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A B S T R A C T

Nowadays, wireless networks (WNs) are ubiquitous and have to in-
crease the density of their deployment to meet our important connec-
tivity needs. Paradoxically, this deteriorates their quality of service
because they have to deal with a larger amount of interference. To
manage this unprecedented complexity, wireless standards, such as
Wi-Fi or 5G, are becoming more flexible by introducing new degrees
of freedom. Unfortunately, the correct exploitation of these parame-
ters is not trivial because it requires to quickly identify an efficient
configuration in a high-dimensional space. Moreover, the wide vari-
ety of use cases of WNs makes it difficult to model their behaviors,
and consequently to find an optimal configuration analytically.

In this thesis, we propose bandit and Bayesian optimization meth-
ods able to discover, through trial and error, an efficient configuration
of WNs regardless of their deployments. These sequential learning
methods, called "online", seek to optimize the performance of a WN
by considering it as a black box. In this thesis, we illustrate the capabil-
ities of the proposed methods on the challenging problem of spatial
reuse optimization in Wi-Fi networks, and on the power control in 5G
networks. Finally, we propose a new asymptotically optimal Bayesian
optimization algorithm, able to optimize a high-dimensional black
box function in a decentralized fashion. This last contribution could
allow the implementation of more efficient protocols in WNs but also
in other technological contexts.

R É S U M É E N F R A N Ç A I S

De nos jours, les réseaux sans fil (RSF) sont omniprésents et sont
amenés, pour répondre à nos besoins importants de connectivité, à
augmenter la densité de leurs déploiement et à supporter un grand
nombre d’interférences. Pour gérer cette complexité inédite, les stan-
dards (Wi-Fi, 5G. . . ) deviennent plus adaptables, en s’octroyant de
nouveaux degrés de liberté. Malheureusement, l’exploitation correcte
de ces paramètres n’est pas triviale car elle demande d’identifier rapi-
dement une configuration efficace dans un espace de grande dimen-
sion. De plus, la grande diversité d’utilisation des RSF rend difficile
leur modélisation, et par conséquent la découverte analytique d’une
configuration optimale.

Dans cette thèse, nous proposons des méthodes issues des pro-
blèmes de bandits et de l’optimisation bayésienne, capables de décou-
vrir, par essai-erreur, une configuration efficace des RSF quel que soit
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le scénario dans lequel ils se trouvent. Ces méthodes d’apprentissage
séquentiel, dites “en ligne”, cherchent à optimiser les performance
d’un RSF en le considérant comme une boîte noire. Au cours de
la thèse, nous illustrons les capacités des méthodes proposées sur
le problème difficile de la réutilisation spatiale dans les réseaux Wi-
Fi, puis sur le contrôle de puissance dans les réseaux 5G. Pour finir,
nous nous détachons des RSF pour proposer un nouvel algorithme
d’optimisation bayésienne, que nous démontrons asymptotiquement
optimal, capable de maximiser de façon décentralisée une boîte noire
de grande dimension. Cette dernière contribution pourrait permettre
l’implémentation de protocoles plus performants dans les RSF mais
aussi dans d’autres contextes technologiques.
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1
I N T R O D U C T I O N

1.1 motivations

1.1.1 Wireless Networks are Ubiquitous but Misunderstood

Having a reliable Internet connection has become an almost constant
need for a large part of the population in modern societies. Whether
it is to work, entertain, get information, socialize or monitor, a grow-
ing number of Internet-based services are created and adopted every
day. To meet the different needs of an increasing demand, engineers
and researchers have developed a wide variety of access networks.
Among them, wireless networks are undoubtedly the most preferred
networks, because they are the most convenient. Based on radio trans-
missions rather than wires, they provide connectivity everywhere
within their coverage areas and require lighter infrastructure than
wired networks. According to Cisco’s forecasts [1], wireless networks [1] Cisco (2019), “Cisco

visual networking index:
Forecast and trends,
2017–2022 white paper”

accounted for 79 % of the Internet traffic in 2022, when wired net-
works represented the remaining 21 %.

Each wireless technology rigorously obeys to a standard. A stan-
dard thoroughly provides all the technical details regarding how the
technology is (or should be) implemented, and how devices imple-
menting this technology should interact within the network. This
is particularly important to ensure inter-operability but also, some-
times, a given Quality of Service (QoS). This may pertain to achieving
some predefined throughput, over a particular area, given some re-
quirements. Therefore, standards are essential, as they make the tech-
nological context independent from the manufacturer of the devices.
Many of these standards are branded under commercial names and
are well-known from the general public. Figure 1.1 depicts some of
such standards.

Each wireless standard aims at addressing specific use cases and in-
volves parameters that can be tuned to adapt the wireless network to
a particular scenario, with the ultimate goal of increasing the network
performance. Although an intuitive understanding of the relationship
between a parameter and a performance metric can be easily inferred,
accurately capturing it in an analytical model remains a notoriously
hard problem for many wireless technologies. This can be explained
by the numerous exogenous factors that impact the quality of a radio
transmission, such as the spatial distribution of devices, the work-
load of the network or the amount of concurrent radio transmissions
in the same electromagnetic frequency band. This implies that a given

1



2 introduction

Figure 1.1: Some wireless networks standards arranged by their throughput
and the diameter of their coverage areas.

wireless network configuration that achieves good results in a specific
deployment can lead to poor performance if used in another, yet sim-
ilar deployment. As for now, this prevents most wireless networks to
be optimally configured, and generally forces them to rely on simple
algorithms and / or on human network administrators to find a good
configuration of their parameters.

Unfortunately, finding such good configurations is made more dif-
ficult by the growing demand of dense sets of devices requiring a
wireless connection,1 which calls for denser deployments of wireless1Especially in dense urban

areas. technologies. To better adapt to these difficult scenarios, a number
of wireless standards have introduced new degrees of freedom for
networks to exploit. This in turn exacerbates the complexity of opti-
mizing the wireless networks (e.g. maximizing their throughput or
minimizing their energy consumption) by introducing additional di-
mensions to the configuration space.

Overall, to cope with this complexity, wireless standards require
scalable algorithms able to derive an optimal network configuration
while being agnostic regarding the actual wireless network deploy-
ment. The research of such algorithms remains a major hot topic in
the computer networks community nowadays [2].[2] Chen et al. (2021),

“Distributed learning in
wireless networks: Recent

progress and future
challenges”

1.1.2 An In-Depth Example: the Spatial Reuse of a Wireless Local Area
Network

A Wireless Local Area Network (WLAN) typically covers an area from
a dozen to a hundred meters in diameter. As medium-sized networks
easy to deploy, WLANs have become ubiquitous: they are found in
homes, offices and public spaces. Although WLANs carry most of the
Internet traffic (57 % in 2022 according to Cisco [1]), they suffer from



1.1 motivations 3

a whole set of problems exacerbated by dense deployments. In this
section, we detail one of them: the scarcity of the frequency band. A
significant fraction of this thesis aims at addressing this problem.

1.1.2.1 Architecture of WLANs

The vast majority of WLANs follow the guidelines of the Institute of
Electrical and Electronics Engineers (IEEE) standard 802.11, commer-
cially known as Wi-Fi, that describes the association and the commu-
nication processes between two types of devices:

• the Station (STA), that is the end-user wireless device requiring
access to the Internet and,

• the Access Point (AP), that is the device that serves as a gateway
to the Internet.

An 802.11 network comprises multiple APs that relay back-and-
forth frames to a set of associated STAs. In addition to their wireless
interface, APs also embed a wired interface to provide access to the
Internet. Note that a STA is associated with a single AP, however an
AP generally serves multiple associated STAs. Figure 1.2 illustrates a
possible spatial distribution of 802.11 devices along with the existing
associations between APs and STAs. The spatial arrangement of the
APs and STAs is commonly referred to as the WLAN topology. In the
remaining of this section, we put a strong focus on how 802.11 share
the frequency band among the wireless devices. For a more complete,
technical overview of the technology, we refer the interested reader
to [3]. [3] Gast (2005), 802.11

wireless networks: the
definitive guide

Figure 1.2: An 802.11 network topology. APs are depicted with red triangles,
STAs with blue circles and associations between APs and STAs
with dashed lines.

1.1.2.2 Sharing the Frequency Band

Like many wireless technologies, 802.11 devices use an omnidirec-
tional2 antenna to transmit data using radio transmissions in an al- 2Emitting with equal

power in all directions.



4 introduction

located frequency band.3 When two devices are close enough - both3Either the
2.45± 0.05 GHz or the
5.8± 0.075 GHz band.

in the frequency and in the spatial domains - their radio transmis-
sions interfere and the overall transmission quality is deteriorated.
This makes the allocated frequency band a scarce resource that needs
to be shared efficiently and with respect to the needs of the transmit-
ting devices. Conversely, when two wireless devices are sufficiently
far (geographically) from each other, they can reuse the same fre-
quency band without interfering.4 This is called the spatial reuse of the4Because of the natural

attenuation of the
electromagnetic signals.

frequency band, and it drastically increases the performance of the
WLAN. Note that, nowadays, spatial reuse optimization in WLANs
remains a notoriously hard problem.

To limit interference, 802.11 splits the frequency band into partially-
overlapping chunks called radio channels.5 When two 802.11 devices5A channel can be 20, 40,

80 or 160 MHz wide. belong to orthogonal channels, they can transmit simultaneously with-
out experiencing interference. Therefore, allocating different radio
channels to neighboring wireless devices (as illustrated by Figure 1.3)
drastically increases the individual throughput of the 802.11 network.
One can refer to [4] for a recent survey of the many efficient channel[4] Iacoboaiea et al. (2021),

“Real-time channel
management in WLANs:

Deep reinforcement
learning versus heuristics”

allocation techniques that exist.

Figure 1.3: A channel allocation in an 802.11 network topology. APs are de-
picted with triangles, and the four radio channels are shown with
four different colors.

Although interference can be significantly reduced with an effi-
cient channel allocation, it can still represent a problem for radio
channels with a high spatial density of APs. To further reduce in-
terference within a given radio channel, 802.11 introduces another
mechanism: the Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) protocol. Each device, before transmitting, uses a
Clear Channel Assessment (CCA) to make sure that the radio fre-
quency medium is not already busy. To do so, it measures the level of
energy in its radio channel for a short period of time and compares it
to a threshold,6 called the sensitivity threshold or the Overlapping Ba-6Specified in

decibel-milliwatts (dBm). sic Service Set/Preamble-Detection (OBSS/PD) threshold, and denoted
OBSS_PD in this thesis. When the measured level of energy is greater
than OBSS_PD, the 802.11 device defers its transmission during a ran-
dom period of time called a backoff, to avoid creating interference for
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the ongoing transmission. As long as the channel is not sensed idle,
the transmission is postponed during a random backoff. When the
channel is eventually sensed idle (either immediately or when the last
backoff has come to zero), the device is allowed to transmit its data.
Historically, OBSS_PD and the transmission power of each device,7 de- 7Also specified in dBm.

noted TX_PWR in this thesis, were considered static in the standard. Up
until recently, they were set at -82 dBm and 20 dBm respectively [5]. [5] Gast (2012), 802.11n:

the survival guideIn this thesis, we call two devices in conflict with each other if they
cannot transmit data at the same time because of the CSMA/CA proto-
col. Note that, among all the conflicts existing in WLANs,8 those occur- 8AP-AP, AP-STA and

STA-STA.ring between APs (the AP-AP conflicts) are the most troublesome as the
traffic is mostly downstream9 [6]. Therefore, the number of conflicts 9From the AP to the

associated STAs.
[6] Adeyemi et al. (2018),

“Exploration of daily
Internet data traffic
generated in a smart
university campus”

between APs within the radio channels must be minimized in order to
optimize the performance of 802.11 networks. Nowadays, 802.11 net-
works with a large spatial density of APs are deployed within public
spaces (e.g. train stations, malls), companies or residential buildings.
As a consequence, the number of conflicts between APs grows despite
an efficient channel allocation. At the end of the day, the performance
of the dense networks is reduced and the end-user experience is sig-
nificantly degraded.

1.1.2.3 Recently Introduced Spatial Reuse Mechanisms

Due to new use-cases of WLANs, IEEE recently released the 802.11ax
amendment (commercially branded by the Wi-Fi Alliance as Wi-Fi 6)
that modifies the 802.11 standard. It aims at improving many aspects
of 802.11 networks, such as reducing their energy consumption or al-
lowing them to guarantee deterministic transmission delays. 802.11ax
also aims at improving the spatial reuse of the radio channels, open-
ing the path to major gains in performance. To do so, it enables each
AP to dynamically adjust two of their key parameters [7]: OBSS_PD and [7] IEEE (2021), “IEEE

Standard for Information
Technology–
Telecommunications and
Information Exchange
between Systems Local
and Metropolitan Area
Networks–Specific
Requirements Part 11:
Wireless LAN Medium
Access Control (MAC)
and Physical Layer (PHY)
Specifications Amendment
1: Enhancements for
High-Efficiency WLAN”

TX_PWR. While prior amendments to 802.11 held TX_PWR and OBSS_PD

constant, 802.11ax authorizes their values to dynamically vary from 1

to 21 dBm for the former and from -82 to -62 dBm for the latter. The
two parameters must also comply with the constraint

x1 ≤ max(−82,min(−62,−82+ (20− x2))), (1.1)

with x1 and x2 denoting OBSS_PD and TX_PWR respectively.
The constraint (1.1) ensures that a device cannot have a high sen-

sitivity threshold (e.g. -62 dBm) while simultaneously having a high
transmission power (e.g. 20 dBm). We provide below the application
of the constraint (1.1) for three values of TX_PWR:

• if TX_PWR = 20 dBm, OBSS_PD ≤ −82 dBm,

• if TX_PWR = 10 dBm, OBSS_PD ≤ −72 dBm,

• if TX_PWR = 1 dBm, OBSS_PD ≤ −63 dBm.
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(a) The default configuration of TX_PWR
puts the two APs within each other’s
detection range, they cannot trans-
mit simultaneously.

(b) The value of TX_PWR can be tuned
and adapt to this deployment. Un-
der this new configuration, the APs
can transmit simultaneously.

Figure 1.4: Adequately configuring the TX_PWR parameter can significantly
improve the spatial reuse of radio channels in WLANs by remov-
ing conflicts between APs belonging to the same radio channel.

Figure 1.4 depicts a simple example of two APs operating on the
same radio channel and illustrates how two different configurations
of the TX_PWR parameter can lead to different performance. Note that
in this simple example, concurrent transmissions of the two APs could
also be attained by increasing OBSS_PD at each AP (and keeping TX_PWR

at their default value). Although the two options produce similar ef-
fects here, in general, reducing TX_PWR and increasing OBSS_PD may
affect the WLANs’ performance differently (see Table 2 of [8] for more[8] Wilhelmi et al. (2019),

“Potential and pitfalls of
multi-armed bandits for

decentralized spatial reuse
in WLANs”

details).
Although 802.11ax has the potential to improve the spatial reuse

of radio channels, the standard does not provide any algorithm to
find an adequate configuration of TX_PWR and OBSS_PD for the APs in
a WLAN. As stated before, this is mainly due to the difficulty to cap-
ture the relationship between a configuration of TX_PWR and OBSS_PD

and the performance metrics of a WLAN in an analytical model, espe-
cially in large, dense WLANs. The lack of a scalable analytical model
prevents the emergence of a consensual way of finding the optimal
configuration. As such, it is up to the manufacturers and, more glob-
ally, to the research community to solve this problem.

A significant portion of this thesis tackles this specific issue.

1.1.3 The Framework of Black-Box Optimization

As described in Section 1.1.1 and illustrated with Section 1.1.2, op-
timizing the performance of wireless networks often involves find-
ing a configuration of parameters without precise prior understand-
ing of the influence of the parameters on the performance metrics.
This makes it difficult, if not impossible, to derive a closed form for
the optimal configuration of the wireless network parameters. There-
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fore, this thesis does not seek to provide a unified framework able
to provide an analytical solution to an arbitrary optimization task on
wireless networks.10 Instead, it proposes data-driven methods that ex- 10One can legitimately

doubt that such a tool will
ever exist.

ploit sequential feedback provided by the wireless network to discover
and simultaneously optimize the function f describing a given perfor-
mance metric with respect to the wireless network parameters. These
data-driven methods belong to a special subset of mathematical op-
timization called Black-Box Optimization (BBO). In this section, we
introduce the BBO framework and how promising it is regarding per-
formance optimization in wireless networks.

Many real-world applications involve the optimization of an un-
known d-dimensional objective function f : C ⊆ Rd → R that may be
noisy and costly to evaluate. Examples of such tasks include robotics [9], [9] Lizotte et al. (2007),

“Automatic Gait
Optimization with
Gaussian Process
Regression”

computational biology [10] and, of course, networking [11]. In such

[10] González et al. (2014),
“Bayesian Optimization for
Synthetic Gene Design”

[11] Hornby et al. (2006),
“Automated Antenna
Design with Evolutionary
Algorithms”

applications, f is only defined by its inputs and outputs and hence,
can be considered as a black box. Due to the lack of information, f
must be queried at specific inputs to be discovered, in an iterative
fashion. Thus, BBO is a form of online learning, as opposed to offline
learning where all the data used in the learning task has been col-
lected beforehand and is fully accessible.

Evaluation and comparison of BBO algorithms is often done in the
output space, through the notion of regret.

Definition 1.1 (Instantaneous Regret). The instantaneous regret at time t
of a BBO algorithm regarding the optimization of the function f is

rt = f(x∗)− f(xt) (1.2)

with x∗ = argmaxx∈C f(x) and xt the query of the BBO algorithm at
time t.

Instantaneous regrets can be aggregated to provide a cumulative
evaluation metric up to a time t.

Definition 1.2 (Cumulative Regret). The cumulative regret up to time T
of a BBO algorithm regarding the optimization of the function f is

RT =
T∑
t=1

f(x∗)− f(xt) (1.3)

with x∗ = argmaxx∈C f(x) and xt the query of the BBO algorithm at
time t.

A common goal for BBO algorithms is to minimize their cumulative
regrets, as defined by Definition 1.2. To do so, they all follow the
same generic online procedure, described in Algorithm 1.1. The main
loop is described from line 4 to line 10, but note that line 6 describes
the observation of the output of f at a given query xt perturbed
by some noise,11 while lines 7-9 simply describe data management 11From an arbitrary

distribution F with
parameters θ.
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steps. Actually, all the uniqueness of a BBO algorithm resides in how
it implements line 5, that is, how it queries f using the previously
collected data (Xt,yt).

Algorithm 1.1 Generic Online Optimization Loop

Input: objective function f .
1: t = 0

2: X0 = ∅
3: y0 = ∅
4: while true do
5: Determine xt using (Xt,yt) so that f(xt) brings information

about argmaxx∈C f(x)

6: Observe yt = f(xt) + ϵ, with ϵ ∼ F (θ)
7: Xt+1 = Xt ∪ {xt}
8: yt+1 = yt ∪ {yt}
9: t = t+ 1

10: end while

Since f is a black-box, the query xt must be determined at time t
by meeting two objectives:

• Exploration: querying f(xt) should help to better understand
the black-box function f ,

• Exploitation: to keep a low regret, f(xt) should be as large as
possible.

Each of these objectives often lead in different querying policy, both
of them being suboptimal: exploring too much leads to query uninter-
esting subsets of the function domain,12 exploiting too much carries a12It is known a priori that

x∗ is not in these subsets. high risk of missing the optimal configuration x∗. Here, a fundamen-
tal problem in online data-driven decision-making processes facing
uncertainty is unveiled: the exploration-exploitation dilemma [12]. There[12] Berger-Tal et al.

(2014), “The
exploration-exploitation

dilemma: a
multidisciplinary

framework”

is no single, consensual solution to achieve a trade-off between the
two objectives, and every BBO algorithm achieves it in a different way
through a different implementation of line 5 in Algorithm 1.1.

Figure 1.5 illustrates the benefits of compromising between explo-
ration and exploitation. Recall that a BBO algorithm tries to discover
and optimize the depicted function f by successive queries. In this
figure, we use a Gaussian Process (GP) as a surrogate model for f
(as thoroughly described in the next chapter, Section 2.2.4). The best
guess of the surrogate model is depicted as a solid line and the un-
certainty associated with its predictions as an orange area. The can-
didates for the next query according to exploration and exploitation
are shown with crosses. The candidate for exploitation is obtained by
maximizing the current prediction about f .13 Conversely, the candi-13i.e. maximizing the solid

orange line. date for exploration is obtained by maximizing the uncertainty about
the prediction.14,15 Because the objective of the BBO algorithm is to14i.e. finding the largest

shaded interval.
15Note that this is a way
of figuring out the "most

surprising" output of f , in
order to learn as much as

possible in a single
observation.
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Figure 1.5: An illustration of the exploration-exploitation dilemma. The
function f is shown with a gray dashed line, the observations
(Xt,yt) with black dots. Candidates for the next query xt can
be observed with colored markers: pure exploration (maroon),
pure exploitation (blue) and a trade-off called Upper Confidence
Bound (UCB) (green).

minimize its cumulative regret RT by finding the maximum of f
as quickly as possible, note that neither exploration nor exploitation
yield the optimal query. However, as depicted by the green diamond,
trading off some exploitation for some exploration allows to find a
query much closer to the maximal argument of f . This particular
trade-off is called UCB [13] and is discussed in details (along with [13] Auer (2002), “Using

confidence bounds for
exploitation-exploration
trade-offs”

others) in Section 2.2.
Successfully achieving an exploration-exploitation trade-off at each

iteration is key to obtain good empirical performance. In fact, some
BBO algorithms also provide theoretical guarantees, by ensuring that
the objective function will be optimized in a finite or an infinite
amount of time. The latter guarantee, also called asymptotic optimal-
ity, is defined as follows.

Definition 1.3 (Asymptotic Optimality). A BBO algorithm is said asymp-
totically optimal if

lim
T→+∞

RT

T
= 0 (1.4)

with RT the cumulative regret defined in Definition 1.2.

An asymptotically optimal BBO algorithm ensures no-regret perfor-
mance. That is, it guarantees that its cumulative regret will grow sub-
linearly over time. Consequently, in the long run, such a BBO algo-
rithm necessarily reaches the global optimum of any objective func-
tion f that satisfies its introduced assumptions. Clearly, such a guar-



10 introduction

antee is desirable in many optimization tasks, because it removes the
risk of being trapped at a local optimum.

1.2 thesis outline

In this thesis, we propose to apply the black-box optimization frame-
work to performance optimization in wireless networks, and espe-
cially to the spatial reuse problem in 802.11ax wireless networks (which
was detailed in Section 1.1.2). The organization of the thesis is as fol-
lows:

• Chapter 2 is two-fold. First, it makes an extensive review of all
the proposed approaches to solve the spatial reuse problem in
WLANs based on the 802.11ax amendment. Second, it discusses
the advantages and drawbacks of online BBO algorithms appli-
cable to this problem, namely global optimization, heuristics,
Multi-Armed Bandit (MAB) and Bayesian Optimization (BO).

• Chapter 3 describes two ad-hoc methods developed with the
MAB framework to address the spatial reuse problem in 802.11ax,
in a centralized fashion.

• Chapter 4 focuses on a decentralized BO algorithm that addresses
the spatial reuse problem in 802.11ax and significantly outper-
forms the state-of-the-art methods (including those developed
in Chapter 3). Note that the proposed algorithm is decentral-
ized, which is a desirable feature since most algorithms in the
802.11 ecosystem are also decentralized.

• Chapter 5 considers a different technological context: the cellu-
lar networks. After briefly describing the technological context
and the relevant mechanisms for our study, we assess the ben-
efits of a new multiple access approach envisioned for 6G, re-
ferred to as NOMA. Simultaneously, we demonstrate that the
algorithm proposed in Chapter 4 can be very useful in this new
technological context, as our study relies on it to tune the trans-
mission powers of cellular antennas.

• Chapter 6 is dedicated to an asymptotically optimal algorithm
that improves the state-of-the-art of decentralized BO for high-
dimensional, noisy black-box functions. Note that this algorithm
can address any BBO problem, including of course some prob-
lems arising in the optimization of wireless networks.

A graphical outline of this thesis is depicted in Figure 1.6. Each
chapter is projected in a 2-dimensional space according to the degree
of theoretical guarantees it provides and how much it relies on the
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Figure 1.6: Graphical outline of the thesis.

technological context. This figure depicts the evolution of the contri-
butions defended in this thesis and exhibit a clear, bottom-up, long-
term scientific direction: the development of a black box optimiza-
tion method providing strong theoretical guarantees and applicable
in multiple technological contexts.

Each chapter is written to be self-contained and can be read inde-
pendently from the others, although Chapter 4 is complementary to
Chapter 5, and Chapter 2 is relevant to all the others. At the end of
each chapter, we provide a summary of the proposed contributions,
along with their strengths and weaknesses and we cite our related
scientific publications when applicable. The chapters are arranged so
that the questions raised at the end of a chapter are often answered
in the next chapters.

1.3 contributions

This thesis comprises two main kinds of contributions:

• Algorithmic contributions:

– We propose two centralized ad-hoc algorithms to address
the spatial reuse problem in 802.11ax networks.

– We propose INSPIRE, a decentralized Bayesian optimiza-
tion algorithm to address the spatial reuse problem in 802.11ax
networks.

– We show the efficiency of INSPIRE in another technologi-
cal context by proposing a decentralized algorithm for the
power control in cellular networks.16 16Joint work with

Jean-Marie Gorce, INSA
Lyon.
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– We design DuMBO, a novel decentralized algorithm ded-
icated to the Bayesian optimization of high-dimensional
black-box function.1717Joint work with Patrick

Thiran, EPFL.
• Theoretical contributions:

– We propose a minimax optimal consensus in a decentral-
ized system, exploited by INSPIRE.

– We propose a better approximation of the exploration term
for Bayesian optimization algorithms in decentralized sys-
tems, exploited by DuMBO.

– We demonstrate the asymptotic optimality of DuMBO.

– We demonstrate the minimax optimality of an early-stopped
version of DuMBO.



2
R E L AT E D W O R K S

Outline. This chapter is two-fold. First, Section 2.1 makes an ex-
tensive review of the solutions proposed by the research community
to address the spatial reuse problem in a Wireless Local Area Net-
work (WLAN) through the control of the transmission power (TX_PWR)
and the sensitivity threshold (OBSS_PD) of devices. Then, Section 2.2
provides an in-depth description of the relevant black-box optimiza-
tion approaches for the spatial reuse problem in WLANs and the the-
oretical guarantees they provide.

2.1 power and sensitivity control in wlans

Recall that, in a WLAN, a wireless device (such as a phone or a com-
puter) is called a Station (STA) and is associated to an Access Point
(AP) that serves as a gateway to the Internet. As described in details
in Section 1.1.2, the spatial reuse problem in modern WLANs is ad-
dressed in two steps. First, the frequency band is split into orthog-
onal chunks called radio channels, and different radio channels are
allocated to neighboring devices so they can transmit data without
interfering with each other. This problem is typically addressed as
a graph-coloring problem [14], although more recent 802.11 amend- [14] Mishra et al. (2006),

“A Client-Driven
Approach for Channel
Management in Wireless
LANs”

ments provided new degrees of freedom and allowed the emergence
of new techniques such as channel bonding [15]. Nowadays, chan-

[15] Herzen et al. (2013),
“Distributed spectrum
assignment for home
WLANs”

nel allocation is performed using heuristics [16] or Machine Learn-

[16] Barrachina-Muñoz
et al. (2019), “Online
primary channel selection
for dynamic channel
bonding in high-density
WLANs”

ing (ML) techniques [17].

[17] López-Raventós et al.
(2020), “Concurrent
decentralized channel
allocation and access point
selection using
multi-armed bandits in
multi BSS WLANs”

However, even with an optimal channel allocation, too many con-
flicts may persist between APs in case of dense WLANs, which may
result into poor performance for the end-users. To fix this, the recent
802.11 amendment (802.11ax or Wi-Fi 6) allows the dynamical update
of TX_PWR and OBSS_PD. This new feature allows APs and STAs to fur-
ther adapt to their specific radio environment within their channels
but at the same time calls for algorithms able to derive promising
values for TX_PWR and OBSS_PD within a radio channel. For a detailed
explanation of how the Institute of Electrical and Electronics Engi-
neers (IEEE) 802.11ax standard implements the adaptation of TX_PWR
and OBSS_PD, we refer the reader to [18].

[18] Wilhelmi et al. (2021),
“Spatial reuse in IEEE
802.11 ax WLANs”

The problem of tuning of TX_PWR and OBSS_PD has been explored
many years before the introduction of 802.11ax. The solutions pro-
posed by the research community can be organized into two different
categories, depending on whether they are based on an analytical

13
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model or mostly data-driven. We review the two categories in this
section.

2.1.1 Analytical Approaches

Analytical approaches propose mathematical models of the WLAN.
Based on these models, they derive the optimal configuration of TX_PWR
and / or OBSS_PD.

Pioneering efforts were made in 2004 by [19], that presents an ana-[19] Zhu et al. (2004),
“Adapting physical carrier

sensing to maximize
spatial reuse in 802.11

mesh networks”

lytical model to derive the optimal value for OBSS_PD in 802.11-based
mesh networks. To do so, OBSS_PD is tuned dynamically on each node
as a function of the radio channel conditions. The TX_PWR parameter,
however, is not considered. The same year, [20] proposed to tune the[20] Kim et al. (2004),

“SP-TPC: a self-protective
energy efficient

communication strategy
for IEEE 802.11 WLANs”

other parameter, TX_PWR. The authors showed that tuning the trans-
mission power of the devices increases the throughput of the WLAN

and simultaneously reduces its energy consumption. More recently,
[21] cast the issue of AP positioning and their power allocation as a

[21] Qiu et al. (2020),
“Joint access point

placement and power-
channel-resource-unit
assignment for 802.11

ax-based dense WiFi with
QoS requirements”

single optimization problem. Their solution addresses the initial po-
sitioning of APs, the channel allocation and the configuration of the
TX_PWR parameter on each AP. However it delivers a single, static con-
figuration that does not account for the number of STAs associated
with each AP, nor for the amount of traffic exchanged between STAs
and APs.

Analytical approaches do not constitute the majority of the solu-
tions to the tuning problem of TX_PWR and OBSS_PD. This is because,
in practice, the large number of parameters and the complexity of
the physical layer hinder the use of complex analytical model-based
solutions. Furthermore, they often do not scale with the number of
APs and STAs in the WLAN [22] and when they do, they are too coarse-[22] Bianchi (2000),

“Performance analysis of
the IEEE 802.11

distributed coordination
function”

grained to provide interesting configurations [23, 24]. Instead, data-

[23] Laufer et al. (2015),
“The capacity of wireless

CSMA/CA networks”
[24] Stojanova et al.

(2019), “Conflict
graph-based model for

IEEE 802.11 networks: A
Divide-and-Conquer

approach”

driven techniques, which are more practical and adaptive by construc-
tion, appear as natural candidates to this adaptation problem.

2.1.2 Data-Driven Approaches

Data-driven techniques are intrinsically iterative. Instead of consid-
ering the whole WLAN model and immediately derive the optimal
configuration, they explore multiple configurations to gain knowl-
edge about the WLAN and converge towards an efficient configuration.
Although often lacking the theoretical guarantees of their analytical
counterparts, they rely on a smaller set of assumptions, making them
more applicable. They also often benefit from a lower computational
complexity.

Among the first data-driven approaches is the Dynamic Sensitive
Control (DSC) decentralized algorithm, proposed by [25] and ded-[25] Afaqui et al. (2015),

“Evaluation of dynamic
sensitivity control

algorithm for IEEE 802.11
ax”

icated to the tuning of the OBSS_PD parameter on STAs. With DSC,
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STAs periodically measure the Received Signal Strength (RSS) of bea-
cons18 received by their associated AP. They gradually decrease their 18Small messages

periodically broadcast by
APs to advertise their
WLAN.

OBSS_PD to favor concurrent transmissions from neighboring devices,
while keeping this value high enough to ensure the proper reception
of beacons. Another decentralized algorithm is proposed by [26], re- [26] Lee et al. (2021),

“LSR: link-aware spatial
reuse in IEEE 802.11 ax
WLANs”

ferred to as Link-aware Spatial Reuse (LSR). Like DSC, its decisions
are based on the RSS. More precisely, each AP chooses its concurrent
AP as the one having the lowest RSS. Then, the prescribed value for
TX_PWR is based on the Frame Error Rate (FER) when the AP and its
concurrent AP transmit simultaneously. Overall, both DSC and LSR
algorithms [25, 26] represent practical and effective solutions that can
typically increase the throughput of a WLAN by a factor of up 20-30%.
However, none of them fully exploit the potential benefits offered by
the 802.11ax standard. DSC only modifies the value of the OBSS_PD

parameter for STAs so that performance improvements mostly apply
to the small portion of traffic that goes upstream. In the case of LSR,
the solution applies to APs and downstream traffic, but it limits to one
the number of concurrent APs allowed to transmit simultaneously. In
practice, this limitation is further increased since concurrent APs do
not always have frames to send at once.

Recently, ML has impacted many fields, and computer networks
are no exception. To optimize the performance of WLANs, recent sur-
veys such as [27] list hundreds of contributions. Among them, several [27] Szott et al. (2022),

“Wi-Fi meets ML: A
survey on improving IEEE
802.11 performance with
machine learning”

made use of ML techniques to address the issue of tuning the TX_PWR

and OBSS_PD parameters in WLANs. In 2020, a two-steps solution re-
lying on an Artificial Neural Network (ANN) was proposed by [28].

[28] Ak et al. (2020),
“FSC: Two-scale AI-driven
fair sensitivity control for
802.11 ax networks”

In their framework, STAs and APs first locally adjust their value of
OBSS_PD to decrease interference. Then, thanks to an ANN whose pa-
rameters have been set using offline simulations, they mitigate poten-
tial unfairness among STAs in terms of attained throughput, which
may otherwise occur due to the various locations of STAs. The authors
use the ns-3 simulator to show that their solution can improve the
throughput and fairness of WLANs up to 36% and 82%, respectively.
Although the empirical improvement is significant, this method suf-
fers from a major drawback. Indeed, ANNs comprise numerous pa-
rameters that require a large amount of data to be set properly. As far
as we know, there is no dataset recognized by the networking com-
munity whose content captures the large diversity of scenarios that
can be encountered in WLANs. Because of this lack of representative
dataset, the predefined parameters of the ANN may not be accurate
for all WLAN topologies. The same can be said about the federated ap-
proach used in [29], since it relies on ANNs trained on synthetic data [29] Wilhelmi et al. (2022),

“Federated spatial reuse
optimization in
next-generation
decentralized IEEE 802.11
WLANs”

generated from an homemade simulator. More generally, the ability
of the proposed offline methods to handle diverse WLAN topologies
remains to be properly demonstrated.
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This calls for online data-driven approaches, not only able to learn
from previously collected data, but also to build their own representa-
tive dataset given the specific scenario they are deployed on. In [8, 30],[30] Wilhelmi et al. (2019),

“Collaborative spatial reuse
in wireless networks via

selfish multi-armed
bandits”

the authors formalize the problem of setting the TX_PWR and OBSS_PD

parameters of each AP as a Multi-Armed Bandit (MAB) problem. In
both cases, the authors describe a decentralized MAB algorithm that
aims to maximize a reward function defined at the AP level. The two
solutions mostly differ in terms of the reward definition. In the first
solution, the reward function at each AP corresponds to its through-
put. This can be described as a “selfish” solution since each AP tries to
optimize its own reward regardless of its impact on the neighboring
devices. Conversely, the second reward revolves around a max-min
normalized function of the throughput of the current AP and of its
direct neighboring devices. Using a home-made simulator, the au-
thors show that their solution significantly outperforms the default
configuration of the WLAN and that the selfish reward may lead to
unfair situations between APs. In fact, this was expected since the
MAB algorithms are run concurrently, without any consensus mecha-
nism guaranteeing that the sum of the individual reward functions is
maximized.

