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Titre : Transistors synaptiques nano-ioniques à base de lithium pour le calcul neuromorphique 

Mots clés : nanoelectronique, calcul neuromorphique, transistors synaptiques, films minces, LiCoO2, LiTiO2 

Résumé : En informatique, l'architecture actuelle de 

Von Neumann est confrontée à d’importantes 

difficultés dans la réalisation de tâches cognitives (de 

reconnaissance ou de classification d’images ou de 

sons par exemple). Pour surmonter cet obstacle, 

l’architecture neuromorphique représente une piste 

prometteuse vers la réalisation de traitements 

cognitifs performants avec une faible consommation 

énergétique. La conception de tels systèmes 

nécessite cependant le développement de synapses 

artificielles dont le comportement se rapproche de 

leurs analogues biologiques. À l'heure actuelle, de 

nombreuses recherches se concentrent sur des 

nanodispositifs spécifiques (memristors) dont la 

conductance électrique peut être modulée aisément 

afin d’émuler le comportement de liaisons 

synaptiques biologiques. Pour ces composants 

électroniques, deux configurations sont possibles (à 

2 terminaux et à 3 terminaux). Parmi les synapses 

artificielles à 3 terminaux, les transistors ioniques 

apparaissent comme de bons candidats potentiels. 

Leur fonctionnement repose sur un empilement 

{canal/conducteur ionique} qui permet 

d’injecter/extraire des ions (via le conducteur 

ionique) dans la partie active du transistor (le canal), 

et de moduler ainsi finement la conductance 

électrique du composant. 

Dans cette thèse, nous explorons de nouveaux types 

de transistors nano-ioniques pour la réalisation de 

synapses artificielles. Nous avons d'abord élaboré 

des transistors synaptiques tout-solide à l'échelle 

d’un wafer en utilisant des techniques de  

microfabrication compatibles CMOS : une première 

génération de composants (deux types 

d’empilements possibles : LiCoO2/LiPON, 

LixTiO2/LiPON) a été réalisée. Les propriétés 

physiques et structurales de tels transistors ont été 

caractérisées par différentes techniques de 

microscopie et de spectroscopie (MEB, MET, 

spectroscopie Raman). Leurs performances en 

termes de comportement synaptique (modulation 

de la conductance, stabilité des états, non-linéarité, 

consommation d'énergie et endurance) ont été 

démontrées. Une étude électrochimique 

systématique (focalisée sur le matériau constituant 

le canal du transistor) a été réalisée, afin de 

proposer une explication sur l’origine des 

performances de ces composants. À partir des 

résultats expérimentaux, des réseaux de calcul 

neuromorphique (ANNs et SNNs) ont été simulés. 

En particulier, un réseau de neurones artificiels 

(ANN : artificial neural network) composés de 

matrices de transistors synaptiques a été simulé et 

testé sur différentes tâches de reconnaissance de 

formes. Le comportement cognitif de 

conditionnement classique (expérience de Pavlov) 

a également été simulé, montrant l'applicabilité 

potentielle de nos transistors synaptiques aux 

réseaux de neurones à impulsions (SNNs : spiking 

neural networks). Enfin, diverses approches 

(nouveaux designs, architectures et matériaux) ont 

été envisagées pour améliorer encore les 

performances globales de nos transistors 

synaptiques, vers une seconde génération de 

composants. 
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Title: Lithium-based nano-ionic synaptic transistors for neuromorphic computing 

Keywords: nanoelectronics, neuromorphic computing, synaptic transistors, thin films, LiCoO2, LiTiO2 

Abstract: The present Von Neumann computing 

architecture faces huge problems in achieving 

complex tasks such as recognition and classification. 

To overcome such bottleneck, neuromorphic 

computing represents an innovative and promising 

architecture towards performing intelligent and 

energy-efficient computation. The construction of 

such systems requires however the development of 

artificial synapses with biorealistic behavior. At 

present, a high research interest focuses on specific 

devices (memristors) whose electrical conductance 

can be tuned to emulate the evolution of biological 

synaptic weights. Two different device configurations 

(2-terminal and 3-terminal) are being explored. 

