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A B S T R A C T Nowadays, wireless networks (WNs) are ubiquitous and have to increase the density of their deployment to meet our important connectivity needs. Paradoxically, this deteriorates their quality of service because they have to deal with a larger amount of interference. To manage this unprecedented complexity, wireless standards, such as Wi-Fi or 5G, are becoming more flexible by introducing new degrees of freedom. Unfortunately, the correct exploitation of these parameters is not trivial because it requires to quickly identify an efficient configuration in a high-dimensional space. Moreover, the wide variety of use cases of WNs makes it difficult to model their behaviors, and consequently to find an optimal configuration analytically.

In this thesis, we propose bandit and Bayesian optimization methods able to discover, through trial and error, an efficient configuration of WNs regardless of their deployments. These sequential learning methods, called "online", seek to optimize the performance of a WN by considering it as a black box. In this thesis, we illustrate the capabilities of the proposed methods on the challenging problem of spatial reuse optimization in Wi-Fi networks, and on the power control in 5G networks. Finally, we propose a new asymptotically optimal Bayesian optimization algorithm, able to optimize a high-dimensional black box function in a decentralized fashion. This last contribution could allow the implementation of more efficient protocols in WNs but also in other technological contexts.

R É S U M É E N F R A N Ç A I S

De nos jours, les réseaux sans fil (RSF) sont omniprésents et sont amenés, pour répondre à nos besoins importants de connectivité, à augmenter la densité de leurs déploiement et à supporter un grand nombre d'interférences. Pour gérer cette complexité inédite, les standards (Wi-Fi, 5G. . . ) deviennent plus adaptables, en s'octroyant de nouveaux degrés de liberté. Malheureusement, l'exploitation correcte de ces paramètres n'est pas triviale car elle demande d'identifier rapidement une configuration efficace dans un espace de grande dimension. De plus, la grande diversité d'utilisation des RSF rend difficile leur modélisation, et par conséquent la découverte analytique d'une configuration optimale.

Dans cette thèse, nous proposons des méthodes issues des problèmes de bandits et de l'optimisation bayésienne, capables de découvrir, par essai-erreur, une configuration efficace des RSF quel que soit v le scénario dans lequel ils se trouvent. Ces méthodes d'apprentissage séquentiel, dites "en ligne", cherchent à optimiser les performance d'un RSF en le considérant comme une boîte noire. Au cours de la thèse, nous illustrons les capacités des méthodes proposées sur le problème difficile de la réutilisation spatiale dans les réseaux Wi-Fi, puis sur le contrôle de puissance dans les réseaux 5G. Pour finir, nous nous détachons des RSF pour proposer un nouvel algorithme d'optimisation bayésienne, que nous démontrons asymptotiquement optimal, capable de maximiser de façon décentralisée une boîte noire de grande dimension. Cette dernière contribution pourrait permettre l'implémentation de protocoles plus performants dans les RSF mais aussi dans d'autres contextes technologiques. peer-reviewed journals and international conferences [START_REF]Cisco visual networking index: Forecast and trends, 2017-2022 white paper[END_REF] Anthony Bardou Having a reliable Internet connection has become an almost constant need for a large part of the population in modern societies. Whether it is to work, entertain, get information, socialize or monitor, a growing number of Internet-based services are created and adopted every day. To meet the different needs of an increasing demand, engineers and researchers have developed a wide variety of access networks. Among them, wireless networks are undoubtedly the most preferred networks, because they are the most convenient. Based on radio transmissions rather than wires, they provide connectivity everywhere within their coverage areas and require lighter infrastructure than wired networks. According to Cisco's forecasts [START_REF]Cisco visual networking index: Forecast and trends, 2017-2022 white paper[END_REF], wireless networks [START_REF]Cisco visual networking index: Forecast and trends, 2017-2022 white paper[END_REF] Cisco (2019), "Cisco visual networking index: Forecast and trends, 2017-2022 white paper" accounted for 79 % of the Internet traffic in 2022, when wired networks represented the remaining 21 %. Each wireless technology rigorously obeys to a standard. A standard thoroughly provides all the technical details regarding how the technology is (or should be) implemented, and how devices implementing this technology should interact within the network. This is particularly important to ensure inter-operability but also, sometimes, a given Quality of Service (QoS). This may pertain to achieving some predefined throughput, over a particular area, given some requirements. Therefore, standards are essential, as they make the technological context independent from the manufacturer of the devices. Many of these standards are branded under commercial names and are well-known from the general public. Figure 1.1 depicts some of such standards.

Each wireless standard aims at addressing specific use cases and involves parameters that can be tuned to adapt the wireless network to a particular scenario, with the ultimate goal of increasing the network performance. Although an intuitive understanding of the relationship between a parameter and a performance metric can be easily inferred, accurately capturing it in an analytical model remains a notoriously hard problem for many wireless technologies. This can be explained by the numerous exogenous factors that impact the quality of a radio transmission, such as the spatial distribution of devices, the workload of the network or the amount of concurrent radio transmissions in the same electromagnetic frequency band. This implies that a given wireless network configuration that achieves good results in a specific deployment can lead to poor performance if used in another, yet similar deployment. As for now, this prevents most wireless networks to be optimally configured, and generally forces them to rely on simple algorithms and / or on human network administrators to find a good configuration of their parameters.

Unfortunately, finding such good configurations is made more difficult by the growing demand of dense sets of devices requiring a wireless connection, 1 which calls for denser deployments of wireless 1 Especially in dense urban areas. technologies. To better adapt to these difficult scenarios, a number of wireless standards have introduced new degrees of freedom for networks to exploit. This in turn exacerbates the complexity of optimizing the wireless networks (e.g. maximizing their throughput or minimizing their energy consumption) by introducing additional dimensions to the configuration space. Overall, to cope with this complexity, wireless standards require scalable algorithms able to derive an optimal network configuration while being agnostic regarding the actual wireless network deployment. The research of such algorithms remains a major hot topic in the computer networks community nowadays [START_REF] Chen | Distributed learning in wireless networks: Recent progress and future challenges[END_REF]. A Wireless Local Area Network (WLAN) typically covers an area from a dozen to a hundred meters in diameter. As medium-sized networks easy to deploy, WLANs have become ubiquitous: they are found in homes, offices and public spaces. Although WLANs carry most of the Internet traffic (57 % in 2022 according to Cisco [START_REF]Cisco visual networking index: Forecast and trends, 2017-2022 white paper[END_REF]), they suffer from a whole set of problems exacerbated by dense deployments. In this section, we detail one of them: the scarcity of the frequency band. A significant fraction of this thesis aims at addressing this problem.

Architecture of WLANs

The vast majority of WLANs follow the guidelines of the Institute of Electrical and Electronics Engineers (IEEE) standard 802.11, commercially known as Wi-Fi, that describes the association and the communication processes between two types of devices:

• the Station (STA), that is the end-user wireless device requiring access to the Internet and,

• the Access Point (AP), that is the device that serves as a gateway to the Internet.

An 802.11 network comprises multiple APs that relay back-andforth frames to a set of associated STAs. In addition to their wireless interface, APs also embed a wired interface to provide access to the Internet. Note that a STA is associated with a single AP, however an AP generally serves multiple associated STAs. Figure 1.2 illustrates a possible spatial distribution of 802.11 devices along with the existing associations between APs and STAs. The spatial arrangement of the APs and STAs is commonly referred to as the WLAN topology. In the remaining of this section, we put a strong focus on how 802.11 share the frequency band among the wireless devices. For a more complete, technical overview of the technology, we refer the interested reader to [START_REF] Gast | 11 wireless networks: the definitive guide[END_REF]. located frequency band. 3 When two devices are close enough -both 3 Either the 2.45 ± 0.05 GHz or the 5.8 ± 0.075 GHz band.

in the frequency and in the spatial domains -their radio transmissions interfere and the overall transmission quality is deteriorated. This makes the allocated frequency band a scarce resource that needs to be shared efficiently and with respect to the needs of the transmitting devices. Conversely, when two wireless devices are sufficiently far (geographically) from each other, they can reuse the same frequency band without interfering. 4 This is called the spatial reuse of the 4 Because of the natural attenuation of the electromagnetic signals.

frequency band, and it drastically increases the performance of the WLAN. Note that, nowadays, spatial reuse optimization in WLANs remains a notoriously hard problem.

To limit interference, 802.11 splits the frequency band into partiallyoverlapping chunks called radio channels. 5 When two 802.11 devices 5 A channel can be 20, 40, 80 or 160 MHz wide. belong to orthogonal channels, they can transmit simultaneously without experiencing interference. Therefore, allocating different radio channels to neighboring wireless devices (as illustrated by Figure 1.3) drastically increases the individual throughput of the 802.11 network. One can refer to [START_REF] Iacoboaiea | Real-time channel management in WLANs: Deep reinforcement learning versus heuristics[END_REF] for a recent survey of the many efficient channel Although interference can be significantly reduced with an efficient channel allocation, it can still represent a problem for radio channels with a high spatial density of APs. To further reduce interference within a given radio channel, 802.11 introduces another mechanism: the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Each device, before transmitting, uses a Clear Channel Assessment (CCA) to make sure that the radio frequency medium is not already busy. To do so, it measures the level of energy in its radio channel for a short period of time and compares it to a threshold, 6 called the sensitivity threshold or the Overlapping Ba- 6 Specified in decibel-milliwatts (dBm). sic Service Set/Preamble-Detection (OBSS/PD) threshold, and denoted OBSS _ PD in this thesis. When the measured level of energy is greater than OBSS _ PD, the 802.11 device defers its transmission during a random period of time called a backoff, to avoid creating interference for the ongoing transmission. As long as the channel is not sensed idle, the transmission is postponed during a random backoff. When the channel is eventually sensed idle (either immediately or when the last backoff has come to zero), the device is allowed to transmit its data. Historically, OBSS _ PD and the transmission power of each device, 7 de- 7 Also specified in dBm. noted TX _ PWR in this thesis, were considered static in the standard. Up until recently, they were set at -82 dBm and 20 dBm respectively [START_REF] Gast | 11n: the survival guide[END_REF].

[5] Gast (2012), 802.11n: the survival guide In this thesis, we call two devices in conflict with each other if they cannot transmit data at the same time because of the CSMA/CA protocol. Note that, among all the conflicts existing in WLANs, 8 those occur-8 AP-AP, AP-STA and STA-STA.

ring between APs (the AP-AP conflicts) are the most troublesome as the traffic is mostly downstream 9 [START_REF] Oluwaseun | Exploration of daily Internet data traffic generated in a smart university campus[END_REF]. Therefore, the number of conflicts 9 From the AP to the associated STAs. [START_REF] Oluwaseun | Exploration of daily Internet data traffic generated in a smart university campus[END_REF] Adeyemi et al. (2018), "Exploration of daily Internet data traffic generated in a smart university campus" between APs within the radio channels must be minimized in order to optimize the performance of 802.11 networks. Nowadays, 802.11 networks with a large spatial density of APs are deployed within public spaces (e.g. train stations, malls), companies or residential buildings. As a consequence, the number of conflicts between APs grows despite an efficient channel allocation. At the end of the day, the performance of the dense networks is reduced and the end-user experience is significantly degraded.

Recently Introduced Spatial Reuse Mechanisms

Due to new use-cases of WLANs, IEEE recently released the 802.11ax amendment (commercially branded by the Wi-Fi Alliance as Wi-Fi 6) that modifies the 802.11 standard. It aims at improving many aspects of 802.11 networks, such as reducing their energy consumption or allowing them to guarantee deterministic transmission delays. 802.11ax also aims at improving the spatial reuse of the radio channels, opening the path to major gains in performance. To do so, it enables each AP to dynamically adjust two of their key parameters [START_REF] Ieee | IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN[END_REF]: OBSS _ PD and [START_REF] Ieee | IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN[END_REF] TX _ PWR. While prior amendments to 802.11 held TX _ PWR and OBSS _ PD constant, 802.11ax authorizes their values to dynamically vary from 1 to 21 dBm for the former and from -82 to -62 dBm for the latter. The two parameters must also comply with the following constraint OBSS _ PD ≤ max(-82, min(-62, -82 + (20 -TX _ PWR))).

(1.1)

The constraint (1.1) ensures that a device cannot have a high sensitivity threshold (e.g. -62 dBm) while simultaneously having a high transmission power (e.g. 20 dBm). We provide below the application of the constraint (1.1) for three values of TX _ PWR:

• if TX _ PWR = 20 dBm, OBSS _ PD ≤ -82 dBm,

• if TX _ PWR = 10 dBm, OBSS _ PD ≤ -72 dBm,

• if TX _ PWR = 1 dBm, OBSS _ PD ≤ -63 dBm. Figure 1.4 depicts a simple example of two APs operating on the same radio channel and illustrates how two different configurations of the TX _ PWR parameter can lead to different performance. Note that in this simple example, concurrent transmissions of the two APs could also be attained by increasing OBSS _ PD at each AP (and keeping TX _ PWR at their default value). Although the two options produce similar effects here, in general, reducing TX _ PWR and increasing OBSS _ PD may affect the WLANs' performance differently (see Table 2 of [START_REF] Wilhelmi | Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs[END_REF] for more Although 802.11ax has the potential to improve the spatial reuse of radio channels, the standard does not provide any algorithm to find an adequate configuration of TX _ PWR and OBSS _ PD for the APs in a WLAN. As stated before, this is mainly due to the difficulty to capture the relationship between a configuration of TX _ PWR and OBSS _ PD and the performance metrics of a WLAN in an analytical model, especially in large, dense WLANs. The lack of a scalable analytical model prevents the emergence of a consensual way of finding the optimal configuration. As such, it is up to the manufacturers and, more globally, to the research community to solve this problem.

A significant portion of this thesis tackles this specific issue.

The Framework of Black-Box Optimization

As described in Section 1.1.1 and illustrated with Section 1.1.2, optimizing the performance of wireless networks often involves finding a configuration of parameters without precise prior understanding of the influence of the parameters on the performance metrics. This makes it difficult, if not impossible, to derive a closed form for the optimal configuration of the wireless network parameters. There-fore, this thesis does not seek to provide a unified framework able to provide an analytical solution to an arbitrary optimization task on wireless networks. 10 Instead, it proposes data-driven methods that ex-10 One can legitimately doubt that such a tool will ever exist.

ploit sequential feedback provided by the wireless network to discover and simultaneously optimize the function f describing a given performance metric with respect to the wireless network parameters. These data-driven methods belong to a special subset of mathematical optimization called Black-Box Optimization (BBO). In this section, we introduce the BBO framework and how promising it is regarding performance optimization in wireless networks. Many real-world applications involve the optimization of an unknown d-dimensional objective function f : C ⊆ R d → R that may be noisy and costly to evaluate. Examples of such tasks include robotics [START_REF] Daniel Lizotte | Automatic Gait Optimization with Gaussian Process Regression[END_REF], [START_REF] Daniel Lizotte | Automatic Gait Optimization with Gaussian Process Regression[END_REF] Lizotte et al. (2007), "Automatic Gait Optimization with Gaussian Process Regression" computational biology [START_REF] González | Bayesian Optimization for Synthetic Gene Design[END_REF] and, of course, networking [START_REF] Hornby | Automated Antenna Design with Evolutionary Algorithms[END_REF]. In such [START_REF] González | Bayesian Optimization for Synthetic Gene Design[END_REF] applications, f is only defined by its inputs and outputs and hence, can be considered as a black box. Due to the lack of information, f must be queried at specific inputs to be discovered, in an iterative fashion. Thus, BBO is a form of online learning, as opposed to offline learning where all the data used in the learning task has been collected beforehand and is fully accessible.

Evaluation and comparison of BBO algorithms is often done in the output space, through the notion of regret. Definition 1.1 (Instantaneous Regret). The instantaneous regret at time t of a BBO algorithm regarding the optimization of the function f is

r t = f (x * ) -f (x t ) (1.2)
with x * = arg max x∈C f (x) and x t the query of the BBO algorithm at time t.

Instantaneous regrets can be aggregated to provide a cumulative evaluation metric up to a time t. Definition 1.2 (Cumulative Regret). The cumulative regret up to time T of a BBO algorithm regarding the optimization of the function f is

R T = T t=1 f (x * ) -f (x t ) (1.3)
with x * = arg max x∈C f (x) and x t the query of the BBO algorithm at time t.

A common goal for BBO algorithms is to minimize their cumulative regrets, as defined by Definition 1.2. To do so, they all follow the same generic online procedure, described in Algorithm 1.1. The main loop is described from line 4 to line 10, but note that line 6 describes the observation of the output of f at a given query x t perturbed by some noise, 11 while lines 7-9 simply describe data management 11 From an arbitrary distribution F with parameters θ.

steps. Actually, all the uniqueness of a BBO algorithm resides in how it implements line 5, that is, how it queries f using the previously collected data (X t , y t ).

Algorithm 1.1 Generic Online Optimization Loop

Input: objective function f .

1: t = 0 2: X 0 = ∅ 3: y 0 = ∅ 4: while true do 5:
Determine x t using (X t , y t ) so that f (x t ) brings information about arg max x∈C f (x)

6:

Observe

y t = f (x t ) + ϵ, with ϵ ∼ F (θ) 7: X t+1 = X t ∪ {x t } 8: y t+1 = y t ∪ {y t } 9: t = t + 1 10: end while
Since f is a black-box, the query x t must be determined at time t by meeting two objectives:

• Exploration: querying f (x t ) should help to better understand the black-box function f ,

• Exploitation: to keep a low regret, f (x t ) should be as large as possible.

Each of these objectives often lead in different querying policy, both of them being suboptimal: exploring too much leads to query uninteresting subsets of the function domain, 12 exploiting too much carries a 12 It is known a priori that x * is not in these subsets. high risk of missing the optimal configuration x * . Here, a fundamental problem in online data-driven decision-making processes facing uncertainty is unveiled: the exploration-exploitation dilemma [START_REF] Berger-Tal | The exploration-exploitation dilemma: a multidisciplinary framework[END_REF]. There is no single, consensual solution to achieve a trade-off between the two objectives, and every BBO algorithm achieves it in a different way through a different implementation of line 5 in Algorithm 1.1. Figure 1.5 illustrates the benefits of compromising between exploration and exploitation. Recall that a BBO algorithm tries to discover and optimize the depicted function f by successive queries. In this figure, we use a Gaussian Process (GP) as a surrogate model for f (as thoroughly described in the next chapter, Section 2.2.4). The best guess of the surrogate model is depicted as a solid line and the uncertainty associated with its predictions as an orange area. The candidates for the next query according to exploration and exploitation are shown with crosses. The candidate for exploitation is obtained by maximizing the current prediction about f . 13 Conversely, the candi- 13 i.e. maximizing the solid orange line. date for exploration is obtained by maximizing the uncertainty about the prediction. 14,15 Because the objective of the BBO algorithm is to 14 i.e. finding the largest shaded interval. 15 Note that this is a way of figuring out the "most surprising" output of f , in order to learn as much as possible in a single observation. minimize its cumulative regret R T by finding the maximum of f as quickly as possible, note that neither exploration nor exploitation yield the optimal query. However, as depicted by the green diamond, trading off some exploitation for some exploration allows to find a query much closer to the maximal argument of f . This particular trade-off is called UCB [START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF] and is discussed in details (along with [START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF] Auer (2002), "Using confidence bounds for exploitation-exploration trade-offs" others) in Section 2.2.

Successfully achieving an exploration-exploitation trade-off at each iteration is key to obtain good empirical performance. In fact, some BBO algorithms also provide theoretical guarantees, by ensuring that the objective function will be optimized in a finite or an infinite amount of time. The latter guarantee, also called asymptotic optimality, is defined as follows.

Definition 1.3 (Asymptotic Optimality

). A BBO algorithm is said asymp- totically optimal if lim T →+∞ R T T = 0 (1.4)
with R T the cumulative regret defined in Definition 1.2.

An asymptotically optimal BBO algorithm ensures no-regret performance. That is, it guarantees that its cumulative regret will grow sublinearly over time. Consequently, in the long run, such a BBO algorithm necessarily reaches the global optimum of any objective function f that satisfies its introduced assumptions. Clearly, such a guar-antee is desirable in many optimization tasks, because it removes the risk of being trapped at a local optimum.

thesis outline

In this thesis, we propose to apply the black-box optimization framework to performance optimization in wireless networks, and especially to the spatial reuse problem in 802.11ax wireless networks (which was detailed in Section 1.1.2). The organization of the thesis is as follows:

• Chapter 2 is two-fold. First, it makes an extensive review of all the proposed approaches to solve the spatial reuse problem in WLANs based on the 802.11ax amendment. Second, it discusses the advantages and drawbacks of online BBO algorithms applicable to this problem, namely global optimization, heuristics, Multi-Armed Bandit (MAB) and Bayesian Optimization (BO).

• Chapter 3 describes two ad-hoc methods developed with the MAB framework to address the spatial reuse problem in 802.11ax, in a centralized fashion.

• Chapter 4 focuses on a decentralized BO algorithm that addresses the spatial reuse problem in 802.11ax and significantly outperforms the state-of-the-art methods (including those developed in Chapter 3). Note that the proposed algorithm is decentralized, which is a desirable feature since most algorithms in the 802.11 ecosystem are also decentralized.

• Chapter 5 considers a different technological context: the cellular networks. After briefly describing the technological context and the relevant mechanisms for our study, we assess the benefits of a new multiple access approach envisioned for 6G, referred to as NOMA. Simultaneously, we demonstrate that the algorithm proposed in Chapter 4 can be very useful in this new technological context, as our study relies on it to tune the transmission powers of cellular antennas.

• Chapter 6 is dedicated to an asymptotically optimal algorithm that improves the state-of-the-art of decentralized BO for highdimensional, noisy black-box functions. Note that this algorithm can address any BBO problem, including of course some problems arising in the optimization of wireless networks.

A graphical outline of this thesis is depicted in Figure 1.6. Each chapter is projected in a 2-dimensional space according to the degree of theoretical guarantees it provides and how much it relies on the technological context. This figure depicts the evolution of the contributions defended in this thesis and exhibit a clear, bottom-up, longterm scientific direction: the development of a black box optimization method providing strong theoretical guarantees and applicable in multiple technological contexts.

Each chapter is written to be self-contained and can be read independently from the others, although Chapter 4 is complementary to Chapter 5, and Chapter 2 is relevant to all the others. At the end of each chapter, we provide a summary of the proposed contributions, along with their strengths and weaknesses and we cite our related scientific publications when applicable. The chapters are arranged so that the questions raised at the end of a chapter are often answered in the next chapters.

contributions

This thesis comprises two main kinds of contributions:

• Algorithmic contributions:

-We propose two centralized ad-hoc algorithms to address the spatial reuse problem in 802.11ax networks.

-We propose INSPIRE, a decentralized Bayesian optimization algorithm to address the spatial reuse problem in 802.11ax networks.

-We show the efficiency of INSPIRE in another technological context by proposing a decentralized algorithm for the power control in cellular networks. -We design DuMBO, a novel decentralized algorithm dedicated to the Bayesian optimization of high-dimensional black-box function. 17 • Theoretical contributions:

-We propose a minimax optimal consensus in a decentralized system, exploited by INSPIRE.

-We propose a better approximation of the exploration term for Bayesian optimization algorithms in decentralized systems, exploited by DuMBO.

-We demonstrate the asymptotic optimality of DuMBO.

-We demonstrate the minimax optimality of an early-stopped version of DuMBO.

Outline. This chapter is two-fold. First, Section 2.1 makes an extensive review of the solutions proposed by the research community to address the spatial reuse problem in a Wireless Local Area Network (WLAN) through the control of the transmission power (TX _ PWR) and the sensitivity threshold (OBSS _ PD) of devices. Then, Section 2.2 provides an in-depth description of the relevant black-box optimization approaches for the spatial reuse problem in WLANs and the theoretical guarantees they provide.

power and sensitivity control in wlans

Recall that, in a WLAN, a wireless device (such as a phone or a computer) is called a Station (STA) and is associated to an Access Point (AP) that serves as a gateway to the Internet. As described in details in Section 1.1.2, the spatial reuse problem in modern WLANs is addressed in two steps. First, the frequency band is split into orthogonal chunks called radio channels, and different radio channels are allocated to neighboring devices so they can transmit data without interfering with each other. This problem is typically addressed as a graph-coloring problem [START_REF] Mishra | A Client-Driven Approach for Channel Management in Wireless LANs[END_REF], although more recent 802. ments provided new degrees of freedom and allowed the emergence of new techniques such as channel bonding [START_REF] Herzen | Distributed spectrum assignment for home WLANs[END_REF]. Nowadays, chan- nel allocation is performed using heuristics [START_REF] Barrachina-Muñoz | Online primary channel selection for dynamic channel bonding in highdensity WLANs[END_REF] or Machine Learn- ing (ML) techniques [START_REF] López | Concurrent decentralized channel allocation and access point selection using multi-armed bandits in multi BSS WLANs[END_REF].

[17] López-Raventós et al.

(2020), "Concurrent decentralized channel allocation and access point selection using multi-armed bandits in multi BSS WLANs"

However, even with an optimal channel allocation, too many conflicts may persist between APs in case of dense WLANs, which may result into poor performance for the end-users. To fix this, the recent 802.11 amendment (802.11ax or Wi-Fi 6) allows the dynamical update of TX _ PWR and OBSS _ PD. This new feature allows APs and STAs to further adapt to their specific radio environment within their channels but at the same time calls for algorithms able to derive promising values for TX _ PWR and OBSS _ PD within a radio channel. For a detailed explanation of how the Institute of Electrical and Electronics Engineers (IEEE) 802.11ax standard implements the adaptation of TX _ PWR and OBSS _ PD, we refer the reader to [START_REF] Wilhelmi | Spatial reuse in IEEE 802.11 ax WLANs[END_REF]. The problem of tuning of TX _ PWR and OBSS _ PD has been explored many years before the introduction of 802.11ax. The solutions proposed by the research community can be organized into two different categories, depending on whether they are based on an analytical model or mostly data-driven. We review the two categories in this section.

Analytical Approaches

Analytical approaches propose mathematical models of the WLAN. Based on these models, they derive the optimal configuration of TX _ PWR and / or OBSS _ PD.

Pioneering efforts were made in 2004 by [START_REF] Zhu | Adapting physical carrier sensing to maximize spatial reuse in 802.11 mesh networks[END_REF], that presents an ana- lytical model to derive the optimal value for OBSS _ PD in 802.11-based mesh networks. To do so, OBSS _ PD is tuned dynamically on each node as a function of the radio channel conditions. The TX _ PWR parameter, however, is not considered. The same year, [START_REF] Kim | SP-TPC: a selfprotective energy efficient communication strategy for[END_REF] proposed to tune the other parameter, TX _ PWR. The authors showed that tuning the transmission power of the devices increases the throughput of the WLAN and simultaneously reduces its energy consumption. More recently, [START_REF] Qiu | Joint access point placement and power-channel-resource-unit assignment for 802.11 ax-based dense WiFi with QoS requirements[END_REF] cast the issue of AP positioning and their power allocation as a single optimization problem. Their solution addresses the initial positioning of APs, the channel allocation and the configuration of the TX _ PWR parameter on each AP. However it delivers a single, static configuration that does not account for the number of STAs associated with each AP, nor for the amount of traffic exchanged between STAs and APs. Analytical approaches do not constitute the majority of the solutions to the tuning problem of TX _ PWR and OBSS _ PD. This is because, in practice, the large number of parameters and the complexity of the physical layer hinder the use of complex analytical model-based solutions. Furthermore, they often do not scale with the number of APs and STAs in the WLAN [START_REF] Bianchi | Performance analysis of the IEEE 802.11 distributed coordination function[END_REF] and when they do, they are too coarse- grained to provide interesting configurations [START_REF] Laufer | The capacity of wireless CS-MA/CA networks[END_REF][START_REF] Stojanova | Conflict graph-based model for IEEE 802.11 networks: A Divide-and-Conquer approach[END_REF]. Instead, data- driven techniques, which are more practical and adaptive by construction, appear as natural candidates to this adaptation problem.

Data-Driven Approaches

Data-driven techniques are intrinsically iterative. Instead of considering the whole WLAN model and immediately derive the optimal configuration, they explore multiple configurations to gain knowledge about the WLAN and converge towards an efficient configuration.

Although often lacking the theoretical guarantees of their analytical counterparts, they rely on a smaller set of assumptions, making them more applicable. They also often benefit from a lower computational complexity.

Among the first data-driven approaches is the Dynamic Sensitive Control (DSC) decentralized algorithm, proposed by [START_REF] Shahwaiz Afaqui | Evaluation of dynamic sensitivity control algorithm for IEEE 802.11 ax[END_REF] and ded- OBSS _ PD to favor concurrent transmissions from neighboring devices, while keeping this value high enough to ensure the proper reception of beacons. Another decentralized algorithm is proposed by [START_REF] Lee | LSR: linkaware spatial reuse in IEEE 802.11 ax WLANs[END_REF], re- ferred to as Link-aware Spatial Reuse (LSR). Like DSC, its decisions are based on the RSS. More precisely, each AP chooses its concurrent AP as the one having the lowest RSS. Then, the prescribed value for TX _ PWR is based on the Frame Error Rate (FER) when the AP and its concurrent AP transmit simultaneously. Overall, both DSC and LSR algorithms [START_REF] Shahwaiz Afaqui | Evaluation of dynamic sensitivity control algorithm for IEEE 802.11 ax[END_REF][START_REF] Lee | LSR: linkaware spatial reuse in IEEE 802.11 ax WLANs[END_REF] represent practical and effective solutions that can typically increase the throughput of a WLAN by a factor of up 20-30%. However, none of them fully exploit the potential benefits offered by the 802.11ax standard. DSC only modifies the value of the OBSS _ PD parameter for STAs so that performance improvements mostly apply to the small portion of traffic that goes upstream. In the case of LSR, the solution applies to APs and downstream traffic, but it limits to one the number of concurrent APs allowed to transmit simultaneously. In practice, this limitation is further increased since concurrent APs do not always have frames to send at once. Recently, ML has impacted many fields, and computer networks are no exception. To optimize the performance of WLANs, recent surveys such as [START_REF] Szott | Wi-Fi meets ML: A survey on improving IEEE 802.11 performance with machine learning[END_REF] list hundreds of contributions. Among them, several [START_REF] Szott | Wi-Fi meets ML: A survey on improving IEEE 802.11 performance with machine learning[END_REF] made use of ML techniques to address the issue of tuning the TX _ PWR and OBSS _ PD parameters in WLANs. In 2020, a two-steps solution relying on an Artificial Neural Network (ANN) was proposed by [START_REF] Ak | FSC: Two-scale AI-driven fair sensitivity control for 802.11 ax networks[END_REF]. In their framework, STAs and APs first locally adjust their value of OBSS _ PD to decrease interference. Then, thanks to an ANN whose parameters have been set using offline simulations, they mitigate potential unfairness among STAs in terms of attained throughput, which may otherwise occur due to the various locations of STAs. The authors use the ns-3 simulator to show that their solution can improve the throughput and fairness of WLANs up to 36% and 82%, respectively. Although the empirical improvement is significant, this method suffers from a major drawback. Indeed, ANNs comprise numerous parameters that require a large amount of data to be set properly. As far as we know, there is no dataset recognized by the networking community whose content captures the large diversity of scenarios that can be encountered in WLANs. Because of this lack of representative dataset, the predefined parameters of the ANN may not be accurate for all WLAN topologies. The same can be said about the federated approach used in [START_REF] Wilhelmi | Federated spatial reuse optimization in nextgeneration decentralized IEEE 802.11 WLANs[END_REF], since it relies on ANNs trained on synthetic data [START_REF] Wilhelmi | Federated spatial reuse optimization in nextgeneration decentralized IEEE 802.11 WLANs[END_REF] generated from an homemade simulator. More generally, the ability of the proposed offline methods to handle diverse WLAN topologies remains to be properly demonstrated.