Table 2.1 summarizes the differences between the considered state-
of-the-art approaches in this section. It considers the tuning of the
two parameters TX_PWR and OBSS_PD, as well as the use of dynamic
Modulation Coding Scheme (MCS),19 the type of traffic considered,19Determining in

particular the modulation
type for bit encoding and

the coding rate.

the simulator used for the presented experiments and the size of the
largest network topology on which the solutions were evaluated. As
the table shows, only a handful of solutions [8, 26, 30] address the
joint tuning of TX_PWR and OBSS_PD. These strategies are evaluated
on "vanilla topologies",20 composed of at most 8 APs operating on20That is, naive topologies

that are somewhat failing
to reflect the complexity of

real WLAN deployments.

a single radio channel. Furthermore, among them, only one [26] is
evaluated with dynamic MCS on a recognized network simulator (ns-
3 [31]). This calls for a solution addressing the joint tuning problem

[31] The ns3 Project
(2020), The Network

Simulator ns-3

of our two parameters, rigorously evaluated on a complex scenario
(many APs distributed on many radio channels, bidirectional traffic
and dynamic MCS).

Overall, the majority of state-of-the-art solutions to the tuning prob-
lem of TX_PWR and OBSS_PD are data-driven. Although better empiri-
cal performance has been obtained, these methods suffer from either
the lack of datasets recognized as representative by the networking
community (which would strengthen the adaptability of offline meth-
ods) or alternatively, the lack of theoretical guarantees. Furthermore,
they are often evaluated on homemade simulators and vanilla scenar-
ios that do not reflect properly the complexity of real WLAN deploy-
ments. Based on these observations, this thesis aims to provide an on-
line, data-driven solution demonstrating good empirical performance
supported by strong theoretical guarantees and a more thorough per-
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Table 2.1: Comparison of the state-of-the-art approaches for the spatial reuse
problem in WLANs. The last column refers to the number of APs
and the number of orthogonal radio channels used in the perfor-
mance evaluation.

Proposed Tuning of Tuning of Dynamic Traffic Simulator APs /

solutions OBSS_PD TX_PWR MCS Up/Down channels

WCMC’04 [19] ✓ Up/Down Opnet 100/1

VTC’04 [20] ✓ Up Self-made 8/1

Infocom’20 [21] ✓ Up/Down Self-made 100/11

WCNC’15 [25] ✓ Up Self-made 100/3

WCNC’21 [26] ✓ ✓ ✓ Down ns-3 6/1

Globecom’20 [28] ✓ Up/Down ns-3 3/1

ADHOC’19 [30] ✓ ✓ Down Self-made 8/1

JNCA’19 [8] ✓ ✓ Down Self-made 8/1

formance evaluation. To achieve this goal, we first make a review of
promising online Black-Box Optimization (BBO) techniques and their
theoretical guarantees in the next section.

2.2 black-box optimization

As described in Section 1.1.3, BBO refers to the optimization of an
objective function f : C ⊆ Rd → R defined solely by its inputs and
outputs. A BBO algorithm must query f in such a way that it achieves
a trade-off between exploration and exploitation. We review in this
section the solutions to achieve this trade-off.

2.2.1 Direct Search Methods

We start our reviewing of BBO algorithms by introducing a famous
direct search method. For a complete review of direct search meth-
ods and their applications, one can refer to [32, 33]. Unlike classic [32] Lewis et al. (2000),

“Direct search methods:
then and now”
[33] Alarie et al. (2021),

“Two decades of blackbox
optimization applications”

optimization methods that use first-order information (e.g. gradient
descent) or second-order information (e.g. Newton’s method), direct
search methods do not assume their availability nor try to approxi-
mate them. A case in point in this domain is the DIRECT (DIviding
RECTangle) algorithm [34]. It proposes to solve the problem21

[34] Jones et al. (1993),
“Lipschitzian optimization
without the Lipschitz
constant”
21For consistency
purposes, each
optimization task is
reformulated as a
maximization task.

maximize
x∈C

f(x)

subject to li ≤ xi ≤ ui, i ∈ [1, d].
(2.1)

Because each variable xi has a lower bound li and an upper bound
ui, it can be normalized to [0, 1] so that the search space becomes the
unit hypercube. To query f , DIRECT proceeds by recursively trisect-
ing the search space. At the first iteration, the search space is trisected
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into (hyper)rectangles, and the points at the center of each rectangle
are queried. Then, at each iteration, DIRECT selects a rectangle (with
a procedure detailed in the following), trisects it into smaller rectan-
gles and queries f at the center of each rectangle. An illustration of
the execution of DIRECT on a 2-dimensional search space is provided
in Figure 2.1.

Figure 2.1: Illustration of a possible execution of DIRECT after 4 iterations
in a 2-dimensional search space. The center of each chosen rect-
angle is colored in red. The iteration step appears next to each
red dot.

DIRECT assumes that f is Lipschitz-continuous, that is,

∀x,y ∈ C, |f(x)− f(y)| ≤ L||x− y|| (2.2)

with L > 0 and || · || an arbitrary norm.
To achieve an exploration-exploitation trade-off, DIRECT tries to

identify the optimal rectangle R to trisect using an upper bound on
the value of f contained in each rectangle, denoted Uf (ci, di), with
ci the center of the rectangle Ri, di = maxx∈Ri ||ci − x|| and || · || an
arbitrary norm:

Uf (ci, di) = f(ci) + Ldi. (2.3)

Naturally, the objective of DIRECT is to trisect the rectangle that
provides the largest upper bound (2.3). We retrieve here an addition
of two terms: an exploitation term f(ci), and an exploration term Ldi.
This is an early application of the optimism in the face of uncertainty
principle, that encourages the algorithm to explore unknown regions
of the search space by making an optimistic guess about what lies in
it.
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Note that, contrary to what one might think, the Lipschitz constant
L is not an hyperparameter of the algorithm. In fact, DIRECT man-
ages to identify a subset of potentially optimal rectangles P , by using
multiple estimations of L through a procedure described in [34]. Dur-
ing an iteration, DIRECT trisects all the potentially optimal rectangles
in P . The trisection is systematically carried out on the longest side
of each rectangle.

By construction, DIRECT is guaranteed to find the global opti-
mum of f asymptotically (if f is Lipschitz-continuous). It has inspired
many research works on direct search methods and continues to do
so [35]. In practice, it is known to quickly find the attraction basin of [35] Jones et al. (2021),

“The DIRECT algorithm:
25 years Later”

the optimum of f . However, as for most direct search methods, it can
take a long time to actually find the optimum and it is very sensitive
to the "curse of the dimensionality" [35]. Additionally, as far as we
know, DIRECT does not provide a cumulative regret upper bound
(or regret bound for short) ensuring its good performance. Therefore,
it may not be a good fit to find rapidly a good configuration in a
dense WLAN.

2.2.2 Metaheuristics

Other promising candidates for BBO in WLANs are metaheuristics. In
this section, we present a famous evolution strategy and we discuss
its application to the spatial reuse problem. For a comprehensive list-
ing of metaheuristics, we refer the reader to [36]. [36] Gendreau et al.

(2010), Handbook of
metaheuristics

Within the class of metaheuristics is a subclass of stochastic meth-
ods called evolutionary algorithms that are broadly based on the prin-
ciple of biological evolution. At each iteration (also called generation),
an evolutionary algorithm generates candidate solutions based on the
solutions of the previous iteration (called the parents), applying some
kind of stochastic variations, analogous to mutations in biological sys-
tems. Then, the most promising candidates (i.e. those with the better
f -values) are selected to become the parents of the next generation.

The Covariance Matrix Adaptation-Evolution Strategy (CMA-ES),
introduced by [37], is an evolutionary algorithm that has demon- [37] Hansen et al. (1996),

“Adapting arbitrary
normal mutation
distributions in evolution
strategies: The covariance
matrix adaptation”

strated excellent empirical performance for the optimization of con-
tinuous, nonlinear, nonconvex functions [38]. It proposes to sample

[38] Auger et al. (2005),
“Performance evaluation of
an advanced local search
evolutionary algorithm”

the candidate solutions from a Multivariate Normal (MVN) distribu-
tion (denoted N (µk,Σk) at iteration k) on the input space C. The
f -values of the candidates are then evaluated, and the parameters
µk+1 and Σk+1 of the MVN at the iteration k + 1 are computed in or-
der to maximize the likelihood of the best sampled candidates. For
more details regarding the implementation or the derivation of the
updating formulas, we refer the reader to [39, 40]. [39] Hansen et al. (2011),

“CMA-ES: evolution
strategies and covariance
matrix adaptation”

[40] Hansen (2016), “The
CMA evolution strategy:
A tutorial”

CMA-ES can be seen as a natural gradient descent algorithm, al-
though it does not require any first-order information about the ob-
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Figure 2.2: Execution of CMA-ES on f(x) = ||x−1||2, depicted with a color
gradient. The sampled candidates are shown with black dots and
the MVN density with a single orange dashed contour line.

jective function f . To illustrate this, Figure 2.2 depicts an execution of
CMA-ES on the minimization of the convex function f(x) = ||x−1||2.
Throughout the generations, the MVN shifts its mean µk towards the
global minimum of f (i.e. (1, 1)) and reduces the norm of its covari-
ance matrix Σk so that, after the 10th generation, the vast majority of
the sampled candidates constitutes a set of high-quality solutions.

CMA-ES is less sensible to the curse of dimensionality than DI-
RECT, since it performs well on problems comprising up to a thou-
sand dimensions [41]. That is more than enough for the spatial reuse[41] Omidvar et al. (2011),

“A comparative study of
CMA-ES on large scale

global optimisation”

optimization of the vast majority of WLANs. However, sampling mul-
tiple candidates at each generation is a significant drawback of the
algorithm especially when f is expensive to evaluate, as it is often
the case in WLANs. Moreover, even though it performs well on non-
convex, nonsmooth examples, CMA-ES does not offer any guarantee
regarding the global optimization of f , as it could be trapped in the
basin of attraction of a local optimum. As such, it may not be the best
fit for the spatial reuse problem in WLANs.
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2.2.3 Multi-Armed Bandit

In the MAB framework, one considers a set of arms A. At each time
step t, an arm must be pulled to collect a random reward yt. Each arm
k has its own probability distribution Rk used to sample its returned
reward when pulled. The objective of a MAB algorithm is to maximize
the sum of the rewards obtained from a sequence of arm pulls. Since
the algorithm does not have any prior knowledge about the arms, its
objective boils down to discovering as quickly as possible the arm that
has the largest expected reward and pulling it as much as possible.

More formally, denoting by µk the expectation of Rk, a MAB algo-
rithm defines a policy π : N → A to maximize

∑T
t=1 µπ(t), given a

(potentially infinite) time budget T . Using this framework, it is easy
to formulate the notion of immediate regret introduced by Defini-
tion 1.1. Denoting k∗ = argmaxk∈A µk, the immediate regret of a MAB

algorithm at time t is

rt = µk∗ − µπ(t). (2.4)

The cumulative regret Rt (Definition 1.2) as well as the notion of
asymptotic optimality (Definition 1.3) follow from this reformulation
of the immediate regret.

The spatial reuse problem in WLANs can be formulated as a MAB

problem, with each configuration x ∈ C of a WLAN considered as
an arm. Modeling the outputs of the black-box objective function f

as stochastic rewards makes sense, since f can be perturbed by some
observational noise. Due to the large cardinality of C, some variants of
the MAB may be more suitable than its classical formulation, such as
the Infinitely Many-Armed Bandit (IMAB) where the number of arms
is considered larger than the time budget T [42], or the Continuum- [42] Wang et al. (2008),

“Algorithms for infinitely
many-armed bandits”

Armed Bandit [43], where the arms are chosen within a real field.

[43] Agrawal (1995), “The
continuum-armed bandit
problem”

We now review the classical solutions to the MAB problem that are
relevant to this thesis. Their adaptation to the spatial reuse problem
is discussed in great length in Chapter 3.

To solve the MAB problem, one could naively propose a greedy
approach: the arm with the best empirical mean µ̂tk is chosen at each
iteration. Obviously, the empirical mean of an arm k at time t is

µ̂tk =
1

ntk

t∑
i=1

yt1π(i)=k (2.5)

with ntk counting the number of pulls on arm k up to time t and
1π(t)=k the indicator function indicating if the arm k was pulled at
time t.

This corresponds to a very simple policy that initially samples each
arm once before always choosing exploitation over exploration. As
such, it is unable to find the optimal arm since the policy is en-
tirely based on a small set of observations, too small for the empiri-
cal means

{
µ̂tk
}
k∈A to be close to the true expected rewards {µk}k∈A.
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This leads to a cumulative regret to be inO(T ).22 However, the greedy22That is, it grows linearly
with the time T . approach can be made significantly better by allowing it to pull a uni-

formly drawn arm with probability ϵ > 0. This is called the ϵ-greedy
approach (see [44] for more details). If ϵ is kept constant, the cumu-[44] Sutton et al. (2018),

Reinforcement learning:
An introduction

lative regret remains in O(ϵT ). However, when it is decreased at an
appropriate rate (see [45], which sets ϵ ∝ 1

T ), the cumulative regret
[45] Auer et al. (2002),

“Finite-time analysis of the
multiarmed bandit

problem”

becomes sublinear asymptotically. Therefore, this variant of ϵ-greedy
can be shown asymptotically optimal. Nevertheless, note that [46]

[46] Lai et al. (1985),
“Asymptotically efficient
adaptive allocation rules”

showed the cumulative regret bound of an optimal bandit algorithm
to be Θ (log T ) in the case of finite variance for the reward distribution
of each arm. Therefore, this variant of ϵ-greedy does not match the
known optimal cumulative regret bounds. This indicates that there
are better approaches than ϵ-greedy to solve the MAB problem.

Another bandit approach is Thompson Sampling (TS), a natural
Bayesian algorithm based on [47] and named after its author. As a[47] Thompson (1933),

“On the likelihood that one
unknown probability

exceeds another in view of
the evidence of two

samples”

Bayesian approach, it requires some prior knowledge about the arms.
Namely, it needs

(i) p (y|k,θ) the probability distribution function (p.d.f.) of the re-
ward y given the arm k, parameterized by some θ ∈ Θ,

(ii) p (θ) the a priori p.d.f. of the parameters θ, and

(iii) p (θ|D) the a posteriori p.d.f. of the parameters θ, conditioned
by the observations in D.

Given this information, TS proposes to pull the next arm by sam-
pling a probability distribution defined on the set of arms A. The
probability pk of pulling the arm k corresponds to the probability of
k being the optimal arm, that is

pk =

∫
Θ

1E[y|k,θ]=maxk′∈A E[y|k′,θ]p(θ|D) dθ (2.6)

with 1 the indicator function indicating whether the arm k is the
optimal arm under the current parameters θ.

Thompson sampling, through (2.6), addresses the exploration-exploitation
dilemma in an elegant fashion. Although being one of the oldest
heuristics for the MAB problem, TS still belongs to the state-of-the-
art nowadays. It has near-optimal regret bounds, as demonstrated
by [48, 49], even matching the lower regret bounds given by [46] in[48] Agrawal et al. (2012),

“Analysis of thompson
sampling for the

multi-armed bandit
problem”

[49] Agrawal et al. (2013),
“Further Optimal Regret

Bounds For Thompson
Sampling”

some specific settings [50]. Thus, it represents an excellent candidate

[50] Kaufmann et al.
(2012), “Thompson

sampling: An
asymptotically optimal

finite-time analysis”

for solving the spatial reuse problem in WLANs under the MAB frame-
work.

Eventually, we consider Upper Confidence Bound (UCB) (introduced
by [13]) to address the MAB problem. It is a perfect instance of the prin-
ciple of optimism in the face of uncertainty since it defines a policy
based on an optimistic estimation (called an upper confidence bound)
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of each arm’s expected reward. In its most generic form, the upper
confidence bound utk for an arm k at time t is

utk = µ̂tk + σtk (2.7)

with σtk chosen so that µ̂tk − σtk ≤ µk ≤ µ̂tk + σtk with high probability.
Then, UCB proposes π(t) = argmaxk∈A u

t
k. Note that the exploration-

exploitation trade-off is naturally addressed since an arm k can be
chosen even with a low µ̂tk if it has a large σtk, indicating by construc-
tion that the arm has not been explored enough to properly estimate
its expected reward. Since σtk decreases rapidly with the number of
pulls, the most pulled arms quickly emerge as those which exhibit a
large, properly estimated expected reward µ̂tk.

Since its introduction in 2002, UCB inspired decades of research
for addressing the MAB problem and beyond. The UCB approaches
mainly differ in the assumptions they make and consequently, in
their definitions of the upper confidence bound. To name a few, KL-
UCB [51] define their upper confidence bound based on the Kullback- [51] Garivier et al. (2011),

“The KL-UCB algorithm
for bounded stochastic
bandits and beyond”

Leibler divergence for the bounded bandit problem23 while LinUCB [52]

23All Rk are bounded
distributions.
[52] Chu et al. (2011),

“Contextual bandits with
linear payoff functions”

assumes a linear dependency between a context vector and the ex-
pected reward of an arm for the contextual bandit problem.24 These

24Additional information
about the arms is
embedded into a context
vector that is observable.

methods match the logarithmic regret bounds of [46] and have the ad-
vantage of being easier to understand theoretically than TS. As such,
UCB also deserves our attention in addressing the spatial reuse prob-
lem in WLANs.

2.2.4 Bayesian Optimization

Eventually, we consider Bayesian Optimization (BO) as a candidate
for addressing the spatial reuse problem in WLANs. The vast majority
of BO algorithms rely on Gaussian processes, so let us introduce them
with our notations.

Gaussian Process. A Gaussian Process (GP) is a stochastic process,
that is, a collection of random variables {Y (x)}x∈C indexed by a set
C. The specificity of a Gaussian process is that any finite set of ran-
dom variables {Y (x1), · · · ,Y (xn)} has a joint multivariate Gaussian
distribution. It can be fully specified by its mean function µ and its
covariance function k

µ(x) = E [Y (x)] (2.8)

k (x,x′) = E [(Y (x)− µ(x)) (Y (x′)− µ(x′))] . (2.9)

In most cases, a BO algorithm relies on the pioneering work [53] [53] Williams et al. (1995),
“Gaussian Processes for
Regression”

that proposes a unified framework for regression tasks using GPs. We
describe the approach in a few lines and we illustrate it with Fig-
ure 2.3. A GP serves as a surrogate model for the black-box objec-
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tive function f . It requires a prior GP, describing the random vari-
ables {f(x)}x∈C , a prior mean function µ0(x) and a covariance func-
tion k(x,x′). Throughout this thesis, we assume without loss of gen-
erality, as the vast majority of BO algorithms does, that µ0(x) =

0. For any point x ∈ C, it is known by construction that f(x) ∼
N
(
µ0(x),σ20(x)

)
, with σ20(x) = k(x,x). Given t observations, de-

scribed by the t× d matrix of datapoints X = (xi)
⊤
i∈[1,t] and by the

corresponding t-dimensional vector of outputs y = (yi)
⊤
i∈[1,t], the pos-

terior distribution of f(x) is obtained from the t+ 1-dimensional joint
Gaussian distribution of the t observations along with the queried
f(x), by conditioning on the observed data. Then, a posteriori, f(x) ∼
N
(
µt(x),σ2t (x)

)
with

µt(x) = k(x,X)⊤K−1y (2.10)

σ2t (x) = σ20(x)− k(x,X)⊤K−1k(x,X) (2.11)

with k(x,X) = (k (x,xi))i∈[1,t] the t-dimensional vector built by ap-
plying the covariance function to x and each datapoint in X and
K = (k (xi,xj))i,j∈[1,t] the t× t matrix built by applying the covari-
ance function to each possible couple of datapoints in X .

Figure 2.3: Gaussian Process Regression. The ground truth f(x) is depicted
with a grey dashed line and the noisy observations (X,y) with
black dots. The posterior mean µt(x) is shown with a solid or-
ange line and the posterior standard deviation σt(x) as an or-
ange interval.

As for any BBO algorithm, a BO algorithm needs to provide, at
each time step t, a query xt that achieves a trade-off between explo-
ration and exploitation. The BO algorithm typically bases its query-
ing policy on the maximization of an acquisition function φt(x) that
quantifies the benefits of observing f(x) in terms of exploration and
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exploitation. Common acquisition functions include Knowledge Gra-
dient [54], Probability of Improvement [55], Expected Improvement [54] Gupta et al. (1996),

“Bayesian look ahead
one-stage sampling
allocations for selection of
the best population”

[55] Jones et al. (1998),
“Efficient global
optimization of expensive
black-box functions”

(EI) [56] and, as mentionned before, UCB [13]. Each of them captures

[56] Mockus (1994),
“Application of Bayesian
approach to numerical
methods of global and
stochastic optimization”

a different definition of what is a good compromise between explo-
ration and exploitation. They also vary widely in terms of computa-
tional complexity. The latter (UCB), is one of the least complex acqui-
sition functions and leads to an asymptotically optimal application to
GPs, with GP-UCB [57], defined as

[57] Srinivas et al. (2012),
“Information-Theoretic
Regret Bounds for
Gaussian Process
Optimization in the
Bandit Setting”

φt(x) = µt(x) + β
1
2
t σt(x). (2.12)

One could recognize the general formulation of UCB, introduced
in (2.7). Intuitively, µt(x), as a best-guess estimation of f(x), is the
exploitation term. Conversely, σt(x) describes the uncertainty of the
prediction and is a suitable exploration term. As for β1/2

t , it is used
to control the contribution of σt(x) to φt(x), ensuring that µt(x) −
β1/2
t σt(x) ≤ f(x) ≤ µt(x) + β1/2

t σt(x) with high probability. Note
that other acquisition functions can exhibit no-regret performance.
As an example, under simple modifications of the initial algorithm
introduced in [56], EI is also asymptotically optimal [58]. [58] Qin et al. (2017),

“Improving the expected
improvement algorithm”

At each time t, the BO algorithm must find xt = argmaxx∈C φt(x)

to query it. However, finding the maximum of φt(x) is a challenge
in itself and represents the most expensive task in an iteration. To
address it, the vanilla BO algorithm uses a grid-search or a global
optimization algorithm such as DIRECT (see Section 2.2.1).

Although classical BO offers no-regret guarantees and has demon-
strated excellent empirical performance in a variety of domains [10,
11, 59], it suffers from the same drawbacks as the grid-search or DI- [59] Bergstra et al. (2013),

“Making a Science of
Model Search:
Hyperparameter
Optimization in Hundreds
of Dimensions for Vision
Architectures”

RECT. In particular, it struggles with high-dimensional objective func-
tions, such as those typically found in the optimization of the spatial
reuse in WLANs. Nevertheless, in this thesis, we explore its application
to the spatial reuse problem in Chapter 4 and we propose a novel way
to extend BO to high-dimensional spaces in Chapter 6.

2.3 summary

In this section, we summarize this chapter in a few points:

• The spatial reuse problem in WLANs is a high-dimensional prob-
lem that analytical approaches do not address properly in prac-
tice.

• Data-driven approaches obtain the best empirical performance
in this problem so far, but they do not offer any theoretical guar-
antee and are evaluated on vanilla scenarios.

• Regarding BBO techniques, BO and the MAB framework stand
out as great candidates in our quest for a theoretically sup-
ported solution to the spatial reuse problem in WLANs.
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• In the remaining of this thesis, we explore the application of the
MAB framework and BO to the spatial reuse problem (Chapters 3

and 4), to the power control of cellular networks (Chapter 5) and
we contribute to the extension of BO to high-dimensional spaces
(Chapter 6).
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Outline. We propose to address the spatial reuse problem in a
Wireless Local Area Network (WLAN) (see Section 1.1.2) with the
Multi-Armed Bandit (MAB) framework (see Section 2.2.3). We describe
two similar, centralized MAB approaches that dynamically adapt the
transmission power (TX_PWR) and the sensitivity threshold (OBSS_PD)
of each Access Point (AP) in a WLAN. They rely on different sub-
sampling strategies of the configuration space C, under a regularity
assumption of the objective function f . In this chapter, f is an ad-
hoc performance metric designed to keep each Station (STA) above a
given throughput threshold. To demonstrate their empirical effective-
ness, the two proposed solutions are evaluated against state-of-the-art
strategies by simulating increasingly complex scenarios, using a well-
recognized network simulator.

3.1 system under study

We consider a WLAN comprising multiple APs and stationary STAs
as well as a controller that configures and manages the WLAN. STAs
are associated to the AP with the strongest signal strength. To ac-
cess the radio channel, APs and STAs use a listen-before-talk scheme
referred to as Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) and Clear Channel Assessment (CCA), as described
in Section 1.1.2. The WLAN implements the 802.11ax amendment, and
the parameters TX_PWR and OBSS_PD meet the constraint (1.1). Addi-
tionally, for the most part of this chapter, the WLAN workload is con-
sidered at saturation. That is, the APs always have data to transmit to
their associated STAs. Variations of the workload are discussed and
explored in Section 3.4.3.

Several performance metrics are considered worthy of interest to
evaluate the efficiency of a WLAN at providing wireless access to its
STAs. First, the aggregate throughput (also known as system through-
put or cumulative throughput) represents the sum of the throughputs
of all individual STAs in the WLAN. Second, the fairness in the distri-
bution of access to the radio channel among STAs is another critical
factor. Measures of fairness such as Jain’s index [60] are common [60] Jain et al. (1984), “A

quantitative measure of
fairness and
discrimination”

means to determine whether certain STAs are receiving a dispropor-
tionate share of the radio resource at the expense of other STAs. In-
deed, certain STAs may struggle to access the radio channel due to
an unfavorable location in the WLAN. These STAs are said to be in
starvation of throughput and they represent a major issue for network

27



28 multi-armed bandit approaches for 802 .11

administrators. In this chapter, a STA is considered to be starving if it
cannot obtain at least a percentage α = 10% of the throughput they
would have in the absence of other STAs. Third, Frame Error Rate (FER)
of each STA, which indicates the percentage of frames lost due to col-
lisions and poor channel condition, can also be worthy of interest to
network administrators. As discussed earlier in Chapter 1, the dy-
namical setting of TX_PWR and OBSS_PD on each AP can significantly
change these performance metrics.

The controller is the perfect device to implement our optimization
algorithm, as it is assumed to have access to every other device in
the WLAN. It can observe the throughput of each STA, and set the
parameters of each AP. It is also assumed to have enough comput-
ing power to run complex solutions in an acceptable amount of time,
unlike the average WLAN device that favors simplicity and power sav-
ing. Controllers satisfying these assumptions ease the management
and the configuration of the WLAN devices. They are typically found
in WLANs comprising a large fleet of APs and operated by a single
entity (e.g. in malls, train stations or open spaces). However, assum-
ing the existence of a controller is less realistic when one considers a
collection of WLANs, each operated by a different entity.

3.2 problem formulation

We are looking for a correct network configuration x ∈ C of a WLAN
comprising n APs. As stated in Section 3.1, C is defined as the set of all
the WLAN configurations that satisfy the constraint (1.1), that is C =

{x|x ∈ {−82, · · · ,−62} × {1, · · · , 21} and x satisfies (1.1)}n. More in-
tuitively, C can be described as the set resulting from the Cartesian
product of n triangular, uniform 2-dimensional grids.

To find a good configuration in C, we use a Black-Box Optimization
(BBO) algorithm located in the WLAN controller. We assume that the
controller receives regular reports on the individual throughputs of
the nS STAs T (x) = (T1(x), · · · ,TnS (x)) under any configuration x ∈
C. As for now, note that, for the sake of simplicity, the argument of
the throughputs will be omitted, such that they will be denoted T =

(T1, · · · ,TnS ). The controller uses the MAB framework, and consider
that each network configuration xi ∈ C represents an arm that can be
pulled at any time t to obtain a noisy objective value (a.k.a. a reward)
yti . Note that yti is drawn from a probability distribution R(θi) whose
parameters θi are unknown from the agent but invariant in time since
the network under study is assumed to be stationary. The expected
reward of a configuration xi is, as one could expect, the objective
value f(xi), with f remaining to be defined. Our objective boils down
to find an efficient policy π : N → C that determines which arm to
pull (i.e. which WLAN configuration in C to test) at each time step t

given the previously collected data D =
{(

xπ(i), y
i
π(i)

)}
i∈[1,t−1]

.
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Given the exponential growth of the cardinality of the configura-
tion space C with the number n of APs (bounded by 212n since an
AP has two tunable parameters, each taking at most 21 values), our
problem is more precisely framed as an Infinitely Many-Armed Ban-
dit (IMAB). Thus, in practice, the WLAN controller cannot explore the
whole set of arms in a reasonable amount of time and must instead
work on a subset of C, referred to as the reservoir.

In the remaining of this section, we describe how the objective func-
tion is designed and we give some insights about how C is subsam-
pled to build the reservoir. We propose two subsampling strategies
described in Sections 3.4 and 3.5.

3.2.1 Objective Function

The design of the black-box objective function f is a critical step as it
can deeply influence the outcome of the optimization process. In the
case of a WLAN, the reward function aims at quantifying the quality
of a network configuration in terms of spatial reuse through multiple
performance metrics, as discussed in Section 3.1. There exist different
ways of combining these performance metrics to obtain a scalar ob-
jective function to optimize. In this chapter, we adopt the standpoint
of a network administrator that considers a WLAN configuration fa-
vorable if it ensures a fair share of throughput among the STAs. More
precisely, we enumerate, by order of importance, three criteria to take
into account:

(i) the number of STAs that are starving for throughput should be
minimized,

(ii) the fairness between the STAs should be maximized,

(iii) the aggregate throughput of the WLAN should be maximized.

Satisfying criteria (ii) and (iii) at the same time is challenging. In-
deed, in most WLAN topologies, increasing the fairness between the
STAs is made at the expense of a lower aggregate throughput. Con-
versely, increasing the network aggregate throughput often implies a
decrease in fairness. To address this problem, we consider the Proportional
Fairness (PF) of the throughputs of the STAs. PF is widely used in com-
puter networks to reach a natural trade-off between a high sum and a
low variance in a sample (e.g. see [61, 62]). We focus on a normalized [61] Jiang et al. (2005),

“Proportional fairness in
wireless LANs and ad hoc
networks”
[62] Li et al. (2008),

“Proportional fairness in
multi-rate wireless LANs”

version of the PF of the STAs throughputs T = (T1, · · · ,TnS ), given by

PF (T ,T ∗) =
nS∏
i=1

Ti
T ∗
i

(3.1)

with T ∗ =
(
T ∗
1 , · · · ,T ∗

nS

)
the attainable throughputs of the STAs, de-

fined as the throughput that each STA would obtain without any inter-
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ference. This information is easily obtained through simple analytical
models or simulations.

Regarding criterion (i), recall that we consider that a STA is in starva-
tion if its effective throughput is lower than α = 10 % of its attainable
throughput, that is Ti < αT ∗

i . We account for criterion (i) by enforcing
the following constraint on the objective function f :

∀x,x′ ∈ C, f(x) ≥ f(x′)⇔ S(x) ≤ S(x′) (3.2)

with S(x) =
∑nS

i=1 1Ti<αT ∗
i

counting the number of STAs in starvation
under the configuration x.

To enforce the constraint (3.2), the indices of STAs are partitioned
into two subsets: T − = {i|Ti < αT ∗

i }, which includes the indices off
all starving STAs, and its complementary T + = {i|Ti ≥ αT ∗

i }. Then,
the ad-hoc objective function f is defined as

f(x) =
|T −|PF

(
TT − ,T ∗

T −

)
+ |T +|

(
nS + PF

(
TT + ,T ∗

T +

))
nS(nS + 1)

. (3.3)

Figure 3.1: Ad-hoc objective function intervals w.r.t. the number of starving
STAs in a toy example WLAN topology. The APs are depicted as
red triangles, the associated STAs as blue circles and the conflicts
between APs as black arrows.

By construction, the objective function f returns a value within
[0, 1] and meets Property (3.2). That is, with the objective function
(3.3), a configuration x with a given number of starving STAs will
always be better valued than another configuration x′ with a larger
number of starving STAs. Figure 3.1 depicts the reward intervals with
respect to the number of STAs in starvation in a toy WLAN topology.
As an aside, note that due to the importance of conflicts in the un-
derstanding of a WLAN behavior, it is a common practice to represent
WLANs by their conflict graph between APs (e.g. [63, 64]). Conflicts[63] Mishra et al. (2006),

“A Client-Driven
Approach for Channel

Management in Wireless
LANs”

[64] Garetto et al. (2008),
“Modeling per-flow

throughput and capturing
starvation in CSMA

multi-hop wireless
networks”

between STAs are typically not represented in conflict graphs as the
vast majority of traffic in WLANs is downstream. The toy WLAN com-
prises nS = 3 STAs, and nS directly determines the number of reward
intervals (nS + 1 = 4 intervals in Figure 3.1). The number of starv-
ing STAs S(x) under a configuration x indicates the reward interval
within which lies f(x).
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3.2.2 Problem Breakdown

A common practice to circumvent the infinite number of arms in an
IMAB problem consists of restricting the exploration to a limited sub-
set of solutions composed of random arms that constitute a reservoir.
Typically, without any information indicating which arm to prefer,
the arms in the reservoir are drawn uniformly (e.g., [42, 65, 66]). In [65] David et al. (2014),

“Infinitely many-armed
bandits with unknown
value distribution”
[66] Aziz et al. (2018),

“Pure exploration in
infinitely-armed bandit
models with
fixed-confidence”

our case, this approach is not suitable as the vast majority of network
configurations leads to poor solutions. However in our case, unlike
a typical IMAB problem, in which no hypothesis can be made on the
relationship between the arms and their rewards, it is safe to assume
some regularity about the objective function f .