Among 3-terminal artificial synapses, ion-gated 

transistors appear as promising candidates. They rely 

on using an ion conductor as a gate dielectric to 

intercalate or extract ions into/from the channel layer 

following electrochemical reactions, thus, modifying 

the analog conductance states of the transistor.  

In this thesis, we explored novel nano-ionic 

transistors as synaptic components. We first 

managed to elaborate wafer-scale, all-solid-state 

synaptic transistors using CMOS-compatible 

microfabrication techniques: a first generation of 

transistors with two possible gate stacks 

 (LiCoO2/LiPON and LixTiO2/LiPON) has been 

successfully realized. The physical and structural 

properties of these transistors have been 

characterized by different microscopy and 

spectroscopy techniques (SEM, TEM, Raman 

spectroscopy). Subsequently, synaptic behaviors 

such as conductance modulation, state retention, 

nonlinearity, energy consumption, and endurance 

have been demonstrated. We carried out a 

systematic electrochemical study (focused on the 

active channel material), and proposed an 

explanation on the performance of the synaptic 

transistors. Furthermore, from the experimental 

results, neuromorphic computing networks (ANN 

and SNN) have been simulated. Specifically, neural 

ANN cores composed of crossbar arrays including 

our synaptic transistors have been simulated, 

trained, and tested with different pattern 

recognition tasks. Besides, the Pavlovian 

conditioning experiment has been simulated, 

showing the potential applicability of our synaptic 

transistors to spiking neural networks (SNN). 

Finally, various approaches (new designs, 

architectures, and materials) have been considered 

to improve further the overall transistor 

performance, towards a second generation of 

synaptic transistors. 

 



 

5 

 

ACKNOWLEDGEMENTS 

 

I would like to express my gratitude to all the people who have supported me 

throughout the three years of my Ph.D. in this part. 

First and foremost, I’m deeply indebted to my supervisors, Dr. Sami Oukassi and Dr. 

Olivier Schneegans. Thank you, Sami, for having always spent at least five minutes of 

your precious time on me and my problems. Your countless pieces of advice on 

scientific, technical, and professional aspects were essential to completing this work 

and my personal growth. Olivier, your supervision style was the warmest I have ever 

experienced. Weekly discussions with you always brought me lots of motivation and 

encouragement. Your pedagogical way of teaching and limitless patience helped me 

a lot in positioning and presenting research findings more efficiently. Your 

mentorship truly inspired me. 

I would also like to show my deep gratitude to Dr. Fabien Alibart and Prof. Marc 

Bocquet, reviewers of my thesis, for their insightful comments and questions on the 

scientific content and presentation of my work. I am also very grateful to the 

committee members: Prof. Ahmad Bsiesy, Dr. Marie-Paule Besland, and Dr. Damien 

Querlioz, for their constructive suggestions and criticism during the thesis defense. 

I would like to extend my sincere thanks to my entire team (LSME and LCRE at Leti-

CEA) for your support on different aspects of my work. I very much appreciated the 

practical career advice from my managers, Dr. Raphael Salot and Dr. Yann Lamy. 

Thank you, Sylvain and Jouhaiz, for your aid on thin-film deposition. Thanks to 

Severine, Valentin, Jean-Marc, Jordan, Marjolaine, and Clemence for your assistance 

in the microfabrication process. Special thanks to Isabelle, Denis, and Anne-Marie, 

who have supported me in the device and material characterization. 

Last but not least, I would like to express my deepest gratitude to my family in 

Vietnam, especially my mother, Pham Thi Hoa. Her daily care messages motivated 

me to work harder and be more resilient in this foreign country. I cannot end this 

part without saying thank you to my girlfriend, Nhat Anh, for her invaluable love and 

support. Thanks for always believing in me, for the hours of confiding, and the meals 

with the taste of home. 

