
HAL Id: tel-04211194
https://theses.hal.science/tel-04211194v1

Submitted on 19 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Partitioning System for Embedded and
Distributed CNNs Inference on Edge Devices.

Nihel Kaboubi

To cite this version:
Nihel Kaboubi. Hybrid Partitioning System for Embedded and Distributed CNNs Inference on Edge
Devices.. Artificial Intelligence [cs.AI]. Université Grenoble Alpes [2020-..], 2023. English. �NNT :
2023GRALM021�. �tel-04211194�

https://theses.hal.science/tel-04211194v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Institut National de Recherche en Informatique et en Automatique

Système de partitionnement hybride pour une inférence distribuée et
embarquée des CNNs sur les équipements en bordure de réseau.

Hybrid Partitioning System for Embedded and Distributed CNNs
Inference on Edge Devices.

Présentée par :

Nihel KABOUBI

Direction de thèse :

Frédéric DESPREZ Directeur de thèse
Directeur de recherche, INRIA Centre Grenoble-Rhône-Alpes
Thierry COUPAYE Co-directeur de thèse

Docteur en sciences HDR, Orange SA

 Loïc LETONDEUR Co-encadrant de thèse

Ingénieur Docteur, Orange SA

 Rapporteurs :

Adrien LÈBRE
PROFESSEUR DES UNIVERSITES, IMT Atlantique
Sara BOUCHENAK
PROFESSEUR DES UNIVERSITES, INSA Lyon

Thèse soutenue publiquement le 25 avril 2023, devant le jury composé
de :

Adrien LÈBRE
PROFESSEUR DES UNIVERSITES, IMT Atlantique

Sara BOUCHENAK
PROFESSEUR DES UNIVERSITES, INSA de Lyon

Jean-Marc NICOD
PROFESSEUR DES UNIVERSITES, École Nationale Supérieure de
Mécanique et des Microtechniques (ENSMM)

Vania MARANGOZOVA
MAITRE DE CONFERENCES, Université Grenoble Alpes

Eddy CARON
MAITRE DE CONFERENCES, ENS Lyon

Rapporteur

Rapporteure

Président du
jury

Examinatrice

Examinateur

Invités :

Frédéric DESPREZ
DIRECTEUR DE RECHERCHE, Centre Inria de l'Université Grenoble Alpes

Thierry COUPAYE

INGENIEUR HDR, Orange SA

Loïc LETONDEUR

INGENIEUR DOCTEUR, Orange SA

 Denis TRYSTRAM

 PROFESSEUR, Grenoble INP

Acknowledgement

Here I am, at the end of my Ph.D. This long and challenging journey full of adventures and
surprises. This journey would not have been possible without the support, guidance, and
feedbacks from numerous people around me.

I would like to express my sincere gratitude to my thesis supervisor, Loïc Letondeur, for
his guidance, support, and patience throughout my research journey. His insightful feed-
back and constructive criticism have helped me shape my ideas and refine my arguments.
I am grateful for his unwavering encouragement.
I would like to express my deepest appreciation to my Co-supervisor Thierry Coupaye for
his advice, guidance, and valuable suggestions that helped me at various stages of my re-
search. I am also grateful to Frédéric Desprez, and Denis Trystram for their consistent
support and guidance during the running of this project.

I would like to thank Adrien Lébre and Sara Bouchenak for accepting to review this
thesis as well as for their valuable insights. I would also like to express my sincere grati-
tude to the Jury members Jean-Marc Nicod, Vania Marangozova and Eddy Caron for their
challenging questions and appreciations during my thesis defense.

I would also like to thank my family for their unwavering encouragement and support
throughout my academic journey, especially my father Faouzi kaboubi and my husband
Majdi Bali, who have been my pillars of strength and support. Their love and support have
been a constant source of motivation for me.

Additionally, I would like to thank my work team in Orange, my colleagues and friends
for their support and encouragement. Their intellectual contributions and stimulating dis-
cussions have enriched my research and made this journey more enjoyable.

I am grateful to the participants who generously gave their time and insights to make
this study possible. Without their contributions, this researchwould not have been possible.

As the famous motivational song goes:

"If you believe, you can move the highest mountains
Cross the greatest oceans, walk across the water, the water
Believe, you can move the highest mountains
Cross the greatest oceans, walk across the water
If you believe "

If you believe
Strive to Be & Patch Crowe

Thank you to everyone who has been a part of my academic journey and helped me
reach this milestone. Your support and encouragement mean the world to me, and I am
forever grateful.

2

Abstract

Title : Hybrid Partitioning System for Embedded and Distributed CNNs
Inference on Edge Devices

The combination of Edge Computing and Artificial Intelligence (AI) technologies offers
additional perspectives for creating innovative and efficient applications for the Internet
of Things. Convolutional Neural Networks (CNNs) and Deep Neural Networks are used
in many applications, especially for real-time analysis for data such as images, sounds or
videos. To address some issues such as resilience, confidentiality and responsiveness, often
voluminous models must then be inferred on devices at the Edge.

However, even in inference, these models consume significant memory and computa-
tional resources that can exceed the capabilities of most Edge devices. Also, these edge
devices are subject to breakdowns and/or hardware defects, which negatively impacts the
ability to constitute a reliable infrastructure. State of the art shows that the current so-
lutions to adapt AI models inference to the Edge are insufficient to address these issues.
Existing solutions may require a new phase of training, transmission of data to the cloud
and/or lead to a potentially significant degradation in accuracy.

In order to cope with these problems, the work presented in this manuscript proposes
HyPS (Hybrid Partitioning System), a solution based on a hybrid partitioning strategy. This
strategy aims to identify the best positions to divide the CNN structure into a set of parti-
tions whose size is determined to consider the constrained resources of the Edge devices.
HyPS distributes, organizes and makes a reliable CNNs inference on resources-constrained
devices. The proposed approach has been validated experimentally thanks to a prototype
allowing a proof of concept of both the applied strategy and the architecture proposed for
HyPS. Several use cases show the interest of HyPS for distributed, embedded, and reliable
CNNs inference at the Edge.

Keywords: edge computing , model partitioning, distributed inference, internet of
things, AI technologies

3

Résumé

Titre : Système de partitionnement hybride pour une inférence distribuée
et embarquée des CNNs sur les équipements en bordure de réseau.

La combinaison de l’informatique en bordure de réseau (Edge Computing) et des tech-
niques d’Intelligence Artificielle (IA) offre des perspectives supplémentaires pour créer des
applications innovantes et efficaces pour l’Internet des objets. Les réseaux de neurones
convolutifs (CNNs) et les réseaux de neurones profonds sont utilisés dans de nombreuses
applications, en particulier pour l’analyse en temps quasi-réel pour des données telles que
des images, des sons ou des vidéos. Pour adresser des problématiques de résilience, de con-
fidentialité et de réactivité, des modèles souvent volumineux, doivent alors être déployés
en inférence sur les devices présents dans le Edge.

Cependant, même en ce qui concerne uniquement la phase d’inférence, cesmodèles con-
somment des ressources de mémoire et de calcul importantes qui peuvent être supérieures
aux capacités de la plupart des devices du Edge. D’autre part, ces mêmes devices sont
sujets à des pannes et/ou des défauts matériels ce qui impacte négativement leur capac-
ité à constituer une infrastructure digne de confiance. L’état de l’art montre que les so-
lutions actuelles pour adapter l’inférence de modèles conséquents d’IA au Edge sont in-
suffisantes. Les solutions existantes peuvent effectivement nécessiter une nouvelle phase
d’entrainement, la transmission de données vers le cloud et/ou entraîner une dégradation
potentiellement significative de la précision.

Pour faire face à ces problèmes, les travaux présentés dans cemanuscrit proposent HyPS
(Hybrid Partitioning System), une solution bâtie autour d’une stratégie de partitionnement
hybride. Cette stratégie vise à identifier lesmeilleurs emplacements pour diviser la structure
d’un CNN en un ensemble de partitions dont la taille est déterminée pour tenir compte des
ressources contraintes des devices du Edge. HyPS permet de répartir, organiser et fiabiliser
l’inférence de CNNs sur des devices dont les ressources sont trop contraintes. L’approche
proposée a été validée expérimentalement grâce à un prototype permettant une preuve de
concept de la stratégie utilisée ainsi que de l’architecture proposée pour HyPS. Plusieurs cas
d’usage permettent de montrer l’intérêt de HyPS pour une inférence distribuée, embarquée
et fiabilisée de CNNs dans le Edge.

Mots-clés: traitement des données à la périphérie du réseau, partitionnement de mod-
èle, inférence distribuée, internet des objets, technologies d’intelligence artificielle

4

Contents

Contents 6

List of Figures 8

List of Tables 8

List of Publications 9

1 Introduction 1
1.1 Context and Problem Statement . 2
1.2 Contributions . 4
1.3 Thesis Structure . 6

2 State of the Art of Enabling AI models at the edge 8
2.1 Introduction . 9
2.2 Background . 9

2.2.1 Overview of Convolutional Neural Networks Structure 9
2.2.2 Terminology : CNN Model Partitioning Strategies 10

2.3 Model Compression: Adapting DNN Models to Edge Devices 12
2.3.1 Quantization . 13
2.3.2 Knowledge Distillation . 17
2.3.3 Low-Rank Factorization . 18

2.4 Partition and Distribution of DNN Models at the Edge 20
2.4.1 Generic Partitioning Strategies . 21
2.4.2 Typical-based DNNs Partitioning Strategies 22
2.4.3 DNN Scheduling for Distributed Inference 28

2.5 Synthesis and Conclusion . 29

3 Hybrid Partitioning for CNNs Inference at the Edge 31
3.1 Introduction . 32
3.2 Hybrid Partitioning Strategy . 32

3.2.1 Problem Formulation . 32
3.2.2 Governing Example VGG16 . 33
3.2.3 Vertical Partitioning Strategy . 34
3.2.4 Horizontal Partitioning Strategy 35
3.2.5 Proposed Strategy . 36
3.2.6 Application of Partitioning of VGG16 39
3.2.7 Conclusion . 40

3.3 Architecture Overview and Qualitative Assessment of HyPS 40
3.3.1 Distributing and Scheduling Architecture Overview 41
3.3.2 Inference on Single Device . 46
3.3.3 Distributed Inference on Multiple Devices 46
3.3.4 Qualitative Assessment of HyPS via Concrete Use Cases 47

3.4 Conclusion . 52

5

4 Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs
Inference at the Edge 53
4.1 Introduction . 54
4.2 Experimental Set-up . 54

4.2.1 Test bed Description . 54
4.2.2 Software Architecture . 54
4.2.3 Implementation . 55

4.3 Evaluation of the proposed Hybrid Partitioning Approach 57
4.3.1 Impact of Vertical and Horizontal Partitioning 57
4.3.2 Impact of Hybrid Partitioning . 62

4.4 Conclusion . 69

5 Conclusion 70
5.1 Thesis Synopsis . 71
5.2 Contributions . 72
5.3 Perspectives and Challenges . 74

References 76

6

List of Figures

1.1 Edge computing infrastructure. 3
1.2 Benefits of edge computing. 4
1.3 Thesis Outline. 6

2.1 Vertical partitioning of 10 layers (L1..L10) into 4 V-Partitions (P1..P4). . . . 11
2.2 Horizontal partitioning. Source[21] . 11
2.3 Data partitioning.Source[21] . 11
2.4 Mindmap of existing approaches performing DNNs inference at the edge . 12

3.1 VGG16 architecture[109]. 33
3.2 Example of V-partitioning on VGG16. Split points are depicted thanks to

dashed lines. 35
3.3 Horizontal partitioning on one layer. 36
3.4 Mandatory and optional split positions of VGG16 model structure. 39
3.5 Architecture overview of computation topology 41
3.6 Architecture overview of communication topology 42
3.7 NN Inference state graph. 43
3.8 Partition life cycle graph. 43
3.9 Partition life cycle detailed graph. 44
3.10 Partitioned VGG16 inference on single edge device 46
3.11 Hybrid partitioning of VGG16 model deployed on a cluster of four edge

devices. 47
3.12 Example of distributed inference architecture of partitioned VGG16 model

on a cluster of four edge devices. 48

4.1 The manager’s web client interface . 55
4.2 VGG16 model partitioned vertically on 21 partitions. 58
4.3 Inference time of partitioned VGG16 model vertically on 21 partitions de-

ployed on Raspberry Pi. 59
4.4 Output feature map size per V-partition. 59
4.5 Communication overhead of partitioned VGG16 model vertically on 21 par-

titions deployed on Raspberry Pi. 60
4.6 (a) VGG16 model partitioned vertically on convolutional layers (b) VGG16

model partitioned vertically on pooling layers. 61
4.7 (a) Communication time of partitioned VGG16 on convolutional layers (b)

Communication time of partitioned VGG16 on pooling layers. 62
4.8 Inference time of partitioned VGG16 with different number of H-partitions. 63
4.9 Communication overhead of a partitioned VGG16 measured for the FC1. . 64
4.10 VGG16 partitioning using Hybrid partitioning strategy 65
4.11 Inference time and communication overhead of VGG16 inference distributed

across multiple devices. 66
4.12 Inference time of VGG16 inferencewithH-partitions distributed acrossmul-

tiple Raspberry Pis. 68
4.13 Communication overhead of VGG16 inferencewithH-partitions distributed

across multiple Raspberry Pis. 68

7

List of Tables

2.1 Summary of existing model compression approaches for adapting DNNs to
run at the edge. 20

2.2 Comparison of different Frameworks [70] 26
2.3 Summary of DNN Partitioning frameworks 27
2.4 Summary of existing approaches for enabling DNNs inference at the edge 30

3.1 Complexity and accuracy of known CNNs. 34
3.2 Possible V-partitions number for VGG16 partitioning using HyPS. 40

4.1 Partition distribution scenarios . 65
4.2 Inference time and communication overhead of VGG16 inference on differ-

ent devices numbers. 66
4.3 H-partitions distribution on single and multiple devices 67

5.1 HyPS characteristics . 73

8

Publications

International conference paper

Nihel Kaboubi, Loïc Letondeur, Thierry Coupaye, Fréderic Desprez and Denis Trystram.
"Hybrid Partitioning for Embedded and Distributed CNNs Inference on Edge Devices." 2022,
ANTIC International conference on Advanced Network Technologies and Intelligent Com-
puting, 2022.

A patent application is filed on October 14, 2022 and registered under the reference
FR2210604 titled "Procédé de distribution des paramètres d’un réseau de neurones, un
procédé d’inférence et les dispositifs associés".

9

List of abbreviations

The following list describes the significance of abbreviations used throughout this thesis.
This list is made per chapter to show where each abbreviation appears first. No new entry
will be made if a certain abbreviation returns in a later chapter.

AI Artificial Intelligence
IoT Internet of Things
DNN Deep Neural Network
CNN Convolutional Neural Network
POP Point Of Presence
MEC Multi-access Edge Computing
KD Knowledge distillation
MEC Mobile Edge Computing
DAG Directed Acyclic Graph
IONN Incremental Offloading of Neural Network
ML Machine learning
FCFS first come, first served
VM Virtual Machine
MCC Mobile Cloud Computing
NN Neural Network
ANN Artificial Neural Network
MDP Markov Decision Process
DRL Deep Reinforcement Learning
DINA Distributed INference Acceleration
QoS Quality of Service
FL Federated Learning
QAT Quantization-Aware Training
PQT Post-training quantization
DAG Directed Acyclic Graph
DINA Distributed INference Acceleration
UAV Unmanned Aerial Vehicle
HMTD Hierarchical Machine learning Tasks Distribution
MAC multiply–accumulate
HyPS Hybrid Partitioning System
SoC System On a Chip
MQTT Queuing Telemetry Transport
AMQP Advanced Message Queuing Protocol
QoS Quality of Service
GAN Generative neural network
LSTM Long Short-Term Memory
DFA Deterministic Finite Automata

10

Chapter 1

Introduction

1.1 Context and Problem Statement 2
1.2 Contributions . 4
1.3 Thesis Structure . 6

1

Chapter 1

1.1 Context and Problem Statement

The convergence of the Internet of Things (IoT) and Artificial Intelligence (AI) led to a
highly automated future and a highly automated cyber-physical world. IoT is an emerging
paradigm that enables communication and data exchange between connected devices and
sensors through the internet [1] [2]. In 2022, the market for the IoT is expected to grow 18%
to 14.4 billion active connections. It is expected that by 2025, there will be approximately 27
billion connected IoT devices [3]. Connected devices will be deployed in homes, buildings,
vehicles, cities, and industries.

AI enabled IoT creates intelligent machines that simulate smart behavior and supports
in decision making. AI makes the devices learn from their data and interact with the sur-
rounding environment thanks to Deep Learning(DL) technologies such Deep Neural Net-
works(DNNs) and noticeably Convolutional Neural Networks(CNNs).

IoT does not operate alone as DL requires computation storage and communication
facilities to provide users for advanced IoT applications. These facilities are typically located
today into the Cloud. For example, CNNs are used in a wide variety of tasks such as image
recognition, video analysis, and object detection [4] [5]. They are typically deployed on
remote cloud servers and users data are generally collected and then uploaded to remote
cloud servers for training and inference. This constant and silent upload results in a strong
usage of the network and transmission of massive data which is an important drawback
regarding environmental concerns.

Another drawbackwhileworkingwith cloud computing services concerns privacy [6][7].
Cloud storage can be easily accessible over the internet. Consequently, data can be accessed
from anywhere on the internet in case of a data breach through hacking [8] [9]. Thus, cloud
technology is not entirely secure, and users data could be compromised. Additionally, cloud
computing introduces network congestion and latency that can devalue service delivery
and causes significant bandwidth costs. The significant end-to-end delay from end-devices
to the Cloud servers that are often too far from end-users can deter the performance of
applications that require real-time analysis, such as instant messaging (IM) applications,
online gaming, video applications, etc [10].

The alternative solution is to relocate the AI models at network border and optimize
performance by avoiding round trips to the cloud or other centralized information sys-
tems. Edge computing [11] [12] paradigm emerges as an extension of cloud computing
to move computing resources from clouds and data centers to the proximity of end users
[12]. It unfolds cloud computing by extending the computation, storage, and resources to
the edge of the network, close to the data source, to accomplish critical needs of real-time
servicing, application intelligence, security, and privacy [13]. Edge computing provides in-
telligent, responsive and fault-tolerant IoT services. Figure 1.1 shows an overview of the
edge computing infrastructure. Edge computing has several advantages but still suffers
from limitations related to limited amount of data. Edge Computing technologies have lim-
itations regarding memory, the ability to store a very large amount of data is also limited
[14] [15].

The edge computing paradigm comprises thousands of IoT devices in a continuum rang-

2

Introduction

Figure 1.1: Edge computing infrastructure.

ing from edge devices to cloud servers. Such edge devices like sensors, routers, and Rasp-
berry Pis, many with limited resources, will gather data and interact with the surrounding
environment. Some of which may spendmost of the time executing little work while others
will need to execute heavy applications using intelligent tasks based on AI models.

This process is known as edge intelligence, also known as Edge AI, i.e., Edge computing
applied to AI [16]. Edge devices must leverage DL models to implement accurate predic-
tions, make decisions, and decode behavior behind sensors’ data. Figure 1.2 illustrates the
benefits of the edge computing concept.

Nevertheless, these pre-trained models often present a high computational cost, which
brings more challenges in using resource-limited devices even if it is only considered for
executing the inference phase of these models. Performing inference in the cloud can be
a problem for some critical applications for big companies like Orange, which neverthe-
less has an extensive infrastructure at the network periphery (examples: relay antennas,
network point of presence (POPs), internet access boxes, etc.).

Furthermore, inferring pre-trained large DNNs consumes significant time, memory, and
computational resources that can be incompatiblewithmost of the edge devices capabilities.
Apart from hardware capabilities, edge devices often suffer from failures and corruption
that result in generating erroneous data and causing unpredictable service loss [17]. DNN
execution on edge devices needs to be robust enough to cope with a satisfactory quality of
service from the user point-of-view. Because edge devices are often located in unprotected

3

Chapter 1

Figure 1.2: Benefits of edge computing.

areas (e.g. customers’ home), another drawback of edge intelligence is related to secrets
protection. This topic is tremendous owing to the risks of disclosures concerning data and
the DNN models themselves.

Training a large AI model on an edge infrastructure is very costly in terms of energy
and time. Re-training a DNN model involves also financial costs and negative impact on
environment. A study by researchers at the University of Massachusetts [18] shows that the
process of training AI models can emit more than 626,000 pounds of carbon dioxide(CO2)
equivalent—nearly five times the lifetime emissions of the average American car (and that
includes manufacture of the car itself). Training advanced AI models require high-powered
GPU to run. In addition, this training on power-intensive GPUs contributed to increase
CO2 emissions which is very harmful for the environment.

Therefore, it is more efficient to capitalize on existing training without requiring any
re-training phase. Hence, taking advantage of pre-trained models can reduce the carbon
footprint significantly.

In the following section, we highlights the main contributions of this thesis.

1.2 Contributions

The thesis work presented in this manuscript aims to perform large AI models, particularly
CNN model inference, on edge infrastructure. Some existing approaches intend to fill the
gap between the resource demands of CNNs models and edge devices’ capabilities for in-
ference, but still, many issues need to be resolved. Partitioning a large CNN structure into
small partitions is one of the most popular existing approaches adopted to run AI models
at the edge. Running partitioned CNN inference at the edge led to many advantages listed
as follows:

4

Introduction

• Avoids network congestion and bandwidth saturation: model partitions are de-
ployed at the edge ,and the collected data is processed locally without any transmis-
sion in the network.