Assumption 3.1. The objective function f satisfies

∃L > 0,∀xi,xj ∈ C, ||xi−xj ||1 = 1 =⇒ |f(xi)− f(xj)| < L (3.4)

Intuitively, Assumption 3.1 states that the objective values of two
neighboring configurations cannot be further apart than L. Note that,
if the configuration space C was assumed to be continuous, Assump-
tion 3.1 would translate into assuming that f is L-Lipschitz continu-
ous. Note that this assumption is of interest if L is not too large. This
property provides useful information that can be leveraged to sam-
ple more promising configurations than those provided by a naive
uniform sampling. Therefore, our problem breaks down into two sub-
problems that must be solved concurrently:

(i) leverage Assumption 3.1 to sample promising configurations in
C for the reservoir,

(ii) identify the best arm in the reservoir and pull it as much as
possible.

In the remaining of this chapter, we consider two algorithms: the
sampler, in charge of (i) and the optimizer, in charge of (ii). Figure 3.2
summarizes the main principles of our solution: the optimizer re-
quests a new configuration to the sampler, which selects xi and re-
turns it to the optimizer. The optimizer tests the configuration xi on
the WLAN, obtains a reward yi and forwards it to the sampler. Both
agents update their internal states according to the new observed
couple (xi, yi). The next sections in this chapter are devoted to the
description and evaluation of the optimizer (Section 3.3) and two dif-
ferent samplers (Sections 3.4 and 3.5).

3.3 exploitation in the reservoir

The objective of the optimizer is to quickly identify the best configu-
ration x∗ = argmaxx f(x) among the current reservoir of configura-
tions and to pull it as much as possible. The reservoir is periodically
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Figure 3.2: Our MAB solution oultine.

updated with a new configuration whenever the optimizer requests
it to the sampler.

To quickly identify the best arm in the reservoir, we consider Thompson
Sampling (TS), based on [47] and introduced in Section 2.2.3. Recall
that TS requires some prior knowledge about the objective values:
p(y|x,θ) the distribution of the noisy reward given the configuration
x and parameters θ, but also p(θ) and p (θ|D), the prior and poste-
rior distributions of the parameters θ themselves, respectively. TS was
used in previous works for the spatial reuse problem in WLANs [8, 30].
In these works, it is assumed that p(y|x,θ) is the p.d.f. of N (f(x), 1).
In other words, the variance is assumed to be fixed at 1, and the pa-
rameter f(x) has a Gaussian prior, initially set at N (0, 1).

Although assuming a fixed variance for the distribution of all the
arms simplifies the calculations, this limits the domain of applicability
of the solution and makes it less effective in practice, as demonstrated
later in Section 3.4.2. To prevent this, we design a solution under the
following assumptions.

Assumption 3.2. For all xi ∈ C, p(yi|xi,θ) is the p.d.f. of N
(
f(xi),σ2i

)
,

with θ =
(
f(xi),σ

−2
i

)
.

Assumption 3.3. The prior distribution of θ is a Normal-Gamma.

Intuitively, Assumption 3.2 specifies the distribution of the noisy
rewards (i.e. they are assumed to be Gaussian, conditioned by some
parameters θ), while Assumption 3.3 describes the uncertainty rela-
tive to the parameters θ themselves. Note that Assumption 3.3 refers
to the mean and the precision25 of the Gaussian rewards distribution.25The inverse of the

variance σ2. We provide more details regarding the Normal-Gamma distribution
in the next paragraph.

Normal-Gamma distribution. A Normal-Gamma distribution is a
bivariate distribution of four parameters (µ,λ,α,β). It refers to the
distribution of a couple of random variables (X,Y ), such that Y ∼
Γ (α,β) and X|Y ∼ N

(
µ, 1

λY

)
. Therefore, sampling from a Normal-

Gamma boils down to sampling Y ∼ Γ (α,β), before sampling X ∼
N
(
µ, 1

λY

)
. In this thesis, we denote the Normal-Gamma distribution

as NΓ (µ,λ,α,β).
Standard Bayesian calculations (e.g. see [67]) show that the Normal-[67] Bolstad et al. (2016),

Introduction to Bayesian
statistics
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Gamma distribution is a conjugate prior for the unknown param-
eters of a Gaussian distribution. We introduce and apply this con-
cept with our notations. Given a configuration xi, we are looking for
the parameters of its reward distribution, that is N

(
µi,σ

2
i

)
accord-

ing to Assumption 3.2, with µi = f(xi). Given Assumption 3.3, we
have

(
µi,σ

−2
i

)
∼ NΓ

(
µ0i ,λ

0
i ,α

0
i ,β

0
i

)
. After observing an i.i.d. sample

Y = (y1, · · · , yn) of size n, with ∀k ∈ [1,n], yk ∼ N
(
µi,σ

2
i

)
, the pos-

terior distribution
(
µi,σ

2
i

)
|Y can be computed with Bayes’ theorem

and yields another Normal-Gamma26 distributionNΓ (µni ,λ
n
i ,α

n
i ,β

n
i )

26Hence the denomination
"conjugate prior".with parameters

µni =
λ0iµ

0
i + nȳ

λ0i + n
, (3.5)

λni = λ0i + n, (3.6)

αn
i = α0

i +
n

2
, (3.7)

βni = β0i +
1

2

(
ns+

λ0in(ȳ− µ0i )2

λ0i + n

)
, (3.8)

with ȳ the empirical mean of the sample Y and s its empirical vari-
ance.

Now that a posterior distribution for the parameters θ has been
found, we describe the optimizer in Algorithm 3.1. The algorithm
has two main parameters: the exploration rate ϵ ∈]0, 1[ and the sam-
ple size n ∈ [2,+∞[, that respectively determine the probability of
adding a new configuration to the reservoir and how often the Normal-
Gamma parameters of a configuration are updated. With line 4, the
optimizer determines if the current step is an exploration step (by en-
tering the if block) or an exploitation term (by jumping to line 12). If
an exploration step is chosen, the optimizer requests a new configura-
tion xi to the sampler (line 5) and tests it n consecutive times on the
environment to collect a whole sample Yi (line 6). Then, the a priori
Normal-Gamma distribution parameters are initialized from simple
empirical statistics of the sample Yi (line 9) and the configuration xi

is added to the reservoir R (line 11).
TS is executed if the optimizer chooses exploitation. Between lines 13-

16, the Normal-Gamma distributions of all the configurations in the
reservoir are sampled once and the configuration xj obtaining the
best mean parameter µj for this sampling is determined on line 17.
Doing so, each configuration has a probability of being selected pro-
portional to its probability of being the optimal configuration27 in the 27That is, being the

configuration with the
largest expected reward.

reservoir, according to the current beliefs of the optimizer. Then, the
chosen configuration is tested and the obtained reward is added to
the corresponding rewards sample Yj (line 18). If Yj contains enough
rewards, the parameter of the corresponding Normal-Gamma are up-
dated and Yj is reset between lines 20-23. Eventually, the data col-
lected during this step is forwarded to the sampler with line 25.
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Algorithm 3.1 Optimizer
Input: sample size n, exploration rate ϵ

1: R← ∅
2: t← 0

3: loop
4: if R = ∅ or rand() < ϵ then
5: Get a new configuration xi using the sampler
6: Test xi n times on the environment and collect rewards in Yi

7: Compute its mean ȳ and its variance s
8: t← t+ n

9: (µti,λ
t
i,α

t
i,β

t
i )←

(
ȳ,n, n2 ,

ns
2

)
10: Yi ← ∅
11: R← R ∪ {xi}
12: else
13: for xi in R do
14: Sample gi from Γ

(
αk
i ,β

k
i

)
15: Sample µi from N

(
µki ,
(
λki gi

)−1
)

16: end for
17: j ← argmaxi µi
18: Test xj on the environment and add the reward to Yj

19: t← t+ 1

20: if |Yj | = n then
21: Update prior parameters

(
µkj ,λ

k
j ,α

k
j ,β

k
j

)
using (3.5)-(3.8)

22: Yj ← ∅
23: end if
24: end if
25: Forward tests and rewards to the sampler
26: end loop
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Algorithm 3.1 has a computational complexity proportional to the
number of configurations in R, since it needs to sample as many
distributions as there are configurations in the reservoir. Since the
number of configurations in the reservoir depends directly on ϵ and
the time step t, the computational complexity of Algorithm 3.1 is in
O (ϵt).

3.4 exploration with gaussian mixtures

3.4.1 Subsampling with a Gaussian Mixture

In this section, we describe and evaluate our first proposition to iden-
tify promising configurations by subsampling the configuration space
C. First, let us leverage Assumption 3.1 by simply extending the prop-
erty to configurations separated by an arbitrary distance:

Proposition 3.1.

∀xi,xj ∈ C, ||xi −xj ||1 = n =⇒ |f(xi)− f(xj)| ≤ Ln. (3.9)

Proof. The proof by recurrence is immediate. Assumption 3.1 initial-
izes our recurrence for n = 1. Then, assuming that the property is
true for an arbitrary distance n, let us consider xi,xj ∈ C such that
||xi − xj ||1 = n+ 1. We build xk on the sphere of radius 1 centered
on xj such that ||xi − xk||1 = n and ||xk − xj ||1 = 1. Such xk always
exists with the characterization of C provided in Section 3.2. Then, by
the triangle inequality, Assumption 3.1 and the recurrence assump-
tion, we have

|f(xi)− f(xj)| ≤ |f(xi)− f(xk)|+ |f(xk)− f(xj)|
≤ Ln+ L

= L(n+ 1)

Intuitively, Proposition 3.1 states that new promising configura-
tions can be found near the best configurations discovered so far.
Moreover, it states that a configuration xi with an objective value
f(xi) = f(xj) + Ln, if it exists, would be sampled at least n units
away from xj . To leverage this insight, we consider a Gaussian Mix-
ture (GM) of K distributions centered on the K best configurations
(x1, · · · ,xK) discovered so far (i.e. until the current time t). To ensure
the isotropy of the Gaussian distributions, we define their covariance
matrices as scalar matrices Σt

i = λtiId, with d = dim C. Recalling that
R is the reservoir, we consider µt∗ = maxi∈[1,|R|] µ

t
i and we set

λti =
(µt∗ + L− µti)

2

dL2
(3.10)
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(a) (b)

(c) (d)

Figure 3.3: Illustration of the Gaussian mixture density (with K = 3) in the
configuration space C of a single AP for four iterations of the
sampler. The grayed upper triangle of the space C depicts the
configurations that violate the constraint (1.1).

such that tr
(
Σt
i

)
= E

[
||x−xi||22

]
=
(
µt
∗+L−µt

i
L

)2
, with x ∼ N (xi,Σt

i).
With (3.10), a Gaussian from the mixture gets a low variance if

it is centered on a configuration xi that has an expected reward µti
close to µt∗. Conversely, it gets a larger variance if it is centered on a
configuration that has a lower expected reward. Figure 3.3 illustrates
this phenomenon by depicting four different iterations of the sampler
with a mixture of K = 3 Gaussian distributions. For visualization pur-
poses, we consider the parameters of a single AP, so that the configu-
ration space C is only 2-dimensional. The GM is initiated (Figure 3.3a)
near the default configuration of 802.11,28 and navigates through the28That is, (−82, 20) dBm

for all APs. configuration space (Figures 3.3b and 3.3c), similarly to a gradient as-
cent algorithm. Eventually, the GM finds a basin of attraction towards
which all the Gaussian distributions converge (Figure 3.3d).

Algorithm 3.2 details the sampler approach described in this sec-
tion. At each call by the optimizer, the sampler updates its state with
the new provided observation (lines 1-3). Then, the Gaussian mixture
is built, based on the K best observed configurations in the history
H (lines 4-10) according to (3.10) as illustrated by line 9. Eventually,
a new promising configuration x is sampled by selecting a Gaussian
in M =

{(
Gj ,µ

t
j

)}
j∈[1,K]

proportionally to its average reward µtj
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Algorithm 3.2 Gaussian Mixture-based Sampler
Input: Lipschitz constant L, number of Gaussians K, observation

(xi, yi)

1: Retrieve history H and time step t

2: Add the new observation (xi, yi) to H
3: t← t+ 1

4: Find the K (xj ,µ
t
j) pairs in H of largest expected rewards µtj

5: µt∗ ← maxj µ
t
j

6: M ← ∅
7: for j ← 1 to K do

8: Gj =

(
xj ,

(µt
∗+L−µt

j)
2

dL2 I

)
9: Add

(
Gj ,µ

t
j

)
to M

10: end for
11: Sample a new configuration x from mixture M
12: Transmit x to the optimizer

(line 11) and returned to the optimizer (line 12). Algorithm 3.2 has
a computational complexity that directly depends on the size of the
history H (that grows with t) and on the number of Gaussian distri-
butions K. Therefore, it has a computational complexity in O (K + t).

3.4.2 Numerical Results

3.4.2.1 Experimental Settings

We evaluate the efficiency of this MAB solution at improving the spa-
tial reuse of a WLAN by comparing it to other existing state-of-the-art
strategies in the well-recognized, realistic, discrete-event simulator ns-
3 [31]. The ns-3 code implementing our solution, the other strategies,
as well as the considered WLAN topologies described below are avail-
able for download.29 We compare five different strategies: 29https:

//github.com/abardou/

IMAB-SR-STA-802.11ax• DEFAULT: the legacy configuration of 802.11, with the configura-
tion (−82, 20) dBm for TX_PWR and OBSS_PD, enforced on all APs
of the WLAN,

• ϵ-GREEDY: the ϵ-greedy strategie described in Section 2.2.3,

• UNIF+GTS: the state-of-the-art strategy [30], it is based on TS but
with Gaussian priors and discovers new configurations through
a uniform sampling,

• GM+GTS: it is similar to UNIF + GTS but discovers new configu-
rations with our sampler (Gaussian mixture), described in Sec-
tion 3.4.1,

https://github.com/abardou/IMAB-SR-STA-802.11ax
https://github.com/abardou/IMAB-SR-STA-802.11ax
https://github.com/abardou/IMAB-SR-STA-802.11ax


38 multi-armed bandit approaches for 802 .11

• GM+NGTS: our proposition, it is based on TS with Normal-Gamma
priors (see Section 3.3) and discovers new configurations with
our sampler (Gaussian mixture), described in Section 3.4.1.

Note that considering GM+GTS helps us separate the benefits brought
by the optimizer algorithm and the sampler algorithm. As a matter of
fact, GM+GTS only differs from UNIF+GTS because it uses our sampler,
and GM+NGTS only differs from GM+GTS because it uses our optimizer.

In each of our experiments, the simulation runs last for a total of
120 seconds of simulated time. For the sake of accuracy, each simula-
tion was replicated 25 independent times. The duration of a test, cor-
responding to the time during which performance metrics are mea-
sured before being sent to the WLAN controller, was set to 50 ms
(milliseconds). Therefore, 2,400 optimization steps can be performed
before the simulation ends. Because we replicate 25 times each sim-
ulation, we obtain a matrix of 25× 2, 400 measures for each network
performance metric. In order to provide a clear visualization of this
large set of data, we chose to plot the median of the metric at each
optimization step, framed by its first and third quartiles. Finally, we
applied an Exponential Moving Average (EMA) to the three consid-
ered quartiles, to smooth the signals and focus on the trends caused
by the optimization. This kind of visualization gives us an insight not
only into the final performance of each strategy but also on its perfor-
mance during the whole optimization process. The other parameters
of the ns-3 simulation are given by Table 3.1. For the sake of compari-
son, all strategies are evaluated using the same simulation parameters
as well as the same reward function, described in Section 3.2.1.

Table 3.1: ns-3 parameters.

Parameter Value

ns-3 version 3.31

Number of repetitions 25

Simulation duration 120 s
Test duration 50 ms
Packet size 1,464 Bytes
Frequency band 5 GHz
A-MDPU Aggregation 4

Path loss LogDistancePropagationLossModel

MCS Control VhtMcs0

MCS Data VhtMcs4

We consider here three examples out of the many we investigated
corresponding to the WLAN topologies T1, T2 and T3 depicted in
Figure 3.4. Each of them may correspond to a typical dense WLAN

deployment. Topologies T1 and T2 are both composed of 6 APs, each
being associated with two or three STAs. As for the topology T3, it



3.4 exploration with gaussian mixtures 39

is composed of 10 APs and 25 STAs. T3 is particularly dense with an
average of 5.6 conflicts per AP (when configured with the default set-
ting of TX_PWR and OBSS_PD), and will allow us to test our solution
on a larger, denser WLAN deployment. Note that the number of APs
here refers to APs belonging to the same WLAN and set on the same
radio channel. Given the number of independent channels for a given
frequency band,30 topologies like T1, T2 and T3 could actually corre- 30In most countries, there

are 3 independent channels
in the 2.4 GHz frequency
band and around 23 in the
5 GHz frequency band.

spond to WLANs comprising dozens of APs.

Figure 3.4: Conflict graphs of the 3 WLANs test topologies T1, T2 and T3.

3.4.2.2 Simulation Results

The average regret31 is the most important metric in our benchmark, 31That is, the ratio of the
cumulative regret Rt and
the time step t.

as it quantifies the quality of the optimization of the objective func-
tion f . Table 3.2 provides the average regrets at the end of the ex-
periment for each evaluated solution on the WLAN topologies T1, T2
and T3. The results show that our approach (GM+NGTS) consistently
outperforms the control strategies DEFAULT and ϵ-GREEDY as well as
the state-of-the-art strategy UNIF+GTS. In fact, the latter systematically
achieves the poorest performance in our complex simulations with
an objective function focused on starvations. This can be explained
by a naive exploration of the configuration space C, through a uni-
form sampling of new configurations, and by the unrealistic priors
assumed for the distribution of each WLAN configuration. Conversely,
GM+GTS, which only differs from UNIF+GTS because it uses our Gaus-
sian mixture sampling strategy, is consistently getting good results.
This highlights the benefits of our sampler. Finally, relaxing the as-
sumption that is made by TS with Gaussian priors used by UNIF+GTS

(which enforces each configuration to have the same fixed variance),
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can bring additional benefits. In fact, in two out of three experiments,
using TS with our proposed Normal-Gamma priors (GM+NGTS) allows
for an even lower regret.

Table 3.2: Average regret Rt/t ± its standard error at the end of the simula-
tion of the three considered WLAN topologies, with the five evalu-
ated solutions. For each topology (column), the best metric is in
bold text.

Solution T1 T2 T3

DEFAULT 0.492 ± 0.006 0.376 ± 0.008 0.530 ± 0.001

ϵ-GREEDY 0.593 ± 0.009 0.458 ± 0.011 0.469 ± 0.006

UNIF+GTS 0.910 ± 0.002 0.773 ± 0.002 0.631 ± 0.002

GM+GTS 0.462 ± 0.006 0.354 ± 0.007 0.383 ± 0.003

GM+NGTS 0.476 ± 0.008 0.313 ± 0.007 0.351 ± 0.004

We now focus on network oriented metrics. We start our perfor-
mance analysis by studying the evolution of the number of starving
STAs with each strategy. Recall that starving STAs represent a major
issue for WLANs and an efficient WLAN configuration should be able
to remove as many starving STAs as possible. Figure 3.5 shows the
corresponding results delivered by the simulator ns-3. We notice that
with DEFAULT (i.e. with the default setting of TX_PWR and OBSS_PD), the
number of STAs in starvation is in average at 8 for T1, 6 for T2 and 15

for T3. All the other strategies manage to rapidly reduce the number
of starving STAs across the three examples except for UNIF+GTS that
consistently obtains worse values than DEFAULT. The results also show
that GM-GTS significantly outperforms UNIF+GTS suggesting the impor-
tance of the sampling process in the overall optimization of f . Finally,
Figure 3.5 indicates that our solution, denoted by GM+NGTS, leads to
the removal of a proportion of starving STAs, which goes up to 40%
when compared to DEFAULT on T3.

Figure 3.5: Evolution of the number of STAs starving of throughput for the
five considered strategies on T1, T2 and T3.

To further illustrate the gain that a better setting of the TX_PWR and
OBSS_PD parameter values can have on the WLAN, we represent in
Figure 3.6 the throughput of each STA for both the default config-
uration of 802.11ax and the one found by our solution on T2. Fig-
ure 3.6 shows that all STAs achieve higher throughputs when using
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the configuration found by our solution. More importantly, our solu-
tion enables most STAs to operate above the starvation threshold and
only 3 of them (STA 4, STA 8 and STA 9) are occasionally experiencing
starvation of throughput. Conversely, in the case of the default con-
figuration, most STAs are at least periodically experiencing starvation.

Figure 3.6: Throughputs obtained by STAs under the default 802.11 configu-
ration (left) and the configuration found by our solution (right)
on T2. Each STA throughput distribution is shown as a boxplot,
with a red horizontal bar designating the starvation threshold: if
the throughput is below, the STA is considered as starving.

We now explore the influence of our solution on the fairness that re-
flects how uniformly the throughputs are distributed among the STAs.
For that purpose, we use Jain’s index [60]. Figure 3.7 represents the
corresponding results for each topology. Observe that our solution
leads to an increase of the fairness when compared to DEFAULT and
brings a substantial gain from the fairness associated with ϵ-GREEDY

or UNIF-GTS.

Figure 3.7: Evolution of the fairness between the STAs throughputs for the
five considered strategies on T1, T2 and T3.

Eventually, for the sake of completeness, we study the influence of
all solutions over the aggregate throughput of the WLAN. Figure 3.8
reports the corresponding results. We observe that out of the 5 consid-
ered strategies, ϵ-GREEDY is the one that leads to the largest improve-
ment in terms of aggregate throughput. ϵ-GREEDY performs respec-
tively around 14% and 16% better than our method on the topologies
T2 and T3 while attaining similar values for T1. However, keep in
mind that maximizing the aggregate throughput is only a secondary
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objective in a WLAN and that it is often done at the expense of fair-
ness and the number of starving STAs (see Figures 3.5 and 3.7). Note
that for topology T1, our proposed solution maintains the aggregate
throughput near its value obtained with the default setting of TX_PWR
and OBSS_PD. For topologies T2 and T3, our solution is able to signifi-
cantly increase the aggregate throughput when compared to DEFAULT.
Overall, these results indicate that there is no downside for the aggre-
gate throughput to the significant benefits brought by our solution.

Figure 3.8: Evolution of the aggregate throughput of the WLAN for the five
considered strategies on T1, T2 and T3.

Overall, within 2,400 iterations, representing 120 seconds of sim-
ulated time and a very limited exploration of the high-dimensional
space C, our solution was always able to significantly reduce the num-
ber of starving STAs and to increase fairness between the throughputs
of STAs without decreasing the aggregate throughput of the WLAN.
Note that better results may be achieved with longer simulations.
Overall, our solution consistently brings a significant improvement
on every performance metrics when compared to the legacy default
configuration of 802.11. It is able to remove 14%, 63% and 73% of the
conflicts occurring with the default configuration in topologies T1,
T2 and T3 respectively. We believe that these results demonstrate the
capacity of a tailored MAB solution at improving the spatial reuse of
radio channels in WLANs.

3.4.3 Robustness Study

3.4.3.1 Variations of the Workload

In the previous section, we showed that our solution was able to in-
crease the spatial reuse of WLANs by finding an appropriate config-
uration of TX_PWR and OBSS_PD when WLANs are facing a high but
constant workload (see Section 3.1 for an enumeration of the assump-
tions regarding the WLAN). However, the workload within a WLAN

may undergo variations with some STAs demanding more or less traf-
fic to be exchanged over time. Thus, a good configuration of TX_PWR
and OBSS_PD must be robust to these potential workload variations,
by consistently bringing positive improvements to key performance
metrics, when compared to the default configuration of 802.11.
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To study the robustness of our solution, we consider T3, our dens-
est topology, and we let its STAs run two different applications with
different throughputs:

(i) an application requiring as much throughput as the STA can get,

(ii) an application requiring 1% of the attainable throughput of the
STA.

In this section, we designate STAs running application of type (i) as
“active” STAs. By controlling the proportion p of active STAs, we let
the workload of the WLAN vary. In order to evaluate the robustness
of a strategy, we proceed as follows. First, we deploy the considered
strategy on the WLAN with p = 2/3 for a first run of 90 seconds. At
the end of this run, we obtain the configuration x∗ recommended by
the strategy. Recall that x∗ refers to a set of values for TX_PWR and
OBSS_PD at each AP. Then, we study the performance of x∗ under
different levels of workload. We configure the APs according to x∗

and we run simulations on four different scenarios: p = 0, 1/3, 2/3
and 1. Each of these simulations lasts 30 seconds so that the WLAN

configured with x∗ can converge to a stable state. At the end of each
30 seconds simulation, the reward, the fairness, and the aggregate
throughput of the WLAN are collected.

We study the robustness of three different strategies:

(i) DEFAULT, the legacy default configuration of 802.11: (TX_PWR, OBSS_PD)
= (20 dBm, -82 dBm) for each AP,

(ii) UNIF+GTS, the solution proposed by [30] and described in Sec-
tion 2.1,

(iii) GM+NGTS, our proposed strategy using the optimizer described
in Section 3.3 and the sampler described in Section 3.4.1.

Table 3.3 reports how a recommended WLAN configuration behaves
under different workloads according to some performance metrics,
along with their standard errors, provided by the ns-3 simulator. For
the lowest workload considered (p = 0), the best configuration is
the default configuration of 802.11, with a reward near its maximal
value. The configuration recommended by GM+NGTS is barely inferior
with relative differences of -1.0%, -1.1% and -0.4% for the reward, the
fairness and the aggregate throughput, respectively. The configura-
tion recommended by UNIF+GTS also behaves properly, although the
relative differences with the DEFAULT are higher. With p = 1

3 , our solu-
tion provides better values for each performance metrics considered,
although the workload is lower than the one used to learn the recom-
mended configuration. When compared to DEFAULT, the reward, the
fairness and the aggregate throughput are greater by 14.8%, 3.8% and
27.4%, respectively. Although the gap between DEFAULT and UNIF+GTS
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Table 3.3: Confidence intervals for the reward, the fairness and the aggregate
throughput (in Mbps) obtained by DEFAULT, UNIF+GTS and GM+NGTS

under different proportions of active STAs.

Active STAs Metric DEFAULT UNIF+GTS GM+NGTS

p = 0
Reward 0.98 ± 0.01 0.82 ± 0.01 0.97 ± 0.01

Fairness 0.95 ± 0.01 0.79 ± 0.01 0.94 ± 0.01

Through. 29.04 ± 0.03 25.22 ± 0.15 28.91 ± 0.17

p = 1
3

Reward 0.81 ± 0.04 0.71 ± 0.03 0.93 ± 0.02
Fairness 0.26 ± 0.03 0.23 ± 0.02 0.27 ± 0.04
Through. 562.0 ± 38 678.6 ± 70 716.1 ± 80

p = 2
3

Reward 0.61 ± 0.04 0.61 ± 0.02 0.84 ± 0.03
Fairness 0.37 ± 0.03 0.38 ± 0.02 0.5 ± 0.04
Through. 725.1 ± 27 1079 ± 65 1138 ± 72

p = 1
Reward 0.5 ± 0.05 0.59 ± 0.02 0.86 ± 0.02
Fairness 0.48 ± 0.04 0.54 ± 0.01 0.75 ± 0.01
Through. 842.5 ± 10 1510 ± 43 1468 ± 26

is reduced, the former still performs better than the latter for this
workload, except on the aggregate throughput. For p = 2/3, we ob-
serve the same dynamics: the relative difference between GM+NGTS and
DEFAULT keeps increasing and UNIF+GTS seems equivalent to DEFAULT

in regards to the reward and the fairness, except on the aggregate
throughput where UNIF+GTS is better. Eventually, even with a higher
workload than the one used for the learning of the recommended
configuration (p = 1), our proposed solution consistently performs
better than DEFAULT with relative differences of +72.0%, +56.3% and
+74.3% for the reward, the fairness and the aggregate throughput, re-
spectively. The configuration recommended by UNIF+GTS outperforms
DEFAULT and provides the best aggregate throughput for this scenario.
However, its reward is still significantly lower than the one obtained
by GM+NGTS.

Based on these numerical results, we observe that the configura-
tion recommended by our proposed solution ensures efficient perfor-
mance metrics even when the WLAN workload is moved to higher
or lower levels than the one used during the learning phase. Over-
all, GM+NGTS is found to be more robust than the state-of-the-art so-
lution UNIF+GTS and significantly better than the default configura-
tion DEFAULT. Once again, we can see that, except for the case p = 1,
having the best reward means having the best values regarding the
other performance metrics. This suggests that our reward function is
a good quality criterion. As a side note, and not surprisingly, we ob-
serve through Table 3.3 that, in general, the higher the workload, the
lower the reward. Therefore, we recommend to perform the learning
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phase under levels of workload as high as possible for the studied
WLAN.

3.4.3.2 Variations of the Starvation Threshold

We now study the impact of α, the starvation threshold parameter, on
the considered strategies. Recall that the value of this parameter re-
flects the level of requirements on STAs’ performance and is decided
by the network administrator. In Figure 3.9, we show the confidence
intervals for the cumulative regret at the end of a 120 seconds last-
ing simulation on the three considered topologies T1, T2 and T3 for
multiple credible values of α.

Figure 3.9: Cumulative regret at the end of the simulation w.r.t. α for the
five considered strategies on T1, T2 and T3.

Since the starvation threshold of any STA is proportional to α, the
larger α, the more likely STAs are considered in a starvation situation,
and ultimately, the more difficult it is for the optimizer to collect large
rewards. This explains why the cumulative regret tends to increase
for larger values of α as shown by Figure 3.9. Overall, we observe
that for all the considered topologies and values of α, our proposed
solution is the most successful at minimizing the cumulative regret.
This suggests that the superiority of our proposed solution is robust
to changes in the starvation threshold parameter.

3.4.4 Summary

In this Section 3.4, we presented a strategy based on a Gaussian mix-
ture to subsample the high-dimensional configuration space C. This
subsampling strategy allows the optimization of an ad-hoc objective
function f through the use of the MAB framework and TS. The result-
ing solution demonstrated better empirical performance than control
and state-of-the-art strategies for the spatial reuse problem in WLANs,
on non-trivial scenarios with a well-recognized network simulator. It
also demonstrated robustness against the variation of two important
WLAN parameters: the workload and the starvation threshold.

This approach also has limitations of different types:

(i) Design: the ad-hoc objective function f experiences a threshold
effect anytime the starvation status of a STA changes.
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(ii) Theoretical: the problem breakdown described in Section 3.2.2
lacks some theoretical motivation.

(iii) Theoretical: the subsampling strategy also lacks theoretical anal-
ysis with respect to its convergence and optimality properties.

(iv) Design: the proposed approach, although demonstrating good
empirical performance, has many hyperparameters that must
be carefully set, namely the Lipschitz constant L, the number
of Gaussian distributions in the mixture K and the exploration
rate ϵ.

(v) Evaluation: a static Modulation Coding Scheme (MCS) has been
considered in the simulations, the performance with a dynamic
MCS remains unknown.

(vi) Evaluation: the considered WLAN topologies are ad-hoc and the
traffic is assumed one-directional. Adding some real-world de-
ployments would strengthen the empirical results.

(vii) Evaluation: there is a trade-off between the quality of the esti-
mation of the objective function by ns-3 and the cost of making
an objective function call. In fact, the larger the test duration, the
less noisy and the more accurate the estimation of the objective
function. Unfortunately, a large test duration also means that
less function calls can be made in a given time interval. This
trade-off could be interesting to investigate.

3.5 exploration with a mixture of hyperspheres

We now address some of the limitations listed in Section 3.4.4, namely (v)
and (vi), by introducing more complex WLAN topologies closer to real-
world deployments. We also propose another subsampling strategy
better fitted to the resulting more complex evaluation context.

3.5.1 Subsampling with Hyperspheres

Unlike the subsampling strategy using a Gaussian mixture, described
in Section 3.4, we propose to explore the configuration space C by
subsampling on the surface of multiple hyperspheres. As a matter
of fact, the use of multivariate Gaussian distributions is hampered by
their relative sensitivity to the number of dimensions. When the num-
ber of dimensions is small, most of their density is centered around
the mean value (i.e., within the standard deviation-ellipsoid) and, in
our case, this translates to exploring configurations that are similar
to the centers of the distributions. On the contrary, in high dimen-
sions, a large part of the probability density is shifted to areas that
are far away from the centers [68]. More importantly, even in lower-[68] Wang et al. (2015),

“Confidence analysis of
standard deviational

ellipse and its extension
into higher dimensional

Euclidean space”
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dimensional spaces, Assumption 3.1 could be better exploited. In fact,
a significant fraction of the samples made by the mixture lie too close
to the centers of the Gaussians. To overcome these inconveniences, we
let our sampler use a mixture of hyperspheres. Sampling uniformly
Zxi,λi

on a surface of an hypersphere of radius λi, centered on a con-
figuration xi can be done with

Zxi,λi
= xi +

v

||v||2
λi, (3.11)

with v a d-dimensional standard normal random vector.
Similarly to our first subsampling approach, in order to concur-

rently explore multiple promising areas within C, we consider a mix-
ture of K hypersphere distributions, wherein each hypersphere is
centered on one of the K best configurations explored so far by the
sampler. At first, the mixture is initialized with two hyperspheres,
each of them representing a starting point for our algorithm. The
first hypersphere is initially centered on the default configuration of
802.11, namely (TX_PWR, OBSS_PD) = (20, -82) dBm for all APs. For the
second starting point, its location is based on the conflict graph be-
tween APs: we simply decrease the TX_PWR of APs in a round-robin
fashion until the conflict graph of APs reaches an average degree that
is less than 1. By doing so, we ensure spatial diversity between the
two starting points with the aim of speeding up the search when
adequate parameter settings are mostly far from the default configu-
ration.

Algorithm 3.3 Hypersphere Mixture-Based Sampler
Input: L, number of hyperspheres K, observation (xi, yi)

1: Retrieve history H and time step t

2: Add the new observation (xi, yi) to H
3: t← t+ 1

4: Find the K (xj ,µ
t
j) pairs in H of largest expected rewards µtj

5: µt∗ ← maxj µ
t
j

6: M ← ∅
7: for j ← 1 to K do
8: Gj =

(
xi,

µt
∗+L−µt

j

L

)
9: Add

(
Gj ,µ

t
j

)
to M

10: end for
11: Sample a new configuration x from mixture M
12: Transmit x to the optimizer

Algorithm 3.3 summarizes the behavior of the sampler based on a
mixture of hyperspheres. As one may guess, it mainly differs from
Algorithm 3.2 by line 9, where an hypersphere is initialized instead
of a Gaussian distribution.
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3.5.2 Numerical Results

3.5.2.1 Experimental Settings

To address some of the experimental limitations raised at the end of
Section 3.4, let us describe the new experimental settings. To evaluate
the performance of our solutions, we consider three WLAN topologies
denoted T1, T2 and T3 and depicted in Figure 3.10. T1 is a simple
example composed of six APs and a dozen of STAs. T2 mimics the
topology of the highly-dense WLAN deployed by Cisco on the 3rd
floor of its office in San Francisco [69]. To account for APs from lower[69] Meraki (2022), High

Density Wi-Fi
Deployments

and upper floors, we replicate the Cisco deployment on three floors
and we run a simple channel allocation algorithm before selecting
the most crowded channel to obtain T2. The resulting WLAN has a
total of 10 APs with an average of 5 STAs per AP, which are uniformly
distributed within its vicinity (i.e. the intersection between its radio
range at 20 dBm and its Voronoï cell in the WLAN). T3 is very similar
to T2 as it only differs by the locations of STAs. On average, STAs
from T3 are much further away from their AP than in T2. As a matter
of fact, STAs in T3 are about 3 times closer to their AP than to the
closest competing AP. In the case of T2, this ratio is exceeding 9. This
significantly compounds the complexity of T3. In a sense, T3 can be
seen as a case in which the association between APs and STAs is far
from optimal, or alternately, a case in which the number of available
radio channels is too limited. In practice, this may turn to be the case
thus making T3 an interesting example but harder than T2 to study.

