U, F ), Ext

1
U (F,Gm) and HomU (F,Gm). Let R0(F ) be the absolute

value of the determinant of the pairing

H0
c (U, F )R × Ext1U(F,Gm)R → R

and R1(F ) the absolute value of the determinant of the pairing

H1
c (U, F )R × HomU(F,Gm)R → R

in those bases. Those quantities do not depend on the choices, and we define the regulator
R(F ) of F :

R(F ) :=
R1(F )

R0(F )
.

Proposition II.6.6. Let F be a big sheaf on U . Then

χU(F ) =
R(F )[Ext1U(F,Gm)][H

0
c (U, F )]

[HomU(F,Gm)tor][H1
c (U, F )tor]

.

Proposition II.6.7. Let F be a tiny sheaf on U . Then

χU(F ) =
R(F )[Ext1U(F,Gm)tor][H

0
c (U, F )tor]

[HomU(F,Gm)][H1
c (U, F )]

.

63



Corollary II.6.8. Let i : v ↪→ U be the inclusion of a closed point of U and M be a
finitely generated discrete Gv-module. Then i∗M is tiny and

χU(i∗M) =
[H0(Gv,M)tor]

[H1(Gv,M)]R(M)(logN(v))rankZ(H0(Gv ,M))
,

where N(v) = |κ(v)| and R(M) is the determinant of the pairing

MGv
Q × HomGv(M,Q)→ Q

after a choice of bases modulo torsion of MGv and HomGv(M,Z).

Remark.

• Note the factor (logN(v))rankZ(H
0(Gv ,M)) which comes from diagram Diagram II.1;

there is no sign here because we take absolute values.

• The value χv(M) := χU (i∗M) doesn’t depend on the embedding i : v → U hence χv
is intrinsic to the scheme v.

Proposition II.6.9. Suppose U = SpecOK,S and denote by RS, hS and ω the S-regulator,
S-class number and number of roots of unity of K respectively. We have

χU(Z) =
hSRS

ω
,

EU(Z) = rankZO×
K,S = [S]− 1.

We obtain from the analytic class number formula for the S-zeta function of K (the
arithmetic zeta function of U) that EU (Z) = ords=0ζU and the formula for the special value
lims→0 s

−EU (Z)ζU(s) = −χU(Z).14

Proof. In the construction of the regulator pairing, we noticed that for F = Z it simply
identifies with the classical regulator ; hence R(Z) is the S-regulator RS of OK,S. Moreover,
we have

HomU(Z,Gm)tor = (O×
K,S)tor = µ(K),

Ext1U(Z,Gm) = H1
et(U,Gm) = Pic(U).

Finally, the long exact sequence Equation (II.2.1) gives

0→ H0
c (U,Z)→ Z ∆−→

∏
v∈S

Z→ H1
c (U,Z)→ H1

et(U,Z),

where ∆ is the diagonal inclusion. We already saw that H1
et(U,Z) = 0. Thus H1

c (U,Z) ≃∏
v∈S Z/Z is free and H0

c (U,Z) = 0. We obtain

EU(F ) = rankZ(HomU(Z,Gm))− rankZ(Ext
1
U(Z,Gm)) = rankZ(O×

K,S),

χU(F ) =
RS[Pic(U)]

[µ(K)]
=
hSRS

ω
.

14see for instance [Tat84, I.2.2]
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Proposition II.6.10. Let U = C be the smooth proper curve associated to the function
field K, and let Fq be its field of constants. We have

χC(Z) =
h

ω log(q)
,

EC(Z) = −rankZPic(C) = −1.

where h = [Pic0(C)] is the cardinality of the group of classes of degree 0 divisors and
ω the number of roots of unity of K.15 We verify again that ords=0ζC = EC(Z) and
ζ∗C(0) = −χC(Z) for ζC the arithmetic zeta function of C.16

Proof. The constant sheaf Z is tiny on C becauseH1(C,Z) = 0, so we use Proposition II.6.7.
We consider C as a curve over the field of constants Fq of its function field, hence the
degree map is surjective [Wei95, VII.5, cor. 5] and we have an exact sequence

0→ Pic0(C)→ Pic(C)
deg−−→ Z→ 0

with Pic0(C) the class group of degree zero divisors, which is finite by [Wei95, IV.4 Thm
7]. We have H0(C,Z) = Z and H0(C,Gm) = F×

q = µ(K). We obtain

χU(Z) =
R(Z)[Pic0(C)]

ω
.

Finally, by the discussion in paragraph II.4.2.6, the rational regulator pairing for C
identifies via the degree map to the trivial pairing Q×Q→ Q with the natural integral
bases17, hence the comparison between the regulator pairing and the rational regulator
pairing gives R(Z) = 1/log(q).

II.6.3 Functoriality of the Euler characteristic

Proposition II.6.11. Let L/K be a finite Galois extension and π : V → U the normal-
ization of U in L. If F is a big or tiny sheaf on V , so is π∗F and

χU(π∗F ) = χV (F ),

EU(π∗F ) = EV (F ).

Proof. As seen in paragraph II.4.2.1, we have isomorphisms

RHomU(π∗F,Gm) ≃ RHomV (F,Gm),

RΓc(U, π∗F ) ≃ RΓc(V, F ),

so the first assertion is immediate, as well as the equality EU(π∗F ) = EV (F ). Similarly,
there is also an isomorphism

RΓ̂c(U, π∗F ) ≃ RΓ̂c(V, F ).

Write

DU
F := RHom(RHomU(F,Gm),Q[−3]),

EU
F := RHom(RHomU(F,Gm),Q/Z[−3]),

βUF for the arrow constructed in Subsection II.3.1.
15Note that ω = q − 1
16see for instance [Wei95, VII.6, Proposition 4]
17Here we use that the degree map is surjective
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We have seen in paragraph II.4.2.1 that the above isomorphisms induce isomorphisms of
the regulator pairing

RΓc(V, F )⊗RHomV (F,Gm) R[−1]

RΓc(U, π∗F )⊗RHomU(π∗F,Gm) R[−1]

≃

and Artin–Verdier pairing

RΓ̂c(V, F )⊗RHomV (F,Gm) Q/Z[−3]

RΓ̂c(U, π∗F )⊗RHomU(π∗F,Gm) Q/Z[−3]

≃

Thus there is a commutative diagram

DV
F EV

F RΓ̂c(V, F ) RΓc(V, F )

DU
π∗F EU

π∗F RΓ̂c(U, π∗F ) RΓc(U, π∗F )

≃ ≃ ≃ ≃

Since βUπ∗F and βVF are defined uniquely by their cohomology in degree 2 and 3 (and more
generally morphisms from DV

F to RΓc(U, π∗F ) verify this property, by the same argument
as for β), it follows that the following diagram is commutative

DV
F RΓc(V, F )

DU
π∗F RΓc(V, F )

βV
F

≃ ≃
βU
π∗F

Thus there exists an induced isomorphism on the cones, giving an isomorphism of distin-
guished triangles:

DV
F RΓc(V, F ) RΓW,c(V, F )

DU
π∗F RΓc(V, F ) RΓW,c(U, π∗F )

≃ ≃ ≃
βU
π∗F

The induced isomorphism is moreover unique, similarly to how we argued for the uniqueness
of the complex RΓW,c. All the identifications we have made are compatible and we obtain
χU(π∗F ) = χV (F ) by taking determinants.

Proposition II.6.12. Let j : V ⊂ U be an open immersion. If F is a big or tiny sheaf on
V , then so is j!F , and we have

χU(j!F ) = χV (F ),

EU(j!F ) = EV (F ).

Proof. The proof proceeds as the previous one, using Proposition II.2.1, the adjunction
j! ⊣ j∗ and the results from paragraph II.4.2.2.
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II.6.4 The L-function of a Z-constructible sheaf

Let X be an irreducible scheme of finite type over Z and of dimension 1, and let F be
a Z-constructible sheaf on X. We define the L-function associated to F and go over its
functorial properties.

Definition II.6.13. Let i : v → X be a closed point of X. The local factor with respect to
F and v is

Lv(F, s) = det(I −N(v)−sFrobv|Fv ⊗ C)−1,

where Fv is the discrete Gv := Gal(κ(v)sep/κ(v))-module corresponding to i∗F and Frobv ∈
Gv is the (geometric) Frobenius.

The L-function associated to F is

LX(F, s) =
∏
v∈X0

Lv(F, s),

where X0 is the set of closed points of X. It is well-defined and holomorphic for ℜ(s) > 1.

Remark.

• For F = Z we obtain the arithmetic zeta function of X:

LX(Z) = ζX .

• If i : v → X is the inclusion of a closed point and M is a discrete Gv-module of finite
type, we have

LX(i∗M, s) = det(I −N(v)−sFrobv|M ⊗ C)−1.

Let us investigate the functorial properties of the L-functions of Z-constructible sheaves.

Proposition II.6.14.

1. If 0→ F → G→ H → 0 is an exact sequence of Z-constructible sheaves on X, then

LX(G) = LX(F )LX(H).

2. Let π : Y → X be a finite morphism, with Y irreducible. If F is a Z-constructible
sheaf on Y , then π∗F is Z-constructible and

LX(π∗F ) = LY (F ). (II.6.3)

3. Let j : V ⊂ X an open subscheme and let F be a Z-constructible sheaf on V . Then

LX(j!F ) = LV (F ).

Proof. Only 2. is non-trivial. The pushforward π∗ commutes with base change so we have

(π∗F )v =
∏
w|v

indGw
Gv

(Fw),

where the product is on finite places w above v, hence

Lv(π∗F, s) =
∏
w|v

Lw(F, s)

since local factors behave well with respect to induced modules [Neu99b, prop. VII.10.4.(iv)].
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Proposition II.6.15. Denote by g : Spec(K)→ X the generic point of X and let M be
a discrete GK-module of finite type. If v is a non-singular point of X, thus corresponding
to a place of K, then

(g∗M)v =M Iv

with its natural Gv-action, where Iv is the inertia subgroup of a place v̄ of Ksep above v.

Proof. This is local so we can suppose X is affine and regular. Fix an embedding
Ksep ↪→ Ksep

v ; this determines an extension v̄ of v on Ksep. Let Oshv be the strict
henselization of X at v; then Oshv is the integral closure of OX(X) in the ring of integers
of the maximal unramified extension Kun

v of the completion of K at v. Let Ksh
v denote

the field of fractions. The above embedding identifies Ksh
v with the subfield of Ksep fixed

by the inertia subgroup Iv. The formula for stalks of pushforwards then gives

(g∗M)v = H0(Ksh
v ,M) =M Iv

endowed with its natural Gv ≃ Dv/Iv-action, where Dv = {σ, σv̄ = v̄} ⊂ GK is the
decomposition group.

In particular, for a discrete GK-module of finite type M and X regular proper, we have

LX(g∗M, s) = LK(M ⊗Q, s),

where the latter is the Artin L-function of the rational representation M ⊗Q of GK . We
now want to link the L-function of F to a classical Artin L-function of a representation
of GK . By restricting F to the regular locus of X, we modify its L-function by a finite
number of local factors. We can thus suppose that X is regular. The kernel and cokernel
of the canonical map F → g∗g

∗F are Z-constructible and supported on closed subschemes.
From the proposition above, we deduce that the L-function of F on X differs from the
Artin L-function of the rational GK-representation g∗F ⊗Q) by a finite number of local
factors.

From this discussion, we deduce:

Proposition II.6.16. The L-function of a Z-constructible sheaf is meromorphic on C.

Proof. If v ∈ X is a closed point, the local factor at v is obviously meromorphic; thus we
are reduced to the meromorphicity of Artin L-functions, which is known.

Definition II.6.17. Let F be a Z-constructible sheaf on X. We let n = ords=0LX(F, s)
the order of LX(F, s) at s = 0 and

L∗
X(F, 0) = lim

s→0
LX(F, s)s

−n

the special value of LX(F, s) at s = 0.

We will relate in Subsection II.6.7 and Section II.7 the order and special value at s = 0
to the previously constructed Euler characteristic, by reducing via the dévissage argument
(§ II.2.0.1) to special cases.
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II.6.5 Extending the definition of the Weil-étale Euler character-
istic

In this section we construct a well-defined functorial Euler characteristic for any Z-
constructible sheaf, bypassing a full construction of the Weil-étale complex, which will
enable us to obtain a special values theorem.

Definition II.6.18. Let F be a Z-constructible sheaf on U . Let j : V ⊂ U be an open
affine non-empty subscheme such that F|V is locally constant and let i : Z := U\V ↪→ U
be the inclusion of the closed complement. Put FV := j!(F|V ) and FZ := i∗i

∗F . By the
remark below Definition II.3.1 and by Proposition II.6.12, FV is big and FZ is tiny. We
thus define EU(F ) and the Weil-étale Euler characteristic of F as:

EU(F ) = EU(FV ) + EU(FZ),

χU(F ) = χU(FV )χU(FZ).

Remark. If F is big or tiny, the above exact sequence is big-to-tiny, hence this definition is
coherent with the previous one for F .

We first show that those quantities do not depend on the choice of V :

Proof. Let j′ : V ′ ⊂ U be another open affine subscheme with FV ′ locally constant and let
i′ : Z ′ ↪→ U be its closed complement. Without loss of generality we can suppose V ′ ⊂ V .
Let t : T := V \V ′ ↪→ U be the closed inclusion. The open-closed decomposition lemma
gives big-to-tiny short exact sequences

0→ (t∗t
∗F )→ i′∗i

′∗F → i∗i
∗F → 0,

0→ j′!F|V ′ → j!F|V → t∗t
∗F → 0.

The proof follows formally.

We can now investigate functoriality properties:

Proposition II.6.19. Let 0 → F → G → H → 0 be a short exact sequence of Z-
constructible sheaves on U . Then

χU(G) = χU(F )χU(H).

Proof. Choose a common open subscheme V on which the restriction of each sheaf is
locally constant, then apply the open-closed decomposition lemma, giving a commutative
diagram with exact rows and columns (using notation from Definition II.6.18):

0 0 0

0 FV F FZ 0

0 GV G GZ 0

0 HV H HZ 0

0 0 0
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The left column (resp. right) is a short exact sequence of big (resp. tiny) sheaves, so the
proof follows formally.

Proposition II.6.20. Let L/K be a finite Galois extension and π : V → U the normal-
ization of U in L. If F is a Z-constructible sheaf on V , then

χU(π∗F ) = χV (F ),

EU(π∗F ) = EV (F ).

Proof. We can fix open affine subschemes j : U ′ ⊂ U , j′ : V ′ → V such that F|V ′ is locally
constant and π′ := π|V ′ : V ′ → U ′ is the normalization of U ′ in L. Then (π∗F )|U ′ = π′

∗(F|V ′)
is locally constant. Denote by i : Z = U\U ′ ↪→ U and i′ : Z ′ = V \V ′ ↪→ V the closed
inclusions. The open-closed decomposition lemma gives short exact sequences

0→ (π∗F )U ′ → π∗F → (π∗F )Z → 0,

0→ FV ′ → F → FZ′ → 0.

Denote by πZ the base change of π to Z. Then π is finite so i∗i∗π∗ = i∗πZ,∗i
′∗ = π∗i

′
∗i

′∗F
thus (π∗F )Z = π∗FZ′ and we get

χU(π∗F ) := χU ′(π′
∗F )χU((π∗F )Z) = χ′

V (F )χU(π∗FZ′) = χ′
V (F )χV (FZ′) =: χV (F ).

Proposition II.6.21. Let j : V ⊂ U be an open immersion. Let F be a Z-constructible
sheaf on V . We have

χU(j!F ) = χV (F ),

EU(j!F ) = EV (F ).

Proof. Let j′ : V ′ ⊂ V an open affine subscheme with F|V ′ locally constant, and let i′ :
Z ′ := V \V ′ ↪→ V , i : Z = U\V ′ ↪→ U denote the closed inclusions. Then (j!F )|V ′ = F|V ′ ,
i∗j!F = t∗i

′∗F (with t the clopen immersion Z ′ ⊂ Z) and i∗t∗ = j!i
′
∗ so the short exact

sequences given by the open-closed decomposition lemma gives

χU(j!F ) := χU((jj
′)!(j!F )|V ′)χU(i∗i

∗j!F ) = χU((jj
′)!F|V ′)χU(j!i

′
∗i

′∗F )

= χV (j
′
!F|V ′)χV (i

′
∗i

′∗F )

=: χV (F ).

II.6.6 Explicit formula for the Weil-étale Euler characteristic

Proposition II.6.22. Let F be a Z-constructible sheaf on U . Then

χU(F ) =
[H0

c (U, F )tor][Ext
1
U(F,Gm)tor]R(F )

[H1
c (U, F )tor][HomU(F,Gm)tor]

.
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Proof. Let FV , FZ be as in Definition II.6.18, so that χU (F ) := χU (FV )χU (FZ). Consider
the two following exact sequences, viewed as acyclic cochain complexes :

A• : 0→ H0
c (U, FV )→ H0

c (U, F )→ H0
c (U, FZ)

→ H1
c (U, FV )→ H1

c (U, F )→ H1
c (U, FZ)→ I → 0,

B• : 0→ HomU(FZ ,Gm)→ HomU(F,Gm)→ HomU(FV ,Gm)

→ Ext1U(FZ ,Gm)→ Ext1U(F,Gm)→ Ext1U(FV ,Gm)→ J → 0,

where I is the image of H1
c (U, FZ) in H2

c (U, FV ) and J is the image of Ext1U(FV ,Gm) in
Ext2U (FZ ,Gm). We choose the convention of putting the first non-zero term of A in degree
0 and the last non-zero term of B in degree 2. Since FV is big and FZ is tiny, using Artin–
Verdier duality we have isomorphisms between finite groups H1

c (U, FZ) ≃ Ext2U (FZ ,Gm)
D

and H2
c (U, FV ) ≃ Ext1U(FV ,Gm)

D, thus Pontryagin duality gives I ≃ JD.
The regulator pairing gives an isomorphism ϕ : BR → Hom(AR,R)[−1],18 so Lemma A.0.4

together with Propositions II.6.6 and II.6.7 give:

1 =
[H0

c (U, F )tor][Ext
1
U(F,Gm)tor]R(F )

[H1
c (U, F )tor][HomU(F,Gm)tor]

· [J ]
[I]
· 1

χU(FV )χU(FZ)

=
[H0

c (U, F )tor][Ext
1
U(F,Gm)tor]R(F )

[H1
c (U, F )tor][HomU(F,Gm)tor]

· 1

χU(F )
,

where R(F ) is the regulator of F of Definition II.6.5; the result follows.

II.6.7 Computations, part II, and the special value theorem

Our aim is to prove theorem II.C by using the dévissage argument (§ II.2.0.1) to reduce
to special cases. The case of F = Z was already shown; let us handle now the case of a
constructible sheaf.

Proposition II.6.23. Let F be a constructible sheaf on U . Then χU (F ) = 1 and EU (F ) =
0. As the L-function of a constructible sheaf is 1, we have ords=0LU(F, s) = EU(F ) and
L∗
U(F, 0) = χU(F ).

Proof. Let us first treat the case where F is supported on a finite set ; by functoriality,
this reduces to the case where F is of the form i∗M , with i : v → U the inclusion of a
closed point and M a finite discrete Gv-module. By Corollary II.6.8, we have

χU(i∗M) =
[H0(Gv,M)]

[H1(Gv,M)]
.

Since M is finite, we have [Ser68, XIII.1 prop. 1] that H1(Gv,M) =M/(φ− 1)M , where
φ is the Frobenius. Hence the exact sequence

0→ H0(Gv,M)→M
φ−1−−→M → H1(Gv,M)→ 0 (II.6.4)

gives the result by taking cardinals.
Let us now treat the general case. We have seen in paragraph II.4.2.5 that the regulator

pairing of F is trivial after base change to R, thus R(F ) = 1 and EU(F ) = 0. By
Proposition II.6.22 and Artin–Verdier duality we have

χU(F ) =
[Ĥ2

c (U, F )][H
0
c (U, F )]

[Ĥ3
c (U, F )][H

1
c (U, F )]

.

18hence the choice of indexing convention
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Suppose we are in the number field case. We want to apply [Mil06, II.2.13]; by
functoriality we can throw away a finite number of points, and thus we can assume that
there is an integer m invertible on U such that mF = 0. Thus using [Mil06, II.2.13], we
obtain further

χU(F ) =
[Ĥ1

c (U, F )][H
0
c (U, F )]

[Ĥ0
c (U, F )][H

1
c (U, F )]

∏
v∈S∞

[H0(Kv, Fηv)].

Recall that the cofiber T ofRΓc(U,−)→ RΓ̂c(U,−) computes homology at the archimedean
places (equation Equation (II.2.2)). For a cyclic group G with generator s and a G-module
M , the exact sequence

0→ H0(G,M)→M
s−1−−→M → H0(G,M)→ 0

shows that [H0(G,M)] = [H0(G,M)], thus

[H0(TF )] =
∏
v∈S∞

[H0(Kv, Fηv)].

Moreover, the Herbrand quotient of a finite G-module is 1 so we have, using the exact
sequence Equation (II.2.1):

[Ĥ−1
c (U, F )] =

∏
v∈S∞

[Ĥ−1(Kv, Fηv))] =
∏
v∈S∞

[Ĥ−2(Kv, Fηv))] = [H−1(TF )].

The proposition now follows from the long exact cohomology sequence

0→ Ĥ−1
c (U, F )→ H−1(TF )→ H0

c (U, F )

→ Ĥ0
c (U, F )→ H0(TF )→ H1

c (U, F )→ Ĥ1
c (U, F )→ 0

by taking cardinals.
In the function field case, by functoriality we can suppose that U = C is a proper

smooth curve over k = Fp. Put X̄ := X ×k k̄ where k̄ is an algebraic closure of k, and
let F̄ denote the pullback of F to X̄. Then the cohomology groups H i(X̄, F̄ ) are finite
[Mil80, VI.2.1]. For M a finite Gk := Gal(k̄/k)-module, we have H i(Gk,M) = 0 for i ≥ 2
thus the spectral sequence

Ep,q
2 = Hp(Gk, H

q(X̄, F̄ ))⇒ Hp+q(X,F )

degenerates at the E2 page to give short exact sequences

0→ H1(Gk, H
i−1(X̄, F̄ ))→ H i(X,F )→ H i(X̄, F̄ )Gk → 0

for all i ∈ Z. From Equation (II.6.4) we deduce moreover that [H1(Gk, H
i(X̄, F̄ ))] =

[H i(X̄, F̄ )Gk ], which concludes the proof.

We now prove theorem II.C:

Theorem II.6.24 (Special values formula for Z-constructible sheaves). Let F be a Z-
constructible sheaf on a 1-dimensional regular irreducible scheme U of finite type over
Spec(Z) and let F be a Z-constructible sheaf on U . Then

ords=0LU(F, s) = EU(F ),

L∗
U(F, 0) = ±χU(F ).
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Proof. Given the functorial properties of the quantities involved, using the dévissage
argument (§ II.2.0.1) we reduce to the special cases of a constructible sheaf, which is the
previous proposition, of the constant sheaf Z on Spec(OK,S) or on a regular proper curve,
which are Proposition II.6.9 and Proposition II.6.10, and of a pushforward i∗M of a finite
type torsion-free discrete Gv-module for i : v ↪→ U a closed point.

Let v = Spec(Fq) be the spectrum of a finite field and let M be a finite type Gv-
module. Define the Weil-étale Euler characteristic of M by χv(M) := χSpec(Z)(f∗M) where
f : v → Spec(Z) is the structural morphism. Then f decomposes as v π−→ v0

i−→ Spec(Z)
with v0 = Spec(Fp). Since π is finite étale, we have

Rf !Gm = π∗Ri!Gm = π∗Z[−1] = Z[−1].

Moreover RΓc(Spec(Z), f∗M) = RΓ(v,M) and the canonical map

Z = H0(Gv,Z)→ H0(Gv0 ,Z) = Z

is multiplication by [Fq : Fp]. It follows using Proposition II.6.22 and II.6.8, and an analysis
similar to the one in § II.4.2.3 (to compute R(f∗M)) that χv(M) = χU(i∗M) as soon as
i : v ↪→ U realizes v as a closed point of U . If π : w = Spec(Fqn)→ v is a finite morphism
and M is a finite type Gw-module, we immediately find χv(indGw

Gv
M) = χw(M).

We have to show that ords=0Lv(M, s) = EU(i∗M) and

L∗
v(M, 0) = χv(M)

forM a finite type torsion-free discreteGv-module; since χv and EU (i∗M) = rankZH
0(Gv,M)

behave well with induction, and the case of M finite was already treated, by Artin induction
we reduce to M = Z. Then Lv(Z, s) = 1/(1− q−s), so L∗

v(Z, 0) = 1/ log q with order 1; on
the other hand, rankZH0(Gv,Z) = 1 and Corollary II.6.8 gives χv(Z) = 1/ log(q). This
concludes the proof.

Remark.

• In [GS20], the sign in Theorem II.6.24 is identified.

• The formula for proper smooth curves was already shown in [GS20, 3.1]; note that
the log(q) factor in ibid. is integrated in our Weil-étale Euler characteristic, coming
from the regulator pairing.

• We chose to define the L-functions of Z-constructible sheaves with geometric Frobenii
to fit with the modern definitions; Z-constructible sheaves are geometric data. But,
we could have defined the L-functions with arithmetic Frobenii instead and the
formulas for the order and special value would still hold. Indeed, it is easy to see that
a local factor has the same special value up to sign at s = 0 whether it be defined with
arithmetic or geometric Frobenius. By the devissage argument, the L-functions of
Z-constructible sheaves are essentially, up to changing some local factors and taking
powers, products of arithmetic zeta functions and their inverses. Since zeta functions
are insensitive to the difference between arithmetic and geometric Frobenius, it
follows that up to sign the special value at s = 0 is the same whether we define the
L-function with arithmetic or geometric Frobenii.
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II.7 Special values for L-functions of Z-constructible
sheaves in the non-regular case

We obtain as a corollary a result generalizing and precising [Tra16]; we allow singular
points, we work also on curves, and there is no need for a correcting factor for the 2-torsion
in the definition of the Weil-étale Euler characteristic in the presence of real places.

First, in the regular case, write U = Spec(OK,S) in the number field case or U = C\S
for C the smooth complete curve with function K in the function field case. The following
definition is standard:

Definition. Let V be a finite-dimensional discrete complex representation of GK. The
S-partial Artin L-function of V is

LK,S(V, s) :=
∏
v/∈S

det(I −N(v)−sFrob|V Iv)−1.

If g : Spec(K) → U is the inclusion of the generic point, we have seen that for a
discrete GK-module M of finite type, the sheaf g∗M is Z-constructible and LU(g∗M, s) =
LK,S(M ⊗Q, s). Hence the following corollary:

Corollary II.7.1. Let M be a discrete GK-module of finite type. Then

ords=0 LK,S(M ⊗Q, s) = EU(g∗M),

L∗
K,S(M ⊗Q, 0) = ±χU(g∗M).

Explicitly, we have:

EU(g∗M) = rankZH
1
c (U, g∗M)− rankZH

0
c (U, g∗M)

= rankZHomU(g∗M,Gm)− rankZ Ext
1
U(g∗M,Gm),

χU(g∗M) =
R(g∗M)[HomU(g∗M,Gm)tor][H

0
c (U, g∗M)tor]

[Ext1U(g∗M,Gm)tor][H1
c (U, g∗M)tor]

,

where R(g∗M) := R1(g∗M)
R0(g∗M)

with R0(g∗M) the absolute value of the determinant of the
pairing

H0
c (X, g∗M)R × Ext1U(g∗M,Gm)R → R

and R1(g∗M) the absolute value of the determinant of the pairing

H1
c (U, g∗M)R × HomU(g∗M,Gm)R → R

in bases modulo torsion.

Let K be a global field and X be an irreducible scheme, finite type over Z, of dimension
1 and with function field K. If the morphism X → Spec(Z) factors through Spec(Fp), X
is a curve over Fp. Otherwise morphism X → Spec(Z) is dominant so it is quasi-finite,
hence by Zariski’s main theorem X is the open subscheme of the spectrum of a finite
Z-algebra, thus if X is reduced it is an open subscheme of the spectrum of an order in K.
We let Z denote the singular locus of X and U the regular locus.

Following [Den87a], define the complex of sheaves

GX =

[
g∗Gm,η →

⊕
v∈X0

(iv)∗Z

]
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where X0 denotes the closed points, η = Spec(K) is the generic point and g (resp. iv)
is the canonical morphism η → X (resp. v → X). If X is regular, we have GX ≃ Gm,X

[Gro67, 21.6.9].
Let π : Y → Xred → X denote the normalization of Xred. Define cohomology with

compact support as in [Mil06, II.6], through the fiber sequence

RΓc(X,−)→ RΓ(X,−)→
∏
v∈S

RΓ(Kv, (−)ηv),

where S is the set of places of K not corresponding to a point of Y . We let again H i
c(X,−)

denote the corresponding cohomology groups; Propositions II.2.1 and II.2.4, as well as
Artin–Verdier duality (Theorem II.3.2) still hold; this is easily seen by comparing X to its
regular locus U .

Corollary II.7.2. Let f : X → T denote either a quasi-finite morphism X → T := P1
Fp

(in the function field case), which exists by the projective Noether normalization lemma, or
the quasi-finite structural morphism X → T := Spec(Z) (in the number field case); then
f! is well-defined. Let F be a Z-constructible sheaf on X. We have the order and special
value formula at s = 0:

ords=0LX(F, s) = ET (f!F ),

L∗
X(F, 0) = ±χT (f!F ).

Explicitly, we have:

ET (f!F ) = rankZH
1
c (X,F )− rankZH

0
c (X,F ) = rankZHomX(F,GX)− rankZ Ext

1(F,GX),

χT (f!F ) =
R(F )[HomX(F,GX)tor][H

0
c (X,F )tor]

[Ext1X(F,GX)tor][H1
c (X,F )tor]

,

where R(F ) := R1(F )
R0(F )

with R0(F ) the absolute value of the determinant of the pairing

H0
c (X,F )R × Ext1X(F,GX)R → R

and R1(F ) the absolute value of the determinant of the pairing

H1
c (X,F )R × HomX(F

,GX)R → R

in bases modulo torsion.

Proof. We have LT (f!F, s) = LX(F, s) and RΓc(T, f!F ) = RΓc(X,F ). The finite base
change theorem implies that

Rf !Gm,T = Rf !GT = GX ,

which shows that RHomT (f!g∗M,Gm) = RHomX(g∗M,GX). Theorem II.6.24 then gives
the first result, and for the second it suffices to apply Proposition II.6.22.

Corollary II.7.3. Let f : X → T denote either a quasi-finite morphism X → T := P1
Fp

(in the function field case), which exists by the projective Noether normalization lemma, or
the quasi-finite structural morphism X → T := Spec(Z) (in the number field case); then f!
is well-defined. We have the order and special value formula at s = 0:

ords=0LK,X(M, s) = ET (f!g∗M),

L∗
K,X(M, 0) = ±χT (f!g∗M).
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Proof. The sheaf g∗M is Z-constructible.

Corollary II.7.4. Suppose X is affine. We have the order and special value formula at
s = 0 for the arithmetic zeta function of X:

ords=0ζX = rankZ(CH0(X, 1)),

ζ∗X(0) = −
[CH0(X)]RX

ω
,

where RX is the absolute value of the determinant of the regulator pairing

H1
c (X,Z)R × CH0(X, 1)R → R

after a choice of bases modulo torsion and ω is the number of roots of unity in K.

Proof. We apply cocorollary II.7.2 to F = Z. Using Rqg∗Gm = 0 for q > 0 (see [Mil06,
II.1.4]), hypercohomology computations give

H0(X,GX) = ker(K×
∑

multv−−−−−→
⊕
v∈X0

Z) = CH0(X, 1),

H1(X,GX) = coker(K×
∑

multv−−−−−→
⊕
v∈X0

Z) = CH0(X).

Moreover it is clear from the above that CH0(X, 1)tor = µ(K).
From the short exact sequence

0→ Z→ π∗Z→ ⊕v∈Ziv,∗
(
⊕π(w)=vindGw

Gv
Z
)
/Z→ 0

with π : Y → X the normalization, Gv = Gal(κ(v)sep/κ(v)) and Gw the Galois groups of
the residue fields, we find by taking cohomology with compact support that H0

c (X,Z) = 0
and H1

c (X,Z) is torsion-free19. The regulator R(Z) contains no contribution from the
perfect pairing of trivial vector spaces

H0
c (X,Z)R × CH0(X)R → R,

hence we have R(Z) = RX .
If i : v → X is a closed point and M is a finite type discrete Gv-module, the eigenvalues

of the Frobenius must be either 1, −1 or pairs of complex conjugates. It follows that the
L-function of i∗M has a positive special value at s = 0. Let U be the regular locus of X;
we deduces from this that the sign of ζ∗X(0) is the same as that of ζ∗U(0), which is known
to be −1.

Remark.

• We can compute rankZCH0(X, 1) = s+t−1 where s = [S] and t =
∑

v∈Z([π
−1(v)]−1)

by using the localization sequences associated to the open-closed decompositions
U ↪→ X ←↩ Z and U ↪→ Y ←↩ π−1Z.

• Note that the proof above shows that CH0(X) = Ext1X(Z,GX) is torsion, and
Artin–Verdier duality states that it is finite type, hence it is finite.

19See the computations in the proof of Proposition II.6.9.
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Corollary II.7.5. Suppose X is a proper curve, and denote by Fq the field of constants of
K. We have the order and special value formula at s = 0 for the arithmetic zeta function
of X:

ords=0ζX = rankZ(CH0(X, 1))− 1,

ζ∗X(0) = −
[CH0(X)tor]RX

ω log(q)
,

where RX is the absolute value of the determinant of the regulator pairing

H1(X,Z)R × CH0(X, 1)R → R

after a choice of bases modulo torsion and ω is the number of roots of unity in K20.

