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Abstract

In the last two decades, we have witnessed a massive increase of surveillance cameras in
our surroundings. One of the most important uses of these cameras is to detect suspectful
or abnormal behaviors, e.g., a moving truck in a pedestrian zone or an intruder entering
a prohibited site. These abnormal events occur very rarely and thus it is an extremely
tedious and difficult task for professionals to attentively monitor the video constantly for
finding these events. Therefore, an automatic video analysis system is essential. Tra-
ditional systems suffer to generalize across different types of anomalies, often rely on
handcrafted rules and cannot adapt to abnormal events that they have never seen before.
In the past few years, we have seen a tremendous progress in deep learning based video
surveillance systems. These systems learn representative features from the data itself,
generalize across different scenes and anomalies. That is why, in this thesis, we explore
deep learning based methods. Majority of these methods in automatic video analysis are
supervised, i.e., they require a large volume of labeled data. But since abnormal events
depend on context and are rare, it is very difficult to have labeled anomalous data be-
forehand, and even if there is some annotated data for abnormal events, it will always be
a small portion compared to normal data. Furthermore, one cannot annotate every pos-
sible event that might occur in future. So, we require approaches that can work without
labeled data. Since these events occur in videos, they can have both spatial and tempo-
ral dimensions. Therefore, the approach must be able to learn pertinent spatio-temporal
representations to differentiate abnormal and normal events.

Thus, in this PhD, prepared at LIRIS laboratory and in collaboration with the Foxstream
enterprise, we aim to learn spatio-temporal representations from unlabeled videos to de-
tect abnormal events. Precisely, we address the task of video anomaly detection and its
sub-task, perimeter intrusion detection. We provided mathematical definitions to these
tasks because they were not clearly defined in the literature. The definitions have a direct
impact on the evaluation and therefore, we proposed new suitable evaluation schemes.
Concerning spatio-temporal representation learning without annotations, we proposed
two approaches. In the first approach, we designed a strided 3D convolutional autoen-
coder network and it was used for the perimeter intrusion detection task. The main idea
is to learn normal representation from training data without intrusions (or anomalies)
and detect intrusions (or anomalies) as they deviate from learned normality. It worked
well in small-length videos but suffered in long videos, which have changes in scene dy-
namics like weather, lighting, etc. To address this problem, we introduced an adaptive
thresholding approach using moving z-score. Our extensive experiments showed the vi-
ability of our approach in comparison with other existing methods. To further improve
the spatio-temporal comprehension of normality, we introduced our second approach. It
consisted of a framework that leverages unsupervised and self-supervised learning in an
autoencoder. To be precise, we proposed multiple, carefully designed tasks (unsupervised
and self-supervised) that are performed in a single autoencoder. This method is also



trained in an end-to-end and joint manner, where training data is without anomalies or
intrusions. For detecting anomalies (or intrusions), each of the task provide an anomaly
score and the combined score is used for final detection. This approach is generic and was
applied to the two tasks. We obtained state-of-the-art results in all major public datasets
for both video anomaly detection and perimeter intrusion detection task.

Keywords: deep learning, computer vision, unsupervised learning, self-supervised learn-
ing, video surveillance, video anomaly detection, perimeter intrusion detection
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Résumé

Au cours des deux derniéres décennies, nous avons assisté & une augmentation massive
des caméras de surveillance dans notre environnement. L’une des utilisations les plus
importantes de ces caméras est de détecter des comportements suspects ou anormaux,
par exemple un camion en mouvement dans une zone piétonne ou un intrus pénétrant
dans un site interdit. Ces événements anormaux se produisent trés rarement et c¢’est donc
une tache extrémement fastidieuse pour les professionnels de surveiller manuellement la
vidéo en permanence pour trouver ces événements. Par conséquent, une analyse vidéo
automatique est essentielle. Les systémes traditionnels ont du mal & se généraliser a dif-
férents types d’anomalies, s’appuient souvent sur régles et ne peuvent pas s’adapter a des
événements anormaux qu’ils n’ont jamais vus auparavant. Au cours des derniéres années,
nous avons constaté d’énormes progrés dans les systémes de vidéosurveillance basés sur
I’apprentissage profond. Ces systémes apprennent des caractéristiques représentatives a
partir des données elles-mémes et généraliser sur différentes scénes et anomalies. C’est
pourquoi, dans cette thése, nous explorons méthodes basées sur ’apprentissage profond.
La majorité des travaux de la littérature en analyse vidéo automatique sont supervisés,
c’est-a~dire qu’ils nécessitent un grand volume de données étiquetées pour obtenir des
résultats pertinents. Mais comme les événements anormaux dépendent du contexte et
sont rares, il est tres difficile d’avoir des données anomaliques étiquetées a ’avance, et
méme s’il existe des données annotées pour les événements anormaux, ce sera toujours
une petite partie par rapport aux données normales. De plus, on ne peut pas annoter tous
les événements possibles qui pourraient se produire. Nous avons donc besoin d’approches
qui peuvent fonctionner directement sur les vidéos, sans nécessiter d’annotations. Puisque
ces événements se produisent dans des vidéos, ils ont a la fois des dimensions spatiales
et temporelles. Par conséquent, ’approche doit pouvoir apprendre des représentations
spatio-temporelles pertinentes pour différencier les événements anormaux et normaux.
Ainsi, dans cette thése, préparée au sein du laboratoire LIRIS et en collaboration avec
I’entrepr-ise Foxstream, nous visons a apprendre des représentations spatio-temporelles
a partir de vidéos non étiquetées pour détecter des événements anormaux. Plus précisé-
ment, nous abordons la tache de détection d’anomalie vidéo et sa sous-tache, la détec-
tion d’intrusion périmétrique. Comme ces taches n’étaient pas clairement définies, nous
en avons proposé des définitions mathématiques. Ces définitions ont un impact direct
sur I’évaluation et nous avons donc proposé de nouveaux schémas d’évaluation adaptés.
Concernant 'apprentissage des représentations spatio-temporelles sans annotations, nous
avons mis en place deux approches. Dans la premiére approche, nous avons cong¢u un
réseau d’auto-encodeur convolutif 3D. L’idée principale est d’apprendre la représentation
normale & partir de données d’entrainement sans intrusions (ou anomalies) et détecter les
intrusions (ou anomalies) lorsqu’elles s’écartent de la normalité apprise. Il a été utilisé
pour la tache de détection d’intrusion périmétrique. Cela a bien fonctionné dans les vidéos
de petite durée, mais moins bien dans les longues vidéos, qui ont des changements dans
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la dynamique de la scéne comme la météo, ’éclairage, etc. Pour résoudre ce probléme,
nous avons introduit une approche de seuillage adaptatif utilisant le z-score mobile. Nos
nombreuses expérimentations ont montré la viabilité de notre approche par rapport aux
autres méthodes existantes. Pour encore améliorer la compréhension spatio-temporelle
de la normalité, nous avons introduit notre deuxiéme approche. Il consistait en un cadre
qui exploite I'apprentissage non supervisé et auto-supervisé dans un auto-encodeur. Pour
étre précis, nous avons proposé de multiples taches bien congues (non supervisées et auto-
supervisé) qui sont exécutés dans un seul auto-encodeur. Cette méthode est également
entrainée de bout en bout et de maniére conjointe, ou les données d’entrainement sont
sans anomalies ou intrusions. Pour la détection d’anomalies (ou d’intrusions), chacune
des taches fournit une anomalie score et le score combiné est utilisé pour la détection
finale. Cette approche est générique et a été appliquée aux deux taches. Nous avons
obtenu des résultats au-dela de 1’état de I'art pour les deux taches, dans les principaux
jeux de données publics.

Mot clés : apprentissage profond, vision par ordinateur, apprentissage non supervisé,

apprentissage auto-supervisé, vidéosurveillance, détection d’anomalie vidéo, détection
d’intrusion périmétrique
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Introduction

General context

Over the years, the video surveillance systems have evolved from simple video acquisition
and display systems to intelligent autonomous systems (Ibrahim, 2016). The systems of
today use some of the most sophisticated video analysis and decision-making algorithms
to function. The massive installations of cameras in different sites, from banks to super-
markets and in prominent streets, have further helped in developing and testing these
systems.

Visually surveying a site can include various tasks, such as object detection, object
tracking, object segmentation, abnormal event detection, etc (Valera et Velastin, 2005).
Out of these tasks, the abnormal event (anomaly) detection task has gained a major
attention of the computer vision community (Ramachandra et al., 2022). Anomalies are
patterns in data that do not follow a well-defined notion of normal behaviour (Chandola
et al., 2009). Based on context and nature of input data, anomalies can refer to different
patterns, such as abnormal sections in a time-series data, abnormal patches in an image,
abnormal spatio-temporal volumes in a video, etc., as pictured in Figure 1.

Anomaly detection [Chandola, V. et al., 2009]

- 4 N
Video anomaly detection [Sodemann, A.A. et al., 2012]
Loitering detection [Ramachandra, B. et al., 2020]
Illegally parked vehicle detection [Xie, X. et al., 2017]
Perimeter intrusion detection [Zhang, Y.L. et al., 2015]
\
Video \Time-series/ | Image )

Figure 1: Venn diagram to illustrate the taxonomy of tasks in anomaly detection.

For data in video form, video anomaly detection (VAD) refers to the detection of
unusual appearance or motion attributes in the video (Feng et al., 2021; Li et al., 2022).
For example, for a video surveilled site where only pedestrians are authorized, all the
vehicles are anomalies. Depending on the context, video anomaly detection can be further
classified into specific tasks, such as detecting abandoned object (Luna et al., 2018),
loitering (Ramachandra et Jones, 2020), illegally parked vehicle (Xie et al., 2017b), etc.
The task of perimeter intrusion detection (PID) also falls into this category (Saligrama
et al., 2010; Sodemann et al., 2012; Nayak et al., 2021). It aims at detecting the presence of
an intrusion in a secured perimeter. Intrusions are a particular type of anomalies, classified
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as point and contextual anomalies by (Chandola et al. (2009), Section 3.5). Moreover,
the notions of perimeter, intruder movement and site protection time are crucial for the
PID task, i.e., anomalous/unauthorized objects present in the video are intruders only if
they are in movement inside the designated perimeter when the site is being surveyed.

In this thesis, we tackle the tasks of video anomaly detection and perimeter intrusion
detection. Furthermore, both the tasks are carried out in the outdoor environment. The
fact that it is an outdoor environment is very important here as it induces challenges such
as changing weather and light conditions, obtrusion due to insects, animals, vegetation,
etc., contrary to an indoor environment (Matern et al., 2013; Villamizar et al., 2018).
Since the input to both tasks are videos, i.e., data with spatial and temporal dimensions.
Anomalies or intrusion in videos too, can have the spatio-temporal nature. Therefore, it
is essential to understand the spatio-temporal representation in videos correctly, in order
to detect anomalies or intrusions. Some works address spatial (frames) and temporal
dimensions of video separately and then process them sequentially. But these approaches
do not learn the spatio-temporal nature of videos aptly (Hasan et al., 2016; Chong et Tay,
2017; Simonyan et Zisserman, 2014). Thus, we seek to develop approaches that learn the
spatio-temporal nature of videos in a joint and cohesive manner.

Traditionally, most of the works used trajectory-based anomaly detection (Popoola et
Wang, 2012). The main idea is if the objects of interest are not following the learned
normal trajectories, then they are considered anomalous. This approach suffers from oc-
clusions as it needs to monitor continuously the objects of interest. Some other approaches
used low-level appearance, motion and texture features to enhance the comprehension of
normality. Other approaches can be found in the works of (Li et Cai, 2016; Kaur et al.,
2018). All these traditional approaches suffer to generalize across datasets and anomaly
types, often rely on handcrafted features, and are unable to adapt to anomalies that
they have never seen before (Hu et al., 2016; Medel et Savakis, 2016). For a sterile zone
with very few distractions, these approaches can function to some extent for the PID
task but in the case of VAD, these approaches perform poorly. Over the past few years,
deep learning has surpassed traditional approaches in many major computer vision tasks.
Concerning video anomaly detection too, deep learning based approaches have outper-
formed their traditional counterpart. This is because, given enough data, deep learning
based approaches can learn the features themselves, instead of using handcrafted or cho-
sen features. These approaches generalize with different scenes and types of anomalies.
Therefore, in this thesis, we consider developing deep learning based approaches. Most
of the existing works for spatio-temporal representation learning in video rely on huge
volume of labeled data to obtain relevant results. But since in VAD and PID task, the
examples of anomalies or intrusions are rare, it is extremely difficult to obtain annotated
data. Thus, the goal of this thesis is to learn pertinent spatio-temporal representation
from unlabeled videos in order to detect abnormal behaviors like anomaly or intrusion.
Furthermore, the proposed methods should be suitable to run in videos of long length
(hours, even days), in order to test if they are robust to real-world challenges like change
in weather, luminosity, etc.

Industrial context

This thesis is carried out within the framework of a CIFRE (Convention Industrielle de
Formation par la REcherche) partnership between the laboratory LIRIS (Imagine team)
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and the company Foxstream (CIFRE n°2019/1709). The Imagine team of laboratory
LIRIS (Laboratoire d’InfoRmatique en Image et Systémes d’information) is specialized
in computer vision, machine learning and pattern recognition. On the other hand, the
company Foxstream is specialized in the analysis and automatic processing of real time
video content. The video analysis algorithms developed by the company (perimeter intru-
sion detection, object segmentation, object tracking, etc.) use “classic” signal processing
or image analysis algorithms such as modeling of the static components of the scene or
using low level descriptors such as SIFT, Haar wavelets, HOG, etc. With this thesis, they
want to explore deep learning based solutions for perimeter intrusion detection and video
anomaly detection tasks. Furthermore, since intrusions and anomalies are rare events,
the company cannot provide labeled data as one cannot anticipate all possible anomalies
beforehand. Therefore the proposed methods should be able to work directly in unlabeled
data. Overall, the work from this thesis would help the company to move towards deep
learning approaches in many of its major applications and that too, without additional
cost of manual annotation.

Plan of manuscript

This manuscript is composed of 5 chapters:

e Chapter 1 details various data acquisition schemes and associated challenges in video
surveillance. It also describes various datasets used in this work along with their
challenges and shortcomings.

e Chapter 2 corresponds to a literature review of various topics: spatio-temporal
representation learning in videos with and without annotations, video anomaly de-
tection and perimeter intrusion detection. The basic concepts needed to understand
this manuscript are also defined there.

e Chapter 3 is concerned with formally defining the tasks of video anomaly definition
and perimeter intrusion definition, and revisiting their evaluation frameworks. We
mathematically define the tasks and discuss existing evaluation protocols. We also
propose a new, more suitable evaluation protocol.

e Chapter 4 focuses on the task of perimeter intrusion detection. For this, we propose
an unsupervised autoencoder with adaptive thresholding mechanism. We provide
extensive experimental results of our method in comparison with existing methods,
using different evaluation protocols.

e Chapter 5 introduces a new approach for spatio-temporal representation learning
from unlabeled videos. It leverages unsupervised and self-supervised learning and
is applicable to both VAD and PID tasks. We perform exhaustive experiments
on major public VAD and PID datasets and provide comparative analysis of our
method with existing methods.