• Improves resiliency and reliability: partitions can be distributed across multiple
independent devices. One partition can be deployed on different devices which al-
lowing opportunities for a recovery in the case of breakdown. Moreover, if there is
a problem at one edge device, the inference process can be resumed and continued
with the other devices.

• Enhances data and model protection: edge devices still exposed to hacking vul-
nerability. However, each device has only a part of the global model and data which
is hardly a complete collection of data that hackers can pounce on. Privacy can easily
be compromised when data hosted on centralized servers are hacked because they
contain more significant data about users.

Therefore, this work proposed a Hybrid partitioning strategy that allows CNN parti-
tioning and inference without impacting accuracy, without requiring to re-train a model,
and without complex computations before deployment.

The main contributions of this work are listed below:

• A Hybrid Partitioning System called HyPS to make effective partitioning of a
large CNN model by identifying the best partitioning strategies while minimizing
the communication overhead and inference response latency. Partitioned CNNs
can be easily executed on one device or can be distributed across a cluster
of multiple edge devices. HyPS does not modify the original NN structure
and do not require any retraining step. HyPS keeps the exact accuracy of the
original model,

• An orchestration architecture for distributed inference of partitioned DNN which
exhibits good properties in terms of reliability, resilience and privacy,

• A prototype that implements the functional behaviour of the proposed concepts of
HyPS used to set up the testbed,

• a scheduling policy to establish a coordinated execution of the model partitions and
ensure data tracking.

• An evaluation of the proposed hybrid partitioning strategy compared to existing
approaches and analysis of the experimental results.

5

Chapter 1

1.3 Thesis Structure

Figure 1.3: Thesis Outline.

Apart from the introductory Chapter 1, this thesis consists of four chapters organised
as illustrated in Figure 1.3 :

Chapter 2: State of the Art of Enabling AI models at the edge This chapter re-
views existing relevant works that allow AI models at the edge. Some researchers adapt
DNN models to fit edge devices by reducing the model’s size using model compression
techniques. Others partition the model into partitions and perform distributed inference
across edge devices. We mainly focus on existing partitioning strategies that allow large
DNNs to fit resource-constrained devices. This chapter compares the most used partition-
ing strategies and highlights the strength and weaknesses of each approach.

Chapter 3: Hybrid Partitioning for CNNs Inference at the Edge

This chapter details the hybrid partitioning strategy, the architecture design for the dis-
tributed inference process, and the scheduling policy adopted to control the model partition
execution. We define vertical and horizontal partitioning strategies and the specificity of
our proposed strategy. HyPS is explained in details based one example of CNN that is
VGG16. This chapter involves a prototype and an architecture design to be used in the
implementation and evaluation of HyPS. In addition, qualitative validation of the proposed
architecture is realized via citation of real-world use cases in which applying HyPS will
bring several improvements.

Chapter 4: Implementation and Evaluation of Proposed Hybrid Partitioning
for CNNs Inference at the Edge

This chapter includes two parts. Part one presents the experimental setup and the im-
plementation details. The second part contains several experiments to evaluate the hybrid
partitioning strategy applied to VGG16. Through these experiments, we analyze the impact
of hybrid partitioning on communication overhead and inference time. We perform parti-
tioned VGG16 inference on a single device and distribute it across multiple devices. This
chapter shows the efficiency of HyPS on a real test bed.

Chapter 5: Conclusion

6

Introduction

The closing chapter of the thesis provides a restatement of our work and discussion of
some challenges. Furthermore, a detailed review of our contributions of our approach are
presented. The final section we outline technical and research perspectives for future work.

7

Chapter 2

State of the Art of Enabling AI mod-

els at the edge

2.1 Introduction . 9
2.2 Background . 9

2.2.1 Overview of Convolutional Neural Networks Structure . 9
2.2.2 Terminology : CNN Model Partitioning Strategies 10

2.3 Model Compression: Adapting DNN Models to Edge Devices . . . 12
2.3.1 Quantization . 13
2.3.2 Knowledge Distillation . 17
2.3.3 Low-Rank Factorization 18

2.4 Partition and Distribution of DNN Models at the Edge 20
2.4.1 Generic Partitioning Strategies 21
2.4.2 Typical-based DNNs Partitioning Strategies 22
2.4.3 DNN Scheduling for Distributed Inference 28

2.5 Synthesis and Conclusion . 29

8

State of the Art of Enabling AI models at the edge

2.1 Introduction

As described in the introduction chapter, this thesis addresses the problem of performing AI
applications that include large DNNs at the edge. Chapter 1 outlines the main motivations
and issues underpinning the Edge Intelligence paradigm’s importance. In this chapter a
review of the main existing works to deploy DNNs on edge devices has been pursued.
These concepts are essential for comprehending the positioning and the interest in thework
provided in this thesis. The section 2.2 provides some background namely basic concepts
about CNN structure and CNNs partitioning strategies.

Two types of existing solutions adapt DNNs to be deployed on edge to address this
issue. First, by reducing the model size using specific algorithms that modify the model
architecture and make it lighter. Second, partitioning a DNN structure into small partitions
that can be distributed and deployed separately on IoT devices. The research studies are
separated into two main sub-sections for clarity of exposition. First, section 2.3 discusses
popular techniques for adapting DNNmodels to edge infrastructure. Second, the section 2.4
contains important approaches suggested to partition and distribute DNNs computations
across edge devices.

2.2 Background

2.2.1 Overview of Convolutional Neural Networks Structure

A CNN is, in most cases, a DNNmodel specialized in processing data with a grid-like topol-
ogy, such as an image. Their applications include image and video recognition, classifica-
tion, computer vision, sound recognition through spectrogram analysis and natural lan-
guage processing. CNN architecture is essentially composed of two parts: feature extractor
and classifier. Each part is made of several layers. Feature extractor layers process the orig-
inal input, and classifier layers then classify the resultant features. The inference delay of
these two parts differs from one model to another and depends on CNNs structures. The
particularity in CNN structure is that the neurons in the CNN layers are comprised of neu-
rons organised into three dimensions, the spatial dimensionality of the input (height and
the width) and the depth.

A CNN model mainly includes three types of layers, convolution layers (Conv), pooling
layers (Pool), batch normalization layers (BN), and fully connected layers (FC). Each layer
computes and generates a feature map as output that will be then the input of the next
layer.

• Convolution layers: their purpose is to extract features in the images received as
input. This is done by using the convolution filter named Kernel. The kernel is a
matrix, which is slid across the image and multiplied with the input image. This
procedure is repeated by applying multiple kernels to form an arbitrary number of
feature maps, which represent different characteristics of the input data[19] [20],

9

Chapter 2

• Pooling layers: this type of layer is often placed between two layers of convolu-
tion. The pooling layers receive multiple feature maps and apply a down-sampling
operation. The pooling operation consists in reducing the size and dimensionality of
the images while preserving their main characteristics. the different types of pooling
operations are: maximum Pool, minimum Pool, average Pool, and Adaptive Pool,

• Fully-connected layers (dense layers): refers to a Multi layer perceptron. Multi-
ple dense layers are connected in such a way that the outputs of one layer are fully
connected to the inputs of the next layer. This type of layer applies a linear combina-
tion and possibly an activation function to the input values. Finally, fully-connected
layer calculates final probabilities for each class which is the final CNN output.

A CNN is generally structured in a pipeline. Therefore, it can be deployed at the Edge
according to two modes methods: adapting the CNN structure or partitioning the CNN
model into small partitions. Each layer only depends on the previous layer’s output and
not on the other layers.

2.2.2 Terminology : CNN Model Partitioning Strategies

The following terms are consistently employed throughout this thesis so as to avoid con-
fusion. This paragraph contains the coherent definitions and details. In this manuscript,
partitioning refers to the splitting of an entire model onto specific points of its architec-
ture to obtain one or more partitions. V-partition is the resultant of a vertical partitioning.
H-partition is the resultant of a horizontal partitioning

To better explain the different partitioning strategies, we consider a CNN model whose
each layer is denoted Li that will be partitioned using three partitioning strategies. For the
sake of comprehension, the CNN structure will be partitioned into four partitions denoted
Pi, but other partitioning possibilities exist. According to the strategy applied the content
of partitions changes as depicted in fig 2.1, 2.2 and 2.3.

Vertical model partitioning consists in building partitions made of one or several com-
plete layers named V-partition. In Figure 2.1, each partition includes a set of consecutive
layers. Each layer keeps its weights and parameters already fixed before inference. The in-
put data of the intermediate partition is the output data generated by the previous partition.
Only the first partition received the original input data.

Horizontal model partitioning which partitions the weights across layers. In Figure 2.2
all the layers are splitted horizontally. A partition can contain one or more units from
different layers. The input data are sent to all partitions. Different partitions of the same
splitted layers must communicate and synchronize with each other because all the output
data must be concatenated with the output data from the other partitions to get the final
output.

Data partitioning consists in dividing the original data given as input to all the CNN
partitions. Weight partitioning is not considered, and each partition includes all layers of
the CNN model. For data partitioning partitions Pi include exactly the same layers but

10

State of the Art of Enabling AI models at the edge

Figure 2.1: Vertical partitioning of 10 layers (L1..L10) into 4 V-Partitions (P1..P4).

Figure 2.2: Horizontal partitioning. Source[21]

Figure 2.3: Data partitioning.Source[21]

receive only a part of the original data. After the computation of all partitions, outputs
may be fused to get the final inference output.

For the better understanding and evaluation of the existing approaches, we have defined
a grid that includes the most important criteria that interest us in each approach result. The
criteria grid is as follows:

• Model structure changes: specifies if the proposed approach modifies the original
model structure or not

11

Chapter 2

• Accuracy loss: specifies if the proposed approach decreases the model accuracy or
not ;

• Model re-training requirement: precises if the proposed approach requires model
re-training or not ;

• Partitioning type: specifies the partitioning strategy used to split the originalmodel;

• Partitions placement specifies where the partitions are deployed;

• Running on single edge device specifies if the approach allows to run large DNN
model on single resource-constrained device;

• Scheduling policy: specifies if the approach adopt a scheduling policy for the model
inference or not.

Figure 2.4 introduces a ‘taxonomy’ of the existing works studied and discussed in Sec-
tions 2.3 and 2.4.

Figure 2.4: Mindmap of existing approaches performing DNNs inference at the edge

2.3 Model Compression: Adapting DNNModels to Edge
Devices

Achieving efficient, real-time NN inference with optimal accuracy requires rethinking NN
models’ design, training, and deployment. Amount of research has focused on addressing
these issues by making DNNs models more efficient (in terms of latency, memory footprint,

12

State of the Art of Enabling AI models at the edge

energy consumption, etc.), while still providing near optimal accuracy/generalization trade-
offs thanks to compression. Due to the massive computational requirements of recent DNN
models and the ubiquitousness of edge devices, the need for model optimization techniques
is gaining in popularity. DNN models requires powerful machines with high computation
and storage capacities. Numerous studies discuss different types of methods for model
compression of such DNN models to enable their deployment at the edge.

Edge devices are often limited by memory, and computation constraint that motivate
the development of compressed DNN models. Model compression is one of the most ef-
fective techniques to deploy DNN models on edge devices efficiently. Model Compression
broadly reduces model size and latency overhead. Size reduction focuses on making the
model lighter by reducing model parameters, thereby reducing RAM requirements in exe-
cution and storage requirements. Latency reduction refers to decreasing the time a model
takes to make a prediction or infer a result. Model size and latency often go together, and
most techniques reduce both. There are four main categories of model compression tech-
niques: quantization, pruning, Knowledge distillation(KD), and low-rank factorization.

2.3.1 Quantization

Model quantization compresses the number of bits used to encode each weight of the orig-
inal neural network, so that the total memory footprint is reduced by the same factor[22].
Quantization can be performed using integer rather than floating-point data types. This is
something interesting as integer operations require much less computations. The weights
can be quantized to 16-bits, 8-bits, 4-bits, or even with 1-bit (which is a particular case of
quantization in which weights are represented with binary values only, known as weight
binarization). There are several types of quantization. Going from float32 to int8 or quantiz-
ing from float32 to float16. Quantization can significantly reduce the number of Multiply-
and-Accumulate (MAC) operations of a DNN model. Quantization has a significant impact
on DNNs. If we consider float32 parameters quantized to float16, the occupied memory
will be reduced [23] and probably no accuracy loss [24], but the speed will not increase.
On the other hand, quantizing with int8 can result in much faster inference, but the per-
formance will probably be worse [25]. It won’t even work in extreme scenarios and may
require quantization-aware training.

In practice, there are two principal ways to do quantization. Quantization-aware train-
ing (QAT) quantizes the weights during training. However, the main drawback of QAT
is the computational cost of re-training the NN model. This re-training may need to be
performed for several hundred epochs to recover accuracy, especially for low-bit precision
quantization [26]. Second, Post-training quantization(PQT) consists of quantizing model
weights after training. Its main advantage is its simplicity of applying when limited or
unlabeled data. However, it causes performance degradation and accuracy loss.

In 1948, Shannon wrote his seminal paper on the mathematical theory of communica-
tion [27], which formally presented the effect of quantization and its use in coding theory.
He argued that a more optimal approach would be to vary the number of bits based on an
event’s probability, a concept now known as variable-rate quantization. In [28], authors

13

Chapter 2

demonstrate the feasibility of deploying CNN models with post-training quantization to
detect benign and malignant breast cancer tumors on portable ultrasound devices. This
work shows that the size of CNN models is significantly reduced after applying quantiza-
tion techniques. However, quantization generally yields drastically degraded accuracy.

Gong et al.[29] applied a quantization technique to optimize CNN models. The vector
quantizationmethods reduced the storage requirements of CNNs. Results of this work show
that the original parameters could be compressed by up to 96 % while retaining 99 % of the
original accuracy measure. Zhou et al.[30] presented incremental network quantization
(INQ). This method replaces all weights with powers of two or zero, iteratively, in each
iteration, preserving some weights in full precision and retraining them. After multiple
iterations, most weights are converted to a power of two. INQ allows efficient and low-
power inference: they require considerably less memory and have lower computational
complexity since quantized values can be stored, multiplied, and accumulated efficiently.
However, this quantization method causes accuracy loss and performance degradation.

In another work, authors in [31] introduce the first practical 4-bit post-training quan-
tization approach: it does not involve training the quantized model (fine-tuning). They
adopt knowledge about the statistical characterization of neural network distributions to
design efficient quantization schemes that minimize the mean-squared quantization error
at the tensor level, avoiding retraining. In the same direction, Yoni et al. in [32] address
the quantization problem for weights and/or activations of a pre-trained NN on highly con-
strained hardware, wherein complete retraining or mixed precision calculations cannot be
tolerated. This work provides empirical evidence that input quantization is responsible for
a significant part of the accuracy loss, notably on low-bit representation.

Jacob et al. [33] proposed a quantized inference framework that quantizes both weights
and activations as 8-bit integers and just a few parameters (bias vectors) as 32-bit integers.
This framework allows inference to be carried out using integer-only arithmetic, which
can be implemented more efficiently than floating-point inference on commonly available
integer-only hardware. Previous research works Han et al.[34] takes a pre-trained model
and passes it through the three-stage pipeline that consists of pruning the weights, quanti-
zation of the weights, and finally, Huffman encoding them for a 35-49x reduction in model
size. During this process, they re-train the network multiple times to ensure almost no
accuracy is lost.

Post-training quantization (PTQ) is supported and preferable to accelerate the inference
of many libraries and devices. This type of quantization has many properties. As QAT
requires access to the entire training set, it inevitably increases the risk of data exposure.
PTQ, however, needs only a small amount of calibration. It does not need the training
dataset except for a minimal amount of data that can be constructed by randomly sampling
instances from the calibration data. Privacy concerns still exist but are reduced compared
to QAT.

Also, post-training quantization is network architecture-free, back-propagation free,
and does not require domain knowledge or optimization tricks. However, it has the prob-
lem of significant accuracy degradation, especially when both activations and weights are
quantized into very low-bit integers. Bai et al. in [35] analyzed different experiments to

14

State of the Art of Enabling AI models at the edge

evaluate QAT and PQT. Experiments show that QAT usually maintains better-quantized
performance than PTQ. The performances of QAT are close to full-precision fine-tuning
results. However, the performances of PTQ drop significantly. This accuracy loss is unac-
ceptable in many real-world use cases.

For example, in [36], authors used object detection models for autonomous vehicles.
Embedded cameras and various sensors quickly detect vehicles, pedestrians, traffic lights,
traffic signs, and other objects around the cars to ensure driving safety. The object detection
model should satisfy the following two conditions: first, the high detection accuracy of road
objects is needed. Secondly, a real-time detection speed is essential for the detector can be
used in driving. Quantization techniques involve low-precision floating-point or integer-
format instructions to reduce the inference latency and the DNNs model’s size. However,
quantization is still defined as a lossy model compression technique, and re-training is al-
ways required to recover the precision degradation.

2.3.1.1 Pruning

Neural network pruning consists in removing irrelevant and redundant weights from a
trained model. Pruning is one of the most important techniques to reduce a large NN into
a smaller NN without retraining. Unnecessary weights are pruned away to yield a com-
pact representation of the effective model[37]. DNNs are usually over-parameterized[38]
with significant redundancy in the number of required neurons, resulting in unnecessary
computation and memory usage at inference time. Pruning feature maps results in running
networks more efficiently and speeds up inference. The early work in this domain aimed
to reduce the storage requirement of the DNN model and make it storage friendly.

Ardakani et al. [39] proposed to randomly remove some of the connections in fully
connected layers and proved that this method improves network accuracy while removing
up to 90 % of connections. Pruning aims to reduce DNNs complexity and avoids over-fitting.
A recent pruning method consists in removing filters that are proven to have a negligible
impact on the final accuracy of the network. The pruning automatically removes the filter’s
corresponding feature map and related kernels in the next layer.

Pruning methods are roughly categorized into two main classes: structured and un-
structured. Structured pruning means pruning a more significant part of the network, such
as a channel, a layer, or an entire convolutional filter. This pruning removes structured
DNN parts to compress and speed up DNNs. It changes the input and output shapes of
layers and weight matrices, thus permitting dense matrix operations. However, aggressive
structured pruning often leads to significant accuracy degradation.

Some prior works introduce pruning of the convolution layer (channel-wise, kernel-
wise, and intra-kernel stridden sparsity) at different scales. The proposed method in [40]
uses a specific filtering approach that helps locate pruning candidates. After pruning, fixed-
point optimization (4-bit and 5-bit precision) is applied to reduce the model size further and
make the model on-chip-based implementation friendly for embedded devices.

Lin et al.[41] proposed an efficient structured pruning method for jointly pruning fil-

15

Chapter 2

ters and other structures in an end-to-end manner. With unstructured pruning, neurons
with small saliency are removed wherever they occur. Specifically, the authors proposed
an iterative approach using generative adversarial learning to learn the sparse soft mask,
which forces the output of specific structures to be zero. However, this approach provides
a model with high sparsity, which resulted in the increased complexity of hyperparameter
optimization.

Signorini et al. [42] utilized the pruning method to remove parameters. The first step
is to learn the connectivity of the trained NN, i.e., to know which parameters are more im-
portant than the others. The next step consists in pruning those connections with weights
below a threshold, i.e., converting a dense network into a sparse one. Further, the impor-
tant step of this method is to fine-tune the network to learn the weights of the remaining
sparse connections. If the pruned network is not retrained, then the resulting accuracy is
considerably lower [43].

Zhang et al. [44] proposed a framework for systematic weight pruning of DNNs us-
ing the alternating direction method of multipliers (ADMM). First, they formulated the
DNN weight pruning problem as a non-convex optimization problem with combinatorial
constraints specifying sparsity requirements. It was then subjected to systematic weight
pruning using the ADMM framework. The original non-convex optimization problem is
decomposed into two sub-problems solved iteratively. In the weight pruning problem, one
of these sub-problems can be solved using stochastic gradient descent, and the other can
be solved analytically.

Numerous methods have been proposed to determine the weight zeroizing criterion,
such as Hoffman code [34]and iterative thresholding selection [42]. In recent years, prun-
ing is also used to reduce the computation and speed up the inference process by pruning
parameters/filters from the convolutional layer. In [45], pruning the filter reduces the num-
ber of MAC operations in the convolutional layer, and reduction in the MAC operations
improves the inference time. However, finding the optimal number of parameters that can
be pruned without significantly affecting the model performance is time-consuming and
requires iterative retraining.

In the same direction, authors in [45] propose to remove filters that have a small con-
tribution to the final accuracy of the network. Pruning allows the elimination of the filter’s
corresponding feature map and related kernels in the next layer. The relative importance
of a filter in each layer is measured by calculating the sum of its absolute weights. At each
iteration, the filters with the smallest values are pruned. Re-training the reduced network
is required to recover the performance degradation due to the filter-removal step.

Pruning methods eliminate 10 to 30 percent of the network’s weights. The network
size decreased with pruning, but it is required to retrain the network to avoid change or
a significant drop in accuracy. In addition, all pruning criteria require manual setup of
sensitivity for layers, which demands fine-tuning of the parameters and could be heavy for
some applications. Finally, network pruning can usually reduce the model size. However,
it is a complex approach that impacts performance, may require retraining, and does not
allow running a NN at the edge [46].

16

State of the Art of Enabling AI models at the edge

2.3.2 Knowledge Distillation

Knowledge distillation refers to transferring knowledge from a large, complex model or
set of models to a single smaller model that can be practically deployed under real-world
constraints. KD is based on the Teacher-Student concept. A teacher is an original model
trained for a specific task [47]. It is used to teach a compressed or replicated version of itself,
referred to the student. The student is encouraged to mimic the teacher output distribution,
which helps the student to generalize much better and, in some instances, leads the student
to perform better than the teacher.

