
HAL Id: tel-04212482
https://theses.hal.science/tel-04212482

Submitted on 20 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large Scale Multidimensional Scaling for the Study of
Biodiversity
Romain Peressoni

To cite this version:
Romain Peressoni. Large Scale Multidimensional Scaling for the Study of Biodiversity. Modeling and
Simulation. Université de Bordeaux, 2023. English. �NNT : 2023BORD0142�. �tel-04212482�

https://theses.hal.science/tel-04212482
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE

MATHÉMATIQUES ET INFORMATIQUE

MATHÉMATIQUES APPLIQUÉES ET CALCUL SCIENTIFIQUE

Par Romain PERESSONI

Positionnement multidimensionnel à grande échelle pour l’étude de la

biodiversité

Sous la direction de : Olivier COULAUD
Co-directeur : Emmanuel AGULLO

Soutenue le mardi 13 juin 2023

Membres du jury :

M. Emmanuel AGULLO Chargé de recherche Inria Bordeaux Co-Directeur
M. Olivier COULAUD Directeur de recherche Inria Bordeaux Directeur
M. Alain FRANC Directeur de recherche Inrae, Inria Bordeaux Invité
M. Pierre MAGAL Professeur Université de Bordeaux Invité
Mme Sandrine MOUYSSET Maîtresse de conférences Université Toulouse III Examinatrice
M. Raymond NAMYST Professeur Université de Bordeaux Président
M. Emmanuel PARADIS Directeur de recherche IRD Rapporteur
M. Bruno RAFFIN Directeur de recherche Inria Grenoble Alpes Rapporteur
M. Gaël VAROQUAUX Directeur de recherche Inria Saclay Examinateur

Positionnement multidimensionnel à grande échelle pour l’étude de la biodiversité

Résumé : Le positionnement multidimensionnel (MDS) est un algorithme classique de réduction de dimensions et
une méthode de visualisation. La MDS prend une matrice de dissimilarités (ou de distances) en entrée et produit
un nuage de points dans une dimension inférieure. Chaque objet présent dans la matrice d’entrée est associé à un
point dans le nuage de points, la distance entre les points reflétant au mieux la distance d’entrée. La principale
étape de calcul de la MDS est une symmetric eigenvalue decomposition (sEVD). Blanchard et al. (2016) ainsi que
Paradis (2018) ont montré que cette étape sEVD de la MDS pouvait être réalisée avec succès à l’aide de techniques
de randomisation. Deux algorithmes de randomisation ont été considérés, à savoir la randomized singular value
decomposition (RSVD) et la randomized sEVD (RsEVD) (voir Halko et al. (2011)). Pour traiter des problèmes de
tailles encore plus importantes, une MDS à haute performance basée sur ces techniques de randomisation a été
récemment proposée, basée sur le formalisme RSVD.

Le chapitre 1 présente ces résultats comme contexte de la présente thèse. La première partie de cette thèse, pré-
sentée dans le chapitre 2, revient sur ces résultats. Nous ouvrons ce chapitre en évaluant l’impact du choix de la
technique de randomisation pour réaliser la sEVD sur le comportement numérique de la MDS. D’une part, la RSVD
standard peut (légèrement) briser la symétrie implicitement supposée dans la MDS mais ne nécessite qu’une seule
projection. D’autre part, la RsEVD standard préserve la symétrie mais nécessite deux projections. Une étude ex-
périmentale menée sur un ensemble de données de biodiversité à petite échelle confirme que les deux approches
peuvent être pertinentes. Cela nous incite à proposer une version HPC de la RsEVD en plus de l’algorithme RSVD
déjà disponible. Nous sommes donc maintenant en mesure d’effectuer des MDS HPC avec l’une ou l’autre variante
d’algorithme aléatoire. Ces deux variantes sont dominées par des produits de matrices (MM). Leurs performances
et leur consommation de mémoire sont donc des clés pour une MDS basée sur de tels algorithmes. Nous intégrons
donc une MM générale à base de tâches (GEMM) récemment proposée ainsi qu’une nouvelle MM symétrique à base
de tâches (SYMM). La MDS qui en résulte est nettement plus performante que la version de base du chapitre 1 sur
un ensemble de données de biodiversité à grande échelle.

La deuxième partie de cette thèse traite de la comparaison des nuages de points résultant de MDS à grande échelle
et envisage la possibilité de travailler sur des nuages de points réduits. Le chapitre 3 traite de la comparaison de
nuages de points issus de MDS à grande échelle, tels que ceux obtenus dans la première partie de la thèse. Nous
montrons qu’une analyse Procustéenne peut être réalisée efficacement avec seulement quelques points de repère
partagés, ce qui permet de réduire considérablement la partie de la matrice d’entrée à calculer. Le chapitre 4 vise à
construire une MDS réduite qui opère sur un sous-ensemble de points du nuage. L’algorithme peut être apparenté
à de l’échantillonnage uniforme. Cependant, contrairement à la plupart des publications sur l’échantillonnage qui
visent à compresser un échantillon original, nous construisons un échantillon d’un modèle sans supposer que nous
disposons d’un échantillon original et sans connaître le modèle. La technique de référence utilisée dans les chapitres
3 et 4 exige que nous calculions quelques éléments hors diagonaux en plus des grands blocs diagonaux. Le chapitre
5 examine la possibilité de le faire sans aucun élément hors (blocs) diagonaux.

Mots-clés : Positionnement multidimensionnel (MDS), plongement linéaire aléatoire, échantillonnage uniforme, dé-
composition symétrique en valeurs propres, calcul haute performance (HPC), programmation à base de tâches, pro-
duits de matrices , SYMM, MDS réduite, distance de Hausdorff, biodiversité, métabarcoding, comparaison de nuages
de points, réduction de dimension, algèbre linéaire numérique, théorie de perturbation de matrice

Équipe-projet CONCACE
Centre Inria de l’université de Bordeaux

200 avenue de la vielle Tour
33405 Talence, France.

ii

Large Scale Multidimensional Scaling for the Study of Biodiversity

Abstract: Multidimensional scaling (MDS) is a classical dimension reduction algorithm and visualization method.
MDS takes a matrix of dissimilarities (or distances) as input and produces a point cloud in lower dimension. Each
object present in the input matrix is associated with a point in a Cartesian space, the pairwise distance between
the points preserving as well as possible the distance between the entries. The main computational step of MDS
is a symmetric eigenvalue decomposition (sEVD). Blanchard et al. (2016) as well as Paradis (2018) showed that
this sEVD step of the MDS could be successfully performed with randomization techniques. Two randomization
algorithms have been considered, namely, the randomized singular value decomposition (RSVD) and randomized
sEVD (RsEVD) (see Halko et al. (2011)). To process problems of even larger size, a high-performance MDS design
based on these randomization techniques has furthermore been recently proposed, based on the RSVD formalism.
Chapter 1 present these results as the background of the present thesis.

The first part of this thesis, presented in Chapter 2, revisits these results. We open this chapter by assessing the
impact of the choice of the randomized technique for performing the sEVD on the numerical behaviour of the MDS.
On the one hand, the standard RSVD may (slightly) break the implicitly assumed symmetry of the MDS but re-
quires only a single projection. On the other hand, the standard RsEVD preserves the symmetry but requires two
projections. An experimental study conducted on a small-scale biodiversity dataset confirms

that both approaches may be relevant. This motivates us to propose a HPC design of RsEVD in addition to the
available RSVD algorithm described in background. We are thus now able to perform HPC MDS with either variant
of the randomized algorithm. Both variants are dominated by matrix-matrix multiplications (MM). Their perfor-
mance and memory consumption are thus keys for that of the overall MDS based on such randomized algorithms.
We thus incorporate a recently proposed task-based general MM (GEMM) as well as a new task-based symmetric
MM (SYMM). The resulting MDS significantly outperforms the original background version from Chapter 1 on a
large-scale biodiversity dataset.

The second part of this thesis deals with the comparison of point clouds resulting from large scale MDS and considers
the possibility of working on reduced point clouds. Chapter 3 deals with the comparison of point clouds from large
scale MDS, such as those obtained in the first part of the thesis. We show that a Procrustes analysis can be efficiently
performed with only a few shared landmarks, significantly reducing the portion of the input matrix to be computed.
Chapter 4 aims to construct a reduced MDS that operates on a subset of the points of the cloud. The algorithm can
be related to uniform randomized matrix sampling. However, unlike most of the literature on randomized matrix
sampling, which aims to compress an original sample, we build a sample of a model without assuming that we
have an original representative (larger) sample and without knowing the model. The landmark technique used in
chapters 3 and 4 requires us to compute a few off-diagonal elements in addition to large diagonal blocks. Chapter 5
investigates whether it is possible to do this without any off-(block-)diagonal elements at all.

Keywords: multidimensional scaling (MDS), randomized linear embedding, uniform randomized sampling, sym-
metric eigenvalue decomposition, singular value decomposition, high-performance computing (HPC), task-based
programming, matrix multiplication, SYMM, reduced MDS, Hausdorff distance, biodiversity, metabarcoding, point
cloud comparison, dimension reduction, numerical linear algebra, matrix perturbation theory

CONCACE Project-team
Centre Inria de l’université de Bordeaux

200 avenue de la vielle Tour
33405 Talence, France.

iii

iv

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Acknowledgements

I consider myself lucky to have been surrounded by many kind, supportive and overall amaz-
ing people during the journey that was this Ph.D. In this section, I want to take the time to
thank them for the positive impact they had not only on this work but sometimes on my life as
well.

First I want to thank my family: my parents Catherine and Christophe, as well as my grandpar-
ents Mireille and Marc, for always supporting me in any and every way they could. I am also
very grateful to the rest of my family, even though not everyone could come to my defense, I am
glad I could count on the support of my brothers and sister Matthis, Margaux, Guillaume and
Joshua, my brother in law Lucas, my other grandmothers Suzanne and Paulette, my aunts and
uncles Jean-Claude, Dominique, Philippe, Agathe, Sylvie, Cathy, my cousins Thomas, Lucas,
Valentina, Madlie, Gabriel, Anaïs, Matthieu and Timothée. I also want to thank my first cousin
once removed Brigitte, as well as Bruno and my godmother Marion.

Among all the friends that supported me throughout this journey, I want to thank in particular
Baptiste Merliot and Matthieu Simonin. The regular encounters I had with either one of you
really allowed me to clear my mind of work related matters when I needed it.

I also want to thank the people from the CONCACE team (and by extension the Topal team
as well) for providing me with such a warm and welcoming work environment. I obviously
have to start by thanking my fellow Ph.D students (now all doctors) Marek Felšöci, Martina
Iannacito, Mathieu Vérité and Yanfei Xiang as we started our respective adventures together.
I have many amazing memories of our time together both at inria and during our outings
together. Of course, this sentiment also extends to others who started before, Aurélien Falco,
Esragül Korkmaz and Alena Shilova or after, Jean-François David and Xunyi Zhao. I also want
to thank everyone else from both teams, Luc, Gilles, Pierre (Esterie), Julia, Mathieu, Pierre
(Ramet), Lionel, Abdou, Olivier. It was a real pleasure to work alongside you all. Thank you
Antoine Gicquel for your last minute help in preparing my defense. I also want to thank the
members of the SED team, in particular Ludovic Courtès for your help with guix as well as
Florent Pruvost for your constant help (on way too many issues to list here) throughout my
work. Thank you as well to Alfredo Buttari and Antoine Jego, I learned a lot in the course of
our collaboration.

Last, but far from least, I want to thank my advisors Olivier Coulaud and Emmanuel Agullo.
Olivier, thank you for your help, patience and support. Your explanations were always wel-
come and accessible and your advice wise. Manu, thank you for everything you did for me.
Our conversations, whether they were about work or not, whether they were serious or just
goofing around, were always pleasant. I learned a lot from you, you taught me so much about
linear algebra, you showed me how to write and present my work with care. You pushed me
to not settle for anything less than greatness, and as a result I can now look back on this work
with pride.

Again, to everyone, thank you from the bottom of my heart.

v

vi Acknowledgements

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Résumé en français

On s’attend souvent à ce que les points d’un espaces de grande dimension fassent partie d’une
variété inconnue de dimension faible, la question étant alors de savoir comment la révéler.
De nombreuses méthodes ont été proposées pour y parvenir, telles que la cartographie de
Sammon, l’analyse en composantes curvilignes, le stochastic neighbour embedding (et t-SNE),
l’isomap ou encore les Laplacian eigenmaps. Ces méthodes atteignent leurs limites en terme de
temps d’exécution à partir d’environ 10000 éléments. Une autre méthode classique est le posi-
tionnement multidimensionnel (MDS), qui vise à transformer les distances entre un ensemble
de m éléments en une configuration de m points dans un espace cartésien.

La motivation initiale de cette thèse ainsi que les expériences numériques qui y figurent sont
basées sur des données relatives à la biodiversité. En particulier, notre travail s’inscrit dans le
contexte du metabarcoding, une branche de la biologie moléculaire qui cherche à l’identifier
des unités taxonomiques opérationnelles (OTU, un groupe d’individus proches génétique-
ment) à partir d’échantillons contenant de grandes quantités de matériel génétique obtenu par
séquençage ADN à grande échelle. Il s’agit d’une extension de la méthode de DNA barcoding
qui est l’étude et l’identification d’espèces à partir de matériel ADN. Le metabarcoding permet
d’étudier la biodiversité lorsqu’il n’est pas possible d’identifier directement les individus ou
lorsque le nombre d’individus est trop important pour être classé à l’aide d’autres méthodes.
Une MDS sur une matrice de distance obtenue à partir d’un ensemble de séquences ADN est
une façon d’étudier ces échantillons. Les nuages de points résultant de la MDS sur de tels
échantillons peuvent alors être utilisés pour l’étude de la biodiversité.

D’un point de vue algébrique (simplifié), la MDS cherche à transformer une matrice de distance
D ∈ Rm×m en une matrice de position X ∈ Rm×kMDS souvent appelée matrice de coordonées. La
matrice X peut alors être interprétée comme un ensemble de m points (les lignes de X) en
dimension kMDS . Souvent, on choisit kMDS = 2 afin de permettre une représentation graphique
de cette matrice de coordonnées sous la forme d’un nuage de points en deux dimensions.

D’un point de vue calculatoire (également simplifié), la première étape de la MDS consiste à
calculer une matrice de produits scalaires G à partir de la matrice D, cette matrice de produits
scalaires est souvent appelée matrice de Gram dans la littérature. La deuxième étape de la
MDS consiste en une décomposition symétrique en valeurs propres (sEVD) de G qui permet de
calculer X. La MDS est présentée de manière plus complète dans le Chapitre 1.

Lorsque l’on considère de très grands jeux de données, utiliser une sEVD déterministe stan-
dard sur l’ensemble de la matrice de Gram peut s’avérer hors de portée en raison de contraintes
d’empreinte mémoire ou de temps d’exécution. Pour ces raisons, les MDS à grande échelle ont
souvent été traitées par des approches heuristiques, qui peuvent donner de bons résultats dans
la pratique, bien qu’aucune garantie ne puisse être donnée quant à leur qualité. Pour effectuer
des MDS robustes à grande échelle, il est possible d’utiliser des algorithmes aléatoires. Il existe
plusieurs classes de ces méthodes. Une première classe d’application des méthodes aléatoires
à la MDS sont les méthodes de Nyström. Dans le contexte de la MDS, ces méthodes ont été
introduites sous le nom de Landmark MDS (LMDS) par Silva et Tenenbaum (2002). La LMDS

vii

viii Résumé en français

consiste à effectuer une MDS sur une sous-matrice principale de la matrice de distance et à
interpoler les inconnues restantes. Une deuxième classe d’application des algorithmes aléa-
toires à la MDS est l’approximation par échantillonnage. Elle a été introduite dans l’écosystème
MDS sous le nom de Pivot MDS par Brandes et Pich (2006) et a été développée dans la thèse
de Klimenta (2012). Il s’agit d’effectuer une MDS partielle sur une sous-matrice principale. La
troisième catégorie d’application des méthodes aléatoires à la MDS est le plongement linéaire
(aussi connu sous le nom de projection aléatoire dans les années 2000 et 2010). L’algorithme
de plongement linéaire aléatoire le plus connu est la décomposition aléatoire en valeurs sin-
gulières (RSVD). Cette méthode consiste à effectuer une décomposition en valeurs singulières
(SVD) par le biais d’une approche probabiliste rapide, en garantissant la qualité de la solu-
tion. Son utilisation dans le cadre de la MDS (RSVD-MDS) a été étudiée par Blanchard et al.
(2016) ainsi que Paradis (2018) et a permis de traiter de grands ensembles de données tout en
préservant la robustesse numérique de la sEVD-MDS standard.

Dans le cadre de cette thèse, nous avons porté un intérêt particulier au schéma d’accès aux
données de ces différentes méthodes. En effet, le coût du calcul de la matrice de distance est
dans beaucoup de cas plus important que celui du calcul de la MDS en elle-même. Dans ce
cas, limiter le nombre d’entrées de la matrice de distance auxquelles il est nécessaire d’accéder
(et donc qu’il est nécessaire de calculer) peut avoir un impact beaucoup plus important que
l’optimisation de la MDS directement. Le Chapitre 2 de cette thèse se concentre sur les méth-
odes de plongement linéaire, qui nécessitent l’accès à toute la matrice de distance dans le cadre
d’un produit de matrices avec une matrice gaussienne. La LMDS (qui correspond donc aux
méthodes de Nyström) est introduite dans le Chapitre 3. Cette méthode nécessite en théorie
uniquement de calculer une bande de taille (kMDS + 1) × m de la matrice de distance. Les
chapitres 4 et 5 traitent des méthodes d’échantillonnages. La méthode la plus simple, qui est
également celle que nous considérons ici consiste à sélectionner aléatoirement (à une permu-
tation près) une sous-matrice principale de la matrice de distance, on parle alors d’uniform
sampling. Il est cependant important de noter que dans la littérature, la plupart des méth-
odes présentées commencent par donner un poids aux différentes lignes et colonnes de la ma-
trice avant de faire un échantillonage qui prend en compte ces scores, dans ce cas on parle
d’importance sampling. Bien que cette étape préliminaire permette de donner un meilleur
échantillonage a priori qu’un simple échantillonage uniforme, de tels scores ne peuvent être
obtenus qu’au prix du calcul de toute la matrice de distance.

Au delà des méthodes randomisées présentées, une autre classe d’algorithmes utilisés pour
réaliser des MDS à grande échelle se base sur des méthodes de type divide-and-conquer. Le
principe de ces méthodes est de calculer des MDS indépendantes sur des sous-matrices prin-
cipales qui se recouvrent puis d’aligner les résultats à l’aide de l’analyse Procrustéenne. Cette
méthode a été introduite par Yang et al. sous le nom de FastMDS. Ketpreechasawat a indépen-
dament présenté une méthode similaire appelée hierarchical landmark charting. Lee et Choi
présentent ces méthodes sous le nom Landmark MDS Ensemble (LMDSE). Ces méthodes ne
sont cependant pas étudiées dans le cadre de cette thèse.

Le calcul de MDS à grande échelle avec ces algorithmes nécessite donc une attention partic-
ulière dans leur conception. Agullo et al. ont récemment proposé une MDS high-performance
computing (HPC) basée sur le plongement linéaire. D’un point de vue numérique, cette MDS
correspond à la RSVD-MDS de Blanchard et al. Du point de vue du HPC, cette MDS consiste
en une implémentation à base de tâches de l’algorithme RSVD-MDS au sein d’une pile logi-
cielle efficace comprenant des solveurs numériques, des systèmes d’exécution et des couches
de communication à la pointe de la technologie. Il en résulté la possibilité d’obtenir une MDS
robuste et applicable à de grands ensembles de données sur des supercalculateurs modernes.
Cette thèse peut être considérée comme la continuation de ce travail, que nous présentons en
arrière-plan dans le Chapitre 1.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

ix

La première partie de cette thèse, présentée au Chapitre 2, revisite les différentes conceptions
numériques et HPC de la MDS basés sur le plongement linéaire, présentée dans le Chapitre 1.
Nous débutons ce chapitre en évaluant l’impact du choix de la technique de plongement linéaire
aléatoire pour réaliser l’étape de sEVD sur le comportement numérique de la MDS. D’une part,
la RSVD standard peut (légèrement) impacter la symétrie implicitement supposée de la ma-
trice de distance, mais ne nécessite qu’une seule projection. D’autre part, la sEVD randomisée
standard (RsEVD) préserve la symétrie mais nécessite deux projections. Une étude expérimen-
tale menée sur un ensemble de données de biodiversité à petite échelle confirme que les deux
approches peuvent être pertinentes. Ceci nous motive à proposer une conception HPC de la
RsEVD en plus de l’algorithme RSVD déjà disponible. Nous sommes alors en mesure de pro-
poser une MDS HPC utilisant les variantes RSVD et RsEVD de l’algorithme de plongement
linéaire randomisé. Ces deux variantes étant dominées par des produits de matrices (que l’on
appelle MM pour matrix multiplication) leurs performances et leur consommation mémoire
sont donc clés pour une MDS basée sur de tels algorithmes. Nous incorporons donc une MM
générale à base de tâches (GEMM) récemment proposée ainsi qu’une nouvelle MM symétrique
à base de tâches (SYMM). Nous montrons expérimentalement que dans le cas distribué, les bib-
liothèques standard obtiennent des performances moindres avec SYMM qu’avec GEMM. Nous
montrons également qu’une conception efficace des schémas de communication peut réduire
considérablement cet écart. Enfin, nous montrons qu’une partie de cet écart s’explique par
une intensité arithmétique (IA) plus faible du SYMM 2D Bloc Cyclique (2D BC) par rapport au
GEMM 2D (d’un facteur de 2). Nous considérons deux distributions de données alternatives,
SBC et TBC. SBC est une adaptation directe au cas de la multiplication de matrices d’une étude
sur la décomposition de Cholesky. TBC est une adaptation dans le cadre distribué (et paral-
lèle) des idées sous-jacentes de TBS, un algorithme séquentiel out-of-core. Nous prouvons que
SBC et TBC améliorent l’IA de SYMM d’un facteur de

√
2 et 2 respectivement, égalant ainsi

en particulier celle de 2D BC GEMM pour ce dernier. Nous évaluons la MDS résultante sur
un ensemble de données de biodiversité à grande échelle correspondant à des échantillons de
diatomées prélevés dans le lac Léman à intervalles mensuels. Nous comparons également cette
MDS améliorée avec la MDS HPC de référence présentée au Chapitre 1.

Les codes résultants de ces travaux ont été intégrés dans la bibliothèque fmr utilisée dans le
cadre de la MDS du Chapitre 1. Alors qu’il fallait auparavant choisir entre la performance
(GEMM), ou une meilleure consommation mémoire (SYMM), nous avons montré que notre
approche à base de tâches combinée à la nouvelle distribution TBC permettent désormais
d’obtenir une implémentation de SYMM dont la performance est compétitive avec celle de
GEMM. Cette étude montre également que les algorithmes impliquant des distributions de
données et de tâches très irrégulières peuvent être mis en œuvre avec un code facile à écrire, à
lire et à maintenir, tout en garantissant une performance compétitive.

La deuxième partie de cette thèse traite de la comparaison de nuages de points, soit comme
une fin en soi (chapitres 3 et 5), soit comme un moyen de développer un nouvel algorithme
itératif d’échantillonnage aléatoire (Chapitre 4).

Le Chapitre 3 vise spécifiquement à comparer des nuages de points issus de MDS à grande
échelle, tels que ceux obtenus dans la première partie de la thèse. Le problème principal pour
comparer des nuages de points provenant de MDS est que différentes exécutions de la MDS
peuvent résulter en des translations, rotations ou réflections des nuages de points en sortie,
la MDS n’étant définie qu’à une isométrie près. Ce problème est lié au problème bien connu
de l’analyse Procrustéenne. Nous montrons que l’analyse Procrustéenne peut être réalisée ef-
ficacement avec seulement quelques repères communs aux différents nuages, ce qui réduit
considérablement la quantité de la matrice d’entrée à calculer.

L’alignement des nuages de points à des fins de comparaison permet également de superposer
les nuages de points alignés et de reconstruire le nuage de points complet. Cela peut être

Romain Peressoni Large Scale MDS for the Study of Biodiversity

x Résumé en français

considéré comme une nouvelle vision de l’algorithme de FastMDS, mais motivé à l’origine par
la comparaison des nuages de points intermédiaires plutôt que par le calcul direct de la MDS.
Nous appelons cette méthode Block Diagonal Landmark Procrustes MDS (BDLPMDS).

Une fois les nuages de points alignés les uns avec les autres, nous pouvons également calculer
une distances entre eux à l’aide de la distance de Hausdorff ou ses variations. Nous proposons
une nouvelle variation de la distance de Hausdorff que nous appelons Squared Modified Haus-
dorff distance basée sur la Modified Hausdorff distance, une variation existante de la distance de
Hausdorff, que nous avons construit pour être analogue à la distance de Frobenius sous cer-
taines conditions. Nous introduisons également le concept de distance de Hausdorff relative,
qui permet de définir une distance indépendante de la taille des données.

Les méthodes présentées sont utilisées pour comparer des données venant de diatomées du
lac Léman, séparés en 10 jeux de données L1,L2, . . . ,L10 composés chacun d’environ 100000
éléments auxquels nous appliquons l’algorithme de BDLPMDS pour reconstruire le nuage de
points complet. Grâce à cette méthode, nous pouvons effectuer une MDS sur cette matrice de
taille 1000000 en utilisant uniquement un nœud de calcul, alors qu’il en faut plus de 100 pour
faire ce même calcul par RSVD-MDS (ou RsEVD-MDS) complète. De plus, cette méthode né-
cessitant uniquement les blocs diagonaux (ainsi qu’un petit nombre de points supplémentaires
servant de références), cette méthode de calcul de la MDS permet d’obtenir le nuage de points
recherché en utilisant uniquement une fraction de la matrice de distance, dont le calcul est le
principal obstacle pour le calcul de MDS à grande échelle.

Le chapitre 4 traite de l’échantillonnage aléatoire uniforme pour construire une MDS réduite,
c’est-à-dire un sous-ensemble de points du nuage. Comme mentionné ci-dessus, la plupart des
méthodes d’échantillonnage discutées dans la littérature évaluent d’abord l’importance des en-
trées de la matrice avant de sélectionner aléatoirement (et éventuellement de mettre à l’échelle)
un sous-ensemble de points en fonction de leurs poids respectifs. Ces méthodes d’importance
sampling nécessitent l’accès à l’ensemble de la matrice de distance D. Leur force réside dans
le fait qu’elles offrent d’excellentes garanties d’erreur a priori. Ces garanties dépendent du
spectre de la matrice d’entrée. Bien que nous ne connaissions pas le spectre a priori, dans la
pratique, les premières valeurs propres (positives) ont une forte décroissance. Cette dépen-
dance théorique ne devrait donc pas poser de problème majeur dans la pratique. Un prob-
lème plus fondamental est que la taille de l’échantillon de référence auquel nous avons affaire
peut être surestimée ou sous-estimée afin d’obtenir un résultat de la qualité que l’on souhaite
obtenir. En effet, bien que cette thèse ne porte que sur le traitement d’une matrice de dis-
similarité D, en pratique, la construction d’une telle matrice pour l’étude d’un échantillon de
référence est une tâche difficile. Par conséquent, l’approximation de l’échantillon de référence
par un échantillon réduit n’est peut-être pas la bonne question à traiter. Une autre question
est de savoir si l’on peut estimer la qualité intrinsèque d’un échantillon. Cette nouvelle ques-
tion est liée à l’utilisation d’estimateurs d’erreur a posteriori. Associés à des schémas itératifs,
ces estimateurs sont préconisés par Martinsson et Tropp lorsque l’échantillonnage manque de
garanties précises. Le chapitre 4 explore l’utilisation des distances considérées dans le chapitre
3 comme moyen de construire des estimateurs d’erreur a posteriori pour la valeur intrinsèque
de l’échantillon. L’estimateur est calculé en utilisant une technique de rééchantillonnage.

Sur la base de ces résultats, nous avons proposé des algorithmes MDS itératifs qui utilisent
un critère d’arrêt basé sur la distance entre les nuages de points rééchantillonnés à chaque
itération. Nous avons proposé quatre algorithmes, chacun suivant la même étape de rééchan-
tillonnage et de calcul de distance, différant uniquement par la manière dont ils calculent la
MDS d’une itération à la suivante. Tout d’abord, nous avons proposé deux algorithmes con-
servateurs qui recalculent la MDS à chaque itération sans garder en mémoire le résultat de
l’itération précédente. Nous avons également proposé deux algorithmes progressifs basés sur
la LMDS et la BDLPMDS, qui visent à construire l’itération suivante en étendant le résultat de

Large Scale MDS for the Study of Biodiversity Romain Peressoni

xi

l’itération précédente. Ces deux approches montrent des résultats prometteurs.

La technique de landmarks utilisée dans les chapitres 3 et 4 nécessite le calcul de certains élé-
ments hors blocs diagonaux en plus des grands blocs diagonaux. Le chapitre 5 étudie la possi-
bilité de le faire sans aucun élément hors (bloc)-diagonale dans le cas où les nuages de points à
comparer sont très proches. Cette proximité est possible lorsque l’on considère des nuages de
points extraits de manière indépendante et identiquement distribuée à partir d’un plus grand
échantillon. Nous montrons que lorsque cette condition est respectée, les nuages de points
représentent la même population et la MDS capture correctement les nuages de points.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

Contents

Acknowledgements v

Résumé en français vii

Introduction 1

1 Background 7

1.1 Multidimensional Scaling (MDS) . 7

1.2 Metabarcoding . 12

1.3 Symmetric Eigenvalue Decomposition and Singular Value Decomposition . . . 12

1.4 Approximated SVD through randomized linear embedding 13

1.5 Task-based programming . 15

1.6 Task-based randomized linear embedding MDS via RSVD 16

1.7 Related work on distributed-memory MDS . 19

1.8 About the datasets used in this thesis . 19

I Robust high-performance MDS 29

2 Task-based randomized linear embedding MDS 31

2.1 Introduction . 31

2.2 Randomized sEVD (RsEVD) . 32

2.3 Numerical behaviour of RSVD-MDS and RsEVD-MDS 32

2.4 Motivation for improving the distributed-memory matrix multiplication 43

2.5 Related work on distributed-memory matrix multiplication 44

2.6 Task-based scalable SYMM . 44

2.7 Performance of task-based scalable SYMM . 53

2.8 Performance of MDS with randomized linear embedding 54

2.9 Conclusion . 59

II MDS on a reduced sample of the input distance matrix 63

3 Comparison of point clouds resulting fromMDS 65

3.1 Introduction . 65

3.2 Distance between point clouds . 67

3.3 Do PCA and MDS implicitly align two related point clouds? 71

xii

Contents xiii

3.4 State of the art on point cloud alignment . 78

3.5 MDS point cloud alignment . 79

3.6 Generalized MDS alignment . 82

3.7 Block Diagonal Landmark Procrustes MDS (BDLPMDS) 83

3.8 Application . 85

3.9 Discussion about dimensionality . 95

3.10 Conclusion . 96

4 Iterative uniform sampling MDS 101
4.1 Introduction . 101

4.2 Question Q1: iterative uniform sampling with a reference sample 103

4.3 Question Q2: iterative uniform sampling without a reference sample 107

4.4 A class of iterative algorithms . 110

4.5 Numerical evaluation of the iterative MDS algorithms 114

4.6 Discussion on performance . 117

4.7 Conclusion . 119

5 Comparison of approximately coincident datasets 125
5.1 Introduction . 125

5.2 Flip method . 126

5.3 Folding method . 133

5.4 Discussion on Performance . 143

5.5 Application . 143

5.6 Conclusion . 152

Conclusion 155

Bibliography 167

Appendices 169

A Extra results from chapter 2 171

B Extra results from chapter 3 173
B.1 Distance results between Li/Lj pairs . 173

B.2 Histogram of position for various datasets . 173

C Extra results from chapter 4 181
C.1 Results using absolute distance . 181

D Extra results from chapter 5 185
D.1 Extra Li/Lj distances . 185

Romain Peressoni Large Scale MDS for the Study of Biodiversity

xiv CONTENTS

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Introduction

Points in large dimension spaces are often expected to live on an unknown small dimensional
manifold, and the question is how to reveal it. Many methods have been proposed to do so
such as Sammon mapping, curvilinear component analysis, stochastic neighbour embedding
and t-SNE, isomap, Laplacian eigenmaps, just to present the diversity of available methods
(here, nonlinear), with a global survey [84]. Those methods reach limits in time for, say, 10,000
items or more. An old classical method is the multidimensional scaling (MDS) [109, 132, 125],
reviewed in [29]. It aims at translating information about the pairwise distances among a set
of m items into a configuration of m points mapped into a Cartesian space.

From a high-level algebraic point of view, it consists of processing a dissimilarity matrix D ∈
R
m×m to obtain a matrixX ∈Rm×kMDS , as illustrated in Figure 1. The matrixX can be interpreted

as a collection of m points (the rows of X) in a space R
kMDS of dimension kMDS , and is often

referred to as the coordinate matrix. Figure 2 shows an example for m = 4 items mapped into a
space of dimension kMDS = 2.

As shown in Figure 3, from a high-level (simplified) computational point of view, MDS first
computes an inner-product matrix G from the dissimilarity matrix D. The inner-product matrix
is often referred to as the kernel matrix or Gram matrix in the literature. We will follow the latter
terminology, hence the notationG in this thesis. The second step then essentially consists in the
symmetric eigenvalue value decomposition (sEVD) [102, 56] of G to compute the coordinate
matrix X. MDS will be further introduced in Section 1.1 and we restrict our discussion to
computational aspect in the rest of this introduction.

When dealing with large datasets, processing the second step with a standard, determinis-
tic sEVD on the whole Gram matrix may be out of reach due to memory or time to solution
constraints. For these reasons, large-scale MDS have often been processed with heuristic ap-
proaches, which may yield good results in practice, though no guarantee can be provided on
their quality. Randomized algorithms have changed the game, allowing robust MDS to be per-
formed at large scale. A first class of application of randomized methods to MDS has been
Nyström approximation. In the context of MDS, it has been introduced under the name of
Landmark MDS (LMDS) by Silva and Tenenbaum [118, 31]. It consists of performing a partial
MDS on a principal submatrix and interpolate the remaining unknowns. A second class of

D Xm

m

m

kMDS

Figure 1 – High-level algebraic view of the MDS.

1

2 Introduction

0 1.1 5.3 5.01
1.1 0 4.97 4.49
5.3 4.97 0 0.95

5.01 4.49 0.95 0

-2.43 0.51
-2.51 -0.47
2.66 0.43
2.28 -0.46

D

X

-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

•
•

•
•

Figure 2 – MDS on m = 4 items mapped into a space of dimension kMDS = 2. The input dissim-
ilarity matrix D ∈ R4×4 is translated into a coordinate matrix X ∈ R4×2 representing the m = 4
items in kMDS = 2 dimensions.

D G Xm

m

m

m

m

kMDS

GRAM sEVD

Figure 3 – High-level (simplified) view of the main MDS steps.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3

(a) Nyström (LMDS) (b) Uniform sampling (c) Importance sampling and
linear embedding

Figure 4 – MDS high-level data access pattern (up to a symmetric permutation) to the dissim-
ilarity matrix D (in grey) for the main classes of randomized algorithms. Only orange blocks
need to be accessed.

application of randomized algorithms to MDS has been the sampling approximation. It was
introduced in the MDS ecosystem under the name of Pivot MDS by Brandes and Pich [22] and
further developed in the thesis of Klimenta [78]. It consists of performing a partial MDS on
a (possibly scaled) principal submatrix. A third class of application of randomized methods
to MDS has been the linear embedding (which have also been referenced as random projections
in the 2000s and 2010s). The most widely known randomized linear embedding algorithm is
often referred to as the randomized singular value decomposition (RSVD) [64, 32]. It consists
in performing a singular value decompostion (SVD) [17, 75] via probabilistic, fast approach,
ensuring the quality of the solution via randomized linear embeddings. Its usage within the
MDS (RSVD-MDS) was studied by Blanchard et al. [20, 21, 19] and Paradis [99]. Large datasets
could be processed while preserving the numerical robustness [99] of the standard sEVD-MDS.

We refer the reader to [93] for an overview of these three classes (Nyström, sampling and lin-
ear embedding) of randomized algorithms in the general context of matrix computation. In the
particular context of this thesis, (1) LMDS (thus a Nystrom approximation) will be introduced
in Section 3.7.1; (2) MDS based on randomized sampling methods will be discussed in chap-
ters 4 and 5; (3) MDS based on randomized linear embedding will be introduced in Section 1.4.
For now, we present only a high-level picture of the methods by their data access pattern to
the dissimilarity matrix D. As illustrated in Figure 4a, (1) LMDS only needs to access to a thin
block row of D. This block row can be of dimension (kMDS + 1) ×m in principle and typically
2kMDS ×m in practice. (2) The most basic sampling method blindly selects a random subset
of the items. In the MDS case, it translates to access only a principal submatrix of D as il-
lustrated in Figure 4b. Such sampling methods are referred to as uniform sampling. However,
randomized sampling methods most often discussed in the literature first evaluate the impor-
tance of the items before randomly selecting (and possibly scaling) a subset of them depending
on their respective importance. Such sampling methods are referred to as importance sampling.
This preliminary step offers better a priori guarantees [93] than uniform sampling. However
for evaluating the importance of the items, these methods need to access the whole distance
matrix D, as illustrated in Figure 4c. (3) Randomized linear embedding methods also need to
access the whole distance matrix D, following the pattern in Figure 4c again. Indeed, a linear
embedding of the whole Gram matrix G is performed by multiplying it with a random (typ-
ically) Gaussian matrix Ω (see Y = GΩ matrix multiplication step in Section 1.4.1). Since G
must be fully known, so must D.

Apart from randomized algorithms, another class of scalable MDS has also been developed

Romain Peressoni Large Scale MDS for the Study of Biodiversity

4 Introduction

Figure 5 – MDS high-level data access pattern (up to a symmetric permutation) to the dissimi-
larity matrix D (in grey) for divide-and-conquer algorithms (simplified, non hierarchical view).
Only orange blocks need to be accessed.

based on a divide-and-conquer paradigm [130, 76]. The idea is to perform independent MDS
on overlapping principal submatrices. Figure 5 illustrates the typical data access pattern of
such schemes. Extra-diagonal blocks allow diagonal blocks to overlap with each other. The
overlap is used to align the respective MDS by Procrustes analysis [117]. The method was
introduced under the name of FastMDS by Yang et al. [130]. Ketpreechasawat independently
introduced a closely related method under the name of hierarchical landmark charting [76].
Lee and Choi recast them as ensemble learning methods under the name of Landmark MDS
Ensemble (LMDSE) [85].

Among these scalable algorithms, both importance sampling and linear embedding still re-
quire access to the entire input dissimilarity matrix D, as illustrated in Figure 4c. Processing
large scale MDS with these algorithms therefore requires special care in their design. Agullo
et al. have recently proposed a high-performance computing (HPC) MDS based on linear em-
bedding [7]. From a numerical point of view, their MDS corresponds to the RSVD-MDS of
Blanchard et al. [20, 21, 19]. From an HPC perspective, it consists of a task-based design of
the entire RSVD-MDS algorithm, implemented in an efficient software stack including state-
of-the-art numerical solvers, runtime systems and communication layers. The outcome is the
ability to efficiently apply robust MDS to large datasets on modern supercomputers. This the-
sis can be seen as a continuation of this work, which we further introduce as a background in
Chapter 1 1.

The first part of this thesis, presented in Chapter 2, revisits the numerical [20, 21, 19, 99] and
HPC [7] design of related work on MDS based on linear embedding summarized in Chapter 1.
We open this chapter by assessing the impact of the choice of randomized linear embedding
technique used for performing the sEVD on the numerical behaviour of the MDS. On the one
hand, the standard RSVD used in [20, 21, 19] may (slightly) break the implicitly assumed
symmetry of the MDS but requires only a single projection. On the other hand, the standard
randomized sEVD (RsEVD) used in [99] preserves the symmetry but requires two projections.
An experimental study conducted on a small-scale biodiversity dataset confirms that both ap-
proaches may be relevant. This motivates us to propose a HPC design of RsEVD in addition

1. Although I have been involved in this work [7] and that the present thesis builds on top of it, it shall not
be considered as a contribution of the thesis. Indeed, it is the result of much larger project involving five research
teams. On the contrary, this thesis has benefited from the dynamics of that project. Therefore, we consider it as a
background to the thesis.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5

Figure 6 – MDS high-level data access pattern (up to a symmetric permutation) to the dissim-
ilarity matrix D for uniform sampling without reference sample. Only orange blocks need to be
accessed. There is no reference sample (in grey in the previous pictures).

to the available RSVD algorithm described in background. We are then able to perform HPC
MDS using either RSVD and RsEVD variants of the randomized linear embedding algorithm.
Both variants are dominated by matrix-matrix multiplications (MM). Their performance and
memory consumption are thus keys for that of the overall MDS based on such randomized
linear embedding algorithms. We thus incorporate a recently proposed task-based general MM
(GEMM) as well as a new task-based symmetric MM (SYMM). We assess the resulting MDS
on a large-scale biodiversity dataset corresponding to diatoms from Lake Geneva collected at
monthly intervals. We also compare this improved MDS with the starting point of this thesis [7]
reviewed in Chapter 1.

The second part of this thesis deals with the comparison of point clouds, either as an end in
itself (chapters 3 and 5) or as a means to design a new iterative randomized sampling algorithm
(Chapter 4).

Chapter 3 is specifically aimed at comparing point clouds from large scale MDS such as those
obtained in the first part of the thesis. The main issue when comparing point clouds from MDS
is that they can be arbitrarily translated, rotated, and reflected. It is thus related to the well
known problem of Procrustes analysis [117]. The ingredients are thus similar to those of the
divide-and-conquer paradigm [130, 76] discussed above, but they are used for the purpose of
comparison rather than to build the overall union point cloud. We show that a Procrustes anal-
ysis can be performed efficiently with only a few common landmarks, significantly reducing
the amount of the input matrix to be computed, consistently with the data access pattern from
Figure 5. Once the point clouds are aligned with each other, we also compute their respective
distances using Hausdorff distance [70] or variations thereof. The methods discussed are used
to compare the diatoms from Lake Geneva collected at different monthly intervals.

Chapter 4 deals with randomized uniform sampling to construct a reduced MDS, i.e. a subset of
the points in the cloud. As mentioned above, most randomized sampling methods discussed
in the literature first assess the importance of the items before randomly selecting (and possi-
bly scaling) a subset of them according to their respective importance [93]. These importance
sampling methods require access to the entire distance matrix D of the reference sample, as
illustrated in Figure 4c. Their strength is that they provide excellent a priori error guaran-
tees [93]. These guarantees depend on the spectrum of the data matrix. Although we do not
know the spectrum a priori, in practice the first (positive) eigenvalues have a strong decay, as
shown in Section 1.8. This theoretical dependence should therefore not be a major problem
in practice. A more fundamental problem is that the size of the reference sample with which
we are dealing may be overestimated or underestimated in order to obtain an output of the
quality we are intending to achieve. Indeed, while this thesis deals only with the processing of

Romain Peressoni Large Scale MDS for the Study of Biodiversity

6 Introduction

Figure 7 – MDS high-level data access pattern (up to a symmetric permutation) to the dissimi-
larity matrix D (in grey) studied in Chapter 5. Only orange blocks need to be accessed.

an input dissimilarity matrix D, in practice, the construction of such a matrix for the study of
biodiversity is a daunting task (further discussed in Section 1.2). Therefore, approximating the
original reference sample with a reduced sample may not be the good question to address. An
alternative question is whether we can estimate the intrinsic quality of a sample? Figure 6 is a
schematic view of the question: instead of approximating a reference sample as in Figure 4b,
the aim is to estimate an unknown whole population (represented by dashes in Figure 6). This
latter question is related to the use of a posteriori error estimators. Together with iterative
schemes, such estimators are advocated by Martinsson and Tropp when sampling lacks precise
guarantees [93, Section 9.7]. Chapter 4 explores the use of the distances considered in Chap-
ter 3 as a means of constructing a posteriori error estimators for the intrinsic value of a sample.
The estimator is computed using a basic resampling [72, Chapter 5, 133] technique.

The landmark technique used in chapters 3 and 4 requires the computation of some off-diagonal
elements in addition to large diagonal blocks. Chapter 5 investigates whether it is possible to
do this without any off-(block-)diagonal elements at all, as illustrated in Figure 7.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Chapter1
Background

This chapter presents the main background material on top of which this thesis is based. We
begin the chapter with an introduction to MDS in Section 1.1, as it is the cornerstone of this
thesis. The presentation of MDS is followed in Section 1.2 by a brief introduction to metabar-
coding. MDS has many possible applications, and while we present this thesis through the
use of metabarcoding data, the methods discussed in this thesis are not limited to the study of
biodiversity and are applicable to other areas as well.

MDS relies on an sEVD, which we introduce in Section 1.3, followed by a presentation of the
SVD, as it is equivalent to sEVD in the symmetric case, and both have been used in the litera-
ture to perform MDS. The main computational step of MDS is the sEVD (or SVD). It has been
shown [20, 21, 19, 99] that this step can be performed using randomized linear embedding
with either an RSVD or an RsEVD. Following [20, 21, 19, 7], we adopt an RSVD formalism and
present such a RSVD-MDS in Section 1.4.

As mentioned in the general introduction, randomized linear embedding in general and RSVD
in particular require access to the entire input dissimilarity matrix (see Figure 4c, page 3). Pro-
cessing large scale RSVD-MDS therefore requires special care in their design. Agullo et al. have
recently proposed a high-performance computing (HPC) RSVD-MDS [7], following the numer-
ical design of Blanchard et al. [20, 21, 19]. From an HPC perspective, it consists of a task-based
design of the entire RSVD-MDS algorithm, implemented in an efficient software stack includ-
ing state-of-the-art numerical solvers, runtime systems and communication layers. Section 1.5
introduces task-based programming. Section 1.6 then presents the task-based RSVD-MDS of
[7], this thesis can be seen as a continuation of that work. Section 1.7 presents related work on
distributed-memory MDS. Section 1.8 presents the datasets used for the experiments of this
thesis.

This background chapter is based on the presentation of [7].

1.1 Multidimensional Scaling (MDS)

1.1.1 A brief historical digression

Before presenting the method itself, we propose a brief and partial early historical digression
on the original reason behind the term scaling in MDS, as it might otherwise be ambiguous in
an HPC context. Representing items onto a linear continuum (a one-dimensional space in mod-

7

8 CHAPTER 1. BACKGROUND

ern terminology or simply a scale) may be loosely related to measure theory, and thus to some
extent dates back to Ancient Greece when Archimedes tried to calculate the area of a circle.
This idea has been pushed very far in the early twentieth century, in particular by the psy-
chology community who developed advanced methods to design scales onto which positioning
judgements (see e.g. [123, 124]) or other non trivial concepts. However, if such a traditional
scaling method (design of scale and positioning of items onto it) was very elaborated in the one
dimensional case (representing the information onto a linear continuum only, i.e. along one
axis), it remained to design a robust process in the multidimensional case (representing the
information along multiple well chosen axes).