This calls for online data-driven approaches, not only able to learn from previously collected data, but also to build their own representative dataset given the specific scenario they are deployed on. In [START_REF] Wilhelmi | Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs[END_REF][START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF], [START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF] the authors formalize the problem of setting the TX _ PWR and OBSS _ PD parameters of each AP as a Multi-Armed Bandit (MAB) problem. In both cases, the authors describe a decentralized MAB algorithm that aims to maximize a reward function defined at the AP level. The two solutions mostly differ in terms of the reward definition. In the first solution, the reward function at each AP corresponds to its throughput. This can be described as a "selfish" solution since each AP tries to optimize its own reward regardless of its impact on the neighboring devices. Conversely, the second reward revolves around a max-min normalized function of the throughput of the current AP and of its direct neighboring devices. Using a home-made simulator, the authors show that their solution significantly outperforms the default configuration of the WLAN and that the selfish reward may lead to unfair situations between APs. In fact, this was expected since the MAB algorithms are run concurrently, without any consensus mechanism guaranteeing that the sum of the individual reward functions is maximized. Table 2.1 summarizes the differences between the considered stateof-the-art approaches in this section. It considers the tuning of the two parameters TX _ PWR and OBSS _ PD, as well as the use of dynamic Modulation Coding Scheme (MCS), 19 the type of traffic considered, 19 Determining in particular the modulation type for bit encoding and the coding rate.

the simulator used for the presented experiments and the size of the largest network topology on which the solutions were evaluated. As the table shows, only a handful of solutions [START_REF] Wilhelmi | Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs[END_REF][START_REF] Lee | LSR: linkaware spatial reuse in IEEE 802.11 ax WLANs[END_REF][START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF] address the joint tuning of TX _ PWR and OBSS _ PD. These strategies are evaluated on "vanilla topologies", 20 composed of at most 8 APs operating on 20 That is, naive topologies that are somewhat failing to reflect the complexity of real WLAN deployments.

a single radio channel. Furthermore, among them, only one [START_REF] Lee | LSR: linkaware spatial reuse in IEEE 802.11 ax WLANs[END_REF] is evaluated with dynamic MCS on a recognized network simulator (ns-3 [START_REF]The Network Simulator ns-3[END_REF]). This calls for a solution addressing the joint tuning problem [START_REF]The Network Simulator ns-3[END_REF] The ns3 Project (2020), The Network Simulator ns-3 of our two parameters, rigorously evaluated on a complex scenario (many APs distributed on many radio channels, bidirectional traffic and dynamic MCS).

Overall, the majority of state-of-the-art solutions to the tuning problem of TX _ PWR and OBSS _ PD are data-driven. Although better empirical performance has been obtained, these methods suffer from either the lack of datasets recognized as representative by the networking community (which would strengthen the adaptability of offline methods) or alternatively, the lack of theoretical guarantees. Furthermore, they are often evaluated on homemade simulators and vanilla scenarios that do not reflect properly the complexity of real WLAN deployments. Based on these observations, this thesis aims to provide an online, data-driven solution demonstrating good empirical performance supported by strong theoretical guarantees and a more thorough per- ✓ Up/Down ns-3 3/1 ADHOC'19 [START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF] ✓ ✓ Down Self-made 8/1 JNCA'19 [START_REF] Wilhelmi | Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs[END_REF] ✓ ✓ Down Self-made 8/1 formance evaluation. To achieve this goal, we first make a review of promising online Black-Box Optimization (BBO) techniques and their theoretical guarantees in the next section.

black-box optimization

As described in Section 1.1.3, BBO refers to the optimization of an objective function f : C ⊆ R d → R defined solely by its inputs and outputs. A BBO algorithm must query f in such a way that it achieves a trade-off between exploration and exploitation. We review in this section the solutions to achieve this trade-off.

Direct Search Methods

We start our reviewing of BBO algorithms by introducing a famous direct search method. For a complete review of direct search methods and their applications, one can refer to [START_REF] Michael | Direct search methods: then and now[END_REF][START_REF] Alarie | Two decades of blackbox optimization applications[END_REF]. Unlike classic [START_REF] Michael | Direct search methods: then and now[END_REF] 

maximize x∈C f (x) subject to l i ≤ x i ≤ u i , i ∈ [1, d].
(2.1)

Because each variable x i has a lower bound l i and an upper bound u i , it can be normalized to [0, 1] so that the search space becomes the unit hypercube. To query f , DIRECT proceeds by recursively trisecting the search space. At the first iteration, the search space is trisected into (hyper)rectangles, and the points at the center of each rectangle are queried. Then, at each iteration, DIRECT selects a rectangle (with a procedure detailed in the following), trisects it into smaller rectangles and queries f at the center of each rectangle. An illustration of the execution of DIRECT on a 2-dimensional search space is provided in Figure 2.1. DIRECT assumes that f is Lipschitz-continuous, that is,

∀x, y ∈ C, |f (x) -f (y)| ≤ L||x -y|| (2.2)
with L > 0 and || • || an arbitrary norm.

To achieve an exploration-exploitation trade-off, DIRECT tries to identify the optimal rectangle R to trisect using an upper bound on the value of f contained in each rectangle, denoted U f (c i , d i ), with c i the center of the rectangle R i , d i = max x∈R i ||c i -x|| and || • || an arbitrary norm:

U f (c i , d i ) = f (c i ) + Ld i . (2.3)
Naturally, the objective of DIRECT is to trisect the rectangle that provides the largest upper bound (2.3). We retrieve here an addition of two terms: an exploitation term f (c i ), and an exploration term Ld i . This is an early application of the optimism in the face of uncertainty principle, that encourages the algorithm to explore unknown regions of the search space by making an optimistic guess about what lies in it.

Note that, contrary to what one might think, the Lipschitz constant L is not an hyperparameter of the algorithm. In fact, DIRECT manages to identify a subset of potentially optimal rectangles P, by using multiple estimations of L through a procedure described in [START_REF] Donald R Jones | Lipschitzian optimization without the Lipschitz constant[END_REF]. During an iteration, DIRECT trisects all the potentially optimal rectangles in P. The trisection is systematically carried out on the longest side of each rectangle.

By construction, DIRECT is guaranteed to find the global optimum of f asymptotically (if f is Lipschitz-continuous). It has inspired many research works on direct search methods and continues to do so [START_REF] Donald | The DIRECT algorithm: 25 years Later[END_REF]. In practice, it is known to quickly find the attraction basin of the optimum of f . However, as for most direct search methods, it can take a long time to actually find the optimum and it is very sensitive to the "curse of the dimensionality" [START_REF] Donald | The DIRECT algorithm: 25 years Later[END_REF]. Additionally, as far as we know, DIRECT does not provide a cumulative regret upper bound (or regret bound for short) ensuring its good performance. Therefore, it may not be a good fit to find rapidly a good configuration in a dense WLAN.

Metaheuristics

Other promising candidates for BBO in WLANs are metaheuristics. In this section, we present a famous evolution strategy and we discuss its application to the spatial reuse problem. For a comprehensive listing of metaheuristics, we refer the reader to [START_REF] Gendreau | Handbook of metaheuristics[END_REF]. Within the class of metaheuristics is a subclass of stochastic methods called evolutionary algorithms that are broadly based on the principle of biological evolution. At each iteration (also called generation), an evolutionary algorithm generates candidate solutions based on the solutions of the previous iteration (called the parents), applying some kind of stochastic variations, analogous to mutations in biological systems. Then, the most promising candidates (i.e. those with the better f -values) are selected to become the parents of the next generation.

The Covariance Matrix Adaptation-Evolution Strategy (CMA-ES), introduced by [START_REF] Hansen | Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation[END_REF], is an evolutionary algorithm that has demon- [START_REF] Hansen | Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation[END_REF] Hansen et al. (1996), "Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation" strated excellent empirical performance for the optimization of continuous, nonlinear, nonconvex functions [START_REF] Auger | Performance evaluation of an advanced local search evolutionary algorithm[END_REF]. It proposes to sample the candidate solutions from a Multivariate Normal (MVN) distribution (denoted N (µ k , Σ k ) at iteration k) on the input space C. The f -values of the candidates are then evaluated, and the parameters µ k+1 and Σ k+1 of the MVN at the iteration k + 1 are computed in order to maximize the likelihood of the best sampled candidates. For more details regarding the implementation or the derivation of the updating formulas, we refer the reader to [START_REF] Hansen | CMA-ES: evolution strategies and covariance matrix adaptation[END_REF][START_REF] Hansen | The CMA evolution strategy: A tutorial[END_REF]. CMA-ES can be seen as a natural gradient descent algorithm, although it does not require any first-order information about the ob- Throughout the generations, the MVN shifts its mean µ k towards the global minimum of f (i.e. (1, 1)) and reduces the norm of its covariance matrix Σ k so that, after the 10th generation, the vast majority of the sampled candidates constitutes a set of high-quality solutions. CMA-ES is less sensible to the curse of dimensionality than DI-RECT, since it performs well on problems comprising up to a thousand dimensions [START_REF] Nabi | A comparative study of CMA-ES on large scale global optimisation[END_REF]. That is more than enough for the spatial reuse optimization of the vast majority of WLANs. However, sampling multiple candidates at each generation is a significant drawback of the algorithm especially when f is expensive to evaluate, as it is often the case in WLANs. Moreover, even though it performs well on nonconvex, nonsmooth examples, CMA-ES does not offer any guarantee regarding the global optimization of f , as it could be trapped in the basin of attraction of a local optimum. As such, it may not be the best fit for the spatial reuse problem in WLANs.

Multi-Armed Bandit

In the MAB framework, one considers a set of arms A. At each time step t, an arm must be pulled to collect a random reward y t . Each arm k has its own probability distribution R k used to sample its returned reward when pulled. The objective of a MAB algorithm is to maximize the sum of the rewards obtained from a sequence of arm pulls. Since the algorithm does not have any prior knowledge about the arms, its objective boils down to discovering as quickly as possible the arm that has the largest expected reward and pulling it as much as possible. More formally, denoting by µ k the expectation of R k , a MAB algorithm defines a policy π : N → A to maximize T t=1 µ π(t) , given a (potentially infinite) time budget T . Using this framework, it is easy to formulate the notion of immediate regret introduced by Definition 1.1. Denoting k * = arg max k∈A µ k , the immediate regret of a MAB algorithm at time t is

r t = µ k * -µ π(t) .
(2.4)

The cumulative regret R t (Definition 1.2) as well as the notion of asymptotic optimality (Definition 1.3) follow from this reformulation of the immediate regret.

The spatial reuse problem in WLANs can be formulated as a MAB problem, with each configuration x ∈ C of a WLAN considered as an arm. Modeling the outputs of the black-box objective function f as stochastic rewards makes sense, since f can be perturbed by some observational noise. Due to the large cardinality of C, some variants of the MAB may be more suitable than its classical formulation, such as the Infinitely Many-Armed Bandit (IMAB) where the number of arms is considered larger than the time budget T [START_REF] Wang | Algorithms for infinitely many-armed bandits[END_REF], or the Continuum- [START_REF] Wang | Algorithms for infinitely many-armed bandits[END_REF] Wang et al. (2008), "Algorithms for infinitely many-armed bandits"

Armed Bandit [START_REF] Agrawal | The continuum-armed bandit problem[END_REF], where the arms are chosen within a real field.

[43] Agrawal (1995), "The continuum-armed bandit problem"

We now review the classical solutions to the MAB problem that are relevant to this thesis. Their adaptation to the spatial reuse problem is discussed in great length in Chapter 3.

To solve the MAB problem, one could naively propose a greedy approach: the arm with the best empirical mean μt k is chosen at each iteration. Obviously, the empirical mean of an arm k at time t is

μt k = 1 n t k t i=1 y t 1 π(i)=k (2.5)
with n t k counting the number of pulls on arm k up to time t and 1 π(t)=k the indicator function indicating if the arm k was pulled at time t.

This corresponds to a very simple policy that initially samples each arm once before always choosing exploitation over exploration. As such, it is unable to find the optimal arm since the policy is entirely based on a small set of observations, too small for the empirical means μt k k∈A to be close to the true expected rewards {µ k } k∈A .

This leads to a cumulative regret to be in O(T ). 22 However, the greedy 22 That is, it grows linearly with the time T . approach can be made significantly better by allowing it to pull a uniformly drawn arm with probability ϵ > 0. This is called the ϵ-greedy approach (see [START_REF] Richard | Reinforcement learning: An introduction[END_REF] for more details). If ϵ is kept constant, the cumu- An introduction lative regret remains in O(ϵT ). However, when it is decreased at an appropriate rate (see [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF], which sets ϵ ∝ 1 T ), the cumulative regret becomes sublinear asymptotically. Therefore, this variant of ϵ-greedy can be shown asymptotically optimal. Nevertheless, note that [START_REF] Leung | Asymptotically efficient adaptive allocation rules[END_REF] [46] Lai et al. (1985), "Asymptotically efficient adaptive allocation rules"

showed the cumulative regret bound of an optimal bandit algorithm to be Θ (log T ) in the case of finite variance for the reward distribution of each arm. Therefore, this variant of ϵ-greedy does not match the known optimal cumulative regret bounds. This indicates that there are better approaches than ϵ-greedy to solve the MAB problem.

Another bandit approach is Thompson Sampling (TS), a natural Bayesian algorithm based on [START_REF] William R Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF] and named after its author. As a [START_REF] William R Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF] Thompson (1933), "On the likelihood that one unknown probability exceeds another in view of the evidence of two samples"

Bayesian approach, it requires some prior knowledge about the arms. Namely, it needs (i) p (y|k, θ) the probability distribution function (p.d.f.) of the re- ward y given the arm k, parameterized by some θ ∈ Θ, (ii) p (θ) the a priori p.d.f. of the parameters θ, and (iii) p (θ|D) the a posteriori p.d.f. of the parameters θ, conditioned by the observations in D.

Given this information, TS proposes to pull the next arm by sampling a probability distribution defined on the set of arms A. The probability p k of pulling the arm k corresponds to the probability of k being the optimal arm, that is

p k = Θ 1 E[y|k,θ]=arg max k ′ ∈A E[y|k ′ ,θ] p(θ|D) dθ (2.6)
with 1 the indicator function indicating whether the arm k is the optimal arm under the current parameters θ.

Thompson sampling, through (2.6), addresses the exploration-exploitation dilemma in an elegant fashion. Although being one of the oldest heuristics for the MAB problem, TS still belongs to the state-of-theart nowadays. It has near-optimal regret bounds, as demonstrated by [START_REF] Agrawal | Analysis of thompson sampling for the multi-armed bandit problem[END_REF][START_REF] Agrawal | Further Optimal Regret Bounds For Thompson Sampling[END_REF], even matching the lower regret bounds given by [START_REF] Leung | Asymptotically efficient adaptive allocation rules[END_REF] in [START_REF] Agrawal | Analysis of thompson sampling for the multi-armed bandit problem[END_REF] for solving the spatial reuse problem in WLANs under the MAB framework.

Eventually, we consider Upper Confidence Bound (UCB) (introduced by [START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF]) to address the MAB problem. It is a perfect instance of the principle of optimism in the face of uncertainty since it defines a policy based on an optimistic estimation (called an upper confidence bound) of each arm's expected reward. In its most generic form, the upper confidence bound u t k for an arm k at time t is

u t k = μt k + σ t k (2.7)
with σ t k chosen so that μt k -σ t k ≤ µ k ≤ μt k + σ t k with high probability. Then, UCB proposes π(t) = arg max k∈A u t k . Note that the explorationexploitation trade-off is naturally addressed since an arm k can be chosen even with a low μt k if it has a large σ t k , indicating by construction that the arm has not been explored enough to properly estimate its expected reward. Since σ t k decreases rapidly with the number of pulls, the most pulled arms quickly emerge as those which exhibit a large, properly estimated expected reward μt k . Since its introduction in 2002, UCB inspired decades of research for addressing the MAB problem and beyond. The UCB approaches mainly differ in the assumptions they make and consequently, in their definitions of the upper confidence bound. To name a few, KL-UCB [START_REF] Garivier | The KL-UCB algorithm for bounded stochastic bandits and beyond[END_REF] define their upper confidence bound based on the Kullback- Leibler divergence for the bounded bandit problem 23 while LinUCB [START_REF] Chu | Contextual bandits with linear payoff functions[END_REF] 23 All R k are bounded distributions.

[52] Chu et al. (2011), "Contextual bandits with linear payoff functions" assumes a linear dependency between a context vector and the expected reward of an arm for the contextual bandit problem. 24 These 24 Additional information about the arms is embedded into a context vector that is observable. methods match the logarithmic regret bounds of [START_REF] Leung | Asymptotically efficient adaptive allocation rules[END_REF] and have the advantage of being easier to understand theoretically than TS. As such, UCB also deserves our attention in addressing the spatial reuse problem in WLANs.

Bayesian Optimization

Eventually, we consider Bayesian Optimization (BO) as a candidate for addressing the spatial reuse problem in WLANs. The vast majority of BO algorithms rely on Gaussian processes, so let us introduce them with our notations. Gaussian Process. A Gaussian Process (GP) is a stochastic process, that is, a collection of random variables {Y (x)} x∈C indexed by a set C. The specificity of a Gaussian process is that any finite set of random variables {Y (x 1 ), 

(x) = E [Y (x)] (2.8) k (x, x ′ ) = E [(Y (x) -µ(x)) (Y (x ′ ) -µ(x ′ ))] . (2.9) 
In most cases, a BO algorithm relies on the pioneering work [START_REF] Christopher | Gaussian Processes for Regression[END_REF] that proposes a unified framework for regression tasks using GPs. We describe the approach in a few lines and we illustrate it with Figure 2.3. A GP serves as a surrogate model for the black-box objec-tive function f . It requires a prior GP, describing the random variables {f (x)} x∈C , a prior mean function µ 0 (x) and a covariance function k(x, x ′ ). Throughout this thesis, we assume without loss of generality, as the vast majority of BO algorithms does, that µ 0 (x) = 0. For any point x ∈ C, it is known by construction that f (x) ∼ N µ 0 (x), σ 2 0 (x) , with σ 2 0 (x) = k(x, x). Given t observations, described by the t × d matrix of datapoints X = (x i ) ⊤ i∈ [1,t] and by the corresponding t-dimensional vector of outputs y = (y i ) ⊤ i∈ [1,t] , the posterior distribution of f (x) is obtained from the t + 1-dimensional joint Gaussian distribution of the t observations along with the queried f (x), by conditioning on the observed data. Then, a posteriori,

f (x) ∼ N µ t (x), σ 2 t (x) with µ t (x) = k(x, X) ⊤ K -1 y (2.10)
σ 2 t (x) = σ 2 0 (x) -k(x, X) ⊤ K -1 k(x, X) (2.11)
with k(x, X) = (k (x, x i )) i∈[1,t] the t-dimensional vector built by ap- plying the covariance function to x and each datapoint in X and K = (k (x i , x j )) i,j∈[1,t] the t × t matrix built by applying the covari- ance function to each possible couple of datapoints in X. As for any BBO algorithm, a BO algorithm needs to provide, at each time step t, a query x t that achieves a trade-off between exploration and exploitation. The BO algorithm typically bases its querying policy on the maximization of an acquisition function φ t (x) that quantifies the benefits of observing f (x) in terms of exploration and exploitation. Common acquisition functions include Knowledge Gradient [START_REF] Shanti | Bayesian look ahead one-stage sampling allocations for selection of the best population[END_REF], Probability of Improvement [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF], Expected Improvement [START_REF] Shanti | Bayesian look ahead one-stage sampling allocations for selection of the best population[END_REF] (EI) [START_REF] Mockus | Application of Bayesian approach to numerical methods of global and stochastic optimization[END_REF] and, as mentionned before, UCB [START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF]. Each of them captures [START_REF] Mockus | Application of Bayesian approach to numerical methods of global and stochastic optimization[END_REF] [START_REF] Mockus | Application of Bayesian approach to numerical methods of global and stochastic optimization[END_REF], "Application of Bayesian approach to numerical methods of global and stochastic optimization" a different definition of what is a good compromise between exploration and exploitation. They also vary widely in terms of computational complexity. The latter (UCB), is one of the least complex acquisition functions and leads to an asymptotically optimal application to GPs, with GP-UCB [START_REF] Srinivas | Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting[END_REF], defined as 

φ t (x) = µ t (x) + β 1 2 t σ t (x).
(2.12)

One could recognize the general formulation of UCB, introduced in (2.7). Intuitively, µ t (x), as a best-guess estimation of f (x), is the exploitation term. Conversely, σ t (x) describes the uncertainty of the prediction and is a suitable exploration term. As for β 1/2 t , it is used to control the contribution of σ t (x) to φ t (x), ensuring that µ t (x) -

β 1/2 t σ t (x) ≤ f (x) ≤ µ t (x) + β 1/2 t σ t (x)
with high probability. Note that other acquisition functions can exhibit no-regret performance. As an example, under simple modifications of the initial algorithm introduced in [START_REF] Mockus | Application of Bayesian approach to numerical methods of global and stochastic optimization[END_REF], EI is also asymptotically optimal [START_REF] Chao Qin | Improving the expected improvement algorithm[END_REF]. At each time t, the BO algorithm must find x t = arg max x∈C φ t (x) to query it. However, finding the maximum of φ t (x) is a challenge in itself and represents the most expensive task in an iteration. To address it, the vanilla BO algorithm uses a grid-search or a global optimization algorithm such as DIRECT (see Section 2.2.1).

Although classical BO offers no-regret guarantees and has demonstrated excellent empirical performance in a variety of domains [START_REF] González | Bayesian Optimization for Synthetic Gene Design[END_REF][START_REF] Hornby | Automated Antenna Design with Evolutionary Algorithms[END_REF][START_REF] Bergstra | Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures[END_REF], it suffers from the same drawbacks as the grid-search or DI- RECT. In particular, it struggles with high-dimensional objective functions, such as those typically found in the optimization of the spatial reuse in WLANs. Nevertheless, in this thesis, we explore its application to the spatial reuse problem in Chapter 4 and we propose a novel way to extend BO to high-dimensional spaces in Chapter 6.

summary

In this section, we summarize this chapter in a few points:

• The spatial reuse problem in WLANs is a high-dimensional problem that analytical approaches do not address properly in practice.

• Data-driven approaches obtain the best empirical performance in this problem so far, but they do not offer any theoretical guarantee and are evaluated on vanilla scenarios.

• Regarding BBO techniques, BO and the MAB framework stand out as great candidates in our quest for a theoretically supported solution to the spatial reuse problem in WLANs.

• In the remaining of this thesis, we explore the application of the MAB framework and BO to the spatial reuse problem (Chapters 3 and 4), to the power control of cellular networks (Chapter 5) and we contribute to the extension of BO to high-dimensional spaces (Chapter 6).

Outline. We propose to address the spatial reuse problem in a Wireless Local Area Network (WLAN) (see Section 1.1.2) with the Multi-Armed Bandit (MAB) framework (see Section 2.2.3). We describe two similar, centralized MAB approaches that dynamically adapt the transmission power (TX _ PWR) and the sensitivity threshold (OBSS _ PD) of each Access Point (AP) in a WLAN. They rely on different subsampling strategies of the configuration space C, under a regularity assumption of the objective function f . In this chapter, f is an adhoc performance metric designed to keep each Station (STA) above a given throughput threshold. To demonstrate their empirical effectiveness, the two proposed solutions are evaluated against state-of-the-art strategies by simulating increasingly complex scenarios, using a wellrecognized network simulator.

system under study

We consider a WLAN comprising multiple APs and stationary STAs as well as a controller that configures and manages the WLAN. STAs are associated to the AP with the strongest signal strength. To access the radio channel, APs and STAs use a listen-before-talk scheme referred to as Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) and Clear Channel Assessment (CCA), as described in Section 1.1.2. The WLAN implements the 802.11ax amendment, and the parameters TX _ PWR and OBSS _ PD meet the constraint (1.1). Additionally, for the most part of this chapter, the WLAN workload is considered at saturation. That is, the APs always have data to transmit to their associated STAs. Variations of the workload are discussed and explored in Section 3.4.3.

Several performance metrics are considered worthy of interest to evaluate the efficiency of a WLAN at providing wireless access to its STAs. First, the aggregate throughput (also known as system throughput or cumulative throughput) represents the sum of the throughputs of all individual STAs in the WLAN. Second, the fairness in the distribution of access to the radio channel among STAs is another critical factor. Measures of fairness such as Jain's index [START_REF] Rajendra K Jain | A quantitative measure of fairness and discrimination[END_REF] are common [START_REF] Rajendra K Jain | A quantitative measure of fairness and discrimination[END_REF] Jain et al. (1984), "A quantitative measure of fairness and discrimination" means to determine whether certain STAs are receiving a disproportionate share of the radio resource at the expense of other STAs. Indeed, certain STAs may struggle to access the radio channel due to an unfavorable location in the WLAN. These STAs are said to be in starvation of throughput and they represent a major issue for network administrators. In this chapter, a STA is considered to be starving if it cannot obtain at least a percentage α = 10% of the throughput they would have in the absence of other STAs. Third, Frame Error Rate (FER) of each STA, which indicates the percentage of frames lost due to collisions and poor channel condition, can also be worthy of interest to network administrators. As discussed earlier in Chapter 1, the dynamical setting of TX _ PWR and OBSS _ PD on each AP can significantly change these performance metrics.

The controller is the perfect device to implement our optimization algorithm, as it is assumed to have access to every other device in the WLAN. It can observe the throughput of each STA, and set the parameters of each AP. It is also assumed to have enough computing power to run complex solutions in an acceptable amount of time, unlike the average WLAN device that favors simplicity and power saving. Controllers satisfying these assumptions ease the management and the configuration of the WLAN devices. They are typically found in WLANs comprising a large fleet of APs and operated by a single entity (e.g. in malls, train stations or open spaces). However, assuming the existence of a controller is less realistic when one considers a collection of WLANs, each operated by a different entity.

problem formulation

We are looking for a correct network configuration x ∈ C of a WLAN comprising n APs. As stated in Section 3.1, C is defined as the set of all the WLAN configurations that satisfy the constraint (1.1), that is C = {x|x ∈ {-82, -62} × {1, 21} and x satisfies (1.1)} n . More intuitively, C can be described as the set resulting from the Cartesian product of n triangular, uniform 2-dimensional grids.

To find a good configuration in C, we use a Black-Box Optimization (BBO) algorithm located in the WLAN controller. We assume that the controller receives regular reports on the individual throughputs of the n S STAs T (x) = (T 1 (x), • • • , T n S (x)) under any configuration x ∈ C. As for now, note that, for the sake of simplicity, the argument of the throughputs will be omitted, such that they will be denoted T = (T 1 , • • • , T n S ). The controller uses the MAB framework, and consider that each network configuration x i ∈ C represents an arm that can be pulled at any time t to obtain a noisy objective value (a.k.a. a reward) y t i . Note that y t i is drawn from a probability distribution R(θ i ) whose parameters θ i are unknown from the agent but invariant in time since the network under study is assumed to be stationary. The expected reward of a configuration x i is, as one could expect, the objective value f (x i ), with f remaining to be defined. Our objective boils down to find an efficient policy π : N → C that determines which arm to pull (i.e. which WLAN configuration in C to test) at each time step t given the previously collected data

D = x π(i) , y i π(i) i∈[1,t-1]
.

Given the exponential growth of the cardinality of the configuration space C with the number n of APs (bounded by 21 2n since an AP has two tunable parameters, each taking at most 21 values), our problem is more precisely framed as an Infinitely Many-Armed Bandit (IMAB). Thus, in practice, the WLAN controller cannot explore the whole set of arms in a reasonable amount of time and must instead work on a subset of C, referred to as the reservoir.

In the remaining of this section, we describe how the objective function is designed and we give some insights about how C is subsampled to build the reservoir. We propose two subsampling strategies described in Sections 3.4 and 3.5.

Objective Function

The design of the black-box objective function f is a critical step as it can deeply influence the outcome of the optimization process. In the case of a WLAN, the reward function aims at quantifying the quality of a network configuration in terms of spatial reuse through multiple performance metrics, as discussed in Section 3.1. There exist different ways of combining these performance metrics to obtain a scalar objective function to optimize. In this chapter, we adopt the standpoint of a network administrator that considers a WLAN configuration favorable if it ensures a fair share of throughput among the STAs. More precisely, we enumerate, by order of importance, three criteria to take into account:

(i) the number of STAs that are starving for throughput should be minimized,

(ii) the fairness between the STAs should be maximized, (iii) the aggregate throughput of the WLAN should be maximized.

Satisfying criteria (ii) and (iii) at the same time is challenging. Indeed, in most WLAN topologies, increasing the fairness between the STAs is made at the expense of a lower aggregate throughput. Conversely, increasing the network aggregate throughput often implies a decrease in fairness. To address this problem, we consider the Proportional Fairness (PF) of the throughputs of the STAs. PF is widely used in computer networks to reach a natural trade-off between a high sum and a low variance in a sample (e.g. see [START_REF] Bin | Proportional fairness in wireless LANs and ad hoc networks[END_REF][START_REF] Li | Proportional fairness in multi-rate wireless LANs[END_REF]). We focus on a normalized 

= (T 1 , • • • , T n S ), given by PF (T , T * ) = n S i=1 T i T * i (3.1) with T * = T * 1 , • • • , T * n S
the attainable throughputs of the STAs, defined as the throughput that each STA would obtain without any inter-ference. This information is easily obtained through simple analytical models or simulations.

Regarding criterion (i), recall that we consider that a STA is in starvation if its effective throughput is lower than α = 10 % of its attainable throughput, that is T i < αT * i . We account for criterion (i) by enforcing the following constraint on the objective function f :

∀x, x ′ ∈ C, f (x) ≥ f (x ′ ) ⇔ S(x) ≤ S(x ′ ) (3.2)
with S(x) = n S i=1 1 T i <αT * i counting the number of STAs in starvation under the configuration x.