Proof. As in the previous proof we have H0(X,GX) = CH0(X, 1), CH0(X, 1)tor = µ(K)
and H1(X,GX) = CH0(X), but this time we have H0(X,Z) = Z. We now want to identify
the pairing H0(X,Z)R × CH0(X)R → R coming from the regulator. For a closed point
w ∈ Y above v ∈ X, denote by fw := [κw : κv] the residual degree. Considering Y as a
curve over Fp, the degree map degY : Pic(Y ) → Z has image fZ, where pf = q. This
easily implies that there is a similarly-defined degree map degX : CH0(X)→ Z with image
fZ. The snake lemma applied to

0 K×/OY (Y )×
⊕

w∈Y0 Z Pic(Y ) 0

0 K×/CH0(X, 1)
⊕

v∈X0
Z CH0(X) 0

shows that coker(Pic(Y )→ CH0(X)) =
⊕

v∈Z Z/mvZ, where mv = pgcd{fw, π(w) = v}.
Since coker(Pic(Y ) → CH0(X)) = coker(Pic0(Y ) → ker(degX)), it follows from the
finiteness of Pic0(Y ) that ker(degX) is finite and hence equals CH0(X)tor. It is clear from
the constructions that the pairing H0(X,Z)R × CH0(X)R → R comes from the pairing
H0(X,Z) × CH0(X) → CH0(X)

deg−−→ fZ, hence similarly to the proof of II.6.10 we find
that its determinant is f log(p) = log(q) ; it follows that R(Z) = RX/ log(q).

The sign of ζ∗X(0) is proven to be −1 similarly to the previous proof.

Remark.

• We can compute rankZCH0(X, 1) = t where t =
∑

v∈Z([π
−1(v)] − 1) by using the

localization sequences associated to the open-closed decompositions U ↪→ X ←↩ Z
and U ↪→ Y ←↩ π−1Z. Thus if X is unibranch we have RX = 1.

• We showed in the proof above that CH0(X)tor is the group of classes of 0-cycles of
degree 0.

Remark. In [JP20], Jordan and Poonen prove an analytic class number formula for the
zeta function of a reduced affine finite type Z-scheme of pure dimension 1. They note that
even for non-maximal orders in number fields, the formula seems new. Let us compare
their results with ours. Define the completed zeta function

ζ̂K(s) = |dK |s/2ζY (s)
∏
v∈S

Lv(Z, s),

20Thus ω = q − 1.
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where π : Y → X is as before the normalization of X in K, dK is the discriminant of K,
Lv(Z, s) is the usual local factor if v is nonarchimedean and

Lv(Z, s) = 2(2π)−sΓ(s), v complex;

Lv(Z, s) = π− s
2Γ(

s

2
), v real.

By comparing ζX and ζY , we get the equality

ζX(s) = ζ̂K(s)|dK |−s/2
∏
w∈S

Lw(Z, s)−1
∏
v∈Z

(
Lv(Z, s)∏

π(w)=v Lw(Z, s)

)
.

Using the functional equation ζ̂K(s) = ζ̂K(1− s), we find the order and special value at
s = 0 :

ords=0ζX = s+ t− 1,

ζ∗X(0) = −
h(O)R(O))
ω(O)[Õ : O]

∏
v∈Z

γv∏
π(w)=v γw

,

where Y = Spec(Õ), γv = 1−N(v)−1

log(N(v))
, h(O) = [Pic(X)], R(O) is the covolume of the image

in Rs of O× via the classical regulator of Õ, and ω(O) = O×
tor. Our formula at s = 0

seems to be better in several aspects: it does not suppose X to be reduced nor affine and
it is defined in terms of global invariants of X.
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Chapter III

Interlude: Euler characteristics for
Z-constructible sheaves

In this chapter, we study Euler characteristics for categories of Z-constructible sheaves on
arithmetic schemes, and how one can do a dévissage for such sheaves to understand the Euler
characteristics. The aim is to abstract away the part of the proof of Theorem II.6.24 that is
completely formal. Recall that an Euler characteristic χ on an abelian category A is a map
χ from the isomorphism classes of A to an abelian group Γ, such that χ(B) = χ(A)+χ(C)
for every short exact sequence 0 → A → B → C → 0. Equivalently, it is a group
homomorphism from the Grothendieck group G(A) of the monoid of isomorphism classes
of A to Γ.

III.1 Vanishing on constructible sheaves
Let X be an arithmetic scheme. We denote ShZ(X)constr for the category of Z-constructible
sheaves on X. The first main theorem we prove is the following

Theorem III.1.1. Let χ be an Euler characteristic on ShZ(X)constr. If χ takes its values
in a torsion-free abelian group then it vanishes on constructible sheaves.

The above theorem essentially appeared for X the spectrum of a number ring in Chen’s
thesis [Che17]. As any object in the bounded derived category of an abelian category
has a finite filtration with graded pieces its cohomology groups, the result generalizes to
Euler characteristics on Db(ShZ(X)constr). Thus a particular case of Theorem III.1.1 is
the following: given an Euler characteristic χ for the category of Z-constructible sheaves
on Spec(Z) with values in a torsion-free abelian group, then for all bounded complexes
C of étale sheaves with constructible cohomology sheaves we have χ(C) = 0. Moreover,
if f : X → Spec(Z) is an arithmetic scheme, we can define an Euler characteristic for
constructible sheaves on X by putting χX(F ) := χZ(Rf!F ), which is well-defined, and
then χX(F ) = 0 for all constructible sheaves on X. This can be interesting if χX has an
intrinsic description in terms of X; for instance if χZ is the Weil-étale Euler characteristic
for Spec(Z) constructed in Chapter II, then for a constructible sheaf F on X we have

χX(F ) =
∏
i∈Z

[H i
c(X,F )]

(−1)i ,

where H i
c(X,−) is a compactly supported cohomology taking into account the cohomology

above the archimedean place of Q.
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Let π be a finite group, let R be a ring and denote G(R[π]) the Grothendieck group of
the category of finitely generated R[π]-modules. Up to the dévissage which we will explain
later, the theorem follows from a theorem of Swan:

Theorem III.1.2 ([Swa63, Corollary 1]). Let OK be the ring of integers in a number field
K. The kernel of the natural base change map G(OK [π])→ G(K[π]) is finite.

We will mostly use the following corollary:

Corollary III.1.3. Let G be a profinite group and let χ be an Euler characteristic on the
category of finite type discrete G-modules. If χ takes its values in a torsion-free abelian
group then it vanishes on finite G-modules.

Proof. Let H be an open normal subgroup of G. The full abelian subcategory CH of finite
type discrete GK-modules on which H acts trivially is equivalent to the category of finite
type Z[G/H]-modules, so the restriction of χ to it is an Euler characteristic, and thus
factors through G(Z[G/H]). If M is a finite G-module, then M belongs to CH for some
open normal subgroup H. Moreover, we have M ⊗Q = 0 so the class of M in G(Q[G/H])
is 0. By Theorem III.1.2 we deduce that the class of M is of finite order n in G(Z[G/H]);
then nχ([M ]) = χ([M ]n) = 0 so χ(M) = 0 because the value group of χ is torsion-free.

As another corollary to Theorem III.1.1, we reprove Tate’s formula for the Euler
characteristic of a global field K by reduction1 to our formula for the Weil-étale Euler
characteristic on the spectrum of the ring of S-integers in K:

Corollary III.1.4 (Tate, [Mil06, I.5.1]). Let K be a number field and let S be a finite set of
places including the set S∞ of all archimedean places. Denote by KS the maximal extension
of K unramified outside S and GK,S := Gal(KS/K). Let M be a finite GK,S-module whose
order is invertible on X := Spec(OK,S). Define

χ(GK,S,M) :=
[H0(GK,S,M)][H2(GK,S,M)]

[H1(GK,S,M)]
.

Then we have
χ(GK,S,M) =

1

[M ]d

∏
v∈S∞

[H0(Gv,M)],

where Gv := Gal(Ksep
v /Kv) and d = [K : Q].

The main ingredient is the following proposition which relates étale cohomology of
locally constant constructible sheaves on X and Galois cohomology of finite GS-modules:

Proposition III.1.5 ([Mil06, Proposition II.2.9]). Put η = Spec(K) and let F be a locally
constant constructible sheaf on X. Let M denote Fη. If the order of M is invertible on X
then

H i(GK,S,M) = H i(X,F ), ∀i ≥ 0.

Proof of Corollary III.1.4. Denote by Sf the set of finite places in S, Gv the Galois group
of the completion (resp. henselization) Kv of K at an archimedean (resp. finite) place v,
Fv the pullback of F to Spec(Kv), and χX the Weil-étale Euler characteristic constructed

1We still use Tate’s formula for the Euler characteristic of a local field.
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in Chapter II. As we noted above, since F is constructible we have by Proposition II.6.22,
Artin–Verdier duality [Mil06, II.3.1(b)] and Proposition II.2.3 that

χX(F ) =
3∏
i=0

[H i
c(X,F )]

(−1)i .

Using the above proposition, the defining long exact sequence of compactly supported
cohomology gives a long exact sequence

· · · → H i
c(X,F )→ H i(GK,S,M)→

∏
v∈S

H i(Gv, Fv)→ · · · .

As F is constructible, we haveH i
c(X,F ) = 0 for i > 3 [Mil06, II.3.12(a)] andH i(Gv, Fv) = 0

for a finite place v and i > 2, so we can end the sequence at i = 3 as

· · · → H3
c (X,F )→ H3(GK,S,M)→

∏
v∈S∞

H3(Gv, Fv)→ 0.

Denote by χv(N) :=
∏
[H i(Gv, N)](−1)i the Euler characteristic of the local field Kv when

v is finite. Then

χ(GK,S,M) = [H3(GK,S,M)]χX(F )
∏
v∈Sf

χv(Fv)
∏
v∈S∞

3∏
i=0

[H i(Gv, Fv)]
(−1)i .

We have an isomorphism H3(GK,S,M) ≃
∏

v∈S∞
H3(Gv, Fv) by [Mil06, I.4.10(c)], the

Herbrand quotient of a finite module is 1 and χX(F ) = 1 by Theorem III.1.1, thus the
above reduces to

χ(GK,S,M) =
∏
v∈Sf

χv(Fv)
∏
v∈S∞

[H0(Gv, Fv)].

Let m denote the order of M ; this is also the order of Fv when the latter is seen as a
Gv-module. The computation of the Euler characteristic of a local field [Mil06, I.2.8] gives
for any finite place v of K that

χv(Fv) =
1

(Ohv : mOhv )
.

By hypothesis m is invertible in Ohv for any finite place v of K not in S. The product
formula thus gives ∏

v∈Sf

χv(Fv) =
1∏

v∈S∞

|m|v
=

1

md
.

Remark.

• A similar reduction shows the analogous formula for a global function field.

• The two non-trivial steps in the above are the vanishing of χX(F ) which follows from
Theorem III.1.1 and hence from Swan’s theorem, and the computation of χv(Fv) for
a finite place v. We wonder whether there exists a proof of the latter computation
also relying on Swan’s theorem. Let us explain what we mean by this: we hope
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that there would exist an "arithmetic Euler characteristic" for Z-consctructible
sheaves on the spectrum of a p-adic field K, which would be defined through a
trivialization of a fundamental line formed with the determinants of an additive and
a multiplicative complex. For constructible coefficients, the multiplicative complex
should be given by Galois cohomology, and the additive complex should have finite
cohomology groups that are "easily" computable, and with alternating product equal
to 1/(OK : [M ]OK). Then Swan’s theorem would imply immediately Tate’s formula.
This picture is a bit naive however as cohomology groups with Z coefficients tend to
have Zp or Qp/Zp terms in them, so there is no hope of modifying them to obtain a
finitely generated cohomology.

• Deninger has proposed an alternative proof and a generalization of Tate’s formula
for proper arithmetic schemes in [Den87b].

In the following we abuse notations and make no distinction between sheaves on
Spec(K) and discrete GK-modules.

Lemma III.1.6. Let X be a normal integral arithmetic scheme and denote by g :
Spec(K) → X the inclusion of its generic point. Let L/K be a finite Galois exten-
sion. There exists a dense open U of X such that for any discrete GK-module M on which
GL acts trivially, the sheaf (g∗M)|U is locally constant with stalk M (in particular, it is
Z-constructible if M is finite type). Moreover, if M is of finite type the stalks of g∗M at
codimension 1 points are of finite type. In particular, if X is of dimension 1 then g∗M is
Z-constructible for any finite type discrete GK-module M .

Proof. Denote by π′ : Spec(L) → Spec(K) the morphism corresponding to L/K and
π : Y → X the normalization of X in L. We let U be the étale locus of π, gU :
Spec(K)→ U the inclusion of the generic point, πU : V := π−1(U)→ U the corestriction
of π to U and g′ : Spec(L) → V the inclusion of the generic point. Then π is finite
and πU is finite étale. Let M be a sheaf on Spec(K) on which GL acts trivially, that
is such that π′∗M is constant. As V is normal integral, g′∗π′∗M is constant. Let us
show that π∗

U

(
(g∗M)|U

)
= g′∗π

′∗M . We have (g∗M)|U = gU,∗M . As πU is étale, if
W is an étale V -scheme we have π∗

U(gU,∗M)(W ) = (gU,∗M)(W ) = M(W ×U Spec(K)).
On the other hand, we have Spec(L) = V ×U Spec(K) and π′ is étale so we obtain
g′∗π

′∗M(W ) = π′∗M(W ×V Spec(L)) =M(W ×V V ×U Spec(K)) =M(W ×U Spec(K)).
We thus have shown that g∗M is locally constant on the dense open subset U ; its

stalk at the generic point is M . Moreover, for x a point of codimension 1 let Ksh
x denote

the fraction field of the strictly henselian local ring at x, and Ix its Galois group. Then
(g∗M)x̄ = H0(Spec(Ksh

x ),M) =M Ix is of finite type when M is of finite type.

The following definition2 will be used in the proof of Theorem III.1.1:

Definition III.1.7. Let X be an arithmetic scheme. Let F be a constructible sheaf on X.
If the support of F does not contain any generic point of X, we say that F is negligible.

Note that if a sheaf F is negligible, it is supported on a closed subscheme i : Z → X
containing no generic point hence dimZ < dimX, and F can be written F = i∗G for the
constructible sheaf G = i∗F on Z. We now prove the main theorem:

2suggested by Tran in his thesis [Tra15]
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Proof of Theorem III.1.1. The proof proceeds by induction on the dimension of X. With-
out loss of generality, we can suppose that X is reduced. If dimX = 0, then X is a disjoint
union of spectra of finite fields, so we reduce to the case X = Spec(k) where k is a finite
field. The result is now given by Corollary III.1.3.

If dimX = d > 0, we first treat negligible sheaves. If F is negligible, there is a closed
subscheme i : Z → X with dimZ < dimX and a constructible sheaf G on Z such that
F = i∗G. As i∗ is exact and preserves Z-constructibles, the function χ ◦ i∗ is an Euler
characteristic on Z and thus by the induction hypothesis χ(F ) = χ ◦ i∗(G) = 0.

We now reduce to the normal case: denote by π : Y → X the normalization of X; it
is a finite morphism, and Y is the disjoint union of the normalizations of the (finitely
many) irreducible components of X, which are each of dimension ≤ d. Then π∗F is a
constructible sheaf on Y , π∗ is exact and respects Z-constructibles and the cokernel Q in
the exact sequence

0→ F → π∗π
∗F → Q→ 0

is negligible. We thus find on the one hand that χ(F ) = (χ ◦ π∗)(π∗F ) and on the other
hand that χ ◦ π∗ is an Euler characteristic on Y , so we can reduce to the case of a normal
arithmetic scheme of dimension d.

Suppose now that X is integral normal and denote by g : η = Spec(K) → X the
inclusion of its generic point. Let L/K be a finite Galois extension such that GL acts
trivially on M := g∗F , and put G := GK/GL. Take a dense open j : U → X as in
Lemma III.1.6 and let gU : η → U denote the canonical map. We claim that χ ◦ j!gU,∗ is
an Euler characteristic on finite type G-modules. Let

0→ N ′ → N → N ′′ → 0

be an exact sequence of G-modules of finite type. Then the sequence

0→ gU,∗N
′ → gU,∗N → gU,∗N

′′ → 0

is an exact sequence of locally constant Z-constructible sheaves by construction of U so
we obtain an exact sequence of Z-constructible sheaves on X after applying j!. This shows
the claim. Therefore χ ◦ j!gU,∗ vanishes on finite G-modules by Corollary III.1.3.

Denote by i : Z → X the closed complement of U . As U is dense and F is constructible,
the sheaf i∗i∗F is negligible so the localization sequence

0→ j!F|U → F → i∗i
∗F → 0

implies that χ(F ) = χ(j!F|U ). On the other hand, the kernel and cokernel of the canonical
map j!F|U → j!g∗,UM are also negligible so we find χ(j!F|U ) = χ(j!g∗,UM) = 0; this implies
that χ(F ) = 0.

Remark. We stated our theorems for arithmetic schemes but this will work more generally
for any family of schemes such that

1. in dimension 0 we obtain, in the reduced case, a finite disjoint union of spectra of
fields (for instance Noetherian schemes) and

2. the normalization of the reduction is always a finite morphism (for instance Nagata
schemes).

In particular the above applies to all Noetherian Nagata schemes, as the induction argument
reasons on the schemes that have an immersion to the considered scheme, and those are
also Noetherian and Nagata.
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III.2 Vanishing on Z-constructible sheaves
Using a similar dévissage, but relying on Artin induction now, we can prove our second
main theorem:

Theorem III.2.1. Let χ, χ′ be two Euler characteristics on the category of Z-constructible
sheaves on an arithmetic scheme X, with values in a torsion-free abelian group. If
χ(π∗Z) = χ′(π∗Z) for π : Y → X any finite morphism of arithmetic schemes with Y
normal irreducible, then χ = χ′.

Let us recall the statement of Artin induction, and its integral version:

Theorem III.2.2 ([Swa60, 4.1,4.4]). Let π be a finite group. Then the subgroup generated
by classes of representations induced from the trivial representation of subgroups of π is of
finite index in G(Q[π]).

Corollary III.2.3. Let G be a profinite group and let M be a finite type discrete G-module.
There exists an integer n, finitely many open subgroups (Hi)i∈I , (Hj)j∈J of G and a finite
G-module N together with an exact sequence

0→Mn ⊕
⊕
i∈I

indHi
G Z→

⊕
j∈J

ind
Hj

G Z→ N → 0.

We deduce a preliminary version of Theorem III.2.1:

Corollary III.2.4. Let G be a profinite group and let χ, χ′ be two Euler characteristics on
the category of finite type discrete G-modules, with values in a torsion-free abelian group.
If χ(indHGZ) = χ′(indHGZ) for every open subgroup H of G then χ = χ′.

Proof. It suffices to prove that if χ(indHGZ) = 0 for all open subgroups then χ = 0. By
Theorem III.1.1 we have χ(M) = 0 for finite M . If M is an arbitrary finite type discrete
G-module, using the short exact sequence

0→Mtor →M →M/tor→ 0

we reduce to the case where M is torsion-free. Then using an exact sequence as in the
above corollary, we find

nχ(M) =
∑
j∈J

χ(ind
Hj

G Z)−
∑
i∈I

χ(indHi
G Z)− χ(N) = 0.

As the value group of χ is torsion-free, we find χ(M) = 0.

We now prove Theorem III.2.1 by a dévissage similar to the proof of Theorem III.1.1.

Proof of Theorem III.2.1. It suffices to show that if χ(π∗Z) = 0 for all finite morphisms
π : Y → X with Y normal irreducible then χ = 0. We reason by induction on dimX, and
we can suppose that X is reduced. In the dimension 0 case, the result is Corollary III.2.4.
If dimX > 0, we already know by Theorem III.2.1 that χ vanishes on constructible sheaves.
Let F be a Z-constructible sheaf on X. If the support of F does not contain any generic
point, then F is supported on a closed subscheme i : Z → X with dimZ < dimX so
the result applied to χ ◦ i∗ gives χ(F ) = 0. Let π : Y → X denote the normalization
of X; then the supports of the kernel and cokernel of F → π∗π

∗F do not contain any
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generic point, so we can reduce to the case where X is integral and normal. Denote by
g : Spec(K)→ X the inclusion of the generic point, let L/K be a finite Galois extension
such that GL acts trivially on M := g∗F , and put G = GK/GL. Take a dense open
j : U → X as in Lemma III.1.6 and let gU : Spec(K)→ U denote the canonical morphism
and i : Z → X the inclusion of the closed complement of U ; we have dimZ < dimX. We
have seen that χ ◦ j!gU,∗ is an Euler characteristic on finite type G-modules. If H is a
subgroup of G corresponding to an intermediate extension L/E/K, denote by π : Y → X
the normalization of X in E and πU : V → U its corestriction to U . Let g′V denote the
morphism Spec(E)→ V ; since V is normal, we have

gU,∗ind
H
GZ = πU,∗gv,∗Z = πU,∗Z

hence
χ(j!gU,∗ind

H
GZ) = χ(j!πU,∗Z) = χ(π∗Z) = 0

since the cokernel of j!πU,∗Z→ π∗Z is supported on Z. We can then apply Corollary III.2.4
which yields χ ◦ j!gU,∗(M) = 0. Finally, the kernel and cokernel of j!F |U → j!gU,∗M do
not contain the generic point and the cokernel of the injection j!F|U → F is supported on
Z, so we find

χ(F ) = χ(j!F|U = χ(j!gU,∗M) = 0.
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Chapter IV

Tori over number fields and special
values at s = 1

IV.1 Introduction

IV.1.1 Results

IV.1.1.1 A new L-function. LetO be an order in a number fieldK andX = Spec(O).
Denote by Zc

X := Zc
X(0) Bloch’s cycle complex (with cohomological indexing, see § IV.1.3.2),

defined on the étale site of X; in particular if X is regular we have Zc
X = Gm[1]. A sheaf

of abelian groups F on the étale site of X is Z-constructible if on a dense open it is
locally constant associated to a finite type abelian group, and moreover the stalks at
all geometric points are finite type abelian groups. If F is a Z-constructible sheaf, put
FD := RH omX(F,Zc

X). The cohomology of FD is related to the compactly supported
cohomology of F by Artin–Verdier duality ; thus we think of it as computing homology
with coefficients in F . To the complex FD, we associate an L-function:

Definition. For a complex of étale sheaves M , we put

M⊗̂Qℓ :=
(
R lim

n
(M ⊗L Z/ℓnZ)

)
⊗Q,

computed on the proétale site. For each closed point x of X, let ℓ = ℓx be a prime number
such that ℓ ≠ char(κ(x)) and Lx the usual local factor defined using the geometric Frobenius
φ: for a finite dimensional Qℓ-representation V , it is given by

Lx(V, s) := det(1− φN(x)−s|V )−1

with N(x) = card(κ(x)). We define the L-function of FD by

LX(F
D, s) :=

∏
x∈X0

Lx
(
(i∗xF

D)⊗̂Qℓx , s
)
.

We compute explicitly the local factors, show that they are well-defined and that the
Euler product converges for s > 1. In fact, denote by g : Spec(K) → X the inclusion
of the generic point and GK = Gal(Ksep/K). If V is the rational representation of GK

corresponding to g∗F⊗Q, then the L-function of FD equals up to a finite number of factors
the Artin L-function LK(V, s+1).1 In particular, the L-function extends to a meromorphic

1Rational representations are self-dual.
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function on C. If F is a Z-constructible sheaf on Spec(K) associated to a finite type integral
GK-representation M , we have moreover LX(g∗F )D, s) = LK(M ⊗Q, s+1). We have as a
special case LX(ZD, s) = ζX(s+1) if X is regular. On the other hand, let i : x→ X be the
inclusion of a closed point and let F be a Z-constructible sheaf on x. In Subsection II.6.4
we introduced L-functions for Z-constructible sheaves on X; then LX((i∗F )

D, s) is the
L-function of the Z-constructible sheaf i∗H omx(F,Z). Finally, if j : U ↪→ X is the
inclusion of a dense open subscheme, we have LX((j!Z)D, s) = ζU (s+ 1)×

∏
x∈X\U

ζx(s+1)
ζx(s)

.

IV.1.1.2 Weil-étale cohomology and special values. We apply the Weil-étale
formalism of Flach–B. Morin [FM18] to give a special value formula at s = 0 of this new
L-function. The idea of Weil-étale cohomology originates in [Lic05], where Lichtenbaum
constructs a Weil-étale topos for varieties over a finite field and links it to the special
value at s = 0 of zeta functions. Further work was done by Geisser over a finite field
[Gei04]. For schemes over Spec(Z), attempts at the definition of a Weil-étale topos were
made by Lichtenbaum [Lic09] and Flach–B. Morin [FM10] but its cohomology doesn’t
behave well in high degree. Another approach was instigated by B. Morin in [Mor14]
and refined by Flach–B. Morin in [FM18]: instead of constructing the Weil-étale topos,
one only constructs Weil-étale cohomology complexes in the derived category of abelian
groups which fit into a certain distinguished triangle. This distinguished triangle comes
heuristically from the pushforward from the Weil-étale topos to the étale topos2.

Other relevant works on Weil-étale cohomology include Chiu’s thesis [Chi11], Beshenov’s
thesis [Bes21a; Bes21b] and Tran’s article [Tra16]. Work related to the study of the Weil-
étale cohomology of FD are Geisser–Suzuki’s article [GM21] and Tran’s thesis [Tra15]. As
far as the author knows, Tran was the first to observe that for an integral representation
M of the Galois group of a number field K, the special value of the Artin L-function of
M ⊗Q at s = 1 should be related to Weil-étale cohomology of the dual of the pushforward
of M to Spec(OK).

Following the formalism of Flach–B. Morin, we should construct for each F a “multi-
plicative” complex3, the Weil-étale complex (with compact support) which we think of as
“Weil-étale homology” with coefficients in F , and an “additive” complex4, an analogue of
Milne’s correcting factor in special value formulas for zeta functions of varieties over finite
fields. The right object to consider is then the fundamental line ∆X(F

D), a free abelian
group of rank 1 which is defined as the product of the determinants of the additive and
multiplicative complexes. In the general situation of an arithmetic scheme, contrary to the
case over a finite field, the additive and multiplicative complexes are linked to each other
through phenomena happening on complex points. They cannot be studied independently
to get a special value formula; instead one of the fundamental insights of [FM18] is that one
has to study them together through the fundamental line5. The fundamental line should
have a canonical trivialization ∆X(F

D)⊗ R ≃−→ R after base change to R, which enables
one to construct a multiplicative Euler characteristic as the covolume of ∆X(F

D) inside
∆X(F

D)⊗ R. This Euler characteristic should give the special value of the L-function up
to sign.

2The pushforward had been computed by Geisser [Gei04] in the case over a finite field and by B. Morin
in the case of the spectrum of a ring of integers in a number field [Mor11, §8, §9].

3Here “multiplicative” suggests that the complex is linked to motivic cohomology: the latter involves
the units, the Picard group, etc.

4Here “additive” suggests that the complex is linked to coherent phenomena/ de Rham cohomology
5This idea has its origin in the formulation of Fontaine–Perrin-Riou of the Bloch–Kato conjecture on

special values of L-functions
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IV.1.1.3 The Weil-étale complex We introduce compactly supported cohomology
and “Tate” compactly supported cohomology complexes6

RΓc,B(X,F
D), RΓ̂c,B(X,F

D).

The two bear to each other the same kind of relationship as ordinary and Tate cohomol-
ogy: the fiber of the canonical morphism (induced by the norm map) RΓc,B(X,FD)→
RΓ̂c,B(X,F

D) computes some homology at the archimedean places. Moreover, we prove
an Artin–Verdier duality statement for RΓ̂c,B(X,FD), which suggests that compactly
supported cohomology of FD should be thought of as “étale homology” of F :

Theorem IV.A (Artin–Verdier duality for FD, see Subsection IV.2.2). Let F be a an
étale sheaf on the spectrum X of an order in a number field. There is a natural pairing

RΓ(X,F )⊗L RΓ̂c,B(X,FD)→ Q/Z[−2].

It induces a map

RΓ̂c,B(X,F
D)→ RHom(RΓ(X,F ),Q/Z[−2]).

If F is Z-constructible, the above map is an isomorphism in degree ̸= −1, 0, and an
isomorphism after profinite completion of the left hand side in degree −1, 0.

The proof proceeds by twisting the usual Artin–Verdier theorem [Mil06, II.3.1] by a
duality at archimedean places. With the Artin–Verdier-like duality theorem in our hands,
we can construct a Weil-étale complex using the methodology of [Mor14]: the cohomology
groups with compact support of FD have a finite type part and a torsion of cofinite type
part (i.e. the Q/Z-dual of a finite type abelian group) and Artin–Verdier duality says that
the torsion cofinite type part is the Q/Z-dual of some étale cohomology of F . Taking
inspiration from Geisser’s and B. Morin’s computation of the derived pushforward from
the Weil-étale topos to the étale topos [Gei04; Mor11], there should exist a fundamental
distinguished triangle saying that Weil-étale cohomology with compact support of FD is
obtained by replacing the torsion cofinite type part of cohomology with compact support
of FD by a finite type part, using the short exact sequence 0→ Z→ Q→ Q/Z→ 0. This
suggest the existence of a map Hom(H2−i(X,F ),Q)→ H i

c,B(X,F
D) making the diagram

Hom(H2−i(X,F ),Q) H i
c,B(X,F

D)

Hom(H2−i(X,F ),Q/Z) Ĥ i
c,B(X,F

D)Artin–Verdier

commute; taking kernels and cokernels will then give something of finite type. We are
thus led to consider the existence of a map RHom(RΓ(X,F ),Q[−2]) ?−→ RΓc,B(X,F

D),
the cone of which we want to name Weil-étale cohomology with compact support of FD.
We achieve the construction of such a map with good functoriality properties in D(Z) for
a large class of Z-constructible sheaves, which we name red sheaves and blue sheaves.

Definition. Let F be a Z-constructible sheaf on X. We say that
6The subscript B refers to the way we correct the cohomology at infinity, which involves the Tate twist

Z(1) = 2iπZ
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• F is red if H0
c,B(X,F

D) is torsion, hence finite.

• F is blue if H1(X,F ) is torsion, hence finite.

• A red-to-blue morphism is a morphism of sheaves F → G where either F and G
are both blue, or are both red, or F is red and G is blue ; a red-to-blue short exact
sequence is a short exact sequence with red-to-blue morphisms.

Examples of red sheaves are extensions by zero of locally constant Z-constructible
sheaves on a regular open subscheme. Examples of blue sheaves are Z-constructible sheaves
supported on a finite closed subscheme. The important point is that there are “enough
red and blue sheaves”, meaning that any Z-constructible sheaf can be put in a short exact
sequence where the first term is red and the last is blue.7

Theorem IV.B (Existence of the Weil-étale complex, see Section IV.3). For every red
or blue sheaf F on the spectrum X of an order in a number field, there exists a Weil-
étale complex with compact support RΓW,c(X,FD) ∈ D(Z), well-defined up to unique
isomorphism. It sits in a distinguished triangle

RHom(RΓ(X,F ),Q[−2])→ RΓc,B(X,F
D)→ RΓW,c(X,F

D)→ .

It is a perfect complex, functorial in red-to-blue morphisms, and it yields a long exact
cohomology sequence for red-to-blue short exact sequences. If Y = Spec(O′) is the spectrum
of an order in a number field with a finite dominant morphism π : Y → X, we have a
canonical isomorphism RΓW,c(X, (π∗F )

D) ≃ RΓW,c(Y, F
D).

The Weil-étale cohomology with compact support of FD is constructed from the
complex RΓc,B(X,FD), so it can be thought of as some “Weil-étale homology” of F . The
idea of such a homology theory is not new: Geisser had defined “arithmetic homology”
for curves over finite fields [Gei12], and there is a tentative construction of a Weil-étale
complex of FD over the spectrum of a ring of integers in a totally imaginary number field
in Tran’s thesis [Tra15]. Finally, let K be a function field associated to a smooth proper
curve C over a finite field. Geisser–Suzuki showed in [GS20] that for a given torus over K,
its connected Néron model T ◦ over C is of the form FD for F a complex defined in terms
of the character group of T . They then linked the special value of the L-function of the
torus at s = 1 to Weil-étale cohomology of T ◦; this suggested that our approach might be
fruitful (see § IV.1.2.2 for a precise comparison).

Having an ∞-categorical construction of the map

RHom(RΓ(X,F ),Q[−2])→ RΓc,B(X,F
D)

would have been better, but this construction has eluded us. Instead, we use a kind of
miraculous vanishing of Ext1 groups, for red or blue sheaves, which enables to define the
map by only specifying the maps it induces in cohomology. This vanishing is not true for
arbitrary Z-constructible sheaves, which explains our restriction. It will turn out that to
define the Weil-étale Euler characteristic this is not a problem, because of the existence of
“enough red and blue sheaves”.

7Namely, take the short exact localization sequence associated to a regular dense open subscheme on
which the sheaf is locally constant.
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IV.1.1.4 The additive complex We now have the multiplicative part of the funda-
mental line, so we turn to the additive part, which we dub the tangent space of FD:

Definition (The tangent space of FD). Let F be a Z-constructible sheaf on X and denote
by g : Spec(K)→ X the inclusion of the generic point. We identify g∗F with a discrete
GK-module M . Let also OK denote the ring of integers in K.

• We say that F is tamely ramified if for each x ∈ X0, the wild ramification group at x
acts trivially on M . Let Kt be the maximal tamely ramified extension of K,8 and
Gt
K := Gal(Kt/K); if F is tamely ramified, M carries a natural action of Gt

K.

• Suppose that F is tamely ramified. The tangent space of FD is the complex

LieX(F
D) := RHomGt

K
(M,OKt [1]).

• Suppose that F is tamely ramified and red or blue. The fundamental line is

∆X(F
D) := det

Z
RΓW,c(X,F

D)⊗ det
Z

LieX(F
D)−1.

Our definition of the tangent space is made so that in particular, when X = Spec(OK)
is regular, the tangent space of ZD = Zc

X = Gm[1] is RΓ(X,Ga[1]) = OK [1], and the
tangent space of the dual of a sheaf supported on a finite closed subscheme is 0. This is as
expected from the L-function we introduce: indeed for ZD it gives the zeta function at s+1
so its special value at 0 is the special value of the Dedekind zeta function at 1 and should
involve contributions from OK (for instance, the discriminant); this was shown already in
the Weil-étale formalism by Flach–B. Morin in the case of Z(1) = (ZD)[−2] for X regular
[FM18]. On the other hand, for the dual of a sheaf supported on a finite closed subscheme
we find an L-function as in Subsection II.6.4, for which there is no “additive” contribution
for the special value at 0, as we saw. The restriction to tamely ramified sheaves is justified
by a theorem of Noether [Noe32], which implies that OKt is cohomologically trivial. In
the next chapter, we will show how to remove the tamely ramified hypothesis, at least
at the level of the fundamental line. The definition was inspired by the article [GS20],
which uses the Lie algebra of the Néron model of a torus T over K to form the additive
part of the fundamental line giving the special value at s = 1 of the L-function of T (see
§ IV.1.2.2). Our definition is a generalization of this construction (in the tamely ramified
case) that includes finite groups of multiplicative type, as shows the following:

Proposition (see Corollary IV.4.7). Denote by g : Spec(K)→ X the canonical map, and
let F be a Z-constructible sheaf on X. Suppose that F is a tamely ramified and that g∗F
is torsion-free. Let T denote the torus over K with character group g∗F and let T denote
its Néron model over Spec(OK). Then there is a canonical isomorphism

LieX(F
D) ≃ Lie(T )[1].