Contributions

The scientific contributions made during this thesis and detailed in the chapters of this
manuscript have been published in international peer-reviewed conferences and journals.
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Our first article was dedicated to the task of fall detection and perimeter intrusion de-
tection. It was published in the Reproducible Research in Pattern Recognition (RRPR)
workshop of ICPR 2021 conference (Lohani et al., 2021). Both these tasks are subsets
of VAD task and do not contain training labels. In this work, we extended the original
work to perimeter intrusion detection task. We also proposed to use precision-recall curve
and it provided insightful results on the two tasks. Our next article was published in the
special issue “Unusual Behavior Detection Based on Machine Learning” of the Sensors
2022 journal (Lohani et al., 2022b). In this article, we provided mathematical definition
of the PID task, along with a review of existing methods and proposed a new suitable
evaluation scheme. The work of adaptive PIDS was published in the IEEE International
Conference on Image Processing (ICIP) 2022 (Lohani et al., 2022a). In our final contri-
bution, we proposed multiple tasks (unsupervised and self-supervised) for video anomaly
detection. We proposed these tasks on a single autoencoder and the main idea is to
enrich the spatio-temporal understanding of normality. Experiments were performed in
major public VAD datasets and we obtained state-of-the-art results in each of them. This
work has been accepted in the International Conference on Computer Vision Theory and
Applications (VISAPP), 2023.



Chapter 1

Video surveillance: Data and challenges

In this chapter, we first explain how using different acquisition schemes, the data can be
acquired in a surveillance system. Then, we explain various forms of challenges associated
either with scene capturing, objects of interest or complexity of the scene. Finally, we
detail the datasets that we use along with their difficulties and shortcomings.
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CHAPTER 1. VIDEO SURVEILLANCE: DATA AND CHALLENGES

1.1 Introduction

Main steps of a modern surveillance system are data acquisition, data pre-processing,
data analysis and returning an output signal (like an alarm). In this chapter, we focus on
the data acquisition step. This step is very important since the input of analysis part is
obtained from here. It is the basis of any surveillance system. The data acquired depends
on the type of camera used like visual camera, infrared camera, thermal camera, etc. Each
of these cameras have their strengths and weaknesses, and therefore they should be used
carefully. Thus, in this chapter, we first explain various data acquisition schemes. Since
we are interested in outdoor video surveillance, the cameras are placed in the outdoor
environment. In outdoor environment, they face various challenges, e.g., challenges due
to change in environmental conditions like rain, dust, or bad weather (Hu et al., 2018).
Therefore, there are various challenges associated with data in video surveillance and they
will be also detailed in this chapter. Finally, we also explore different existing VAD and
PID datasets, along with their associated challenges.

1.2 Data Acquisition in surveillance systems

In this section, we describe the various data acquisition systems with their associated
advantages and drawbacks. The area to be surveyed is observed with the help of cameras.
All cameras can acquire the video stream, but the nature of data depends on the type of
camera used. Broadly, the following categories of video capture devices are used.

1.2.1 Visual Camera

It is also called as the ‘classic’ or ‘color’ camera as it captures the visible light in form
of grey-scale or RGB images and was the first type of cameras to be used for the video
surveillance. The advantage is that it renders an image visually closer to the naked eye.
However, for proper functioning, it needs a certain level of brightness in the scene from
external light source like sun and furthermore it is sensitive to illumination changes (Van
De Sande et al., 2009; Ibrahim, 2016). During night, it needs additional lighting for
the sensor to generate a sufficiently contrasted image (Gade et Moeslund, 2014). Adverse
weather conditions such as fog, rain, snow, etc., further limit the observation of objects to a
short distance from the camera (Robinault, 2021), and thus make detection difficult. Even
after all these drawbacks, these cameras have been used extensively in video surveillance
systems (Valera et Velastin, 2005; Kim et al., 2011).

1.2.2 Infrared Camera

To address the issue of scene brightness, the infrared cameras were proposed as they
capture near-infrared emissions from objects (Ibrahim, 2016). To be precise, the term
infrared camera is a bit of misnomer because the classic visual camera can also capture the
near-infrared emissions, but it is restricted to visible bandwidth using a filter (Robinault,
2021). Therefore, the infrared camera is nothing, but a visual camera coupled with an
infrared (IR) lighting. The IR lighting illuminates the scene with near infrared radiation
(0.7-1.4 pm) and the camera captures the reflected radiation from objects in the scene
in both the visible and near infrared spectrum (Gade et Moeslund, 2014). Thus, it can
work during night too and can provide better contrast when an object moves past the
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camera (Haritaoglu et al., 2000). However, it is difficult to detect objects during rain in
this camera as rain drops appear as thick stripes in front of the camera (Liang et al.,
2012). Furthermore, due to the heat from IR lighting, this camera attracts flying insects
and spiders that can raise false alarms and, consequently, impact detection. Figure 1.1
demonstrates these issues with infrared camera.

Figure 1.1: Issues with the infrared camera: low visibility in rain (left) and insect on
camera (right).

1.2.3 Thermal Camera

Unlike the visual and infrared camera, the thermal camera does not require an external
energy source for illuminating the scene. In fact, it relies on the infrared radiation emitted
by all objects with a temperature above absolute zero. The thermal camera captures this
radiation which is in the mid and long infrared wavelength spectrum (3-14 pm) (Gade
et Moeslund, 2014). Since it does not depend on illuminating the scene, it can work
even in complete darkness (Ibrahim, 2016). The thermal image is rendered grayscale
where the high intensity pixels relate to high temperature. In other words, the higher the
temperature of an object in the scene, the brighter it will appear in the thermal image.
Advantages of this camera include lower sensibility to weather conditions and object
shadows (Liang et al., 2012), and long-range detection (Xu et al., 2016; Hu et al., 2018).
However, the main drawback of the thermal camera is that it is difficult to distinguish
an object from its background when both have almost the same temperature (Robinault,
2021).

Figure 1.2 shows examples of data acquisition by color and thermal camera. During
the day, we can observe that three persons and vehicles are visible in both the cameras.
While thermal camera provide better contrast for first two persons and is less affected by
shadows, the third person is better visible in color camera since in thermal camera, the
object is camouflaged with the car behind it. During night, we cannot see much from the
color camera, just the light emitted by an electric scooter. In complete contrast to this,
the thermal camera shows the complete scene with details and the person with its scooter
is clearly visible.
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Figure 1.2: Data acquisition on a site by color (left) and thermal camera (right). Each
camera captures two scenes at the same instant, one during day (top row) and the other
during night (bottom row).

1.2.4 Other Types of Acquisitions

The depth information of an object can be a useful information for its detection (Vil-
lamizar et al., 2018; Aravamuthan et al., 2020). This depth information can be added to
any camera type using an additional depth sensor. It determines the perspective size of
an object in the scene. However, using a depth sensor also has several problems, such as
mixed, lost, and noisy pixels in the depth image (Kim et al., 2013; Shao et al., 2014).

Another important information in the scene is the motion information. The camera
type specializing in this are known as the event camera (Lichtsteiner et al., 2008). It
generates events at the microsecond resolution. An event is triggered each time a single
pixel detects a change in intensity value. It finds its application in motion detection, object
segmentation, pose estimation, motion tracking, etc. (Gallego et al., 2020). Advantages
include low latency (no motion blur), high temporal resolution, high dynamic range, and
ultra-low power consumption. However, it cannot capture static motion and absolute
intensity, and therefore is often used together with other camera types. Event cameras
are not used for tasks such as video anomaly detection and perimeter intrusion detection
yet, where both spatial and temporal information are essential. The main reasons for this
are its extremely high cost and inability to capture visual features, such as texture and
color.

Finally, we can also have acquisitions from multi-camera systems where camera types
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can be homogeneous or heterogeneous. Intuitively, combining multiple cameras can pro-
vide more accurate information about the targeted object and may help to overcome
occlusions. Surveillance systems with multiple cameras has been studied extensively (Cai
et Aggarwal, 1999; Hu et al., 2004; Wang et al., 2009). Recently, an intelligent perime-
ter intrusion detection system was proposed using an integrated image acquisition device
that combines visual and thermal camera (Kim et al., 2018b). However, a multi-camera
system also brings new challenges, such as camera installation, camera calibration, object
matching, automated camera switching and data fusion (Hu et al., 2004).

To conclude, no acquisition scheme is perfect. Visual camera is still largely used but
it does not work well when the scene illumination is low. The infrared camera can work
in low illumination but it suffers in bad weather conditions, particularly during rain, and
furthermore infrared lighting attracts insects, which can occlude the view. Even though
scene illumination does not affect thermal cameras, but it has other problems like an ob-
ject is indistinguishable from the background if their temperature is similar. Additional
sensors, like the depth sensor, can also be added to any of the camera types to improve
scene comprehension. Also, a multi-camera system can be made using various camera
types. But even these configurations have their drawbacks. Therefore, the video acqui-
sition scheme should be chosen according to the requirements of the site and concerned
task.

1.3 Open Challenges

In the context of video surveillance, the cameras are generally fixed in a static position
to monitor a site (Valera et Velastin, 2005; Bouwmans, 2011). This site can be either
indoors like a bank or agency, or outdoors like an industrial site, private property, or public
places such as a city square. We focus on outdoor sites and they are more challenging
due to environmental conditions like rain, dust, or bad weather (Hu et al., 2018). The
system must be operational continuously for many days and encounter changing light
and weather (i-LIDS Team, 2006). Several authors have identified different challenges in
the outdoor video surveillance (Bouwmans, 2011; Brutzer et al., 2011). We can group
all these challenges into three main categories. The first category is specific to the data
acquisition. The second category corresponds to the captured scene as a whole and the
third is linked to the objects of interest.

1.3.1 Challenges in capturing the scene

These challenges are related to the acquisition and transmission of the video signal.

a) Noise: It is characterized by a random variation in pixel intensities or color compo-
nents (Xu et al., 2016). In video surveillance, there are two main sources of noise (Brutzer
et al., 2011). Noise related to the quality of the sensor and noise related to compression.
In the case of the sensor, noise is often present when the brightness of the scene is low.
This noise is more frequent on thermal cameras (Gade et Moeslund, 2014). Compression
noise is related to encoding and depends on the bandwidth available on the network.

b) Automatic adjustments: Cameras try, as far as possible, to maximize the dy-
namics of their sensor to present a correctly contrasted image. They accomplish this with
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functionalities like auto focus, automatic gain control, automatic white balance, and auto
brightness control (Bouwmans, 2014). These adjustments results in an overall change in
brightness and color levels among different frames in the video. This phenomenon is more
important on thermal cameras, where the sensors also auto-adjust depending on the scene
temperature (Gade et Moeslund, 2014).

c) Vibrations or jitters: It refers to all the untimely movements of the camera
which cause a displacement of the optical center. We are in the case of a fixed camera
where the optical center and all the shooting conditions must not be modified during
the acquisition of the video. However, it is not uncommon that the camera experiences
some vibrations due to wind or other factors (Xu et al., 2016; Sehairi et al., 2017). These
vibrations cause false motions in the scene (Bouwmans, 2014). Mechanical or software
solutions can be used to correct this defect (Bouwmans, 2011). If these solutions prove to
be insufficient, the same pixel coordinates on two successive images no longer represents
the same structure in the scene.

d) Dirty or Misadjusted lens: When the cameras are outdoors, projections of rain,
dust or bad weather can gradually degrade the quality of the image (Hu et al., 2018;
Zou et al., 2019). Likewise, the camera lens adjusted during installation may become
out of focus over time. As a result, the video acquired by the camera gradually lose
sharpness and becomes blurry (Liang et al., 2012). This problem should not be taken
lightly because it corresponds to many real cases. A blurred image causes a significant
loss of the information (both texture and color) contained in the scene (Tsakanikas et
Dagiuklas, 2018).

This list is not exhaustive. We can add the case of so-called day / night cameras which
transmit color frames when the scene brightness is sufficient and switch to grayscale frames
when the brightness is low. We can also add the case of cameras with integrated infrared
lighting that we have briefly presented previously or the problems of dazzling by vehicle
headlights.

1.3.2 Challenges related to the complexity of the scene

This second category of challenges is linked to the complexity of the scene, regardless of
the presence or absence of objects of interest. In the context of outdoor video surveillance,
we can be confronted with a multitude of situations which can range from a parking lot
without trees, to a field bordered by tall trees and even a riverbank. In addition, the al-
gorithms must also consider different climatic conditions and different lighting conditions.
These different situations and conditions can be summarized by the following set of cases.

a) Progressive illumination changes: These variations are generally caused by the
change in light conditions which progressively evolve over time and by the course of the
sunlight (Bouwmans et al., 2008; Xu et al., 2016). For example, it can be caused by the
passage of cloud shadows in the scene.

b) Sudden illumination changes: It corresponds to a sudden change in illumination
between two successive images (Brutzer et al., 2011; Xu et al., 2016). This change can
be either in part of the image or in the full image (Cermerio et al., 2018). It is generally

10



1.3. OPEN CHALLENGES

caused by the activation or deactivation of exterior lighting, but it can also be linked to
the sudden introduction of a massive object into the scene (Bouwmans, 2011).

c) Dynamic background: Sometimes, some parts of the scene are dynamic and
contain movements of irrelevant objects. Examples include tree branches or flag driven
by the wind, the reflection of moving clouds on the surface of river, snowflakes, rain, etc.
This can confuse the system to make false detections (Liang et al., 2012; Bouwmans, 2014;
Cermeno et al., 2018).

d) Shadows: Managing shadows is another big challenge (i-LIDS Team, 2006; Al-
Najdawi et al., 2012). Shadows casted by moving objects of interest or static objects of
scene can lead to false detections (specially in grayscale mode) (Liang et al., 2012). Unlike
color cameras, the thermal cameras do not have this problem of moving object shadows

(Gade et Moeslund, 2014).

e) Perspective: This challenge is linked to the fact that we want to detect objects of
interest both close and far from the camera. However, the same object does not have the
same size depending on its distance from the camera (see Figure 1.3) (Hu et al., 2004).
Besides, weather conditions can attenuate the contrast between the object of interest and
the background of the scene. This, along with object’s perspective, makes detection more
difficult (Buch et Velastin, 2014). Furthermore, as the apparent object size decreases with
the distance, the apparent object speed also decreases.

Figure 1.3: Effect of perspective: three people (with blue bounding boxes) in the same
image with different apparent size. Image source: ShanghaiTech dataset (Luo et al.,
2017a).

1.3.3 Challenges related to the objects of interest

This last category of challenges concerns more specifically the objects that one seeks to
detect in the scene. These challenges are therefore much more linked to the problem we
are trying to solve. Most video surveillance tasks face the following challenges.

11
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a) Camouflage: Camouflage, whether intentional or not, occurs when the difference
in appearance between the object of interest and the background is small (Maddalena
et Petrosino, 2008; Brutzer et al., 2011). It is a particularly difficult challenge when the
scene is full of different sized objects as shown in Figure 1.4. It is often possible to tune
the parameters of an algorithm to detect objects on a short camouflaged video sequence
(Cermeno et al., 2018; Kim et al., 2018b). We can therefore manage to detect camouflaged
objects by increasing the sensitivity of the algorithm. However, when these very sensitive
parameters are used for monitoring a site 24 hours per day, the number of false alarms
can become impossible to manage.

Figure 1.4: Camouflaged image with three persons to detect. Source: (Robinault, 2021).

b) Hole in the object of interest (Foreground aperture): This problem occurs
when objects having insignificant texture difference with the scene background, move
slowly in the scene or in the axis of the camera. Due to this, the object pixels are difficult
to detect because they can be embedded in the scene background (Maddalena et Petrosino,
2008; Bouwmans, 2014). Thus, the same object may appear as several small objects, as
if there are holes in the object.

Among other challenges, we have the speed of objects and their manner of movement
(i-LIDS Team, 2006). Very slow or very fast moving objects can be difficult to detect.
Furthermore, the manner in which the object moves can create ambiguity, e.g., person
crawling or imitating an animal.

1.4 Datasets

Since we investigate the problem of abnormal event detection in videos, we explore the con-
cerning datasets. Concretely, we describe the datasets for video anomaly detection (VAD)
and perimeter intrusion detection (PID). As mentioned previously (refer Section 1.1), we
are interested in systems that operate in the outdoor environment and consequently we
choose datasets that follow this criterion.
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1.4.1 VAD datasets

Anomalies in video can be caused by anything like riding a bicyle, fighting, dancing,
playing, running, etc. In other words, they depend on context and can differ from one
dataset to another. A formal definition for the VAD task will be presented in Chapter 3.