To enforce the constraint (3.2), the indices of STAs are partitioned into two subsets: T -= {i|T i < αT * i }, which includes the indices off all starving STAs, and its complementary

T + = {i|T i ≥ αT * i }.
Then, the ad-hoc objective function f is defined as By construction, the objective function f returns a value within [0, 1] and meets Property (3.2). That is, with the objective function (3.3), a configuration x with a given number of starving STAs will always be better valued than another configuration x ′ with a larger number of starving STAs. Figure 3.1 depicts the reward intervals with respect to the number of STAs in starvation in a toy WLAN topology. As an aside, note that due to the importance of conflicts in the understanding of a WLAN behavior, it is a common practice to represent WLANs by their conflict graph between APs (e.g. [START_REF] Mishra | A Client-Driven Approach for Channel Management in Wireless LANs[END_REF][START_REF] Garetto | Modeling per-flow throughput and capturing starvation in CSMA multi-hop wireless networks[END_REF]). Conflicts between STAs are typically not represented in conflict graphs as the vast majority of traffic in WLANs is downstream. The toy WLAN comprises n S = 3 STAs, and n S directly determines the number of reward intervals (n S + 1 = 4 intervals in Figure 3.1). The number of starving STAs S(x) under a configuration x indicates the reward interval within which lies f (x).

f (x) = |T -|PF T T -, T * T -+ |T + | n S + PF T T + , T * T + n S (n S + 1) . (3.3)

Problem Breakdown

A common practice to circumvent the infinite number of arms in an IMAB problem consists of restricting the exploration to a limited subset of solutions composed of random arms that constitute a reservoir. Typically, without any information indicating which arm to prefer, the arms in the reservoir are drawn uniformly (e.g., [START_REF] Wang | Algorithms for infinitely many-armed bandits[END_REF][START_REF] David | Infinitely many-armed bandits with unknown value distribution[END_REF][START_REF] Aziz | Pure exploration in infinitely-armed bandit models with fixed-confidence[END_REF]). In our case, this approach is not suitable as the vast majority of network configurations leads to poor solutions. However in our case, unlike a typical IMAB problem, in which no hypothesis can be made on the relationship between the arms and their rewards, it is safe to assume some regularity about the objective function f . Assumption 3.1. The objective function f satisfies

∃L > 0, ∀x i , x j ∈ C, ||x i -x j || 1 = 1 =⇒ |f (x i ) -f (x j )| < L (3.4)
Intuitively, Assumption 3.1 states that the objective values of two neighboring configurations cannot be further apart than L. Note that, if the configuration space C was assumed to be continuous, Assumption 3.1 would translate into assuming that f is L-Lipschitz continuous. Note that this assumption is of interest if L is not too large. This property provides useful information that can be leveraged to sample more promising configurations than those provided by a naive uniform sampling. Therefore, our problem breaks down into two subproblems that must be solved concurrently:

(i) leverage Assumption 3.1 to sample promising configurations in C for the reservoir, (ii) identify the best arm in the reservoir and pull it as much as possible.

In the remaining of this chapter, we consider two algorithms: the sampler, in charge of (i) and the optimizer, in charge of (ii). Figure 3.2 summarizes the main principles of our solution: the optimizer requests a new configuration to the sampler, which selects x i and returns it to the optimizer. The optimizer tests the configuration x i on the WLAN, obtains a reward y i and forwards it to the sampler. Both agents update their internal states according to the new observed couple (x i , y i ). The next sections in this chapter are devoted to the description and evaluation of the optimizer (Section 3.3) and two different samplers (Sections 3.4 and 3.5).

exploitation in the reservoir

The objective of the optimizer is to quickly identify the best configuration x * = arg max x f (x) among the current reservoir of configurations and to pull it as much as possible. The reservoir is periodically updated with a new configuration whenever the optimizer requests it to the sampler.

To quickly identify the best arm in the reservoir, we consider Thompson Sampling (TS), based on [START_REF] William R Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF] and introduced in Section 2.2.3. Recall that TS requires some prior knowledge about the objective values: p(y|x, θ) the distribution of the noisy reward given the configuration x and parameters θ, but also p(θ) and p (θ|D), the prior and poste- rior distributions of the parameters θ themselves, respectively. TS was used in previous works for the spatial reuse problem in WLANs [START_REF] Wilhelmi | Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs[END_REF][START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF]. In these works, it is assumed that p(y|x, θ) is the p.d.f. of N (f (x), 1). In other words, the variance is assumed to be fixed at 1, and the parameter f (x) has a Gaussian prior, initially set at N (0, 1).

Although assuming a fixed variance for the distribution of all the arms simplifies the calculations, this limits the domain of applicability of the solution and makes it less effective in practice, as demonstrated later in Section 3.4.2. To prevent this, we design a solution under the following assumptions.

Assumption 3.2. For all x i ∈ C, p(y i |x i , θ) is the p.d.f. of N f (x i ), σ 2 i , with θ = f (x i ), σ -2 i . Assumption 3.3. The prior distribution of θ is a Normal-Gamma.
Intuitively, Assumption 3.2 specifies the distribution of the noisy rewards (i.e. they are assumed to be Gaussian, conditioned by some parameters θ), while Assumption 3.3 describes the uncertainty relative to the parameters θ themselves. Note that Assumption 3.3 refers to the mean and the precision 25 of the Gaussian rewards distribution.

Normal-Gamma distribution. A Normal-Gamma distribution is a bivariate distribution of four parameters (µ, λ, α, β). It refers to the distribution of a couple of random variables (X, Y ), such that Y ∼ Γ (α, β) and X|Y ∼ N µ, 1 λY . Therefore, sampling from a Normal-Gamma boils down to sampling Y ∼ Γ (α, β), before sampling X ∼ N µ, 1 λY . In this thesis, we denote the Normal-Gamma distribution as N Γ (µ, λ, α, β).

Standard Bayesian calculations (e.g. see [START_REF] William | Introduction to Bayesian statistics[END_REF]) show that the Normal- Gamma distribution is a conjugate prior for the unknown parameters of a Gaussian distribution. We introduce and apply this concept with our notations. Given a configuration x i , we are looking for the parameters of its reward distribution, that is

N µ i , σ 2 i accord- ing to Assumption 3.2, with µ i = f (x i ). Given Assumption 3.3, we have µ i , σ -2 i ∼ N Γ µ 0 i , λ 0 i , α 0 i , β 0 i . After observing an i.i.d. sample Y = (y 1 , • • • , y n ) of size n, with ∀k ∈ [1, n], y k ∼ N µ i , σ 2
i , the posterior distribution µ i , σ 2 i |Y can be computed with Bayes' theorem and yields another Normal-Gamma 26 

distribution N Γ (µ n i , λ n i , α n i , β n i ) 26
Hence the denomination "conjugate prior".

with parameters

µ n i = λ 0 i µ 0 i + n ȳ λ 0 i + n , (3.5) 
λ n i = λ 0 i + n, (3.6) 
α n i = α 0 i + n 2 , (3.7) 
β n i = β 0 i + 1 2 ns + λ 0 i n( ȳ -µ 0 i ) 2 λ 0 i + n , (3.8) 
with ȳ the empirical mean of the sample Y and s its empirical variance. Now that a posterior distribution for the parameters θ has been found, we describe the optimizer in Algorithm 3.1. The algorithm has two main parameters: the exploration rate ϵ ∈]0, 1[ and the sample size n ∈ [2, +∞[, that respectively determine the probability of adding a new configuration to the reservoir and how often the Normal-Gamma parameters of a configuration are updated. With line 4, the optimizer determines if the current step is an exploration step (by entering the if block) or an exploitation term (by jumping to line 12). If an exploration step is chosen, the optimizer requests a new configuration x i to the sampler (line 5) and tests it n consecutive times on the environment to collect a whole sample Y i (line 6). Then, the a priori Normal-Gamma distribution parameters are initialized from simple empirical statistics of the sample Y i (line 9) and the configuration x i is added to the reservoir R (line 11).

TS is executed if the optimizer chooses exploitation. Between lines 13-16, the Normal-Gamma distributions of all the configurations in the reservoir are sampled once and the configuration x j obtaining the best mean parameter µ j for this sampling is determined on line 17. Doing so, each configuration has a probability of being selected proportional to its probability of being the optimal configuration 27 in the 27 That is, being the configuration with the largest expected reward.

reservoir, according to the current beliefs of the optimizer. Then, the chosen configuration is tested and the obtained reward is added to the corresponding rewards sample Y j (line 18). If Y j contains enough rewards, the parameter of the corresponding Normal-Gamma are updated and Y j is reset between lines 20-23. Eventually, the data collected during this step is forwarded to the sampler with line 25.

Algorithm 3.1 Optimizer

Input: sample size n, exploration rate ϵ

1: R ← ∅ 2: t ← 0 3: loop 4: if R = ∅ or rand() < ϵ then 5:
Get a new configuration x i using the sampler 6:

Test x i n times on the environment and collect rewards in Y i

7:

Compute its mean ȳ and its variance s 8:

t ← t + n 9: (µ t i , λ t i , α t i , β t i ) ← ȳ, n, n 2 , ns 2 10: 
Y i ← ∅ 11: R ← R ∪ {x i } 12: else 13:
for x i in R do 14:

Sample g i from Γ α k i , β k i 15: Sample µ i from N µ k i , λ k i g i -1
16:

end for 17:

j ← argmax i µ i 18:
Test x j on the environment and add the reward to Y j 19:

t ← t + 1 20: if |Y j | = n then 21: Update prior parameters µ k j , λ k j , α k j , β k j using (3.5)-(3.8) 22: Y j ← ∅ 23: end if 24:
end if

25:

Forward tests and rewards to the sampler 26: end loop Algorithm 3.1 has a computational complexity proportional to the number of configurations in R, since it needs to sample as many distributions as there are configurations in the reservoir. Since the number of configurations in the reservoir depends directly on ϵ and the time step t, the computational complexity of Algorithm 3.1 is in O (ϵt). 

∀x i , x j ∈ C, ||x i -x j || 1 = n =⇒ |f (x i ) -f (x j )| ≤ Ln.
(3.9)

Proof. The proof by recurrence is immediate. Assumption 3.1 initializes our recurrence for n = 1. Then, assuming that the property is true for an arbitrary distance n, let us consider

x i , x j ∈ C such that ||x i -x j || 1 = n + 1.
We build x k on the sphere of radius

1 centered on x j such that ||x i -x k || 1 = n and ||x k -x j || 1 = 1. Such x k always
exists with the characterization of C provided in Section 3.2. Then, by the triangle inequality, Assumption 3.1 and the recurrence assumption, we have

|f (x i ) -f (x j )| ≤ |f (x i ) -f (x k )| + |f (x k ) -f (x j )| ≤ Ln + L = L(n + 1)
Intuitively, Proposition 3.1 states that new promising configurations can be found near the best configurations discovered so far. Moreover, it states that a configuration x i with an objective value f (x i ) = f (x j ) + Ln, if it exists, would be sampled at least n units away from x j . To leverage this insight, we consider a Gaussian Mixture (GM) of K distributions centered on the K best configurations (x 1 , • • • , x K ) discovered so far (i.e. until the current time t). To ensure the isotropy of the Gaussian distributions, we define their covariance matrices as scalar matrices

Σ t i = λ t i I d , with d = dim C. Recalling that R is the reservoir, we consider µ t * = max i∈[1,|R|]
µ t i and we set such that tr

λ t i = (µ t * + L -µ t i ) 2 dL 2 (3.10) (a) (b) (c) (d)
Σ t i = E ||x -x i || 2 2 = µ t * +L-µ t i L 2
, with x ∼ N (x i , Σ t i ). With (3.10), a Gaussian from the mixture gets a low variance if it is centered on a configuration x i that has an expected reward µ t i close to µ t * . Conversely, it gets a larger variance if it is centered on a configuration that has a lower expected reward. Figure 3.3 illustrates this phenomenon by depicting four different iterations of the sampler with a mixture of K = 3 Gaussian distributions. For visualization purposes, we consider the parameters of a single AP, so that the configuration space C is only 2-dimensional. The GM is initiated (Figure 3.3a) near the default configuration of 802.11, 28 and navigates through the for all APs. configuration space (Figures 3.3b and 3.3c), similarly to a gradient ascent algorithm. Eventually, the GM finds a basin of attraction towards which all the Gaussian distributions converge (Figure 3.3d). Algorithm 3.2 details the sampler approach described in this section. At each call by the optimizer, the sampler updates its state with the new provided observation (lines 1-3). Then, the Gaussian mixture is built, based on the K best observed configurations in the history H (lines 4-10) according to (3.10) as illustrated by line 8. Eventually, a new promising configuration x is sampled (line 11) and returned to the optimizer (line 12). Algorithm 3.2 has a computational complexity that directly depends on the size of the history H (that grows with t)

Algorithm 3.2 Gaussian Mixture-based Sampler

Input: Lipschitz constant L, number of Gaussians K, observation (x i , y i ) 1: Retrieve history H and time step t 2: Add the new observation (x i , y i ) to H 3:

t ← t + 1 4: Find the K (x j , µ t j ) pairs in H of largest expected rewards µ t j 5: µ t * ← max j µ t j 6: (G, W ) ← (∅, ∅) 7: for j ← 1 to K do 8: Add x j , (µ t * +L-µ t j ) 2 dL 2 I to G 9:
Add µ t j to W 10: end for 11: Sample a new configuration x from mixture (G, W ) 12: Transmit x to the optimizer and on the number of Gaussian distributions K. Therefore, it has a computational complexity in O (K + t).

Numerical Results

Experimental Settings

We evaluate the efficiency of this MAB solution at improving the spatial reuse of a WLAN by comparing it to other existing state-of-the-art strategies in the well-recognized, realistic, discrete-event simulator ns-3 [START_REF]The Network Simulator ns-3[END_REF]. The ns-3 code implementing our solution, the other strategies, as well as the considered WLAN topologies described below are available for download. 29 We compare five different strategies: • DEFAULT: the legacy configuration of 802.11, with the configuration (-82, 20) dBm for TX _ PWR and OBSS _ PD, enforced on all APs of the WLAN,

• ϵ-GREEDY: the ϵ-greedy strategie described in Section 2.2.3,

• UNIF+GTS: the state-of-the-art strategy [START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF], it is based on TS but with Gaussian priors and discovers new configurations through a uniform sampling,

• GM+GTS: it is similar to UNIF + GTS but discovers new configurations with our sampler (Gaussian mixture), described in Section 3.4.1,

• GM+NGTS: our proposition, it is based on TS with Normal-Gamma priors (see Section 3.3) and discovers new configurations with our sampler (Gaussian mixture), described in Section 3.4.1.

Note that considering GM+GTS helps us separate the benefits brought by the optimizer algorithm and the sampler algorithm. As a matter of fact, GM+GTS only differs from UNIF+GTS because it uses our sampler, and GM+NGTS only differs from GM+GTS because it uses our optimizer.

In each of our experiments, the simulation runs last for a total of 120 seconds of simulated time. For the sake of accuracy, each simulation was replicated 25 independent times. The duration of a test, corresponding to the time during which performance metrics are measured before being sent to the WLAN controller, was set to 50 ms (milliseconds). Therefore, 2,400 optimization steps can be performed before the simulation ends. Because we replicate 25 times each simulation, we obtain a matrix of 25 × 2, 400 measures for each network performance metric. In order to provide a clear visualization of this large set of data, we chose to plot the median of the metric at each optimization step, framed by its first and third quartiles. Finally, we applied an Exponential Moving Average (EMA) to the three considered quartiles, to smooth the signals and focus on the trends caused by the optimization. This kind of visualization gives us an insight not only into the final performance of each strategy but also on its performance during the whole optimization process. The other parameters of the ns-3 simulation are given by Table 3.1. For the sake of comparison, all strategies are evaluated using the same simulation parameters as well as the same reward function, described in Section 3.2.1. 

MCS Data

VhtMcs4

We consider here three examples out of the many we investigated corresponding to the WLAN topologies T1, T2 and T3 depicted in Figure 3.4. Each of them may correspond to a typical dense WLAN deployment. Topologies T1 and T2 are both composed of 6 APs, each being associated with two or three STAs. As for the topology T3, it is composed of 10 APs and 25 STAs. T3 is particularly dense with an average of 5.6 conflicts per AP (when configured with the default setting of TX _ PWR and OBSS _ PD), and will allow us to test our solution on a larger, denser WLAN deployment. Note that the number of APs here refers to APs belonging to the same WLAN and set on the same radio channel. Given the number of independent channels for a given frequency band, 30 topologies like T1, T2 and T3 could actually corre- 30 In most countries, there are 3 independent channels in the 2.4 GHz frequency band and around 23 in the 5 GHz frequency band.

spond to WLANs comprising dozens of APs. 

Simulation Results

The average regret 31 is the most important metric in our benchmark, 31 That is, the ratio of the cumulative regret R t and the time step t.

as it quantifies the quality of the optimization of the objective function f . Table 3.2 provides the average regrets at the end of the experiment for each evaluated solution on the WLAN topologies T1, T2 and T3. The results show that our approach (GM+NGTS) consistently outperforms the control strategies DEFAULT and ϵ-GREEDY as well as the state-of-the-art strategy UNIF+GTS. In fact, the latter systematically achieves the poorest performance in our complex simulations with an objective function focused on starvations. This can be explained by a naive exploration of the configuration space C, through a uniform sampling of new configurations, and by the unrealistic priors assumed for the distribution of each WLAN configuration. Conversely, GM+GTS, which only differs from UNIF+GTS because it uses our Gaussian mixture sampling strategy, is consistently getting good results. This highlights the benefits of our sampler. Finally, relaxing the assumption that is made by TS with Gaussian priors used by UNIF+GTS (which enforces each configuration to have the same fixed variance), can bring additional benefits. In fact, in two out of three experiments, using TS with our proposed Normal-Gamma priors (GM+NGTS) allows for an even lower regret. We now focus on network oriented metrics. We start our performance analysis by studying the evolution of the number of starving STAs with each strategy. Recall that starving STAs represent a major issue for WLANs and an efficient WLAN configuration should be able to remove as many starving STAs as possible. Figure 3.5 shows the corresponding results delivered by the simulator ns-3. We notice that with DEFAULT (i.e. with the default setting of TX _ PWR and OBSS _ PD), the number of STAs in starvation is in average at 8 for T1, 6 for T2 and 15 for T3. All the other strategies manage to rapidly reduce the number of starving STAs across the three examples except for UNIF+GTS that consistently obtains worse values than DEFAULT. The results also show that GM-GTS significantly outperforms UNIF+GTS suggesting the importance of the sampling process in the overall optimization of f . Finally, Figure 3.5 indicates that our solution, denoted by GM+NGTS, leads to the removal of a proportion of starving STAs, which goes up to 40% when compared to DEFAULT on T3. To further illustrate the gain that a better setting of the TX _ PWR and OBSS _ PD parameter values can have on the WLAN, we represent in Figure 3.6 the throughput of each STA for both the default configuration of 802.11ax and the one found by our solution on T2. Figure 3.6 shows that all STAs achieve higher throughputs when using the configuration found by our solution. More importantly, our solution enables most STAs to operate above the starvation threshold and only 3 of them (STA 4, STA 8 and STA 9) are occasionally experiencing starvation of throughput. Conversely, in the case of the default configuration, most STAs are at least periodically experiencing starvation. We now explore the influence of our solution on the fairness that reflects how uniformly the throughputs are distributed among the STAs. For that purpose, we use Jain's index [START_REF] Rajendra K Jain | A quantitative measure of fairness and discrimination[END_REF]. Figure 3.7 represents the corresponding results for each topology. Observe that our solution leads to an increase of the fairness when compared to DEFAULT and brings a substantial gain from the fairness associated with ϵ-GREEDY or UNIF-GTS. Eventually, for the sake of completeness, we study the influence of all solutions over the aggregate throughput of the WLAN. Figure 3.8 reports the corresponding results. We observe that out of the 5 considered strategies, ϵ-GREEDY is the one that leads to the largest improvement in terms of aggregate throughput. ϵ-GREEDY performs respectively around 14% and 16% better than our method on the topologies T2 and T3 while attaining similar values for T1. However, keep in mind that maximizing the aggregate throughput is only a secondary objective in a WLAN and that it is often done at the expense of fairness and the number of starving STAs (see Figures 3.5 and 3.7). Note that for topology T1, our proposed solution maintains the aggregate throughput near its value obtained with the default setting of TX _ PWR and OBSS _ PD. For topologies T2 and T3, our solution is able to significantly increase the aggregate throughput when compared to DEFAULT. Overall, these results indicate that there is no downside for the aggregate throughput to the significant benefits brought by our solution. Overall, within 2,400 iterations, representing 120 seconds of simulated time and a very limited exploration of the high-dimensional space C, our solution was always able to significantly reduce the number of starving STAs and to increase fairness between the throughputs of STAs without decreasing the aggregate throughput of the WLAN. Note that better results may be achieved with longer simulations. Overall, our solution consistently brings a significant improvement on every performance metrics when compared to the legacy default configuration of 802.11. It is able to remove 14%, 63% and 73% of the conflicts occurring with the default configuration in topologies T1, T2 and T3 respectively. We believe that these results demonstrate the capacity of a tailored MAB solution at improving the spatial reuse of radio channels in WLANs.

Robustness Study

Variations of the Workload

In the previous section, we showed that our solution was able to increase the spatial reuse of WLANs by finding an appropriate configuration of TX _ PWR and OBSS _ PD when WLANs are facing a high but constant workload (see Section 3.1 for an enumeration of the assumptions regarding the WLAN). However, the workload within a WLAN may undergo variations with some STAs demanding more or less traffic to be exchanged over time. Thus, a good configuration of TX _ PWR and OBSS _ PD must be robust to these potential workload variations, by consistently bringing positive improvements to key performance metrics, when compared to the default configuration of 802.11.

To study the robustness of our solution, we consider T3, our densest topology, and we let its STAs run two different applications with different throughputs:

(i) an application requiring as much throughput as the STA can get, (ii) an application requiring 1% of the attainable throughput of the STA.

In this section, we designate STAs running application of type (i) as "active" STAs. By controlling the proportion p of active STAs, we let the workload of the WLAN vary. In order to evaluate the robustness of a strategy, we proceed as follows. First, we deploy the considered strategy on the WLAN with p = 2/3 for a first run of 90 seconds. At the end of this run, we obtain the configuration x * recommended by the strategy. Recall that x * refers to a set of values for TX _ PWR and OBSS _ PD at each AP. Then, we study the performance of x * under different levels of workload. We configure the APs according to x * and we run simulations on four different scenarios: p = 0, 1/3, 2/3 and 1. Each of these simulations lasts 30 seconds so that the WLAN configured with x * can converge to a stable state. At the end of each 30 seconds simulation, the reward, the fairness, and the aggregate throughput of the WLAN are collected.

We study the robustness of three different strategies:

(i) DEFAULT, the legacy default configuration of 802.11: (TX _ PWR, OBSS _ PD) = (20 dBm, -82 dBm) for each AP, (ii) UNIF+GTS, the solution proposed by [START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF] and described in Section 2.1, (iii) GM+NGTS, our proposed strategy using the optimizer described in Section 3.3 and the sampler described in Section 3.4.1. configuration behaves under different workloads according to some performance metrics, along with their standard errors, provided by the ns-3 simulator. For the lowest workload considered (p = 0), the best configuration is the default configuration of 802.11, with a reward near its maximal value. The configuration recommended by GM+NGTS is barely inferior with relative differences of -1.0%, -1.1% and -0.4% for the reward, the fairness and the aggregate throughput, respectively. The configuration recommended by UNIF+GTS also behaves properly, although the relative differences with the DEFAULT are higher. With p = 1 3 , our solution provides better values for each performance metrics considered, although the workload is lower than the one used to learn the recommended configuration. When compared to DEFAULT, the reward, the fairness and the aggregate throughput are greater by 14.8%, 3.8% and 27.4%, respectively. Although the gap between DEFAULT and UNIF+GTS is reduced, the former still performs better than the latter for this workload, except on the aggregate throughput. For p = 2/3, we observe the same dynamics: the relative difference between GM+NGTS and DEFAULT keeps increasing and UNIF+GTS seems equivalent to DEFAULT in regards to the reward and the fairness, except on the aggregate throughput where UNIF+GTS is better. Eventually, even with a higher workload than the one used for the learning of the recommended configuration (p = 1), our proposed solution consistently performs better than DEFAULT with relative differences of +72.0%, +56.3% and +74.3% for the reward, the fairness and the aggregate throughput, respectively. The configuration recommended by UNIF+GTS outperforms DEFAULT and provides the best aggregate throughput for this scenario. However, its reward is still significantly lower than the one obtained by GM+NGTS.

Based on these numerical results, we observe that the configuration recommended by our proposed solution ensures efficient performance metrics even when the WLAN workload is moved to higher or lower levels than the one used during the learning phase. Overall, GM+NGTS is found to be more robust than the state-of-the-art solution UNIF+GTS and significantly better than the default configuration DEFAULT. Once again, we can see that, except for the case p = 1, having the best reward means having the best values regarding the other performance metrics. This suggests that our reward function is a good quality criterion. As a side note, and not surprisingly, we observe through Table 3.3 that, in general, the higher the workload, the lower the reward. Therefore, we recommend to perform the learning phase under levels of workload as high as possible for the studied WLAN.

Variations of the Starvation Threshold

We now study the impact of α, the starvation threshold parameter, on the considered strategies. Recall that the value of this parameter reflects the level of requirements on STAs' performance and is decided by the network administrator. In Figure 3.9, we show the confidence intervals for the cumulative regret at the end of a 120 seconds lasting simulation on the three considered topologies T1, T2 and T3 for multiple credible values of α. Since the starvation threshold of any STA is proportional to α, the larger α, the more likely STAs are considered in a starvation situation, and ultimately, the more difficult it is for the optimizer to collect large rewards. This explains why the cumulative regret tends to increase for larger values of α as shown by Figure 3.9. Overall, we observe that for all the considered topologies and values of α, our proposed solution is the most successful at minimizing the cumulative regret. This suggests that the superiority of our proposed solution is robust to changes in the starvation threshold parameter.

Summary

In this Section 3.4, we presented a strategy based on a Gaussian mixture to subsample the high-dimensional configuration space C. This subsampling strategy allows the optimization of an ad-hoc objective function f through the use of the MAB framework and TS. The resulting solution demonstrated better empirical performance than control and state-of-the-art strategies for the spatial reuse problem in WLANs, on non-trivial scenarios with a well-recognized network simulator. It also demonstrated robustness against the variation of two important WLAN parameters: the workload and the starvation threshold.

This approach also has limitations of different types:

(i) Design: the ad-hoc objective function f experiences a threshold effect anytime the starvation status of a STA changes.

(ii) Theoretical: the problem breakdown described in Section 3.2.2 lacks some theoretical motivation.

(iii) Theoretical: the subsampling strategy also lacks theoretical analysis with respect to its convergence and optimality properties.

(iv) Design: the proposed approach, although demonstrating good empirical performance, has many hyperparameters that must be carefully set, namely the Lipschitz constant L, the number of Gaussian distributions in the mixture K and the exploration rate ϵ.

(v) Evaluation: a static Modulation Coding Scheme (MCS) has been considered in the simulations, the performance with a dynamic MCS remains unknown.

(vi) Evaluation: the considered WLAN topologies are ad-hoc and the traffic is assumed one-directional. Adding some real-world deployments would strengthen the empirical results.

(vii) Evaluation: there is a trade-off between the quality of the estimation of the objective function by ns-3 and the cost of making an objective function call. In fact, the larger the test duration, the less noisy and the more accurate the estimation of the objective function. Unfortunately, a large test duration also means that less function calls can be made in a given time interval. This trade-off could be interesting to investigate.

exploration with a mixture of hyperspheres

We now address some of the limitations listed in Section 3.4.4, namely (v) and (vi), by introducing more complex WLAN topologies closer to realworld deployments. We also propose another subsampling strategy better fitted to the resulting more complex evaluation context.

Subsampling with Hyperspheres

Unlike the subsampling strategy using a Gaussian mixture, described in Section 3.4, we propose to explore the configuration space C by subsampling on the surface of multiple hyperspheres. As a matter of fact, the use of multivariate Gaussian distributions is hampered by their relative sensitivity to the number of dimensions. When the number of dimensions is small, most of their density is centered around the mean value (i.e., within the standard deviation-ellipsoid) and, in our case, this translates to exploring configurations that are similar to the centers of the distributions. On the contrary, in high dimensions, a large part of the probability density is shifted to areas that are far away from the centers [START_REF] Wang | Confidence analysis of standard deviational ellipse and its extension into higher dimensional Euclidean space[END_REF]. More importantly, even in lower- dimensional spaces, Assumption 3.1 could be better exploited. In fact, a significant fraction of the samples made by the mixture lie too close to the centers of the Gaussians. To overcome these inconveniences, we let our sampler use a mixture of hyperspheres. Sampling uniformly Z x i ,λ i on a surface of an hypersphere of radius λ i , centered on a configuration x i can be done with

Z x i ,λ i = x i + v ||v|| 2 λ i , (3.11) 
with v a d-dimensional standard normal random vector. Similarly to our first subsampling approach, in order to concurrently explore multiple promising areas within C, we consider a mixture of K hypersphere distributions, wherein each hypersphere is centered on one of the K best configurations explored so far by the sampler. At first, the mixture is initialized with two hyperspheres, each of them representing a starting point for our algorithm. The first hypersphere is initially centered on the default configuration of 802.11, namely (TX _ PWR, OBSS _ PD) = (20, -82) dBm for all APs. For the second starting point, its location is based on the conflict graph between APs: we simply decrease the TX _ PWR of APs in a round-robin fashion until the conflict graph of APs reaches an average degree that is less than 1. By doing so, we ensure spatial diversity between the two starting points with the aim of speeding up the search when adequate parameter settings are mostly far from the default configuration.

Algorithm 3.3 Hypersphere Mixture-Based Sampler

Input: L, number of hyperspheres K, observation (x i , y i )

1:
Retrieve history H and time step t 2: Add the new observation

(x i , y i ) to H 3: t ← t + 1 4: Find the K (x j , µ t j ) pairs in H of largest expected rewards µ t j 5: µ t * ← max j µ t j 6: (M , W ) ← (∅, ∅) 7: for j ← 1 to K do 8: Add x i , µ t * +L-µ t j L to M 9:
Add µ t j to W 10: end for 11: Sample a new configuration x from mixture (M , W ) 12: Transmit x to the optimizer Algorithm 3.3 summarizes the behavior of the sampler based on a mixture of hyperspheres. As one may guess, it mainly differs from Algorithm 3.2 by line 8, where an hypersphere is initialized instead of a Gaussian distribution.