IV.1.1.5 Trivialization of the fundamental line Now that we have our fundamental
line, to obtain the Euler characteristic we should seek a canonical trivialization. We propose
a contravariant generalization of the complex RΓc(X,R(1)) of [FM18]9:

8See Appendix C for a reminder.
9The complex of Flach–B. Morin is the mapping fiber of the Beilinson regulator between motivic

cohomology (tensored with R) and (real) Deligne cohomology on the complex points, in weight 1; see
[FM18, § 2.1]
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Definition. Let F be an étale sheaf on X and let α∗F denote the GR-equivariant sheaf
obtained by pulling back F to X(C). The map log | − | : C× → R induces a natural map

Log : RΓ(X,FD)R → RHomGR,X(C)(α
∗F,R[1]).

For F a Z-constructible sheaf on X, we define the Deligne compactly supported complex
with coefficients in FD by

RΓc,D(X,F
D
R ) := fib(RΓ(X,FD)R

Log−−→ RHomGR,X(C)(α
∗F,R[1])

)
.

Then, again following [FM18], we introduce Weil–Arakelov complexes:

Definition. Let F be a Z-constructible sheaf on X. We define the Weil–Arakelov complex
of FD as the complex:

RΓar,c(X,F
D
R ) := RΓc,D(X,F

D
R )[−1]⊕RΓc,D(X,FD

R ).

The determinant of the Weil–Arakelov complex has a canonical trivialization; we will
obtain the trivialization of the fundamental line by relating the fundamental line with the
determinant of the Weil–Arakelov complex through a duality theorem and the rational
splitting of Weil-étale cohomology:

Theorem IV.C (Duality theorem for R-coefficients, see Section IV.5). Let F be an étale
sheaf on the spectrum X of an order in a number field. There is a natural pairing

(RΓ(X,F )⊗ R)⊗LR RΓc,D(X,FD
R )→ R[0].

It induces a map
RΓc,D(X,F

D
R )→ RHom(RΓ(X,F ),R),

which is an isomorphism for F ∈ D+(Xet). If moreover F is a bounded complex with
Z-constructible cohomology groups, both sides are perfect complexes of R-vector spaces.

Proposition (Rational splitting of Weil-étale cohomology, see Proposition IV.3.12). Let F
be a red or blue sheaf on X. The defining distinguished triangle of Weil-étale cohomology
splits rationally to give an isomorphism

RΓW,c(X,F
D)⊗Q ≃−→ RHom(RΓ(X,F ),Q[−1])⊕RΓc,B(X,FD)⊗Q,

natural in red-to-blue morphisms and red-to-blue short exact sequences and compatible with
finite dominant morphisms between spectra of orders in number fields.

The duality theorem and the rational splitting imply that there is a distinguished
triangle

RΓar,c(X,F
D
R )→ RΓW,c(X,F

D)⊗ R→ LieX(F
D)⊗ R,

which gives the natural trivialization

λ : ∆X(F
D)R = det

R
(RΓW,c(X,F

D)⊗ R)⊗ det
R
(LieX(F

D)⊗ R)−1

≃−→ det
R
(RΓar,c(X,F

D
R ))

≃−→ R.
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IV.1.1.6 The Euler characteristic and the special value theorem

Definition.

• Let F be a tamely ramified red or blue sheaf on X. The Weil-étale Euler characteristic
of FD is the positive real number χX(FD) such that

λ(∆X(F
D)) = χX(F

D)−1 · Z ↪→ R.

• Let F be a tamely ramified Z-constructible sheaf on X. There exists a short exact
sequence 0→ F ′ → F → F ′′ → 0 with F ′ red and tamely ramified and F ′′ blue and
tamely ramified; define

χX(F
D) = χX((F

′)D)χX((F
′′)D).

It does not depend on the chosen sequence.

The constructed Euler characteristic is multiplicative thanks to the functoriality
properties of our constructions. We have an explicit computation:

Proposition (see Proposition IV.7.9). Let F be a tamely ramified Z-constructible sheaf
on X and suppose that X is regular. We have

χX(F
D) =

(2π)r2(F )2r1(F )[H0(X,F )tor][Ext
1
X(F,Gm)tor]R(F

D)

[H1(X,F )tor][HomX(F,Gm)tor][Ext
1
Gt

K
(Fη,OKt)][N2] Disc(F )

,

where r1(F ) and r2(F ) are some positive integers, N2 is a certain finite 2-torsion abelian
group, R(FD) is a regulator-type real number and Disc(F ) is a square-root-of-discriminant-
type real number.

Now that we have an Euler characteristic at our disposition, the general method
following work of Tran [Tra16] (also used in [GM21] and Chapter II) is to reduce the
special value formula using the results of Chapter III to computations in specific cases.
We obtain:

Theorem IV.D (Special value formula, see Subsection IV.7.2). Let F be a Z-constructible
sheaf on the spectrum X of an order in a number field. We have the vanishing order
formula

ords=0LX(F
D, s) =

∑
(−1)ii · dimRH

i
ar,c(X,F

D
R ).

If F is tamely ramified and red or blue, we have the special value formula

λ−1(L∗
X(F

D, 0)−1 · Z) = ∆X(F
D).

In general, if F is a tamely ramified Z-constructible sheaf, we have the special value formula

L∗
X(F

D, 0) = ±χX(FD).

For F = Z we find the analytic class formula for the Dedekind zeta function, so this can
be seen as a wide generalization of the analytic class number formula. In the singular case, it
does not give a special value formula at s = 1 of the zeta function: indeed if Z is the singular
locus and π : Y → X is the normalization, LX(ZD, s) = ζX\Z(s+1)×

∏
z∈Z
∏

π(y)=z
ζy(s+1)

ζy(s)
.
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IV.1.2 Comparison with other works

IV.1.2.1 [Tra15] Our work represents a significant improvement on Tran’s thesis.
The construction of Tran, which takes place over X = Spec(OK) in the totally imaginary
case, involves a complex DFD for so-called “strongly Z-constructible sheaves” with a
naturally attached real number χTran(F

D). In the previous chapters of his thesis, Tran
had constructed a complex DF with a naturally attached real number10 χTran(F ) such
that, for M a finite type torsion-free discrete GK-module corresponding to an étale sheaf
Y on Spec(K) and g : Spec(K)→ X the canonical morphism, L∗

K(M, 0) = ±χTran(g∗Y ).
Let d = rankZ Y ; Tran computes

χTran((g∗Y )D) =
χTran(F )(2π)

nd/2√
|∆K |

d

and essentially deduces from the functional equation the formula

L∗
K(M, 1) = ±χTran((g∗Y )D)

NK/Q(f(M))
,

with f(M) the Artin conductor. The quantity NK/Q(f(M)) is shown to be related to two
natural integral structures on the Lie algebra Lie(D(M)) of the torus D(M) with character
group M . 11

Tran’s thesis only works out the case of a totally imaginary number field, which avoids
the handling of factors of 2 linked to real places. Our construction takes places over an order
in an arbitrary number field; in particular we have to be careful with the 2-torsion, which is
achieved through our compactly supported cohomology, and with singularities, which are
handled by using the dualizing complex Zc instead of Gm[1]. Though we restrict ourselves
to tamely ramified Z-constructible coefficients (and this condition is lifted in Chapter V),
we obtain a multiplicative Euler characteristic, given on the nose by the fundamental line,
which describes the special value at s = 0 of the L-function LX(FD, s) (which includes as
a special case Artin L-functions at s = 1 for tamely ramified rational representations of
GK). We also have to place some restrictions on the Z-constructible sheaves to obtain a
construction of Weil-étale complexes, but these restrictions are significantly weaker than
the “strongly Z-constructible” condition of Tran and give a well-behaved complex that has
good functorial properties.

IV.1.2.2 [GS20] Our work can be seen as adapting and generalizing to the number
field case a part of Geisser–Suzuki’s work on special values of 1-motives over a function field
K, specifically the part about tori. The analogy between our work and theirs is as follows:
let K be a global field, let T be a torus over K with character group M , let X be either
Spec(OK) or the smooth complete curve with function field K and let g : Spec(K)→ X be
the canonical morphism. In the function field case, Geisser–Suzuki consider the connected
Néron model T ◦ of T over X. They prove that T ◦ ≃ RH omX(τ

≤1Rg∗M,Gm) as an étale
sheaf. The cup product with a generator e ∈ H1

W (X,Z) ≃ Z induces a trivialization on
detR(RΓW (X, T ◦)⊗R) while the complex RΓZar(X,Lie(T ◦))⊗R is trivial; this induces a

10We do not say Euler characteristic because the multiplicativity is not proven
11It seems to us that there is a mistake there, as Tran claims that Lie(D(M)) = HomZ(M,K) while

the correct formula should be Lie(D(M)) = HomGK
(M,Ksep). It is not clear to us what impact this

potential mistake has on his results.
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trivialization λe :
(
(detZRΓW (X, T ◦))−1 ⊗ detZRΓZar(X,Lie(T ◦)

)
⊗ R ≃−→ R. After some

reformulation, the special value formula for the L-function of T is12

Theorem ([GS20, thm. 4.6]).

λ−1
e (L∗(T, 0) · Z) =

(
det
Z
RΓW (X, T ◦)

)−1 ⊗ det
Z
RΓZar(X,Lie(T ◦)).

In the number field case, put F := τ≤1Rg∗M so that

FD = RH omX(τ
≤1Rg∗M,Gm)[1] = T ◦[1].

The sheaf g∗M is red and moreover R1g∗M is constructible, so the conclusions of both thm.
A and thm. B hold without modification for F and we have a Weil-étale complex with
compact support RΓW,c(X, T ◦) := RΓW,c(X,F

D)[−1]. We have LX(FD, s) = L(T, s)−1.
Finally when M is tamely ramified, since R1g∗M is supported on a finite closed subscheme
we have

LieX(F
D) = LieX((g∗M)D) = Lie(T )[1] = Lie(T ◦)[1] = RΓZar(X,Lie(T ◦))[1]

so our formula is the direct analogue of the previous one:

Theorem.

λ−1(L∗(T, 0) · Z) =
(
det
Z
RΓW,c(X, T ◦)

)−1 ⊗ det
Z
RΓZar(X,Lie(T ◦)).

Since we consider all coefficients FD for F a Z-constructible sheaf, we gain some
flexibility which allows us to consider the case where X is singular. The main technical
difficulties in our situation seem to be the definition of Weil-étale cohomology and of
the tangent space of FD,13 while in the function field case Weil-étale cohomology is a
well-established construction by work of Lichtenbaum and Geisser [Lic05; Gei04].

IV.1.2.3 [JP20] Jordan–Poonen proved an analytic class number formula for the zeta
function of a 1-dimensional affine reduced arithmetic scheme. Our work is related but
different in nature, as the functions we consider are not the same: for j : U → X an open
immersion, we have LX((j!Z)D, s) = ζU(s+ 1) only when U = X and X is regular. Let
X = Spec(O) be the spectrum of an order in a number field K, let j : U → X be an
open subscheme and let Sf be the finite places missing from the normalization of U . Put
A := OU(U). Their special value formula for U is

ζ∗U(1) =
2r1(2π)r2h(A)R(A)

∏
x∈Sf

((1−N(x)−1)/ logN(x))

ω(A)
√
|∆A|

,

with r1, r2 the number of real and complex places of K, h(A) := [Pic(U)], R(A) is the
covolume of A× ⊂ O×

K,S under the usual logarithmic embedding, ω(A) = [(A×)tor] and ∆A

is the discriminant of A, that is det(Tr(eiej)) for a Z-basis ei of A.
12We use the L-function L(T, s) of the 1-motive of [0→ T ], which is related to the Hasse-Weil L-function

LHW(T, s) by L(T, s) = LHW(T, s+ 1). This is why our formula takes place at s = 0 while the formula in
[GS20] is for s = 1.

13Although we construct in the next chapter the additive part of the fundamental line, which we
interpret as the determinant of the tangent space of FD, we do not introduce a tangent space in the
tamely ramified case; the additive part of the fundamental line is constructed as the determinant of a
complex which is not exact in F , so we are not sure if the latter deserves the name of “tangent space” of
FD: since all our constructions are derived, we would very much like the tangent space to be exact in F !
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Meanwhile our formula is computed explicitly as

L∗
X((j!Z)D, 0) =

2r1(2π)r2hURU

ω
√
|∆K |

,

with hU = [CH0(U)], RU the regulator from Corollary II.7.4 and ω the number of roots of
unity in K.

IV.1.3 Notations

IV.1.3.1 Schemes Let Yet denote the étale site of a scheme Y and Yproet the pro-étale
site [BS15]. There is morpism of topoi ν : Sh(Yproet)→ Sh(Yet) such that ν∗ is fully faithful.
A sheaf of abelian groups on Yet will be called an étale sheaf for short.

An arithmetic scheme is a scheme separated of finite type over Spec(Z); an arithmetic
curve is a dimension 1 arithmetic scheme. In this chapter, we will consider proper integral
arithmetic curves that are flat over Spec(Z). Such a scheme is the spectrum of an order
O in a number field K. For the rest of the chapter, we set X = Spec(O). The generic
point will be denoted by g : η = Spec(K) → X. We write GK := Gal(Ksep/K) for the
Galois group of K. If v is a finite place (resp. an archimedean place) of K, let Kv denote
the henselian local field (resp. complete local field) at v and gv : ηv = Spec(Kv)→ X the
canonical morphism. If x is a closed point of X, denote by ix : x→ X the inclusion (or i
when the context is clear), Gx = Gal(κ(x)sep/κ(x)) the Galois group of the residue field at
x and N(x) = [κ(x)] the cardinality of the residue field at x. When the context allows, we
will abuse notation and write v for a regular closed point of X corresponding to a finite
place v of K. If U is an open subscheme of X, let j : U → X denote the corresponding
morphism. We denote by X0 the set of closed points of X.

For F an étale sheaf on X, we put Fη := g∗F , resp. Fx = i∗xF for x a closed point, and
we identify it with a discrete GK-module, resp. a discrete Gx-module. In general, we will
make no distinction between an étale sheaf on the spectrum of a field and the associated
Galois module.

IV.1.3.2 Dualizing complex Denote by z0(X, i) the free abelian group generated
by closed integral subschemes of X ×∆i, of relative dimension i, which intersect all faces
properly. The dualizing complex Zc

X := Zc
X(0) (also called Bloch’s cycle complex) is the

complex of étale sheaves with z0(−, - i) in degree i and differentials the sum of face maps
[Gei10]. Let

GX :=

[
g∗Gm →

⊕
x∈X0

ix,∗Z

]
denote Deninger’s dualizing complex [Den87a]. In our case we have Zc

X ≃ GX [1] [Nar89].
For F an étale sheaf on X, we denote by FD := RH omX(F,Zc

X) the derived internal
hom in the derived category of étale shaves on X.

IV.1.3.3 Group cohomology If G is a finite group, we denote by RΓ(G,−) the
derived functor of G-invariants. Let P • be the standard complete resolution of Z. Put
furthermore RΓ̂(G,−) := RHomG(P

•,−). This latter functor computes Tate cohomology.
Let G be a profinite group and H ⊂ G an open subgroup. If M is a discrete H-

module, then the induction of M to G is the G-module indGHM := ContH(G,M) of
H-equivariant continuous maps G→M . Let L/K be a finite extension of fields and F an
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étale sheaf on Spec(L) corresponding to a discrete GL-module M . If π denotes the map
Spec(L)→ Spec(K) then π∗F corresponds to the discrete GK-module indGK

GL
M .

If M is an abelian group, denote by M∨ := RHomZ(M,Z) its (derived) linear dual,
M∗ := HomZ(M,Q/Z) its Pontryagin dual, and M † := HomZ(M,Q)14. If V is a vector
space over a field E, let V ∨ denote its linear dual.

IV.1.3.4 Complex points We endow the complex points X(C) with the analytic
topology; in our case the complex points correspond to the embeddings K → C and the
topology is discrete. Denote by Sh(GR, X(C)) the topos of GR-equivariant sheaves on
X(C). There is a morphism of topoi α : Sh(GR, X(C))→ Sh(Xet). Put Z(1) := 2iπZ ∈
Sh(GR, X(C)), and for M a GR-equivariant sheaf of abelian groups on X(C), and

M(1) :=M ⊗ Z(1) with diagonal action,
M∨ := RH omGR,X(C)(M,Z),

M∨(1) := RH omGR,X(C)(M,Z(1)).

The GR-equivariant cohomology of a complex C ∈ D(Sh(GR, X(C))) is defined as

RΓGR(X(C), C) := RΓ(GR, RΓ(X(C), C)).

We also denote by
RΓ̂GR(X(C), C) := RΓ̂(GR, RΓ(X(C), C))

the Tate GR-equivariant cohomology. The norm map N induces a fiber sequence

Z⊗LZ[G] RΓ(X(C), C) N−→ RΓGR(X(C), C)→ RΓ̂GR(X(C), C).

Remark. Since X(C) is discrete, a GR-equivariant sheaf on X(C) is the data of

• for each embedding σ : K → C, an abelian group Fσ, and

• an isomorphism Fσ → Fσ for σ complex and an action of GR on Fσ for σ real.

Choose an embedding σv for each archimedean place and put Fv = Fσv . We then have

RΓ(X(C), F ) =
∏
v real

Fv ×
∏

v complex

indGR
{1}Fv

as a GR-module, and thus

RΓGR(X(C), F ) =
∏

v archimedean

RΓ(GKv , Fv).

This breaks down if X(C) is not discrete.

If F is an étale sheaf on X and v is a place of K, denote by Fv its pullback to Spec(Kv);
thus (α∗F )v = Fv.

14“The dagger kills torsion.”
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IV.1.3.5 Determinants Let A = Z or R. A complex C in the derived category
D(A) is perfect if it is bounded with finite type cohomology groups. We will use the
determinant construction of Knudsen-Mumford [KM76], and the subsequent work of
Breuning, Burns and Knudsen, in particular [Bre08; Bre11]. Denote by ProjA the exact
category of projective finite type A-modules, Grb(Modft

A) the bounded graded abelian
category of finite type A-modules, Dperf(A) the derived category of perfect complexes and
PA the Picard groupoid of graded A-lines. The usual determinant functor

det
A
∈ det(ProjA,PA), M 7→ (ΛrankAMM, rankAM)

extends to a determinant functor gA ∈ det(Grb(ModftA),PA). Moreover, the graded
cohomology functor H : Dperf(A)→ Grb(ModftA) induces a functor

H∗ : det(Grb(ModftA),PA)→ det(Dperf(A),PA),

and we put detA := H∗gA. 15 There is a canonical isomorphism (detZC)⊗R ≃ detR(C⊗R).

IV.1.3.6 Derived ∞-categories We will use the theory of stable ∞-categories, see
[Lur17]. If X is a topos, denote by D(X ) the derived ∞-category associated to abelian
group objects in X . It is a stable ∞-category whose homotopy category is the usual
derived 1-category D(X ). In particular D(X) will denote the derived ∞-category of
étale sheaves on X, D(Z) the derived ∞-category of abelian groups and D(GR, X(C)) the
derived ∞-category of GR-equivariant sheaves on X(C).

A stable∞-category has all finite limits and colimits. Moreover, pushouts are pullbacks
and reciprocally. The homotopy category of a stable ∞-category has a canonical structure
of triangulated category. If C is a stable ∞-category and A ∈ C, denote by A[1] the shift
of A,16 which is given by the following pushout:

A 0

0 A[1]

If f : A→ B is a morphism in C, we define fib(f) and cofib(f) by the following pullback
and pushout diagrams:

fib(f) A

0 B

f

A B

0 cofib(f)

f

A sequence A → B → C is called a fiber sequence if A = fib(B → C) (or equivalently
C = cofib(A→ B)). A fiber sequence induces a distinguished triangle in the homotopy
category.

15This convention is chosen to simplify proofs later on, but of course all determinant functors extending
detA ∈ det(ProjA,PA) are isomorphic

16It is usually called the suspension and denoted by Σ in the general setting of stable ∞-categories, but
we will only be working with derived categories so this choice of slightly non-canonical notation is not
really harmful.
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IV.2 Cohomology with compact support of FD

IV.2.1 Definitions

The GR-equivariant sheaf α∗Zc
X = α∗GX [1] is Q×

[1],17 with action of GR via decomposition
groups at archimedean places. We have a canonical morphism α∗Zc

X → C×[1] and the
short exact sequence 0→ 2iπZ→ C→ C× → 0 gives a map C×[1]→ 2iπZ[2], whence a
composite arrow α∗Zc

X → Z(1)[2]. Let F,G be abelian sheaves on Xet. The functor α∗ is
strict monoidal, hence from the arrow

α∗(RH omX(F,G)⊗L F )→ α∗G

obtained by applying α∗ to the natural map, we obtain by adjunction a canonical map

α∗RH omX(F,G)→ RH omGR,X(C)(α
∗F, α∗G).

In particular, there is a natural transformation

α∗(FD)→ RH omGR,X(C)(α
∗F,C×[1])→ (α∗F )∨(1)[2],

hence maps

RΓ(X,FD)→ RΓGR(X(C), (α∗F )∨(1)[2])→ RΓ̂GR(X(C), (α∗F )∨(1)[2]).

Definition IV.2.1. The corrected cohomology with compact support of FD is the fiber of
the first morphism:

RΓc,B(X,F
D) := fib

(
RΓ(X,FD)→ RΓGR(X(C), (α∗F )∨(1)[2])

)
.

The Tate corrected cohomology with compact support of FD is the fiber of the composite
morphism:

RΓ̂c,B(X,F
D) := fib

(
RΓ(X,FD)→ RΓ̂GR(X(C), (α∗F )∨(1)[2])

)
.

We also recall the definition of Tate cohomology with compact support18 of F from Sec-
tion II.2 as the fiber:

RΓ̂c(X,F ) := fib
(
RΓ(X,F )→ RΓ̂GR(X(C), α∗F )

)
.

Remark. The above is only defined for sheaves of the specific form FD. It is not a functor
on the whole category of sheaves. We think of it as a contravariant functor in F . As we
will see later, Tate corrected cohomology with compact support of FD is in an “Artin–
Verdier-like” duality with étale cohomology of F , so we can think of it as a étale homology
of F .

Proposition IV.2.2. Let F be an étale sheaf on X. The canonical map α∗Zc
X → Z(1)[2]

induces an isomorphism
RΓ̂c(X,F

D)
≃−→ RΓ̂c,B(X,F

D).

17This is an abuse of notation, coming either from the choice of an embedding of K in Q (and the choice
doesn’t matter since all we do after is compute cohomology), or by defining number fields as subfields of
Q that are finite over Q.

18The definition is not original but the terminology is, see [Mil06, II.2, Cohomology with compact
support]
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Proof. We have to show that

RΓ̂(GR, α
∗(FD))

≃−→ RΓ̂(GR, (α
∗F )∨(1)[2])

is an isomorphism. It is enough to show it at real places. For v a real place, de-
note by gv : Spec(Kv) → X the canonical map. As gv is proétale, we have g∗v(FD) =

RH omGR(g
∗
vF,Q

×
[1]), and we thus want to show

RΓ̂(GR, RH omGR(g
∗
vF,Q

×
[1]))

≃−→ RΓ̂(GR, RH omGR(g
∗
vF, 2iπZ[2]))

is an isomorphism. All terms now depend only on M := g∗vF so we can reason by Artin
induction on any finite type GR-module M .

We first treat the case M = Z: from the exact sequence 0→ 2iπZ→ C→ C× → 0 we
find an isomorphism

RΓ̂(GR,C×[1])
≃−→ RΓ̂(GR,Z(1)[2])

Moreover, Q× and C× have the same Tate cohomology: both are zero in odd degree and
in even degree, both equal Z/2Z via the sign map because a real algebraic number which
is a norm is the square of a real algebraic number, hence the norm of an algebraic number.

If M = indGR
{0}Z is induced, we have that RH omGR(M,N) ≃ indGR

{0}N is induced for
any GR-module N , so it has trivial Tate cohomology.

Finally, if M is finite RH omGR(M,Q×
) and RH omGR(M,C×) are canonically isomor-

phic because Q× and C× have the same torsion. Since C is uniquely divisible and has no
torsion, we have morover RH omGR(M,C×)

≃−→ RH omGR(M, 2iπZ[1]). We thus obtain
the required isomorphism on Tate cohomology.

By Artin induction we obtain the required isomorphism for any finite type GR-module
M ; by taking filtered colimits, we obtain the statement for any GR-module M since Tate
cohomology, being a derived Hom, commutes with derived limits.

IV.2.2 Artin–Verdier duality for FD

Let X be the spectrum of an order in a number field. For a complex of abelian groups,
denote RHom(−,Q/Z) = Hom•(−,Q/Z) by (−)∗. Artin–Verdier duality gives a map
RΓ(X,FD) = RHomX(F,GX [1])

AV−−→ RΓ̂c(X,F )
∗[−2] which is “almost” an isomorphism.

We want to modify this duality at the complex points to obtain an Artin–Verdier duality
relating RΓ̂c,B(X,FD) and RΓ(X,F ). We have fiber sequences

RΓ̂GR(X(C), (α∗F )∨(1)[1])→ RΓ̂c,B(X,F
D)→ RΓ(X,FD),

RΓ̂c(X,F )→ RΓ(X,F )→ RΓ̂GR(X(C), α∗F ).

To obtain an Artin–Verdier duality statement, we will construct in the next three paragraphs
pairings

RΓ̂GR(X(C), (α∗F )∨(1))⊗L RΓ̂GR(X(C), α∗F )→ Q/Z[−3],
RΓ(X,F )⊗L RΓ̂c,B(X,FD)→ Q/Z[−2],

such that we have a morphism of fiber sequences given by the adjoint maps:

RΓ̂GR(X(C), (α∗F )∨(1)[1]) RΓ̂c,B(X,F
D) RΓ(X,FD)

RΓ̂GR(X(C), α∗F )∗[−2] RΓ(X,F )∗[−2] RΓ̂c(X,F )
∗[−2]

AV (IV.2.1)
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IV.2.2.1 Construction of the pairing for Tate cohomology on X(C). Let us
construct the first pairing: Tate cohomology RΓ̂GR(X(C),−) = RΓ̂GR(−) ◦RΓ(X(C),−)
is lax-monoidal [NS18, I.3.1], hence the natural evaluation map (α∗F )∨(1)[1]⊗L α∗F →
2iπZ[1] gives a map

RΓ̂GR(X(C), (α∗F )∨(1))⊗L RΓ̂GR(X(C), α∗F )→ RΓ̂GR(X(C), 2iπZ).

Since Ĥ i
GR
(X(C), 2iπZ) = 0 for i even, there is a canonical isomorphism19

RΓ̂GR(X(C), 2iπZ) ≃
⊕
i

Ĥ i
GR
(X(C), 2iπZ)[−i].

Let r1 be the number of real places of the function field of K. The natural map C× →
2iπZ[1] induces an identification Ĥ3(GR, X(C), 2iπZ) = (R×/R×

>0)
r1 . We compose the

previous pairing with a projection and a sum map to get the pairing

RΓ̂GR(X(C), (α∗F )∨(1))⊗L RΓ̂GR(X(C), α∗F )→ RΓ̂GR(X(C), 2iπZ)
H3

−→ Ĥ3
GR
(X(C), 2iπZ)[−3]

= (R×/R×
>0)

r1 [−3]
Σ−→ Q/Z[−3].

(IV.2.2)

IV.2.2.2 Construction of the pairing for RΓ̂c,B(X,FD). In the following diagrams,
we will write RΓ, RΓGR , RΓ̂GR , RΓ̂c, RΓ̂c,B for RΓ(X,−), RΓGR(X(C),−), RΓ̂GR(X(C),−),
RΓ̂c(X,−) and RΓ̂c,B(X,−) respectively, and we will also write ⊗ for the derived tensor
product. The natural transformations

RΓ(X,−)→ RΓGR(X(C),−)→ RΓ̂GR(X(C),−)→

are lax monoidal [NS18, I.3.1]. 20 so the following diagram commutes:

RΓ(F )⊗RΓ(FD) RΓ(Zc
X)

RΓ(F )⊗RΓGR(F
∨
C (1)[2]) RΓGR(α

∗F )⊗RΓGR(F
∨
C (1)[2]) RΓGR(2iπZ[2])

RΓ(F )⊗RΓ̂GR(F
∨
C (1)[2]) RΓ̂GR(α

∗F )⊗RΓ̂GR(F
∨
C (1)[2]) RΓ̂GR(2iπZ[2])

19Indeed, there is always such an isomorphism (non-canonical) in the homotopy category D(Z), and
there is a canonical one here because there are no Ext1 between two consecutive cohomology groups

20Since the lax monoidal structure for RΓ(X,−) and RΓGR(X(C),−) come from the strict monoidal
structure on their left adjoint, this is a formal consequence of the commutative triangle of right adjoints
with strict monoidal left adjoints

D(GR, X(C)) D(Xet)

D(Z)
RΓGR (X(C),−) RΓ(X,−)

α∗
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We thus obtain the left dotted map in the following commutative diagram where the top
row is a fiber sequence:

RΓ(X,F )⊗L RΓ̂c,B(X,FD) RΓ(X,F )⊗L RΓ(X,FD) RΓ(X,F )⊗L RΓ̂GR(X(C), F∨
C (1)[2])

RΓ̂c,B(X,ZD) RΓ(X,Zc
X) RΓ̂GR(X(C), 2iπZ[2])

We have
τ≥2RΓ̂c,B(X,ZD) = τ≥2RΓ̂c(X,Zc

X) = Q/Z[−2]

by Proposition IV.2.2 and [Mil06, II.2.6, II.6.1], hence we get a pairing

RΓ(X,F )⊗L RΓ̂c,B(X,FD)→ RΓ̂c,B(X,ZD)
τ≥2

−−→ Q/Z[−2]. (IV.2.3)

IV.2.2.3 The morphism of fiber sequences. The following cube is commutative
by compatibility of the involved pairings:

RΓ(F )⊗RΓ(FD) RΓ(F )⊗RΓ̂GR((α
∗F )∨(1)[2])

RΓ(Zc
X) RΓ̂GR(2iπZ[2])

RΓ̂GR(α
∗F )⊗RΓ(FD) RΓ̂GR(α

∗F )⊗RΓ̂GR((α
∗F )∨(1)[2])

RΓ̂GR(α
∗Zc

X) RΓ̂GR(2iπZ[2])

hence by adding the fibers of horizontal and vertical maps we deduce a morphism of 3× 3
diagrams depicted in Diagram IV.1. Doing so, we recover in the middle layer the pairing
(IV.2.3).

Let A,A′, B,B′, C, C ′ be objects of D(Ab), with maps A → A′, B′ → B, C → C ′.
Given two pairings A ⊗L B → C and A′ ⊗L B′ → C ′, the commutativity of the two
following induced diagrams is equivalent:

A A′

RH om(B,C) RH om(B′, C ′)

A⊗L B′ A⊗L B C

A′ ⊗L B′ C ′

We now prove that the natural diagram (IV.2.1) commutes. By the above, this
reformulates to the commutativity of a subdiagram of (IV.1), together with the following
commutative diagram:

RΓ̂(2iπZ[1]) = RΓ̂(C×) RΓ̂c,B(ZD) RΓ̂c(Zc
X)

Q/Z[−2]

≃

τ≥2

τ≥2Σ◦H2

which follows from the proof of [Mil06, II.2.6].
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≃

≃
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Diagram IV.1
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Theorem IV.2.3 (Artin–Verdier duality for FD). Let F be a Z-constructible sheaf on the
spectrum X of an order in a number field. The pairing

RΓ(X,F )⊗L RΓ̂c,B(X,FD)→ Q/Z[−2]

induces a map
RΓ̂c,B(X,F

D)→ RΓ(X,F )∗[−2],

which is an isomorphism in degree ̸= −1, 0, and an isormophism after profinite completion
of the left hand side in degree −1, 0. In particular if F is constructible then the map is an
isomorphism.

Remark. The statement also holds more generally for a bounded complex F ∈ Db(X)
such that H0(F ) is Z-constructible and H i(F ) is constructible for i ̸= 0 (by filtering
with the truncations). If we reformulate the theorem as the map RΓ̂c,B(X,F

D) ⊗ Ẑ →
RΓ(X,F )∗[−2] being an isomorphism, this generalizes to bounded complexes with Z-
constructible cohomology sheaves.

Proof. By the diagram (IV.2.1) and Artin–Verdier duality for singular schemes [Mil06,
II.6.2], it suffices to show that the pairing

RΓ̂GR(X(C), (α∗F )∨(1)[1])⊗L RΓ̂GR(X(C), α∗F )→ Q/Z[−2]

is a perfect pairing between complexes of abelian groups with finite cohomology groups.
To prove that the pairing is perfect, it suffices to do it at every real place, that is for the
Galois cohomology of GR; thus it suffices to prove the next proposition.

Proposition IV.2.4. The canonical pairing

RΓ̂(GR,M
∨(1))⊗L RΓ̂(GR,M)→ Q/Z[−3]

is perfect for M any discrete GR-module of finite type.

Proof. We will reduce to Theorem B.0.1 for the finite group GR = Z/2Z. Denote by
ε the augmentation Z[GR] → Z and IGR = (s − 1)Z the augmentation ideal. We have
H1(GR, 2iπZ) = Ext1GR

(Z, 2iπZ) = Z/2Z, and the non-zero class t corresponds to a
morphism Z→ 2iπZ[1] in the derived category coming from the equivalence class of the
non-split exact sequence

0→ 2iπZ = IGR → Z[GR]
ε−→ Z→ 0.

Since IGR = 2iπZ as a GR-module, we obtain an isomorphism

RΓ̂(GR,M)
≃−−−−−→

(idM⊗t)∗
RΓ̂(GR,M(1))[1].