Knowledge typically refers to the learned weights and biases. Among different model
compression schemes, KD has received much attention because of its great flexibility in
teacher-student network architectures. At the same time, the sources of knowledge in a
largeDNNare diverse. Typical knowledge distillation uses the logits as the source of teacher
knowledge, while others focus on the neurons or activations of intermediate layers. Other
relevant knowledge includes the relationship between different types of activations and
neurons or the parameters of the teacher model themselves.

Authors in [48] have addressed the problem of making the student directly mimic the
teacher’s feature in the penultimate layer. Distilling features in themiddle layers suffer from
the different architectures between teacher and student, while transforming the features
may cause the loss of some information in the teacher. Zagoruyko et al. [49] use feature
matching loss to facilitate knowledge transfer. They used an attention-based distillation
method to match the activation-based and gradient-based spatial attention maps.

Feature-based Knowledge has been adopted in [50] to allow the training of a student
that is deeper and thinner than the teacher. FitNet made the student mimic the full feature
maps of the teacher to learn from the intermediate representations of the teacher network.
This approach improves the training process and the final performance of the student. The
second form of Knowledge is Response-Based Knowledge.

Response-Based Knowledge refers to the response of the last output layer of the teacher
model. Themain idea is tomimic the teachermodel’s final prediction directly. The response-
based knowledge distillation is simple yet effective for model compression and has been
widely used in different tasks and applications.

Some works used response-based Knowledge to learn compact and fast object detection
networks with improved accuracy [51]. They focus on transferring Knowledge within the
same domain (images of the same dataset) with no additional data or labels. They are
opposed to other works that might rely on data from other fields (such as high-quality
and low-quality image domains or image and depth domains). Both response-based and
feature-based Knowledge use the outputs of specific layers in the teacher model.

Relation-based knowledge further explores the relationships between different layers or
data samples. This knowledge that captures the relationship between feature maps can also
be used to train a student model. Bergmann et al.[52] introduce a framework for unsuper-
vised anomaly detection based on student-teacher learning. In this work, several student
networks are trained to regress the output of a descriptive teacher network that was pre-

17

Chapter 2

trained on a large data set. Anomalies are detected when the outputs of the student net-
works differ from that of the teacher network, and the intrinsic uncertainty in the student
networks is used as an additional scoring function that indicates anomalies.

KD can be executed directly after teacher pre-training [53] or after teacher fine-tuning.
There are two ways of KD: offline KD consists of pre-training the teacher first and then
fixing it, meaning that the knowledge can only be transferred from the teacher to the stu-
dent. However, the online KD methods are more attractive because the training process
is simplified to a single stage, and all the networks are treated as students. Unlike the of-
fline KD between a static pre-defined teacher and a student, an ensemble of students learn
collaboratively and teach each other throughout the training process [54].

Theoretically, a more robust teacher provides constructive knowledge and supervision
to the student. Consequently, the intuitive approach for learning a more accurate student
is to employ a bigger and more robust teacher. However, experimental results in [55][56]
show that a large and robust model only sometimes makes a better teacher. As the teacher’s
capacity grows, the student’s accuracy rises to some bound and then drops. Two crucial
reasons explain this experimental results [57]. First, in some cases, the student cannot
follow the teacher due to the large model due to the gap between capabilities of the teacher
model and the student one. Second, the student can follow the teacher but cannot get
valuable knowledge from the teacher, indicating a mismatch between the KD losses and
accuracy evaluation methods.

KD allows to get smaller models, but these models are not efficient enough when the
teacher model is large. Thus, KD cannot be considered as the best solution for large DNNs
inference on edge. KD-based approaches can make deeper models help significantly reduc-
ing the computational cost. However, there are few drawbacks. One of those is that KD can
only be applied to tasks with softmax loss function, which limits its usage. Another draw-
back is that KD-based approaches generally achieve less competitive performance com-
pared with other type of approaches [46].

The following subsection contains another compression method different from the pre-
viously presented methods: low-Rank Factorization.

2.3.3 Low-Rank Factorization

Low-rank factorization is one of the techniques used for NN compression. The low-rank
matrix approximation approximates a matrix by one whose rank is less than that of the
original matrix. The goal of this approach is to obtain more compact representations of
the data with limited loss of information. The weight matrices in a neural network are
often low-rank, indicating redundancy in model weights [58]. Thus, the main idea is to
factorize the weight matrices into smaller matrices. This technique can preserve much of
the information while reducing the number of parameters.

The factorization of the dense layer matrices mainly improves the storage requirement
and reduces the number of parameters. Feed forward weight matrices can be factorized
into lower rank matrices to reduce the number of parameters [58]. In the same direction,

18

State of the Art of Enabling AI models at the edge

authors in [59] replace a layer in a neural network with two layers whose weights are
low-rank factors of the original layer’s weight tensor. Low-rank factorization reduces the
number of parameters andmultiply-add operations (MACs). Since factorization is restricted
to those that can be realized as individual layers, the potential for compression is limited.
The low-rank approximation of a matrix appears in many prior works.

Denton et al. [60] use a low-rank approximation to reduce the number of computa-
tions in the convolutional and the FC layer. They exploit the redundancy present within
the convolutional filters to derive approximations that significantly reduce the required
computations. Low-rank tensor decomposition can be used in CNNs to increase the net-
work’s inference speed and reduce the network’s size by removing a significant amount of
redundancies in the convolutional kernels [61]. Reducing the network size is crucial for de-
ploying neural networks in mobile devices due to memory limitations and bandwidth and
latency constraints. In other research, authors Zhang et al.[62] used low-rank factorization
to minimize the reconstruction error of the nonlinear responses, which helps to reduce the
complexity of filters and computations.

Other works used low-rank decomposition and knowledge distillation to decompose a
model into small matrices, preserving much of the information while reducing the number
of parameters. For example, Noach and Goldberg [63] introduced a two-stage approach
to compress a pre-trained model. They decompose each weight matrix in the pre-trained
model in the first stage. Then, they fine-tune or use knowledge distillation to refine the
weights for the second stage. Matrices decomposition in the NN model refers to layer
partitioning into small weight matrices, which is a part of the work presented in this thesis.
Low-rank factorization-based approaches are straightforward for model compression and
acceleration. However, the implementation is challenging since it involves decomposition
operation, which is computationally expensive.

Another issue is that current methods perform low-rank factorization layer by layer
and thus cannot perform global parameters compression, which is essential as different
layers hold different information. Finally, factorization requires extensive model retraining
to achieve convergence compared to the original model, while this thesis mainly focuses
on DNNs inference and avoids the retraining step.

This section shows that prior works used model compression techniques to compress
models and reduce the number of parameters which is important in enabling large DNNs on
edge devices. Meanwhile, previous works [64] assert that different compression techniques
produce consistently less robust models than the large uncompressed model. Moreover,
current compression techniques still largely depend on human heuristics to achieve good
performance. For example, pruning relies on the saliency score.

KD often requires a designed loss function, weight sharing, and low-rank factoriza-
tion involving expertise to appoint modules for sharing or factorization [65]. Most model
compression techniques modify DNNs structure and demand retraining and fine-tuning.
However, the main goal of this thesis is to focus on the inference of large models with high
accuracy and avoid retraining.

According to the criteria grid mentioned in subsection 2.2.2, the existing model com-
pression approaches are classified and compared in Table 2.1. All model compression ap-

19

Chapter 2

proaches cited in Table 2.1 reduce themodel size to fit on the edge device. Themodifications
made to the original model’s structure often cause an accuracy loss. The compressed
model can be executed on a single device in one block. Thus, these approaches do not
adopt any partitioning strategy or scheduling policy.

Existing works Model
structure
changes

Model
re-training
requirement

[28],[30],
[34],[35], [36]

Quantization ✗

[31],[32] Quantization ✔

[39], [41],
[42],[45]

Pruning ✗

[49],[50] ,
[55],[56]

Knowledge
Distillation

✔

[60],[61],
[65],[62]

Low-Rank
Factorization

✗

Table 2.1: Summary of existing model compression approaches for adapting DNNs to run
at the edge.

✔: means the proposed approach does not require a re-training phase.
✗: means the proposed approach requires a re-training phase.

2.4 Partition andDistribution ofDNNModels at the Edge

Model compression-based approaches presented in section 2.3 are used to enable DNNs
structure to be adaptable to run on resource-constrained devices. However, for large and
complex DNNs, these techniques are not enough to deploy models on edge while preserv-
ing high accuracy and avoiding retraining. Applications that include DNNs require high
accuracy, thus, the topology of DNNs evolves and becomes more complex with huge pa-
rameters.

With an increase in IoT technology and the rise of the edge computing paradigm, sev-
eral edge servers are located in the continuum between end devices and the cloud. Edge
servers bring extremely powerful connectivity to edge computing with low latency and
high processing speed. So, several existing works aim to exploit edge servers(servers,
routers, containers, hubs) to perform DNNs inference.

However, edge servers suffer from limited computation resources and low memory.
DNN partition consists of splitting a DNN structure into several small partitions and run
different partitions in different edge nodes. DNNs partitioning aims to reduce the gap be-
tween large computing workloads of DNNs and limited computing resources of edge de-
vices.

20

State of the Art of Enabling AI models at the edge

DNNs topology[66] [67]is categorized into Directed Acyclic Graph (DAG) topology
DNNs and chain topology DNNs. Thus, two strategies are commonly adopted to parti-
tion DNN according to its topology. The first strategy considers the DNN as DAG topology
and exploits graph partitioning techniques to split it. The second strategy is to partition the
DNNmodel based on the particularity of its architecture. In this section, existingworks that
use generic partition strategies are presented then we focus on previous works that discuss
typical-based DNNs partitioning approaches.

2.4.1 Generic Partitioning Strategies

To partition DNNmodels, a lot of research consider DNN structure as a graph and use graph
partitioning techniques to split the NN [68][69]. Some complex DNNs are characterized by
DAG topology, for example GoogLeNet and ResNet. Other chain DNNs can be converted to
DAG topology DNNs[67]. In a DAG representation of a DNN, each node(vertex) represents
a layer and edges represent the data communication between two nodes. DeepSlicing [70]
models CNNs as DAGs then partition it intomultiple blocks according to specific parameter.

IONN [71] proposed a partitioning-based DNN technique for edge computing. The DAG
contains multiple paths. A path is a sub-graph of the DAG with a line structure that starts
from the input layer and ends at the output layer. For general-structure DAGs, the partition
could spread across different paths. IONN considers a chain topology DNN as a DAG and
splits the DNN into partitions by iteratively finding the fastest execution path on the graph.

Authors in [72] introduce Dynamic Adaptive DNN Surgery (DADS) to enhance the
layer-wise partition to complex DNNs represented by DAGs. This work aims to find the
optimal splitting point. A splitting point is a location in a NN architecture that is decided to
be a border across two partitions. DADS employs edge computing and deploys DNN layers
to an edge node and a cloud server. However, DADS cannot generalize the partitioning
approach to separate a DNN into more than two partitions.

Some existing solutions focus more on scheduling by targeting a well-defined distri-
bution policy (Edge-Cloud, Mobile-Edge-Cloud, etc.). The scheduling then consists of a
sequence of tasks ending in the cloud.

Zhang et al. in [73] introduces a heuristic algorithm to split a DNN according to per-
layer processing time and inter-layer transmission delay into three parts. The DNN is mod-
eled as a DAG then splitted into three sub-graphs by assigning each vertex to one of the
three computing tiers and minimizing the total latency. The three parts are executed over
device, edge and cloud.

Authors in [74] introduced the edge-cloud computation offloading problem into a graph
min-cost partitioning problem, in which computation tasks are optimally distributed be-
tween mobile devices and cloud. The proposed min-cost offloading partitioning algorithm
took both the execution time and energy consumption into account when deciding an opti-
mal task partitioning positioning. In [75] Hu et al. introduced EdgeFlow, a new distributed
inference mechanism designed for general DAG structured deep learning models. Edge-
Flow partitions and distributes the model among different devices. In [76], authors consider

21

Chapter 2

a DNN model a DAG to formulate the fine-grained relationship between different neurons
inside logical layers and partition the model into multiple partitions.

A lot of existing works on distributed inference field consider the model with a chain
structure, which strongly hinders the applicability sincemostmodernDNNs are constructed
as complicated DAGs. The adaptation to the DAG structure is non-trivial, and the chal-
lenges can be summarized in the following two aspects. In distributed inference, it is im-
portant to keep the layer dependencies that indicate the proper execution order of the layers
and allow to obtain the correct results. With a chain structure, the dependency of the lay-
ers is very straightforward as one layer only has one preceding and one succeeding layer,
respectively.

However, in a DAG structure, one layer requires the results from multiple preceding
layers as input or may be needed by multiple subsequent layers. Compared with the chain
structure, the layer dependencies inside a DAG are much more complicated, adding com-
plexity to ensure the correct execution, especially after the layers can be partitioned and
distributed across different devices. There are several existing works that proposed parti-
tioning strategies adapted specifically to DNNs with chain topology. Some examples will
be discussed in the next paragraph.

2.4.2 Typical-based DNNs Partitioning Strategies

A lot of previous research adopt partitioning strategies based on the characteristics of NN
structure to allow large DNNs inference across device-edge-cloud network infrastructure.
Typical-based partitioning strategies can be classified into vertical partitioning and horizontal
partitioning. Vertical partitioning consist in splitting a DNN structure per set of contiguous
and entire layers while horizontal partitioning consists in splitting DNN layers into many
sets of neurons/units.

DNN structure can be deployed at the edge in several ways: (1) Cloud-Device, (2) Edge-
Device, (3) Cloud-Edge-Device or (4) Device-Device. In literature, model partitioning can be
applied either to offload DNN tasks across device-edge-cloud infrastructure or to distribute
DNN inference across edge infrastructure. Many existing approaches are focused on task
placement using simple scheduling consisting of a sequenced execution of two to three
partitions.

2.4.2.1 Computation Offloading across Device-Edge-Cloud

Computation offloading refers to transferring intensive computational tasks to a remote
server such as an edge server or a cloud. Computation offloading is an effective way to en-
hance user service quality [77] because DNNs inference is a very computationally-intensive
task. Industry and academia propose computation offloading as a promising solution for
effectively integrating resources in computing processes designed based on the Device-
edge-cloud paradigm.

The offloading of computation-intensive tasks can significantly reduce response time

22

State of the Art of Enabling AI models at the edge

and improve the overall performance of DNNs inference. Cloud computing still has some
limitations, such as high transmission costs and privacy concerns. Offloading migrates
computation to the edge server, which is close to users. It could be the best approach to
solve the problems related to the calculation at optimal times. It is efficient to offload the
computation from end devices to the edge server: the end devices will send their data to a
nearby edge server and receive the corresponding results after server processing [78].

The computation offloading policy requires to identify three elements [79]: first, when
to offload, it is important to fix the time for offloading under different constraints. Sec-
ond, where to offload, it is necessary to find the best placement to compute the offloaded
workload according to available resources. Third, the offloading policy must have a specific
objective. Offloading decision is usually related to an optimization objective to overcome
resource limitations of edge devices, energy consumption, and high processing latency.
Available computing resources are distributed in cloud servers, edge servers, and edge de-
vices. According to these different locations in the network, existing works mainly focus
on three offloading strategies:

Device-to-Cloud (D2C) Offloading:

D2C offloading involves transferring computations from the resource-limited IoT de-
vice(s) to resource-rich cloud centers to improve the execution performance of AI applica-
tions. Existing works proposed techniques to identify an optimal partitioning point based
on the characteristics of the layers of a DNN and operational conditions, such as resource
utilization or infrastructure network conditions.

For example, Neurosurgeon [80] proposed to partition model between cloud server and
mobile device according to the network situation. Neurosurgeon is one of the first works
to investigate layer-wise partitioning, also named vertical partitioning. The split point is
decided intelligently depending on the infrastructure network conditions and devices ca-
pacities.

Authors in [81] proposed a CNN splitting algorithm that efficiently splits CNN vertically
in exactly two parts, between edge and cloud and reduces bandwidth consumption. Various
parameters are considered, such as CPU/RAM load at the edge, input image dimensions,
and bandwidth constraints, to choose the best splitting layer.

Device-to-Edge server (D2E) Offloading:

D2E refers to offloading computations from resource-constrained devices to edge servers
close to the end devices at the network’s edge. D2E offloading addresses the high latency
issue in delay-sensitive services and applications that are not properly handled within the
Cloud computing paradigm. In [82], authors propose an edge computer offloading tech-
nique that assigns computational tasks generated by devices to potential edge computers
with enough computational resources. This approach is based on edge computers cluster-
ing depending on their hardware specifications. Afterward, the tasks generated by devices
will be pushed to a hybrid ANN model that predicts the profiles, i.e., features, of the edge
computers with enough computational resources to execute them.

Li et al. [83] present the framework Edgent that leverages edge computing for DNN
collaborative inference through device-edge synergy. This framework permits the distri-

23

Chapter 2

bution of DNN computations between mobile devices and the edge server according to the
available bandwidth. In [84] authors proposed an energy-efficient autonomic offloading
scheme that can automatically offload computational tasks to edge servers. This work aims
to minimize the total energy consumption of applications running on a mobile device.

In [85], authors present Hierarchical Machine Learning Tasks Distribution (HMTD) a
framework for a target tracking system that aims to minimize the weighted-sum cost with
the inference error rate constraint. In the proposed framework, a trained CNN is divided
vertically into two parts: lower-level layers and higher-level layers. The lower-level layers
of the deep learning model are implemented at the unmanned aerial vehicle (UAV), while
the higher-level layers are deployed at the multi-access edge computing (MEC).

Device-to-Device (D2D) Offloading:

Edge devices play the role of data producers and data consumers. There is great poten-
tial via collaboration and cooperation among the devices, besides offloading their compu-
tational tasks to more powerful ends. Thus, data generated at the edge will be processed
locally at the network’s edge instead of transmitting to the cloud or edge servers.

Authors in [86] proposed a distributed D2D offloading system that can guarantee a high
probability of on-time task completion and low energy consumption. If one edge device is
not powerful enough to provide a real-time response for model inference, a cluster of edge
devices could cooperate and help each other to give enough computation resources. For
example, if a camera needs to perform an image recognition task, it could partition a CNN
model by layers and transmit the partitioned tasks to other devices nearby.

Partitioning a CNN model by layers means splitting the CNN structure vertically to
obtain partitions that include consecutive layers. The decision of which task to offload
is the first and most significant challenge to address, as it comprises the core of the task
offloading problem. This decision is mainly based on a vertical partitioning strategy to
decide whether the task should be executed locally or offloaded to a remote infrastructure.

A failed partitioning strategy may result in performance bottlenecks regarding the ex-
ecution of the application. In [87], Chen et al. proposed a novel D2D framework where
a massive cluster of devices shares computation and communication resources to achieve
energy-efficient collaborative task executions. In the same direction, authors in [88] lever-
age the software agents running on the IoT devices to establish an integrated multi-agent
system (MAS). By sharing data and information amongmobile agents, edge devices can col-
laborate and improve the system’s energy efficiency in executing distributed applications.

The offloading decision is the key element for the offloading frameworks. Some frame-
works take the offloading decision at runtime based on program profiling and program
analysis, while others take the decision during design or compile time using estimations.
Most offloading strategies are based on a partitioning step that aims to pick which parts of
an application’s execution to retain on the edge device and which to migrate to the cloud or
edge server. Not all existing works require partitioning. Various techniques need cloning
the running application to the edge server or cloud [89]. The choice of the best way of
partitioning depends on several factors, such as available edge infrastructure, offloading
objective, and complexity of AI applications.

24

State of the Art of Enabling AI models at the edge

Recent research on edge computing found that applying DNN to end devices will bring
great convenience to people and the industry. Indeed, applications that include DNNs be-
come more complicated due to massive data collected by IoT devices at the edge and high
computation overhead. Therefore, it is recommended to avoid data transmission to the
cloud and run the DNN model locally to accelerate edge DNN inference so that data can
be transmitted at high speed in a relatively safe infrastructure. The following subsection
presents a literature review of research works on DNN partition and deployment at the
edge.

2.4.2.2 Distributed DNN across Edge Devices

D2D offloading refers mainly to distributing computations over edge devices by sharing
tasks with nearby devices or cloning tasks over multiple devices. D2D offloading facili-
tates computation resource pooling and sharing among edge devices. However, the D2D
approaches do not focus on DNN partitioning. This subsection concentrates specifically on
distributing DNN structure across edge devices.

Partitioning the DNN structure is an interesting research field among various works
in this area of research, and there are a few works done in this area. Previous works aim
to partition and distribute DNN inference between edge devices. Model partitions are de-
ployed separately on devices at the edge. Zhao et al. [90] proposed DeepThings, a locally
distributed and adaptive CNN inference framework in resource-constrained IoT devices.
DeepThings proposes a Fused Tile Partitioning (FTP) which consists in partitioning all con-
volutional layers horizontally into independent tasks, allowing the parallel execution of the
distributed inference. Deepthings proposed a scheduling policy to reuse overlapped data
between adjacent CNN partitions.

In the same direction, DeepSlicing [70] considers the varieties of the model structure.
Still, it requires finding specific points to split the model into two sub-models that can
be executed sequentially. DeepSlicing splits feature maps along the longer dimension of
height and width. This data partitioning approach aims to avoid redundant computations
resulting in reducing the inference latency. Moreover, MoDNN [91] partitions layers hori-
zontally and the layers’ input and output data using the Biased One-Dimensional Partition
(BODP) method. MoDNN treats each computing part of every single layer as an individ-
ual task, leading to high synchronization costs among devices. The mutual waiting would
also greatly increase the inference latency. This approach focuses mainly on sparse fully-
connected layers (i.e., fully-connected structures where some weights are zero). In this
work, weight-intensive convolutional layers are not addressed.