VAD methods rely on a large number of datasets in the literature such as: subway
entrance (Adam et al., 2008), subway exit (Adam et al., 2008), UMN (Mehran et al., 2009),
UCF-Crime (Sultani et al., 2018), UBnormal (Acsintoae et al., 2022), UCSD Pedestrian
(Li et al., 2013), CUHK Avenue (Lu et al., 2013), ShanghaiTech (Luo et al., 2017a), etc.
However, most of recent works only use the last three datasets of the list for unsupervised
video anomaly detection (Zhao et al., 2017; Lee et al., 2018; Liu et al., 2018; Gong et al.,
2019; Ionescu et al., 2019; Park et al., 2020; Astrid et al., 2021b; Liu et al., 2021b; Lv et al.,
2021; Park et al., 2022). The reasons for not using the other datasets are the following: (a)
Subway entrance and subway exit dataset: the scenes are in indoor environment rather
than outdoors. No clear training sets, for instance, Cheng et al. (2015) use the first
15 minute videos for training, while Lu et al. (2013) use more than half of the videos
for training; (b) UMN: some scenes are in indoor environment, no clear training and
testing split (Ramachandra et al., 2022) and the dataset is already saturated (performance
above 99% by many methods) (Acsintoae et al., 2022); (¢) UCF-Crime: used for weakly
or semi supervised anomaly detection since it contains both annotated anomalies and
normal events in the training set (Ramachandra et al., 2022; Acsintoae et al., 2022); (d)
UBnormal: a recent dataset but it consists of synthetic data instead of real anomalies.

We detail below the three commonly used VAD datasets, i.e., UCSD Pedestrian,
CUHK Avenue, and ShanghaiTech, respectively.

1.4.1.1 UCSD Pedestrian Anomaly Dataset

It is one of the most widely used datasets for video anomaly detection (Kiran et al., 2018).
This dataset consists of video clips recorded with a stationary color camera with grayscale
frames, overlooking pedestrian walkways on the UCSD campus (Li et al., 2013). It has
two distinct scenes, leading to two subsets of the dataset, called as Pedl and Ped2. The
difference between the two subsets is the walking direction (towards and away from the
camera in Pedl, parallel to the camera plane in Ped2) and frame resolution (158 x 238
in Pedl and 240 x 360 in Ped2). Most works use only the Ped2 dataset (Gong et al.,
2019; Tonescu et al., 2019; Feng et al., 2021; Georgescu et al., 2021a; Liu et al., 2021b;
Cho et al., 2022; Park et al., 2022) because Pedl has a considerably low video resolution
(Hinami et al., 2017; Doshi et Yilmaz, 2021; Ouyang et Sanchez, 2021; Le et Kim, 2022),
is suitable for pixel-level and not frame-level anomaly detection (Xu et al., 2015a; Luo
et al., 2019) and has ambiguity in anomaly annotation (some events labeled as normal in
training set are considered as anomalies in testing set) (Nguyen et Meunier, 2019). For
all these reasons, we also only focus on the UCSD Ped2 dataset.

There is a constant movement of people in this dataset, and it is considered normal.
The abnormal events are due to the circulation of non-pedestrian entities, i.e., bikers,
skaters, carts, and wheelchairs. All these events occur naturally, i.e., they were not staged
for dataset collection. Figure 1.5 shows illustrative normal and anomalous frames of this
dataset. This dataset contains 28 videos in total, with 120 to 200 frames per video. The
training set has 16 videos (2,550 frames) without anomalies and the testing set comprises
of 12 videos (2,010 frames) with anomalous events. Both pixel-level and frame-level
annotations are provided with this dataset. The following challenges are present in this
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Figure 1.5: Example frames from the UCSD Ped2 dataset. First row contains frames
without any anomaly, with increasing crowd volume (left to right order). Second row
shows anomalous frames with anomalies highlighted in red bounding boxes.

dataset: dynamic background, shadows, perspective, and camouflage.

Despite being widely used, this dataset has various shortcomings. First, it is one of
the smallest datasets in terms of videos, number of frames, total anomalies, and number
of anomaly types. Therefore, most methods have almost perfect results on this dataset.
Second, all the anomalies can be detected by only analyzing a single frame at a time.
In other words, the anomalies have a dominant appearance / spatial difference from
normality and it is easy to detect them based on spatial features, without requiring the
temporal characteristics.

1.4.1.2 CUHK Avenue Dataset

It consists of one scene captured in the Chinese University of Hong Kong (CUHK) campus
avenue with a fixed color camera (Lu et al., 2013). People walking towards various pre-
defined directions is considered as a normal event. The abnormal events are due to
either non-pedestrian objects like bicycle or unexpected pedestrian behavior like running,
loitering, jumping, throwing bag, walking in prohibited direction, etc.. We must highlight
that this was the first dataset to introduce loitering (static) as an anomaly, which is
important for surveillance applications. Unlike UCSD Ped2, anomalies are mostly staged
in this dataset. Some illustrative normal and anomalous frames of this dataset are shown
in Figure 1.6

This dataset contains 16 video clips (15,328 frames) for training and 21 for testing
(15,324 frames), with a frame resolution of 360 x 640. The training videos consists of
normal events with the exception of few videos with small occurrences of anomalies. The
testing videos have both normal and abnormal events. Like UCSD Ped2, we have both
the pixel-level and frame-level annotations. This dataset presents the following challenges:
camera shakes, perspective, dynamic background, and progressive illumination changes.

Avenue dataset also has still some deficiencies. Like UCSD Ped2, we have a very
small amount of data for deep neural networks and some authors argue that the amount
of normal events is not sufficient for training (Li et Chang, 2019). Furthermore, the
annotations are ambiguous for some test videos, leading to their exclusion by some works
(Hinami et al., 2017; Tonescu et al., 2019; Ouyang et Sanchez, 2021).
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Figure 1.6: Example frames from the CUHK Avenue dataset. First row contains frames
without any anomaly but with different scene dynamics. Second row shows the following
anomalies in red bounding boxes (left to right order): bicycle, throwing bag and running
person, loitering and person walking in wrong direction.

Figure 1.7: Some frames from the ShanghaiTech dataset, each from different scene. First
row contains frames without any anomaly but with different scene dynamics. Second row
depicts the following anomalies in red bounding boxes (left to right order): chasing, small
truck, brawling and two people jumping.

1.4.1.3 ShanghaiTech Campus Dataset

All previous datasets had a single camera view (or scene) in training and testing set.
Having only a single view might lead some models to overfit by memorizing the fixed
background. That is why it is essential to have different views in the dataset, so that
the proposed detection method is aware of different scenes and generalizes to them. The
ShanghaiTech Campus dataset is one of the most challenging datasets for video anomaly
detection and includes 13 different views with various lighting conditions and camera
angles (Luo et al., 2017a). The videos are filmed at the ShanghaiTech university campus
using color cameras with the frame resolution of 480 x 856. Pedestrians walking in the
campus with regular pace is considered as a normal event. Abnormal events are caused
either by the movement of unauthorized objects like bicycle, skates, strollers, etc. or by
irregular pedestrian behaviors like brawling, chasing, jumping, throwing objects, robbery,
etc. Figure 1.7 illustrates various normal and abnormal events in this dataset.

It is one of the biggest anomaly detection datasets with 330 training (274,515 frames)
and 107 test videos (42,883 frames). Like other datasets, training videos only contain nor-
mal events and testing videos have both normal and abnormal events. For each anomalous
event both pixel-level and frame-level ground-truth annotations are available. It is worth
noting that recently Zhong et al. (2019) proposed a reorganization of this dataset to also
have annotated anomalies during training for weakly supervised learning. We focus on
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Dataset Number of frames #Anomalies #Atnomaly
Total | Train | Test |Normal|Abnormal ypes
UCSD Ped2 | 4,560 | 2,550 | 2,010 | 2,924 1,636 23 5
Avenue 30,652 | 15,328 | 15,324 | 26,832 3,820 47 5
ShanghaiTech | 317,398 | 274,515 | 42,883 | 300,308 | 17,090 158 11

Table 1.1: Description of video anomaly detection datasets.

the original dataset setting as we focus on developing methods without annotations. This
dataset presents the following challenges: noise, camera shakes, shadows, perspective,
dynamic background, progressive and sudden illumination changes.

We still have the following deficiencies in this dataset. Despite being a very large
dataset, we have only a small number of anomalies (158) belonging to only 11 anomaly
types. Therefore, it lacks diversity and number of anomalies. Similarly, since there are
overall 13 scenes, we have a small training set for each scene. This small per-scene
training set is not fully representative of all the normal activities (Ramachandra et al.,
2022). Therefore, many works tend to use some form of data augmentation techniques to
have enough representative data (Astrid et al., 2021a; Feng et al., 2021).

Table 1.1 summarizes the three datasets with frame-level details. It must be noted
that none of these datasets have a validation set, which makes it difficult to choose hy-
perparameters while training any model.

1.4.2 PID datasets

A perimeter intrusion detection system (PIDS) concerns with the detection of intrusions
in a secured perimeter. Like VAD, the intrusions depend on the context and vary from one
dataset to another. A mathematical definition for PID task will be presented in Chapter
3. PID can include various subtasks such as detection and tracking, therefore historically
algorithms were tested on the datasets of these subtasks. For example, CAVIAR (Crowley
et al., 2005), PETS2006 (Thirde et al., 2006) and AVSS2007 (AVSS dataset, 2007) have
been used to test the tracking module of the PIDS (Vijverberg et al., 2010, 2013; Nayak
et al., 2019). Concerning the PID task, most works use their private datasets. One recent
work introduces a new dataset, called SIC (Cermeno et al., 2018), but it is available
under strict conditions and, without annotations, thus omissions cannot be evaluated.
Finally, there is only one public dataset, dedicated for the PID task: the i-LIDS sterile
zone dataset (i-LIDS Team, 2006) and it has been extensively used in the literature (Buch
et Velastin, 2008; Vijverberg et al., 2013, 2014; Buch et Velastin, 2014; Cermeno et al.,
2018).

1.4.2.1 i-LIDS sterile zone dataset

The imagery library for the intelligent detection systems (i-LIDS) consists a library of
closed-circuit television (CCTV) video footage datasets for benchmarking video analytics
systems. Concerning the PID task, they propose a sterile zone dataset, known as the
i-LIDS sterile zone dataset (i-LIDS Team, 2006). This dataset comes with a proper
annotation and evaluation procedure to ensure its relevance for the industrial application.
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Non-intrusion

Intrusion

Figure 1.8: Example frames drawn from i-LIDS sterile zone dataset with various intrusion
(intruders in red boxes) and non-intrusion frames. The color and black and white frames
belong to view 1 and view 2 respectively. The time of the day in four columns are dawn,
dusk, night, and day. The distractions (in blue boxes) in non-intrusion row (left to right
order) are a rabbit, birds with rain, fox and an insect on camera respectively. In intrusion
row (left to right order), we have two intruders, intruder with ladder during snow, log
rolling intruder and crawling intruder respectively.

The PID objective in this dataset is to detect the presence of people in a sterile zone. It
consists of two sites monitored by two different cameras (view 1 in color/monochrome and
view 2 in monochrome) as shown in Figure 1.8. There is a security fence in each site (view)
and the aim is to detect intrusion as soon as it enters the site. Intruders try to breach
the fence in various ways. For example, people may walk, run, crawl, or roll towards the
fence and, on occasion, may carry climbing aids, such as a ladder. The intruders can be at
three different distances from the camera: close, middle, and far. The cameras recordings
are over many days, capturing different times of the day, such as dawn, day, dusk, and
night. They also include various weather conditions, such as cloudy, rainy, snowy, and
foggy. Furthermore, there are various distractions that might trigger false alerts, like
plastic bag or paper moving due to wind, bats, birds, foxes, insects, rabbits, squirrels,
shadows through the fence, etc. Figure 1.8 illustrates various distractions and intrusion
examples. All these factors like different weather conditions, different times of the day,
numerous distractions, and various ways in which the intruder approaches the fence make
it a very challenging and realistic dataset. Finally, the challenges present in this dataset
are noise, automatic adjustments (switch from color to monochrome images and vice-
versa), vibrations, progressive / sudden illumination changes, shadows, perspective, and
camouflage.

It has two separate disks for training and testing. The PID system is developed using
the training disk data and its performance is evaluated with the testing disk data. Each
disk contains the two camera views, with over 20 hours of video recorded in the various
previously cited situations. All videos are taken at 25 FPS with 720 x 576 frame size
resolution. Each disk contains annotations, distractions, and other information for each
video. The annotation provided is the time interval of each intrusion event in the video
i.e., the entry and exit time of people in the respective scene.

Table 1.2 summarizes the i-LIDS dataset where view 1 and view 2 corresponds to
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Number of videos per intrusion count

View Set #Videos | #Intrusions

0 1 10 | 13 | 15 17 | 31

) train 123 113 10 | 113 0 0 0 0 0
View 1

test 17 113 10 0 2 1 1 2 1

) train 113 103 10 | 103 0 0 0 0 0
View 2

test 16 103 10 0 1 1 1 2 1

Table 1.2: i-LIDS Sterile Zone dataset description.

the color camera and monochrome camera respectively. Each view has videos with and
without intrusions. In both training and testing disk, we have 10 videos from each view
without any intrusions. In training disk, we have 216 short videos (=~ 3 minutes), with
single intrusion per video. These videos can be used for training and/or validation for
example. The testing disk have 7 and 6 very long videos in view 1 and view 2. These long
videos range from 36 minutes to 92 minutes and contain between 10 and 31 intrusions
per video. Even though the total number of intrusions are also 216 in testing disk, the
long-length videos makes it more challenging. All i-LIDS videos contain various distrac-
tions and/or intruders but these long videos also have a drastic change in weather and
luminosity. This makes this testing dataset even more relevant from practical perspective.
Furthermore, the distractions, intrusions and other information is very well distributed in
both the views and thus we do not have bias for the choice of a camera view. It must be
noted that like VAD datasets, it does not contain an official validation set. However, in
unsupervised context, the intrusion videos from the training set can be used as a form of
validation set.

Although we have extensive real-life elements in i-LIDS dataset, it has some major
drawbacks. First, we only have people as intrusion. This is a limitation because in real-life,
intrusion can very well be some other object like a car, a bike, a truck, etc.. Consequently,
any good human detector system might work very well in this dataset but that does not
necessarily mean that it is a good PIDS. The second important limitation is that we
have only two views with very similar settings. This makes it easy for the algorithms
(particularly supervised learning based) to learn the scene. A multi-view dataset would
have added an additional difficulty in the PID task.

1.5 Conclusion

In this chapter, we explored the data acquisition schemes in the surveillance systems,
followed by the common challenges and finally the datasets used for the VAD and PID
tasks.

Visual camera or color camera is still one of the most used cameras for video surveil-
lance, even though it does not perform well when the scene has low illumination. The
infrared camera eliminates this problem of visual camera with infrared lighting, but this
lighting has other problems, like it attracts insects and performs poor in rainy condition.
Thermal camera relies on the infrared radiation emitted by the objects and hence it does
not require an external lighting, but it also has problems like we cannot distinguish an
object from its background if their temperature is similar. Since none of the video acquisi-
tion device is perfect, often an additional sensor like the depth sensor is used, or multiple
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camera types are used as a multi-camera system, but even these configurations have their
drawbacks. To conclude, one should use the video acquisition scheme depending on the
requirements of the site and concerned task.