Note that M∨(1) = (M∨)(1). From the above isomorphism we deduce an isomorphism of
pairings

RΓ̂(GR,M
∨)⊗L RΓ̂(GR,M) RΓ̂(GR,Z) Ĥ2(GR,Z)[−2] Q/Z[−2]

RΓ̂(GR,M
∨(1))[1]⊗L RΓ̂(GR,M) RΓ̂(GR, 2iπZ)[1] Ĥ3(GR, 2iπZ)[−2] Q/Z[−2]

≃ ≃≃
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which shows that it suffices to check that the natural pairing

RΓ̂(GR,M
∨)⊗L RΓ̂(GR,M)→ RΓ̂(GR,Z)→ Ĥ2(GR,Z)[−2]→ Q/Z[−2]

is perfect. In a similar way, the non-zero class u ∈ H2(GR,Z) corresponds to a map
Z→ Z[2] whose fiber comes from induced modules21, and we also get an isomorphism of
pairings

RΓ̂(GR,M
∨)⊗L RΓ̂(GR,M) RΓ̂(GR,Z) Ĥ0(GR,Z)[0] Q/Z[0]

RΓ̂(GR,M
∨)⊗L RΓ̂(GR,M)[2] RΓ̂(GR,Z)[2] Ĥ2(GR,Z)[0] Q/Z[0]

≃ ≃ ≃

so equivalently it suffices to check that the natural pairing

RΓ̂(GR,M
∨)⊗L RΓ̂(GR,M)→ RΓ̂(GR,Z)→ Ĥ0(GR,Z)[0]→ Q/Z[0]

is perfect; this is Theorem B.0.1.

We finish with a study of the behaviour of our corrected compactly supported coho-
mology with respect to finite dominant morphisms.

Proposition IV.2.5. Let Y = Spec(O′) be the spectrum of an order in a number field
with a finite dominant morphism π : Y → X and let F be a Z-constructible sheaf on Y .
We have canonical isomorphisms

RΓc,B(X, (π∗F )
D)

≃−→ RΓc,B(Y, F
D),

RΓ̂c,B(X, (π∗F )
D)

≃−→ RΓ̂c,B(Y, F
D),

compatible with the maps RΓc,B(X,−)→ RΓ̂c,B(X,−) resp. RΓc,B(Y,−)→ RΓ̂c,B(Y,−).

Proof. We prove it for RΓc,B(X, (−)D). The functor π∗ is exact and we have Rπ!Zc
X =

Rπ!GX [1] = GY [1] = Zc
Y by the finite base change theorem, hence (π∗F )

D = π∗(F
D).

Denote by π′ : Sh(GR, Y (C))→ Sh(GR, X(C)) the morphism of topoi induced by π, and
α′ the morphism Sh(GR, Y (C))→ Sh(Yet). Consider the commutative square

Sh(GR, Y (C)) Sh(Yet)

Sh(GR, X(C)) Sh(Xet)

π

α

π′

α′

It induces a canonical map α∗π∗F → π′
∗α

′∗F . We claim that it is an isomorphism; indeed
it suffices to check it on points of X(C), and then it follows from the computation of the
stalks of a finite morphism in the étale case and in the topological case22.

Since X(C) and Y (C) are finite discrete, we have π′! = π′∗, so Rπ′! = π′∗, Rπ′∗2iπZ =
2iπZ and Rπ′∗C× = C×. The counit π′

∗π
′∗ → id is given on stalks by the sum map. Denote

by πx the base change of π to a point x ∈ X and g : η → X, g′ : η′ → Y , ix : x→ X resp.
21This is just a reformulation of the 2-periodicity of the Tate cohomology of cyclic groups
22In the topological case, by finite morphism we mean a universally closed separated continuous map

with finite discrete fibers; we then use [Stacks, Tag 09V4]
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iy : y → Y the inclusion of the generic points, resp. of closed points, of X and Y . The
counit π∗Zc

Y → Zc
X is given by the morphism of complexes (with left term in degree −1)

π∗g
′
∗Gm = g∗πη,∗Gm

⊕
y∈Y0 π∗iy,∗Z =

⊕
x∈X0

ix,∗
(
πx,∗Z

)
g∗Gm

⊕
x∈X0

ix,∗Z

∑
ordy

∑
ordx

where the left arrow is obtained by applying g∗ to the counit of the adjunction πη,∗ ⊣ π∗
η,

which is simply the sum map. Thus we have an identification α∗(π∗Zc
Y → Zc

X) =

π′
∗Q

×
[1]→ Q×

[1].23 Combining this with the equality α∗π∗F = π′
∗α

′∗F and the identifica-
tion Rπ′!(Q× → 2iπZ[2]) = Q× → 2iπZ[1], we obtain a commutative diagram24:

RHomY (F,Zc
Y ) RHomGR,Y (C)(α

∗F,Q×
[1]) RHomGR,Y (C)(α

∗F, 2iπZ[2])

RHomX(π∗F,Zc
X) RHomGR,X(C)(π

′
∗α

∗F,Q×
[1]) RHomGR,X(C)(π

′
∗α

∗F, 2iπZ[2])

α′∗

α∗

≃ ≃≃

hence we obtain in the following diagram of fiber sequences the induced arrow, which is
an isomorphism:

RΓc,B(Y, (−)D) RΓ(Y, (−)D) RΓGR(Y (C), (−)∨C(1)[2])

RΓc,B(X, (π∗−)D) RΓ(X, (π∗−)D) RΓGR(X(C), (π∗−)∨C(1)[2])

≃ ≃ ≃

Proposition IV.2.6. We keep the notations of Proposition IV.2.5. There is a commutative
diagram of pairings:

RΓ(Y, F )⊗L RΓ̂c,B(Y, FD) RΓ̂c,B(Y,ZD)

RΓ(X, π∗F )⊗L RΓ̂c,B(X, (π∗F )D) RΓ̂c,B(X,ZD)

≃

where the arrow RΓ̂c,B(Y,ZD) → RΓ̂c,B(X,ZD) is induced from the map RΓ(Y, FD) →
RΓ(X,FD) (coming from the counit ε : π∗Rπ

!Zc
X = π∗ZD → ZD) and from the map

RΓGR(Y (C), 2iπZ[2])→ RΓGR(X(C), 2iπZ[2]).

Proof. By compatibility of the pairings for RΓGR(X(C),−) and RΓ̂GR(X(C),−), we can
reduce to checking the statement with RΓc,B instead of RΓ̂c,B. This will follow formally
(by taking the fiber) if we prove that the cube of Diagram IV.2 is commutative.

23That is, the pullback of the counit is the counit between the pullbacks
24The commutation can be seen from the observations made by writing the adjonction arrows as the

composition of applying the adjoint functor and postcomposing with the counit
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R
Γ
(Y
,F

)⊗
R
H
om

Y
(F
,Z

cY
)

R
Γ
(Y
,F

)⊗
R
H
om

G
R
,Y

(C
) (α

∗F
,2iπZ

[2])

R
Γ
(Y
,Z

cY
)

R
Γ
G

R (Y
(C

),2iπZ
[2])

R
Γ
(X
,π

∗ F
)⊗

R
H
om

X
(π

∗ F
,Z

cX
)

R
Γ
(X
,π

∗ F
)⊗

R
H
om

G
R
,Y

(C
) (π

′∗ α
∗F
,2iπZ

[2])

R
Γ
(X
,Z

cX
)

R
Γ
G

R (X
(C

),2iπZ
[2])

≃
≃

≃
≃

Diagram IV.2
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The lax monoidality of π∗, π′
∗, α∗, α′∗ induces maps

cα : α∗RH omX(−,−)→ RH omGR,X(C)(α
∗−, α∗−),

cα′ : α′∗RH omY (−,−)→ RH omGR,Y (C)(α
′∗−, α′∗−),

cπ : π∗RH omY (−,−)→ RH omX(π∗−, π∗−),
cπ′ : π′

∗RH omGR,Y (C)(−,−)→ RH omGR,X(C)(π
′
∗−, π′

∗−).

The following diagram commutes by naturality; the composite rectangle is given by the
adjunction isomorphism π∗F

D ≃ (π∗F )
D:

π∗F
D Rα∗α

∗π∗F
D = Rα∗π

′
∗α

′∗FD

RH omX(π∗F, π∗Zc
Y ) Rα∗α

∗RH omX(π∗F, π∗Zc
Y )

(π∗F )
D Rα∗α

∗(π∗F )
D

ηα

cπ Rα∗α∗(cπ)

ηα

ε∗ Rα∗α∗(ε∗)

ηα

(IV.2.4)

We have π∗α∗ = α′∗π′
∗ so the following diagram commutes formally for any sheaf F

and G:

π′
∗α

′∗RH omY (F,G)

α∗π∗RH omY (F,G) π′
∗RH omGR,Y (C)(α

′∗F, α′∗G)

α∗RH omX(π∗F, π∗G) RH omX(π
′
∗α

′∗F, π′
∗α

′∗G)

RH omX(α
∗π∗F, α

∗π∗G)

π′
∗(cα′ )

α∗(cπ)

cα

cπ′

Thus the top square in the following diagram commutes:

α∗π∗F
D = Rα∗π

′
∗α

′∗FD π′
∗RH omGR,Y (C)(α

∗F,Q×
[1])

α∗RH omX(π∗F, π∗Zc
Y ) RH omGR,X(C)(π

′
∗α

∗F, π′
∗Q

×
[1])

α∗RH omX(π∗F,Zc
X) RH omGR,X(C)(π

′
∗α

∗F,Q×
[1])

α∗(cπ)

π′
∗(cα′ )

cα

α∗(ε∗)

cπ′

ε∗

cα

(IV.2.5)

The bottom square also commutes, because α∗(π∗Zc
Y → Zc

X) = π′
∗Q

×
[1] → Q×

[1]. The
commutative square

π′
∗Q

×
[1] π′

∗2iπZ[2]

Q×
[1] 2iπZ[2]
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implies that the following diagram is commutative:

π′
∗RH omGR,Y (C)(α

∗F,Q×
[1]) π′

∗RH omGR,Y (C)(α
∗F, 2iπZ[2])

RH omGR,X(C)(π
′
∗α

∗F, π′
∗Q

×
[1]) RH omGR,X(C)(π

′
∗α

∗F, π′
∗2iπZ[2])

RH omGR,X(C)(π
′
∗α

∗F,Q×
[1]) RH omGR,X(C)(π

′
∗α

∗F, 2iπZ[2])

cπ′

ε∗ ε∗

cπ′

(IV.2.6)

Apply Rα∗ to diagrams Equations (IV.2.5) and (IV.2.6) and paste them next to Equa-
tion (IV.2.4) to obtain the following diagram:

π∗F
D Rα∗π

′
∗(α

∗F )∨(1)[2]

RH omX(π∗F, π∗Zc
Y ) RH omX(π∗F,Rα∗π

′
∗2iπZ[2])

RH omX(π∗F,Zc
X) RH omX(π∗F,Rα∗2iπZ[2])

≃ ≃

where we have rewritten the terms on the right using

Rα∗RH omGR,X(C)(α
∗−,−) = RH om(−, Rα∗−).

The back and side faces are obtained by composing the top and front faces; by properties of
adjunctions, the dotted maps are the adjunction isomorphisms for π∗ ⊣ Rπ! resp. π′

∗ ⊣ Rπ′!.
By the ⊗ ⊣ Hom-adjunction, the above diagram is equivalent to the following cube:

π∗F ⊗ π∗FD π∗F ⊗Rα′
∗(α

∗F )∨(1)[2]

π∗Zc
Y Rα∗π

′
∗2iπZ[2]

π∗F ⊗ (π∗F )
D π∗F ⊗Rα∗(π

′
∗α

∗F )∨(1)[2]

Zc
X Rα∗2iπZ[2]

≃
≃

Finally, applying the lax monoidal functor RΓ(X,−) recovers the sought-after cube.

IV.2.3 Computations

Proposition IV.2.7. Let F be a Z-constructible sheaf on X. We have that

H i
c,B(X,F

D) ≃ Ĥ i
c,B(X,F

D) for i ≥ 1;

H0
c,B(X,F

D)→ Ĥ0
c,B(X,F

D) is surjective.

If α∗F is torsion-free, we have that

H i
c,B(X,F

D) ≃ Ĥ i
c,B(X,F

D) for i ≥ 0;

H−1
c,B(X,F

D)→ Ĥ−1
c,B(X,F

D) is surjective.
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Proof. Let T (FD) be the cofiber of RΓc,B(X,FD)→ RΓ̂c,B(X,F
D). Let s be the generator

of GR and denote by N = 1+ s the norm map. By the stable 3× 3 lemma (Lemma II.2.2),
we find that

T (FD) = fib
(
RΓGR(X(C), (α∗F )∨(1)[2])

N−→ RΓ̂GR(X(C), (α∗F )∨(1)[2])
)

= Z⊗LZ[GR]
RΓ(X(C), (α∗F )∨(1)[2])

=
∏

v archimedean

Z⊗LZ[GKv ]
F∨
v (1)[2]

computes homology at the archimedean places. Let M be a GR-module of finite type.
Then M∨(1)[2] = RHomZ(M, 2iπZ)[2] is concentrated in degree −2 if M is torsion-free
and in degree [−2,−1] in general. It follows that Z ⊗LZ[GR]

M∨(1)[2] is concentrated in
degree ≤ −2 if M is torsion-free and in degree ≤ −1 in general.

Proposition IV.2.8. Let F be a Z-constructible sheaf on X. Then RΓ̂c,B(X,F
D) is

concentrated in degree ≤ 2. If F is constructible, the complex has finite cohomology groups.
In general, we have

Ĥ i
c,B(X,F

D) =


finite, i ≤ −2,
finite type, i = −1, 0,
torsion of cofinite type, i = 1, 2.

Proof. The vanishing in degree > 2 comes from Theorem IV.2.3. The remaining claims
follow from the defining long exact cohomology sequence and [Mil06, II.3.6], because the
complex RΓ̂GR(X(C), (α∗F )∨(1)[2]) has finite 2-torsion cohomology groups.

Proposition IV.2.9. Let F be a Z-constructible sheaf on X. Then RΓc,B(X,F
D) is

concentrated in degree [−1, 2]. If F is constructible, the complex is perfect. In general, we
have

H i
c,B(X,F

D) =

{
finite type, i = −1, 0,
torsion of cofinite type, i = 1, 2.

Proof. By Proposition IV.2.7 and the previous proposition, we have H i
c,B(X,F

D) =

Ĥ i
c,B(X,F

D) = 0 for i > 2 and H i
c,B(X,F

D) = Ĥ i
c,B(X,F

D) is torsion of cofinite type for
i = 1, 2; finally for i = −1, 0 the difference between H i

c,B(X,F
D) and Ĥ i

c,B(X,F
D) is given

by a group of finite type so H i
c,B(X,F

D) is finite type by the previous proposition. The
vanishing in degree < −1 is clear.

We now compute some special cases.

Proposition IV.2.10. Suppose that X = Spec(OK) is regular. We have

H i(X,Z) =


Z, i = 0,
0, i = 1,
torsion, i > 1.

Let j : U → X be an open subscheme of X with U ̸= X. We have

H i(X, j!Z) =


0, i = 0,(∏

v∈X\U Z
)
/Z, i = 1,

torsion, i > 1.
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Proof. The result for i > 1 follows from [Mil06, II.2.10]. Since X is normal, πproet
1 (X) =

πet
1 (X) is profinite so H1(X,Z) = Homcont(π

et
1 (X),Z) = 0.

Proposition IV.2.11. Suppose that X = Spec(OK) is regular. We have

H i
c,B(X,ZD) =


finite type of rank [K : Q]− 1, i = −1,
finite, i = 0,
0, i = 1,
Q/Z, i = 2.

Moreover we have an exact sequence

0→ Zr2 → H−1
c,B(X,Z

D)→ O×
K → (Z/2Z)r1 → H0

c,B(X,ZD)→ Pic(X)→ 0

and H0
c,B(X,ZD) is the narrow ideal class group Pic+(X).

Proof. The exact sequence comes from the long exact cohomology sequence of the defining
fiber sequence. By Proposition IV.2.7, we have isomorphisms

τ≥0RΓc,B(X,ZD)
≃−→ τ≥0RΓ̂c,B(X,ZD) ≃ τ≥0RΓ̂c(X,Gm[1])

hence the result for i ≥ 0 follows from [Mil06, II.2.6, II.2.8(a)].

Remark.

• We have H1
GR
(X(C), 2iπZ) ≃ Ĥ0

GR
(X(C),C×) = (R×/R×

+)
r1 . Since the canonical

map H0(X,Gm)→ H1
GR

(X(C), 2iπZ) factors through H0
GR

(X(C),C×) by definition,
it is given by

O×
K

(signv)v−−−−→
⊕
v real

Z/2Z.

Its kernel is O×
K,+, the group of totally positive units; it has same rank as O×

K . Thus
we have a short exact sequence

0→ Zr2 → H−1
c,B(X,Z

D)→ O×
K,+ → 0.

• We can also recover the result for i ≥ 1 by Artin–Verdier duality (Theorem IV.2.3)
and Proposition IV.2.7 since H i(X,Z) = 0,Z, 0 for i < 0, i = 0, i = 1. On the other
hand, from the result for i = 0 we recover H2(X,Z) ≃ Pic+(X)∗.

• If X is singular, the exact sequence becomes

0→ Zr2 → H−1
c,B(X,Z

D)→ CH0(X, 1)→ (Z/2Z)r1 → H0
c,B(X,ZD)→ CH0(X)→ 0

and H1
c,B(X,ZD) = H1(X,Z)∗ can be non-zero and non-finite, depending on the

singularities of X. Moreover, H0
c,B(X,ZD) can be seen as a “narrow Chow group”.

Proposition IV.2.12. Suppose that X = Spec(OK) is regular and let j : U → X be an
open subscheme with U ̸= X, say U = Spec(OK,S) with S a set of places containing the
archimedean places and at least one finite place. Denote by Sf the set of finite places in S
and sf its cardinality. We have

H i
c,B(X, (j!Z)D) =


finite type of rank [K : Q]− 1, i = −1,
finite, i = 0,

Ker
(⊕

v∈Sf
Br(Kv)

Σ−→ Q/Z
)
≃ (Q/Z)sf−1, i = 1,

0, i = 2.
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Moreover, we have an exact sequence

0→ Zr2 → H−1
c,B(X, (j!Z)

D)→ O×
K,S → (Z/2Z)r1 → H0

c,B(X, (j!Z)D)→ Pic(U)→ 0

and H0
c,B(X, (j!Z)D) is the narrow S-class group Pic+(U).

Proof. By Proposition IV.2.7 and Artin–Verdier duality we obtain the result for i = 1, 2
from the computation of H i(X, j!Z). We have (j!Z)D = Rj∗Zc

U = j∗Gm[1] [Mil06, II.1.4]
and (j!Z)∨C(1) = 2iπZ so the exact sequence comes from the long exact cohomology
sequence associated to the defining fiber sequence.

We have RΓ̂c,B(X, (j!Z)D)
≃←− RΓ̂c(X, j∗Gm[1]) by Proposition IV.2.2. The divisor

short exact sequence
0→ j∗Gm → g∗Gm →

⊕
v∈U0

iv,∗Z→ 0

and Proposition IV.2.7 gives, as in [Mil06, II.2.8(a)], the identification of

H0
c,B(X, (j!Z)D) ≃ Ĥ0

c,B(X, (j!Z)D) ≃ Ĥ0
c (X, j∗Gm[1])

with the narrow S-class group.

Remark.

• The map H0(U,Gm)→ H1
GR
(X(C), 2iπZ) is given by

O×
K,S

(signv)v real−−−−−−−→
⊕
v real

Z/2Z.

Its kernel is O×
K,S,+, the group of totally positive S-units; it has same rank as O×

K,S.
Thus there is a short exact sequence

0→ Zr2 → H−1
c (X, (j!Z)D)→ O×,+

K,S → 0.

• For i = 1, 2, we can also prove the result directly by considering the following snake
diagram:

0 H1
c,B(X, (j!Z))D

0 0 H2(U,Gm) H2(U,Gm) 0

0
∏

v∈Sf
Br(Kv)

∏
v∈S Br(Kv)

∏
v archimedean Br(Kv) 0

∏
v∈Sf

Br(Kv) Q/Z H2
c,B(X, (j!Z)D) 0

Σ

Σ

• We recover from Artin-Vertier duality an identification H2(X, j!Z) ≃ Pic+(U)∗.
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Let i : x→ X be a closed point of X and M a discrete Gx-module of finite type. Since
Ri!Zc

X = Z[0], we have (i∗M)D = i∗M
∨, while (i∗M)C = 0. Thus RΓc,B(X, (i∗M)D) =

RΓ(Gx,M
∨) and we obtain

Proposition IV.2.13. Let i : x→ X be a closed point of X and M a discrete Gx-module
of finite type. We have

H i
c,B(X, (i∗M)D) =


0, i = −1,
finite type, i = 0,
finite, i = 1,
torsion of cofinite type, i = 2.

If M is finite, RΓc,B(X, (i∗M)D) has finite cohomology groups and H0
c,B(X, (i∗M)D) = 0.

Proof. If M is finite, we have M∨ = M∗[−1]. On the other hand, if M is torsion-free
we have M∨ = HomAb(M,Z). Thus in both cases we reduce to cohomology of discrete
Gx ≃ Ẑ-modules of finite type, for which the result is known. For arbitrary M , we conclude
with the short exact sequence 0→Mtor →M →M/tor→ 0.

Let DF = RHom(RΓ(X,F ),Q[−2]) for F a Z-constructible sheaf on X, and put
(−)† = Hom(−,Q).

Proposition IV.2.14. Let F be a Z-constructible sheaf on X. Then DF is concentrated
in degree [1, 2].

Proof. We have H i(DF ) = H2−i(X,F )†. We thus have to show that H i(X,F ) is torsion
for i ̸= 0, 1. But H i(X,F ) differs from Ĥ i

c(X,F ) by a finite group since X is proper, and
the latter is torsion for i ̸= 0, 1 [Mil06, II.6.2].

IV.3 Weil-étale cohomology with compact support of
FD

IV.3.1 Construction of the Weil-étale complex

Following [FM18], the Weil-étale complex with compact support should be the cone of a
map αF making the following diagram commute

RHom(RΓ(X,F ),Q[−2]) RΓc,B(X,F
D)

RΓ̂c,B(X,F
D)

RHom(RΓ(X,F ),Q/Z[−2])

αF

Let F , G be two Z-constructible sheaves on X and let us compute the morphism group
HomD(Z)(DG, RΓc,B(X,F

D)). Recall the Verdier spectral sequence [Ver96, III.4.6.10]:

Ep,q
2 =

∏
i∈Z

ExtpZ(H
i(K), H i+q(L))⇒ Extp+qD(Z)(K,L) (IV.3.1)
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Using the vanishing results of the previous section, the above degenerates to a short exact
sequence

0
∏

i=1,2 Ext
1(H2−i(X,G)†, H i−1

c,B (X,FD)) HomD(Z)(DG, RΓc,B(X,F
D))

∏
i=1,2Hom(H2−i(X,G)†, H i

c,B(X,F
D)) 0

(IV.3.2)
Since H1

c,B(X,F
D) is torsion and H0(X,G)† is a Q-vector space, we obtain

Ext1(H0(X,G)†, H1
c,B(X,F

D)) = 0.

Therefore the left term is Ext1(H1(X,G)†, H0
c,B(X,F

D)). Similarly to the approach of
Chapter II, this motivates the following definition:

Definition IV.3.1. Let F be a Z-constructible sheaf on X. We say that

• F is red if H0
c,B(X,F

D) is torsion, hence finite;

• F is blue if H1(X,F ) is torsion, hence finite; this happens if and only if Ĥ1
c,B(X,F

D) =
H1
c,B(X,F

D) is finite (Theorem IV.2.3).

A red-to-blue morphism is a morphism of sheaves F → G where either F and G are both
blue, or are both red, or F is red and G is blue ; a red-to-blue short exact sequence is a
short exact sequence with red-to-blue morphisms.

Remark.

• If F is constructible, F is blue and red.

• The constant sheaf Z is red; this follows from the finiteness of CH0(X). 25 If X is
regular or more generally unibranch (so that each point has a singleton preimage in
the normalization of X), the sheaf Z is also blue.

• If j : U → X is an open inclusion with U ̸= X, the sheaf j!Z is red, and it is blue if
X is unibranch and |X\U | = 1.

• If F is Z-constructible and supported on a closed subscheme, then F is blue. This
reduces to the case of a single discrete finite type Ẑ-module, where it follows from
H1(Ẑ,Z) = 0 and the Hochschild-Serre spectral sequence for a normal open subgroup
acting trivially.

Proposition IV.3.2. Let j : U → X be an open immersion such that U is regular and G
a locally constant Z-constructible sheaf on U . Then j!G is red.

Proof. Indeed, the result is true if G is torsion so we can suppose that G is torsion-free.
Let g : η = Spec(K) → U be the generic point. Since G is locally constant, we have
G = g∗g

∗G.26 By Artin induction for the GK-module g∗G, we find normal open subgroups
25See the remark after Proposition IV.2.11 and the remark after Corollary II.7.4.
26The regularity hypothesis appears here: in general g∗Z ̸= Z.
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Hk, Hl of GK , an integer n ∈ N× and a finite GK-module N such that we have a short
exact sequence

0→ (g∗G)n ⊕
⊕

indHk
GK

Z→
⊕

indHl
GK

Z→ N → 0.

Denote by π′
k : Vk → U, π′

l : Vl → U the normalizations of U in (Ksep)Hk , (Ksep)Hl . By
applying g∗, we find a short exact sequence

0→ Gn ⊕
⊕

π′
k,∗Z→

⊕
π′
l,∗Z→ Q→ 0,

where Q is a subsheaf of the constructible sheaf g∗N and hence is constructible. Denote
by πk : Yk → X (resp. πl : Yl → X) the normalization of X in (Ksep)Hk (resp. (Ksep)Hl)
and jk : Vk → Yk the open inclusion (resp. jl : Vl → Yl). The points in Yk (resp. Yl) above
U are exactly the points of Vk (resp. Vl) so

j!π
′
k,∗Z = πk,∗jk,!Z, j!π

′
l,∗Z = πl,∗jl,!Z.

Using Proposition IV.2.5 we conclude with the preceding remark.

Remark. It follows that there are “enough red-and-blues”; by this, we mean that any
Z-constructible sheaf F sits in a short exact sequence

0→ R→ F → B → 0

with R red and B blue. Indeed, it suffices to take R = j!F|U and B = i∗i
∗F for j : U → X

a regular open subscheme such that F|U is locally constant and i : Z → X its closed
complement. As in Chapter II, this remark will allow us to bootstrap the construction of
the Weil-étale Euler characteristic from red or blue sheaves to arbitrary Z-constructible
sheaves by enforcing multiplicativity.

If F is red or G is blue, the left term of the short exact sequence (IV.3.2) vanishes and
we obtain:

Proposition IV.3.3. Let F and G be étale sheaves on X and suppose that F is red or
that G is blue. We have

Hom(DG, RΓc,B(X,F
D)) =

∏
i=1,2

Hom(H2−i(X,G)†, H i
c,B(X,F

D)).

In particular, suppose that F is red or blue. For i = 1, 2, we have by Theorem IV.2.3
isomorphisms

H i
c,B(X,F

D)
≃−→ Ĥ i

c,B(X,F
D)

≃−→ H2−i(X,F )∗.

Hence we obtain a canonical element αF ∈ Hom(DF , RΓc,B(X,F
D)), given in cohomology

in degree i = 1, 2 by

H i(αF ) : H
2−i(X,F )† → H2−i(X,F )∗

≃←− H i
c,B(X,F

D).

Definition IV.3.4. Let F be red or blue. We define

RΓW,c(X,F
D) := Cone(αF ),

the Weil-étale complex with compact support with coefficients in FD.

Remark. We want to emphasize that our construction is only done in the homotopy
category, as a mapping cone. Nevertheless for red or blue sheaves we will obtain sufficient
functoriality properties; this is unusual.
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IV.3.2 Computation of Weil-étale cohomology

Proposition IV.3.5. Let F be a red or blue sheaf on X. Then RΓW,c(X,FD) is a perfect
complex of abelian groups concentrated in degree [−1, 2]. Moreover, we have

H i
W,c(X,F

D) =

{
H−1
c (X,FD), i = −1,

(H0(X,F )tor)
∗, i = 2,

and short exact sequences

0→ H0
c,B(X,F

D)→ H0
W,c(X,F

D)→ Hom(H1(X,F ),Z)→ 0,

0→ (H1(X,F )tor)
∗ → H1

W,c(X,F
D)→ Hom(H0(X,F ),Z)→ 0.

Proof. The groups H i(X,F ) are of finite type for i = 0, 1: they differ from Ĥ i
c(X,F ) by a

finite group since X is proper, and the latter are of finite type for i = 0, 1[Mil06, II.3.1,
II.6.2]. The claim then follows from the distinguished triangle

RHom(RΓ(X,F ),Q[−2])→ RΓc,B(X,F
D)→ RΓW,c(X,F

D)→

and Propositions IV.2.9 and IV.2.14.

We compute some special cases, using Propositions IV.2.11 and IV.2.12.

Proposition IV.3.6. Suppose that X = Spec(OK) is regular. We have

H i
W,c(X,ZD) =

{
Z, i = 1,
0, i = 2,

and an exact sequence

0→ Zr2 → H−1
W,c(X,Z

D)→ O×
K → (Z/2Z)r1 → H0

W,c(X,ZD)→ Pic(X)→ 0.

Moreover H0
W,c(X,ZD) = Pic+(X).

Remark.

• If X is singular, we still have H2
W,c(X,ZD) = 0; the abelian group H1

W,c(X,ZD) is of
rank 1 but it can have torsion coming from H1(X,Z) if X is not unibranch.

• The complexes RΓW,c(X,ZD) is equal to the complex RΓW,c(X,Z(1))[2] of [FM18]
and the above computation reproduces the one in [FM18].

Proposition IV.3.7. Suppose that X = Spec(OK) is regular and let j : U → X be an
open immersion with U ̸= X; we keep the notations from Proposition IV.2.12. Then
H1
W,c(X, (j!Z)D) = H2

W,c(X, (j!Z)D) = 0 and we have short exact sequences

0→ Zr2 → H−1
W,c(X, (j!Z)

D)→ O×
K,S,+ → 0

and
0→ Pic+(U)→ H0

W,c(X, (j!Z)D)→ ker(Zsf Σ−→ Z)→ 0.

115



Proposition IV.3.8. Let i : x → X be a closed point and M a finite type discrete
Gx-module. Then

H i
W,c(X, (i∗M)D) =


0, i = −1,
H0(Gx,M

∨) = HomGx(M,Z), i = 0,
(H0(Gx,M)tor)

∗, i = 2,

and we have a short exact sequence

0→ H1(Gx,M)∗ → H1
W,c(X, (i∗M)D)→ Hom(H0(Gx,M),Z)→ 0.

Proposition IV.3.9. If F is a constructible sheaf on X then

RΓc,B(X,F
D)

≃−→ RΓW,c(X,F
D).

IV.3.3 Functoriality properties

Theorem IV.3.10. Let F be a red or blue sheaf on the spectrum X of an order in a number
field. The complex RΓW,c(X,FD) is well-defined up to unique isomorphism, is functorial
in red-to-blue morphisms, and gives long exact cohomology sequences for red-to-blue short
exact sequences.

Proof. For each red or blue sheaf F we fixe a choice RΓW,c(X,FD) of cone of αF . Let
f : F → G be a red-to-blue morphism. Let us consider the following diagram with
distinguished rows:

DF RΓc,B(X,F
D) RΓW,c(X,F

D)

DG RΓc,B(X,G
D) RΓW,c(X,G

D)

f∗ f∗

αF

αG

We claim that the left square commutes. Indeed, by Proposition IV.3.3 it suffices to check
it in cohomology in degree 1 and 2, in which case it follows from the functoriality of the
maps

D(−) → RHomZ(RΓ(X,−),Q/Z[−2]),
RΓ̂c,B(X, (−)D)→ RHomZ(RΓ(X,−),Q/Z[−2]),

RΓc,B(X, (−)D)→ RΓ̂c,B(X, (−)D).

We obtain an induced morphism f ∗ : RΓW,c(X,G
D)→ RΓW,c(X,F

D) in D(Z) completing
the diagram to a morphism of distinguished triangles. Let us show that this induced
morphism is uniquely determined by the left square. It suffices to show that the natural
map

Hom(RΓW,c(X,G
D), RΓW,c(X,F

D))→ Hom(RΓc,B(X,G
D), RΓW,c(X,F

D))

is injective. We have an exact sequence

Hom(DG[1], RΓW,c(X,F
D))→ Hom(RΓW,c(X,G

D), RΓW,c(X,F
D))

→ Hom(RΓc,B(X,G
D), RΓW,c(X,F

D)).
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Since DG is a complex of Q-vector spaces, the multiplication-by-n map on DG is a quasi-
isomorphism for every integer n. The same must hold for Hom(DG[1], RΓW,c(X,F

D))
by functoriality, so the latter is a Q-vector space. Moreover, by Proposition IV.3.5
and Equation (IV.3.1), the abelian group Hom(RΓW,c(X,G

D), RΓW,c(X,F
D)) is of finite

type so the image of

Hom(DG[1], RΓW,c(X,F
D)) inside Hom(RΓW,c(X,G

D), RΓW,c(X,F
D))

must be 0 and the claim follows. This proves the functoriality in red-to-blue morphisms;
by running the same argument with the morphism id : F → F for a choice of two different
cones of αF , we obtain the uniqueness up to unique isomorphism.

Let 0 → F → G → H → 0 be a red-to-blue short exact sequence. Denote by
u : H → F [1] the induced map. By the previous argument, we obtain a diagram

DF RΓc,B(X,F
D) RΓW,c(X,F

D)

DG RΓc,B(X,G
D) RΓW,c(X,G

D)

DH RΓc,B(X,H
D) RΓW,c(X,H

D)

DF [−1] RΓc,B(X,F
D)[−1] RΓW,c(X,F

D)[−1]

f∗ f∗

αF

αG

u∗

g∗

αH

αF [−1]

g∗

u∗

f∗

g∗

u∗

To construct the unique dotted arrow u∗ making the diagram commute, repeat the previous
argument using Proposition IV.2.14 and Equation (IV.3.1).