The term MDS has been ambivalent in the literature. In the present manuscript, it corresponds
to "classical MDS", as pioneered by [125, 132]. In 1964, J. B. Kruskal issued a paper [81] with
the same name, MDS, but another approach, even if related. The aim is to minimize on X a so-

called stress function of the form Φ(X) =
∑
i<j

(
‖xi − xj‖ − dij

)2
, where (dij)i,j are dissimilarities,

(xi)i points in a Euclidean space, and X the set of points. It is not a linear algebra method, but
a hard nonlinear optimisation problem. It is nowadays known as Least Square Scaling (LSS),
to avoid confusion with classical MDS [29, 90, 71].

This thesis deals only with classical MDS.

1.1.2 Classical MDS

The popularization [42] in the main psychometric journal of the truncated SVD (TSVD) [116],
a fundamental mathematical tool, opened the door for the robust extension of the scaling pro-
cedures mentioned in Section 1.1.1 to the multidimensional case. Built on top of the TSVD, the
muldimensional scaling (MDS) method [109, 132] may be viewed as retrieving the most relevant
possible multidimensional scale for a prescribed dimension. As it was immediately noted [42],
when the matrix is (square and) symmetric (as it is the case in our context), the SVD and the
sEVD coincide up to the sign of the eigenvalues. MDS may thus be equally viewed as based on
TSVD or truncated sEVD (TsEVD). We follow the sEVD formalism when both approaches are
equivalent. However, when randomized algorithms are employed, the approaches can differ.
For instance, the RSVD-MDS of Blanchard et al. [20, 21, 19] is not numerically equivalent to
the RsEVD-MDS considered by Paradis [99], as it will be detailed in the next chapter (Section
2.3).

There exists many excellent textbooks presenting MDS such as [29] or [71]. A classical and
rigorous reference with many results, their demonstration and history is [90]. We refer to this
literature for a thorough presentation of the MDS and now only propose a short (but, we hope,
progressive) introduction to the method, following [29]. Let M = (E,d) be a discrete metric
space ofm points endowed with a distance d (in what follows, d can be a dissimilarity too). Let
kMDS ∈N be an integer. MDS [109, 132, 125] aims at building a map x:

i ∈ E x−−−−−→ xi ∈RkMDS (1.1)

such that the norms of the distances ‖xi − xj‖2 between points xi and xj in R
kMDS are as close as

possible to d(i, j). The implicit assumption is that the distances d(i, j) are known (they are the
input data of the problem) and come from an unknown point cloud X = (xi)i (the output data
to be computed) in a Euclidean space [37]. The objective is to recover X and approximate it
as accurately as possible for a prescribed dimension kMDS. In the following, we will denote by
D = (dij)i,j them×m input pairwise distance matrix. Assuming the Euclidean space is endowed
with a given inner product 〈., .〉, we furthermore denote by G = (gij)i,j the m×m matrix of inner
products gij = 〈xi ,xj〉, often referred to as the Gram matrix. The solution comes from the

Large Scale MDS for the Study of Biodiversity Romain Peressoni

1.1. Multidimensional Scaling (MDS) 9

observation that the Gram matrix G can be built from the distance matrix D. Indeed, in a
Euclidean geometry, G and D are related through the law of cosines by:

d2
ij = gii + gjj − 2gij . (1.2)

To obtain the gij coefficients of G from the dij coefficients of D, it remains to express the diag-
onal coefficients (gii)i (and thus (gjj)j) in terms of coefficients of D. To do so, we fist remark
that two isometric point clouds cannot be discriminated through the distance between their
points, inducing that X can be recovered up to an isometry only. In particular, without loss of
generality, we may thus assume that the point cloud X is centered 1, which imposes:

∑
j

gij = 〈xi ,
∑
j

xj〉 = 0, (1.3)

i.e., the sum of each row of the Gram matrix is zero. Noting d2
i+ =

∑
j d

2
ij , d

2
+j =

∑
i d

2
ij and

d2
++ =

∑
ij d

2
ij , we may then sum (1.2) over j. We obtain that

∑
j d

2
ij =

∑
j gii +

∑
j gjj − 2

∑
j gij , By

definition of d2
i+, by (1.3), and reminding that

∑
j gjj is the trace of matrix G (i.e. Tr(G) =

∑
j gjj),

it translates into d2
i+ = ngii +Tr(G), yielding gii = 1

n (d2
i+−Tr(G)). To obtain an explicit expression

for gii , it remains to obtain an expression of the trace of G, which can be done by summing
(1.2) over both i and j, yielding d2

++ = 2nTr(G). Finally, the Gram matrix G may therefore be
written from the distance matrix D as follows:

gij = −1
2

(
d2
ij −

1
n
d2
i+ −

1
n
d2

+j +
1
n2d

2
++

)
. (1.4)

This computation of G out of D through (1.4) is the first step of MDS (line 1 in Algorithm 1,
referred to as GRAM in the rest of the thesis). It remains to deduce X ∈Rm×kMDS from G. First, we
remind that, by its above definition,G = XXt. Second, asG is symmetric, it admits a unitary di-
agonalization so that its sEVD may be written G =QΛQT where Λ is diagonal andQ is unitary.
In the case G is semi-definite positive, Λ has only non-negative diagonal values and we may
thus write X =QΛ1/2. Otherwise, a common heuristic (out of LSS) consists in keeping only the
k+ non-negative eigenvalues Λ+ and associated eigenvectors Q+ and considering X 'Q+Λ+1/2.
This is in practice required to relax the assumption that D is a Euclidean distance matrix (and
furthermore support the case where it is only a dissimilarity matrix, i.e. the triangular inequal-
ity does not need to hold). In the case we want to consider the MDS using the SVD of G instead
of its sEVD, one may notice that the sEVD of G may also be expressed as G = U |Λ|sign(Λ)V T ,
where |Λ| is the diagonal matrix whose diagonal values are the absolute values of the eigenval-
ues and sign(Λ) is the diagonal matrix whose diagonal values are the signs of the eigenvalues.
If we note U = Q,Σ = |Λ| and V = sign(Λ)Q, we observe that we also have G = UΣV T , which
is the SVD of G (see below in section 1.3.1). In this thesis, we will consider randomized vari-
ants of both sEVD and SVD. For now, we name this step sEVD (line 2). Because of the cost of
computing a full decomposition, as discussed in the general introduction, various fast alter-
natives have been considered. In this background section, we will present how this step can
be performed using RSVD in Section 1.4.2; we will consider the RsEVD variant in the next
chapter (Section 2.2). We omit for now the details of the CHECK step (line 3) and will come back
to it later. Once the decomposition is obtained, following the above common filtering heuris-
tic, eigenvectors associated with negative eigenvalues are ignored and clipped off from Q (line
4, Compute_X (1/2)). Hence, we have G ' Q+Λ+Q+t, with Q+ ∈ Rm×k+

and Λ+ ∈ Rk+×k+
if k+

eigenvalues of G are non negative. X can thus be computed as X ' Q+Λ+1/2 (line 5, Compute_X

1. We will discuss this assumption again in Chapter 3.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

10 CHAPTER 1. BACKGROUND

(2/2)). Finally, the solution of MDS is provided by returning the information associated with
the part XkMDS

of the map X associated with the kMDS (assuming kMDS ≤ k+, which is the case in
practice as a reasonably small kMDS is most often targeted) largest eigenvalues (line 6).

Algorithm 1: MDS: (X,Λ) = MDS(D,kMDS)

Input: a distance matrix D ∈Rm×m; a dimension kMDS ≤m // READ_D
Output: a set of points XkMDS

, ΛkMDS
the largest positive eigenvalues // WRITE_X

1 Compute the Gram matrix of D: G = gram(D) // GRAM
2 Compute the sEVD of G: QΛQt = G // sEVD

3 Check τ = ‖Λ‖F‖G‖F
?
> τmin = 1.0− ε // CHECK

4 Compute Q+ and Λ+ by discarding in Q all columns q such that λq < 0 // Compute_X
(1/2)

5 Compute X =Q+Λ+1/2 // Compute_X (2/2)
6 Keep in XkMDS

(resp. ΛkMDS
) the kMDS columns of X (resp. Λ) associated with the largest

eigenvalues
7 return XkMDS

,ΛkMDS

The mapX we obtain from the MDS will often be called a point cloud. Figure 1.1 represents the
heatmap (a representation of point density rather than individual points, the brighter the more
points are present) projected alongside the first two axes. Because of the size of the datasets
we consider in this thesis, we will prefer heatmaps to represent point clouds. The particular
dataset presented here for instance comes from a distance matrix of size 30,000×30,000. This
representation does not allow one to fully represent the information present in X, as projecting
along the first 2 axes is equivalent to only considering the fist two columns of X. Indeed, it is
equivalent to computing the MDS with kMDS = 2. It is also possible to plot more information,
for instance choosing to plot the 2nd and 3rd axes instead of the 1st and 2nd , although the repre-
sentation using the first two axes is the most natural as they are always the two axes containing
the most information (as the axes associated with the two largest eigenvalues). Another option
would be to display the point clouds in 3 dimensions (3D). Figure 1.2 for instance presents the
same point cloud as the one in Figure 1.1 using a 3D representation. We observe that adding
a third dimension reveals additional information about the point cloud. However, this is still
not all the information we have on this cloud, as we will usually compute the MDS with a kMDS
in the order of 1,000 and it is already too complicated to plot (and possibly even more compli-
cated to understand) a 4D point cloud. Section 1.8 will present classical scatter plots in higher
dimensions. Chapter 3 will discuss in more detail about comparing point clouds by a distance
between them.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

1.1. Multidimensional Scaling (MDS) 11

Figure 1.1 – Heatmap of a point cloud generated by MDS, represented using the two axes
associated with the two largest eigenvalues. The values on the axes are related to the binning
used to create the heatmap. Here the number of bins is 256 per axis.

Figure 1.2 – 3D representation of a point cloud using the first 3 axes.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

12 CHAPTER 1. BACKGROUND

1.2 Metabarcoding

Figure 1.3 – Metabarcoding : a method of species identification based on DNA. In this thesis
we only deal with step 5.

The original motivation for this thesis and all the numerical experiments conducted therein
are based on biodiversity data. We now present a brief overview of the underlying technique.

Metabarcoding [107, 128, 20] is a branch of molecular biology that focuses on the identifica-
tion of operational taxonomic units (OTUs, a group of individuals that are closely related at
the DNA level) from samples containing large amounts of genetic material obtained by high
throughput DNA sequencing. It is an extension of DNA barcoding [46, 66, 127] which involves
identifying species on the basis of specific parts of their DNA, to the large amount of data pro-
duced by the latest generation of sequencers. Metabarcoding (and DNA barcoding) allows for
the study of biodiversity when it is not possible to identify individuals directly or when the
number of individuals is too large to be classified using other methods.

The metabarcoding workflow, illustrated in Figure 1.3 consists in the extraction of a specific
portion of DNA to be studied. MDS on the distance matrix [20] is one way of studying these
samples. In this case, the distance matrix used by MDS is calculated using the Smith-Waterman
distance [120] between the DNA sequences. Point clouds resulting from the MDS on such
samples can then be used for studying biodiversity.

This thesis only deals with step 5 of the metabarcoding workflow from Figure 1.3. Conversely,
we recall that MDS has many possible applications, the methods discussed are applicable to
other areas as well.

1.3 Symmetric Eigenvalue Decomposition and Singular Value De-
composition

The main computation step of MDS is the computation of the sEVD ofG (line 2 in Algorithm 1).
As discussed in Section 1.1.2, the sEVD and SVD are equivalent in this case. In this section we
will present both of these decompositions.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

1.4. Approximated SVD through randomized linear embedding 13

1.3.1 Singular Value Decomposition (SVD)

The SVD [17, 75] of a real rectangular matrix A ∈Rm×n consists of the factorization of the form
A = UΣV T where Σ ∈ Rm×n is a diagonal rectangular matrix whose diagonal entries σi = Σi,i
are non negative, ranged in decreasing order, and referred to as the singular values and U ∈
R
m×m and V ∈ Rn×n are orthogonal matrices representing the so-called left and right singular

vectors, respectively. In practice, the SVD is stored in a compact form. Assuming A is of
rank r ≤min(m,n), Σ ∈ Rr×r is stored as a diagonal square matrix and U ∈ Rm×r and V ∈ Rn×r
are stored as rectangular matrices with orthogonal columns. A major breakthrough in the
numerical computation of the SVD has been proposed by Golub et al. [52, 57, 53]. We refer
the reader to [56] for details and to [122, 68] for an early history. The SVD plays a central
role in data analysis because it can been shown that keeping the information related to the
first k singular values, referred to as a truncated SVD (TSVD) [116] at rank k, consists of the
best approximation in commonly employed norms such as 2-norm among all possible rank k
approximations of A.

1.3.2 Symmetric Eigenvalue Decomposition (sEVD)

The sEVD [102, 56, Ch.8] of a real symmetric matrix A ∈Rm×m consists of a factorization of the
form A = QΛQT where Λ ∈ Rm×m is a diagonal matrix whose entries λi are the eigenvalues of
A and Q ∈ Rm×m is orthogonal and representing the eigenvectors of A. While not all matrices
admit an EVD, all symmetric matrices do and their sEVD can be written with an orthonormal
basis of eigenvectors. We already noted that the sEVD of a symmetric matrix can be related
to its SVD in Section 1.1.2. There is also a connection between the SVD of a matrix A as the
sEVD of ATA. Writing A = UΣV T the SVD of A, we have ATA = VΣTUTUΣV T = VΣ2V T 2.
Note that in this manuscript we will neither tackle nor introduce the unsymmetric eigenvalue
problem. The interested reader might refer to chapter 7 of [56] for a detailed description.

1.4 Approximated SVD through randomized linear embedding

It has been shown [20, 21, 19, 99] that we can rely on a much faster algorithm than a de-
terministic SVD, by using randomized linear embedding [64, 32, 92]. In this algorithm, a
deterministic algorithm is still required but with much lower dimensions, such that it is not
critical to have a fast distributed-memory deterministic SVD to ensure the efficiency of the
overall algorithm. We refer the reader to [38] for a detailed review of HPC (deterministic) SVD
developments and we instead focus here on SVD based on randomized linear embedding, or,
for short, randomized SVD (RSVD). We will employ it in the sEVD step of our MDS and, for
this reason, we will refer to the step associated with line 2 in Algorithm 1 as RSVD in the rest of
this chapter. Because the randomized linear embedding methods results in approximated fac-
torisation, we assess their quality. This is why the MDS (Algorithm 1) is enriched with a CHECK
step at line 3. This check consists in measuring the part τ of the information captured by Λ

amongG through their relative Frobenius norms (τ = ‖Λ‖F‖G‖F
) and verifying that it is large enough

(τ > τmin = 1.0− ε, with ε = 10−3, being typically satisfying in our case). A more detailed study
of the quality of this factorization will be presented in Section 2.3.

2. While this is an intuitive relation between the SVD and sEVD, the computation of the SVD through the sEVD
of ATA is less stable than a direct SVD computation.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

14 CHAPTER 1. BACKGROUND

1.4.1 Approximating the range of A

In order to perform the RSVD (Section 1.4.2) we need to approximate the range of the input
matrix, following the methods presented in [92]. Let us consider A ∈ Rm×n. The main idea is
to approximate the column space of the matrix A by only a small number of vectors through
a linear combination of the columns. It requires the generation of random matrix (lines 1 in
Algorithm 2, referred to as RAND in the following) followed by a matrix multiplication, or MM
for short (line 2, referred to as MM1 in the following). The result is then orthogonalized (line 3,
QR1 and Q1) to obtain a basis (Q) of an approximation of the range of A.

The procedure for approximating the range ofA consists in considering Ω a random n×k matrix
and performing the matrix-matrix product Y = AΩ (where Y is then a m× k matrix). There are
several ways to choose Ω [64]. We here restrict ourselves to the Gaussian distribution, i.e. Ω is
a random Gaussian matrix whose coefficients satisfy the standard normal distributionN (0,1).
Usually, for a good precision at rank k, it is advised to select Ω as n× k′ with k′ = k + s, where s
is called the oversampling. Because taking s as low as s = 5 or s = 10 is often (and in particular
in this study) sufficient [64], we do not distinguish k and k′ in the rest of the document. We
also assume k � min(m,n), which is also a reasonable practical hypothesis in general and in
the particular metabarcoding case study we consider here. In addition, we have m = n, as the
RSVD is applied on an input square matrix A consisting of the Gram matrix G of the MDS.

1.4.2 Randomized SVD (RSVD)

Let A ∈Rm×n be a matrix withm ≥ n. The number of floating point operations (flop) of the SVD
is O(mn2) and it becomes unaffordable for large values of m and n. Alternatively, randomized
algorithms are very efficient algorithms with bounds on errors, to compute the first singular
values and vectors in a reasonable amount of time and memory [64]. One of them is the recently
developed RSVD [110, 91]. Once the range of A has been approximated through a basis Q
following the steps presented in Section 1.4.1, the matrix A is projected onto this space (line 4,
MM2) and factorized via a (deterministic) SVD (line 5). After this step, the right singular vectors
V are obtained whereas it remains to explicitly form the left singular vectors U (line 6, MM3).

Algorithm 2: randomized linear embedding SVD: (U,Σ,V) ' RSVD(A,k)
Input: A a m×n matrix, k a prescribed rank
Output: an approximate factorization A 'UΣV T

1 Draw a n× k Gaussian random matrix Ω // RAND
2 Form the m× k matrix Y = AΩ // MM1
3 Compute the QR decomposition of Y : QR = Y // QR1, Q1
4 Form the n× k matrix C = ATQ // MM2
5 Compute the SVD of C: UCΣV

T
C = C // QR-SVD

6 Form the matrix U =QVC and note V =UC // MM3
7 return U,Σ,V

Am×k matrix with such dimensions k�m is often referred to as tall and skinny and this shape
can be computationally exploited following Algorithm 3 to reduce the complexity of the SVD
with respect to the original developments from [52, 57, 53]. The idea is to first compute the
QR factorization (line 1 in Algorithm 3, referred to as QR2 and Q2 in the following) of the matrix
whose SVD is sought. Doing so, it only remains to process a k × k matrix (R) with the standard
(such as [53] or one of its recent derivatives [56]) SVD algorithm (line 2 in Algorithm 3, k × k
SVD) before reconstructing the left singular vectors U (line 3, MM4). Such a QR-SVD approach
was first proposed by Lawson and Hanson [83] and further analyzed by Chan [26]. The orig-

Large Scale MDS for the Study of Biodiversity Romain Peressoni

1.5. Task-based programming 15

inal motivation was the reduction of the computational complexity. In a distributed-memory
context, it is also an opportunity for ensuring a separation of concerns: ensuring only a fast
m× k distributed-memory QR factorization while relying on a sequential (or shared-memory)
k×k standard SVD. We will employ such a QR-SVD algorithm to process the deterministic SVD
step of the RSVD algorithm; this is why line 5 in Algorithm 2 will be referred to as QR-SVD in
the following.

Algorithm 3: QR-SVD algorithm: (U,Σ,V) = QR-SVD(A)

Input: A a n× k matrix
Output: a factorization A 'UΣV T

1 Compute the QR decomposition of A: QR = A // QR2, Q2
2 Compute the SVD of the triangular matrix R: URΣV T = R // k × k SVD
3 Form the matrix U =QUR // MM4
4 return U,Σ,V

We then consider the RSVD-MDS as the MDS algorithm (Algorithm 1) for which the sEVD (step
2) is processed with an RSVD (Algorithm 2) for which the input m × n matrix A is the m ×m
Gram G matrix of the MDS, in particular involving that the RSVD is processed on a square
matrix (m = n). The internal deterministic SVD step within the RSVD (step 5 in Algorithm
2) is itself processed with a QR-SVD (Algorithm 3). We also highlight that, in addition to the
prescribed rank kMDS of the baseline MDS algorithm (Algorithm 1), the RSVD-MDS algorithm
is also parameterized with the dimension k of the randomization and must satisfy kMDS ≤
k+ ≤ k. The dimensions m and k drive the computational load of the RSVD and RSVD-MDS
algorithms. On the other hand, the kMDS parameter is only used in the ultimate step of the
MDS, essentially depends on what the MDS is used for (for instance, if the goal is to obtain a
point cloud visualization, it corresponds to kMDS = 2), and does not significantly impact the
computational load. As a consequence, the performance study will be parameterized with m
and k only.

It is to be noted that the RSVD may (slightly) break the symmetry when forming the approx-
imate matrix QQTA. However, in our context, the QQTA approximation is likely to be an ex-
cellent approximation of A so that the symmetry is almost preserved and does not significantly
impact the numerical result in most cases. We will discuss it in greater details in Section 2.3.
Alternatively, a symmetry-preserving randomization technique [64, 91] might be employed,
we present it the Section 2.2.

1.5 Task-based programming

Recent supercomputers are increasingly complex, composed of many multicore nodes as well
as accelerators such as GPU. Writing numerical code for scientific simulation that can take
advantage of the full potential of these machines is becoming increasingly complicated. Writ-
ing these codes using relatively low-level primitives may in theory allow for a more optimized
code that can exploit the full potential of the hardware, but requires to develop and maintain
complex codes combining multiple levels of parallel expressions such as message passing for
inter-node communications, multithreading for exploiting multicore chips and vendor prim-
itives such as cuda for exploiting GPUs. The other approach consists in delegating this work
to a runtime system and let it handle the scheduling of computation and communication be-
tween nodes. However, using these runtime systems while adding a level of abstraction that
can greatly simplify the writing of code comes with other challenges, an important one being
to deliver the same performance as libraries based on lower level parallel scheme. In Chapter 2
we have chosen to rely on the sequential task flow (STF) model [4, 5, 6], where tasks are created

Romain Peressoni Large Scale MDS for the Study of Biodiversity

16 CHAPTER 1. BACKGROUND

sequentially and their mutual dependencies are automatically inferred through an analysis of
their data access mode (READ (R), WRITE (W) or READ-WRITE (RW)). This model is, for example,
available in OpenMP (through the task directive and the depend clause), OmpSs [41] or StarPU
[10], the runtime system we use in this work. The tasks are then represented using a directed
acyclic graph (DAG) where vertices are tasks and edges dependencies between them. As a con-
sequence, the runtime system has a complete view of the application, and can schedule the
task and communication appropriately, up to the point of being able to pipeline multiple op-
erations without the need for synchronization steps. The effectiveness of this model on shared
memory parallel computers has been proved by numerous works although it has been much
more rarely considered in distributed-memory settings; early work on this topic is presented
by [131] and [4]. More recently, an extension of the STF model was proposed by [5] that allows
for portable implementations of scalable algorithms for distributed-memory computers.

The STF programming model can be used in a distributed-memory setting to manage the dis-
tribution of the task over the nodes of a cluster, see [4]. In practice, the application instructs
the runtime about the distribution of data to be used over the nodes of the cluster, typically a
2D block-cyclic (2DBC) distribution, see Section 2.5. Unlike widely used dense linear algebra
libraries, for which the data mapping is often hardwired in the code making the implemen-
tation of alternative data distribution tedious, this model allows for delegating this task to
the runtime making the implementation of new and potentially irregular data mapping much
more accessible. On each node, the runtime system automatically determines which tasks of
the graph should be performed by the node: if and only if it owns the data that is written to by
the task. This is deterministic, and thus all nodes automatically agree on which of them will
perform each task, without having to exchange any message. The runtime is also in charge of
handling communication of the data between the nodes that needs it, relying in many cases
on MPI [47]. Special care has to be taken to mix communication and multithreading [35] or to
take advantage of using both [126].

Writing a task-based code in the STF model is twofold. First, the data structures must be
designed and declared to the runtime system, we will refer data declared to the runtime to as
data handles. Second, the sequence of tasks operating on those data handles must be written
using an insert_task function. The submitted task is an elementary operation accessing data
with specific modes. A runtime can use the provided access modes (e.g. Read, Write) to order
tasks and control concurrent execution.

We illustrate it with a general matrix matrix multiplication (GEMM). The sequential code of
a matrix multiplication is commonly written as three nested loops as in Algorithm 4. This
algorithm can be translated into an STF version as simply as shown in Algorithm 5. Such a
task-based implementation can then run on any platform as long as the elementary operations
(here the GEMM tasks inserted in line 4) are provided for the target platform. For instance, on
an heterogeneous machine composed of both CPUs and GPUs, if the GEMM implementation
for a CPU core and a GPU are provided, the runtime system can then dynamically decide
on which unit perform each individual GEMM task. In addition, it automatically handles
communications in the case of a distributed-memory platform. This versatility will be used in
the next chapter to design advanced versions of the symmetric matrix multiplication (SYMM),
the dominant kernel in both RSVD and RsEVD algorithms and corresponding RSVD-MDS and
RsEVD-MDS respective methods.

1.6 Task-based randomized linear embedding MDS via RSVD

Large Scale MDS for the Study of Biodiversity Romain Peressoni

1.6. Task-based randomized linear embedding MDS via RSVD 17

Algorithm 4: Sequential block GEMM.

1 for j = 1 . . .N do
2 for i = 1 . . .M do
3 for l = 1 . . .M do
4 gemm(Ai,l , Bl,j , Ci,j);

Algorithm 5: STF block GEMM.

1 for j = 1 . . .N do
2 for i = 1 . . .M do
3 for l = 1 . . .M do
4 insert_task(gemm, Ai,l :R, Bl,j :R, Ci,j :RW);

1.6.1 Task-based RSVD

The RSVD as presented in 1.4.2 was implemented in [7] in the fmr library, which was used in
the context of a larger software stack presented in Figure 1.4

The input matrix A of the RSVD (Algorithm 3) is the Gram matrix G of the MDS. The code in
fmr and mds used to perform the RSVD and MDS respectively can rely on either BLAS/LAPACK
or chameleon to perform the basic matrix operations needed for the MDS, namely BLAS/LAPACK
for shared memory and chameleon in the distributed-memory case.

Executable

MDS

C++

FMR
Randomized SVD

C++

Chameleon
GEMM, QR, Gram

C

StarPU
Task scheduling

C

OpenMPI/Nmad
Communications

C

Figure 1.4 – Software stack used in the HPC computation of RSVD-MDS.

The QR-SVD step (Algorithm 3, called at line 5 in Algorithm 2) is implemented within fmr as
follows. The QR decomposition (line 1 in Algorithm 3) is performed through two calls: (QR2)
a call to chameleon pdgeqrf for performing the QR factorization followed by (Q2) a call to the
chameleon pdorgqr for explicitly forming matrix Q. The k × k R obtained being of small di-
mension, it is centralized and processed with (a deterministic) LAPACK dgesvd SVD call (k × k
SVD, line 2). Q and UR being formed at this stage, their final product U = QUR (MM4, line 3) is
once again simply performed by a standard general matrix multiplication through a chameleon
pdgemm call.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

https://gitlab.inria.fr/compose/legacystack/fmr
https://gitlab.inria.fr/compose/legacystack/fmr
https://gitlab.inria.fr/diodon/cppdiodon
https://gitlab.inria.fr/solverstack/chameleon
https://gitlab.inria.fr/solverstack/chameleon
https://gitlab.inria.fr/compose/legacystack/fmr
https://gitlab.inria.fr/solverstack/chameleon
https://gitlab.inria.fr/solverstack/chameleon
https://gitlab.inria.fr/solverstack/chameleon

18 CHAPTER 1. BACKGROUND

1.6.2 Implementation of MDS using RSVD

Now, we present the task-based design of [7] within the mds application of the overall RSVD-
MDS (Algorithm 1) discussed in 1.1.2. The input distance matrix D of the MDS is assumed
to be stored in hdf5 format. Following a tile algorithm design, the authors’ task-based RSVD
aims at reading it from disk and arranging it into a distributed-memory tile matrix (READ_D
in Algorithm 1). Here the matrix is distributed according to a 1D block-cyclic pattern (1DBC)
as opposed to a more classical 2D block-cyclic pattern (2DBC) as the size of the matrix D
compared to the tall skinny matrices makes the 2DBC less efficient.

The first numerical step of the MDS is the computation of the Gram matrixG from the distance
matrix (GRAM, line 1 in Algorithm 1). From a data access point of view, GRAM is a reduction-like
algorithm and is mainly communication-bound. A per-column reduction (the per-row reduc-
tion is avoided by symmetry) is performed to compute all the d2

+i (and d2
i+ by symmetry) while

a complete reduction is performed to compute d2
++. This process is illustrated in Figure 1.5.

In the context of the Gram matrix computation, note that after the distributed row reduction
(step 3 in Figure 1.5), all the d2

i+ values are computed in small vectors of the same size as the
tiles. The reduction is then pursued up to the distributed column reduction (step 6 in Figure
1.5) in order to obtain the d2

++ value. Finally, an embarrassingly parallel update of each tile
of the matrix is submitted. Each task computes the final gij values with the respective vectors
from the Step 3 and the final value from the Step 6.

The second numerical step (RSVD, line 2 in Algorithm 1) is the SVD, effectively computed with
an RSVD in the considered RSVD-MDS algorithm. The mds application has been modified to
call the fmr task-based RSVD routine presented earlier in 1.4.2. Σ being diagonal, its Frobenius
norm is immediate to compute and the third step (CHECK, line 3 in Algorithm 1) therefore
essentially consists in computing the Frobenius norm of G. The last two steps of the MDS
consist in computing matrix X (Compute_X) through X =U+Σ+1/2 (line 5 in Algorithm 1) based
on the filtered (line 4 in Algorithm 1) output (U+,Σ+) of the (R)SVD and scaling each column
i of U+ to compute X 'U+Σ+1/2.

0 0

2 2

1 1

3 3

0 0

2 2

1 1

3 3

0 0

2 2

1 1

3 3

0 0

2 2

1 1

3 3

Step 1: Accumulation over the rows within each tile

0 0

2 2

1 1

3 3

0 01 1

Step 3: Distributed row reduction

0 0

2 2

1 1

3 3

0 0

2 2

1 1

3 3

0 0

2 2

1 1

3 3

Step 2: Local row reduction on each process

0 01 1 0 01 1

Step 4: Accumulation over the columns within each tile

0 01 1 0 1

Step 5: Local column reduction on each process

0 1 0

Step 6: Distributed column reduction

Figure 1.5 – Task-based GRAM tile algorithm.

1.6.3 Complexity and key performance steps of the RSVD-MDS

The flop count of the RSVD (Algorithm 2) is dominated by the MM1 and MM2 matrix multiplica-
tions. The RSVD satisfies RSVD (m,n,k) ∼m,n→∞ 4mnk. In particular, we have RSVD (m,n,k) =
O(mn) asm,n→∞. The RSVD step (called with n =m) dominating the RSVD-MDS (Algorithm
1), the flop count of the latter satisfies RSVD-MDS (m,k) = O(m2) as m → ∞. In a nutshell,
the MM1 and MM2 general matrix multiplication steps are the dominant numerical operations of
both the RSVD and the overall RSVD-MDS algorithms, when considering practical dimensions

Large Scale MDS for the Study of Biodiversity Romain Peressoni

https://gitlab.inria.fr/diodon/cppdiodon
https://gitlab.inria.fr/diodon/cppdiodon
https://gitlab.inria.fr/compose/legacystack/fmr

1.7. Related work on distributed-memory MDS 19

(k�m).

Both QR factorization (QR1 and QR2) and subsequent orthogonal generation (Q1 and Q2) steps
have a lower computational complexity than the dominant matrix multiplication step MM1.
However, their tall and skinny shape had long made them challenging to process efficiently in
parallel. A new numerical scheme [33, 34] has been proposed about fifteen years ago to reduce
the number of communications when processing such matrices. It has then been demonstrated
[63] that the original tile QR factorization [24] can cope with this scheme.

The other numerical steps do not represent as high challenges and we therefore do not discuss
them further. It remains however to explain how to arrange the sequence of calls in a dis-
tributed framework, which is often a hard challenge to make without synchronization. In [7]
the authors rely on the STF programming model explained in 1.5. It allows for writing a se-
quential task-based algorithm and let the runtime system infer (and handle) the dependencies
between them. As a consequence, no synchronization is needed between each above discussed
step. As a consequence, the whole RSVD and RSVD-MDS algorithms are fully pipelined up to
the actual numerical dependencies of the tasks.

1.7 Related work on distributed-memory MDS

To the best of our knowledge, no distributed-memory classical MDS had been proposed before
[7]. However, multiple propositions have been discussed for designing distributed-memory
LSS [135, 11, 104, 28, 12]. They all rely on a full MPI [47] parallelization scheme. Zilinskas
and Zilinskas designed the parallelization of a genetic LSS algorithm, assessed on up to 24
cores [135]. Pawlizeck and Dzwinel considered a heuristic based on particle dynamics simu-
lation to find the minimum of the stress function. They validated their approach up to 144
cores [104]. The last three LSS parallelization schemes are based on a non trivial variant of
the gradient descent algorithm. The method is named Scaling by MAjorizing a COmplicated
Function (SMACOF) [86]. At each iteration of the SMACOF algorithm, the dominant part is a
matrix-matrix product to update the points. The parallel design proposed by Bae was initially
assessed up to 8 cores [11], and extended up to 256 cores [12, 28], obtaining an efficiency of
70% for dataset of size 100,000× 100,000.

Regarding the RSVD itself, it had been parallelized for shared-memory [87] and GPU-accelerated
[73, 89] single-node machines but, to the best of our knowledge, not for distributed-memory
machines before [7].

1.8 About the datasets used in this thesis

In this section, we present the datasets used for the experiments of this thesis. They range from
very small 1,502 × 1,502 sizes that were mainly used for numerical validation all the way up
to a dataset of size 1,043,192 that we used extensively to assess the scalability of the proposed
approaches.

1.8.1 Atlas Guyane

The Atlas Guyane dataset (see Figure 1.6) is a 1502-by-1502 dissimilarity matrix obtained from
sequences of tropical trees in French Guiana [49]. We use this dataset as a small-scale dataset,
which is convenient to perform quick experiments when doing development. It is also an
interesting dataset as the magnitude of the eigenvalues decays slowly (see Figure 1.7) and it

Romain Peressoni Large Scale MDS for the Study of Biodiversity

20 CHAPTER 1. BACKGROUND

Axis 1
 σ1=2.0e+06

0

25

50

Axis 2
 σ2=1.3e+06

0

25

50

Axis 3
 σ3=9.9e+05

0

25

50

Axis 4
 σ4=9.5e+05

0

25

50

Axis 5
 σ5=6.9e+05

0

25

50

Axis 6
 σ6=6.3e+05

0 50

0

25

50

0 50 0 50 0 50 0 50 0 50

Axis 7
 σ7=5.6e+05

Figure 1.6 – Heatmap of the Atlas guyane point cloud, obtained from a full MDS of the dataset.
Each heatmap corresponds to the representation of the two dimensions in the diagonal block.
For instance, the third heatmap of the first column represents the first axis along the x-axis and
the fourth axis along the y-axis.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

1.8. About the datasets used in this thesis 21

0 100 200 300 400 500 600 700 800
Rank

10−3

10−1

101

103

105
Si
ng

ul
ar
 V
al
ue

Figure 1.7 – Singular values of the Atlas guyane dataset, obtained from full SVD. Values asso-
ciated with a negative eigenvalue have been filtered out as they are not part of the axes kept
for building the associated point cloud.

may thus be viewed as numerically full-rank. From this perspective, it is very different from
the other datasets. For more information related to this dataset, see [25, 1].

1.8.2 Long Reads

The Long Reads samples are a set of four samples of bacteria named Long Reads A through D,
each composed of 30,000 entries. These datasets have been randomly sampled from a larger
sample of 400,000 entries. As a consequence, they are supposed to represent the same infor-
mation. We will further discuss it in Chapter 5 with the aim to assess whether it is possible to
confirm this hypothesis without accessing any off-diagonal block at all (having in mind Figure
7 from the general introduction on page 6). Note that we actually do have access to all the
off-diagonal, which allows us to compute a reference overall reliable point cloud. This overall
dataset is referred to as Long Reads ABCD. Figures 1.8 and 1.10 respectively show the heatmap
of Long Reads A and the decay of its positive eigenvalues. Figure 1.9 shows the heatmaps of
the four Long Reads samples A through D.

1.8.3 10V-RbcL (Malabar project)

The dataset 10V-RbcL is from the Malabar project [9]. It contains a number of samples ex-
tracted at different places, time of the year and tide. It is a sample of size 23,214. Figures 1.11
and 1.12 respectively show the corresponding heatmap and decay of the positive eigenvalues.

1.8.4 Diatoms from Lake Geneva (S5 dataset split into L1, . . . , L10)

In this section, we present the S5 dataset. It is the larger one assessed in this thesis [48]. It
results from the sampling of diatoms from Lake Geneva at ten monthly intervals. The ten
samples are named L1, . . . , L10. Together they form the S5 dataset (also referred to as the full
L1-L10 dataset). Each sample consists of approximately 100,000 entries, as further detailed in
Table 1.1. In total, S5 (i.e. the full L1-L10) is a matrix of size 1,043,192 (726GB). This matrix

Romain Peressoni Large Scale MDS for the Study of Biodiversity

22 CHAPTER 1. BACKGROUND

Axis 1
 σ1=4.7e+03

0

50

100

Axis 2
 σ2=1.7e+03

0

50

100

Axis 3
 σ3=5.3e+02

0

50

100

Axis 4
 σ4=4.5e+02

0

50

100

Axis 5
 σ5=3.1e+02

0

50

100

Axis 6
 σ6=2.7e+02

0 100

0

50

100

0 100 0 100 0 100 0 100 0 100

Axis 7
 σ7=2.5e+02

Figure 1.8 – Heatmap of the Long Reads A point cloud, obtained from a RSVD-MDS of the
dataset at rank 5000. Each heatmap corresponds to the representation of the two dimensions
in the diagonal block. For instance, the third heatmap of the first column represents the first
axis along the x-axis and the fourth axis along the y-axis.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

1.8. About the datasets used in this thesis 23

Long Reads A Long Reads B

Long Reads C Long Reads D

Figure 1.9 – Heatmaps of the four Long Reads Samples, each obtained from a RSVD-MDS of
the respective datasets Long Reads A, B, C and D at rank 5000.

0 500 1000 1500 2000 2500
Rank

100

101

102

103

Si
ng

ul
ar
 V
al
ue

Figure 1.10 – Singular values of the Long Reads A dataset, obtained from RSVD-MDS of rank
5000. Values associated with a negative eigenvalue have been filtered out as they are not part
of the axes kept for building the associated point cloud.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

24 CHAPTER 1. BACKGROUND

Axis 1
 σ1=3.1e+06

0

50

100

Axis 2
 σ2=2.3e+06

0

50

100

Axis 3
 σ3=1.5e+06

0

50

100

Axis 4
 σ4=1.2e+06

0

50

100

Axis 5
 σ5=1.0e+06

0

50

100

Axis 6
 σ6=8.0e+05

0 100

0

50

100

0 100 0 100 0 100 0 100 0 100

Axis 7
 σ7=7.3e+05

Figure 1.11 – Heatmap of the 10V-RbcL point cloud, obtained from a RSVD-MDS of the dataset
at rank 500. Each heatmap corresponds to the representation of the two dimensions in the
diagonal block. For instance, the third heatmap of the first column represents the first axis
along the x-axis and the fourth axis along the y-axis.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

1.8. About the datasets used in this thesis 25

0 50 100 150 200
Rank

103

104

105

106
Si
ng

ul
ar
 V
al
ue

Figure 1.12 – Singular values of the 10V-RbcL dataset, obtained from RSVD-MDS of rank 500.
Values associated with a negative eigenvalue have been filtered out as they are not part of the
axes kept for building the associated point cloud.

was used in [7] in order to demonstrate the ability of the RSVD-MDS algorithm to scale to
very large datasets. This is also the dataset used in [20]. We use it in the thesis to evaluate the
scalability of our algorithms. We can consider either a single Li sample or the union of a subset
of Li samples as shown in Table 1.2. In addition, this dataset is used to evaluate the robustness
of the comparison algorithms of Chapter 3. The singular values obtained using RSVD-MDS are
shown in Figure 1.14. We also present the heatmaps in Figure 1.13, following the same per-axis
representation to show the first few dimensions of the full S5 point cloud. Finally, Figure 1.15
shows the heatmaps for the first two dimensions of each Li (obtained separately) as well as that
of the full sample S5. These results have been obtained using the RSVD-MDS of [7] and will
serve as a reference for the remainder of the thesis.

Table 1.1 – Samples names and matrix size from Lake Geneva dataset.

Sample name size
L1 72,083
L2 98,492
L3 72,897
L4 136,450
L5 75,218
L6 99,594
L7 124,367
L8 115,607
L9 81,983

L10 166,501

Romain Peressoni Large Scale MDS for the Study of Biodiversity

26 CHAPTER 1. BACKGROUND

Table 1.2 – Samples names, composition and size.

Sample name composition size
S1 L6 99,594
S2 L2-L3-L6 270,983
S3 L1-L3-L5-L7-L9 426,548
S4 L2-L4-L6-L8-L10 616,644
S5 All 1,043,192

Axis 1
 σ1=3.0e+08

0

50

100

Axis 2
 σ2=1.3e+08

0

50

100

Axis 3
 σ3=6.3e+07

0

50

100

Axis 4
 σ4=5.0e+07

0

50

100

Axis 5
 σ5=4.3e+07

0

50

100

Axis 6
 σ6=3.4e+07

0 100

0

50

100

0 100 0 100 0 100 0 100 0 100

Axis 7
 σ7=3.1e+07

Figure 1.13 – Heatmap of the full L1-L10 point cloud (sample S5), obtained with an RSVD-
MDS of the dataset at rank 1000. Each heatmap corresponds to the representation of the two
dimensions in the diagonal block. For instance, the third heatmap of the first column repre-
sents the first axis along the x-axis and the fourth axis along the y-axis.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

1.8. About the datasets used in this thesis 27

0 100 200 300 400 500 600
Rank

105

106

107

108

Si
ng

ul
ar
 V
al
ue

Figure 1.14 – Singular values of the L1-L10 dataset (sample S5), obtained with an RSVD-MDS
at rank 1000. Values associated with a negative eigenvalue have been filtered out as they are
not part of the axes kept for building the associated point cloud.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

28 CHAPTER 1. BACKGROUND

0 50 100

0

20

40

60

80

100

120

S5

0 50 100

0

20

40

60

80

100

120

L1

0 50 100

0

20

40

60

80

100

120

L2

0 50 100

0

20

40

60

80

100

120

L3

0 50 100

0

20

40

60

80

100

120

L4

0 50 100

0

20

40

60

80

100

120

L5

0 50 100

0

20

40

60

80

100

120

L6

0 50 100

0

20

40

60

80

100

120

L7

0 50 100

0

20

40

60

80

100

120

L8

0 50 100

0

20

40

60

80

100

120

L9

0 50 100

0

20

40

60

80

100

120

L10

Figure 1.15 – Heatmaps of the full L1-L10 dataset (sample S5) obtained with an RSVD-MDS
at rank 1000 on the top left, alongside the heatmaps for every other Li samples also computed
from RSVD-MDS of rank 1000.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Part I

Robust high-performance MDS

29

Chapter2
Task-based randomized linear embedding
MDS

2.1 Introduction

This chapter revisits the numerical [20, 21, 19, 99] and HPC [7] design of related work on
MDS based on linear embedding discussed in Chapter 1. Whereas Chapter 1 presented an
RSVD-MDS [20, 21, 19, 99, 7], Section 2.2 introduces an RsEVD-MDS variant. Instead of being
computed with an RSVD, the sEVD (step 2 in Algorithm 1) is computed through an RsEVD.
Section 2.3 discusses the impact of the choice of the randomized linear embedding variant on
the numerical behaviour of the MDS. On the one hand, the standard RSVD used in [20, 21, 19]
may (slightly) break the implicitly assumed symmetry of the MDS but requires only a single
projection. On the other hand, the standard randomized sEVD (RsEVD) used in [99] preserves
the symmetry but requires two projections.

Both RSVD-MDS and RsEVD-MDS are dominated by matrix-matrix multiplications (MM). It
corresponds to steps MM1 and MM2 in both algorithms 2 and 6. The Gram matrix G is symmetric
by construction, as it is based on a centered dissimilarity matrix. As such, both MM1 and MM2
can be performed using either GEMM or SYMM. GEMM is the general matrix multiplication
and does not take into account any specificity of the matrices while SYMM is its counterpart
when one of the input matrix is symmetric. In order to maximize performance, both matrix
products may be performed with a GEMM; however this implies that the matrix G, initially
stored in a symmetric format, has to be converted to full format, thus doubling the initial
memory footprint. The performance and memory consumption of MM are thus keys for that
of the overall MDS based on such randomized linear embedding algorithms. We motivate the
improvement of distributed-memory matrix multiplication in Section 2.4. We review state-of-
the-art MM for distributed-memory machines in Section 2.5. We furthermore design a new
task-based symmetric MM (SYMM) in Section 2.6. We assess the resulting MDS on the large-
scale biodiversity dataset corresponding to diatoms from Lake Geneva in Section 2.8. We also
compare this improved MDS with the starting point of this thesis [7] reviewed in Chapter 1.

31

32 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

2.2 Randomized sEVD (RsEVD)

The sEVD of a matrix A ∈ Rm×m has a complexity of O(m3) and is the dominating step of the
MDS. Using an sEVD becomes unaffordable for large values of m, this is why, similarly to the
RSVD presented in Section 1.4.2, we can take advantage of randomized algorithms to compute
an approximate sEVD. The concept, described in [92] echoes the one of the RSVD: we start by
approximating the column space of the matrix A by only a small number of vectors through a
linear combination of the columns and then we orthogonalize them to obtain a basis (QY) of
an approximation of the range of A. The RAND, MM1 and QR1 operations are the ones presented
in Section 1.4.1 and are identical between the RSVD (Algorithm 2) and RsEVD (Algorithm 6).
Then, the matrix A is projected onto this space, from both sides to compute the product C =
QTYAQY , in algorithm 6 MM2 and MM3. This projection on both sides preserves the symmetry of
the input matrix. In this projection, only MM2 is costly, as MM3 is the product of a k ×m matrix
with an m × k one and its cost is therefore low compared to the one of MM2. We then compute
a full sEVD of the k × k matrix C (sEVD) before forming the matrix Q = QYQC (MM4). Unlike
with the RSVD, projecting on both sides preserves the symmetry. We will further discuss the
symmetry issue in Section 2.3.

Algorithm 6: randomized linear embedding sEVD algorithm: (Q,Λ) ' RsEVD(A)

Input: A a m×m matrix, k a prescribed rank
Output: an approximate factorization A 'QΛQT

1 Draw a m× k Gaussian random matrix Ω // RAND
2 Form the m× k matrix Y = AΩ // MM1
3 Compute the QR decomposition of Y : QYRY = Y // QR1, Q1
4 Form the m× k matrix C = AQY // MM2
5 Form the k × k matrix C =QTYC // MM3
6 Compute the EVD of C: QCΛQ

T
C = C // sEVD

7 Form the matrix Q =QYQC // MM4
8 return Q,Λ

We then consider the RsEVD-MDS as the MDS algorithm (Algorithm 1) for which the sEVD
(step 2) is processed with an RsEVD (Algorithm 6) for which the input matrix A is the m ×m
Gram G matrix of the MDS.