 



6 

 

  



 

7 

 

 

TABLE OF CONTENTS 

 

 

INTRODUCTION 8 

 

 

CHAPTER 1: Bibliographical study 11 

 

 

CHAPTER 2: Microfabrication techniques of  

 synaptic transistors 53 

 

 

CHAPTER 3: First generation of electrochemical 

 synaptic transistors 97 

 

 

CHAPTER 4: Simulation of neuromorphic computing systems 

 composed of our LixTiO2-based transistors 135 

 

 

CHAPTER 5: Optimization towards a second generation 

 of synaptic transistors 169 

 

 

CONCLUSIONS AND PERSPECTIVES  187 

 

 

Summary of the thesis in French (5 pages) 191 

 

 

Publications during the thesis 197 

 

  



8 

 

INTRODUCTION 

 

The conventional von Neumann computer plays a critical role in solving problems with 

different levels of complexity in almost every field of life. However, this computing 

architecture presents a bottleneck: a significant amount of time and energy are required 

to transmit data between processors and memory units. This barrier will inevitably limit 

computational efficiency, especially for solving data-intensive tasks such as pattern 

recognition, real-time speech, and visual computing. Taking the inspiration from the 

human brain, neuromorphic computing systems are expected to mitigate the 

aforementioned limit by performing the computations on the structured memory arrays 

with massive parallelism. 

Neuromorphic computing systems are composed of neural networks (representing 

neurons) connected by artificial synapses. Developing brain-like computers requires 

artificial synapses that mimic the behaviors of their biological counterparts. Efforts have 

been made to simulate synaptic functions with CMOS analog circuits. However, they face 

a critical challenge in large-scale integrations, as tens of components are required to 

mimic one synapse. This mismatch in efficiency necessitates the search for single 

electronic devices that can emulate the synaptic functions. In recent years, specific devices 

(memristors) whose electrical conductance can be tuned to emulate the evolution of 

biological synaptic weights, have attracted much interest. These components can be 

subdivided in 2-terminal devices and 3-terminal devices. Each configuration has its own 

strengths and weaknesses. Specifically, in the 3-terminal configuration, the Write 

operation (synaptic weight modulation) is decoupled from the Read operation, allowing a 

better control of conductance tuning. 

Among 3-terminal artificial synapses, electrochemical synaptic transistors (whose working 

principle is similar to that of biological synapses) appear as promising candidates. The 

electrical conductance of the channel is modified upon the intercalation of ions following 

redox reactions controlled by the gate potential, creating a robust mode of analog weight 

programming. 

The large-scale integration of the electrochemical synaptic devices at wafer-scale 

fabrication is inexorable to develop the hardware for neuromorphic computing. There 

exist devices composed of liquid and polymer electrolytes and manually exfoliated 

channels, which prohibits however their further integration into dense computing chips. 

To overcome these drawbacks, the goals of my thesis are to (i) propose innovative solid-

state synaptic transistors to optimize the overall performance (ii) elaborate and 
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characterize such solid-state electrochemical synaptic transistors with CMOS compatible 

processes, and (iii) demonstrate their required synaptic functionalities. The work in this 

thesis has been realized with the facilities of Laboratoire Composants pour la RF et 

l’Energie (LCRE), CEA-LETI, Grenoble and the Laboratoire Génie Électrique et Électronique 

de Paris (GeePs), Gif sur Yvette. 

This dissertation is divided into 5 chapters. In the first chapter, we present a brief review 

of neuromorphic computing, its motivation, and its emerging artificial synapse solutions 

with a focus on electrochemical synaptic transistors. A global view of state-of-the-art 

electrochemical devices and their reported performance parameters is also presented. 

In chapter 2, we will introduce the processes in microfabrication, including thin-film 

deposition, patterning, and characterization techniques employed in elaborating the 

electrochemical synaptic transistors in this thesis. The detailed process flow to realize the 

synaptic transistors based on thin films with the progressive optimization progress is 

subsequently discussed. 

Chapter 3 is dedicated to showing the first functional generation of electrochemical 

synaptic transistors with two gate stacks: LiCoO2/LiPON and LixTiO2/LiPON. We will first 

present briefly the properties of the materials composing the transistors. We then 

investigate the electrochemical and electrical properties of LiCoO2/LiPON devices with 

some preliminary tests. It is followed by a systematic study of LixTiO2/LiPON systems in 

which we could demonstrate excellent synaptic behaviors of the electrochemical 

transistors and their correlation to the electrochemical phenomena. 