The right column provides a triangle that is not necessarily distinguished. We will
show that it induces a long exact cohomology sequence. Fix a prime p and an integer
n ∈ N×. Observe that DF is a complex of Q-vector spaces, so that DF ⊗L Z/pnZ = 0. It
follows that

RΓc,B(X,F
D)⊗L Z/pnZ ≃−→ RΓW,c(X,F

D)⊗L Z/pnZ

is an isomorphism. Denote by (−)∧p = R lim(−⊗L Z/pnZ) the derived p-completion. By
passing to the derived limit, we find

RΓc,B(X,F
D)∧p

≃−→ RΓW,c(X,F
D)∧p = RΓW,c(X,F

D)⊗L Zp,

naturally in F , where the right equality holds because RΓW,c(X,FD) is a perfect complex.27

Since derived p-completion is an exact functor, it follows that RΓW,c(X, (−)D)⊗L Zp is an
exact functor too. Now Zp is flat and the family (Zp)p prime is faithfully flat so it suffices to
show that the long cohomology sequence is exact after tensoring with Zp, for each prime
p; this follows from the exactness of RΓW,c(X, (−)D)⊗L Zp.

Proposition IV.3.11. Let Y = Spec(O′) be the spectrum of an order in a number field
with a finite dominant morphism π : Y → X and let F be a red or blue Z-constructible
sheaf on Y . Then π∗F is red or blue and we have a unique isomorphism

RΓW,c(Y, F
D)

≃−→ RΓW,c(X, (π∗F )
D).

27This follows from [Stacks, Tag 0EEU] and [Stacks, Tag 00MA] by filtering with the truncations.
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Proof. We can run an argument similar to the previous proof: it suffices to check that the
square

RΓ(Y, F )†[−2] RΓc,B(Y, F
D)

RΓ(X, π∗F )
†[−2] RΓc,B(X, (π∗F )

D)

αF

≃ ≃

απ∗F

is commutative. This can be checked in cohomology in degree 2 and 3, whence from the
definition of αF we reduce to checking that

Ĥ i
c,B(Y, F

D) H2−i(Y, F )∗

Ĥ i
c,B(X, (π∗F )

D) H2−i(X, π∗F )
∗

≃ ≃

is commutative for i = 2, 3. This would be implied by the commutativity of the following
diagram:

RΓ(Y, F )⊗L RΓ̂c,B(Y, FD) RΓ̂c,B(Y,ZD) Q/Z[−2]

RΓ(X, π∗F )⊗L RΓ̂c,B(X, (π∗F )D) RΓ̂c,B(X,ZD) Q/Z[−2]

≃
τ≥2

τ≥2

By Proposition IV.2.6, the left square is commutative. Moreover, we can identify the
canonical map RΓ̂c,B(Y,ZD)→ RΓ̂c,B(X,ZD) as the composition

RΓ̂c,B(Y,ZD) ≃ RΓ̂c(Y,Zc
Y ) ≃ RΓ̂c(X, π∗Rπ

!Zc
X)→ RΓ̂c(X,Zc

X) ≃ RΓ̂c,B(X,ZD)

coming from the counit ε : π∗Rπ! → id. It induces in cohomology in degree 2 the identity
Q/Z→ Q/Z [Mil06, II.3.10],[Har20, 8.9], so the right square is commutative.

The Weil-étale complex splits rationally:

Proposition IV.3.12. Let F be a red or blue sheaf. There is an isomorphism

RΓW,c(X,F
D)Q

≃−→ RHom(RΓ(X,F ),Q[−1])⊕RΓc,B(X,FD)Q,

natural in red-to-blue morphisms and red-to-blue short exact sequences.

Proof. Consider the distinguished triangle

RΓc,B(X, (−)D)Q → RΓW,c(X, (−)D)Q
p−→ D(−)[1].

It suffices to show that p has a section; but if F is a red sheaf or G is a blue sheaf,
considerations on the Verdier spectral sequence Equation (IV.3.1) show that

HomD(Z)(DF [1], RΓc,B(X,G
D)Q) = 0, HomD(Z)(DF [1], RΓc,B(X,G

D)Q[1]) = 0,

so that composition with pG induces an isomorphism

HomD(Z)(DF [1], RΓW,c(X,G
D)Q)

≃−−→
pG,∗

HomD(Z)(DF [1], DG[1]).

We then put sF = p−1
F,∗(id); the functoriality is easily checked from the above isomorphism.
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Proposition IV.3.13. Let Y = Spec(O′) be the spectrum of an order in a number field
with a finite dominant morphism π : Y → X and let F be a red or blue sheaf on Y . Then
the rational splitting of Weil-étale cohomology is compatible with π∗, i.e. the following
square commutes

RΓW,c(Y, F
D)Q DF [1]⊕RΓc(Y, FD)Q

RΓW,c(X, (π∗F )
D)Q Dπ∗F [1]⊕RΓc(X, (π∗F )D)Q

≃

≃

≃

≃

Proof. It suffices to prove that in the following square, the square with the sections
commutes:

RΓW,c(Y, F
D)Q DF [1]

RΓW,c(X, (π∗F )
D)Q Dπ∗F [1]

γ

pF

pπ∗F
δ

sF

sπ∗F

As in the previous proof, there is an isomorphism

HomD(Z)(DF [1], RΓW,c(X, (π∗F )
D)Q)

≃−−−→
pπ∗F,∗

HomD(Z)(DF [1], Dπ∗F [1]).

We compute
pπ∗FγsF = δpF sF = δ = pπ∗F sπ∗F δ.

IV.4 The tangent space and the fundamental line
Denote by g : η = Spec(K) → X the inclusion of the generic point, GK the absolute
Galois group of K, Kt the maximal tamely ramified extension of K, Gt

K = Gal(Kt/K)
and OKt the ring of integers of Kt. For each finite place v of K, let Pv ⊂ Iv ⊂ Dv ⊂ GK

denote the wild ramification, inertia, decomposition subgroups of GK at v 28. Denote by
N the smallest closed normal subgroup of GK containing Pv for each finite place v. We
have Gt

K = GK/N by Proposition C.0.3. For a sheaf F on X, put Fη := g∗F , seen as a
discrete GK-module.

Definition IV.4.1. Let F be a Z-constructible sheaf on X.

• We say that F is tamely ramified if for each finite place v of K, Pv acts trivially on
Fη; then Fη carries a natural action of Gt

K.

• Suppose that F is tamely ramified. The tangent space of FD is the complex

LieX(F
D) := RHomGt

K
(Fη,OKt [1]).

Remark.

• Let us motivate the above definition. Following the work of Flach–B. Morin [FM18],
the complex LieX(F

D) should be the “additive complex” giving the additive part
of the fundamental line. It should behave like Milne’s correcting factor in the

28coming from a choice of embedding Kv ↪→ Ksep
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special value formula for LX(FD, s) at s = 0. Since LX(ZD, s) = ζX(s + 1) when
X = Spec(OK) is regular, we must have LieX(Gm) = OK : this is the additive
complex for Z(1)[1] on X. We want LieX to be an exact functor29. Recall the
L-function of a Z-constructible sheaf LX(−, s) introduced in Subsection II.6.4. If
i : x→ X is the inclusion of a closed point and M is a finite type Gx-module, we
have LX((i∗M)D, s) = LX(i∗M

∨, s). Since the special value at s = 0 of LX(i∗M∨, s)
doesn’t involve an additive complex, it is expected that LieX((i∗M)D) = 0. Therefore,
LieX(F

D) should only depend on Fη. In [GS20], Geisser–Suzuki consider a torus T
over a function field K associated to a proper smooth curve over a finite field C.
They write down a special value formula for the L-function of T (defined in terms of
the rational ℓ-adic Tate module) at s = 1 in terms of Weil-étale cohomology and
of the Lie algebra of the connected Néron model T 0 on C of T . Moreover, they
show that on the étale site, T 0 = RH om(Ỹ ,Gm) where Ỹ is a bounded complex
with Z-constructible cohomology sheaves related to the character group of T . This
inspired our construction.

• If F is Z-constructible and X = Spec(OK) is regular, F is tamely ramified if and only
if for each U ⊂ X such that F|U is locally constant, there exist a finite extension L/K
such that the normalization π : Y → X of X in L is étale over U with (π∗F )|π−1(U)

constant, and π is tamely ramified above points x ∈ X\U .

• If X is not regular we nonetheless have LieX(ZD) = OK [1]. This seems strange to
us, but as we explained LieX(F

D) depends only on Fη which does not see singular
points so it is also more or less expected.

• We have LieX(F
D)Q = HomGK

(Fη, K
sep)[1].

The restriction to tamely ramified sheaves is justified by the following theorem, essen-
tially due to Noether [Noe32]30:

Theorem IV.4.2 ([NSW13, 6.1.10]). Let K be a number field or a p-adic field. The
discrete Gt

K-module OKt is cohomologically trivial. In particular

RΓ(Gt
K ,OKt) = OK [0].

Corollary IV.4.3. Let L/K be a finite tamely ramified Galois extension of number fields
or p-adic fields with Galois group G. For i ≥ 1, put OLJtKi := 1 + tiOLJtK. Then OLJtKi is
a cohomologically trivial G-module.

Proof. We have an isomorphism OLJtKi/OLJtKi+1 ≃ OL and

OLJtKi = lim
k>i
OLJtKi/OLJtKk.

The transition maps are surjective, and the terms are cohomologically trivial by induction
using Theorem IV.4.2. Moreover, the kernel of OLJtKi/OLJtKk+1 → OLJtKi/OLJtKk is
OLJtKk//OLJtKk+1 ≃ OL which is cohomologically trivial, so for every subgroup H of G
the maps (OLJtKi/OLJtKk+1)

H → (OLJtKi/OLJtKk)H are surjective.
29A way to avoid the tame ramification hypothesis may be to relax this condition and only ask that

detZ(LieX((−)D) is multiplicative with respect to fiber sequences)
30See also [Köc04, Theorem 1.1]
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Put Ak = OLJtKi/OLJtKk and let H be a subgroup of G. We compute:

RΓ(H,OLJtKi) = RΓ(H, limAk) = RΓ(H,R limAk) = R limRΓ(H,Ak)

= R lim(AHk [0])

= (limAHk )[0]

where each limit is a derived limit because the transition maps are surjective.

The following lemma together with the above theorem will enable us to compute the
tangent space of FD more explicitely:

Lemma IV.4.4. Let G be a profinite group and let O be a torsion-free cohomologi-
cally trivial discrete G-module. Let M be a finite type discrete G-module. The complex
RHomG(M,O) is cohomologically concentrated in degree [0, 1]. Moreover, if M is finite it
is concentrated in degree 1 and if M is torsion-free it is concentrated in degree 0.

Proof. To show the vanishing result, we can use the short exact sequence 0 → Mtor →
M → M/tor→ 0 to reduce to the finite and torsion-free cases; thus it suffices to study
those cases:

• Suppose first that M is finite. We then have HomG(M,O) = 0 because O is
torsion-free. As ExtpZ(M,O) = 0 for p ̸= 1, we obtain for i ≥ 1:

ExtiG(M,O) = H i−1(G,Ext1Z(M,O)).

Let us now show the vanishing for i > 1. We can suppose that M is p-primary, and
even p-torsion. Let H be any p-Sylow of G. As an H-module, M has a composition
series with quotients isomorphic to Z/pZ with its trivial action [Ser68, IX, Thm 1].
We have

H i(H,Ext1Z(Z/pZ,O)) = H i(H,O/pO) = 0

for i ≥ 1 because O is cohomologically trivial. It follows that for any i ≥ 1 we also
have H i(H,Ext1Z(M,O)) = 0. Finally, the following triangle commutes:

H i(G,Ext1Z(M,O)) H i(G,Ext1Z(M,O))

H i(H,Ext1Z(M,O)) = 0

Res Cores

[G:H]

≃

whence it follows that H i(G,Ext1Z(M,O)) = 0 for i ≥ 1.

• Suppose now that M is torsion-free, and let us show that ExtiG(M,O) = 0 for
i > 0. By Artin induction and the previous case it suffices to consider the case of
M = indGHZ for H an open subgroup. Since O is cohomologically trivial we have

RHomG(ind
G
HZ,O) = RΓ(H,O) = OH [0],

which is concentrated in degree 0.

Corollary IV.4.5. Let M be a finite type discrete Gt
K-module. Then RHomGt

K
(M,OKt [1])

is a perfect complex cohomologically concentrated in degree [−1, 0]. More precisely,
Ext−1

Gt
K
(M,OKt [1]) is free of finite rank and Ext0Gt

K
(M,OKt [1]) is finite.
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Proof. We apply first Lemma IV.4.4 to obtain the vanishing outside [−1, 0]. Now let H
be an open normal subgroup of Gt

K acting trivially on M and corresponding to a finite
tamely ramified Galois extension L/K, and put G := Gt

K/H = Gal(L/K). There is a
natural G-action on M . The functor RΓ(H,−) is right adjoint to the forgetful functor
G-Mod→ Gt

K-Mod, so we obtain

RHomG(M,OKt [1]) = RHomG(M,RΓ(H,OKt [1])) = RHomG(M,OL[1])

by Theorem IV.4.2.
Since OL is torsion-free, HomG(M,OL) is free of finite rank. On the other hand,

we can use the short-exact sequence 0 → Mtor → M → M/tor → 0, the vanishing
ExtpZ(Mtor,OL) = 0 for p ̸= 1 and Lemma IV.4.4 (applied to G and OL) to compute

Ext1G(M,OL)
≃−→ Ext1G(Mtor,OL) = H0(G,Ext1Z(Mtor,OL))

which is finite.

Corollary IV.4.6. Let F be a tamely ramified Z-constructible sheaf on the spectrum X
of an order in a number field. Then LieX(F

D) is a perfect complex concentrated in degree
[−1, 0]. Moreover H−1 LieX(F

D) is free of finite rank and H0 LieX(F
D) is finite.

Corollary IV.4.7. Suppose that M is a torsion-free discrete Gt
K-module and let T be the

torus over K with character group M . Denote by T the locally of finite type Néron model
of T over Spec(OK). We have a canonical, functorial isomorphism

Lie(T ) ≃−→ HomGt
K
(M,OKt)

where the left term is the Lie algebra of T .

Proof. Both terms are lattices inside Lie(T ) = HomGK
(M,Ksep). It suffices to show that

they are canonically isomorphic after tensoring with OKv for all non-archimedean places v.
On the one hand we have

Lie(T )⊗OK
OKv = Lie(TOKv

) = Lie(N (TKv))

where N denotes the lft Néron model. On the other hand let G = Gal(L/K) be a quotient
of Gt

K through which the action of Gt
K on M factors. We have

OL ⊗OK
OKv ≃

∏
w|v

OLw

and thus

HomGt
K
(M,OKt)⊗OK

OKv = HomG(M,OL)⊗OK
OKv = HomG(M,OL ⊗OK

OKv)

= HomG(M,
∏
w|v

OLw)

= HomDw0/v
(M,OLw0

)

where w0 is a fixed place of L above v, so we can reduce to the case where K is a p-adic
field. By [CY01, A1.7] we have a canonical functorial isomorphism

Lie(T ) ≃−→ {v ∈ HomG(M,OL) | v lifts to HomG(M,OLJtK1)}

122



It thus suffices to show that HomG(M,OLJtK1)→ HomG(M,OL) is surjective. We have
an exact sequence

HomG(M,OLJtK1)→ HomG(M,OL)→ Ext1G(M,OLJtK2).

Now OLJtK2 is torsion-free and cohomologically trivial by Corollary IV.4.3 and M is a
torsion-free finite type G-module, so we can apply Lemma IV.4.4 to obtain the vanishing
of ExtiG(M,OLJtK2) for i ≥ 1.

Remark. As a corollary, a short exact sequence of tori that are split by a tamely ramified
extension gives rise to a short exact sequence of the Lie algebras of the respective lft Néron
models.

In the following, put (−)R := −⊗L R.

Proposition IV.4.8. Let F be a tamely ramified Z-constructible sheaf on X. We have

LieX(F
D)R = RHomGR,X(C)(α

∗F,C[1]).

Proof. Let L/K be a finite tamely ramified Galois extension such that GL acts trivially
on Fη, and put G := Gt

K/G
t
L = Gal(L/K). We have:

LieX(F
D)R = RHomG(Fη,OL[1])R =

(∗)
RHomG(Fη,OL ⊗Z R[1])

= RHomG(Fη,
∏

v archimedean

∏
w|v

Lw[1])

=
∏

v archimedean

RHomG(Fη,
∏
w|v

Lw[1]).

where (∗) holds because Fη is a finite type abelian group, hence a finite presentation
Z[G]-module. For each archimedean place v, choose a place w0 in L above v. The group
G acts transitively on the places above v, the fields Lw are pairwise isomorphic, and the
stabilizer Dw0 of w0 identifies with Gal(Lw0/Kv). Thus

∏
w|v Lw = indGDw0

Lw0 and we find

LieX(F
D)R =

∏
v archimedean

RHomDw0
(Fη, Lw0 [1]).

On the other hand, for v an archimedean place we have Fv = Fη with the restricted action
to GKv := Gal(C/Kv). Therefore the action of GKv factors through Gal(Lw0/Kv); as the
functor RΓ(Gal(C/Lw0),−) is right adjoint to the forgetful functor Dw0-Mod→ GKv -Mod,
we find

RHomGR,X(C)(α
∗F,C[1]) = RΓGR(X(C), RH omX(C)(α

∗F,C[1]))

=
∏

v archimedean

RΓ(GKv , RHomZ(Fv,C[1]))

=
∏

v archimedean

RHomGKv
(Fv,C[1])

=
∏

v archimedean

RHomDw0
(Fv, Lw0 [1])

= LieX(F
D)R.
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Proposition IV.4.9. Let Y = Spec(O′) be the spectrum of an order in a number field
with a finite dominant morphism π : Y → X. If K(Y )/K is tamely ramified and F is a
tamely ramified Z-constructible sheaf on Y , we have

LieX((π∗F )
D) = LieY (F

D).

Proof. Denote by g′ : Spec(L)→ Y the inclusion of the generic point and π′ : L→ K the
map induced by base change of π by g : Spec(K)→ X. By finite base change, we have
g∗π∗F = π′

∗g
′∗F . If K ⊂ H ⊂ G are normal subgroups of a profinite group G and M is a

discrete H/K-module, we have

ind
G/K
H/KM = ContH/K(G/K,M) ≃ Cont(G/H,M) ≃ ContH(G,M) = indGHM,

where the left term is seen as a G-module, and on the right M has the natural H-module
structure. Denote by U : Gt

K-Mod→ GK-Mod and U ′ : Gt
L-Mod→ GL-Mod the forgetful

functors. The functor π′
∗ identifies with induction indGK

GL
. We have Kt = Lt because L/K

is tamely ramified so we can apply the above to GalKsep/Kt ⊂ GL ⊂ GK . We obtain the
formula U ◦ indG

t
K

Gt
L
= indGK

GL
◦ U ′, so that

LieY ((π∗F )
D) := RHomGt

K
(ind

Gt
K

Gt
L
g′∗F,OKt [1]) = RHomGt

L
(g′∗F,OKt [1])

= LieX(F
D),

since induction is right and left adjoint to the forgetful functor by the finiteness of L/K.

Definition IV.4.10. Let F be a tamely ramified red or blue sheaf. The fundamental line
is the determinant dim

∆X(F
D) = det

Z
(RΓW,c(X,F

D))⊗ det
Z
(LieX(F

D))−1.

IV.5 Deligne compactly supported cohomology and the
duality theorem

There is a natural GR-equivariant map of sheaves on X(C) given by the logarithm of the
absolute value log | · | : C× → R. Let F be a sheaf on X. We denote by Log the natural
map

Log : RHom(F,Zc
X)

α∗
−→ RHomGR,X(C)(α

∗F,Q×
[1])

→ RHomGR,X(C)(α
∗F,C×[1])

(log |·|)∗[1]−−−−−−→ RHomGR,X(C)(α
∗F,R[1]).

Since the target is a sheaf of R-vector spaces, the map factors as Log : RΓ(X,FD)R =
RHom(F,Zc

X)R → RHomGRR,X(C)(α
∗F,R[1]).

Definition IV.5.1. Let F be a Z-constructible sheaf on X. We define the Deligne
compactly supported cohomology with coefficients in FD by

RΓc,D(X,F
D
R ) := fib

(
RΓ(X,FD)R

Log−−→ RHomGR,X(C)(α
∗F,R[1])

)
.
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Remark. We have chosen to name the different cohomologies with compact support
by what happens at the archimedean places; here the cohomology at the archimedean
places is replaced by a contravariant version of Deligne cohomology with real coefficients
R(1)D = [2iπR→ C] ≃ R[−1].

The commutative diagram with exact rows of GR-equivariant sheaves

0 2iπZ C C× 0

0 2iπR C R 0

log |·|

gives a commutative square

C× 2iπZ[1]

R 2iπR[1]

log |·| (IV.5.1)

Consider the following diagram

RΓc,B(X,F
D)R RΓ(X,FD)R RHomGR,X(C)(α

∗F, 2iπR)[2]

RHomGR,X(C)(α
∗F,C[1]) RHomGR,X(C)(α

∗F,R[1]) RHomGR,X(C)(α
∗F, 2iπR)[2]

Log Log

where the top fiber sequence is the defining fiber sequence of RΓc,B(X,FD) tensored with
R and the bottom fiber sequence is induced from the short exact sequence 0→ 2iπR→
C → R → 0. We claim that the right square is commutative, hence induces the left
map making the whole diagram commute. This follows from the following commutative
diagram, induced by the commutative square (IV.5.1), by using the universal property of
base change to R-coefficients:

RΓ(X,FD) RHomGR,X(C)(α
∗F,Q×

[1])

RHomGR,X(C)(α
∗F,C×[1]) RHomGR,X(C)(α

∗F, 2iπZ[2])

RHomGR,X(C)(α
∗F,R[1]) RHomGR,X(C)(α

∗F, 2iπR[2])

(log |·|)∗[1]

α∗

Log

By the ∞-categorical nine lemma Lemma II.2.2 we obtain

RΓc,D(X,F
D
R ) = fib

(
RΓc,B(X,F

D)R
Log−−→ RHomGR,X(C)(α

∗F,C[1])
)
.

We now want to prove a duality theorem relating RΓ(X,F )R and RΓc,D(X,FD
R ). Let

us construct a natural pairing

RΓ(X,F )R ⊗L RΓc,D(X,FD
R )→ R[0].

Consider Diagram IV.3. Its right rectangle commutes. The top and bottom rows are fiber
sequences, so we obtain an induced dotted map making the diagram commute. To obtain
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R
Γ
(X
,F

)R
⊗
L
R
Γ
c,D

(X
,F

DR
)

R
Γ
(X
,F

)R
⊗
L
R
Γ
(X
,F

D
)R

R
Γ
(X
,F

)R
⊗
L
R
H
om

G
R
,X

(C
) (α

∗F
,R

[1])

R
Γ
(X
,F

)R
⊗
L
R
H
om

(F
,Z

cX
)R

R
Γ
G

R (X
(C

),α
∗F

)R
⊗
L
R
H
om

G
R
,X

(C
) (α

∗F
,R

[1])

R
Γ
c,D

(X
,Z

DR
)

R
Γ
(X
,Z

cX
)R

R
Γ
G

R (X
(C

),R
[1])

Diagram IV.3
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the desired pairing, it remains to compute RΓc,D(X,ZDR ). The complex RΓ(X,Zc
X) =

RΓ(X,GX) is torsion in degree i ≥ 1 [Mil06, II.6.2], and we have RΓGR(X(C),R[1]) =
(
∏

σ:K→C

R)GR [1]. The cohomology in degree −1 and 0 is given by the exact sequence

0→ H−1
c,D(X,Z

D
R )→ CH0(X, 1)R

Log−−→ (
∏

σ:K→C

R)GR → H0
c,D(X,ZDR )→ CH0(X)R = 0.

Denote by f : X → Spec(Z) the structure map of X, Z its singular locus and U its regular
locus. By Theorem II.4.4,31 we have32

CH0(X)R = HomX(Z,Zc
X)R ≃ Hom(H0

c (X,Z)R,R) = 0.

Moreover, Theorem II.4.4 and the computation of H1(X,Z) gives a short exact sequence

0→ CH0(X, 1)R
Log−−→ (

∏
σ:K→C

R)GR ×
∏
v∈Z

∏
π(w)=v

R
Σ×

∏
v∈Z Σ

−−−−−−→ R×
∏
v∈Z

R→ 0,

where Σ denote sum maps. Consider the following snake diagram:

0 H−1
c,D(X,ZDR )

0 0 CH0(X, 1)R CH0(X, 1)R 0

0
∏
v∈Z

∏
π(w)=v

R (
∏

σ:K→C

R)GR ×
∏
v∈Z

∏
π(w)=v

R (
∏

σ:K→C

R)GR 0

∏
v∈Z

∏
π(w)=v

R R×
∏
v∈Z

R H0
c,D(X,ZDR ) 0

Σ×
∏

v∈Z Σ

(0,
∏

v∈Z Σ)

If we denote by (
∏

I R)Σ the kernel of the sum map
∏

I R→ R, we obtain identifications

H−1
c,D(X,Z

D
R ) =

∏
v∈Z

(
∏

π(w)=v

R)Σ, H0
c,D(X,ZDR ) = R,

and under the latter identification the map (
∏

σ:K→C

R)GR → H0
c,D(X,ZDR ) is simply the

restriction of Σ. If X is unibranch, and in particular if it is regular, we have H−1
c,D(X,ZDR ) =

0.
The desired pairing is now

RΓ(X,F )R ⊗L RΓc,D(X,FD
R )→ RΓc,D(X,ZDR )

τ≥0−−→ R[0].
31Which also holds for singular schemes; this can be seen either by applying it on Spec(Z) to the direct

image with compact support along the structural morphism, or by modifying slightly the proof to reduce
to the regular case by removing the singular points

32This is essentially the finiteness of the class number of a number field
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Theorem IV.5.2. Let X be the spectrum of an order in a number field and let F ∈ Db(Xet)
be a bounded complex with Z-constructible cohomology groups. The pairing

RΓ(X,F )R ⊗L RΓc,D(X,FD
R )→ R[0]

is a perfect pairing of perfect complexes of R-vector spaces. If F ∈ D+(Xet), the map

RΓc,D(X,F
D
R )→ RHom(RΓ(X,F )R,R)

is an isomorphism.

Proof. The map RΓc,D(X, (−)DR ) → RHom(RΓ(X,−)R,R) is a natural transformation
between exact functors which commute with filtered colimits. Any complex F ∈ D+(Xet) is
a filtered colimit of bounded complexes; a bounded complex has a filtration by truncations
with graded pieces shifts of sheaves; and any sheaf is a filtered colimit of Z-constructible
sheaves. We thus reduce to the case of a single Z-constructible sheaf. The groups H i(X,F )
differ from Ĥ i

c(X,F ) by a finite group since X is proper, hence are finite type for i = 0, 1
and torsion otherwise, so RΓ(X,F )R is a perfect complex of R-vector spaces.

We now prove the perfectness of the complex RΓc,D(X,FD
R ) and of the pairing by Artin

induction.

• This is trivial if F is constructible.

• If X is regular and F = Z, we have RΓ(X,Z)R = R[0] and RΓc,D(X,ZDR ) = R[0] so
the pairing is of the form R⊗ R→ R, concentrated in degree 0. By construction,
we have a commutative square

RΓ(X,Z)R ⊗L RΓGR(X(C),R) RΓ(X,Z)R ⊗L RΓc,D(X,ZDR )

RΓGR(X(C),R) RΓc,D(X,ZDR )

so we get a commutative diagram

R⊗ (
∏

σ:K→C

R)GR R⊗ R

(
∏

σ:K→C

R)GR R

id⊗Σ

Σ

Since the pairing on the left is multiplication, the pairing on the right is also
multiplication, so it is perfect.

• If F is supported on a closed subscheme, without loss of generality we can suppose
that there is a closed point i : x → X and a finite type Gx-module M such that
F = i∗M . We have

RΓ(X, i∗M) ≃ RΓ(Gx,M),

RΓc,D(X, (i∗M)DR )
≃−→ RΓ(X, (i∗M)D)R = RΓ(X, i∗M

∨)R ≃ RΓ(Gx,M
∨)R.
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The counit i∗Ri!Zc
X = i∗Z→ Zc

X induces a map

RΓ(Gx,Z) = RΓ(X, (i∗Z)D)→ RΓ(X,Zc
X).

Since α∗i∗ = 0, this induces a map RΓ(Gx,Z)R → RΓc,D(X,ZDR ). Upon identifying
Z with Z∨, this map is the map RΓc,D(X, (i∗Z)DR ) → RΓc,D(X,ZDR ) induced by
Z → i∗Z. Let j : U := X\x → X denote the open immersion; the short exact
sequence 0→ j!Z→ Z→ i∗Z→ 0 gives a 3× 3 diagram:

RΓc,D(X, (j!Z)DR [−1]) RΓc,D(X, (i∗Z)DR ) RΓc,D(X,ZDR )

RΓ(U,Zc
U [−1])R RΓ(X, i∗Z)R RΓ(X,Zc

X)R

RΓGR(X(C),R) 0 RΓGR(X(C),R[1])

The map RΓc,D(X, (i∗Z)DR )→ RΓc,D(X,ZDR ) is given in degree 0 by a map R→ R
which is computed as the boundary map δ in the following snake diagram

0 H−1
c,D(X,ZDR ) H−1

c,D(X, (j!Z)DR ) R

0 CH0(X, 1)R CH0(U, 1)R R 0

0 (
∏

σ:K→C

R)GR (
∏

σ:K→C

R)GR 0 0

H0
c,D(X,ZDR ) = R H0

c,D(X, (j!Z)DR ) 0 0

ordv

Σ

δ

δ

Let f ∈ CH0(U, 1)R such that ordv(f) = 1; we also have ordw(f) = 0 for w ∈ U by
definition. Then

δ(1) = Σ ◦ Log(f) = − logN(v)

by the product formula. From Diagram IV.3, we obtain the commutativity of the
upper left rectangle in the following commutative diagram.

RΓ(X, i∗M)R ⊗L RΓc,D(X, (i∗M)DR ) RΓc,D(X,ZDR ) R[0]

RΓ(X, i∗M)R ⊗L RΓ(X, (i∗M)D)R RΓ(X,Zc
X)R

RΓ(Gx,M)R ⊗L RΓ(Gx,M
∨)R RΓ(Gx,Z)R R[0]

≃

≃

τ≥0

τ≥0

− logN(v)

The perfectness of the pairing reduces to that of the natural pairing

RΓ(Gx,M)R ⊗L RΓ(Gx,M
∨)R → R
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coming from M ⊗LM∨ → Z. It was shown in § II.4.2.4 that this latter pairing is
perfect33.

• Let Y = Spec(O′) be the spectrum of an order in a number field with a finite dominant
morphism π : Y → X, and suppose F = π∗G for a Z-constructible sheaf G on Y .
Denote by π′ : Y (C)→ X(C) the induced morphism. The counit π∗Zc

Y → Zc
X is sent

under α∗ to the counit π′
∗Q

×
[1]→ Q×

[1], and we have the canonical maps Q×
[1]→

C×[1]
log−→ R[1]. We obtain formally a morphism RΓc,D(Y,ZDR ) → RΓc,D(X,ZDR )

and isomorphisms RΓc,D(Y,GD
R )

≃−→ RΓc,D(X,F
D
R ) making the following diagram of

pairing commute

RΓ(Y,G)R ⊗L RΓc,D(Y,GD
R ) RΓc,D(Y,ZDR ) R[0]

RΓ(X,F )R ⊗L RΓc,D(X,FD
R ) RΓc,D(X,ZDR ) R[0]

≃

τ≥0

τ≥0

The rightmost map is determined by the following commutative diagram (coming
from the defining long exact cohomology sequences)

(
∏

τ :K(Y )→C

R)GR H0
c,D(Y,ZDR ) = R

(
∏

σ:K→C

R)GR H0
c,D(X,ZDR ) = RΣ

Σ

where the left map sums components corresponding to embeddings ofK(Y ) restricting
to the same embedding of K. Thus the rightmost map is the identity and the pairing
for F is perfect if and only if the pairing for G is perfect.

Remark. Using duality for Deligne cohomology, it should be possible to reduce the theorem
to the duality theorem Theorem II.4.4 similarly to how we reduced Artin–Verdier duality
for FD to Artin–Verdier duality for F .

IV.6 The L-function of FD

For any scheme S, denote by ν : Sh(Sproet)→ Sh(Set) the natural morphism of topoi; the
left adjoint ν∗ is fully faithful [BS15, 5.1.2].
Definition IV.6.1. For each closed point x of X, let ℓx be a prime number coprime
to the residual characteristic at x and φ be the geometric frobenius in Gx. Denote by
−⊗̂Qℓ = (R lim(−⊗L Z/ℓnZ))⊗Q the completed tensor product with Qℓ, with the derived
limit computed on the proétale site.

Let F be a Z-constructible sheaf on X. We define the L-function of FD by the Euler
product

LX(F
D, s) =

∏
x∈X0

det
(
I −N(x)−sφ|

(
ν∗(i∗xF

D)
)
⊗̂Qℓx

)−1
.

We will show that the L-function doesn’t depend on the choice of the prime numbers
(ℓx)x∈X0 .

33This also reduces by Artin induction, after showing compatibility with induction, to the perfectness
for M = Z.
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IV.6.1 Explicit computation

In this section we compute more explicitely the L-function of FD. Denote by π : Y → X
the normalization of X and let i : x → X be a closed point. Put x̄ = Spec(κ(x)sep),
Gx = Gal(κ(x)sep/κ(x)), and let Ohx (resp. Oshx ) denote the henselian (resp. strict
henselian) local ring at x. For each closed point y ∈ Y above x, we will consider similarly
Gy = Gal(κ(y)sep/κ(y)), Ohy , Oshy , and moreover Kh

y = Frac(Ohy ) (resp. Ksh
y ) the henselian

local field at y (resp. its maximal unramified extension). Fix an embedding Kh
y ↪→ Ksep.

This determines an inertia group Iy inside GK which is the absolute Galois group of Ksh
y .

If G is a topological group let G denote the associated condensed group.
Let us fix some conventions. If L(M, s) is an L-function attached to some object M34,

defined by an Euler product over closed points of X, denote by Lx(M, s) for the local
factor at a closed point x ∈ X. If N is a discrete Gx-module with free of finite type
underlying abelian group, or a rational or ℓ-adic Gx-representation of finite dimension, put

Qx(N, s) := det(I −N(x)−sφ|N)−1

with φ the geometric Frobenius at x.

Theorem IV.6.2. Let F be a Z-constructible sheaf on the spectrum X of an order in a
number field. The local factor at x of the L-function of FD is

Lx(F
D, s) =

∏
π(y)=x

Qy((F
∨
η )

Iy , s+ 1)Qx(F
∨
x , s)∏

π(y)=x

Qy((F
∨
η )

Iy , s)
.