This method does not affect the symmetry of the input matrix. However having to project on
both sides of the matrix, the error due to the approximation is thus doubled when compared
with the error of the RSVD. As already mentioned above, this trade-off between symmetry and
precision will be further discussed in Section 2.3.

2.3 Numerical behaviour of RSVD-MDS and RsEVD-MDS

This section discusses the impact of the choice of the randomized linear embedding variant on
the numerical behaviour of the MDS. On the one hand, the standard RSVD used in [20, 21, 19]
may (slightly) break the implicitly assumed symmetry of the MDS but requires only a single
projection. On the other hand, the standard randomized sEVD (RsEVD) used in [99] preserves
the symmetry but requires two projections. There is therefore a numerical trade-off.

As mentioned in Section 1.1.2, the computation of G out of D through (1.4) (see p. 9) is the
first step of MDS (line 1 in Algorithm 1). The coordinate matrix X ∈ Rm×kMDS is then retrieved
as G = XXt. As G is symmetric, it admits a unitary diagonalization so that its sEVD may be

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.3. Numerical behaviour of RSVD-MDS and RsEVD-MDS 33

writtenG =QΛQT where Λ is diagonal andQ is unitary. In the caseG is semi-definite positive,
Λ has only non-negative diagonal values and we may thus write X = QΛ1/2. When the matrix
is (square and) symmetric as it is the case for the Gram matrix G, the SVD (G = UΣV T) and
the sEVD (G = QΛQT) coincide up to the sign of the eigenvalues. Indeed, the sEVD of G may
also be expressed as G = U |Λ|sign(Λ)V T , where |Λ| is the diagonal matrix whose diagonal
values are the absolute values of the eigenvalues and sign(Λ) is the diagonal matrix whose
diagonal values are the signs of the eigenvalues. If we note U = Q,Σ = |Λ| and V = sign(Λ)Q,
we observe that we also have G = UΣV T , which is the SVD of G. In the case G is semi-definite
positive, we may thus also write X = UΣ1/2. MDS may thus be equally viewed as based on
sEVD (X =QΛ1/2) or SVD (X =UΣ1/2) 1

However, when randomized algorithms are employed, the approaches can differ. In partic-
ular the RSVD-MDS of Blanchard et al. [20, 21, 19] is not numerically equivalent to the
RsEVD-MDS considered by Paradis [99]. Section 2.3.1 explains this trade-off while Section
2.3.2 presents a numerical study.

2.3.1 Numerical trade-off of RSVD-MDS and RsEVD-MDS

On the one hand, the standard RSVD used in [20, 21, 19] requires only a single projection
(when buildingQQTG) but may (slightly) break the implicitly assumed symmetry of the MDS.
Indeed, the RSVD-MDS is based on the approximation G ≈ QQTG and builds the SVD of
QQTG. Even if G is symmetric, QQTG can be unsymmetric. We can still perform an SVD
QQTG = UΣV T of QQTG but there is then no guarantee that X = UΣ

1
2 satisfies XXt = G nor

even XXt =QQTG. Indeed, becauseQQTG can be unsymmetric, we cannot assume that V =U
anymore. Is this fatal? The hope is that QQTG remains almost symmetric because it is close
to the symmetric matrix G (since QQTG ≈ G). We propose to measure the loss of symmetry
as follows. Considering a square matrix A, we may decompose it as the sum A = Asym +Askew
of its symmetric part Asym = A+AT

2 and of its skew-symmetric part Askew = A−AT
2 . We can then

define the skew-symmetry ratio χ(A) of A as follows:

χ(A) =
||Askew||
||A||

(2.1)

In the RSVD case, we may expect that the skew-symmetry ratio χ(QQTG) is low as QQTG is
close to the symmetric matrix G (since QQTG ≈ G).

On the other hand, the possible drawback of the RsEVD-MDS [99] is that it requires two
projections (when building QQTGQQT). As a consequence, it may lead to a lower accuracy
than the RSVD for approximating G [64, Section 5.3]. However, contrary to the RSVD case,
the approximation G ≈ QQTGQQT of G remains symmetric. We can thus perform an sEVD
QQTGQQT = QΛQT of QQTGQQT and write X = QΛ1/2 as the coordinate matrix associated
with the approximated QQTGQQT Gram matrix.

As a summary, a first source of error is the approximation G̃ of G, G̃ being equal to QQTG and
QQTGQQT for the RSVD and RsEVD, respectively. We denote er(G̃) the associated relative
approximation error:

er(G̃) =
||G − G̃||
||G||

(2.2)

Besides depending on the randomization algorithm, it depends on the rank k of the Gaussian
random matrix Ω. The metric may also be employed to assess the reference approximation
error er(G̃ = QkΣkQ

T
k) of the (deterministic) truncated sEVD (TsEVD) G ≈ G̃ = QkΣkQ

T
k of G

1. We refer Section 1.1.2 for the handling of negative eigenvalues.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

34 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

at rank k. For a given rank k, we expect that the relative approximation error er(G̃ = QQTG)
associated with the RSVD to be lower (and thus closer to the one of the TsEVD) than the error
er(G̃ =QQTGQQT) associated with the RsEVD as the former performs only a single projection
whereas the latter performs two projections. However, the RSVD-MDS (but not the RsEVD)
may be affected by a second source of error as QQTG can be unsymmetric and we cannot there-
fore assume that V = U anymore in its SVD decomposition QQTG = UΣV T . As a conse-
quence, the coordinate matrix X (built through X =UΣ1/2) does not satisfy XXT = G anymore.
The subsequent cumulative relative error for the RSVD can be assessed with er(G̃ = XXT), i.e.
er(G̃ =UΣUT).

In practice, the MDS algorithm we rely on (Algorithm 1) filters out the negative eigenvalues
and associated eigenvectors (line 4 of Algorithm 1). Denoting Λ+ the positive eigenvalues and
Q+ the corresponding eigenvectors as in Section 1.1.2, we define the relative effective error as:

e+
r (X+) =

||G+ −X+X+T ||
||G+||

(2.3)

where G+ =Q+Λ+Q+T is computed via a full deterministic reference sEVD and X+ is the effec-
tive output of the considered MDS variant (RSVD-MDS or RsEVD-MDS).

2.3.2 Numerical study

We conducted a numerical study on two datasets. The first dataset is the 1502-by-1502 Atlas
Guyane from Section 1.8.1 (see page 19). The distance matrix associated with this dataset
is of full numerical rank (see Section 1.8.1), which shall emphasize the numerical trade-off
discussed above. The second dataset is an artificially generated low-rank matrix. We used
the Frobenius norm to compute the skew-symmetry ratios and relative errors associated with
equations (2.1), (2.2), and (2.3), respectively. The results obtained with Atlas Guyane and the
artificial datasets are discussed in sections 2.3.2.1 and 2.3.2.2, respectively.

2.3.2.1 Atlas Guyane data set

Figure 2.1 shows the positive eigenvalues associated with Atlas Guyane depending on the nu-
merical method used for computing the sEVD. The reference sEVD is shown in black. Colored
plots show the linear embedding variants using a Gaussian random matrix Ω of rank k equal to
100, 200, 300 and 400 in red, blue, green, yellow, respectively. The RSVD and RsEVD variants
are represented using solid and dashed lines, respectively. We observe that the RSVD better
captures the spectral behaviour than the RsEVD. This is expected as the RSVD better approxi-
mates G than the RsEVD due to the fact that it performs only a single projection (G ≈ QQTG)
whereas the RsEVD performs two projections (G ≈QQTGQQT).

Figure 2.2 2 furthermore shows that the approximated relative error er(G̃) associated with
Equation (2.2) due to the approximation G̃ of G is better for the RSVD (for which G̃ = QQTG,
in blue) than the RsEVD (for which G̃ =QQTGQQT , in red). However, as explained in Section
2.3.1, there is a trade-off. Indeed, the RSVD-MDS algorithm is based on the assumption that
U = V in the SVD decomposition QQTG = UΣV T of QQTG. As there is no guarantee that
QQTG remains symmetric, the better approximation of G through the RSVD (G ≈QQTG) than
that through the RsEVD (G ≈ QQTGQQT) does not guarantee that it translates into a better
approximation of X. We recall that this additional source of error due to the loss of symme-
try of QQTG induces that the coordinate matrix X (built through X = UΣ1/2) does not satisfy
XXT = G anymore. We observe that the subsequent cumulative relative error (er(G̃ = XXT) =

2. We provide an extended version of Figure 2.2 in Appendix A.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.3. Numerical behaviour of RSVD-MDS and RsEVD-MDS 35

0 100 200 300 400
Eigenvalue/Singular value index

102

103

104

105

106

Ei
ge

nv
al
ue

/S
in
gu

la
r v

al
ue

 m
ag

ni
tu
de

sEVD
RsEVD, rank = 100
RSVD, rank = 100
RsEVD, rank = 200
RSVD, rank = 200
RsEVD, rank = 300
RSVD, rank = 300
RsEVD, rank = 400
RSVD, rank = 400

Figure 2.1 – Eigenvalues of dataset Atlas Guyane obtained using different variants of random-
ized linear embedding and compared to the actual eigenvalues obtained with full sEVD (in
black). Each color represents a different rank for the randomized algorithms, with the solid
lines being the RSVD and the dashed lines the RsEVD.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

36 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

100 150 200 250 300 350 400
Rank k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
la
tiv

e
er
ro
r

RSVD cumulative error
RsEVD approximation error
RSVD approximation error
TsEVD approximation error

Figure 2.2 – Relative error er(G̃) associated with Equation (2.2) due to the approximation G̃ of
G for the Atlas Guyane dataset. As defined in Section 2.3.1, the approximated Gram matrix
G̃ is equal to QkΣkQ

T
k , QQTG, QQTGQQT and UΣUT , for the TsEVD approximation, RSVD

approximation, RsEVD approximation and RSVD cumulative errors, respectively.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.3. Numerical behaviour of RSVD-MDS and RsEVD-MDS 37

er(G̃ = UΣUT), in yellow) of the RSVD gets higher than the RsEVD approximated relative er-
ror. As the RsEVD preserves the symmetry and therefore does not have such an additional
source error, the RsEVD overall yields a better solution (in red) than the RSVD (in yellow) for
this Atlas Guyane test case.

100 150 200 250 300 350 400
Rank k

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Sk
ew

-s
ym

et
ry
 ra

tio
 χ
(Q
Q
T G

)

Figure 2.3 – Skew-symmetry ratio χ(QQTG) associated with Equation (2.1) induced by the
RSVD approximation of the dataset Atlas Guyane.

Figure 2.3 shows the skew-symmetry ratio χ(QQTG) associated with Equation (2.1) induced by
the unsymmetric RSVD approximation. We observe that the lower the rank of the projection,
the higher the skew-symmetry ratio. These numerical results are consistent with the observed
difference between the RSVD cumulative error represented in yellow in Figure 2.2 and the
RSVD approximation error represented in blue in 2.2. They confirm the expected correlation
between the skew-symmetry ratio and the second source of error for the RSVD discussed in
Section 2.3.1.

As recalled in Section 2.3.1, the MDS algorithm we rely on (Algorithm 1) filters out the neg-
ative eigenvalues and associated eigenvectors (line 4 of Algorithm 1). The relative effective
error e+

r (X+) associated with the effective output point cloud X+ and defined in (2.3) is dis-
played in Figure 2.4. These results confirm that the RsEVD-MDS also yields a more accurate
solution than RSVD-MDS in practice on this Atlas Guyane test case for a given rank k. Figure
2.5 shows both point clouds (kMDS = 2 in this visualisation) resulting from RsEVD (bottom
left) and RSVD (bottom right) at rank k = 10 (rank of Ω). The point cloud obtained by a full
deterministic sEVD is also provided as a reference (top).

2.3.2.2 Artificial dataset

The second dataset is an artificially generated low-rank matrix. It consists of a 1000−by−1000
matrix of rank r = 250, with eigenvalues decaying linearly from 10000 for the largest one to

Romain Peressoni Large Scale MDS for the Study of Biodiversity

38 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

100 150 200 250 300 350 400
Rank k

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
||G

+
−
X

+
X
+T
||
/ |
|G

+
||

RSVD effective error
RsEVD effective error

Figure 2.4 – Relative effective error e+
r (X+) associated with Equation (2.3) induced by the RSVD

and RsEVD algorithms for the dataset Atlas Guyane.

500 for the 250th one, and all others being exactly 0, as shown in Figure 2.6 (sEVD reference
plot in black). The figure also shows that both RSVD (solid) and RsEVD (dashed) capture the
spectral behaviour well.

Figure 2.7 confirms that, when the rank is not well enough captured (k = 100 and k = 200),
the approximated relative error er(G̃) associated with Equation (2.2) due to the approximation
G̃ of G is better for the RSVD (for which G̃ = QQTG, in blue) than the RsEVD (for which
G̃ =QQTGQQT , in red). However, as it was the case for the Atlas Guyane test case, once again,
the additional source of error of the RSVD due to the loss of symmetry of QQTG induces
that the subsequent cumulative relative error (er(G̃ = XXT) = er(G̃ = UΣUT), in yellow) of the
RSVD gets higher than the RsEVD approximated relative error. As the RsEVD does not have
such an additional source error, the RsEVD overall yields a better solution (in red) than the
RSVD (in yellow) as it was the case for the Atlas Guyane test case. Figure 2.8 shows the skew-
symmetry ratio χ(QQTG) associated with Equation (2.1) induced by the unsymmetric RSVD
approximation and once again confirms the expected correlation between the skew-symmetry
ratio and the second source of error for the RSVD discussed in Section 2.3.1.

On the other hand, when the rank is well captured (k = 300 and k = 400), both RSVD and
RsEVD are excellent approximations. Indeed, the projection steps (G −→ QQTG and G −→
QQTGQQT for the RSVD and RsEVD, respectively) reduce to a numerical invariant for such
low-rank matrices. As a consequence, the first source of error vanishes. In addition, precisely
because the RSVD projection step is an invariant, its skew-symmetry ratio is the one of the
symmetric matrix G, hence zero (χ(QQTG) = χ(G) = 0). The second source of error of the
RSVD therefore vanishes too.

Figure 2.9 shows that this behaviour translates to the relative effective error e+
r (X+) associated

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.3. Numerical behaviour of RSVD-MDS and RsEVD-MDS 39

Point cloud from full sEVD

Point cloud from RsEVD of rank 10 Point cloud from RSVD of rank 10

Figure 2.5 – Point clouds obtained for dataset Atlas Guyane using either full sEVD (top),
RsEVD of rank 10 (bottom left) and RSVD of rank 10 (bottom right).

Romain Peressoni Large Scale MDS for the Study of Biodiversity

40 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

0 50 100 150 200 250 300 350 400
Eigenvalue/Singular value index

10−14

10−11

10−8

10−5

10−2

101

Ei
ge

nv
al
ue

/S
in
gu

la
r v

al
ue

 m
ag

ni
tu
de

sEVD
RsEVD, rank = 100
RSVD, rank = 100
RsEVD, rank = 200
RSVD, rank = 200
RsEVD, rank = 300
RSVD, rank = 300
RsEVD, rank = 400
RSVD, rank = 400

Figure 2.6 – Eigenvalues of an artifially generated dataset of size 1,000 and rank 250 obtained
using different variants of randomized linear embedding and compared to the actual eigenval-
ues obtained with full sEVD (in black). Each color represents a different rank for the random-
ized algorithms, with the solid lines being the RSVD and the dashed lines the RsEVD.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.3. Numerical behaviour of RSVD-MDS and RsEVD-MDS 41

100 150 200 250 300 350 400
Rank k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
la
tiv

e
er
ro
r

RSVD cumulative error
RsEVD appro imation error
RSVD appro imation error
TsEVD appro imation error

Figure 2.7 – Relative error er(G̃) associated with Equation (2.2) due to the approximation G̃ of
G for the artificially generated low-rank dataset. As defined in Section 2.3.1, the approximated
Gram matrix G̃ is equal toQkΣkQ

T
k ,QQTG,QQTGQQT andUΣUT , for the TsEVD approxima-

tion, RSVD approximation, RsEVD approximation and RSVD cumulative errors, respectively.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

42 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

100 150 200 250 300 350 400
Rank k

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Sk
ew

-s
ym

et
ry
 ra

tio
 χ
(Q
Q
T G

)

Figure 2.8 – Skew-symmetry ratio χ(QQTG) associated with Equation (2.1) induced by the
RSVD approximation of the articially generated low-rank dataset.

100 150 200 250 300 350 400
Rank k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

||G
+
−
X

+
X
+T
||
/ |
|G

+
||

RSVD effective error
RsEVD effective error

Figure 2.9 – Relative effective error e+
r (X+) associated with Equation (2.3) induced by the RSVD

and RsEVD algorithms for the artificially generated low-rank dataset.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.4. Motivation for improving the distributed-memory matrix multiplication 43

with the effective output point cloud X+ defined in (2.3).

2.3.3 Conclusion

This study has shown that both RSVD-MDS and RsEVD-MDS achieve an excellent numerical
performance when the numerical rank is well captured. When it is not well captured, there is
a numerical trade-off. On the one hand, the RSVD approximates G better than the RsEVD due
to the fact that it performs only a single projection (G ≈ QQTG) whereas the RsEVD performs
two projections (G ≈QQTGQQT). On the other hand, the RSVD-MDS can be further penalised
by the loss of symmetry. The study has revealed that in practice this additional penalty is not
dramatic as long as the approximated Gram matrix QQTG remains relatively close to G, as in
this case its skew-symmetry ratio remains low.

As a consequence, in a general-purpose MDS library, it may be worthwhile to include both
the RSVD-MDS and RsEVD-MDS variants. While we had an RSVD-MDS (presented in the
background material in Chapter 1), we have implemented an HPC version of the RsEVD-MDS
variant. From a numerical point of view, it corresponds to the variant discussed in Section 2.2.
From an HPC point of view, we have followed the task-based design from Section 1.6. We omit
the details.

Both RSVD-MDS and RsEVD-MDS are dominated by matrix-matrix multiplications (MM). It
corresponds to steps MM1 and MM2 in both algorithms 2 and 6. The performance and memory
consumption of MM are thus keys for that of the overall MDS based on such randomized
linear embedding algorithms. We motivate the improvement of distributed-memory matrix
multiplication in Section 2.4. We review state-of-the-art MM for distributed-memory machines
in Section 2.5. We furthermore design a new task-based symmetric MM (SYMM) in Section 2.6.
Its performance is assessed in 2.7.

2.4 Motivation for improving the distributed-memory matrix mul-
tiplication

Matrix multiplication with a symmetric input matrix is a crucial mathematical kernel. As
we have already mentioned, it is the most dominant kernel for randomized linear embedding
algorithms [64, 32, 110, 91]. This is why we study it in this thesis 3.

In our case where the involved matrices are dense, the operation is commonly referred to as
the symmetric matrix-matrix (SYMM) product and consists in computing C ← αAB + βC, or
C ← αBA+ βC, where α and β are scalars, A is a symmetric m-by-m dense matrix, and B and
C are m-by-n dense matrices, or n-by-m dense matrices, respectively.

While its general (GEMM) counterpart – i.e., not assuming A is symmetric (nor even square) –
has been the focal point of many meticulous studies [2, 51, 115, 82], relatively little attention
has been devoted to handle the specific features of SYMM in a distributed-memory context. As
a consequence, its implementation in reference codes such as ScaLAPACK [18] or Elemental
[108] follows the same parallel design as GEMM, consisting in a 2D block-cyclic (2D BC) data
distribution. This thesis focuses on the case where m� n. We show that, though it may seem
counter intuitive, the arithmetic intensity (AI) – sometimes also referred to as the operational

3. It is also a central kernel for other important numerical algorithms. For instance, it is the dominant operation
in solving symmetric linear systems with multiple right-hand sides [98, 101, 112, 97, 43, 114, 119, 27, 61] or related
eigenvalue problems [54, 55, 30, 111] and we refer the reader to [113] and references therein for more details on
“block” and “augmented” Krylov subspace methods. As a consequence, the discussion on MM performance might
be of interest out of the scope of MDS as well.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

44 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

intensity – of reference implementations of SYMM – following a 2D BC data distribution –
is lower than that of GEMM. We then show that alternative data distributions may improve
the AI of SYMM up to achieving an equally high AI as GEMM while maintaining its memory
advantage of storing only half of the dominant m-by-m matrix. We also show that with the
same amount of memory as GEMM, using an extension inspired by the 2.5D algorithms [2,
121, 115] (also referred to as 3D in the literature) allows SYMM to achieve a higher AI than
GEMM. In order to assess whether the higher AI may translate into a higher performance,
the resulting algorithms have all been implemented in the Chameleon dense linear algebra
library [3] following the task-based design proposed in [5]. This work only considers classical
algorithms with a cubic computational complexity; Strassen-like variants [13] that can lead to
reduced computation and communication volume are out of the scope of this study.

In the remainder of this chapter, we make the following contributions:
— we review several data distribution schemes for the A-stationary SYMM operation and

analyze their communication volume;
— we propose an original adaptation of the TBS algorithm from [15] to a distributed-

memory setting;
— we propose a scalable task-based implementation of SYMM independent of data distri-

butions; and we experimentally assess the performance gained by lowering the commu-
nication volume;

— we conclude this chapter by showing performance results of our HPC implementa-
tion of RsEVD-MDS and RSVD-MDS, using SYMM to perform the MM1 and MM2 matrix-
products.

2.5 Related work on distributed-memory matrix multiplication

The general matrix matrix multiplication (GEMM) – i.e. not assuming A is symmetric (nor
even square) – has been the focal point of many meticulous studies [2, 51, 115, 82]. On the
other hand, relatively little attention has been devoted to handling the specificity of SYMM in
a distributed-memory context. As a consequence, its implementation in reference codes such
as ScaLAPACK [18] or Elemental [108] follows the same parallel design as GEMM, relying on
a 2D BC data distribution, we will present this data distribution in Section 2.6.1.2.

Outside of the matrix multiplication context, Beaumont et al. recently proposed to exploit
the symmetry of matrices to enhance the distributed-memory Cholesky factorization of dense
symmetric positive definite matrices [14]. The main idea is to rely on an alternative data dis-
tribution referred to as symmetric block cyclic (SBC). Still in the context of the Cholesky fac-
torization, but in a sequential out-of-core setting, Beaumont et al. proposed in another study
a variant referred to as Triangular Block Syrk (TBS) [15], and provided sharp bounds showing
that TBS achieves the lowest possible I/O volume for this operation. However, since it does not
readily apply to a distributed-memory context in the case of a Cholesky factorization, TBS was
only considered in a sequential setting.

2.6 Task-based scalable SYMM

We show that in the case of interest of the randomized linear embedding algorithms (m� n),
the state-of-the-art 2D BC SYMM achieves a lower AI than 2D BC GEMM, theoretically con-
firming the empirical observations reported in [7]. We also revisit SBC [14] in the case of
the distributed-memory matrix multiplication, and proposes Triangular Block Cyclic (TBC),
a distributed-memory adaptation of the ideas behind TBS [15]. Both the theoretical analysis

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.6. Task-based scalable SYMM 45

Scheme P S Q/(mn) AI

1. G 2DBC(p,q) pq m2

P (p+ q − 2) m√
P

=
√
S

2. S 2DBC(p,q) pq m2

2P 2(p+ q − 2) m
2
√
P

=
√
S/2

3. S SBC(r) r2/2 m2

2P 2(r − 1) m√
2P

=
√
S

4. S TBC(c) c(c+ 1) m2

2P 2c m√
P

=
√

2S

Table 2.1 – Discussed GEMM (denoted G in the table) and SYMM (denoted S) A-stationary
schemes together with their communication volume Q and AI. P denotes the number of nodes,
S the storage per node. The communication volume Q is expressed as a factor of mn (which is
the common size of matrices B and C).

(Section 2.6.1) and the experimental evaluation (Section 2.7) show that these new data dis-
tributions significantly improve above the state-of-the-art 2D BC SYMM, eventually allowing
us to solve the original memory / performance discrepancy for both the randomized linear
embedding algorithms and the resulting MDS.

In Section 2.6.1, we analyze the AI of reference distributed 2D BC GEMM and SYMM algo-
rithms as well as that of our proposals for new SYMM data distributions. We present the
implementation of our algorithms in Section 2.6.2 and assess the resulting communication
volume and performance in Section 2.7. We show the impact on randomized linear embedding
algorithms and the resulting MDS in Section 2.8.

2.6.1 Data distribution for SYMM

In this section, we present different data distributions for the C ← αAB + βC matrix product,
in increasing order of complexity and AI. These results are summarized in Table 2.1. Here we
assume m� n, i.e., the matrix A is much larger than both B and C, which is typically the case
when dealing with the randomized linear embedding algorithms we consider for the MDS. In
this case A− stationary schemes are the best approaches to minimize communication volume.
In an A − stationary algorithm, the computations are performed on the node that owns the
corresponding block (also referred to as tile) of A. In such an algorithm, the blocks of B are
broadcast to the nodes that require them, and we denoteQB the corresponding quantity of data
transferred. Several nodes compute updates for a given block of C, and these updates are then
reduced to the corresponding node. The communication volume for these reduce operations is
denoted QC . The total communication volume for the multiplication is Q =QB +QC .

We start by the easiest case: if the complete matrix A is stored, the best solution is the 2D BC
distribution (line 1 in Table 2.1 and Section 2.6.1.2), and we analyze its communication volume.
We then specialize to the case where only half of matrix A is stored (because of symmetry). We
use the same analysis to show that the communication volume of the 2D BC distribution (line 2)
is twice larger than in the previous case. We then describe two symmetric distributions: first
SBC [14] (line 3, and Section2.6.1.3), whose communication volume is lower by a factor of

√
2,

then TBC (line 4, and Section 2.6.1.4), adapted from [15], whose communication volume is
lower by another factor of

√
2. In total, SYMM with the TBC distribution achieves the same

communication volume as 2D BC when the whole matrix is stored, thus saving a factor of 2 on
storage.

Focusing on Table 2.1, the number of floating point operations does not depend on the alloca-
tion, it is 2m2n in all cases: one multiplication and one addition for each product computed.
Hence, the AI is inversely proportional to the communication volume Q, and varies like m√

P
for

all 2D distributions (see left part of the AI column). However, we can also express AI as a func-

Romain Peressoni Large Scale MDS for the Study of Biodiversity

46 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

tion of the memory size of one node, denoted as S; this allows one to measure how efficient
an algorithm is at using the values stored in memory. For all 2D distributions studied here,
AI = Θ

(√
S
)
; the efficiency of an algorithm is measured by how large the constant is, shown on

the right part of the AI column.

2.6.1.1 Generalities

Since A is large, the best solution is to use an A-stationary algorithm: the computations are
performed on the node that owns the corresponding block (also referred to as tile or submatrix)
of A. In such an algorithm, the blocks of B are broadcast to the nodes that require them, and
we denote QB the corresponding quantity of data transferred. Several nodes compute updates
for a given block of C, and these updates are then reduced to the corresponding node. The
communication volume for these reduce operations is denoted QC . The total communication
volume for the multiplication is Q =QB +QC .

With this total communication volume Q, we can also compute the Arithmetic Intensity (AI),
defined as

AI = flop/Q, (2.4)

where flop is the total number of floating point operations. The number of floating point op-
erations does not depend on the allocation, it is 2m2n in all cases: one multiplication and one
addition for each product computed. Hence, the AI is inversely proportional to the commu-
nication volume Q, and varies like m√

P
for all 2D distributions (see left part of the AI column

in Table 2.1). However, we can also express AI as a function of the memory size of one node,
denoted as S; this allows one to measure how efficient an algorithm is at using the values stored
in memory. For all 2D distributions studied here, AI = Θ

(√
S
)
; the efficiency of an algorithm is

measured by how large the constant is, shown on the right part of the AI column in Table 2.1.

2.6.1.2 2D Block-Cyclic distribution

We first consider the situation where the whole matrix A is stored, and distributed among the
nodes in a 2D BC (p,q) fashion. This situation is depicted on the left of Figure 2.10.

A

B

C
A

B

C

Figure 2.10 – Communications incurred with an A-stationary matrix multiplication, with a 2D
BC (2,4) distribution. Left: storing the whole matrix A. One block of B follows the red path
and is sent to p − 1 = 1 nodes. A result computed on a row of A is involved in a reduction
operation on q nodes (blue path), resulting in q − 1 = 3 messages sent. Right: storing the lower
half of A. Both types of communication now involve p+q−1 = 5 nodes, resulting in 4 messages
sent. Parts of the matrix where fewer nodes are involved are highlighted in grey.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.6. Task-based scalable SYMM 47

When Considering a given column of matrix A, the corresponding values are owned by a set
of p nodes. Each of these nodes must receive all values in the corresponding row of B, which
is owned by another set of nodes. The best possible case is that the second set is included
in the first one: in that case, each value of B must be sent to p − 1 nodes, and this incurs a
communication volume of n(p−1). Since there arem columns inA, in total we getQB =mn(p−1)
(in the worst case, the set of nodes that own the blocks of B is disjoint from the set of nodes
that own the blocks of A, and we get QB =mnp).

Similarly, consider a given row of matrix A. Since the nodes that own this row need to perform
one reduction per column of C to send the total to the owner of the corresponding block in
C, the total communication volume for the blocks of C is QC = mn(q − 1) in the best case, and
QC =mnq in the worst case (when the owner of a block in C never belongs to the corresponding
set of nodes in the row of A).

The best case can be achieved if C is distributed with the same (p,q) 2D distribution, and B is
distributed with the transpose (q,p) distribution.

In total, the communication volume is Qp,qGEMM = mn(p + q − 2). In practice, we often choose
p ' q '

√
P , so thatQ2DBC

GEMM ' 2mn(
√
P−1). Asymptotically, the AI is AI2DBC

GEMM '
2m2n

2mn
√
P

= m√
P

, with

a memory usage S = m2

P , which yields AI2DBC
GEMM '

√
S. This result is summarized in Table 2.1,

line 1.

In the case where we only store the lower part of a symmetric matrix, the 2D BC distribution
is only applied to the lower half of the matrix, the upper tiles are not being stored at all. The
result is depicted on the right of Figure 2.10. We can apply the same kind of reasoning as for
the previous case. However, now the set of nodes that own a given column of A can be of size 4

up to p + q − 1: the p nodes that own the (truncated) column, plus the q nodes that own the
(truncated) row that completes the column (the total is p + q − 1 because one node belongs to
both the row and the column). Again, the best case is when the set of nodes that own the blocks
of B is included in these p+q nodes, and this yields a communication volumeQB =mn(p+q−2).
Similarly, we get QC =mn(p+ q − 2).

In total, Qp,qSYMM = 2mn(p + q − 2). As we can see, the communication volume is twice as large
as in the previous case, and can be written as Q2DBC

SYMM ' 4mn(
√
P − 1). Asymptotically, the AI

is AI2DBC
SYMM '

2m2n
4mn
√
P

= m
2
√
P

, with a memory usage S = m2

2P , which yields AI2DBC
SYMM '

√
S/2. This

result is summarized in Table 2.1, line 2. As we can see, the AI is twice smaller compared to
the previous case, but since the memory usage is also smaller by a factor of 2, the AI expressed
as a function of S is only lower by a factor of

√
2.

In short, this means that if the memory of the nodes is the limiting factor, storing half the
matrix allows to use half as many nodes, which partially offsets the overhead in terms of com-
munication volume.

2.6.1.3 Symmetric Block Cyclic distribution

In order to reduce the amount of communication, we need to make sure that the nodes that
own a truncated column of A are the same as the nodes that own the corresponding truncated
row. The Symmetric Block Cyclic distribution (SBC) has been proposed in the context of the
Symmetric Rank-k update (SYRK) and the Cholesky factorization [14], where a similar issue
appeared. We describe here the basic version of SBC, defined for an even integer r > 2 (see

4. The first q (respectively the last p) columns of A involve a slightly smaller number of nodes, because not all
nodes appear in the truncated row (respectively column). The corresponding zones are highlighted in grey on the
right of Figure 2.10. However, since we are interested in large matrices A where m� p,q, we decide to neglect this
effect.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

48 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

r

r

A

B

C

Figure 2.11 – Symmetric Block Cyclic distribution. Left: the pattern with r = 4, using P =
8 nodes. The symmetrical lower and upper parts are highlighted. Right: communications
induced when using SBC. Communications related to a row of matrices B and C both involve r
nodes, resulting in r − 1 = 3 messages sent.

Figure 2.11). It consists of a symmetric r × r pattern with P = r2/2 nodes: r(r−1)
2 nodes are

organized arbitrarily in one half of the pattern, and symmetrically on the other half. The
remaining r

2 nodes are each placed on two locations in the diagonal.

For any i, the row i and the corresponding column i of the pattern contain the same set of r
nodes. We can compute the amount of data transferred involved by using this distribution in
an A − stationary SYMM operations: each block of B is sent to a set of r nodes, and r nodes
are involved in each reduction operation for a given block of C. If we again consider the best
case, we get that QB = QC = mn(r − 1), which yields Q = 2mn(r − 1). Since r =

√
2P , we can

write this as QSBC
SYMM = 2mn(

√
2P − 1): this improves over the 2D BC distribution by a factor

of
√

2. Since the memory usage is the same, the AI is also improved by a factor of
√

2, which
gives AISBC

SYMM '
√
S: SBC obtains the same AI as the 2D BC distribution when storing the whole

matrix. This result is summarized in Table 2.1, line 3.

2.6.1.4 Triangular Block Cyclic distribution

Another recent work proposed a Triangular Block approach for the SYRK operation [15], which
achieves provably the lowest possible quantity of data transferred. This work was presented in
the context of sequential out-of-core computations, but we propose here a way to transform it
into an allocation for distributed nodes.

√
S
√
S

√
2S

Figure 2.12 – Triangles along the diagonal use fewer communications: both the red square and
the orange triangle contain S elements. However, the corresponding operations for the square
require 2

√
S rows of B, and only

√
2S rows for the triangle.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.6. Task-based scalable SYMM 49

T B(R1)

R1

T B(R2)

R2

?

?
overlap

c

c2

one cell

a c × c zone

Figure 2.13 – Top Left: two triangle blocks. An overlap happens when two triangle blocks have
two rows in common (?). Top Right: first column of the triangle-blocks in the TBC pattern.
Gaps must be introduced for the triangle-block in the next column to avoid overlapping. Bot-
tom Left: the gaps in the next column need to be larger, with a “wrap around” when reaching
the bottom of the zone. Bottom Right: complete pattern for all the zones.

We remind that with the SBC distribution, each node is assigned S = m2

2P = m2

r2 blocks, and needs
to receive 2 rows of matrix B for each repetition of the pattern. The number of required rows
of matrix B is thus h = 2m

r = 2
√
S. This is similar to assigning a square part of the matrix to a

node, as shown on Figure 2.12: if a node is responsible for the red square of side
√
S, it needs

to receive
√
S rows of B to perform the operations in the lower half, and another

√
S rows to

perform the operations in the upper half.

The idea of the TBS algorithm [15] stems from the observation that, thanks to the symmetry
of matrix A, triangular parts along the diagonal of A are involved in operations that require
even fewer communications than square parts. Indeed, as shown with the orange triangle on
Figure 2.12, if a node owns a triangle containing S elements along the diagonal of A (its side
length is thus

√
2S), it only needs to receive

√
2S rows from matrix B since the operations on

the lower and upper halves require the same rows of B. Similarly, this node only needs to
participate in reduction operations on

√
2S rows for matrix C.

The TBS algorithm defines a solution where these favorable properties are extended to blocks
away from the diagonal by ensuring that each node is assigned a set of blocks which can be
gathered into a diagonal triangle using a symmetric permutation.

This leads to the notion of triangle-blocks, defined, for a given set R of row indices, as the set
of blocks of the matrix A that a node can own while only requiring rows of matrix B indexed
by R. Formally, the triangle-block associated with R is T B(R) = {(i, j) ∈ R2|i > j}. Figure 2.13
(left) shows examples of two triangle blocks. This notion generalizes the “triangle along the
diagonal”, since a triangle-block with |R| = h contains ∼ h2

2 blocks of A, and the corresponding
operations involve only h rows of matrices B and C. A triangle-block can indeed be seen as a
triangle along the diagonal, up to reordering of the rows and columns of the matrix.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

50 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

The key contribution of [15] is a method that makes it possible to partition almost all of the
matrix in disjoint triangle-blocks. This requires to assign a set of rows Rp to each node, so that
any two sets Rp and Rp′ have at most one row in common. Indeed, as can be seen on the top-
left of Figure 2.13, two triangle blocks overlap if they share two row indices. This implies that
the two corresponding nodes will receive the data necessary to perform an operation, however
only one of them will actually perform it; communicating that data to the other node was not
useful. Finding a distribution with no overlap ensures that we minimize the communication
volume.

To apply these ideas in a distributed-memory setting, we propose to build a pattern where each
triangle-block is assigned to a different node. Since this pattern is symmetric, for simplicity we
only describe its lower half. We fix a prime integer c > 2, and build a symmetric pattern of
size c2 × c2, divided in c × c square zones, each containing c2 cells. We partition the square
zones among triangle-blocks, and the main idea is that each triangle-block has one cell in each
zone. The top right of Figure 2.13 shows how the first c triangle-blocks are organized. The
next triangle-block is also shown, and we can see that a gap must be introduced at each new
row to ensure that it does not overlap with the previous blocks. The bottom left of Figure 2.13
shows the next step: the other blocks of the second column can be assigned with the same gaps.
However, the next block in the third column needs to have larger gaps at each row to ensure
that no overlap happens. With such large gaps, the last row would be outside of the zone, so
the actual row is chosen modulo c: this effectively “wraps around” at the boundary of the zone.
The final partition with all the triangle-blocks is shown at the bottom right of this figure.

With this partitioning, each node receives c(c−1)
2 cells from the lower half of the pattern, but the

cells in the triangular zones along the diagonal remain unassigned. The choice of the pattern
size ensures that if we exclude the diagonal cells, each of these triangular zones also contain
c(c−1)

2 cells. We can thus assign them to c additional nodes, which describes the entire lower
half of the pattern. By replicating this symmetrically, we get a square pattern where only the
non-diagonal cells remain unassigned. A more precise description of the pattern is described
in Algorithm 7, and the resulting pattern for c = 3 is provided in the left of Figure 2.14. The
iteration (i, j) of the loop in line 4 assigns the triangle-block which contains the cell of coor-
dinates (i, j) of the top-most zone (which is the cell (i + c, j) of the pattern). The idea behind
line 5 is that each node should access one row in each zone: the value uc indicates the index of
the first row on the u-th zone, and the value i + (u − 1)j mod c is the index of the row within
this zone. We can see in this formula that there is a gap of size j between one row and the
next (thus for two successive values of u), and that there is a modulo operation to perform the
“wrap around”, as described in the successive diagrams of Figure 2.13. The results from [15]
(in particular Lemma 5.5), together with the condition that c is prime, ensure that the sets of
rows assigned to different nodes overlap exactly once, so the sets of cells assigned to the nodes
are disjoint, and each row contains exactly c+ 1 nodes.

Algorithm 7: TBC(c) pattern, on P = c(c+ 1) nodes.

. // Assign triangular zones (red nodes)
1 for i ∈ {0, . . . , c − 1} do
2 R← {i · c+u |0 ≤ u ≤ c − 1};
3 Assign cells in {(x,y) ∈ R2|x , y} to a new node;

. // Assign non-triangular zones (remaining nodes)
4 for (i, j) ∈ {0, . . . , c − 1}2 do
5 R← {uc+ (i + (u − 1)j mod c)|1 ≤ u ≤ c − 1};
6 Assign cells in {(x,y) ∈ (R∪ {j})2|x , y} to a new node;

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.6. Task-based scalable SYMM 51

44

4 4

44

55

5 5

55

66

6 6

66

77

7 7

77

88

8 8

88

99
9 9

99

1010

10 10
1010

1111

11 11

1111

1212

12 12

1212
1
1 1

1 1
1

2
2 2

2 2
2

3
3 3

3 3
3

Figure 2.14 – Triangular Block Cyclic distribution. Left: the pattern with c = 3, using P = 12
nodes, with no allocation on the diagonal blocks. Right: allocation of this pattern on a 27× 27
matrix, where the diagonal blocks of the pattern are filled with the greedy algorithm. As shown
in the highlighted part, each communication (related to matrix B or C) involves 4 different
nodes (nodes 3, 4, 9, 11 in this example). For comparison, in the (3,4) 2D BC distribution, each
communication involves 6 nodes.

This procedure results in a symmetric pattern of size c2×c2, in which the diagonal cells are not
allocated. However, there are c(c + 1) nodes in total, and only c2 diagonal cells. Each of these
diagonal cells can be allocated to any node already present on the row without increasing the
communication volume.

To obtain the final allocation, we replicate this incomplete pattern over the matrix A, and apply
a greedy algorithm to allocate the remaining blocks : for each unassigned block, we pick the
node with the lowest number of assigned blocks among all the nodes present in the row (and
thus in the column, by symmetry of the pattern). The resulting allocation is thus not exactly a
cyclic allocation, but it can nonetheless be computed very quickly. An example is provided on
the right of Figure 2.14.

This pattern uses a total number of nodes P = c(c + 1), and each row and column of matrix
A is allocated to a set of c + 1 nodes. The communication volume can be evaluated just like
previously: each communication related to a row of matrix B or C involves c+ 1 nodes, and we
obtain QB =QC =mnc in the best case. Thus, Q = 2mnc ' 2mn

√
P . This corresponds to another

improvement by a factor of
√

2 over SBC, and asymptotically the same communication volume
as with the 2D BC distribution when storing the whole matrix. The AI is also improved by
a factor of

√
2: AITBC

SYMM '
√

2S. This is the best of both worlds: the reduced memory storage
gained by storing only half the matrix, and the reduced communication volume. This result is
summarized in Table 2.1, line 4.

2.6.2 Implementation

Fully-featured distributed-memory dense linear algebra libraries such as ScaLAPACK [18] or
Elemental [108] implement SYMM with a 2D BC data distribution. Such a regular data dis-
tribution makes it possible to easily set up MPI communicators along rows and columns and
ensure collective communications. On the contrary, if we want to consider irregular data dis-
tributions, like those discussed in Section 2.6.1, it may be challenging to implement the cor-
responding code directly through the MPI interface. We therefore aim at designing a SYMM
routine completely independent of the proposed mappings so that we can then effortlessly im-
plement any non-trivial mapping. Task-based programming allows for such a separation of
concerns [67, 5]. In addition, we want to assess whether this is feasible with a code which is
easy to write, read and maintain. To this end, we decided, more specifically, to rely on the
STF model [41, 10] introduced in Section 1.5, which allows for writing a parallel code which

Romain Peressoni Large Scale MDS for the Study of Biodiversity

52 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

Algorithm 8: Sequential block SYMM.

1 for j = 1 . . .N do
2 for i = 1 . . .M do
3 for l = 1 . . .M do
4 op← if i = l then symm else gemm;
5 block_A← if i ≤ l then Ai,l else ATl,i ;
6 op(block_A, Bl,j , Ci,j);

Algorithm 9: STF block SYMM.

1 for j = 1 . . .N do
2 for i = 1 . . .M do
3 for l = 1 . . .M do
4 op← if i = l then symm else gemm;
5 blk_A← if i ≤ l then Ai,l else ATl,i ;
6 insert_task(op, blk_A:R, Bl,j :R, Ci,j :RW);

resembles a sequential code one would naturally write. Finally, we do not want to trade off
performance with elegance, and we thus rely on the latest developments for the scalability of
the STF model [5] to design appropriate communication patterns while preserving the com-
pactness of the expression. Without loss of generality, for the sake of conciseness, we restrict
the presentation to the C← AB+C case, where A is symmetric and only its lower part explicitly
stored. We also assume blocks of size b-by-b, so thatA is aM-by-M block matrix (m =M∗b) and
B and C areM-by-N block matrices (n =N ∗b). The sequential algorithm of the SYMM consists
of three nested loops where the two innermost loops perform a matrix - block-column product
(C∗,j ← C∗,j+AB∗,j), while the outer loop goes through allN block-columns. Algorithms 8 and 9
show the equivalent SYMM block and STF implementation to Algorithms 4 and 5 presented in
Section 1.5 for GEMM.

The first stage of the STF algorithm presented in Algorithm 9 (not reported in the pseudo-code)
is to register the data to operate on to the runtime system. In our case, the data are the Ai,l , Bl,j ,
and Ci,j blocks (1 ≤ j ≤N , 1 ≤ i ≤M, 1 ≤ l ≤M). When a data is registered, the runtime system
is informed of which node owns it. This information can be later retrieved through a rank
(rk()) function. With this simple paradigm, we are able to instruct the runtime system how
to set up the data mappings discussed in Section 2.6.1. Other than that, we may observe that
the STF pseudo-code is very similar to a sequential one. However, instead of being directly ex-
ecuted, GEMM and SYMM operations on blocks are inserted as tasks through the insert_task
primitive. The aim of such an insertion is to make the call asynchronous. Data dependencies
between tasks are inferred by the runtime system thanks to the data access modes. The basic
access modes being Read (R), Write (W), and Read Write (RW), the most straightforward im-
plementation would be to associate a R access mode to blocks of A and B and a RW mode access
to blocks of C. Such an approach, following the programming models of [131, 4], would be a
valid STF code for distributed-memory machines. Indeed, the runtime system can not only
infer the dependencies between tasks but it may also trigger the appropriate communications
by moving around the data causing the dependencies. Indeed, in this model [131, 4], tasks are
executed onto MPI ranks that own data accessed in RW mode (Ci,j , in our case); the other data
are automatically moved there by the runtime system before executing the corresponding task.

This baseline STF algorithm would however prevent us from implementing the algorithms

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.7. Performance of task-based scalable SYMM 53

Algorithm 10: Scalable STF block A-stationary SYMM.