Numerical Results

Experimental Settings

To address some of the experimental limitations raised at the end of Section 3.4, let us describe the new experimental settings. To evaluate the performance of our solutions, we consider three WLAN topologies denoted T1, T2 and T3 and depicted in Figure 3.10. T1 is a simple example composed of six APs and a dozen of STAs. T2 mimics the topology of the highly-dense WLAN deployed by Cisco on the 3rd floor of its office in San Francisco [START_REF]High Density Wi-Fi Deployments[END_REF]. To account for APs from lower [START_REF]High Density Wi-Fi Deployments[END_REF] Meraki (2022), High Density Wi-Fi Deployments and upper floors, we replicate the Cisco deployment on three floors and we run a simple channel allocation algorithm before selecting the most crowded channel to obtain T2. The resulting WLAN has a total of 10 APs with an average of 5 STAs per AP, which are uniformly distributed within its vicinity (i.e. the intersection between its radio range at 20 dBm and its Voronoï cell in the WLAN). T3 is very similar to T2 as it only differs by the locations of STAs. On average, STAs from T3 are much further away from their AP than in T2. As a matter of fact, STAs in T3 are about 3 times closer to their AP than to the closest competing AP. In the case of T2, this ratio is exceeding 9. This significantly compounds the complexity of T3. In a sense, T3 can be seen as a case in which the association between APs and STAs is far from optimal, or alternately, a case in which the number of available radio channels is too limited. In practice, this may turn to be the case thus making T3 an interesting example but harder than T2 to study. We set the rate of data streams between every AP and each of their STA at 50 Mbps downstream and 3.33 Mbps upstream. This asymmetry reflects that STAs are typically much more downloading than uploading. Additionally, with this level of workload, T1, T2, and T3 are all guaranteed to be in saturation: their APs are unable to properly serve all the needs of their STAs. Hence, we resort to the configuration of APs through the setting of their TX _ PWR and OBSS _ PD parameters to increase the Quality of Service (QoS) of the WLANs.

We compare the performance of five strategies:

(i) DEFAULT: the default configuration, namely (TX _ PWR, OBSS _ PD) = (20, -82) dBm for all APs, (ii) WCNC'15: a dynamic sensitivity threshold solution [START_REF] Shahwaiz Afaqui | Evaluation of dynamic sensitivity control algorithm for IEEE 802.11 ax[END_REF] described in Section 2.1, (iii) UNIF+GTS: a MAB solution [START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF] also described in Section 2.1, (iv) GM+NGTS: the solution using the Gaussian mixture sampler (described in Section 3.4), (v) HM+NGTS: the solution using the sampler based on a mixture of hyperspheres.

Note that all these strategies were amended to use the objective function defined in Equation 3.3 and to apply their optimization only for the settings of the APs.

We implemented all the aforementioned strategies in the opensource network simulator ns-3 [START_REF]The Network Simulator ns-3[END_REF]. Table 3.4 reports the settings we used. Note that, compared to Section 3.4, we have increased the realism of our simulations by incorporating the mechanism of rate adaptation that let APs and STAs dynamically vary the speed of their wireless links (through the use of different MCS) in response to the quality of the received signal. 
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All our simulations last 120 seconds. To account for the potential high variance of the studied performance parameters, we replicate each simulation 22 times and we represent in the corresponding figures the first, second, and third quartiles. If a metric is subject to large variations, we extract and represent its trend using an exponential moving average in place of the raw data. Finally, to enable the reproducibility of all our results, we made available (in open-source) all the code we used for this section, including the three WLANs topologies and the implementations of the different strategies. 

Simulation Results

As in Section 3.4.2.2, we start by focusing on the most important metric, namely the average regret, along with its standard errors on Table 3.5. Although our first introduced solution GM+NGTS (see Section 3.4) still provides competitive performance, the use of more complex scenarios degraded its relative performance to state-of-the-art strategies. Our new proposed solution HM+NGTS, which uses the sampler based on a mixture of hyperspheres, consistently provides significant lower average regrets than the other strategies. This better performance of HM-NGTS can also be observed on networkoriented metrics. Figure 3.11 reports the number of STAs in starvation for the three considered topologies. HM-NGTS manages to significantly reduce the number of STAs in starvation, to even address the problem completely in T1. As for T2, the number of STAs is reduced by 80% when compared to DEFAULT. Even on T3 that constitutes a much more complex problem than T2, this reduction is still of 43%.

Finally, we focus on the measured throughput of the WLAN under the considered solutions. Figure 3.12 reports the results. On this performance metric also, HM-NGTS shows a significant improvement over DEFAULT, the state-of-the-art strategies and our first introduced solution GM-NGTS.

Overall, in all the examples we explored, our solution never failed to quickly discover a configuration of TX _ PWR and OBSS _ PD that significantly reduces the number of STAs in starvation, improves the fairness among STAs and increases the cumulated throughput. Interestingly, the configuration found by our solution consists, in general, in decreasing TX _ PWR and increasing OBSS _ PD at each AP. Intuitively this means that, at the end of the optimization, most APs tend to emit at a lower level but allow themselves to emit in more noised conditions. This dual change the favors spatial reuse of the radio channel with more simultaneous transmissions from nearby APs.

summary

In this chapter, we proposed two ad-hoc solutions to the spatial reuse problem in WLANs. They are both based on the MAB framework, and they address the very large cardinality of the configuration space C by subsampling it to build a reservoir of promising configurations. Concurrently, they use Thompson sampling to identify the best configuration in the reservoir. The first solution subsamples C with a Gaussian mixture, while the second uses a mixture of hyperspheres. Both of them were evaluated through simulation, using ns-3 on realistic scenarios involving complex mechanisms of the 802.11 ecosystem. They demonstrated competitive performance against state-of-the-art and control solutions on every performance metric considered. They were particularly efficient at improving the QoS of starving STAs. The first solution was presented at an international conference specialized in wireless communications [START_REF] Bardou | Improving the Spatial Reuse in IEEE 802.11ax WLANs: A Multi-Armed Bandit Approach[END_REF] and extended in a special issue of a peer-reviewed journal [START_REF] Bardou | Analysis of a Multi-Armed Bandit solution to improve the spatial reuse of next-generation WLANs[END_REF], while the second solution was pub- lished in another peer-reviewed journal specialized in computer net-works [START_REF] Bardou | Mitigating starvation in dense WLANs: A multi-armed Bandit Solution[END_REF]. Note that the hypersphere sampler was also presented at a national conference on operations research [START_REF] Bardou | Multi-Armed Bandit Algorithm for Spatial Reuse in WLANs: Minimizing Stations in Starvation[END_REF].

[ Although we believe these solutions address the spatial reuse problem in WLANs in an innovative manner, some limitations raised in Section 3.4.4 remain, mainly regarding the design of the solution and the theoretical motivations underpinning it:

(i) Design: the ad-hoc objective function f experiences a threshold effect anytime the starvation status of a STA changes, (ii) Theoretical: the problem breakdown described in Section 3.2.2 lacks some theoretical motivation, (iii) Theoretical: the subsampling strategies also lack theoretical analysis with respect to their convergence and optimality properties, (iv) Design: the proposed approaches have many hyperparameters that must be carefully set (v) Evaluation: the trade-off between the quality of the estimation of the objective function and the number of function calls in a given time interval remains to be discussed.

We address most of these limitations in the next chapter, by proposing a more theoretically grounded method to address the spatial reuse problem in WLANs.

D E C E N T R A L I Z E D B AY E S I A N O P T I M I Z AT
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Outline. In this chapter, we address the spatial reuse problem in a Wireless Local Area Network (WLAN) using Bayesian Optimization (BO) based on a Gaussian Process (GP) (see Section 2.2.4). We tackle the large dimensionality of the configuration space C by exploiting the natural additive decomposition of the objective function f . We end up with a decentralized Bayesian optimization algorithm, called INSPIRE, that offers minimax guarantee on the maximization of f under a regularity assumption. We evaluate INSPIRE on the network simulator ns-3 with realistic WLAN scenarios. The obtained results show significant improvement over state-of-the-art methods for the spatial reuse problem, including the solutions developed in Chapter 3. This indicates that BO is a very promising approach for the decentralized performance optimization in computer networks.

motivations

Although the solutions proposed in Chapter 3 demonstrated good empirical performance, their many hyperparameters and our lack of understanding regarding their theoretical properties (convergence, optimality) can be considered as major drawbacks. Note that this is also the case for all the data-driven state-of-the-art strategies considered in Section 2.1.2. Thus, we consider that proposing a solution to the spatial reuse problem in WLANs 33 that has theoretical guarantee 33 Other than the analytical approaches described in Section 2.1.1 that do not scale and / or are too coarse-grained.

is of critical importance for the community.

Another motivation is to improve the domain of applicability of our proposed solution. In fact, the centralized approaches developed in Chapter 3 are systematically discarded in all the scenarios that cannot afford a centralized entity operating as a controller for the WLAN. A decentralized solution, on the other hand, can be deployed in every scenario. In addition, it is also more in line with to the vast majority of network algorithms that constitute the WLAN ecosystem, which are also decentralized.

problem formulation

System Modeling

We consider a system very similar to the one described in Chapter 3. Let us quickly recall vocabulary and introduce some notations about 53 the studied WLAN. A wireless device, such as a phone or a computer, is called a Station (STA) and is necessarily associated with an Access Point (AP) that serves as a gateway to the Internet. In this chapter, we study a WLAN composed of n APs. Each AP i has a set of associated STAs in the set S i , and we denote n S the total number of STAs in the WLAN, that is n S = n i=1 |S i |. Eventually, we denote N i the APs that are within the communication range of AP i. Note that AP i itself belongs to N i . We refer to N i as the surroundings, or the neighborhood, of AP i.

We make no assumptions on the WLAN, including on the specific arrangement of its APs and STAs, other than the three detailed below. Assumption 4.1. Every AP i is able to exchange control frames (possibly through its beacon frames) with its surrounding APs (i.e., the ones in N i ).

By the same token, we assume that at least one AP i has another AP in its communication range (i.e., ∃i ∈ [1, N ], N i ̸ = {i}), otherwise the spatial reuse of the radio channel would already be at its apex.

Assumption 4.2. The n APs have their TX _ PWR and OBSS _ PD parameters configurable (as defined by the 802.11ax amendment). Assumption 4.3. Each AP can periodically run performance tests under a configuration x ∈ C and obtain, in return, the average throughput attained by each of its STAs over a short time interval ∆t.

We denote T (x) = (T 1 (x), • • • , T n S (x))
the mean throughputs attained by the STAs and reported by the performance tests.

Our objective, as in the previous chapter, is to discover the optimal configuration x * = arg max x∈C f (x), according to the objective function f that remains to be defined. Note that this configuration x * must be discovered in a decentralized fashion.

Objective Function and its Decomposition

To quantify the quality of a given configuration f we exploit T (x), the performance tests that can periodically run on each AP as stated by Assumption 4.3. As in Chapter 3, we consider the Proportional Fairness (PF) PF(x) = n S i=1 T i (x) since it provides a natural scalarization of the multi-objective problem of fairly optimizing the throughput within a WLAN. However, to avoid introducing threshold effects that may make the optimization problem harder, we do not seek to enforce the constraint (3.2) introduced in Chapter 3. To turn the PF into a much more pleasant closed-form to optimize, we consider its logarithm and we set

f (x) = log PF(x) = n S i=1 log T i (x). (4.1)
Note that in the previous chapter, we defined an objective function over a discrete configuration space C (see Section 3.2) that provides a strong incentive to reduce starvations in the WLAN. In this chapter, we assume a compact configuration space C = {[-82, -62] × [START_REF]Cisco visual networking index: Forecast and trends, 2017-2022 white paper[END_REF][START_REF] Qiu | Joint access point placement and power-channel-resource-unit assignment for 802.11 ax-based dense WiFi with QoS requirements[END_REF]} n to avoid making restrictive assumptions about the discretization of the configuration space. Note that, even with a compact configuration space, the objective function defined in Section 3.2.1 induces discontinuities through thresholds effects (e.g. whenever the starvation status of a STA changes). This new definition (4.1) does not provide such a strong incentive to reduce starvations, but it is continuous and more likely to support regularity assumptions.

Observe that an AP cannot compute f as defined in (4.1) as it should have access to every performance test realized in the WLAN in a centralized fashion. This goes against the development of a decentralized protocol. Therefore, we consider another function, denoted f (i) for each AP i, that must be computable with local information only. 34 34 That is, information accessible at a single AP.

In other words, we seek an additive decomposition of f in n factors, that is f = n i=1 f (i) , so that each AP i can focus on the optimization of a single factor f (i) .

A natural decomposition of (4.1) is to set f (i) (x) = j∈S i log T j (x), that is, the local objective function of AP i is built by aggregating the performance of its associated STAs in S i . However, this definition gives each AP a strong incentive to act selfishly. In fact, under such definition, maximizing f (i) is very likely to lead a set of APs to strongly increase their TX _ PWR to favor their STAs at the expense of the Quality of Service (QoS) of neighboring devices. Although this may not be considered as a major drawback since some decentralized optimization techniques are designed to handle this case (e.g. see [START_REF] João | Distributed optimization with local domains: Applications in MPC and network flows[END_REF]), it is [START_REF] João | Distributed optimization with local domains: Applications in MPC and network flows[END_REF] very likely to slow down the optimization process.

To address this problem, recall that Assumption 4.1 allows an AP i to communicate with APs in its neighborhood, that is APs in N i . Therefore, we define the factor function for AP i as

f (i) (x) = j∈N i 1 |N j | k∈S j log T k (x). (4.2) 
Intuitively, (4.2) builds the local objective function of AP i as a weighted sum of the performance of all the STAs associated with APs in N i . Since the performance of the STAs associated with an AP j appear in exactly N j factors, we introduce the weights

1/|N j | to ensure that (f 1 (x), • • • , f n (x)
) is indeed an additive decomposition of the global objective function f .

Gaussian Processes as Surrogates

We propose that each AP i uses a GP as a surrogate model for its local objective function f (i) , as described in Section 2.2.4. The surrogate model of AP i is based only on the settings of AP i and its neighboring APs, denoted by

x N i . Assumption 4.4. ∀i ∈ [1, n], the factor function f (i) is a GP 0, k (i) (x N i , x ′ N i ) .
Choosing the covariance function is a critical step when designing a GP, as it determines some key features such as its isotropy and smoothness. Since little information is known about each factor function f (i) , we choose k (i) to be a Matérn covariance function [START_REF] Marc G Genton | Classes of kernels for machine learning: a statistics perspective[END_REF] [75] Genton (2001), "Classes of kernels for machine learning: a statistics perspective"

M ν (x, x ′ ) = s 2 2 1-ν Γ(ν) √ 2ν ||x -x ′ || 2 ρ ν K ν √ 2ν ||x -x ′ || 2 ρ (4.3)
where ν, s and ρ are hyperparameters, while Γ and K ν are the Gamma function and the modified Bessel function of the second type, respectively (see Chapter 30 of [START_REF] Bronson | Schaum's outline of differential equations[END_REF] for more details about the two func- Note that (4.3) is a function of ||x -x ′ || 2 . This guarantees the isotropy of the resulting GP. Additionally, note that the ν hyperparameter offers a direct control onto the differentiability (in the mean-square sense) of the GP. As a matter of fact, with the Matérn covariance function M ν , the resulting GP is ⌈ν⌉ -1-times differentiable in the mean-square sense [START_REF] Thomas | The design and analysis of computer experiments[END_REF]. Since we do not have information about the smoothness of f , we set ν = 3/2 so the resulting GP is only once differentiable. The two other hyperparameters s and ρ are set by Maximum Likelihood Estimation (MLE) throughout the optimization. We refer the interested reader to [START_REF] Satria Palar | On kernel functions for bi-fidelity Gaussian process regressions[END_REF] for more details about the engineering of covariance functions. Eventually, note that with ν = 3/2, (4.3) becomes

k (i) (x, x ′ ) = s 2 i 1 + √ 3||x -x ′ || 2 ρ i e - √ 3||x-x ′ || 2 ρ i . (4.4)
As discussed in Section 2.2.4, Bayesian optimization techniques deal with the exploration-exploitation dilemma through the use of an acquisition function, that exploits the posterior GP (given the previous queries X (i) and the observed objective values y (i) ) to find a promising query. Out of the many candidates, we select Expected Improvement (EI) because of its low computational overhead. Additionally, it returned the best results in our experiments (see Section 4.4). The EI acquisition function is

φ (i) t (x) = E f (i) (x) -y (i) * ,t + (4.5) with y (i) * ,t = max j∈[1,t] y (i)
j and (a) + = max(0, a). The formulation (4.5) does not always have a closed form. However since f (i) (x) is a Gaussian variable, standard calculations (see [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]) show that (4.5) becomes optimum guarantees [START_REF] Haskell | The method of steepest descent for non-linear minimization problems[END_REF] but is able to deal with high-dimensional 

φ (i) t (x) = µ (i) t (x) -y (i) * ,t P (z) + σ (i) t (x)p(z) (4.6) with z = µ (i) t (x) -y (i) * ,t /σ (i) t (x), µ (i) 
∇φ (i) t (x) = ∇µ (i) t (x)P (z) + ∇σ (i) t (x)p(z). (4.7) 
Proof.

∇φ (i) t (x) = ∇ µ (i) t (x) -y (i) * ,t P (z) + ∇ σ (i) t (x)p(z) = ∇µ (i) t (x)P (z) + µ (i) t (x) -y (i) * ,t p(z)∇z + ∇σ (i) t (x)p(z) -σ (i) t (x)zp(z)∇z (4.8) = ∇µ (i) t (x)P (z) + ∇σ (i) t (x)p(z). (4.9) 
The line (4.8) follows from observing that ∇P (z) = p(z)∇z and that ∇p(z) = -zp(z)∇z, while (4.9) follows from remarking that σ

(i) t (x)z = µ (i) t (x) -y (i) * ,t .

Consensus Function

In the previous sections, we have described how each AP i computes its local objective function f (i) and relies on a GP to explore promising configurations for the APs in N i . However, more coordination between APs is required. In fact, by construction, the collection F = (N j ) 1≤j≤n is a cover of the set of APs but not a partition. In fact, if F had only null intersections, 35 then the spatial reuse of the radio 35 That is,

∀j, k ∈ [1, n], j ̸ = k, N j ∩ N k = ∅.
channel would already be at its apex and there would be no need for improvement. a result, most APs will receive a set of different prescriptions for the configuration of their TX _ PWR and OBSS _ PD parameters at their next iteration. For instance, AP 1 will receive prescriptions from APs 2 and 4 in addition to its own prescription. Since APs can only test one configuration at a time, one of those prescriptions must be chosen, or preferably, a consensus between them must be reached.

In general, the setting x i of an AP i is involved in the local objective functions of its neighbors in N i . Therefore, independently maximizing each local objective function is very likely to lead to a sub-optimal situation since, for non-linear optimization problems, individual interests are often not aligned with the global interest (e.g., the famous Tragedy of the Commons [START_REF] Hardin | The Tragedy of the Commons[END_REF]). Without more information on the re- [START_REF] Hardin | The Tragedy of the Commons[END_REF] [START_REF] Hardin | The Tragedy of the Commons[END_REF], "The Tragedy of the Commons" lationship between the settings of the APs and the measured throughputs of STAs, it seems difficult to provide an expression for the maximal argument of the global objective function f given the maximal argument of the local objective functions f (i) . However, recall that in our case we have n i=1

f (i) (x N i ) = f (x).
We propose to leverage this property to provide guarantees, under a regularity assumption. j } i∈N j be the prescriptions received by the AP j. Let x be the marginal median of the received set of prescriptions weighted by the Lipschitz constants 36 , so that an element xj is 36 The weighted median of a sample corresponds to the 50% weighted percentile.

xj = median      x (i) j i∈N j sample , {L i } i∈N j weights      . (4.10) If ∀i ∈ [1, n], the recommendation of AP i is x (i) = arg max x f (i) (x), then x is a minimax optimum of n i=1 f (i) (x N i ).
The proof of Theorem 4.1 is provided in Appendix A. Intuitively, Theorem 4.1 states that the distance |f (x * ) -f (x)| can be bounded from above, and that the upper bound is tight. 37 Furthermore, Theo- 37 As far as we know, there is no lower upper bound for this quantity using only the assumed information about f . rem 4.1 states that x as defined in (4.10) minimizes this tight upper bound, making x a minimax optimal. Note that a component xj can be computed by AP j, as it is the median of the recommendations sent by the neighborhood N j of AP j. This boils down to compute the marginal median (also called the component-wise median) of the received recommendations.

Algorithm and Complexity

Since n i=1 f i (x) = f (x), we leverage Theorem 4.1 to find a minimax optimum of the global objective function f . Broadcast x (i) to APs in N i

5:

Receive the prescriptions x (j)

i from AP j, j ̸ = i, j ∈ N i 6:

Compute the consensus x(i) with (4.10)

7:

Test x(i) for ∆t seconds and compute g (i) by using (4.1) only on the STAs of AP i 8:

Broadcast g (i) , |N i | and x(i) to APs in N i

9:

Receive g (j) , |N j | and x(j) from AP j, j ̸ = i, j ∈ N i 10:

Compute the local objective y (i) with (4.2) and the local configuration xN i 11:

Add the pattern xN i , y (i) to GP i 12: end while Algorithm 4.1 summarizes INSPIRE, our proposed solution. An AP finds a prescription using its own surrogate model (line 3) and, by interacting only with its neighbors 38 reaches a consensus on a promis- 38 That is, APs in its communication range.

ing configuration of its parameters thanks to Theorem 4.1 (lines 4-6). Then, it performs a test of these parameters on the WLAN (line 7), and broadcasts its observations to its neighbors (lines 8-9). Eventually, it receives enough information to compute its objective function (4.2) on line 10 before conditioning its surrogate model with the new observation on line 11. Overall, Algorithm 4.1 allows to iteratively learn and optimize a local objective function quantifying the quality of a configuration on the spatial reuse of its neighborhood. Note that, because we are addressing the spatial reuse problem, we seek to optimize the PF of the throughputs (T 1 (x), • • • , T n S (x)). However, it is worth noting that INSPIRE could be applied to any objective function satisfying Assumptions 4.4 and 4.5. This covers many applications, in wireless networks and beyond. As an example, it seems to be a promising algorithm to tackle the minimization of the energy consumption of a network, which is a current challenge in the networking community [START_REF] Landaluce | A review of IoT sensing applications and challenges using RFID and wireless sensor networks[END_REF][START_REF] Rajendra | Efficient performance analysis of energy aware on demand routing protocol in mobile ad-hoc network[END_REF][START_REF] Giordani | Non-terrestrial networks in the 6G era: Challenges and opportunities[END_REF]. Contrary to what one might think, the most resource-intensive operation in Algorithm 4.1 is not the inversion, at time step t, of the matrix K t in (2.10) and (2.11). In fact, if the Cholesky decomposition of the matrix K t-1 = LL T is known, the Cholesky decomposition of K t is easily obtained and so is K -1 t . The most resource-intensive operation is the maximization of the acquisition function through gradient ascent. Since the gradient ascent has a complexity in O ξ -1 for a desired accuracy ξ [START_REF] Xie | Linear convergence of adaptive stochastic gradient descent[END_REF], this requires computing O ξ -1 matrix-vector multiplications. The computational complexity of Algorithm 4.1 at time t is therefore O ξ -1 t 2 . This implies that the real burden to the execution time of INSPIRE is the time step t. This compels us to bound the size of the set of queries X and the set of observed values y in order to find a balance between the amount of collected data on the WLANs' performance and configuration and a quick execution time. In practice, to limit the computational burden, a windowing method (e.g. sliding window) can be applied to bound the size of the dataset and so the computational complexity of INSPIRE. We discuss such an alternative and we evaluate its impact on the empirical performance of the proposed solution in the following section.

numerical results

Experimental Settings

To evaluate the ability of INSPIRE at improving the spatial reuse of a radio channel through the configuration of the TX _ PWR and OBSS _ PD parameters, we consider two distinct scenarios. The first scenario is inspired by the WLAN deployment of Cisco in their offices in San Francisco, previously discussed in Section 3.5.2. We use T1 to refer to this WLAN topology, which is illustrated in Figure 4.2a. T1 exhibits a total of 10 APs and we associate a number of 5 STAs per AP. The second scenario addresses the case of many single-AP WLANs deployed and operated independently in a relatively limited area. This is typically the case in housing units where each apartment is equipped with its own AP so that the APs are often only a few meters away from a number of others. More specifically, we consider a nine-story building with 216 apartments of 25 m² each. We randomly position an AP within each apartment as well as 4 STAs per AP. Then, similarly to the first scenario, we apply a radio channel allocation algorithm given a total of 18 radio channels, to obtain the topology of interest denoted by T2. Note that T2 consists of 14 APs and 56 STAs. Their colors show how frequently a given STA has a reasonable throughput (i.e. is not in starvation) with the 802.11ax default configuration. A cool color means that the STA is often in starvation, while a warm color denotes a STA that is never in such a situation.

For each scenario, we consider heavily loaded conditions. APs attempt to transmit frames to each of their associated STAs at a rate of 50 Mbps while the latter attempt to send their frames to the AP at a lower rate of 3.33 Mbps. These assumptions are in line with the downstream traffic largely exceeding the upstream traffic in WLANs. Given the speed of wireless links in 802.11ax, the buffers of the APs are likely to be in saturation. More generally, considering APs in saturation represents undoubtedly the most difficult case when dealing with the spatial reuse of a radio channel. Therefore, if INSPIRE manages to significantly improve the WLANs' performance under these circumstances, then it can only do better under normal conditions.

To better appraise the quality of INSPIRE, we also consider a control strategy, several state-of-the-art solutions which are discussed in Section 2.1.2 as well as a version of INSPIRE that caps the amount of collected data with a windowing method. All the considered approaches are briefly summarized below:

• DEFAULT: every AP keeps its default configuration for the TX _ PWR and OBSS _ PD parameters (i.e., (-82, 20) dBm);

• WCNC'15: each AP implements a simple distributed algorithm to dynamically update its OBSS _ PD parameter [START_REF] Shahwaiz Afaqui | Evaluation of dynamic sensitivity control algorithm for IEEE 802.11 ax[END_REF];

• JNCA'19: each AP solves a Multi-Armed Bandit (MAB) problem using Thompson sampling to dynamically update their TX _ PWR and OBSS _ PD parameters [START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF];

• GM+NGTS: the solution described in Section 3.4;

• HM+NGTS: the solution described in Section 3.5;

• INSPIRE _ LIM: similar to INSPIRE, except that only the last 50 observations are considered to make predictions.

We implemented INSPIRE (based on the open-source GP C++ library LibGP [START_REF] Blum | [END_REF]) as well as the seven strategies described above in [START_REF] Blum | [END_REF] Blum (2016), LibGP the open-source network simulator ns-3 [START_REF]The Network Simulator ns-3[END_REF]. We report in Table 4.1 the simulation parameters used in the rest of this section. Unlike previous works (e.g., [START_REF] Wilhelmi | Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs[END_REF][START_REF] Shahwaiz Afaqui | Evaluation of dynamic sensitivity control algorithm for IEEE 802.11 ax[END_REF][START_REF] Ak | FSC: Two-scale AI-driven fair sensitivity control for 802.11 ax networks[END_REF][START_REF] Wilhelmi | Collaborative spatial reuse in wireless networks via selfish multi-armed bandits[END_REF][START_REF] Bardou | Improving the Spatial Reuse in IEEE 802.11ax WLANs: A Multi-Armed Bandit Approach[END_REF])) with the exception of [START_REF] Lee | LSR: linkaware spatial reuse in IEEE 802.11 ax WLANs[END_REF], our simulations incorporate the mechanism of rate adaptation that let APs and STAs dynamically vary the speed of their wireless links (through the use of different Modulation Coding Scheme (MCS)) in response to the quality of the received signal. This is particularly important for the sake of our study since changing the value of TX _ PWR necessarily affects the quality of the received signal and thus the MCS. Since our simulated WLANs take place in buildings, we choose an appropriate path loss by combining the models ItuR1238 and InternalWallsLoss, both implemented by ns-3. With these propagation models, the signal is decreased by an additional attenuation coefficient each time it goes through a floor or a wall. The attenuation coefficients are respectively -4 dBm (which is the default value in ItuR1238) and -8 dBm. 

Wi-Fi Manager

IdealWifiManager

We instrumented ns-3 to collect and compute a number of performance metrics. At the end of each iteration, the quality of the spatial reuse is assessed with (4.1), whereas the evaluated strategies internally use the local objective function defined in (4.2). Then, we compute the classical performance metrics already discussed in Chapter 3: the average regret (with a normalized version of the global objective function( 4.1), the number of starving STAs, which we define as STAs experiencing a very low throughput (namely, less than 10% of their attainable throughput) and the cumulated throughput, which simply sums all STAs' throughput. Additionally, we measure the execution time of the solutions.

Each simulation lasts 30 seconds and we replicate them independently 22 times to obtain and visualize their first, second, and third quartiles. When the quartiles of a performance metric vary too much within a single simulation, we apply an exponential moving average to extract the underlying trends of the quartiles sequences. The metrics are collected throughout the whole duration of the simulation. At the end of each iteration, we compute all the performance metrics and then we refer to the current strategy to decide what will be the next configuration of the WLANs. Since an iteration lasts ∆t = 75 ms and a simulation lasts 30 seconds, the quality of each solution is assessed over 400 iterations. offer a significant improvement over the control and state-of-the-art solutions. On T1, INSPIRE achieves an average regret that is 70% lower than the control DEFAULT configuration and 37% lower than the best state-of-the-art strategy. On T2, these quantities are 31% and 10% respectively. Discussing in greater depth the complexity of the two scenarios in Section 4.5.1 will shed more light on these performance differences.

Performance Metrics

We now consider the performance metrics (number of starving STAs, cumulated throughput, computational overhead) on T1, depicted by Figure 4.3. Taking DEFAULT as a baseline, the results show that INSPIRE reduces the number of STAs in starvation by 80% and manages to increase the cumulated throughput by 600%. Considering the computational overhead of the strategies, we observe that the increase in the performance metrics comes at a computational cost. However, we argue that a computational overhead of around a tenth of a second remains acceptable when making decisions on WLANs.