The proof is divided into the following several lemmas below. We mention first some
important consequences:

Corollary IV.6.3.

• If F is locally constant around the regular closed point v, then Iv acts trivially on
Fη, Fη = Fv and we find that the local factor at v of FD equals the local factor at v
of the Artin L-function of Fη ⊗Q at s+ 1: 35

Lv(F
D, s) = Lv(Fη ⊗Q, s+ 1)

• Each local factor is well-defined, independently of the choice of a prime number ℓ
coprime to the residual characteristic.

• The L-function of FD differs from the Artin L-function LK(Fη⊗Q, s+1) by a finite
number of factors and is thus well-defined

• LX(F
D, s) is meromorphic.

Denote by T the torus over K with character group Y := Fη/tor. For any prime ℓ,
define the rational ℓ-adic Tate module of T as

Vl(T ) := (limT [ℓn])⊗Q.
34which kind of L-function we will try to make clear each time from the context
35Notice that a rational representation of a finite group is self-dual because its character takes real

values hence is its own conjugate
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It is a finite dimensional ℓ-adic representation of GK . We know that

Vl(T ) ≃ Y ∨ ⊗Qℓ(1) = F∨
η ⊗Qℓ(1)

as ℓ-adic representations.

Definition IV.6.4 ([Fon92, § 8]). The L-function LK(T, s) of T is the L-function of the
1-motive [0→ T ] over K, defined by the Euler product:

LK(T, s) =
∏
x∈X0

det(I −N(x)−sφ|Vℓx(T )Ix)−1,

where ℓx is a prime number coprime to the residual characteristic at x.

By the above, the L-function of T is also the Artin L-function at s+1 of Y ⊗Q = Fη⊗Q,
and it doesn’t depend on the choice of the family (ℓx).

Remark. Our definition differs slightly from the definition in [GS20]: we use the L-function
of the 1-motive [0 → T ], involving Vl(T ), while Geisser–Suzuki use the Hasse-Weil L-
function of T involving Vl(T )(−1).

Proposition IV.6.5. Suppose that v is a regular closed point. Let M be a discrete
Dv-module of finite type. There is a canonical Gv-equivariant isomorphism

M Iv ⊗Q ≃−→MIv ⊗Q.

Proof. The action of Dv on M factors through a finite quotient G; denote by H the image
of Iv in G. Then the canonical composite map

f :MH →M →MH

is G-equivariant hence also G/H-equivariant, and if N denotes the norm
∑

h∈H h we have
fN = [H]Id and Nf = [H]Id. The result follows.

Corollary IV.6.6.

• Suppose that the canonical map Fv → F Iv
η is an isomorphism for a regular closed

point v. Then the local factor at v of FD is Lv(Fη ⊗Q, s+ 1) = Lv(T, s).

• Suppose that X is regular. We have LX((g∗Y )D, s) = LK(T, s) = LK(Y ⊗Q, s+ 1).

• Suppose that X is regular and denote by T 0 the connected (lft) Néron model of T on
X, seen as an étale sheaf on X. We can define an L-function LX(T 0, s) for T 0 with
local factor at i : x→ X given by Qx((ν

∗i∗T 0)⊗̂Qℓ, s). Then

LX(T 0, s) = LK(T, s)
−1.

Proof. We have a canonical Gv-equivariant isomorphism

(F∨
η )

Iv ⊗Q = HomIv(Fη ⊗Q,Q) = HomAb((Fη)Iv ⊗Q,Q) ≃ HomAb(F
Iv
η ⊗Q,Q)

≃ F∨
v ⊗Q,

hence the local factor at v of the L-function of FD simplifies to Lv(Fη ⊗Q, s+ 1).
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The second point is an immediate consequence of the first. Let us prove the last point.
We have [GM21, 2.2]

T 0 = RH omX(τ
≤1Rg∗Y,Gm)

as étale sheaves. We claim that R1g∗Y is skyscraper constructible: indeed (R1g∗Y )η̄
vanishes, while (R1g∗Y )v̄ = H1(Ksh

v , Y ) which is finite, and zero if the inertia subgroup Iv
acts trivially on Y since Y is free as an abelian group36. As there are only a finite number
of points where the inertia acts non-trivially, we obtain the claim. Therefore R1g∗Y is
killed by an integer N and thus

(ν∗i∗T 0)⊗̂Qℓ = (ν∗i∗(g∗Y )D)⊗̂Qℓ[−1].

The result follows.

We now prove Theorem IV.6.2, in the following series of lemma.

Lemma IV.6.7. Let F be an étale sheaf on X, and let i : x→ X be a closed point. There
is a fiber sequence

RH omx(Fx,Z)→ i∗FD →
∏

π(y)=x

indGx
Gy
RHomSpec(Ksh

y )(Fη,Gm[1]).

Remark. We abused notation by identifying what should be the right term with its
underlying complex of abelian groups.

Proof. Put X(x) := Spec(Ohx), η(x) := Spec(Ohx) ×X Spec(K) and let f : X(x) → X,
g : η → X denote the canonical morphisms. We consider the cartesian diagram

η(x) X(x)

η X
g

ff ′

g′

Denote again by i : x→ X(x) the closed immersion. Since f is (ind-)étale, we have

i∗FD = i∗f ∗RH omX(F,GX [1]) = i∗RH omX(x)(F,GX(x)[1]).

By Proposition E.0.5, we have

η(x) =
∐

π(y)=x

∐
Gal(κ(y)/κ(x))

Spec(Ksh
y )

and thus

(Rg′∗Gm)x̄ = RΓ(η(x),Gm) =
∏

π(y)=x

indGx
Gy
RΓ(Ksh

y ,Gm) =
∏

π(y)=x

indGx
Gy
(Ksh

y )×,

hence g′∗Gm = Rg′∗Gm. Moreover there is by definition a fiber sequence

GX(x) → g′∗Gm → i∗Z
36This is the crucial point: if Y is finite then R1g∗Y is skyscraper with finite stalks but has non-zero stalk

almost everywhere; for instance by Hensel’s lemma the stalk of R1g∗Z/nZ at a point with characteristic
coprime to n is Z/nZ.
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so we obtain a fiber sequence

RH omx(Fx,Z)→ i∗FD → i∗Rg′∗RH omη(x)(g
′∗F,Gm[1]).

Using again Proposition E.0.5, we see that the right term is the following complex of
abelian groups with its natural Gx-module structure:

(Rg′∗RH omη(x)(g
′∗F,Gm[1]))x̄ =

∏
π(y)=x

indGx
Gy
RHomSpec(Ksh

y )(Fη,Gm[1]).

From now on, we suppose that F is a Z-constructible sheaf on X.

Lemma IV.6.8. We have

(ν∗RH omx(Fx,Z))⊗̂Qℓ = (ν∗H omx(Fx,Z))⊗Qℓ.

Proof. We have
ν∗RH omx(Fx,Z) = RH omxproet(ν

∗Fx,Z).

The functor −⊗L Z/ℓnZ is the cofiber of the map (−) ℓn−→ (−) so it commutes with exact
functors, and we find

RH omxproet(ν
∗Fx,Z)⊗̂Zℓ = RH omxproet(ν

∗Fx, R limZ/ℓnZ).

The constant sheaf functor is exact so the transition maps Z/ln+1Z→ Z/ℓnZ are surjective,
hence we have R limZ/ℓnZ = limZ/ℓnZ =: Zℓ [BS15, 3.1.10].

Under the identification xproet ≃ Gx-Cond(Set), the sheaf Extixproet(ν
∗Fx,Zℓ) is the

condensed abelian group ExtiCond(Ab)(ν
∗Fx,Zℓ) with its natural Gx-action; since both

ν∗Fx and Zℓ are locally compact abelian groups37, we find Extixproet(ν
∗Fx,Zℓ) = 0 for

i ≥ 2 [CS19, Remark after 4.9]. Let us show that Ext1xproet(ν
∗Fx,Zℓ) is killed by

some integer N . We have RH omxproet(ν
∗Fx,Zℓ) = R limRH omxproet(ν

∗Fx, ν
∗Z/ℓnZ) =

R lim ν∗RH omx(Fx,Z/ℓnZ) so there is a short exact sequence

0→ R1 lim ν∗H omx(Fx,Z/ℓnZ)→ Ext1xproet(ν
∗Fx,Zℓ)→ lim ν∗Ext1x(Fx,Z/ℓnZ)→ 0.

The underlying abelian group of the Gx-module H omx(Fx,Z/ℓnZ) is HomAb(Fx,Z/ℓnZ),
so the transition maps H omx(Fx,Z/ln+1Z)→H omx(Fx,Z/ℓnZ) are eventually surjective:
if Fx is torsion-free this is clear, and if Fx is torsion then the groups are constant for n greater
than the ℓ-adic valuation of the order of Fx. Thus the left term is zero by Lemma D.0.3.
Let k be the ℓ-adic valuation of (Fx)tor; then Ext1x(Fx,Z/ℓnZ) = Ext1x((Fx)tor,Z/ℓnZ) is
killed by N = lk, and therefore so is Ext1xproet(ν

∗Fx,Zℓ).
From the previous point, it follows by tensoring with Q that

RH omxproet(ν
∗Fx,Z)⊗̂Qℓ = H omxproet(ν

∗Fx,Zℓ)⊗Q

There are canonical maps

H omxproet(ν
∗Fx,Zℓ)⊗Q→H omxproet(ν

∗Fx,Qℓ)←H omxproet(ν
∗Fx,Z)⊗Qℓ

37The former is even discrete
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We have Ab(Sh(xproet)) = Ab(Sh((BGx)proet) = Gx − Cond(Ab) = Z[Gx] − Mod, the
category of modules under the condensed ring Z[Gx] Proposition D.0.8. To conclude it
suffices to show that both maps are isomorphisms. Let G be a finite quotient of Gx. We
check it first for Fx = Z[G]. This is easily done using next lemma.

By a standard argument it thus suffices to show that ν∗Fx is (globally) of finite
presentation as a Z[G]-module for some finite quotient G of Gx; this is clear as Fx is
discrete and of finite type as an abelian group.

Lemma IV.6.9. Let G be a finite quotient of Gx. Then Z[G] is a left Gx-module such
that

H omxproet(Z[G],−) = Z[G]⊗−.

Proof. We have Z[G] = Z[G] = ⊕GZ, thus

H omxproet(Z[G],−) = ⊕GH omxproet(Z,−) = ⊕GId = Z[G]⊗−.

Denote by RHomYproet the enriched RHom on the proétale site of a scheme, a complex
of condensed abelian groups with underlying complex of abelian groups RHomY .

Lemma IV.6.10. We have

(ν∗RHomSpec(Ksh
y )(Fη,Gm[1]))⊗̂Zℓ = RHomSpec(Ksh

y )proet(ν
∗Fη,Zℓ(1)[2]).

Proof. We have

ν∗RHomSpec(Ksh
y )(Fη,Gm[1]) = RHomSpec(Ksh

y )proet(ν
∗Fη, ν

∗Gm[1]).

Thus we find

ν∗RHomSpec(Ksh
y )(Fη,Gm[1])⊗̂Zℓ = RHomSpec(Ksh

y )proet(ν
∗Fη, (ν

∗Gm[1])⊗̂Zℓ).

Since ℓ is invertible on Spec(Ksh
y ), we have Gm ⊗L Z/ℓnZ = µℓn [1] and thus

(ν∗Gm[1])⊗̂Zℓ = R lim ν∗µℓn [2] = Zℓ(1)[2].

Lemma IV.6.11. Let H be an open normal subgroup of Iy acting trivially on Fη, and let
G := Iy/H. Denote by RHomG the enriched RHom between condensed G-modules. There
is a fiber sequence

RHomG(ν
∗Fη,Zℓ(1)))→ RHomSpec(Ksh

y )proet(ν
∗Fη,Zℓ(1)))→ RHomG(ν

∗Fη,Zℓ))[−1].

Proof. We have Spec(Ksh
y )proet = (BIy)proet = Iy-Cond(Set) by Proposition D.0.8. The

functor RΓ(H,−) := RHomH(Z,−) is right adjoint to the forgetful functor

D(Iy-Cond(Ab))→ D(G-Cond(Ab)),

so we have

RHomSpec(Ksh
y )proet(ν

∗Fη,Zℓ(1)) = RHomG(ν
∗Fη, RΓ(H,Zℓ(1))).

We compute

RΓ(H,Zℓ(1)) = R limRΓ(H, ν∗µℓn) = R lim ν∗RΓ(H,µℓn).
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Denote by F the finite extension of Ksh
y corresponding to H. Since ℓ is prime to the

residual characteristic of Ksh
y , all ℓn-th roots of unity are contained in Ksh

y and thus also
in H. Hensel’s lemma together with the short exact sequence 0→ O×

F → F× → Z→ 0
then gives H i(H,µℓn) = µℓn ,Z/ℓnZ for i = 0, 1, while H i(H,µℓn) = 0 for i ≥ 2 because
Iy is of cohomological dimension 1 and therefore also H [Har20, 8.11 (b), 5.10]. Thus we
have a fiber sequence of discrete G-modules

µℓn → RΓ(H,µℓn)→ Z/ℓnZ[−1].

The transition maps on both sides are surjective. Applying the fully faithful exact functor
ν∗, we can compute the R lim using that the transition maps are again surjective and we
obtain a fiber sequence in D(G-Cond(Ab)):

Zℓ(1)→ RΓ(H,Zℓ(1))→ Zℓ[−1] .

Since Ksh
y has all ℓn-th roots of unity, as G-modules we have Zℓ ≃ Zℓ(1).

Lemma IV.6.12. We have

RHomG(ν
∗Fη,Zℓ)⊗Q = ν∗HomG(Fη,Q)⊗Q Qℓ = ν∗(F∨

η )
Iy ⊗Qℓ,

RHomG(ν
∗Fη,Zℓ(1))⊗Q = ν∗(F∨

η )
Iy ⊗Qℓ(1).

Proof. The proof of both statements is similar, so we treat only the first one.
We first show that ExtiG(ν∗Fη,Zℓ) is killed by some integer N for all i ≥ 1. There is a

spectral sequence giving short exact sequences

0→ R1 lim ν∗ Exti−1
G (Fη,Z/ℓnZ)→ ExtiG(ν

∗Fη,Zℓ)→ lim ν∗ ExtiG(Fη,Z/ℓnZ)→ 0.

Denote by H omG is the internal Hom for discrete G-modules. There is moreover a spectral
sequence giving a long exact seqence

· · · H i(G,H omG(Fη,Z/ℓnZ)) ExtiG(Fη,Z/ℓnZ) H i−1(G, Ext1G(Fη,Z/ℓnZ))

H i+1(G,H omG(Fη,Z/ℓnZ)) · · ·

For i ≥ 2, since

H omG(Fη,Z/ℓnZ) = HomAb(Fη,Z/ℓnZ) and Ext1G(Fη,Z/ℓnZ) = Ext1Ab(Fη,Z/ℓnZ)

are of finite type, both H i(G,H omG(Fη,Z/ℓnZ)) and H i−1(G, Ext1G(Fη,Z/ℓnZ)) are fi-
nite and killed by [G], thus ExtiG(Fη,Z/ℓnZ) is killed by [G]2. For i = 1, the group
H1(G,H omG(Fη,Z/ℓnZ)) is finite killed by [G] and H0(G, Ext1G(Fη,Z/ℓnZ)) is finite
killed by [(Fη)tor], so Ext1G(Fη,Z/ℓnZ) is finite killed by [G][(Fη)tor]. Finally, for i = 0 we
have that HomG(Fη,Z/ℓnZ) is a finite group.

Suppose first that i ≥ 2. Then Exti−1
G (Fη,Z/ℓnZ) is a system of finite groups so it sat-

isfies the Mittag-Leffler condition, thus R1 lim ν∗ Exti−1
G (Fη,Z/ℓnZ) = 0 by Lemmas D.0.3

and D.0.4. On the other hand, ExtiG(Fη,Z/ℓnZ) is a system of finite group killed by [G]2,
thus ExtiG(ν

∗Fη,Zℓ) = lim ν∗ ExtiG(Fη,Z/ℓnZ) is killed by [G]2. We now treat the case
i = 1. Let us show that R1 lim ν∗HomG(Fη,Z/ℓnZ) = 0. Again this is a system of finite
groups, which thus satisfies the Mittag-Leffler condition, and we can apply Lemmas D.0.3
and D.0.4. It follows that Ext1G(ν∗Fη,Zℓ) = lim ν∗ Ext1G(Fη,Z/ℓnZ) is killed by [G][(Fη)tor].
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We deduce that

RHomG(ν
∗Fη,Zℓ)⊗Q = HomG(ν

∗Fη,Zℓ)⊗Q.

There are canonical maps

HomG(ν
∗Fη,Zℓ)⊗Q→ HomG(ν

∗Fη,Qℓ)← HomG(ν
∗Fη,Q)⊗Q Qℓ

= ν∗HomG(ν
∗Fη,Q)⊗Q Qℓ.

Since Fη is a finite type, hence finite presentation abelian group and G is finite, Fη is a finite
presentation G-module so ν∗Fη is (globally) of finite presentation as a G-module38. By a
standard argument, to show that the canonical maps are isomorphisms we reduce to the
case of Z[G]. But HomG(Z[G],−) is the forgetful functor U : G−Cond(Ab)→ Cond(Ab),
thus everything follows from the identifications

(UZℓ)⊗Q = Zℓ ⊗Q = Qℓ = UQℓ = Q⊗Q Qℓ = UQ⊗Q Qℓ.

The second equality in each case follows from the identity HomG(Fη,Q) = (F∨
η )

G ⊗Q =
(F∨

η )
Iy ⊗Q.

IV.6.2 Functoriality

Proposition IV.6.13. Let 0 → F → G → H → 0 be a short exact sequence of Z-
constructible sheaves on X. Then

LX(G
D, s) = LX(F

D, s)LX(H
D, s).

Proof. If i : v → X is a closed point, the short exact sequence gives a fiber triangle

(ν∗i∗HD)⊗̂Qℓ → (ν∗i∗GD)⊗̂Qℓ → (ν∗i∗FD)⊗̂Qℓ.

Local factors are multiplicative with respect to short exact sequnces, hence

Lv(G
D, s) = Lv(F

D, s)Lv(H
D, s).

Proposition IV.6.14. Let π : Y → X be a finite morphism between spectra of orders in
number fields and let F be a Z-constructible sheaf on Y . We have

LX((π∗F )
D, s) = LY (F

D, s).

Proof. This follows readily from Theorem IV.6.2 using the compatibility of local factors
with induction [Neu99a, VII.10.4 (iv) and its proof].

We mention the following consequence of the results in Chapter II:

Proposition IV.6.15. Let X = Spec(O) be the spectrum of an order in a number field
K, with open subscheme j : U → X. Let ω be the number of roots of units in K, ∆K its
discriminant, r1 and r2 respectively the number of real and complex places of K, and RU

the regulator introduced in Corollary II.7.4 for irreducible affine 1-dimensional arithmetic
schemes. We have

L∗
X((j!Z)D, 0) =

2r1(2π)r2 [CH0(U)]RU

ω
√
|∆K |

.

38Note that as G is finite, Z[G] = Z[G]
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Proof. Denote by f : V → X the regular locus of U seen as an open subscheme of X
and Z its closed complement in U . Let also π : Y → X denote the normalization of
X, f ′ : V → Y the inclusion and K the function field of X and Y . We have f = πf ′

and π induces an isomorphism between π−1(V ) and V . Finally, denote by T the closed
complement of V in Y . We have for the L-functions of Z-constructible sheaves:

LX(j!Z) = ζU = ζY

∏
v∈Z ζv∏
w∈T ζw

.

Hence by Corollary II.7.4, we get the relation

[CH0(U)]RU

ω
=
hKRK

∏
w∈T logN(w)

ω
∏

v∈Z logN(v)
,

which simplifies to

[CH0(U)]RU =
hKRK

∏
w∈T logN(w)∏

v∈Z logN(v)
.

On the other hand, we have similarly

LX((j!Z)D) = LY (ZD)
∏

v∈Z ζv∏
w∈T ζw

hence

L∗
X((j!Z)D, 0) = ζ∗Y (1)

∏
v∈Z ζ

∗
v (0)∏

w∈T ζ
∗
w(0)

=
2r1(2π)r2hKRK

∏
w∈T logN(w)

ω
√
|∆K |

∏
v∈Z logN(v)

=
2r1(2π)r2 [CH0(U)]RU

ω
√
|∆K |

.

Remark. When X is singular we do not necessarily have LX(GX [1], s) = ζX(s+ 1), as can
be seen from Theorem IV.6.2. This formula is to be compared with the formula for ζ∗U (1):

ζ∗U(1) =
2r1(2π)r2hKRK

ω
√
|∆K |

∏
v∈Z 1/(1−N(v)−1)∏
w∈T 1/(1−N(w)−1)

=
2r1(2π)r2 [CH0(U)]RU

ω
√
|∆K |

∏
v∈Z logN(v)/(1−N(v)−1)∏
w∈T logN(w)/(1−N(w)−1)

and also with the formula from [JP20].

Remark. We could have also obtained this using Theorem IV.7.13. Suppose that U is a
proper subscheme of X. Denote by Sf the finite places in the normalization π : Y → X
that are not above U , and Z the closed complement of U . We can compute explicitly
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R((j!Z)D), by considering the following snake diagram:

0 (H1(X, (j!Z))R)∨

0 0 CH0(X, 1)R CH0(X, 1)R 0

0
∏
v∈Sf

R×
∏
v∈Z

π(w)=v

R
∏
v∈Sf

R×
∏
v∈Z

π(w)=v

R× (
∏
σ

R)GR (
∏
σ

R)GR 0

∏
v∈Sf

R×
∏
v∈Z

π(w)=v

R R×
∏
v∈Z

R 0

Log Log

Σ×
∏

v Σ×Σ

Σ×
∏

v Σ

If U = X, we get a similar diagram with H0(X,Z)∨R instead of 0 at the bottom, enabling
us to compute R(ZD). We then obtain the formula using Proposition IV.7.9.

IV.7 The Weil-étale Euler characteristic and the special
value theorem

IV.7.1 Definitions

Definition IV.7.1. Let F be a Z-constructible sheaf on X. We define Weil–Arakelov
cohomology wtih coefficients in FD as the complex:

RΓar,c(X,F
D
R ) := RΓc,D(X,F

D
R )[−1]⊕RΓc,D(X,FD

R ).

The determinant of Weil–Arakelov cohomology has a canonical trivialization

det
R
RΓar,c(X,F

D
R )

≃−→ det
R
(RΓc,D(X,F

D
R ))−1 ⊗ det

R
(RΓc,D(X,F

D
R ))

≃−→ R.

We now put an integral structure on the determinant of Weil–Arakelov cohomology. Let F
be a tamely ramified red or blue sheaf. Recall that LieX(FD)R = RHomGR,X(C)(α

∗F,C[1]).
Consider the map

RΓW,c(X,F
D)R = RHom(RΓ(X,F ),R[−1])⊕RΓc,B(X,FD)R

p−→ RΓc,B(X,F
D)R

Log−−→ RHomGR,X(C)(α
∗F,C[1]).

By the duality Theorem IV.5.2 and the remark after Definition IV.5.1, its mapping fiber is

RHom(RΓ(X,F ),R[−1])⊕RΓc,D(X,FD
R ) ≃ RΓar,c(X,F

D
R ).

We thus have a distinguished triangle

RΓar,c(X,F
D
R )→ RΓW,c(X,F

D)R → LieX(F
D)R,

and we find by taking determinants a natural trivialization

λ : ∆X(F
D)R = det

R
(RΓW,c(X,F

D)R)⊗ det
R
(LieX(F

D)R)
−1 ≃−→ det

R
(RΓar,c(X,F

D
R ))

≃−→ R.
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Definition IV.7.2. Let F be a tamely ramified red or blue sheaf on X. The Weil-étale
Euler characteristic of FD is the positive real number χX(FD) such that

λ(∆X(F
D)) = (χX(F

D))−1 · Z ↪→ R.

Remark. If we let ∪θ be the map given by the composition of projections and inclusions

∪θ : RΓar,c(X,F
D
R )→ RΓc,D(X,F

D
R )→ RΓar,c(X,F

D
R )[1],

then ∪θ induces a long exact sequence

· · · → H i−1
ar,c (X,F

D
R )

∪θ−→ H i
ar,c(X,F

D
R )

∪θ−→ H i+1
ar,c (X,F

D
R )→ · · ·

which gives a trivialization

λ′ :
⊗
i∈Z

(det
R
H i

ar,c(X,F
D
R ))(−1)i ≃−→ R.

The latter coincides with λ under the isomorphism

det
R
RΓar,c(X,F

D
R ) ≃

⊗
i∈Z

(det
R
H i

ar,c(X,F
D
R ))(−1)i .

We can thus define alternatively χX(FD) such that

λ
(⊗
i∈Z

(det
Z
H i
W,c(X,F

D))(−1)i ⊗
⊗
i∈Z

(det
Z
H i LieX(F

D))(−1)i+1
)
= (χX(F

D))−1Z ↪→ R.

Theorem IV.7.3. Let X be the spectrum of an order in a number field. The Weil-étale
Euler characteristic χX is multiplicative with respect to red-to-blue short exact sequences
of tamely ramified sheaves.

Proof. Let 0→ F → G→ H → 0 be a red-to-blue short exact sequence of tamely ramified
sheaves. We let

T1 : RΓW,c(X,H
D)→ RΓW,c(X,G

D)→ RΓW,c(X,F
D)→,

T2 : LieX(H
D)→ LieX(G

D)→ LieX(F
D)→,

be the two natural triangles; the first one is not distinguished. For R = Z,R, let gR be
a determinant functor on Grb(Modft

R) with values in graded R-lines extending the usual
determinant functor on projective R-modules of finite type. The graded cohomology
functor

H : Dperf(R)→ Grb(Modft
R),

together with the assignment that sends a distinguished triangle T : X
u−→ Y → Z → to

the exact sequence

0→ ker(H(u))→ H(X)→ H(Y )→ H(Z)
∂−→ ker(H(u))[1]→ 0

induced by the long exact sequence, induces a pullback functor H∗ on Picard groupoids
of determinants. We put fR = H∗gR. Notice that H(T ) makes sense for any triangle
(not necessarily distinguished) that induces a long exact cohomology sequence. There
is a base change isomorphism γ : (gZ(−))R

≃−→ gR((−)R), which induces a base change
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isomorphism H∗(γ) : (fZ(−))R
≃−→ fR((−)R). By Theorem IV.3.10, H(T1) is an exact

sequence in Grb(Modft
Z), while H(T2) is because T2 is distinguished. On the other hand,

T1,R and T2,R are both distinguished triangles and the structure of exact sequence on
H(T1,R) and H(T2,R) coming from the distinguished triangles coincides with the structure
coming by base change from H(T1) and H(T2). We get a commutative diagram (see
Theorem II.6.3 and its proof):

fZ(RΓW,c(X,H
D))⊗ fZ(RΓW,c(X,FD))⊗

fZ(LieX(H
D))−1 ⊗ fZ(LieX(FD))−1

fZ(RΓW,c(X,G
D))⊗

fZ(LieX(G
D))−1

(fZ(RΓW,c(X,H
D)))R ⊗

(fZ(RΓW,c(X,F
D))R ⊗ (fZ(LieX(H

D))−1)R ⊗
(fZ(LieX(F

D))−1)R

(fZ(RΓW,c(X,G))R ⊗
(fZ(LieX(G))R

fR(∆X(H
D)R)⊗ fR(∆X(F

D)R) fR(∆X(F
D)R)

R⊗ R R

gZ(HT1)⊗gZ(HT2)−1

(gZ(HT1))R⊗(gZ(HT2)
−1)R

H∗(γ)⊗H∗(γ)⊗H∗(γ)−1⊗H∗(γ)−1H∗(γ)⊗H∗(γ)−1

gR(H(T1,R))⊗gR(H(T2,R)
−1)=fR(T1,R)⊗fR(T2,R)−1

mult

Under the multiplication map, the image of xZ⊗ yZ ⊂ R⊗ R is xyZ.

Proposition IV.7.4. Let Y = Spec(O′) be the spectrum of an order in a number field
with a finite dominant morphism π : Y → X. Suppose that K(Y )/K is tamely ramified,
and let F be a tamely ramified red or blue sheaf on Y . Then

χX((π∗F )
D) = χY (F

D).

Proof. This follows from the isomorphisms

RΓW,c(Y, F
D)

≃−→ RΓW,c(X, (π∗F )
D),

LieY (F
D)

≃−→ LieX((π∗F )
D),

RΓc,D(Y, F
D
R )

≃−→ RΓc,D(X, (π∗F )
D
R ),

and the isomorphism of distinguished triangles

RΓar,c(Y, F
D
R ) RΓW,c(Y, F

D)R LieY (F
D)R

RΓar,c(X, (π∗F )
D
R ) RΓW,c(X, (π∗F )

D)R LieX((π∗F )
D)R

≃ ≃ ≃

We now use the multiplicativity of the Weil-étale Euler characteristic to extend it to
arbitrary tamely ramified Z-constructible sheaves:

Definition IV.7.5. Let F be a tamely ramified Z-constructible sheaf on X, let j : U → X
be an open subscheme such that F|U is locally constant and let i : Z → X be the closed
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complement. The sheaves j!F|U and i∗i
∗F are tamely ramified and respectively red and

blue, and we define the Weil-étale Euler characteristic of FD as

χX(F
D) = χX((j!F|U)

D)χX((i∗i
∗F )D).

The definition doesn’t depend on the choice of U . The Weil-étale Euler characteristic
is multiplicative with respect to short exact sequences of tamely ramified sheaves. Let
Y = Spec(O′) be the spectrum of an order in a number field with a finite dominant
morphism π : Y → X such that K(Y )/K is tamely ramified, and let F be a tamely
ramified Z-constructible sheaf on Y . Then

χX((π∗F )
D) = χY (F

D).

Proof. This follows formally from the previous results by using the open-closed decompo-
sition lemma, as in Subsection II.6.5.

IV.7.2 Computations of the Euler characteristic, and the special
value theorem

We first give an explicit expression of our Euler characteristic which doesn’t involve
Weil-étale cohomology anymore. This will allow us to give an expression valid for any
tamely ramified Z-constructible sheaf.

Proposition IV.7.6. Let F be a tamely ramified red or blue sheaf on X. Let R1(F
D) be

the absolute value of the determinant of the pairing

H−1
c,D(X,F

D
R )×H1(X,F )R → R

and R0(F
D) the absolute value of the determinant of the pairing

H0
c,D(X,F

D
R )×H0(X,F )R → R

in the following bases : pick bases modulo torsion of H−1(LieX(F
D)), of H i(X,F ) for

i = 0, 1 and of H i
c,B(X,F

D) for i = −1, 0. Then pick any R-bases of H i
c,D(X,F

D
R )

compatible39 with the chosen bases in the following exact sequence

0→ H−1
c,D(X,F

D
R )→ H−1

c,B(X,F
D)R → H−1(LieX(F

D))R

→ H0
c,D(X,F

D
R )→ H0

c,B(X,F
D)R → 0.

We have

χX(F
D) =

[H0(X,F )tor][H
0
c,B(X,F

D)tor]

[H1(X,F )tor][H
−1
c,B(X,F

D)tor][H0(LieX(FD))]

R1(F
D)

R0(FD)
.

Remark. We can reformulate the part about determinants of pairings. Consider an acyclic
chain complex of R-vector spaces A• with a Z-lattice M i ⊂ Ai given for each i. We define
detZ,RA

• to be the absolute value of the image of the vector corresponding to bases of
39In the following sense: denote by E• the exact sequence seen as an acyclic complex, then the choice of

bases gives an element of detR E• which is required to be sent to 1 under detR E•
det(0)−−−−→

≃
R

142



the lattices under the canonical isomorphism detRA
• ≃−−−−→

detR(0)
R; put another way, it is the

positive real number such that⊗
i∈Z

(det
Z
M i)(−1)i ⊂ (

⊗
i∈Z

(det
Z
M i)(−1)i)R ≃ det

R
A•

corresponds to (detZ,RA
•)Z ⊂ R under the canonical isomorphism detRA

• ≃−−−−→
detR(0)

R.

Consider the following complex

A• : 0→ (H1(X,F )R)
∨ → H−1

c,B(X,F
D)R → H−1(LieX(F

D))R

→ (H0(X,F )R)
∨ → H0

c,B(X,F
D)R → 0,

with first non-zero term in degree −1 and endowed with the natural lattices. Then we
have

R1(F
D)

R0(FD)
= det

Z,R
A•.

Proof. Since determinants depend only on cohomology and are multiplicative in short exact
sequences, we can write ∆X(F

D) as an alternating tensor product of the determinants of
the torsion and torsion-free parts of the cohomology groups:

∆X(F
D) = ∆X(F

D)tor∆X(F
D)/tor.

We have (∆X(F
D)tor)R = detR(0) = R canonically hence by Lemma A.0.1 the contribution

of ∆X(F
D)tor inside ∆X(F

D)R is sent under the trivialisation to

1/χX(F
D)tor :=

∏
[H i LieX(F

D)tor]
(−1)i∏

[H i
W,c(X,F

D)tor](−1)i
.

We obtain the first part of the claimed expression by the computation of the involved
cohomology groups in Proposition IV.3.5 and Corollary IV.4.6.

It remains to show that ∆X(F
D)/tor = R1(FD)

R0(FD)
. We will use Lemma A.0.2. Fix

basis vectors of H i(X,F )/tor for i = 0, 1, of (H−1 LieX(F
D))/tor and of H i

c,B(X,F
D) for

i = −1, 0. The image of ∆X(F
D)/tor inside

∆X(F
D)R := det

R
RΓW,c(X,F

D)R ⊗R (det
R

LieX(F
D)R)

−1

≃ det
R
(DF,R[1])⊗R det

R
RΓc,B(X,F

D)R ⊗R (det
R

LieX(F
D)R)

−1

≃ det
R
(DF,R[1])⊗R det

R
RΓc,D(X,F

D
R )

≃
⊗
i

(
det
R
H i+1(DF,R)

)(−1)i ⊗R
⊗
i

(
det
R
H i
c,D(X,F

D
R )
)(−1)i

is a certain product of basis vectors and dual basis vectors, obtained from the basis
vectors of H i

c,B(X,F
D)/tor, H i LieX(F

D)/tor and H i(X,F )/tor through the identity
H i(DF,R) = Hom(H2−i(X,F ),R) and the long exact sequence associated to the fiber
sequence

RΓc,D(X,F
D
R )→ RΓc,B(X,F

D)R → LieX(F
D)R.
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Finally, the trivialisation is obtained by combining together, for each i ∈ Z, the terms
related by the duality theorem Theorem IV.5.2:(

det
R
H i
c,D(X,F

D
R )
)(−1)i ⊗

(
det
R
H i+2(DF,R)

)(−1)i+1

≃−→
(
det
R
H i
c,D(X,F

D
R )
)(−1)i

⊗(
det
R
H i
c,D(X,F

D
R )
)(−1)i+1

≃−→ R.