We set the rate of data streams between every AP and each of their
STA at 50 Mbps downstream and 3.33 Mbps upstream. This asym-
metry reflects that STAs are typically much more downloading than
uploading. Additionally, with this level of workload, T1, T2, and T3
are all guaranteed to be in saturation: their APs are unable to properly
serve all the needs of their STAs. Hence, we resort to the configuration
of APs through the setting of their TX_PWR and OBSS_PD parameters to
increase the Quality of Service (QoS) of the WLANs.

We compare the performance of five strategies:

(i) DEFAULT: the default configuration, namely (TX_PWR, OBSS_PD) =
(20, -82) dBm for all APs,

(ii) WCNC’15: a dynamic sensitivity threshold solution [25] described
in Section 2.1,

(iii) UNIF+GTS: a MAB solution [30] also described in Section 2.1,

(iv) GM+NGTS: the solution using the Gaussian mixture sampler (de-
scribed in Section 3.4),

(v) HM+NGTS: the solution using the sampler based on a mixture of
hyperspheres.
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Figure 3.10: Topologies T1, T2 and T3. APs are shown as red triangles, con-
flicts between APs as double-headed arrows, and STAs as colored
dots. Their colors show how frequently a given STA has a rea-
sonable throughput (i.e. is not in starvation) with the 802.11ax
default configuration. A cool color means that the STA is often
in starvation, while a warm color denotes a STA that is never in
such a situation.

Note that all these strategies were amended to use the objective
function defined in Equation 3.3 and to apply their optimization only
for the settings of the APs.

We implemented all the aforementioned strategies in the open-
source network simulator ns-3 [31]. Table 3.4 reports the settings we
used. Note that, compared to Section 3.4, we have increased the real-
ism of our simulations by incorporating the mechanism of rate adap-
tation that let APs and STAs dynamically vary the speed of their wire-
less links (through the use of different MCS) in response to the quality
of the received signal.

All our simulations last 120 seconds. To account for the potential
high variance of the studied performance parameters, we replicate
each simulation 22 times and we represent in the corresponding fig-
ures the first, second, and third quartiles. If a metric is subject to large
variations, we extract and represent its trend using an exponential
moving average in place of the raw data. Finally, to enable the repro-
ducibility of all our results, we made available (in open-source) all the
code we used for this section, including the three WLANs topologies
and the implementations of the different strategies.32 32https:

//github.com/abardou/

IMAB-RING-SR-AP-802.

11AX

https://github.com/abardou/IMAB-RING-SR-AP-802.11AX
https://github.com/abardou/IMAB-RING-SR-AP-802.11AX
https://github.com/abardou/IMAB-RING-SR-AP-802.11AX
https://github.com/abardou/IMAB-RING-SR-AP-802.11AX
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Table 3.4: ns-3 parameters for the evaluation of the HM-based sampler.

Parameter Value

ns-3 version 3.31

Number of repetitions 22

Simulation duration 120 s
Duration of an iteration 75 ms
Packet size 1,464 Bytes
Downlink traffic 50.0 Mbps
Uplink traffic 3.33 Mbps
Channel size 20 MHz
Frequency band 5 GHz
A-MDPU Aggregation 4

Path loss LogDistancePropagationLossModel

Wi-Fi Manager IdealWifiManager

3.5.2.2 Simulation Results

As in Section 3.4.2.2, we start by focusing on the most important
metric, namely the average regret, along with its standard errors on
Table 3.5. Although our first introduced solution GM+NGTS (see Sec-
tion 3.4) still provides competitive performance, the use of more com-
plex scenarios degraded its relative performance to state-of-the-art
strategies. Our new proposed solution HM+NGTS, which uses the sam-
pler based on a mixture of hyperspheres, consistently provides signif-
icant lower average regrets than the other strategies.

Table 3.5: Average regret Rt/t ± its standard error at the end of the simula-
tion of the three considered WLAN topologies, with the five evalu-
ated solutions. For each topology (column), the best metric is in
bold text.

Solution T1 T2 T3

DEFAULT 0.248 ± 0.001 0.632 ± 0.001 0.659 ± 0.003

WCNC’15 0.200 ± 0.001 0.438 ± 0.001 0.580 ± 0.001

UNIF+GTS 0.324 ± 0.003 0.399 ± 0.001 0.751 ± 0.001

GM+NGTS 0.243 ± 0.004 0.472 ± 0.021 0.642 ± 0.005

HM+NGTS 0.109 ± 0.003 0.237 ± 0.011 0.428 ± 0.004

This better performance of HM-NGTS can also be observed on network-
oriented metrics. Figure 3.11 reports the number of STAs in starvation
for the three considered topologies. HM-NGTS manages to significantly
reduce the number of STAs in starvation, to even address the problem
completely in T1. As for T2, the number of STAs is reduced by 80%
when compared to DEFAULT. Even on T3 that constitutes a much more
complex problem than T2, this reduction is still of 43%.



3.6 summary 51

Figure 3.11: Evolution of the number of STAs in starvation for the five con-
sidered strategies on T1, T2 and T3.

Finally, we focus on the measured throughput of the WLAN under
the considered solutions. Figure 3.12 reports the results. On this per-
formance metric also, HM-NGTS shows a significant improvement over
DEFAULT, the state-of-the-art strategies and our first introduced solu-
tion GM-NGTS.

Figure 3.12: Evolution of the throughput of the WLAN for the five considered
strategies on T1, T2 and T3.

Overall, in all the examples we explored, our solution never failed
to quickly discover a configuration of TX_PWR and OBSS_PD that signifi-
cantly reduces the number of STAs in starvation, improves the fairness
among STAs and increases the cumulated throughput. Interestingly,
the configuration found by our solution consists, in general, in de-
creasing TX_PWR and increasing OBSS_PD at each AP. Intuitively this
means that, at the end of the optimization, most APs tend to emit at
a lower level but allow themselves to emit in more noised conditions.
This dual change the favors spatial reuse of the radio channel with
more simultaneous transmissions from nearby APs.

3.6 summary

In this chapter, we proposed two ad-hoc solutions to the spatial reuse
problem in WLANs. They are both based on the MAB framework, and
they address the very large cardinality of the configuration space C
by subsampling it to build a reservoir of promising configurations.
Concurrently, they use Thompson sampling to identify the best con-
figuration in the reservoir. The first solution subsamples C with a
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Gaussian mixture, while the second uses a mixture of hyperspheres.
Both of them were evaluated through simulation, using ns-3 on realis-
tic scenarios involving complex mechanisms of the 802.11 ecosystem.
They demonstrated competitive performance against state-of-the-art
and control solutions on every performance metric considered. They
were particularly efficient at improving the QoS of starving STAs. The
first solution was presented at an international conference special-
ized in wireless communications [70] and extended in a special issue[70] Bardou et al. (2021),

“Improving the Spatial
Reuse in IEEE 802.11ax

WLANs: A Multi-Armed
Bandit Approach”

of a peer-reviewed journal [71], while the second solution was pub-

[71] Bardou et al. (2022),
“Analysis of a

Multi-Armed Bandit
solution to improve the

spatial reuse of
next-generation WLANs”

lished in another peer-reviewed journal specialized in computer net-
works [72]. Note that the hypersphere sampler was also presented at

[72] Bardou et al. (2023),
“Mitigating starvation in

dense WLANs: A
multi-armed Bandit

Solution”

a national conference on operations research [73].

[73] Bardou et al. (2022),
“Multi-Armed Bandit
Algorithm for Spatial

Reuse in WLANs:
Minimizing Stations in

Starvation”

Although we believe these solutions address the spatial reuse prob-
lem in WLANs in an innovative manner, some limitations raised in
Section 3.4.4 remain, mainly regarding the design of the solution and
the theoretical motivations underpinning it:

(i) Design: the ad-hoc objective function f experiences a threshold
effect anytime the starvation status of a STA changes,

(ii) Theoretical: the problem breakdown described in Section 3.2.2
lacks some theoretical motivation,

(iii) Theoretical: the subsampling strategies also lack theoretical anal-
ysis with respect to their convergence and optimality properties,

(iv) Design: the proposed approaches have many hyperparameters
that must be carefully set

(v) Evaluation: the trade-off between the quality of the estimation
of the objective function and the number of function calls in a
given time interval remains to be discussed.

We address most of these limitations in the next chapter, by propos-
ing a more theoretically grounded method to address the spatial
reuse problem in WLANs.
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Outline. In this chapter, we address the spatial reuse problem in
a Wireless Local Area Network (WLAN) using Bayesian Optimiza-
tion (BO) based on a Gaussian Process (GP) (see Section 2.2.4). We
tackle the large dimensionality of the configuration space C by ex-
ploiting the natural additive decomposition of the objective function
f . We end up with a decentralized Bayesian optimization algorithm,
called INSPIRE, that offers minimax guarantee on the maximization
of f under a regularity assumption. We evaluate INSPIRE on the net-
work simulator ns-3 with realistic WLAN scenarios. The obtained re-
sults show significant improvement over state-of-the-art methods for
the spatial reuse problem, including the solutions developed in Chap-
ter 3. This indicates that BO is a very promising approach for the
decentralized performance optimization in computer networks.

4.1 motivations

Although the solutions proposed in Chapter 3 demonstrated good
empirical performance, their many hyperparameters and our lack
of understanding regarding their theoretical properties (convergence,
optimality) can be considered as major drawbacks. Note that this is
also the case for all the data-driven state-of-the-art strategies consid-
ered in Section 2.1.2. Thus, we consider that proposing a solution to
the spatial reuse problem in WLANs33 that has theoretical guarantee 33Other than the

analytical approaches
described in Section 2.1.1
that do not scale and / or
are too coarse-grained.

is of critical importance for the community.
Another motivation is to improve the domain of applicability of

our proposed solution. In fact, the centralized approaches developed
in Chapter 3 are systematically discarded in all the scenarios that
cannot afford a centralized entity operating as a controller for the
WLAN. A decentralized solution, on the other hand, can be deployed
in every scenario. In addition, it is also more in line with to the vast
majority of network algorithms that constitute the WLAN ecosystem,
which are also decentralized.

4.2 problem formulation

4.2.1 System Modeling

We consider a system very similar to the one described in Chapter 3.
Let us quickly recall vocabulary and introduce some notations about

53



54 decentralized bayesian optimization for 802 .11

the studied WLAN. A wireless device, such as a phone or a computer,
is called a Station (STA) and is necessarily associated with an Access
Point (AP) that serves as a gateway to the Internet. In this chapter, we
study a WLAN composed of n APs. Each AP i has a set of associated
STAs in the set Si, and we denote nS the total number of STAs in the
WLAN, that is nS =

∑n
i=1 |Si|. Eventually, we denote Ni the APs that

are within the communication range of AP i. Note that AP i itself be-
longs to Ni. We refer to Ni as the surroundings, or the neighborhood,
of AP i.

We make no assumptions on the WLAN, including on the specific
arrangement of its APs and STAs, other than the three detailed below.

Assumption 4.1. Every AP i is able to exchange control frames (possibly
through its beacon frames) with its surrounding APs (i.e., the ones in Ni).

By the same token, we assume that at least one AP i has another AP

in its communication range (i.e., ∃i ∈ [1,N ],Ni ̸= {i}), otherwise the
spatial reuse of the radio channel would already be at its apex.

Assumption 4.2. The n APs have their TX_PWR and OBSS_PD parameters
configurable (as defined by the 802.11ax amendment).

Assumption 4.3. Each AP can periodically run performance tests under a
configuration x ∈ C and obtain, in return, the average throughput attained
by each of its STAs over a short time interval ∆t.

We denote T (x) = (T1(x), · · · ,TnS (x)) the mean throughputs at-
tained by the STAs and reported by the performance tests.

Our objective, as in the previous chapter, is to discover the opti-
mal configuration x∗ = argmaxx∈C f(x), according to the objective
function f that remains to be defined. Note that this configuration x∗

must be discovered in a decentralized fashion.

4.2.2 Objective Function and its Decomposition

To quantify the quality of a given configuration f we exploit T (x),
the performance tests that can periodically run on each AP as stated
by Assumption 4.3. As in Chapter 3, we consider the Proportional
Fairness (PF) PF(x) =

∏nS
i=1 Ti(x) since it provides a natural scalariza-

tion of the multi-objective problem of fairly optimizing the through-
put within a WLAN. However, to avoid introducing threshold effects
that may make the optimization problem harder, we do not seek to
enforce the constraint (3.2) introduced in Chapter 3. To turn the PF

into a much more pleasant closed-form to optimize, we consider its
logarithm and we set

f(x) = logPF(x) =
nS∑
i=1

log Ti(x). (4.1)
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Note that in the previous chapter, we defined an objective function
over a discrete configuration space C (see Section 3.2) that provides a
strong incentive to reduce starvations in the WLAN. In this chapter, we
assume a compact configuration space C = {[−82,−62]× [1, 21]}n to
avoid making restrictive assumptions about the discretization of the
configuration space. Note that, even with a compact configuration
space, the objective function defined in Section 3.2.1 induces disconti-
nuities through thresholds effects (e.g. whenever the starvation status
of a STA changes). This new definition (4.1) does not provide such a
strong incentive to reduce starvations, but it is continuous and more
likely to support regularity assumptions.

Observe that an AP cannot compute f as defined in (4.1) as it should
have access to every performance test realized in the WLAN in a cen-
tralized fashion. This goes against the development of a decentral-
ized protocol. Therefore, we consider another function, denoted f (i)

for each AP i, that must be computable with local information only.34 34That is, information
accessible at a single AP.In other words, we seek an additive decomposition of f in n factors,

that is f =
∑n

i=1 f
(i), so that each AP i can focus on the optimization

of a single factor f (i).
A natural decomposition of (4.1) is to set f (i)(x) =

∑
j∈Si

log Tj(x),
that is, the local objective function of AP i is built by aggregating
the performance of its associated STAs in Si. However, this definition
gives each AP a strong incentive to act selfishly. In fact, under such def-
inition, maximizing f (i) is very likely to lead a set of APs to strongly
increase their TX_PWR to favor their STAs at the expense of the Quality
of Service (QoS) of neighboring devices. Although this may not be
considered as a major drawback since some decentralized optimiza-
tion techniques are designed to handle this case (e.g. see [74]), it is [74] Mota et al. (2014),

“Distributed optimization
with local domains:
Applications in MPC and
network flows”

very likely to slow down the optimization process.
To address this problem, recall that Assumption 4.1 allows an AP

i to communicate with APs in its neighborhood, that is APs in Ni.
Therefore, we define the factor function for AP i as

f (i)(x) =
∑
j∈Ni

1

|Nj |
∑
k∈Sj

log Tk(x). (4.2)

Intuitively, (4.2) builds the local objective function of AP i as a
weighted sum of the performance of all the STAs associated with APs
in Ni. Since the performance of the STAs associated with an AP j ap-
pear in exactly Nj factors, we introduce the weights 1/|Nj | to ensure
that (f1(x), · · · , fn(x)) is indeed an additive decomposition of the
global objective function f .

4.2.3 Gaussian Processes as Surrogates

We propose that each AP i uses a GP as a surrogate model for its local
objective function f (i), as described in Section 2.2.4. The surrogate
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model of AP i is based only on the settings of AP i and its neighboring
APs, denoted by xNi .

Assumption 4.4. ∀i ∈ [1,n], the factor function f (i) is a GP
(
0, k(i)(xNi ,x

′
Ni
)
)

.

Choosing the covariance function is a critical step when designing
a GP, as it determines some key features such as its isotropy and
smoothness. Since little information is known about each factor func-
tion f (i), we choose k(i) to be a Matérn covariance function [75][75] Genton (2001),

“Classes of kernels for
machine learning: a

statistics perspective”
Mν(x,x

′) = s2
21−ν

Γ(ν)

(√
2ν
||x−x′||2

ρ

)ν

Kν

(√
2ν
||x−x′||2

ρ

)
(4.3)

where ν, s and ρ are hyperparameters, while Γ andKν are the Gamma
function and the modified Bessel function of the second type, respec-
tively (see Chapter 30 of [76] for more details about the two func-[76] Bronson et al. (2014),

Schaum’s outline of
differential equations

tions).
Note that (4.3) is a function of ||x−x′||2. This guarantees the isotropy

of the resulting GP. Additionally, note that the ν hyperparameter of-
fers a direct control onto the differentiability (in the mean-square
sense) of the GP. As a matter of fact, with the Matérn covariance
function Mν , the resulting GP is ⌈ν⌉ − 1-times differentiable in the
mean-square sense [77]. Since we do not have information about the[77] Santner et al. (2003),

The design and analysis
of computer
experiments

smoothness of f , we set ν = 3/2 so the resulting GP is only once differ-
entiable. The two other hyperparameters s and ρ are set by Maximum
Likelihood Estimation (MLE) throughout the optimization. We refer
the interested reader to [78] for more details about the engineering[78] Palar et al. (2023),

“On kernel functions for
bi-fidelity Gaussian
process regressions”

of covariance functions. Eventually, note that with ν = 3/2, (4.3) be-
comes

k(i)(x,x′) = s2i

(
1+

√
3||x−x′||2

ρi

)
e
−

√
3||x−x′||2

ρi . (4.4)

As discussed in Section 2.2.4, Bayesian optimization techniques
deal with the exploration-exploitation dilemma through the use of
an acquisition function, that exploits the posterior GP (given the pre-
vious queries X(i) and the observed objective values y(i)) to find a
promising query. Out of the many candidates, we select Expected Im-
provement (EI) because of its low computational overhead. Addition-
ally, it returned the best results in our experiments (see Section 4.4).
The EI acquisition function is

φ
(i)
t (x) = E

[(
f (i)(x)− y(i)∗,t

)+]
(4.5)

with y(i)∗,t = maxj∈[1,t] y
(i)
j and (a)+ = max(0, a).

The formulation (4.5) does not always have a closed form. However
since f (i)(x) is a Gaussian variable, standard calculations (see [55])
show that (4.5) becomes

φ
(i)
t (x) =

(
µ
(i)
t (x)− y(i)∗,t

)
P (z) + σ

(i)
t (x)p(z) (4.6)
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with z =
(
µ
(i)
t (x)− y(i)∗,t

)
/σ(i)t (x), µ(i)t computed with (2.10), σ(i)t

computed with (2.11), p(z) and P (z) the p.d.f and the c.d.f of N (0, 1)
respectively.

4.3 inspire

4.3.1 Optimization of the Acquisition Function

As discussed in Section 2.2.4, a Bayesian optimization algorithm typ-
ically uses a global optimization algorithm such as DIRECT [34] to
optimize its acquisition function at each iteration t. However, these
global optimization algorithms struggle at optimizing functions of
high dimension. To prevent this, as discussed in greater length in
Chapter 6, we choose to exploit gradient descent (generally attributed
to Cauchy [79]), a local optimization algorithm that only offers local [79] Lemaréchal (2012),

“Cauchy and the gradient
method”

optimum guarantees [80] but is able to deal with high-dimensional

[80] Curry (1944), “The
method of steepest descent
for non-linear
minimization problems”

functions. Note that differentiating the closed form (4.6) is trivial.

Proposition 4.1.

∇φ(i)
t (x) = ∇µ(i)t (x)P (z) +∇σ(i)t (x)p(z). (4.7)

Proof.

∇φ(i)
t (x) = ∇

((
µ
(i)
t (x)− y(i)∗,t

)
P (z)

)
+∇

(
σ
(i)
t (x)p(z)

)
= ∇µ(i)t (x)P (z) +

(
µ
(i)
t (x)− y(i)∗,t

)
p(z)∇z

+∇σ(i)t (x)p(z)− σ(i)t (x)zp(z)∇z
(4.8)

= ∇µ(i)t (x)P (z) +∇σ(i)t (x)p(z). (4.9)

The line (4.8) follows from observing that ∇P (z) = p(z)∇z and
that ∇p(z) = −zp(z)∇z, while (4.9) follows from remarking that
σ
(i)
t (x)z = µ

(i)
t (x)− y(i)∗,t .

4.3.2 Consensus Function

In the previous sections, we have described how each AP i computes
its local objective function f (i) and relies on a GP to explore promis-
ing configurations for the APs in Ni. However, more coordination be-
tween APs is required. In fact, by construction, the collection F =

(Nj)1≤j≤n is a cover of the set of APs but not a partition. In fact, if
F had only null intersections,35 then the spatial reuse of the radio 35That is,

∀j, k ∈ [1,n], j ̸=
k,Nj ∩Nk = ∅.

channel would already be at its apex and there would be no need for
improvement.

Figure 4.1 illustrates an example with 5 APs in which the collec-
tion F = (N1, · · · ,N5) exhibits multiple non-null intersections. As
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Figure 4.1: A WLAN represented by a graph with APs depicted as labelled
triangles and STAs as black dots. An edge exists between two APs
when they are in the communication range of each other. We use
different colors to illustrate the surroundings of each AP in F .

a result, most APs will receive a set of different prescriptions for the
configuration of their TX_PWR and OBSS_PD parameters at their next it-
eration. For instance, AP 1 will receive prescriptions from APs 2 and 4

in addition to its own prescription. Since APs can only test one con-
figuration at a time, one of those prescriptions must be chosen, or
preferably, a consensus between them must be reached.

In general, the setting xi of an AP i is involved in the local objective
functions of its neighbors in Ni. Therefore, independently maximiz-
ing each local objective function is very likely to lead to a sub-optimal
situation since, for non-linear optimization problems, individual in-
terests are often not aligned with the global interest (e.g., the famous
Tragedy of the Commons [81]). Without more information on the re-[81] Hardin (2009), “The

Tragedy of the Commons” lationship between the settings of the APs and the measured through-
puts of STAs, it seems difficult to provide an expression for the max-
imal argument of the global objective function f given the maximal
argument of the local objective functions f (i). However, recall that in
our case we have

∑n
i=1 f

(i)(xNi) = f(x). We propose to leverage this
property to provide guarantees, under a regularity assumption.

Assumption 4.5. Each local objective function f (i) is Lipschitz continuous,
with Lipschitz constant Li.

Theorem 4.1. Let
{
f (i)
}
1≤i≤n

be a set of Lipschitz-continuous functions

with Lipschitz constants Li and {x(i)j }i∈Nj be the prescriptions received by
the AP j. Let x̃ be the marginal median of the received set of prescriptions
weighted by the Lipschitz constants36, so that an element x̃j is36The weighted median of

a sample corresponds to
the 50% weighted

percentile.
x̃j = median

({(
x
(i)
j ,Li

)}
i∈Nj

)
. (4.10)
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If ∀i ∈ [1,n], the recommendation of AP i is x(i) = argmaxx f
(i)(x), then

x̃ is a minimax optimum of
∑n

i=1 f
(i)(xNi).

The proof of Theorem 4.1 is provided in Appendix A. Intuitively,
Theorem 4.1 states that the distance |f(x∗)− f(x)| can be bounded
from above, and that the upper bound is tight.37 Furthermore, Theo- 37As far as we know, there

is no lower upper bound
for this quantity using
only the assumed
information about f .

rem 4.1 states that x̃ as defined in (4.10) minimizes this tight upper
bound, making x̃ a minimax optimal. Note that a component x̃j can
be computed by AP j, as it is the median of the recommendations
sent by the neighborhood Nj of AP j. This boils down to compute
the marginal median (also called the component-wise median) of the
received recommendations.

4.3.3 Algorithm and Complexity

Since
∑n

i=1 fi(x) = f(x), we leverage Theorem 4.1 to find a minimax
optimum of the global objective function f .

Algorithm 4.1 INSPIRE run at each AP i

Input: subset Ni of APs
1: Initialize the Gaussian Process GP i

2: while true do
3: Find a prescription x(i) = argmaxx φ

(i)
t (x) by gradient ascent

4: Broadcast x(i) to APs in Ni

5: Receive the prescriptions x(j)i from AP j, j ̸= i, j ∈ Ni

6: Compute the consensus x̃(i) with (4.10)
7: Test x̃(i) for ∆t seconds and compute g(i) by using (4.1) only on

the STAs of AP i

8: Broadcast g(i), |Ni| and x̃(i) to APs in Ni

9: Receive g(j), |Nj | and x̃(j) from AP j, j ̸= i, j ∈ Ni

10: Compute the local objective y(i) with (4.2) and the local config-
uration x̃Ni

11: Add the pattern
(
x̃Ni , y

(i)
)

to GP i

12: end while

Algorithm 4.1 summarizes INSPIRE, our proposed solution. An AP

finds a prescription using its own surrogate model (line 3) and, by in-
teracting only with its neighbors38 reaches a consensus on a promis- 38That is, APs in its

communication range.ing configuration of its parameters thanks to Theorem 4.1 (lines 4-6).
Then, it performs a test of these parameters on the WLAN (line 7), it
computes the performance of its associated STAs in the variable g(i)

and it broadcasts its observations to its neighbors (lines 8-9). Even-
tually, it receives enough information to compute its objective func-
tion (4.2) on line 10 before conditioning its surrogate model with the
new observation on line 11. Overall, Algorithm 4.1 allows to itera-
tively learn and optimize a local objective function quantifying the
quality of a configuration on the spatial reuse of its neighborhood.
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Note that, because we are addressing the spatial reuse problem, we
seek to optimize the PF of the throughputs (T1(x), · · · ,TnS (x)). How-
ever, it is worth noting that INSPIRE could be applied to any objective
function satisfying Assumptions 4.4 and 4.5. This covers many appli-
cations, in wireless networks and beyond. As an example, it seems
to be a promising algorithm to tackle the minimization of the energy
consumption of a network, which is a current challenge in the net-
working community [82–84].[82] Landaluce et al.

(2020), “A review of IoT
sensing applications and

challenges using RFID
and wireless sensor

networks”
[83] Rajendra Prasad P

(2019), “Efficient
performance analysis of

energy aware on demand
routing protocol in mobile

ad-hoc network”
[84] Giordani et al. (2020),
“Non-terrestrial networks
in the 6G era: Challenges

and opportunities”

Contrary to what one might think, the most resource-intensive op-
eration in Algorithm 4.1 is not the inversion, at time step t, of the ma-
trix Kt in (2.10) and (2.11). In fact, if the Cholesky decomposition of
the matrix Kt−1 = LLT is known, the Cholesky decomposition of Kt

is easily obtained and so is K−1
t . The most resource-intensive opera-

tion is the maximization of the acquisition function through gradient
ascent. Since the gradient ascent has a complexity in O

(
ξ−1
)

for a de-
sired accuracy ξ [85], this requires computing O

(
ξ−1
)

matrix-vector

[85] Xie et al. (2020),
“Linear convergence of

adaptive stochastic
gradient descent”

multiplications. The computational complexity of Algorithm 4.1 at
time t is therefore O

(
ξ−1t2

)
. This implies that the real burden to

the execution time of INSPIRE is the time step t. This compels us
to bound the size of the set of queries X and the set of observed val-
ues y in order to find a balance between the amount of collected data
on the WLANs’ performance and configuration and a quick execution
time. In practice, to limit the computational burden, a windowing
method (e.g. sliding window) can be applied to bound the size of
the dataset and so the computational complexity of INSPIRE. We dis-
cuss such an alternative and we evaluate its impact on the empirical
performance of the proposed solution in the following section.

4.4 numerical results

4.4.1 Experimental Settings

To evaluate the ability of INSPIRE at improving the spatial reuse of
a radio channel through the configuration of the TX_PWR and OBSS_PD

parameters, we consider two distinct scenarios.
The first scenario is inspired by the WLAN deployment of Cisco in

their offices in San Francisco, previously discussed in Section 3.5.2.
We use T1 to refer to this WLAN topology, which is illustrated in
Figure 4.2a. T1 exhibits a total of 10 APs and we associate a number
of 5 STAs per AP. The second scenario addresses the case of many
single-AP WLANs deployed and operated independently in a relatively
limited area. This is typically the case in housing units where each
apartment is equipped with its own AP so that the APs are often only
a few meters away from a number of others. More specifically, we
consider a nine-story building with 216 apartments of 25 m² each. We
randomly position an AP within each apartment as well as 4 STAs
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per AP. Then, similarly to the first scenario, we apply a radio channel
allocation algorithm given a total of 18 radio channels, to obtain the
topology of interest denoted by T2. Note that T2 consists of 14 APs
and 56 STAs. Figure 4.2b depicts the topology T2.

(a) (b)

Figure 4.2: Topologies T1 and T2. APs are shown as red triangles, conflicts
between APs as double-headed arrows, and STAs as colored dots.
Their colors show how frequently a given STA has a reasonable
throughput (i.e. is not in starvation) with the 802.11ax default
configuration. A cool color means that the STA is often in starva-
tion, while a warm color denotes a STA that is never in such a
situation.

For each scenario, we consider heavily loaded conditions. APs at-
tempt to transmit frames to each of their associated STAs at a rate
of 50 Mbps while the latter attempt to send their frames to the AP

at a lower rate of 3.33 Mbps. These assumptions are in line with the
downstream traffic largely exceeding the upstream traffic in WLANs.
Given the speed of wireless links in 802.11ax, the buffers of the APs
are likely to be in saturation. More generally, considering APs in sat-
uration represents undoubtedly the most difficult case when dealing
with the spatial reuse of a radio channel. Therefore, if INSPIRE man-
ages to significantly improve the WLANs’ performance under these
circumstances, then it can only do better under normal conditions.

To better appraise the quality of INSPIRE, we also consider a con-
trol strategy, several state-of-the-art solutions which are discussed in
Section 2.1.2 as well as a version of INSPIRE that caps the amount
of collected data with a windowing method. All the considered ap-
proaches are briefly summarized below:

• DEFAULT: every AP keeps its default configuration for the TX_PWR

and OBSS_PD parameters (i.e., (−82, 20) dBm);

• WCNC’15: each AP implements a simple distributed algorithm to
dynamically update its OBSS_PD parameter [25];
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• JNCA’19: each AP solves a Multi-Armed Bandit (MAB) problem
using Thompson sampling to dynamically update their TX_PWR

and OBSS_PD parameters [30];

• GM+NGTS: the solution described in Section 3.4;

• HM+NGTS: the solution described in Section 3.5;

• INSPIRE_LIM: similar to INSPIRE, except that only the last 50

observations are considered to make predictions.

We implemented INSPIRE (based on the open-source GP C++ li-
brary LibGP [86]) as well as the seven strategies described above in[86] Blum (2016), LibGP

the open-source network simulator ns-3 [31]. We report in Table 4.1
the simulation parameters used in the rest of this section. Unlike pre-
vious works (e.g., [8, 25, 28, 30, 70])) with the exception of [26], our
simulations incorporate the mechanism of rate adaptation that let APs
and STAs dynamically vary the speed of their wireless links (through
the use of different Modulation Coding Scheme (MCS)) in response to
the quality of the received signal. This is particularly important for
the sake of our study since changing the value of TX_PWR necessarily
affects the quality of the received signal and thus the MCS. Since our
simulated WLANs take place in buildings, we choose an appropriate
path loss by combining the models ItuR1238 and InternalWallsLoss,
both implemented by ns-3. With these propagation models, the signal
is decreased by an additional attenuation coefficient each time it goes
through a floor or a wall. The attenuation coefficients are respectively
-4 dBm (which is the default value in ItuR1238) and -8 dBm.

Table 4.1: ns-3 parameters for the evaluation of INSPIRE.

Parameter Value

ns-3 version 3.31

Number of repetitions 22

Simulation duration 30 s
Test duration (∆t) 75 ms
Packet size 1,464 bytes
Downlink traffic 50.0 Mbps
Uplink traffic 3.33 Mbps
Channel size 20 MHz
Frequency band 5 GHz
A-MDPU Aggregation 4

Path loss HybridBuildings (ItuR1238
+ InternalWallsLoss)

Wi-Fi Manager IdealWifiManager

We instrumented ns-3 to collect and compute a number of perfor-
mance metrics. At the end of each iteration, the quality of the spatial
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reuse is assessed with (4.1), whereas the evaluated strategies inter-
nally use the local objective function defined in (4.2). Then, we com-
pute the classical performance metrics already discussed in Chapter 3:
the average regret (with a normalized version of the global objective
function( 4.1), the number of starving STAs, which we define as STAs
experiencing a very low throughput (namely, less than 10% of their
attainable throughput) and the cumulated throughput, which simply
sums all STAs’ throughput. Additionally, we measure the execution
time of the solutions.

Each simulation lasts 30 seconds and we replicate them indepen-
dently 22 times to obtain and visualize their first, second, and third
quartiles. When the quartiles of a performance metric vary too much
within a single simulation, we apply an exponential moving average
to extract the underlying trends of the quartiles sequences. The met-
rics are collected throughout the whole duration of the simulation. At
the end of each iteration, we compute all the performance metrics and
then we refer to the current strategy to decide what will be the next
configuration of the WLANs. Since an iteration lasts ∆t = 75 ms and
a simulation lasts 30 seconds, the quality of each solution is assessed
over 400 iterations.

4.4.2 Performance Metrics

Table 4.2: Average regret Rt/t ± its standard error at the end of the sim-
ulation of the two considered WLAN topologies, with the seven
evaluated solutions. For each topology (column), the best metric
is in bold text.

Solution T1 T2

DEFAULT 0.652 ± 0.001 0.429 ± 0.004

WCNC’15 0.470 ± 0.001 0.327 ± 0.005

JNCA’19 0.437 ± 0.001 0.398 ± 0.006

GM+NGTS 0.527 ± 0.016 0.375 ± 0.006

HM+NGTS 0.305 ± 0.006 0.379 ± 0.005

INSPIRE 0.193 ± 0.005 0.294 ± 0.006
INSPIRE_LIM 0.233 ± 0.005 0.329 ± 0.005

As in Chapter 3, we start by providing in Table 4.2 the average
regrets of all the considered strategies on the topologies T1 and T2.
The results show that INSPIRE and, at a lesser extent, its windowing
version INSPIRE_LIM, offer a significant improvement over the control
and state-of-the-art solutions. On T1, INSPIRE achieves an average re-
gret that is 70% lower than the control DEFAULT configuration and 37%
lower than the best state-of-the-art strategy. On T2, these quantities
are 31% and 10% respectively. Discussing in greater depth the com-
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plexity of the two scenarios in Section 4.5.1 will shed more light on
these performance differences.