1 for j = 1 . . .N do
2 for i = 1 . . .M do
3 for l = 1 . . .M do
4 op← if i = l then symm else gemm;
5 block_A← if i ≤ l then Ai,l else ATl,i ;
6 rank← if i ≤ l then rk(Ai,l) else rk(Al,i);
7 insert_task(op, block_A:R, Bl,j :R, Ci,j :DIST_REDUX, ON_RANK=rank);

from Section 2.6.1. Indeed, first, performing a task on the MPI ranks owning data accessed in
RW access mode implies that the C matrix stays in place and A and B are transferred through
the network. The analyses from Section 2.6.1 assume that, because the matrix A is the largest
one, it is instead preferable to keep A in place and only move around blocks of B and C. To im-
plement such a A-stationary scheme, we must be able to explicitly instruct the runtime system
where to perform tasks. Algorithm 10 does so through the ON_RANK (l. 7) directive which is used
to define the rank where to execute a task which, in our case, is the owner of the corresponding
block of A (l. 6); this implies that the corresponding blocks of B (and C) will be transparently
sent to (and from) that same node by the runtime system prior to the task execution. A second
extension is required to achieve the AI of the algorithms devised in Section 2.6.1. Indeed, after
a task has been computed on the chosen rank, the programming model requires that a data
accessed in W or RW mode is sent back to the owner rank [131, 4]. In the SYMM case, Ci,j
being accessed in RW mode, it must therefore be sent back to the MPI rank that owns it unless
it is the same rank as the one where the task is executed. It must be noted that, with such a A-
stationary mapping, all the tasks contributing to aCi,j block can be executed by different nodes.
With Ci,j accessed in RW mode, a single copy exists that will be sent back and forth between
the contributing nodes and all the corresponding tasks will be executed sequentially [131, 4].
To overcome this limitation, the DIST_REDUX mode [5] (l. 8) can be used: in this case nodes will
compute, locally, contributions to Ci,j which are stored in a temporary buffer allocated upon
executing a task that requires it. All these contributions can be computed concurrently and, in
a second step, reduced in the Ci,j block. The reduction is transparently detected by the runtime
and performed through a binary tree – this is a reasonable choice given the typical number of
contributors and the size of the message [5]. Once a contributor has sent its contribution, the
corresponding memory buffer is freed. The reduction operation allows for further parallelism
and more accurately matches the A-stationary product described in the literature [51]. Alto-
gether, both these extensions allow us to reach our main goal of designing a SYMM routine
completely independent of the mappings so that we can then effortlessly implement any non-
trivial mapping and achieve the expected associated AI.

2.7 Performance of task-based scalable SYMM

The code designed in Section 2.6.2 allows us to assess all the mappings discussed in Sec-
tion 2.6.1. We study their impact on the AI and performance. We have implemented Algo-
rithm 10 on top of the starpu [10] task-based runtime system and the newmadeleine commu-
nication back-end, which, combined, support the dynamic detection of collective communica-
tions [36].

In an applicative setting, where no synchronization is required between filling and computing
the matrices, blocks of B are transferred through broadcasts transparently: the runtime detects

Romain Peressoni Large Scale MDS for the Study of Biodiversity

https://gitlab.inria.fr/starpu/starpu
http://pm2.gitlabpages.inria.fr/newmadeleine/

54 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

them through dependencies in the DAG. In our benchmarking setting, artificial tasks are added
to mimic the dependencies that allow a similar detection.

We conducted our study in double precision on the Skylake partition of the Très Grand Centre
de Calcul (TGCC) computer. It has an Infiniband EDR interconnect. Each node has 192 GB of
DDR4 memory and is composed of two 24 cores Intel Skylake 8168 @ 2.7 GHz processors (48
cores per node). Intel MKL v. 19.0.5.281 provides the implementation of GEMM and SYMM
(single-core) tasks. All codes have been assessed with a block size b equal to 256, 512 and
1024, preliminary experiments having shown that these values allow for a good efficiency. Each
configuration has been executed five times and we retrieve the median performance. GEMM
and SYMM algorithms are executed with (p = 8,q = 7) on 56 nodes for 2D BC distributions. 2D
SBC (r = 11) and 2D TBC (c = 7) SYMM are executed on 55 and 56 nodes, respectively. 2.5D
SBC (s = 2,r = 8) and 2.5D TBC (s = 2,c = 5) SYMM are executed on 56 and 60 nodes. The
matrix size (m) of A varies while the number of columns of B and C is constant (n = 8,192).

The top plot of Figure 2.15 presents the AI of the STF algorithms discussed in Section 2.6.1
as defined in Equation 2.4: AI = flop/Q. The total volume of communication Q is retrieved
by StarPU. The results show that the expected theoretical ratios of AI from Section 2.6.1 are
successfully achieved in practice.

All in all, TBC SYMM AI roughly matches that of 2D BC GEMM (transparent dashed red,
square).

The bottom of Figure 2.15 presents the resulting per-node performance. The first observation
is that the AI gains of SBC and TBC do yield compelling performance benefits on lower size
matrices where the AI is not sufficient to ensure a good overlapping between communications
and computations. The proposed STF design with SBC and TBC SYMM achieves a performance
roughly comparable with 2D BC GEMM, while requiring to store only half of the dominant
matrix. The second main observation is that the AI advantage of 2.5D SBC and TBC does not
consistently translate into performance improvement. While 2.5D symmetric distributions
perform well on small problems, they do not outperform the 2D case on larger ones. This
is consistent with the literature [5]. TBC is more impacted by this performance discrepancy
despite having an higher AI than GEMM. A preliminary analysis suggests that this is due to
contention in the network that happens because, unlike in BC, in TBC any rank participates in
multiple broadcast communications.

Figure 2.16 presents the comparison of the GEMM and SYMM performance of our STF ap-
proach with state-of-the-art distributed-memory dense linear algebra libraries proposing a A-
stationary implementation of SYMM, namely ScaLAPACK [18] (yellow) and Elemental [108]
(black). We also report the GEMM performance of SLATE [50], a potential successor to ScaLA-
PACK for which A-stationary SYMM was not available. The first observation is the important
gap between SYMM and GEMM performance of both ScaLAPACK and Elemental libraries.
These results confirm the empirical observation that SYMM state-of-the-art codes achieve a
lower performance than their GEMM counterpart. We recall that both these libraries imple-
ment SYMM with a 2D BC data distribution. The second main observation is that the STF
algorithms proposed in Section 2.6.2 significantly improve over the A-stationary ScaLAPACK
and Elemental SYMM reference implementations. This illustrates the strength of the program-
ming model for designing efficient communication schemes with a high-level expression.

2.8 Performance of MDS with randomized linear embedding

In Section 2.7, we showed the performance of our task-based design of SYMM and the im-
provement it makes compared to the reference SYMM codes. Now we are going to present

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.8. Performance of MDS with randomized linear embedding 55

GEMM - BC SYMM - BC SYMM - SBC SYMM - TBC

 0.0

 2.5

 5.0

 7.5

10.0

12.5
A

ri
th

m
e

ti
c

 I
n

te
n

s
it

y
 (

k
F

lo
p

/b
y

te
)

 3
2
k

 7
3
k

1
1
0
k

1
8
6
k

2
6
2
k

5
2
4
k

 3
2
k

 7
3
k

1
1
0
k

1
8
6
k

2
6
2
k

5
2
4
k

 3
2
k

 7
3
k

1
1
0
k

1
8
6
k

2
6
2
k

5
2
4
k

 3
2
k

 7
3
k

1
1
0
k

1
8
6
k

2
6
2
k

5
2
4
k

 0.0

 0.5

 1.0

 1.5

Matrix size

P
e

rf
o

rm
a

n
c

e
 (

T
F

lo
p

/s
/n

o
d

e
)

Block size

256 512 1024

Distribution

BC SBC TBC

Routine

GEMM

SYMM

Method

STF-2D

STF-2.5D

Figure 2.15 – AI (top) and per-node performance (bottom) of the STF algorithm of section 2.6.2
with the various distributions of section 2.6.1.

GEMM-A SYMM-A

 3
2
k

 7
3
k

1
1
0
k

1
8
6
k

2
6
2
k

5
2
4
k

 3
2
k

 7
3
k

1
1
0
k

1
8
6
k

2
6
2
k

5
2
4
k

0.0

1.5

0.5

1.0

Matrix size

P
e

rf
o

rm
a

n
c

e
 (

T
F

lo
p

/s
/n

o
d

e
)

Block size

256 512 1024

Distribution

BC SBC TBC

Library

Elemental STF-2D

ScaLAPACK Slate

Figure 2.16 – Per-node GEMM (left) and SYMM (right) performance of the proposed STF de-
sign [5] compared with state-of-the-art libraries.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

56 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

performance results of the entire MDS using randomized linear embedding, as it was the ini-
tial motivation behind the work we did on SYMM.

For this Section, all results have been obtained on the Jean Zay supercomputer. Jean Zay is a
HPE SGI 8600 machine with an Omni-Path 100 Gb/s interconnect. Each node has 192 GB of
memory and is composed of two 20 cores Cascade Lake 6248 @ 2.5 GHz processors (40 cores
per node). Intel MKL v. 19.0.4 provides the implementation of single-core kernels.

2.8.1 Performance of RSVD-MDS

In [7], it was necessary to trade off performance, with 2D BC GEMM, with memory, with 2D BC
SYMM, during the dominant steps (denoted MM1 and MM2 steps in Sections 1.4.2 and 2.2) of
the randomized linear embeddings algorithms. The central question raised in Section 2.6 was
whether we could store only half of the symmetric matrix through SYMM while achieving a
performance on par with that of GEMM.

Table 2.2 – Samples names, matrix size m, number of nodes P (and of MPI processes), parame-
ters (p,q) for 2D BC mappings, and parameter c for TBC mapping.

Sample name m P (p,q) c
S1 99,594 1 (1,1) 1
S2 270,983 6 (3,2) 2
S3 426,548 30 (6,5) 5
S4 616,644 56 (8,7) 7
S5 1,043,192 132 (12,11) 11

As discussed in Section 1.1.2, MDS computes a so-called Gram matrix G from an input matrix
representing dissimilarities between pairs of items. In the context of our metabarcoding target
application, items are diatoms collected in Lake Geneva and dissimilarities between them are
their genetic distances. The dataset used as input for the MDS, fully described in [7], is a
106 × 106 matrix of genetic distances between sequences. We may consider either part of the
data (S1, S2, S3, S4), leading to a matrix of reduced dimension, of the whole data set (S5).
Table 2.2 presents the matrix size (m) and parallel setup associated with each sample. The
whole MDS algorithm consists of the computation of the Gram matrix G followed by an RSVD
(which includes MM1 and MM2 steps). All the tests of this section are performed in single precision
and a number n = 1,000 of columns for B and C, consistently with [7].

Figure 2.17 illustrates the impact on performance of the present study. The original code
from [7] had been designed following the programming model of [131, 4] in which task map-
ping was inferred from the data mapping of the RW blocks. This means that it relied on a
C-stationary scheme, in which case the optimum GEMM mapping is 1D BC (denoted (0) in
Figure 2.17) as it is both an A- and a C- stationary variant. The application of the new pro-
gramming model from [5] allows us to employ a 2D BC A-stationary variant (l. 1 of the table
and denoted (1) in Figure 2.17 after this line number). The significant improvement shows the
interest of the new programming model when dealing with a task-based approach. Figure 2.17
furthermore shows that it is possible to store only half of the symmetric matrix through a TBC
SYMM (l. 4 in Table 2.1 and denoted (4) in Figure 2.17) while achieving a performance com-
petitive with (2D BC) GEMM, which positively answers the question that originally motivated
this work. As this observation applies to both MM1 and MM2 matrix multiplication steps and
since they altogether dominate the RSVD algorithm, this directly translates into a significant
improvement for the entire RSVD.

As recalled above, MDS requires to compute the Gram matrix G before applying the RSVD

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.8. Performance of MDS with randomized linear embedding 57

 0

 10

 20

 30

 40

 50

 60

(0) (1) (4)(4*) (0) (1) (4)(4*) (0) (1) (4)(4*) (0) (1) (4)(4*) (0) (1) (4)

E
xe

cu
tio

n
tim

e
(s

)

Test case: Sample-Number of processes

MM1
MM2

RSVD other

S5-132S4-56S3-30S2-6S1-1

Figure 2.17 – Execution time (s) of the RSVD with n = 1,000. MM1 and MM2 are assessed with
methods (1) 2D BC GEMM and (4) TBC SYMM, numbered and named after Table 2.1, in the
CPU-only case. Method (0) furthermore denotes 1D BC GEMM. Method (4*) denotes TBC
SYMM with GPUs turned on. Execution of (4*) on 132 nodes was not possible because of a
Quality of Service (QoS) limitation on Jean Zay supercomputer (no more than 512 GPUs per
job). Five test cases are assessed, ranging from S1 on 1 node (denoted S1-1) to S5 on 132 nodes
(denoted S5-132).

itself. We also redesigned this step, which is mainly a reduction, using the DIST_REDUX access
mode introduced in [5]. We have not reported detailed figures on the matter, however, the
execution time of the entire RSVD-MDS algorithm (Gram computation and RSVD altogether)
on the whole dataset (S5) using 132 nodes (5,280 CPU cores) has been reduced from 70 seconds,
with the original code of [7] (denoted (0) here), to 25 seconds, with TBC SYMM (denoted (4)
here) together with the new Gram step design, while using about half the memory.

We complete the study with the illustration of the capability of task-based codes to exploit
heterogeneous architectures. Without any change in the code (other than providing the CUDA
cuBLAS kernels of single-GPU kernels), the runtime system may execute tasks on CPU or
GPU [10]. A subset of Jean Zay nodes have the exact same characteristics as described above in
CPU-only case but are furthermore enhanced with four NVIDIA Tesla V100 SXM2 GPUs (32
GB). CUDA v. 10.1.2 is used. Bars denoted (4∗) 5 in Figure 2.17 correspond to the execution
of the RSVD with GPUs enabled, relying on TBC SYMM for the matrix multiplication. The
results show a considerable improvement over the CPU-only case in spite of the relatively low
number of columns (n = 1,000 only) of B and C, a typical set up for the application.

2.8.2 Comparison of the performance of RsEVD-MDS and RSVD-MDS

In Section 2.8.2 we wanted to build upon the results of [7] with RSVD-MDS and we showed
that the model we presented in Section 2.7 did in fact allow for significant performance im-
provement to the SYMM operation, and that it can be used in place of GEMM for computing

5. We do not present GPU results for the largest test case as the quality of service rules of the machine did not
allow for the use of that many GPU.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

58 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

 0

 5

 10

 15

 20

 25

rsvd revd rsvd revd rsvd revd rsvd revd rsvd revd

E
xe

cu
tio

n
tim

e
(s

)

Test case: Sample-Number of processes

O1
O2
O3
O4
O5
O6
O7

S5-105S4-36S3-21S2-10S1-1

Figure 2.18 – Execution time (s) of RSVD and RsEVD with n = 1,000 using a SBC distribution.

Table 2.3 – Equivalent operations between RsEVD and RSVD.

Operation RSVD RsEVD Nomenclature
O1 Y = GΩ Y = GΩ MM1
O2 Y =QYRY Y =QYRY QR1,Q1
O3 C = GQY C = GQY MM2
O4 C =QCRC C =QTYC QR2,Q2 - MM3
O5 SVD(RC) EVD(C) SVD - EVD
O6 U =QYVRC U =QYUC MM3 - MM4
O7 V T =UT

RC
QTC - MM4

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.9. Conclusion 59

MM1 and MM2 in the context of both the RSVD and the RsEVD. We showed in Section 2.3 that
using the RSVD to compute the MDS on a matrix on which we do not know the rank could
lead to numerical inaccuracies because of a possible loss of symmetry. As such, we might want
to use the RsEVD instead as this method is not subject to the same problem. In this section,
we propose to look at the performance of the two methods in the distributed case, to show that
we can use the RsEVD instead of the RSVD without loss of performance. In Figure 2.18, we
show the performance of both these methods using the same datasets presented in Table 2.2.
The different operations O1 to O7 are presented in Table 2.3. The results obtained in Figure 2.18
were done using a SBC distribution. It shows that we achieve similar performance using either
methods, although the RsEVD has a slight edge in the larger cases, in part due to the fact that
the RSVD had to perform an additional operation (O7). We can also see that as expected, the
majority of the computing time still comes from the matrix products MM1 and MM2.

Finally, we present the actual results of this RsEVD-MDS approach. Figure 2.19 presents the
heatmaps we computed of the S5 sample. For reference, the ones obtained using the RSVD-
MDS of [7] are presented in Figure 1.13 (page 26). A visual study seems to indicate that these
point clouds are the same. This would mean that even though the analysis we made in Section
2.3 indicated that the RSVD could lead to an error during the reconstruction of the point cloud,
it does not necessarily mean that the RSVD necessarily gives wrong results. In this section, we
limit ourselves to this visual examination of the point clouds. Further comparison of these
point clouds is discussed in Chapter 3 and more precisely Section 3.8 were we are able to
confirm in a more rigorous way whether or not these point clouds are the Same. Figure 2.20
presents the singular values obtained with RsEVD (in red) to the ones from RSVD (in blue).
We can see as expected from [64] as well as our experiments from Section 2.3 that the singular
values coincide up to a point (around rank 200) at which point the values obtained from RsEVD
starts plummeting.

2.9 Conclusion

We refer the reader to Section 2.3.3 for the conclusion on the numerical study of the random-
ized linear embedding algorithms and now focus on the conclusions for our improvement of
distributed-memory matrix multiplication.

We experimentally confirmed that reference distributed-memory libraries achieve a lower per-
formance with SYMM than with GEMM. We showed that an efficient design of the commu-
nication schemes can significantly alleviate this gap. Still, we showed that part of the gap
is explained by a lower AI of 2D BC SYMM compared to 2D GEMM (by a factor of 2). We
considered two alternative data distributions, SBC and TBC. SBC is a direct adaptation to the
matrix multiplication case of a study of the Cholesky decomposition [14]. TBC is a distributed-
memory (and even a parallel) adaptation of the ideas behind TBS [15], a sequential out-of-core
algorithm. We proved that SBC and TBC improve the AI of SYMM by a factor of

√
2 and 2,

respectively, thus in particular equaling that of 2D BC GEMM for the latter one. In the case
where we allow SYMM to store an amount of memory equivalent to a full matrix as 2D BC
GEMM does, we furthermore showed that 2.5D TBC with s = 2 slices achieves a higher AI
than 2D BC GEMM by a factor of

√
2. Our experimental study showed that the improvement

of the AI translates into a compelling performance enhancement, up to the point of roughly
matching GEMM performance. However, the highest AI does not always translate into the best
performance.

The resulting code 6 has been integrated in the randomized linear embedding algorithms used
in the MDS framework of Section 1.6 in place of the two dense matrix multiplications rep-

6. Source code and instructions available at https://doi.org/10.5281/zenodo.7657176

Romain Peressoni Large Scale MDS for the Study of Biodiversity

https://doi.org/10.5281/zenodo.7657176

60 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

Axis 1
 σ1=3.0e+08

0

50

100

Axis 2
 σ2=1.3e+08

0

50

100

Axis 3
 σ3=6.3e+07

0

50

100

Axis 4
 σ4=5.0e+07

0

50

100

Axis 5
 σ5=4.3e+07

0

50

100

Axis 6
 σ6=3.4e+07

0 100

0

50

100

0 100 0 100 0 100 0 100 0 100

Axis 7
 σ7=3.1e+07

Figure 2.19 – Heatmap of the full L1-L10 point cloud (sample S5), obtained from a RsEVD-
MDS of the dataset at rank 1000. Each heatmap corresponds to the representation of the two
dimensions in the diagonal block. For instance, the third heatmap of the first column repre-
sents the first axis along the x-axis and the fourth axis along the y-axis.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

2.9. Conclusion 61

0 100 200 300 400 500 600
Rank

103

104

105

106

107

108
Si
ng

ul
ar
 V
al
ue

RSVD
RsEVD

Figure 2.20 – Singular values of the L1-L10 dataset (sample S5), obtained from RsEVD-MDS
(in red) of rank 1000 compared to the singular values found using RSVD-MDS (in blue) that
have already been presented in Figure 1.14. Values associated with a negative eigenvalue have
been filtered out as they are not part of the axes kept for building the associated point cloud.

resenting the main computational step of the algorithm. While one had to trade-off [7] be-
tween performance, with GEMM, or memory, with SYMM, we showed that, altogether, the
proposed STF design with the new TBC distribution now achieves a performance competitive
with GEMM. This study also showed that algorithms involving very irregular data and task
distributions can now be implemented with a code easy to write, read and maintain thanks to
the latest developments on the scalability of the STF model [5], while ensuring a competitive
performance.

As a result of this work, we now have access to a versatile high-performance MDS library that
provides an implementation of both RSVD-MDS and RsEVD-MDS in a distributed-memory
context. These algorithms are based on a state-of-the-art STF implementation of SYMM which
makes no compromise between performance and memory footprint.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

62 CHAPTER 2. TASK-BASED RANDOMIZED LINEAR EMBEDDING MDS

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Part II

MDS on a reduced sample of the input
distance matrix

63

Chapter3
Comparison of point clouds resulting from
MDS

3.1 Introduction

In this chapter we will explore the comparison of point clouds resulting from MDS. Our aim
is to apply these methods to the S5 (L1, . . . ,L10) dataset from Section 1.8.4 (p. 21) in order to
compare the diatoms from Lake Geneva collected at different monthly intervals. A first possi-
bility is to compute each Li point cloud independently. This is how they had been computed in
Figure 1.15 (p. 28). At the other end of the spectrum, another possibility is to rely on an HPC
software stack such as discussed in the first part of this thesis to compute the full sample S5
(L1, . . . ,L10) and extract the Li . Do these methods produce similar results?

The main problem with comparing point clouds from MDS is that MDS can be arbitrarily
translated, rotated, and reflected. This is related to the well known problem of Procrustes
analysis [117]. A first thought might thus be that the point clouds shown in 1.15 (p. 28)
obtained by independent computation have both already been centered and therefore only
remain to be rotated (and/or reflected). A quick look at the figure might even reassure us in
this respect. Because the human brain can easily rotate (and/or reflect) a 2D image, "human"
post-processing might be satisfying whereas "numerical" post-processing might be overkill.
Correct?

We invite the reader to play this rotation/reflection game with the Long Reads A, B, C and D
bacteria dataset (see images in Figure 1.9, p. 23) to align A, B, C and D with each other, and
then with the S5 diatom dataset (see images in Figure 1.15, p. 28) to align L1, . . . , L10 to each
other. What are your conclusions?

Here is a spoiler. Such a "human" 2D rotation/reflection visual post-processing is only possible
for the Long Reads dataset. As discussed in Section 1.8.2, the respective Long Reads A, B, C,
and D can be viewed as randomized samples from the same larger Long Reads ABCD sample.
Consequently, they are assumed to represent the same population and therefore have the same
MDS point cloud. Since MDS is defined up to a unitary transformation, all that remains is
to perform a 2D rotation/reflection to align them. In fact, we will see in Chapter 5 that it
is even sufficient to consider only the reflections along the first two vectors e1 and e2 of the
canonical basis of the plane (see solution in Figure 5.23, p. 150), which is related to Issue 4
discussed in this chapter. On the other hand, the L1, . . . , L10 represent diatoms from Lake
Geneva collected at different monthly intervals. We can therefore assume that they are related

65

66 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

(a) Block-diagonal pattern (b) Full pattern (c) Extended block-diagonal
pattern

Figure 3.1 – High-level data access pattern to the dissimilarity matrix D (in grey) when pro-
cessing point clouds independently (a), altogether (b), or almost independently but augmented
to ensure a robust alignment (c). Only orange blocks need to be accessed.

to each other, but we cannot a priori assume that they represent the same population, as it can
evolve over time. The a posteriori conclusion of this chapter is that Figure 1.15, p. 28) is not
well suited to comparing L1, . . . , L10 with each other. The development of this chapter will
provide a more appropriate visualisation for comparing them (the resulting visualisation can
be seen in Figure 3.30, p. 93 in Section 3.8.3).

Here is a reading in terms of data access. When computing the point clouds to be compared
(such as the Li samples) independently, it is sufficient to access a block-diagonal pattern such
as shown in Figure 3.1a. This method was used to generate Figure 1.15 (p. 28). At the other
end of the spectrum, we can construct the full sample (e.g. the entire S5 (L1-L10) sample)
and extract the corresponding point clouds (such as the Li samples) from it. We can do this
by relying on the HPC MDS from Chapter 2. However, it requires access to the full reference
dissimilarity matrix, as shown in Figure 3.1b. We show in this chapter that an intermediate
solution, which only needs to access a small portion of the reference dissimilarity matrix out
of the diagonal blocks, as shown in Figure 3.1c, can provide a robust solution too. We will use
such a method to generate Figure 3.30, p. 93).

There is also a deeper motivation. When we consider a full sample consisting of several related
samples that we want to compare, we may want to preserve the structure of each of the samples.
For example, if we consider the L1, . . . , L10 samples, they are all samples of diatoms, but they
were collected at different monthly intervals. We may therefore want to relate them while
preserving their respective structure. The alignment method developed in this chapter does
just that.

The proposed method relies on the same ingredients as MDS based on a divide-and-conquer
paradigm [130, 76]. However, while such divide-and-conquer methods are usually employed
for efficiently building a large MDS, on the contrary, our aim is to align point clouds for the
purpose of comparing them.

In addition to the visualisation problem, the comparison of point clouds may be captured
more synthetically through a measure of how far apart they are. This is also a well-known
problem. The Hausdorff distance [70] and its variants are well established metrics to answer
this question. We combine the alignment method we develop together with the application of
variants of the Hausdorff distance to obtain a measure of MDS point clouds.

We first elaborate on distance between point clouds in Section 3.2. We present related work
on the Hausdorff distance between point clouds [70] and discuss possible variations. We then

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.2. Distance between point clouds 67

tackle the alignment problem. Although this is a well known problem, we will first recall the
alignment effect of MDS, which is actually the same as that of principal component analysis
(PCA), in Section 3.3. Since these methods align point clouds on principal axes, they implicitly
perform some alignment. However, four potential issues prevent one from guaranteeing that
two related point clouds will be correctly aligned directly by PCA or MDS: Axes permutation
(Issue 1), Rotation (Issue 2), Translation (Issue 3) and Reflections around principal axes
(Issue 4). Sections 3.4, 3.5 and 3.6 deal with the alignment of point clouds on orthogonal
Procrustes analysis [117, 65, 60, 90] and General Procrustes Analysis [58] in Section 3.7. We
apply all these methods to the study of the L1, . . . ,L10 dataset in Section 3.8. This leads us to a
discussion on the dimensionality of our data in Section 3.9.

3.2 Distance between point clouds

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

X1
−1.0 −0.5 0.0 0.5 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

X2
−1.0 −0.5 0.0 0.5 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Superimposed

X1
X2

Figure 3.2 – Measuring the distance between two point clouds X1 and X2.

In this section, we are going to go over different means of comparing point clouds. First, we
are going to define some terminology, using the simplest case possible. In this case, both point
clouds are aligned, have the same number of points, and we know of the correspondence be-
tween the points. Instinctively, we want to define aligned point clouds as point clouds that
can be superimposed as best as possible, as illustrated in Figure 3.2. Let us consider two point
clouds X1 and X2. As long as there are the same number of points in both clouds and that there
is a correspondence between the rows of the coordinate matrices of X1 and X2 i.e. the point
represented in a row of X1 is aligned to the point represented in the same row in X2, calculating
a distance between X1 and X2 boils down to computing the Frobenius Norm ||X1−X2||F .

All of the aforementioned properties do not necessarily hold in practice, sometimes none do.
In this chapter, we discuss all of those cases, and show the steps needed to deal with these con-
straints. In sections 3.2.1, 3.2.2 and 3.2.3 we present the Hausdorff distance, a metric used to
compare shapes, that can still compare point clouds when we have no correspondence between
points. In fact, the Hausdorff distance does not even require both point clouds to have the same
number of points.

In Section 3.3, we discuss all the sources of non alignment between point clouds, followed in
Section 3.4, by a presentation of the existing methods of aligning point clouds. Using all of
these methods, we present in Section 3.5 methods for aligning point clouds arising from MDS.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

68 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

3.2.1 Hausdorff distance

A classical metric to compare point clouds is the Hausdorff distance [70]. The Hausdorff dis-
tance has been defined betwen compact spaces, and as a (finite) point cloud is a compact space
(it is closed and bounded), Hausdorff distance can be used for computing distances between
point clouds. To define the Hausdorff distance H between two sets of points A and B, we first
consider the distance between a point a in A and the set B as

d(a,B) = min
b∈B
||a− b|| (3.1)

here || || is the euclidean distance. From this definition, we consider the directed Hausdorff
distance from setA to set B to be equal to the distance from the point of setA that is the furthest
away from any point of set B, it is noted

h(A,B) = max
a∈A

d(a,B) (3.2)

Finally, we define the Hausdorff distance H between A and B as the maximum between both
directed distance. The Hausdorff distance writes

H(A,B) = max(h(A,B),h(B,A)) (3.3)

If the Hausdorff distance between A and B is δ then for any point a in A there exist at least one
point b in B such that ||a − b|| ≤ δ (the same is true from B to A as well). We can see that this
distance will not be impacted by the number of points, neither does it require a correspondence
between the points of both sets.

3.2.2 Variation of the Hausdorff distance

The Hausdorff distance is known to suffer from an outlier issue [40], in the sense that the
distance between two point clouds may be completely skewed by the presence of a single point
far away from the other ones, even if the two point clouds are otherwise identical. This is a
problem for many applications. To counteract the potential impact of these outliers, we rely
on existing work that solves this issue by using a variations of the Hausdorff distance. There
exist many variations of the Hausdorff distance [40, 70, 88, 103], most of them driven by the
idea of minimizing the outliers problem. They are often motivated with a precise application
in mind and use extra parameters to take advantage of known specificities of the data used.

3.2.2.1 Modified Hausdorff distance

As mentioned in the previous section, a lot of the variations of the Hausdorff distance found in
the literature are dependant on extra parameters, which are often chosen with some specifici-
ties of the data in mind. For this reason, we decided to only consider the Modified Hausdorff
distance (MHD) [40] out of those methods, as it doesn’t require any extra parameter. The MHD
is obtained by taking the definition of the classical Hausdorff distance and replacing the defi-
nition of the directed distance with

hMHD(A,B) =
1
NA

∑
a∈A

d(a,B) (3.4)

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.2. Distance between point clouds 69

whereNA is the number of points ofA. Here, by taking into account all the points of the clouds,
the effect of outliers is dampened. We have to note that this method is not a proper distance,
as the triangle inequality is not respected.

3.2.2.2 Squared Modified Hausdorff distance

To expand on the MHD, we also propose to consider another variation of the Hausdorff distance
that to the best of our knowledge is not present in the literature. We chose this metric because
it has a similar behavior to the Frobenius distance under certain circumstances. This distance,
that we will call the squared modified Hausdorff distance (denoted H2) is defined by using the
following directed distance

h2(A,B) =

√
1
NA

∑
a∈A

d(a,B)2 (3.5)

In order to show the link with the Frobenius norm, let us consider two point clouds A and B. In
the case where A and B have a correspondence between their points and are aligned (meaning
A and B have the same number of points and the closest point to the ith point of A is the ith

point of B and reciprocally), then we can show that the squared modified Hausdorff distance
and the Frobenius distance will be the same up to a factor

√
N , where N is the number of

points. We can write this condition more formally in Equation 3.6.

∀i,∀j , i, ||ai − bi || < ||ai − bj || (3.6)

This leads us to define lemma 1.

Lemma 1. If A and B are two point clouds that satisfy 3.6, then H2(A,B) = 1√
NA
||A−B||F

Proof. Let us consider A ∈ Rm×k and B ∈ Rm×k , representing two point clouds composed of m
points in k dimensions that satisfy 3.6 and let us compute H2(A,B) = max(h2(A,B),h2(B,A)).
The directed distance writes

h2(A,B) =

√
1
m

∑
a∈A

d(a,B)2 (3.7)

h2(A,B) =

√√
1
m

m∑
i=1

d(ai ,B)2 (3.8)

h2(A,B) =

√√
1
m

m∑
i=1

min
b∈B
||ai − b||2 (3.9)

By 3.6, we know that the b that satisfy this min is bi , which gives us

h2(A,B) =

√√
1
m

m∑
i=1

||ai − bi ||2 (3.10)

h2(A,B) =

√√√√
1
m

m∑
i=1

k∑
j=1

(aij − bij)2 (3.11)

h2(A,B) =
1
√
m
||A−B||F (3.12)

Romain Peressoni Large Scale MDS for the Study of Biodiversity

70 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

We can show in the same way that h2(B,A) = h2(A,B) and therefore we have
H2(A,B) = 1√

m
||A−B||F .

3.2.3 Relative Hausdorff distance

When studying distances between point cloud, we want to be able to use a reference to have
a relative distance. We can here make the analogy to the classical linear algebra problem of
solving Ax = b. To evaluate the quality of a solution, one would compare it to the norm of
the right hand side b to have a relative error ||Ax−b||F||b||F

. The problem of scaling the Hausdorff
distance to a reference has been mentioned in the literature. For instance, in [134] the authors
use a reference length to scale the data and in [77] they normalize their point clouds to have
their coordinates in the range of [-1,1].

To construct such a reference, we propose to take a slightly different approach and we define
the Hausdorff diameter of a centered point cloud.

We define, for a point cloud A and a variation of the Hausdorff distance d, the corresponding
diameter as

d(A) = d(A,O) (3.13)

with O being the point cloud composed of a single point of zero coordinates in all dimensions
(i.e., the centre of the point cloud).

We can now show that whether we use the Hausdorff distance, the MHD of the H2, equation
3.13 respect the following properties, described in lemma 2.

Lemma 2. Let A ∈ Rm×k representing a point cloud composed of m points in k dimensions. For any
d (among H, MHD, H2) d(.) have the folowing properties :

1. Absolute homogeneity - d(λA) = |λ|d(A)

2. Positive definiteness - d(A) = 0 ⇐⇒ A = 0

Proof. Let A be a point cloud composed of m points in k dimensions and O is a point cloud
composed of only one point (the centre).

For the Hausdorff distance:

By using the definition of d(A), and the definition of the directed oriented distance we have

d(A) =max(h(A,O),h(O,A)) =max(max
a∈A
||a||,min

a∈A
||a||) = max

a∈A
||a|| (3.14)

Because of the properties of the Euclidean norm and the max function, the absolute homogene-
ity property is obvious. Concerning the positive definiteness - H(A) = 0 ⇐⇒ A = 0
Since we know that H(A) = max

a∈A
||a||, then all points in A is equal to the centre O, and then,

A =O.
For the MHD:

First, we detail the two directed distances

hMHD(A,O) =
1
NA

∑
a∈A
||a|| (3.15)

hMHD(O,A) =min
a∈A
||a|| (3.16)

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.3. Do PCA and MDS implicitly align two related point clouds? 71

It is easy to see that hMHD(A,O) > hMHD(0,A) and then

MHD(A) =max(hMHD(A,O),hMHD(O,A)) =
1
NA

∑
a∈A
||a||.

The absolute homogeneity properly - MHD(λA) = |λ|MHD(A) is evident as

MHD(λA) =
1
NA

∑
a∈A
||λa|| = 1

NA

∑
a∈A
|λ|||a|| = |λ|

NA

∑
a∈A
||a|| = |λ|MHD(A)

For the positive definiteness -MHD(A) = 0 ⇐⇒ A = 0, we show this by using exaclty the same
arguments that we used for the Hausdorff distance.

For the H2:

The proof is similar to the MHD one since we have

H2(A) =max(h2(A,O),h2(O,A)) =
1
√
NA

∑
a∈A
||a||2.

1. Absolute homogeneity - H2(λA) = |λ|H2(A)
We have

H2(λA) =

√
1
NA

∑
a∈A

d(λa,0k)2 =

√
1
NA

∑
a∈A
||λa||2 =

√
1
NA

∑
a∈A
|λ|2||a||2.

As a consequence, we obtain:

H2(λA) = |λ|
√

1
NA

∑
a∈A
||a||2 = |λ|H2(A).

2. Positive definiteness - H2(A) = 0 ⇐⇒ A = 0k
The positive definiteness can again be shown using the same method as in the previous two
cases.

Using our various Hausdorff diameter, we introduce this relative distance

dr(A,B) =
d(A,B)

max(d(A),d(B))
(3.17)

to evaluate the distance between the two point clouds A and B. We chose this denominator
in Equation 3.17 as we wanted our relative distance to be symmetric with dr(A,B) = dr(B,A).
Replacing it with d(A) would be another valid relative distance in the case we consider A to be
the reference we compare B to.

3.3 Do PCA and MDS implicitly align two related point clouds?

Both PCA and MDS align point clouds on principal axes. As a consequence, they implicitly per-
form some alignment. If we apply PCA or MDS on two point clouds, we may expect that part
of the problem of aligning them gets implicitly solved. This is partially true. However, four
potential issues prevent one from guaranteeing that two related point clouds will be correctly

Romain Peressoni Large Scale MDS for the Study of Biodiversity

72 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

First shape
−1.0 −0.5 0.0 0.5 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Second shape

Figure 3.3 – The two basic shapes we consider to create point clouds.

aligned directly by PCA or MDS: Axes permutation (Issue 1), Rotation (Issue 2), Translation
(Issue 3) and Reflections around principal axes (Issue 4).

This is a well known problem and we invite the knowledgeable reader to skip this section.

We illustrate that even when working with very similar data, small effects can significantly
affect the alignment of point clouds. Throughout this section, we will create point clouds by
composing the two shapes shown in Figure 3.3 to illustrate our discussion. On the left, we have
a point cloud composed of two clusters, located around (−0.6) and (+0.6) and, on the right, we
have a point cloud composed of clusters at (−1,−0.8,−0.4,−0.2) and their symmetrical parts.
We use them to illustrate how small variations in some parameters can have a large effect on
the point cloud once we apply PCA [105, 69, 74] or MDS. Because PCA and MDS have the same
alignment effect, we will limit our discussion to PCA, as it is easier to discuss in terms of point
clouds only without having to resort to a distance matrix.

3.3.1 Issue 1: Axes permutation

For the first effect, we want to show that under some circumstances, two principal axes can
be exchanged. Here we construct our point cloud by arranging our two shapes from Figure
3.3 to be orthogonal to each other. Our reference point cloud will be the one from Figure 3.4.
In this figure, we compute the two singular values associated with the main axes. Then, we
influence the singular values by modifying the density of the clusters inside this point cloud.
As long as the singular values are far enough apart, like they are in Figure 3.5 we can see that
the PCA of our point clouds remains the same, and the output we get are aligned and can be
compared. However, in Figure 3.6 we can see that what used to be the second singular value
became greater than the first one. As a result, we can see that the two point clouds are not
aligned anymore. This is the worst possible case, as a visual expertise tells us that the point
clouds have the same shape, yet computing a distance on these point clouds will make it appear
that they are very far apart. In real data, we can expect these kinds of axes inversion to occur
when we deal with two singular values that are very close to each other. Then any form of
noise might cause an inversion of axes. While this can in theory be fixed at the cost of a point
cloud alignment step, we have to remind that the MDS is a dimension reduction algorithm. If
we combine a permutation of some axes with a projection in a lower number of axes, then the

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.3. Do PCA and MDS implicitly align two related point clouds? 73

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=2.74σ=6.12

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=6.12

σ2=2.74

PCA

Figure 3.4 – The two shapes presented in an orthogonal way. Here we make sure that the
singular values associated with each principal axis are very distinct.

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=4.60σ=6.14

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=6.14

σ2=4.60

PCA

Figure 3.5 – The two shapes presented in an orthogonal way. As long as the singular values
remain distincts, the PCA of the point cloud remains the same.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

74 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=6.58σ=6.03

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=6.58

σ2=6.03

PCA

Reference

Figure 3.6 – Permutation of the axes when the singular values become closer.

−1 0 1

X1

−1.0

−0.5

0.0

0.5

1.0

2D

−1 0 1

X2

−1.0

−0.5

0.0

0.5

1.0

−1 0 1

1D
 projection

−1 0 1

Figure 3.7 – Effect of the axes permutation on dimension reduction.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.3. Do PCA and MDS implicitly align two related point clouds? 75

information can be definitely lost. We illustrate this possibility in Figure 3.7 where we take the
point clouds we were studying before and project them onto the first axis. Here we can see that
even though the two point clouds are similar and can be recognized as such in their original
version, after the projection on a single axis, they are not similar at all anymore.

3.3.2 Issue 2: Rotations

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=2.74

σ=6.12

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=6.38

σ2=0.71

PCA

Figure 3.8 – Point cloud built form the initial shape arranged in a oblique manner.

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=4.60

σ=6.14

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=6.86

σ2=1.12

PCA

Reference

Figure 3.9 – Oblique point cloud being compared to the reference when the weight of the
clusters changes.

The second effect we are tying to highlight is the fact that a slight change in the distribution
of the cluster can lead to a rotation. To show this we build a point cloud from the same two
shapes, except that this time instead of building an orthogonal point cloud, we arrange them in
an oblique fashion. This gives us the reference shape of Figure 3.8. Here, when we change the
relative weight of each axes, instead of having an inversion of the axes, we can see that there
is a rotation between the two shapes. This rotation is visible in both figures 3.9 and 3.10 and

Romain Peressoni Large Scale MDS for the Study of Biodiversity

76 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=6.58

σ=6.03

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=7.48

σ2=1.44

PCA

Reference

Figure 3.10 – Oblique point cloud being compared to the reference when the weight of the
clusters changes.

is more pronounced in Figure 3.10. The more we make the cluster on one of the axes dense,
the more it looks like it is pulled towards the principal axes, resulting in a rotation from the
reference point cloud. Just like the inversion of the axes presented in Section 3.3.1 any noise in
the data, or randomness in the algorithm used can cause such rotations. However in this case,
the rotation while impacting the distance between point clouds, the rotation is proportional
to the amount of error introduced, and a small rotation will only result in a small increase in
distance.

3.3.3 Issue 3: Translation

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=2.74σ=6.12

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=6.01

σ2=3.23

PCA

Figure 3.11 – Point cloud that is off-centered due to one cluster being larger than the other in
the smaller axes.

The last transformations to consider are translations. We achieve it by having one cluster larger
than its symmetric counterpart. It results in the point cloud seen in Figure 3.11 that can be seen

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.3. Do PCA and MDS implicitly align two related point clouds? 77

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=2.74σ=6.12

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=6.01

σ2=3.23

PCA

Reference

Figure 3.12 – Comparison of this off-centered point cloud compared to the reference point
cloud of Figure 3.4.

in comparison to the reference point cloud of Figure 3.4 in Figure 3.12. In general we are not
going to consider translations as all the point clouds we consider in the case of MDS have
been centered. Still the center of the point cloud is not an absolute reference, and sometimes
centering point clouds before comparing them makes sense. This will be discussed further in
Section 3.5.

3.3.4 Issue 4: Reflections

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=2.75σ=6.12

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=6.12

σ2=2.75

PCA

Figure 3.13 – Reference point cloud using a non-symmetric distribution on the second axes.

In this section, we present the problem of reflections around the principal axes. To illustrate
it we need to slightly alter the point clouds we are working with as otherwise the point cloud
will look exactly the same regardless. This new reference point cloud is presented in Figure
3.13. In this point cloud, we split one of the clusters of the second principal axis into two. We

Romain Peressoni Large Scale MDS for the Study of Biodiversity

78 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ=2.75σ=6.12

Original
−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

σ1=6.01

σ2=2.68

PCA

Reference

Figure 3.14 – PCA of an almost identical point cloud to the one of Figure 3.13.

then create a point cloud with the same parameters and compute its PCA that we present in
Figure 3.14, where we can see that this second axis has been flipped. As such, the two output
clouds are not aligned anymore. This behaviour is in fact the most frequent we encounter, as it
is a result of the SVD algorithm used to compute the PCA (and MDS). The SVD (presented in
Section 1.3.1, on page 13) decomposes a m by n matrix A in A = UΣV ∗. While in this formula
Σ is unique, U and V are only determined up to signs column by column. This means that
for any k, if we call (uk ,vk) the kth columns of U and V , then changing them for (−uk ,−vk)
would give us another valid solution for the SVD. This implies that for the same input matrix
depending on the algorithm used, the architecture the program is executed on, the result may
change by a reflection around some principal components cause by a change of sign in U and
V . Similarly, with similar conditions, a small error on the input matrix can cause a similar
change to happen. This can effect any column of U independently. Just like the inversion of
axes, the reflections have a significant impact on distance between point clouds, and as such
need to be accounted for before comparing point clouds.

3.4 State of the art on point cloud alignment

3.4.1 Correspondence case : Procrustes analysis and the orthogonal Procrustes
problem

Procrustes analysis [117, 65, 60, 90] is a way to compare shapes, by fitting one object onto
another. It takes its name from a mythological Greek bandit who either would cut of or stretch
the limbs of his victims in order to make them fit in his metal bed. Let us consider two matrices
A ∈ Rm×k and B ∈ Rm×k , a Procrustes transformation will try and apply the best combination
of rotation, reflection, translation and scaling to transform B into A, by trying to find a W ∈
R
k×k such that ‖A − BW ‖F is minimal. In the particular case where we want to achieve such

a result using a orthogonal transformation, meaning only a rotation or a reflection, we talk
about the orthogonal Procrustes problem and by convention we write it with Q: minQ∈Ok‖A−
BQ‖F with Ok being the set of orthogonal matrices of size k × k. The solution to the Procrustes
transformation is well known. However it can only be applied when there is the same number
of points in each cloud. It is even more restrictive as it requires a correspondence between the

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.5. MDS point cloud alignment 79

points. As we are interested in comparing point clouds that do not have these properties, we
present methods that can achieve this in Section 3.4.2

3.4.2 Non-correspondence case : Wasserstein-Procrustes and Gromov-Hausdorff

If both point clouds have the same number of points, without having a correspondence be-
tween them, then we can use the Wasserstein-Procrustes [60] distance that consists in using
the Wasserstein distance to find a correspondence between the points, in order to find an opti-
mal solution using Procrustes analysis. The Wasserstein distance is defined as:

min
Π∈Pm

||ΠA−B||F (3.18)

With Pm the set of permutation matrices. As such, the Wasserstein-Procrustes distance can be
written as:

min
Π∈Pm,Q∈Ok

||ΠA−BQ||F (3.19)

If the point clouds do not have the same number of points, then we rely on the Gromov-
Hausdorff distance [94, 62]. The concept of the Gromov-Hausdorff distance between point
clouds is to find the best isometry between the point clouds in the sense that it minimizes the
Hausdorff distance between them.

Since both these methods are quite costly to compute in practice, we do not implement them
and instead we present in Section 3.5 the methods we choose for comparing point clouds aris-
ing from MDS.

3.5 MDS point cloud alignment

Let us consider two datasets X1 and X2 that we want to compare. We may want to compute
their MDS independently, as it is shown in figure 3.15, however this will lead to two point
clouds that will not be aligned a priori. We can then be in a few different cases. Either the
point clouds come from data that is close, for instance we extracted two submatrices from
a single original dataset. In this case we may expect that the resulting point clouds will be
approximately close. Even in this optimistic scenario where the only variation comes form the
extraction of the submatrices, the unstability of the SVD presented is Section 3.3.4 will most
likely create some reflections around the principal axes between the point clouds similarly to
the effect presented in 3.3.4. If the point clouds come from different datasets that we want to
compare, then the differences will be even greater as possibly all the sources of error presented
in Section 3.3 apply.