Comparing the computational overhead of INSPIRE and INSPIRE _ LIM, we observe that capping the size of the dataset also caps the computational overhead, which is in line with the explanations detailed in Section 4.3.3. Overall, although its performance are slightly below those of INSPIRE, INSPIRE _ LIM constitutes a significant improvement over the considered state-of-the-art strategies for all the considered performance metrics, including the average regret (see Table 4.2). Hence, it is a good alternative to INSPIRE if one accepts to trade off some empirical performance for a constant computational overhead. We now turn to the case of topology T2. The results depicted in Figure 4.4 show that among the six considered strategies, INSPIRE is the one that manages to decrease the most the cumulative regret with a decline of about 36% compared to the DEFAULT configuration at the end of the simulation. The proposed solution also outperforms WCNC'15, which is found to be the best state-of-the-art strategy on this topology, by a margin of 14%. Looking at the performance of WLANs and of their STAs, observe that INSPIRE is able to limit the number of STAs starving from throughput by 36% when compared to the DEFAULT configuration. Similarly, the cumulated throughput of STAs have their value increased by 28% and nearly doubled with INSPIRE. Although the dimensionality of a configuration is larger for T2 than for T1 (d = 28 against d = 20), the computational overhead of INSPIRE is virtually equivalent for the two topologies and remains around a tenth of a second. This is because the additional time required to compare higher-dimensional configurations is marginal compared to the additional time required to make inferences on a larger dataset (see Section 4.3.3). Eventually, note that INSPIRE _ LIM is slightly outperformed by INSPIRE, but remains roughly equivalent to the best considered state-of-the-art strategy. Overall, through the study of topologies T1 and T2, INSPIRE demonstrates its superiority over the other state-of-the-art strategies. Its caped version, INSPIRE _ LIM, also demonstrates its empirical competitiveness. The significant improvements brought by our proposed solution on all performance metrics are permanently obtained after 100 iterations only (corresponding to 7.5 seconds of simulated time). In other words, in less than 10 seconds, INSPIRE manages to significantly improve the behavior of the WLANs and of the associated STAs thanks to a better spatial reuse of the radio channel. This efficiency in searching and finding an adequate configuration of the TX _ PWR and OBSS _ PD parameters at each AP of the WLANs mostly results from the distributed, altruistic use of GPs which we further discuss in the next section.

discussion

Two Scenarios with Different Complexity

The topologies T1 and T2 may not seem so different from each other, but INSPIRE performed differently on each of them. By the end of the optimization process, 39 the performance metrics for T1 were im- 39 That is, 400 steps. proved by at least 70% from their initial values under the DEFAULT configuration, and only 7 STAs (representing 14% of the STAs) were still starving from throughput. In the case of T2 the progress was lower, with 14 STAs (representing 25% of the STAs) remaining in starvation. This difference results from the location of STAs relatively to the APs. Looking at Figure 4.2, it appears that STAs in T2 are further from their associated AP than the ones in T1. As a consequence, STAs are also closer to a concurrent AP in T2 than in T1. Indeed, while STAs in T1 are on average 10 times closer to their associated AP than to a concurrent AP, this ratio drops to an average value of 4 for STAs on T2. With STAs closer to concurrent APs, the spatial reuse problem becomes more difficult. As a matter of fact, to reach its associated STA, the AP must transmit at a greater power, increasing its chance to cause inter-ference to the surrounding APs. Similarly, STAs that are further away from their AP are significantly more affected by the transmissions of concurrent APs.

To verify that T2 constitutes a more complex example than T1, we examine the shape of the objective function in both cases. Because of the high dimensionality of the objective functions and the lack of a closed-form expression, we resort to a slicing technique to provide a visualization of the objective function (4.1). We postpone to Appendix B the details of this slicing. Interestingly, Figure 4.5 shows that INSPIRE succeeded to find a configuration that is maximal in this random slice of the objective function in T1. We also notice that many configurations of equivalent efficiency exist, which also tends to ease the search for an adequate configuration. Conversely, in the case of T2, INSPIRE does not find the best configuration since the slice of Figure 4.5 shows that, at least, a 6% better configuration exist. Nonetheless, we argue that INSPIRE was able to find an efficient configuration, which is already not easy given the erraticness of the objective function.

The Benefits of Decentralization

Eventually, to justify our choice of letting APs exploit only local information and prescribe network configurations to their surrounding APs, we consider two alternative versions of INSPIRE:

• GPs w/o agg.: each AP keeps using the local, altruistic objective function (4.2) but does not aggregate local prescriptions. In other words, each AP directly prescribes the value of its own parameters, without using the consensus (4.10);

• Single GP: a centralized version of INSPIRE where a single GP has a complete knowledge of the WLANs and decides on the configuration of every AP. We compare these alternative strategies with INSPIRE and the DEFAULT strategy by considering their average regret on topologies T1 and T2 in Figure 4.6. It shows that, on T1, the alternative strategies have an average regret 46% lower than DEFAULT. However, INSPIRE manages to reduce its average regret by an extra 25%. Despite the greater complexity of the function in T2, this extra reduction factor persists at a value of 13%. Given the significant gap between INSPIRE and GPs w/o agg., it is clear that prescribing for surrounding APs and aggregating those prescriptions leads to a more altruistic behaviour, which in turn brings additional benefits at the scale of the WLAN. More surprisingly, INSPIRE outperforms its centralized counterpart Single GP. At first glance, this is counter-intuitive since Single GP has a complete knowledge and control over the APs of the WLANs. However, recent works such as [START_REF] Wang | Improving GP-UCB algorithm by harnessing decomposed feedback[END_REF] bring evidence that having access to an additive [START_REF] Wang | Improving GP-UCB algorithm by harnessing decomposed feedback[END_REF] Wang et al. (2020), "Improving GP-UCB algorithm by harnessing decomposed feedback" decomposition of the objective function improves the performance of BO algorithms based on GPs, by lowering the variance of their predictions. Overall, INSPIRE, as a decentralized algorithm using a minimax optimal consensus (see Theorem 4.1), manages to improve the spatial reuse of the radio channel at the scale of the WLANs more than its simpler alternatives.

summary and limitations

In this chapter, we proposed INSPIRE, a decentralized BO algorithm based on GPs to address the spatial reuse problem in WLANs. The algorithm iteratively discovers and simultaneously optimizes its objective function. It exploits a natural additive decomposition of this objective function to allow each AP to work only with other APs in its communication range. Each AP agrees with its neighboring APs on a configuration to test thanks to a consensus that we proved optimal in the minimax sense. We compared INSPIRE to the state-of-the-art approaches for the spatial reuse problem in WLANs on a realistic simulator emulating real-world scenarios. INSPIRE demonstrated a significant improvement over the performance of state-of-the-art techniques. This efficiency comes at the cost of a larger computational overhead, that remains acceptable for this technological application. Nevertheless, we proposed an alternative strategy that uses a windowing method to cap the computational complexity of the algorithm without too much degrading its performance. Eventually, we empirically showed that naive and simpler alternative of INSPIRE (including a centralized version of the algorithm) are outperformed by our solution on the considered WLAN topologies. This suggests that the complex features of INSPIRE, namely its decentralized nature and its consensus function, are essential to quickly optimize the spatial reuse of the considered WLANs. INSPIRE was the subject of a publication in an international conference [START_REF] Bardou | INSPIRE: Distributed Bayesian Optimization for ImproviNg SPatIal REuse in Dense WLANs[END_REF] (extended in a peer-reviewed jour- nal [START_REF] Bardou | Analysis of a decentralized Bayesian optimization algorithm for improving spatial reuse in dense WLANs[END_REF]) and in a national conference [START_REF] Bardou | INSPIRE: Optimisation bayésienne distribuée pour l'amélioration de la réutilisation spatiale des WLANs denses[END_REF]. Both of them awarded this We believe that INSPIRE redefines the state-of-the-art of the spatial reuse optimization in WLANs. Moreover, we argue that its good empirical performance are not specific to this technological application, since the Assumptions 4.4 and 4.5 can be undoubtedly retrieved in other applications, as demonstrated in the next chapter.

Nevertheless, our approach keeps several limitations:

(i) Design: INSPIRE assumes that the configuration space C is a compact space. Although, in theory, the hardware of a 802.11 card could be configured with an arbitrary configuration, some manufacturers and standards may enforce a discretization of this space. An efficient method to adapt the recommendation of INSPIRE to a discrete space remains to be proposed.

(ii) Design: the computational overhead of INSPIRE may remain unacceptable for some technological applications.

(iii) Theoretical: an implicit assumption made by Theorem 4.1 is that each GP manages to find the maximal argument of its local objective function. This is not straightforward and needs to be properly verified.

(iv) Theoretical: INSPIRE does not provide the same asymptotic optimality guarantees as other BO algorithms. More work needs to be done to better understand the solution and modify it to provide an algorithm with stronger theoretical guarantees.

(v) Evaluation: the trade-off between the quality of the estimation of the objective function and the number of function calls in a given time interval remains to be discussed.

In the next chapter, we demonstrate that INSPIRE successfully thrives in another technological context: the cellular networks. Then, in Chapter 6, we address the two theoretical limitations (iii) and (iv) raised in the previous paragraph.

A S S E S S I N G T H E B E N E F I T S O F N O M A F O R N E X T -G E N E R AT I O N C E L L U L A R N E T W O R K S

Outline. In this chapter, we consider a technological context that differs from the Wireless Local Area Network (WLAN) introduced in Chapter 1 (Section 1.1.2) and optimized in Chapters 3 and 4. Instead, we focus on assessing the benefits of a new multiple access approach, called NOMA, which is envisioned for the future generations of cellular networks. We start by briefly introducing the cellular networks and their applications in Section 5.1. Then, we discuss the motivations of this contribution and we properly describe the problem we address in Sections 5.2 and 5.3 respectively. Finally, we conduct our experiments in Section 5.4 and we demonstrate that NOMA can bring significant gains providing it is properly configured. Through this chapter, we also show that INSPIRE, the algorithm developed in Chapter 4 (see Algorithm 4.1) can find applications in other technological contexts than WLANs.

another technological context: cellular networks

Cellular Networks: Overview

A cellular network is a high-speed, high-capacity, wireless telecommunication network designed for voice and data. As its name suggests, the network is distributed over land areas, called cells. Within each cell resides a base transceiver station, or Base Station (BS) for short, that ensures the network coverage of the cell. Joined together, the BS cover a large geographic area, providing connectivity to numerous end-users through their cellular devices (such as cell phones). Nowadays, the major part of the inhabited areas in the world are covered with a cellular network.

Nowadays, cellular networks still account for less traffic than WLANs, carrying between 2.5 [1] and 4.4 [START_REF] Manson | Wireless network data traffic: worldwide trends and forecasts 2021-2026[END_REF] less traffic data in 2020. Never- theless, the increase in popularity of cellular devices gradually shifted the use cases of cellular networks from phone calls and entertainment to more critical applications. As an example, [START_REF] Vacca | Network and system security[END_REF] identifies cellular [START_REF] Vacca | Network and system security[END_REF] Vacca (2014), Network and system security networks as the lifeline of communication, since they have become the primary means of communication for finance-sensitive business transactions, lifesaving emergencies, and life/mission-critical services such as E-911 in the USA. Given these needs of efficiency and reliability, the local, analog wireless networks (deployed mainly in Japan and in the USA) constituting the first generation of cellular networks (1G) quickly gave way to the first commercial deployment of digital cellular networks (2G) in 1991, during the wireless revolution [START_REF] Theodore S Rappaport | The wireless revolution[END_REF]. Since [START_REF] Theodore S Rappaport | The wireless revolution[END_REF] Rappaport (1991), "The wireless revolution" then, cellular networks have undergone three major updates, namely 3G, 4G and 5G. Each of these updates was released by the 3rd Generation Partnership Project (3GPP) and systematically introduced new frequency bands as well as higher data rates to face an increasing demand. The latest one (5G) was introduced in 2016. In this section, we describe some aspects of the cellular networks, relevant to the understanding and the study of the benefits of a new multiple access approach. For a thorough description of cellular networks, please refer to [START_REF] Miao | Fundamentals of mobile data networks[END_REF][START_REF] Ghosh | 5G evolution: A view on 5G cellular technology beyond 3GPP release 15[END_REF]. As mentioned before, the cell denotes the area of coverage of a BS. The division of the radio service into cells is based on terrain and reception characteristics. As an example, it can be based on the Signal to Noise Ratio (SNR) of the end-users' celullar devices, that is the ratio between the signal strength at reception and the ambient noise of the radio channel. munication operator in France, Orange, 41 extracted from the Autorité To ensure a minimal Quality of Service (QoS) to the end-users, operators tend to correlate the density of deployed BS with the density of cellular devices. As a few examples, observe that the most dense areas (namely the city center and the main train station, marked with black circles on Figure 5.1) require a denser deployment of BS and, consequently, smaller cells. Conversely, the least dense area (in terms of cellular devices) of Lyon, namely the Parc de la Tête d'Or (marked with a white circle on Figure 5.1), does not require a large number of BS. 

Intra-Cell Resource Allocation

Time Division Multiple Access (TDMA).

TDMA consists in attributing non-overlapping time slots to end-users. Each time slot is used to transmit a segment of the data to a specific user, using the whole radio channel. The Global System of Mobile Communications (GSM) standard, used for the 2G cellular networks, is TDMA-based [START_REF] Mehrotra | GSM system engineering[END_REF].

[96] Mehrotra (1997),

GSM system engineering

Frequency Division Multiple Access (FDMA). FDMA, unlike TDMA, divides the radio channel into multiple non-overlapping individual frequency band. Each band can be used as long as necessary, to transmit data to a specific user. The cable television system is FDMAbased [START_REF] Ciochina | A review of OFDMA and singlecarrier FDMA[END_REF]. Orthogonal Frequency Division Multiple Access (OFDMA). OFDMA combines the advantages of TDMA and FDMA by allowing a division within the frequency and the temporal domains. The radio channel is divided into multiple individual bands, and the time is divided into time slots. Resource blocks of different sizes can then be attributed to users according to their needs. Thanks to its flexibility, OFDMA is very spectrally efficient [START_REF] Ciochina | A review of OFDMA and singlecarrier FDMA[END_REF]. OFDMA is implemented in the last generations of cellular networks, namely the Long-Term Evolution (LTE) cellular system (belonging to 4G) and the 5G standard [START_REF] Rahnema | From LTE to LTE-Advanced Pro and 5G[END_REF]. These three presented schemes belong to the class of Orthogonal Multiple Access (OMA) techniques. However, all OMA techniques (including OFDMA that brings more flexibility in the resource allocation) struggle to meet the high demands of next-generation cellular networks. Another recent resource allocation scheme, introduced by the 13th release of the 3GPP for 4G cellular networks, seems very promising since it uses overlapping resource blocks to increase the cell data rate. We introduce it below. 

Non-Orthogonal Multiple Access (NOMA).

NOMA is able to use overlapping resource blocks for its end-users, as illustrated by Figure 5.3. To do so, NOMA exploits a technique called Successive Interference Cancellation (SIC) [START_REF] Sen | Successive interference cancellation: A back-of-theenvelope perspective[END_REF]. SIC allows a cellular device to decode subtracting it to the received data to gain access to the other signals, as illustrated by Figure 5.4. With NOMA, the same frequency bands can now be used to transmit to all the end-users of a cell. For more details about NOMA, one can refer to [START_REF] Caglar | Non-orthogonal multiple access (NOMA) for 5G networks[END_REF].

[100] Kizilirmak et al. (2016), "Non-orthogonal multiple access (NOMA) for 5G networks"

Inter-Cell Coordination

The resource allocation schemes described in Section 5.1.2 (namely TDMA, FDMA, OFDMA and NOMA) allow the BS to communicate with the intra-cell users without interference (or at least to deal with them in the case of NOMA). However, the users at the edge of a cell still experience interference from the neighboring cells. This is one of the main problems affecting the QoS of cellular networks, called Inter-Cell Interference (ICI). To address ICI, the research community in cellular networks proposed many Inter-Cell Interference Coordination (ICIC) strategies [START_REF] Abdelbaset S Hamza | A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks[END_REF]. In this section, we introduce the three strategies con- sidered in our study.

Coloring

One of the most naive strategy for mitigating ICI is to allocate different fractions of the frequency band to neighboring cells, so they cannot interfere. This is ensured by computing a coloring of the cells. That is, each cell is assigned a color in such a way that two neighboring cells cannot have the same color, as suggested by Figure 5.1b and illustrated with Figure 5.5. This forces neighboring cells to emit in different fractions of the frequency band. Naturally, this strategy significantly reduces the spectral efficiency of the cellular network, as a cell uses only a fraction of the frequency band. Note that, by the four colors theorem [START_REF] Appel | The solution of the fourcolor-map problem[END_REF], each cellular net- work is at most 4-colorable. Therefore, in the worst case, each cell would be allowed to transmit using 25% of the frequency band only. Naturally, this significantly hampers the spectral efficiency of the cellular network.

Fractional Frequency Reuse

Fractional Frequency Reuse (FFR) proposes to divide the end-users of each cell into two subsets, based on their geographic positions. As a consequence, these two subsets define two areas, namely an inner and an outer area (see Figure 5.6). The inner areas of each cell, assumed too far from each others to cause and experience mutual interference, are allowed to use the same fraction of the frequency band. The outer areas apply the coloring strategy (see Section 5.1.3.1) on the remaining of the frequency band. As far as we know, no derivation of the optimal values for these two parameters has reached a consensus in the cellular network community. However, numerous heuristics have been proposed, especially to derive a suitable value of τ [START_REF] Xu | Throughput and optimal threshold for FFR schemes in OFDMA cellular networks[END_REF][START_REF] Elwekeil | Performance evaluation of an adaptive self-organizing frequency reuse approach for OFDMA downlink[END_REF][START_REF] Ezhilarasi | Maximization of sum throughput in LTE heterogeneous network using region splitting-based resource partitioning scheme[END_REF]. Although FFR can improve the spectral efficiency of the cellular network as compared to the coloring strategy, there is still room for improvement as the frequency band allocated to each outer area is significantly reduced. To tackle this problem, we consider a strategy that has not yet been implemented at large scale: a combination between FFR and NOMA. This combination would allow the cellular network to take advantage of the SIC features. In particular, each cell of the network could use overlapping resource blocks to serve its inner and outer users (as illustrated by Figures 5.3 and 5.4). Observe that the inner areas are now able to exploit the whole frequency band, while the outer areas apply the simple coloring strategy on the whole frequency band to protect its end-users from interference. Thanks to SIC, users in the inner area do not experience interference with the users in the outer area of the same cell. However, observe that the inner area of the orange cell causes three types of interference (depicted with the areas of the green cell only for the sake of clarity):

(i) with its own cell's outer area, because of SIC, (ii) with the other cells' outer areas, (iii) with the other cells' inner areas.

motivations

As mentioned in Section 5.1.2, NOMA is a very promising resource allocation scheme recently introduced by 3GPP but has not yet been implemented at a large scale. This is mainly due to the complexity of the SIC algorithms that require a significant amount of computing power at the end users. Some doubts regarding the efficiency of NOMA were also raised in the research community. As an example, [START_REF] Wang | User association and power allocation for multicell non-orthogonal multiple access networks[END_REF] argue [START_REF] Wang | User association and power allocation for multicell non-orthogonal multiple access networks[END_REF] Wang et al. (2019), "User association and power allocation for multi-cell non-orthogonal multiple access networks" that FFR and NOMA are incompatible. However, this claim is contradicted by [START_REF] Vaezi | Non-orthogonal multiple access: Common myths and critical questions[END_REF][START_REF] Ramesh | Non orthogonal multiple access requirements for 5G and its myths[END_REF]. Overall, the performance of the combination of NOMA and FFR in a multi-cells context remains largely unknown. In this chapter, we consider the three ICIC strategies described in Section 5.1.3, namely the coloring strategy, FFR and the combination of FFR and NOMA. Each strategy has its advantages and drawbacks:

• The coloring strategy causes little interference but is also less spectrally efficient. This could reduce the overall QoS of the cellular network.

• FFR is more spectrally efficient as each cell is allowed to reuse a fraction of the frequency band in its inner area. However, this causes additional interference between the inner areas of neighboring cells, as illustrated by Figure 5.6.

• The combination of NOMA and FFR is the most spectrally efficient strategy as it is able to exploit overlapping resource blocks. However, this causes additional interference within the cell and between neighboring cells, as illustrated by Figure 5.7.

Using INSPIRE, the solution developed in Chapter 4 (see Algorithm 4.1), we propose to optimize different cellular networks under these three ICIC strategies. Doing so, we are able to evaluate and compare the ICIC strategies in a multi-cells context by comparing the performance achieved by the optimized cellular networks. In particular, our study provides material that clearly show the benefits of the combination of FFR and NOMA and could be of some interests for the design choices of the next-generation of cellular networks.

problem formulation

Regarding the optimization of cellular networks, most contributions, such as [START_REF] Banerjee | Joint Power and Subcarrier Allocation in Multi-Cell Multi-Carrier NOMA[END_REF], propose to optimize the frequency band and the trans- mission power of the BS at the scale of each end-user. In this chapter, we tackle a different optimization problem. We consider only two transmission powers for each cell, one for the inner area and one for the outer area (see Section 5.3.1). By tuning these two transmission powers, we control more easily the interference and the association of the end-users to one BS and one of the cell areas. Through an efficient configuration of the transmission powers at each BS, we seek to optimize the QoS of the cellular network (see Section 5.3.2).

Problem Parameters

As mentioned before, each cell i is required to tune its transmission powers, denoted p (i)

1 and p (i)
2 for its inner and outer area, respectively. They are to be tuned within a given domain [a, b] 2 , under the two following constraints:

(i) by construction, the transmission power for the inner area must be lower than the transmission power for the outer area, that is p

(i) 1 ≤ p (i) 2 ,
(ii) the sum of the transmission powers must not exceed the maximal power capacity of a BS, denoted P + , that is p

(i) 1 + p (i) 2 ≤ P + .
Because of the constraints (i) and (ii), the domains of p (i)

1 and p (i) 2
are not rectangular. This is a problem for some optimization algorithms. To design parameters with rectangular domains that naturally incorporate these constraints, we define

(i) θ (i) 1 = p (i) 1 + p (i)
2 the total transmission power of the BS, to be chosen within the interval [2a, P + ], and

(ii) θ (i) 2 = p (i) 2 θ (i) 1
the fraction of the transmission power allocated to the outer area, to be chosen within the interval 1 2 , 1 .

Naturally, the two transmission powers p (i)

1 and p (i)
2 can be retrieved since p

(i) 1 = θ (i) 1 1 -θ (i) 2 and p (i) 2 = θ (i) 1 θ (i)
2 . Note that a cellular network comprising n cells has 2n parameters to be tuned.

Objective Function

In this chapter, as in Chapters 3 and 4, we would like to rely on the end-users achieved throughputs to build our objective function. In the previous chapters, we instrumented a well-known simulator to collect these throughputs. However, as far as we know, there is no well-established open-source simulator in the cellular network community. Therefore, for the sake of simplicity and of the generality of our results, we rather rely on an upper bound on the achieved throughput of each end-user, that is the Shannon capacity [START_REF] Jhb Kemperman | On the Shannon capacity of an arbitrary channel[END_REF].

[110] Kemperman (1974), "On the Shannon capacity of an arbitrary channel"

The Shannon capacity C j for an end-user j associated with a BS i is an upper bound on the throughput that the end-user is able to achieve. It is expressed in bits per second and is defined as

C j = W j log 2 (1 + S i,j ) (5.1)
with W j the bandwidth allocated to the end-user j and S i,j the Signal to Interference plus Noise Ratio (SINR) of the transmission between the BS i and the end-user j. To ease exposition, more details about the computation of SINR are provided in Section 5.3.3.

As with a WLAN, a cellular network must achieve a satisfying QoS through a good trade-off between a large system throughput (i.e. the cumulative sum of the individual throughput of each end-user) and a high level of fairness. In Chapters 3 and 4, we considered that the Proportional Fairness (PF) was a satisfying trade-off (see Sections 3.2.1 and 4.2.2 for more details). In this chapter, we consider a metric that generalizes multiple fairness measures (including PF), called the αfairness [START_REF] Mo | Fair end-to-end window-based congestion control[END_REF]. It is defined, for α ∈ [0, +∞[ and a d-dimensional [START_REF] Mo | Fair end-to-end window-based congestion control[END_REF] [START_REF] Mo | Fair end-to-end window-based congestion control[END_REF], "Fair end-to-end window-based congestion control" vector x of the Shannon capacity for the d end-users of the cellular network, as

f α (x) = d i=1 x 1-α i 1 -α . (5.2)
For α = 1, (5.2) is not defined. However, observe that

∇f α (x) = x -α 1 , • • • , x -α d . (5.3) Therefore, lim α→1 ∇f α (x) = x -1 1 , • • • , x -1 d .
In addition, note that lim α→1 f α (x) = lim α→1 ( ∇f α ) (x) = ( ∇f 1 ) (x). Computing ∇f 1 is immediate and yields ( ∇f 1 ) (x) = C + d i=1 log x i , with C an integration constant. C does not have any influence on the maximization of f 1 . Therefore, in the following, we set C = 0 and we have

lim α→1 f α (x) = d i=1 log x i .
(5.4) Therefore, (5.2) can be extended to

f α (x) =    d i=1 log x i if α = 1 d i=1 x 1-α i 1-α
otherwise.

(5.5)

As mentioned before, α ∈ [0, +∞[. Its value controls the importance of the fairness in the objective function. In fact, setting α = 0 enforces virtually no fairness in x as this boils down to optimizing f 0 = d i=1 x i . Recall that x denotes the Shannon capacity of the d end-users of the cellular network, therefore f 0 (x) is the capacity of the network. As α increases, the fairness constraint becomes stronger. As can be seen with (5.5), α = 1 corresponds to the PF. Asymptotically, considering f ∞ (x) = lim α→+∞ f α (x), we have [1,d] x i .

f ∞ (x) = min i∈
(5.6)

Note that (5.6) is one of the most stringent definitions of fairness, as the objective value of the entire cellular network is defined as the lowest capacity experienced by a single user.

Finally, observe that (5.5) is a sum of d terms, each term being associated to the capacity of a user. Therefore, we can build an additive decomposition with any partition of the set of users. As an example, a partition of users could be {U (i)} i∈ [1,n] , with U (i) denoting the users associated with cell i. More generally, for a partition of users P = {P i } i∈ [1,k] , k > 0, we have

f α (x) = P i ∈P j∈P i x 1-α i 1 -α (5.7) = P i ∈P f (i) α (x P i ) (5.8)
with x P i the projection of x onto the dimensions whose indices are in P i .

Users Association to BS and Cell Areas

In the cellular network, each user must be associated with the BS of a cell before being associated to either the inner or the outer area of the cell (that is, to a SIC level). We discuss the two association methods chosen in this section.

Association with a BS

For a given user, the association with a BS is based on the SINR at reception. For a BS i and a user j, the SINR is denoted by S i,j and defined by

S i,j = p (i) L i,j N + k∈I(j) p (k) L k,j
(5.9)

with p (i) the transmission power of the signal at the BS (either p (i)

1 or p (i)
2 depending on the location of the end-user in the cell), L i,j the loss of the signal between BS i and user j, N a background noise and I(j) the set of BS interfering with user j.

To determine which BS to associate with, a user collects the SINR for all its surrounding BS (by considering p (i) 1 for their inner areas and considering p (i) 2 for their outer areas), and associates with the BS that provides the largest SINR. Note that the set of interfering BS I(j) also depends on which area (inner or outer) the user j belongs to (see Section 5.1.3 for more details).

By tuning the cellular network configuration (that is, the transmission powers of each BS), the SINRs will change and end-users will naturally change their associations to BS. All other things being equal, a BS increasing its transmission power will naturally serve more users, and hence increase the area of its cell.

Assignment to a Cell Area

Once the users are associated with a cell, they need to be associated with either the inner or the outer area of the cell. Finding the association that maximizes the objective function f α is a difficult combinatorial problem, as it boils down to finding the optimal 2-partition of the set of users among the 2 d i -1 -1 that exist. 44 44 Here, d i denotes the number of users in the cell.

To circumvent this combinatorial problem, we reduce the number of candidate associations by sorting the users according to their SNR at reception. 45 Then, we split the sorted list of users in two: those with 45 They are necessarily known from the BS as its users are associated with a BS based on their SINR.

the lowest SNR are affected to the outer area, the others are affected to the inner area. This drastically reduces the number of associations to d i -1 candidates. We argue that the number of candidate associations is now sufficiently reduced to discover the optimal users association with a greedy algorithm. Therefore, within each cell, the α-fairness (see (5.5)) corresponding to each candidate association is computed, and the association achieving the largest α-fairness value is chosen.

Optimal Scheduler

Thanks to NOMA, the BS can use overlapping resource blocks to communicate with inner and outer users concurrently. However, two users sharing the same SIC level 46 must still use orthogonal resource blocks 46 That is, two users in the same area (inner or outer). and, hence, share the resource in the frequency and/or time domain.

In this section, we derive the optimal fraction of the resource to allow to each user j, so that the objective function (5.5) applied to the users of a given area in a cell is maximized. We opt for the optimal scheduler, as it is the only one that guarantees no negative impact on the objective function values. In fact, any other scheduler resulting from arbitrary design choices is likely to reduce the objective function values and, hence, to prevent us from studying the impact of the considered ICIC strategies on the objective function.

Given the capacities c = (c 1 , • • • , c k ) of k users, we seek to solve maximize t∈[0,1] k f α (t ⊙ c) such that t ⊤ 1 = 1 (5.10) 
with t the scheduling, 1 the conformable vector of ones and ⊙ the Hadamard product. 

* = (t * 1 , • • • , t * k ) is t * =      (1 i=i * ) i∈[1,k] if α = 0, c (1-α)/α i k i=1 c (1-α)/α i i∈[1,k]

otherwise

(5.11)

with i * = arg max i∈[1,k] c i and 1 i=i * the indicator function indicating if i is equal to i * .
Proof. Since the problem (5.10) boils down to finding the optimal convex combination of c 1 , • • • , c k , let us consider the Lagrangian relaxation when α ̸ = 1, that is

L α (t, λ) = f α (t ⊤ c) -λ(t ⊤ 1 -1) = 1 1 -α k i=1 t 1-α i c 1-α i -λ k i=1 t i -1 (5.12)
It is known that finding the critical points of L provides the maximal argument of f α (t ⊤ c). Let us consider the system that a critical point of (5.12) yields, that is

∇L α = 0 =⇒                c 1-α 1 t -α 1 -λ = 0, . . . c 1-α k t -α k -λ = 0, 1 -k i=1 t i = 0 . (5.13) 
Setting α ̸ = 0, solving the system (5.13) is trivial and yields a single critical point, with [1, k]. This is necessarily the optimal scheduling we are looking for. Note that solving the case α = 0 is trivial as it boils down to allocating all the resource to the user with maximal capacity, at the expense of all the others.

t i = c (1-α)/α i k i=1 c (1-α)/α i , ∀i ∈
Finally, considering the relaxation for α = 1 (see (5.5)), the Lagrangian is

L 1 (t, λ) = k i=1 log t i c i -λ k i=1 t i -1
and looking for the critical points, we have

∇L 1 = 0 =⇒                1 t 1 -λ = 0, . . . 1 t k -λ = 0, 1 -k i=1 t i = 0 .
(5.14)

The system (5.14) can be trivially solved and yields a single critical point, with t i = 1 k . Consequently, this is also the maximal argument of our objective function. This concludes our proof.

Optimization of the Objective Function

We now have all the information to characterize the addressed optimization problem. This is a distributed optimization problem (of high dimension when the number of BS is large) whose parameters are described in Section 5.3.1 and objective function is (5.5) (see Section 5.3.2). Unfortunately, the relation between a change in the transmission powers of the BS and the distribution of the end-users on the different cells and cell areas (see Section 5.3.3) is hard, if not impossible, to express in a closed-form. The relation between the cellular network configuration and the scheduling of each cell (see Section 5.3.4) is also hard to write down precisely. Because the different associations and the scheduling have a direct impact on the objective function, the objective function (5.5) can be seen as a black-box.

Therefore, we are facing a distributed black-box optimization problem, and we use INSPIRE, the solution developed in Chapter 4 (see Algorithm 4.1) to explore and simultaneously optimize (5.5).

numerical results

In this section, we describe in Section 5.4.1 the setting implemented to assess the performance of a cellular network using the three ICIC strategies described in Section 5.1.3, before providing and comparing the obtained performance metrics in Section 5.4.2.