We now consider the performance metrics (number of starving
STAs, cumulated throughput, computational overhead) on T1, depicted
by Figure 4.3. Taking DEFAULT as a baseline, the results show that
INSPIRE reduces the number of STAs in starvation by 80% and man-
ages to increase the cumulated throughput by 600%. Considering
the computational overhead of the strategies, we observe that the
increase in the performance metrics comes at a computational cost.
However, we argue that a computational overhead of around a tenth
of a second remains acceptable when making decisions on WLANs.
Comparing the computational overhead of INSPIRE and INSPIRE_LIM,
we observe that capping the size of the dataset also caps the computa-
tional overhead, which is in line with the explanations detailed in Sec-
tion 4.3.3. Overall, although its performance are slightly below those
of INSPIRE, INSPIRE_LIM constitutes a significant improvement over
the considered state-of-the-art strategies for all the considered perfor-
mance metrics, including the average regret (see Table 4.2). Hence,
it is a good alternative to INSPIRE if one accepts to trade off some
empirical performance for a constant computational overhead.

Figure 4.3: Performance metrics of INSPIRE on T1.

We now turn to the case of topology T2. The results depicted in
Figure 4.4 show that among the six considered strategies, INSPIRE
is the one that manages to decrease the most the cumulative regret
with a decline of about 36% compared to the DEFAULT configuration
at the end of the simulation. The proposed solution also outperforms
WCNC’15, which is found to be the best state-of-the-art strategy on
this topology, by a margin of 14%. Looking at the performance of
WLANs and of their STAs, observe that INSPIRE is able to limit the
number of STAs starving from throughput by 36% when compared
to the DEFAULT configuration. Similarly, the cumulated throughput
of STAs have their value increased by 28% and nearly doubled with
INSPIRE. Although the dimensionality of a configuration is larger for
T2 than for T1 (d = 28 against d = 20), the computational over-
head of INSPIRE is virtually equivalent for the two topologies and re-
mains around a tenth of a second. This is because the additional time
required to compare higher-dimensional configurations is marginal
compared to the additional time required to make inferences on a
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larger dataset (see Section 4.3.3). Eventually, note that INSPIRE_LIM is
slightly outperformed by INSPIRE, but remains roughly equivalent to
the best considered state-of-the-art strategy.

Figure 4.4: Performance metrics of INSPIRE on T2.

Overall, through the study of topologies T1 and T2, INSPIRE demon-
strates its superiority over the other state-of-the-art strategies. Its caped
version, INSPIRE_LIM, also demonstrates its empirical competitive-
ness. The significant improvements brought by our proposed solution
on all performance metrics are permanently obtained after 100 itera-
tions only (corresponding to 7.5 seconds of simulated time). In other
words, in less than 10 seconds, INSPIRE manages to significantly im-
prove the behavior of the WLANs and of the associated STAs thanks to
a better spatial reuse of the radio channel. This efficiency in searching
and finding an adequate configuration of the TX_PWR and OBSS_PD pa-
rameters at each AP of the WLANs mostly results from the distributed,
altruistic use of GPs which we further discuss in the next section.

4.5 discussion

4.5.1 Two Scenarios with Different Complexity

The topologies T1 and T2 may not seem so different from each other,
but INSPIRE performed differently on each of them. By the end of
the optimization process,39 the performance metrics for T1 were im- 39That is, 400 steps.

proved by at least 70% from their initial values under the DEFAULT

configuration, and only 7 STAs (representing 14% of the STAs) were
still starving from throughput. In the case of T2 the progress was
lower, with 14 STAs (representing 25% of the STAs) remaining in star-
vation. This difference results from the location of STAs relatively to
the APs. Looking at Figure 4.2, it appears that STAs in T2 are further
from their associated AP than the ones in T1. As a consequence, STAs
are also closer to a concurrent AP in T2 than in T1. Indeed, while STAs
in T1 are on average 10 times closer to their associated AP than to a
concurrent AP, this ratio drops to an average value of 4 for STAs on T2.
With STAs closer to concurrent APs, the spatial reuse problem becomes
more difficult. As a matter of fact, to reach its associated STA, the AP

must transmit at a greater power, increasing its chance to cause inter-
ference to the surrounding APs. Similarly, STAs that are further away
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from their AP are significantly more affected by the transmissions of
concurrent APs.

To verify that T2 constitutes a more complex example than T1, we
examine the shape of the objective function in both cases. Because of
the high dimensionality of the objective functions and the lack of a
closed-form expression, we resort to a slicing technique to provide
a visualization of the objective function (4.1). We postpone to Ap-
pendix B the details of this slicing. Figure 4.5 illustrates the obtained
random slices for the objective function in T1 and T2. It suggests a
relatively smooth objective function in T1. On the other hand, the ob-
jective function in the case of T2 is much more erratic, featuring a lot
of local maxima.

Figure 4.5: Random slices of the global objective function for the topologies
T1 and T2. The best solution found by INSPIRE is at (0, 0). The
maximum of the slice is shown with a red circle.

Interestingly, Figure 4.5 shows that INSPIRE succeeded to find a
configuration that is maximal in this random slice of the objective
function in T1. We also notice that many configurations of equivalent
efficiency exist, which also tends to ease the search for an adequate
configuration. Conversely, in the case of T2, INSPIRE does not find
the best configuration since the slice of Figure 4.5 shows that, at least,
a 6% better configuration exist. Nonetheless, we argue that INSPIRE
was able to find an efficient configuration, which is already not easy
given the erraticness of the objective function.

4.5.2 The Benefits of Decentralization

Eventually, to justify our choice of letting APs exploit only local in-
formation and prescribe network configurations to their surrounding
APs, we consider two alternative versions of INSPIRE:

• GPs w/o agg.: each AP keeps using the local, altruistic objec-
tive function (4.2) but does not aggregate local prescriptions. In
other words, each AP directly prescribes the value of its own
parameters, without using the consensus (4.10);
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• Single GP: a centralized version of INSPIRE where a single GP

has a complete knowledge of the WLANs and decides on the
configuration of every AP.

Figure 4.6: Average regret of alternative versions of INSPIRE on the topolo-
gies T1 and T2.

We compare these alternative strategies with INSPIRE and the DEFAULT
strategy by considering their average regret on topologies T1 and T2
in Figure 4.6. It shows that, on T1, the alternative strategies have an
average regret 46% lower than DEFAULT. However, INSPIRE manages
to reduce its average regret by an extra 25%. Despite the greater com-
plexity of the function in T2, this extra reduction factor persists at a
value of 13%. Given the significant gap between INSPIRE and GPs w/o

agg., it is clear that prescribing for surrounding APs and aggregat-
ing those prescriptions leads to a more altruistic behaviour, which in
turn brings additional benefits at the scale of the WLAN. More surpris-
ingly, INSPIRE outperforms its centralized counterpart Single GP. At
first glance, this is counter-intuitive since Single GP has a complete
knowledge and control over the APs of the WLANs. However, recent
works such as [87] bring evidence that having access to an additive [87] Wang et al. (2020),

“Improving GP-UCB
algorithm by harnessing
decomposed feedback”

decomposition of the objective function improves the performance of
BO algorithms based on GPs, by lowering the variance of their predic-
tions. Overall, INSPIRE, as a decentralized algorithm using a minimax
optimal consensus (see Theorem 4.1), manages to improve the spatial
reuse of the radio channel at the scale of the WLANs more than its
simpler alternatives.

4.6 summary and limitations

In this chapter, we proposed INSPIRE, a decentralized BO algorithm
based on GPs to address the spatial reuse problem in WLANs. The
algorithm iteratively discovers and simultaneously optimizes its ob-
jective function. It exploits a natural additive decomposition of this
objective function to allow each AP to work only with other APs in its
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communication range. Each AP agrees with its neighboring APs on a
configuration to test thanks to a consensus that we proved optimal
in the minimax sense. We compared INSPIRE to the state-of-the-art
approaches for the spatial reuse problem in WLANs on a realistic sim-
ulator emulating real-world scenarios. INSPIRE demonstrated a sig-
nificant improvement over the performance of state-of-the-art tech-
niques. This efficiency comes at the cost of a larger computational
overhead, that remains acceptable for this technological application.
Nevertheless, we proposed an alternative strategy that uses a win-
dowing method to cap the computational complexity of the algorithm
without too much degrading its performance. Eventually, we empir-
ically showed that naive and simpler alternative of INSPIRE (includ-
ing a centralized version of the algorithm) are outperformed by our
solution on the considered WLAN topologies. This suggests that the
complex features of INSPIRE, namely its decentralized nature and its
consensus function, are essential to quickly optimize the spatial reuse
of the considered WLANs. INSPIRE was the subject of a publication
in an international conference [88] (extended in a peer-reviewed jour-[88] Bardou et al. (2022),

“INSPIRE: Distributed
Bayesian Optimization for
ImproviNg SPatIal REuse

in Dense WLANs”

nal [89]) and in a national conference [90]. Both of them awarded this

[89] Bardou et al. (2023),
“Analysis of a

decentralized Bayesian
optimization algorithm for
improving spatial reuse in

dense WLANs”
[90] Bardou et al. (2022),
“INSPIRE: Optimisation

bayésienne distribuée pour
l’amélioration de la

réutilisation spatiale des
WLANs denses”

work with their Best Paper Award.
We believe that INSPIRE redefines the state-of-the-art of the spatial

reuse optimization in WLANs. Moreover, we argue that its good em-
pirical performance are not specific to this technological application,
since the Assumptions 4.4 and 4.5 can be undoubtedly retrieved in
other applications, as demonstrated in the next chapter.

Nevertheless, our approach keeps several limitations:

(i) Design: INSPIRE assumes that the configuration space C is a
compact space. Although, in theory, the hardware of a 802.11

card could be configured with an arbitrary configuration, some
manufacturers and standards may enforce a discretization of
this space. An efficient method to adapt the recommendation of
INSPIRE to a discrete space remains to be proposed.

(ii) Design: the computational overhead of INSPIRE may remain
unacceptable for some technological applications.

(iii) Theoretical: an implicit assumption made by Theorem 4.1 is
that each GP manages to find the maximal argument of its local
objective function. This is not straightforward and needs to be
properly verified.

(iv) Theoretical: INSPIRE does not provide the same asymptotic op-
timality guarantees as other BO algorithms. More work needs to
be done to better understand the solution and modify it to pro-
vide an algorithm with stronger theoretical guarantees.
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(v) Evaluation: the trade-off between the quality of the estimation
of the objective function and the number of function calls in a
given time interval remains to be discussed.

In the next chapter, we demonstrate that INSPIRE successfully thrives
in another technological context: the cellular networks. Then, in Chap-
ter 6, we address the two theoretical limitations (iii) and (iv) raised in
the previous paragraph.





5
A S S E S S I N G T H E B E N E F I T S O F N O M A F O R
N E X T- G E N E R AT I O N C E L L U L A R N E T W O R K S

Outline. In this chapter, we consider a technological context that
differs from the Wireless Local Area Network (WLAN) introduced in
Chapter 1 (Section 1.1.2) and optimized in Chapters 3 and 4. Instead,
we focus on assessing the benefits of a new multiple access approach,
called NOMA, which is envisioned for the future generations of cel-
lular networks. We start by briefly introducing the cellular networks
and their applications in Section 5.1. Then, we discuss the motivations
of this contribution and we properly describe the problem we address
in Sections 5.2 and 5.3 respectively. Finally, we conduct our experi-
ments in Section 5.4 and we demonstrate that NOMA can bring sig-
nificant gains providing it is properly configured. Through this chap-
ter, we also show that INSPIRE, the algorithm developed in Chapter 4

(see Algorithm 4.1) can find applications in other technological con-
texts than WLANs.

5.1 another technological context : cellular networks

5.1.1 Cellular Networks: Overview

A cellular network is a high-speed, high-capacity, wireless telecom-
munication network designed for voice and data. As its name sug-
gests, the network is distributed over land areas, called cells. Within
each cell resides a base transceiver station, or Base Station (BS) for
short, that ensures the network coverage of the cell. Joined together,
the BS cover a large geographic area, providing connectivity to nu-
merous end-users through their cellular devices (such as cell phones).
Nowadays, the major part of the inhabited areas in the world are
covered with a cellular network.

Nowadays, cellular networks still account for less traffic than WLANs,
carrying between 2.5 [1] and 4.4 [91] less traffic data in 2020. Never- [91] Manson (2021),

“Wireless network data
traffic: worldwide trends
and forecasts 2021–2026”

theless, the increase in popularity of cellular devices gradually shifted
the use cases of cellular networks from phone calls and entertainment
to more critical applications. As an example, [92] identifies cellular

[92] Vacca (2014),
Network and system
security

networks as the lifeline of communication, since they have become
the primary means of communication for finance-sensitive business
transactions, lifesaving emergencies, and life/mission-critical services
such as E-911 in the USA. Given these needs of efficiency and reliabil-
ity, the local, analog wireless networks (deployed mainly in Japan and
in the USA) constituting the first generation of cellular networks (1G)

71
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quickly gave way to the first commercial deployment of digital cellu-
lar networks (2G) in 1991, during the wireless revolution [93]. Since[93] Rappaport (1991),

“The wireless revolution” then, cellular networks have undergone three major updates, namely
3G, 4G and 5G. Each of these updates was released by the 3rd Gen-
eration Partnership Project (3GPP) and systematically introduced new
frequency bands as well as higher data rates to face an increasing
demand. The latest one (5G) was introduced in 2016. In this section,
we describe some aspects of the cellular networks, relevant to the un-
derstanding and the study of the benefits of a new multiple access
approach. For a thorough description of cellular networks, please re-
fer to [94, 95].[94] Miao et al. (2016),

Fundamentals of mobile
data networks

[95] Ghosh et al. (2019),
“5G evolution: A view on

5G cellular technology
beyond 3GPP release 15”

As mentioned before, the cell denotes the area of coverage of a
BS. The division of the radio service into cells is based on terrain and
reception characteristics. As an example, it can be based on the Signal
to Noise Ratio (SNR) of the end-users’ celullar devices, that is the ratio
between the signal strength at reception and the ambient noise of the
radio channel.

(a) (b)

Figure 5.1: (a) Map of the city of Lyon, France. (b) Visualization of a cor-
responding cellular network covering the city. A BS is depicted
in black. Each cell of the cellular network is determined by a
Voronoï cell. For the sake of identification, black circles indicate
the most dense areas in the city and the white circle indicates the
least dense area in the city.

Figure 5.1 depicts a potential cell partitioning covering the city of
Lyon, France.40 The locations of the BS are those of the main telecom-40Map data ©

OpenStreetMap
contributors. Tiles style by

Humanitarian
OpenStreetMap Team

hosted by OpenStreetMap
France.

munication operator in France, Orange,41 extracted from the Autorité

41https://www.orange.

fr/portail

de Régulation des Communications Électroniques, des Postes et de la
distribution de la presse (ARCEP) database.42 The division into cells

42https:

//files.data.gouv.fr/

arcep_donnees/mobile/

sites/2022_T3/

is based on the SNR of end-users cellular devices, assuming the same
propagation model for all areas of the city, and an equal transmission
power for all the BS.

To ensure a minimal Quality of Service (QoS) to the end-users, op-
erators tend to correlate the density of deployed BS with the density

https://www.orange.fr/portail
https://www.orange.fr/portail
https://files.data.gouv.fr/arcep_donnees/mobile/sites/2022_T3/
https://files.data.gouv.fr/arcep_donnees/mobile/sites/2022_T3/
https://files.data.gouv.fr/arcep_donnees/mobile/sites/2022_T3/
https://files.data.gouv.fr/arcep_donnees/mobile/sites/2022_T3/


5.1 another technological context : cellular networks 73

of cellular devices. As a few examples, observe that the most dense
areas (namely the city center and the main train station, marked with
black circles on Figure 5.1) require a denser deployment of BS and,
consequently, smaller cells. Conversely, the least dense area (in terms
of cellular devices) of Lyon, namely the Parc de la Tête d’Or (marked
with a white circle on Figure 5.1), does not require a large number of
BS.

5.1.2 Intra-Cell Resource Allocation

Within a single cell, multiple users are requesting service from the
BS. To share the radio resource among them, a cell can use multiple
techniques. Note that these techniques differ from the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) protocol, used
by WLANs and discussed in Section 1.1.2. We start by discussing three
of them, illustrated by Figure 5.2.

Figure 5.2: Resource allocation techniques employed in a cellular network
cell.

Time Division Multiple Access (TDMA). TDMA consists in attribut-
ing non-overlapping time slots to end-users. Each time slot is used
to transmit a segment of the data to a specific user, using the whole
radio channel. The Global System of Mobile Communications (GSM)
standard, used for the 2G cellular networks, is TDMA-based [96]. [96] Mehrotra (1997),

GSM system
engineeringFrequency Division Multiple Access (FDMA). FDMA, unlike TDMA,

divides the radio channel into multiple non-overlapping individual
frequency band. Each band can be used as long as necessary, to
transmit data to a specific user. The cable television system is FDMA-
based [97]. [97] Ciochina et al. (2010),

“A review of OFDMA and
single-carrier FDMA”Orthogonal Frequency Division Multiple Access (OFDMA). OFDMA

combines the advantages of TDMA and FDMA by allowing a division
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within the frequency and the temporal domains. The radio channel is
divided into multiple individual bands, and the time is divided into
time slots. Resource blocks of different sizes can then be attributed to
users according to their needs. Thanks to its flexibility, OFDMA is very
spectrally efficient [97]. OFDMA is implemented in the last generations
of cellular networks, namely the Long-Term Evolution (LTE) cellular
system (belonging to 4G) and the 5G standard [98].[98] Rahnema et al.

(2017), From LTE to
LTE-Advanced Pro and

5G

These three presented schemes belong to the class of Orthogonal
Multiple Access (OMA) techniques. However, all OMA techniques (in-
cluding OFDMA that brings more flexibility in the resource allocation)
struggle to meet the high demands of next-generation cellular net-
works. Another recent resource allocation scheme, introduced by the
13th release of the 3GPP for 4G cellular networks, seems very promis-
ing since it uses overlapping resource blocks to increase the cell data
rate. We introduce it below.

Figure 5.3: Illustration of NOMA using overlapping resource blocks.

Non-Orthogonal Multiple Access (NOMA). NOMA is able to use
overlapping resource blocks for its end-users, as illustrated by Fig-
ure 5.3. To do so, NOMA exploits a technique called Successive Inter-
ference Cancellation (SIC) [99]. SIC allows a cellular device to decode[99] Sen et al. (2010),

“Successive interference
cancellation: A

back-of-the-envelope
perspective”

multiple received signals, by decoding the strongest signal first43 and

43The other, weakest
signals are temporarily
treated as interference.

subtracting it to the received data to gain access to the other signals,
as illustrated by Figure 5.4. With NOMA, the same frequency bands
can now be used to transmit to all the end-users of a cell. For more
details about NOMA, one can refer to [100].

[100] Kizilirmak et al.
(2016), “Non-orthogonal
multiple access (NOMA)

for 5G networks”

5.1.3 Inter-Cell Coordination

The resource allocation schemes described in Section 5.1.2 (namely
TDMA, FDMA, OFDMA and NOMA) allow the BS to communicate with
the intra-cell users without interference (or at least to deal with them
in the case of NOMA). However, the users at the edge of a cell still
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Figure 5.4: Illustration of SIC on the transmission of two overlapping re-
source blocks.

experience interference from the neighboring cells. This is one of the
main problems affecting the QoS of cellular networks, called Inter-Cell
Interference (ICI). To address ICI, the research community in cellular
networks proposed many Inter-Cell Interference Coordination (ICIC)
strategies [101]. In this section, we introduce the three strategies con- [101] Hamza et al. (2013),

“A survey on inter-cell
interference coordination
techniques in
OFDMA-based cellular
networks”

sidered in our study.

5.1.3.1 Coloring

One of the most naive strategy for mitigating ICI is to allocate different
fractions of the frequency band to neighboring cells, so they cannot
interfere. This is ensured by computing a coloring of the cells. That
is, each cell is assigned a color in such a way that two neighboring
cells cannot have the same color, as suggested by Figure 5.1b and
illustrated with Figure 5.5. This forces neighboring cells to emit in
different fractions of the frequency band.

Figure 5.5: Illustration of the coloring strategy with three hexagonal cells
and a frequency band normalized between 0 and 1.

Naturally, this strategy significantly reduces the spectral efficiency
of the cellular network, as a cell uses only a fraction of the frequency
band. Note that, by the four colors theorem [102], each cellular net- [102] Appel et al. (1977),

“The solution of the
four-color-map problem”

work is at most 4-colorable. Therefore, in the worst case, each cell
would be allowed to transmit using 25% of the frequency band only.
Naturally, this significantly hampers the spectral efficiency of the cel-
lular network.
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5.1.3.2 Fractional Frequency Reuse

Fractional Frequency Reuse (FFR) proposes to divide the end-users
of each cell into two subsets, based on their geographic positions.
As a consequence, these two subsets define two areas, namely an
inner and an outer area (see Figure 5.6). The inner areas of each cell,
assumed too far from each others to cause and experience mutual
interference, are allowed to use the same fraction of the frequency
band. The outer areas apply the coloring strategy (see Section 5.1.3.1)
on the remaining of the frequency band.

Figure 5.6: Illustration of FFR with three hexagonal cells and a frequency
band normalized between 0 and 1. The interference between two
neighboring cells is depicted with a black two-headed arrow.

Figure 5.6 illustrates the split of the frequency band proposed by
FFR. It is more spectrally efficient than the simple coloring strategy
since the inner areas within each cell can reuse a fraction of the fre-
quency band. FFR can be controlled by two parameters:

(i) the radius of the inner area and,

(ii) the fraction τ of the frequency band allocated to the inner areas.

As far as we know, no derivation of the optimal values for these two
parameters has reached a consensus in the cellular network commu-
nity. However, numerous heuristics have been proposed, especially to
derive a suitable value of τ [103–105].[103] Xu et al. (2012),

“Throughput and optimal
threshold for FFR schemes

in OFDMA cellular
networks”

[104] Elwekeil et al.
(2019), “Performance

evaluation of an adaptive
self-organizing frequency

reuse approach for
OFDMA downlink”

[105] Ezhilarasi et al.
(2021), “Maximization of

sum throughput in LTE
heterogeneous network

using region
splitting-based resource

partitioning scheme”

5.1.3.3 Combining FFR and NOMA?

Although FFR can improve the spectral efficiency of the cellular net-
work as compared to the coloring strategy, there is still room for im-
provement as the frequency band allocated to each outer area is sig-
nificantly reduced. To tackle this problem, we consider a strategy that
has not yet been implemented at large scale: a combination between
FFR and NOMA. This combination would allow the cellular network
to take advantage of the SIC features. In particular, each cell of the
network could use overlapping resource blocks to serve its inner and
outer users (as illustrated by Figures 5.3 and 5.4).
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Figure 5.7: Illustration of NOMA used in conjunction with FFR, on three
hexagonal cells and a frequency band normalized between 0 and
1. The white color depicts the use of the whole frequency band.
The interference between two neighboring cells is depicted with
black arrows.

Figure 5.7 illustrates how the combination of NOMA and FFR differs
from pure FFR (Figure 5.6). Observe that the inner areas are now able
to exploit the whole frequency band, while the outer areas apply the
simple coloring strategy on the whole frequency band to protect its
end-users from interference. Thanks to SIC, users in the inner area
do not experience interference with the users in the outer area of
the same cell. However, observe that the inner area of the orange
cell causes three types of interference (depicted with the areas of the
green cell only for the sake of clarity):

(i) with its own cell’s outer area, because of SIC,

(ii) with the other cells’ outer areas,

(iii) with the other cells’ inner areas.

5.2 motivations

As mentioned in Section 5.1.2, NOMA is a very promising resource al-
location scheme recently introduced by 3GPP but has not yet been im-
plemented at a large scale. This is mainly due to the complexity of the
SIC algorithms that require a significant amount of computing power
at the end users. Some doubts regarding the efficiency of NOMA were
also raised in the research community. As an example, [106] argue [106] Wang et al. (2019),

“User association and
power allocation for
multi-cell non-orthogonal
multiple access networks”

that FFR and NOMA are incompatible. However, this claim is contra-
dicted by [107, 108]. Overall, the performance of the combination of

[107] Vaezi et al. (2019),
“Non-orthogonal multiple
access: Common myths
and critical questions”

[108] Ramesh et al. (2022),
“Non orthogonal multiple
access requirements for 5G
and its myths”

NOMA and FFR in a multi-cells context remains largely unknown. In
this chapter, we consider the three ICIC strategies described in Sec-
tion 5.1.3, namely the coloring strategy, FFR and the combination of
FFR and NOMA. Each strategy has its advantages and drawbacks:
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• The coloring strategy causes little interference but is also less
spectrally efficient. This could reduce the overall QoS of the cel-
lular network.

• FFR is more spectrally efficient as each cell is allowed to reuse
a fraction of the frequency band in its inner area. However, this
causes additional interference between the inner areas of neigh-
boring cells, as illustrated by Figure 5.6.

• The combination of NOMA and FFR is the most spectrally effi-
cient strategy as it is able to exploit overlapping resource blocks.
However, this causes additional interference within the cell and
between neighboring cells, as illustrated by Figure 5.7.

Using INSPIRE, the solution developed in Chapter 4 (see Algo-
rithm 4.1), we propose to optimize different cellular networks un-
der these three ICIC strategies. Doing so, we are able to evaluate and
compare the ICIC strategies in a multi-cells context by comparing the
performance achieved by the optimized cellular networks. In particu-
lar, our study provides material that clearly show the benefits of the
combination of FFR and NOMA and could be of some interests for the
design choices of the next-generation of cellular networks.

5.3 problem formulation

Regarding the optimization of cellular networks, most contributions,
such as [109], propose to optimize the frequency band and the trans-[109] Banerjee et al.

(2022), “Joint Power and
Subcarrier Allocation in

Multi-Cell Multi-Carrier
NOMA”

mission power of the BS at the scale of each end-user. In this chapter,
we tackle a different optimization problem. We consider only two
transmission powers for each cell, one for the inner area and one for
the outer area (see Section 5.3.1). By tuning these two transmission
powers, we control more easily the interference and the association
of the end-users to one BS and one of the cell areas. Through an effi-
cient configuration of the transmission powers at each BS, we seek to
optimize the QoS of the cellular network (see Section 5.3.2).

5.3.1 Problem Parameters

As mentioned before, each cell i is required to tune its transmission
powers, denoted p

(i)
1 and p

(i)
2 for its inner and outer area, respectively.

They are to be tuned within a given domain [a, b]2, under the two
following constraints:

(i) by construction, the transmission power for the inner area must
be lower than the transmission power for the outer area, that is
p
(i)
1 ≤ p

(i)
2 ,
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(ii) the sum of the transmission powers must not exceed the maxi-
mal power capacity of a BS, denoted P+, that is p(i)1 + p

(i)
2 ≤ P+.

Because of the constraints (i) and (ii), the domains of p(i)1 and p
(i)
2

are not rectangular. This is a problem for some optimization algo-
rithms. To design parameters with rectangular domains that naturally
incorporate these constraints, we define

(i) θ(i)1 = p
(i)
1 + p

(i)
2 the total transmission power of the BS, to be

chosen within the interval [2a,P+], and

(ii) θ(i)2 =
p
(i)
2

θ
(i)
1

the fraction of the transmission power allocated to the

outer area, to be chosen within the interval
[
1
2 , 1
[
.

Naturally, the two transmission powers p(i)1 and p(i)2 can be retrieved
since p(i)1 = θ

(i)
1

(
1− θ(i)2

)
and p

(i)
2 = θ

(i)
1 θ

(i)
2 . Note that a cellular net-

work comprising n cells has 2n parameters to be tuned.

5.3.2 Objective Function

In this chapter, as in Chapters 3 and 4, we would like to rely on the
end-users achieved throughputs to build our objective function. In
the previous chapters, we instrumented a well-known simulator to
collect these throughputs. However, as far as we know, there is no
well-established open-source simulator in the cellular network com-
munity. Therefore, for the sake of simplicity and of the generality
of our results, we rather rely on an upper bound on the achieved
throughput of each end-user, that is the Shannon capacity [110]. [110] Kemperman (1974),

“On the Shannon capacity
of an arbitrary channel”

The Shannon capacity Cj for an end-user j associated with a BS

i is an upper bound on the throughput that the end-user is able to
achieve. It is expressed in bits per second and is defined as

Cj = Wj log2 (1+ Si,j) (5.1)

with Wj the bandwidth allocated to the end-user j and Si,j the Signal
to Interference plus Noise Ratio (SINR) of the transmission between
the BS i and the end-user j. To ease exposition, more details about the
computation of SINR are provided in Section 5.3.3.

As with a WLAN, a cellular network must achieve a satisfying QoS

through a good trade-off between a large system throughput (i.e. the
cumulative sum of the individual throughput of each end-user) and
a high level of fairness. In Chapters 3 and 4, we considered that the
Proportional Fairness (PF) was a satisfying trade-off (see Sections 3.2.1
and 4.2.2 for more details). In this chapter, we consider a metric that
generalizes multiple fairness measures (including PF), called the α-
fairness [111]. It is defined, for α ∈ [0,+∞[ and a d-dimensional [111] Mo et al. (2000),

“Fair end-to-end
window-based congestion
control”
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vector x of the Shannon capacity for the d end-users of the cellular
network, as

fα (x) =
d∑

i=1

x1−α
i

1− α
. (5.2)

For α = 1, (5.2) is not defined. However, observe that

∇fα(x) =
(
x−α
1 , · · · ,x−α

d

)
. (5.3)

Therefore, limα→1∇fα(x) =
(
x−1
1 , · · · ,x−1

d

)
. In addition, note that

limα→1 fα(x) = limα→1 (
∫
∇fα) (x) = (

∫
∇f1) (x). Computing

∫
∇f1

is immediate and yields (
∫
∇f1) (x) = C +

∑d
i=1 log xi, with C an

integration constant. C does not have any influence on the maximiza-
tion of f1. Therefore, in the following, we set C = 0 and we have

lim
α→1

fα(x) =
d∑

i=1

log xi. (5.4)

Therefore, (5.2) can be extended to

fα(x) =


∑d

i=1 log xi if α = 1∑d
i=1

x1−α
i
1−α otherwise.

(5.5)

As mentioned before, α ∈ [0,+∞[. Its value controls the impor-
tance of the fairness in the objective function. In fact, setting α = 0

enforces virtually no fairness in x as this boils down to optimizing
f0 =

∑d
i=1 xi. Recall that x denotes the Shannon capacity of the d

end-users of the cellular network, therefore f0(x) is the capacity of
the network. As α increases, the fairness constraint becomes stronger.
As can be seen with (5.5), α = 1 corresponds to the PF. Asymptotically,
considering f∞(x) = limα→+∞ fα(x), we have

f∞(x) = min
i∈[1,d]

xi. (5.6)

Note that (5.6) is one of the most stringent definitions of fairness,
as the objective value of the entire cellular network is defined as the
lowest capacity experienced by a single user.

Finally, observe that (5.5) is a sum of d terms, each term being as-
sociated to the capacity of a user. Therefore, we can build an additive
decomposition with any partition of the set of users. As an exam-
ple, a partition of users could be {U(i)}i∈[1,n], with U(i) denoting the
users associated with cell i. More generally, for a partition of users
P = {Pi}i∈[1,k], k > 0, we have

fα(x) =
∑
Pi∈P

∑
j∈Pi

x1−α
i

1− α
(5.7)

=
∑
Pi∈P

f
(i)
α (xPi) (5.8)
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with xPi the projection of x onto the dimensions whose indices are
in Pi.

5.3.3 Users Association to BS and Cell Areas

In the cellular network, each user must be associated with the BS of a
cell before being associated to either the inner or the outer area of the
cell (that is, to a SIC level). We discuss the two association methods
chosen in this section.

5.3.3.1 Association with a BS

For a given user, the association with a BS is based on the SINR at
reception. For a BS i and a user j, the SINR is denoted by Si,j and
defined by

Si,j =
p(i)Li,j

N +
∑

k∈I(j) p
(k)Lk,j

(5.9)

with p(i) the transmission power of the signal at the BS (either p(i)1 or
p
(i)
2 depending on the location of the end-user in the cell), Li,j the loss

of the signal between BS i and user j, N a background noise and I(j)
the set of BS interfering with user j.

To determine which BS to associate with, a user collects the SINR

for all its surrounding BS (by considering p
(i)
1 for their inner areas

and considering p(i)2 for their outer areas), and associates with the BS

that provides the largest SINR. Note that the set of interfering BS I(j)
also depends on which area (inner or outer) the user j belongs to (see
Section 5.1.3 for more details).

By tuning the cellular network configuration (that is, the transmis-
sion powers of each BS), the SINRs will change and end-users will
naturally change their associations to BS. All other things being equal,
a BS increasing its transmission power will naturally serve more users,
and hence increase the area of its cell.

5.3.3.2 Assignment to a Cell Area

Once the users are associated with a cell, they need to be associated
with either the inner or the outer area of the cell. Finding the associ-
ation that maximizes the objective function fα is a difficult combina-
torial problem, as it boils down to finding the optimal 2-partition of
the set of users among the 2di−1 − 1 that exist.44 44Here, di denotes the

number of users in the cell.To circumvent this combinatorial problem, we reduce the number
of candidate associations by sorting the users according to their SNR

at reception.45 Then, we split the sorted list of users in two: those with 45They are necessarily
known from the BS as its
users are associated with a
BS based on their SINR.

the lowest SNR are affected to the outer area, the others are affected to
the inner area. This drastically reduces the number of associations to
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di− 1 candidates. We argue that the number of candidate associations
is now sufficiently reduced to discover the optimal users association
with a greedy algorithm. Therefore, within each cell, the α-fairness
(see (5.5)) corresponding to each candidate association is computed,
and the association achieving the largest α-fairness value is chosen.

5.3.4 Optimal Scheduler

Thanks to NOMA, the BS can use overlapping resource blocks to com-
municate with inner and outer users concurrently. However, two users
sharing the same SIC level46 must still use orthogonal resource blocks46That is, two users in the

same area (inner or outer). and, hence, share the resource in the frequency and/or time domain.
In this section, we derive the optimal fraction of the resource to al-
low to each user j, so that the objective function (5.5) applied to the
users of a given area in a cell is maximized. We opt for the optimal
scheduler, as it is the only one that guarantees no negative impact on
the objective function values. In fact, any other scheduler resulting
from arbitrary design choices is likely to reduce the objective func-
tion values and, hence, to prevent us from studying the impact of the
considered ICIC strategies on the objective function.