The two datasets X1 and X2 can be seen as being part of a larger one. The associated full
distance matrix X can be available or not, but it must exist at least in theory. What we mean
here is that the distance between the entries of X1 and the distance between those of X2 must
come from the same function, otherwise comparing these point clouds would not make sense.
As such computing the MDS of X1 and X2 separately can be seen as computing the MDS on
two submatrices of X as it is presented in Figure 3.16. In this figure, the two grey blocks
represent the part of the matrix that are not available (or at least accessed) during the MDS
of X. In such a computation, the problem of aligning the point clouds obtained from X1 and
X2 is complicated as we do not have a correspondence between points, neither do we have the
guaranty that the number of points of X1 and X2 are the same. In this case the only method

Romain Peressoni Large Scale MDS for the Study of Biodiversity

80 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

X1

X1

X2

X2

Figure 3.15 – X1 and X2 two datasets to be compared. Here we compute independently the
MDS on each dataset.

X1

X1

X2

X2

X

X

Figure 3.16 – X1 and X2 can be seen as part of a bigger matrix X. Computing the MDS on
X1 and X2 independently can be seen as not having any information from the extra-diagonal
blocks.

we know of to compute a distance between the point clouds is the Gromov-Hausdorff distance
presented in Section 3.4.2 that requires us to compute all isometries between X1 and X2.

Instead of doing this, we could form and compute the full matrix X. After all computing the
MDS of X would align X1 and X2 along the principal axes of X and mean that they would
be already aligned and can be compared using the Hausdorff distance without any alignment
phase. This method is illustrated in Figure 3.17. While this method will provide us with the
best possible alignment of X1 and X2, it is also more costly than the previous one, as the MDS
that needs to be performed is larger. On top of that, the extra-diagonal blocks between X1 and
X2 may not be available and would need to be computed, which is often the most costly step
of the whole MDS process, often requiring order of magnitudes more time to complete.

To find a compromise between those two methods, where we limit the amount of extra-diagonal
blocks that need to be computed, while still being able to align the point clouds cheaply, we
propose a new approach of comparing point clouds. The idea is to only compute part of the
extra-diagonal blocks. To achieve this, we select a number of landmark points in X2 to be
added to X1 and compute the necessary part of the extra-diagonal blocks. This new version of
X1 is called X1+. Then we can compute the MDS of X2 and X1+ separately. Once this is done,
we have a subset of X1+ that we know to have a correspondence with a subset of X2. We can
then find the optimal transformation to map the landmark of X2 to their counterpart in X1+
using Procrustes analysis. The transformation matrix can then be applied to the full X2 point
cloud. This procedure is explained in Algorithm 11 and illustrated in Figure 3.18.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.5. MDS point cloud alignment 81

X1

X1

X2

X2

X

X

Figure 3.17 – By computing the MDS on the entire matrix X, we garantee that X1 and X2 will
be aligned as we took into account the entirety of the information and X1 and X2 are therefore
projected onto the same axes and can be compared directly.

X1+

X1+

X1

X1

X2

X2

Figure 3.18 – By augmenting X1 with entries from X2 we obtain X1+. The orange part being
computed in both X1 and X2, these points serve as landmarks to find an optimal transforma-
tion to map X2 to X1 using Procrustes analysis.

Algorithm 11: Landmark Procrustes MDS.
Input: D1 a m×m matrix, D2 a n×n matrix, l the number of landmarks
Output: X1,X2 two point clouds corresponding to the MDS of D1 and D2 that are

aligned

1 Draw a l landmarks from D2
2 Compute D1+ the matrix D1 augmented with the landmarks
3 Compute X1+, X2, the MDS of D1+, D2
4 Extract X1l and X2l the landmarks points from X1+ and X2
5 Compute Q such that ||X1l −QX2l || is minimal using orthogonal Procrustes
6 Form X1 by removing the landmarks from X1+
7 Form X2 =QX2
8 return X1,X2

Romain Peressoni Large Scale MDS for the Study of Biodiversity

82 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

1 . . . 1

XT
landmarks

ω1
...
...
ωk

 =

1
0
...
0

Figure 3.19 – Augmented system aimed at expressing the barycenter of Xlandmarks as a function
of the landmarks.

This method however does not take into account the centering [23] between X1 and X2. In
order to fix this, we propose to use the augmented system presented in Figure 3.19 to express
the barycenter of X1+ as a function of the landmark, allowing us to recenter X2 to the center
of X1+ in order to align the two point clouds. We want to find a vector ω such that if we name
l the number of landmarks and xi the landmarks themselves we have:

l∑
i=1

ωxi = 0 (3.20)

We however have to add an extra condition since we are trying to find the center of the point
cloud, which is always in 0 as ω = 0 is a solution to this system. As such we impose the
condition:

k∑
i=1

ωi = 1 (3.21)

This condition is translated in Figure 3.19 by the first row of ones on the first matrix as well as
the first 1 on the right-most matrix and guarantee that we do not find 0 as our solution. Once
we have computed omega, we can apply it to the landmarks in the second point cloud, to find
where the center of the first point cloud is located inside the second point cloud and recenter
the second point cloud.

3.6 Generalized MDS alignment

3.6.1 Generalized Procrustes Analysis

In the case where we want to compare more than one point clouds to each other, we may want
to rely on what is called Generalized Procrustes Analysis (GPA) [58]. The base concept of GPA
presented in Algorithm 12 is to use Procrustes analysis to a reference shape to compute an
average shape between the point clouds. In the GPA algorithm, the reference shape is built by
iteratively until all the shapes reach an average shape.

Algorithm 12: Standard Generalized Procrustes Analysis.

1 Choose a reference shape among the ones in input
2 Align all other shapes to this one
3 Compute the mean shape
4 Compute the distance between the mean shape and the reference
5 If the distance is greater than a threshold, set the reference as the mean shape and

repeat the algorithm

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.7. Block Diagonal Landmark Procrustes MDS (BDLPMDS) 83

X1

X21 X2

X12

X1

X1

X2

X2

Xref

Figure 3.20 – Generalized alignment using landmarks as a reference shape in a 2 × 2 block
matrix.

3.6.2 Application to MDS (alignment of non corresponding MDS point clouds)

In our context, we would want to use it to align point clouds that come from different parts of a
distance matrix, and as such the condition of correspondence is not verified. We can still come
with a solution inspired from the idea of Figure 3.18 where we rely on landmarks as common
points to align our matrices using Procrustes analysis. However instead of augmenting one or
more matrices, we propose this time to select a few entries from each matrices to be rebuilt
into a reference matrix of landmarks as illustrated in Figure 3.20. Computing the MDS on
the landmarks results in a reference shape that does not need to be iterated upon. The GPA
algorithm for MDS analysis is described in Algorithm 13. In Section 3.8.3 we use this method
to compare the different datasets composing the L1, . . . ,L10 sample of Section 1.8.4 (p. 21). In
this configuration, the diagram from Figure 3.20 would be better illustrated in Figure 3.21.

Algorithm 13: Generalized Procrustes MDS Analysis.
Input: Lin a list of matrices to compare, l a number of landmarks
Output: Xout all the point clouds aligned

1 Choose l landmarks spread between all the entries of Lin
2 Build Llandmark the distance matrix composed of the landmarks
3 Compute Xlandmark the point cloud of the landmark matrix
4 Compute XMDS the list of the MDS of all entries of Lin
5 Use Procrustes analysis between each entries of LMDS and their corresponding part in

XMDS to build Xout.
6 return Xout

3.7 Block Diagonal Landmark Procrustes MDS (BDLPMDS)

When considering MDS, the limiting factor often comes to either the cost of building the dis-
tance matrix, or the sEVD computation. As we mentioned in the introduction, there exist algo-
rithms that limit the amount of the matrix we have to build such as Landmark MDS (LMDS),
which we present in Section 3.7.1. We consider here an alternative way based on a divide-and-
conquer paradigm for designing an MDS [130, 76]. We review related work in Section 3.7.2.
We show that the generalized alignment method we presented in Section 3.6 is similar to these

Romain Peressoni Large Scale MDS for the Study of Biodiversity

84 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

Figure 3.21 – Generalized alignment using landmarks as a reference shape in a 10 × 10 block
matrix.

algorithms. However, contrary to these algorithms, our idea is to exploit the already computed
MDS on subsamples (associated with principal submatrices of the dissimilarity matrix) in or-
der compute the MDS of the full sample. For example in our case, we would have all the Li of
Section 1.8.4 (p. 21) but not yet the extra diagonal blocks in the distance matrix.

3.7.1 State of the art on interpolation-based MDS (LMDS-like methods)

Due to the cost of the MDS, there exist extensive work in the literature dedicated to finding
ways of computing it using approximations of the distance matrix. Among these methods, the
idea of starting with a partial MDS followed by an interpolation step to map the remaining
points using their distance to the computed position in the reference, and in term rebuild the
whole solution have been studied by many authors [118, 31, 100, 99, 44, 129]. In particular,
landmark MDS (LMDS) [118, 31] (Algorithm 14 for an overview, see Figure 1 of [31] for a
more extensive version) is a interpolation-based MDS based on the computation of a first MDS
on a restricted number of points of the input matrix called landmarks, and in a second step
places the remaining point using a triangulation method. For G ∈ R

m×m, we want to find
l << m points to act as landmarks. In this thesis, we restrict ourselves to random landmarks,
although the authors of [31] also propose a MaxMin scheme to select more relevant points. The
interpolation step is based on different methods. In [100], Paradis bases his approach on the
formulas of [59]. In [106], Platt links LMDS (and other interpolation-based MDS) to Nyström
approximation [39].

Algorithm 14: Landmark MDS algorithm.
Input: A a m×m matrix, l the number of landmarks, k desired output dimension
Output: X,Λ, an approximate MDS of A

1 Form the Gram matrix G
2 Select l landmark points from G
3 Compute the classical MDS on landmarks
4 Compute A distance-based triangulation of the remaining points to the landmarks
5 return X, Lambda

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.8. Application 85

Figure 3.22 – LMDS (left) and BDLPMDS (right). The oranges blocks are reference landmark
matrices, the blue dashed diagonal blocks are MDS on coherent samples. The green dashed
block is used in the LMDS interpolation. The grey parts do not need to be accessed.

3.7.2 Related work on divide-and-conquer MDS

As we mentioned in the general introduction, apart from randomized algorithms, another class
of scalable MDS has also been developed based on a divide-and-conquer paradigm [130, 76].
The idea is to perform independent MDS on overlapping principal submatrices. Extra-diagonal
blocks allow diagonal blocks to overlap with each other. The overlap is used to align the re-
spective MDS by Procrustes analysis [117]. The method was introduced under the name of
FastMDS by Yang et al. [130]. Ketpreechasawat independently introduced a closely related
method under the name of hierarchical landmark charting [76]. Lee and Choi recast them as
ensemble learning methods under the name of Landmark MDS Ensemble (LMDSE) [85].

3.7.3 Block Diagonal Landmark Procrustes MDS

Our idea of Block Diagonal Landmark Procrustes MDS (BDLPMDS) is to start by executing
Algorithm 13 to compute and align all the diagonal blocks of our matrix, however at the end
instead of returning the point clouds, we merge them into the solution. In this step the center-
ing is crucial, as each point cloud is centered separately and there is no reason for these centers
to be coherent. Any variation in the position of the center will greatly impact the reconstructed
point cloud. This issue is discussed in Section 3.3. The size of the reference can be very small
compared to the full matrix as we are only interested in using those for the alignment step, and
in our scenario we have already built the diagonal blocks, meaning that we can build the refer-
ence matrix at a reasonable cost. The comparison between LMDS and BDLPMDS is presented
in Figure 3.22

3.8 Application

We applied the Landmark Procrustes MDS presented in 3.5 to the large L1 to L10 dataset of
Section 1.8.4 (p. 21). In Section 3.8.1, we compare the result from RSVD-MDS obtained in [7]
and shown in Section 1.8.4 (p. 21) and the result from RsEVD-MDS presented in Section 2.8.2
(p. 57) with the goal of estimating whether or not the issues discussed in Section 2.3 have an
impact on this result. In Section 3.8.2, we propose an application of this first method on the

Romain Peressoni Large Scale MDS for the Study of Biodiversity

86 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

two point clouds L1 and L2. In Section 3.8.4 we show results using the generalized alignment
method presented in Section 3.6 to study the full S5 dataset by trying to align all the Li to a
reference shape. For the sake of consistency, we will be using the relative H2 distance even in
the cases where we compute the Procrustes distance between.

3.8.1 Comparison of the point clouds resulting from RSVD-MDS and RsEVD-
MDS

In this section, we compare the point clouds from the S5 dataset obtained with either random-
ized method from Chapter 2. As a reminder, the point cloud obtained from RsEVD-MDS is
presented in Figure 2.19 (p. 60) and the one obtained from RSVD-MDS is presented in Figure
1.13 (p. 26). As both represent the same point cloud and have been computed using the same
distance matrix, we are in the case where we have a correspondence between the points of both
clouds, we can use Procrustes analysis as described in Section 3.4.1. Using this method to align
point clouds, we then computed the distance with the relative H2 distance and found both
point cloud to be mostly identical with a difference of 1.82 × 10−6 when compared in two di-
mensions and a difference of 6.92×10−5 when using the 20 available dimensions we computed
of both point clouds. The results is shown in Figure 3.23.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Point cloud obtained from RsEVD-MDS

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Point cloud obtained from RSVD-MDS

Figure 3.23 – Comparison of the heatmaps of the point clouds of the S5 sample obtained using
RsEVD-MDS (on the left) and RSVD-MDS (on the right).

3.8.2 Comparison of L1 and L2

To apply the Landmark Procrustes MDS procedure, we randomly selected 1000 points from
L2 to build L1+ that we present in Figure 3.24. In this figure, we present in red the landmarks
point that come from L2 and will serve to align L2 to L1 using orthogonal Procrustes analysis.
The result of this alignment step can be seen in Figure 3.25. We can see that the alignment
found seem quite convincing, and using the relative H2 distance between L1 and L2 gives us a
distance of 0.013 in 0.37 seconds.

The alignment was computed using the first 20 dimensions of both point clouds, although we
only kept the first two dimensions for the final distance computation. It is important to take a
high enough number of dimensions to do this computation to avoid the issue of axes inversion
presented in Section 3.3.1 as there is no guarantee that the principal axes of L1 and L2 are the
same, if we only take into account the first two axes to do the orthogonal Procrustes step, we

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.8. Application 87

have a risk of not comparing the same axes and ending in a wrong configuration. We illustrate
this example in Figure 3.27 in which we try to reproduce the same aligning step using only the
first two dimensions. Here we can see that the final point cloud obtained from L1+L2 is quite
different, as highlighted for instance by the part in the red circle. This 2D comparison was
performed in 0.32 seconds, and gave a distance between L1 and L2 of 0.10 so almost an order
of magnitude higher than the previous solution for a negligible gain in term of performance
compared to using 20 dimensions.

In order to determine what dimension we needed to use for the comparison, we studied the
evolution of the relative H2 distance between the point clouds in their first two dimensions
with regards to the dimension of the point clouds considered in the orthogonal Procrustes
step, and present this result in Figure 3.28. In this figure we see that the distance is unstable
until about the 20th dimension after which it starts to stabilize. We believe it to be due to the
fact that the point clouds we obtain only have relevant information in the first 20 dimensions
with the rest being noise. This is discussed in more details in Section 3.9.

The final point we want to address in this section is to compare our approach to the actual
L1+L2 dataset computed using the full distance matrix following the diagram presented Fig-
ure 3.17. In our method we have a bias towards L1 as it is used as the reference of the compu-
tation of the point cloud since the orthogonal Procrustes step has the effect of mapping L2 onto
the principal axes of L1. If the principal axes of L1 and L2 are distinct enough, it is actually
possible that the principal components of L1 are not the ones of L1_L2. since both the recon-
struction of L1+L2 and the full point cloud possess the same number of point, and that we
build them maintaining the correspondence between all points, we can apply the orthogonal
Procrustes step to compare them. Figure 3.29 presents the point clouds obtained through both
methods and we can observe that they are indeed very similar, which is confirmed with the
relatively low relative H2 distance between them that we computed to be 3.24× 10−3.

3.8.3 Pairwise Li comparison using generalized alignment

In this section we use the generalized alignment method proposed in Algorithm 13 of Section
3.6 (p. 82) to align all Li to the same shape. In order to obtain our reference shape, we extracted
a few submatrices from the full dataset, to compare the impact of the size of the reference to the
quality of the alignment. Since we have access to the full matrix, we decided to use it among
our references. Other than this we considered references of size 120000, 1000, 250 and 180.
In order to build those references, we randomly selected indexes from the full matrix to be put
into each reference matrix. This has for effect to have selected roughly the same proportion of
element from each Li matrix, however as they vary in size from one to another, this translates
in some matrices having more points in the references. We summarize the results from the
extraction in Table 3.1. Once we built the different reference matrices and computed their
MDS, we centered them all and used Procrustes analysis to align them all to the full sample
for clarity. We then took the point clouds of all the Li and aligned them to each reference
using again our centering method and an orthogonal Procrustes step. All these point clouds
are represented in Figure 3.30. We can see that using the three largest references yield very
comparable point clouds, where the smaller sizes can sometimes yield correct results, while at
the same time giving completely unrecognizable point clouds for other entries. To evaluate the
quality of these alignments, we compared each obtained point cloud with the ones obtained
from a full MDS, meaning that even the Li that were aligned to the full point cloud were
compared to the Li directly extracted from this point cloud. The distances we computed are
presented in Table 3.2. With all the Li aligned to the same shape, it is now possible to compare
them with one another. For the sake of conciseness, we only compared L1 with all other Lj
but every other comparison would have been possible. The result of these comparisons are

Romain Peressoni Large Scale MDS for the Study of Biodiversity

88 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

0 50 100 150 200 250

0

50

100

150

200

250

Landmarks

Figure 3.24 – L1+ point cloud using 1000 points of L2 as landmarks, presented in red on the
heatmap.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.8. Application 89

0 20 40 60 80 100 120

0

20

40

60

80

100

120

L1+

0 20 40 60 80 100 120

0

20

40

60

80

100

120

L2

0 20 40 60 80 100 120

0

20

40

60

80

100

120

L1+L2

0 20 40 60 80 100 120

0

20

40

60

80

100

120

L2 + procrustes

Figure 3.25 – Comparison of the heatmaps of L1 and L2 using the procrustes landmark ap-
proach in 20 dimensions. On the top we see the separated point clouds L1+ on the left. and
L2 on the right. On the bottom, we see the L2 point cloud after having applied the procrustes
transformation on the right and the full reconstructed L1+L2 point cloud on the left.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

90 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

0 20 40 60 80 100 120

0

20

40

60

80

100

120

L1+

0 20 40 60 80 100 120

0

20

40

60

80

100

120

L2

0 20 40 60 80 100 120

0

20

40

60

80

100

120

L1+L2

0 20 40 60 80 100 120

0

20

40

60

80

100

120

L2 + procrustes

Figure 3.26 – Comparison of the heatmaps of L1 and L2 using the procrustes landmark ap-
proach in 2 dimensions. On the top we see the separated point clouds L1+ on the left and L2
on the right. On the bottom, we see the L2 point cloud after having applied the procrustes
transformation on the right and the full reconstructed L1+L2 point cloud on the left.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.8. Application 91

Figure 3.27 – Comparison of the heatmaps of L1 and L2 using the procrustes landmark ap-
proach in 20 dimensions (left) and in 2 dimensions (right). The circles Highlight parts with
significant visual difference.

101 102
Superimposition dimension

10−2

10−1

H
2,
r i
n
2
di
m
en

sio
ns

Figure 3.28 – H2,r distance between the two dimensional projection of L1 and L2 in function of
the dimension used for the Procrustean analysis step ranging betwen 2 and 100 dimensions.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

92 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

0 50 100

0

20

40

60

80

100

120

Combined L1+L2

0 50 100

0

20

40

60

80

100

120

Landmark L1+L2

Figure 3.29 – Heatmaps of L1+L2 obtained using the MDS on the full L1_L2 submatrix (left)
presented in Figure 3.17 or obtained using the landmark method (right) presented in Figure
3.18.

performed using the H2,r distance and presented in Table 3.3. The same results using all the
variation of the Hausdorff distance presented in Section 3.2 are available in Appendix B.1.

full 120,000 1,000 250 180
nb % nb % nb % nb % nb %

L1 72,083 100 8,422 11.7 76 0.11 14 0.02 4 5.5× 10−3

L2 98,492 100 11,232 11.4 85 0.09 30 0.03 15 0.02
L3 72,897 100 8,499 11.7 82 0.11 20 0.03 12 0.02
L4 136,450 100 15,684 11.4 127 0.09 36 0.03 24 0.02
L5 75,218 100 8,685 11.5 81 0.11 14 0.02 16 0.02
L6 99,594 100 11,536 11.6 87 0.09 26 0.03 15 0.02
L7 124,367 100 14,162 11.4 107 0.09 33 0.03 22 0.02
L8 115,607 100 13,214 11.4 94 0.08 19 0.02 19 0.02
L9 81,983 100 9,314 11.4 86 0.10 19 0.02 17 0.02

L10 166,501 100 19,252 11.6 175 0.11 39 0.02 36 0.02

Table 3.1 – Ratio of each Li dataset extracted for the generalized alignment.

3.8.4 Reconstruction of the full S5 point cloud

In this section, we build upon the results from Section 3.8.3 to rebuild the full point cloud S5
(L1-L10) from all the Li after they have been aligned. The resulting point clouds can be seen in
Figure 3.31. In this figure we can see that the reconstructed point cloud becomes increasingly
different from the reference the less point there are in the reference. Just like the results on
the alignment of the point clouds, we see that up to a size as low as 1,000, the resulting point
cloud seem close to the reference. This is also observable through the distances to the reference
that we obtain in Table 3.4. These results can be expected as when we sample with that few
points, then each sample is only represented by a few point in the reference (for a reference
of size 180, we can at best have 18 points per sample). At this size, we cannot simply rely
on a randomized extraction of the landmarks and must rely on other methods. Such concern
have been addressed in other work related with MDS for instance for LMDS [31] the authors
state that we need at least one point more than the number of dimension. As we perform

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.8. Application 93

full

Reference

120 000 1 000 250 180

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

Figure 3.30 – Generalized alignment with various references (top row).

Romain Peressoni Large Scale MDS for the Study of Biodiversity

94 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

Sample full 120,000 1,000 250 180
S5 0.00e+00 1.96e-02 2.98e-02 5.96e-02 6.80e-02
L1 1.52e-02 1.13e-02 2.37e-02 8.74e-02 7.12e-02
L2 2.23e-02 2.84e-02 3.54e-02 5.63e-02 6.06e-02
L3 1.18e-02 1.97e-02 1.70e-02 5.11e-02 4.72e-02
L4 9.92e-03 1.13e-02 1.61e-02 1.78e-02 9.73e-02
L5 1.03e-02 1.51e-02 2.18e-02 3.91e-02 2.63e-02
L6 5.62e-03 1.93e-02 3.42e-02 2.57e-02 3.58e-02
L7 4.93e-03 1.76e-02 3.46e-02 2.02e-02 4.29e-01
L8 5.24e-03 1.37e-02 2.22e-02 1.79e-02 4.81e-01
L9 8.07e-03 3.15e-02 3.31e-02 2.65e-02 4.20e-02

L10 5.03e-03 2.22e-02 3.00e-02 2.23e-01 2.62e-02

Table 3.2 – Distance computed betwen aligned point cloud to reference extracted from full
computation.

Direct extraction
from full S5

Alignment with Xref
S5 120,000 1,000 250 180

L2 8.53e-03 9.29e-03 1.75e-02 2.18e-02 1.85e-01 4.90e-02
L3 6.65e-03 6.93e-03 1.30e-02 2.24e-02 1.86e-01 4.86e-02
L4 1.03e-02 1.10e-02 1.09e-02 1.61e-02 9.40e-02 3.18e-01
L5 1.34e-02 1.45e-02 1.53e-02 1.80e-02 1.01e-01 3.85e-02
L6 1.54e-02 1.61e-02 1.93e-02 3.35e-02 1.05e-01 1.45e-01
L7 1.68e-02 1.72e-02 1.94e-02 3.32e-02 9.83e-02 3.76e-01
L8 1.35e-02 1.47e-02 2.20e-02 3.12e-02 1.53e-01 2.05e-01
L9 1.73e-02 1.92e-02 2.65e-02 3.80e-02 1.08e-01 1.30e-01

L10 1.79e-02 1.96e-02 2.68e-02 3.88e-02 2.97e-01 4.60e-02

Table 3.3 – H2,r(L1,Lj)j∈~2;10�.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.9. Discussion about dimensionality 95

our alignment in 20 dimensions, and all of our samples need to be aligned separately to the
reference, it needs to be comprised of at least 21 points per sample, so be at least of size 210.
In Algorithm 1 of [100], Paradis proposes a selection method where random sample are not
drawn to the region of high density of the point clouds. Other studies, unrelated to MDS have
also been dealing with the issue of properly selecting the samples of the matrix, we can cite
adaptive cross approximation [16]. Regardless, computing MDS is often constrained by the
computation of the distance matrix, and such method may lead to the computation of many
more entries of the matrix than simply using a larger but completely random method, and as
such this is the method we will be focusing on.

full

Reference

120 000 1 000 250 180

Rebuilt

Figure 3.31 – Comparison of point clouds obtained using BDLPMDS with various number of
landmarks.

full 120,000 1,000 250 180
1.58e-03 3.11e-03 2.97e-03 2.18e-02 1.01e-01

Table 3.4 – Distance computed betwen rebuilt S5 point cloud to exact reference computed with
regards to the number of landmarks.

3.9 Discussion about dimensionality

When comparing point clouds, one very important question is how many dimensions to take
into account. For a visual comparison, it is only possible to consider two (or sometimes three)
at once bar using a plot similar to the the one in Figure 1.13 (p. 26) that is still just doing
many 2 dimensional comparisons. With the use of the Hausdorff distance (and variations) we
are not limited by the possibility or not of considering more dimensions. However even if
we can do it, it does not necessarily mean that we should and that these higher dimensional
comparison would make sense. There are effectively two considerations to have about the
dimension of the comparisons, one about the dimensionality of the high-dimensional space
and the other about the dimensionality of the data we study. The first is about the meaning
of high-dimensional comparison. A distance in 3 dimensions and one in 2 dimensions are
not directly comparable as the higher the dimension, the emptier the space gets and in the
end no point end up being close. More results about the size of high-dimensional space can
be found in [80]. About the dimensionality of the data, we compute the MDS with various
ranks, and can have access to thousands of dimensions, however we need to evaluate how
many of these dimensions are actually relevant. In our case, we believe the number or relevant
dimensions to be around 20, with the rest being mostly noise. To highlight this observation, we
propose to look at the coordinates of the points of a point cloud projected in one dimension at

Romain Peressoni Large Scale MDS for the Study of Biodiversity

96 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

a time and represent the histogram of these coordinates. What we expect is to see the clusters
represented as different areas of high density in the histograms, and to observe the distribution
of the coordinates to start converging towards a normal distribution when there is no more
information and we are capturing noise. We present these experiments in figures 3.32 for
the L1 dataset and 3.33 for the full S5 sample. The grey bars represent the density of the
position while the reference curve represents the normal distribution we would expect using
the mean and standard deviation of the position. The closer the coordinates match with the
red distribution the less information we expect to be in the corresponding dimension of the
point clouds. We can see that as expected, the higher the dimensions we consider, the closer
the distribution tends to match with the normal distribution. This comforts us in our idea that
we are expecting to have around 20 dimensions of relevant information in our point clouds.
The same experiment was performed on some of the other datasets that we have used in the
context of this thesis, the result of those are available in Appendix B.2.

In the end, in order to both consider the maximum amount of information while keeping the
distance we compute as relevant as possible, we decided that the alignment step should take
into account the first 20 dimensions of our point clouds, in accordance to the results from
Figure 3.28, to correct possible issues with axes permutation presented in Section 3.3.1 for
instance and then compute the Hausdorff distance in 2 dimensions.

3.10 Conclusion

In this chapter we explored the comparison of point clouds arising from MDS. Our first goal
was to be able to compare the different (L1, . . . ,L10) point clouds that make up the S5 dataset
of Section 1.8.4 (p. 21). We have shown that computing each Li independently leads to point
clouds that are not directly comparable and must first be realigned.

We proposed to rely on the Hausdorff distance to evaluate the distance between point clouds
using their shapes. We presented a new variation of the Hausdorff distance that we linked to
the Frobenius distance and also proposed a definition for a relative Hausdorff distance.

We identified four issues (1: Axes permutation, 2: Rotation, 3: Translation and 4: Reflections)
that can affect the alignment of point clouds, and thus affect their distances even if they are
close up to an isometry. We showed that by using orthogonal Procrustes analysis, we can correct
issues 1, 2 and 4, while we can use a simple centering method to solve issue 3. We showed that
when comparing point clouds that have no correspondence between their points, it is possible
to use landmarks to act as a reference and find the transformation to align these point clouds.
Such landmarks can be obtained either by augmenting one point cloud with points from the
other, or by selecting points in both point clouds to compute a smaller reference MDS.

Aligning point clouds for comparison also allows one to superimpose the aligned point clouds
and reconstruct the full point cloud. This can be thought of as a different view of FastMDS
[130], originally motivated by the comparison of the intermediate point clouds rather than
the direct calculation of MDS. We call this method Block Diagonal Landmark Procrustes MDS
(BDLPMDS).

We applied the BDLPMDS algorithm to the Li blocks using 1,000 landmarks and were able
to reconstruct the full S5 point cloud using a single computing node, whereas previously it
had only been possible using a distributed-memory MDS over 100 nodes. We validated the
quality of this solution by comparing it with the solution obtained using our HPC library and
presented in Chapters 1 and 2. Such methods have the potential to save a significant amount
of the computing time required to construct the distance matrix, as the use of the diagonal
blocks together with a negligible (with respect to the size of the original sample) number of

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.10. Conclusion 97

−40 −20 0 20
Position for dimension 1

0

0.02

0.04

0.06

0.08

de
ns

ity

−20 0 20
Position for dimension 2

0

0.025

0.050

0.075

de
ns

ity

−30 −20 −10 0 10 20
Position for dimension 3

0

0.05

0.10

0.15

de
ns

ity

−30 −20 −10 0 10 20
Position for dimension 4

0

0.05

0.10

0.15

de
ns

ity

−20 −10 0 10 20
Position for dimension 5

0

0.025

0.050

0.075

0.100

de
ns

ity

−30 −20 −10 0 10
Position for dimension 6

0

0.05

0.10

0.15

0.20

de
ns

ity

−30 −20 −10 0 10 20
Position for dimension 7

0

0.1

0.2

de
ns

ity

−30 −20 −10 0 10
Position for dimension 8

0

0.05

0.10

0.15

0.20

de
ns

ity

−20 −10 0 10 20
Position for dimension 9

0

0.05

0.10

0.15

0.20

de
ns

ity

−10 −5 0 5 10
Position for dimension 10

0

0.1

0.2

de
ns

ity

−20 −10 0 10
Position for dimension 11

0

0.05

0.10

0.15

0.20

de
ns

ity

−10 0 10 20
Position for dimension 12

0

0.05

0.10

0.15

0.20

de
ns

ity
−20 −10 0 10 20 30

Position for dimension 13

0

0.05

0.10

0.15

0.20

de
ns

ity

−20 −10 0 10 20
Position for dimension 14

0

0.1

0.2

de
ns

ity

−20 −10 0 10 20 30
Position for dimension 15

0

0.1

0.2

0.3

de
ns

ity

−20 −10 0 10 20
Position for dimension 16

0

0.05

0.10

0.15

0.20

0.25

de
ns

ity

−20 −10 0 10 20 30
Position for dimension 17

0

0.05

0.10

0.15

0.20

de
ns

ity

−10 0 10 20
Position for dimension 18

0

0.1

0.2

de
ns

ity

−10 0 10
Position for dimension 19

0

0.1

0.2

0.3

de
ns

ity

−20 −10 0 10 20
Position for dimension 20

0

0.1

0.2

0.3

de
ns

ity

−10 0 10
Position for dimension 21

0

0.05

0.10

0.15

0.20

0.25

de
ns

ity

−10 0 10
Position for dimension 22

0

0.1

0.2

0.3

0.4

de
ns

ity

−10 0 10
Position for dimension 23

0

0.1

0.2

0.3

de
ns

ity

−10 0 10 20
Position for dimension 24

0

0.1

0.2

0.3

0.4

de
ns

ity

−20 −10 0 10
Position for dimension 25

0

0.1

0.2

0.3

de
ns

ity

−10 0 10
Position for dimension 26

0

0.1

0.2

0.3

de
ns

ity

−10 0 10 20
Position for dimension 27

0

0.1

0.2

0.3

de
ns

ity

−10 0 10
Position for dimension 28

0

0.1

0.2

0.3

de
ns

ity

Figure 3.32 – Histogram of the distribution of the coordinates per dimension in L1 for dimen-
sions varying from 1 to 28.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

98 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

−20 0 20 40
Position for dimension 1

0

0.025

0.050

0.075

0.100

0.125

de
ns

ity

−20 0 20 40
Position for dimension 2

0

0.02

0.04

0.06

de
ns

ity

−20 0 20 40
Position for dimension 3

0

0.05

0.10

0.15

de
ns

ity

−40 −20 0 20
Position for dimension 4

0

0.03

0.06

0.09

de
ns

ity

−40 −20 0 20
Position for dimension 5

0

0.025

0.050

0.075

de
ns

ity

−20 0 20
Position for dimension 6

0

0.03

0.06

0.09

de
ns

ity

−20 0 20
Position for dimension 7

0

0.05

0.10

de
ns

ity

−30 −20 −10 0 10 20 30
Position for dimension 8

0

0.05

0.10

0.15

0.20

de
ns

ity
−20 0 20
Position for dimension 9

0

0.1

0.2

de
ns

ity

−30 −20 −10 0 10 20 30
Position for dimension 10

0

0.05

0.10

0.15

de
ns

ity

−20 0 20
Position for dimension 11

0

0.05

0.10

0.15

de
ns

ity

−10 0 10
Position for dimension 12

0

0.05

0.10

0.15

0.20

0.25

de
ns

ity

−30 −20 −10 0 10 20
Position for dimension 13

0

0.05

0.10

0.15

de
ns

ity

−20 0 20 40
Position for dimension 14

0

0.05

0.10

0.15

de
ns

ity

−25 0 25
Position for dimension 15

0

0.05

0.10

0.15

de
ns

ity

−20 0 20
Position for dimension 16

0

0.05

0.10

0.15

0.20

de
ns

ity

−30 −20 −10 0 10 20
Position for dimension 17

0

0.05

0.10

0.15

0.20

de
ns

ity

−10 0 10 20
Position for dimension 18

0

0.1

0.2

de
ns

ity

−30 −20 −10 0 10
Position for dimension 19

0

0.05

0.10

0.15

de
ns

ity

−20 0 20
Position for dimension 20

0

0.05

0.10

0.15

0.20

de
ns

ity

Figure 3.33 – Histogram of the distribution of the coordinates per dimension in S5 for dimen-
sions varying from 1 to 20.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

3.10. Conclusion 99

landmarks allowed us to compute the MDS of the full dataset while accessing only about 10%
of the elements of the distance matrix.

As a result of this work, we can now propose a coherent set of tools for the comparison and
reconstruction of point clouds, based on classical algorithms, up to the use of HPC library.

We closed this chapter with a discussion on the dimensionality of our metabarcoding datasets,
having shown that the point clouds we consider can contain significant information up to the
20th dimensions which can affect the orientation of the point clouds in the first two dimensions.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

100 CHAPTER 3. COMPARISON OF POINT CLOUDS RESULTING FROM MDS

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Chapter4
Iterative uniform sampling MDS

4.1 Introduction

The first part of this thesis, presented in Chapter 2, has revisited the numerical [20, 21, 19,
99] and HPC [7] design of MDS based on randomized linear embedding. The present chapter
tackles another class of randomized algorithm, commonly referred to as sampling [93]. The
idea is to construct a reduced MDS, i.e. a subset of the points in the cloud.

As already mentioned in the general introduction, most randomized sampling methods dis-
cussed in the literature first assess the importance of the items before randomly selecting (and
possibly scaling) a subset of them according to their respective importance [93]. These impor-
tance sampling methods require access to the entire distance matrix D of the reference sample.
Indeed, as illustrated in Figure 4.1, the reference sample (a) is entirely scanned (b) to compute
importance before obtaining a reduced sample (c). Importance sampling algorithms are often
outstanding when the question – referred to as Question Q1 in the following – is to approxi-
mate well a reference input sample (for a given objective). Their strength is that they provide
excellent a priori error guarantees [93]. These guarantees depend on the spectrum of the data
matrix associated with the sample (and of course of the objective). Although we do not know
the spectrum a priori, in practice the first (positive) eigenvalues of the datasets we consider
have a strong decay, as shown in Section 1.8. This theoretical dependence should therefore not
be a major problem in practice. A more fundamental problem is that the size of the reference
sample with which we are dealing may be overestimated or underestimated in order to obtain
an output of the quality we are intending to achieve. Indeed, while this thesis deals only with
the processing of an input dissimilarity matrix D, in practice, the construction of such a matrix
for the study of biodiversity is a daunting task, as discussed in Section 1.2. Therefore, approx-
imating the original reference sample with a reduced sample may not be the good question to
address for that purpose.

An alternative question – referred to as Question Q2 in the following – is whether we can estimate
the intrinsic quality of a sample? Figure 4.2b is a schematic view of the question: instead of
approximating a reference sample as in Figure 4.2a, the aim is to estimate an unknown whole
population (represented by dashes in Figure 6). This latter question is related to the use of a
posteriori error estimators. Together with iterative schemes, such estimators are advocated by
Martinsson and Tropp when sampling lacks precise guarantees [93, Section 9.7]. This chapter
explores the use of the distances proposed in Chapter 3 as a means of constructing a posteriori
error estimators for the intrinsic value of a sample. The estimator is computed using a basic

101

102 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

(a) Reference sample. (b) The entire reference sample
is scanned to compute impor-
tance.

(c) Resulting sample.

Figure 4.1 – MDS high-level data access pattern (up to a symmetric permutation) to the dis-
similarity matrix D for importance sampling. The reference sample (a) is entirely scanned (b) to
compute importance before obtaining a reduced sample (c). Orange blocks must be accessed.

(a) Question Q1: uniform sam-
pling with a reference sample

(b) Question Q2: uniform sam-
pling without any reference
sample

Figure 4.2 – MDS high-level data access pattern (up to a symmetric permutation) to the dissim-
ilarity matrix D for uniform sampling with (Q1) and without (Q2) reference sample (in grey).
Only orange blocks need to be accessed.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.2. Question Q1: iterative uniform sampling with a reference sample 103

resampling [72, Chapter 5, 133] technique.

It is also interesting to relate our questions to streaming algorithms [96]. Streaming algorithms
are algorithms for processing data streams in which the input is presented as a sequence of
items and can be examined in only a few passes, typically just one. They often produce approx-
imate answers based on a summary or "sketch" of the data stream. As Muthukrishnan notes
[96], making one or few passes for selection and sorting [79] received early attention. The con-
cept of making few passes over the data to perform computations has been around since the
early 1980s, and the work of Munro and Paterson [95] (regarded as a gem by Muthukrishnan)
and Flajolet and Martin [45]. Alon, Matias and Szegedy formalised and popularised streaming
algorithms in 1996 [8]. We refer the reader to [96] for an introduction to streaming algorithms.
In the perspective of streaming algorithms, Question Q1 may be interpreted as the common
streaming problem of examining the items of the reference sample in only a few passes, ide-
ally just one. On the contrary, Question Q2 aims at deciding whether it is even necessary to
scan all items once at all (or, conversely, whether the reference sample is sufficient to reach the
intended quality).

Note that the two questions can be linked. For example, we could propose an algorithm that
aims at deciding when to stop scanning the data (in the sense of Question Q2) in order to ob-
tain an intermediate reference sample, and then to compress this data further (thus applying
Question Q1 with the intermediate reference sample as input). Such a link is not explored in
this work and is left for future work. Instead, our aim is to focus on Question Q2, which is less
frequently investigated. We have mentioned that Question Q1 is generally best answered with
importance sampling [93]. On the contrary, the first goal of Question Q2 is not to efficiently
compress a reference sample but to avoid going through it entirely. Therefore, unless one con-
siders combining both questions (which is not the aim of the present work), the natural way
to answer Question Q2 is by uniform sampling. Therefore, in the rest of the chapter, we will
focus only on uniform sampling. Although the main objective of the chapter is to address Ques-
tion Q2, we present both questions side by side in order to better understand their differences,
both in nature and numerical terms. For the sake of consistency, both questions are addressed
using uniform sampling (although, as we mentioned earlier, we would prefer to treat Q1 with
importance sampling if our aim was to maximise its numerical performance).

Sections 4.2 and 4.3 elaborate on questions Q1 and Q2, respectively. Section 4.4 proposes a
class of iterative algorithms to address these questions in practice. Sections 4.5 and 4.6 study
their numerical and performance behavior, respectively. Section 4.7 concludes the chapter.

4.2 Question Q1: iterative uniform sampling with a reference sam-
ple

Figure 4.3 presents the sketch of an iterative uniform sampling scheme with the aim of ap-
proximating a reference sample. Although uniform sampling only requires access to the data
in orange, the quality of the resulting sample must be checked against the reference sample
(in grey), which must also be scanned. As a result, this scheme requires to access to as much
data (the entire reference sample) as importance sampling (see Figure 4.1). As mentioned
earlier, we do not expect to gain any advantage from such a uniform sampling scheme over
iterative importance sampling schemes, as the latter ones generally achieve a better numerical
performance. However, examining Question Q1 using uniform sampling will allow a better
comparison between questions Q1 and Q2.

Since we make no a priori assumptions about the population we are sampling (be it diatoms
from Lake Geneva or sequences of tropical trees in French Guiana), the challenge is to design an

Romain Peressoni Large Scale MDS for the Study of Biodiversity

104 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

Figure 4.3 – Question Q1: Four steps of iterative uniform sampling with a reference sample
(in grey). Although uniform sampling only requires access to data in orange, the quality of the
resulting sample must be checked against the reference sample (in grey), which must also be
scanned.

0.1

0.3

1

Re
la

tiv
e

di
st

an
ce

 d

d(Xi,Xj)

SV
D

RS
VD

Distance d
Hr

H2, r

MHDr

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0 50 10
0

15
0

0.1

0.3

1

SV
D

RS
VD

0 50 10
0

15
0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.4 – Iterative evaluation of the Hr , MHDr and H2,r distances for the Atlas Guyane
dataset. Right: addressing Question Q1 from Section 4.2. Left: addressing Question Q2 from
Section 4.3. Top: dimension 2. Bottom: dimension 10. Eight samples are considered for a given
size (mi). Median value is displayed in solid line.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.2. Question Q1: iterative uniform sampling with a reference sample 105

0.01

0.1

1
Re

la
tiv

e
di

st
an

ce
 d

d(Xi,Xj)

SV
D

RS
VD

Distance d
Hr

H2, r

MHDr

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00

0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.5 – Iterative evaluation of the Hr , MHDr and H2,r distances for the 10V-RbcL. Right:
addressing Question Q1 from Section 4.2. Left: addressing Question Q2 from Section 4.3.
Top: dimension 2. Bottom: dimension 10. Eight samples are considered for a given size (mi).
Median value is displayed in solid line.

0.01

0.1

1

Re
la

tiv
e

di
st

an
ce

 d

d(Xi,Xj)

SV
D

RS
VD

Distance d
Hr

H2, r

MHDr

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00

0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.6 – Iterative evaluation of the Hr , MHDr and H2,r distances for the Long Reads A
dataset. Right: addressing Question Q1 from Section 4.2. Left: addressing Question Q2 from
Section 4.3. Top: dimension 2. Bottom: dimension 10. Eight samples are considered for a given
size (mi). Median value is displayed in solid line.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

106 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

0.01

0.1

1

Re
la

tiv
e

di
st

an
ce

 d

d(Xi,Xj)

SV
D

RS
VD

Distance d
Hr

H2, r

MHDr

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
50

00
10

00
0

15
00

0

0.01

0.1

1

SV
D

RS
VD

0
50

00
10

00
0

15
00

0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.7 – Iterative evaluation of theHr ,MHDr andH2,r distances for the S5 (L1-L10) dataset.
Right: addressing Question Q1 from Section 4.2. Left: addressing Question Q2 from Section
4.3. Top: dimension 2. Bottom: dimension 10. Eight samples are considered for a given size
(mi). Median value is displayed in solid line. The Lref sample obtained from Chapter 3 has
been used as a substitute to the full S5 dataset for a matter of speed.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.3. Question Q2: iterative uniform sampling without a reference sample 107

a posteriori criterion to decide whether the sample under consideration is satisfactory. With the
aim of approximating a reference sample (Question 1), the idea is to compare the sample under
consideration (in orange in Figure 4.2a) with the reference sample (in grey in Figure 4.2a).
We investigate to do so by using the distances proposed in Chapter 3. We have considered
both the absolute (H , MHD and H2) and relative (Hr , MHDr and H2,r) Hausdorff, Modified
Hausdorff and Squared Modified Hausdorff distances from Chapter 3. However, we only report
on relative distances as it is more relevant to use a generic criterion to deal with an unknown
population with a relative criterion.

Before considering practical implementation issues (the subject of Section 4.4), we study the
numerical behavior of an algorithm that would ideally follow this scheme. To do this, we
consider the point cloud X (of size m) associated with the entire reference sample and we
(randomly) extract a reduced sample X(l) (of size m(l) satisfying m(l) ≤ m). The sample of an
iteration l + 1 consists of an extended sample (of size m(l+1) satisfying m(l) < m(l+1) ≤ m) of the
sample of iteration l. Obviously, this algorithm is not very practical, since it requires us to
have computed the full reference sample X. We call this naive reference algorithm full. More
effective algorithms will be proposed in Section 4.4. However, in the case of Question Q1, we
would still have to compute the entire reference sample for comparing the reduced sample X(l)

to the overall sample X. At an iteration l, we assess the distance d(X(l)
i ,X) to the reference

sample of eight reduced samples {X(l)
i }(i∈[1;8]) of respective sizes m(l)

i of equal size mi (m(l)
i =mi)

to the reference sample. In the remainder of the chapter, we omit the superscript (l) when it is
implicit.

Following the scheme in Figure 4.3, we have applied the technique iteratively to the four main
datasets used in this thesis (see Section 1.8). The right-hand plots in figures 4.4, 4.5, 4.6 and
4.7 show the results for the Atlas Guyane, 10V-RbcL, Long Reads A and S5 (L1-L10) datasets,
respectively. The most important observation is that the results show a regular decreasing
median distance with iterations for both relative Modified Hausdorff (MHDr) and relative
Squared Modified Hausdorff (H2,r) on all datasets. They can therefore be used as robust a
posteriori estimators for answering Question Q1, as we sought. On the contrary, the relative
classical Hausdorff distance (Hr) yields a less reliable estimator. Not only is the decrease less
regular, but it also induces greater variability (the range of all possible values is shown in the
transparent area around the median). For the sake of conciseness, we report only results as-
sociated with the relative Squared Modified Hausdorff distance (H2,r) in the remainder of this
chapter, but results associated with the relative Modified Hausdorff (MHDr) would be as much
reliable.