Experimental Setting

In these experiments, we compare the three ICIC strategies described in Section 5.1.3. We briefly recall them below:

(i) COLORING: the control ICIC strategy, consisting into simply coloring the cellular network as described in Section 5.1.3.1, (ii) FFR: the FFR solution, as described in Section 5.

(iii) NOMA + FFR: the combination of NOMA and FFR, as described in Section 5.

We evaluate the performance of these solutions with an homemade simulator, implementing the users association to the cells and to the SIC levels, as well as the optimal scheduling, as descibed in Sections 5.3.3 and 5.3.4. The simulator is instrumented to collect the Shannon capacity of each user and the Jain's fairness index [START_REF] Rajendra K Jain | A quantitative measure of fairness and discrimination[END_REF] at the network level. Table 5.1 gathers the parameters of the simulator and their values. At each optimization step, given the previous configurations of the cellular network and their objective values, we use INSPIRE (Chapter 4, Algorithm 4.1) to find a promising configuration of the cellular network and maximize the objective function f α . For FFR and NOMA + FFR, the configuration of each BS is a set of two parameters describing respectively the total transmission power of the BS and the fraction of the power used for the inner area (as described in Section 5.3.1). However, in the case of FULL REUSE and COLORING, cells do not have an inner area and each BS is configured with a single parameter only, describing its transmission power. Finally, we consider two different cellular networks for the benchmarking of the ICIC strategies, depicted by Figure 5.8. Figure 5.8a illustrates a small cellular network, denoted T1. It is composed of 7 BS and 1400 users (not shown here), distributed according to a uniform grid. Figure 5.8b depicts a more realistic cellular network covering the city of Lyon (France) with the 125 BS of the main french telecommunication operator (Orange). Please refer to Section 5.1.1 for more details about the position of the BS. As for the users (not shown here), they are generated by a Log-Gaussian Cox process [START_REF] Møller | Log gaussian cox processes[END_REF], to have a re- alistic users distribution with spatial heterogeneity. More concretely, we used the method described in [START_REF] Wang | The impact of user spatial heterogeneity in heterogeneous cellular networks[END_REF] to generate the users. To have a realistic number of users, we reproduced the population density of Lyon (around 11,000 inhabitants per squared kilometer) and we selected a fraction of these users, based on the market share of Orange. 47 Then, we assumed that only 10% of these users were actually 47 active users on the cellular network, leading us to randomly remove 90% of them. Overall, T2 ends up with a total of around 9,000 users.

Performance Results

First of all, let us consider the performance of INSPIRE on the objective function f α . Recall that α determines the importance of fairness in the objective function. Figure 5.9 gathers the results for three values of α. Note that each set of colored curves evolves on a different range of values, as it corresponds to a different value of α. On both cellular networks T1 and T2 and regardless of the value of α, INSPIRE is able to consistently optimize f α by discovering promising configurations of the networks. Figure 5.9 also shows that the combination NOMA + FFR consistently obtains better objective function values for the considered values of α, followed by FFR and COLORING. This strongly suggests that among the considered ICIC strategies, NOMA+FFR is able to achieve the best trade-off between the Shannon capacity and the fairness on both cellular networks. To confirm this, let us consider the Shannon capacity and Jain's fairness index achieved by each strategy. Note that, from the perspective of multi-objective optimization, f α is a scalarization as it is able to turn the multi-objective problem into a scalar optimization problem. To better compare the different ICIC technologies, let us consider for each experiment the best configuration found (according to f α ) and visualize it in the output space (that is, the space where the capacity and the fairness have their own axis) [START_REF] Deb | Multi-objective optimization[END_REF]. If a configuration x 1 achieves a higher throughput and a higher fairness than a configuration x 2 , then x 2 is said to be Pareto-dominated [START_REF] Voorneveld | Characterization of pareto dominance[END_REF] by x 1 .

[115] Voorneveld (2003), "Characterization of pareto dominance"

Figure 5.10 depicts, in the output space, the best configurations found by INSPIRE for different values of α (ranging from 0 to 2) and the considered ICIC strategies. The combination NOMA + FFR appears clearly as the ICIC strategy able to achieve the highest capacity, without trading off on the network fairness. In fact, most of the configurations found for FFR or COLORING in the output space of T1 (Figure 5.10a) and T2 (Figure 5.10b) are Pareto-dominated by a configuration of NOMA + FFR. This confirms that the combination of NOMA and FFR is very promising, as it is very likely to improve the throughput of cellular network without leading to unfair situations. Finally, to understand how the cellular network answers to an increased demand of fairness among the end-users, let us visualize T1 and T2 under the best configurations found according to f α , for different values of α.

Figure 5.11 depicts the cellular networks T1 (Figure 5.11a) and T2 (Figure 5.11b) under such configurations. Observe that, for α = 0, the inner areas are small and comprise a few users only. Doing so, these lucky users get an excellent QoS, at the expense of all the other users who get a very poor QoS. This configuration actually maximizes the objective function value f 0 by achieving a very high Shannon capacity at the network scale. However, as soon as some fairness is required (with α > 0), the inner areas start inflating. More generally, for the tested values of α, the larger α, the bigger the inner areas. The effect of α on the throughput distribution of each cell is studied in Appendix C.

summary and limitations

In this chapter, we have exploited INSPIRE, the decentralized Bayesian optimization solution developed in Chapter 4 to propose a power control algorithm in cellular networks. This algorithm tries to achieve a compromise between the Shannon capacity and Jain's fairness index by optimizing a scalarization: the α-fairness. By tuning α, the amount of fairness in the objective function can be controlled. Thanks to IN-SPIRE, we were able to compare different strategies to prevent interference at the edge of the cells in cellular networks. More precisely, we studied the combination of a new resource allocation scheme (NOMA) and an ICIC technique (FFR). We demonstrated, through simulation, that this combination seems very promising as it manages to Paretodominate other classical ICIC strategies such as the pure FFR and the coloring of the cellular network, in terms of Shannon capacity and Jain's fairness index. Although the experimental results are very promising, this contribution is still a work in progress that is not yet published. As such, it suffers from several limitations: (i) Design: more features must be implemented in the homemade simulator, such as the fading or the beamforming (which alterate the propagation model), to increase the realism of the simulator and the accuracy of the presented results.

(ii) Evaluation: cellular networks are almost exclusively used in a dynamic context, where end-users are mobile. The performance of the proposed combination (NOMA + FFR) and the optimizing algorithm (INSPIRE) need to evaluated in this context.

Since the solution proposed in this chapter relies on INSPIRE, note that the limitations raised in Chapter 4 (see Section 4.6) also apply to this work. In the next chapter, we propose to address these limitations by designing a high-dimensional Bayesian optimization algorithm that provides more theoretical guarantees.

C O N T R I B U T I O N T O T H E O P T I M A L B AY E S I A N O P T I M I Z AT I O N O F H I G H -D I M E N S I O N A L F U N C T I O N S

Outline. In this chapter, we directly address the Bayesian optimization of an unknown high-dimensional function f that is noisy and costly to evaluate. This is still an open research problem, as described briefly in Section 2.2.4 and discussed in greater length in this chapter. We address the over-exploration issue in decentralized Bayesian Optimization (BO) algorithms by proposing a provably better approximation of the famous acquisition function GP-UCB [START_REF] Srinivas | Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting[END_REF] in a decentralized context. We also describe a decentralized algorithm, called DuMBO, to maximize this new acquisition function. We tackle the large dimensionality of the input space C by assuming an additive decomposition of the objective function f , and we prove that DuMBO can optimize it with no-regret guarantees. Finally, we demonstrate its competitive empirical performance against other state-of-the-art high-dimensional BO algorithms on a benchmark comprising synthetic functions and real-world problems.

motivations

In the previous chapters, we addressed the spatial reuse problems in a Wireless Local Area Network (WLAN) (Chapters 3 and 4) and we demonstrated that one of our algorithms, devised for this purpose, can successfully apply to different technological contexts (Chapter 5). However, theoretical limitations remain as more work needs to be put in the theoretical modeling of our strategies to tackle the high-dimensionality of the objective function f . This chapter provides DuMBO, an algorithm that addresses the theoretical limitations of the previously proposed solutions. Through a thorough theoretical modeling, we assess its optimality and its superiority over state-of-the-art, provably optimal algorithms. In doing so, we aim at giving a broader impact to our contributions. As a matter of fact, this chapter demonstrates the ability of DuMBO to optimize objective functions from a variety of technological applications, ranging from telecommunication networks to astrophysics.

Furthermore, recall that one of the current major drawbacks of BO is its inability to optimize high-dimensional functions. In fact, although BO has become a highly effective framework for black-box optimization in input spaces of low effective dimension [START_REF] Wang | Bayesian Optimization in High Dimensions via Random Embeddings[END_REF], classical BO algo- rithms struggle with high-dimensional functions as their acquisition 89 functions become hard to maximize. However, many real-world applications, such as computer vision, robotics and of course computer networks 48 often involve a high-dimensional objective function. This 48 As illustrated throughout this thesis. chapter aims to contribute to the field of BO by providing a way to extend it to the optimization of high-dimensional functions.

related works

In this section, we extend Section 2.2.4 by describing how state-of-theart BO algorithms address the high dimensionality of input spaces. Before discussing this, recall that the quality of the optimization is quantified through the notion of regret, with the instantaneous regret

r t = f (x * ) -f (x t ) (see Chapter 1, Definition 1.1
) and the cumulative regret R T = T t=1 r t (see Chapter 1, Definition 1.2). Also, remember that a Black-Box Optimization (BBO) algorithm is said to be asymptotically optimal (or equivalently, no-regret) if lim T →+∞ R T /T = 0 (see Chapter 1, Definition 1.3).

High-Dimensional Bayesian Optimization

When facing high-dimensional problems, global optimization algorithms, such as DIRECT (see Section 2.2.1), struggle at maximizing the acquisition function φ t of a BO algorithm in an acceptable amount of time. This is mainly due to their computational complexity, which is exponential in the number of dimensions d of the input space C. To tackle this issue, BO algorithms use a variety of techniques that leads to mitigating the complexity of the optimization of the acquisition function.

As an example, TuRBO [START_REF] Eriksson | Scalable global optimization via local bayesian optimization[END_REF] maintains a trust region in the in- put space C to perform local Bayesian optimization. Although its Gaussian Process (GP) has a poor fit globally, it serves as an excellent surrogate model within the trust region. Naturally, all the subtlety of this algorithm lies in how the trust region is built and updated at each iteration.

Apart from TuRBO, high-dimensional BO algorithms generally fall into one of the two following general categories.

Embedding BO Algorithms

Embedding BO algorithms assume that only a few dimensions are significantly impacting f and project its high-dimensional input space into a low-dimensional one where the optimization is actually performed. REMBO [START_REF] Binois | A warped kernel improving robustness in Bayesian optimization via random embeddings[END_REF] and ALEBO [START_REF] Letham | Reexamining linear embeddings for high-dimensional Bayesian optimization[END_REF] make the hypothesis that the effective dimensionality of the objective function is lower than d. They optimize f after projecting its high-dimensional input into a linear subspace using random Gaussian matrices. Other approaches ex-ist, such as [START_REF] Gómez-Bombarelli | Automatic chemical design using a datadriven continuous representation of molecules[END_REF] that uses variational auto-encoders to learn a contin- [START_REF] Gómez-Bombarelli | Automatic chemical design using a datadriven continuous representation of molecules[END_REF] Gómez-Bombarelli et al. (2018), "Automatic chemical design using a data-driven continuous representation of molecules"

uous embedding of molecules or [START_REF] Moriconi | Highdimensional Bayesian optimization using low-dimensional feature spaces[END_REF] that discovers the embedding function using a manifold GP. [START_REF] Eriksson | High-dimensional Bayesian optimization with sparse axis-aligned subspaces[END_REF] proposes the SAASBO algorithm that assumes a hierarchy of relevance in the input dimensions and introduces a structured prior over the kernel hyperparameters of the GP. These hyperparameters are designed in such a way that they induce a sparse GP, able to learn an embedding of the high-dimensional inputs and to handle large amount of data. Finally, there exist algorithms that propose to simply select some dimensions of the input space to project onto. Such recent methods include Dropout [START_REF] Li | High dimensional Bayesian optimization using dropout[END_REF], in- spired by the dropout algorithm in neural networks, that proposes the dimension dropout for the high-dimensional BO. At each optimization, it samples a small number of dimensions and performs the optimization on these dimensions only. Another approach is MCTS-VS [START_REF] Song | Monte Carlo Tree Search based Variable Selection for High Dimensional Bayesian Optimization[END_REF], based on Monte-Carlo Tree Search to sample the subset of dimensions to project onto. Note that these methods demonstrate excellent empirical performance but offer no theoretical guarantees. In particular, they do not offer no-regret guarantees through an asymptotic optimality property.

Decomposing BO Algorithms

Decomposing BO algorithms assume an additive structure for f and optimize the factors of the induced decomposition with classical BO.

This assumption leads to exponential gains in the complexity, as the critical parameter is now d, the Maximum Factor Size (MFS) of the decomposition. 49 Classical approaches such as ADD-GPUCB [START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF], 49 That is, the dimensionality of the highest-dimensional factor of the decomposition.

[125] Kandasamy et al.

(2015), "High dimensional Bayesian optimisation and bandits via additive models"

MES [START_REF] Wang | Max-value entropy search for efficient Bayesian optimization[END_REF] or QFF [START_REF] Mutny | Efficient high dimensional bayesian optimization with additivity and quadrature fourier features[END_REF] assume a decomposition with a MFS equal to 1 are able to optimize decompositions with larger MFS and shared input components. Still, the MFS of the decomposition must be low to avoid a prohibitive computational complexity. Note that, like any BO algorithm, decomposing BO algorithms approximate the true objective function f as the existence of its additive decomposition is not guaranteed. However, unlike the others approaches, the vast majority of decomposing BO algorithms offer noregret guarantees, as they are provably asymptotically optimal provided that their introduced assumptions on f hold. Also note that some of them, such as ADD-GPUCB [START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF] and DEC-HBO [START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF], can be used in a decentralized context.

The DuMBO (Decentralized Message-passing Bayesian Optimization) Algorithm

In this chapter, we propose DuMBO, a decomposing BO algorithm. To better appreciate how DuMBO differentiates from other decomposing BO algorithms, let us discuss about one particular challenge within the decomposing BO community. The decomposing algorithms [START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF][START_REF] Wang | Max-value entropy search for efficient Bayesian optimization[END_REF][START_REF] Mutny | Efficient high dimensional bayesian optimization with additivity and quadrature fourier features[END_REF][START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF] are all based on the assumption that the inferred additive decomposition of f has a low MFS. As an example, ADD-GPUCB [START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF] and QFF [START_REF] Mutny | Efficient high dimensional bayesian optimization with additivity and quadrature fourier features[END_REF] require the simplest form of additive decompositions ( d = 1). As stated before, this may lead to the optimization of a coarse approximation of f . In return, they are systematically able, at each time step t, to query arg max φ t in a reasonable amount of time thanks to a global optimization algorithm. From this, a methodological question arises: is it better (i) to systematically query x t = arg max φ t , with φ t an acquisition function built from a simple (and often inexact) decomposition of f , or (ii) to find the query x t using an acquisition function φ t built from an exact, more complex decomposition of f by giving up on the guarantee of finding the global maximum of φ t ?

Case (i) has been extensively studied [START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF][START_REF] Wang | Max-value entropy search for efficient Bayesian optimization[END_REF][START_REF] Mutny | Efficient high dimensional bayesian optimization with additivity and quadrature fourier features[END_REF], but it seems that only [START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF] has taken a few steps in the direction of case (ii). In fact, DEC-HBO tolerates more complex additive decompositions ( d = 3), but is no longer guaranteed to query arg max φ t (because it uses a variant of the max-sum algorithm [START_REF] Rogers | Bounded approximate decentralised coordination via the max-sum algorithm[END_REF] that requires f to have a sparse additive decomposition to converge). Table 6.1 gathers the main difference between the state-of-the-art of decomposing algorithms, and the proposed DuMBO algorithm. Observe that, overall, DuMBO is the only algorithm that exploits weaker guarantees on the maximization of φ t to lower its computational complexity. This allows DuMBO to relax the restrictive MFS assumption and hence, to handle decompositions with an arbitrary MFS without the need to approximate them with a simpler one. 

problem formulation

We now introduce the core assumptions about the black-box objective function f : C → R to obtain an additive decomposition (Section 6.3.1), along with an introductory example to ease exposition. Next, we exploit these assumptions to derive inference formulas (Section 6.3.2) and to adapt GP-UCB to a decentralized context (Section 6.3.3).

Core Assumptions

In order to optimize f in a decentralized fashion, we make several assumptions.

Assumption 6.1. The unknown objective function f can be decomposed into a sum of factor functions f (i)

i∈ [1,n] , with domains

C (i) i∈[1,n]
, such

that C = ∪ n i=1 C (i) and f = n i=1 f (i) . (6.1)
Any decomposition, including (6.1), can be represented by a factor graph where each factor and variable node denote, respectively, one of the n factors of the decomposition and one of the d input components of f . There is an edge between a factor node i and a variable node j if and only if f (i) uses x j as an input component. We use V i , 1 ≤ i ≤ n, and F j , 1 ≤ j ≤ d, to denote respectively the set of variable nodes connected to factor node i and the set of factor nodes connected to variable node j. Example. An introductory example is shown in Figure 6.1, where V-sets and F-sets can be easily inferred. For instance, V 1 = {1, 3} since f (1) uses x 1 and x 3 whereas F 1 = {1, 4} since x 1 is used by f (1) and f (4) . As a sanity check, you can verify that this decomposition has an MFS d = 2.

To make predictions about the factor functions without any prior knowledge, we need a model that maps the previously collected inputs with their noisy outputs. Denoting x V i = (x j ) j∈V i , let us intro- duce the following assumption. Assumption 6.2. Factor functions f (i) are independent GP µ

(i) 0 , k (i) x V i , x ′ V i
, with prior mean µ (i) 0 = 0 and covariance function k (i) .

Since f is a sum of independent GPs, Assumption 6.2 implies that f is also GP (µ 0 , k(x, x ′ )) with prior mean µ 0 = 0 and covariance function k(x,

x ′ ) = n i=1 k (i) x V i , x ′ V i .

Inference Formulas

For any x ∈ C and given the previous

t input queries X = (x 1 , • • • , x t ), the vector (f (x), f (x 1 ), • • • , f (x t
)) is Gaussian. Given the t-dimensional vector of noisy outputs y = (y 1 , • • • , y t ) ⊤ , with y i = f (x i ) + ϵ and ϵ a centered Gaussian variable, the posterior distribution of the factor f (i) (x) is also Gaussian. Since f can be decomposed, the posterior mean µ

(i) t+1 (x V i ) and variance (σ (i) t+1 (x V i ))
2 of the factor f (i) at time t + 1 can be expressed with the posterior means and covariance functions of the factor functions involved in decomposition (6.1). Proposition 6.1. Let µ 2 be the posterior mean and variance of f (i) at input x V i . Then, for the decomposition (6.1),

(i) t+1 (x V i ) and (σ (i) t+1 (x V i ))
µ (i) t+1 (x V i ) = k (i)⊤ x V i K -1 y (6.2) (σ (i) t+1 (x V i )) 2 = k (i) (x V i , x V i ) -k (i)⊤ x V i K -1 k (i) x V i (6.3) with t × 1 vectors k (i) x V i = (k (i) (x V i , x j V i )) j∈[1,t] and t × t matrices K = (k(x j V i , x k V i )) j,k∈[1,t] .
For the sake of generality, Proposition 6.1 only requires an additive decomposition of f . Note that Proposition 6.1 does not assume that a corresponding additive decomposition of the observed outputs in y is available. However, note that, in a significant portion of real-world applications (e.g. network throughput maximization [START_REF] Bardou | INSPIRE: Distributed Bayesian Optimization for ImproviNg SPatIal REuse in Dense WLANs[END_REF], energy consumption minimization [START_REF] Bourdeau | Modeling and forecasting building energy consumption: A review of data-driven techniques[END_REF] or UAVs-related applications [START_REF] Xie | Throughput maximization for UAV-enabled wireless powered communication networks[END_REF]), a natural output decomposition is observable. As demonstrated by [START_REF] Wang | Improving GP-UCB algorithm by harnessing decomposed feedback[END_REF], having access to a decomposed output can only improve the predictive performance of the GP surrogate model. Therefore, we now derive the inference formulas when the output decomposition is known.

Observing the output decomposition of f means that f is now a function R d → R n , with n the number of factors in its additive decomposition. At a time t, a BO algorithm no longer has access to a t-dimensional output vector y but at a t × n matrix Y . Note that y and Y are connected through the relation Y 1 = y, with 1 the ndimensional vector of ones.

Having access to the matrix Y allows to train n different GPs instead of a single one with an additive kernel [START_REF] David K Duvenaud | Additive gaussian processes[END_REF], so that the ith [START_REF] David K Duvenaud | Additive gaussian processes[END_REF] Duvenaud et al.

(2011), "Additive gaussian processes" GP 0,

k (i) x V i , x ′ V i
serves as a surrogate model only for the ith factor of the decomposition of f . To condition the ith GP, we consider the data set S i =

x j V i , Y j,i j∈ [1,t] . Given S i , the posterior mean µ (i) t+1

and the posterior variance σ

(i) t+1 2
formulas are simple instances of the conditioned Gaussian distribution formulas, with

µ (i) t+1 (x) = k (i)⊤ x V i K -1 (i) Y :i , (6.4) 
σ (i) t+1 (x) 2 = k (i) (x V i , x V i ) -k (i)⊤ x V i K -1 (i) k (i) x V i , (6.5) 
with Y :i the ith column of Y , t × 1 vectors k (i) [1,t] . Note that (6.4) and (6.5) mainly differ from (6.2) and ( 6.3) by their ability to exploit the inverse of the Gram matrix K -1 (i) built only from the ith covariance function k (i) , and of course, the outputs of the ith factor of the decomposition Y :i . The impact of having access to the decomposed output of f is explored in Section 6.5.

x V i = (k (i) (x V i , x j V i )) j∈[1,t] and t × t matrices K (i) = (k (i) (x j V i , x k V i )) j,k∈

Improved Acquisition Function

Having defined a surrogate model for f , we can now turn to finding an optimal policy for querying the objective function. In this section, we exploit the decomposition of f to build an acquisition function for our BO algorithm that approximates GP-UCB in a decentralized context. Proofs for all the presented results can be found in Appendix D.

Recall that GP-UCB is defined by (2.12) as the sum of an exploitation term µ t (x) and an exploration term σ t (x) weighted by some scalar β 1/2 t . Finding an additive decomposition for GP-UCB is hard because σ t (x) cannot be expressed as a sum. To circumvent this caveat, [START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF] proposed to apply GP-UCB to each factor of the additive decomposition of f , with φ

(i) t = µ (i) t + β 1/2 t σ (i)
t . Then, they proved that their algorithm ADD-GPUCB offers no-regret performance by considering n i=1 φ

(i) t = µ t + β 1/2 t n i=1 σ (i) t
as an acquisition function. Although the exploitation term µ t is preserved, the exploration term is now overweighted since n i=1 σ

(i) t ≥ n i=1 σ (i) t 2 = σ t .
To reach better empirical performance, one could look for a tighter additive upper bound of σ 2 t . This is the purpose of this section. We start by decomposing the variance of the ith factor function (σ (i) t (x)) 2 into two terms. Epistemic vs. aleatoric uncertainty. The variance (σ (i) t (x)) 2 of the random variable f (i) (x) is composed of two fundamentally different terms. The epistemic uncertainty refers to the uncertainty caused by having an undersampled dataset, with not enough data points to accurately estimate the value of f (i) (x). In contrast, the aleatoric uncertainty, also called the observational noise, can intuitively be seen as the intrinsic noise of f (i) (x) due, for instance, to a poor measurement quality. For more details, refer to [START_REF] Hüllermeier | Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods[END_REF]. 

-≥ 0 be the aleatoric uncertainty of the factor function f (i) , which can be seen as a lower bound of the posterior variance of 2 . We argue that a better approximation of the exploration term can be proposed if the posterior variance of the GP is assumed to be bounded. Assumption 6.3. ∀t ∈ N, the posterior variance of the objective func-

f (i) , that is ∀x ∈ C (i) , ∀t ∈ N, v (i) -≤ (σ (i) t (x))
tion f , σ 2 t (x) = n i=1 σ (i) t (x V i ) 2 satisfies σ 2 t (x) ≤ v + , with v + = √ v -+ 2δ - 2 , v -= n i=1 v (i) -and δ 2 -= n i=1 n j=1 j̸ =i v (i) -v (j) 
-.

Note that the restrictiveness of Assumption 6.3 fades as the number n of factors grows.

Example. Consider the case where all the n factor functions f (i) have the same aleatoric uncertainty v 0 . We have

v -= nv 0 , δ 2 -= n(n -1)v 0 and v + = nv 0 (1 + 2 √ n -1) 2 . Thus, the ratio v + /v -= (1 + 2 √
n -1) 2 increases as n grows, which suggests that Assumption 6.3 is more easily verified when n is large. Note that v + /v -can be quite large for reasonable values of n. Considering the decomposition in Figure 6.1 with n = 4, v + /v -≈ 20. In this particular context where we consider an additive decomposition of f composed of 4 factors with the same aleatoric uncertainty v 0 , Assumption 6.3 holds for any objective function whose posterior variance is less than 20 times its aleatoric uncertainty.

Under Assumption 6.3, we propose to bound from above the exploration term with the following proposition. Proposition 6.2. Under Assumption 6.3,

a n i=1 σ (i) t 2 + 1 4a (6.6)
is the the tightest linear upper bound of the exploration term σ t in the least squares sense, where a is the single positive real root of the quartic polynomial

P (a) = 2 u 3 v+ v - 3 a 4 - 4 u 5 2 v+ v - 5 a 3 + u 3 2 v+ v - 3 a - [u] v+ v - 8 , (6.7 
)

and [h(u)] v+ v -= h(v + ) -h(v -).
We show that (6.6) is a tighter upper bound of σ t (x) than the one proposed in [START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF][START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF]. Theorem 6.1. Let Assumptions 6.1, 6.2, 6.3 hold. Then the following inequality holds for all x ∈ C

a n i=1 σ (i) t (x V i ) 2 + 1 4a ≤ n i=1 σ (i) t (x V i ). (6.8) 
Therefore, we propose an acquisition function φ t = n i=1 φ (i)

t corresponding to the described additive decomposition (6.1) with

φ (i) t (x V i ) = µ (i) t (x V i ) + aβ 1 2 t σ (i) t (x V i ) 2 (6.9)

dumbo

In this section, we describe DuMBO, a BO algorithm that exploits the results from Section 6.3 to find arg max x∈C

n i=1 φ (i) t (x V i ), which is equal to arg max x∈C µ t (x) + β 1/2 t aσ 2 
t (x) + 1/4a since both expressions differ only by a constant term. We start by explaining how DuMBO infers an additive decomposition of the objective function f from observed data (Section 6.4.1). Then, we formulate how we maximize φ t in a decentralized fashion (Section 6.4.2). After that, we describe the DuMBO algorithm and we discuss its computational complexity (Section 6.4.3). Next, we provide an early-stopped version of DuMBO and discuss the weaker guarantees achieved in this case (Section 6.4.4). Finally, we prove the asymptotic optimality of DuMBO (Section 6.4.5).

Additive Decomposition Inference

Assumption 6.1 requires an additive decomposition of the objective function f . However, if the decomposition is not provided by the user, it must be inferred from observed data. In this section, we describe how such a decomposition can be inferred from data [START_REF] Gardner | Discovering and exploiting additive structure for Bayesian optimization[END_REF][START_REF] Wang | Batched high-dimensional Bayesian optimization via structural kernel learning[END_REF]. We adopt the method proposed by [START_REF] Gardner | Discovering and exploiting additive structure for Bayesian optimization[END_REF], as in Appendix B of [START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF].

As in [START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF], let us associate each candidate additive decomposition A (represented by its factor graph, see Figure 6.1 for an illustration) with the kernel of an additive GP [START_REF] David K Duvenaud | Additive gaussian processes[END_REF]. Given k candidates A 1 , • • • , A k , we reformulate the acquisition function φ t as a weighted average with respect to the posterior of each candidate given the dataset D = {(x i , y i )} i∈ [1,t] composed of the selected input queries and their observed noisy outputs, that is

φ t (x) = k i=1 p(A i |D)φ A i t (x) (6.10) = k i=1 p(A i |D) |A i | j=1 φ (j) t (x V j ) (6.11) ≈ 1 k k i=1 |A i | j=1 φ (j) t (x V j ), (6.12) 
with φ A i t our proposed acquisition function given the additive decomposition A i , φ (j) t given by (6.9), (6.11) following from (6.10) since the additive decomposition A i also provides an additive decomposition of our proposed acquisition function, and (6.12) an approximation of (6.11) as proposed by [START_REF] Gardner | Discovering and exploiting additive structure for Bayesian optimization[END_REF].

As for the candidates A 1 , • • • , A k , they are sampled by Monte-Carlo Markov Chain (MCMC) with the Metropolis-Hastings algorithm [START_REF] Robert | Metropolis-hastings algorithms[END_REF]. Starting from the fully dependent decomposition A 0 = {{1, • • • , d}} at t = 0. When the decomposition is unknown, at each time step t, k promising decompositions are sampled by MCMC starting from the last sampled decomposition at time step t -1. We briefly detail below how a new additive decomposition A i+1 is sampled from an additive decomposition A i . A thorough description of this process can be found in [START_REF] Gardner | Discovering and exploiting additive structure for Bayesian optimization[END_REF].

To generate A i+1 , we sample an alternative additive decomposition A ′ from a proposal distribution g (A ′ |A i ) (see Figure 1 in [134]). To do so, one of two operations on A i is chosen randomly. The Merge operation chooses randomly two factors in the decomposition A i and merge them together, while the Split operation chooses a factor and split it in two. Either Merge or Split is applied to generate another configuration A ′ . Then, the model evidence p(y|X, A ′ ) is computed. Finally, we consider the acceptance probability P(A ′ |A i ) of the Metropolis-Hastings algorithm, that is

P(A ′ |A i ) = min 1, p(y|X, A ′ )g(A ′ |A i ) p(y|X, A i )g(A i |A ′ ) . ( 6 

.13)

Then, A i+1 = A ′ with probability P(A ′ |A i ) and A i+1 = A i with probability 1 -P(A ′ |A i ).

Note that the computational overhead of sampling k alternative additive decomposition of f is in O kt 3 with a dataset D of t data points, since each sampled additive decomposition requires the Maximum Likelihood Estimation (MLE) of the likelihood p(y|X, A), which involves inverting a t × t matrix (see [START_REF] Christopher | Gaussian Processes for Regression[END_REF]). Once A 1 , • • • , A k are sampled, (6.12) is maximized by our decentralized algorithm to find the input x to query.