On contrary, authors in [92], partitions fully-connected layers, as well as feature and
weight-intensive convolutional layers, to serve a wide range of CNN inference tasks. By
integrating the horizontal partitioning strategy, which is namedWeight partitioning, with a
communication-aware layer fusion approach, holistic optimization across layerswas achieved,
allowingmemory and computation demands to be optimized simultaneously. The proposed
method allows for the complete distributed execution of a CNN application across a cluster
of resource-constrained edge devices. Table 2.2 contains a comparison of different existing
frameworks.

25

Chapter 2

Frameworks Partitioning type Data Partitioning
method

Scheduling
granularity

General CNN

DeepSlicing [70] Vertical partitioning,
data partitioning

One-dimension Arbitrary layers Yes

MoDNN [91] Horizontal
partitioning,
data partitioning

One-dimension Layer No

DeepThings [90] Horizontal
partitioning,
data partitioning

2D-dimension CNN No

Table 2.2: Comparison of different Frameworks [70]

Yang et al. [93] proposed CoopAI, a collaborative edge computing system that makes
use of multi-layer partitioning. This system allows multiple layers to be grouped into a
block to process multiple layers in a round. Edge devices that work together on multiple
layers yet require intermediate results from each other.

In [94], Zhou et al. introduced a containerized partition-based CNN inference at the
edge. This framework dynamically partitions a DNN model using horizontal partitioning
techniques. The output feature maps can be partitioned along the channel dimension such
that each device computes a subset of the output feature maps. The proposed framework
containerizes and deploys each partition on a small cluster of IoT devices using Kubernetes
for better resource management and scheduling.

Authors in [95], introduce DistrEdge, a CNN inference distribution method that models
the split process as a Markov Decision Process and utilizes Deep Reinforcement Learning
to make optimal split decisions. DistrEdge slits a CNN architecture vertically into parts
that contain one or more layers. DistrEdge can adequately adjust the distribution strategy
according to the device computing characteristics and the network conditions.

In [96], EdgeSP adopts a multiple-fused-layer-block parallelization strategy to reduce
the communication overhead between devices during parallel inference. This approach
effectively reduces the average task inference delay and improves resource utilization by
adding early exit branches.

Horizontal partitioning allows for the reduction of memory footprint and computation
complexity. However, this strategy incurs high communication overhead due to frequent
data movement among partitions. In addition, a fusion step is required to generate a com-
plete feature map. Another existing partitioning strategy is to split a DNN model vertically
per layer. This strategy supports the execution of partitions in a pipeline fashion, which
may help to exploit both data-level and task-level parallelism and to increase the system
performance. Vertical splitting aims mainly to reduce the memory needed for data stor-
age[21].

Compared to the vertical partitioning strategy proposed in [21], authors in [97] used
approximate computing techniques to fit CNNs into tiny embedded systems. These em-
bedded systems run on ARM big.LITTLE Multi-Core processors [98] by partitioning CNN

26

State of the Art of Enabling AI models at the edge

layers across heterogeneous cores to improve throughput. They implement a sequential
vertical partitioning strategy which consists of partitioning a CNN model into partitions
that include consecutive CNN layers. The memory required to deploy each partition can
be significantly reduced. Both the memory needed for storing the data exchanged between
the layers of a partition and the memory required for storing the weights of the layers of
a partition can be significantly reduced when the number of partitions is large. For large
CNN models, more than the vertical partitioning granularity is needed to get V-partitions
that fit with resource-constrained devices.

Authors in [99] presented DEFER as a framework to sequentially partition the DNN
model into smaller partitions across multiple edge devices, such that each device sends
its computed inference result to a subsequent device. DEFER adopts layer-wise splitting,
which refers to vertical partitioning to increase throughput and decrease per-device com-
pute load. Each compute node takes charge of the computation of a specific partition and
then sends a compressed result to the following compute node. DEFER aims to compare in-
ference throughput for different serialization, and compression configurations exchanged
between compute nodes. This work measures energy consumption and does not consider
the communication overhead.

In [100], Distributed INference Acceleration (DINA) proposed a fine-grained adaptive
horizontal partitioning scheme to divide a source DNN into partitions that can be smaller
than a single layer. These partitions can be processed locally by end devices or offloaded
to one or multiple powerful nodes, such as in fog networks. Partitioning considers the
specific characteristics of layer types in commonly-used DNNs through an efficient matrix
representation that reduces the communication overhead in the network.

Table 2.3 presents a classification of some DNNs partitioning frameworks according to
their partitioning strategy and performance parameters. All the examples given in this are
then included in the summary table in the last section.

Framework DNN Partitioning Improvement objec-
tive

DDNN [101] vertical partitioning latency and energy
consumption

DeepThings [90] data and horizontal
partitioning

latency and memory
footprint

jointDNN [102] vertical partitioning
with multiple splitting
points

latency and energy
consumption

DeepSlicing [70] vertical partitioning latency
Neurosurgeon

[80]
vertical partitioning latency

Table 2.3: Summary of DNN Partitioning frameworks

Vertical partitioning is not enough to deploy largeDNNs inference on resource-constrained
devices. Horizontal partitioning incurs communication and synchronization overhead. The
partitioning strategies adopted by previous works can change layers structure to reduce

27

Chapter 2

memory and computation demand resulting in model accuracy loss and increased com-
munication overhead. Our contribution in this thesis is to use the existing partitioning
strategies in a smarter way. The proposed solution allows to split a large DNN model into
small partitions without modifying the main model structure while avoiding accuracy loss
and minimizing communication overhead.

2.4.3 DNN Scheduling for Distributed Inference

Defining scheduling policy is essential to performpartitionedmodel inference on distributed
infrastructure. Scheduling consist in ordering the execution tasks and assigning each parti-
tion’s placement. Previousworks that performed distributed inference introduced a schedul-
ing policy to overcome several issues. From a spatial perspective, scheduling ensures that
all model partitions are distributed across the target devices.

Also, scheduling allows us to consider the order of partitions execution and ensure
temporal arrangement throughout the execution process. Hu et al. in [103] use scheduling
to efficiently schedule the tasks, by using a queuing time-aware scheduler. The scheduler
allows management of the whole cluster’s metadata and sharing the device status with
all the devices in the cluster. Partitioning and scheduling are correlated. In [104], authors
proposed a scheduling algorithm to topologically order all tasks by considering precedence,
application, and resource constraints. Through distributed inference process, scheduling
can reduce energy consumption and inference response time[105].

Furthermore, Deepthings [90] employs a scheduling process to improve data reuse and
identify the overlapped region in the different model partitions. The scheduling defines
work items in a separate stealing order that minimizes dependencies and thus maximizes
parallelism. In our contribution, scheduling is related to the manager that uses the com-
munication hub to allow the distribution of model partitions between devices and the data
transmission during the inference process. Scheduling allows efficient, timely distribution
of partitions to target devices and minimizes manual intervention by automating the infer-
ence process.

28

State of the Art of Enabling AI models at the edge

2.5 Synthesis and Conclusion

Based on the criteria grid defined in Section 2.2.2 and inspired by a synthesis table in [106],
Table 2.4 includes a summary of prior works mentioned in the previous sections and our
proposed solution (namely HyPS). This table highlights the strengths and limitations of
both existing approaches and our proposed solution. To ease the understanding of Table
2.4, we add symbols that indicate whether it is a weak or strong point of the proposed
approach.

• Yes ✗ or No ✗: refers to a limitation on the proposed approach.

• Yes✔or No✔: refers to a positive aspect of the proposed approach.

The Edge computing paradigm provides low latency, mobility, and location awareness
support to delay-sensitive applications. This chapter showed that combining Edge comput-
ing and AI technologies is an efficient way to solve the problem of deploying large DNNs
on resource-constrained infrastructure. Several model compression approaches are used in
the literature to adapt the DNN models structure to fit edge devices. These approaches re-
duced the model size and ran compressed DNNs at the edge. However, model compression
approaches change the original DNNs structure, increasing the accuracy loss and, in some
cases re-training the model to recover this loss.

Also, existing approaches propose to either offload DNN inference workloads to the
cloud or to handle the workload within the resource-constrained devices using various in-
novative techniques. Significant research has been carried out to partition the DNN struc-
ture into small partitions using multiple partitioning strategies. Distributed inference of
partitioned DNN requires the collaboration of multiple edge devices. There are several
limitations to these partitioning strategies approaches:

• Re-training the DNN model may be required to ensure high performance,

• For data loads, significant network bandwidth may be required,

• Privacy may be impacted because user data is no longer on personal devices,

• Some partitioning strategies and scheduling policies give rise to communication over-
head.

29

Chapter 2

Existing works Model struc-
ture changes

Accuracy
loss

Model re-
training
require-
ment

Partitioning
type

Partitions
placement

Running
on
single
edge
device

[28],[30],
[34],[35], [36]

Quantization Yes(✗) Yes(✗) N/A edge Yes(✔)

[31],[32] Quantization Yes(✗) No(✔) N/A edge Yes(✔)
[39], [41],
[42],[45]

Pruning Yes(✗) Yes(✗) N/A edge Yes(✔)

[49],[50] ,
[55],[56]

Knowledge
Distillation

Yes(✗) No(✔) N/A edge Yes(✔)

[60],[61],
[65],[62]

Low-Rank
Factorization

Yes(✗) Yes(✗) N/A edge Yes(✔)

Neurosurgeon
[80] Deepsplit

[81]

No(✔) No(✔) No(✔) Vertical
partitioning

device-
edge-cloud

No(✗)

DeepThings [90] No(✔) Yes(✗) Yes(✗) Data partitioning
, horizontal
partitioning

edge No(✗)

Deeperthings[92] No(✔) N/A No(✔) Data
partitioning,
, horizontal
partitioning

edge No(✗)

DINA [100] No(✔) No(✔) No(✔) Horizontal
partitioning

Device-
edge

No(✗)

CoopAI [93] No(✔) N/A No(✔) Vertical
partitioning

edge No(✗)

MoDNN[91] No(✔) No(✔) No(✔) Data
partitioning,
Horizontal
partitioning

device-
edge

No(✗)

DeepSlicing [70] No(✔) No(✔) No(✔) Data
partitioning,
Vertical
partitioning

edge No(✗)

Our solution
(namely HyPS)

No(✔) No(✔) No(✔) Hybrid
partitioning

edge Yes(✔)

Table 2.4: Summary of existing approaches for enabling DNNs inference at the edge

30

Chapter 3

Hybrid Partitioning for CNNs Infer-

ence at the Edge

3.1 Introduction . 32
3.2 Hybrid Partitioning Strategy . 32

3.2.1 Problem Formulation . 32
3.2.2 Governing Example VGG16 33
3.2.3 Vertical Partitioning Strategy 34
3.2.4 Horizontal Partitioning Strategy 35
3.2.5 Proposed Strategy . 36
3.2.6 Application of Partitioning of VGG16 39
3.2.7 Conclusion . 40

3.3 Architecture Overview and Qualitative Assessment of HyPS . . 40
3.3.1 Distributing and Scheduling Architecture Overview . . . 41
3.3.2 Inference on Single Device 46
3.3.3 Distributed Inference on Multiple Devices 46
3.3.4 Qualitative Assessment of HyPS via Concrete Use Cases 47

3.4 Conclusion . 52

31

Chapter 3

3.1 Introduction

Existing partitioning strategies proposed in chapter 2 enable large CNNs partitioning. Most
of them distribute the execution of these partitions across multiple devices or offload them
to the cloud. Existing approaches may increase latency and communication overhead.
These approaches do not enable large CNNs inference on a single device without apply-
ing compression techniques, reducing accuracy and/or requiring re-training. However, a
Hybrid partitioning strategy that mixes the two ways of partitioning (vertical and horizon-
tal) allows large CNNs inference on a single device with high accuracy and avoids cloud
computing. This technique aims to split a CNN structure efficiently into several partitions
that can be deployed separately on resource-constrained devices.

The main objective of this contribution is to capitalize on the CNN models previous
training phase, use it actively on inference and avoid the re-training phase as much as
possible. This chapter is divided into three parts. First, the proposed partitioning strategy
will be presented in details. Second, the architecture of the solution is presented as well
as the advantages of this contribution. Then, we highlight some of the most promising
real-world use cases in which our proposed strategy can be beneficial. Conclusions and
challenges are discussed at the end of this chapter.

3.2 Hybrid Partitioning Strategy

3.2.1 Problem Formulation

Inferring pre-trained large CNNs consumes significant time, memory, and computational
resources that can be higher than most of the edge devices capabilities. For example, a large
CNN like VGG16 cannot be deployed on Raspberry Pi 3 B with 1 GO of RAM. Apart from
hardware capabilities, edge devices often suffer from failures that result in unpredictable
service loss.

CNN execution on edge devices needs to be robust enough to cope with a satisfactory
quality of service from the user’s point-of-view. Because edge devices are often located in
unprotected areas (e.g., customers’ homes), another drawback of edge intelligence is related
to secrets protection. This topic is tremendous owing to the risks of disclosures concerning
data and the DNN models. Several approaches partition the CNN architecture into small
partitions to reduce memory footprint and fill the gap between the resource demands of
CNNs models and edge devices’ capabilities for inference. However, they do not cover the
subject as proposed in this thesis, HyPS allows to perform large CNN inference at the edge:

• Without accuracy loss, HyPS maintains precisely the same accuracy as the original
DNN model running on a powerful machine.

• HyPS allows large models to fit on a single devices with limited computation and
memory capacity.

32

Hybrid Partitioning for CNNs Inference at the Edge

• Distributed inference of partitioned DNN allows low inference latency and low com-
munication overhead.

• HyPS does not require any re-training step,

• HyPS does not modify the original CNN structure

• Data generated at the user machine is processed locally without transmission to the
cloud, which increases data protection.

Therefore, the proposed solution in this thesis brings an essential contribution
to the inference deployment of complex AI models at the edge.

3.2.2 Governing Example VGG16

For the sake of clarity, a governing example has been retained to illustrate principles and
how they can be applied to a realistic example. In this section, HyPS is applied on an
example of CNNwhich is VGG16 [107] [108]. VGG16 is a well-knownCNN example used as
Visual Geometry Group (VGG) is a popular and clear-in-structure CNNmodel that includes
all mainstream layer types. The VGG architecture is the basis of object recognition models.

Figure 3.1: VGG16 architecture[109].

Figure 3.1 show the VGG16 structure overview. Structured as a deep neural network,
the VGG surpasses baselines on many tasks and datasets beyond ImageNet[110]. VGG16
is considered as an excellent vision model architecture in classification tasks. This model
achieves 92.7% top-5 test accuracy in ImageNet, which is a dataset of over 14millions images
belonging to 1000 classes. The number of layers in a NN defines its depth. So the number
16 in the name VGG refers to the depth of the model. This means that VGG16 is a pretty
extensive network and has a total of around 138 million parameters.

33

Chapter 3

Most unique thing about VGG16 is that instead of having a large number of hyper-
parameters, the VGG16 structure includes convolution layers of 3x3 filter with a stride 1
and always uses same padding and max pooling layer of 2x2 filter of stride 2. It follows
this arrangement of convolution and max pool layers consistently throughout the whole
architecture [111]. Table 3.1 in [112] presents the complexity and accuracy of known CNNs.
MACs refers to multiply–accumulate (MAC) operations. Even according to modern stan-
dards, VGG16 is considered as a huge network.

Model Layers Parameters
(in millions)

MACs Error-5(%)

AlexNet 8 60 650 19.7
ZefNet 8 60 650 11.2
VGG16 16 138 7800 10.4

SqueezeNet 18 1.2 860 19.7
GoogleNet 22 5 750 6.7
ResNet-101 101 40 3800 6.8
ResNet-152 152 55 5650 6.7

DenseNet-201 201 16.5 1500 6.3
Inception-v3 48 23.6 5700 5.6

Table 3.1: Complexity and accuracy of known CNNs.

3.2.3 Vertical Partitioning Strategy

Vertical partitioning is a valuable strategy that splits a large pre-trained CNN structure so
that each partition includes a set of consecutive layers. This strategy does not divide the
calculated weights for each layer. Each V-partition is defined by a specific output layer and
generate its own feature map.

V-partitions can be deployed separately on devices with limited memory and low com-
putation capacity. However, to get a final inference response, it is necessary to transmit
partitions and ensure feature map transmission between them. In Figure 3.2 V-partitions
are represented by rectangles colored in blue and each one includes one or a group of con-
secutive layers.

Dimensions of feature maps produced by the output layer can vary considerably, result-
ing in a possible huge volume of data to transfer. Therefore, the choice of the output layer
is essential. The output layer is the decisive point in the dimensionality of the generated
feature map which will be transmitted to the next partition. The feature map shape through
the CNN layers is irregular, and it depends on the filter size applied in the layer, the input
dimension of the feature map output of the prior layers, and the type of the layer.

As mentioned in Section 2.2.1, all layers in a CNN structure are arranged following a
specific pattern. The input layer of CNN is a convolutional layer, and the output layer is a
fully-connected layer. The output feature map of a convolutional layer is a complex matrix
with high dimensions. Therefore, after the convolution block, there is a pooling layer that

34

Hybrid Partitioning for CNNs Inference at the Edge

Figure 3.2: Example of V-partitioning on VGG16. Split points are depicted thanks to dashed
lines.

is responsible to extract major characteristics of the data. This sort of layer performs a
dimensionality reduction on the input by reducing the number of parameters. The pooling
layers represent interesting splitting points which reduce the size of the transferred feature
maps. HyPS uses these strategic split points to position the boundaries of the V-partitions.
In Section 4.3.1 this specific points will be quantified.

Some complex layers can require a powerful computing capacity to generate feature
map. For limited resources devices, it is impossible to perform calculations of complex
layers in one operation. So, vertical partitioning alone is not sufficient to perform inference.

For example, experiments showed it was impossible to run VGG16 structure without
horizontal partitioning on a resource-constrained device, because of a too complex layer.
This specific layer has a number of parameters that exceeds one hundred two million (102
* 106) parameters. The total number of parameters is the sum of all weights and biases.
Therefore, edge devices with limited capacity do not support the computation of massive
operations at the same time. This issue implies the use of a finer level of splitting because
more than vertical partitioning is needed to deliver CNN inference efficiently on edge de-
vices. There is a need to finely split layer weights to obtain smaller partitions than those
obtained with vertical partitioning. So, it requires horizontal partitioning.

3.2.4 Horizontal Partitioning Strategy

As mentioned in the previous section, the vertical partitioning splits the DNN model at the
layer granularity while horizontal partitioning splits a DNN layer at neurons granularity.
Horizontal partitioning is the thinnest way of partitioning.

This strategy partitions a given layer into small groups of neurons, whereas the input
data layer is not partitioned. In this case, partitioning one layer into H-partitions reduces
the number of parameters, storage needs, and the memory required to compute layer fea-
tures.

Therefore, the previously mentioned too complex CNN layer that includes intensive
computations is divided into several H-partitions. Each H-partition is only responsible for

35

Chapter 3

Figure 3.3: Horizontal partitioning on one layer.

computing a part of the output of the current layer. At the same time, a specific algorithm
will collect and merge all the output’s H-partitions to get the full feature map before ex-
ecuting the next layer. In Figure 3.3 H-partition are represented by green rectangle (four
partitions are chosen to simplify the presentation in the figure). A partition can contain
one or more neurons of the same layer and computes a partial feature map.

Partial features maps collection and merging is a process that introduces a synchronisa-
tion cost. This cost does not exist for vertical partitioning and so, to preserve performance,
horizontal partitioning must be used as few as possible. The next section describes how
our solution manages to take the highest benefits from both sorts of partitioning described
here.

3.2.5 Proposed Strategy

Customers and industrial users usually search for an efficient and straightforward frame-
work to execute large AI models at the edge. This type of frameworks should be based on
a good partitioning strategy that enables large CNN model inference according to avail-
able infrastructure capacities. Our contribution is a decision support system that provides
a guided partitioning strategy that can be applied on complex models.

This thesis proposes a Hybrid Partitioning System (HyPS), a solution that comprises a
hybrid partitioning strategy, an orchestration architecture, and an implementation. The
hybrid partitioning strategy mixes vertical and horizontal partitioning and identifies the
best positions in the model architecture to split a NN structure. Applying the hybrid strat-
egy allows the generation of small partitions that fit the resource constraints of edge devices

36

Hybrid Partitioning for CNNs Inference at the Edge

noticeably by decreasing instantaneous memory needs.

HyPS takes input information about the global model structure to be partitioned and the
characteristics of the target edge infrastructure. The proposed approach helps to identify
the strategic split points to get partitions and precise the type of partitioning to be applied.
Using either vertical or horizontal strategy could not solve entirely the problem of edge
infrastructure incapacity to run a given model. For a large CNN model like VGG16 [107],
vertical partitioning generates V-partitions that could still remain computationally inten-
sive and complex to be executed on edge devices, that is why HyPS makes use of vertical
partitioning with horizontal partitioning.

Horizontal partitioning splits the CNN layers into thinner H-partitions. However, H-
partitions must also be fused to obtain the final result of the partitioned layer: this fusion
increases both the communication and the computing times. In consequence, we argue
that the number of H-partitions must be limited to avoid ineffective operations. The in-
tended solution aims to minimize overhead costs related to H-partitions synchronization
and prevent any degradation in model accuracy.

The hybrid partitioning strategy provides a solution to identify mandatory partitioning
points and optional partitioning points on the CNN structure. HyPS prioritizes vertical par-
titioning and applies horizontal partitioning only if it is mandatory to perform the CNN
partition execution on the target edge infrastructure.