With the results obtained, we initiate in chapter4 the simulation of neuromorphic 

computing systems which take into account the properties of our synaptic transistors. An 

Artificial Neural Network (ANN) with analog synaptic transistor crossbar arrays, 

considering the nonlinearities of realistic devices, is simulated, trained, and tested with the 

MNIST pattern recognition task. A benchmark among the available artificial synapses is 

given. In addition, the Pavlovian conditioning experiment is examined with a neural 

electronic circuit, which includes our synaptic transistor as a learning element: this allows 

showing the potential applicability of our transistors to spiking neural networks (SNN). 

In chapter 5, we will discuss measures to improve further the electrical performance of the 

synaptic transistors. Feasible approaches come from shrinking both lateral and vertical 

dimensions of the transistors to facilitate fast, energy-efficient programming pulses and 

linear, stable analog states. Besides, new ultrathin materials will be considered as an 

important axe for the next steps. 
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ABSTRACT 
 

 

 

The first chapter will be dedicated to introducing the field of neuromorphic computing 

and neuromorphic hardware. This chapter is divided into 5 main sections. In the first section, we 

will present the urge to search for and develop a new computing architecture that can help 

digest the accumulated immense amount of data generated in an energy-efficient way. 

Section 2 of this chapter introduces a bio-inspired solution - neuromorphic computing. 

We will briefly cover the functions of biological synapses and subsequently describe the methods 

implemented to mimic these brain functionalities using electronic components. With the main 

arguments of energy and space consumption, we argue the need for emerging synaptic devices 

to construct novel neuromorphic computing structures. 

In section 3, we address the types of available electronic solutions for artificial synapses, 

including two-terminal devices (Resistive random-access memory – ReRAM, Phase-change 

memory – PCM, and Magnetic random-access memory – MRAM) and three-terminal devices 

(Ferroelectric field-effect transistor – FeFET and Electrochemical synaptic transistor – SynT). The 

operation principles of each type of device will be discussed. 

With the similarity to the biological synapses, SynT will be the focus of this thesis and 

will be explicitly presented in section 4. We first summarize recent works and the trends in the 

field of electrochemical synaptic transistors. Subsequently, the SynT figures of merit are 

discussed with methods and examples demonstrated on realistic synaptic transistors, paving the 

way to systematically characterize future SynTs. In section 5, we will comment on the overall 

state-of-the-art of the artificial synapses with the input from SynTs and other candidates, and 

main approaches to improve the performance of these devices. From there, this thesis's outline 

and scope are presented in section 6.  
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 THE NEED FOR A NEW COMPUTING PARADIGM 
 

Ever since being conceptualized, Artificial Intelligence (AI) has revolutionized the world 

we are living in a way that no one could imagine. The ability to refine and analyze an enormous 

amount of datasets and then turn them into fantastic use cases of data that were not 

previously obvious to the naked eye makes it a genuine game-changer in this “Big Data” era. 

More and more data is being processed in various fields, such as health, business, and 

transportation, helping firms make critical data-driven decisions. However, such kind of 

cognitive operations of AI requires remarkable computing resources, owing to the current 

constraints posed by the conventional computing hardware platform, namely the termination 

of Moore’s law and the Von Neumann (VN) bottleneck [1]. 

 

 

Figure I. 1: Brain versus Computer. (Top) Neurons in human brain are connected via billions of neural 

connections – synapses, creating a biological computer with energy- and time-efficient computing 

ability. (Bottom) Conventional computer structure with memory and processing units separated. This 

structure requires data to be shuttled between the two units and thus, the data latency is unavoidable 

[2]. 

 

Over the past few decades, together with the rapid evolution of micro-fabrication 

technology, computer chips’ performances have been pushed to the edge. They could no 
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longer be appropriately described by the prediction of Moore in 1965 [3]. As the 

miniaturization continues, the transistors will eventually reach their atomic limits, which results 

in critical problems concerning current leakage, overheating, and thus, limiting the processing 

power of the nano-chips. For these reasons, it is complicated and extremely costly to ensure 

the ideal functionality across billions of devices. On the other hand, VN architecture implies 

the usage of a shared data bus between program and data memories, therefore, prohibiting 

the parallelism of instruction processing. Since the central processing unit (CPU) speed and 

memory size have increased much faster than the throughput between them, the bottleneck 

has become an increasingly severe problem with every new generation of CPU. As a result, to 

accelerate the development of AI, extensive research efforts have been made to optimize an 

alternative brain-inspired computing paradigm that is both energy and time-efficient – the 

neuromorphic computing systems (Figure I. 1). 