Given the capacities c = (c1, · · · , ck) of k users, we seek to solve

maximize
t∈[0,1]k

fα (t⊙ c)

such that t⊤1 = 1
(5.10)

with t the scheduling, 1 the conformable vector of ones and ⊙ the
Hadamard product.

Proposition 5.1. Let c1, · · · , ck the Shannon capacities of k users that need
to share the resource, the optimal scheduling t∗ = (t∗1, · · · , t∗k) is

t∗ =


(1i=i∗)i∈[1,k] if α = 0,(

c
(1−α)/α
i∑k

i=1 c
(1−α)/α
i

)
i∈[1,k]

otherwise
(5.11)

with i∗ = argmaxi∈[1,k] ci and 1i=i∗ the indicator function indicating if i
is equal to i∗.

Proof. Since the problem (5.10) boils down to finding the optimal con-
vex combination of c1, · · · , ck, let us consider the Lagrangian relax-
ation when α ̸= 1, that is

Lα(t,λ) = fα(t
⊤c)− λ(t⊤1− 1)

=
1

1− α

k∑
i=1

t1−α
i c1−α

i − λ

(
k∑

i=1

ti − 1

)
(5.12)
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It is known that finding the critical points of L provides the maximal
argument of fα(t⊤c). Let us consider the system that a critical point
of (5.12) yields, that is

∇Lα = 0 =⇒



c1−α
1 t−α

1 − λ = 0,
...

c1−α
k t−α

k − λ = 0,

1−
∑k

i=1 ti = 0

. (5.13)

Setting α ̸= 0, solving the system (5.13) is trivial and yields a single

critical point, with ti =
c
(1−α)/α
i∑k

i=1 c
(1−α)/α
i

, ∀i ∈ [1, k]. This is necessarily

the optimal scheduling we are looking for. Note that solving the case
α = 0 is trivial as it boils down to allocating all the resource to the
user with maximal capacity, at the expense of all the others.

Finally, considering the relaxation for α = 1 (see (5.5)), the La-
grangian is

L1(t,λ) =
k∑

i=1

log tici − λ

(
k∑

i=1

ti − 1

)

and looking for the critical points, we have

∇L1 = 0 =⇒



1
t1
− λ = 0,

...
1
tk
− λ = 0,

1−
∑k

i=1 ti = 0

. (5.14)

The system (5.14) can be trivially solved and yields a single critical
point, with ti =

1
k . Consequently, this is also the maximal argument

of our objective function. This concludes our proof.

5.3.5 Optimization of the Objective Function

We now have all the information to characterize the addressed op-
timization problem. This is a distributed optimization problem (of
high dimension when the number of BS is large) whose parameters
are described in Section 5.3.1 and objective function is (5.5) (see Sec-
tion 5.3.2). Unfortunately, the relation between a change in the trans-
mission powers of the BS and the distribution of the end-users on the
different cells and cell areas (see Section 5.3.3) is hard, if not impossi-
ble, to express in a closed-form. The relation between the cellular net-
work configuration and the scheduling of each cell (see Section 5.3.4)
is also hard to write down precisely. Because the different associations
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and the scheduling have a direct impact on the objective function, the
objective function (5.5) can be seen as a black-box.

Therefore, we are facing a distributed black-box optimization prob-
lem, and we use INSPIRE, the solution developed in Chapter 4 (see
Algorithm 4.1) to explore and simultaneously optimize (5.5).

5.4 numerical results

In this section, we describe in Section 5.4.1 the setting implemented
to assess the performance of a cellular network using the three ICIC

strategies described in Section 5.1.3, before providing and comparing
the obtained performance metrics in Section 5.4.2.

5.4.1 Experimental Setting

In these experiments, we compare the three ICIC strategies described
in Section 5.1.3. We briefly recall them below:

(i) COLORING: the control ICIC strategy, consisting into simply color-
ing the cellular network as described in Section 5.1.3.1,

(ii) FFR: the FFR solution, as described in Section 5.1.3.2,

(iii) NOMA + FFR: the combination of NOMA and FFR, as described in
Section 5.1.3.3.

We evaluate the performance of these solutions with an home-
made simulator, implementing the users association to the cells and
to the SIC levels, as well as the optimal scheduling, as descibed in
Sections 5.3.3 and 5.3.4. The simulator is instrumented to collect the
Shannon capacity of each user and the Jain’s fairness index [60] at the
network level. Table 5.1 gathers the parameters of the simulator and
their values.

Table 5.1: Homemade simulator parameters for the evaluation of the ICIC

strategies.

Parameter Value

Number of iterations 110

Background noise -100 dBm/Hz
Path loss LogDistance(dref = 1 km,

Lref = 128.1 dBm, n = 3.76)

Bandwidth 20 MHz

At each optimization step, given the previous configurations of the
cellular network and their objective values, we use INSPIRE (Chap-
ter 4, Algorithm 4.1) to find a promising configuration of the cellular
network and maximize the objective function fα. For FFR and NOMA +
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FFR, the configuration of each BS is a set of two parameters describing
respectively the total transmission power of the BS and the fraction
of the power used for the inner area (as described in Section 5.3.1).
However, in the case of FULL REUSE and COLORING, cells do not have
an inner area and each BS is configured with a single parameter only,
describing its transmission power.

(a) T1 (b) T2

Figure 5.8: Cellular networks for the evaluation of the ICIC strategies.

Finally, we consider two different cellular networks for the bench-
marking of the ICIC strategies, depicted by Figure 5.8. Figure 5.8a il-
lustrates a small cellular network, denoted T1. It is composed of 7 BS

and 1400 users (not shown here), distributed according to a uniform
grid. Figure 5.8b depicts a more realistic cellular network covering
the city of Lyon (France) with the 125 BS of the main french telecom-
munication operator (Orange). Please refer to Section 5.1.1 for more
details about the position of the BS. As for the users (not shown here),
they are generated by a Log-Gaussian Cox process [112], to have a re- [112] Møller et al. (1998),

“Log gaussian cox
processes”

alistic users distribution with spatial heterogeneity. More concretely,
we used the method described in [113] to generate the users. To have

[113] Wang et al. (2014),
“The impact of user spatial
heterogeneity in
heterogeneous cellular
networks”

a realistic number of users, we reproduced the population density
of Lyon (around 11,000 inhabitants per squared kilometer) and we
selected a fraction of these users, based on the market share of Or-
ange.47 Then, we assumed that only 10% of these users were actually

4738.5% according to
Statista (https:
//fr.statista.com/

themes/3851/orange/

#topicOverview).

active users on the cellular network, leading us to randomly remove
90% of them. Overall, T2 ends up with a total of around 9,000 users.

5.4.2 Performance Results

First of all, let us consider the performance of INSPIRE on the objec-
tive function fα. Recall that α determines the importance of fairness
in the objective function. Figure 5.9 gathers the results for three values
of α. Note that each set of colored curves evolves on a different range
of values, as it corresponds to a different value of α. On both cellular
networks T1 and T2 and regardless of the value of α, INSPIRE is able

https://fr.statista.com/themes/3851/orange/##topicOverview
https://fr.statista.com/themes/3851/orange/##topicOverview
https://fr.statista.com/themes/3851/orange/##topicOverview
https://fr.statista.com/themes/3851/orange/##topicOverview
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to consistently optimize fα by discovering promising configurations
of the networks. Figure 5.9 also shows that the combination NOMA +

FFR consistently obtains better objective function values for the con-
sidered values of α, followed by FFR and COLORING. This strongly sug-
gests that among the considered ICIC strategies, NOMA+FFR is able to
achieve the best trade-off between the Shannon capacity and the fair-
ness on both cellular networks.

(a) T1, 3 replications (b) T2, 3 replications

Figure 5.9: Graph of maximal reward (scaled down for visualization pur-
poses) w.r.t. the optimization steps for the considered ICIC strate-
gies on (left) T1 and (right) T2. Multiple values of α are consid-
ered: (blue) α = 0, (orange) α = 0.5 and (green) α = 2. The
average performance is shown with a solid line, while the stan-
dard errors are depicted with shaded areas.

To confirm this, let us consider the Shannon capacity and Jain’s fair-
ness index achieved by each strategy. Note that, from the perspective
of multi-objective optimization, fα is a scalarization as it is able to
turn the multi-objective problem into a scalar optimization problem.
To better compare the different ICIC technologies, let us consider for
each experiment the best configuration found (according to fα) and
visualize it in the output space (that is, the space where the capac-
ity and the fairness have their own axis) [114]. If a configuration x1[114] Deb et al. (2013),

“Multi-objective
optimization”

achieves a higher throughput and a higher fairness than a configura-
tion x2, then x2 is said to be Pareto-dominated [115] by x1.

[115] Voorneveld (2003),
“Characterization of pareto

dominance”

Figure 5.10 depicts, in the output space, the best configurations
found by INSPIRE for different values of α (ranging from 0 to 2)
and the considered ICIC strategies. The combination NOMA + FFR ap-
pears clearly as the ICIC strategy able to achieve the highest capac-
ity, without trading off on the network fairness. In fact, most of the
configurations found for FFR or COLORING in the output space of T1
(Figure 5.10a) and T2 (Figure 5.10b) are Pareto-dominated by a config-
uration of NOMA + FFR. This confirms that the combination of NOMA

and FFR is very promising, as it is very likely to improve the through-
put of cellular network without leading to unfair situations.
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(a) T1 (b) T2

Figure 5.10: Performance of the considered ICIC strategies in the output
space. The value of α used to find this configuration is writ-
ten next to each point.

Finally, to understand how the cellular network answers to an in-
creased demand of fairness among the end-users, let us visualize T1
and T2 under the best configurations found according to fα, for dif-
ferent values of α.

Figure 5.11 depicts the cellular networks T1 (Figure 5.11a) and T2
(Figure 5.11b) under such configurations. Observe that, for α = 0,
the inner areas are small and comprise a few users only. Doing so,
these lucky users get an excellent QoS, at the expense of all the other
users who get a very poor QoS. This configuration actually maximizes
the objective function value f0 by achieving a very high Shannon
capacity at the network scale. However, as soon as some fairness is
required (with α > 0), the inner areas start inflating. More generally,
for the tested values of α, the larger α, the bigger the inner areas. The
effect of α on the throughput distribution of each cell is studied in
Appendix C.

5.5 summary and limitations

In this chapter, we have exploited INSPIRE, the decentralized Bayesian
optimization solution developed in Chapter 4 to propose a power con-
trol algorithm in cellular networks. This algorithm tries to achieve a
compromise between the Shannon capacity and Jain’s fairness index
by optimizing a scalarization: the α-fairness. By tuning α, the amount
of fairness in the objective function can be controlled. Thanks to IN-
SPIRE, we were able to compare different strategies to prevent inter-
ference at the edge of the cells in cellular networks. More precisely, we
studied the combination of a new resource allocation scheme (NOMA)
and an ICIC technique (FFR). We demonstrated, through simulation,
that this combination seems very promising as it manages to Pareto-
dominate other classical ICIC strategies such as the pure FFR and the
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(a) T1

(b) T2

Figure 5.11: Visualization of the cellular networks T1 and T2 under the best
configurations found by INSPIRE for the combination NOMA +

FFR and different values of α. Each cell is shown as a colored
polygon, with another shaded polygon inside it to depict the
inner area. Each BS is shown as a red dot.

coloring of the cellular network, in terms of Shannon capacity and
Jain’s fairness index.

Although the experimental results are very promising, this contri-
bution is still a work in progress that is not yet published. As such, it
suffers from several limitations:

(i) Design: more features must be implemented in the homemade
simulator, such as the fading or the beamforming (which alter-
ate the propagation model), to increase the realism of the simu-
lator and the accuracy of the presented results.

(ii) Evaluation: cellular networks are almost exclusively used in a
dynamic context, where end-users are mobile. The performance
of the proposed combination (NOMA + FFR) and the optimizing
algorithm (INSPIRE) need to evaluated in this context.

Since the solution proposed in this chapter relies on INSPIRE, note
that the limitations raised in Chapter 4 (see Section 4.6) also apply
to this work. In the next chapter, we propose to address these limi-
tations by designing a high-dimensional Bayesian optimization algo-
rithm that provides more theoretical guarantees.
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C O N T R I B U T I O N T O T H E O P T I M A L B AY E S I A N
O P T I M I Z AT I O N O F H I G H - D I M E N S I O N A L
F U N C T I O N S

Outline. In this chapter, we directly address the Bayesian optimiza-
tion of an unknown high-dimensional function f that is noisy and
costly to evaluate. This is still an open research problem, as described
briefly in Section 2.2.4 and discussed in greater length in this chap-
ter. We address the over-exploration issue in decentralized Bayesian
Optimization (BO) algorithms by proposing a provably better approx-
imation of the famous acquisition function GP-UCB [57] in a decen-
tralized context. We also describe a decentralized algorithm, called
DuMBO, to maximize this new acquisition function. We tackle the
large dimensionality of the input space C by assuming an additive de-
composition of the objective function f , and we prove that DuMBO
can optimize it with no-regret guarantees. Finally, we demonstrate
its competitive empirical performance against other state-of-the-art
high-dimensional BO algorithms on a benchmark comprising syn-
thetic functions and real-world problems.

6.1 motivations

In the previous chapters, we addressed the spatial reuse problems
in a Wireless Local Area Network (WLAN) (Chapters 3 and 4) and
we demonstrated that one of our algorithms, devised for this pur-
pose, can successfully apply to different technological contexts (Chap-
ter 5). However, theoretical limitations remain as more work needs
to be put in the theoretical modeling of our strategies to tackle the
high-dimensionality of the objective function f . This chapter provides
DuMBO, an algorithm that addresses the theoretical limitations of the
previously proposed solutions. Through a thorough theoretical mod-
eling, we assess its optimality and its superiority over state-of-the-art,
provably optimal algorithms. In doing so, we aim at giving a broader
impact to our contributions. As a matter of fact, this chapter demon-
strates the ability of DuMBO to optimize objective functions from a
variety of technological applications, ranging from telecommunica-
tion networks to astrophysics.

Furthermore, recall that one of the current major drawbacks of BO is
its inability to optimize high-dimensional functions. In fact, although
BO has become a highly effective framework for black-box optimiza-
tion in input spaces of low effective dimension [116], classical BO algo- [116] Wang et al. (2013),

“Bayesian Optimization in
High Dimensions via
Random Embeddings.”

rithms struggle with high-dimensional functions as their acquisition

89
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functions become hard to maximize. However, many real-world ap-
plications, such as computer vision, robotics and of course computer
networks48 often involve a high-dimensional objective function. This48As illustrated

throughout this thesis. chapter aims to contribute to the field of BO by providing a way to
extend it to the optimization of high-dimensional functions.

6.2 related works

In this section, we extend Section 2.2.4 by describing how state-of-the-
art BO algorithms address the high dimensionality of input spaces.
Before discussing this, recall that the quality of the optimization is
quantified through the notion of regret, with the instantaneous regret
rt = f(x∗)− f(xt) (see Chapter 1, Definition 1.1) and the cumulative
regret RT =

∑T
t=1 rt (see Chapter 1, Definition 1.2). Also, remember

that a Black-Box Optimization (BBO) algorithm is said to be asymptot-
ically optimal (or equivalently, no-regret) if limT→+∞RT /T = 0 (see
Chapter 1, Definition 1.3).

6.2.1 High-Dimensional Bayesian Optimization

When facing high-dimensional problems, global optimization algo-
rithms, such as DIRECT (see Section 2.2.1), struggle at maximizing
the acquisition function φt of a BO algorithm in an acceptable amount
of time. This is mainly due to their computational complexity, which
is exponential in the number of dimensions d of the input space C. To
tackle this issue, BO algorithms use a variety of techniques that leads
to mitigating the complexity of the optimization of the acquisition
function.

As an example, TuRBO [117] maintains a trust region in the in-[117] Eriksson et al.
(2019), “Scalable global

optimization via local
bayesian optimization”

put space C to perform local Bayesian optimization. Although its
Gaussian Process (GP) has a poor fit globally, it serves as an excellent
surrogate model within the trust region. Naturally, all the subtlety
of this algorithm lies in how the trust region is built and updated at
each iteration.

Apart from TuRBO, high-dimensional BO algorithms generally fall
into one of the two following general categories.

6.2.1.1 Embedding BO Algorithms

Embedding BO algorithms assume that only a few dimensions are sig-
nificantly impacting f and project its high-dimensional input space
into a low-dimensional one where the optimization is actually per-
formed. REMBO [118] and ALEBO [119] make the hypothesis that[118] Binois et al. (2015),

“A warped kernel
improving robustness in

Bayesian optimization via
random embeddings”

[119] Letham et al. (2020),
“Re-examining linear

embeddings for
high-dimensional Bayesian

optimization”

the effective dimensionality of the objective function is lower than d.
They optimize f after projecting its high-dimensional input into a lin-
ear subspace using random Gaussian matrices. Other approaches ex-
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ist, such as [120] that uses variational auto-encoders to learn a contin- [120] Gómez-Bombarelli
et al. (2018), “Automatic
chemical design using a
data-driven continuous
representation of
molecules”

uous embedding of molecules or [121] that discovers the embedding

[121] Moriconi et al.
(2020), “High-dimensional
Bayesian optimization
using low-dimensional
feature spaces”

function using a manifold GP. [122] proposes the SAASBO algorithm

[122] Eriksson et al.
(2021), “High-dimensional
Bayesian optimization
with sparse axis-aligned
subspaces”

that assumes a hierarchy of relevance in the input dimensions and
introduces a structured prior over the kernel hyperparameters of the
GP. These hyperparameters are designed in such a way that they in-
duce a sparse GP, able to learn an embedding of the high-dimensional
inputs and to handle large amount of data. Finally, there exist algo-
rithms that propose to simply select some dimensions of the input
space to project onto. Such recent methods include Dropout [123], in-

[123] Li et al. (2018),
“High dimensional
Bayesian optimization
using dropout”

spired by the dropout algorithm in neural networks, that proposes
the dimension dropout for the high-dimensional BO. At each opti-
mization, it samples a small number of dimensions and performs the
optimization on these dimensions only. Another approach is MCTS-
VS [124], based on Monte-Carlo Tree Search to sample the subset of

[124] Song et al. (2022),
“Monte Carlo Tree Search
based Variable Selection
for High Dimensional
Bayesian Optimization”

dimensions to project onto. Note that these methods demonstrate ex-
cellent empirical performance but offer no theoretical guarantees. In
particular, they do not offer no-regret guarantees through an asymp-
totic optimality property.

6.2.1.2 Decomposing BO Algorithms

Decomposing BO algorithms assume an additive structure for f and
optimize the factors of the induced decomposition with classical BO.
This assumption leads to exponential gains in the complexity, as the
critical parameter is now d̄, the Maximum Factor Size (MFS) of the
decomposition.49 Classical approaches such as ADD-GPUCB [125], 49That is, the

dimensionality of the
highest-dimensional factor
of the decomposition.

[125] Kandasamy et al.
(2015), “High dimensional
Bayesian optimisation and
bandits via additive
models”

MES [126] or QFF [127] assume a decomposition with a MFS equal to 1

[126] Wang et al. (2017),
“Max-value entropy search
for efficient Bayesian
optimization”

[127] Mutny et al. (2018),
“Efficient high dimensional
bayesian optimization with
additivity and quadrature
fourier features”

and orthogonal domains. More recent approaches like DEC-HBO [128]

[128] Hoang et al. (2018),
“Decentralized
high-dimensional Bayesian
optimization with factor
graphs”

are able to optimize decompositions with larger MFS and shared in-
put components. Still, the MFS of the decomposition must be low to
avoid a prohibitive computational complexity.

Note that, like any BO algorithm, decomposing BO algorithms ap-
proximate the true objective function f as the existence of its addi-
tive decomposition is not guaranteed. However, unlike the others ap-
proaches, the vast majority of decomposing BO algorithms offer no-
regret guarantees, as they are provably asymptotically optimal pro-
vided that their introduced assumptions on f hold. Also note that
some of them, such as ADD-GPUCB [125] and DEC-HBO [128], can
be used in a decentralized context.

6.2.2 The DuMBO (Decentralized Message-passing Bayesian Optimiza-
tion) Algorithm

In this chapter, we propose DuMBO, a decomposing BO algorithm. To
better appreciate how DuMBO differentiates from other decomposing
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BO algorithms, let us discuss about one particular challenge within
the decomposing BO community.

The decomposing algorithms [125–128] are all based on the as-
sumption that the inferred additive decomposition of f has a low
MFS. As an example, ADD-GPUCB [125] and QFF [127] require the
simplest form of additive decompositions (d̄ = 1). As stated before,
this may lead to the optimization of a coarse approximation of f .
In return, they are systematically able, at each time step t, to query
argmaxφt in a reasonable amount of time thanks to a global opti-
mization algorithm. From this, a methodological question arises: is it
better

(i) to systematically query xt = argmaxφt, with φt an acquisition
function built from a simple (and often inexact) decomposition
of f , or

(ii) to find the query xt using an acquisition function φt built from
an exact, more complex decomposition of f by giving up on the
guarantee of finding the global maximum of φt?

Case (i) has been extensively studied [125–127], but it seems that
only [128] has taken a few steps in the direction of case (ii). In fact,
DEC-HBO tolerates more complex additive decompositions (d̄ = 3),
but is no longer guaranteed to query argmaxφt (because it uses a vari-
ant of the max-sum algorithm [129] that requires f to have a sparse[129] Rogers et al. (2011),

“Bounded approximate
decentralised coordination

via the max-sum
algorithm”

additive decomposition to converge). Table 6.1 gathers the main dif-
ference between the state-of-the-art of decomposing algorithms, and
the proposed DuMBO algorithm. Observe that, overall, DuMBO is the
only algorithm that exploits weaker guarantees on the maximization
of φt to lower its computational complexity. This allows DuMBO to
relax the restrictive MFS assumption and hence, to handle decompo-
sitions with an arbitrary MFS without the need to approximate them
with a simpler one.

Table 6.1: Comparison of decomposing state-of-the-art BO algorithms with
DuMBO on relevant criteria. Here, n is the number of factors in
the decomposition, d the number of dimensions of f , d̄ the MFS of
the decomposition, t the optimization step, ξ the desired accuracy
when maximizing φt and NA a constant defined in Section 6.4.3.
Nm is a constant defined in [128].

Solution Complexity MFS Asm. Find argmaxφt

ADD-GPUCB [125] O
(
t3 + nt2 + n2ξ−1

)
d̄ = 1 Yes

QFF [127] O
(
(ξ−1t3/2(log t)d̄)d̄

)
d̄ = 1 Yes

DEC-HBO [128] O
(
Nmξ

−d̄n(t3 + n)
)

d̄ ≤ 3 If the dec. is sparse

DuMBO (Ours) O
(
d̄NAnt

3ξ−1
)

None See Section 6.4.2
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6.3 problem formulation

We now introduce the core assumptions about the black-box objec-
tive function f : C → R to obtain an additive decomposition (Sec-
tion 6.3.1), along with an introductory example to ease exposition.
Next, we exploit these assumptions to derive inference formulas (Sec-
tion 6.3.2) and to adapt GP-UCB to a decentralized context (Section 6.3.3).

6.3.1 Core Assumptions

In order to optimize f in a decentralized fashion, we make several
assumptions.

Assumption 6.1. The unknown objective function f can be decomposed
into a sum of factor functions

(
f (i)
)
i∈[1,n]

, with domains
(
C(i)
)
i∈[1,n]

, such

that C = ∪ni=1C(i) and

f =
n∑

i=1

f (i). (6.1)

Any decomposition, including (6.1), can be represented by a factor
graph where each factor and variable node denote, respectively, one
of the n factors of the decomposition and one of the d input compo-
nents of f . There is an edge between a factor node i and a variable
node j if and only if f (i) uses xj as an input component. We use
Vi, 1 ≤ i ≤ n, and Fj , 1 ≤ j ≤ d, to denote respectively the set of
variable nodes connected to factor node i and the set of factor nodes
connected to variable node j.

Figure 6.1: Factor graph of an additive decomposition, with n = 4 factors
and d = 3 variables.

Example. An introductory example is shown in Figure 6.1, where
V-sets and F-sets can be easily inferred. For instance, V1 = {1, 3}
since f (1) uses x1 and x3 whereas F1 = {1, 4} since x1 is used by f (1)
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and f (4). As a sanity check, you can verify that this decomposition
has an MFS d̄ = 2.

To make predictions about the factor functions without any prior
knowledge, we need a model that maps the previously collected in-
puts with their noisy outputs. Denoting xVi = (xj)j∈Vi

, let us intro-
duce the following assumption.

Assumption 6.2. Factor functions f (i) are independent GP
(
µ
(i)
0 , k(i)

(
xVi ,x

′
Vi

))
,

with prior mean µ(i)0 = 0 and covariance function k(i).

Since f is a sum of independent GPs, Assumption 6.2 implies that
f is also GP (µ0, k(x,x′)) with prior mean µ0 = 0 and covariance
function k(x,x′) =

∑n
i=1 k

(i)
(
xVi ,x

′
Vi

)
.

6.3.2 Inference Formulas

For any x ∈ C and given the previous t input queries X = (x1, · · · ,xt),
the vector (f(x), f(x1), · · · , f(xt)) is Gaussian. Given the t-dimensional
vector of noisy outputs y = (y1, · · · , yt)⊤, with yi = f(xi) + ϵ and ϵ

a centered Gaussian variable, the posterior distribution of the factor
f (i)(x) is also Gaussian. Since f can be decomposed, the posterior
mean µ

(i)
t+1(xVi) and variance (σ

(i)
t+1(xVi))

2 of the factor f (i) at time
t+ 1 can be expressed with the posterior means and covariance func-
tions of the factor functions involved in decomposition (6.1).

Proposition 6.1. Let µ(i)t+1(xVi) and (σ
(i)
t+1(xVi))

2 be the posterior mean
and variance of f (i) at input xVi . Then, for the decomposition (6.1),

µ
(i)
t+1(xVi) = k

(i)⊤
xVi

K−1y (6.2)

(σ
(i)
t+1(xVi))

2 = k(i)(xVi ,xVi)− k
(i)⊤
xVi

K−1k
(i)
xVi

(6.3)

with t× 1 vectors k
(i)
xVi

= (k(i)(xVi ,x
j
Vi
))j∈[1,t] and t× t matrices K =

(k(xj
Vi
,xk

Vi
))j,k∈[1,t].

For the sake of generality, Proposition 6.1 only requires an additive
decomposition of f . Note that Proposition 6.1 does not assume that a
corresponding additive decomposition of the observed outputs in y

is available. However, note that, in a significant portion of real-world
applications (e.g. network throughput maximization [88], energy con-
sumption minimization [130] or UAVs-related applications [131]), a[130] Bourdeau et al.

(2019), “Modeling and
forecasting building

energy consumption: A
review of data-driven

techniques”

[131] Xie et al. (2018),
“Throughput maximization

for UAV-enabled wireless
powered communication

networks”

natural output decomposition is observable. As demonstrated by [87],
having access to a decomposed output can only improve the predic-
tive performance of the GP surrogate model. Therefore, we now de-
rive the inference formulas when the output decomposition is known.

Observing the output decomposition of f means that f is now a
function Rd → Rn, with n the number of factors in its additive de-
composition. At a time t, a BO algorithm no longer has access to a
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t-dimensional output vector y but at a t× n matrix Y . Note that y

and Y are connected through the relation Y 1 = y, with 1 the n-
dimensional vector of ones.

Having access to the matrix Y allows to train n different GPs in-
stead of a single one with an additive kernel [132], so that the ith [132] Duvenaud et al.

(2011), “Additive gaussian
processes”

GP
(
0, k(i)

(
xVi ,x

′
Vi

))
serves as a surrogate model only for the ith fac-

tor of the decomposition of f . To condition the ith GP, we consider the
data set Si =

{(
xj
Vi
,Yj,i

)}
j∈[1,t]

. Given Si, the posterior mean µ
(i)
t+1

and the posterior variance
(
σ
(i)
t+1

)2
formulas are simple instances of

the conditioned Gaussian distribution formulas, with

µ
(i)
t+1(x) = k

(i)⊤
xVi

K−1
(i)

Y:i, (6.4)(
σ
(i)
t+1(x)

)2
= k(i) (xVi ,xVi)− k

(i)⊤
xVi

K−1
(i)

k
(i)
xVi

, (6.5)

with Y:i the ith column of Y , t× 1 vectors k(i)
xVi

= (k(i)(xVi ,x
j
Vi
))j∈[1,t]

and t× t matrices K(i) = (k(i)(xj
Vi
,xk

Vi
))j,k∈[1,t].

Note that (6.4) and (6.5) mainly differ from (6.2) and (6.3) by their
ability to exploit the inverse of the Gram matrix K−1

(i)
built only from

the ith covariance function k(i), and of course, the outputs of the ith
factor of the decomposition Y:i. The impact of having access to the
decomposed output of f is explored in Section 6.5.

6.3.3 Improved Acquisition Function

Having defined a surrogate model for f , we can now turn to finding
an optimal policy for querying the objective function. In this section,
we exploit the decomposition of f to build an acquisition function for
our BO algorithm that approximates GP-UCB in a decentralized con-
text. Proofs for all the presented results can be found in Appendix D.

Recall that GP-UCB is defined by (2.12) as the sum of an exploita-
tion term µt(x) and an exploration term σt(x) weighted by some
scalar β1/2

t . Finding an additive decomposition for GP-UCB is hard
because σt(x) cannot be expressed as a sum. To circumvent this caveat,
[125] proposed to apply GP-UCB to each factor of the additive de-
composition of f , with φ

(i)
t = µ

(i)
t + β1/2

t σ
(i)
t . Then, they proved that

their algorithm ADD-GPUCB offers no-regret performance by con-
sidering

∑n
i=1 φ

(i)
t = µt + β1/2

t

∑n
i=1 σ

(i)
t as an acquisition function.

Although the exploitation term µt is preserved, the exploration term

is now overweighted since
∑n

i=1 σ
(i)
t ≥

√∑n
i=1

(
σ
(i)
t

)2
= σt. To reach

better empirical performance, one could look for a tighter additive
upper bound of σ2t . This is the purpose of this section. We start by
decomposing the variance of the ith factor function (σ

(i)
t (x))2 into

two terms.
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Epistemic vs. aleatoric uncertainty. The variance (σ
(i)
t (x))2 of the

random variable f (i)(x) is composed of two fundamentally different
terms. The epistemic uncertainty refers to the uncertainty caused by
having an undersampled dataset, with not enough data points to ac-
curately estimate the value of f (i)(x). In contrast, the aleatoric uncer-
tainty, also called the observational noise, can intuitively be seen as
the intrinsic noise of f (i)(x) due, for instance, to a poor measurement
quality. For more details, refer to [133].[133] Hüllermeier et al.

(2021), “Aleatoric and
epistemic uncertainty in

machine learning: An
introduction to concepts

and methods”

Let v(i)− ≥ 0 be the aleatoric uncertainty of the factor function f (i),
which can be seen as a lower bound of the posterior variance of f (i),
that is ∀x ∈ C(i), ∀t ∈ N, v(i)− ≤ (σ

(i)
t (x))2. We argue that a better ap-

proximation of the exploration term can be proposed if the posterior
variance of the GP is assumed to be bounded.

Assumption 6.3. ∀t ∈ N, the posterior variance of the objective func-

tion f , σ2t (x) =
∑n

i=1

(
σ
(i)
t (xVi)

)2
satisfies σ2t (x) ≤ v+, with v+ =(√

v− + 2δ−
)2, v− =

∑n
i=1 v

(i)
− and δ2− =

∑n
i=1

∑n
j=1
j ̸=i

√
v
(i)
− v

(j)
− .

Note that the restrictiveness of Assumption 6.3 fades as the number
n of factors grows.

Example. Consider the case where all the n factor functions f (i)

have the same aleatoric uncertainty v0. We have v− = nv0, δ2− =

n(n− 1)v0 and v+ = nv0(1+ 2
√
n− 1)2. Thus, the ratio v+/v− = (1+

2
√
n− 1)2 increases as n grows, which suggests that Assumption 6.3

is more easily verified when n is large. Note that v+/v− can be quite
large for reasonable values of n. Considering the decomposition in
Figure 6.1 with n = 4, v+/v− ≈ 20. In this particular context where
we consider an additive decomposition of f composed of 4 factors
with the same aleatoric uncertainty v0, Assumption 6.3 holds for any
objective function whose posterior variance is less than 20 times its
aleatoric uncertainty.

Under Assumption 6.3, we propose to bound from above the explo-
ration term with the following proposition.

Proposition 6.2. Under Assumption 6.3,

a
n∑

i=1

σ
(i)
t

2
+

1

4a
(6.6)

is the the tightest linear upper bound of the exploration term σt in the least
squares sense, where a is the single positive real root of the quartic polyno-
mial

P (a) =
2
[
u3
]v+
v−

3
a4 −

4
[
u

5
2

]v+
v−

5
a3 +

[
u

3
2

]v+
v−

3
a−

[u]v+v−
8

, (6.7)

and [h(u)]v+v− = h(v+)− h(v−).
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We show that (6.6) is a tighter upper bound of σt(x) than the one
proposed in [125, 128].

Theorem 6.1. Let Assumptions 6.1, 6.2, 6.3 hold. Then the following in-
equality holds for all x ∈ C

a

n∑
i=1

(
σ
(i)
t (xVi)

)2
+

1

4a
≤

n∑
i=1

σ
(i)
t (xVi). (6.8)

Therefore, we propose an acquisition function φt =
∑n

i=1 φ
(i)
t cor-

responding to the described additive decomposition (6.1) with

φ
(i)
t (xVi) = µ

(i)
t (xVi) + aβ

1
2
t

(
σ
(i)
t (xVi)

)2
(6.9)

6.4 dumbo

In this section, we describe DuMBO, a BO algorithm that exploits the
results from Section 6.3 to find argmaxx∈C

∑n
i=1 φ

(i)
t (xVi), which is

equal to argmaxx∈C µt(x) + β1/2
t

(
aσ2t (x) + 1/4a

)
since both expres-

sions differ only by a constant term. We start by explaining how
DuMBO infers an additive decomposition of the objective function
f from observed data (Section 6.4.1). Then, we formulate how we
maximize φt in a decentralized fashion (Section 6.4.2). After that,
we describe the DuMBO algorithm and we discuss its computational
complexity (Section 6.4.3). Next, we provide an early-stopped version
of DuMBO and discuss the weaker guarantees achieved in this case
(Section 6.4.4). Finally, we prove the asymptotic optimality of DuMBO
(Section 6.4.5).

6.4.1 Additive Decomposition Inference

Assumption 6.1 requires an additive decomposition of the objective
function f . However, if the decomposition is not provided by the user,
it must be inferred from observed data. In this section, we describe
how such a decomposition can be inferred from data [134, 135]. We [134] Gardner et al.