Algorithm 1 Get mandatory split points
Require:
1: Model: CNN model
2: Threshold : maximum number of parameters supported by the device

Ensure: LM : list of mandatory split points
3: for each layeri inmodel do
4: if number of parameters >= Threshold then ▷ layeri is a complex layer
5: LM ← [index of layeri−1, index of layeri+1]
6: else if the last layer then
7: return LM

Algorithm 1 shows the steps to identify the mandatory partition points for an input
CNN model. The proposed algorithm starts by going through all the model layers one by
one and check if it is possible to run solely each corresponding layer on the target edge
device. The program runs this process until reaching either the last layer or a complex
one(line 4 in Algorithm 1). In the case of a complex layer, HyPS fixes two mandatory
split points. For one particular complex layeri : the first mandatory split point is located
before the complex layer, the layeri−1 is the output layer of the first V-partition, the second
mandatory split point is located after the complex layeri. So, layeri+1 is the input layer of
the second V-partition and a third constituted of the complex layer itself and alone. The
output of this algorithm is a list that contains the indexes of the mandatory split points(
line 5 in Algorithm 1). The mandatory split points allow to fix the input and output layers
of each V-partition. The same process is applied for each fixed complex layer. Then, the
V-partition containing the complex layer is itself partitioned into H-partitions as small as

37

Chapter 3

required to fit targeted execution infrastructure.

The first step consists of identifying the possible mandatory split points. HyPS deter-
mines optional split points in the second step. Optional split points are specific locations
in the CNN architecture where partitioning allows for smaller V-partitions. Smaller V-
partitions’ benefits cope with particular needs related to the NN (e.g., privacy concerns).
It is possible to put optional split points between all the CNN layers, but some points are
strategic since they allow to minimize the size of the feature maps transmitted, thus to
minimize the overhead of the solution. These split points correspond to the outputs of the
pooling layers. HyPS identifies all pooling layers as so called Optional Split Points. Algo-
rithm 2 describes the identification steps of the strategic optional split points for a given
CNN model.

Algorithm 2 Get strategic optional split points
Require:
1: Model: CNN model
2: Threshold : maximum number of parameters supported by the device

Ensure: LO : list of total strategic optional split points
3: for each layeri in model do
4: if number of parameters < Threshold and layer type is Pooling layer then
5: LO ← index of layeri
6: else if the last layer then
7: return LO

Algorithm 2 generates the list of all strategic optional split points. The benefits of using
pooling layers include reducing the complexity and speeding up the calculations. Indeed,
pooling layers are the most suitable output layer for the model partitions. This type of
layers reduces the dimension of the output feature map resulting in a minimal data transfer
between consecutive V-partitions. So, this work takes advantage of these layers to reduce
the communication overhead of feature map transmission between V-partitions.

While splitting a CNN structure, there are two main scenarios. First, only a vertical
partitioning is required because all V-partitions can then be executed without additional
modifications onto targeted devices. Second, applying vertical partitioning solely does not
sufficiently decrease partitions’ complexity and an additional horizontal partitioning is re-
quired.

Apart from mandatory partition fit, the optional split points are helpful in several use
cases when the user needs to distribute the partitioned model inference on multiple devices
and wants to increase the number of V-partitions.

According to the user objective, HyPS provides final output partitions ready to be de-
ployed on the target edge device(s) without any bottlenecks. HyPS can be integrated into a
software program that provides an automated deploying solution of NN. Thanks to HyPS,
the edge infrastructure can be covered more quickly. The model structure and edge infras-
tructure are passed as parameters. Three conditions are required to identify the strategic
split points in the CNN structure:

38

Hybrid Partitioning for CNNs Inference at the Edge

• A large trained CNN model with chain topology,

• A well-defined resource-constrained device(s),

• Data for inference is available locally at the edge.

3.2.6 Application of Partitioning of VGG16

In this subsection, HyPS is applied to an example of CNN models, VGG16. This model
is considered a huge NN. Therefore, we aim to split the structure of VGG16 into small
partitions. These partitions can be executed at the edge without memory problems. HyPS
allows the identification of the best split points to get the best partitioning result.

First, HyPS identifies the mandatory split points then generates the minimum number
of partitions that allows the deployment of VGG16 on edge device. As mentioned in the
Section 3.2.5, the study of CNN architecture reveals strategic locations through the CNN
layers which are named optional split points. The optional split points allow to get a finer
partitioning granularity.

In the case of VGG16 structure, there are five strategic split points (five pooling layers),
so, there are several possible V-partitions. Figure 3.4 shows the VGG16 structure with the
positions of the mandatory split locations represented by continuous red lines and optional
split locations represented by dashed green lines. Mandatory split positions are located
before and after the first fully connected layer(FC1). So the VGG16 must be partitioned
vertically on this positions and split the FC1 horizontally to perform VGG16 inference on
edge device. The optional split points bring the opportunity to get more than three V-
partitions while minimizing the communication overhead.

Figure 3.4: Mandatory and optional split positions of VGG16 model structure.

The pooling layers throughout the VGG16 model have different output dimensions, get-
ting closer to the final output layer, the pooling layers output dimensions decreases. For
example, in the VGG16 structure output feature map dimension passes from 112*112 in the

39

Chapter 3

first pooling layer to 7*7 in the last pooling layer. Theoretically, it is more efficient to split
the model on the last strategic point with the smallest feature map to minimize communi-
cation overhead.

The final result generated by HyPS comprised two elements. First, a list containing the
mandatory split points as well as the optional split points. Second, the partitions that can be
executed at the edge. By default, the partitions are generated according to the mandatory
split points. Thus, HyPS split the VGG16 structure vertically into three V-partitions and
the FC1 into four H-partitions. Four is the minimum number of H-partitions the target
edge devices can support. The choice of the number of H-partitions will be detailed in the
next chapter. It is possible to generate the partitions according to mandatory and optional
split points to obtain smaller V-partitions. Table 3.2 presents the number of V-partitions
according to the split points type in the case of the VGG16 structure.

Split points type V-partitions
number (n)

Mandatory split points n= 3
Mandatory split points
+ optional split points

3 < n < 7

Table 3.2: Possible V-partitions number for VGG16 partitioning using HyPS.

3.2.7 Conclusion

Themain objective of HyPS is to split the CNN structure into small partitions bymixing ver-
tical and horizontal partitioning strategies while reducing communication overhead. This
solution is different from the existing works by preserving the original structure without
any modification, thus preserving the high accuracy and the model performance. The gen-
erated partitions can be deployed separately and distributed over time or spatially into
multiple devices. It is required to define a scheduling schema to run the distributed infer-
ence process of partitioned CNN, ensure data transmission, and smooth execution of each
partition at the edge. A scheduling policy will be presented in the following section to
perform partitioned model inference on the edge infrastructure. An illustrative example is
then described with a VGG16 CNN.

3.3 Architecture Overview and Qualitative Assessment
of HyPS

This section comprises two parts. In part one, we define a specific architecture design that
allows the distribution of model partitions at the edge and the scheduling of the execution
of these partitions. This architecture will be used in the implementation afterward to en-
sure the computation of partitions and communications between different entities. In part
two, we provide a qualitative assessment of HyPS via realistic use cases by identifying the
benefits of adopting and applying our solution.

40

Hybrid Partitioning for CNNs Inference at the Edge

3.3.1 Distributing and Scheduling Architecture Overview

The architecture is composed of several entities that compose a multi-agents system. Two
kinds of agents’ preoccupations are mixed together and each of these kinds is structured as
a tree topology. Each topology is in fact a view of HyPS.

3.3.1.1 Computations Topology

The computations topology comprises two types of entities: a manager and its multiple
workers. The manager is responsible for the DNN model partitioning and the partition
distribution across the available workers. Every manager manages the execution of a given
DNN model through jobs by scheduling the execution of partitions on different workers.
The different entities constituting the computations topology can be seen in Figure 3.5, the
manager is denoted "M1" while the workers are denoted "W machine" where "machine"
denotes the location of the worker execution. The manager assigns the job to its workers
and decides the partitions taken by every worker.

Figure 3.5: Architecture overview of computation topology

A manager can have workers that serve as sub-managers that manage a distinct group
of workers. Two managers are represented in Figure 3.5 for ease of understanding. The
manager M1 has four workers, and one of these workers, denoted "M2" is both a worker for
M1 and a sub-manager of four other workers. Nonetheless, this number can be significantly
higher in reality. A worker can receive and execute one or more partitions submitted by its
direct manager. The green lines represent the computation links between Manager M1 and
its workers, while the blue lines show the computation links between the second manager
M2 and its workers. In Figure 3.5, two clusters are defined.

41

Chapter 3

3.3.1.2 Communications Topology

The communications topology is an overlay of the computations topology. It manages data
exchanges between entities. A communication hub transmits data between the manager
and its workers. Both the manager and the workers know how to contact the communica-
tion hub that separates their communications thanks to a specific addressing policy. The
communication hub allows for a reactive approach for each worker where each one do
computations only when data are effectively present at a given address. In Figure 3.6, we
present the communication view of the two clusters showed in the previous section (Figure
3.5). C1 and C2 are two communication hubs that ensure the data transmission within the
corresponding clusters.

Figure 3.6: Architecture overview of communication topology

The communication hub is used to synchronize the tasks and the workers. The com-
munication hub ensures that the workers can reach their manager directly. This hub is
beneficial when there are sub-networks to manage. The communication allows the logging
of exchanges and provides the history of executions carried out within a well-defined clus-
ter. Thus, it is efficient for failure recovery from state saved thanks to the communication
into a stable storage as presented in [113].

3.3.1.3 Scheduling and Execution of Model Partitions

The inference process using the HyPS architecture is composed of two main phases. The
first phase consists in partitioning the given CNN model into partitions. The second phase
involves the placement and scheduling of the partitions to obtain the final inference re-
sponse. To provide better understanding, the HyPS system is represented as a Deterministic
Finite Automaton (DFA). A DFA is a computational model that describes a limited number
of possible states which can be reached during the computation process. For example, the
life cycle of a given NN in the HyPS system can be represented by a DFA that includes
different states and transitions from partitioning to computing. The functionality of a DFA
can be described using a graph. Each state of the system corresponds to one vertex of the

42

Hybrid Partitioning for CNNs Inference at the Edge

graph. The edges represent the transitions between states. For each transition, a list of
inputs that cause it are fixed. In DFAs, the transition from one state to another can happen
only if the input matches the description of the transition.

Figure 3.7: NN Inference state graph.

Figure 3.7 represents the DFA for a NN structure to be partitioned using HyPS. Tran-
sitions that start with the symbol "?" refers to input that is required to get the next state.
Transitions that start with the symbol "!" refers to transition that produces an output that
can be retrieved elsewhere as input. Some transitions require a list of elements given as
input. For example, "Output@s" is a list of output addresses. When the execution of the
HyPS system begins, it is required to get the NN architecture and the IoT infrastructure to
move on to the next state " Partitioning". To move from state " Partitioned" to the state "
Scheduling" it is required to get the input partition, the placement on a well defined worker
and a list of addresses to send the output. Each worker receives the partition(s) and the
address where to save the output feature map. The worker still waiting until the manager
sends the input address that contains the appropriate input data.

Figure 3.8: Partition life cycle graph.

The partition life cycle is described by a DFA that includes all the steps through which

43

Chapter 3

passes the partition to be computed. Figure 3.8 represents a macro view of a partition
inference and shows the different states from partition creation to the computation.

Figure 3.9: Partition life cycle detailed graph.

Figure 3.9 shows the partition’s life cycle in details. The state " Computing" in Figure 3.8
includes three states " Loading", "Loaded" and "inferring" represented in orange circles. The
manager is responsible for scheduling the partitions execution described in the algorithm
3. Before computing, one partition must be placed on a target device. The manager decides
the placement of each partition. Once the partition is placed, the manager sends the input
and output addresses, then the partition starts loading. When the partition is loaded, the
manager sends the appropriate input data to start the computation. For the first partition,
the input data is the original data that will be inferred. For the following partitions, the
input data of a partition Pi is the intermediate feature map(s) generated by the previous
partition Pi−1. The process is repeated until all available partitions are executed and the
final output inference is computed.

The proposed architecture used in HyPS system gives the opportunity to run batch in-
ference on a set of images. The Figure 3.9 highlights the advantage of performing batch
inference using HyPS. These advantages include avoiding the waste of time related to the
partition placement and loading for each image in the set. The algorithm 3 manages the
batch inference process in which, the partition is placed and loaded only once, and the im-
ages will be computed one by one without repeating neither the placement nor the loading.
When all the images are processed by the first partition, the manager authorized the next
partition to start computing. The batch inference using HyPS architecture can be a good
solution in several real-world use cases. For example, this approach can be used to process
"cold data" when the computing load of the edge infrastructure is low.

In the following section, we describe the inference process on single and multiple de-
vices of partitioned VGG16 using HyPS architecture.

44

Hybrid Partitioning for CNNs Inference at the Edge

Algorithm 3 Partitions scheduling
Require:
1: listPartitions: a list of partitions
2: listInputData: a list of input data
3: InputData: a peace of input data to compute
4: P : a partition
5: W : a worker
6: OutputAddress: an address contains the output feature maps
7: InputAddress: an address to get the input feature map
8: for each Pi in listPartitions do
9: if Pi is Placed then
10: W ← Pi, InputAddress(Pi), OutputAddress(Pi) ▷ Pi is loading, computations

can start
11: else if Pi is loading then ▷ wait
12: else Pi is loaded
13: if i=0 then
14: list← listInputData

15: else
16: list← get OutputAddress(Pi−1)

17: for each InputDatai in list do
18: InputAddress(Pi) ← InputDatai ▷ Pi is inferring ▷ wait for output

45

Chapter 3

3.3.2 Inference on Single Device

Partitioned CNN inference can be performed on one device providing that the partitions
execution is distributed over time. The manager send all partitions to a single device how-
ever the computation workflow is ran sequentially. Figure 3.10 depicts a possible schedul-
ing scenario for partitioned VGG16 using the proposed hybrid approach. In this case, the
VGG16 is partitioned into four V-partitions denoted Vp1, Vp2, Vp3 and Vp4, represented
by blue rectangles. The first fully connected layer (L19) is divided into four H-partitions:
Hp1, Hp2, Hp3, and Hp4, represented by green rectangles. Four is the minimum number of
H-partitions for which the number of parameters is sufficiently reduced to fit a typical edge
device such as a Raspberry Pi 3B+. The edge device computes inference calculations in a se-
rial first-in first-out manner. Tnumber represents the consecutive partitions’ instantiation
and execution time. For example, V-partition 3 (Vp3) in Figure3.10 is executed only when
feature map coming from computations of Vp2 is finished and received by the communica-
tion hub. Instantaneous memory footprint when running the inference process on a single
device is lower than memory consumed when running the whole model in one block.

Figure 3.10: Partitioned VGG16 inference on single edge device

HyPS allows executing a large CNN model on a single edge device successfully even
though this model was not running before on a resource-constrained device. This result
is an advanced contribution of HyPS. The performance measures exposed later in this
manuscript show in some cases an improvement in the execution speed.

Performing partitioned CNN inference on a single device is beneficial when the data
can only be processed in a single place. For example, it may be the case for a user’s home
equipped with a single device(e.g., an internet gateway). The edge infrastructure makes it
possible to broaden the inference at the edge by federating a set of resource-constrained
devices which will be described in the following subsection.

3.3.3 Distributed Inference on Multiple Devices

Inference can be distributed over time and spatially across multiple edge devices without
any cloud processing. Figure 3.11 shows an example of a scheduling for distributed infer-
ence of a partitioned VGG16. All partitions are distributed across four edge devices. Par-
titions’ execution order is determined according to initial position of each partition in the
initial architecture. V-partitions are always executed sequentially, only the H-partitions
of the FC1 layer can be performed in parallel as shown in Figure 3.11. The results of H-

46

Hybrid Partitioning for CNNs Inference at the Edge

Figure 3.11: Hybrid partitioning of VGG16model deployed on a cluster of four edge devices.

partitions of the same layer must be assembled together before sending the feature map to
the communication hub.

Distributing the inference process across multiple devices is a good way to perform a
large CNN inference at the edge, but there are other reasons to exploit multiple devices. The
distributed infrastructure is a better track to execute the inference on a batch of existing ob-
servations or observations that can be generated in real-time. Performing the computations
separately on edge devices allows for the acceleration of the inference process. It avoids
the disruption of the main function of the device(s)(e.g., connectivity, recording video, etc.)

Figure 3.12 shows a prototype of distributed inference of partitioned VGG16 that depicts
an industrial use case inspired by [114]. The manager denoted "M1" is the manager of
four workers, W1, W2, W3, and W4. Regarding knowledge of model and data, entities are
categorized into two classes. The manager and the communication hub are classified as
safe entities because they must be deployed on a device with robust protection policy. This
high protection is necessary to protect all information about the original NN structure. The
workers are classified as unsafe, and there is no need for high protection because workers
have only a part of the NN structure.

The proposed architecture, scheduling policy, and the different entities categorization
allows considering HyPS as a better approach for performing inference at the edge. HyPS
may have an efficient impact in many real-world cases. In the following paragraph, we
highlight the main improvements that can be gathered by applying HyPS to examples of
real-world IoT applications.

3.3.4 Qualitative Assessment of HyPS via Concrete Use Cases

The deployment of current AI applications at the edge suffers from numerous limitations
in failure resistance, data confidentiality, service efficiency, and scalability issues. HyPS
proposes solutions to these limitations while guaranteeing high accuracy and lower risks.
This section presents three realistic applications of our proposed strategy: 1) AI-powered
Security Camera, 2) Smart Manufacturing, and 3) Autonomous Driving. Through these use

47

Chapter 3

Figure 3.12: Example of distributed inference architecture of partitioned VGG16 model on
a cluster of four edge devices.

cases, we highlight the improvement brought by HyPS.

3.3.4.1 Use case 1: AI-powered Security Camera

Image recognition, also called image classification, is an important task in the computer
vision field. Image recognition is used to identify certain types, aka classes, of objects
within an image or video frame. Image recognition can be carried out through simple image
processingmethods. However, these techniques can be quite restrictive in functionality and
do not provide high accuracy. The integration of CNNs into image recognition applications
improves results but image processing becomes more resource-consuming. So, executing
this type of application, including large AI models near IoT devices, is challenging at the
edge. HyPS can solve this problem. For example, a user wants to use a software service for
image recognition linked to a connected security camera to perform advanced tasks such
as person detection, vehicle detection, and traffic counting.

48

Hybrid Partitioning for CNNs Inference at the Edge

This service can be integrated into any embedded device. Users want to integrate this
application simply on the available infrastructure. Internet gateway (a.k.a. Service Provider
(ISP), a nearby micro data center) can be used to perform image recognition collected by
the camera. HyPS allows the partitioning and the deployment of a large trained AI model
on multiple nearly connected devices which will help the user to analyse data and perform
image recognition with high accuracy.

However, devices can be abruptly unplugged, so all the processed data can be lost, and
the user must restart the inference again. The participating devices exchange data and
intermediate inference results via the communication hub. So, in case of device failure,
HyPS avoids restarting calculations from scratch, and permits to resume inference from
the blocked point. So, The first improvement of using HyPS is :

❖ Resilience & Reliability.

In addition to partitions’ computations scheduling, HyPS presents different advantages
concerning edge infrastructure specificities, in particular resilience issues. If IoT devices
and edge devices are numerous, they have limited computing and memory resources but
also they can suffer from many dysfunctions. Among them, energy cutoffs can occur as it
is mentioned in the use case above. Customers often unplug abruptly the gateway to save
energy. HyPS offers resilience to NN inference execution at the edge by enabling backups
policies such as those described and used for the IoT in [113]. HyPS permits the recovery
of already done computations because the communication hub allows the storage of the
intermediate computation results exchanged between workers. Such a reliable storage is
fundamental in case of a problem during the inference process as the stored data can then
be used as backups to regain the inference without restarting from scratch. Furthermore,
thanks to distributed infrastructure, it is possible to run the same partition on several edge
devices. This redundancy guarantees a high quality of service for the user and reduces
the response latency in case of failure. It allows to compare inference results of the same
partition on multiple computing nodes and carry out controls or voting systems to avoid
erroneous calculations.

3.3.4.2 Use case 2: Smart Manufacturing

A second use case is a digitized manufacturing facility that uses connected devices, ma-
chinery, and production systems to collect and share data continuously. The smart factory
aims to provide high-quality production lines through AI’s intelligent decision and low la-
tency edge computing processing. An intelligent robot is designed and developed to rapidly
control productivity and detect defective pieces. This robot uses image recognition mod-
els. This smart factory is composed of different production areas. Each one takes charge
of a part in the manufacturing process. The available machines in the production areas are
very constrained in memory and computing capacity. So, running the whole AI model on
one machine can increase the computational load, cause memory saturation, and increase
subsequent response latency.

49

Chapter 3

Also, these machines must give a real-time response. Training an AI model for a man-
ufacturer is very costly in terms of time and computing resources, so applying a high-
performance trained model is preferable. Generally, the manufacturer wants to exploit the
machines available in the factory and avoids buying powerful specific machines for image
recognition tasks nor transmitting his private data to cloud servers. The manufacturer pri-
ority is to prevent data disclosure and respect strict privacy protocols. The manufacturer
may choose between evolving his production process using AI technologies or respecting
the data confidentiality protocols. HyPS provides a well suited solution for this situation
by running a partitioned model on one or multiple machines. The collected data is pro-
cessed locally and is not accessible by other production units. Only intermediate data will
be transmitted between different machines. So, our proposed strategy helps the factory
to improve the quality of construction pieces without slowing the production process or
causing damage to machinery. It also guarantees data and model confidentiality since each
machine only deals with specific partitions of the global model. So, other improvements of
HyPS are about :

❖ Scalability

HyPS provides a well suited solution for the manufacturer by sequentially running a
partitioned model on single machine. Indeed, the execution of one partition will be less
expensive than the whole model in one block. HyPS allows large model inference on a
single machine, which is impossible without hybrid partitioning strategy. Thus, a machine
with limited memory and computing capacity can perform a large model inference. So, the
proposed solution allows processing large models on the resource-constrained machine(s).
That’s why it is a scalable solution for inference at the edge.