Figure 4.8 shows the resulting point cloud Xi when the aim is to achieve a relative Squared
Modified Hausdorff H2,r(Xi ,X) with the reference sample X equal to 0.5, 0.1, 0.05, 0.01 in
columns 1, 2, 3 and 4, respectively. The rightmost column (5) also shows the full reference
sample. As it has a zero distance to itself, this means that it achieves an a posteriori estimate
equal to 0 for Question Q1 (H2,r(X,X) = 0). From top to bottom, Atlas Guyane, 10V-RbcL,
Long Reads A and S5 (L1-L10) datasets are considered. We used the 120,000 Lref sample from
Chapter 3 as a substitute for the full S5 (L1-L10), as we have shown shown in Table 3.4 that it
is a very good approximation of the full matrix.

4.3 Question Q2: iterative uniform sampling without a reference
sample

An alternative question is whether we can estimate the intrinsic quality of a sample? Figure 4.2b
is a schematic view of the question: instead of approximating a reference sample as in Figure

Romain Peressoni Large Scale MDS for the Study of Biodiversity

108 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

Figure 4.8 – Question Q1: What is the sample size (and resulting point cloud) required to
approximate the input sample (rightmost column) at a prescribed distance H2,r? From top to
bottom: Atlas Guyane, 10V-RbcL, Long Reads A, S5 (L1-L10). The Lref sample obtained from
Chapter 3 has been used as a substitute to the full S5 dataset for a matter of speed. A single
sample is considered when evaluating a given size. In the rightmost column, the size required
to achieve a distance of exactly 0 is the size of the reference sample itself.

4.2a, the aim is to estimate an unknown whole population (represented by dashes in Figure
6). The main difference with Question 1, is that we no longer assume that there is a reference
sample to compare with.

Here is a computational interpretation in terms of streaming algorithms [96]. Question Q1 may
be viewed as the common streaming problem of examining the items of the reference sample
in only a few passes, ideally just one. On the contrary, Question Q2 aims to decide whether it
is even necessary to scan all items once at all (or, conversely, whether the reference sample is
sufficient to achieve the desired quality). The computation of the distance matrix is often the
most expensive step in the MDS process. For example, computing the distance matrix of the S5
dataset took about 1,000,000 CPU hours (a CPU hour is the equivalent of running a calculation
for one hour on a single core, so running a calculation for 2 hours on 2 nodes composed of 20
cores each would take 2×2×20 = 80 CPU hours). The RsEVD-MDS calculation on this dataset,
presented in Figure 2.18 (Section 2.8.2, page 57) took 151 CPU hours (129.7s on 105 nodes
consisting of 40 cores each). This means that the cost of computing the distance matrix was
over 6,600 times more expensive than the MDS computation itself. Being able to assess when
a submatrix is representative of the dataset can therefore save significant computation time.

There is also a deeper interpretation. In the context of this thesis, we are processing metabar-
coding datasets for the study of biodiversity (see Section 1.2 page 12). These data are mainly
generated by collecting samples from water bodies to extract the DNA information present.
Our input datasets are therefore only a partial, and potentially biased, representation of the
biodiversity present at the site where the sample was taken, and we do not know how accu-
rately it represents the actual biodiversity. In a sense, the amount of data collected is already a
first randomized sample of the population we want to study. It might therefore be interesting
to assess the value of the sample a posteriori. Moreover, if we are able to do so, because we have

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.3. Question Q2: iterative uniform sampling without a reference sample 109

X1

X2
X

Figure 4.9 – Resampling with the creation of two new samples (X1 and X2) based on the sample
X under consideration.

Figure 4.10 – Question Q2: Four steps of iterative uniform sampling without a reference sam-
ple. Only the data in orange are accessed. As there is no reference sample to compare with, the
resulting sample can only be assessed intrinsically.

seen that computing the dissimilarity matrix can be very costly, it may also be worthwhile to
compute a smaller sample and decide whether it achieves the desired quality.

Contrary to Question 1 for which there is a natural a posteriori estimate in terms of a distance
d(Xi ,X) between the sample under consideration Xi and the reference sample X, there is no
reference sample to do so in Question 2. We propose to rely on a basic resampling [72, Chapter
5, 133] scheme to construct such an estimator. To do so, we split the sample X(l) under consid-
eration into multiple (two in the pictures, eight in the numerical experiments) new samples,
as shown in Figure 4.9. Now that we have multiple samples {X(l)

i }(i∈[1;8]), we can compare them

with each other by computing the distance d(X(l)
i ,X

(l)
j) between two new samples X(l)

i and X(l)
j

resulting from the split of X(l). Once again, we use the distances from Chapter 3 to do so.

Note that Question Q1 addressed in Section 4.2 can also be interpreted in terms of resampling
(and we will effectively do so when designing practical algorithms in Section 4.4). Indeed, we
could compute a larger sample X(l) and resample it to obtain new smaller samples (say eight)
{X(l)
i }(i∈[1;8]). However, while such a resampling aims to provide a more reliable estimate by

reducing the variance, we could have avoided doing so (at the cost of increasing the variance
of the estimate) by directly computing the distance d(X(l),X) instead of the mean d(X(l)

i ,X)
(and we did so in the experiment associated with Figure 4.8). On the contrary, resampling is
necessary to obtain an estimate for Question 2.

Figure 4.10 presents the sketch of our iterative uniform sampling scheme aiming to approxi-
mate a population without a reference. We have applied the technique iteratively to the four
main datasets used in this thesis (see Section 1.8). The left-hand plots in figures 4.4, 4.5,
4.6 and 4.7 show the results for the Atlas Guyane, 10V-RbcL, Long Reads A and S5 (L1-L10)

Romain Peressoni Large Scale MDS for the Study of Biodiversity

110 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

datasets, respectively. The most important observation is that the results show a regular de-
creasing median distance with iterations for both relative Modified Hausdorff (MHDr) and rel-
ative Squared Modified Hausdorff (H2,r) on all datasets. They can therefore be used as robust
a posteriori estimators for answering Question Q2, as we sought. On the contrary, the rela-
tive classical Hausdorff distance (Hr) yields a less reliable estimator. Not only is the decrease
less regular, but it also induces greater variability (the range of all possible values is shown
in the transparent area around the median). These results are thus similar to those observed
for Question Q1, which is a very positive result as Question Q2 may be viewed as harder to
answer.

Distance 0.5 reached at size 16 Distance 0.1 reached at size 152 Distance 0.05 reached at size 888

Distance 0.01 not reached Distance 0 not reached

Best distance: 0.034 reached at full size

Distance 0.5 reached at size 32 Distance 0.1 reached at size 176 Distance 0.05 reached at size 448 Distance 0.01 reached at size 13792

Distance 0 not reached

Best distance: 0.009 reached at full size

Distance 0.5 reached at size 16 Distance 0.1 reached at size 64 Distance 0.05 reached at size 160 Distance 0.01 reached at size 7408

Distance 0 not reached

Best distance: 0.007 reached at full size

Distance 0.5 reached at size 32 Distance 0.1 reached at size 256 Distance 0.05 reached at size 1120

Distance 0.01 not reached Distance 0 not reached

Best distance: 0.002 reached at full size

Figure 4.11 – Question Q2: What is the sample size (and resulting point cloud X = X1 ∪X2)
required to approximate an unknown population at a prescribed tolerance H2,r(X1,X2)? From
top to bottom: Atlas Guyane, 10V-RbcL, Long Reads A, S5 (L1-L10). The actual S5 sample
is used (no substitute). Resampling X in two new samples X1 and X2 (X = X1 ∪ X2). In the
rightmost column, evaluation of the full sample.

Figure 4.11 shows the resulting point cloud X = X1∪X2, resampling X in two new samples X1
andX2 (X = X1∪X2), with the aim to achieve a relative Squared Modified HausdorffH2,r(X1,X2)
equal to 0.5, 0.1, 0.05, 0.01 in columns 1, 2, 3 and 4, respectively. The rightmost column (5) also
shows the full sample. We recall the estimate for the full sample obtained with the a posteriori
estimate associated with Question Q1 was consistently zero and did not provide a plus-value.
On the contrary, the new estimate associated with Question Q2 is able to attribute an intrinsic
value to a sample. As a consequence we are able to evaluate the respective full samples. Their
estimates are equal to 0.034, 0.009, 0.007, and 0.002 for the Atlas Guyane, 10V-RbcL, Long
Reads A, S5 (L1-L10) datasets, respectively. We assessed both the full S5 (L1-L10) dataset and
the 120,000 Lref sample from Chapter 3. We obtained an estimate of 0.002 (reported in the
figure) and 0.01 (not reported in the figure) for the full S5 and Lref samples, respectively.

4.4 A class of iterative algorithms

As we mentioned earlier, the full algorithms of sections 4.2 and 4.2 are not practical because
they require us to have computed the full reference sample X. In the case of Question Q1, we
would still have to compute the full reference sample in order to compare it with the reduced
sample X(l) under consideration at iteration l in order to obtain the estimate. However, we

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.4. A class of iterative algorithms 111

do not need to access the full reference sample to answer Question 2, which makes the full
algorithm overkill.

We therefore propose a class of more effective iterative algorithms. Algorithm 15 presents their
sketch. They follow the iterative design of the full algorithms of sections 4.2 and 4.3. However,
they do not extract the sample X(l) (or X for short) under consideration at iteration l from a
reference sample Xref (the overkill). Instead, they compute a reduced MDS on a ms by ms
principal submatrix Ds of D wherems is the size of the sample X under consideration. We have
implemented both variants answering questions Q1 and Q2 but we restrict our presentation to
algorithms that answer Question Q2 for the sake of conciseness.

All the algorithms follow the same resampling and distance computation step (lines 6 and 7,
respectively, in Algorithm 15) as discussed in Section 4.3. However, they differ in how they
compute the MDS for a given iteration (lines 3, 4, 5). We first propose conservative algorithms
in Section 4.4.1.1. They compute an MDS at an iteration l + 1 without relying on the MDS
of iteration l. We call such algorithms redundant. We then propose progressive algorithms in
Section 4.4.2. They compute an MDS at an iteration l + 1 by extending the MDS of iteration l.

Algorithm 15: Iterative uniform sampling MDS algorithm without a reference sample.
Input: D an m×m dissimilarity matrix, ε the desired accuracy, #s the number of new

samples for resampling, ms the starting size of the submatrices
Output: X a (reduced) sample point cloud

1 do
2 Iterate ms to the next size
3 Extract a ms by ms principal submatrix Ds of D
4 Form the Gram matrix GS associated with Ds
5 Compute the MDS out of GS to get X
6 Split X into #s point clouds X1,X2, ...,X#s // Resampling
7 Compute d the mean of the distances {d(Xi ,Xj)}i,j
8 while d > ε
9 return X

4.4.1 Redundant Algorithms

We first propose two conservative approaches, namely the Combined (Section 4.4.1.1) and
Landmark Procrustes (Section 4.4.1.2) algorithms. They compute an MDS at an iteration l + 1
without relying on the MDS of iteration l.

4.4.1.1 Combined

The first algorithm we consider is the Combined approach. It follows the same approach as
presented in Figure 3.17 (page 81), as well as being precisely the method presented in Algo-
rithm 15. The progression through the iterations is described in Figure 4.12. In this figure, we
present in solid blocks the computations done at iteration l (Figure 4.12a) and in dashed blocks
the computations done at iteration l + 1 (Figure 4.12b). Since we discard the results between
iterations, there is no solid block on the right part.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

112 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

X1

X2

(a) Iteration l

X1

X2

(b) Iteration l + 1

Figure 4.12 – Computation of the Combined redundant algorithm at iterations l and l+1. Solid
blocks are computed at step l while dashed blocks are computed at step l + 1. Parts in grey are
not accessed.

X1

X2

(a) Iteration l

X1

X2

(b) Iteration l + 1

Figure 4.13 – Computation of the Landmark Procrustes redundant algorithm at iterations l and
l + 1. Solid blocks are computed at step l while dashed blocks are computed at step l + 1. Parts
in grey are not accessed. Parts in orange are used as landmarks.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.4. A class of iterative algorithms 113

X1

X2

(a) Iteration l

X1

X2

(b) Iteration l + 1

Figure 4.14 – Computation of the LMDS progressive algorithm at iteration l and iteration l + 1.
Solid blocks are computed at step l while dashed blocks are computed at step l + 1. Parts in
grey are not accessed. Parts in orange are used as landmarks onto which the original partial
MDS is performed. Parts in green are used for the interpolation step of the LMDS.

4.4.1.2 Landmark Procrustes

The second algorithm we consider is the Landmark Procrustes algorithm. The concept, pre-
sented in Figure 4.13 consists in computing two MDS on diagonal blocks, then aligning the
result using generalized alignment to some landmarks, as presented in Section 3.6 (page 82)
and more precisely in Figure 3.31. While this algorithm relies on an MDS that accesses fewer
blocks than the Combined method, we still discard the result between successive iterations.
This is represented in Figure 4.13 by the fact that there are no solid blocks in Figure 4.13b.

4.4.2 Progressive Algorithms

We now present two progressive algorithms, namely the LMDS (Section 4.4.1.1) and BDLPMDS
(Section 4.4.1.2) algorithms. They compute an MDS at an iteration l + 1 by extending the MDS
of iteration l.

4.4.2.1 LMDS

The first progressive algorithm we propose is based on LMDS (see Section 3.7.1, page 84). With
this iterative version presented in Figure 4.14, we do not compute the full interpolation step,
but instead we increment it over each iteration. In this algorithm, we compute the MDS on
the landmarks during the first iteration and presented in orange in Figure 4.14a. During each
successive iteration, we apply the interpolation step to only part of the remaining points.

4.4.2.2 BDLPMDS

The last scheme we propose is the BDLPMDS algorithm. It is a progressive variation of the
Landmark Procrustes version from Section 4.4.1.2 where we reuse the result from one iteration
to the next. In the first iteration, we select two submatrices as well as a number of landmarks,
we compute the MDS on them and align them using Procrustes analysis. When we go to the
next iteration, we use this rebuilt point cloud as one of the two samples to consider during the
next iteration. In Figure 4.15a, we compute the MDS on both the blue and the red submatrices.
Then on the next iteration presented in Figure 4.15b, this result becomes the solid blue matrix,

Romain Peressoni Large Scale MDS for the Study of Biodiversity

114 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

X1

X2

(a) Iteration l

X1

X2

(b) Iteration l + 1

Figure 4.15 – Computation of the BDLPMDS progressive algorithm at iteration l and iteration
l + 1. Solid blocks are computed at step l while dashed blocks are computed at step l + 1. Parts
in grey are not accessed.

while the new sample to be added to the result in presented in the dashed red block. While
this method is fast to compute, it is not necessarily stable, as we align all point clouds to the
first one computed, and therefore the principal axes may not be the ones expected. This is
showcased in Section 4.5.

4.5 Numerical evaluation of the iterative MDS algorithms

To evaluate the algorithms presented in Section 4.4, we performed experiments on the four
datasets presented in Section 1.8 (page 19). The 120,000 × 120,000 Lref submatrix of S5 (L1-
L10) presented in Section 3.8.4 (page 92) is used as a substitute to the full S5 (L1-L10) sample
when computing the distance to the reference sample for answering Question 1. We recall (see
Table 3.4, page 95) that this sample is a good approximation of the full dataset.

In these experiments, for each of the proposed algorithms, we studied the evolution of the
distance with regards to the size of the submatrices taken into account, the distance used,
the number of dimensions taken into account in the distance comparisons for 8 submatrices
between each other as well as between the submatrices and the full matrix. For submatrices of
size below 5,000 (150 for Atlas Guyane) we use a full SVD for the MDS, while we use RSVD
for larger matrices.

We also consider the full algorithm described in Section 4.2 and 4.3 as a reference. We only
present results for the relative distances for the sake of brevity, but additional results using
absolute distances can be found in Appendix C.1.

4.5.1 Evaluation of the redundant algorithms

In figures 4.16, 4.17, 4.18 and 4.19, we present for the datasets Atlas Guyane, 10V-RbcL, Long
Reads A and Lref respectively, the evolution of the distances of 8 submatrices between each
other and between the submatrices and the original matrix using the combined and land-
mark Procrustes approach and compare them with the full approach. In these figures, we
can see that both approaches give very similar results in 2 dimensions, while the Landmark
Procrustes approach seems to lose some accuracy in 10 dimensions. The combined method
gives overall better results, in fact almost always as good as the full approach while the Land-
mark Procrustes method sometimes has a higher error. This behavior is not surprising as the

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.5. Numerical evaluation of the iterative MDS algorithms 115

0.1

0.3

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD

Method
Combined
Full
Landmark Procrustes

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0 50 10
0

15
0

0.1

0.3

1

SV
D

RS
VD

0 50 10
0

15
0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.16 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Atlas Guyane sample (right). Each color represents a
method among Full, Combined and Landmark Procrustes. Median value is displayed in solid
line.

0.01

0.1

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD

Method
Combined
Full
Landmark Procrustes

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00
0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.17 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original 10V-RbcL sample (right). Each color represents a
method among Full, Combined and Landmark Procrustes. Median value is displayed in solid
line.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

116 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

0.01

0.1

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD

Method
Combined
Full
Landmark Procrustes

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00

0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.18 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Long Reads A sample (right). Each color represents a
method among Full, Combined and Landmark Procrustes. Median value is displayed in solid
line.

0.01

0.1

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD

Method
Combined
Full
Landmark Procrustes

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
50

00
10

00
0

15
00

0

0.01

0.1

1

SV
D

RS
VD

0
50

00
10

00
0

15
00

0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.19 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Lref sample (right). Each color represents a method
among Full, Combined and Landmark Procrustes. Median value is displayed in solid line.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.6. Discussion on performance 117

combined approach computes a MDS of the complete submatrix extracted while the Land-
mark Procrustes tries to approach it using two smaller MDSs. In 10 dimensions, the Landmark
Procrustes approach shows some limitations, while the combined approach continues to give
results similar to the full method in the comparisons between the resampled point clouds.

4.5.2 Evaluation of the progressive algorithms

0.1

0.3

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD

Method
BDLPMDS
Full
LMDS

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0 50 10
0

15
0

0.1

0.3

1

SV
D

RS
VD

0 50 10
0

15
0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.20 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Atlas Guyane sample (right). Each color represents
a method among Full, BDLPMDS and LMDS. Median value is displayed in solid line.

In figures 4.20, 4.21, 4.22 and 4.23, we present for the datasets Atlas Guyane, 10V-RbcL, Long
Reads A and Lref respectively, the evolution of the distances of 8 submatrices between each
other using the LMDS and BDLPMDS approaches. The distances between the submatrices
and the original matrix are only available for the BDLPMDS method. As explained in Section
4.4.2.2, the BDLPMDS approach can lead to inaccuracies because the point cloud are being
aligned against the one extracted at the first iteration, as shown in dataset 10V-RbcL in Figure
4.21 in 2 dimensions as well as in all cases when using 10 dimensions. Similar to the results
for the redundant methods, the experiments show that our methods do not perform optimally
in 10 dimensions.

The LMDS approach seems to always have a slightly higher distance than the full approach.
This could be caused by the setup of our experiments, where we followed the design presented
in Figure 4.14, in which after the computation the landmarks (in orange) will always end up in
X1, when a version where the elements are randomized may make more sense.

4.6 Discussion on performance

Figures 4.24, 4.25, 4.26 and 4.27 present for the datasets Atlas Guyane, 10V-RbcL, Long Reads
A and Lref respectively, the computation time for each method (Combined, Landmark Pro-

Romain Peressoni Large Scale MDS for the Study of Biodiversity

118 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

0.01

0.1

1
Re

la
tiv

e
di

st
an

ce
 H

2,
r

d(Xi,Xj)

SV
D

RS
VD

Method
BDLPMDS
Full
LMDS

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00
0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.21 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original 10V-RbcL sample (right). Each color represents a
method among Full, BDLPMDS and LMDS. Median value is displayed in solid line.

0.01

0.1

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD

Method
BDLPMDS
Full
LMDS

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00

0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.22 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Long Reads A sample (right). Each color represents
a method among Full, BDLPMDS and LMDS. Median value is displayed in solid line.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.7. Conclusion 119

0.01

0.1

1
Re

la
tiv

e
di

st
an

ce
 H

2,
r

d(Xi,Xj)

SV
D

RS
VD

Method
BDLPMDS
Full
LMDS

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
50

00
10

00
0

15
00

0
0.01

0.1

1

SV
D

RS
VD

0
50

00
10

00
0

15
00

0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 4.23 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Lref sample (right). Each color represents a method
among Full, BDLPMDS and LMDS. Median value is displayed in solid line.

crustes and BDLPMDS) with respect to the size of the extracted submatrices, presented in log-y
scale with both nonlog-x scale (top) and log-x scale (bottom). When computing the LMDS, we
first performed the full LMDS and then extracted the necessary rows of the matrix at each size,
which means that we cannot get a relevant computation time for this method here. We can
see that the combined version is the most expensive method, which is expected as it needs to
compute an SVD twice as large as the one from the landmark Procrustes approach. In Section
1.6.3 (page 18), we showed that the complexity of RSVD-MDS is asymptotically O(m2) so we
expect the combined method to take twice as long to compute than the landmark Procrustes
method. The BDLPMDS is faster than both approach due to its progressive nature. This also
explains why the last iteration is faster than the previous one, since the size of the samples
considered is multiplied by 1.5 at each iteration until reaching the end, the last size considered
each time is comparatively less expensive.

4.7 Conclusion

In this chapter, we discussed and implemented methods to construct reduced MDS, i.e. a sub-
set of the points in the cloud using randomized uniform sampling. We discussed two questions
that arise from sampling the distance matrix in the context of MDS:

— Question Q1 - How to approximate a reference input sample ?
— Question Q2 - How to estimate the intrinsic quality of a sample ?

Q1 can be seen as the issue of iterative uniform sampling with a reference sample while Q2
corresponds to iterative uniform sampling without a reference sample.

To answer these questions, we iteratively extracted point clouds from the reference sample
which were further resampled and compared, using the distances considered in Chapter 3, to

Romain Peressoni Large Scale MDS for the Study of Biodiversity

120 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

0
50

0
10

00
15

00

Size mi of the sub-matrices

0.001

0.01

0.1

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Landmark Procrustes

(a) Nonlog x-scale.

30 10
0

30
0

10
00

Size mi of the sub-matrices

0.001

0.01

0.1

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Landmark Procrustes

(b) Log x-scale.

Figure 4.24 – Computation time for Combined, Landmark Procrustes and BDLPMDS on
dataset Atlas Guyane.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.7. Conclusion 121

0
50

00
10

00
0

15
00

0
20

00
0

Size mi of the sub-matrices

0.01

1

100

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Landmark Procrustes

(a) Nonlog x-scale.

1e
2

1e
3

1e
4

Size mi of the sub-matrices

0.01

1

100

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Landmark Procrustes

(b) Log x-scale.

Figure 4.25 – Computation time for Combined, Landmark Procrustes and BDLPMDS on
dataset 10V-RbcL.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

122 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

0
10

00
0

20
00

0
30

00
0

Size mi of the sub-matrices

0.01

1

100

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Landmark Procrustes

(a) Nonlog x-scale.

1e
2

1e
3

1e
4

Size mi of the sub-matrices

0.01

1

100

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Landmark Procrustes

(b) Log x-scale.

Figure 4.26 – Computation time for Combined, Landmark Procrustes and BDLPMDS on
dataset Long Reads A.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

4.7. Conclusion 123

0
25

00
0

50
00

0
75

00
0

10
00

00

12
50

00

Size mi of the sub-matrices

1e-2

1

1e2

1e4

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Landmark Procrustes

(a) Nonlog x-scale.

1e
2

1e
3

1e
4

1e
5

Size mi of the sub-matrices

1e-2

1

1e2

1e4

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Landmark Procrustes

(b) Log x-scale.

Figure 4.27 – Computation time for Combined, Landmark Procrustes and BDLPMDS on
dataset Lref.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

124 CHAPTER 4. ITERATIVE UNIFORM SAMPLING MDS

the reference point cloud (Q1) or between each other (Q2). The most important observation is
that the results show a regularly decreasing median distance with iterations for both relative
Modified Hausdorff (MHDr) and relative Squared Modified Hausdorff (H2,r) on all datasets.
They can therefore be used as robust a posteriori estimators for answering both Questions Q1
and Q2. Furthermore, the new estimate associated with Question Q2 is able to attribute an
intrinsic value to a sample. As a result, we are able to evaluate the full samples of our datasets.

Based on these results, we proposed iterative MDS algorithms that use a stopping criterion
based on the distance between the resampled point clouds at each iteration. We proposed four
algorithms, each following the same resampling and distance computation step and differing
only in how they compute the MDS at a given iteration. First, we proposed two conservative
algorithms that compute each iteration without relying on the previous results, the Combined
and Landmark Procrustes algorithms. We showed that the Combined algorithm reliably gave
results very close to the reference method while the Landmark Procrustes algorithm had a
slightly higher error. Then, we presented two progressive algorithms based on LMDS and
BDLPMDS, that aim to build the next iteration by extending the result of the previous one,
and both show promising results.

Regarding future work, while we have pointed out the limitations of the BDLPMDS algorithm,
it still performed correctly in 3 of the 4 test cases. We expect that a revised version of this
algorithm will provide a fast and reliable method for computing iterative MDS.

As we mentioned earlier, the two questions Q1 and Q2 can be linked. We plan to design an
algorithm that can decide when to stop scanning the data (in the sense of Question Q2) using
uniform sampling in order to obtain an intermediate reference sample, and then to compress
that data further. This additional step corresponds to answering Question Q1 with the inter-
mediate reference sample as input. Since we know that Question Q1 is generally best answered
with importance sampling, we could perform the second step with importance sampling.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Chapter5
Approximately coincident input distance
datasets

5.1 Introduction

The landmark technique used in chapters 3 and 4 requires the computation of some off-diagonal
elements in addition to large diagonal blocks. In this chapter, we investigate whether it is pos-
sible to construct a reduced MDS of a sample, without having to access any off-(block-)diagonal
elements at all.

Here, we only consider point clouds that are approximately coincident, i.e. we expect these
point clouds to already be close because they were sampled from the same dataset. In this case,
we may want to validate how close they are using the Hausdorff distances presented in Section
3.2.1 (p. 68) in order to verify how well they approximate the global sample in a similar way
to the methods described in Chapter 4.

When the point clouds become very close, the non-alignment problems presented in Chapter
3 begin to be corrected by the sampling: as long as the eigenvalues of the reference dataset are
disjoint, which is shown to be the case for the data we consider in Section 1.8 (p. 19), then the
sEVD will capture the same principal axes and there will be no axis permutation or rotation,
solving issues 1 and 2. In the same way, a sampling of sufficient quality will statistically give
point clouds that are well centered on each other, solving issue 3. In this case, only issue 4
(reflection around the principal axes) remains. This last problem is caused by the non-unicity
of the sEVD: given Q,Λ the sEVD of a matrix, it is possible to construct more solutions by
changing the signs of the eigenvectors. These different solutions, in the context of MDS, result
in point clouds that are identical up to a certain number reflections around any number of
principal axes.

If the only transformations we need to consider to match our point clouds are these reflections,
it may be possible to consider every possible combination, compute the Hausdorff distance,
and keep the lowest one. This would have the advantage of not having to access any off-(block-
)diagonal elements at all, and allow the complete matrix to be reconstructed using the data
access pattern presented in Figure 5.1. This may be desirable when the off-(block-)diagonal
elements are not available, e.g. in the cases where they are too expensive to compute.

This method is effective in a small number of dimensions (less than 10) before it becomes
computationally prohibitive. The complexity of such an approach is exponential in the number

125

126 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

Figure 5.1 – MDS high-level data access pattern (up to a symmetric permutation) to the dis-
similarity matrix D (in grey) Only orange blocks need to be accessed.

of dimensions to consider: there are 2n possibilities for n dimensions.

In this chapter, we propose two strategies for comparing point clouds under these conditions.
In Section 5.2, we introduce the concept of exploring the possibility of finding the exact set of
reflections to apply to one point cloud in order to align it on the other. We consider a number
of heuristics to speed up this computation, at the cost of introducing the possibility of false
negatives, i.e. results where the heuristic has made a mistake and has not found the optimal
transformation, making the point clouds appear to have a greater distance than they actually
have.

In Section 5.3, we introduce a strategy we call folding. By removing the signs from all coordi-
nates of a point cloud, we obtain a result that is independent of any reflection around the axes,
and which makes the point clouds appear folded around the principal axes as illustrated in
Figure 5.7, hence the name. There are two drawbacks to this approach: first, it is destructive,
i.e. it can be used as a preliminary step before computing the distance, but we lose information
about the initial point clouds so this method cannot be used to rebuild point clouds, only dur-
ing the evaluation of the resampling step. The second issue is that this method may introduce
false positives, since the folding of point clouds will always reduce the distance between point
clouds, although we show in Section 5.3.4 that this effect can be mitigated by using a relative
distance.

5.2 Flip method

In this section, we propose a method for aligning point clouds derived from approximately co-
incident input distance datasets. These point clouds are obtained by sampling a larger dataset,
as this method relies on the idea that both point clouds are projected onto the same space
through the sEVD step of MDS. In such cases, the non-unicity of the sEVD is the only factor
that prevents alignment of the point clouds, as it can produce reflections around any of the
principal axes. The goal of this section is to discuss algorithms that are designed to identify the
optimal set of reflections to apply to a point cloud in order to align it onto another point cloud.

Consider a point cloud X ∈ R
m×k of m points in R

k . In this representation, each row of the
matrix corresponds to the coordinates of a point in R

k , while each column represents the co-
ordinate along the corresponding dimension. To perform a reflection around the ith principal

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.2. Flip method 127

axis, we multiply the ith columns of X by −1. We define a flip f as a vector in {−1,1}k that
represents a set of reflections around the principal axes. If the ith element of f is −1 then it
indicates that we should make a reflection around the ith principal axis. We define F =Diag(f)
as the matrix associated with the flip f , where the diagonal entries are 1 or −1 depending on
the corresponding entry in f .

To apply a flip f to a point cloud X, for all elements of f equal to −1, we multiply the corre-
sponding column of X by −1. We can note that applying a flip f is equivalent to multiplying
the point cloud by the diagonal matrix F associated with f . The problem of aligning two point
clouds X1 and X2 using flips only is summarized in Equation 5.1 with H standing for any of
the Hausdorff distance variations considered in Section 3.2 (p. 67).

min
F∈Diag({1,−1}k)

H(X1,X2F) (5.1)

Such a minimum is always reachable, since the number of possible flips for a given dimension is
finite being 2k for dimensions k. Because the number of possible flips grows exponentially with
the dimension, performing a comprehensive search by trying to evaluate all possible distances
associated with all flips can become prohibitively expensive for values of k starting around 10.
Therefore, sections 5.2.1 and 5.2.2 are dedicated to alternative heuristics of finding the best
solution.

5.2.1 Heuristics

Algorithm 16: Baseline of Perdim algorithm.
Input: A,B: point clouds, k: dimension, dist: distance method
Output: f lip, lists of best flips computed

1 f lip← []
2 for i← 0 to k do
3 d0← dist(A[i],B[i])
4 d1← dist(−A[i],B[i])
5 if d0 < d1 then
6 f lip[i]← 1

7 else
8 f lip[i]←−1

9 return f lip

In this section, we propose three heuristics for calculating the best flip to align point clouds.
In Algorithm 16, we compute the best reflection for each dimension independently. In this
Algorithm, A[i] corresponds to the ith column of A. We call this algorithm Perdim. The idea
comes from the observations of figures 3.32 and 3.33 (p. 97-98), which seem to show that the
symmetries of the coordinates can be inferred independently on each dimension. By comput-
ing only one distance per dimension, the overall complexity of this algorithm becomes linear
in the number of dimensions. Experimental results show that this method actually performs
poorly compared to the others, which means that the information about the coordinates in
other dimensions can affect the distance result of a flip.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

128 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

Algorithm 17: Baseline of Perdim-τ algorithm.
Input: A,B: point clouds, k: dimension, ε: threshold, dist: distance method
Output: f lip, lists of best flips computed

1 f lip← []
2 for i← 0 to k do
3 d0← dist(A[i],B[i])
4 d1← dist(−A[i],B[i])
5 if min(d0,d1)/max(d0,d1) > ε then
6 f lip[i]←?

7 else
8 if d0 < d1 then
9 f lip[i]← 1

10 else
11 f lip[i]←−1

12 Perform comprehensive search for all i such that f lip[i] =?

13 return f lip

It is possible that the Perdim method may fail in cases where there is no clear solution to find
out the best reflection around a particular axis. Therefore, we propose a variant of this method,
which we call Perdim-τ . The idea, presented in Algorithm 17 is to compute for each dimension
the ratio between the smaller and the greater distance computed, if this ratio exceeds a certain
threshold, we consider both reflections as providing distances that are too close to each other,
and we add this index to the list of indices that need to be computed using a comprehensive
search. This algorithm can therefore discriminate the well distinct cases while leaving less
work for the subsequent comprehensive search.

Algorithm 18: Baseline of Accumulate algorithm.
Input: A,B: point clouds, k: dimension, ε: threshold, dist: distance method
Output: f lip, lists of best flips computed

1 f lip← []
2 for i← 0 to k do
3 d0← dist(A[: i],B[: i])
4 A[i]←−A[i]
5 d1← dist(A[: i],B[: i])
6 if d0 < d1 then
7 f lip[i]← 1
8 A[i]←−A[i]

9 else
10 f lip[i]←−1

11 return f lip

The final algorithm we propose involves computing both reflections for each dimension, while
considering all the previous dimensions in the optimal solution found so far. This means that
for the first dimension we try out both possibilities and keep the best one, then for the next
dimension we compute the two dimensional distance taking into account the fact that the first
dimension is already aligned. This algorithm, which we call Accumulate is described in Algo-
rithm 18. In this algorithm A[: i] represents the first i columns of the matrix A, corresponding
to the first i dimensions of the point cloud. At each iteration we compare the distance for both
reflection around the ith principal axis, while having the first (i − 1)th axis already oriented as

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.2. Flip method 129

best as possible.

5.2.2 Genetic algorithms

Genetic algorithms are a type of optimization algorithm that mimic the principle of evolution.
In genetic algorithms, the solution is viewed as a genome that can be mutated to achieve the
desired result. In our problem, the genome is represented by a vector of ones and zeroes indi-
cating which dimensions need to be flipped. The algorithm simulates a number of generations,
evaluates them using the fitness function (in our case, the distance measurements), and creates
the next generation using variations of the best solutions from the previous generation. Several
modifiers are applied, each rooted in the principle of evolution: mutation, where one sequence
is changed by a certain amount from the previous generation, and genetic crossover, which
mixes different individuals from the previous generation. For this study, we used the Python
genetic algorithm library.

5.2.3 Experiments

5.2.3.1 Comparing the different heuristics

In Figure 5.2, we compare the effectiveness of the different heuristics presented in section 5.2,
both in terms of accuracy and time to solution. Both Perdim-τ and Accumulate find the same
solution as the comprehensive search, at a greatly reduced cost. The Perdim approach found
the correct results up to dimension 3 and not beyond. Since its computation is completely
independent dimension by dimension, an error in any dimension will impact the rest of the
computation. It found the wrong solution in both dimensions 4 and 9. The Perdim-τ approach
used a comprehensive search for those two dimensions, since the ratio of the distances was
0.85 and 0.95 for these two dimensions respectively, higher than the 0.8 threshold we used,
confirming our hypothesis that this approach only fails when the solution is ambiguous.

The genetic algorithm as we implemented it does not seem to be suitable for this task, as it is
both slow to run, and not as accurate as the other methods. However, its execution time does
not seem to be affected by the number of dimensions as much as the other methods, so it might
become competitive for comparisons with more dimensions than what we consider here. It is
also possible that better fine-tuning of the parameters of the algorithm would lead to stronger
results.

5.2.3.2 Numerical evaluation of the flip strategy

To evaluate the flip strategy, we perform the same experiments as in Section 4.5 (p. 114), using
the same four datasets: Atlas Guyane, 10V-RbcL and Long Reads A from Section 1.8 (p. 19) and
Lref (see Section 4.5, p. 114) instead of S5. At iteration l, we extract two different submatrices
which we align using the flip strategy and construct a point cloud Xl for this iteration. This
corresponds to Figure 3.16 (p. 80). We then use resampling by splitting the point cloud in
8 and estimate the quality of the approximation of the true point cloud X by Xl using the
distances between the subdivided point cloud.

For each dataset, we studied the evolution of the distance obtained using either the flip strategy
with the accumulate heuristic or the full method which consists in extracting the point clouds
directly from the complete MDS solution, in terms of the size of the submatrices used, the
distance used, the number of dimensions used in the distance comparisons for 8 submatrices
between each other as well as between the submatrices and the full matrix. For submatrices

Romain Peressoni Large Scale MDS for the Study of Biodiversity

https://pypi.org/project/geneticalgorithm/#description

130 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

1 2 3 4 5 6 7 8 9 10
Dimension

0

0.0
5

0.1
0

0.1
5

0.2
0

Re
la

tiv
e
H

2,
r d

ist
an

ce
 b

et
we

en
 p

oi
nt

 c
lo

ud
s

Method
Accumulate
Perdim-tau
Genetic Algorithm
Comprehensive
Perdim

1 2 3 4 5 6 7 8 9 10
Dimension

1

1e
2

1e
4

Co
m

pu
ta

tio
n

tim
e

(s
)

Method
Accumulate
Perdim-tau
Genetic Algorithm
Comprehensive
Perdim

Figure 5.2 – Computation time (top) and relative H2,r distance (bottom) obatined with the dif-
ferent heurisics of flips between point clouds Long Reads B and Long Reads C for dimensions
ranging from 1 to 10. The genetic algorithm was only used in dimensions 5 and beyond.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.2. Flip method 131

0.1

0.3

1
Re

la
tiv

e
di

st
an

ce
 H

2,
r

d(Xi,Xj)

SV
D

RS
VD Method

Flip
Full

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0 50 10
0

15
0

0.1

0.3

1

SV
D

RS
VD

0 50 10
0

15
0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 5.3 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Atlas Guyane sample (right) aligned using the Flip
strategy. Median value is displayed in solid line.

0.01

0.1

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD Method

Flip
Full

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00
0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 5.4 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original 10V-RbcL sample (right) aligned using the Flip strat-
egy. Median value is displayed in solid line.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

132 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

0.01

0.1

1
Re

la
tiv

e
di

st
an

ce
 H

2,
r

d(Xi,Xj)

SV
D

RS
VD Method

Flip
Full

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00

0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 5.5 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Long Reads A sample (right) aligned using the Flip
strategy. Median value is displayed in solid line.

0.01

0.1

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD Method

Flip
Full

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
50

00
10

00
0

15
00

0
0.01

0.1

1

SV
D

RS
VD

0
50

00
10

00
0

15
00

0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 5.6 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Lref sample (right) aligned using the Flip strategy.
Median value is displayed in solid line.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.3. Folding method 133

smaller than 5,000 (150 for Atlas Guyane) we use a full SVD for the MDS, while for larger
matrices we use RSVD. Following the results presented in Section 4.5 (p. 114), we only present
results using the H2,r distance.

The results are shown in figures 5.3, 5.4, 5.5 and 5.6. We first comment on the results in 2
dimensions before moving on to the results in 10 dimensions. Figure 5.3 shows the result for
the dataset Atlas Guyane. We can see that the distance we find is generally the same as the
expected distance obtained using the full method, except in a few cases where the distance
is higher for a particular size. This is most likely the result of the accumulate heuristic not
finding the correct flip to align the point clouds. The results for the 10V-RbcL dataset in Figure
5.4, show that the computed distance is always higher than the expected distance, with more
variation when looking at the distances between the extracted point clouds. The distance be-
tween these point clouds and the full one is still higher than the expected one, but it shows
less variation. For both datasets Long Reads A and Lref, we can see that the distance varies
between the expected distance and a large error on the distance. This makes us think of errors
in the heuristics that find the correct orientation for the point clouds.

For all datasets, the behavior of the flip strategy in 10 dimensions is similar, with the distance
obtained being relatively stable, although always significantly higher than the expected results.
This may be due to a problem with the flip method, but we saw similar behavior for most of
the resampling methods in Section 4.5 (p. 114) so this could also be due to a problem with high
dimensional comparisons.

5.3 Folding method

Our idea was to look for a transformation of the point clouds that does not depend on the
orientation of the point clouds, in order to be able to compute the Hausdorff distance on these
transformed version of the point clouds while preserving their shapes as best as possible, i.e.
we want to respect the distance between different points, this would eliminate the need for the
costly alignment step. In other words, if A and B are two point clouds where A = S(B) and S is
a symmetric transformation, we look for a transformation T such that

A = S(B) =⇒ T (A) = T (B) (5.2)

or to put it in another way, we want to find a transformation T on the point clouds that satisfies

H(A,S(B)) =H(T (A),T (B)) (5.3)

without knowing S. Considering that we do not need to check for all possible symmetries, but
only for reflections around the axes of the SVD, and that these symmetries are caused by sign
changes in the singular vectors, we can use the absolute value of the coordinates of the point
clouds.

Now let us give a more formal definition. First we define the absolute value |.| operator on a
vector a = (a1, a2, . . . , ak) as |a| = (|a1|, |a2|, . . . , |ak |). By extension, the absolute value |A| of the point
cloud A is the set of the absolute values of all the points that make up the cloud. Applying this
transformation to a point cloud makes it look like the points are being "folded" along the axes,
hence the name we decided to give to this method.

Figure 5.7 shows how the folding algorithm transforms point clouds into 2 dimensions.

On the left there are two point clouds obtained with MDS on two subsets of a single dataset,
which we therefore expect to be similar. While by simply looking at them we can see that they

Romain Peressoni Large Scale MDS for the Study of Biodiversity

134 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

Figure 5.7 – Example of how the folding of 2 point clouds presenting symmetries can create
similar outputs.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.3. Folding method 135

have the same shape, the fact that they have a symmetry around the vertical axis means that
if we were to compute the Hausdorff distance between them we would find that they are far
apart. On the left, we show what these point clouds look like after going through our folding
method.

In Sections 5.3.1 and 5.3.2, we will express bounds on the folding algorithm to try to determine
if it statisfies the constraints we gave in Equation 5.3. We can show that the distance after
folding, can only be less than or equal to the real distance. This will allow us to understand
how using this method will affect the distances we are working with. We also want to make
sure that this step does not transform the data in such a way that the comparison becomes
irrelevant, for example, if this transformation affects the shapes in such a way that it becomes
impossible to distinguish between point clouds that are similar and those that are not.

5.3.1 Upper Bound

Lemma 3. Let two clouds of points A and B and |A| and |B| be the folded clouds then

H(|A|, |B|) ≤H(A,B)

Proof. Let d be the directed Hausdorff distance between A and B. By definition of the directed
Hausdorff distance

h(A,B) = max
a∈A

min
b∈B
||a− b|| = d (5.4)

Which is equivalent to
∀a ∈ A,∃b ∈ B, ||a− b|| ≤ d (5.5)

We can apply the reverse triangle equality to this expression, giving us

∀a ∈ A,∃b ∈ B, |||a| − |b||| ≤ ||a− b|| ≤ d (5.6)

And then we have
h(|A|, |B|) = max

a∈A
min
b∈B
|||a| − |b||| ≤ d = h(A,B) (5.7)

Applying the same argument to h(|B|, |A|), we can conclude that the following holdsH(|A|, |B|) ≤
H(A,B)

We can also show this holds true for the MHD.

Lemma 4. For two point clouds A and B, we have MHD(|A|, |B|) ≤MHD(A,B)

Proof. Let us take the directed distance of the MHD between A and B to show that

hMHD(|A|, |B|) =
1
NA

∑
a∈A

d(|a|, |B|) ≤ hMHD(A,B) =
1
NA

∑
a∈A

d(a,B) = d (5.8)

Now let us consider a inA. We know that there exists a b′ in B such that ||a−b′ || is minimal. Then
by applying the reverse triangular inequality to this expression, we get that |||a| − |b′ ||| ≤ ||a− b′ ||
and by extensions, min

b∈B
|||a| − |b||| ≤ ||a− b′ || = min

b∈B
||a− b||. Since this is true for all a ∈ A, then by

extension it is also true for the sum of all a and we have our proof.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

136 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

5.3.2 Lower Bound

Unfortunately, there is no lower bound, since it is possible to create point clouds with an ar-
bitrarily large Hausdorff distance that have a distance of 0 when folded onto one another.
Consider an example in one dimension. First, we choose a point cloud consisting of n ele-
ments all positive, this will be our first point cloud A. Then we can create a second point cloud
B = A∪ {−a,a ∈ A} (actually, even a subset of A would suffice). Since we constructed A to only
have only positive points, |A| = A. We also have |B| = A. Therefore, while these two point clouds
are different, they have the same Hausdorff distance after folding. However, in this case, A is
not centered, which is the case for the point clouds we expect from the MDS. We can work
around this problem by finding the center of gravity of A (let’s call it g) and adding n points in
−g to make A centered (assuming g itself is already a point of A, otherwise we have to add g to
A as well).

However, the tests we perform in the next section show that this may not be a problem, as the
cases described here require very specific point clouds that are most likely not representative of
real data. For instance, in our examples, we need to place a large number of points at the exact
same coordinates in order to maintain the centering we expect from point clouds generated
with MDS.

5.3.3 Experiments on synthetic datasets

5.3.3.1 Synthetic point cloud generation

We expect the point clouds we are working with to have some clusters around which points
tend to gravitate and want to take this into account when generating point clouds. In our tests,
we start by randomly placing some clusters with a uniform distribution. Then we place points
with a Gaussian distribution around them. By generating pairs of point clouds we can use the
same clusters and different positions to generate "close" point clouds, while different clusters
will generate "far" point clouds. We can then play with the parameters to try and simulate
different possibilities. The possible parameters to consider are:

— d: the dimension of the space
— s: The number of clusters
— s2: The number of clusters of the second point cloud (if not specified is equal to s)

The goal of these experiments is to test out 5 different scenarios:

— Low-dimensional Close (d: 2, s: 3)
— Low-dimensional Far (d: 2, s: 3, s2: 4)
— High-dimensional Close (d: 10, s: 3)
— High-dimensional Far (d: 10, s: 3, s2: 4)
— Very High-dimensional Far (d: 50, s: 3, s2: 4)

Most importantly, this will help us to verify that our method can discriminate between point
clouds that are close, and those that are not. We also want to study the effect of taking into
account more dimensions.

5.3.3.2 Results

All of the tests are performed over 5 000 repetitions and distances are calculated using the
MHD. We chose to use this method because it is a good way to deal with outliers that do not
introduce additional parameters [40].

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.3. Folding method 137

Figure 5.8 – Heatmap for the Close point clouds.