The human brain exhibits an appealing Non-Von Neumann (Non-VN) computing 

paradigm for future computing systems that can complement or even replace the current VN 

architecture. Characterized by its massively parallel architecture connecting numerous low-

power computing elements (neurons) and adaptive memory elements (synapses), the brain 

can outperform modern processors on many cognitive tasks involving unstructured data 

classification and pattern recognition. Neuromorphic computing is an active multidisciplinary 

branch of research, combining physics, nanoelectronics, nanomaterials, neuroscience, and 

computer science. It serves the purpose of building and developing the materials, devices, 

and systems that closely mimic the human brain, targeting a new generation computing 

system that inherits the parallelism and low power operation of the mammalian nervous 

system.  

By far, there are two main approaches to realizing brain-like computing, namely 

software simulation and hardware implementation. However, current software simulation 

often requires a huge amount of energy consumption and great physical space. For example, 

IBM’s Blue Gene supercomputer is used for executing software simulations consuming 

roughly 10 MW of power [4]. Moreover, the software in digital computation performs 

calculations in series, and for these reasons, it is not suitable to mimic the parallelism of neural 

networks effectively. Such problems could be addressed if we can actualize a massively 

parallel neural network at a hardware level [5]. Hardware implementation aims to construct 

artificial neuron networks by using electronic devices. Since synapses are the functional 

connections of neurons and serve as the basic units of computing and learning, designing 

physical synaptic devices that exhibit synaptic behaviors is the key step to build brain-like 

computers. To achieve this, artificial neural networks (ANNs) have been developed and 

successfully applied in various fields. Despite the fact that these recent favorable outcomes in 

neuromorphic computing [6]–[8], the hardware implementation of these ANNs has been 

hindered by the fact that multiple CMOS transistors are required to mimic the behaviors of 
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the analog synapses. Furthermore, their energy consumption is much higher than the 

biological synapses to perform the same tasks [9]. Non-volatile electronic memory devices, 

including memristors and synaptic transistors, are rising as promising technologies to 

complement the conventional Si CMOS systems with a better energy and space tradeoff. 
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 NEUROMORPHIC COMPUTING 
 

2.1 Biological synapses 

 

The human brain is by far the most efficient computing system, which is not very 

surprising as it is the result of millions of years of evolution. The brain combines various types 

of cells, but the primary functional unit is a cell called a neuron. These neurons are responsible 

for generating and analyzing signals that control our emotions, memories, movements, 

thinking, and feelings; these are the traits that make us humans. A human brain contains 

approximately 1011 neurons [10]. Each of them is made up of a cell body called soma, an axon, 

and multiple dendrites. Axon carries information from soma to a junction, where it is collected 

by dendrites of other neurons. The intersection is called a synapse, and the strength of the 

synapse (synaptic weight) decides the connection strength between two neurons, which can 

be altered by neural activities. This process is known as synaptic plasticity and is believed to 

be the backbone of human learning ability. 

The synaptic inputs picked up by the dendrites of other neurons are then integrated 

by their own cells, encoded in the form of action potentials, and distributed to even more 

neurons from their axon terminals. Typically, each neuron is connected with about 104 other 

neurons, resulting in a large number (about 1015) of biological synapses in the human brain. 

With its high energy efficiency, the consumes averagely around 20 W of power for its 

functioning [11], yielding an energy consumption of approximately 1–10 fJ per synaptic event. 

Various neuron interactions should be taken into consideration to understand how a 

neuron works. Each neuron carries out five essential functions as described in Figure I. 2.a: (1) 

Generate intrinsic membrane activity in the neuron; (2) Receive synaptic inputs in dendrites; 

(3) Combine synaptic inputs with the intrinsic membrane activity; (4) Generate outputs in the 

form of action potentials; (5) Distribute the outputs from axon terminals [12]. 