(2017), “Discovering and
exploiting additive
structure for Bayesian
optimization”

[135] Wang et al. (2017),
“Batched high-dimensional
Bayesian optimization via
structural kernel learning”

adopt the method proposed by [134], as in Appendix B of [128].
As in [128], let us associate each candidate additive decomposi-

tion A (represented by its factor graph, see Figure 6.1 for an illus-
tration) with the kernel of an additive GP [132]. Given k candidates
A1, · · · ,Ak, we reformulate the acquisition function φt as a weighted
average with respect to the posterior of each candidate given the
dataset D = {(xi, yi)}i∈[1,t] composed of the selected input queries
and their observed noisy outputs, that is
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φt(x) =
k∑

i=1

p(Ai|D)φAi
t (x) (6.10)

=
k∑

i=1

p(Ai|D)
|Ai|∑
j=1

φ
(j)
t (xVj ) (6.11)

≈ 1

k

k∑
i=1

|Ai|∑
j=1

φ
(j)
t (xVj ), (6.12)

with φAi
t our proposed acquisition function given the additive decom-

position Ai, φ
(j)
t given by (6.9), (6.11) following from (6.10) since the

additive decomposition Ai also provides an additive decomposition
of our proposed acquisition function, and (6.12) an approximation
of (6.11) as proposed by [134].

As for the candidatesA1, · · · ,Ak, they are sampled by Monte-Carlo
Markov Chain (MCMC) with the Metropolis-Hastings algorithm [136].[136] Robert et al. (2010),

“Metropolis–hastings
algorithms”

Starting from the fully dependent decomposition A0 = {{1, · · · , d}}
at t = 0. When the decomposition is unknown, at each time step
t, k promising decompositions are sampled by MCMC starting from
the last sampled decomposition at time step t− 1. We briefly detail
below how a new additive decomposition Ai+1 is sampled from an
additive decomposition Ai. A thorough description of this process
can be found in [134].

To generate Ai+1, we sample an alternative additive decomposition
A′ from a proposal distribution g (A′|Ai) (see Figure 1 in [134]). To
do so, one of two operations on Ai is chosen randomly. The Merge

operation chooses randomly two factors in the decomposition Ai

and merge them together, while the Split operation chooses a factor
and split it in two. Either Merge or Split is applied to generate an-
other configuration A′. Then, the model evidence p(y|X,A′) is com-
puted. Finally, we consider the acceptance probability P(A′|Ai) of the
Metropolis-Hastings algorithm, that is

P(A′|Ai) = min

(
1,
p(y|X,A′)g(A′|Ai)

p(y|X,Ai)g(Ai|A′)

)
. (6.13)

Then, Ai+1 = A′ with probability P(A′|Ai) and Ai+1 = Ai with
probability 1−P(A′|Ai).

Note that the computational overhead of sampling k alternative
additive decomposition of f is in O

(
kt3
)

with a dataset D of t data
points, since each sampled additive decomposition requires the Maximum
Likelihood Estimation (MLE) of the likelihood p(y|X,A), which in-
volves inverting a t× t matrix (see [53]). Once A1, · · · ,Ak are sam-
pled, (6.12) is maximized by our decentralized algorithm to find the
input x to query.
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6.4.2 ADMM Formulation

Optimizing φt(x) =
∑n

i=1 φ
(i)
t (xVi) while ensuring the compatibility

between shared input components amounts to solving the following
constrained optimization problem:

maximize
{x(i)}n

i=1

n∑
i=1

φ
(i)
t

(
x(i)

)
such that x(i)

Vi∩Vj
= x

(j)
Vi∩Vj

,∀i, j ∈ [1,n] (6.14)

with x(1), · · · ,x(n) inputs with dimension indices respectively listed
in V1, · · · ,Vn of the factor functions φ(1)

t , · · · ,φ(n)
t .

To simplify the constraints (6.14), we introduce a global consensus
variable x̄ ∈ C and we reformulate the optimization problem as

maximize
{x(i)}n

i=1

n∑
i=1

φ
(i)
t

(
x(i)

)
such that x(i) = x̄Vi , ∀i ∈ [1,n] .

(6.15)

We now turn the problem (6.15) into an unconstrained optimization
problem by considering its augmented Lagrangian Lη(x(1), · · · ,x(n), x̄,λ):

Lη =
n∑

i=1

φ
(i)
t (x(i))−λ(i)⊤(x(i) − x̄Vi)−

η

2
||x(i) − x̄Vi ||22 (6.16)

with λ
(i)
k a column vector of dual variables with |Vi| components and

a hyperparameter η > 0 that controls the influence of the second-
order penalty ||x(i) − x̄Vi ||22 on the augmented Lagrangian. To prop-
erly choose a value for η, we refer the interested reader to [137]. [137] Boyd et al. (2011),

“Distributed optimization
and statistical learning via
the alternating direction
method of multipliers”

To maximize (6.16), we consider the Alternating Directions Method
of Multipliers (ADMM), proposed by [138]. We now describe how we

[138] Gabay et al. (1976),
“A dual algorithm for the
solution of nonlinear
variational problems via
finite element
approximation”

apply ADMM to our problem and present some relevant well-known
results. For further details, please refer to [137].

ADMM is an iterative method that proposes, at iteration k, to solve
sequentially the problems

x
(1)
k+1 = argmax

x(1)

Lη(x(1), · · · ,x(n)
k , x̄k,λk)

...

x
(n)
k+1 = argmax

x(n)

Lη(x
(1)
k+1, · · · ,x

(n−1)
k+1 ,x(n), x̄k,λk)

x̄k+1 = argmax
x̄

Lη(x
(1)
k+1, · · · ,x

(n)
k+1, x̄,λk) (6.17)

λk+1 = argmax
λ

Lη(x
(1)
k+1, · · · ,x

(n)
k+1, x̄k+1,λ). (6.18)
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Note that x
(1)
k+1, · · · ,x

(n)
k+1 can be found concurrently, by gradient

ascent (e.g. with ADAM [139]) of[139] Kingma et al. (2014),
“Adam: A method for

stochastic optimization”

L(i)η = φ
(i)
t (x(i))−λ(i)⊤(x(i) − x̄Vi)−

η

2
||x(i) − x̄Vi ||22. (6.19)

If the choice of λ0 verifies ∀i ∈ [1,n],
∑

j∈Fi
λ
(j)
0,i = 0, it is known

(see [137]) that the closed-forms for (6.17) and (6.18) are

x̄k+1 =

 1

|Fi|
∑
j∈Fi

x
(j)
k+1,i


i∈[1,d]

(6.20)

λk+1 =
(
λ
(i)
k + η

(
x
(i)
k+1 − x̄k+1,Vi

))
i∈[1,n]

. (6.21)

Since the maximization of φt =
∑n

i=1 φ
(i)
t relies on ADMM, let us

discuss its maximization guarantees. It is well known that ADMM con-
verges towards the global maximum of a convex φt. Furthermore,
ADMM has also demonstrated very good performance at optimizing
non-convex functions. As examples, [140, 141] exploited ADMM to[140] Liavas et al. (2015),

“Parallel algorithms for
constrained tensor

factorization via
alternating direction

method of multipliers”

[141] Lai et al. (2014), “A
splitting method for

orthogonality constrained
problems”

perform parallel constrained tensor factorization and as a splitting
method for orthogonality constrained problems, respectively. It has
also been used as a way to compute sparse representations in [142].

[142] Chartrand et al.
(2013), “A nonconvex
ADMM algorithm for

group sparsity with sparse
groups”

This success in solving nonconvex optimization tasks has been ex-
plained by recent works such as [143], which extended the maximiza-

[143] Wang et al. (2019),
“Global convergence of
ADMM in nonconvex

nonsmooth optimization”

tion guarantees of ADMM to the class of restricted prox-regular func-
tions.

Definition 6.1 (restricted prox-regularity, see [143]). For a lower semi-
continuous function f , let M ∈ R+, f : Rn → R ∪ {+∞} and ∂f the set
of general subgradients of f . Define the exclusion set

SM = {x ∈ dom(f) : ||d|| > M for all d ∈ ∂f(x)} .

f is called restricted prox-regular if, for any M > 0 and bounded set T ⊆
dom(f), there exists γ > 0 such that

f(y) +
γ

2
||x− y||2 ≥ f(x) + d(y−x), (6.22)

∀x ∈ T \ SM , y ∈ T , d ∈ ∂f(x), ||d|| ≤M .

Note that the class of restricted prox-regular functions includes
some non-convex, non-smooth functions.

6.4.3 Algorithm and Complexity

The formulation in the previous section is the foundation of a fully
decentralized message-passing algorithm, called DuMBO, that can
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Algorithm 6.1 DuMBO
Input: factor graph of the acquisition function φt, η > 0.

1: t = 0

2: while true do
3: λ0 = 0

4: k = 0

5: while ADMM stopping criterion not met do
6: for all factor node i [concurrently] do
7: if k = 0 then
8: Compute x

(i)
k+1 by maximizing φ(i)

t with gradient ascent
9: else

10: Update λ
(i)
k with (6.21)

11: Compute x
(i)
k+1 by maximizing (6.19) with gradient as-

cent starting from x
(i)
k

12: end if
13: Send x

(i)
k+1,j to the variable node j, ∀j ∈ Vi

14: end for
15: for all variable node j [concurrently] do
16: Compute x̄k+1,j with (6.20)
17: Send x̄k+1,j to the factor nodes in Fj

18: end for
19: k = k+ 1

20: end while
21: Observe yt+1 = f(x̄k)

22: Update the surrogate model GP with (x̄k, yt+1)
23: t = t+ 1

24: end while

run on the factor graph of f . It is described in details in this section,
followed by a short discussion about its computational complexity.

Algorithm 6.1 describes the DuMBO algorithm. At each step of the
external optimization loop (lines 2-24), ADMM maximizes the acquisi-
tion function φt with the internal optimization loop (lines 5-20). Each
factor node and each associated variable node communicate back and
forth at lines 13 and 17, until some stopping criterion for the conver-
gence of ADMM is satisfied. Note that DuMBO is decentralized, since
loops at lines 6 and 15 are run concurrently.

We now provide a time complexity analysis for DuMBO. The anal-
ysis assumes that a gradient ascent performs O

(
ξ−1
)

steps for a de-
sired accuracy ξ [85] and ADMM converges in at most NA steps. We
also denote d(i) the factor size of the ith factor in the decomposition,
used by the local acquisition function φ(i)

t . Note that, within the factor
graph of φt, n factor nodes and d variable nodes are working concur-
rently to run ADMM in a decentralized fashion. We discuss the time
complexities for the two types of node (note that the costs of the com-



102 contribution to the optimal bo of high-dimensional functions

munication between factor and variable nodes have been neglected
for the clarity of the analysis).

Factor node. For a factor node i, it is known that, at iteration t, the
time complexity of the inference with a GP is O

(
t3d(i)

)
, since the

number of previous observations is t. Thus, the time complexity of
evaluating (6.19) isO

(
t3d(i)

)
. Since it is requiredO

(
ξ−1
)

times by the

gradient ascent, the time complexity of finding x(i)k+1 is O
(
ξ−1t3d

(i)
m

)
.

A factor node also needs to compute λ
(i)
k+1, which is O

(
d(i)
)

. Since
the factor node is called at least once and at most NA times for ADMM

to converge, its time complexity is O
(
d(i)ξ−1t3NA

)
.

Variable node. A variable node j is simply in charge of collecting
messages from |Fj | factor nodes, and to aggregate them into x̄k+1,j

by averaging. Its time complexity is therefore O (|Fj |).

6.4.4 Early-stopped Version

Although DuMBO has a competitive time complexity (see Table 6.1),
we now discuss how to properly early-stop it and still get (weaker)
guarantees on the maximization of φt before ADMM converges. This
can be of critical importance for some real-world applications. Note
that the proofs for the results in this section can be found in Ap-
pendix E. We start with the following assumption.

Assumption 6.4. For all i ∈ [1,n], the covariance function k(i) from As-
sumption 6.2 is Lipschitz continuous, with Lipschitz constant L

(
k(i)
)

.

Assumption 6.4 holds for a large class of covariance functions, such
as Matérn (see 4.3) or the squared exponential (equivalent to a Matérn
kernel when ν → +∞). For such covariance functions, we have the
following result.

Proposition 6.3. Let Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Then, φ(i)
t is

Lipschitz continuous, with Lipschitz constant

L
(
φ
(i)
t

)
= tL

(
k(i)
)
ρ
(
K−1

)
M

(i)
t (6.23)

withM (i)
t = max

(
|y+t − 2aβ1/2

t v
(i)
− |, |y−t − 2aβ1/2

t v
(i)
+ |
)

, y+t = maxk∈[1,t] yk,

y−t = mink∈[1,t] yk and ρ
(
K−1

)
the spectral radius of K−1.

Thanks to the Lipschitz continuity of the acquisition function, we
have the following result.
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Theorem 6.2. ∀i ∈ [1,n], let x(i)
k+1 = argmaxx L

(i)
η (x), with L(i)η defined

in (6.19). Then

x̃ =

 1∑
i∈Fj

L(φ
(i)
t )

∑
i∈Fj

L(φ
(i)
t )x

(j)
k+1,i


j∈[1,d]

(6.24)

is optimal in the minimax sense.

Intuitively, Theorem 6.2 proves that a tight upper bound for |
∑n

i=1 φ
(i)
t (x∗)−∑n

i=1 φ
(i)
t (x̃)| (with x∗ the optimal solution) exists, and that (6.24)

minimizes this upper bound. In addition, if not enough information
or computing capacity is available to compute L(φ(j)

t ), (6.20) can be
used instead of (6.24) to early-stop DuMBO (see Appendix E for a
proof of this result).

Observe that Theorem 6.2 provides a way to aggregate the set of
recommended values for the jth input (that is,

{
x
(j)
k+1,i

}
i∈Fj

) with-

out waiting for ADMM to converge. Although x̃ is not guaranteed to
be the maximizer of φt(x), it is nonetheless a minimax optimal of
φt(x). Computing x̃ after a few ADMM iterations instead of waiting
for ADMM to converge could be a great trade-off between maximizing
φt(x) and the computational overhead brought by ADMM.

6.4.5 Asymptotic Optimality

In this section, we provide a regret bound for DuMBO and the the-
oretical results needed to assess its asymptotic optimality, assuming
the convergence of ADMM.

Assumption 6.5. The acquisition function φt is restricted prox-regular (see
Definition 6.1).

We start by providing an upper bound on its immediate regret
rt = f(x∗)− f(xt), with xt = argmaxx∈C φt(x) for a finite, discrete
domain C. Its proof can be found in Appendix F.

Theorem 6.3. Let rt = f(x∗) − f(xt) denote the immediate regret of
DuMBO. Let δ ∈ (0, 1) and βt = 2 log

(
|C|π2t2

6δ

)
. Then ∀t ∈N we have

rt ≤ 2β
1
2
t

(
a

n∑
i=1

(
σ
(i)
t (xt)

)2
+

1

4a

)
(6.25)

with probability at least 1− δ.

We demonstrate the asymptotic optimality of DuMBO by piggy-
backing on the asymptotic optimality of DEC-HBO [128]. This is
a decomposing BO algorithm with an immediate regret bound of
2β1/2

t

∑n
i=1 σ

(i)
t (xt) (see Theorem 1 in [128]). Interestingly, Theorem 6.1
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directly implies that the immediate regret bound (6.25) is lower than
the immediate regret bound of DEC-HBO. As a consequence, the im-
mediate regret of DuMBO is bounded with the regret bound of DEC-
HBO. This allows us to rely on proofs in [128] to demonstrate some
properties of DuMBO. In particular, DEC-HBO is provably asymptot-
ically optimal whether the domain C is discrete or continuous (see
Theorems 2 and 3 in [128]). These results directly apply to DuMBO
and imply the following corollary.

Corollary 6.1. Let δ ∈ (0, 1) and Rt =
∑t

k=1 rk denote the cumulative
regret of DuMBO. Then there exists a monotonically increasing sequence of
{βt}t such that βt ∈ O(log t) and limt→+∞Rt/t = 0 with probability at
least 1− δ.

Corollary 6.1 states that DuMBO is asymptotically optimal, as de-
fined by Definition 1.3.

6.5 numerical results

In this section, we detail the experiments carried out to evaluate the
empirical performance of DuMBO. Our benchmark comprises four
synthetic functions (Section 6.5.1) and three real-world applications
(Section 6.5.2). We consider two state-of-the-art decomposing BO al-
gorithms: ADD-GPUCB [125] that assumes that d̄ = 1 and DEC-
HBO [128] that assumes that d̄ ≤ 3. We also consider two recent state-
of-the-art BO algorithms that do not assume an additive decompo-
sition of the objective function: TuRBO [117] and SAASBO [122]. We
compare these solutions with two versions of the proposed algorithm:
DuMBO that must systematically infer the additive decomposition of
f (see Section 6.4.1) and ADD-DuMBO that, conversely, can observe
the decomposition of f if it exists (see (6.4) and (6.5) in Section 6.3.2).
Note that, in Section 6.5.3, we also evaluate ES-DuMBO and ES-ADD-
DuMBO, the early-stopped versions (see Section 6.4.4) of DuMBO
and ADD-DuMBO respectively. Finally, the wall-clock times of all the
described BO algorithms are provided in Section 6.5.4.

Since BO is often used in the optimization of expensive black-box
functions, we are interested in the ability to obtain good performance
in a small number of iterations. Therefore, in every experiment, all
the BO algorithms are given 110 iterations to optimize f . Each experi-
ment is repeated 5 independent times. Table 6.2 gathers the averaged
results that were obtained. Note that, for each experiment, a BO al-
gorithm is considered as one of the best performing algorithms if its
average performance lies within the confidence interval of the best
performing solution.
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Table 6.2: Comparison of four state-of-the-art solutions against four differ-
ent versions of DuMBO on synthetic functions and real-world
problems. The reported metrics correspond to the minimal regret
attained for the synthetic functions, and to the average negative
reward for the real-world problems. The best performance metric
among all the strategies is written in bold text, and the best among
the strategies that do not have access to the additive decomposi-
tion is underlined. Decomposing BO algorithms can be identified
with the prefix "(+)".

Algorithm
Synthetic Functions Real-World Problems

(d-d̄) (d-d̄)

SHC Hartmann Powell Rastrigin Cosmo WLAN Rover

Unknown Add. Dec. (2-2) (6-6) (24-4) (100-5) (9-) (12-6) (60-)

ADD-GPUCB 0.102 1.29 10,258 N/A 7.46 -119.05 26.57

DEC-HBO 0.005 1.47 9,025 N/A 14.90 -116.58 10.07

TuRBO 0.322 1.89 711 1,109 5.82 -118.39 6.06

SAASBO 0.013 0.89 2,544 1,073 16.55 -116.40 10.82

(+) ES-DuMBO 0.006 0.87 1,745 1,045 7.10 -118.91 7.55

(+) DuMBO 0.029 0.76 542 1,010 5.86 -118.57 6.38

Known Add. Dec.

(+) ES-ADD-DuMBO 0.047 1.02 621 932 N/A -119.40 N/A

(+) ADD-DuMBO 0.102 0.72 542 822 N/A -121.06 N/A

6.5.1 Synthetic Functions

In this section, we compare the BO algorithms mentioned above (ex-
cluding the early-stopped versions for the sake of clarity) using four
synthetic functions: the 2d Six-Hump Camel (SHC), the 6d Hartmann,
the 24d Powell and the 100d Rastrigin. These functions are described
in details in Appendix G.

Figure 6.2 reports the performance of the solutions on the synthetic
functions with their minimal regrets. Observe that, in the specific ex-
ample of the SHC function (Figure 6.2a), DEC-HBO obtains the best
performance. This is due to the relative simplicity of SHC. In fact,
the SHC function satisfies all the assumptions made by DEC-HBO:
a MFS lower than 3 and a sparse factor graph. In this case, the vari-
ant of the max-sum algorithm used by DEC-HBO is guaranteed to
query argmaxφt at each time step t. Since DuMBO does not offer
global maximization guarantees in that case, it is outperformed by
DEC-HBO. Still, note that it exhibits competitive performance when
compared to the other BO algorithms.

As for the Hartmann, Powell and Rastrigin functions (Figures 6.2b,
6.2c and 6.2d respectively) they exhibit similar dynamics. Observe
that the two decomposing algorithms, ADD-GPUCB and DEC-HBO,
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(a) (b)

(c) (d)

Figure 6.2: Graphs of regret achieved by the considered BO algorithms for
(a) the SHC function, (b) the Hartmann function, (c) the Pow-
ell function and (d) the Rastrigin function. Note that the results
in (a) and (c) are shown with a logarithmic scale. The shaded
areas indicate the standard error intervals.

obtain poor minimal regrets (note that they were not evaluated on
the Rastrigin function since they did not finish a single execution in
24 hours). This is because they infer an additive decomposition of
f based on the assumption that d̄ ≤ 3 when actually d̄ > 3. Con-
versely, DuMBO, which does not make any restrictive assumption
on d̄, manages to quickly achieve a low regret by inferring an effi-
cient additive decomposition of f . Observe that DuMBO also outper-
forms SAASBO and TuRBO on all three synthetic functions. Finally,
the three Figures 6.2b, 6.2c and 6.2d show that, when given access to
the true additive decomposition of f , ADD-DuMBO achieves its low-
est regret in a lower number of iterations. Overall, note that, among
all the BO algorithms tested in the experiments, the two versions of
DuMBO are the only ones able to properly infer and/or exploit the
additive decomposition of f when it has a large MFS.

6.5.2 Real-World Experiments

We now evaluate DuMBO on three real-world problems, described in
details in Appendix G: (a) fine-tuning some cosmological constants
to maximize the likelihood of observed astronomical data, (b) con-
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trolling the power of devices in a WLAN to maximize its Shannon ca-
pacity [110] and (c) planning the least costly trajectory to a provided
destination for a rover on a rough terrain. Note that the problem (b)
is similar to the problem addressed in Chapters 3 and 4, except that
only the transmission power of each Access Point (AP) is tuned.

(a) (b) (c)

Figure 6.3: Negative average reward achieved by the considered BO algo-
rithms for (a) the fine-tuning of cosmological constants, (b) the
optimization of the Shannon capacity of a WLAN and (c) the plan-
ning of the rover trajectory. The shaded areas indicate the stan-
dard error intervals.

Figure 6.3 depicts the performance of the considered BO algorithms.
Figure 6.3b shows that DuMBO obtains competitive performance against
other state-of-the-art BO algorithms. On this problem as well, the per-
formance of ADD-DuMBO demonstrate that having access and being
able to handle additive decompositions with large MFS is a signifi-
cant advantage. As a matter of fact, it allows to outperform other BO
algorithms unable to exploit this additional information. Finally, Fig-
ures 6.3a and 6.3c exhibit patterns similar to those already identified
in Figure 6.2: ADD-GPUCB and DEC-HBO fail to infer an adequate
additive decomposition because of the restrictive MFS assumption.
Conversely, DuMBO, which does not make such an assumption on
the size of the MFS, demonstrates its competitiveness by achieving
the best performance along with TuRBO. Note that ADD-DuMBO is
not evaluated on problems (a) and (c) since the objective functions
cannot be decomposed.

6.5.3 Performance of the Early-Stopped Versions

In this section, we evaluate the performance of ES-DuMBO and ES-
ADD-DuMBO, the early-stopped versions of DuMBO and ADD-DuMBO,
respectively. Recall that the early-stopping procedure and guarantees
are described in Section 6.4.4. The solutions are early-stopped at the
end of the very first ADMM iteration. For the sake of readability,
we only depict the performance of the additive algorithms (ADD-
GPUCB, DEC-HBO, DuMBO and ADD-DuMBO) to compare with
the early-stopped versions.
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(a) (b)

(c) (d)

Figure 6.4: Performance achieved by the decomposing BO algorithms and
the early-stopped versions of DuMBO for (a) the 2d Six-Hump
Camel function, (b) the 6d Hartmann function, (c) the 24d Powell
function and (d) the 100d Rastrigin function. The shaded areas
indicate the standard error intervals.

Figure 6.4 depicts the performance of the early-stopped versions on
the synthetic functions described in Appendix G. Except for the SHC
function (Figure 6.4a), the same dynamic can be observed. The early-
stopped versions ES-DuMBO and ES-ADD-DuMBO obtain slightly
worse performance than their counterparts DuMBO and ADD-DuMBO.
However, they remain very competitive, as they outperform the state-
of-the-art decomposing BO algorithms in 3 out of 4 synthetic ex-
periments. Regarding the SHC function, the early-stopped versions
achieve better performance than their counterparts. ES-DuMBO even
achieves similar performance than DEC-HBO. As a future work, we
plan to conceptually better understand this observation.

Figure 6.5 depicts the performance of the early-stopped versions on
the real-world problems considered in Appendix G. The three exper-
iments are in agreement with the results observed for the synthetic
functions in Figure 6.4. ES-DuMBO and ES-ADD-DuMBO perform
slightly worse than their counterparts, but they remain very competi-
tive as they outperform DEC-HBO in all three experiments, and ADD-
GPUCB on the rover trajectory planning problem (Figure 6.5c). In the
two remaining problems (Figures 6.5a, 6.5b), the early-stopped ver-
sions achieve better (or equivalent) performance than ADD-GPUCB.
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(a) (b) (c)

Figure 6.5: Performance achieved by the decomposing BO algorithms and
the early-stopped versions of DuMBO for (a) the cosmological
constants fine-tuning, (b) the maximization of the Shannon ca-
pacity in a WLAN and (c) the trajectory planning of a rover. The
shaded areas indicate the standard error intervals.

These result demonstrate that, although the early-stopped version
of DuMBO provides only minimax guarantees on the maximization
of φt, its excellent empirical performance make it a very interesting
solution. This is especially true for technological contexts that cannot
afford high computing capabilities, as we discuss in the next section.

6.5.4 Wall-Clock Time

In this section, we provide wall-clock time measurements (excluding
the evaluation time of the objective function) of the described BO algo-
rithms on a synthetic function (24d Powell) and a real-world problem
(WLAN) described in Appendix G. The measurements were taken us-
ing a server equipped with two Intel(R) Xeon(R) CPU E5-2690 v4 @
2.60GHz, with 14 cores (28 threads) each.

Figure 6.6 gathers the wall-clock time measurements. Observe that
DuMBO does not only offer very competitive performance, it also ex-
hibits a lower overhead when compared to the other decomposing
algorithms (DEC-HBO and ADD-GPUCB). However, SAASBO and
TuRBO manage to get lower runtimes than DuMBO. This is not sur-
prising since, by design, these methods have minimal overheads, at
the expense of any theoretical guarantees.

Nevertheless, observe that the early-stopped version of DuMBO,
ES-DuMBO, also reaches very good performance, with a significantly
reduced response time. With ADD-DuMBO, observe that having ac-
cess to the true additive decomposition of the function also reduces
the overhead of the solution, since the decomposition does not need
to be inferred anymore. Finally, observe that ES-ADD-DuMBO, the
early-stopped version of DuMBO when the additive decomposition
is provided, obtains similar results as TuRBO and SAASBO, with only
a slightly larger runtime, especially on the Powell synthetic function
(Figure 6.6a). Therefore, we argue that DuMBO, due to its excellent
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(a) (b)

Figure 6.6: Performance achieved by all the described BO algorithms (in-
cluding the two versions of DuMBO and their early-stopped al-
ternatives) w.r.t. their wall-clock time for (a) the 24d Powell syn-
thetic function and (b) the maximization of the Shannon capacity
in a WLAN. The shaded areas indicate the standard error inter-
vals.

empirical performance and its satisfying runtime (thanks to its ca-
pacity to be early-stopped) is a competitive solution even in critical
applications where the response time needs to be low.

6.6 summary and limitations

In this chapter, we investigated the benefits of relaxing the restric-
tive assumptions of low-MFS additive decomposition that limit the
applicability domain of state-of-the-art decomposing BO algorithms.
As illustrated by Table 6.1, we chose to optimize our acquisition func-
tion with algorithms that scale well with the number of dimensions.
This enables us to exploit, when available, the true (and potentially
complex) additive decomposition of the objective function f instead
of approximating it with a simple decomposition. To illustrate the ef-
fectiveness of such design choices, we proposed DuMBO, an asymp-
totically optimal BO algorithm that optimizes f in a decentralized
fashion, thanks to a tighter decentralized approximation of GP-UCB
that requires less exploration than the previously proposed approx-
imations. As demonstrated by Sections 6.4.5 and 6.5, DuMBO is a
competitive alternative to state-of-the-art BO algorithms, able to op-
timize complex objective functions in a small number of iterations.
Compared to other decomposing algorithms, such as ADD-GPUCB
and DEC-HBO, DuMBO constitutes a significant improvement, par-
ticularly when the decomposition of f has numerous factors with
large MFS (Figures 6.2b, 6.2c, 6.2d and 6.3b), or simply does not exist
(Figures 6.3a and 6.3c). Overall, DuMBO makes a step further in the
direction of using provably optimal BO algorithms to optimize black-
box functions in decentralized systems. It has been recently submit-
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ted to a flagship international conference. Note that the preprint of
the submission is accessible on arXiv [144]. Follow-up to this work [144] Bardou et al. (2023),

“Relaxing the Additivity
Constraints in
Decentralized No-Regret
High-Dimensional
Bayesian Optimization”

are plenty and include the extension of DuMBO to batch mode [145,
146] or its application to other suitable technological contexts such

[145] Li et al. (2016),
“Multiple queries as bandit
arms”
[146] Daxberger et al.
(2017), “Distributed batch
Gaussian process
optimization”

as telecommunication networks [88], UAVs [131] or within a multi-
robots team [147].

[147] Chen et al. (2013),
“Gaussian process-based
decentralized data fusion
and active sensing for
mobility-on-demand
system”

Although DuMBO has demonstrated good performance on hard
problems, it still has some limitations:

(i) Design: although it has a lower complexity than the other ad-
ditive algorithms, its execution time is still significantly larger
than those of algorithms that trade-off theoretical guarantees
for low execution times, such as TuRBO [117] or SAASBO [122].

(ii) Theoretical: although we showed that DuMBO has a lower im-
mediate regret bound than DEC-HBO (Theorem 6.3), a lower
cumulative regret bound remains to be found to theoretically
assess its superiority over other algorithms.

(iii) Theoretical: since the convergence of ADMM is ensured when
the acquisition function is restricted prox-regular, proving that
our proposed acquisition function belongs to this class would
increase the guarantees provided by DuMBO.
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C O N C L U S I O N

7.1 thesis summary

Throughout this thesis, we investigated algorithms that allow the op-
timization of a black-box function, driven by the need of efficiently
optimizing wireless networks. In particular, we put a strong focus on
the optimization of the spatial reuse of the radio channel in a Wireless
Local Area Network (WLAN).

In Chapter 2, we started by describing in details the existing ap-
proaches addressing the spatial reuse problem in WLANs through
the control of the TX_PWR and OBSS_PD parameters (Section 2.1). We
showed that trying to analytically model the throughput within a
WLAN is a challenging approach that appears less suitable than data-
driven solutions. Then, we discussed the black-box optimization al-
gorithms that seem to represent a promising option to conceive novel
efficient solutions to improve the spatial reuse of WLANs (Section 2.2).
Multi-Armed Bandit (MAB) and Bayesian Optimization (BO) stand out
as two well-suited frameworks able to provide optimality guarantees
along with their generally excellent empirical performance.

Based on these observations, we proposed in Chapter 3 two central-
ized ad-hoc solutions to the spatial reuse problem in WLANs. Based
on the MAB framework, they address the high-dimensionality of the
input space C by subsampling it to build a reservoir of promising con-
figurations. Concurrently, they use Thompson sampling to identify
the best configuration in the reservoir. The two approaches mainly
differ by their subsampling strategies. They are based on a Gaussian
mixture and on a mixture of hyperspheres, respectively. Both rely on
a regularity assumption of the objective function f . Although they
show good empirical performance on complex scenarios, they do not
provide theoretical guarantees regarding their convergence nor their
optimality.

In Chapter 4, the BO framework was considered for the spatial reuse
problem in WLANs. We proposed a decentralized solution, called IN-
SPIRE. It exploits a natural additive decomposition of the objective
function f to allow each Access Point (AP) to work and interact only
with other APs in its communication range. To come to an agreement
on which configuration to test in its neighborhood, each AP relies
on a consensus function that we demonstrated optimal in the mini-
max sense. INSPIRE was tested on complex, realistic WLANs deploy-
ments and exhibited excellent empirical performance, significantly
better than other state-of-the-art solutions.

113
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With Chapter 5, we demonstrated that INSPIRE can also be suc-
cessfully applied to other technological contexts. In fact, we used
it to propose a decentralized solution to the power control of next-
generation cellular networks. We demonstrated that the introduction
of a new feature, called Non-Orthogonal Multiple Access (NOMA),
can, if optimized properly, significantly increase the throughput of
cellular networks and preserve their fairness towards end-users.

Finally, in Chapter 6, we directly addressed the no-regret BO of a
noisy, black-box, high-dimensional function that is costly to evaluate.
We proposed DuMBO, a decentralized no-regret BO algorithm that en-
ables us to relax a restrictive assumption that limited the applicability
domain of state-of-the-art, no-regret BO algorithms. Advantageously,
DuMBO can be early-stopped whenever deemed necessary and still
provide minimax optimal guarantee on the maximization of its acqui-
sition function. Besides, we proposed an alternative approximation of
the acquisition function GP-UCB in a decentralized context. It results
in a lower immediate regret bound than the one obtained by using
the current state-of-the-art decentralized approximation of GP-UCB.
DuMBO was evaluated on difficult synthetic functions and real-world
problems (including the throughput optimization in WLANs) and sys-
tematically demonstrated competitive performance against state-of-
the-art BO algorithms.

7.2 future works

In this section, we describe four research directions that could be
natural extensions of this work.

7.2.1 Technological Applications

Although the performance of the solutions proposed in this thesis
were illustrated through the spatial reuse optimization of WLANs, our
solutions could be beneficial to many technological contexts. More
precisely, INSPIRE, DuMBO or its early-stopped version could be
very efficient at optimizing a black-box objective function in com-
plex systems where little assumptions can be made. Furthermore, if
the complex system provides access to a natural additive decomposi-
tion of the objective function, the performance gain is even larger, as
demonstrated in Chapter 6.

As illustrated throughout this thesis, wireless networks constitute
such complex systems wherein our solutions thrive, but other exam-
ples include multi-robots teams [147], UAVs fleets [131], or energy
consumption minimization in sustainable cities [130].
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7.2.2 Dynamic Setting

In this thesis, the objective function f was considered static. However,
many interesting problems, including the spatial reuse optimization
in WLANs may be time-varying. Extending our solutions (and their
theoretical guarantees) to the dynamic setting could be an impact-
ful extension to this work. Note that these extensions could be in-
spired by the existing work on dynamic BO [148] and spatio-temporal [148] Nyikosa et al. (2018),

“Bayesian optimization for
dynamic problems”

Gaussian Process (GP) [149].