Low-dimensional Close. Figure 5.8 shows us an example of a pair of point clouds generated
during our tests, where we can see very similar point clouds. Both show the 3 clusters very
distinctly. Figure 5.9 shows us three histograms: on the top left is the true distance, which is
quite low because the images are generated to be close. The upper right shows the distance
after applying the folding scheme. As discussed in Section 5.3.1, these distances are always
lower than (or equal to) the real ones. The bottom image shows the histogram of the ratio
between the distance computed after folding and the expected Hausdorff distance. Since the
distance after folding can only be smaller than the real one this ratio is always between 0 and
1, where 1 is better, since it means that the distance has been preserved by the transformation.
In Figure 5.9 we can see that the ratio is mostly around 1, but there are some cases where this
ratio drops to almost 0.5.

Figure 5.9 – Histogram of the distances for similar point clouds with 2 Dimensions.

High-dimensional Close Here, Figure 5.10 shows us that by considering more dimensions,
the ratio between the real distance and the distance after folding stays much closer to 1 than

Romain Peressoni Large Scale MDS for the Study of Biodiversity

138 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

Figure 5.10 – Histogram of the distances for similar point clouds with 10 Dimensions.

before. In Figure 5.9 the ratios were between 0.5 and 1, while here they are mostly above 0.9.

Figure 5.11 – Heatmap for the Far point clouds.

Low-dimensional Far. Figure 5.11 shows point clouds that are different because we added
an extra cluster to the second one. Looking at the bottom graph in Figure 5.11 we can see that
the ratio is not consistent at all, which means that the folding algorithm cannot be used in this
case because we cannot guarantee that it is representative of the true distance.

High-dimensional Far. Figure 5.13 shows more concentrated results than those in Figure 5.12
however it is still quite spread and could lead to mistakes.

Very High-dimensional Far. Figure 5.14 shows us that when we select an even larger number
of dimensions, the ratio starts to stabilize more, but does not reach 1, which is expected, since
the folding makes the point clouds closer than they really are.

5.3.4 Numerical Study

To evaluate the folding strategy, we perform the same experiments as in Section 4.5 (p. 114),
using the same four datasets: Atlas Guyane, 10V-RbcL and Long Reads A from Section 1.8 (p.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.3. Folding method 139

Figure 5.12 – Histogram of the distances for far point clouds with 2 Dimensions.

Figure 5.13 – Histogram of the distances for far point clouds with 10 Dimensions.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

140 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

Figure 5.14 – Histogram of the distances for far point clouds with 50 Dimensions.

0.1

0.3

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD Method

Fold
Full

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0 50 10
0

15
0

0.1

0.3

1

SV
D

RS
VD

0 50 10
0

15
0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 5.15 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Atlas Guyane sample (right) aligned using the Fold
strategy. Median value is displayed in solid line.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.3. Folding method 141

0.01

0.1

1
Re

la
tiv

e
di

st
an

ce
 H

2,
r

d(Xi,Xj)

SV
D

RS
VD Method

Fold
Full

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00

0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 5.16 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original 10V-RbcL sample (right) aligned using the Fold strat-
egy. Median value is displayed in solid line.

0.01

0.1

1

Re
la

tiv
e

di
st

an
ce

 H
2,
r

d(Xi,Xj)

SV
D

RS
VD Method

Fold
Full

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00

0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 5.17 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Long Reads A sample (right) aligned using the Fold
strategy. Median value is displayed in solid line.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

142 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

0.01

0.1

1
Re

la
tiv

e
di

st
an

ce
 H

2,
r

d(Xi,Xj)

SV
D

RS
VD Method

Fold
Full

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
50

00
10

00
0

15
00

0

0.01

0.1

1

SV
D

RS
VD

0
50

00
10

00
0

15
00

0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure 5.18 – Evaluation of the H2,r distance of 8 submatrices between each other (left) and
between the submatrices and the original Lref sample (right) aligned using the Fold strategy.
Median value is displayed in solid line.

19) and Lref (see Section 4.5,p. 114) instead of S5. At iteration l, we extract two different sub-
matrices that we align by folding and construct a point cloud Xl for this iteration. We then use
resampling by dividing the point cloud into 8 and estimate the quality of the approximation of
the true point cloud X by Xl using the distances between the subdivided point clouds. Since we
use the same experimental setup as in Sections 5.2.3.2 and 4.5, we will not describe it further
here.

The results are shown in Figures 5.15, 5.16, 5.17 and 5.18. These results are very similar to
those of the flip strategy presented in Section 5.2.3.2. This is due to two main factors: first, the
submatrices considered are the same, since in the context of both experiments, we generated
the submatrices once and the applied flip and fold successively to generate the Xl . The second
reason is the fact that both methods work under the same constraint that they must be applied
to point clouds that are misaligned only up to a reflection around the principal axes. The
main difference is that the folding scheme sacrifices the actual shape of the point cloud for a
faster result, while the flip strategy can achieve the exact transformation at the cost of more
computation time.

When using heuristics for the flip such as the one we used in the experiment of Section 4.5, we
may also find ourselves in a situation where we have a false negative, i.e. we do not find the
right transformation and the resulting distance appears higher than it should. This problem
does not occur with folding, but it can produce false positives by bringing together clouds that
are far apart.

The tendency of folding to bring point clouds closer together than they actually are can be seen
in Figures 5.15 and 5.18, where the folded distance is sometimes smaller than the reference.
This does not happen for any other method of aligning point clouds. It is also remarkable that
the relative distance after folding remains in a comparable order of magnitude to the actual

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.4. Discussion on Performance 143

distance, even though we have no reason to believe that it would behave this way, sine folding
is supposed to reduce distances.

5.4 Discussion on Performance

In this section, we compare the performance result of the Flip and Fold algorithms with the
different methods presented in Chapter 4. Figures 5.19, 5.20, 5.21 and 5.22 show, for the Atlas
Guyane, 10V-RbcL, Long Reads A and Lref datasets, respectively, the computation time for
each method (Combined, Landmark Procrustes and BDLPMDS) with respect to the size of the
extracted submatrices, presented in log-y scale with both non-log-x scale (top) and log-x scale
(bottom). We present the flip and fold methods in a single curve, since they are computed in
the same way with MDS on two disjoint submatrices. In practice the folding operation will be
faster than using flips (even using heuristics). We do not report this here, since the dominant
part of both methods remains the MDS.

Except in Figure 5.19, where the computation time is so fast that the result is dominated by
the various alignment algorithms instead of the MDS, we can see that the flip and fold schemes
require about the same computing time as the Landmark Procrustes approach. This is to be
expected, since both the Landmark Procrustes and the flip and fold methods are based on
computing two MDS on matrices half the size of Xl at each iteration. BDLPMDS remains the
fastest approach due to its progressive nature.

5.5 Application

In this section, we present the Flip and Fold heuristic in two cases. First, in Section 5.5.1 we
return to the S5 sample and compute the distance between the results we obtained by RsEVD-
MDS and RSVD-MDS. We compare the alignment using flip and fold with the more rigorous
result from Section 3.8.1 and confirm that the result we find using either a flip or fold strategy
is consistent with what we obtained using Procrustean transformations.

In Section 5.6, we use the flip and fold heuristics to compare the point clouds from the Long
Reads sample presented in Section 1.8.2 (p. 21). Since the Long Reads datasets have been sam-
pled in an independent and identically distributed manner, we expect them to have the same
principal axes, and therefore the first three issues of Chapter 3 (axis permutations, rotation and
translation) are therefore be solved by the sEVD step, and that all we have to do to align them is
to consider the reflections around the principal axes. After validating that this approach gives
correct results in terms of the distance between the point clouds, we reconstruct the full ABCD
dataset (similar to how we rebuilt the full S5 dataset in Section 3.8.4, p. 92) using only the Flip
strategy. The main difference in this case is that the Flip strategy does not require the use of
any off-diagonal-block elements, unlike the BDLPMDS which requires the use of landmarks to
align all point clouds.

Finally, in Section 5.5.3 we show an attempt to use the flip and fold method to compare the
different point clouds that make up the S5 sample, even though each Li is sufficiently different
because they were sampled at different times of the year. As such, the Li samples are not
independent and identically distributed and we show how applying flip or fold in a case where
issues 1 through 3 of Chapter 3 are present can lead to catastrophic failure.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

144 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

0
50

0
10

00
15

00

Size mi of the sub-matrices

0.001

0.01

0.1

1

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Flip/Fold
Landmark Procrustes

(a) Nonlog x-scale.

30 10
0

30
0

10
00

Size mi of the sub-matrices

0.001

0.01

0.1

1

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Flip/Fold
Landmark Procrustes

(b) Log x-scale.

Figure 5.19 – Computation time for Flip and Fold algorithms compared with the other heuris-
tics from Chapter 4 for dataset Atlas Guyane.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.5. Application 145

0
50

00
10

00
0

15
00

0
20

00
0

Size mi of the sub-matrices

0.01

1

100

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Flip/Fold
Landmark Procrustes

(a) Nonlog x-scale.

1e
2

1e
3

1e
4

Size mi of the sub-matrices

0.01

1

100

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Flip/Fold
Landmark Procrustes

(b) Log x-scale.

Figure 5.20 – Computation time for Flip and Fold algorithms compared with the other heuris-
tics from Chapter 4 for dataset 10V-RbcL.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

146 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

0
10

00
0

20
00

0
30

00
0

Size mi of the sub-matrices

0.01

1

100

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Flip/Fold
Landmark Procrustes

(a) Nonlog x-scale.

1e
2

1e
3

1e
4

Size mi of the sub-matrices

0.01

1

100

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Flip/Fold
Landmark Procrustes

(b) Log x-scale.

Figure 5.21 – Computation time for Flip and Fold algorithms compared with the other heuris-
tics from Chapter 4 for dataset Long Reads A.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.5. Application 147

0
25

00
0

50
00

0
75

00
0

10
00

00

12
50

00

Size mi of the sub-matrices

1e-2

1

1e2

1e4

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Flip/Fold
Landmark Procrustes

(a) Nonlog x-scale.

1e
2

1e
3

1e
4

1e
5

Size mi of the sub-matrices

1e-2

1

1e2

1e4

Co
m

pu
tin

g
tim

e
(s

)

SV
D

RS
VD

Method
BDLPMDS
Combined
Flip/Fold
Landmark Procrustes

(b) Log x-scale.

Figure 5.22 – Computation time for Flip and Fold algorithms compared with the other heuris-
tics from Chapter 4 for dataset Lref.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

148 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

5.5.1 Assessing the closeness of S5 (L1-L10) point clouds generated by RSVD and
RsEVD

In this section, we will revisit the comparison between the RsEVD-MDS (Figure 2.19, p. 60)
and the RSVD-MDS (Figure 1.13, p. 26). We want to compare the Flip and Fold schemes
with the results we obtained in Section 3.8.1 using Procrustean transformations. Since both
these results were obtained using the same input matrix, with only a few variations due to the
random nature of the algorithms and the number of randomized linear embeddings, we can
assume that we are in the conditions where the results of that chapter apply. In this case, issues
1 to 3 of Section 3.3 (axis permutations, rotation and translation) are solved and we should be
able to align the point clouds using only the reflections around the axes. The resulting distance
is shown in Table 5.1. Since the Flip and Fold heuristics do not benefit from considering more
dimensions than are included in the final comparison, we only considered the same number of
dimensions for the Procrustes alignment as well. In the leftmost column of this table, we can
see the distance obtained after aligning the point clouds using the Procrustes transformations
which will be our baseline. We can see that in most cases, the distance obtained using the flip or
fold method is the same as the Procrustes result, except when using the flips in 4 dimensions.
This illustrates one of the possible problem we can encounter with this method, which is a
false negative. In this case it is due to the fact that the accumulate heuristic found the wrong
orientation for the 4th dimension. We can correct this error using an exhaustive approach at the
cost of significant computation time. The result we then obtain is 3.3607725847857384e-06,
which confirms the false negative hypothesis.

Dimension Procrustes Flip Fold
2 1.8248895282299271e-06 1.8249147286464697e-06 1.824906847434291e-06
3 2.2191719647848152e-06 2.513734093895583e-06 2.513734093895583e-06
4 3.1035338219322256e-06 6.870188605886184e-02 3.3607698553003758e-06

Table 5.1 – H2,r distance between point cloud of the S5 sample obtained through RsEVD-MDS
and RSVD-MDS aligned using either Procrustes, flip (with the accumulate heuristic) or fold.

5.5.2 Confirming the closeness of the four Long Reads samples

In this section we study the four Long Reads samples from Section 1.8.2 (p. 21). These four
samples are extracted from a larger matrix in an assumed independent and identically dis-
tributed manner. The samples are named from A to D and the complete dataset is named
ABCD. Thus, we expect that after running the MDS on each of these samples, only issue 4
of Chapter 3 (reflections around the principal axes) will remain. Issue 4 is due to the non-
uniqueness of the sEVD (and SVD) and will therefore always be present.

In Table 5.2, we compare the distances between the individual Long Reads samples using the
relative H2 distance (H2,r). We performed each comparison using the Procrustes transforma-
tion to align each sample to the complete ABCD sample in the same way that we aligned all Li
on the full sample in Section 3.8.3. This gives us a reference distance against which to evaluate
our other heuristics. We then compared them using either Flip (to Long Reads A) or Fold. We
can see that all the results are very close to the theoretical result, confirming that the Flip and
Fold strategies are effective for comparing these datasets. The visualization of the Flip and
Fold schemes on point clouds is shown in Figure 5.23, where the leftmost column is the origi-
nal point clouds as obtained by MDS, the middle column shows the point clouds after aligning
them to Long Reads A using Flips, and the rightmost column is the result of the Folding heuris-
tic. We can already see from the original point clouds obtained from MDS that the different
point clouds are indeed very similar, and differing only up to a reflection around the principal

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.5. Application 149

axes. Once we use either heuristic, we see that the point clouds are aligned. We should also
point out that folding is destructive to the original shape of the point cloud, but is still a good
way of aligning point clouds when only closeness matters.

A B C D
Proc. Flip Fold Proc. Flip Fold Proc. Flip Fold Proc. Flip Fold

A 0 0 0 4.9e-3 4.9e-3 3.3e-3 5.0e-3 5.2e-3 3.7e-3 4.3e-3 4.4e-3 3.5e-3
B 4.9e-3 4.9e-3 3.3e-3 0 0 0 4.2e-3 4.3e-3 3.2e-3 4.3e-3 4.5e-3 3.3e-3
C 5.0e-3 5.2e-3 3.7e-3 4.2e-3 4.3e-3 3.2e-3 0 0 0 4.4e-3 4.6e-3 3.5e-3
D 4.3e-3 4.4e-3 3.5e-3 4.3e-3 4.5e-3 3.3e-3 4.4e-3 4.6e-3 3.5e-3 0 0 0

Table 5.2 – Hr,2 distance between each pair of Long Reads datasets with alignment being done
either with Procrustes transformation, Flip (towards Long Reads A) or Fold.

Once we have validated that both the Flip and the Fold approaches provide satisfactory align-
ment of the Long Reads sample, we want to, similarly to what is presented in Section 3.8.4
(p. 92), rebuild the entire ABCD point cloud using only the Flip strategy. The resulting point
clouds are shown in Figure 5.24. In this figure, the top row represents the full ABCD point
cloud as obtained by a RSVD-MDS on the full 120,000×120,000 matrix. Each of the following
row represents one point cloud between A, B, C, D aligned on the full ABCD. The bottom row
represents the reconstucted ABCD obtained by combining these point clouds. A summary of
the distances between these point clouds and the original one is given in Table 5.3. As we can
see, the point cloud rebuilt with Flip is very close to the original one, which confirms our in-
tuition that under certain conditions, we can rebuild the entire point cloud without having to
access any of the off-diagonal blocks.

Dataset Procrustes Flip Fold
A 3.317e-03 3.434e-03 2.575e-03
B 3.761e-03 3.787e-03 2.682e-03
C 3.942e-03 4.190e-03 3.150e-03
D 3.663e-03 3.892e-03 3.051e-03

Rebuilt 5.693e-04 1.183e-03 2.575e-03

Table 5.3 – H2,r(.,ABCD) distance between the full ABCD sample and each Long Reads sample
aligned to ABCD, the bottom row is the distance between the rebuilt ABCD and the computed
ABCD.

5.5.3 Limits of the Approach

Finally, we present here the limitations of both the Flip and Fold heuristics, and illustrate what
happens when we try to use this approach to compare point clouds that do not come from
independent submatrices extracted from a dataset. To illustrate this, we use the L1, . . . ,L10
datasets from Section 1.8.4 (p. 21). As explained in that section, the Li datasets are datasets
extracted from the same place at different times of the year. As such, the evolution of the
biodiversity throughout the year will affect the structure of these matrices in relation to each
other. This means that the principal axes of these datasets are not necessarily confounded and
that more treatment is needed to align them than simply considering reflections around the
principal axes. This behavior is described in more details in Section 3.8.4 (p. 92).

In Figure 5.25, we present the result of the attempt to apply Flips and Folds to the Li samples.
Each row contains one of the Li , and each column represents a transformation applied to the
point clouds. The leftmost column represents the point clouds as obtained from the output of
MDS, the second one corresponds on the point clouds transformed by the Procrustean to align

Romain Peressoni Large Scale MDS for the Study of Biodiversity

150 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

Original

A

Flip Fold

B

C

D

Figure 5.23 – Long Reads point clouds obtained from MDS (left) aligned to A using flips (mid-
dle) and folded (right).

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.5. Application 151

Procrustes

Reference

Flip Fold

A

B

C

D

Rebuilt

Figure 5.24 – Long Reads ABCD (top row) and LongReads aligned to it using Procrustes anal-
ysis (left), flips (middle) and folding (right). Bottom row shows the rebuilt ABCD sample
obtained by merging each version of alignment.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

152 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

them all on the point cloud obtained from RSVD-MDS. This is the same transformation that
was applied to the first column in Figure 3.30. The third column represents the point clouds
obtained using flips. As we assume that this method is used in the cases we don’t have access
to off-diagonal blocks, we decided to align every point cloud to L1 instead of S5. The last two
columns represent the results obtained with the fold scheme. The fourth column represents the
point clouds as they are directly folded so the folded version of the first column, while the last
column represents the folded version of the point clouds aligned on S5 using the Procrustean
transformations of the second column.

In other words, if the method was correct, the third column should look like the second, and
the fifth should look like the fourth. As we can see it is not the case, which is the expected
result since the different Li samples are too different and the issues 1 to 3 of Chapter 3 are
not solved by the sEVD, which means that a flip or fold strategy cannot correctly align them.
The results of the relative H2 distance between L1 and the rest of these point clouds for each
alignment method are presented in Table 5.4. Results for all the other samples are presented
in Appendix D.

Sample Procrustes Flip Fold Procrustes Fold
L2 9.287e-03 5.653e-02 1.627e-02 4.529e-03
L3 6.931e-03 2.571e-02 1.914e-02 4.502e-03
L4 1.102e-02 9.280e-02 7.840e-02 6.226e-03
L5 1.453e-02 5.788e-02 5.333e-02 8.677e-03
L6 1.614e-02 6.265e-02 5.210e-02 9.408e-03
L7 1.720e-02 5.556e-02 4.610e-02 1.007e-02
L8 1.467e-02 1.091e-01 2.964e-02 1.026e-02
L9 1.918e-02 6.930e-02 5.454e-02 1.240e-02

L10 1.957e-02 3.412e-02 2.435e-02 1.248e-02

Table 5.4 – H2,r(L1,Lj)j∈~2;10� for the different methods of aligning.

5.6 Conclusion

In this chapter, we explored the possibility of aligning the point clouds without the need for
landmarks. We started from the observation that for point clouds extracted in an independent
and identically distributed manner, all the problems of alignment are directly corrected by
the sEVD, which correctly captures the eigenvectors, and out of the four issues presented in
Chapter 3 only issue 4 (reflections around principal axes) remains. This problem is due to the
non-unicity of the sEVD, and as such, it is not possible to prevent it from occurring. However,
if it the only cause of non-alignment, we can adapt our alignment methods so that landmarks
are not required.

We have proposed two strategies for aligning such point clouds. The first, which we call flip, is
to try all possible reflections and find the best one based on the distance presented in Chapter
3. Since this method can become computationally expensive when the number of dimensions
considered increases, we have explored heuristics that allow a faster computation at the cost
of some possible false negatives: cases where we do not identify the best transformation and
where we assume that the distance between the point clouds is greater than it actually is.
The second strategy we propose is called folding. It consists of removing the sign from the
coordinates of all the points in the cloud. While this method is destructive in the sense that it
irreversibly transforms the point cloud, it allows to map all possible reflections around all axes
into the same point cloud. Thus, point clouds that are identical except for reflections around

Large Scale MDS for the Study of Biodiversity Romain Peressoni

5.6. Conclusion 153

Original

L1

Procrustes Flip/L1 Fold Procrustes Fold

L2

L3

L4

L5

L6

L7

L8

L9

L10

Figure 5.25 – S5 Sample aligned using various methods.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

154 CHAPTER 5. COMPARISON OF APPROXIMATELY COINCIDENT DATASETS

one or more principal axes will appear identical after folding. This method is also very fast to
compute compared to the flip method, even using heuristics.

We performed experiments showing that these approaches can be used to approximate a matrix
using uniform sampling without the need to access the off-(block-)diagonal elements, which
may not be available in practice. We compared the point clouds of the large S5 dataset com-
puted using RSVD-MDS and RsEVD-MDS using only flips. We validated that by using only
flips, we can reconstruct the complete Long Reads ABCD sample from its diagonal blocks
alone.

In a third experiment, we demonstrated the limitations of the flip and fold approach when the
dataset under consideration is not uniformly distributed by attempting to rebuild the full S5
sample using only its diagonal blocks. Since these samples are not independent because they
were extracted at different times of the year, the underlying structure of each point cloud is not
the same, as we showed in Chapter 3. Thus, attempting to use Flip or Fold on this dataset will
produce irrelevant results because we are not comparing data projected on the same principal
axes.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Conclusion

The first part of this thesis, presented in Chapter 2 revisited the numerical and HPC design
of randomized linear embedding based MDS summarized in Chapter 1. We showed that both
RSVD-MDS and RsEVD-MDS achieve an excellent numerical performance when the numerical
rank is well captured. When it is not well captured, there is a numerical trade-off. On the one
hand, the RSVD approximates G better than the RsEVD due to the fact that it performs only a
single projection (G ≈QQTG) whereas the RsEVD performs two projections (G ≈QQTGQQT).
On the other hand, the RSVD-MDS can be further penalised by the loss of symmetry. The study
has revealed that in practice this additional penalty is not dramatic as long as the approximated
Gram matrix QQTG remains relatively close to G, as in this case its skew-symmetry ratio re-
mains low.

As a consequence, in a general-purpose MDS library, it may be worthwhile to include both
the RSVD-MDS and RsEVD-MDS variants. While we had an RSVD-MDS (presented in the
background material in Chapter 1), we have implemented an HPC version of the RsEVD-MDS
variant. From a numerical point of view, it corresponds to the variant discussed in Section 2.2.
From an HPC point of view, we have followed the task-based design from Section 1.6.

Both RSVD-MDS and RsEVD-MDS are dominated by matrix-matrix multiplications (MM). The
performance and memory consumption of MM are thus keys for that of the overall MDS based
on such randomized linear embedding algorithms, which motivated a study on the improve-
ment of distributed-memory matrix multiplication. We experimentally confirmed that refer-
ence distributed-memory libraries achieve a lower performance with SYMM than with GEMM.
We showed that an efficient design of the communication schemes can significantly alleviate
this gap. Still, we showed that part of the gap is explained by a lower AI of 2D BC SYMM
compared to 2D GEMM (by a factor of 2). We considered two alternative data distributions,
SBC and TBC. SBC is a direct adaptation to the matrix multiplication case of a study of the
Cholesky decomposition [14]. TBC is a distributed-memory (and even a parallel) adaptation
of the ideas behind TBS [15], a sequential out-of-core algorithm. We proved that SBC and TBC
improve the AI of SYMM by a factor of

√
2 and 2, respectively, thus in particular equaling that

of 2D BC GEMM for the latter one. In the case where we allow SYMM to store an amount of
memory equivalent to a full matrix as 2D BC GEMM does, we furthermore showed that 2.5D
TBC with s = 2 slices achieves a higher AI than 2D BC GEMM by a factor of

√
2. Our experi-

mental study showed that the improvement of the AI translates into a compelling performance
enhancement, up to the point of roughly matching GEMM performance. However, the highest
AI does not always translate into the best performance.

The resulting code has been integrated in the randomized linear embedding algorithms used
in the MDS framework of Section 1.6 in place of the two dense matrix multiplications repre-
senting the main computational step of the algorithm. While one had to trade-off [7] between
performance, with GEMM, or memory, with SYMM, we showed that, altogether, the proposed
STF design and the new TBC distribution now achieve a performance competitive with GEMM.
This study also showed that algorithms involving very irregular data and task distributions can

155

156 Introduction

now be implemented with a code easy to write, read and maintain thanks to the latest devel-
opments on the scalability of the STF model [5], while ensuring a competitive performance.

As a result of this work, we now have access to a versatile high-performance MDS library that
provides an implementation of both RSVD-MDS and RsEVD-MDS in a distributed-memory
context. These algorithms are based on a state-of-the-art STF implementation of SYMM which
makes no compromise between performance and memory footprint.

The second part of this thesis dealt with the comparison of point clouds, either as an end in
itself (chapters 3 and 5) or as a means to design new iterative randomized sampling algorithms
(Chapter 4), with a special interest in the data access patterns of the dissimilarity matrix, which
is expensive to compute in practice.

In Chapter 3, we explored the comparison of point cloud arising from MDS. Our first goal
was to be able to compare the different (L1, . . . ,L10) point clouds that make up the S5 dataset
of Section 1.8.4 (p. 21). We have shown that computing each Li independently leads to point
clouds that are not directly comparable and must first be realigned.

We proposed to rely on the Hausdorff distance to evaluate the distance between point clouds
based on their shapes. We presented a new variation of the Hausdorff distance which we related
to the Frobenius distance and also proposed a definition for a relative Hausdorff distance.

We identified four issues (1: Axes permutation, 2: Rotation, 3: Translation and 4: Reflections)
that can affect the alignment of point clouds and showed how to solve them using orthogonal
Procrustes analysis and centering. We showed that when comparing point clouds that have no
correspondence between their points, it is possible to use landmarks to act as a reference and
find the transformation to align these point clouds. Such landmarks can be obtained either by
augmenting one point cloud with points from the other, or by selecting points in both point
clouds to compute a smaller reference MDS.

Aligning point clouds for comparison also allows one to superimpose the aligned point clouds
and reconstruct the full point cloud. This can be thought of as a different view of FastMDS
[130], originally motivated by the comparison of the intermediate point clouds rather than
the direct calculation of MDS. We call this method Block Diagonal Landmark Procrustes MDS
(BDLPMDS).

We applied the BDLPMDS algorithm to the Li blocks and were able to reconstruct the full S5
point cloud using a single computing node, whereas previously it had only been possible using
a distributed-memory MDS over 100 nodes.

In chapter 4, we discussed and implemented methods to construct a reduced MDS, i.e. a subset
of the points in the cloud using randomized uniform sampling. We discussed two questions that
arise from sampling the distance matrix in the context of MDS:

— Question Q1 - How to approximate a reference input sample ?
— Question Q2 - How to estimate the intrinsic quality of a sample ?

Q1 can be seen as the issue of iterative uniform sampling with a reference sample while Q2
corresponds to iterative uniform sampling without a reference sample. We showed that both
relative Modified Hausdorff (MHDr) and relative Squared Modified Hausdorff (H2,r) can be
used as robust a posteriori estimators to answer both questions.

Based on these results, we proposed iterative MDS algorithms that use a stopping criterion
based on the distance between the resampled point clouds at each iteration. We proposed four
algorithms, each following the same resampling and distance computation step and differing
only in how they compute the MDS at a given iteration. First, we proposed two conservative
algorithms that compute each iteration without relying on the previous results and two pro-
gressive algorithms based on LMDS and BDLPMDS, that aim to build the next iteration by
extending the result of the previous one, and both show promising results.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

157

In the final chapter of this thesis, we explored the possibility of aligning the point clouds
without the need for landmarks when dealing with point clouds extracted in an independent
and identically distributed manner from a larger sample. We showed that when this condition
is respected, the point clouds represent the same population and the MDS captures it correctly
up to any number of reflections around principal axes. This problem is due to the non-unicity
of the sEVD, and as such, it is not possible to prevent it from occurring.

We proposed two strategies for aligning such point clouds. The first, which we call flip, is to
try all possible reflections and find the best one based on the distance presented in Chapter
3. Since this method can become computationally expensive when the number of dimensions
considered increases, we have explored heuristics. The second strategy we proposed is called
folding. It consists of removing the sign from the coordinates of all the points in the cloud.
While this method is destructive in the sense that it irreversibly transforms the point cloud, it
allows to map all possible reflections around all axes into the same point cloud. This method
is very fast to compute compared to the flip method, even using heuristics.

We performed experiments showing that these approaches can be used to approximate a matrix
using uniform sampling without the need to access the off-(block-)diagonal elements, which
may not be available in practice. We compared the point clouds of the large S5 dataset com-
puted using RSVD-MDS and RsEVD-MDS using only flips. We validated that by using only
flips, we can reconstruct the complete Long Reads ABCD sample from its diagonal blocks
alone.

Regarding the perspective of the thesis, we showed that in the context of distributed-memory
MM, the highest AI does not always translate into the best performance, in particular for the
2.5D variant of MM using our new irregular data distribution, that struggled to achieve higher
performance than classical 2D algorithms. A preliminary analysis hints that it is due to the
scheduling of the communications that certainly must be reconsidered with the proposed new
irregular data distributions.

Although we have pointed out the limitations of the BDLPMDS algorithm in the context of
iterative MDS, it still performed well in 3 of the 4 test cases. We expect that a revised version
of this algorithm will provide a fast and reliable method for computing iterative MDS.

As we mentioned earlier, the two questions Q1 and Q2 can be linked. We plan to design an
algorithm that can decide when to stop scanning the data (in the sense of Question Q2) using
uniform sampling in order to obtain an intermediate reference sample, and then to compress
that data further. This additional step corresponds to answering Question Q1 with the inter-
mediate reference sample as input. Since we know that Question Q1 is generally best answered
with importance sampling, we could perform the second step with importance sampling.

We also plan to propose implementations of the fast methods of computing MDS (LMDS,
BDLPMDS, iterative MDS) presented in the second part of the thesis in our high-performance
MDS library, in addition to the already available randomized linear embedding algorithms.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

158 Introduction

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Bibliography

[1] Mohamed Anwar Abouabdallah, Nathalie Peyrard, and Alain Franc. « Does clustering
of DNA barcodes agree with botanical classification directly at high taxonomic levels?
Trees in French Guiana as a case study ». In: Molecular Ecology Resources 22.5 (2022),
pp. 1746–1761.

[2] Ramesh C Agarwal, Susanne M Balle, Fred G Gustavson, Mahesh Joshi, and Prasad
Palkar. « A three-dimensional approach to parallel matrix multiplication ». In: IBM
Journal of Research and Development 39.5 (1995), pp. 575–582.

[3] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond Namyst,
Samuel Thibault, and Stanimire Tomov. « A hybridization methodology for high-performance
linear algebra software for GPUs ». In: GPU Computing Gems Jade Edition. Elsevier, 2012,
pp. 473–484.

[4] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Florent Pru-
vost, Marc Sergent, and Samuel Paul Thibault. « Achieving high performance on super-
computers with a sequential task-based programming model ». In: IEEE Transactions on
Parallel and Distributed Systems (2017).

[5] Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, Julien Herrmann, and An-
toine Jego. Task-Based Parallel Programming for Scalable Algorithms: Application to Matrix
Multiplication. Research Report RR-9461. Inria Bordeaux - Sud-Ouest, 2022, p. 26.

[6] Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, and Florent Lopez. « Imple-
menting multifrontal sparse solvers for multicore architectures with sequential task
flow runtime systems ». In: ACM Transactions on Mathematical Software (2016).

[7] Emmanuel Agullo, Olivier Coulaud, Alexandre Denis, Mathieu Faverge, Alain A. Franc,
Jean-Marc Frigerio, Nathalie Furmento, Samuel Thibault, Adrien Guilbaud, Emmanuel
Jeannot, Romain Peressoni, and Florent Pruvost. Task-based randomized singular value
decomposition and multidimensional scaling. Research Report 9482. Inria Bordeaux - Sud
Ouest ; Inrae - BioGeCo, Sept. 2022, p. 37.

[8] Noga Alon, Yossi Matias, and Mario Szegedy. « The space complexity of approximating
the frequency moments ». In: Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing. 1996, pp. 20–29.

[9] Isabelle Auby, Claire Meteigner, Myriam Rumebe, Emilie Chancerel, Franck Salin, Chris-
telle Aluome, Frédéric Barraquand, Laure Carassou, Yolanda Del Amo, Vona Meleder,
Alexandra Petit, Coralie Picoche, Jean-Marc Frigerio, and Alain Franc. Malabar project:
datasets of pairwise distances between reads per sample for rbcL marker. Version V1. 2022.
url: https://doi.org/10.57745/BAMEWX.

[10] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
« StarPU: a unified platform for task scheduling on heterogeneous multicore architec-
tures ». In: Concurrency and Computation: Practice and Experience 23.2 (2011), pp. 187–
198.

159

https://doi.org/10.57745/BAMEWX

160 BIBLIOGRAPHY

[11] Seung-Hee Bae. « Parallel multidimensional scaling performance on multicore systems ».
In: 2008 IEEE Fourth International Conference on eScience. IEEE. 2008, pp. 695–702.

[12] Seung-Hee Bae, Judy Qiu, and Geoffrey Fox. « High performance multidimensional
scaling for large high-dimensional data visualization ». In: IEEE Transaction of Paral-
lel and Distributed System (2012).

[13] Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz. « Communication-
Optimal Parallel Algorithm for Strassen’s Matrix Multiplication ». In: Proceedings of the
Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures.
SPAA ’12. Pittsburgh, Pennsylvania, USA, 2012, pp. 193–204. isbn: 9781450312134.

[14] Olivier Beaumont, Philippe Duchon, Lionel Eyraud-Dubois, Julien Langou, and Math-
ieu Vérité. « Symmetric Block-Cyclic Distribution: Fewer Communications Leads to
Faster Dense Cholesky Factorization ». In: Supercomputing. 2022.

[15] Olivier Beaumont, Lionel Eyraud-Dubois, Mathieu Vérité, and Julien Langou. « I/O-
Optimal Algorithms for Symmetric Linear Algebra Kernels ». In: arXiv preprint arXiv:2202.10217
(2022).

[16] Mario Bebendorf. « Adaptive cross approximation of multivariate functions ». In: Con-
structive approximation 34 (2011), pp. 149–179.

[17] E Beltrami. In: Giornale di Matematiche ad Uso degli Studenti Delle Universita (1873).

[18] L. Susan Blackford, Jaeyoung Choi, Andrew J. Cleary, Eduardo F. D’Azevedo, James
Demmel, Inderjit S. Dhillon, Jack J. Dongarra, Sven Hammarling, Greg Henry, Antoine
Petitet, Ken Stanley, David W. Walker, and R. Clinton Whaley. « ScaLAPACK: A Linear
Algebra Library for Message-Passing Computers ». In: Proceedings of the Eighth SIAM
Conference on Parallel Processing for Scientific Computing, PPSC 1997, Hyatt Regency Min-
neapolis on Nicollel Mall Hotel, Minneapolis, Minnesota, USA, March 14-17, 1997. SIAM,
1997.

[19] Pierre Blanchard. « Fast hierarchical algorithms for the low-rank approximation of ma-
trices, with applications to materials physics, geostatistics and data analysis. » PhD the-
sis. Université de Bordeaux, 2017. url: https://tel.archives- ouvertes.fr/tel-
01534930.

[20] Pierre Blanchard, Philippe Chaumeil, Jean-Marc Frigerio, Frédéric Rimet, Franck Salin,
Sylvie Thérond, Olivier Coulaud, and Alain Franc. A geometric view of Biodiversity: scal-
ing to metagenomics. 2018.

[21] Pierre Blanchard, Olivier Coulaud, Eric Darve, and Alain Franc. « FMR: Fast random-
ized algorithms for covariance matrix computations ». In: Platform for Advanced Scien-
tific Computing (PASC). 2016.

[22] Ulrik Brandes and Christian Pich. « Eigensolver methods for progressive multidimen-
sional scaling of large data ». In: Graph Drawing: 14th International Symposium, GD
2006, Karlsruhe, Germany, September 18-20, 2006. Revised Papers 14. Springer. 2007,
pp. 42–53.

[23] Rasmus Bro and Age K Smilde. « Centering and scaling in component analysis ». In:
Journal of chemometrics 17.1 (2003), pp. 16–33.

[24] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. « Parallel tiled QR
factorization for multicore architectures ». In: Concurrency and Computation: Practice
and Experience 20.13 (2008), pp. 1573–1590.

[25] Henri Caron, Jean-François Molino, Daniel Sabatier, Patrick Léger, Philippe Chaumeil,
Caroline Scotti-Saintagne, Jean-Marc Frigério, Ivan Scotti, Alain Franc, and Rémy J Pe-
tit. « Chloroplast DNA variation in a hyperdiverse tropical tree community ». In: Ecol-
ogy and Evolution 9.8 (2019), pp. 4897–4905.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

https://tel.archives-ouvertes.fr/tel-01534930
https://tel.archives-ouvertes.fr/tel-01534930

Bibliography 161

[26] Tony F Chan. « An improved algorithm for computing the singular value decomposi-
tion ». In: ACM Transactions on Mathematical Software 8.1 (1982), pp. 72–83.

[27] Tony F Chan and Wing Lok Wan. « Analysis of projection methods for solving linear
systems with multiple right-hand sides ». In: SIAM Journal on Scientific Computing 18.6
(1997), pp. 1698–1721.

[28] Jong Youl Choi, Seung-Hee Bae, Xiaohong Qiu, and Geoffrey Fox. « High performance
dimension reduction and visualization for large high-dimensional data analysis ». In:
2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing.
IEEE. 2010, pp. 331–340.

[29] T.F. Cox and M. A. A. Cox. Multidimensional Scaling - Second edition. Vol. 88. Mono-
graphs on Statistics and Applied Probability. Chapman & al., 2001.

[30] Jane Cullum and William E Donath. « A block Lanczos algorithm for computing the q
algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real
symmetric matrices ». In: 1974 IEEE Conference on Decision and Control including the
13th Symposium on Adaptive Processes. IEEE. 1974, pp. 505–509.

[31] Vin De Silva and Joshua B Tenenbaum. Sparse multidimensional scaling using landmark
points. Tech. rep. technical report, Stanford University, 2004.

[32] Vahid Dehdari and Clayton V Deutsch. « Applications of randomized methods for de-
composing and simulating from large covariance matrices ». In: Geostatistics Oslo 2012.
Springer, 2012, pp. 15–26.

[33] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. « Communication-
optimal parallel and sequential QR and LU factorizations: theory and practice ». In:
arXiv preprint arXiv:0806.2159 (2008).

[34] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. « Communication-
optimal parallel and sequential QR and LU factorizations ». In: SIAM Journal on Scien-
tific Computing 34.1 (2012), A206–A239.

[35] Alexandre Denis. « pioman: a pthread-based Multithreaded Communication Engine ».
In: Euromicro International Conference on Parallel, Distributed and Network-based Process-
ing. Turku, Finland, Mar. 2015. url: https://hal.inria.fr/hal-01087775.

[36] Alexandre Denis, Emmanuel Jeannot, Philippe Swartvagher, and Samuel Thibault. « Us-
ing Dynamic Broadcasts to Improve Task-Based Runtime Performances ». In: Euro-Par
2020: Parallel Processing. Ed. by Maciej Malawski and Krzysztof Rzadca. Cham: Springer
International Publishing, 2020, pp. 443–457. isbn: 978-3-030-57675-2.

[37] Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. « Euclidean distance
matrices: essential theory, algorithms, and applications ». In: IEEE Signal Processing
Magazine 32.6 (2015), pp. 12–30.

[38] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire
Tomov, and Ichitaro Yamazaki. « The singular value decomposition: Anatomy of opti-
mizing an algorithm for extreme scale ». In: SIAM review 60.4 (2018), pp. 808–865.

[39] Petros Drineas, Michael W Mahoney, and Nello Cristianini. « On the Nyström Method
for Approximating a Gram Matrix for Improved Kernel-Based Learning. » In: journal of
machine learning research 6.12 (2005).

[40] M.-P. Dubuisson and A.K. Jain. « A modified Hausdorff distance for object matching ».
In: Proceedings of 12th International Conference on Pattern Recognition. - 1994. url: https:
//doi.org/10.1109/icpr.1994.576361.

[41] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Martinell, Xavier
Martorell, and Judit Planas. « Ompss: a proposal for programming heterogeneous multi-
core architectures ». In: Parallel processing letters (2011).

Romain Peressoni Large Scale MDS for the Study of Biodiversity

https://hal.inria.fr/hal-01087775
https://doi.org/10.1109/icpr.1994.576361
https://doi.org/10.1109/icpr.1994.576361

162 BIBLIOGRAPHY

[42] Carl Eckart and Gale Young. « The Approximation of One Matrix By Another of Lower
Rank ». In: Psychometrika 1.3 (1936), pp. 211–218. url: https://doi.org/10.1007/
bf02288367.

[43] Jocelyne Erhel and Frédéric Guyomarc’h. « An augmented conjugate gradient method
for solving consecutive symmetric positive definite linear systems ». In: SIAM Journal
on Matrix Analysis and Applications 21.4 (2000), pp. 1279–1299.

[44] Christos Faloutsos and King-Ip Lin. « FastMap: A fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets ». In: Proceedings of the
1995 ACM SIGMOD international conference on Management of data. 1995, pp. 163–174.

[45] Philippe Flajolet and G Nigel Martin. « Probabilistic counting ». In: 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983). IEEE. 1983, pp. 76–82.

[46] Robin Floyd, Eyualem Abebe, Artemis Papert, and Mark Blaxter. « Molecular barcodes
for soil nematode identification ». In: Molecular ecology 11.4 (2002), pp. 839–850.

[47] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard – version
4.0. June 2021.

[48] Alain Franc, Jean-Marc Frigerio, Emilie Chancerel, Franck Salin, Sylvie Thérond, Frédéric
Rimet, and Agnès Bouchez. Reads and pairwise distances from 10 samples of diatoms in
Geneva lake. Version V1. 2023. url: https://doi.org/10.57745/NKTRHO.

[49] Jean-Marc Frigerio, Henri Caron, Daniel Sabatier, Jean-François Molino, and Alain Franc.
Guiana Trees. Version V2. 2021. url: https://doi.org/10.15454/XSJ079.

[50] Mark Gates, Jakub Kurzak, Ali Charara, Asim YarKhan, and Jack Dongarra. « SLATE:
Design of a Modern Distributed and Accelerated Linear Algebra Library ». In: Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’19. Denver, Colorado: Association for Computing Machinery, 2019.
isbn: 9781450362290.

[51] Robert van de Geijn and Jerrell Watts. « SUMMA: scalable universal matrix multipli-
cation algorithm ». In: CONCURRENCY: PRACTICE AND EXPERIENCE 9.4 (1997),
pp. 255–274. url: http://www.netlib.org/lapack/lawnspdf/lawn96.pdf.

[52] Gene Golub and William Kahan. « Calculating the singular values and pseudo-inverse
of a matrix ». In: Journal of the Society for Industrial and Applied Mathematics, Series B:
Numerical Analysis 2.2 (1965), pp. 205–224.

[53] Gene H Golub and Christian Reinsch. « Singular value decomposition and least squares
solutions ». In: Linear algebra. Springer, 1971, pp. 134–151.

[54] Gene H Golub, R Underwood, and James H Wilkinson. « The Lanczos algorithm for the
symmetric Ax= λBx problem ». In: Techn. Rep. STAN-CS-72–270, Stanford University
(1972).

[55] Gene H Golub and Richard Underwood. « The block Lanczos method for computing
eigenvalues ». In: Mathematical software. Elsevier, 1977, pp. 361–377.

[56] Gene H Golub and Charles F Van Loan. Matrix computations. Vol. 3. JHU press, 2013.

[57] Gene Howard Golub. « Least squares, singular values and matrix approximations ». In:
Aplikace matematiky 13.1 (1968), pp. 44–51.

[58] John C Gower. « Generalized procrustes analysis ». In: Psychometrika 40 (1975), pp. 33–
51.

[59] John Clifford Gower. « Adding a point to vector diagrams in multivariate analysis ». In:
Biometrika 55.3 (1968), pp. 582–585.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

https://doi.org/10.1007/bf02288367
https://doi.org/10.1007/bf02288367
https://doi.org/10.57745/NKTRHO
https://doi.org/10.15454/XSJ079
http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

Bibliography 163

[60] Edouard Grave, Armand Joulin, and Quentin Berthet. « Unsupervised alignment of em-
beddings with wasserstein procrustes ». In: The 22nd International Conference on Artifi-
cial Intelligence and Statistics. PMLR. 2019, pp. 1880–1890.

[61] Laura Grigori, Sophie Moufawad, and Frédéric Nataf. « Enlarged Krylov subspace con-
jugate gradient methods for reducing communication ». In: SIAM Journal on Matrix
Analysis and Applications 37.2 (2016), pp. 744–773.

[62] Mikhael Gromov, Misha Katz, Pierre Pansu, and Stephen Semmes. Metric structures for
Riemannian and non-Riemannian spaces. Vol. 152. Springer, 1999.

[63] Bilel Hadri, Hatem Ltaief, Emmanuel Agullo, and Jack Dongarra. « Tile QR factoriza-
tion with parallel panel processing for multicore architectures ». In: 2010 IEEE Interna-
tional Symposium on Parallel & Distributed Processing. IEEE. 2010, pp. 1–10.

[64] N. Halko, P. G. Martinsson, and J. A. Tropp. « Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Matrix Decompositions ». In:
SIAM Review 53.2 (2011), pp. 217–288. eprint: https://doi.org/10.1137/090771806.
url: https://doi.org/10.1137/090771806.

[65] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing. Springer Series in Statistics. Springer New York, 2009, pp. 539–541. url: https:
//doi.org/10.1007/978-0-387-84858-7.

[66] Paul DN Hebert, Sujeevan Ratnasingham, and Jeremy R De Waard. « Barcoding ani-
mal life: cytochrome c oxidase subunit 1 divergences among closely related species ».
In: Proceedings of the Royal Society of London. Series B: Biological Sciences 270.suppl_1
(2003), S96–S99.

[67] Thomas Herault, Yves Robert, George Bosilca, and Jack Dongarra. « Generic Matrix
Multiplication for Multi-GPU Accelerated Distributed-Memory Platforms over PaR-
SEC ». In: ScalA 2019 - IEEE/ACM 10th Workshop on Latest Advances in Scalable Algo-
rithms for Large-Scale Systems. Denver, United States: IEEE, Nov. 2019, pp. 33–41.

[68] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press,
2012.