The isomorphism H i
c,D(X,F

D
R )

≃−→ H i+2(DF,R) is non-trivial only for i = −1, 0 in which
case its determinant in the bases obtained is exactly (up to sign) R1, resp. R0. By
Lemma A.0.2, the contribution of ∆X(F

D)/tor is thus sent under the trivialisation to

1

χX(FD)/tor
:= R0/R1.

Corollary IV.7.7. Let F be a tamely ramified Z-constructible sheaf on X. With the same
notations, we have

χX(F
D) =

[H0(X,F )tor][H
0
c,B(X,F

D)tor]

[H1(X,F )tor][H
−1
c,B(X,F

D)tor][H0(LieX(FD))]

R1(F
D)

R0(FD)
.

Proof. Let j : U → X be an open subscheme such that F|U is locally constant and let
i : Z → X be the closed complement. Put FU = j!F|U and FZ = i∗i

∗F . Then FU is red,
FZ is blue and there is a short exact sequence 0 → FU → F → FZ → 0. Consider the
two following acyclic complexes of abelian groups, with first non-zero term respectively in
degree −1 and 0:

A• : 0→ H−1
c,B(X, (FZ)

D)→ H−1
c,B(X,F

D)→ H−1
c,B(X, (FU)

D)

→ H0
c,B(X, (FZ)

D)→ H0
c,B(X,F

D)→ H0
c,B(X, (FU)

D)→ I → 0,

B• : 0→ H0(X,FU)→ H0(X,F )→ H0(X,FZ)

→ H1(X,FU)→ H1(X,F )→ H1(X,FZ)→ J → 0,

where I is the image of H0
c,B(X,F

D
U ) in H1

c,B(X,F
D
Z ) and J is the image of H1(X,FZ) in

H2(X,FU). Since FZ is blue , H1
c,B(X,F

D
Z ) and H1(X,FZ) are finite so I and J are also

finite. Moreover Artin–Verdier duality gives a commutative square

H0
c,B(X, (FU)

D) H1
c,B(X, (FZ)

D)

H2(X,FU)
∗ H1(X,FZ)

∗

≃ ≃

∂

∂

whence I ≃ J∗.
Since FZ is supported on a finite closed subscheme, we have LieX((FZ)

D) = 0 hence
an isomorphism LieX(F

D)
≃−→ LieX((FU)

D) which gives a canonical isomorphism

det
Z

LieX(F
D)
(
det
Z

LieX((FU)
D)
)−1 ≃−→

τ
Z.

On the other hand, since A• and B• are acyclic, we obtain canonical trivializations

det
Z
A• ≃−−→

det 0
Z, det

Z
B• ≃−−→

det 0
Z.
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Consider now the graded line

∆ := det
Z
A• det

Z
B• det

Z
LieX(F

D)
(
det
Z

LieX((FU)
D)
)−1

.

It obtains a canonical trivialization α : ∆
det 0⊗det 0⊗τ−−−−−−−−→ Z⊗Z⊗Z ≃−→ Z through the previous

remarks.
For a distinguished triangleX → Y → Z → X[1], denote by i : (detY )−1 detX detZ →

1 the structural isomorphism to the unit. From the octahedral diagram

RΓc,D(X, (FZ)
D
R ) RΓc,D(X,F

D
R ) RΓc,D(X, (FU)

D
R )

RΓc,B(X, (FZ)
D)R RΓc,B(X,F

D)R RΓc,B(X, (FU)
D)R

LieX((FZ)
D)R = 0 LieX(F )R LieX((FU)

D)R

≃

≃

we find using the associativity axiom of determinant functors [Bre11, 3.1] a commutative
diagram(

detRRΓc,D(X,F
D
R )
)−1

detRRΓc,D(X, (FU)
D
R ) detRRΓc,D(X, (FZ)

D
R ) R

(
detRRΓc,B(X,F

D)R
)−1

detRRΓc,B(X, (FU )
D)R

detRRΓc,B(X, (FZ)
D)R detR LieX(F

D)R(
detR LieX((FU)

D)R
)−1

R⊗R R

i

≃

iR⊗τR

(IV.7.1)
There are isomorphims

det
R
A•

R ≃
(
det
R
RΓc,B(X,F

D)R
)−1

det
R
RΓc,B(X, (FU)

D)R det
R
RΓc,B(X, (FZ)

D)R (IV.7.2)

det
R
B•

R ≃
(
det
R
RΓ(X,F )R

)(−1)
det
R
RΓ(X,FU)R det

R
RΓ(X,FZ)R (IV.7.3)

under which the trivialization det(0)R = detR(0) on the left corresponds to iR on the
right. By combining Equations (IV.7.1) to (IV.7.3) we find a commutative diagram of
isomorphisms

∆R

(
detRRΓc,D(X,F

D
R )
)(−1)

detRRΓc,D(X, (FU )
D
R ) detRRΓc,D(X, (FZ)

D
R )(

detRRΓ(X,F )R
)(−1)

detRRΓ(X,FU )R detRRΓ(X,FZ)R

R R

≃

i·iR
α

We now describe how to produce another trivialization of ∆R. By Theorem IV.5.2,
there is an isomorphism ψ(−) : RΓc,D(X, (−)DR )

≃−→ RΓ(X, (−))∨R. If L is a graded R-
line, there is a canonical isomorphism L ⊗ L−1 δ−→ R and we take the trivialization
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(
detRRΓc,D(X,F

D
R )
)(−1)

detRRΓc,D(X, (FU )
D
R ) detRRΓc,D(X, (FZ)

D
R )(

detRRΓ(X,F )R
)(−1)

detRRΓ(X,FU )R detRRΓ(X,FZ)R

detRRΓ(X,F )R
(
detRRΓ(X,FU )R

)(−1)(
detRRΓ(X,FZ)R

)(−1)

(
detRRΓ(X,F )R

)(−1)
detRRΓ(X,FU )R detRRΓ(X,FZ)R

R⊗R R⊗R R

R

δ⊗δ⊗δ

mult

Consider Diagram IV.4. From the isomorphism of fiber sequences

RΓc,D(X, (FZ)
D
R ) RΓc,D(X,F

D
R ) RΓc,D(X, (FU)

D
R )

RΓ(X,FZ)
∨
R RΓ(X,F )∨R RΓ(X,FU)

∨
R

≃ ≃ ≃

we deduce that the upper triangle in Diagram IV.4 commutes, while the lower square
commutes formally. Thus the trivialization by duality equals the trivialization i · iR.

Under those equal trivializations, the image of ∆ inside R is Z on the one hand and is
computed with Proposition A.0.3 on the other hand. We get an identity

[H0(X,F )tor][H
0
c,B(X,F

D)tor]

[H1(X,F )tor][H
−1
c,B(X,F

D)tor][H0(LieX(FD))]

R1(F
D)

R0(FD)

[J ]

[I]

1

χX((FU)D)χX((FZ)D)
= 1

and thus, because [I] = [J ]:

χX(F
D) := χX((FU)

D)χX((FZ)
D)

=
[H0(X,F )tor][H

0
c,B(X,F

D)tor]

[H1(X,F )tor][H
−1
c,B(X,F

D)tor][H0(LieX(FD))]

R1(F
D)

R0(FD)
.

Definition IV.7.8. Let F be a tamely ramified Z-constructible sheaf on X. We put

r1(F ) = log2([Ext
1
GR,X(C)(α

∗F, 2iπZ)]),
r2(F ) = rankZHomGR,X(C)(α

∗F, 2iπZ).

For each archimedean place v of K, fix a corresponding embedding σv. There is an
isomorphism40

HomGR,X(C)(α
∗F,R) ≃−→

∏
v

HomGv(Fv,Z)R,

given by (ϕσ) 7→ (ϕσv)v real, (2ϕσv)v complex. Using Proposition IV.4.8, the short exact
sequence 0 → 2iπR → C ℜ−→ R → 0 and the above isomorphism, we can consider the
following acyclic complex of R-vector spaces with lattices:

D• : 0→ HomGR,X(C)(α
∗F, 2iπZ)R → H−1 LieX(F

D)R →
∏
v

HomGv(Fv,Z)R → 0

40Non-canonical; the particular choice here is justified by the later computation of Disc(F ) and R(FD)
for the case F = Z
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U
)
DR
)
d
etR

R
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)d

etR
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d
etR
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Γ
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)R
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⊗

R
R

d
etR

R
Γ
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) (d
etR

R
Γ
(X
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U
) )

(−
1
) (d

etR
R
Γ
(X
,F

Z
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1
)

(d
etR

R
Γ
(X
,F

)R )
(−

1
)d

etR
R
Γ
(X
,F

U
)R

d
etR

R
Γ
(X
,F

Z
)R

R
R
⊗

R
R
⊗

R
R

m
u
lt

((iR
)
t) −

1⊗
iR

((d
et
ψ
F
)
t) −

1
d
et
ψ
F
U

d
et
ψ
F
Z

i⊗
iR

i·iR

m
u
lt

Diagram IV.4
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(with first non-zero term in degree −1). We put

Disc(F ) := (2π)r2(F ) det
Z,R

D•.

Remark.

• If D̃• is the complex

0→ HomGR,X(C)(α
∗F, iZ)R → H−1 LieX(F

D)R →
∏
v

HomGv(Fv,Z)R → 0

with similar degree conventions, then Disc(F ) = detZ,R D̃
•.

• The quantity Disc(F ) only depends on Fη.
We now reformulate the previous expression obtained to make it closer to a formula

looking like the analytic class number formula.

Proposition IV.7.9. Let F be a tamely ramified Z-constructible sheaf on X. Put

N2 := Ker
(
Ext2GR,X(C)(α

∗F, 2iπZ)→ H1
c,B(X,F

D)
)

and let GX = [g∗Gm → ⊕x∈X0ix,∗Z] denote Deninger’s dualizing complex. Let R(FD) :=
detZ,RB

• with B• the exact sequence of R-vector spaces with lattices

B• : 0→ (H1(X,F )R)
∨ → HomX(F,GX)R →

∏
v

HomGv(Fv,Z)R

→ (H0(X,F )R)
∨ → Ext1X(F,GX)R → 0,

with first non-zero term in degree −1. We have

χX(F
D) =

(2π)r2(F )2r1(F )[H0(X,F )tor][Ext
1
X(F,GX)tor]

[H1(X,F )tor][HomX(F,GX)tor][Ext
1
Gt

K
(Fη,OKt)][N2] Disc(F )

R(FD).

Proof. We have Zc
X ≃ GX [1] [Nar89]. Consider the biacyclic double complex of Dia-

gram IV.5 (numbers on the side indicate indexing, zeros are omitted). If C•,• is any
biacyclic double complex of R-vector spaces with lattices, we find by applying Lemma F.0.1
to both the rows and the columns that the following diagram is commutative:⊗

i,j

(detRC
i,j)(−1)i+j

detR TotC
⊗
j

(detRC
•,j)(−1)j

⊗
j

R(−1)j

⊗
i

(detRC
i,•)(−1)i

⊗
i

(R)(−1)i R

⊗j det 0

⊗i det 0

det 0

≃

Fix bases (u(i,j)k ) of the lattices inside the Ci,j , and denote by (ui,jk )−1 the dual basis vectors.
By looking at the image under the composite morphism

⊗
i,j(detRC

i,j)(−1)i+j → R of
⊗i,j

∧
k((u

(i,j)
k )(−1)i+j

), we find the relation∏
i

(det
Z,R

Ci,•)(−1)i =
∏
j

(det
Z,R

C•,j)(−1)j .
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C
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)R
−
1

A
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(H
1(X
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)R
) ∨

H
−
1

c,B
(X
,F

D
)R

H
1
L
ie
X
(F

D
)R

(H
0(X

,F
)R
) ∨

H
0c,B

(X
,F

D
)R

0

B
•
:

(H
1(X

,F
)R
) ∨

H
−
1(X

,F
D
)R

∏
v
H
om

G
v (F

v ,Z
)R

(H
0(X

,F
)R
) ∨

H
0(X

,F
D
)R

1

−
1

0
1

2
3

≃
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Hence in our case we obtain

det
Z,R

A•(det
Z,R

B•)−1 = det
Z,R

C•(det
Z,R

D•)−1(det
Z,R

E•)−1.

Thus it remains to compute detZ,RC• (detZ,RE
•)−1. Consider the following acyclic complex

of abelian groups:

G• :

0 HomGR,X(C)(α
∗F, 2iπZ) H−1

c,B(X,F
D) H−1(X,FD)

Ext1GR,X(C)(α
∗F, 2iπZ) H0

c,B(X,F
D) H0(X,FD)

N2 0

with first non-zero term in degree −1. The last term is a subgroup of Ext2GR,X(C)(α
∗F, 2iπZ)

and hence is finite 2-torsion. Then detZG
• ≃−−−→

det(0)
Z and G•

R = C• ⊕ E•[−3], thus we find

det
Z,R

C•(det
Z,R

E•)−1 = det
Z,R

GR =
∏
i

[Gi
tor].

Proposition IV.7.10. Supose that X is regular. We have∑
(−1)ii · dimRH

i
ar,c(X,ZDR ) = −1,

χX(ZD) =
2r1(2π)r2hKRK

ω
√
|∆K |

,

and thus the special value formula

ords=0 LX(ZD) = ords=1 ζX =
∑

(−1)ii · dimRH
i
ar,c(X,ZDR ),

L∗
X(ZD, 0) = ζ∗X(1) = χX(ZD).

Proof. The first formula is immediate from the previous computations.
We use Proposition IV.7.9. We easily find r2(Z) = r2, r1(Z) = r1, N2 = 0, and

LieX(ZD) = OK [1] so in particular H0 LieX(ZD) = 0. Thus using Propositions IV.2.10
and IV.3.6 we obtain

χX(ZD) =
2r1(2π)r2hKR(ZD)

ωDisc(ZD)
.

By the choices made in Definition IV.7.8, Disc(ZD) is computed as follows: fix a basis (αi)
of OK . Choose an ordering of the archimedean places, real places first and complex places
second, and let σi denote the choice of an embedding for each place vi and σr1+r2+i =
σr1+i. Thus σ1, . . . , σr1 are the real embeddings and σr1+1, . . . , σr1+r2 the chosen complex
embeddings for each complex place. By unravelling the definitions, we see that we are

asked to compute the determinant of the matrix
(
(ℜ(σi(αj)))1≤i≤r1+r2, 1≤j≤n
(ℑ(σr1+i′(αj))1≤i′≤r2, 1≤j≤n

)
. Observe

that it is obtained from the matrix (σj(αi))i,j=1,...,n by some elementary transformations
on the rows which will make a factor (1

i
)r2 appear. Since

(
det(σj(αi))i,j

)2
= ∆K and the

sign of ∆K is (−1)r2 (Brill’s theorem [Was97, Lemma 2.2]), we obtain

Disc(ZD) = |(1
i
)r2 det(σj(αi))i,j| =

√
|∆K |.

150



It remains to determine R(ZD). By definition, this is detZ,RB• where B• is the acyclic
complex with first non-zero term in degree 0

0→ (O×
K)R → (

∏
v

Z)R → (ZR)
∨ → 0.

Let us make the maps explicit. Denote by | · |v the normalized absolute value for the
archimedean place v: | · |v = | · | if v is real and | · |v = | · |2 if v is complex. Denote also by
L :=

∏
v log |σv(·)|v the logarithmic embedding. We have a commutative diagram

(
∏

σ R)GR

(O×
K)R

∏
v R R

≃
∏

σ log |σ(·)|
Σ

ΣL

where the middle isomorphism comes from Definition IV.7.8 and Σ is the sum of components
map (see the discussion after Definition IV.5.1). Here R = H0

c,D(X,ZDR ) = H0(X,Z)∨R
obtains the canonical basis because the perfect pairingH0

c,D(X,ZDR )×H0(X,Z)R = R×R→
R is given by the multiplication map. The ordering on the places gives an ordered basis
on (

∏
v Z)R. Let x be the vector (1, 0, . . . , 0) ∈ (

∏
v Z)R. We have Σ(x) = 1. Denote by

(εi) a system of fundamental units of O×
K . Then detZ,RB

• is the absolute value of the
determinant of the matrix P expressing (L(ε1), L(ε2), . . . , L(εr1+r2−1), x) in the basis of
(
∏

v Z)R. Put Ni = 1 if σi is real and Ni = 2 if σi is complex. Then we have

P =


N1 log |σ1(ε1)| · · · N1 log |σ1(εs−1)| 1
N2 log |σ2(ε1)| · · · N2 log |σ2(εs−1)| 0

... . . . ...
...

Ns log |σs(ε1)| · · · Ns log |σs(εs−1)| 0


By definition, the regulator RK is the absolute value of the determinant of any (s−1)×(s−1)
minor of the matrix (Ni log |σi(εj)|)i=1,...,s;j=1,...,s−1; thus by developing the determinant of
P with respect to the last column we find

R(ZD) = | detP | = RK .

We obtain finally

χX(ZD) =
2r1(2π)r2hKRK

ω
√
|∆K |

.

Remark. For F = Z, the complexes

LieX(ZD), RΓW,c(X,ZD), RΓc,D(X,ZDR ) and RΓar,c(X,ZDR )

are equal respectively (up to a shift) to the complexes

RΓdR(X/Z)/F 1, RΓW,c(X,Z(1)), RΓc(X,R(1)) and RΓar,c(X, R̃(1))

of [FM18], in which the above formula was already obtained.
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Proposition IV.7.11. Let i : x → X be the inclusion of a closed point, M a discrete
Gx-module of finite type. Let χW,c denote the Weil-étale Euler characteristic of a Z-
constructible sheaf on X from Subsection II.6.4 and let R(M) be the absolute value of the
determinant of the pairing

H0(Gx,M)R ×H0(Gx,M
∨)R → R

in bases modulo torsion. Then∑
(−1)ii · dimRH

i
ar,c(X, (i∗M)DR ) = − rankZH

0(Gx,M
∨),

χX((i∗M)D) = χW,c(i∗M
∨) = χW,c(i∗M)

=
[H0(Gx,M)]tor

[H1(Gx,M)]R(M) log(N(v))rankH0(Gx,M)
.

We have the special value formula

ords=0 LX((i∗M)D) =
∑

(−1)ii · dimRH
i
ar,c(X(, i∗M)DR ),

L∗
X((i∗M)D, 0) = χX((i∗M)D).

Proof. The computation of
∑

(−1)ii · dimRH
i
ar,c(X(, i∗M)DR ) is straightforward. We will

show the first and second equality of Weil-étale Euler characteristics by applying The-
orem III.2.1; the explicit formula is then Corollary II.6.8. Since (i∗M)D = i∗M

∨ is a
complex of Z-constructible sheaves, Theorem II.6.24 gives the special value formula.

It thus only remains to show the equality of Euler characteristics χX((i∗−)D) =
χW,c(i∗−) = χW,c(i∗(−)∨) on ShZ(x)

constr. By Theorem III.2.1 we just have to check that
they all coincide on π′

∗Z for π′ : y → x any finite morphism with y normal integral, i.e. y
is the spectrum of a finite extension of κ(x). There exists a finite morphism π : Y → X
such that Y is normal integral, y is a closed point i′ : y → Y of Y and π ◦ i′ = i ◦ π′, so we
can reduce to checking that they all coincide for any pair x,X and the sheaf Z on x. We
have (i∗Z)D = i∗Z and using Proposition IV.7.9 we find

χX((i∗Z)D) = R((i∗Z)D).

Here, the complex B• is

(H0(X, i∗Z)R)∨
≃−→ H0(X, i∗Z∨)R

with first term in degree 2, so R((i∗Z)D) = detZ,RB
• is the inverse of the absolute value

of the determinant of the pairing

H0(X, i∗Z∨)R ×H0(X, i∗Z)R → R.

Both H0(X, i∗Z∨) and H0(X, i∗Z) identify with Z; as R(Z) = 1, from the proof of
Theorem IV.5.2 we see that

R((i∗M)D) =
1

log(N(v))
,

which is also χW,c(i∗Z) by Corollary II.6.8.
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Theorem IV.7.12. Let F be a constructible sheaf on the spectrum X of an order in a
number field. Then∑

(−1)ii · dimRH
i
ar,c(X,F

D
R ) = 0 = ords=0 LX(F

D, s).

If F is moreover tamely ramified, then

χX(F
D) = 1.

In particular, we have the special value formula L∗
X(F

D, 0) = ±χX(FD).

Proof. Since χX is an Euler characteristic on tamely ramified Z-constructible sheaves with
value in the torsion-free group R>0, we can use a variant of Theorem III.1.1, replacing GK

by Gt
K in the argument.

Remark.

• If F is a tamely ramified constructible sheaf, we have

RΓar,c(X,F
D
R ) = 0,

RΓW,c(X,F
D) ≃ RΓc,B(X,F

D),

LieX(F
D) = Ext1Gt

K
(Fη,OKt)[0],

and the two latter complexes are bounded with finite cohomology groups. Thus their
Euler characteristics

χW,X(F
D) :=

∏
i∈Z

[H i
W,c(X,F

D)](−1)i

and
χL,X(F

D) := [Ext1Gt
K
(Fη,OKt)]

are well-defined and we have χX(FD) = χW,X(F
D)/χL,X(F

D). On the other hand,
using Artin–Verdier duality, the morphism of fiber sequences Equation (IV.2.1) and
Theorem III.2.1, we find

χW,X(F
D) = [Fη]

[K:Q].

Thus the above proposition implies that

[Ext1Gt
K
(Fη,OKt)] = [Fη]

[K:Q].

Theorem IV.7.13 (Special values theorem). Let F be a Z-constructible sheaf on the
spectrum X of an order in a number field. We have the vanishing order formula

ords=0LX(F
D, s) =

∑
(−1)ii · dimRH

i
ar,c(X,F

D
R ).

If F is tamely ramified, we have the special value formula

L∗
X(F

D, 0) = ±χX(FD).

Proof. This follows from Propositions IV.7.10 and IV.7.11 by Theorem III.2.1 (replacing
GK by Gt

K in the argument).
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Chapter V

The determinant of the Lie algebra for
the Néron model of a torus and special
values at s = 1

In this chapter, we investigate the multiplicativity property of the determinant of the
Lie algebra for Néron models of tori over global fields, and deduce a Weil-étale special
value formula at s = 0 for the L-functions of sheaves of the form FD := RH omX(F,Zc)
where X is a 1-dimensional integral proper arithmetic scheme flat over Spec(Z) and F is
a Z-constructible sheaf on X.

V.1 Multiplicativity of the determinant of the Lie alge-
bra for the Néron model of a torus

If G is a group scheme over a scheme S, we denote L ie(G) its Lie algebra sheaf [DGB70,
Exp. II]; it is a sheaf of OS-modules on S. We also denote Lie(G) its global sections.
Let K be a local or global field. In the local or number field case, denote OK its ring of
integers and X = Spec(OK), or let X be the smooth complete curve over Fp with function
field K. When it exists, we denote N (G) the locally of finite type Néron model over X
of a smooth algebraic group G over Spec(K) [BLR90, Chapter 10]. We begin with the
following theorem, which is a rather immediate consequence of Chai–Yu’s base change
conductor formula for tori [CY01]:

Theorem V.1.1 ([Cha00, Question 8.1]). Let

0→ T ′ → T → T ′′ → 0

be a short exact sequence of K-tori. There is a multiplicative identity

det
OX

L ieN (T ′)⊗OX
det
OX

L ieN (T ′′)
≃−→ det

OX

L ieN (T ),

compatible with the canonical isomorphism detK Lie(T ′)⊗K detK Lie(T ′′)
≃−→ detK Lie(T ).

Remark. This is an identity of graded lines.

Proof. It suffices to check this after localizing and completing at a closed point so we reduce
to the local case. Let a ∈ K× such that the image of detOK

L ieN (T ′)⊗OK
detOK

L ieN (T ′′)
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under the canonical isomorphism is a detOK
L ieN (T ); we want to show that a ∈ O×

K .
Let L/K be a finite extension such that all the considered tori split over L. Let us
check that detL ieN (T ′

L)⊗ detL ieN (T ′′
L)

≃−→ detL ieN (TL). This can be verified locally
and after completing; thus let T be a split torus over a local field. Then L ieN (T ) =
HomAb(X

∗(T ),OK) [CY01, A1.7] and the latter functor is exact in T since the character
group X∗(T ) is torsion-free, making the Ext1 vanish. We thus obtain the desired identity
by taking the determinant of the fiber sequence corresponding to a short exact sequence
of split tori 0→ T ′ → T → T ′′ → 0. Recall Chai–Yu’s base change conductor

c(T ) :=
1

eL/K
lengthOL

(
L ieN (TL)

L ieN (T )⊗OK
OL

)
=

1

eL/K
lengthOL

(
detOL

L ieN (TL)

(detOK
L ieN (T ))⊗OL

)
.

By Chai-Yu’s formula expressing the base change conductor as one half of the Artin
conductor of the cocharacter module [CY01], we have c(T ) = c(T ′) + c(T ′′) [CLN13, 2.4.2].
Consider the following diagram of sublattices

detOK
L ieN (T ′)⊗OK

detOK
L ieN (T ′′)⊗OK

OL detOK
L ieN (T ′)⊗OK

OL

detOL
L ieN (T ′

L)⊗OL
detOL

L ieN (T ′′
L) detOL

L ieN (TL)

detL L ie(T ′
L)⊗L detL L ie(T ′′

L) detL L ie(TL)

⊂

≃
⊂

⊂ ⊂

≃

Computing lengths, we find1

vL(a) = length

(
a detOK

L ieN (T )⊗OK
OL

detOK
L ieN (T )⊗OK

OL

)
= length

(
a detOK

L ieN (T )⊗OK
OL

detOL
L ieN (TL)

)
+ eL/Kc(T )

= length

(
detOK

L ieN (T ′)⊗OK
detOK

L ieN (T ′′)⊗OK
OL

detOL
L ieN (T ′

L)⊗OL
detOL

L ieN (T ′′
L)

)
+ eL/Kc(T )

= eL/K(−c(T ′)− c(T ′′) + c(T ))

= 0.

Corollary V.1.2. Let K be a global field and let

0→ T ′ → T → T ′′ → 0

be a short exact sequence of tori over K. We have a multiplicative identity

det
Z
RΓ(X,L ieN (T ′))⊗ det

Z
RΓ(X,L ieN (T ′′))

≃−→ det
Z
RΓ(X,L ieN (T )),

compatible with detQ LieK(T
′)⊗Q detQ LieK(T

′′)
≃−→ detQ LieK(T ) in the number field case,

and with the canonical trivializations
(
detZRΓ(X,L ieN (T ))

)
⊗Q ≃−→ Q in the function

field case.
1Using some light abuse of notations, where we denote length(M/N) := − length(N/M) if M ⊂ N for

two OL lattices M and N inside L
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Remark. If K is a number field then we see RΓ(X,−) as the forgetful functor Db(X) =
Db(OK)→ Db(Z).

Proof. Suppose that K is a number field. For a commutative ring R, denote PR the Picard
groupoid of graded R-lines. By K-theory computations in degree ≤ 1, the determinant
functors detR : Dperf (R)→ PR for R = OK , K,Z,Q are the universal determinant functors
[BF03, § 2.5]. Composition of any determinant functor on Dperf(Z) with the forgetful
functor U = RΓ(X,−) : Dperf (OK)→ Dperf (Z) induces a determinant functor, so we get
an induced map of Picard groupoids Ũ : POK

→ PZ such that Ũ ◦ detOK
= detZ ◦U . We

can thus apply the functor of Picard groupoids Ũ to the multiplicative identity of the
previous theorem to obtain the identity we want (implicit is the compatibility with base
change and the analogous forgetful functor Db(K)→ Db(Q)).

If K is a function field, the corollary amounts to showing the equality of Euler
characteristics of coherent sheaves

χX(L ieN (T )) = χX(L ieN (T ′)) + χX(L ieN (T ′′))

By Riemann-Roch, we have

χX(L ieN (T )) = (1− g) dimT + deg(det
X

L ieN (T ))

whence we conclude from the previous theorem.

Remark. Note that the argument for the number field case does not go through for the
function field case because the usual determinant is not the universal determinant. Indeed
we have K1(X) = (OX(X)×)2 ([DM97, 2.5]) while π1(PX) = OX(X)×.

V.2 The additive part of the fundamental line
In the following, X will denote an integral proper arithmetic curve flat over Spec(Z) with
function field K. Such a scheme is the spectrum of an order in the number field K. The
normalization of X is then X̂ := Spec(OK). For a torus T over K, we let

LieX̂(N (T )) := RΓ(X̂,L ieX̂(N (T ))) = Γ(X̂,L ieX̂(N (T ))).

Let Γ be a finite group and let M be a finite type Γ-module. A torsion-free Γ-resolution
of M is a short exact sequence 0→ P → Z[Γ]n →M → 0 of Γ-modules with n ∈ N.

Definition V.2.1. Let M be a finite type discrete GK-module and fix a finite Galois
extension L/K such that GL acts trivially on M . Let Γ := GK/GL. Fix a torsion-free
Γ-resolution E : 0 → P → Z[Γ]n → M → 0 of M , and denote D(−) the group of
multiplicative type associated to a given finite type GK-module. The resolution E induces
an isomorphism

τE : det
Q

LieK(D(M))
≃−→ det

Q

[
LieK(D(Z[Γ]n))→ LieK(D(P ))

]
.

We define

∆add
X̂

(D(M)) := τ−1
E

(
det
Z

[
LieX̂(N (D(Z[Γ]n)))→ LieX̂(N (D(P )))

])
(where the complex has first term in degree 0) as a graded line inside detQ LieK(D(M)).

If F is a Z-constructible sheaf on X, we define ∆add
X (FD) := ∆add

X̂
(D(g∗F ))−1.
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Remark. We have LieK(D(M)) = HomGK
(M,Ksep) which is exact in M as Ksep is uniquely

divisible.

When L is fixed, this definition makes sense because torsion-free Γ-resolutions are
unique up to unique isomorphism in the category of complexes of Γ-modules modulo
homotopy, and the construction is multiplicative with respect of short exact sequences
of finite type Γ-modules because of Corollary V.1.2 and the existence of exact sequences
of torsion-free Γ-resolutions for short exact sequences. We mean by the latter that given
a short exact sequence 0 → M ′ → M → M ′′ → 0 of finite type Γ-modules and two
torsion-free Γ-resolutions 0 → P → Z[Γ]n → M ′ → 0 and 0 → R → Z[Γ]m → M ′′ → 0,
there exists a commutative diagram

0 0 0

0 P Z[Γ]n M ′ 0

0 Q Z[Γ]n ⊕ Z[Γ]m M 0

0 R Z[Γ]m M ′′ 0

0 0 0

where the middle column is split and the middle row is a torsion-free Γ-resolution.
We have to check that the definition is compatible with varying the extension L/K;

without loss of generality, we can consider the case where L′/L/K is a tower of finite
Galois extensions of K, hence where Γ := GK/GL is a quotient of Γ′ := GK/GL′ . Let
M be a finite type Γ-module and choose a torsion-free Γ-resolution 0 → P → Z[Γ]n →
M → 0. Then Z[Γ′]n → Z[Γ]n →M is surjective, so we have a torsion-free Γ′-resolution
0→ Q→ Z[Γ′]n →M → 0. It suffices to show that these two resolutions yield the same
graded line. We have a commutative diagram, where the two left columns are short exact
sequences of torsion-free discrete GK-modules of finite type:

K K 0

ε′ : 0 Q Z[Γ′]n M 0

ε : 0 P Z[Γ]n M 0

0 0 0

Denote temporarily LX := detQ Lie(D(X)) for a finite type GK-module X, and LX :=
detZ L ie(N (D(X))) when X is torsion-free. From the above commutative diagram,
the associativity axiom for determinants [Bre11, §3.1] gives a commutative diagram of
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isomorphisms
LZ[Γ′]nL

−1
Q

LM LZ[Γ′]nL
−1
K L−1

P

LZ[Γ]nL
−1
P

τε

τε′

By Corollary V.1.2, the sublattices LZ[Γ′]nL
−1
Q of LZ[Γ′]nL

−1
Q and LZ[Γ]nL

−1
P of LZ[Γ]nL

−1
P

have the same image in LZ[Γ′]nL
−1
K L−1

P , namely LZ[Γ′]nL
−1
K L −1

P , whence

τ−1
ε′

(
det
Z

[
LieX̂(N (D(Z[Γ′]n)))→ LieX̂(N (D(Q)))

])
= τ−1

ε

(
det
Z

[
LieX̂(N (D(Z[Γ]m)))→ LieX̂(N (D(P )))

])
.

We thus get:

Proposition V.2.2. The mapping M 7→ ∆add
X̂

(D(M)) is well-defined and is multiplicative
with respect to short exact sequences, compatibly with M 7→ detQ LieK(D(M)).

The well-definedness is what we just showed. A short exact sequence of finite type
discrete GK-modules is a short exact sequence of Γ := GK/GL-modules for some finite
Galois extension L/K, in which case we have seen the multiplicativity.

Proposition V.2.3. Let Y be the spectrum of an order in a number field with a finite
dominant morphism π : Y → X and let F be a Z-constructible sheaf on Y . We have

∆add
X ((π∗F )

D) = ∆add
Y (FD).

Proof. Denote L = K(Y ). It suffices to show that if M is a discrete GL-module of
finite type, ∆add

X̂
((D(indGK

GL
M))) = ∆add

Ŷ
(D(M)). Choose an open subgroup H ⊂ GL

such that H is normal in GK and H acts trivially on M , and choose a torsion-free
GL/H-cover 0 → P → Z[GL/H]n → M → 0. We have indGK

GL
Z[GL/H] = Z[GK/H]

so applying the exact functor indGK
GL

gives a torsion-free Z[GK/H]-cover of indGK
GL

M .
The formation of Néron models commutes with Weil restriction [BLR90, 7.6/6] and
L ieX̂(ResŶ /X̂N (T )) = π∗L ieŶ (N (T )) for a a torus T over L, because ResŶ /X̂N (T )

represents πfppf,∗N (T ) and πfppf,∗ is left exact; similarly there is a canonical isomorphism
LieK(ResL/KT ) ≃ LieL(T ). The result follows.