We highlighted various challenges for surveillance systems into three categories: con-
cerning capturing the scene, concerning complexity of the scene, and concerning objects
of interest. The first category comprises challenges like noisy frames, camera vibrations
and gain adjustments. The second category includes challenges like illumination changes,
dynamic background, scene perspective and shadows. Finally, the last category includes
camouflage and foreground aperture as challenges.

We explored various datasets for the VAD and PID tasks with their difficulties and
shortcomings. Concerning VAD task, three datasets are mainly used. Out of these three
datasets, UCSD Ped2 and CUHK Avenue are single scene dataset, i.e., they have only one
scene for training and testing. Ped2 is the smallest and easiest dataset, having anomalies
with distinguishable appearance like bike, skate, etc. Avenue dataset is slightly more
difficult as it also have anomalies where the normal object has temporal irregularity, like
person throwing a bag, running, etc. Finally, the ShanghaiTech dataset is the biggest
and most challenging dataset among the three, with 13 different scenes captured by color
cameras. There is a good variety of anomalies in this dataset and contains both appearance
and temporally irregular anomalies. The fact that the same model needs to understand
13 different scenes and detect anomalies is challenging. However, none of these datasets
are perfect: they do not have a validation set, they lack proper anomaly description and
correct test annotations (some normal events like ice-cream eating are present in test set
but not the training set, causing ambiguity), they lack diversity and have small amount
of anomalies, and they contain only short video clips. In real-life, the VAD system needs
to protect a site for a long time (atleast few days or weeks) and must face changing scene
dynamics like weather, lighting, etc., therefore longer videos are essential. Ideally, we
need a new multi-view dataset of long videos, having appropriate anomaly description
and annotations, containing diverse anomalies, and accompanied with a validation set.

For the PID task, we have only one public dataset, i.e., the i-LIDS sterile zone dataset
and it has just two camera scenes. It is challenging as intruders enter the scene in various
ways (like crawling), and there are distractions caused by animals/insects, along with
changing scene dynamics like rain, snow, etc.. There is no official validation set in this
dataset. It also lacks intrusion types and has only person as intruder. Furthermore,
the two scenes are very similar to each other, they are like mirror images of each other.
Therefore, we require more datasets for the PID task, each with a validation set. They
should have multiple scenes and diverse intruder types like cars, bikes, etc.
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Chapter 2

Literature review

This chapter presents a review of existing works for spatio-temporal feature learning in
videos, with main focus on video anomaly detection and perimeter intrusion detection
task. We first present all necessary background concepts needed for understanding the
chapter. We next explore the existing spatio-temporal feature learning approaches, fol-
lowed by unsupervised approaches. In the next two sections, we review existing methods
concerning video anomaly detection and perimeter intrusion detection. Finally, we con-
clude this chapter with takeaway points along with our chosen direction to tackle these
problems.
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2.1. INTRODUCTION

2.1 Introduction

In this chapter, we present the literature review of existing works for spatio-temporal
feature learning on videos, with particular focus on two unsupervised tasks, i.e., video
anomaly detection and perimeter intrusion detection. A video consists of spatial and
temporal dimensions. We need to understand these space-time characteristics of the
video, in order to have a meaningful interpretation of it, which helps in performing various
tasks and applications like video object recognition, segmentation, anomalous behaviour
detection, etc. Many works address this, but they use labeled data. However for some
tasks, there is no available annotated data, such as for video anomaly detection and
perimeter intrusion detection. Therefore, we need methods that can understand the
spatio-temporal characteristics of videos without labeled data. In this chapter, we will
first present some background concepts. Then, we will explore various ways for space-
time feature learning from video, followed by reviewing unsupervised approaches. We will
then consider methods of literature concerning video anomaly detection and perimeter
intrusion detection respectively.

2.2 Background

This section aims to present in a concise manner all necessary background concepts re-
quired for understanding the subsequent sections. These concepts are on different types of
Artificial Neural Networks (ANNs), which aims at learning patterns within data (Bishop
et Nasrabadi, 2006). ANNs originated from various attempts to represent the human
brain from a mathematical perspective (McCulloch et Pitts, 1943; Rosenblatt, 1957).
The underlying hope was that such representation would provide with pertinent learning
capabilities.

The main idea of the neural networks is to construct a model parameterized by weights
(from a few hundreds up to a trillion (Fedus et al., 2022)) in order to fit a given target
function. The learning of models is done with gradient descent and more specifically
by using the backpropagation algorithm (Rumelhart et al., 1986). These models are
constructed by stacking layers and various types of layers were proposed to handle different
types of inputs. For example, convolutional layers (Fukushima et Miyake, 1982) were
introduced to process images. They have a translational invariance property, which is
highly useful for tasks such as object detection in images. For sequential data, recurrent
layers were introduced (Jordan, 1990). These layers keep in an internal state, the memory
of previous inputs, to help future outcomes.

In the following subsections, we begin reviewing the core concepts of neural networks
via the standard feedforward network. Then, we explain the convolutional neural network,
followed by recurrent neural network, autoencoder and finally the generative adversarial
network.

2.2.1 Feedforward neural network

ANNSs use artificial neurons that were designed to loosely mimic the biological human
neuron. A human neuron receives inputs through axons and dendrites and, depending on
the intensity of the electrical impulse received, in turn generates an impulse to subsequent
neurons. For ANN, such functioning is formalized (McCulloch et Pitts, 1943) using the
following equation:

23



CHAPTER 2. LITERATURE REVIEW

fx,w)=o0 (Z wx; + b) (2.1)

Each input signal x; is multiplied by a dedicated weight w;, the resulting signals are
summed along with a bias term and fed to an activation function o that decides if the
neuron should activate or not, and propagate the signal to subsequent neurons. Any
function can serve as activation function, as long as it is continuous and non-linear.
Typical activation functions are described in next subsection.

[ hidden layers
Y

input layer ¢

Figure 2.1: Pictorial representation of a feed-forward neural network. Source: (Nielsen,
2017)

The neurons are stacked to make a layer and stacked layers form a neural network
model. The first layer is the raw input data (for example, pixel values of an image or
video) and subsequent layers, called hidden layers, extract more abstract information of
the input until one reaches the final layer, called the output layer. Figure 2.1 depicts a
model with four layers. It is a feedforward neural network, where the term feedforward
means that the information flows strictly in a forward direction from the input to the
output. It is a fully connected network (or dense network) since each neuron on a layer is
connected to all the neurons of the preceding layer. In other words, the activation value
of a neuron depends exclusively on the activation values of the neurons of the preceding
layer. Concretely, the activations of the neurons in the I layer, i.e., x), are a linear
combination of the values of the preceding layer x| passed through a nonlinear function
o:

xV = o (W(l)x(l_l) + b’ ) (2.2)

where W and b® are the weights matrix and the bias vector respectively. These are
the parameters that are tuned during the training stage of the neural network. Usually,
x(9 is referred to as input, x) (N being the number of layers in a model) as prediction
or output and the remaining x¥ (i =1,..., N — 1) as hidden layers.

2.2.1.1 Activation functions

An activation function defines how the weighted sum of the input is transformed into an
output from a node or nodes in a layer of the neural network (Haykin et Network, 2004;
Goodfellow et al., 2016). The choice of activation function has a crucial impact on the ca-
pability and performance of the neural network, and different activation functions may be
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used in different parts of the network. Typically, all hidden layers use the same activation
function, while the activation function for the output layer depends upon the type of pre-
diction required. Since neural networks are typically trained using the backpropagation
algorithm (refer next subsection) that requires the derivative of prediction error in order
to update the weights, therefore activation functions are also typically differentiable.

Hyperbolic Tangent function ] Sigmoid function 10 ReLU
05 0.8 8t
0.6 6
0
0.4 4!
05 0.2 2
-1 0 0
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

Figure 2.2: Common activation functions.

Some commonly used activation functions are shown in Figure 2.2 and are summarized
below:

e Sigmoid. The sigmoid or logistic function squashes the input in the range 0 to 1.

B 1
C14ev

o(v)

(2.3)

As shown in Figure 2.2, the large values of input incline towards the value 1 in
output, while the small values tends closer to 0. This property of sigmoid output
can be seen as a probability distribution, and thus it is used in binary classification
(with single output neuron) to predict whether a certain example belongs to a fixed
pre-defined class or not. However, there are two main issues with this activation
function. The first issue is of the vanishing gradient. Since the output of sigmoid
saturates (i.e. the curve becomes parallel to z-axis) for a large positive or large
negative number, the gradients at these regions is almost zero. When n hidden
layers use an activation like the sigmoid function, n small derivatives are multiplied
together. Thus, the gradient decreases exponentially as we propagate down to the
initial layers. A small gradient means that the weights and biases of the initial
layers will not be updated effectively with each training iteration, thus making the
learning inefficient. That is why, sigmoid function is not used in hidden layers. The
second issue is that the sigmoid outputs are not zero-centered and it is undesirable
because it can indirectly introduce zig-zagging dynamics in the gradient updates for
the weights.

e Hyperbolic tangent. It is also known as the tanh activation and it squashes the
input to [-1, +1] range.
e’ —e"
)= (2.4)
It is very similar to the sigmoid activation and even has the same S-shape as shown
in Figure 2.2. Since the output is centered at zero, we do no have the problem of
zig-zagging dynamics in gradient updates like sigmoid. We still have the same issue

of vanishing gradient but the range of inputs that do not saturate are larger here.

25



CHAPTER 2. LITERATURE REVIEW

Like sigmoid, it is not suitable for hidden layers but can be used in output layer for
binary classification. Since the output of tanh is symmetric around zero, it leads to
faster convergence of the neural network.

e ReLU. The rectified linear activation function (ReLLU) is a piecewise linear function
that outputs the input if it is positive, otherwise, it outputs zero. It is defined as:

o(v) = max(0,v) (2.5)

It is less susceptible to the vanishing gradient problem since the gradient for all
inputs greater than 0 is 1. This is why it is one of the most used activation functions
and is mostly used in hidden layers. The main issue with this activation function
is called the dying ReLLU. It occurs when the neuron gets stuck in the negative side
and constantly outputs zero. Because gradient of 0 is also 0, it’s unlikely for the
neuron to ever recover. This happens when the learning rate is too high or negative
bias is quite large. To address this issue, Leaky ReLU is proposed, which allows
small negative values when the input is less than zero. ReLU or its variants are
usually not in the output layer.

e Softmax. It is not a classic activation function that can be applied on a single
neuron. The softmax function turns a vector of k real values into a vector of k
real values that sum to 1. The input values can be positive, negative, zero, but the
softmax transforms them into values between 0 and 1, so that they can be inter-
preted as probabilities. It is used as the activation function in the output layer of
neural network models that predict a multinomial probability distribution (Bishop
et Nasrabadi, 2006). It can be seen as a generalization of the sigmoid function which
was used to represent a probability distribution over a binary variable (Goodfellow
et al., 2016). Since softmax converts the input to a normalized probability distribu-
tion (between 0 and 1) that sum to 1, it is used in output layer of networks that do
multi-class classification. It is not used for hidden layer activations. Furthermore,
it should not be used for multi-label classification, i.e., when an example have more
that one labels like a dog and a bone. This is because softmax simply cannot pro-
duce more than one label with values close to 1. In this case, sigmoid function is
used.

We presented above some of the most common activation functions, with particular focus
to functions that are later used in this thesis. There are also other activation functions like
maxout, gaussian linear unit (GLU), exponential linear unit (ELU), etc. For hidden layers,
ReLU activation function is the most used. However, the application and architecture of
the neural network often dictates which functions to use, for example in LSTM (a type of
recurrent neural network), sigmoid and tanh functions are used as a ReLLU would make
learning unstable and maybe even impossible. Finally, for binary class classification with
single output value, sigmoid function is used in output layer. Similarly, for multi-class
classification, softmax function is the preferred activation function in output layer.

2.2.1.2 Training

So far we detailed the general architecture of the neural networks along with the various
activation functions, we now review the training procedure used to estimate the target
function. The aim is to train a model M : X — ) to approximate a unknown target
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function, where X is called the input space and Y the output space. The training is
done to extract the statistical properties of the inputs in order to maximize the posterior
probability p(y|x) of getting the correct y € ) given x € X. This maximization is done
through the minimization of an objective function:

min g [ LM(x, W), ¥) ] | (2.6)

where E is the expectation, M is the deep network, W represents the weights of M to
be set and L is the loss function measuring how close M(x, W) is to the true output. To
do this minimization, gradient descent is usually used. The standard way to do such an
optimization is Stochastic Gradient Descent (SGD) (Bottou et al., 1991). It computes
the average gradient

1

AW =15

ZAquﬁ(yz’vM (Xiawk*ﬁ) ) (27)
i€B

where (x;,y;) is the i-th element of the current batch B sampled from the training data,
and updates the weights using the backpropagation algorithm (Rumelhart et al., 1986)

as:

Wk = Wk—l — UAWk—l s (28)

where AW,._; is the gradient at iteration k and 7 is called the learning rate. For such an
optimization method, the speed and convergence towards a minima is highly dependent
on the shape of the surface of the objective function with respect to the weights. As
shown in Figure 2.3a, the optimization process may bounce back and forth, as the slope is
very steep (therefore creating a strong gradient). Multiple update rules have been further
developed to prevent such problem: momentum (Qian, 1999) (Figure 2.3b), Adagrad

(Duchi et al., 2011), RMSprop (Tieleman et Hinton, 2012), Adam (Kingma et Ba, 2015),
Adadelta (Zeiler, 2012), to name the most common.

U= =

(a) SGD without momentum (b) SGD with momentum

Figure 2.3: SGD optimization with and without momentum. On the left, without mo-
mentum the optimization process bounces between the ravine’s slopes whereas, on the
right, with momentum, optimization is smoother. Source: (Orr et al., 1999).

2.2.2 Convolutional neural networks

In the last subsection, we detailed the basic architecture of a neural network as well as
the training procedure used to optimize it. However, so far, we have only considered one
type of layer, i.e., the dense layer, where each output neuron is connected to each input
through a weight. While this layer is functional, it is not best suited for all types of input.
For instance, for processing images, each output neuron would be connected to each pixel,
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therefore requiring a tremendous amount of weights. These weights would not only be
hard to optimize but can also lead to overfitting. Furthermore, the dense layer is not
invariant to translations. Translation invariance is a very desirable property for image
processing and it refers to the ability to ignore positional shifts, or translations, of the
target in the image. For example, a cat is still a cat regardless of whether it appears in
the left half or the right half of the image.

To address these problems, layers that operate in a sliding window fashion can be used.
As the window slides over the input image, weights are re-used at every target position.
Therefore, translated inputs result in feature maps with translated activated neurons.
Moreover, as the computations of each neuron within a feature map are independent, one
can leverage the parallelism to speed up processing. Layers with such behavior are called
convolutional layers.

a) Convolutional layer A convolution operation can be mathematically defined as:

o(t) = (axb)(t) = /a(z)b(t —2)dz (2.9)

where a is input, b is kernel and o is the resultant output obtained by convolving input with
kernel. This can be interpreted as a weighted operation applied around the neighborhood
of the point £. We can easily extend this convolution operation to multiple dimensions.
For image data, we have discrete data as input in the form of pixels. Equation (2.9) can
be extended for image data as:

O(i.j) = (I« K)(i,j) = (K I)(i,5) = > > _I(i+m,j+n)K(m,n) (2.10)

where [ is input image, K is kernel and O is the convolved output at pixel (7, 7). This
output is also known as the feature map. Since convolution is commutative, we can
observe that in the equation (I * K) = (K % I). The region in the input space (here
image) that the kernel is looking at the current point is known as the receptive field.
Finally, the displacement in the image that the kernel performs after each convolution
operation is termed as the stride. Figure 2.4 shows an example of convolution operation
applied on an 7 x 7 image using a kernel of size 3 x 3 and stride 1 x 1. The orange region
in the image shows the receptive field of the kernel and green unit in feature map shows
the corresponding convolved output.