ADMM Formulation

Optimizing φ t (x) = n i=1 φ (i)

t (x V i ) while ensuring the compatibility between shared input components amounts to solving the following constrained optimization problem:

maximize {x (i) } n i=1 n i=1 φ (i) t
x (i) such that x (i)

V i ∩V j = x (j) V i ∩V j , ∀i, j ∈ [1, n] (6.14) with x (1) , • • • , x (n) inputs with dimension indices respectively listed in V 1 , • • • , V n of the factor functions φ (1) t , • • • , φ (n) 
t . To simplify the constraints (6.14), we introduce a global consensus variable x ∈ C and we reformulate the optimization problem as

maximize {x (i) } n i=1 n i=1 φ (i) t x (i) such that x (i) = xV i , ∀i ∈ [1, n] .
(6.15)

We now turn the problem (6.15) into an unconstrained optimization problem by considering its augmented Lagrangian L η (x (1) , • • • , x (n) , x, λ):

L η = n i=1 φ (i) t (x (i) ) -λ (i)⊤ (x (i) -xV i ) - η 2 ||x (i) -xV i || 2 2 (6.16) with λ (i) 
k a column vector of dual variables with |V i | components and a hyperparameter η > 0 that controls the influence of the secondorder penalty ||x (i) -xV i || 2 2 on the augmented Lagrangian. To properly choose a value for η, we refer the interested reader to [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. To maximize (6.16), we consider the Alternating Directions Method of Multipliers (ADMM), proposed by [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite element approximation[END_REF]. We now describe how we [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite element approximation[END_REF] [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite element approximation[END_REF], "A dual algorithm for the solution of nonlinear variational problems via finite element approximation" apply ADMM to our problem and present some relevant well-known results. For further details, please refer to [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF].

ADMM is an iterative method that proposes, at iteration k, to solve sequentially the problems

x (1) k+1 = arg max x (1)
L η (x (1) ,

• • • , x (n) k , xk , λ k ) . . . x (n) k+1 = arg max x (n) L η (x (1) k+1 , • • • , x (n-1) k+1 , x (n) , xk , λ k ) xk+1 = arg max x L η (x (1) k+1 , • • • , x (n) k+1 , x, λ k ) (6.17) λ k+1 = arg max λ L η (x (1) k+1 , • • • , x (n) 
k+1 , xk+1 , λ). (6.18)

Note that x

(1)

k+1 , • • • , x (n) 
k+1 can be found concurrently, by gradient ascent (e.g. with ADAM [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF]) of [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] 

L (i) η = φ (i) t (x (i) ) -λ (i)⊤ (x (i) -xV i ) - η 2 ||x (i) -xV i || 2 2 . (6.19)
If the choice of λ 0 verifies ∀i ∈ [1, n], j∈F i λ (j) 0,i = 0, it is known (see [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]) that the closed-forms for (6.17) and (6.18) 

are xk+1 =   1 |F i | j∈F i x (j) k+1,i   i∈[1,d] (6.20 
) perform parallel constrained tensor factorization and as a splitting method for orthogonality constrained problems, respectively. It has also been used as a way to compute sparse representations in [START_REF] Chartrand | A nonconvex ADMM algorithm for group sparsity with sparse groups[END_REF]. This success in solving nonconvex optimization tasks has been explained by recent works such as [START_REF] Wang | Global convergence of ADMM in nonconvex nonsmooth optimization[END_REF], which extended the maximiza- tion guarantees of ADMM to the class of restricted prox-regular functions. Definition 6.1 (restricted prox-regularity, see [START_REF] Wang | Global convergence of ADMM in nonconvex nonsmooth optimization[END_REF]). For a lower semicontinuous function f , let M ∈ R + , f : R n → R ∪ {+∞} and ∂f the set of general subgradients of f . Define the exclusion set

λ k+1 = λ (i) k + η x (i) k+1 -xk+1,V i i∈[1,n] . ( 6 
S M = {x ∈ dom(f ) : ||d|| > M for all d ∈ ∂f (x)} .
f is called restricted prox-regular if, for any M > 0 and bounded set T ⊆ dom(f ), there exists γ > 0 such that

f (y) + γ 2 ||x -y|| 2 ≥ f (x) + d(y -x), (6.22 
)

∀x ∈ T \ S M , y ∈ T , d ∈ ∂f (x), ||d|| ≤ M .
Note that the class of restricted prox-regular functions includes some non-convex, non-smooth functions.

Algorithm and Complexity

The formulation in the previous section is the foundation of a fully decentralized message-passing algorithm, called DuMBO, that can Algorithm 6.1 DuMBO Input: factor graph of the acquisition function φ t , η > 0.

1: t = 0 2: while true do Observe y t+1 = f ( xk )

22:

Update the surrogate model GP with ( xk , y t+1 ) 23: t = t + 1 24: end while run on the factor graph of f . It is described in details in this section, followed by a short discussion about its computational complexity. Algorithm 6.1 describes the DuMBO algorithm. At each step of the external optimization loop (lines 2-24), ADMM maximizes the acquisition function φ t with the internal optimization loop (lines 5-20). Each factor node and each associated variable node communicate back and forth at lines 13 and 17, until some stopping criterion for the convergence of ADMM is satisfied. Note that DuMBO is decentralized, since loops at lines 6 and 15 are run concurrently.

We now provide a time complexity analysis for DuMBO. The analysis assumes that a gradient ascent performs O ξ -1 steps for a desired accuracy ξ [START_REF] Xie | Linear convergence of adaptive stochastic gradient descent[END_REF] and ADMM converges in at most N A steps. We also denote d (i) the factor size of the ith factor in the decomposition, used by the local acquisition function φ (i) t . Note that, within the factor graph of φ t , n factor nodes and d variable nodes are working concurrently to run ADMM in a decentralized fashion. We discuss the time complexities for the two types of node (note that the costs of the com-munication between factor and variable nodes have been neglected for the clarity of the analysis).

Factor node. For a factor node i, it is known that, at iteration t, the time complexity of the inference with a GP is O t 3 d (i) , since the number of previous observations is t. Thus, the time complexity of evaluating (6.19) is O t 3 d (i) . Since it is required O ξ -1 times by the gradient ascent, the time complexity of finding x (i)

k+1 is O ξ -1 t 3 d (i) m .
A factor node also needs to compute λ (i) k+1 , which is O d (i) . Since the factor node is called at least once and at most N A times for ADMM to converge, its time complexity is O d (i) ξ -1 t 3 N A .

Variable node. A variable node j is simply in charge of collecting messages from |F j | factor nodes, and to aggregate them into xk+1,j by averaging. Its time complexity is therefore O (|F j |).

Early-stopped Version

Although DuMBO has a competitive time complexity (see Table 6.1), we now discuss how to properly early-stop it and still get (weaker) guarantees on the maximization of φ t before ADMM converges. This can be of critical importance for some real-world applications. Note that the proofs for the results in this section can be found in Appendix E. We start with the following assumption. Assumption 6.4. For all i ∈ [1, n], the covariance function k (i) from Assumption 6.2 is Lipschitz continuous, with Lipschitz constant L k (i) . Assumption 6.4 holds for a large class of covariance functions, such as Matérn (see 4.3) or the squared exponential (equivalent to a Matérn kernel when ν → +∞). For such covariance functions, we have the following result. Proposition 6.3. Let Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Then, φ

(i) t is Lipschitz continuous, with Lipschitz constant L φ (i) t = tL k (i) ρ K -1 M (i) t (6.23) with M (i) t = max |y + t -2aβ 1/2 t v (i) -|, |y - t -2aβ 1/2 t v (i) + | , y + t = max k∈[1,t] y k , y - t = min k∈[1,t] y k and ρ K -1 the spectral radius of K -1 .
Thanks to the Lipschitz continuity of the acquisition function, we have the following result.

Theorem 6.2. ∀i ∈ [1, n], let x (i) k+1 = arg max x L (i) η (x), with L (i) η defined in (6.19). Then x =   1 i∈F j L(φ (i) t ) i∈F j L(φ (i) t )x (j) k+1,i   j∈[1,d] (6.24)
is optimal in the minimax sense.

Intuitively, Theorem 6.2 proves that a tight upper bound for | n i=1 φ

(i) t (x * ) - n i=1 φ (i)
t ( x)| (with x * the optimal solution) exists, and that (6.24) minimizes this upper bound. In addition, if not enough information or computing capacity is available to compute L(φ (j) t ), (6.20) can be used instead of (6.24) to early-stop DuMBO (see Appendix E for a proof of this result).

Observe that Theorem 6.2 provides a way to aggregate the set of recommended values for the jth input (that is, x (j) k+1,i i∈F j

) without waiting for ADMM to converge. Although x is not guaranteed to be the maximizer of φ t (x), it is nonetheless a minimax optimal of φ t (x). Computing x after a few ADMM iterations instead of waiting for ADMM to converge could be a great trade-off between maximizing φ t (x) and the computational overhead brought by ADMM.

Asymptotic Optimality

In this section, we provide a regret bound for DuMBO and the theoretical results needed to assess its asymptotic optimality, assuming the convergence of ADMM.

Assumption 6.5. The acquisition function φ t is restricted prox-regular (see Definition 6.1).

We start by providing an upper bound on its immediate regret r t = f (x * ) -f (x t ), with x t = arg max x∈C φ t (x) for a finite, discrete domain C. Its proof can be found in Appendix F.

Theorem 6.3. Let r t = f (x * ) -f (x t ) denote the immediate regret of DuMBO. Let δ ∈ (0, 1) and β t = 2 log |C|π 2 t 2 6δ
. Then ∀t ∈ N we have

r t ≤ 2β 1 2 t a n i=1 σ (i) t (x t ) 2 + 1 4a (6.25)
with probability at least 1 -δ.

We demonstrate the asymptotic optimality of DuMBO by piggybacking on the asymptotic optimality of DEC-HBO [START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF]. This is a decomposing BO algorithm with an immediate regret bound of [START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF]). Interestingly, Theorem 6.1 directly implies that the immediate regret bound (6.25) is lower than the immediate regret bound of DEC-HBO. As a consequence, the immediate regret of DuMBO is bounded with the regret bound of DEC-HBO. This allows us to rely on proofs in [START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF] to demonstrate some properties of DuMBO. In particular, DEC-HBO is provably asymptotically optimal whether the domain C is discrete or continuous (see Theorems 2 and 3 in [START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF]). These results directly apply to DuMBO and imply the following corollary. Corollary 6.1. Let δ ∈ (0, 1) and R t = t k=1 r k denote the cumulative regret of DuMBO. Then there exists a monotonically increasing sequence of {β t } t such that β t ∈ O(log t) and lim t→+∞ R t /t = 0 with probability at least 1 -δ. Corollary 6.1 states that DuMBO is asymptotically optimal, as defined by Definition 1.3.

2β 1/2 t n i=1 σ (i) t (x t ) (see Theorem 1 in

numerical results

In this section, we detail the experiments carried out to evaluate the empirical performance of DuMBO. Our benchmark comprises four synthetic functions (Section 6.5.1) and three real-world applications (Section 6.5.2). We consider two state-of-the-art decomposing BO algorithms: ADD-GPUCB [START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF] that assumes that d = 1 and DEC-HBO [START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF] that assumes that d ≤ 3. We also consider two recent stateof-the-art BO algorithms that do not assume an additive decomposition of the objective function: TuRBO [START_REF] Eriksson | Scalable global optimization via local bayesian optimization[END_REF] and SAASBO [START_REF] Eriksson | High-dimensional Bayesian optimization with sparse axis-aligned subspaces[END_REF]. We compare these solutions with two versions of the proposed algorithm: DuMBO that must systematically infer the additive decomposition of f (see Section 6.4.1) and ADD-DuMBO that, conversely, can observe the decomposition of f if it exists (see (6.4) and (6.5) in Section 6.3.2). Note that, in Section 6.5.3, we also evaluate ES-DuMBO and ES-ADD-DuMBO, the early-stopped versions (see Section 6.4.4) of DuMBO and ADD-DuMBO respectively. Finally, the wall-clock times of all the described BO algorithms are provided in Section 6.5.4.

Since BO is often used in the optimization of expensive black-box functions, we are interested in the ability to obtain good performance in a small number of iterations. Therefore, in every experiment, all the BO algorithms are given 110 iterations to optimize f . Each experiment is repeated 5 independent times. Table 6.2 gathers the averaged results that were obtained. Note that, for each experiment, a BO algorithm is considered as one of the best performing algorithms if its average performance lies within the confidence interval of the best performing solution. 

Synthetic Functions

In this section, we compare the BO algorithms mentioned above (excluding the early-stopped versions for the sake of clarity) using four synthetic functions: the 2d Six-Hump Camel (SHC), the 6d Hartmann, the 24d Powell and the 100d Rastrigin. These functions are described in details in Appendix G. Figure 6.2 reports the performance of the solutions on the synthetic functions with their minimal regrets. Observe that, in the specific example of the SHC function (Figure 6.2a), DEC-HBO obtains the best performance. This is due to the relative simplicity of SHC. In fact, the SHC function satisfies all the assumptions made by DEC-HBO: a MFS lower than 3 and a sparse factor graph. In this case, the variant of the max-sum algorithm used by DEC-HBO is guaranteed to query arg max φ t at each time step t. Since DuMBO does not offer global maximization guarantees in that case, it is outperformed by DEC-HBO. Still, note that it exhibits competitive performance when compared to the other BO algorithms.

As for the Hartmann, Powell and Rastrigin functions (Figures 6.2b, 6.2c and 6.2d respectively) they exhibit similar dynamics. Observe that the two decomposing algorithms, ADD-GPUCB and DEC-HBO, obtain poor minimal regrets (note that they were not evaluated on the Rastrigin function since they did not finish a single execution in 24 hours). This is because they infer an additive decomposition of f based on the assumption that d ≤ 3 when actually d > 3. Conversely, DuMBO, which does not make any restrictive assumption on d, manages to quickly achieve a low regret by inferring an efficient additive decomposition of f . Observe that DuMBO also outperforms SAASBO and TuRBO on all three synthetic functions. Finally, the three Figures 6.2b, 6.2c and 6.2d show that, when given access to the true additive decomposition of f , ADD-DuMBO achieves its lowest regret in a lower number of iterations. Overall, note that, among all the BO algorithms tested in the experiments, the two versions of DuMBO are the only ones able to properly infer and/or exploit the additive decomposition of f when it has a large MFS.

Real-World Experiments

We now evaluate DuMBO on three real-world problems, described in details in Appendix G: (a) fine-tuning some cosmological constants to maximize the likelihood of observed astronomical data, (b) con-trolling the power of devices in a WLAN to maximize its Shannon capacity [START_REF] Jhb Kemperman | On the Shannon capacity of an arbitrary channel[END_REF] and (c) planning the least costly trajectory to a provided destination for a rover on a rough terrain. Note that the problem (b) is similar to the problem addressed in Chapters 3 and 4, except that only the transmission power of each Access Point (AP) is tuned. Figure 6.3 depicts the performance of the considered BO algorithms. Figure 6.3b shows that DuMBO obtains competitive performance against other state-of-the-art BO algorithms. On this problem as well, the performance of ADD-DuMBO demonstrate that having access and being able to handle additive decompositions with large MFS is a significant advantage. As a matter of fact, it allows to outperform other BO algorithms unable to exploit this additional information. Finally, Figures 6.3a and 6.3c exhibit patterns similar to those already identified in Figure 6.2: ADD-GPUCB and DEC-HBO fail to infer an adequate additive decomposition because of the restrictive MFS assumption. Conversely, DuMBO, which does not make such an assumption on the size of the MFS, demonstrates its competitiveness by achieving the best performance along with TuRBO. Note that ADD-DuMBO is not evaluated on problems (a) and (c) since the objective functions cannot be decomposed.

Performance of the Early-Stopped Versions

In this section, we evaluate the performance of ES-DuMBO and ES-ADD-DuMBO, the early-stopped versions of DuMBO and ADD-DuMBO, respectively. Recall that the early-stopping procedure and guarantees are described in Section 6.4.4. The solutions are early-stopped at the end of the very first ADMM iteration. For the sake of readability, we only depict the performance of the additive algorithms (ADD-GPUCB, DEC-HBO, DuMBO and ADD-DuMBO) to compare with the early-stopped versions. Figure 6.4 depicts the performance of the early-stopped versions on the synthetic functions described in Appendix G. Except for the SHC function (Figure 6.4a), the same dynamic can be observed. The earlystopped versions ES-DuMBO and ES-ADD-DuMBO obtain slightly worse performance than their counterparts DuMBO and ADD-DuMBO. However, they remain very competitive, as they outperform the stateof-the-art decomposing BO algorithms in 3 out of 4 synthetic experiments. Regarding the SHC function, the early-stopped versions achieve better performance than their counterparts. ES-DuMBO even achieves similar performance than DEC-HBO. As a future work, we plan to conceptually better understand this observation. Figure 6.5 depicts the performance of the early-stopped versions on the real-world problems considered in Appendix G. The three experiments are in agreement with the results observed for the synthetic functions in Figure 6.4. ES-DuMBO and ES-ADD-DuMBO perform slightly worse than their counterparts, but they remain very competitive as they outperform DEC-HBO in all three experiments, and ADD-GPUCB on the rover trajectory planning problem (Figure 6.5c). In the two remaining problems (Figures 6.5a, 6.5b), the early-stopped versions achieve better (or equivalent) performance than ADD-GPUCB. These result demonstrate that, although the early-stopped version of DuMBO provides only minimax guarantees on the maximization of φ t , its excellent empirical performance make it a very interesting solution. This is especially true for technological contexts that cannot afford high computing capabilities, as we discuss in the next section.

Wall-Clock Time

In this section, we provide wall-clock time measurements (excluding the evaluation time of the objective function) of the described BO algorithms on a synthetic function (24d Powell) and a real-world problem (WLAN) described in Appendix G. The measurements were taken using a server equipped with two Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, with 14 cores (28 threads) each. Figure 6.6 gathers the wall-clock time measurements. Observe that DuMBO does not only offer very competitive performance, it also exhibits a lower overhead when compared to the other decomposing algorithms (DEC-HBO and ADD-GPUCB). However, SAASBO and TuRBO manage to get lower runtimes than DuMBO. This is not surprising since, by design, these methods have minimal overheads, at the expense of any theoretical guarantees.

Nevertheless, observe that the early-stopped version of DuMBO, ES-DuMBO, also reaches very good performance, with a significantly reduced response time. With ADD-DuMBO, observe that having access to the true additive decomposition of the function also reduces the overhead of the solution, since the decomposition does not need to be inferred anymore. Finally, observe that ES-ADD-DuMBO, the early-stopped version of DuMBO when the additive decomposition is provided, obtains similar results as TuRBO and SAASBO, with only a slightly larger runtime, especially on the Powell synthetic function (Figure 6.6a). Therefore, we argue that DuMBO, due to its excellent empirical performance and its satisfying runtime (thanks to its capacity to be early-stopped) is a competitive solution even in critical applications where the response time needs to be low.

summary and limitations

In this chapter, we investigated the benefits of relaxing the restrictive assumptions of low-MFS additive decomposition that limit the applicability domain of state-of-the-art decomposing BO algorithms. As illustrated by Table 6.1, we chose to optimize our acquisition function with algorithms that scale well with the number of dimensions. This enables us to exploit, when available, the true (and potentially complex) additive decomposition of the objective function f instead of approximating it with a simple decomposition. To illustrate the effectiveness of such design choices, we proposed DuMBO, an asymptotically optimal BO algorithm that optimizes f in a decentralized fashion, thanks to a tighter decentralized approximation of GP-UCB that requires less exploration than the previously proposed approximations. As demonstrated by Sections 6.4.5 and 6. as telecommunication networks [START_REF] Bardou | INSPIRE: Distributed Bayesian Optimization for ImproviNg SPatIal REuse in Dense WLANs[END_REF], UAVs [START_REF] Xie | Throughput maximization for UAV-enabled wireless powered communication networks[END_REF] or within a multirobots team [START_REF] Chen | Gaussian process-based decentralized data fusion and active sensing for mobilityon-demand system[END_REF].

[147] Chen et al. ( 2013), "Gaussian process-based decentralized data fusion and active sensing for mobility-on-demand system"

Although DuMBO has demonstrated good performance on hard problems, it still has some limitations: (i) Design: although it has a lower complexity than the other additive algorithms, its execution time is still significantly larger than those of algorithms that trade-off theoretical guarantees for low execution times, such as TuRBO [START_REF] Eriksson | Scalable global optimization via local bayesian optimization[END_REF] or SAASBO [START_REF] Eriksson | High-dimensional Bayesian optimization with sparse axis-aligned subspaces[END_REF].

(ii) Theoretical: although we showed that DuMBO has a lower immediate regret bound than DEC-HBO (Theorem 6.3), a lower cumulative regret bound remains to be found to theoretically assess its superiority over other algorithms.

(iii) Theoretical: since the convergence of ADMM is ensured when the acquisition function is restricted prox-regular, proving that our proposed acquisition function belongs to this class would increase the guarantees provided by DuMBO.

C O N C L U S I O N

thesis summary

Throughout this thesis, we investigated algorithms that allow the optimization of a black-box function, driven by the need of efficiently optimizing wireless networks. In particular, we put a strong focus on the optimization of the spatial reuse of the radio channel in a Wireless Local Area Network (WLAN).

In Chapter 2, we started by describing in details the existing approaches addressing the spatial reuse problem in WLANs through the control of the TX _ PWR and OBSS _ PD parameters (Section 2.1). We showed that trying to analytically model the throughput within a WLAN is a challenging approach that appears less suitable than datadriven solutions. Then, we discussed the black-box optimization algorithms that seem to represent a promising option to conceive novel efficient solutions to improve the spatial reuse of WLANs (Section 2.2). Multi-Armed Bandit (MAB) and Bayesian Optimization (BO) stand out as two well-suited frameworks able to provide optimality guarantees along with their generally excellent empirical performance.

Based on these observations, we proposed in Chapter 3 two centralized ad-hoc solutions to the spatial reuse problem in WLANs. Based on the MAB framework, they address the high-dimensionality of the input space C by subsampling it to build a reservoir of promising configurations. Concurrently, they use Thompson sampling to identify the best configuration in the reservoir. The two approaches mainly differ by their subsampling strategies. They are based on a Gaussian mixture and on a mixture of hyperspheres, respectively. Both rely on a regularity assumption of the objective function f . Although they show good empirical performance on complex scenarios, they do not provide theoretical guarantees regarding their convergence nor their optimality.

In Chapter 4, the BO framework was considered for the spatial reuse problem in WLANs. We proposed a decentralized solution, called IN-SPIRE. It exploits a natural additive decomposition of the objective function f to allow each Access Point (AP) to work and interact only with other APs in its communication range. To come to an agreement on which configuration to test in its neighborhood, each AP relies on a consensus function that we demonstrated optimal in the minimax sense. INSPIRE was tested on complex, realistic WLANs deployments and exhibited excellent empirical performance, significantly better than other state-of-the-art solutions.

With Chapter 5, we demonstrated that INSPIRE can also be successfully applied to other technological contexts. In fact, we used it to propose a decentralized solution to the power control of nextgeneration cellular networks. We demonstrated that the introduction of a new feature, called Non-Orthogonal Multiple Access (NOMA), can, if optimized properly, significantly increase the throughput of cellular networks and preserve their fairness towards end-users.

Finally, in Chapter 6, we directly addressed the no-regret BO of a noisy, black-box, high-dimensional function that is costly to evaluate. We proposed DuMBO, a decentralized no-regret BO algorithm that enables us to relax a restrictive assumption that limited the applicability domain of state-of-the-art, no-regret BO algorithms. Advantageously, DuMBO can be early-stopped whenever deemed necessary and still provide minimax optimal guarantee on the maximization of its acquisition function. Besides, we proposed an alternative approximation of the acquisition function GP-UCB in a decentralized context. It results in a lower immediate regret bound than the one obtained by using the current state-of-the-art decentralized approximation of GP-UCB. DuMBO was evaluated on difficult synthetic functions and real-world problems (including the throughput optimization in WLANs) and systematically demonstrated competitive performance against state-ofthe-art BO algorithms.

future works

In this section, we describe four research directions that could be natural extensions of this work.

Technological Applications

Although the performance of the solutions proposed in this thesis were illustrated through the spatial reuse optimization of WLANs, our solutions could be beneficial to many technological contexts. More precisely, INSPIRE, DuMBO or its early-stopped version could be very efficient at optimizing a black-box objective function in complex systems where little assumptions can be made. Furthermore, if the complex system provides access to a natural additive decomposition of the objective function, the performance gain is even larger, as demonstrated in Chapter 6.

As illustrated throughout this thesis, wireless networks constitute such complex systems wherein our solutions thrive, but other examples include multi-robots teams [START_REF] Chen | Gaussian process-based decentralized data fusion and active sensing for mobilityon-demand system[END_REF], UAVs fleets [START_REF] Xie | Throughput maximization for UAV-enabled wireless powered communication networks[END_REF], or energy consumption minimization in sustainable cities [START_REF] Bourdeau | Modeling and forecasting building energy consumption: A review of data-driven techniques[END_REF].

Dynamic Setting

In this thesis, the objective function f was considered static. However, many interesting problems, including the spatial reuse optimization in WLANs may be time-varying. Extending our solutions (and their theoretical guarantees) to the dynamic setting could be an impactful extension to this work. Note that these extensions could be inspired by the existing work on dynamic BO [START_REF] Favour | Bayesian optimization for dynamic problems[END_REF] and spatio-temporal Gaussian Process (GP) [START_REF] Hamelijnck | Spatio-temporal variational Gaussian processes[END_REF]. Optimizing a time-varying objective function f (x, t) is hard, as each query is now a point in space-time (x, t), with x ∈ C and t ∈ R + . This means that the BO algorithm would have to take into account its own response time, and to decide by itself the moment when a relevant input needs to be queried. Some approaches, such as [START_REF] Favour | Bayesian optimization for dynamic problems[END_REF], have already started to address this problem. Some questions also arise from the fact that time only goes forward. In fact, any observation becomes less and less relevant, as time goes by, for predicting the future values of f . How does this affect the cumulative regret of the BO algorithm? What is a relevant criterion to declare that an observation is outdated and should be removed from the dataset? This is a subset of questions that remain to be answered.

Multi-Objective Optimization

In this thesis, we systematically optimized scalar objective functions. For the most part of our contributions, these objective functions were scalarizations of an underlying multi-objective problem, consisting in jointly optimizing the throughput and the fairness of the wireless network. Although the empirical performance were satisfying, scalarizing a multi-objective problem often means to make enough arbitrary choices to simplify the optimization task.

Developing Black-Box Optimization (BBO) solutions able to address the true multi-objective optimization task in a constrained environment (e.g. distributed computing resources or low computing power...) would make a natural extension to this work, and an interesting solution for technological contexts such as wireless networks. Some approaches, such as [START_REF] Laumanns | Bayesian optimization algorithms for multi-objective optimization[END_REF][START_REF] Hernández-Lobato | Predictive entropy search for multi-objective bayesian optimization[END_REF][START_REF] Paria | A flexible framework for multi-objective bayesian optimization using random scalarizations[END_REF], already proposed to use BO for solving [START_REF] Laumanns | Bayesian optimization algorithms for multi-objective optimization[END_REF] multi-objective problems.

More General Processes

Although GPs demonstrate excellent empirical performance and theoretical guarantees when used as surrogate models, they require some prior knowledge about the function to optimize, embedded in the covariance function k. Another extension to this work would be to adapt our solutions to more general processes, that place a nonpara-metric prior on the GP covariance kernel function. To do so, existing works on Student-t processes [START_REF] Chris | Student processes[END_REF][START_REF] Shah | Student-t processes as alternatives to Gaussian processes[END_REF] and on the matrix-t distribu- tion [START_REF] Bm Golam | The matrix-t distribution and its applications in predictive inference[END_REF] could be used.

[155] Kibria (2006), "The matrix-t distribution and its applications in predictive inference"

In a more theoretical point of view, contributing to the understanding of these processes and deriving lower cumulative regret bounds for BO algorithms that use them as surrogate models would constitute a significant contribution to the BBO community.

personal statement

To conclude this thesis, I provide in this section a personal, subjective opinion about the motivations behind this work and the research directions that I deem beneficial for the computer networks community.

Over the course of my doctoral studies, I was increasingly interested in producing contributions that are supported with theoretical analysis. This was mainly due to a simple observation: the vast majority of the scientific contributions (that I encountered) addressing the spatial reuse optimization in 802.11 networks was almost exclusively supported by the good empirical performance of ad-hoc optimization algorithms that do not offer guarantees of any kind. Although some contributions consider optimization algorithms that initially offer interesting properties, their rough adaptations to the technological context resulted in exotic versions with uncharacterized behavior. These works often justify the absence of theoretical guarantees by the fact that they address hard optimization problems in complex systems, where very few assumptions on the objective function are allowed.

Throughout this thesis, I wanted to reconsider the notion of besteffort in telecommunication technologies to include, whenever possible, optimality guarantees. In my view, black-box optimization is a great tool to address hard optimization problems in complex systems without jeopardizing such guarantees. I hope that this thesis will help bridging the gap between the computer networks community and the black-box optimization community. I believe that the interaction between these two communities will produce exciting results allowing major performance gains for telecommunication technologies.

A P R O O F F O R T H E O P T I M A L I T Y O F T H E C O N S E N S U S F U N C T I O N O F I N S P I R E

In this appendix, we provide the proof for Theorem 4.1, which states that INSPIRE is minimax optimal.

Proof. Let x (i) be the prescription of Access Point (AP) i, with x (i) j the prescription of AP i for AP j and w ∈ [0, 1] n the weights of a convex combination (||w|| 1 = 1). Let f * = n i=1 f (i) (x (i) ). If x (i) = arg max x f (i) (x), then it follows that ∀ x ∈ C, f * -f ( x) ≥ 0. To find an optimal consensus x, this difference must be minimized.

If all the functions f (i) are Lipschitz-continuous with Lipschitz constants L i , we have There is no lower upper bound of f * -f (x) than Ψ(x), because we assume no information about f other than its Lipschitz-continuity (see Assumption 4.5). Therefore, observe that if the minimizer of Ψ(x) has a closed-form, it is the one of a minimax optimal. By rearranging the indices and splitting the absolute values we have It is immediate to see that (A.4) is piecewise linear and convex since it is a sum of absolute values (i.e. piecewise linear and convex functions). Furthermore, the set of nonlinearity points is necessarily

f * -f ( x) = n i=1 f (i) (x (i) ) - n i=1 f (i) ( xN i ) = n i=1 f (i) (x (i) ) -f (i) ( xN i ) ≤ n i=1 L i ||x (i) -xN i || 1 (A.
Ψ( x) =
P j,d = x (i) j,d i∈N j
. This directly implies that min x∈R + ψ j,d (x) ∈ P j,d . Therefore, we need to find k * = arg min k∈N j ψ j,d (x (k) j,d ). Without loss of generality, let us assume that P j,d is sorted, so that ∀k ∈ N j , ). It is trivial to see that Because each element in the vector x = ( xj,d ) d∈{1,2},j∈{1,n} is built to be the weighted median of the prescriptions for the value of x j,d , x is the weighted marginal median of the prescriptions. Eventually, since the weighted marginal median x of the prescriptions (see (4.10)) is indeed a minimum of Ψ(x), it is a minimax optimum for the objective function f .

d k = x (k+1) j,d -x (k) j,d  

B R A N D O M S L I C I N G O F A H I G H -D I M E N S I O N A L F U N C T I O N

We detail in this appendix how we build the random slices of the objective function depicted in Figure 4.5 of Chapter 4. For the sake of completeness, we also provide the numerical values of the unit vectors of our (randomly) selected bases.