❖ Security policies compliance

The designed architecture of HyPS is related to security and, more precisely, all pos-
sible information disclosures. Possible disclosures comprise the data passed in input and
obtained from the output of a given NN and the NN architecture itself. If data can unveil
industrial or private secrets, NN models are assets in which investments were made for
their design and training. To the best of our knowledge, the literature weakly covers this
second aspect. Preserving both of them is an important concern that HyPS addresses.

Going back to the detail of the proposed prototype, each worker only knows its man-
ager, the communication hub, a part of the entire model, and the data it processes. Also, the
manager knows all the architecture, all the workers, the communication hub, and the data
processed. The communication hub has the same knowledge as the manager. As a conse-
quence, two kinds of entities can be identified with privacy concerns as an objective. The
manager and the communication hub must be under high security. They must be hosted on
safe devices that cope with firm security policy (represented in the green rounded corner
rectangle in Figure 3.12). The workers can be deployed on "unsafe" devices (described in
the red rounded cornered rectangles in Figure 3.12). Regarding entities’ knowledge about
described secrets in the Figure 3.12 example

50

Hybrid Partitioning for CNNs Inference at the Edge

• Only M1 and C1 know the full AI model,

• Only M1 and C1 know the entire data,

• Other entities only know a part of the AI model,

• Other entities only know a part of the data.

Thanks to these different roles, themanager can not divulge data and theNN struc-
ture. Workers outside the safe zone will receive only partial data already executed. HyPS
uses the distributed inference process to guarantee data privacy even when workers run
on unsafe machines. Indeed, only the manager and the communication hub have the ac-
tual image, while related workers (including sub-managers) only have intermediate feature
maps.

In the absolute, one manager is not aware if it knows the entire NN and the actual data
because it could be a sub-manager. Therefore, revealing the original image after layers carry
out many operations in each partition is difficult. It is demanding to interpret the partial
data since having undergone several unknown transformations. This proposed execution
process allows to take advantage of the presented infrastructure’s design by protecting data,
including workers with weak security policies.

3.3.4.3 Use case 3: Autonomous Driving

An autonomous vehicle is a car that can operate itself and controls all aspects of driving
without any human intervention. These vehicles are embedded with onboard sensors and
AI models that allow sensing the environment. In addition, autonomous cars need to make
real-time decisions. A high latency in response time will result in severe consequences.
Running AI models locally and moving computing tasks to the network’s edge (e.g., ve-
hicles) is an efficient solution to reduce latency and avoid data transmission delay. For
example, HydraOne [115], and HydraMini [116] are typical examples of autonomous ve-
hicles that are equipped with embedded computing platforms to support AI (e.g., CNN)
inference and traditional computer vision analysis and can make real-time decisions.

For autonomous cars, computer vision applications need to recognize numerous objects
and obstacles on the road. Inference in a batch of observations collected in real-time is re-
quired to detect objects quickly. HyPS provides an efficient way to perform inference in
batch using large CNNs on autonomous cars. Deploying a partitioned CNN on this type
of car allows for reducing data processing delay. Processing the data collected by the car
sensors locally allows a significant gain in response time with high precision. Furthermore,
avoiding data transmission to the cloud enables the protection of private information re-
lated to the driver’s location, journey, and final destination. Another improvement of HyPS
is about:

51

Chapter 3

❖ Efficiency

HyPS architecture and scheduling policy allow to run large CNN inference on single
device. The execution of the model partitions is distributed over time and partitions are
inferred one by one. So, the instantaneous memory occupied by a partition during com-
putation is reduced. The target device takes charge of one partition of the whole model
at a time. Once a partition is inferred, the worker loads the following partition. Perform-
ing the inference process on a single worker brings an opportunity to launch the inference
process of a voluminous model without requiring cloud computing capacities. Most of au-
tonomous cars are embedded with at least one edge device. HyPS performs object detection
tasks instantly and locally on edge devices.

3.4 Conclusion

HyPS provides the best way to partition a large CNN structure while reducing latency and
communication overhead. Converting a big model to small partitions allows the industry
to exploit several existing trained AI models in many real-world cases. This contribution is
an efficient way to use trained AI models on edge devices while providing many improve-
ments. Furthermore, HyPS allows high-precision prediction without moving the data from
its device. The next step is evaluating the proposed strategy on a real test bed and providing
experimental results of distributed inference of partitioned CNN at the edge.

52

Chapter 4

Implementation andEvaluationofPro-

posed Hybrid Partitioning for CNNs

Inference at the Edge

4.1 Introduction . 54
4.2 Experimental Set-up . 54

4.2.1 Test bed Description . 54
4.2.2 Software Architecture . 54
4.2.3 Implementation . 55

4.3 Evaluation of the proposed Hybrid Partitioning Approach 57
4.3.1 Impact of Vertical and Horizontal Partitioning 57
4.3.2 Impact of Hybrid Partitioning 62

4.4 Conclusion . 69

53

Chapter 4

4.1 Introduction

In chapter 3, we have presented the main contributions of this thesis describing the hy-
brid partitioning strategy and the designed architecture for implementation. This chapter
is devoted to the implementation and evaluation of the proposed hybrid partitioning ap-
proach applied to the governing example used in this manuscript, VGG16. This chapter
includes two sections. First, section 4.2 details the implementation of HyPS on a real edge
infrastructure. Second, in section 4.3, we evaluate the performance of the proposed solution
compared to existing approaches.

4.2 Experimental Set-up

4.2.1 Test bed Description

In order to evaluate the performance of proposed hybrid partitioning strategy on an edge
infrastructure, we chose the Raspberry Pi 3 Model B + hardware platform. It is based on
a Broadcom BCM2837 System on a Chip (SoC) including a Quad Core ARM Cortex-A53
1.2GHz 64-bit CPU as well as a Broadcom VideoCore IV GPU. It also features 1GB RAM
LPDDR2 900MHz and a storage capacity depending on themicroSD cardmanually inserted.
The ARM processor works at frequencies ranging from 700 MHz to 1.2 GHz [117]. The
testbed includes three Raspberry Pis 3 B+ and a PC with a Linux operating system. The
PC is used only in certain cases for which a partition can not be run on a Raspberry Pi.
This particular case will be described further. Experiments are done using the VGG16 NN
model that is specified by a chain topology and trained onto the ImageNet dataset. In the
following experiments, images of fixed size of 224x224 are used.

4.2.2 Software Architecture

To establish the communication between Raspberry Pis, Eclipse Mosquitto v1.6.2 has been
used, one of the most known MQTT servers [118]. Eclipse Mosquitto is used as an MQTT
broker to ensure the manager’s and workers’ addressing process. The default maximum
number of possible connections is around 1024 [119]. To facilitate the application of the
hybrid partitioning strategy and launch the inference process easily, we use FastAPI, a
modern web framework for building APIs with Python 3.7+ based on standard Python type
hints. Swagger UI allows to visualize and interact with the API’s resources without having
any of the implementation logic in place. It’s automatically generated from the OpenAPI
(formerly known as Swagger) specification, with the visual documentation making it easy
for back end implementation and client side consumption. Figure 4.1 shows an example of
the web interface that allows to apply the hybrid partitioning strategy with one click.

54

Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs
Inference at the Edge

Figure 4.1: The manager’s web client interface

4.2.3 Implementation

HyPS’ workflow is composed of three steps, Model Partitioning, Partitions Assignment,
and Distributed Inference & scheduling step. The final result of applying HyPS provides
the generation of partitions, their deployment, and their distribution on edge devices.

4.2.3.1 Model partitioning

The Hybrid partitioning function was implemented in Python using TensorFlow[120], and
Keras [121]. The proposed function takes as input the original model to be partitioned and
themaximumnumber of parameters supported by the target device. Experiments show that
the maximum number of parameters only concerns the dense layers. This number can be
easily determined by a test and fail method, consisting in testing different partitions sizes.
The limit value of the number of parameters depends on the hardware characteristics of
the device. The output is the model partitions according to the mandatory and the optional
split points if they exist. The Hybrid partitioning function is applied to produce new Keras
models with the desired layers. Each partition is consequently a standalone Keras model
that can be deployed without further modification. These Keras models can be executed
separately without modifying the layers’ order or the weights. The implemented function
specifies whether it is a vertical or horizontal partition. The Hybrid partitioning function
has been implemented using Keras’s core original function: using HyPS, the user can thus
run our solution easily.

55

Chapter 4

4.2.3.2 Partitions Assignment

According to the architecture designed in section 3.3.1 in chapter 3, the manager is respon-
sible for the partitioning step and assignment of partitions to workers. In the proposed
testbed, this manager is run on the PC to represent a node present outside of client homes,
inside a typical telecommunication infrastructure while Raspberry Pis represent Internet
Service Provider (ISP) gateways. The manager is responsible to distribute the partitions
across the available workers which are the Raspberry Pis. It is worth noting that the man-
ager can be run on a Raspberry Pi.

In the implemented prototype, the Communication Hub is a Message Queuing Teleme-
try Transport (MQTT) broker, and more precisely, a Mosquitto [118] instance. Communi-
cations between all entities are managed through this broker. It is a straightforward and
lightweight publish/subscribe based messaging protocol for constrained devices and net-
works with high latency, low bandwidth, or unreliable networks. MQTT has been used in
this implementation as a communication support, but other protocols could have been used
such as AdvancedMessage Queuing Protocol (AMQP), or connected ones (e.g. websockets).
The protocol’s design principles are to minimize network bandwidths and device resource
requirements whilst also attempting to ensure reliability and some degree of assurance of
delivery [122].

In a publish/subscribe (pub/sub) communication model, components interested in con-
suming certain information register their interest. This process of registering an interest is
called subscription, the interested party is therefore called a subscriber. Components which
want to produce certain information do so by publishing their information. They are thus
called publishers. The entity which ensures that the data are transmitted from the publish-
ers to the subscribers is the broker. The broker coordinates subscriptions, and subscribers
usually have to contact the broker explicitly to subscribe [123].

There are three principal types of pub/sub systems: topic-based, type-based and content-
based [124]. MQTT is a topic-based system, the list of topics is usually known in advance.
The manager define all the topic according to the partitions assignment policy. A strong
advantage of MQTT over a websocket approach is the ease to add features regarding restart
after a failure as eachmessage can be easily traced, duplicated for backup and kept in queue.
Moreover, MQTT is widely used in Orange services.

4.2.3.3 Distributed Inference & Scheduling

After the partitions assignment step, the manager sends data to the MQTT broker. The
addressing policy of MQTT allows task scheduling. Each worker waits for its tasks at a
specific address and returns its calculations in an agreed topic. MQTT supports basic end-
to-end Quality of Service (QoS) [125]. Depending on how reliably data should be delivered
to the workers, MQTT distinguishes between three QoS levels. QoS level 0 means that the
message is sent once and that delivery is not guaranteed. QoS level 1 provides a more reli-
able transport: messages with QoS level 1 are re-transmitted until they are acknowledged
by the receivers. Consequently, QoS level 1 messages are certain to arrive at least once but

56

Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs
Inference at the Edge

may arrive multiple times at the destination because of the re-transmissions. The highest
QoS level, QoS level 2, ensures not only the messages’ reception but also that they are de-
livered only once to the receiving entities. This parameter avoids data confusion between
workers. In the implementation, we chose the QoS equal to two for sending partitions. So,
we guarantee that each worker receives exactly once the appropriate partition.

Upon receiving data on the incoming topic, the worker performs the needed operations
and runs inference through its partition. Once the output is computed, the worker serializes
data to be sent to the MQTT broker. These steps are repeated for each compute node. The
manager receives the final inference response, the output of the entire NN if no partitioning
has been done when all workers finish their jobs.

4.3 Evaluation of the proposed Hybrid Partitioning Ap-
proach

This section presents the overall experimentations carried out to evaluate HyPS and as-
sess its efficiency. It contains analysis of experimentation’s results and a validation of the
improvements mentioned in chapter 3. In the next subsections, the following metrics are
measured for each experiment:

• Inference time: the time necessary for the whole inference. It includes both the com-
putation and the communication time.

• Computation time: the time required to perform a computational process of infer-
ence per partition.

• Communication time: the transfer time of intermediate feature maps from one par-
tition to another.

In the following subsections we propose to evaluate in section 4.3.1 the impact of the
vertical and horizontal partitioning strategies before studying the impact of hybrid parti-
tioning in section 4.3.2.

4.3.1 Impact of Vertical and Horizontal Partitioning

Experiments are performed in two steps. The first step consists in the identification of the
mandatory and the best optional split points in the model structure. For this purpose, the
vertical partitioning is applied in different locations on the VGG16 structure to compare the
quality of partitioning for each case. The quality of partitioning refers to the validation of
final inference output when using a well-defined partitioning strategy, according to specific
criteria cited as follows:

57

Chapter 4

• obtaining final inference output : in the case of VGG16, the detection of the object
given in the input image.

• maintaining high accuracy and performance : giving the suitable class of the detected
object.

• obtaining a reasonable inference response time compared to the device’s capacity.

• reducing the communication overhead.

After choosing the best positions to split the model, the horizontal partitioning is applied
in the second step to enable complex layers execution on the edge device. This second step
is discussed further noticeably to measure the impact of the Hybrid partitioning proposed
in HyPS on the inference performances.

Figure 4.2: VGG16 model partitioned vertically on 21 partitions.

The first experimentation objective is to evaluate the impact of vertical partitioning
on communication overhead and inference time. The VGG16 model is partitioned verti-
cally to get the smallest possible V-partitions: one partition includes only one layer. Such
a partitioning can be refined, but it is a suggested way to pre-qualified a NN before exe-
cution. Indeed, if a partition cannot be run, it must be partitioned horizontally. For this
pre-qualification round, 21 V-partitions are generated since the model contains 21 succes-
sive layers. Figure 4.2 shows the positions of vertical partitioning on VGG16 model.

After partitioning, the obtained partitions are executed on a single Raspberry Pi. An
error has occurred in the V-partition that contains the first fully connected layer. Because
this layer is too complex, it cannot be executed without horizontal partitioning. Fixing this
particular complex layer allows specifying the first mandatory split points in the VGG16
structure.

In practice, only the first fully connected layer(FC1) causes the problem; all the rest of
the layers run on Raspberry Pi. So, this experiment allows defining the mandatory split
and fixing the threshold supported by the available device. This particular complex layer
is discussed further, but the problematic V-partition is simply offloaded onto a PC for the
current experiment. In this experimentation, the measures of the inference time of the
FC1 on the PC is ignored as it is not comparable with others. Only measurements of the
V-partitions executed on edge devices are under consideration.

58

Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs
Inference at the Edge

Figure 4.3: Inference time of partitioned VGG16 model vertically on 21 partitions deployed
on Raspberry Pi.

Figure 4.3 shows the inference time for the 20 V-partitions runnable on a Raspberry Pi.
From the input to the output layer, the inference time overhead decreases on the whole.
Some local minima appear specifically with partitions that contains pooling layers.

Figure 4.4: Output feature map size per V-partition.

Figure 4.4 depicts the feature maps size generated by successive partitions. This de-
crease is explained by the reduction of the dimension of the feature maps generated by the
pooling layers. The size of data transmitted between V-partitions appears to be directly
correlated to the feature map dimensionality. Chart in Figure 4.4 shows local minima in

59

Chapter 4

the feature map size map generated by the pooling layers that correspond to local minima
regarding the inference time of the VGG16 partitions depicted in Figure 4.3. Orange color
arrows indicate these local minima in Figure 4.4, which correspond to pooling layers in the
VGG16 structure.

Figure 4.5: Communication overhead of partitioned VGG16 model vertically on 21 parti-
tions deployed on Raspberry Pi.

Figure 4.5 presents the communication overhead for the VGG16 V-partitions. The com-
munication overhead depicts 70% of the overall inference time. It appears that the commu-
nication overhead and the inference time depend on the dimension of the feature map, the
larger the feature map shape, the slower the transmission speed of the feature map between
layers. To minimize the communication overhead, splitting the model after the pooling lay-
ers is efficient. These positions represented the optional strategic split points. The number
of parameters does not impact the communication overhead because the convolution layers
with the lowest communication overhead are the layers with a high number of parameters.

Browsing the model structure, all the pooling layers do not have the same impact on
the communication overhead. The pooling layers close to the model’s output layer permit
minimizing communication overhead more than pooling layers close to the input layer.
Therefore, the optional split points close to the output layer should be favored.

The following experiment aims to validate the quality of vertical partitioning on pooling
layers compared to the other layers in the model structure. We propose comparing the
communication overhead for partitioning on pooling and convolution layers. Figure 4.6
shows a vertical partitioning on two locations in the VGG16 structure. Figure denoted (a)
presents the VGG16 model partitioned into nine partitions; the output layer of the first five
partitions is a convolutional layer. Figure (b) gives the VGG16 model partitioned on nine
partitions; the output layer of the first five partitions is a pooling layer.

The main goal of this experiment is to measure the communication overhead in the

60

Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs
Inference at the Edge

Figure 4.6: (a) VGG16model partitioned vertically on convolutional layers (b) VGG16model
partitioned vertically on pooling layers.

two cases and compare the results. The convolutional and pooling layers have a different
roles. The convolutional layer serves to detect patterns in multiple sub-regions in the input
feature map using different filters. In contrast, the pooling layer progressively reduces the
representation’s spatial size, reducing the amount of computations in the CNN. In the two
ways of partitioning, the transmitted feature map’s size differs because the output layer in
the nine partitions is not the same.

The box plots (a) and (b) in Figure 4.7 show, respectively, the overall communication
time when the output layer in the partitions of the VGG16 are convolutional layers and
pooling layers and deployed on Raspberry Pi 3B. The values measured for the FC1 are not
counted in the two graphs (a) and (b) because it is offloaded on a PC. For the first five
partitions, the communication overhead when the output layer is a pooling layer is lower
than the communication overhead when the output layer is a convolution layer. For the
partition n°1 in the graph (a), the communication time is two times higher than in graph (b).
The difference between the cases is the size of data transmitted between partitions because
the pooling layers reduce the shape of the feature map generated by the convolution layer
just before. Graph (a) shows a high standard deviation for the partition 6 which can be
intolerable when processing data in real-time.

To conclude, these experiments show that:

61

Chapter 4

Figure 4.7: (a) Communication time of partitioned VGG16 on convolutional layers (b) Com-
munication time of partitioned VGG16 on pooling layers.

1. the best optional positions to split the model and reduce communication
overhead are the pooling layers,

2. applying only vertical partitioning is not enough to deliver VGG16 inference
on an edge device with limited resources,

3. the V-partition that obstructs the inference process contains the first fully connected
layer(FC1). That’s why two mandatory split points are required: after and before
the FC1 to isolate this particular layer into a separated V-partition that will be then
H-partitioned. This demonstrates the relevance of the proposed hybrid parti-
tioning strategy.

The previous experiments shows that vertical partitioning is insufficient to run parti-
tioned VGG16 and deliver inference output response on single edge device. Therefore, it is
required to apply horizontal on the complex V-partition to get smaller partitions that can
fit to the edge device. In the following section, Hybrid partitioning strategy is applied on
VGG16 structure to get efficient partitions that fit to Raspberry Pi without offloading on
PC. After partitioning, VGG16 inference is performed sequentially on a single Raspberry Pi
and spatially into three Raspberry Pis.

4.3.2 Impact of Hybrid Partitioning

4.3.2.1 CNN Inference on Single Device

HyPS is applied onVGG16model to perform inference on single Raspberry Pi. VGG16 struc-
ture is partitioned first vertically on the mandatory split points. These points are shown in
red lines in 3.4 in section 3.2.5 then the complex layer FC1 is partitioned horizontally into
H-partitions. VGG16 partitions’ execution is scheduled sequentially on the same Raspberry
Pi.

62

Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs
Inference at the Edge

First tests were done using numbers of H-partitions that cover a wide range. During the
inference executions, it appears that a too small number of H-partitions leads Raspberry
Pis to swap, resulting in very poor performances due to Raspberry Pis ressources deple-
tion. The swap activation adds more virtual memory, allowing the system to deal with
more memory-demanding tasks without out-of-memory errors or having to shut down
other processes. However, the downside is that accessing the swap file significantly causes
excessive energy consumption, slows down the process, and finally increases the inference
time. This experimentation aims to identify the minimal number of V-partitions and study
the impact of the number of V-partitions on the communication overhead. As a reminder,
the swap had been disabled.

Figure 4.8: Inference time of partitioned VGG16 with different number of H-partitions.

According to the memory constraints, it is mandatory to split the FC1 at least into four
H-partitions to be calculated successfully on the available edge device. Each H-partition
has a number of parameters that the Raspberry Pi 3 B+ can support.

The next step is to try a different number of H-partitions and observe if it impacts the
inference time and the communication overhead. Figure 4.8 shows the results of testing
VGG16 inference on a single device with different H-partitions numbers. The box plots
show that inference time is relatively constant until 8 H-partitions and then increases ex-
ponentially. For 50 H-partitions, the inference time is two times higher than partitioning
the FC1 into four H-partitions.