3x3 Receptive field

0TI lx1 et 0, O O ox9 Feature map
SEIEVENED 00 .................................................... FESC e pEm
Sl ofofo 1, 1)1]0 10 L2 14|33
Elofoofrlrloled.* [o]1 =" lrl2]3 (41
Elolol i1 olo o Talol o] [ ]3]3]1]n
o[1|1]0 010 3x3 Kernel 303 |1]1]0
1|1]0fo0 0
I K I+K

Figure 2.4: Convolution of an image [ with kernel K using stride 1 x 1.
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It is to be noted that various modifications to this classic convolution can be obtained
by increasing kernel stride, or padding the input image, or using dilation. The reader can
refer to the work of Dumoulin et Visin (2016).

b) Pooling layer This layer is also known as the downsampling layer. It is often
placed after obtaining the feature map and it summarizes the most pertinent values of
it. In other words, convolutional layers detect features, while pooling layers aggregate
them. Pooling layers reduce the amount of weights or parameters in the network, thus
speeding up the computation and reducing the chance of overfitting the training data. Like
convolution, this layer also have a kernel or filter, which performs the pooling operation
over the feature map and then this filter is slided with a certain stride. Two most common
pooling operations are max and average, i.e., taking maximum and average of the feature
map for a given filter size. Figure 2.5 demonstrates these two operations. The feature
map and filter size are 4 x 4 and 2 x 2 respectively. The filter is first placed on the top
left of feature map (shown with yellow color) to perform the pooling operation (max or
average), resulting in value (yellow color) shown in right side of the figure. Then, the
filter displaces with stride two to reach the top right (shown in blue color) and performs
the pooling operation again. This pooling process continues until the full feature map is
covered. Finally, we can observe the overall results of max-pooling and average pooling
layers in the figure.

6l11]4]7 ) 618
4 (558 Max pooling 314
1 {331 416
—_——
2121410 Average pooling | 2 | 2

Figure 2.5: Examples of max pooling and average pooling operations with filter size and
stride as two.

Convolutional neural network (CNN) is a type of neural network that uses convolution
in at least one of its layers. However, given a model with a single convolutional layer,
the context (receptive field) a given neuron can gather is limited to the size of the kernel.
Increasing context information requires to increase the size of the kernel and therefore the
computation needed as well as the number of weights. A simple solution to this problem
is to stack multiple convolutional layers. By doing so, the receptive field will naturally
increase, while keeping the desired translational invariance property. Therefore, typical
CNNs are composed of many convolutional layers stacked on top of each other, where
each layer is followed by an activation function like a standard ANN. As we advance in
the layers, the size of feature map should generally decrease. For example, for image
classification task, we need a single output from the image. To do so, generally pooling
layers are used after each convolutional layer. Alternatively, strided convolutional layers
can also be used as they decrease the feature map size. Finally, at the end of last layer
in CNN, often a fully-connected (dense) layer is used and it reduces the final ouput to
desired dimensions (like dimension 1 for image binary classification). The basic mechanism
of training a CNN remains the same as for regular neural networks. Like weights of the
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feed-forward network, in CNN, the kernel parameters are meant to be learned. The initial
weights of an untrained CNN are randomly chosen. Then given the training data and
task, a loss function is used to calculate the error. This error is backpropagated to update
the kernel parameters. Like the regular ANN, the training is continued until the model
converges.

To conclude, CNNs are extremely versatile tools. Thanks to their limited number of
weights, they help mitigate over-parameterization problems inherent to dense layers. Fur-
thermore, they are also translation invariant and allow for easy parallelisation by design.
As a result, convolutional layers are used nowadays throughout the scientific literature.
For instance, 1D-CNNs have been used for automatic speech recognition (Kiranyaz et al.,
2021) and 2D-CNNs are the standard for image processing (Karpathy et al., 2014; Good-
fellow et al., 2016; Liu et al., 2016; Krizhevsky et al., 2017).

2.2.3 Recurrent Neural Networks

For the moment we described networks that takes as input spatial signals such as im-
ages. However in this manuscript, we are also interested in working with sequential
data since we want to extract information from videos. In this case the input data
r=(T1,...,T4...,27) is & sequence composed of T" elements.

By design, the feedforward and convolutional neural networks are not suited to model
long sequential data like a time series, speech, or text. Besides, the CNN can only gather
information up to the receptive field size. Although such behavior might be sufficient
for entries of fixed shape, for entries of varying length, it would be better to manage
to implement some form of memory that can gather a potentially unlimited amount of
information. For this purpose, there is another neural network variant, called recurrent
neural network (RNN) (Jordan, 1990). RNNs employ hidden vector denoted h which is
recursively updated at each timestep using the element from the input, and from which
the output y is predicted as:

ht = O’h(Wh.CEt + Uhht—l + bh) (2.11)
Yy = oy (Wyhi + by) (2.12)

where o0, and o, are activations function and Wj,, W,, b, b,, U, are parameters matrices
and biases.

. . Forget Update Output X;: Input
R Cte] — -l 3 ¢ » €t | he Hidden state
Ci: Cell state
f: Forget gate
f @— g. Memory cell
i Input gate
ht ht—l A T T f I o: Qutput gate
[l flg = . . — h-t
Xt It
(a) RNN (b) LSTM

Figure 2.6: Pictorial representation of a simple RNN and an LSTM. Source: (MathWorks,
2022).
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As shown in Figure 2.6a, in an RNN, the information feeds cells through a loop.
When it makes a decision, it takes into consideration the current input and also what
it has learned from the inputs it received previously. This is also demonstrated from
Equations (2.11 and 2.12). The RNN has two inputs, the present and the recent past.
This is important because the sequence of data contains crucial information about future
information. It allows the previous inputs to affect the current output. Due to this
internal memory, they have a particular advantage to form a much deeper understanding
of a sequence and its context. Classical RNN suffer from two major problems: exploding
and vanish gradient (Le Cun et al., 1997). The first problem refers when algorithm assigns
high importance to the weights, without much reason. The second issue occurs when the
values of a gradient are too small and the model stops learning.

These problems were solved with the introduction of the Long Short-Term Memory
(LSTM) by Hochreiter et Schmidhuber (1997). LSTM is special kind of RNN, capable
of learning long-term dependencies. In standard RNNs; the main unit is composed by a
simple structure, such as a single tanh layer. However, LSTM introduces a structure based
on four gates, which are used to remember important information, to forget irrelevant
information and to select which type of information is used in each iteration during the
learning. This is illustrated in Figure 2.6b. This mechanism allows the gradient to
backpropagate more easily essentially by smoothing out the update of the hidden vector h
at each timestep by using activation functions. Finally, another way to solve the problems
of a standard RNN is to use a Gated Recurrent Unit (GRU) (Chung et al., 2014). The
GRU is a simplified version of LSTM with only two gates: update gate and reset gate.
The update gate is responsible for determining the amount of previous information that
needs to pass along the next state. The reset gate is used from the model to decide how
much of the past information is needed to neglect; in short, it decides whether the previous
cell state is important or not. Finally, these two gates decide what information should be
passed to the output. In comparison to LSTM, GRU have lesser training parameters and
therefore uses smaller memory and executes faster. However, LSTM can provide better
accuracy in larger datasets. Therefore, the choice of RNN should depend on the task and
memory constraints.

While extremely effective, the LSTM or GRU networks are not suited for sequence
of images or videos as they only process vectors. Therefore, to handle such data, one
must first generate a meaningful vectorial representation and then apply the classical
LSTM architecture. This representation has the major drawback of not using the spatial
information for temporal processing. In order to correct this issue, Convolutional Long
Short-Term Memory (ConvLSTM) networks were introduced by (Shi et al., 2015). This
architecture uses the convolutions in both the input-to-state and state-to-state transitions
and adds peephole connections that allow the network to look at the cell state to make
decisions. Due to both convolutions and recurrent neural network in its design, it models
well the spatiotemporal relationships in a video. Similarly, ConvGRU (Ballas et al., 2016)
also have a similar functioning.

To conclude, RNNs facilitate the modeling of long-term dependencies through their
potentially infinite memory. Comparatively, CNNs are limited to a fixed receptive field,
which is cumbersome in case of sequences. However, the main drawback of the RNNs
formulation is its limitation for parallel computations. As the previous state needs to
be computed to output the next one, it becomes mandatory to run the calculations se-
quentially. Yet, despite such limitation, RNNs have been used with great success for
natural language processing (Lipton et al., 2015; Yonghui et al., 2016), speech recognition
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(Graves et al., 2013; Sak et al., 2015), video understanding tasks (Ballas et al., 2016;
Dwibedi et al., 2018; Kim et al., 2018a; Li et al., 2018), etc.

2.2.4 Autoencoder

The Autoencoder (AE) is a type of feed-forward networks which possesses the auto-
association property (Hinton et Zemel, 1993; Wang et al., 2016b). It is an unsupervised
learning algorithm and provides an alternative to dimensionality reduction techniques like
principal component analysis. It projects the data from a higher dimension to a lower
dimension using linear transformations and tries to preserve the important features of
the data while removing the non-essential parts. The main goal of this type of networks
is to learn how to reconstruct the data from a lower dimensional space representation.
Figure 2.7 depicts the classical architecture for AE. It tries to learn an approximation
of the identity function, to output & that is similar to x. The identity function seems a
trivial solution for this, but it can be avoided by placing constraints on the network, such
as by limiting the number of hidden units.
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Figure 2.7: Classic autoencoder architecture. Source: (Wikipedia contributors, 2022)

AE can be divided into three parts: encoder, code and decoder. The encoder com-
presses or downsamples the input into a lower dimensional representation. The space
represented by this new dimensionality is often called the latent-space or bottleneck and
contains the semantic representation or the code of the input. The decoder intends to re-
construct the input using only the encoding of the input. AEs have generalized the idea of
encoder and decoder beyond deterministic functions to stochastic mappings fencoder (h]2)
and Ggecoder (£]h) . The goal is to minimize argming, ||z — (f 0 g)(x)||*. The traditional
AE and PCA are not suitable for images or video frames as they ignore the spatial struc-
ture and location of pixels, which is termed as being permutation invariant. Furthermore,
it is important to note that when working with images, even with a small size like 100
x 100, these methods introduce large redundancy in network parameters due to dense
connections. Therefore, for spatial data of images, we need a new form of autoencoder,
which is presented below.
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2.2.4.1 Convolutional autoencoder

The CNN successfully understands spatial characteristics of images, with many times less
parameters than the fully connected networks due to convolution and pooling operations.
Inspired from this, these operations are used in the autoencoder to obtain a convolu-
tional autoencoder (CAE) (Masci et al., 2011). CAEs have fewer parameters on account
of their kernels being shared across many input locations/pixels. Like CNN, they use
convolutional and pooling layers, or strided convolutional layers, for encoding the input
image. Similarly, for decoding, the deconvolutional layer or unpooling layer, or both are
used. Finally, the mean squared error loss between input and reconstructed images are
back-propagated for learning. We present below the deconvolutional and unpooling layers.

Deconvolutional layer and unpooling

A deconvolutional layer in a neural network is a layer which is able to obtain a dense
map from downsampled and course input (Dumoulin et Visin, 2016). A more appropriate
name is the transposed convolutional layer, as the term deconvolution is misleading since
deconvolutional layers also perform convolutions. A transposed convolution has a trans-
formation going in the opposite direction of a normal convolution, i.e., from something
that has the shape of the output of some convolution to something that has the shape
of its input while maintaining a connectivity pattern that is compatible with said con-
volution. Pooling layers in convolutional networks are required in order to decrease the
number of network parameters. Unpooling layers perform the reverse of pooling layers
(see Figure 2.8).

switch i
variables Q g 32"!3:5&%
led f
unpooled
map

Pooling Unpooling

Convolution Deconvolution

Figure 2.8: Schematic representation of pooling, unpooling, convolution and deconvolu-
tion. Source: (Noh et al., 2015).

The location of the maximum activation in the pooling layer is recorded in switch
variables (Noh et al., 2015), in the unpooling layer it is placed back. The output of
such an unpooling layer is sparse, as it is an enlarged version of the input map. The
deconvolutional layer can produce a dense output map from the unpooling layer output.
In summary, convolutional layers map multiple activations in a receptive field to a single
activation, deconvolutional layers map one single activation to a field or window of multiple
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activations. Convolutional layers learn a filter which map a receptive field to one value,
consequently deconvolutional layers learn filters that perform the opposite.

Concerning video data, CAE can be used in each image of the sequence but it will
not take into account the temporal dimension. Therefore, Convolutional LSTM based
autoencoder (CLSTM-AE) was proposed (Chong et Tay, 2017). It uses first few convo-
lutional layers for encoding, then later in deeper layers, it uses the ConvLSTM layers.
Similarly for deconding, it first uses the ConvLSTM layers, followed by deconvolutional
layers to get the final video reconstruction. In conclusion, autoencoder is an easy to use,
unsupervised learning algorithm, and can be applied to vector, images, videos, etc.

2.2.5 Generative adversarial network

A Generative adversarial network (GAN) is a category of generative models, first proposed
by Goodfellow et al. (2014), that consists of two sub-networks in competition, a generator
and a discriminator network, as shown in Figure 2.9. During the learning phase, the
generator try to generate convincing data to fool the discriminator who in turn tries to
detect whether the data is real or fake. In this way we obtain two trained networks, one
to generate realistic data and the other to distinguish between real data and generated
data.
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Figure 2.9: Illustrating Generative adversarial network (GAN). Source: (Hayes et al.,
2017)

The generator network is often an autoencoder which generates some input for the
discriminator, given a noisy input. The discriminator is usually a fully connected network
that takes the real and generated input and predicts whether the generated input is fake or
not. Like last subsection, for image data, convolutional autoencoders are use as generators
and CNNs are used as discriminators. Similarly, for sequences of images, ConvLSTM or
ConvGRU can be a part of the GAN architecture. Finally, the ability of GANs to generate
meaningful representations has gained a major interest in many applications like object
detection (Li et al., 2017), data generation (Ehsani et al., 2018), super resolution (Ledig
et al., 2017), etc.

2.3 Spatio-temporal feature learning from videos

In this section, we present different methods for learning spatio-temporal features from
a video stream. Since videos have both spatial and temporal dimensions, we explore
in this section, various ways to extract this spatio-temporal information. The methods
presented below are supervised as they were the first to be developed for spatio-temporal
feature learning and furthermore, they act as a baseline for unsupervised approaches. As
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a reminder, in supervised learning we have as input the data with its label for training
the neural network. We present below various approaches, based on how they treat the
spatial and temporal dimensions of video.

2.3.1 Modeling spatial and temporal dimensions independently,
processing them sequentially

One of the first works to obtain features from video was to use image-based 2D CNN

extractors on each frame of the video and then pooling their predictions across the whole

video (Karpathy et al., 2014). It is very convenient to use, but it ignores the temporal

structure of the video, e.g., these models potentially cannot distinguish between opening
and closing of a gate. Therefore, it is essential to model temporal data in the video stream.
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Figure 2.10: Hlustrative example of 2D CNN for spatial feature extraction and an LSTM
to model this spatial information over time, applied to action recognition task.