There are two fundamental types of synapses: electrical and chemical. Electrical 

synapses mainly exist in invertebrates – animals lacking a backbone, while chemical synapses 

are found in humans and other vertebrates. We will only focus on the chemical synapses in 

this study. The chemical synapse between two neurons is illustrated in Figure I. 2.b. At these 

synapses, information transfer from one neuron to another occurs through the release of 

neurotransmitters by one neuron (pre-synaptic neuron) and the detection of the 

neurotransmitters by an adjacent neuron (post-synaptic neuron). 
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Figure I. 2: Schematic of neurons and chemical synapses. a. Different functional regions of a neuron. 

b. A synaptic connection between a pre-synaptic neuron and a post-synaptic neuron [13]. 

 

The synaptic plasticity shown by chemical synapses is one of the most important 

neurochemical foundations of learning and memory in the brain. Chemical synapses consist 

of two types: excitatory or inhibitory [13]. In the brain, the synapse receptors for glutamate 

neurotransmitters are typically excitatory, whereas the receptors for GABA (Gamma-

Aminobutyric acid) neurotransmitters are generally inhibitory. An excitatory receptor results 

in an Excitatory Postsynaptic Potential (EPSP) and drives the postsynaptic neuron closer to the 

depolarization threshold, which makes the cell “fire” an action potential. An inhibitory receptor 

results in an Inhibitory Postsynaptic Potential (IPSP) and drives the postsynaptic neuron 

further from the depolarization threshold. Axon terminals from many neurons can connect to 

a given neuron and release a variety of neurotransmitters, which impinge on excitatory and 

inhibitory receptors to produce EPSPs and IPSPs.  

The postsynaptic neuron behaves like a tiny computer, integrating all the EPSPs and 

IPSPs, which later determines whether it will “fire” or not. When a neuron fires, the resulting 

action potential travels towards the synaptic cleft through its axon. The arrival of the action 

potential at the axon terminal results in the merging of neurotransmitter vesicles with the 

presynaptic membrane, and a subsequent release of the neurotransmitters into the synaptic 

cleft. The neurotransmitter diffuses through the synaptic cleft, binds to and activates a 
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receptor in the postsynaptic membrane, modifying the plasticity of the connection, i.e., the 

synaptic weight. In the learning phase, these synaptic weights are updated in an analog and 

parallel fashion based on multiple learning rules [13]. 

 

2.2 Neuromorphic computing – the brain emulation using hardware 

 

Modern computers are more capable of the enormous amount of information storage 

as well as fast numerical computation than that of human brains. Still, even the biggest and 

fastest supercomputers in the world cannot match the overall processing power of the human 

mind in performing cognitive and adaptive tasks, such as pattern recognition, perception, 

motor control, flexibility, and learning [14]. 

Due to these fantastic capabilities of the brain, it is very appealing to study its structure 

and working mechanisms in order to mimic it using electronic circuits. The study of the brain 

and its inspiration in developing computing systems has led to a new form of computer 

architecture, known as neuromorphic architecture. This field combines knowledge from multi-

disciplines in order to design artificial neural systems. The physical architecture, design 

principles, and computing algorithms of artificial systems are based on those of biological 

systems (Figure I. 3)  [15], [16]. 

Although the behavior and connections between neurons can be partially simulated 

on a Von Neumann-architecture computer, such a system will consume excessive power, for 

example “MilkyWay-2” supercomputer [17] consumes a normal power of 20 MW compared 

to 20 W ultralow consumption of the human brain on real time processing tasks [18]. 

Furthermore, such a computing system is not capable of exploiting the architecture of the 

brain due to the fundamental differences between these two systems. As a result, a race is on 

to develop new types of devices and hardware architectures that can better resemble bio-

intelligent systems at the physical level, and thus more efficiently emulate the brain at the 

functional level. For instance, the so-called neuromorphic circuit is built from devices that 

behave like neurons, transmitting and responding to information sent in the form of spikes 

rather than continuously varying voltages. Carver Mead, dating back to 1980s, first developed 

the concept of neuromorphic engineering. Mead described it as “using VLSI systems 

containing electronic analog circuits to mimic neurobiological architectures present in the 

nervous system [19].” 
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Figure I. 3: Neuromorphic hardware can be implemented via both artificial neural networks (ANNs) 

and brain-inspired neural networks. These two approaches rely on a different set of algorithms and 

learning rules, e.g. the backpropagation algorithm in ANNs, or the temporal dynamics in brain-

inspired SNN concepts. 