For visualization purposes, we build a random vector basis in two dimensions. Considering the best configuration x * found by INSPIRE on a given topology, we uniformly draw two random configurations û, v ∈ C and use (x * , û, v) as a vector basis. By plotting the reward of each configuration attainable with this basis, 50 we obtain a 3d plot 50 That is, any valid configuration x that can be expressed as

x = x * + a û + b v, (a, b) ∈ R 2 .
representing a random slice of the considered objective function, with the best configuration found x * at the origin of the plot.

Details of the vector basis for the Wireless Local Area Network (WLAN) topology T1 (see Figure 4.2a) are as follows: For each cell, the ratio between the number of inner users and outer users is given.

• x * = (-
Figure C.1 depicts the throughput distribution within the cells in T1. Observe that since the inner users are closer to their Base Station (BS) and use the whole frequency band, they achieve a better Shannon capacity than the outer users. However, observe that as α increases, the throughput distribution shrinks to the left. This is due to the inner areas getting bigger and incorporating more users. In the meantime, the outer areas get smaller and the outer users can experience slightly better Shannon capacities. This results in lower Shannon capacity at the network scale, but this also causes an increase in Jain's fairness index, as depicted by Figure 5.10.

Studying the discriminant of (D.2) reveals that it is always nonpositive, meaning that P ′ has a single real root. Furthermore, it is easy to show that (i) lim a→-∞ P ′ (a) = -∞ and, (ii) lim a→0 P ′ (a) > 0.

Hence, with the intermediate value theorem we know that the single real root of P ′ belongs to R -. As a consequence, ∀a ∈ R + , P ′ (a) > 0. Therefore, we can conclude that the positive root of P is a minimum.

Going further, since ∀a ∈ R + , P ′ (a) > 0, P is increasing and cannot have more than one root in R + . Remark that P (0) < 0 and lim a→+∞ P (a) = +∞, hence P has a unique positive root in R + by the intermediate value theorem. As shown by Lemma D.1, this root is solution of (D.1) and gives us the optimal value for a in the approximation (6.6).

We can now prove Theorem 6.1.

Proof. We consider

S = {x : x ∈ v (1) 
-, v

+ × • • • × v (n) -, v (n) + , v -≤ ||x|| 2 2 ≤ v + } (1) 
and we need to prove that ∀x ∈ S, a||x|| 2 2 + 1 4a ≤ ||x|| 1 . This is equivalent to finding a so that -a 2 ||x|| 2 2 + a||x|| 1 -1 4 ≥ 0. As a matter of fact, if it exists a fixed a that satisfies the inequality ∀x ∈ S, it is the one computed by the Proposition 6.2, since the approximation is the optimal linear overestimation of ||x|| 2 .

We know that -a 2 ||x|| 2 2 + a||x|| 1 -1 4 is positive between its roots, which are

a 1 (x) = ||x|| 1 -||x|| 2 1 -||x|| 2 2 2||x|| 2 2 a 2 (x) = ||x|| 1 + ||x|| 2 1 -||x|| 2 2 2||x|| 2 2 
.

In order to ensure the existence of a satisfying the equation for all the elements of S, we need to make sure that 

-.

Similarly, we study the variation of √ v+-δ+) , with δ + ≥ δ -. We can now rewrite our criterion (D.3) as √ v -+ δ -≥ √ v + -δ + , and we replace δ + by δ -for the sake of simplicity. This leads to the desired criterion expressed only with the variance bounds

√ v + ≤ √ v -+ 2δ - (D.4)
Therefore, whenever (D.4) holds, a||x|| 2 2 + 1 4a ≤ ||x|| 1 , which is the desired result.

E P R O O F S F O R T H E E A R LY-S T O P P I N G G U A R A N T E E S O F D U M B O

This appendix contains the proofs of Proposition 6.3 and Theorem 6.2. Let us start by proving Proposition 6.3.

Proof. We want to show that φ 

(i) t = µ (i) t +
= √ tL k (i)
where (E.2) follows from k (i) being Lipschitz continuous with Lipschitz constant L k (i) according to Assumption 6.4.

Combining all these upper bounds, we have an upper bound for the gradient of φ .

(i) t ||∇φ (i) t || 2 ≤ tL k (i) ρ K -1 M (i) t (E.
(E.7)

Therefore, (E.7) can be used to early-stop DuMBO. Note that, as stated in the main text, the aggregation E.7 is exactly xk+1 as defined in (6.20).

F P R O O F O F T H E A S Y M P T O T I C A L O P T I M A L I T Y O F D U M B O

In this appendix, we discuss the asymptotic optimality of DuMBO and provide the proof for Theorem 6.3. We start by proving the following inequality connecting f (x) with the posterior mean and variance of f . Lemma F.1. Pick δ ∈ (0, 1) and let β t = 2 log |C|π 2 t 2 6δ

. Then, with probability at least 1 -δ, |f (x) -µ t (x)| ≤ β for all x ∈ C and t ∈ N, µ t (x) and σ 2 t (x) defined through our proposed decomposition in Proposition 6.1.

Proof. For all x ∈ C and t ∈ N, we have f (x) ∼ N µ t (x), σ 2 t (x) . Defining s t (x) = f (x)-µt(x) σt(x)

, we know that s t (x) ∼ N (0, 1). Therefore, x 2 i -10 cos (2πx i ) .

Pr |s t (x)| ≤ β 1 2 t ≥ 1 -e -β
(G.4)

We chose to set d = 100. We also chose to aggregate some factors to make the optimization problem harder. The resulting Rastrigin function is composed of n = 20 factors, with a MFS d = 5. In our experiment, we optimize it on the hypercube C = [-5.12, 5.12] 100 . It has multiple, regularly distributed local maxima, with a global maximum at x * = 0 and f (x * ) = 0.

We now describe in details the real-world experiments conducted in Section 6.5.2.

Cosmological Constants. The cosmological constants problem consists in fine-tuning an astrophysics tool to optimize the likelihood of some observed data. We chose to compute the likelihood of the galaxy clustering [START_REF] Chuang | The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements and the strong power of f(z) 8(z) on constraining dark energy[END_REF] from the Data Release 9 (DR9) CMASS sam- ple of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS).

To compute the likelihood, we instrumented the cosmological parameter estimation code CosmoSIS [START_REF] Zuntz | CosmoSIS: Modular cosmological parameter estimation[END_REF]. 51 We considered nine cosmological constants in our optimization task, going from the Hubble's constant to the mass of the neutrinos. If a Bayesian Optimization (BO) algorithm provided a set of inconsistent cosmological constants, a likelihood of y = -60 was returned.

Note that similar experiments were considered in other works, such as [START_REF] Eriksson | Scalable global optimization via local bayesian optimization[END_REF][START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF]. However, they were conducted on another, older dataset, with a deprecated NASA simulator. 52 This makes the conducted ex-52 https: //lambda.gsfc.nasa. gov/toolbox/lrgdr/ periments painful to reproduce on a modern computer. Hopefully, CosmoSIS is well documented and easier to install and instrument, so we conducted our experiment with CosmoSIS to make it easier to replicate.

Shannon Capacity of a Wireless Local Area Network (WLAN).

The Shannon capacity [START_REF] Jhb Kemperman | On the Shannon capacity of an arbitrary channel[END_REF] sets a theoretical upper bound on the throughput of a wireless communication, depending on the Signal to Interference plus Noise Ratio (SINR) of the communication. Denoting by S i,j the SINR between two wireless devices i and j communicating on a radio channel of bandwidth W (in Hz), the Shannon capacity C(S i,j ) (in bits) is defined by C(S i,j ) = W log 2 (1 + S i,j ) (G.5)

In this problem, we consider a Wireless Local Area Network (WLAN) with end-users associated to nodes streaming a continuous, large amount of data. The WLAN topology is depicted in Figure G.1. It is populated with 36 end-users, each one associated to one of the 12 depicted nodes. Note that each node is within the radio range of at least two other nodes. This creates interference and, consequently, reduces the SINRs between nodes and end-users. Each node has an adjustable transmission power x i ∈ [10 0.1 , 10 2.5 ] in mW (milliwatts). This task consists in jointly optimizing the Shannon capacity (G.5) of each pair of (node, associated end-user) by tuning the transmission power of the nodes. That is, the objective function f is a 12-dimensional function defined by f (x) = with N i the set of end-users associated to node i.

A difficult trade-off needs to be found because a node cannot simply use the maximum transmission power as this would cause a lot of interference for the neighboring nodes. Given a configuration x ∈ C = [10 0.1 , 10 2.5 ] 12 , the SINRs are provided by the well-recognized network simulator ns-3 [START_REF]The Network Simulator ns-3[END_REF] that reliably reproduces the WLAN internal dynamics. The additive decomposition comprises n = 12 factors, with a MFS of d = 5, obtained by making the reasonable assumption that only the neighboring nodes of node i (i.e. those within the radio range of node i) are creating interference for the communications of node i.

Rover Trajectory

Planning. This problem was also considered by [START_REF] Eriksson | Scalable global optimization via local bayesian optimization[END_REF][START_REF] Wang | Batched large-scale Bayesian optimization in high-dimensional spaces[END_REF]. The goal is to optimize the trajectory of a rover from a starting 
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  Within a single cell, multiple users are requesting service from the BS. To share the radio resource among them, a cell can use multiple techniques. Note that these techniques differ from the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol, used by WLANs and discussed in Section 1.1.2. We start by discussing three of them, illustrated by Figure 5.2.
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  d ( xj,d ) (A.3) 131 proof for the optimality of the consensus function of inspireObserve that Ψ( x) is be minimal if xj,d is built to minimize ψ j,d ( xj,d ).Therefore, let us focus on building xj,d so that it minimizesψ j,d ( xj,d ) = i∈N j x (i) j,d < xj,d L i ( xj,d -x xj,d ). (A.4) 
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 60 Since ψ j,d is convex, k * is necessarily the smallest k for which d k is negative. Since x because P j,d is sorted, k * is necessarily the smallest k for which i∈N j i>k L i -i∈N j i<k+1 L i is negative. Therefore, we want xj,d = min x∈R + ψ j,d (x) = x (k * ) j,d , which corresponds to the median of the values in P j,d , weighted by the Lipschitz constants {L i } i∈N j .
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  T H E I M PA C T O F FA I R N E S S O N T H E T H R O U G H P U T D I S T R I B U T I O N O F A C E L L U L A R N E T W O R KIn this appendix, we study the effect of increasing α (see (5.5)) on the throughput distribution of T1 (Figure5.8a), one of the cellular networks considered for the benchmarking of the combination of Non-Orthogonal Multiple Access (NOMA) and Fractional Frequency Reuse (FFR).
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 1 Figure C.1: Throughput distribution of the cells in T1 and different values of α. The throughput distribution of the users in the inner areas is depicted with a blue histogram, the throughput distribution of the users in the outer area is depicted with an orange histogram.For each cell, the ratio between the number of inner users and outer users is given.

3 ) 2 1

 32 To ease the maximization of a 1 (x), let us break down the maximization by considering max x∈S max y∈[v -,||x||

3 ) 141 which

 3141 then cancels out in the numerator and denominator of (E.6

[ 156 ]

 156 [START_REF] Chuang | The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements and the strong power of f(z) 8(z) on constraining dark energy[END_REF], "The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements and the strong power of f(z) 8(z) on constraining dark energy"

[ 157 ]

 157 Zuntz et al. (

Figure G. 1 :
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Table 2 . 1 :

 21 Comparison of the state-of-the-art approaches for the spatial reuse problem in WLANs. The last column refers to the number of APs and the number of orthogonal radio channels used in the performance evaluation.

	Proposed

Tuning of Tuning of Dynamic Traffic Simulator APs / solutions

  

		OBSS _ PD	TX _ PWR	MCS	Up/Down		channels
	WCMC'04 [19]	✓			Up/Down Opnet	100/1
	VTC'04 [20]		✓		Up	Self-made	8/1
	Infocom'20 [21]		✓		Up/Down Self-made 100/11
	WCNC'15 [25]	✓			Up	Self-made 100/3
	WCNC'21 [26]	✓	✓	✓	Down	ns-3	6/1
	Globecom'20 [28]						

  • • • , Y (x n )} has a joint multivariate Gaussian distribution. It can be fully specified by its mean function µ and its covariance function k µ

Table 3 .

 3 1: ns-3 parameters.

	Parameter	Value
	ns-3 version	3.31
	Number of repetitions 25
	Simulation duration	120 s
	Test duration	50 ms
	Packet size	1,464 Bytes
	Frequency band	5 GHz
	A-MDPU Aggregation 4
	Path loss	LogDistancePropagationLossModel
	MCS Control	VhtMcs0

Table 3 . 2 :

 32 Average regret R t /t ± its standard error at the end of the simulation of the three considered WLAN topologies, with the five evaluated solutions. For each topology (column), the best metric is in bold text.

	Solution	T1	T2	T3
	DEFAULT	0.492 ± 0.006 0.376 ± 0.008 0.530 ± 0.001
	ϵ-GREEDY 0.593 ± 0.009 0.458 ± 0.011 0.469 ± 0.006
	UNIF+GTS 0.910 ± 0.002 0.773 ± 0.002 0.631 ± 0.002
	GM+GTS	0.462 ± 0.006 0.354 ± 0.007 0.383 ± 0.003
	GM+NGTS	0.476 ± 0.008 0.313 ± 0.007 0.351 ± 0.004

Table 3 . 3 :

 33 Confidence intervals for the reward, the fairness and the aggregate throughput (in Mbps) obtained by DEFAULT, UNIF+GTS and GM+NGTS under different proportions of active STAs.

	Active STAs Metric	DEFAULT	UNIF+GTS	GM+NGTS
		Reward	0.98 ± 0.01	0.82 ± 0.01	0.97 ± 0.01
	p = 0	Fairness	0.95 ± 0.01	0.79 ± 0.01	0.94 ± 0.01
		Through. 29.04 ± 0.03 25.22 ± 0.15 28.91 ± 0.17
		Reward	0.81 ± 0.04	0.71 ± 0.03	0.93 ± 0.02
	p = 1 3	Fairness	0.26 ± 0.03	0.23 ± 0.02	0.27 ± 0.04
		Through. 562.0 ± 38	678.6 ± 70	716.1 ± 80
		Reward	0.61 ± 0.04	0.61 ± 0.02	0.84 ± 0.03
	p = 2 3	Fairness	0.37 ± 0.03	0.38 ± 0.02	0.5 ± 0.04
		Through. 725.1 ± 27	1079 ± 65	1138 ± 72
		Reward	0.5 ± 0.05	0.59 ± 0.02	0.86 ± 0.02
	p = 1	Fairness	0.48 ± 0.04	0.54 ± 0.01	0.75 ± 0.01
		Through. 842.5 ± 10	1510 ± 43	1468 ± 26

Table 3 .

 3 

3 reports how a recommended WLAN

Table 3 .

 3 4: ns-3 parameters for the evaluation of the HM-based sampler.

	Parameter	Value
	ns-3 version	3.31
	Number of repetitions	22
	Simulation duration	120 s
	Duration of an iteration 75 ms
	Packet size	1,464 Bytes
	Downlink traffic	50.0 Mbps
	Uplink traffic	3.33 Mbps
	Channel size	20 MHz
	Frequency band	5 GHz
	A-MDPU Aggregation	4
	Path loss	LogDistancePropagationLossModel

Table 3 . 5 :

 35 Average regret R t /t ± its standard error at the end of the simulation of the three considered WLAN topologies, with the five evaluated solutions. For each topology (column), the best metric is in bold text.

	Solution	T1	T2	T3
	WCNC'15	0.200 ± 0.001 0.438 ± 0.001 0.580 ± 0.001
	UNIF+GTS 0.324 ± 0.003 0.399 ± 0.001 0.751 ± 0.001
	GM+NGTS	0.243 ± 0.004 0.472 ± 0.021 0.642 ± 0.005

DEFAULT 0.248 ± 0.001 0.632 ± 0.001 0.659 ± 0.003 HM+NGTS 0.109 ± 0.

003 0.237 ± 0.011 0.428 ± 0.004

  

  computed with(2.11), p(z) and P (z) the p.d.f and the c.d.f of N (0,1) respectively. Optimization of the Acquisition Function As discussed in Section 2.2.4, a Bayesian optimization algorithm typically uses a global optimization algorithm such as DIRECT[START_REF] Donald R Jones | Lipschitzian optimization without the Lipschitz constant[END_REF] to optimize its acquisition function at each iteration t. However, these global optimization algorithms struggle at optimizing functions of high dimension. To prevent this, as discussed in greater length in Chapter 6, we choose to exploit gradient descent (generally attributed to Cauchy[START_REF] Lemaréchal | Cauchy and the gradient method[END_REF]), a local optimization algorithm that only offers local[START_REF] Lemaréchal | Cauchy and the gradient method[END_REF] Lemaréchal (2012),

	4.3 inspire
	4.3.1 "Cauchy and the gradient
	method"

t computed with (2.10), σ (i) t

Table 4 .

 4 1: ns-3 parameters for the evaluation of INSPIRE.

	Parameter	Value
	ns-3 version	3.31
	Number of repetitions 22
	Simulation duration	30 s
	Test duration (∆t)	75 ms
	Packet size	1,464 bytes
	Downlink traffic	50.0 Mbps
	Uplink traffic	3.33 Mbps
	Channel size	20 MHz
	Frequency band	5 GHz
	A-MDPU Aggregation 4
	Path loss	HybridBuildings (ItuR1238
		+ InternalWallsLoss)

Table 4 . 2 :

 42 Average regret R t /t ± its standard error at the end of the simulation of the two considered WLAN topologies, with the seven evaluated solutions. For each topology (column), the best metric is in bold text.As in Chapter 3, we start by providing in Table4.2 the average regrets of all the considered strategies on the topologies T1 and T2. The results show that INSPIRE and, at a lesser extent, its windowing version INSPIRE _ LIM,

	Solution	T1	T2
	DEFAULT	0.652 ± 0.001 0.429 ± 0.004
	WCNC'15	0.470 ± 0.001 0.327 ± 0.005
	JNCA'19	0.437 ± 0.001 0.398 ± 0.006
	GM+NGTS	0.527 ± 0.016 0.375 ± 0.006
	HM+NGTS	0.305 ± 0.006 0.379 ± 0.005
	INSPIRE	0.193 ± 0.005 0.294 ± 0.006
	INSPIRE _ LIM 0.233 ± 0.005 0.329 ± 0.005

Table 5 . 1 :

 51 Homemade simulator parameters for the evaluation of the ICIC strategies.

	Parameter	Value
	Number of iterations 110
	Background noise	-100 dBm/Hz
	Path loss	LogDistance(d ref = 1 km,
		L ref = 128.1 dBm, n = 3.76)
	Bandwidth	20 MHz

Table 6 . 1 :

 61 Comparison of decomposing state-of-the-art BO algorithms with DuMBO on relevant criteria. Here, n is the number of factors in the decomposition, d the number of dimensions of f , d the MFS of the decomposition, t the optimization step, ξ the desired accuracy when maximizing φ t and N A a constant defined in Section 6.4.3. N m is a constant defined in[START_REF] Hoang | Decentralized high-dimensional Bayesian optimization with factor graphs[END_REF].

	Solution	Complexity		MFS Asm.	Find arg max φ t
	ADD-GPUCB [125] O t 3 + nt 2 + n 2 ξ -1		d = 1	Yes
	QFF [127]	O (ξ -1 t 3/2 (log t) d)	d	d = 1	Yes
	DEC-HBO [128]	O N m ξ -dn(t 3 + n)		d ≤ 3	If the dec. is sparse
	DuMBO (Ours)	O dN A nt 3 ξ -1		None	See Section 6.4.2

  relies on ADMM, let us discuss its maximization guarantees. It is well known that ADMM converges towards the global maximum of a convex φ t . Furthermore, ADMM has also demonstrated very good performance at optimizing non-convex functions. As examples,[START_REF] Athanasios | Parallel algorithms for constrained tensor factorization via alternating direction method of multipliers[END_REF][START_REF] Lai | A splitting method for orthogonality constrained problems[END_REF] exploited ADMM to

		.21)
	Since the maximization of φ t = n i=1 φ	(i)
	[140] Liavas et al. (2015),	
	"Parallel algorithms for	
	constrained tensor	
	factorization via	
	alternating direction	
	method of multipliers"	
	[141] Lai et al. (2014), "A	
	splitting method for	
	orthogonality constrained	
	problems"	

t

Table 6 . 2 :

 62 Comparison of four state-of-the-art solutions against four different versions of DuMBO on synthetic functions and real-world problems. The reported metrics correspond to the minimal regret attained for the synthetic functions, and to the average negative reward for the real-world problems. The best performance metric among all the strategies is written in bold text, and the best among the strategies that do not have access to the additive decomposition is underlined. Decomposing BO algorithms can be identified with the prefix "(+)".

			Synthetic Functions		Real-World Problems
	Algorithm			(d-d)			(d-d)
		SHC Hartmann Powell Rastrigin Cosmo WLAN Rover
	Unknown Add. Dec.	(2-2)	(6-6)	(24-4) (100-5)	(9-)	(12-6) (60-)
	ADD-GPUCB	0.102	1.29	10,258	N/A	7.46 -119.05 26.57
	DEC-HBO	0.005	1.47	9,025	N/A	14.90 -116.58 10.07
	TuRBO	0.322	1.89	711	1,109	5.82 -118.39 6.06
	SAASBO	0.013	0.89	2,544	1,073	16.55 -116.40 10.82
	(+) ES-DuMBO	0.006	0.87	1,745	1,045	7.10 -118.91 7.55
	(+) DuMBO	0.029	0.76	542	1,010	5.86 -118.57 6.38
	Known Add. Dec.					
	(+) ES-ADD-DuMBO 0.047	1.02	621	932	N/A -119.40 N/A
	(+) ADD-DuMBO	0.102	0.72	542	822	N/A -121.06 N/A

  [START_REF] Gast | 11n: the survival guide[END_REF], DuMBO is a competitive alternative to state-of-the-art BO algorithms, able to optimize complex objective functions in a small number of iterations. Overall, DuMBO makes a step further in the direction of using provably optimal BO algorithms to optimize blackbox functions in decentralized systems. It has been recently submit-ted to a flagship international conference. Note that the preprint of the submission is accessible on arXiv[START_REF] Bardou | Relaxing the Additivity Constraints in Decentralized No-Regret High-Dimensional Bayesian Optimization[END_REF]. Follow-up to this work[START_REF] Bardou | Relaxing the Additivity Constraints in Decentralized No-Regret High-Dimensional Bayesian Optimization[END_REF] Bardou et al. (2023), are plenty and include the extension of DuMBO to batch mode[START_REF] Li | Multiple queries as bandit arms[END_REF][START_REF] Daxberger | Distributed batch Gaussian process optimization[END_REF] or its application to other suitable technological contexts such

	Compared to other decomposing algorithms, such as ADD-GPUCB and DEC-HBO, DuMBO constitutes a significant improvement, par-ticularly when the decomposition of f has numerous factors with large MFS (Figures 6.2b, 6.2c, 6.2d and 6.3b), or simply does not exist Constraints in Decentralized No-Regret High-Dimensional Bayesian Optimization" [145] Li et al. (2016), "Multiple queries as bandit arms" [146] Daxberger et al. (2017), "Distributed batch Gaussian process (Figures 6.3a and 6.3c). "Relaxing the Additivity optimization"

  73, 10, -74, 10, -73, 12, -77, 9, -76, 14, -72, 12, -72, 10, -74, 10, -74, 13, -72, 10) • û = (-.29, .53, -.41, .2, -.08, .78, -.16, .33, -.61, .74, -.53, .12, -.24, .78, -.57, .61, -.49, .69, -.16, .82) • v = (-.09, .03, -.5, .32, -.58, .53, -.53, .18, 0, .38, -.55, .55, -.47, .15, -.12, .58, -.18, .15, -.5, .38) Corresponding values for T2 (see Figure 4.2b) are: • x * = (-76, 9, -76, 11, -67, 3, -70, 8, -75, 9, -74, 8, -71, 5, -66, 6, -73, 9, -68, 10, -65, 3, -66, 12, -78, 6, -76, 16) • û = (0, .21, -.06, .14, 0, .15, -.02, .14, -.23, .04, -.18, .18, -.16, .15, -.01, .05, -.11, .23, -.01, .08, -.23, .21, -.02, .11, -.19, .16, -.07, .04) • v = (-.02, .15, -.38, 0, -.02, .13, -.42, .15, -.15, .23, -.19, .15, -.02, .25, -.42, .38, -.4, .38, -.31, .15, -.29, .08, -.25, .19, -.04, 0, -.4, .31)
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  || 2 is bounded. Replacing µ || 2 ||K -1 || 2 ||y -2aβLet us bound properly all the terms in (E.1). By Assumption 6.3, we know that ∀j ∈ [1, t], v . Similarly, y - t ≤ y j ≤ y + t , with y - t = min j∈[1,t] y j and y + t = max j∈[1,t] y j . Therefore, denoting M . Moreover, by the Raleigh-Ritz theorem, it is known that the spectral norm of a symmetric positive semi-definite matrix coincide with its spectral radius (i.e. its largest eigenvalue). Therefore, ||K -1 || 2 = ρ K -1 . Eventually, we bound ||∇k (i) (x, x j )|| 2 |z j |

	uous. This is true if ||∇φ	(i)	aβ	1 2 t σ	(i) t	2	is Lipschitz contin-(i) t and σ (i) t 2 by
	their expressions and differentiating shows that we need to bound
		||∇φ t || 2 = ||∇k (i)	(i)⊤ x K -1 y -2aβ	1 2 t k	(i) x	|| 2
					≤ ||∇k	(i)⊤	1 2 t k	(i) x || 2	(E.1)
								(i)	(i)
			(i) t	= max |y + t -2aβ	1 2 t v	(i)	1 2 t v	(i) + | , we have ||y -
	2aβ	1 2 t k	(i)				
								(i)⊤ x || 2 us-
	ing the definition of the spectral norm
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t x -≤ k (i) (x, x j ) ≤ v + -|, |y - t -2aβ x || 2 ≤ √ tM (i) t

t 2

 2 Pr |f (x) -µ t (x)| ≤ β σ t (x) ≥ 1 -e -β t Pr |f (x) -µ t (x)| ≤ β Pick δ ∈ (0, 1) and let β t = 2 log |C|π 2 t 2The Rastrigin function is a function of an arbitrary number d of dimensions, defined by f (x) = -10d -
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t where (F.2) follows from Proposition 6.2. The inequality (F.2) is true for a single pair (t, x). Applying the union bound for all pairs in N × C, we have ∀t ∈ N, ∀x ∈ C

Pr |f (x) -µ t (x)| ≤ β 145 Rastrigin. d i=1

The inverse of the variance σ 2 . We provide more details regarding the Normal-Gamma distribution in the next paragraph.

That is, (-82, 20) dBm

D P R O O F S F O R T H E I M P R O V E D A C Q U I S I T I O N F U N C T I O N O F D U M B O

In this appendix, we provide the proofs for our proposed approximation of the exploration term in the GP-UCB acquisition function as well as our proposed acquisition function φ t . We start by proving the following lemma.

Lemma D.1. The best linear overestimation of √ x (in the least-squares sense) is (6.6), with a one of the positive roots of the quartic polynomial (6.7).

Proof. We want a linear approximation ax + b that consistently overestimates

x = 0 has at most a single solution in R + . This can be achieved by adjusting the b parameter so that the polynomial

4a ensures the overestimation of

√

x. The linear approximation ax + 1 4a must also be optimal in the least squares sense. Therefore, we must find

Differentiating (D.1) by a and multiplying by a 3 to turn the expression into a polynomial, we get the desired quartic

Therefore, a must be one of the positive roots of P . Since ax + 1 4a consistently overestimates √ x, P has at least one positive root by construction.

With Lemma D.1, we can prove Proposition 6.2.

Proof. We need to prove that the quartic (6.7) has a single positive root, which is also the solution of (D.1). Let us consider the derivative P ′ of P , which, by construction, has the same sign as the second derivative of the expression in (D.1).

+ | , which is the desired result.

We now prove Theoreom 6.2, which claims that a solution from an early-stopped version of DuMBO is still optimal in a weaker sense. Note that this proof uses ideas from the proof of Theorem 4.1 in Appendix A. 

) is ensured by the triangle inequality. Note that, as far as we know, there is no tighter upper bound than (E.4) for G. From (E.4), we see that x must satisfy x = arg min x n i=1 L(φ

minimize the upper bound. This is equivalent to finding arg min x Ψ(x) = n i=1 L(φ

2 . Developing this expression, we have

Differentiating (E.5) by xj , we get

Solving ∂Ψ ∂ xj = 0 with the Hessian H(Ψ)( x) positive definite is trivial and leads to the minimum

which is the desired result. Note that if L(φ (j) t ) cannot be computed explicitly in (E.6), we can upper bound L(φ

proof of the asymptotical optimality of dumbo Therefore, (F.3) becomes

which is the desired result.

We are now ready to bound the immediate regret r t = f (x * )f (x t ) and prove Theorem 6.3.

Developing the left term of the inequality with the expression of φ (i)

t and adding

4a on both sides, we have

with (F.5) following from (F.4) with high probability. We can now bound the immediate regret r t

Combining the conclusion of Lemma F.1 with (F.6), we get

which is the desired result.

In this appendix, we describe the synthetic functions constituting our benchmark in Section 6.5.1, before discussing the real-world experiments conducted in Section 6.5.2.

Six-Hump Camel. The Six-Hump Camel function is a 2-dimensional function defined by 

] and P = (P ij ) (i,j)∈ [START_REF]Cisco visual networking index: Forecast and trends, 2017-2022 white paper[END_REF][START_REF] Iacoboaiea | Real-time channel management in WLANs: Deep reinforcement learning versus heuristics[END_REF]× [START_REF]Cisco visual networking index: Forecast and trends, 2017-2022 white paper[END_REF][START_REF] Oluwaseun | Exploration of daily Internet data traffic generated in a smart university campus[END_REF] given as constants.

It is composed of n = 4 factors, with a MFS d = 6. In our experiment, we optimize it on the hypercube C = [0, 1] 6 . It has 6 local maxima and a global maximum with f (x * ) = 10.5364. 

Powell