One way to continue using image-based extractors without compromising temporal
information is to first extract spatial feature vector by using a 2D CNN shared over all
frames and then modeling the temporal representation of this sequence of spatial features
using a recurrent neural network (Donahue et al., 2015; Yue-Hei Ng et al., 2015). Since
traditional vanilla RNN suffers from the vanishing gradient problem, most of the existing
methods adopt gated RNN architectures like LSTM, to model the long-term temporal
dynamics in video sequences (Du et al., 2017; Sun et al., 2017; Perrett et Damen, 2019).
Figure 2.10 demonstrates this approach, where first the spatial information is extracted
from each video frame using a 2D CNN, then this sequence of spatial information is fed
into an LSTM network which temporally relates it, and finally the overall information is
used for the action recognition task. Some other notable works are described as follows.
Wu et al. (2019a) leveraged two LSTMs operating on coarse-scale and fine-scale CNN
features cooperatively. Majd et Safabakhsh (2020) proposed the C?LSTM model which
incorporates convolution and cross-correlation operators to learn motion and spatial fea-
tures while modeling temporal dependencies. To learn the temporal information from
both the past and future, some works adopt the Bi-directional LSTM consisting of two
independent LSTMs, called the forward and backward LSTM respectively (Ullah et al.,
2017; Zhao et Jin, 2020). The forward LSTM is used with past frame sequence like a
single LSTM network, while the backward LSTM takes a future frame sequence as input.
Finally, the information from both LSTMs are fused together to perform the target task
(like action recognition).

This approach of modeling spatio-temporal data also benefited from the introduc-
tion of attention mechanisms, whether it is spatial attention (Sharma et al., 2016; Ge
et al., 2019; Sudhakaran et al., 2019), temporal attention (Meng et al., 2019; Wu et al.,
2019b), or spatio-temporal attention (Li et al., 2018; Liu et al., 2020). Sharma et al.
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(2016) designed a multi-layer LSTM model, which recursively outputs attention maps
weighting the input features of the next frame to focus on the important spatial features.
Sudhakaran et al. (2019) introduced a recurrent unit with built-in spatial attention to
spatially localize the discriminative information across a video sequence. Li et al. (2018)
proposed a Video-LSTM incorporating convolutions and motion-based attention into the
soft-attention LSTM (Xu et al., 2015b), to better capture both spatial and motion infor-
mation. Compared to LSTM, Gated Recurrent Unit (GRU) has fewer gates, leading to
fewer model parameters. Therefore, many works use GRU instead, for modeling spatio-
temporal data in videos (Ballas et al., 2016; Dwibedi et al., 2018; Kim et al., 2018a).

Some drawbacks of the presented approach to model spatio-temporal are as follows.
Since this approach is sequential, if the 2D CNN fails or performs poorly, the complete
approach will fail. Networks like LSTM are often costly in terms of memory and time.
Finally, this approach has difficulties to model fine-grained action since local motion is
generally hard to model with it. This is because the recurrent network models sequence
of spatial information extracted for the whole frames, thus it captures the propagation
of global frame level spatial information over time, thus not paying special attention to
local motion.

2.3.2 Two-stream modeling

Different from the last approach, in this approach two streams, i.e., appearance (spatial)
and motion (temporal) are used independent of each other and later fused to obtain the
overall spatio-temporal features. It usually works better than the last approach since it
does not process space and time dimensions sequentially. Simonyan et Zisserman (2014)
first introduced the two-stream network consisting of two parallel networks, i.e., spatial
and temporal network. The spatial network accepts raw video frames while the temporal
network gets multi-frame-based optical flows as input. The final score is obtained by
fusing scores from both streams. Optical flow provides an effective motion representation
in the scene and can effectively remove the non-moving background information (Horn
et Schunck, 1981). The proposed network had very high performance on existing bench-
marks, while being very efficient to train and test. Figure 2.11 shows the two-stream
concept of Simonyan et Zisserman (2014).
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Figure 2.11: Illustration of Two-stream model for video action recognition proposed by
Simonyan et Zisserman (2014).

In recent years, the two-stream modeling has seen big improvements and is being
used massively in many video tasks. Regarding neural networks, deeper networks have
been introduced for both streams and they improve the performance (Wang et al., 2015b,
2016a). But deeper networks tend to overfit on the video dataset (especially smaller
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datasets) (Wang et al., 2015a) and therefore Wang et al. (2015b) introduced a series of
good practices, including cross-modality initialization, synchronized batch normalization,
corner cropping, data augmentation, large dropout ratio, etc. to prevent it. Since there
are two streams, there is a stage called spatio-temporal fusion, where results from both the
networks are merged to obtain the final score. The standard way is late fusion, which is a
weighted average of final scores from both streams (Simonyan et Zisserman, 2014; Wang
et al., 2015b). Many works claim that late fusion is not the optimal solution (Feichtenhofer
et al., 2016, 2017). For example, Feichtenhofer et al. (2016) shows that a fusion at an
intermediate layer not only improves the performance but also reduces the number of
parameters significantly as compared to original work of Simonyan et Zisserman (2014).
As video is a temporal sequence of frames, researchers have also explored various recurrent
neural networks with two-stream networks like LSTM (Sun et al., 2017; Li et al., 2018),
bi-directional LSTM (Ullah et al., 2017), hierarchical multi-granularity LSTM (Li et al.,
2016), etc. Li et al. (2018) proposed VideoLSTM, a two-stream network with an LSTM-
based spatial attention mechanism and a lightweight motion-based attention mechanism.
It improves results on action recognition task and furthermore, the learned attention can
be used for action localization as well. Other relevant works are Lattice-LSTM (Sun
et al., 2017), ShuttleNet (Shi et al., 2017), FASTER (Zhu et al., 2020), etc. Two-stream
networks still cannot capture long-range temporal information. To address this issue,
Wang et al. (2016a) proposed a temporal segment network which first divides a video
into uniformly distributed segments, then randomly selects one video frame within each
segment and feeds them to the network which shares weights for input frames from all
the segments. In the end, a segmental consensus is performed with one of the operators
like average pooling, max pooling, weighted average etc., to aggregate information from
the sampled video frames. Since this network uses the whole video as input and provides
video-level prediction, it models long-range temporal structure. Other relevant works are
DVOF (Lan et al., 2017), TLE (Diba et al., 2017b), TRN (Zhou et al., 2018), TSM (Lin
et al., 2019), etc.

To conclude, the two-stream approach is better than the last approach since it takes
care of both spatial and temporal dimensions of the video stream. This approach does
not treat the spatial and temporal dimensions jointly but instead relies on an external
component to extract the motion information. If the motion information is correctly
extracted, the spatial and temporal networks can learn the features of video, which are
later fused together to make the final decision. This approach has seen a big evolution
since its beginning and is still being largely used in many video tasks. If the joint spatio-
temporal information is not very important for an application and one can rely on external
detectors for motion information, then this approach provides a good alternative.

2.3.3 Jointly modeling spatio-temporal dimensions

A conceptually simple way to understand a video is to consider it as a 3D tensor with two
spatial and one temporal dimension. One of the simplest ways to jointly model spatial and
temporal dimensions is to extend 2D convolutions into three dimensions. It is called a 3D
convolution and it is an extension of 2D convolution which consists of learning space-time
kernel filters instead of space kernel filters only. Figure 2.12 demonstrates the difference
between 2D and 3D convolutions.
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Figure 2.12: Comparison of 2D convolution (left image) and 3D convolution (right image)
operations. Figure reproduced from (Tran et al., 2015).

A 3D CNN is basically a network like 2D CNN where 2D convolution and pooling
operations are replaced by 3D convolution and pooling operations. The seminal work for
using 3D CNNs is of Baccouche et al. (2011). While inspiring, the network was not deep
enough to show its potential. Tran et al. (2015) extended it to a deeper 3D network, named
C3D. C3D follows the modular design and learns the spatio-temporal features from raw
videos in an end-to-end learning framework. It showed strong generalization capability
and encouraging performance on video action recognition task but was computationally
more expensive than its 2D counterpart. Figure 2.13 demonstrates the schema for video
action recognition task using 3D CNN. We can observe that the 3D CNN takes a video
volume as input and jointly understand the spatio-temporal features (like 2D CNN do
for images) to predict the output. Important characteristics of 3D CNNs are that they
directly create hierarchical representations of spatio-temporal data and are very powerful
in modeling discriminative features. However, the main issue is that they have many more
parameters than 2D CNNs because of the additional kernel dimension, and this makes
them harder and longer to train.
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Figure 2.13: Illustration of 3D CNN for video action recognition.

Since 3D CNN needs high memory space and running time (Tran et al., 2015; Qiu
et al., 2017), some works propose to factorize 3D convolutions (Xie et al., 2017a; Tran
et al., 2018). Specifically, they decompose 3D convolution kernels (e.g., 3 x 3 x 3) into
2D spatial kernels (e.g., 1 x 3 x 3) followed by a 1D temporal kernels (e.g., 3 x 1 X
1), called as (241)D kernel. This allows to reduce the number of trainable parameters
significantly while still modeling space-time features. Another alternative to reduce the
complexity of 3D CNN is to use 2D convolutions in place of some 3D convolutions in the
same network. A temporal shift module is proposed by Lin et al. (2019), which shifts
a part of the channels along the temporal dimension to perform temporal interaction
between the features from adjacent frames. Different from these parameter-free temporal
shift operations, Sudhakaran et al. (2020) introduced a lightweight Gate-Shift Module
(GSM), which uses learnable spatial gating blocks for spatial-temporal decomposition of
3D convolutions. S3D (Xie et al., 2018) combines the merits of approaches mentioned
above. It replaces the 3D convolutions at the bottom of the network with 2D kernels and
factorizes the remaining 3D kernels into (241)D kernels. It demonstrates that this kind
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of top-heavy network has higher recognition accuracy, along with reduction in model size
and training complexity.

The 3D CNN based methods generally perform spatio-temporal processing over fixed
time intervals via the window-based 3D convolutional operations, where each convolution
operation only attends to relatively short-term context in videos (Baccouche et al., 2011;
Ji et al., 2012; Tran et al., 2015). Thus, by design and due to high computational require-
ments, they are not suitable for long-range spatio-temporal relations in videos. Hence,
several approaches focused on modeling these long-term dependencies. Diba et al. (2017a)
proposed temporal 3D convolutional networks, where the temporal transition layer mod-
els variable temporal convolution kernel depths. It can efficiently capture the appearance
and temporal information at short, middle, and long terms. They reinforced this in their
subsequent work (Diba et al., 2018), with the introduction of a new block with residual
connections, which can model the inter-channel correlations of a 3D CNN with respect
to the temporal and spatial features. A long-term temporal convolution framework was
proposed by Varol et al. (2017) to model the long-term temporal information in videos.
They increase the temporal extents of 3D convolutional layers at the cost of reducing
the spatial resolution. Finally, Hussein et al. (2019) proposed Timeception, a multi-scale
temporal-only convolutional network to account for large variations and tolerate a variety
of temporal extents in complex and long actions.

This approach is a good alternative to the last two approaches. The most important
quality of this approach is that it learns jointly the spatio-temporal features of the video.
This is an essential point since it depends only the video in hand to learn its feature and
does not require external supervision. Even though this approach has seen significant
improvement throughout the years, it still remains computationally expensive and cannot
treat a large video sequence at once. As a concluding remark, this approach should be
used when we want to model the spatio-temporal dimension correctly in the video and
when the long range temporal dependencies are not important.

2.3.4 Hybrid approaches

To further enhance the spatio-temporal comprehension of videos, several works have in-
vestigated using 3D CNN based models with two-stream or multi-stream designs (Carreira
et Zisserman, 2017; Wang et al., 2017; Feichtenhofer et al., 2019; Li et al., 2020). Car-
reira et Zisserman (2017) introduced the two-stream inflated 3D CNN (I3D), made by
inflating the convolutional and pooling kernels of a 2D CNN with an additional tempo-
ral dimension. Similarly, Wang et al. (2017) integrated a two-stream 3D CNN with an
LSTM model to capture the long-range temporal dependencies. SlowFast network (Fe-
ichtenhofer et al., 2019) extend the idea of two-stream approaches but without the need
of optical flow as input. This 3D CNN based two-stream network have a slow pathway
and a fast pathway that operate on frames at low and high frame rates to capture se-
mantic and motion, respectively. At each layer of this network, the features of the fast
and slow pathways are fused (by summation or concatenation) to share the motion and
semantic information among sub networks. Finally, Li et al. (2020) introduced a two-
stream spatio-temporal deformable 3D CNN with attention mechanisms to capture the
long-range temporal and long-distance spatial dependencies. Recently, a new neural net-
work, called the Transformer was introduced (Vaswani et al., 2017). It mainly utilizes
the self-attention mechanism (Bahdanau et al., 2015) to extract intrinsic features and
shows great potential for extensive use in Al applications. It was first applied to NLP
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for machine translation tasks (Vaswani et al., 2017; Kenton et Toutanova, 2019). Only
recently, it has been applied in vision tasks (Dosovitskiy et al., 2020; Chen et al., 2020),
but it has shown a very strong potential with performance equal or better than CNN
based approaches for various tasks (Zeng et al., 2020; Khan et al., 2022). Transformers
also have various drawbacks like they require very massive datasets for large-scale train-
ing, extremely heavy computational requirements, and furthermore generalization and
robustness of transformers is still an open issue (Han et al., 2022).

In this section, we studied different types of approaches to learn spatio-temporal fea-
tures from video. We observed that two-stream, 3D CNN and hybrid approaches all rest
viable for effective learning in video. While two-stream approaches require an external
detector for motion and does not treat the spatial and temporal dimensions jointly, the 3D
CNN based approach requires high computational power. Finally, the hybrid approaches
takes best of the both worlds but their drawbacks does accompany these approaches, like
they remain computationally expensive. Finally, the choice of approach depends on the
task at hand and requirements. In this thesis, we want to learn spatio-temporal features
jointly in video and furthemore we want to use minimum supervision possible. For the
applications, i.e., video anomaly detection and perimeter intrusion detection, we do not
require long spatio-temporal information. For example, an intrusion that was detected 10
minutes ago, does not have any direct relation in detecting the current intrusion. There-
fore, we choose the 3D CNN based approach in this thesis. The next section will present
how can we use these approaches in an unsupervised context.

2.4 Unsupervised spatio-temporal video understanding

This section presents various approaches for unsupervised learning of spatio-temporal
features from the video stream. To recall, in unsupervised learning, we do not have labels
with data during training the neural network. In the last section, we explored various
approaches to obtain spatio-temporal features. All the approaches, whether 2D CNN
with a recurrent network, two-stream modeling or 3D CNN, can be used in the context of
unsupervised learning. We just need to employ them either in reconstructive, predictive,
or generative models, that are presented below.

2.4.1 Reconstruction models

The main idea here is to reconstruct a given input, in order to learn pertinent features
of the input data. The input data can be a vector, image or a video sequence. In our
case, it is the video sequence. These models include methods such as auto encoders (refer
Section 2.2.4) or sparse coding, that are used to extract different linear and non-linear
representations of appearance (image) or motion (stream) or both, to model meaningful
patterns of unlabeled videos. We can simply extend the idea of CAE for images to
videos and use many of the video feature extraction approaches described in last section.
Hasan et al. (2016) proposed a spatio-temporal stacked autoencoder with a video clip
of ten frames as input. It consists of a stack of 2D convolutions and 2D deconvolutions
for encoding and decoding, respectively. Similarly, Chong et Tay (2017) introduced a
convolutional LSTM based autoencoder, with the same input of ten frames. They used
2D convolutions with LSTM for encoding and LSTM with 2D deconvolutions for decoding.
By using LSTM, they were able to better understand the temporal characteristics of video
stream. Similarly, 3D convolutional autoencoder (Zhao et al., 2017) encodes and decodes
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using 3D convolutions and 3D deconvolutions respectively. In theory, any approach of
learning spatio-temporal features from videos described in Section 2.3 can be used with
an autoencoder. More works on unsupervised deep learning on videos will be detailed in
upcoming sections for video anomaly detection and perimeter intrusion detection tasks.