The graph in Figure 4.9 presents the communication overhead for different numbers
of H-partitions. The box plots show that communication time is almost the same for the
different numbers of H-partitions. For a high number of H-partitions, like 50, the synchro-
nization takes more time than for a low number. Therefore, the inference time variability
in Figure 4.8 is related to the synchronization of the H-partitions. The contribution aims to

63

Chapter 4

Figure 4.9: Communication overhead of a partitioned VGG16 measured for the FC1.

allow inference with the lowest inference time, so four H-partitions is the optimal number
for an inference process on a single-edge device.

These experimental and practical results based on the implemented prototype validate
the proposed approach. Indeed, horizontal partitioning leads to high synchronization over-
head. All H-partitions need to be fused to obtain the output feature map, which adds syn-
chronization time to the computing time of each H-partitions apart. Therefore, it is im-
perative to avoid non-mandatory horizontal partitioning and use horizontal par-
titioning only when necessary in addition to vertical partitioning.

HyPS proposes an improved partitioning strategy based on identifying mandatory split
points. HyPS allows performing VGG16 inference on an edge device (Raspberry Pi) while
avoiding exhaustive use of the device memory, minimizing the communication overhead,
and maintaining the same model performance with high image recognition accuracy.

4.3.2.2 Distributed CNN Inference on multiple devices

In this subsection, HyPS allows VGG16 inference on a cluster of edge devices. The parti-
tioned VGG16 inference is distributed across two and three Raspberry Pis. The experimen-
tations aim to compare the inference time and communication overhead between model
inference on a single device and across multiple devices. After applying Hybrid partition-
ing strategy, VGG16 is partitioned into six partitions : two V-partitions denoted Vp1, Vp2
and four H-partitions denoted Hp1, Hp2, Hp3 and Hp4 (see Figure 4.10)

64

Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs
Inference at the Edge

Figure 4.10: VGG16 partitioning using Hybrid partitioning strategy

In this experiment, the manager distributes the V-partitions across one, two or three
devices while the H-partitions are executed on a single device. Table 4.3 shows the distri-
bution of the VGG16 partitions for the three execution scenarios.

Device 1 Device 2 Device 3

Single
device

Vp1, Hp1, Hp2,
Hp3, Hp4, Vp2

- -

Two
devices

Vp1 Hp1, Hp2, Hp3,
Hp4, Vp2

-

Three
devices

Vp1 Hp1, Hp2, Hp3,
Hp4

Vp2

Table 4.1: Partition distribution scenarios

Figure 4.11 shows the average inference time and communication overhead of 10 tests
of VGG16 inference on single and multiple devices. The tallest bar represents the measure-
ments when running all the model partitions on a single Raspberry Pi. The lowest inference
time corresponds to the VGG16 model distributed across three Raspberry Pis. In the HyPS
architecture, the manager is responsible of the placement and scheduling of all partitions.
The intermediate feature maps exchange is done through the communication hub.

Table 4.2 shows the measurements of VGG16 distributed inference on one, two and
three devices. The lowest inference time corresponds to the distributed inference across
three Raspberry Pis.

65

Chapter 4

Figure 4.11: Inference time and communication overhead of VGG16 inference distributed
across multiple devices.

Inference time (Seconds) Communication time (Seconds)

Devices Average Standard
Deviation

Average Standard
Deviation

1 46.7344 0.4030 2.5832 0.1393
2 42.8802 0.4132 2.1081 0.1476
3 38.7523 0.1476 2.8913 0.1972

Table 4.2: Inference time and communication overhead of VGG16 inference on different
devices numbers.

This measurement shows that distributing the V-partitions on multiple devices reduces
the inference time and increases a bit the communication time. Therefore, distributing V-
partitionswhile runningH-partitions on singlemachine is better than running all partitions
on a single device. This experiment shows that running V-partitions separately reduces the
inference time, knowing that the H-partitions are deployed on the same device.

In the following experiment V-partitions are deployed separately in different Raspberry
Pis. This experiment aims to compare the H-partitions execution on one, two or three
devices. H-partitions represent the first fully connected layer(FC1) partitioned into four
parts. Table 4.3 shows an example of H-partitions distribution across one, two and three

66

Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs
Inference at the Edge

Device 1 Device 2 Device 3

Single
device

Vp1 Hp1, Hp2, Hp3,
Hp4

Vp2

Two
devices

Vp1, Hp1, Hp2 Hp3, Hp4 Vp2

Three
devices

Vp1, Hp1 Hp2, Hp3 Hp4, Vp2

Table 4.3: H-partitions distribution on single and multiple devices

devices. The V-partitions execution is done on different Raspberry Pis.

67

Chapter 4

Figure 4.12: Inference time of VGG16 inference with H-partitions distributed across multi-
ple Raspberry Pis.

Figure 4.13: Communication overhead of VGG16 inference with H-partitions distributed
across multiple Raspberry Pis.

Figure 4.12 shows decreasing inference time when running H-partitions on two and

68

Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs
Inference at the Edge

three devices. Distributing H-partitions on multiple devices permits running H-partitions
in parallel, which explains the gain in time and the decrease in inference response time. In
Figure 4.13, the box plot in the middle is comparatively tall. This shows that the distribution
of measures is different from the other box plots, and communication time is changeable.
The median is the average value from a set of values and is shown by the line that divides
the box into two parts.

In Figure 4.12, the lowest median corresponds to the FC1 executed in parallel on three
Raspberry Pis and also to a thin distribution around this median. The average inference
time is lower for 3 Raspberry Pis than for 2 Raspberry Pis itself lower than for 1. However,
the distribution on 3 Raspberry Pis leads to a high variation of the inference time than for
2 Raspberry Pis.

According to these experiments, distributing the H-partition execution across multiple
devices has a notable impact on inference time unlike the V-partitions distribution. Running
H-partitions in separate devices allows parallel execution which allows reducing inference
response time and communication overhead. It is important to note that all inference tests
provide responses with high accuracy, the model keep the same performance. So, it is rec-
ommended to prioritize H-partitions distribution when the target infrastructure is a cluster
of multiple devices.

4.4 Conclusion

The evaluation chapter in this manuscript has several benefits. Testing and experimenting
with the proposed solution helps to understand better and analyze the actual outcomes.
HyPS allows a large CNN inference on a resource-constrained device. The proposed archi-
tecture for distributed inference allows reducing inference response time and communica-
tion overhead. HyPS maintains the same accuracy as the model before partitioning. HyPS
partitions can be deployed easily on edge devices.

69

Chapter 5

Conclusion

5.1 Thesis Synopsis . 71
5.2 Contributions . 72
5.3 Perspectives and Challenges . 74

70

Conclusion

This chapter summarises the thesis work presented in this manuscript. It involves three
sections. The first section restates the context of the dissertation, reminds themain findings,
briefly resumes the important parts of this manuscript and discusses possible improvements
to bring to our solution. The second section highlights the main contributions mentioned
in this manuscript and finally, the last section describes some perspectives and interesting
research directions that should be carried out in the future.

5.1 Thesis Synopsis

IoT and AI are ubiquitous in several areas. Edge AI paradigm has a significant impact on
society in different ways. It surrounds many aspects of life, from connected homes and
cities to connected cars and roads. IoT devices generates data that will be gathered to rack
user’s behavior, make predictions and improve services. The amount of data they make is
increasing and may be processed regularly or in real time. Therefore, AI technologies are
required to process extensive data and provide decisions while ensuring low latency and
data protection.

IoT applications that integrate AI models are computation-intensive. Although current
edge devices are increasingly powerful, they are still insufficient to support some complex
deep learning models. Performing inference of current AI models using existing solutions
raises significant challenges, such as avoiding accuracy loss, avoiding model re-training,
and allowing DNN execution on the available infrastructure that could be a single edge
device. Existing techniques, such as model compression or any others resulting in model
modification, do not address all of these challenges.

To meet these challenges, the thesis work promotes HyPS an efficient, straightforward
solution that enables large CNNs inference on resource-constrained device(s). Our solution
proposes an hybrid partitioning strategy that allows an efficient CNN splitting by identi-
fying strategic split points on the CNN structure. These strategic split points are used to
delimit the generated partitions. HyPS allows CNN inference either on single device or
distributed across multiple devices while yielding high-accuracy results. HyPS is a better
alternative partitioning strategy that is environmentally friendly, less costly, performant,
reliable, and secure.

Throughout thismanuscript, we investigate several existing approaches to enable DNNs
inference at the edge. State of the art approaches are categorized into two classes. First,
model compression techniques that reduce the model size and the memory needed to run
a DNN model on edge device. These model compression techniques allow to run DNNs on
powerless devices, however, most of them modify the original model structure by remov-
ing some parameters or layers, reduce accuracy and require re-training phases to recover
accuracy loss.

Second, some works partition the DNN model into small partitions and distribute it
across multiple devices. A DNN structure can be partitioned vertically to obtain partitions
that include one or more layers. Vertical partitioning, which is layer-wise partitioning,
reduces the memory demands per partition.

71

Chapter 5

However, for large DNN models, vertical partitioning strategy is insufficient to get par-
titions that are small enough to fit resource-constrained devices. Another partitioning strat-
egy refers to split a DNN model at neuron granularity namely horizontal partitioning. This
approach allows to generate smaller partitions that fit to edge devices but requires syn-
chronization and communication overhead which increases the inference time. Some IoT
applications does not tolerate high latency so horizontal partitioning strategy is not the
best solution.

Moreover, most of existing works require distributing the model partitions over a clus-
ter of edge devices to enable inference at the edge and it is not possible to perform complex
DNN inference on single device. After a review of state of the art approaches, we introduce
our solutionHyPSwhich proposes hybrid partitioning strategy, an architecture and a proto-
type to orchestrate the inference process of partitioned model. The proposed architecture is
used in the implementation and evaluation phase. Hybrid partitioning strategy mixes ver-
tical and horizontal partitioning. Besides, our proposed strategy partitions a large model
efficiently and generates necessary and sufficient partitions that can be executed on single
and multiple resource-constrained device(s) with high accuracy and without re-training.
HyPS allows inference at the edge while reducing communication overhead and latency.
The architecture and prototype proposed in HyPS have advantages in terms of reliability,
resilience, scalability and privacy.

We implement HyPS on a real testbed to conduct experimentations and assess the per-
formance of our solution. To carry out experiments, we apply HyPS on VGG16 as an ex-
ample of large CNNs. Experimentation results approve that using HyPS, VGG16 model can
be run successfully on a single edge device, which is impossible without hybrid partition-
ing. Also, VGG16 inference can be distributed across multiple edge devices thanks to the
orchestration architecture adopted using HyPS. Experiments allow to validate and reveal
the shortcomings of the proposed solution.

Although, HyPS allows to run a large CNN model on resource-constrained device(s),
HyPS is facing some challenges which can be improved in the future. For example, HyPS
has only been tested on CNNs with chain topology, so we cannot confirm the same effi-
ciency for CNNs with other topologies such as Region-based CNN(R-CNN) [126], ResNet
[127] or Multi-Branch Networks like GoogLeNet [128]. Also, our solution requires a pre-
qualification of the IoT infrastructure to get efficient partitioning which depends on the
device’s number and hardware characteristics. Once the target infrastructure is fixed, it
can no longer be modified. HyPS is evaluated on three devices which does not reflect the
actual conditions on a real IoT infrastructure where the number of devices can be higher
than three. Despite these challenges, HyPS can already handle many use cases and opens
up multiple opportunities for future research.

5.2 Contributions

Throughout this thesis, several contributions are made to enable large DNN structures par-
titioning and deployment at the edge. These contributions are cited as follows:

72

Conclusion

• a hybrid partitioning strategy that performs partitioning of large CNNs thanks to
identifying mandatory and optional split points to successfully split a large CNN
model efficiently and run it on resource-constrained device(s) while minimizing in-
ference time and communication overhead,

• an orchestration architecture to enable CNN inference on a single device and allow
distributed inference across multiple resource-constrained edge devices. This archi-
tecture promotes many advantages such as scalability, reliability, resilience, and data
protection,

• a scheduling policy adopted to organize and control data exchanges and partitions
execution,

• a proof of concept(PoC) of the hybrid partitioning strategy that allows the generation
of model partitions. The PoC allows to validate the proposed partitioning strategy
output and ensures the possibility to generate appropriate partitions that can be de-
ployed and executed separately on a single device or distributed across multiple edge
devices,

• a prototype allows the implementation of all functionalities and concepts which char-
acterizes HyPS and the proposed architecture.

We consider the criteria grid defined in table 2.4 in Chapter 2 to confirm that our pro-
posed solution meets the limitations of state of the art works. In table 5.1, we used the same
evaluation criteria of the table 2.4 :

Proposed
approach

Model struc-
ture changes

Accuracy
loss

Model re-
training
require-
ment

Partitioning
type

Partitions
placement

Running
on
single
edge
device

HyPS No(✔) No(✔) No(✔) Hybrid
partitioning

edge Yes(✔)

Table 5.1: HyPS characteristics

No✔: refers to a positive aspect of the proposed approach.

We evaluate HyPS on a real test bed and provide experimental results analysis. Ex-
periments show that the proposed solution allows inference on resource-constrained de-
vices without any modification of the models’ structure. HyPS does not require additional
training to recover the accuracy because the accuracy performance is not affected in the
inference process. Also, data is processed locally without any transmission to the cloud.
These improvements make HyPS a better solution for many real-world use cases and can
be integrated into many IoT applications deployments.

73

Chapter 5

5.3 Perspectives and Challenges

Besides the presented contributions provided during this thesis to enable AI models on
edge infrastructure, there are other perspectives and potential research directions that can
be explored. These perspectives can be categorized into research perspectives and technical
perspectives :

• Geo-distributed placement The first research perspective consist in applying HyPS
on a cluster of heterogeneous and large-scale systems. Hybrid Partitioning strategy
and scheduling could be improved by taking into account infrastructure specificities.
These specificities can be related to generic capabilities of devices (i.e. RAM, CPU)
but also to specific hardware accelerator (e.g. Google Edge TPU), or network char-
acteristics (e.g.: WAN, LAN, wireless connectivity). Also, it is important to study the
partitions placement and management on geo-distributed infrastructure [10].

• Different DNN topologies and types Applying HyPS to other DNN topologies
besides the chain topology is one of the conceivable research perspective. In the
presentedwork, we focus only on chain topologymodels while in real world use cases
there are other CNNmodels with different topologies such asMulti-Branch Networks
like GoogLeNet [128], and ResNet [127]. HyPS can be applied to other types of DNNs,
such as Recurrent Neural networks (RNN), Long Short-Term Memory(LSTM), and
Generative neural network (GAN). Testing HyPS on different DNN types allow to
generalize the use of HyPS on different AI technologies such as speech recognition
and natural language processing.

• Automated parameter settingHyPS requires as input some parameters such as the
CNN structure and the IoT infrastructure characteristics (e.g.threshold). To assign
these parameters, a pre-qualification of the input model and the target edge devices
is required. As a research perspective, a mechanism that automatically sets these
parameters can be developed to improve HyPS.

• Optimisation of energy consumption The work presented in this manuscript
focuses on reducing communication overhead and inference latency, while several
other objectives can be optimized when running DNNs at the edge. One of these ob-
jectives is the energy consumption. The integration of IoT devices in smart buildings
and cities has many advantages and one of these advantages is to improve energy
efficiency and sustainability. Therefore, one of the interesting research objectives is
to use AI models to optimize energy consumption and explore green energy to power
IoT devices.

• Batch inference is an interesting technical perspective because the proposed ar-
chitecture is dedicated to launch inference on a set of images using the same CNN
partitions. In fact, HyPS allows the generation of partitions that can be deployed
on edge device. Once the partitions are placed and loaded, our scheduling policy is
adapted to retrieve and unstuck the images successively to compute the intermedi-
ate feature maps using the same loaded partition. This approach saves the partition
transmission and loading times by grouping the inference no longer by image but

74

Conclusion

by a batch of images for each partition. For the same model partitions and the same
orchestration architecture, we can infer extensive data with high accuracy and low
latency.
Batch inference using HyPS architecture is highly recommended when predictions
must be generated automatically on large-scale datasets. For example, smart farms
integrate sensitive physical hardware such as sensors, drones, and bots that moni-
tors and records data, which is then used to get valuable insights. These devices are
integrated with DNNs to process data and make insightful decisions. This requires
deploying an inference pipeline that can compute several thousand inference jobs
on extensive data gathered 24 hours a day. For example, in [129], Cruz et al. IoT
system based on computer vision and machine learning technologies to detect and
study plant diseases in a smart strawberry farm. The proposed IoT platform involves
four parts: Part 1 comprises sensor nodes responsible for collecting the local data,
pre-processing, and transferring. Part 2 is composed of collector nodes which are
responsible for data processing, organization, storage, and uploading. Cloud services
are part 3, and part 4 includes user applications. A camera connected to Raspberry Pi
4 B captures images of strawberry plants in real time, and sensors are used to mea-
sure humidity and environment temperature. The object detection CNN chosen for
deployment in this system is the Yolo v5s [130] because this version presents a smaller
model that can be run on Raspberry Pi 4B. Raspberry Pi 4B boards present limited
hardware capacities for training purposes. Therefore, a computer with a powerful
Graphic Process Unit (GPU) is required to carry out the training phase. Although
the proposed IoT platform allows disease detection and provides accurate results on
a strawberry plantation, the model did not detect all diseases and requires improved
performance in different lighting profiles and better performance in the IoT infras-
tructure. An interesting solution to meet these requirements is to integrate HyPS
in this platform. First, the Hybrid partitioning strategy allows to run a large model,
whatever its size. So, the size constraint is no longer taken into account, and it is
possible to perform inference of large CNN on Raspberry Pi 4 B. Second, HyPS archi-
tecture allows to carry out batch inference on images of strawberry plants captured
by the camera and reduces latency.

• Implementation on Real IoT application embedding HyPS. A second techni-
cal perspective consist in integrating HyPS into the IoT framework of real use cases.
For instance, our solution’s evaluation is based on a simple test bed. In the real en-
vironment, several external factors may impact the inference process, such as an
unexpected breakdown or anonymously collected data. For example, HyPS can be
integrated in security cameras and allows image processing in real-time. Performing
large CNN model inference on smart camera can improve operations in commercial
buildings, protect people and machines from accidents. Thus, real-world deployment
of HyPS in a non-controlled situation can definitely be a plus.

In this manuscript, HyPS provides a partitioning strategy that successfully reduces the
gap between a computation-intensive DNN and resource-constrained device(s). Our con-
tribution highlights an interesting research direction that aims to explore and enable a wide
range of existing trained DNNs to meet IoT infrastructure.

75

References

[1] Sachin Kumar, Prayag Tiwari, and Mikhail Zymbler. “Internet of Things is a revolu-
tionary approach for future technology enhancement: a review”. In: Journal of Big
data 6.1 (2019), pp. 1–21.

[2] Keyur K Patel and Sunil M Patel. “Professor PSA. Internet of Things-IOT: defini-
tion, characteristics, architecture, enabling technologies, application & future chal-
lenges”. In: Int J Eng Sci Comput 6.5 (2016), pp. 6122–31.

[3] Mohammad Hasan. “State of IoT 2022: Number of connected IoT devices growing
18% to 14.4 billion globally”. In: IoT Analytics 308 (2022).

[4] Zewen Li et al. “A survey of convolutional neural networks: analysis, applications,
and prospects”. In: IEEE transactions on neural networks and learning systems (2021).

[5] Kaidong Li et al. “Object detection with convolutional neural networks”. In: Deep
Learning in Computer Vision. CRC Press, 2020, pp. 41–62.

[6] H Frank Cervone. “Cloud computing: Pros and cons”. In: Getting Started with Cloud
Computing (2011).

[7] Peshraw Ahmed Abdalla and Asaf Varol. “Advantages to disadvantages of cloud
computing for small-sized business”. In: 2019 7th International Symposium on Digital
Forensics and Security (ISDFS). IEEE. 2019, pp. 1–6.

[8] Ronald L Krutz and Russell Dean Vines. Cloud security: A comprehensive guide to
secure cloud computing. Wiley Publishing, 2010.

[9] Muhammad Raheel Raza, Asaf Varol, and Nurhayat Varol. “Cloud and fog comput-
ing: A survey to the concept and challenges”. In: 2020 8th International Symposium
on Digital Forensics and Security (ISDFS). IEEE. 2020, pp. 1–6.

[10] Farah Ait Salaht, Frédéric Desprez, and Adrien Lebre. “An overview of service place-
ment problem in fog and edge computing”. In: ACM Computing Surveys (CSUR) 53.3
(2020), pp. 1–35.

[11] Weisong Shi et al. “Edge computing: Vision and challenges”. In: IEEE internet of
things journal 3.5 (2016), pp. 637–646.

[12] Wazir Zada Khan et al. “Edge computing: A survey”. In: Future Generation Computer
Systems 97 (2019), pp. 219–235.

[13] Nancy A Angel et al. “Recent advances in evolving computing paradigms: Cloud,
edge, and fog technologies”. In: Sensors 22.1 (2021), p. 196.

[14] Shanhe Yi, Cheng Li, andQun Li. “A survey of fog computing: concepts, applications
and issues”. In: Proceedings of the 2015 workshop on mobile big data. 2015, pp. 37–42.

[15] Bojana Bajic et al. “EDGE COMPUTING VS. CLOUD COMPUTING: CHALLENGES
AND OPPORTUNITIES IN INDUSTRY 4.0.” In: Annals of DAAAM & Proceedings 30
(2019).

76

REFERENCES

[16] Shuiguang Deng et al. “Edge intelligence: The confluence of edge computing and
artificial intelligence”. In: IEEE Internet of Things Journal 7.8 (2020), pp. 7457–7469.

[17] Zilong Zhao et al. “Robust anomaly detection on unreliable data”. In: 2019 49th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE. 2019, pp. 630–637.

[18] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and policy con-
siderations for deep learning in NLP”. In: arXiv preprint arXiv:1906.02243 (2019).