[149] Hamelijnck et al.
(2021), “Spatio-temporal
variational Gaussian
processes”

Optimizing a time-varying objective function f(x, t) is hard, as
each query is now a point in space-time (x, t), with x ∈ C and t ∈ R+.
This means that the BO algorithm would have to take into account its
own response time, and to decide by itself the moment when a rele-
vant input needs to be queried. Some approaches, such as [148], have
already started to address this problem. Some questions also arise
from the fact that time only goes forward. In fact, any observation
becomes less and less relevant, as time goes by, for predicting the fu-
ture values of f . How does this affect the cumulative regret of the BO

algorithm? What is a relevant criterion to declare that an observation
is outdated and should be removed from the dataset? This is a subset
of questions that remain to be answered.

7.2.3 Multi-Objective Optimization

In this thesis, we systematically optimized scalar objective functions.
For the most part of our contributions, these objective functions were
scalarizations of an underlying multi-objective problem, consisting in
jointly optimizing the throughput and the fairness of the wireless net-
work. Although the empirical performance were satisfying, scalariz-
ing a multi-objective problem often means to make enough arbitrary
choices to simplify the optimization task.

Developing Black-Box Optimization (BBO) solutions able to address
the true multi-objective optimization task in a constrained environ-
ment (e.g. distributed computing resources or low computing power...)
would make a natural extension to this work, and an interesting so-
lution for technological contexts such as wireless networks. Some ap-
proaches, such as [150–152], already proposed to use BO for solving [150] Laumanns et al.

(2002), “Bayesian
optimization algorithms
for multi-objective
optimization”

[151] Hernández-Lobato
et al. (2016), “Predictive
entropy search for
multi-objective bayesian
optimization”

[152] Paria et al. (2020),
“A flexible framework for
multi-objective bayesian
optimization using
random scalarizations”

multi-objective problems.

7.2.4 More General Processes

Although GPs demonstrate excellent empirical performance and theo-
retical guarantees when used as surrogate models, they require some
prior knowledge about the function to optimize, embedded in the
covariance function k. Another extension to this work would be to
adapt our solutions to more general processes, that place a nonpara-
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metric prior on the GP covariance kernel function. To do so, existing
works on Student-t processes [153, 154] and on the matrix-t distribu-[153] Heyde et al. (2005),

“Student processes”

[154] Shah et al. (2014),
“Student-t processes as

alternatives to Gaussian
processes”

tion [155] could be used.

[155] Kibria (2006), “The
matrix-t distribution and

its applications in
predictive inference”

In a more theoretical point of view, contributing to the understand-
ing of these processes and deriving lower cumulative regret bounds
for BO algorithms that use them as surrogate models would constitute
a significant contribution to the BBO community.

7.3 personal statement

To conclude this thesis, I provide in this section a personal, subjective
opinion about the motivations behind this work and the research di-
rections that I deem beneficial for the computer networks community.

Over the course of my doctoral studies, I was increasingly inter-
ested in producing contributions that are supported with theoretical
analysis. This was mainly due to a simple observation: the vast major-
ity of the scientific contributions (that I encountered) addressing the
spatial reuse optimization in 802.11 networks was almost exclusively
supported by the good empirical performance of ad-hoc optimization
algorithms that do not offer guarantees of any kind. Although some
contributions consider optimization algorithms that initially offer in-
teresting properties, their rough adaptations to the technological con-
text resulted in exotic versions with uncharacterized behavior. These
works often justify the absence of theoretical guarantees by the fact
that they address hard optimization problems in complex systems,
where very few assumptions on the objective function are allowed.

Throughout this thesis, I wanted to reconsider the notion of best-
effort in telecommunication technologies to include, whenever possi-
ble, optimality guarantees. In my view, black-box optimization is a
great tool to address hard optimization problems in complex systems
without jeopardizing such guarantees. I hope that this thesis will help
bridging the gap between the computer networks community and the
black-box optimization community. I believe that the interaction be-
tween these two communities will produce exciting results allowing
major performance gains for telecommunication technologies.
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A
P R O O F F O R T H E O P T I M A L I T Y O F T H E
C O N S E N S U S F U N C T I O N O F I N S P I R E

In this appendix, we provide the proof for Theorem 4.1, which states
that INSPIRE is minimax optimal.

Proof. Let x(i) be the prescription of Access Point (AP) i, with x
(i)
j

the prescription of AP i for AP j and w ∈ [0, 1]n the weights of a
convex combination (||w||1 = 1). Let f∗ =

∑n
i=1 f

(i)(x(i)). If x(i) =

argmaxx f
(i)(x), then it follows that ∀x̃ ∈ C, f∗ − f(x̃) ≥ 0. To find

an optimal consensus x̃, this difference must be minimized.
If all the functions f (i) are Lipschitz-continuous with Lipschitz con-

stants Li, we have

f∗ − f(x̃) =
n∑

i=1

f (i)(x(i))−
n∑

i=1

f (i)(x̃Ni)

=
n∑

i=1

f (i)(x(i))− f (i)(x̃Ni)

≤
n∑

i=1

Li||x(i) − x̃Ni ||1 (A.1)

=
n∑

i=1

Li

∑
j∈Ni

2∑
d=1

|x(i)j,d − x̃j,d| (A.2)

= Ψ(x̃)

with (A.1) following from each f (i) being Lipschitz continuous with
Lipschitz constant Li and (A.2) following from developing the norm.

There is no lower upper bound of f∗ − f(x) than Ψ(x), because
we assume no information about f other than its Lipschitz-continuity
(see Assumption 4.5). Therefore, observe that if the minimizer of Ψ(x)

has a closed-form, it is the one of a minimax optimal. By rearranging
the indices and splitting the absolute values we have

Ψ(x̃) =
2∑

d=1

n∑
j=1

∑
i∈Nj

Li|x
(i)
j,d − x̃j,d|

=
2∑

d=1

n∑
j=1


∑
i∈Nj

x
(i)
j,d<x̃j,d

Li(x̃j,d − x
(i)
j,d) +

∑
i∈Nj

x
(i)
j,d≥x̃j,d

Li(x
(i)
j,d − x̃j,d)

 .

=
2∑

d=1

n∑
j=1

ψj,d(x̃j,d) (A.3)
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Observe that Ψ(x̃) is minimal if x̃j,d is built to minimize ψj,d(x̃j,d).
Therefore, let us focus on building x̃j,d so that it minimizes

ψj,d(x̃j,d) =
∑
i∈Nj

x
(i)
j,d<x̃j,d

Li(x̃j,d− x
(i)
j,d) +

∑
i∈Nj

x
(i)
j,d≥x̃j,d

Li(x
(i)
j,d− x̃j,d). (A.4)

It is immediate to see that (A.4) is piecewise linear and convex
since it is a sum of absolute values (i.e. piecewise linear and convex
functions). Furthermore, the set of nonlinearity points is necessarily
Pj,d =

{
x
(i)
j,d

}
i∈Nj

. This directly implies that argminx∈R+ ψj,d(x) ∈

Pj,d. Therefore, we need to find k∗ = argmink∈Nj
ψj,d(x

(k)
j,d ). Without

loss of generality, let us assume that Pj,d is sorted, so that ∀k ∈ Nj ,

ψj,d(x
(k)
j,d ) =

∑
i∈Nj

i<k

Li(x
(k)
j,d − x

(i)
j,d) +

∑
i∈Nj

i>k

Li(x
(i)
j,d − x̃j,d). (A.5)

Let dk = ψj,d(x
(k)
j,d )−ψj,d(x

(k+1)
j,d ). It is trivial to see that

dk =
(
x
(k+1)
j,d − x(k)j,d

)∑
i∈Nj

i>k

Li −
∑
i∈Nj

i<k+1

Li

 . (A.6)

Since ψj,d is convex, k∗ is necessarily the smallest k for which dk is

negative. Since
(
x
(k+1)
j,d − x(k)j,d

)
≥ 0 because Pj,d is sorted, k∗ is nec-

essarily the smallest k for which
∑

i∈Nj

i>k

Li −
∑

i∈Nj

i<k+1

Li is negative.

Therefore, we want x̃j,d = argminx∈R+ ψj,d(x) = x
(k∗)
j,d , which corre-

sponds to the median of the values in Pj,d, weighted by the Lipschitz
constants {Li}i∈Nj

.
Because each element in the vector x̃ = (x̃j,d)d∈{1,2},j∈{1,n} is built

to be the weighted median of the prescriptions for the value of xj,d,
x̃ is the weighted marginal median of the prescriptions. Eventually,
since the weighted marginal median x̃ of the prescriptions (see (4.10))
is indeed a minimum of Ψ(x), it is a minimax optimum for the objec-
tive function f .



B
R A N D O M S L I C I N G O F A H I G H - D I M E N S I O N A L
F U N C T I O N

We detail in this appendix how we build the random slices of the
objective function depicted in Figure 4.5 of Chapter 4. For the sake
of completeness, we also provide the numerical values of the unit
vectors of our (randomly) selected bases.

For visualization purposes, we build a random vector basis in two
dimensions. Considering the best configuration x∗ found by INSPIRE

on a given topology, we uniformly draw two random configurations
û, v̂ ∈ C and use (x∗, û, v̂) as a vector basis. By plotting the reward
of each configuration attainable with this basis,50 we obtain a 3d plot 50That is, any valid

configuration x that can
be expressed as x = x∗ +
aû+ bv̂, (a, b) ∈ R2.

representing a random slice of the considered objective function, with
the best configuration found x∗ at the origin of the plot.

Details of the vector basis for the Wireless Local Area Network
(WLAN) topology T1 (see Figure 4.2a) are as follows:

• x∗ = (-73, 10, -74, 10, -73, 12, -77, 9, -76, 14, -72, 12, -72, 10, -74,
10, -74, 13, -72, 10)

• û = (-.29, .53, -.41, .2, -.08, .78, -.16, .33, -.61, .74, -.53, .12, -.24,
.78, -.57, .61, -.49, .69, -.16, .82)

• v̂ = (-.09, .03, -.5, .32, -.58, .53, -.53, .18, 0, .38, -.55, .55, -.47, .15,
-.12, .58, -.18, .15, -.5, .38)

Corresponding values for T2 (see Figure 4.2b) are:

• x∗ = (-76, 9, -76, 11, -67, 3, -70, 8, -75, 9, -74, 8, -71, 5, -66, 6, -73,
9, -68, 10, -65, 3, -66, 12, -78, 6, -76, 16)

• û = (0, .21, -.06, .14, 0, .15, -.02, .14, -.23, .04, -.18, .18, -.16, .15,
-.01, .05, -.11, .23, -.01, .08, -.23, .21, -.02, .11, -.19, .16, -.07, .04)

• v̂ = (-.02, .15, -.38, 0, -.02, .13, -.42, .15, -.15, .23, -.19, .15, -.02, .25,
-.42, .38, -.4, .38, -.31, .15, -.29, .08, -.25, .19, -.04, 0, -.4, .31)
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C
T H E I M PA C T O F FA I R N E S S O N T H E T H R O U G H P U T
D I S T R I B U T I O N O F A C E L L U L A R N E T W O R K

In this appendix, we study the effect of increasing α (see (5.5)) on
the throughput distribution of T1 (Figure 5.8a), one of the cellular
networks considered for the benchmarking of the combination of
Non-Orthogonal Multiple Access (NOMA) and Fractional Frequency
Reuse (FFR).

Figure C.1: Throughput distribution of the cells in T1 and different values of
α. The throughput distribution of the users in the inner areas is
depicted with a blue histogram, the throughput distribution of
the users in the outer area is depicted with an orange histogram.
For each cell, the ratio between the number of inner users and
outer users is given.

Figure C.1 depicts the throughput distribution within the cells in
T1. Observe that since the inner users are closer to their Base Station
(BS) and use the whole frequency band, they achieve a better Shannon
capacity than the outer users. However, observe that as α increases,
the throughput distribution shrinks to the left. This is due to the inner
areas getting bigger and incorporating more users. In the meantime,
the outer areas get smaller and the outer users can experience slightly
better Shannon capacities. This results in lower Shannon capacity at
the network scale, but this also causes an increase in Jain’s fairness
index, as depicted by Figure 5.10.
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D
P R O O F S F O R T H E I M P R O V E D A C Q U I S I T I O N
F U N C T I O N O F D U M B O

In this appendix, we provide the proofs for our proposed approxima-
tion of the exploration term in the GP-UCB acquisition function as
well as our proposed acquisition function φt. We start by proving the
following lemma.

Lemma D.1. The best linear overestimation of
√
x (in the least-squares

sense) is (6.6), with a one of the positive roots of the quartic polynomial (6.7).

Proof. We want a linear approximation ax+ b that consistently over-
estimates

√
x over the interval [v−, v+]. Since

√
x is concave, the over-

estimation is ensured if ax+ b−
√
x = 0 has at most a single solution

in R+. This can be achieved by adjusting the b parameter so that the
polynomial Q(x) = ax2 − x+ b has a single root. The discriminant of
Q is 1− 4ab, so ∀a > 0, b = 1

4a ensures the overestimation of
√
x.

The linear approximation ax+ 1
4a must also be optimal in the least

squares sense. Therefore, we must find

a∗ = argmin
a∈R+

∫ v+

v−

(√
u−

(
au+

1

4a

))2

du

= argmin
a∈R+

[
u3
]v+
v−

3
a2 −

4
[
u

5
2

]v+
v−

5
a+

3
[
u2
]v+
v−

4
−

[
u

3
2

]v+
v−

3a
+

[u]v+v−
16a2

.

(D.1)

Differentiating (D.1) by a and multiplying by a3 to turn the expres-
sion into a polynomial, we get the desired quartic

P (a) =
2
[
u3
]v+
v−

3
a4 −

4
[
u

5
2

]v+
v−

5
a3 +

[
u

3
2

]v+
v−

3
a−

[u]v+v−
8

.

Therefore, a must be one of the positive roots of P . Since ax+ 1
4a

consistently overestimates
√
x, P has at least one positive root by

construction.

With Lemma D.1, we can prove Proposition 6.2.

Proof. We need to prove that the quartic (6.7) has a single positive root,
which is also the solution of (D.1). Let us consider the derivative P ′ of
P , which, by construction, has the same sign as the second derivative
of the expression in (D.1).

P ′(a) =
8
[
u3
]v+
v−

3
a3 −

12
[
u

5
2

]v+
v−

5
a2 +

[
u

3
2

]v+
v−

3
(D.2)
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Studying the discriminant of (D.2) reveals that it is always non-
positive, meaning that P ′ has a single real root. Furthermore, it is
easy to show that

(i) lima→−∞ P ′(a) = −∞ and,

(ii) lima→0 P
′(a) > 0.

Hence, with the intermediate value theorem we know that the sin-
gle real root of P ′ belongs to R−. As a consequence, ∀a ∈ R+,P ′(a) >

0. Therefore, we can conclude that the positive root of P is a mini-
mum.

Going further, since ∀a ∈ R+,P ′(a) > 0, P is increasing and can-
not have more than one root in R+. Remark that P (0) < 0 and
lima→+∞ P (a) = +∞, hence P has a unique positive root in R+ by
the intermediate value theorem. As shown by Lemma D.1, this root
is solution of (D.1) and gives us the optimal value for a in the approx-
imation (6.6).

We can now prove Theorem 6.1.

Proof. We consider

S = {x : x ∈
[√

v
(1)
− ,

√
v
(1)
+

]
× · · · ×

[√
v
(n)
− ,

√
v
(n)
+

]
,

v− ≤ ||x||22 ≤ v+}

and we need to prove that ∀x ∈ S, a||x||22 + 1
4a ≤ ||x||1. This is equiv-

alent to finding a so that −a2||x||22 + a||x||1 − 1
4 ≥ 0. As a matter of

fact, if it exists a fixed a that satisfies the inequality ∀x ∈ S, it is the
one computed by the Proposition 6.2, since the approximation is the
optimal linear overestimation of ||x||2.

We know that −a2||x||22 + a||x||1 − 1
4 is positive between its roots,

which are

a1(x) =
||x||1 −

√
||x||21 − ||x||22

2||x||22

a2(x) =
||x||1 +

√
||x||21 − ||x||22

2||x||22
.

In order to ensure the existence of a satisfying the equation for all the
elements of S, we need to make sure that

max
x∈S

a1(x) ≤ min
x∈S

a2(x) (D.3)

To ease the maximization of a1(x), let us break down the maximiza-

tion by considering maxx∈S maxy∈[v−,||x||21−δ2−]
||x||1−

√
||x||21−y

2y , with δ2− =
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||x||21 − ||x||22 =
∑n

i=1

∑n
j=1
j ̸=i

xixj . A trivial study of the variations of

the expression shows that

max
y∈[v−,||x||21−δ2−]

||x||1 −
√
||x||21 − y

2y
=
||x||1 − δ−

2(||x||21 − δ2−)

=
1

2(||x||1 + δ−)

Therefore, maxx∈S
1

2(||x||1+δ−)
≤ 1

2(
√
v−+δ−)

and δ2− =
∑n

i=1

∑n
j=1
j ̸=i

√
v
(i)
− v

(j)
− .

Similarly, we study the variation of ||x||1+
√

||x||21−y

2y for y ∈ [v−, ||x||21−
δ2+]. It is trivial to show that

min
y∈[v−,||x||21−δ2+]

||x||1 +
√
||x||21 − y

2y
=
||x||1 + δ+

2(||x||21 − δ2+)

=
1

2(||x||1 − δ+)

Therefore, minx∈S
1

2(||x||1−δ+)
≥ 1

2(
√
v+−δ+)

, with δ+ ≥ δ−. We can now
rewrite our criterion (D.3) as √v− + δ− ≥

√
v+ − δ+, and we replace

δ+ by δ− for the sake of simplicity. This leads to the desired criterion
expressed only with the variance bounds

√
v+ ≤

√
v− + 2δ− (D.4)

Therefore, whenever (D.4) holds, a||x||22 + 1
4a ≤ ||x||1, which is the

desired result.





E
P R O O F S F O R T H E E A R LY- S T O P P I N G G U A R A N T E E S
O F D U M B O

This appendix contains the proofs of Proposition 6.3 and Theorem 6.2.
Let us start by proving Proposition 6.3.

Proof. We want to show that φ(i)
t = µ

(i)
t + aβ

1
2
t σ

(i)
t

2
is Lipschitz contin-

uous. This is true if ||∇φ(i)
t ||2 is bounded. Replacing µ(i)t and σ

(i)
t

2
by

their expressions and differentiating shows that we need to bound

||∇φ(i)
t ||2 = ||∇k

(i)⊤
x K−1

(
y− 2aβ

1
2
t k

(i)
x

)
||2

≤ ||∇k(i)⊤
x ||2||K−1||2||y− 2aβ

1
2
t k

(i)
x ||2 (E.1)

Let us bound properly all the terms in (E.1). By Assumption 6.3, we
know that ∀j ∈ [1, t], v

(i)
− ≤ k(i)(x,xj) ≤ v

(i)
+ . Similarly, y−t ≤ yj ≤

y+t , with y−t = minj∈[1,t] yj and y+t = maxj∈[1,t] yj . Therefore, de-

noting M
(i)
t = max

(
|y+t − 2aβ

1
2
t v

(i)
− |, |y−t − 2aβ

1
2
t v

(i)
+ |
)

, we have ||y −

2aβ
1
2
t k

(i)
x ||2 ≤

√
tM

(i)
t . Moreover, by the Raleigh–Ritz theorem, it is

known that the spectral norm of a symmetric positive semi-definite
matrix coincide with its spectral radius (i.e. its largest eigenvalue).
Therefore, ||K−1||2 = ρ

(
K−1

)
. Eventually, we bound ||∇k(i)⊤

x ||2 us-
ing the definition of the spectral norm

||∇k(i)⊤
x ||2 = sup

z∈Rt

||∇k(i)⊤
x z||2
||z||2

≤ sup
z∈Rt

∑t
j=1 ||∇k(i)(x,xj)||2|zj |

1√
t

∑t
j=1 |zj |

≤ sup
z∈Rt

√
tL
(
k(i)
)∑t

j=1 |zj |∑t
j=1 |zj |

(E.2)

=
√
tL
(
k(i)
)

where (E.2) follows from k(i) being Lipschitz continuous with Lips-
chitz constant L

(
k(i)
)

according to Assumption 6.4.
Combining all these upper bounds, we have an upper bound for

the gradient of φ(i)
t

||∇φ(i)
t ||2 ≤ tL

(
k(i)
)
ρ
(
K−1

)
M

(i)
t (E.3)
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with M
(i)
t = max

(
|y+i,t − 2aβ

1
2
t v

(i)
− |, |y−i,t − 2aβ

1
2
t v

(i)
+ |
)

, which is the de-

sired result.

We now prove Theoreom 6.2, which claims that a solution from an
early-stopped version of DuMBO is still optimal in a weaker sense.
Note that this proof uses ideas from the proof of Theorem 4.1 in
Appendix A.

Proof. Denoting x∗ = argmaxx∈C
∑n

i=1 φ
(i)
t (xVi) and having

{
x
(i)
k+1

}
i∈[1,n]

,

let us try to find a closed form for the upper bound ofG = |
∑n

i=1 φ
(i)
t (x∗

Vi
)−∑n

i=1 φ
(i)
t (x̃Vi)|, before building x̃ that minimizes this upper bound.

Since Proposition 6.3 holds, each φ(i)
t is Lipschitz and we have

G ≤
n∑

i=1

|φ(i)
t (x∗

Vi
)−φ(i)

t (x̃Vi)|

≤
n∑

i=1

L(φ
(i)
t )||x∗

Vi
− x̃Vi ||2

≤
n∑

i=1

L(φ
(i)
t )
(
||x∗

Vi
−x

(i)
k+1||2 + ||x

(i)
k+1 − x̃Vi ||2

)
. (E.4)

(E.4) is ensured by the triangle inequality. Note that, as far as we
know, there is no tighter upper bound than (E.4) for G. From (E.4),
we see that x̃ must satisfy x̃ = argminx

∑n
i=1 L(φ

(i)
t )||x(i)

k+1−xVi ||2 to
minimize the upper bound. This is equivalent to finding argminx Ψ(x) =∑n

i=1 L(φ
(i)
t )||x(i)

k+1 −xVi ||22. Developing this expression, we have

Ψ(x̃) =

nξ∑
i=1

∑
j∈Vi

L(φ
(i)
t )
(
x
(i)
k+1,j − x̃j

)2
. (E.5)

Differentiating (E.5) by x̃j , we get

∂Ψ
∂x̃j

= 2
∑
i∈Fj

L(φ
(i)
t )
(
x̃j − x

(i)
k+1,j

)
Solving ∂Ψ

∂x̃j
= 0 with the Hessian H(Ψ)(x̃) positive definite is triv-

ial and leads to the minimum

x̃ =

 1∑
j∈Fi

L(φ
(j)
t )

∑
j∈Fi

L(φ
(j)
t )x

(j)
k+1,i


i∈[1,d]

(E.6)

which is the desired result. Note that if L(φ(j)
t ) cannot be computed

explicitly in (E.6), we can upper bound L(φ
(j)
t ) by maxj∈[1,n] L(φ

(j)
t )
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which then cancels out in the numerator and denominator of (E.6) to
become

x̃ =

 1

|Fi|
∑
j∈Fi

x
(j)
k+1,i


i∈[1,d]

. (E.7)

Therefore, (E.7) can be used to early-stop DuMBO. Note that, as
stated in the main text, the aggregation E.7 is exactly x̄k+1 as defined
in (6.20).





F
P R O O F O F T H E A S Y M P T O T I C A L O P T I M A L I T Y O F
D U M B O

In this appendix, we discuss the asymptotic optimality of DuMBO
and provide the proof for Theorem 6.3. We start by proving the fol-
lowing inequality connecting f(x) with the posterior mean and vari-
ance of f .

Lemma F.1. Pick δ ∈ (0, 1) and let βt = 2 log
(
|C|π2t2

6δ

)
. Then, with proba-

bility at least 1− δ,

|f(x)− µt(x)| ≤ β
1
2
t

(
aσ2t (x) +

1

4a

)
(F.1)

for all x ∈ C and t ∈ N, µt(x) and σ2t (x) defined through our proposed
decomposition in Proposition 6.1.

Proof. For all x ∈ C and t ∈ N, we have f(x) ∼ N
(
µt(x),σ2t (x)

)
.

Defining st(x) =
f (x)−µt(x)

σt(x)
, we know that st(x) ∼ N (0, 1). Therefore,

Pr

(
|st(x)| ≤ β

1
2
t

)
≥ 1− e−

βt
2

Pr

(
|f(x)− µt(x)| ≤ β

1
2
t σt(x)

)
≥ 1− e−

βt
2

Pr

(
|f(x)− µt(x)| ≤ β

1
2
t

(
aσ2t (x) +

1

4a

))
≥ 1− e−

βt
2 (F.2)

where (F.2) follows from Proposition 6.2. The inequality (F.2) is true
for a single pair (t,x). Applying the union bound for all pairs in
N×C, we have ∀t ∈N, ∀x ∈ C

Pr

(
|f(x)− µt(x)| ≤ β

1
2
t

(
aσ2t (x) +

1

4a

))
≥ 1− |C|

+∞∑
t=1

e−
βt
2 .

(F.3)

Pick δ ∈ (0, 1) and let βt = 2 log
(
|C|π2t2

6δ

)
. Then,

|C|
+∞∑
t=1

e−
βt
2 = |C|

+∞∑
t=1

e
− log

(
|C|π2t2

6δ

)

=
6δ

π2

+∞∑
t=1

1

t2

= δ
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Therefore, (F.3) becomes

Pr

(
|f(x)− µt(x)| ≤ β

1
2
t

(
aσ2t (x) +

1

4a

))
≥ 1− δ (F.4)

which is the desired result.

We are now ready to bound the immediate regret rt = f(x∗) −
f(xt) and prove Theorem 6.3.

Proof. By definition, xt = argmaxx
∑n

i=1 φ
(i)
t (xVi). As a consequence,∑n

i=1 φ
(i)
t (xt

Vi
) ≥

∑n
i=1 φ

(i)
t (x∗

Vi
). Developing the left term of the in-

equality with the expression of φ(i)
t and adding β

1
2
t
4a on both sides, we

have

β
1
2
t

4a
+

n∑
i=1

µ(i)(xt
Vi
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1
2
t σ

(i)
t (xt

Vi
)2 ≥ β

1
2
t

4a
+

n∑
i=1

φ
(i)
t (x∗

V ′
i
)

≥ f(x∗) (F.5)

with (F.5) following from (F.4) with high probability. We can now
bound the immediate regret rt

rt = f(x∗)− f(xt)

≤ β
1
2
t

4a
+

n∑
i=1

µ(i)(xt
Vi
) + aβ

1
2
t σ

(i)
t (xt

Vi
)2 − f(xt)

=
n∑

i=1

µ(i)(xt
Vi
)− f(xt) + β

1
2
t

(
a

n∑
i=1

σ
(i)
t (xt

Vi
)2 +

1

4a

)

= µt(x
t)− f(xt) + β

1
2
t

(
aσ2t (x

t) +
1

4a

)
(F.6)

Combining the conclusion of Lemma F.1 with (F.6), we get

Pr

(
rt ≤ 2β

1
2
t

(
aσ2t (x

t) +
1

4a

))
≥ 1− δ (F.7)

which is the desired result.



G
S Y N T H E T I C F U N C T I O N S A N D R E A L - W O R L D
E X P E R I M E N T S F O R T H E D U M B O E VA L U AT I O N

In this appendix, we describe the synthetic functions constituting our
benchmark in Section 6.5.1, before discussing the real-world experi-
ments conducted in Section 6.5.2.

Six-Hump Camel. The Six-Hump Camel function is a 2-dimensional
function defined by

f(x1,x2) =

(
−4+ 2.1x21 −

x41
3

)
x21 − x1x2 +

(
4− 4x22

)
x22. (G.1)

It is composed of n = 3 factors, with a Maximum Factor Size (MFS)
d̄ = 2. In our experiment, we optimize it on the rectangle C = [−3, 3]×
[−2, 2]. It has 6 local maxima, two of which are global with f(x∗) =

1.0316.

Hartmann. The Hartmann function is a 6-dimensional function de-
fined by

f(x) =
4∑

i=1

αi exp

− 6∑
j=1

Aij (xj − Pij)
2

 , (G.2)

with α = (αi)i∈[1,4], A = (Aij)(i,j)∈[1,4]×[1,6] and P = (Pij)(i,j)∈[1,4]×[1,6]

given as constants.
It is composed of n = 4 factors, with a MFS d̄ = 6. In our experiment,

we optimize it on the hypercube C = [0, 1]6. It has 6 local maxima and
a global maximum with f(x∗) = 10.5364.

Powell. The Powell function is a function of an arbitrary number
d = 4k of dimensions, defined by

f(x) = −
d/4∑
i=1

(x4i−3 + 10x4i−2)
2 + 5(x4i−1 − x4i)2

+ (x4i−2 − 2x4i−1)
4 + 10(x4i−3 − x4i)4.

(G.3)

We chose to set k = 6, so that the resulting Powell function lives
in a d = 24 dimensional space. It is composed of n = 6 factors, with
a MFS d̄ = 4. In our experiment, we optimize it on the hypercube
C = [−4, 5]24. It has a global maximum at x∗ = 0, with f(x∗) = 0.
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Rastrigin. The Rastrigin function is a function of an arbitrary num-
ber d of dimensions, defined by

f(x) = −10d−
d∑

i=1

x2i − 10 cos (2πxi) . (G.4)

We chose to set d = 100. We also chose to aggregate some factors to
make the optimization problem harder. The resulting Rastrigin func-
tion is composed of n = 20 factors, with a MFS d̄ = 5. In our ex-
periment, we optimize it on the hypercube C = [−5.12, 5.12]100. It has
multiple, regularly distributed local maxima, with a global maximum
at x∗ = 0 and f(x∗) = 0.

We now describe in details the real-world experiments conducted
in Section 6.5.2.

Cosmological Constants. The cosmological constants problem con-
sists in fine-tuning an astrophysics tool to optimize the likelihood
of some observed data. We chose to compute the likelihood of the
galaxy clustering [156] from the Data Release 9 (DR9) CMASS sam-[156] Chuang et al. (2013),

“The clustering of galaxies
in the SDSS-III Baryon

Oscillation Spectroscopic
Survey: single-probe

measurements and the
strong power of f(z) 8(z)

on constraining dark
energy”

ple of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS).
To compute the likelihood, we instrumented the cosmological param-
eter estimation code CosmoSIS [157].51

[157] Zuntz et al. (2015),
“CosmoSIS: Modular

cosmological parameter
estimation”

51https://cosmosis.

readthedocs.io/en/

latest/reference/

standard_library/

BOSS.html

We considered nine cosmological constants in our optimization
task, going from the Hubble’s constant to the mass of the neutrinos. If
a Bayesian Optimization (BO) algorithm provided a set of inconsistent
cosmological constants, a likelihood of y = −60 was returned.

Note that similar experiments were considered in other works, such
as [117, 125]. However, they were conducted on another, older dataset,
with a deprecated NASA simulator.52 This makes the conducted ex-

52https:

//lambda.gsfc.nasa.

gov/toolbox/lrgdr/

periments painful to reproduce on a modern computer. Hopefully,
CosmoSIS is well documented and easier to install and instrument,
so we conducted our experiment with CosmoSIS to make it easier to
replicate.

Shannon Capacity of a Wireless Local Area Network (WLAN). The
Shannon capacity [110] sets a theoretical upper bound on the through-
put of a wireless communication, depending on the Signal to Interfer-
ence plus Noise Ratio (SINR) of the communication. Denoting by Si,j
the SINR between two wireless devices i and j communicating on a
radio channel of bandwidth W (in Hz), the Shannon capacity C(Si,j)
(in bits) is defined by

C(Si,j) = W log2 (1+ Si,j) (G.5)

In this problem, we consider a Wireless Local Area Network (WLAN)
with end-users associated to nodes streaming a continuous, large
amount of data. The WLAN topology is depicted in Figure G.1. It is

https://cosmosis.readthedocs.io/en/latest/reference/standard_library/BOSS.html
https://cosmosis.readthedocs.io/en/latest/reference/standard_library/BOSS.html
https://cosmosis.readthedocs.io/en/latest/reference/standard_library/BOSS.html
https://cosmosis.readthedocs.io/en/latest/reference/standard_library/BOSS.html
https://cosmosis.readthedocs.io/en/latest/reference/standard_library/BOSS.html
https://lambda.gsfc.nasa.gov/toolbox/lrgdr/
https://lambda.gsfc.nasa.gov/toolbox/lrgdr/
https://lambda.gsfc.nasa.gov/toolbox/lrgdr/
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populated with 36 end-users, each one associated to one of the 12 de-
picted nodes. Note that each node is within the radio range of at least
two other nodes. This creates interference and, consequently, reduces
the SINRs between nodes and end-users.

Figure G.1: The WLAN topology considered in the Shannon capacity opti-
mization experiment. The end-users are depicted as black dots,
the nodes as numbered blue circles and the associations between
end-users and nodes as thin gray lines. Two nodes are connected
with a black line if they are within the radio range of each other.

Each node has an adjustable transmission power xi ∈ [100.1, 102.5]

in mW (milliwatts). This task consists in jointly optimizing the Shan-
non capacity (G.5) of each pair of (node, associated end-user) by tun-
ing the transmission power of the nodes. That is, the objective func-
tion f is a 12-dimensional function defined by

f(x) =
12∑
i=1

∑
j∈Ni

C(Si,j), (G.6)

with Ni the set of end-users associated to node i.
A difficult trade-off needs to be found because a node cannot sim-

ply use the maximum transmission power as this would cause a
lot of interference for the neighboring nodes. Given a configuration
x ∈ C = [100.1, 102.5]12, the SINRs are provided by the well-recognized
network simulator ns-3 [31] that reliably reproduces the WLAN inter-
nal dynamics. The additive decomposition comprises n = 12 factors,
with a MFS of d̄ = 5, obtained by making the reasonable assumption
that only the neighboring nodes of node i (i.e. those within the radio
range of node i) are creating interference for the communications of
node i.

Rover Trajectory Planning. This problem was also considered by [117,
158]. The goal is to optimize the trajectory of a rover from a starting [158] Wang et al. (2018),

“Batched large-scale
Bayesian optimization in
high-dimensional spaces”

point s ∈ [0, 1]2 to a target t ∈ [0, 1]2, over a rough terrain.
The trajectory is defined by a vector of d = 60 dimensions, re-

shaped into 30 2-d points in [0, 1]. A B-spline is fitted to these 30
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points, determining the trajectory of the rover. The objective function
to optimize is

f(x) = −c(x)− 10(||x0,1 − s||1 + ||x59,60 − t||1), (G.7)

with c(x) the cost of the trajectory, obtained by integrating the terrain
roughness function over the B-spline, and the two L1-norms serving
as incentives to start the trajectory near s, and to end it near t.
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