2.4.2 Predictive models

Another approach based on unsupervised deep learning tends to use predictive modeling.
It is well-known in time series analysis under auto-regressive models. Different from
reconstructive models where the objective is to train a model to reconstruct the input data,
predictive models try to predict a current sequence of input using the previous sequences.
Concerning video data, the objective is to model output of current frame (or future frame)
as a function of past ¢ frames. Since it concerns temporal sequence, traditionally recurrent
neural networks like LSTM were used (Srivastava et al., 2015; Luo et al., 2017b). Recently,
there have also been attempts to perform efficient video prediction using convolutional
autoencoder networks. The function of an AE can be determined by considering its output
values. When the output values are only the reconstruction of the inputs, the AE is a
reconstructive model. When the output values are the values after the input values in
the time axis, the model is said to be predictive. Medel et Savakis (2016) introduced a
ConvLSTM-based AE where the encoder extracts representations from an input sequence,
a first decoder that uses these representations to reconstruct the input sequence, and a
second decoder that uses the same representations to predict the next frame. Similarly,
Zhao et al. (2017) proposed a network made up of an encoder and two decoders, the first
for reconstruction and the second for prediction. In this network, 3D convolution layers
are used instead of ConvLLSTMs, for the learning of spatiotemporal representations. More
works will be discussed with VAD as the application in later sections.

2.4.3 Generative models

Generative models like Generative Adversarial Networks (GAN), Adversarially trained
AutoEncoders (AAE) and Variational Autoencoders (VAE) are used for the purpose of
modeling the likelihood of video samples in unlabeled data. These models are also used
massively in unsupervised video learning tasks like video anomaly detection (Ravanbakhsh
et al., 2017; Kiran et al., 2018). For example, Lee et al. (2018) proposed a generative ad-
versarial network, called STAN (spatio-temporal adversarial networks) for this VAD task.
They use a video clip as input. The middle frame of the video clip is removed and the
resultant clip is fed to a spatio-temporal generator. The generator is a convolutional
autoencoder with convolutions, ConvLSTMs and deconvolutions. It generates the miss-
ing middle frame, which is added to its position in the video clip. The spatio-temporal
discriminator, made using 3D convolution layers, takes the generated video clip and orig-
inal video clip as input and tries to distinguish the clips. Once the two networks are
trained, the detection of abnormal events is done using the losses from both generator
and discriminator. More unsupervised generative works are detailed in later sections.

In this section, we presented various ways to unsupervisely learn spatio-temporal fea-
tures of video. We can observe that all of these approaches are different and none of
them is more suitable than others. Infact, they can also be combined together if required,
and can potentially lead to better generalization. All of these approaches have been ex-
tensively developed in the last few years. Choosing the correct approach, depends on
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the video task being tackled, its requirements, and the spatio-temporal feature learner
(like a 2D CNN, 3DCNN, etc.) being used. Our chosen 3D CNN based approach trans-
lates to 3D CAE in unsupervised learning. This 3DCAE can be used as a reconstructive
model, predictive model and even as the generator of a generative model. In this thesis,
we explore the first two ways and even combine them. The generative model requires
extra computation on top of the generator via discriminator, therefore we avoided that
approach to be computationally light.

2.5 Video anomaly detection (VAD) methods

Given a video stream, this task deals with the detection of anomalies. The anomalies are
context dependent and vary from one dataset to another as described in Section 1.4.1.
Since anomaly is a rare event and the datasets are usually not annotated. Therefore,
most methods use unsupervised deep learning, with or without external supervision from
pre-trained detectors. We focus only on these methods. It must be noted that there are
other methods which rearrange the current VAD datasets to have weak labels and thus
use weakly supervised learning. Some methods use semi-supervised learning by using a
portion of labeled data for training. Finally, there are also a few methods that reorganize
VAD datasets to use supervised learning. We do not review these kind of methods as
they are well out of the scope of this study.

To systematically review the VAD methods, we first explore several types of input
that they can take, followed by different proxy tasks that they can perform and finally
some auxiliary components that they use to enhance their performance.

2.5.1 Types of input

To understand different approaches for video anomaly detection, we must first consider
the different types of input they use. Even though the task is detecting anomalies in
video, the methods can use frames of video, frame patches, objects in frame, objects in
video snippet, etc. as input. We explain below different input types used for VAD.

1. Full Frame (FF): This input means using a single frame as input. This means
that the video is read frame by frame and each frame is an input to the VAD
method. It can be used with any VAD task but has been predominantly used in
the reconstruction task (Ravanbakhsh et al., 2017; Nguyen et Meunier, 2019; Ye
et al., 2019). One major issue with using FF as input is that we miss to capture the
temporal information of video sequence.

2. Frame patch (FP): This input is made by dividing the video frame into smaller
patches. The video is read as frames which are converted into smaller patches and
each patch is considered as a separate input. If an anomaly is detected in one of the
frame patches, then the frame is labeled as anomalous (Sabokrou et al., 2018). We
have similar problem here as we lose the temporal dimension and due to patches,
we loose part of the spatial information.

3. Frame object (FO): It refers to the objects in the video frame. A pre-trained object
detector is first used to detect all possible objects of interest and then these objects
are used as the input to the method (Ionescu et al., 2019; Georgescu et al., 2021b).
Since the input is object, rather than the whole frame, we do not have background

42



2.5. VIDEO ANOMALY DETECTION (VAD) METHODS

noise. The problem is that it is highly biased to the external dataset where the
object detector was trained, it assumes that objects of interest causing anomalies
are known in advance and finally if the object detector fails, the VAD will fail too.

4. Video clip (VC): It refers to a video snippet with a fix number of consecutive frames.
It is one of the most widely used input for VAD task (Hasan et al., 2016; Lee et al.,
2018; Dong et al., 2020; Chang et al., 2020; Cho et al., 2022). Since it is a video, we
have both spatial and temporal dimensions to exploit. It has been used with all the
proxy tasks for VAD. However, it takes more time and resources to process video
clips and furthermore, it is comparatively difficult to extract pertinent information
since often the anomalies occupy a small spatio-temporal volume in the video clip.

5. Video clip patch (VCP): It corresponds to 3-dimensional patches extracted from a
video clip. Unlike frame patch, here we include the temporal dimension into the
input. Various methods propose different patch extraction techniques (Tran et Hogg,
2017; Park et al., 2022). Since not the whole video clip is used for creating these 3D
patches, it works faster than video clip as input. These patches are generally created
on parts of the video clip where foreground objects occur (assuming anomaly is in
foreground), therefore they either use moving object detector as a pre-processing,
or they use some heuristics to create patches only in certain parts of the video clip,
where foreground objects should be present (like Park et al. (2022) exclude a margin
of 12.5 percent from the top and bottom in each frame of the video clip).

6. Video clip object (VCO): It refers to a video clip composed of objects detected by
an object detector. It is an extension of frame object to video clip. It is being used
by many recent methods as it is robust to background noise and have both spatio-
temporal dimension like a video clip (Yu et al., 2020; Ouyang et Sanchez, 2021; Liu
et al., 2021b; Georgescu et al., 2021a). The problem with this input is same as that
of frame object due to its dependence on pre-trained object detector.

2.5.2 Types of tasks

Since anomaly is a rare event, there is lack of anomaly examples for training a supervised
two-class classifier. Due to this, most works address the VAD task using a proxy task
like frame reconstruction, prediction, etc. These tasks are called proxy tasks since they
address the main task (VAD is binary classification task) indirectly. We describe below
the classification of approaches based on the proxy task that they use.

2.5.2.1 Reconstruction task

This task concerns the reconstruction of an input entity like frame, video clip, object,
etc. The aim is to learn normality by trying to reconstruct entities in normal videos
(without any anomaly). Since the representations were learned from normal videos, it
is assumed that anomalies will be harder to reconstruct and thus they can be separated
from correctly reconstructed normal entities. This task is usually performed using a
convolutional autoencoder (Masci et al., 2011) or an adversarial network like a GAN
(Goodfellow et al., 2014). Autoencoder (AE) encodes the input data into the latent space
through an encoder and then reconstructs it using a decoder. The anomaly measure is
the reconstruction error, which is assumed to be high when anomalies occur since the
training of AE is only done on normal videos.
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Figure 2.14: The architecture of the convolutional autoencoder proposed in Hasan et al.
(2016) for video anomaly detection.

Figure 2.14 presents an example of convolutional autoencoder proposed by Hasan et al.
(2016), using reconstruction task for video anomaly detection. They use a video clip of
10 frames as input and reconstructs it. They use 2D convolutions and pooling layers for
encoding and 2D deconvolutions and unpooling layers, for decoding. The mean squared
error (MSE) between input clip and its reconstruction is used as the reconstruction error
(anomaly measure). By using only 2D convolutions, the temporal features of the video
clip cannot be taken into account. To address this, Chong et Tay (2017) proposed to add
convolutional long-short term memory (LSTM) layers in both encoder and decoder. Tak-
ing it one step further, Zhao et al. (2017) proposed a 3D convolutional autoencoder with
3D convolutions and 3D deconvolutions for VAD. Unlike 2d convolutions plus LSTM, the
3D convolutional autoencoder jointly captures the spatio-temporal features from normal
videos. Recently, many works used some AE variant for VAD, using FF, VC or VCO as
input (Ye et al., 2019; Ouyang et Sanchez, 2021; Astrid et al., 2021b; Cho et al., 2022).

One of the earliest works for VAD using GANSs, with reconstruction as proxy task, was
proposed by Ravanbakhsh et al. (2017). Two conditional GANs are trained, with input
as pairs of frames and noise vectors, which generate corresponding frames of a different
modality (raw frames to optical flows and vice versa in the two GANs). The discriminators
are asked to classify pairs of input and generated representations of frames as real or
fake. Assuming that anomalies are not reconstructed well, they fuse reconstruction errors
from both modalities as an anomaly score. Some works use both AEs and GANs for the
reconstruction task (Nguyen et Meunier, 2019; Ye et al., 2019). One such work is proposed
by Nguyen et Meunier (2019), where they learn a correspondence between common object
appearances and their associated motions in a two-stream model. Using an FF as input,
they use a single encoder coupled with two decoders, one that predicts motion and another
that reconstructs the input frame. This entire network is considered as a generator in
a conditional GAN setup, where the discriminator is another network that distinguishes
between pairs of input frames and corresponding real/estimated flow fields. For testing,
they calculate loss scores at a patch-level. For other VAD works with reconstruction
tasks, the reader can refer to (Kiran et al., 2018; Ramachandra et al., 2022). The main
drawback of using this task is that sometimes the neural network generalize too well and
even reconstruct the anomalies very well. In that case, the difference between normal and
abnormal sample is neglible and thus anomaly cannot be detected.
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2.5.2.2 Prediction task

This task deals with the prediction of an unknown entity, given a known entity. For
example, predicting a future frame, given a video clip with present and previous frames.
Concerning VAD, the future frame prediction task is one of the most used tasks (Liu et al.,
2018; Lv et al., 2021; Park et al., 2020). Other prediction tasks for VAD include future
object prediction (Liu et al., 2021b) or missing bounding box prediction (Georgescu et al.,
2021a). The input entities used are VC, VCO and VCP, with VC being the most common
(Lee et al., 2018; Dong et al., 2020). Models performing prediction task are also trained
only on normal videos, with the assumption that they can precisely predict the entities
in normal test sequences but will fail to correctly predict in anomalous test sequences.
This requires comprehension of how normal spatio-temporal patterns propagate along the
video clip. The anomaly score for this task can be calculated by measuring the difference
between real and predicted entities or by calculating the conditional probability of a new
observation based on the previous samples (Kiran et al., 2018). Autoencoders, GANs and
their combination are typically used for this task.
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Figure 2.15: The future frame prediction architecture proposed by Liu et al. (2018) for
video anomaly detection.

Figure 2.15 presents an example of future frame prediction architecture proposed by
Liu et al. (2018). They propose a GAN, where the encoder is a U-Net style network
(Ronneberger et al., 2015) that takes training video clips of length ¢ as input and predicts
the future frame ¢ + 1. The discriminator network checks if the future frame is real
(ground truth) or predicted, by minimizing the intensity and gradient loss. Furthermore,
they add motion (temporal) constraint by using FlowNet (Dosovitskiy et al., 2015) to
estimate pairs of optical flow maps between the frame at ¢ and real or predicted frame at
t + 1. The anomaly score is composed of L1 score between flow maps and intensity plus
gradient scores from frame prediction. Some other prominent VAD works that use GANs
for prediction task are (Lee et al., 2018; Dong et al., 2020), while works using AE for
prediction tasks are (Park et al., 2020; Lv et al., 2021; Le et Kim, 2022; Park et al., 2022).
Since prediction task depends on the given input to learn the features in order to predict
the unknown entity, it can fail when the input contains only stationary anomalies. For
example, for the future frame prediction task, when the input clip contains an stationary
car (anomaly), the model is likely to predict this car in future frame too. Thus, the
prediction error would be too small to differentiate it from the normality.
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2.5.2.3 Self-supervised task

This type of task uses self-supervisory signals from the data itself and does not require
external annotations. In other words, identify any hidden part of the data from any
unhidden part of the data, e.g., predict the missing patch of an image, given the image
without patch. This learning paradigm is known as self-supervised learning. In recent
years, the self-supervised learning is being used massively for different applications in
various domains (Liu et al., 2021a) like natural language processing (NLP), robotics,
computer vision: applied to image and video analysis, etc. It is typically used as a pre-
training step (pretext task) to enrich a learning module, which is later used for supervised
downstream tasks like video classification, detection, etc. (Jing et Tian, 2020). Some
well-known self-supervised tasks for video representation learning are video playback rate
perception (Yao et al., 2020), video pace or speed prediction (Benaim et al., 2020; Wang
et al., 2020), relative speed perception (Chen et al., 2021), video cloze procedure (Luo
et al., 2020), etc.
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Figure 2.16: Comparison of VAD tasks: reconstruction (left), frame prediction (middle)
and self-supervised: video event completion (right) (Yu et al., 2020). DNN refers to a
deep neural network and video event is the VCO input.

Concerning VAD, there are only two works that use self-supervised tasks. The first
work is by Yu et al. (2020), where they propose a new self-supervised VAD task, called
video event completion. This task is an adaptation of video cloze procedure task (Luo
et al., 2020). In this task, first VCO is extracted from a video clip using a pre-trained ob-
ject detector and a series of appearance and motion-based operations. The VCO is referred
as video event here and contains image patches with objects of interest like human. From
cach video event, one patch is erased randomly and a DNN (U-Net style autoencoder)
predicts it using the rest of incomplete video event, known as appearance completion.
The MSE between predicted and actual patch is used as an anomaly score. Similarly,
motion completion is also done on the same video events: optical flow for each video
patch is extracted using a pre-trained network and then similar pipeline like appearance
completion is followed using the same U-Net style autoencoder. Again, MSE is used as an
anomaly score here. The final anomaly score is a weighted sum of appearance and motion
anomaly scores. Figure 2.16 demonstrates this self-supervised video event completion task
along with a comparison with reconstruction and prediction tasks. The second work is
proposed by Georgescu et al. (2021a), where they perform multiple self-supervised tasks
using the same 3D CNN in a multi-task learning paradigm. They use VCO as input, using
YOLOV3 object detector (Redmon et Farhadi, 2018). The proposed tasks are: (i) arrow
of time prediction (discriminating forward and backward moving objects), (ii) motion ir-
regularity detection (distinguishing objects captured in consecutive frames versus objects
captured in intermittent frames), (iii) middle bounding box prediction (given objects in
preceding and succeeding frames), (iv) model distillation: estimating normality-specific
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class probabilities by distilling pre-trained classification (ImageNet (Russakovsky et al.,
2015)) and detection (MS COCO (Lin et al., 2014)) teachers. Both these works show
promising results but they rely heavily on external supervision using object detectors,
which inhibits their generalizing capability as discussed in Section 2.5.1.