[19] Rikiya Yamashita et al. “Convolutional neural networks: an overview and applica-
tion in radiology”. In: Insights into imaging 9.4 (2018), pp. 611–629.

[20] Jianxin Wu. “Introduction to convolutional neural networks”. In: National Key Lab
for Novel Software Technology. Nanjing University. China 5.23 (2017), p. 495.

[21] Erqian Tang and Todor Stefanov. “Low-memory and high-performance CNN in-
ference on distributed systems at the edge”. In: Proceedings of the 14th IEEE/ACM
International Conference on Utility and Cloud Computing Companion. 2021, pp. 1–8.

[22] Pierre-Emmanuel Novac et al. “Quantization and deployment of deep neural net-
works on microcontrollers”. In: Sensors 21.9 (2021), p. 2984.

[23] Niccoló Nicodemo et al. “Memory Requirement Reduction of DeepNeural Networks
Using Low-bit Quantization of Parameters”. In: arXiv preprint arXiv:1911.00527 (2019).

[24] Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane. “Degree-quant:
Quantization-aware training for graph neural networks”. In: arXiv preprint arXiv:2008.05000
(2020).

[25] Sumin Kim, Gunju Park, and Youngmin Yi. “Performance Evaluation of INT8 Quan-
tized Inference on Mobile GPUs”. In: IEEE Access 9 (2021), pp. 164245–164255.

[26] Amir Gholami et al. “A survey of quantization methods for efficient neural network
inference”. In: arXiv preprint arXiv:2103.13630 (2021).

[27] Claude Elwood Shannon. “A mathematical theory of communication”. In: The Bell
system technical journal 27.3 (1948), pp. 379–423.

[28] Mukhammed Garifulla et al. “A Case Study of Quantizing Convolutional Neural
Networks for Fast Disease Diagnosis on Portable Medical Devices”. In: Sensors 22.1
(2021), p. 219.

[29] Yunchao Gong et al. “Compressing deep convolutional networks using vector quan-
tization”. In: arXiv preprint arXiv:1412.6115 (2014).

[30] Aojun Zhou et al. “Incremental network quantization: Towards lossless cnns with
low-precision weights”. In: arXiv preprint arXiv:1702.03044 (2017).

[31] Ron Banner, Yury Nahshan, and Daniel Soudry. “Post training 4-bit quantization of
convolutional networks for rapid-deployment”. In: Advances in Neural Information
Processing Systems 32 (2019).

77

Chapter 5 References

[32] Yoni Choukroun et al. “Low-bit quantization of neural networks for efficient in-
ference”. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW). IEEE. 2019, pp. 3009–3018.

[33] Benoit Jacob et al. “Quantization and training of neural networks for efficient integer-
arithmetic-only inference”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 2704–2713.

[34] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding”. In: arXiv
preprint arXiv:1510.00149 (2015).

[35] Haoli Bai et al. “Towards efficient post-training quantization of pre-trained language
models”. In: arXiv preprint arXiv:2109.15082 (2021).

[36] Rui Wang et al. “A Real-Time Object Detector for Autonomous Vehicles Based on
YOLOv4”. In: Computational Intelligence and Neuroscience 2021 (2021).

[37] MMary Shanthi Rani et al. “DeepCompNet: ANovel Neural NetModel Compression
Architecture”. In: Computational Intelligence and Neuroscience 2022 (2022).

[38] Karthik Abinav Sankararaman et al. “The impact of neural network overparame-
terization on gradient confusion and stochastic gradient descent”. In: International
conference on machine learning. PMLR. 2020, pp. 8469–8479.

[39] Arash Ardakani, Carlo Condo, andWarren J Gross. “Sparsely-connected neural net-
works: towards efficient vlsi implementation of deep neural networks”. In: arXiv
preprint arXiv:1611.01427 (2016).

[40] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. “Structured pruning of deep
convolutional neural networks”. In: ACM Journal on Emerging Technologies in Com-
puting Systems (JETC) 13.3 (2017), pp. 1–18.

[41] Shaohui Lin et al. “Towards optimal structured cnn pruning via generative adver-
sarial learning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 2790–2799.

[42] Song Han et al. “Learning both weights and connections for efficient neural net-
work”. In: Advances in neural information processing systems 28 (2015).

[43] Anthony Berthelier et al. “Deep model compression and architecture optimization
for embedded systems: A survey”. In: Journal of Signal Processing Systems 93.8 (2021),
pp. 863–878.

[44] Tianyun Zhang et al. “A systematic dnn weight pruning framework using alternat-
ing direction method of multipliers”. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 184–199.

[45] Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint arXiv:1608.08710
(2016).

78

REFERENCES

[46] Yu Cheng et al. “A survey of model compression and acceleration for deep neural
networks”. In: arXiv preprint arXiv:1710.09282 (2017).

[47] C Bucilua, R Caruana, and A Niculescu-Mizil. “Model compression, in proceedings
of the 12 th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining”. In: New York, NY, USA 3 (2006).

[48] Guo-Hua Wang, Yifan Ge, and Jianxin Wu. “Distilling knowledge by mimicking
features”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

[49] Sergey Zagoruyko and Nikos Komodakis. “Paying more attention to attention: Im-
proving the performance of convolutional neural networks via attention transfer”.
In: arXiv preprint arXiv:1612.03928 (2016).

[50] Adriana Romero et al. “Fitnets: Hints for thin deep nets”. In: arXiv preprint arXiv:1412.6550
(2014).

[51] Guobin Chen et al. “Learning efficient object detection models with knowledge dis-
tillation”. In: Advances in neural information processing systems 30 (2017).

[52] Paul Bergmann et al. “Uninformed students: Student-teacher anomaly detection
with discriminative latent embeddings”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 4183–4192.

[53] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter”. In: arXiv preprint arXiv:1910.01108 (2019).

[54] Ying Zhang et al. “Deep mutual learning”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 4320–4328.

[55] Li Yuan et al. “Revisiting knowledge distillation via label smoothing regularization”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 2020, pp. 3903–3911.

[56] Jimmy Ba and Rich Caruana. “Do deep nets really need to be deep?” In: Advances in
neural information processing systems 27 (2014).

[57] Lin Wang and Kuk-Jin Yoon. “Knowledge distillation and student-teacher learning
for visual intelligence: A review and new outlooks”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2021).

[58] Tara N Sainath et al. “Low-rank matrix factorization for deep neural network train-
ing with high-dimensional output targets”. In: 2013 IEEE international conference on
acoustics, speech and signal processing. IEEE. 2013, pp. 6655–6659.

[59] Misha Denil et al. “Predicting parameters in deep learning”. In: Advances in neural
information processing systems 26 (2013).

[60] Emily L Denton et al. “Exploiting linear structure within convolutional networks
for efficient evaluation”. In: Advances in neural information processing systems 27
(2014).

79

Chapter 5 References

[61] Cheng Tai et al. “Convolutional neural networks with low-rank regularization”. In:
arXiv preprint arXiv:1511.06067 (2015).

[62] Xiangyu Zhang et al. “Efficient and accurate approximations of nonlinear convo-
lutional networks”. In: Proceedings of the IEEE Conference on Computer Vision and
pattern Recognition. 2015, pp. 1984–1992.

[63] Matan Ben Noach and Yoav Goldberg. “Compressing pre-trained language models
by matrix decomposition”. In: Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the 10th International
Joint Conference on Natural Language Processing. 2020, pp. 884–889.

[64] Mengnan Du et al. “What do compressed large language models forget? robustness
challenges in model compression”. In: arXiv preprint arXiv:2110.08419 (2021).

[65] Canwen Xu and Julian McAuley. “A survey on model compression for natural lan-
guage processing”. In: arXiv preprint arXiv:2202.07105 (2022).

[66] Honglei Zhang, Serkan Kiranyaz, and Moncef Gabbouj. “Finding better topologies
for deep convolutional neural networks by evolution”. In: arXiv preprint arXiv:1809.03242
(2018).

[67] Xianzhong Tian et al. “Mobility-included DNN partition offloading from mobile de-
vices to edge clouds”. In: Sensors 21.1 (2021), p. 229.

[68] Nicos Christofides and P Brooker. “The optimal partitioning of graphs”. In: SIAM
Journal on Applied Mathematics 30.1 (1976), pp. 55–69.

[69] Eric SH Wong, Evangeline FY Young, and Wai-Kei Mak. “Clustering based acyclic
multi-way partitioning”. In: Proceedings of the 13th ACM Great Lakes symposium on
VLSI. 2003, pp. 203–206.

[70] Shuai Zhang et al. “Deepslicing: collaborative and adaptive cnn inference with low
latency”. In: IEEE Transactions on Parallel andDistributed Systems 32.9 (2021), pp. 2175–
2187.

[71] Hyuk-Jin Jeong et al. “IONN: Incremental offloading of neural network computa-
tions from mobile devices to edge servers”. In: Proceedings of the ACM Symposium
on Cloud Computing. 2018, pp. 401–411.

[72] Chuang Hu et al. “Dynamic adaptive DNN surgery for inference acceleration on
the edge”. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE. 2019, pp. 1423–1431.

[73] Beibei Zhang et al. “Dynamic DNN Decomposition for Lossless Synergistic Infer-
ence”. In: 2021 IEEE 41st International Conference on Distributed Computing Systems
Workshops (ICDCSW). IEEE. 2021, pp. 13–20.

[74] Huaming Wu et al. “An optimal offloading partitioning algorithm in mobile cloud
computing”. In: International Conference onQuantitative Evaluation of Systems. Springer.
2016, pp. 311–328.

80

REFERENCES

[75] Chenghao Hu and Baochun Li. “Distributed Inference with Deep Learning Models
across Heterogeneous Edge Devices”. In: IEEE INFOCOM 2022-IEEE Conference on
Computer Communications. IEEE. 2022, pp. 330–339.

[76] Chongwu Dong et al. “Joint Optimization With DNN Partitioning and Resource
Allocation inMobile Edge Computing”. In: IEEE Transactions on Network and Service
Management 18.4 (2021), pp. 3973–3986.

[77] Tao Zheng et al. “A survey of computation offloading in edge computing”. In: 2020
International Conference on Computer, Information and Telecommunication Systems
(CITS). IEEE. 2020, pp. 1–6.

[78] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. “Edge machine learning for
ai-enabled iot devices: A review”. In: Sensors 20.9 (2020), p. 2533.

[79] Congfeng Jiang et al. “Toward computation offloading in edge computing: A sur-
vey”. In: IEEE Access 7 (2019), pp. 131543–131558.

[80] Yiping Kang et al. “Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge”. In: ACM SIGARCH Computer Architecture News 45.1 (2017), pp. 615–
629.

[81] Rishabh Mehta and Rajeev Shorey. “Deepsplit: Dynamic splitting of collaborative
edge-cloud convolutional neural networks”. In: 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS). IEEE. 2020, pp. 720–725.

[82] Raby Hamadi et al. “A Hybrid Artificial Neural Network for Task Offloading in Mo-
bile Edge Computing”. In: 2022 IEEE 65th International Midwest Symposium on Cir-
cuits and Systems (MWSCAS). IEEE. 2022, pp. 1–4.

[83] En Li et al. “Edge AI: On-demand accelerating deep neural network inference via
edge computing”. In: IEEE Transactions on Wireless Communications 19.1 (2019),
pp. 447–457.

[84] Changqing Luo et al. “Energy-efficient autonomic offloading in mobile edge com-
puting”. In: 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Comput-
ing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech).
IEEE. 2017, pp. 581–588.

[85] Bo Yang et al. “Offloading optimization in edge computing for deep-learning-enabled
target tracking by internet of UAVs”. In: IEEE Internet of Things Journal 8.12 (2020),
pp. 9878–9893.

[86] Haneul Ko and Sangheon Pack. “Distributed device-to-device offloading system:
Design and performance optimization”. In: IEEE Transactions on Mobile Computing
20.10 (2020), pp. 2949–2960.

[87] Xu Chen et al. “Exploiting massive D2D collaboration for energy-efficient mobile
edge computing”. In: IEEE Wireless communications 24.4 (2017), pp. 64–71.

81

Chapter 5 References

[88] Teemu Leppänen and Jukka Riekki. “Energy efficient opportunistic edge computing
for the Internet of Things”. In:Web Intelligence. Vol. 17. 3. IOS Press. 2019, pp. 209–
227.

[89] Mahadev Satyanarayanan et al. “The case for vm-based cloudlets in mobile comput-
ing”. In: IEEE pervasive Computing 8.4 (2009), pp. 14–23.

[90] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. “Deepthings:
Distributed adaptive deep learning inference on resource-constrained iot edge clus-
ters”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 37.11 (2018), pp. 2348–2359.

[91] Jiachen Mao et al. “Modnn: Local distributed mobile computing system for deep
neural network”. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE. 2017, pp. 1396–1401.

[92] Rafael Stahl et al. “DeeperThings: Fully distributed CNN inference on resource-
constrained edge devices”. In: International Journal of Parallel Programming 49.4
(2021), pp. 600–624.

[93] Cian-You Yang et al. “Cooperative distributed deep neural network deploymentwith
edge computing”. In: ICC 2021-IEEE International Conference on Communications.
IEEE. 2021, pp. 1–6.

[94] Li Zhou et al. “Distributing deep neural networks with containerized partitions at
the edge”. In: 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19).
2019.

[95] Xueyu Hou et al. “Distredge: Speeding up convolutional neural network inference
on distributed edge devices”. In: 2022 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). IEEE. 2022, pp. 1097–1107.

[96] Zhipeng Gao et al. “EdgeSP: Scalable Multi-Device Parallel DNN Inference on Het-
erogeneous Edge Clusters”. In: International Conference on Algorithms and Architec-
tures for Parallel Processing. Springer. 2021, pp. 317–333.

[97] Siqi Wang et al. “High-Throughput CNN Inference on Embedded ARM big.LITTLE
Multi-Core Processors”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems PP (Sept. 2019), pp. 1–1. doi: 10.1109/TCAD.
2019.2944584.

[98] Hung-Yang Chang et al. “PipeBERT: High-throughput BERT Inference for ARM
Big. LITTLE Multi-core Processors”. In: Journal of Signal Processing Systems (2022),
pp. 1–18.

[99] Arjun Parthasarathy and Bhaskar Krishnamachari. “DEFER: Distributed Edge In-
ference for Deep Neural Networks”. In: 2022 14th International Conference on COM-
munication Systems & NETworkS (COMSNETS). IEEE. 2022, pp. 749–753.

82

https://doi.org/10.1109/TCAD.2019.2944584
https://doi.org/10.1109/TCAD.2019.2944584

REFERENCES

[100] Thaha Mohammed et al. “Distributed inference acceleration with adaptive DNN
partitioning and offloading”. In: IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE. 2020, pp. 854–863.

[101] Surat Teerapittayanon, BradleyMcDanel, andHsiang-TsungKung. “Distributed deep
neural networks over the cloud, the edge and end devices”. In: 2017 IEEE 37th inter-
national conference on distributed computing systems (ICDCS). IEEE. 2017, pp. 328–
339.

[102] Amir Erfan Eshratifar,Mohammad SaeedAbrishami, andMassoud Pedram. “JointDNN:
An efficient training and inference engine for intelligent mobile cloud computing
services”. In: IEEE Transactions on Mobile Computing 20.2 (2019), pp. 565–576.

[103] Zhiming Hu et al. “Deephome: Distributed inference with heterogeneous devices in
the edge”. In: The 3rd International Workshop on Deep Learning for Mobile Systems
and Applications. 2019, pp. 13–18.

[104] Abdullah Lakhan et al. “Deep neural network-based application partitioning and
scheduling for hospitals andmedical enterprises using IoT assistedmobile fog cloud”.
In: Enterprise Information Systems 16.7 (2022), p. 1883122.

[105] Qunsong Zeng et al. “Energy-efficient radio resource allocation for federated edge
learning”. In: 2020 IEEE International Conference on CommunicationsWorkshops (ICC
Workshops). IEEE. 2020, pp. 1–6.

[106] Fabíola Martins Campos de Oliveira and Edson Borin. “Partitioning convolutional
neural networks to maximize the inference rate on constrained IoT devices”. In:
Future Internet 11.10 (2019), p. 209.

[107] Jung Hwan Kim, Alwin Poulose, and Dong Seog Han. “The Customized Visual Ge-
ometry Group Deep Learning Architecture for Facial Emotion Recognition”. In:
Available at SSRN 4087604 ().

[108] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[109] Max Ferguson et al. “Automatic localization of casting defects with convolutional
neural networks”. In: 2017 IEEE international conference on big data (big data). IEEE.
2017, pp. 1726–1735.

[110] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: In-
ternational journal of computer vision 115.3 (2015), pp. 211–252.

[111] Rohit Thakur. “Step by step VGG16 implementation in Keras for beginners”. In:
Medium (2019).

[112] Mário P Véstias. “A survey of convolutional neural networks on edge with recon-
figurable computing”. In: Algorithms 12.8 (2019), p. 154.

[113] Umar Ozeer et al. “F3ARIoT: A framework for autonomic resilience of IoT applica-
tions in the Fog”. In: Internet of Things 12 (2020), p. 100275.

83

Chapter 5 References

[114] Loic Letondeur, François-Gaël Ottogalli, and Thierry Coupaye. “A demo of applica-
tion lifecycle management for IoT collaborative neighborhood in the Fog: Practical
experiments and lessons learned around docker”. In: 2017 IEEE Fog World Congress
(FWC). IEEE. 2017, pp. 1–6.

[115] Yifan Wang et al. “{HydraOne}: An Indoor Experimental Research and Education
Platform for {CAVs}”. In: 2nd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 19). 2019.

[116] Tianze Wu et al. “HydraMini: An FPGA-based affordable research and education
platform for autonomous driving”. In: 2020 International Conference on Connected
and Autonomous Driving (MetroCAD). IEEE. 2020, pp. 45–52.

[117] Victor Wikén. An Investigation of Low-Rank Decomposition for Increasing Inference
Speed in Deep Neural Networks With Limited Training Data. 2018.

[118] Roger A Light. “Mosquitto: server and client implementation of the MQTT proto-
col”. In: Journal of Open Source Software 2.13 (2017), p. 265.

[119] Ivan Vaccari, Maurizio Aiello, and Enrico Cambiaso. “SlowITe, a novel denial of
service attack affecting MQTT”. In: Sensors 20.10 (2020), p. 2932.

[120] Martin Abadi et al. “TensorFlow: A system for large-scale machine learning”. In:
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
2016, pp. 265–283. url: https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf.

[121] François Chollet et al. keras. 2015.

[122] MV Masdani and Denny Darlis. “A comprehensive study on MQTT as a low power
protocol for internet of things application”. In: IOP Conference Series: Materials Sci-
ence and Engineering. Vol. 434. 1. IOP Publishing. 2018, p. 012274.

[123] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. “MQTT-S—A pub-
lish/subscribe protocol for Wireless Sensor Networks”. In: 2008 3rd International
Conference on Communication Systems Software andMiddleware andWorkshops (COM-
SWARE’08). IEEE. 2008, pp. 791–798.

[124] Patrick Th Eugster et al. “The many faces of publish/subscribe”. In: ACM computing
surveys (CSUR) 35.2 (2003), pp. 114–131.

[125] Dazhi Chen and Pramod K Varshney. “QoS support in wireless sensor networks: a
survey.” In: International conference on wireless networks. Vol. 233. 2004, pp. 1–7.

[126] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and se-
mantic segmentation”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2014, pp. 580–587.

[127] Muhammad Shafiq and Zhaoquan Gu. “Deep residual learning for image recogni-
tion: A survey”. In: Applied Sciences 12.18 (2022), p. 8972.

84

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

REFERENCES

[128] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[129] Mateus Cruz et al. “Smart Strawberry Farming Using Edge Computing and IoT”. In:
Sensors 22.15 (2022), p. 5866.

[130] Zijian Wang et al. “Fast personal protective equipment detection for real construc-
tion sites using deep learning approaches”. In: Sensors 21.10 (2021), p. 3478.

85

	Contents
	List of Figures
	List of Tables
	List of Publications
	Introduction
	Context and Problem Statement
	Contributions
	Thesis Structure

	 State of the Art of Enabling AI models at the edge
	Introduction
	Background
	Overview of Convolutional Neural Networks Structure
	Terminology : CNN Model Partitioning Strategies

	Model Compression: Adapting DNN Models to Edge Devices
	Quantization
	Knowledge Distillation
	Low-Rank Factorization

	Partition and Distribution of DNN Models at the Edge
	Generic Partitioning Strategies
	Typical-based DNNs Partitioning Strategies
	DNN Scheduling for Distributed Inference

	Synthesis and Conclusion

	 Hybrid Partitioning for CNNs Inference at the Edge
	Introduction
	Hybrid Partitioning Strategy
	Problem Formulation
	Governing Example VGG16
	Vertical Partitioning Strategy
	Horizontal Partitioning Strategy
	Proposed Strategy
	Application of Partitioning of VGG16
	Conclusion

	 Architecture Overview and Qualitative Assessment of HyPS
	Distributing and Scheduling Architecture Overview
	Inference on Single Device
	Distributed Inference on Multiple Devices
	 Qualitative Assessment of HyPS via Concrete Use Cases

	Conclusion

	 Implementation and Evaluation of Proposed Hybrid Partitioning for CNNs Inference at the Edge
	Introduction
	Experimental Set-up
	Test bed Description
	Software Architecture
	Implementation

	Evaluation of the proposed Hybrid Partitioning Approach
	Impact of Vertical and Horizontal Partitioning
	Impact of Hybrid Partitioning

	Conclusion

	 Conclusion
	Thesis Synopsis
	Contributions
	Perspectives and Challenges

	References