Proposition V.2.4. Let M be a finite type discrete GK-module. There is a canonical
isomorphism

LieK(D(M))R ≃ RHomGR,X(C)(M,C),

where M is seen as a GR-equivariant sheaf on X(C) through the decomposition groups at
archimedean places of K. Let F be a Z-constructible sheaf on X. There is a canonical
isomorphism

∆add
X (FD)R ≃ det

R
RHomGR,X(C)(g

∗F,C[1]).

Proof. The first isomorphism was proven in Proposition IV.4.8. The second follows since
by construction ∆add

X (FD)⊗Q = ∆add
X̂

(D(g∗F ))⊗Q = detQ LieK(D(g∗F )).
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Proposition V.2.5. Suppose that M is a tamely ramified GK-module of finite type. Then

∆add
X̂

(D(M)) = det
Z
RHomGt

K
(M,OKt),

canonically inside detQ LieK(D(M)) = detQ HomGK
(M,Ksep). In particular, if F is a

tamely ramified Z-construcible sheaf on X then

∆add
X (FD) = det

Z
LieX(F

D).

where LieX(F
D) is the tangent space of FD introduced in Chapter IV.

Proof. As both sides are multiplicative with respect to short exact sequences of tamely
ramified GK-modules, by taking a torsion-free resolution it suffices to prove the proposition
for M torsion-free. In that case, denote T the torus over K with character group M . By
Corollary V.1.2 we actually have ∆add

X̂
(D(M)) = detZ LieX(N (T )) whence we conclude

with Corollary IV.4.7.

V.3 The fundamental line, the Euler characteristic and
the special value formula

Definition V.3.1. Let F be a red or blue sheaf (see Definition IV.3.1) on X. The
fundamental line associated to FD is

∆X(F
D) := det

Z
RΓW,c(X,F

D)⊗∆add
X (FD).

As in Subsection IV.7.1, we observe that the fiber of the composite map

RΓW,c(X,F
D)R = RHom(RΓ(X,F ),R[−1])⊕RΓc,B(X,FD)

→ RΓc,B(X,F
D)

Log−−→ RHomGR,X(C)(g
∗F,C[1])

identifies with RΓar,c(X,FD
R ), the R-determinant of which is canonically trivial, so using

Proposition V.2.4 we obtain a natural trivialization

λ : ∆X(F
D)R

≃−→ R.

Definition V.3.2. Let F be a red or blue sheaf on X. The Weil-étale Euler characteristic
of FD is the positive real number χX(FD) such that

λ(∆X(F
D)) = χX(F

D)−1Z ↪→ R

Proposition V.3.3. The Weil-étale Euler characteristic is multiplicative with respect to
red-to-blue short exact sequences. Let Y be the spectrum of an order in a number field with
a finite dominant morphism π : Y → X and let F be a red or blue sheaf on Y . Then

χX((π∗F )
D) = χY (F

D).

Proof. The first part is proven as in Theorem IV.7.3 using Proposition V.2.2. The
second part follows from the compatibility of the terms involved with respect to π∗, see
Proposition V.2.3 and Proposition IV.7.4.
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Definition-Proposition V.3.4. Let F be a Z-constructible sheaf on X and choose an
open subscheme j : U → X such that F|U is locally constant. Denote i : Z → X the closed
complement. The Weil-étale Euler characteristic of FD is

χX(F
D) := χX((j!F|U)

D)χX((i∗i
∗F )D).

This definition does not depend on the choice of U , is multiplicative with respect to short
exact sequences and is compatible with finite dominant maps as in Proposition V.3.3.

Proof. This is formal, see Subsection II.6.5.

Theorem V.3.5. Let F be a Z-constructible sheaf on the spectrum X of an order in a
number field. We have the vanishing order formula

ords=0 LX(F
D, s) =

∑
(−1)ii · dimRH

i
ar,c(X,F

D
R )

and the special value formula

L∗
X(F

D, 0) = ±χX(FD).

Proof. We apply Theorem III.2.1: this reduces to the case of F = Z for any X, or F
coming by finite pushforward from the spectrum of a field, in which case F is supported
on a closed point. In both cases, by Proposition V.2.5 the Euler characteristic is identified
with that of Chapter IV whence we conclude with Theorem IV.7.13.
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Appendix A

Some determinant computations

Let M be a perfect complex of abelian group or R-vector spaces. We put HevM :=
⊕i≡0[2]H

iM and HodM := ⊕i≡1[2]H
iM . We fix determinant functors detZ and detR on the

derived categories of perfect complexes of abelian groups/R-vector spaces extending the
usual one on finite type projective modules (see section II.6.1).

Lemma A.0.1. Let M be a perfect complex of abelian groups with finite cohomology groups.
Then

det
Z
M ⊂ (det

Z
M)R ≃ det

R
MR ≃ det

R
0 = R

corresponds to the lattice
1∏

i[H
i(M)](−1)i

· Z ⊂ R.

Proof. We have an isomorphism of determinants1 detZM ≃ detZH
∗M ≃ detZH

evM ⊗
(detZH

odM)−1 compatible with base change, so we may assume M to be concentrated
in degree 0. Since detZ(A⊕ B) ≃ detZ(A)⊗ detZ(B), we further reduce to M = Z/mZ.
Consider the short exact sequence

0→ Z0
m−→ Z1 →M → 0

where Z0 = Z1 = Z. It induces an isomorphism between the determinants i : Z0⊗detZM →
Z1 ; furthermore the induced morphism after base change is iR : R0 ⊗R R = R0 → R1,
given by x 7→ mx since it is obtained from the short exact sequence of R-vector spaces
0→ R0

m−→ R1 → 0→ 0. Consider now the following commutative diagram

Z−1
0 ⊗ Z1 Z−1

0 ⊗ Z0 ⊗ det
Z
M det

Z
M

R−1
0 ⊗R R1 R−1

0 ⊗R R0 ⊗R R R

1⊗i
≃ ev⊗1

≃

1⊗iR=1⊗m
≃ ev⊗1

≃

where ev(φ ⊗ x) = φ(x). The integral basis 1∗ ⊗ 1 of Z−1
0 ⊗ Z1 is sent under the above

maps to 1
m
∈ R.

1[Bre11, Section 5, in particular Proposition 5.5 and its proof] and [Bre08, Proposition 3.4 and its
proof]
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Lemma A.0.2. Let A and B be free abelian groups of rank d and ϕ : AR → BR be an
isomorphism. Then

det
Z
A⊗ (det

Z
B)−1 ⊂ (det

Z
A)R ⊗R ((det

Z
B)−1)R ≃

(
det
R
AR

)
⊗R

(
det
R
BR

)−1

≃−−−−−−→
1⊗detR(ϕ)t

(
det
R
AR

)
⊗
(
det
R
AR

)−1

≃ R

corresponds to the lattice det(ϕ)Z ⊂ R where det(ϕ) is computed with respect to any choice
of integral bases of A and B.

Proof. Fix bases (e1, . . . , ed) and (f1, . . . , fd) of A and B respectively. Then by definition
detR(ϕ) maps e1∧· · ·∧ed to det(ϕ)f1∧· · ·∧fd, where det(ϕ) is computed in the mentioned
bases. Now the lemma follows from the fact that (detRAR)⊗R (detRBR)

−1 → (detRAR)⊗
(detRAR)

−1 maps the canonical basis element e1 ∧ · · · ∧ ed ⊗ (f1 ∧ · · · ∧ fd)∗ to e1 ∧ · · · ∧
ed ⊗ det(ϕ)(e1 ∧ · · · ∧ ed)∗.

Proposition A.0.3. Let M be a perfect complex of abelian groups and let ϕ : Hev(MR)
≃−→

Hod(MR) be a "trivialisation" of MR. Then

det
Z
M ⊂ (det

Z
M)R ≃ det

R
MR ≃

(
det
R
HevMR

)
⊗R

(
det
R
HodMR

)−1

≃−−−−−−−→
1⊗RdetR(ϕ)t

(
det
R
HevMR

)
⊗R

(
det
R
HevMR

)−1

≃ R

corresponds to the lattice
det(ϕ)∏

i[H
i(M)tor](−1)i

· Z ⊂ R

where det(ϕ) is computed with respect to any integral bases of Hev(M)/tor and Hod(M)/tor.

Proof. We have an isomorphism of determinants detZM ≃ detZH
∗M ≃ detZH

evM ⊗
(detZH

odM)−1 compatible with base change. Using the short exact sequence 0→ Ator →
A→ A/tor→ 0 for A = Hev(M), Hod(M), we reduce by functoriality of the determinant
to the torsion case and to the free case, which are the two previous lemmas.

Lemma A.0.4. Let A•, B• be two bounded acyclic complexes of finite type abelian groups,
and suppose there is an isomorphism ϕ : BR

≃−→ Hom(AR,R)[−1]. Then∏
i[B

i
tor]

(−1)i

det(ϕ)
∏

i[A
i
tor]

(−1)i
= 1

where det(ϕ) is defined as the alternated product
∏

i det(ϕ
i : Bi

R → Hom(A1−i
R ,R))(−1)i

with determinants computed in bases modulo torsion.

Proof. Consider the line ∆ := detZA⊗ (detZB)−1. It has a naive trivialisation

det
Z
A⊗ (det

Z
B)−1 det(0)⊗(det(0)t)−1

−−−−−−−−−−→ Z⊗ Z−1 → Z
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This induces the naive trivialisation of ∆R, under which the embedding ∆ ↪→ ∆R corre-
sponds to the natural embedding Z ↪→ R. Moreover, the isomorphism ϕ induces another
trivialisation of ∆R:

det
R
AR ⊗ (det

R
BR)

−1 id⊗(det(ϕ)t)−1

−−−−−−−−→ det
R
AR ⊗ (det

R
AR)

−1 → R

under which the embedding ∆ ↪→ ∆R corresponds by the previous lemmas to∏
i[B

i
tor]

(−1)i

det(ϕ)
∏

i[A
i
tor]

(−1)i
Z ↪→ R

Let us show that both trivialisations are compatible. We claim that the following diagram
commutes

det
R
AR ⊗ (det

R
BR)

−1 det
R
AR ⊗ (det

R
AR)

−1

R⊗ R−1 R

id⊗(det(ϕ)t)−1

det(0)⊗(det(0)t)−1 natdet(0)⊗(det(0)t)−1

nat

The commutativity of the lower triangle is immediate, and the commutativity of the upper
triangle comes from the commutative diagram

BR Hom(AR,R)[−1]

0

ϕ

0
0

The compatibility of the trivialisations thus implies that∏
i[B

i
tor]

(−1)i

det(ϕ)
∏

i[A
i
tor]

(−1)i
Z = Z ↪→ R

and the formula follows.
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Appendix B

Duality for the Tate cohomology of
finite groups

Let G be a finite group. The functor RΓ̂(G,−) is lax monoidal, so for any complex of
G-modules M we can construct the pairing

RΓ̂(G,M∨)⊗L RΓ̂(G,M)→ RΓ̂(G,Z)→ Ĥ0(G,Z)[0] = Z/|G|Z[0] ↪→ Q/Z[0],

whereM∨ = RH omG(M,Z). In the following, we will also denote byM∗ = H omG(M,Q/Z)
the Pontryagin dual.

Theorem B.0.1. Let G be a finite group. The natural pairing

RΓ̂(G,M∨)⊗L RΓ̂(G,M)→ Q/Z[0]

is perfect for any bounded complex M of G-modules with finite type cohomology groups.

Proof. By definition, showing that the pairing is perfect is showing that the adjoint map
RΓ̂(G,M∨)→ RΓ̂(G,M)∗ is an isomorphism. Passing to cohomology, this is equivalent
(using [Stacks, Tag 0FP2] and the injectivity of Q/Z) to showing that the cup product
pairing

Ĥ i(G,M)× Ĥ−i(G,M∨)→ Ĥ0(G,Z)→ Q/Z

is perfect for each i ∈ Z. Notice that if M is induced, then M∨ is also induced; moreover,
if M0 is a finite type abelian group, indGM0 also is. Thus the usual dimension shifting
argument reduces to checking that the pairing is perfect in just one degree. We proceed
by Artin induction:

• In an exact sequence 0 → M → P → Q → 0 or more generally a fiber sequence
M → P → Q, if the theorem is true for two out of the three terms then it is true for
the third.

• We can filter a bounded complex with finite type cohomology groups by its truncations,
which reduces to the case of a G-module M of finite type.

• Let H be a proper subgroup of G, let M be a torsion-free finite type discrete
H-module and let us consider the induced G-module indGHM . We want to show
compatibility of the pairing in degree 0 for indGHM and the pairing in degree 0 for
M .
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We have M∨ = HomZ(M,Z). Denote by π∗ for the induction functor indGH and
π∗ for restriction to H. The functor π∗ is a right adjoint of π∗ and the finiteness
of G also makes π∗ into a left adjoint of π∗. Let η : π∗π

∗ → id denote the counit
of the latter adjunction; the counit ηZ : π∗Z ≃ ⊕G/HZ → Z is the sum map.
As a right adjoint to a strict monoidal functor, π∗ has a lax monoidal structure
π∗(−)⊗ π∗(−)

lax−→ π∗(−⊗−). Consider the following commutative diagram:

π∗M ⊗ (π∗M)∨ Z

π∗M ⊗ π∗(M∨) π∗(M ⊗M∨) π∗Z

≃

ev

lax π∗(ev)

η=
∑

We can apply the lax-monoidal functor Ĥ0 to the above to obtain Diagram B.1 (using
Shapiro’s lemma’s identifications): Square (1) commutes by functoriality of the cup
product, square (2) commutes by functoriality of Ĥ0(G,−), square (3) commutes
by inspection, square (4) commutes by functoriality in Shapiro’s lemma and square
(5) commutes because (e

2iπ
|G| )[G:H] = e

2iπ
|H| . As the bottom left square commutes, the

whole diagram commutes and the pairing for M is perfect if and only if the pairing
for indGHM is perfect.

• For M = Z we have M∨ = Z. The map RΓ̂(G,M∨) → RΓ̂(G,M)∗ corresponds
in degree 0 to the adjoint map to the cup product pairing Z/|G|Z ⊗ Z/|G|Z →
Z/|G|Z→ Q/Z induced by the multiplication Z⊗ Z→ Z. Thus it is perfect.

• For M finite as an abelian group, we have RHomG(M,Q) = 0 so the fiber sequence
Z → Q → Q/Z gives M∨ ≃ M∗[−1]. For any bounded complex M , the complex
M ⊗ Q is a complex of Q-vector spaces hence cohomologically trivial. The map
Q/Z[−1]→ Z thus induces an isomorphism of pairings

RΓ̂(G,M∗)[−1]⊗L RΓ̂(G,M) RΓ̂(G,Q/Z)[−1] Ĥ−1(G,Q/Z)[0] Q/Z[0]

RΓ̂(G,M∨)⊗L RΓ̂(G,M) RΓ̂(G,Z) Ĥ0(G,Z)[0] Q/Z[0]
≃ ≃ ≃

It follows that it is enough to prove that the map RΓ̂(G,M∗)[−1]→ RΓ̂(G,M)∗ is
an isomorphism in degree 0, i.e. that the cup-product pairing

Ĥ−1(G,M∗)× Ĥ0(G,M)→ Ĥ−1(G,Q/Z)→ Q/Z

induced by the Pontryagin duality pairing M∗ ⊗M → Q/Z is perfect. For g ∈
G, g acts on M∗ as the transpose of g−1. Thus, on M∗, N acts as N t and the
family (1 − g)g∈G is a permutation of the family ((1 − g)t)g∈G. In the perfect

pairing M∗ ⊗M → Q/Z, we have
⊥(⋂

g∈GKer(1− g)
)
=
∑

g∈G Im((1 − g)t) and

Ker(N)⊥ = Im(N t), so this pairing induces the following perfect pairing between
the subquotients:

Ker(N t)/
∑
g∈G

Im((1− g)t)×
⋂
g∈G

Ker(1− g)/Im(N)→ Q/Z.

This is exactly what we had to prove.
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Ĥ
0(G

,π
∗ M

)⊗
Ĥ

0(G
,(π

∗ M
) ∨
)

Ĥ
0(G

,π
∗ M
⊗

(π
∗ M

) ∨
)

Ĥ
0(G

,Z
)
=

Z
/|G
|Z

Q
/Z

Ĥ
0(G

,π
∗ M

)⊗
Ĥ

0(G
,π

∗ (M
∨
))

Ĥ
0(G

,π
∗ M
⊗
π
∗ (M

∨
))

Ĥ
0(G

,π
∗ (M

⊗
M

∨
))

Ĥ
0(G

,π
∗ Z

)

Ĥ
0(H

,M
)⊗

Ĥ
0(H

,M
∨
)

Ĥ
0(H

,M
⊗
M

∨
)

Ĥ
0(H

,Z
)
=

Z
/|H
|Z

Q
/Z

≃

ev
∗

la
x
∗

(π
∗
(ev

))∗

[G
:H

]

∪

≃

∪

≃

∪

≃
≃

ev
∗

(2
)

(3
)

(1
)

(4
)

(5
)

Diagram B.1
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Appendix C

The maximal tamely ramified extension
of a number field

In this section we discuss the tame Galois group of a number field. The results are certainly
known but we did not find a convenient reference.

Let K be the field of fractions of a henselian DVR with finite residue field. A finite
extension L/K is called tamely ramified if the ramification index eL/K is prime to the
residual characteristic. We have the following properties:

Proposition C.0.1 ([Neu99a, 7.8, 7.9, 7.10]).

1. If M/L/K is a tower of finite extensions, then M/K is tamely ramified if and only
if M/L and L/K are.

2. The composite of two tamely ramified finite extensions of K is tamely ramified.

3. The maximal tamely ramified extension Kt is defined as the composite of all finite
tamely ramified extensions of K inside Ksep. Its finite subextensions are tamely
ramified.

Let K be a number field. For each finite place v of K, which corresponds to a closed
point of X = Spec(OK), denote by Kv the henselian local field at v. Let Ksep be a
separable closure of K and for each finite place v, choose an embedding Kv ↪→ Ksep;
this determines a place v of Ksep above v and gives Ksep the structure of a separable
closure of Kv. Denote by GK , resp. GKv the absolute Galois group of K resp. Kv. The
previous proposition is adapted to the global case by working simultaneously at all places,
as following: a finite extension L/K is called tamely ramified if for all finite places v of K
and w of L above v, the finite extension Lw/Kv is tamely ramified. We then have:

Corollary C.0.2.

1. If M/L/K is a tower of finite extensions, then M/K is tamely ramified if and only
if M/L and L/K are.

2. The composite of two tamely ramified finite extensions of K is tamely ramified.

3. The maximal tamely ramified extension Kt is defined as the composite of all finite
tamely ramified extensions of K inside Ksep. Its finite subextensions are tamely
ramified.
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Proof. This follows from the previous propositions by taking henselizations, using the two
following observations:

• For any choice of finite place in any of the three fields in a tower M/L/K, there
exists a compatible system of places above and below it.

• If L/K and M/K are two finite extensions inside Ksep and z is a finite place of
the composite extension LM mapping to places w, w′ of L and M then (LM)z =
LwMw′ ; indeed, (LM)z is the smallest henselian field inside Ksep containing LM so
(LM)z ⊂ LwMw′ , and the other inclusion is immediate.

The extension Kt/K is Galois; we define the tame Galois group of K as Gt
K :=

Gal(Kt/K).
For a finite place v of K, let Pv ⊂ Dv denote the wild ramification and decomposition

subgroup of the place v̄ of Ksep. There is an identification Dv = GKv under which we
have Pv = Gal(Ksep/Kt

v). We now characterise the tame Galois group in terms of the wild
inertia subgroups Pv.

Proposition C.0.3. Let N be the smallest closed normal subgroup of GK containing Pv
for all finite places v. Then N = Gal(Ksep/Kt), and consequently Gt

K = GK/N .

Proof. We first show N ⊂ Gal(Ksep/Kt); since the latter is normal and closed it suffices
to show that the elements of Pv, for any finite place v, fix Kt. Let L/K be a finite tamely
ramified extension. The place v̄ of Ksep determines a unique place w of L above v. The
following diagram commutes

Gal(Lw/Kv) Gal(L/K)

Gal(Kt
v/Kv) Gal(Kt/K)

GKv GK

Pv

0

σ 7→σ|Kt

σ 7→σ|Lw

(1)

Indeed, the only nontrivial part is square (1). If L/K is a finite tamely ramified extension
and w is the place of L induced by v̄ then L ⊂ Lw ⊂ Kt

v; therefore there is an inclusion
Kt ⊂ Kt

v and the commutativity of (1) follows. Since the diagram commutes, the elements
of Pv are sent to 0 in Gal(L/K) so they fix any finite tamely ramified extension of K,
hence also Kt.

We now show Gal(Ksep/Kt) ⊂ N . Since N is normal, it suffices to show that for
N ⊂ U with U an open normal subgroup, we have Gal(Ksep/Kt) ⊂ U . This amounts
to showing that the finite extension L/K corresponding to an open normal subgroup U
containing N is tamely ramified. Let v be a finite place of K and denote by w the place
of L induced by v̄. Then Lw = LKv is the fixed field of U ∩GKv , which contains Pv, so
Lw ⊂ Kt

v is tamely ramified.
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Appendix D

Miscellaneous results on proétale
cohomology and condensed mathematics

In this section we collect some results on condensed mathematics; these are certainly
already known to experts.

Definition D.0.1 ([BS15, 3.2.1]). An object F of a topos X is called weakly contractible
if every surjection G→ F has a section. We say that X is locally weakly contractible if
it has enough weakly contractible coherent objects, i.e., each X ∈ X admits a surjection
∪iYi → X with Yi a coherent weakly contractible object.

The proétale topos of a scheme is locally weakly contractible [BS15, 4.2.8]; in particular
the condensed topos (i.e. the proétale topos of a geometric point) is locally weakly
contractible, and (the sheaves represented by) extremally disconnected profinite sets are a
suitable family of weakly contractible objects.

Definition D.0.2. Let X be a topos. A projective system (Ai)i∈N of abelian group objects,
with transition maps denoted by fmn : Am → An, is said to satisfy the Mittag-Leffler
condition if for all i ∈ N, there exists j > i such that for all k ≥ j, Im(fki ) and Im(f ji )
define the same subobject of Ai.

In other words, (Ai) satisfies the Mittag-Leffler condition if for all i ∈ N, there is a
j > i such that lim←−k>i Im(fki ) = Im(f ji ) as subobjects of (Ai). This is thus a condition
that is preserved under exact, right adjoint functors.

Lemma D.0.3. Let X be a locally weakly contractible topos. If (Ai) is a projective system
of abelian group objects satisfying the Mittag-Leffler condition, then R limAi = limAi.

Proof. Let Y be a weakly contractible object. Observe that Γ(Y,−) is exact, so we have
Γ(Y,−) = RΓ(Y,−) which is a right adjoint and thus (R limAi)(Y ) = R lim(Ai(Y )).
But (Ai(Y )) is a projective system of abelian groups satisfying the Mittag-Leffler con-
dition, again by exactness and commutation with arbitrary limits of Γ(Y,−). Thus
R lim(Ai)(Y ) = lim(Ai(Y )) is concentrated in degree 0 for each weakly contractible object
Y ; the cohomology objects of R lim(Ai)(Y ) thus vanish in degree ̸= 0 when evaluated
at a weakly contractible object Y . Since those cover every object by hypothesis, we are
done.

Lemma D.0.4. Let (Ai) be a family of discrete abelian groups satisfying the Mittag-Leffler
condition, and let ν∗ : Ab→ Cond(Ab) be the constant sheaf functor. Then (ν∗Ai) satisfies
the Mittag-Leffler condition.
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Proof. The functor ν∗ is exact and agrees with the functor (−) : Ab(Top)→ Cond(Ab) on
discrete abelian groups [BS15, 4.2.12]; the latter functor is limit-preserving. An intersection
of a decreasing family of abelian groups is a limit of the associated (discrete) topological
abelian groups, so we are done.

Proposition D.0.5 ([BS15, 6.1.17]). Let π : Y → X be a finite morphism of finite
presentation. Then πproet,∗ : D(Yproet)→ D(Xproet) has a right adjoint.

Proof. Since both source and target triangulated categories are compactly generated,
it suffices to show that πproet,∗ commutes with direct sums. This can be checked on
w-contractible affines. Since evaluation of sheaves of abelian groups on the proétale site at
w-contractible affines commutes with colimits, this is easily shown using [BS15, 2.4.10].

In the following we follow [AGV72] and call a topology a family of sieves satisfying the
usual axioms, and a pretopology a family of covers satisfying the usual axioms.

Proposition D.0.6. The canonical topology on condensed sets induces the proétale topology
(i.e. generated by finite jointly surjective families) on profinite sets under the Yoneda
embedding.

Proof. Denote by Jproet, resp. Jind the proétale topology resp. the topology induced from
the canonical topology on condensed sets. Since condensed sets are covered under the
canonical topology by profinite sets (under the fully faithful, limit-preserving Yoneda
embedding), we conclude by [AGV72, Exp. IV, 1.2.1] that Sh(Toppf , Jproet) = Cond(Set) ≃
Sh(Toppf , Jind). Since the topology is caracterised by its category of sheaves [AGV72, Exp.
II, 4.4.4] we find Jproet = Jind.

Definition D.0.7 ([BS15, 4.3.1]). Let G be a compactly generated topological group. The
pro-étale site BGproet of G is defined as the site of profinite continuous G-sets with covers
given by finite jointly surjective families.

Proposition D.0.8 ([Fla08, Corollary 2]). Let G be a compactly generated topological
group. We have

Sh(BGproet) = G-Cond(Set)

If moreover G = Gal(ksep/k) for a field k, then

Sh(Spec(k)proet) = G−Cond(Set)

Proof. The Yoneda embedding from profinite sets to condensed sets if fully faithful, and it
can be extended to a right adjoint (hence limit-preserving) faithful functor (−), which is
moreover fully faithful when restricted to compactly generated topological space [CS19,
1.7]. The action of G on a profinite set X is encoded by a map G × X → X, where
the product is computed in topological spaces. The product of a profinite set and a
compactly generated space is compactly generated[Rez18, 7.2]1, so this is the same as a
map G×X → X. Thus we get a fully faithful embedding of profinite continuous G-sets
in G-Cond(Set). The canonical topology on G-condensed sets is obtained by forgetting
the G-structure, and similarly for the proétale topology on profinite continuous G-sets,
so that the canonical topology on the former induces the proétale topology on the latter
by the previous proposition. By [AGV72, Exp. IV, 1.2.1] it remains only to show that a
G-condensed set is covered by profinite G-sets; for any cover of the underlying condensed
set by profinite sets Si, G× Si (where G acts on the first factor) is a cover by profinite
G-sets by an adjunction argument.

1In the above reference, compactly generated spaces are called k-spaces
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Appendix E

Strictly henselian local rings of singular
schemes

Let X be an integral arithmetic scheme with finite normalization π : Y → X, and let
x ∈ X be a closed point. We want to understand the fiber above the generic point of X of
the strictly henselian local ring at x in terms of the fibers of strictly henselian local rings
of points of Y above x. We can localize at x and we are thus in the following setting: let
(A,m) be a Noetherian integral local ring with fraction field K, perfect residue field k and
integral closure B. Can we describe Ash ⊗A K in terms of B and its strict henselizations
at various maximal ideals.

Lemma E.0.1 ([Stacks, Tag 07QQ]). We have

Ash ⊗A K =
n∏
i=1

κ(pi),

where pi are the prime ideals of Ash ⊗A K above (0); moreover each k(pi)/k is separable
algebraic.

Proof. The local ring Ash is Noetherian and flat over A so it has finitely many minimal
primes, which are exactly the primes lying above (0). Moreover it is reduced as A is reduced.
Therefore Ash ⊗A K is Noetherian and has finitely many prime ideals, all minimals, so
Ash ⊗A K is an Artinina ring; since it is reduced, its local rings are fields.

The lemma says that Ash ⊗A K is the total rings of fraction of Ash. The total ring of
fractions of the normalization of Ash is the same, so we want to determine the normalization
of Ash:

Lemma E.0.2 ([Stacks, Tag 0CBM]). The ring B′ := B ⊗A Ash is the normalization of
Ash.

Proof. Normalization commutes with étale maps1 and filtered colimits, and Ash is a filtered
colimit of étale A-algebras.

By the previous lemma the minimal primes of Ash and B′ are in bijection. Moreover,
as B′ is finite over Ash, B′ is a finite product of strictly henselian local rings each finite
over Ash. Since B′ is normal, each local ring is moreover normal, hence integral. We

1It is easy to see the commutation with localization, so this reduces to commutation with standard
étale maps
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now see that each minimal prime ideal is contained in a unique maximal ideal of B′, and
vice-versa. Denote by qi the minimal prime of B′ corresponding to pi and Mi the maximal
ideal containing qi. We deduce

κ(pi) = κ(qi) = Frac((B′)Mi
).

Lemma E.0.3 ([Stacks, Tag 08HV]). Put n = Mi ∩B. We have

(B′)Mi
= Bsh

n .

Proof. B′ is a filtered colimit of étale B-algebras and so is Bsh
n . Since there is a natural

morphism of B-algebras B′ → Bsh
n , Bsh

n is also a filtered colimit of étale B′-algebras. Since
Bsh

n is a stricly henselian local ring, it must be the strict henselian local ring of B′ at any
prime above n.

Thus κ(qi) = Frac((B′)Mi
) = Frac(Bsh

n ). Because B′ is a colimit of étale B-algebras,
the maximal ideal n of B is above m. Moreover we have:

Lemma E.0.4 ([Stacks, Tag 0C25]). The fiber above n in B′ is isomorphic to

Homk(κ(n), k
sep).

Proof. We have

B′ ⊗B κ(n) = Ash ⊗A κ(n) = Ash ⊗A k ⊗k κ(n) = ksep ⊗k κ(n),

hence the result.

Combining everything, we obtain

Proposition E.0.5. Let (A,m) be a Noetherian integral local ring with fraction field K,
perfect residue field k and integral closure B finite over A. The total ring of fractions of
Ash is:

Ash ⊗A K =
∏
n

∏
Homk(κ(n),ksep)

Frac(Bsh
n ),

where n goes through the finitely many maximal ideals of B.
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Appendix F

A lemma on determinants of total
complexes

Lemma F.0.1. Let A be an abelian category, let C be a double complex of objects of
A with uniformly bounded and acyclic rows and columns and let det be a determinant
functor Chb(A)qis → P. We denote by 1 the unit of the Picard category P. Define the
filtration by rows on TotC by F n

r TotC = Tot(σ≤n
r C),1 where (σ≤n

r C)p,q = Cp,q if q ≤ n
and 0 otherwise. The filtration by rows induces a commutative diagram

detTotC 1

⊗
j(detC

•,j)(−1)j
⊗

j(1)
(−1)j

det 0

⊗j(det 0)
(−1)j

Proof. The n-th graded piece of the filtration by rows of TotC is C•,n[−n]. Since the
rows are exact, the map 0 : TotC → 0 is a quasi-isomorphism; moreover it induces
quasi-isomorphisms between the graded pieces of the filtrations by rows on TotC and
the trivial filtration on 0 because columns are exact. We conclude with [Knu02, 1.7] and
[BB05, 2.3].

1Here r stands for rows.
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Cohomologie Weil-étale en dimension 1 et valeurs spéciales de fonctions L en 0 et 1

Résumé : Le but de cette thèse est de définir et d’étudier la cohomologie Weil-étale des schémas
arithmétiques intègres de dimension 1 (i.e. des courbes sur les corps finis et des ouverts de spectres
d’ordres dans des corps de nombres) à coefficients donnés par des faisceaux Z-constructibles ou,
en caractéristique 0, leurs duaux (comme par exemple des modèles de Néron de tores sur des
corps de nombres). Selon le formalisme établi par Flach–B. Morin, en couplant le déterminant
de la cohomologie Weil-étale avec le déterminant d’un complexe additif, on définit une droite
fondamentale, qui a une trivialisation canonique par un théorème de dualité à coefficients réels.
La trivialisation de la droite fondamentale donne une caractéristique d’Euler. On montre que
les valeurs spéciales en 0 de fonctions L associées naturellement aux coefficients sont données
au signe près par la caractéristique d’Euler. On obtient trois cas particuliers intéressants : une
formule de valeur spéciale en s = 0 et s = 1 pour les fonctions L d’Artin de représentations
rationnelles ; une formule de valeur spéciale en s = 0 pour la fonction zêta du spectre d’un
ordre dans un corps de nombres et en s = 1 pour une légère modification de cette dernière, ce
qui généralise la formule analytique du nombre de classes ; enfin une formule en s = 0 pour un
faisceau constructible, qui permet de retrouver la formule de Tate pour la caractéristique d’Euler
d’un corps de nombres. Notre résultat pour les coefficients Z-constructibles généralise et améliore
des travaux de Geisser–Suzuki et Tran, tandis que celui pour les duaux de Z-constructibles est
l’analogue dans le cas des corps de nombres d’un résultat de Geisser–Suzuki dans le cas des corps
de fonctions.
Mots-clés : Cohomologie Weil-étale, Valeurs spéciales, Fonctions L

Weil-étale cohomology in dimension 1 and special values of L-functions at 0 and 1

Abstract: The goal of this thesis is to define and study the Weil-étale cohomology of integral
arithmetic schemes of dimension 1 (i.e. of curves over finite fields and of open sub-schemes
of spectra of orders in number fields) with coefficients given by Z-constructible sheaves or, in
characteristic 0, their duals (as for instance Néron models of tori over number fields). Following the
formalism established by Flach–B. Morin, by combining the determinant of Weil-étale cohomology
with the determinant of an additive complex, one defines a fundamental line, which has a canonical
trivialization by a duality theorem with real coefficients. The trivialization of the fundamental
line gives an Euler characteristic. We show that the special values at 0 of natural L-functions
attached to the considered coefficients are given up to sign by the Euler characteristic. There are
three particular cases of interest: we obtain a formula for the special value at s = 0 and s = 1
for the Artin L-functions of rational representations; a special value formula at s = 0 for the
zeta function of an order and at s = 1 for a slight modification of the latter, which generalizes
the analytic class number formula; and finally a formula at s = 0 for a constructible sheaf, from
which one can recover Tate’s formula for the Euler characteristic of a number field. Our result for
Z-constructible coefficients generalizes and improves work of Geisser–Suzuki and Tran, while that
for duals of Z-constructibles is the analogue in the number field case of a result of Geisser–Suzuki
in the function field case.
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