[69] Harold Hotelling. « Analysis of a complex of statistical variables with principal compo-
nents ». In: J. Educ. Psy. 24 (1933), pp. 498–520.

[70] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. « Comparing Images Using
the Hausdorff Distance ». In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 15.9 (1993), pp. 850–863. url: https://doi.org/10.1109/34.232073.

[71] A. J. Izenman. Modern Multivariate Statistical Techniques. NY: Springer, 2008, p. 731.

[72] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to
statistical learning. Vol. 112. Springer, 2013.

[73] Hao Ji and Yaohang Li. « GPU accelerated randomized singular value decomposition
and its application in image compression ». In: Proc. of MSVESCC (2014), pp. 39–45.

[74] Ian Jolliffe. « Principal component analysis ». In: Encyclopedia of statistics in behavioral
science (2005).

[75] Camille Jordan. « Mémoire sur les formes bilinéaires. » In: Journal de mathématiques
pures et appliquées 19 (1874), pp. 35–54.

[76] Suamporn Ketpreechasawat and Odest Chadwicke Jenkins. « Hierarchical landmark
charting ». In: Master’s Thesis, Brown University (2006).

[77] Jaeyeon Kim, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Yeung. « Minimal adversar-
ial examples for deep learning on 3d point clouds ». In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 7797–7806.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1109/34.232073

164 BIBLIOGRAPHY

[78] Mirza Klimenta. « Extending the usability of multidimensional scaling for graph draw-
ing ». PhD thesis. Citeseer, 2012.

[79] Donald E Knuth. « The art of computer programming, vol. 3: Searching and sorting ».
In: Reading MA: Addison-Wisley (1973), pp. 543–583.

[80] Mario Köppen. « The curse of dimensionality ». In: 5th online world conference on soft
computing in industrial applications (WSC5). Vol. 1. 2000, pp. 4–8.

[81] Joseph B Kruskal. « Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis ». In: Psychometrika 29.1 (1964), pp. 1–27.

[82] Grzegorz Kwasniewski, Marko Kabić, Maciej Besta, Joost VandeVondele, Raffaele Solcà,
and Torsten Hoefler. « Red-Blue Pebbling Revisited: Near Optimal Parallel Matrix-Matrix
Multiplication ». In: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. SC ’19. Denver, Colorado, 2019. isbn: 9781450362290.

[83] Charles L Lawson and Richard J Hanson. « Solving least squares problems ». In: Prentice-
Hall Series in Automatic Computation (1974).

[84] John A Lee and Michel Verleysen. Nonlinear dimensionality reduction. Vol. 1. Springer,
2007.

[85] Seunghak Lee and Seungjin Choi. « Landmark MDS ensemble ». In: Pattern recognition
42.9 (2009), pp. 2045–2053.

[86] Jan de Leeuw. « Applications of Convex Analysis to Multidimensional Scaling ». In:
2000.

[87] U-Wai Lok, Pengfei Song, Joshua D Trzasko, Eric A Borisch, Ron Daigle, and Shigao
Chen. « Parallel implementation of randomized singular value decomposition and ran-
domized spatial downsampling for real time ultrafast microvessel imaging on a multi-
core cpus architecture ». In: 2018 IEEE International Ultrasonics Symposium (IUS). IEEE.
2018, pp. 1–4.

[88] Yue Lu, Chew Lim Tan, Weihua Huang, and Liying Fan. « An approach to word image
matching based on weighted Hausdorff distance ». In: Proceedings of Sixth International
Conference on Document Analysis and Recognition. 2001, pp. 921–925. url: https://doi.
org/10.1109/icdar.2001.953920.

[89] Yuechao Lu, Ichitaro Yamazaki, Fumihiko Ino, Yasuyuki Matsushita, Stanimire Tomov,
and Jack Dongarra. « Reducing the amount of out-of-core data access for GPU-accelerated
randomized SVD ». In: Concurrency and Computation: Practice and Experience 32.19 (2020),
e5754.

[90] K. V. Mardia, J.T. Kent, and J. M. Bibby. Multivariate Analysis. Probability and Mathe-
matical Statistics. Academic Press, 1979.

[91] Martinsson, Per Gunnar, Vladimir Rokhlin, and Mark Tygert. « A randomized algo-
rithm for the decomposition of matrices ». In: Applied and Computational Harmonic
Analysis 30.1 (2011), pp. 47–68.

[92] Per-Gunnar Martinsson. Randomized methods for matrix computations. 2016. url: https:
//arxiv.org/abs/1607.01649.

[93] Per-Gunnar Martinsson and Joel A Tropp. « Randomized numerical linear algebra: Foun-
dations and algorithms ». In: Acta Numerica 29 (2020), pp. 403–572.

[94] Facundo Mémoli and Guillermo Sapiro. « Comparing point clouds ». In: Proceedings of
the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing - SGP ’04. -
2004, nil. url: https://doi.org/10.1145/1057432.1057436.

[95] J Ian Munro and Mike S Paterson. « Selection and sorting with limited storage ». In:
Theoretical computer science 12.3 (1980), pp. 315–323.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

https://doi.org/10.1109/icdar.2001.953920
https://doi.org/10.1109/icdar.2001.953920
https://arxiv.org/abs/1607.01649
https://arxiv.org/abs/1607.01649
https://doi.org/10.1145/1057432.1057436

Bibliography 165

[96] Shanmugavelayutham Muthukrishnan et al. « Data streams: Algorithms and applica-
tions ». In: Foundations and Trends® in Theoretical Computer Science 1.2 (2005), pp. 117–
236.

[97] Andy A Nikishin and A Yu Yeremin. « Variable block CG algorithms for solving large
sparse symmetric positive definite linear systems on parallel computers, I: General
iterative scheme ». In: SIAM journal on matrix analysis and applications 16.4 (1995),
pp. 1135–1153.

[98] Dianne P O’Leary. « The block conjugate gradient algorithm and related methods ». In:
Linear algebra and its applications 29 (1980), pp. 293–322.

[99] Emmanuel Paradis. « Multidimensional scaling with very large datasets ». In: Journal of
Computational and Graphical Statistics 27.4 (2018), pp. 935–939.

[100] Emmanuel Paradis. « Reduced multidimensional scaling ». In: Computational Statistics
37.1 (2022), pp. 91–105.

[101] Beresford N Parlett. « A new look at the Lanczos algorithm for solving symmetric sys-
tems of linear equations ». In: Linear algebra and its applications 29 (1980), pp. 323–346.

[102] Beresford N Parlett. The symmetric eigenvalue problem. SIAM, 1998.

[103] J. Paumard and E. Aubourg. « Adjusting astronomical images using a censored Haus-
dorff distance ». In: Proceedings of International Conference on Image Processing. 1997,
232–235 vol.3. url: https://doi.org/10.1109/icip.1997.632069.

[104] Piotr Pawliczek and Witold Dzwinel. « Parallel implementation of multidimensional
scaling algorithm based on particle dynamics ». In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) 6067 LNCS.PART 1 (2010), pp. 312–321.

[105] Karl Pearson. « LIII. On lines and planes of closest fit to systems of points in space ».
In: The London, Edinburgh, and Dublin philosophical magazine and journal of science 2.11
(1901), pp. 559–572.

[106] John Platt. « Fastmap, metricmap, and landmark mds are all nyström algorithms ». In:
International Workshop on Artificial Intelligence and Statistics. PMLR. 2005, pp. 261–268.

[107] François Pompanon, Eric Coissac, and Pierre Taberlet. « Metabarcoding, une nouvelle
façon d’analyser la biodiversité. » In: Biofutur 319 (2011), pp. 30–32.

[108] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and Nichols A.
Romero. « Elemental: A New Framework for Distributed Memory Dense Matrix Com-
putations ». In: ACM Trans. Math. Softw. 39.2 (Feb. 2013). issn: 0098-3500.

[109] Marion Webster Richardson. « Multidimensional psychophysics ». In: Psychological Bul-
letin 35 (1938), pp. 659–660.

[110] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. « A Randomized Algorithm for Prin-
cipal Component Analysis ». In: SIAM Journal on Matrix Analysis and Applications 31.3
(Jan. 2010), pp. 1100–1124. issn: 0895-4798.

[111] Axel Ruhe. « Implementation aspects of band Lanczos algorithms for computation of
eigenvalues of large sparse symmetric matrices ». In: Mathematics of Computation 33.146
(1979), pp. 680–687.

[112] Youcef Saad. « On the Lanczos method for solving symmetric linear systems with sev-
eral right-hand sides ». In: Mathematics of computation 48.178 (1987), pp. 651–662.

[113] Yousef Saad. « Analysis of augmented Krylov subspace methods ». In: SIAM Journal on
Matrix Analysis and Applications 18.2 (1997), pp. 435–449.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

https://doi.org/10.1109/icip.1997.632069

166 BIBLIOGRAPHY

[114] Yousef Saad, Manshung Yeung, Jocelyne Erhel, and Frédéric Guyomarc’h. « A deflated
version of the conjugate gradient algorithm ». In: SIAM Journal on Scientific Computing
21.5 (2000), pp. 1909–1926.

[115] Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson. « Parallel matrix multi-
plication: a systematic journey ». In: SIAM Journal on Scientific Computing 38.6 (2016),
pp. 748–781.

[116] Erhard Schmidt. « Zur Theorie der linearen und nichtlinearen Integralgleichungen. III.
Teil ». In: Mathematische Annalen 65.3 (1908), pp. 370–399.

[117] Peter H Schönemann. « A generalized solution of the orthogonal procrustes problem ».
In: Psychometrika 31.1 (1966), pp. 1–10.

[118] Vin Silva and Joshua Tenenbaum. « Global versus local methods in nonlinear dimen-
sionality reduction ». In: Advances in neural information processing systems 15 (2002).

[119] Charles F Smith, Andrew F Peterson, and Raj Mittra. « A conjugate gradient algorithm
for the treatment of multiple incident electromagnetic fields ». In: IEEE Transactions on
Antennas and Propagation 37.11 (1989), pp. 1490–1493.

[120] Temple F Smith and Michael S Waterman. « Identification of common molecular sub-
sequences ». In: Journal of molecular biology 147.1 (1981), pp. 195–197.

[121] Edgar Solomonik and James Demmel. « Communication-optimal Parallel 2.5D Matrix
Multiplication and LU Factorization Algorithms ». In: Proceedings of the 17th Interna-
tional Conference on Parallel Processing - Volume Part II. Euro-Par’11. Bordeaux, France:
Springer-Verlag, 2011, pp. 90–109. isbn: 978-3-642-23396-8.

[122] Gilbert W Stewart. « On the early history of the singular value decomposition ». In:
SIAM review 35.4 (1993), pp. 551–566.

[123] Louis L Thurstone. « Psychophysical analysis ». In: The American journal of psychology
38.3 (1927), pp. 368–389.

[124] Louis Leon Thurstone. « Theory of attitude measurement. » In: Psychological review 36.3
(1929), p. 222.

[125] Warren S. Torgerson. « Multidimensional scaling: I. Theory and method ». In: Psychome-
trika 17.4 (Dec. 1952), pp. 401–419. issn: 1860-0980. url: http://dx.doi.org/10.1007/
bf02288916.

[126] Francois Trahay, Alexandre Denis, Olivier Aumage, and Raymond Namyst. « Improving
reactivity and communication overlap in MPI using a generic I/O manager ». In: Euro-
pean Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting. Springer.
2007, pp. 170–177.

[127] Alice Valentini, François Pompanon, and Pierre Taberlet. « DNA barcoding for ecolo-
gists ». In: Trends in ecology & evolution 24.2 (2009), pp. 110–117.

[128] Alice Valentini, Pierre Taberlet, Claude Miaud, Raphaël Civade, Jelger Herder, Philip
Francis Thomsen, Eva Bellemain, Aurélien Besnard, Eric Coissac, Frédéric Boyer, et al.
« Next-generation monitoring of aquatic biodiversity using environmental DNA metabar-
coding ». In: Molecular ecology 25.4 (2016), pp. 929–942.

[129] Jason Tsong-Li Wang, Xiong Wang, King-Ip Lin, Dennis Shasha, Bruce A Shapiro, and
Kaizhong Zhang. « Evaluating a class of distance-mapping algorithms for data mining
and clustering ». In: Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining. 1999, pp. 307–311.

[130] Tynia Yang, Jinze Liu, Leonard McMillan, and Wei Wang. « A fast approximation to
multidimensional scaling ». In: IEEE workshop on computation intensive methods for com-
puter vision. 2006.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

http://dx.doi.org/10.1007/bf02288916
http://dx.doi.org/10.1007/bf02288916

Bibliography 167

[131] Asim YarKhan. « Dynamic task execution on shared and distributed memory architec-
tures ». PhD thesis. University of Tennesee, 2012.

[132] Gale Young and A. S. Householder. « Discussion of a Set of Points in Terms of Their
Mutual Distances ». In: Psychometrika 3.1 (1938), pp. 19–22. url: https://doi.org/10.
1007/bf02287916.

[133] Chong Ho Yu. « Resampling methods: concepts, applications, and justification ». In:
Practical Assessment, Research, and Evaluation 8.1 (2002), p. 19.

[134] Harald Ziegelwanger, Piotr Majdak, and Wolfgang Kreuzer. « Numerical calculation
of listener-specific head-related transfer functions and sound localization: Microphone
model and mesh discretization ». In: The Journal of the Acoustical Society of America 138.1
(2015), pp. 208–222.

[135] Antanas Žilinskas and Julius Žilinskas. « Parallel genetic algorithm: Assessment of per-
formance in multidimensional scaling ». In: Proceedings of GECCO 2007: Genetic and
Evolutionary Computation Conference January 2007 (2007), pp. 1492–1501.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

https://doi.org/10.1007/bf02287916
https://doi.org/10.1007/bf02287916

168 BIBLIOGRAPHY

Large Scale MDS for the Study of Biodiversity Romain Peressoni

Appendices

169

170 Introduction

Large Scale MDS for the Study of Biodiversity Romain Peressoni

AppendixA
Extra results from chapter 2

100 150 200 250 300 350 400
Rank k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Er
ro
r

||G - Q̂ΩkQ̂T
Ωk
GQ̂ΩkQ̂T

Ωk
|| / ||G||

||G - Q̂ΩkQ̂T
Ωk
G|| / ||G||

||G - Q̂k ̂ΛkQ̂T
k|| / ||G||

||G - ÛkRSVD ̂ΣkRSVDÛT
kRSVD|| / ||G||

||G - ÛkREVD ̂ΛkREVDÛT
kREVD|| / ||G||

||G - ÛkRSVD ̂ΣkRSVD ̂VT
kRSVD|| / ||G||

Figure A.1 – Relative error made with regards to the original Atlas Guyane matrix for each
method at rank k. In black the Truncated sEVD, the best rank-k approximation, in red the
RsEVD and in blue the RSVD. The crosses represent low-rank approximation and the pluses
the decompositions. In yellow w present the RSVD with assumed symmetry (i.e. assuming
V =U).

171

172 APPENDIX A. EXTRA RESULTS FROM CHAPTER 2

100 150 200 250 300 350 400
Rank k

0.0

0.2

0.4

0.6

0.8

Er
ro
r

||G - Q̂ΩkQ̂T
Ωk
GQ̂ΩkQ̂T

Ωk
|| / ||G||

||G - Q̂ΩkQ̂T
Ωk
G|| / ||G||

||G - Q̂k ̂ΛkQ̂T
k|| / ||G||

||G - ÛkRSVD ̂ΣkRSVDÛT
kRSVD|| / ||G||

||G - ÛkREVD ̂ΛkREVDÛT
kREVD|| / ||G||

||G - ÛkRSVD ̂ΣkRSVD ̂VT
kRSVD|| / ||G||

Figure A.2 – Relative error made with regards to the 1,000 × 1,000 synthetic matrix of rank
250 for each method at rank k. In black the Truncated sEVD, the best rank-k approximation,
in red the RsEVD and in blue the RSVD. The crosses represent low-rank approximation and
the pluses the decompositions. In yellow w present the RSVD with assumed symmetry (i.e.
assuming V =U).

Large Scale MDS for the Study of Biodiversity Romain Peressoni

AppendixB
Extra results from chapter 3

B.1 Distance results between Li/Lj pairs

Direct extraction
from full S5

Alignment with Xref =
S5 120,000 1,000 250 180

L2 2.49e-03 3.16e-03 5.69e-03 8.53e-03 1.44e-01 2.05e-02
L3 2.64e-03 3.32e-03 5.37e-03 7.61e-03 1.37e-01 1.73e-02
L4 2.95e-03 3.63e-03 4.34e-03 5.96e-03 5.88e-02 2.99e-01
L5 3.33e-03 4.02e-03 4.80e-03 6.19e-03 4.55e-02 2.57e-02
L6 5.85e-03 6.68e-03 8.94e-03 1.91e-02 7.16e-02 8.39e-02
L7 6.76e-03 7.63e-03 9.07e-03 1.89e-02 6.86e-02 3.54e-01
L8 6.47e-03 7.83e-03 1.26e-02 2.05e-02 1.16e-01 1.46e-01
L9 8.71e-03 1.10e-02 1.54e-02 2.50e-02 7.31e-02 8.00e-02

L10 8.12e-03 9.52e-03 1.48e-02 2.09e-02 2.04e-01 2.96e-02

Table B.1 – MHDr(L1,Lj)j∈~2;10�.

Direct extraction
from full S5

Alignment with Xref =
S5 120,000 1,000 250 180

L2 2.15e-01 2.64e-01 2.56e-01 2.66e-01 4.28e-01 3.48e-01
L3 1.27e-01 1.37e-01 1.81e-01 1.80e-01 4.20e-01 3.71e-01
L4 3.20e-01 2.97e-01 3.46e-01 3.71e-01 4.84e-01 4.40e-01
L5 5.21e-01 5.65e-01 5.48e-01 4.94e-01 6.17e-01 5.60e-01
L6 5.46e-01 4.73e-01 3.56e-01 4.89e-01 5.76e-01 5.84e-01
L7 4.15e-01 3.67e-01 4.24e-01 5.35e-01 6.39e-01 4.79e-01
L8 3.78e-01 3.98e-01 3.86e-01 5.37e-01 6.43e-01 5.97e-01
L9 4.74e-01 3.84e-01 3.82e-01 4.33e-01 4.86e-01 3.04e-01

L10 2.55e-01 2.62e-01 3.11e-01 3.26e-01 5.34e-01 2.60e-01

Table B.2 – Hr(L1,Lj)j∈~2;10�.

B.2 Histogram of position for various datasets

173

174 APPENDIX B. EXTRA RESULTS FROM CHAPTER 3

Direct extraction
from full S5

Alignment with Xref =
S5 120,000 1,000 250 180

L2 1.49e-01 1.62e-01 2.97e-01 4.04e-01 4.21e+00 7.21e-01
L3 1.17e-01 1.22e-01 2.23e-01 4.19e-01 3.94e+00 6.97e-01
L4 1.98e-01 2.11e-01 2.04e-01 3.17e-01 1.82e+00 8.29e+00
L5 2.62e-01 2.85e-01 2.98e-01 3.65e-01 1.73e+00 6.68e-01
L6 3.35e-01 3.50e-01 4.01e-01 7.39e-01 2.32e+00 2.98e+00
L7 3.56e-01 3.65e-01 4.03e-01 7.09e-01 2.08e+00 1.70e+01
L8 3.20e-01 3.46e-01 5.20e-01 7.42e-01 3.71e+00 6.40e+00
L9 3.58e-01 3.97e-01 4.86e-01 8.05e-01 2.15e+00 2.45e+00

L10 3.81e-01 4.16e-01 5.66e-01 8.38e-01 7.68e+00 1.03e+00

Table B.3 – H2(L1,Lj)j∈~2;10�.

Direct extraction
from full S5

Alignment with Xref =
S5 120,000 1,000 250 180

L2 4.17e-02 5.29e-02 9.24e-02 1.55e-01 3.21e+00 2.86e-01
L3 4.43e-02 5.57e-02 8.77e-02 1.38e-01 2.82e+00 2.34e-01
L4 5.46e-02 6.72e-02 7.82e-02 1.14e-01 1.11e+00 7.58e+00
L5 6.33e-02 7.63e-02 9.02e-02 1.22e-01 7.14e-01 4.08e-01
L6 1.20e-01 1.37e-01 1.76e-01 4.00e-01 1.52e+00 1.64e+00
L7 1.35e-01 1.52e-01 1.78e-01 3.80e-01 1.38e+00 1.54e+01
L8 1.44e-01 1.74e-01 2.79e-01 4.56e-01 2.57e+00 4.38e+00
L9 1.64e-01 2.07e-01 2.66e-01 4.84e-01 1.33e+00 1.42e+00

L10 1.59e-01 1.87e-01 2.92e-01 4.19e-01 4.61e+00 5.99e-01

Table B.4 – MHD(L1,Lj)j∈~2;10�.

Direct extraction
from full S5

Alignment with Xref =
S5 120,000 1,000 250 180

L2 9.49e+00 1.09e+01 1.04e+01 1.10e+01 2.02e+01 1.61e+01
L3 5.36e+00 5.71e+00 7.05e+00 7.17e+00 1.64e+01 1.72e+01
L4 1.61e+01 1.50e+01 1.57e+01 1.97e+01 2.21e+01 2.48e+01
L5 2.61e+01 2.94e+01 3.07e+01 2.75e+01 3.42e+01 3.57e+01
L6 2.75e+01 2.34e+01 1.83e+01 2.39e+01 2.83e+01 2.70e+01
L7 2.19e+01 1.87e+01 2.25e+01 2.88e+01 3.56e+01 3.92e+01
L8 1.88e+01 1.95e+01 1.96e+01 2.79e+01 3.49e+01 3.43e+01
L9 2.60e+01 2.09e+01 1.61e+01 2.34e+01 2.51e+01 1.58e+01

L10 1.34e+01 1.38e+01 1.59e+01 1.68e+01 3.05e+01 1.51e+01

Table B.5 – H(L1,Lj)j∈~2;10�.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

B.2. Histogram of position for various datasets 175

−20 0 20
Position for dimension 1

0

0.02

0.04

0.06

de
ns

ity

−20 0 20
Position for dimension 2

0

0.03

0.06

0.09

de
ns

ity

−20 −10 0 10 20
Position for dimension 3

0

0.03

0.06

0.09

de
ns

ity

−30 −20 −10 0 10 20
Position for dimension 4

0

0.05

0.10

0.15

de
ns

ity

−30 −20 −10 0 10 20
Position for dimension 5

0

0.025

0.050

0.075

0.100

de
ns

ity

−20 0 20
Position for dimension 6

0

0.05

0.10

0.15

de
ns

ity

−25 0 25
Position for dimension 7

0

0.05

0.10

0.15

de
ns

ity

−40 −20 0 20
Position for dimension 8

0

0.05

0.10

0.15

de
ns

ity

−30 −20 −10 0 10 20
Position for dimension 9

0

0.05

0.10

0.15

de
ns

ity

−20 −10 0 10 20
Position for dimension 10

0

0.05

0.10

0.15

0.20

de
ns

ity

−20 −10 0 10
Position for dimension 11

0

0.05

0.10

0.15
de

ns
ity

−20 −10 0 10 20 30
Position for dimension 12

0

0.1

0.2

de
ns

ity
−20 −10 0 10 20

Position for dimension 13

0

0.05

0.10

0.15

0.20

de
ns

ity

−20 −10 0 10 20
Position for dimension 14

0

0.1

0.2

de
ns

ity

−10 0 10
Position for dimension 15

0

0.05

0.10

0.15

0.20

de
ns

ity

−20 0 20 40
Position for dimension 16

0

0.05

0.10

0.15

0.20

de
ns

ity

−20 −10 0 10 20
Position for dimension 17

0

0.05

0.10

0.15

0.20

0.25

de
ns

ity

−20 −10 0 10 20
Position for dimension 18

0

0.1

0.2

0.3

de
ns

ity

−30 −20 −10 0 10
Position for dimension 19

0

0.1

0.2

de
ns

ity

−10 0 10 20
Position for dimension 20

0

0.1

0.2

0.3

de
ns

ity

−10 0 10 20
Position for dimension 21

0

0.1

0.2

de
ns

ity

−20 −10 0 10
Position for dimension 22

0

0.1

0.2

0.3

de
ns

ity

−10 0 10 20
Position for dimension 23

0

0.1

0.2

0.3

de
ns

ity

−10 0 10 20
Position for dimension 24

0

0.1

0.2

0.3

de
ns

ity

−20 −10 0 10
Position for dimension 25

0

0.1

0.2

0.3

de
ns

ity

−15 −10 −5 0 5 10
Position for dimension 26

0

0.1

0.2

de
ns

ity

−20 −10 0 10 20
Position for dimension 27

0

0.1

0.2

0.3

0.4

de
ns

ity

−30 −20 −10 0 10 20
Position for dimension 28

0

0.1

0.2

0.3

de
ns

ity

Figure B.1 – Histogram of the distribution of the coordinates per dimension in L1L2 for di-
mensions varying from 1 to 28.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

176 APPENDIX B. EXTRA RESULTS FROM CHAPTER 3

−20 0 20 40
Position for dimension 1

0

0.025

0.050

0.075

0.100

de
ns

ity

−40 −20 0 20 40 60
Position for dimension 2

0

0.01

0.02

0.03

0.04

0.05

de
ns

ity

0 100 200 300
Position for dimension 3

0

0.02

0.04

0.06

de
ns

ity

−200 −100 0
Position for dimension 4

0

0.025

0.050

0.075

0.100

de
ns

ity

−50 0 50
Position for dimension 5

0

0.02

0.04

0.06

0.08

de
ns

ity

0 50 100
Position for dimension 6

0

0.02

0.04

0.06

0.08

de
ns

ity

−50 0 50 100
Position for dimension 7

0

0.025

0.050

0.075

de
ns

ity

−50 0 50 100
Position for dimension 8

0

0.025

0.050

0.075

de
ns

ity

−60 −40 −20 0 20
Position for dimension 9

0

0.02

0.04

0.06

0.08

de
ns

ity

−40 −20 0 20
Position for dimension 10

0

0.05

0.10

de
ns

ity

−30 0 30
Position for dimension 11

0

0.025

0.050

0.075

de
ns

ity

−100 −50 0 50
Position for dimension 12

0

0.04

0.08

0.12

de
ns

ity
−60 −30 0 30 60

Position for dimension 13

0

0.05

0.10

0.15

de
ns

ity

−25 0 25 50
Position for dimension 14

0

0.05

0.10

0.15

de
ns

ity

−40 −20 0 20
Position for dimension 15

0

0.025

0.050

0.075

de
ns

ity

−40 −20 0 20
Position for dimension 16

0

0.05

0.10

de
ns

ity

−50 −25 0 25
Position for dimension 17

0

0.1

0.2

0.3

de
ns

ity

−50 −25 0 25 50
Position for dimension 18

0

0.025

0.050

0.075

0.100

0.125

de
ns

ity

−100 −50 0 50
Position for dimension 19

0

0.05

0.10

0.15

de
ns

ity

−25 0 25
Position for dimension 20

0

0.05

0.10

de
ns

ity

−20 0 20
Position for dimension 21

0

0.05

0.10

de
ns

ity

−20 −10 0 10 20
Position for dimension 22

0

0.05

0.10

de
ns

ity

−40 −20 0 20
Position for dimension 23

0

0.05

0.10

de
ns

ity

−25 0 25 50
Position for dimension 24

0

0.05

0.10

de
ns

ity

0 50 100
Position for dimension 25

0

0.05

0.10

0.15

0.20

0.25

de
ns

ity

−25 0 25 50
Position for dimension 26

0

0.05

0.10

0.15

de
ns

ity

−40 −20 0 20
Position for dimension 27

0

0.1

0.2

0.3

de
ns

ity

−40 −20 0 20
Position for dimension 28

0

0.05

0.10

0.15

de
ns

ity

Figure B.2 – Histogram of the distribution of the coordinates per dimension in Lref for dimen-
sions varying from 1 to 28.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

B.2. Histogram of position for various datasets 177

−40 −20 0 20
Position for dimension 1

0

0.02

0.04

0.06

de
ns

ity

−20 0 20
Position for dimension 2

0

0.05

0.10

0.15

de
ns

ity

−20 −10 0 10 20 30
Position for dimension 3

0

0.025

0.050

0.075

0.100

de
ns

ity

−20 0 20
Position for dimension 4

0

0.05

0.10

de
ns

ity

−20 0 20
Position for dimension 5

0

0.05

0.10

0.15

de
ns

ity

−40 −20 0 20
Position for dimension 6

0

0.05

0.10

de
ns

ity

−20 0 20 40
Position for dimension 7

0

0.05

0.10

0.15

0.20
de

ns
ity

−20 −10 0 10 20
Position for dimension 8

0

0.05

0.10

0.15

0.20

de
ns

ity
−30 −20 −10 0 10 20

Position for dimension 9

0

0.05

0.10

0.15

0.20

de
ns

ity

−20 −10 0 10 20
Position for dimension 10

0

0.05

0.10

0.15

de
ns

ity

−15 −10 −5 0 5 10
Position for dimension 11

0

0.1

0.2

0.3

de
ns

ity

−10 0 10 20
Position for dimension 12

0

0.05

0.10

0.15

0.20

de
ns

ity

−20 −10 0 10 20 30
Position for dimension 13

0

0.05

0.10

0.15

0.20

0.25

de
ns

ity

−20 −10 0 10 20
Position for dimension 14

0

0.05

0.10

0.15

0.20

de
ns

ity

−10 0 10
Position for dimension 15

0

0.1

0.2

de
ns

ity

−20 0 20 40
Position for dimension 16

0

0.05

0.10

0.15

0.20

de
ns

ity

−20 −10 0 10 20
Position for dimension 17

0

0.1

0.2

de
ns

ity

−10 0 10
Position for dimension 18

0

0.1

0.2

0.3

de
ns

ity

−10 0 10 20
Position for dimension 19

0

0.1

0.2

0.3

de
ns

ity

−20 −10 0 10 20
Position for dimension 20

0

0.1

0.2

de
ns

ity

Figure B.3 – Histogram of the distribution of the coordinates per dimension in L2 for dimen-
sions varying from 1 to 20.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

178 APPENDIX B. EXTRA RESULTS FROM CHAPTER 3

−50 0 50 100
Position for dimension 1

0

0.01

0.02

0.03

0.04

de
ns

ity

−50 0 50
Position for dimension 2

0

0.01

0.02

0.03

0.04

de
ns

ity

−50 0 50
Position for dimension 3

0

0.01

0.02

0.03

de
ns

ity

−50 0 50 100
Position for dimension 4

0

0.01

0.02

0.03

0.04

de
ns

ity

−50 0 50
Position for dimension 5

0

0.01

0.02

0.03

0.04

de
ns

ity

−40 0 40
Position for dimension 6

0

0.01

0.02

0.03

de
ns

ity

−30 0 30 60
Position for dimension 7

0

0.01

0.02

0.03

0.04

de
ns

ity

−50 −25 0 25
Position for dimension 8

0

0.01

0.02

0.03

de
ns

ity

−50 0 50
Position for dimension 9

0

0.01

0.02

0.03

0.04

0.05

de
ns

ity

−60 −30 0 30 60
Position for dimension 10

0

0.02

0.04

de
ns

ity

−40 0 40
Position for dimension 11

0

0.02

0.04

0.06

de
ns

ity

−60 −30 0 30 60
Position for dimension 12

0

0.01

0.02

0.03

0.04

0.05

de
ns

ity

−25 0 25 50 75
Position for dimension 13

0

0.02

0.04

0.06

de
ns

ity

−80 −40 0 40
Position for dimension 14

0

0.02

0.04

0.06

0.08

de
ns

ity

−60 −40 −20 0 20 40
Position for dimension 15

0

0.01

0.02

0.03

0.04

de
ns

ity

−60 −30 0 30
Position for dimension 16

0

0.02

0.04

0.06

de
ns

ity

−20 0 20 40
Position for dimension 17

0

0.02

0.04

0.06

de
ns

ity

−60 −30 0 30
Position for dimension 18

0

0.02

0.04

0.06

de
ns

ity

−60 −30 0 30
Position for dimension 19

0

0.02

0.04

0.06

de
ns

ity

−25 0 25 50 75
Position for dimension 20

0

0.025

0.050

0.075

de
ns

ity

Figure B.4 – Histogram of the distribution of the coordinates per dimension in Atlas Guyane
for dimensions varying from 1 to 20.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

B.2. Histogram of position for various datasets 179

−0.3 0 0.3 0.6
Position for dimension 1

0

1

2

3

4

5

de
ns

ity

−0.6 −0.4 −0.2 0 0.2 0.4
Position for dimension 2

0

2.5

5

7.5

de
ns

ity

−0.2 0 0.2 0.4
Position for dimension 3

0

2.5

5

7.5

10

de
ns

ity

−0.4 −0.2 0 0.2 0.4 0.6
Position for dimension 4

0

2.5

5

7.5

10

12.5

de
ns

ity

−0.2 −0.1 0 0.1 0.2
Position for dimension 5

0

2

4

6

8

de
ns

ity

−0.1 0 0.1 0.2 0.3
Position for dimension 6

0

2.5

5

7.5

de
ns

ity

0 0.2 0.4
Position for dimension 7

0

2.5

5

7.5

de
ns

ity

−0.25 0 0.25 0.50
Position for dimension 8

0

5

10

15

de
ns

ity

−0.4 −0.2 0 0.2 0.4
Position for dimension 9

0

5

10

15

de
ns

ity

−0.2 −0.1 0 0.1
Position for dimension 10

0

5

10

de
ns

ity

−0.2 −0.1 0 0.1 0.2
Position for dimension 11

0

5

10

de
ns

ity

−0.3 −0.2 −0.1 0 0.1
Position for dimension 12

0

2.5

5

7.5

de
ns

ity

−0.4 −0.2 0 0.2
Position for dimension 13

0

5

10

de
ns

ity

−0.2 −0.1 0 0.1 0.2
Position for dimension 14

0

2

4

6

8

de
ns

ity

−0.2 −0.1 0 0.1 0.2
Position for dimension 15

0

2.5

5

7.5

de
ns

ity

−0.3 −0.2 −0.1 0 0.1
Position for dimension 16

0

5

10

15

de
ns

ity

−0.10 −0.05 0 0.05 0.10
Position for dimension 17

0

5

10

15

de
ns

ity

−0.3 −0.2 −0.1 0 0.1 0.2
Position for dimension 18

0

3

6

9

12

de
ns

ity

−0.3 −0.2 −0.1 0 0.1
Position for dimension 19

0

5

10

15

de
ns

ity

−0.1 0 0.1 0.2 0.3
Position for dimension 20

0

2.5

5

7.5

10

12.5

de
ns

ity

Figure B.5 – Histogram of the distribution of the coordinates per dimension in LR for dimen-
sions varying from 1 to 20.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

180 APPENDIX B. EXTRA RESULTS FROM CHAPTER 3

Large Scale MDS for the Study of Biodiversity Romain Peressoni

AppendixC
Extra results from chapter 4

C.1 Results using absolute distance

3

10

30

100

Ab
so

lu
te

 d
ist

an
ce

 d

d(Xi,Xj)

SV
D

RS
VD

Distance d
H2

H
MHD

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0 50 10
0

15
0

3

10

30

100

SV
D

RS
VD

0 50 10
0

15
0

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure C.1 – Evaluation of the H,MHD and H2 distances of 8 submatrices between each other
(left) and between the submatrices and the original Atlas Guyane sample (right). Median value
is displayed in solid line.

181

182 APPENDIX C. EXTRA RESULTS FROM CHAPTER 4

0.1

1

10

100
Ab

so
lu

te
 d

ist
an

ce
 d

d(Xi,Xj)

SV
D

RS
VD

Distance d
H2

H
MHD

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00

0.1

1

10

100

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure C.2 – Evaluation of the H,MHD and H2 distances of 8 submatrices between each other
(left) and between the submatrices and the original 10V-RbcL sample (right). Median value is
displayed in solid line.

0.01

0.1

1

Ab
so

lu
te

 d
ist

an
ce

 d

d(Xi,Xj)

SV
D

RS
VD

Distance d
H2

H
MHD

d(Xi,X)

dim
ension: k

com
p =2

SV
D

RS
VD

0
10

00
20

00
30

00

0.01

0.1

1

SV
D

RS
VD

0
10

00
20

00
30

00

Size mi of the sub-matrices

dim
ension: k

com
p =10

SV
D

RS
VD

Figure C.3 – Evaluation of the H,MHD and H2 distances of 8 submatrices between each other
(left) and between the submatrices and the original Long Reads A sample (right). Median value
is displayed in solid line.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

C.1. Results using absolute distance 183

1.0e+00
5.0e-01

1.0e-01

Ab
so

lu
te

 d
ist

an
ce

 d

d(Xi,Xj)

SV
D

RS
VD

Distance d
H2

H
MHD

d(Xi,X)

dim
ension: k

com
p =2SV

D
RS

VD

0
50

00
10

00
0

15
00

0

1.0e+00
5.0e-01

1.0e-01

SV
D

RS
VD

0
50

00
10

00
0

15
00

0

Size mi of the sub-matrices

dim
ension: k

com
p =10SV

D
RS

VD

Figure C.4 – Evaluation of the H,MHD and H2 distances of 8 submatrices between each other
(left) and between the submatrices and the original Lref sample (right). Median value is dis-
played in solid line.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

184 APPENDIX C. EXTRA RESULTS FROM CHAPTER 4

Large Scale MDS for the Study of Biodiversity Romain Peressoni

AppendixD
Extra results from chapter 5

D.1 Extra Li/Lj distances

Sample Procrustes Flip Fold Procrustes Fold
L1 9.287e-03 5.653e-02 1.627e-02 4.529e-03
L3 9.116e-03 6.924e-02 8.950e-03 4.399e-03
L4 1.333e-02 1.818e-01 1.697e-01 5.547e-03
L5 1.814e-02 2.076e-01 1.476e-01 8.404e-03
L6 2.722e-02 8.492e-02 5.508e-02 9.207e-03
L7 2.951e-02 8.136e-02 4.841e-02 9.796e-03
L8 2.016e-02 4.766e-02 1.512e-02 9.483e-03
L9 2.929e-02 1.158e-01 3.129e-02 1.346e-02

L10 2.662e-02 6.563e-02 3.023e-02 1.216e-02

Table D.1 – H2,r(L2,Lj)j,2 for the different methods of aligning.

Sample Procrustes Flip Fold Procrustes Fold
L1 6.931e-03 2.571e-02 1.914e-02 4.502e-03
L2 9.116e-03 6.924e-02 8.950e-03 4.399e-03
L4 8.239e-03 1.513e-01 1.424e-01 4.579e-03
L5 1.233e-02 1.261e-01 1.248e-01 7.380e-03
L6 1.401e-02 6.255e-02 4.901e-02 7.007e-03
L7 1.411e-02 5.219e-02 4.352e-02 7.261e-03
L8 1.089e-02 8.937e-02 1.745e-02 6.743e-03
L9 1.520e-02 6.471e-02 2.433e-02 8.594e-03

L10 1.441e-02 3.585e-02 3.077e-02 8.440e-03

Table D.2 – H2,r(L3,Lj)j,3 for the different methods of aligning.

185

186 APPENDIX D. EXTRA RESULTS FROM CHAPTER 5

Sample Procrustes Flip Fold Procrustes Fold
L1 1.102e-02 9.280e-02 7.840e-02 6.226e-03
L2 1.333e-02 1.818e-01 1.697e-01 5.547e-03
L3 8.239e-03 1.513e-01 1.424e-01 4.579e-03
L5 6.580e-03 1.509e-02 7.278e-03 4.900e-03
L6 8.475e-03 1.292e-01 6.501e-02 4.345e-03
L7 9.513e-03 1.140e-01 1.044e-01 4.643e-03
L8 1.021e-02 1.509e-01 1.382e-01 5.279e-03
L9 1.737e-02 2.074e-01 1.274e-01 7.323e-03

L10 1.443e-02 4.898e-02 2.475e-02 6.057e-03

Table D.3 – H2,r(L4,Lj)j,4 for the different methods of aligning.

Sample Procrustes Flip Fold Procrustes Fold
L1 1.453e-02 5.788e-02 5.333e-02 8.677e-03
L2 1.814e-02 2.076e-01 1.476e-01 8.404e-03
L3 1.233e-02 1.261e-01 1.248e-01 7.380e-03
L4 6.580e-03 1.509e-02 7.278e-03 4.900e-03
L6 8.782e-03 1.157e-01 7.687e-02 5.271e-03
L7 1.049e-02 8.895e-02 8.754e-02 5.395e-03
L8 1.043e-02 1.945e-01 1.236e-01 5.950e-03
L9 1.725e-02 1.920e-01 1.232e-01 8.764e-03

L10 1.441e-02 3.539e-02 2.451e-02 7.559e-03

Table D.4 – H2,r(L5,Lj)j,5 for the different methods of aligning.

Sample Procrustes Flip Fold Procrustes Fold
L1 1.614e-02 6.265e-02 5.210e-02 9.408e-03
L2 2.722e-02 8.492e-02 5.508e-02 9.207e-03
L3 1.401e-02 6.255e-02 4.901e-02 7.007e-03
L4 8.475e-03 1.292e-01 6.501e-02 4.345e-03
L5 8.782e-03 1.157e-01 7.687e-02 5.271e-03
L7 5.210e-03 1.076e-02 8.294e-03 3.465e-03
L8 5.817e-03 7.354e-02 1.629e-02 3.252e-03
L9 8.996e-03 5.270e-02 3.293e-02 4.787e-03

L10 7.244e-03 2.962e-02 1.821e-02 4.333e-03

Table D.5 – H2,r(L6,Lj)j,6 for the different methods of aligning.

Sample Procrustes Flip Fold Procrustes Fold
L1 1.720e-02 5.556e-02 4.610e-02 1.007e-02
L2 2.951e-02 8.136e-02 4.841e-02 9.796e-03
L3 1.411e-02 5.219e-02 4.352e-02 7.261e-03
L4 9.513e-03 1.140e-01 1.044e-01 4.643e-03
L5 1.049e-02 8.895e-02 8.754e-02 5.395e-03
L6 5.210e-03 1.076e-02 8.294e-03 3.465e-03
L8 5.516e-03 1.250e-01 2.262e-02 2.935e-03
L9 8.548e-03 6.196e-02 1.869e-02 4.838e-03

L10 5.925e-03 2.970e-02 1.783e-02 3.634e-03

Table D.6 – H2,r(L7,Lj)j,7 for the different methods of aligning.

Large Scale MDS for the Study of Biodiversity Romain Peressoni

D.1. Extra Li/Lj distances 187

Sample Procrustes Flip Fold Procrustes Fold
L1 1.467e-02 1.091e-01 2.964e-02 1.026e-02
L2 2.016e-02 4.766e-02 1.512e-02 9.483e-03
L3 1.089e-02 8.937e-02 1.745e-02 6.743e-03
L4 1.021e-02 1.509e-01 1.382e-01 5.279e-03
L5 1.043e-02 1.945e-01 1.236e-01 5.950e-03
L6 5.817e-03 7.354e-02 1.629e-02 3.252e-03
L7 5.516e-03 1.250e-01 2.262e-02 2.935e-03
L9 5.096e-03 9.636e-02 2.253e-02 3.395e-03

L10 5.115e-03 1.016e-01 2.960e-02 3.181e-03

Table D.7 – H2,r(L8,Lj)j,8 for the different methods of aligning.

Sample Procrustes Flip Fold Procrustes Fold
L1 1.918e-02 6.930e-02 5.454e-02 1.240e-02
L2 2.929e-02 1.158e-01 3.129e-02 1.346e-02
L3 1.520e-02 6.471e-02 2.433e-02 8.594e-03
L4 1.737e-02 2.074e-01 1.274e-01 7.323e-03
L5 1.725e-02 1.920e-01 1.232e-01 8.764e-03
L6 8.996e-03 5.270e-02 3.293e-02 4.787e-03
L7 8.548e-03 6.196e-02 1.869e-02 4.838e-03
L8 5.096e-03 9.636e-02 2.253e-02 3.395e-03

L10 6.841e-03 6.175e-02 2.465e-02 4.300e-03

Table D.8 – H2,r(L9,Lj)j,9 for the different methods of aligning.

Sample Procrustes Flip Fold Procrustes Fold
L1 1.957e-02 3.412e-02 2.435e-02 1.248e-02
L2 2.662e-02 6.563e-02 3.023e-02 1.216e-02
L3 1.441e-02 3.585e-02 3.077e-02 8.440e-03
L4 1.443e-02 4.898e-02 2.475e-02 6.057e-03
L5 1.441e-02 3.539e-02 2.451e-02 7.559e-03
L6 7.244e-03 2.962e-02 1.821e-02 4.333e-03
L7 5.925e-03 2.970e-02 1.783e-02 3.634e-03
L8 5.115e-03 1.016e-01 2.960e-02 3.181e-03
L9 6.841e-03 6.175e-02 2.465e-02 4.300e-03

Table D.9 – H2,r(L10,Lj)j,10 for the different methods of aligning.

Romain Peressoni Large Scale MDS for the Study of Biodiversity

	Acknowledgements
	Résumé en français
	Introduction
	Background
	Multidimensional Scaling (MDS)
	Metabarcoding
	Symmetric Eigenvalue Decomposition and Singular Value Decomposition
	Approximated SVD through randomized linear embedding
	Task-based programming
	Task-based randomized linear embedding MDS via RSVD
	Related work on distributed-memory MDS
	About the datasets used in this thesis

	I Robust high-performance MDS
	Task-based randomized linear embedding MDS
	Introduction
	Randomized sEVD (RsEVD)
	Numerical behaviour of RSVD-MDS and RsEVD-MDS
	Motivation for improving the distributed-memory matrix multiplication
	Related work on distributed-memory matrix multiplication
	Task-based scalable SYMM
	Performance of task-based scalable SYMM
	Performance of MDS with randomized linear embedding
	Conclusion

	II MDS on a reduced sample of the input distance matrix
	Comparison of point clouds resulting from MDS
	Introduction
	Distance between point clouds
	Do PCA and MDS implicitly align two related point clouds?
	State of the art on point cloud alignment
	MDS point cloud alignment
	Generalized MDS alignment
	Block Diagonal Landmark Procrustes MDS (BDLPMDS)
	Application
	Discussion about dimensionality
	Conclusion

	Iterative uniform sampling MDS
	Introduction
	Question Q1: iterative uniform sampling with a reference sample
	Question Q2: iterative uniform sampling without a reference sample
	A class of iterative algorithms
	Numerical evaluation of the iterative MDS algorithms
	Discussion on performance
	Conclusion

	Comparison of approximately coincident datasets
	Introduction
	Flip method
	Folding method
	Discussion on Performance
	Application
	Conclusion

	Conclusion
	Bibliography
	Appendices
	Extra results from chapter 2
	Extra results from chapter 3
	Distance results between Li/Lj pairs
	Histogram of position for various datasets

	Extra results from chapter 4
	Results using absolute distance

	Extra results from chapter 5
	Extra Li/Lj distances