2.5.2.4 Classification task

Despite the fact that video anomaly datasets are imbalanced and that only normal classes
are present during training, there are still some methods that use a classifier to detect
anomalies. Given only normal videos, they either perform one-class classification (Tran
et Hogg, 2017; Sabokrou et al., 2018) or do multi-class classification by adding dummy
anomalies (Ionescu et al., 2019; Georgescu et al., 2021b).
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Figure 2.17: One-class classification VAD proposed by Sabokrou et al. (2018). R and D
are generator and discriminator modules of the adversarially learned GAN. X, X, Z and
X' refers to input, input with noise, latent space and reconstruction respectively, where
target class 1 represents normal (non-anomaly) class.

Figure 2.17 presents an example of one-class classification approach for VAD. The
input of this approach are patches from video frames, i.e., FP rather than the whole
frames. It adopts a GAN where the discriminator (D) is tasked with distinguishing
original image patches from reconstructions of noisy patches obtained from a denoising
auto-encoder network (R) which plays the role of generator. Since R is trained only
on image patches from training data, it deteriorates reconstruction of outliers and thus
enables D to distinguish an anomalous image patch from its reconstruction easily.

Concerning VAD with multi-class classification, Ionescu et al. (2019) proposed one
of the first approaches. Their input is FO, which is obtained by using a pre-trained
single-shot detector (SSD) (Lin et al., 2017) on each frame of the video. They train
convolutional auto-encoders on appearance and gradient features of these objects to learn
latent representations and then perform k-means clustering followed by training of k
one-class SVMs to make binary one-versus-rest classifications. Each cluster represents a
different type of normality. At test time, they simply use the inverse of the maximum
of k classification scores as an anomaly score, meaning if a sample does not belong to
any cluster, it is considered as anomalous. The classification task fails when the anomaly
resemble too much with normality in the latent space, thus making it difficult to separate
anomalies from normality.
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2.5.2.5 Multiple task learning

Since no task is perfect for VAD, many approaches use multiple tasks to benefit from
advantages of different tasks (Zhao et al., 2017; Tang et al., 2020; Liu et al., 2021b).
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Figure 2.18: Network architecture proposed by Zhao et al. (2017) for reconstructing
present frames and predicting future frames.

Figure 2.18 presents the work of Zhao et al. (2017) where they combine reconstruction
and prediction tasks. The propose an encoder consisting of 3D convolutions (Baccouche
et al., 2011) and two decoders (one for each task) consisting of 3D deconvolutions (Zeiler
et al., 2010). They train on normal data to reconstruct the current video clip and predict
the future frame video clip. During testing, they use only the reconstruction error of
the test video clip as the anomaly measure. They demonstrated that using these tasks
together boosts the detection of video anomalies. Even though multiple task learning
benefits from advantages of different tasks, it is often difficult to combine various tasks
and furthemore this makes the model computationally very expensive. So, the tasks must
be chosen wisely with taking into consideration the gain in performance (if there is) in
relation to the expense of memory and computation time.

2.5.3 Auxiliary components for enhancing VAD

To enhance the detection of anomalies, often many auxiliary components are used along
with the VAD tasks. We describe below some of the most used components.

2.5.3.1 Optical flow

Since moving objects can cause anomalies, it is important to reinforce motion analysis for
VAD systems. Many motion analysis tasks employ optical flow as a fundamental basis
upon which more semantic interpretation is built (Fortun et al., 2015). Optical flow is
defined as the estimation of a dense motion field, corresponding to the displacement of
each pixel (Beauchemin et Barron, 1995). Concerning VAD, approaches use optical flow
to enrich the input with motion information before feeding it to the deep neural network
(Tran et Hogg, 2017; Zhao et al., 2017; Ravanbakhsh et al., 2017; Liu et al., 2018; Nguyen
et Meunier, 2019; Dong et al., 2020; Yu et al., 2020; Liu et al., 2021b; Georgescu et al.,
2021b).

2.5.3.2 Pre-trained feature extractor

Instead of learning features from anomaly datasets directly, many methods use a pre-
trained feature extractor trained on an external dataset. Pre-trained extractors can be
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used to extract features (of frames / video clips), to extract objects in the video (Ionescu
et al., 2019; Ouyang et Sanchez, 2021; Georgescu et al., 2021a; Le et Kim, 2022), or to
extract optical flow (Zhao et al., 2017; Ravanbakhsh et al., 2017; Liu et al., 2018; Nguyen
et Meunier, 2019; Dong et al., 2020; Yu et al., 2020; Liu et al., 2021b; Georgescu et al.,
2021b). The advantage of features extractors for VAD is that they save computational
capacity, so bigger architectures can be made, and they can add additional information
like optical flow or object information. The main disadvantage is that they are biased
towards the external dataset and an incorrect feature/object/optical flow estimation can
lead to failure of the whole system.

2.5.3.3 Data transformation

Data transformation refers to the modification of input data in various ways so that it
helps in better anomaly detection. The transformed data is used in two ways: as an
augmentation of data to the original input of the model, or as an auxiliary input along
with the original input of the model. Some major works using data transformation in
the first way are (Hasan et al., 2016; Chong et Tay, 2017; Zhao et al., 2017). Hasan
et al. (2016) and Chong et Tay (2017) increase the size of their input data by generating
video clips with different strides (stride-2 and stride-3) between frames. Zhao et al.
(2017) instead augments the data by creating video clips with various transformations
like random cropping, changing brightness and Gaussian blurring. The main motivation
behind this type of data transformation is to train the model with a sufficiently large
dataset with different input variations so that the model becomes adaptive and retain the
most pertinent features of normal input.

Few important VAD works using data transformation in the second way are (Georgescu
et al., 2021a,b; Astrid et al., 2021a,b; Park et al., 2020). Georgescu et al. (2021a) trans-
forms data into various ways for different tasks like reading frames backwards or not for
arrow of time detection, or skipping frames in video clip for irregular /regular motion task,
etc. Georgescu et al. (2021b) and Astrid et al. (2021a,b) transform data to form pseudo
anomalies in order to use normal and pseudo-abnormal data while training.
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Figure 2.19: Autoencoder based VAD work of Astrid et al. (2021a) with normal input
and pseudo anomaly input, where probability p regulates quantity of pseudo anomalous
input.

Figure 2.19 shows an example of VAD work that use pseudo anomalies synthesized
from normal data as an auxiliary input to the AE. The pseudo anomalies are formed by
temporally striding the input to create temporal incoherence in video clip, which simulates
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an anomaly. The motivation is to train the AE in order to reduce the reconstruction loss
for normal inputs while increasing it for pseudo anomaly inputs, thus making model
sensitive to anomalies with temporally incoherent behavior.

2.5.3.4 Clustering

It is the task of grouping or segmenting a collection of entities into subsets or “clusters”,
such that the entities within each cluster are more closely related to one another than to
those assigned to other clusters (Hastie et al., 2009). Concerning VAD, Chang et al. (2020)
clusters the encoder output of an AE with reconstruction as proxy task. They propose
a deep k-means clustering in encoder to obtain a more compressed data representation
and extract the common factors of variation within the normal dataset. By minimizing
the distance between the data representation and cluster centers, normal examples are
closely mapped to the cluster center while anomalous examples are mapped away from the
cluster center. The cluster centers can be deemed as a certain kind of normality within the
training dataset. Since the model is only trained on normal events, the distance between
cluster and abnormal representations is much higher than between the normal patterns.
Reconstruction error and the cluster distance are together used as an anomaly score. With
a similar strategy, Ouyang et Sanchez (2021) proposes to cluster the latent manifolds
of the autoencoder using expectation maximization. Different from these approaches,
Tonescu et al. (2019) first clusters the latent space of an autoencoder into different types
of normality, and then train a binary classifier following the one-versus-rest scheme to
separate normality clusters from one another. In the inference phase, a test sample is
labeled as abnormal if the highest classification score is negative, i.e., the sample is not
attributed to any normality cluster.

2.5.3.5 Memory, attention and other units

One of the main challenges with CNN based networks like autoencoder or GAN is that
they have very powerful representational capacity which can even hinder to distinguish
between normality and abnormality, if used naively. For example, reconstruction-based
VAD methods using AE may even reconstruct the abnormal frames well (Zong et al.,
2018; Liu et al., 2018). Hence, the assumption that reconstruction error is comparatively
high for abnormal test frames might be violated.

One popular approach to handle this issue is to use memory units with the network.
The prototypical patterns of normal data are recorded into the memory during training,
whereas while testing on a test input, the most relevant elements from the memory are
retrieved to perform the given task (reconstruction, prediction, etc.). Figure 2.20 shows
one such approach, namely MemAFE (Gong et al., 2019). MemAE or memory-augmented
autoencoder is a reconstruction task-based VAD method, which learns and updates the
memory contents during training, to store the prototypical elements of the normal data.
In the test phase, the memory is fixed, and reconstruction is performed using items
selected from the memory. Taking this work forward, Park et al. (2020) propose a similar
strategy to enhance AE for VAD by an improved memory module. They separate stored
memory items explicitly using feature compactness and separateness losses, which enables
using a small number of memory items compared to MemAE (10 vs 2,000 for MemAE).
Furthermore, they also update the memory at test time, while discriminating anomalies
simultaneously, suggesting their model memorizes normal patterns of test data. Overall,
their model better records diverse and discriminative normal patterns for VAD. Finally, a

20



2.5. VIDEO ANOMALY DETECTION (VAD) METHODS

recent work by Liu et al. (2021b) uses multiple memory units attached in different parts
of the AE and they propose an ideal arrangement of these memory units along with skip
connections for the VAD task.
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Figure 2.20: Proposed schema of MemAE (Gong et al., 2019). The encoder takes the
input x to produce encoding z, which is taken as a query by the memory addressing
unit to obtain the soft addressing weights w. The memory slots can be used to model
the whole encoding or the features on one pixel (as shown in the figure). The updated
encoding z passes via decoder to produce the reconstruction X.

Another important approach to enhance neural network is to use attention modules
(Zagoruyko et Komodakis, 2016; Vaswani et al., 2017; Wang et al., 2019). In simple
words, attention is a technique that imitates human cognitive attention, enhancing a
part of input, such as an object and neglecting the remaining parts (Zhou et al., 2019).
Concerning VAD, Le et Kim (2022) proposed an attention-based residual autoencoder
with future frame prediction as the proxy task. To exploit channel dependency of features,
they propose a channel attention module made of two convolutional layers and it is applied
in each layer of the decoder. Similarly, Chang et al. (2020) proposed a cluster driven
autoencoder with future frame prediction task, where a variance-based attention module
is designed to assign an importance to moving part of video clips, thus improving detection
of anomalies with large temporal movements like person running, jumping, etc. Different
from these approaches, Lv et al. (2021) proposed an AE-based VAD method with a
dynamic prototype unit. They learn diverse patterns of the normal data in the form of
prototypes. Prototype is a compact representation of pertinent normal data. A novel
attention operation on the AE encoding map assigns a normalcy weight to each pixel
location to form a normalcy map. Then, prototypes are obtained as an ensemble of the
local encoding vectors under the guidance of normalcy weights. Multiple parallel attention
operations are applied to generate a pool of prototypes, which represent diverse and
compact dynamics of the normal patterns. Finally, the AE encoding map is aggregated
with the normalcy encoding reconstructed by prototypes for latter frame prediction.

Recently, some other types of units have been proposed to tackle with the issue of
powerful representational capacity of CNN based VAD networks. Szymanowicz et al.
(2022) proposed a vector quantized autoencoder for detecting video anomalies using the
future frame prediction task. They store features of the encoder in a learnable codebook
using a vector quantization module. The vector quantization leads to discretization of
high-level features into embeddings, which are used by decoder to predict the future frame.
Since decoder has no direct access to input features but only the discrete embeddings of
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codebook, it is unable to correctly predict the anomalous frames, thus improving the
video anomaly detection. Similarly, Cho et al. (2022) proposed normal density estimation
(NDE) unit which estimate the density of normality in their AE based VAD method.

Method Input Task Principal compo. | Auxiliary compo.
Hasan et al. (2016) VC Recon AE DT
Chong et Tay (2017) VC Recon AE, CLSTM DT
Zhao et al. (2017) VC | Pred, Recon AE OF, pre., DT
Ravanbakhsh et al. (2017) | FF Recon Adv OF, pre.
Tran et Hogg (2017) VCP | Classification AE, SVM OF
Lee et al. (2018) VC Pred AE, CLSTM, Adv X
Sabokrou et al. (2018) FP | Classification Adv X
Liu et al. (2018) VC Pred AE, Adv OF, pre.
Nguyen et Meunier (2019) | FF Recon AE, Adv OF, pre.
Ye et al. (2019) FF Recon AE, Adv X
Gong et al. (2019) VC Recon AE memn.
Tonescu et al. (2019) FO | Classification AE, SVM clust., pre.
Dong et al. (2020) VC Pred AE, Adv OF, pre.
Tang et al. (2020) VC | Pred, Recon AE, Adv X
Yu et al. (2020) VCO SST AE OF, pre.
Chang et al. (2020) VC Recon AE clust., att.
Park et al. (2020) VC Pred AE mem.
Ouyang et Sanchez (2021) | VCO Recon AE, GMM pre., clust.
Liu et al. (2021D) VCO | Pred, Recon AE OF, pre., mem.
Georgescu et al. (2021a) | VCO SST AE, FCN pre., DT
Georgescu et al. (2021b) | FO | Classification AE, Adv OF, pre., DT
Astrid et al. (2021a) VC Recon AE DT
Astrid et al. (2021b) VC Recon AE DT
Lv et al. (2021) VC Pred AE att.
Le et Kim (2022) VC Pred AE att., pre.
Cho et al. (2022) VC Recon AE NDE
Szymanowicz et al. (2022) | VC Pred AE codebook
Park et al. (2022) VCP Pred AE DT

Table 2.1: Review of major video anomaly detection methods.

Table 2.1 presents a review summary of various VAD methods. The first column refers
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to the publication associated with the method and the second column shows various input
data (refer Section 2.5.1). In third column, the proxy tasks are mentioned where Pred,
Recon and SST refer to prediction, reconstruction, and self-supervised task, respectively.
The fourth column refers to main learning component of the method, where the unde-
clared terms Adv, CLSTM, GMM and FCN refer to adversial unit, convolutional LSTM,
gaussian mixture modeling and fully connected network. Final column is of the auxiliary
component, where the abbreviated terms are: DT - data transformation, OF - optical
flow, pre. - pre-trained feature extractor, clust. - clustering, mem. - memory unit, att. -
attention unit and NDE - normal density estimation. We can observe the following from
Table 2.1. Most of the methods use video clip based inputs like VC, VCP and VCO and
only a very few methods use the frame based input. This signifies that rather than using
just the spatial data through a single frame, spatio-temporal data via video clips is essen-
tial for VAD. Regarding proxy tasks, reconstruction task is the most preferred, followed
by the prediction task, and they are often combined together. The classification task has
been used only four times and it uses patch or object type inputs, requiring pre-processing
through an external detector or data transformation. This signifies that it is not easy to
perform classification task directly on the raw frame or video clip. The SST task has been
recently used for VAD and there are only two methods that use them. Both of them use
VCO as input, i.e., they need an external object detector to first detect objects and then
perform the task. They obtain excellent performances as they do not suffer from scene
background and associated noise. However, one must note that in real life, we cannot
always detect all the possible anomalous object and furthermore we might not even know
which objects will cause anomaly (unlike offline datasets where we know which objects
are potentially anomalous). The most used learning component is the autoencoder (2D
CAE, 3D CAE, etc.), but other components like GAN, CLSTM, etc., are also used. The
choice of learning component depends on the chosen task, input and architecture design.
For auxiliary components, pre-trained detector, optical low and data transformations are
mostly used. These components ensure the input data needed for the methods concern.
Rest of the auxiliary components like memory, attention, clustering, codebook, etc., are
used to reinforce the learning component. This signifies that most learning compo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>