 

As the brain consumes extremely low energy, the first crucial step in realizing these 

hardware systems is to achieve a suitable device that can function as a synapse with low power 

consumption and desired plasticity. Accordingly, researchers have explored a variety of device 

systems with programmable conductance, also known as synaptic devices. 
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 THE ARTIFICIAL SYNAPSES 
 

In 1971, Chua first proposed the concept of memristor (memristive device) [20], which 

was defined as a two-terminal system with resistive switching (RS) effect that could 

demonstrate a variable and non-volatile resistance depending on the history of applied 

voltage and current. Later in 2008, the HP lab realized a device that has characteristics that 

described by Chua [21]. With this progress, huge research attention was dragged into 

developing and optimizing neuromorphic computing systems with memristors as the primary 

functional units [22]–[24] as well as the post-CMOS memory components themselves. Over 

the years, many types of memristive devices were developed for the artificial synapse 

application, including two-terminal devices (e.g. resistive random-access memory (ReRAM) 

[25], [26], phase-change memory (PCM) [27], magnetoresistive random-access memory 

(MRAM) [28]), and three-terminal devices (e.g. ferroelectric field-effect transistor (FeFET) [29], 

and electrochemical synaptic transistors (SynT) [30], [31]).  

 

3.1 Two-terminal memristive devices 

 

Memristors usually have a simple metal/insulator/metal structure (see Figure I. 4) [32]. 

ReRAM memristors are two-terminal resistance switches that can retain their internal 

resistance states depending on the history of applied voltages/currents [33]. Based on the 

filament (conducting bridge) rupture mechanism, there are two types of memristive devices, 

namely, drift and diffusive memristors. PCM devices rely on the resistivity difference between 

two phases of a chalcogenide material (phase change material): the crystalline phase with low 

electrical resistivity and the amorphous phase with high electrical resistivity [34]. PCM devices 

are currently among the most mature devices for artificial synapses [35].  

Spintronics-based MRAM consists of a tunneling oxide layer sandwiched by two 

metallic ferromagnetic layers: the free layer and the pinned layer. This structure is also called 

a magnetic tunnel junction (MTJ) [36]. The spin polarization of the pinned layer is fixed in a 

specific direction, while the free layer magnetization can be altered using an external current 

or magnetic field. Depending on whether the magnetization directions in the two layers are 

parallel or not, devices can exhibit a high resistance (opposite or antiparallel) state or a low 

resistance (parallel) state. The artificial synapses built on two-terminal devices have several 

advantages, such as low power consumption, simple device structure, small cell size, and easy 

large-scale integration with crossbar structure. However, the device variability and operation 

instability of the two-terminal synaptic devices may hinder their further applications in 

advanced artificial intelligent systems [37]. 
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Figure I. 4: Memristor devices. a) Resistive random access memory (ReRAM). b) Phase change 

memory (PCM). c) Magnetoresistive random access memory (MRAM). 

 

3.2 Three-terminal synaptic transistors 

 

By adding a third terminal to these devices, quite a several problems are mitigated. In 

comparison with two-terminal synaptic devices, three or multi-terminal synaptic transistors 

have the advantages of excellent stability, relatively controllable testing parameters, and 

robust operation mechanism [38]. Through proper material selection and structural design, 

transistors can convert external stimuli (light, pressure, temperature, etc.) into the electrical 

signal, which provides the possibility to achieve artificial synapses that can directly respond 

to the external environment. In addition, synergistic control of one device can be easily 

implemented in a transistor-based artificial synapse, which opens up the possibility of 

developing stable neuron networks with significantly fewer neural elements. More 

importantly, signal transmission and self-learning can be performed simultaneously in multi-

terminal transistor-based artificial synapses. Therefore, transistors may be more suitable for 

simulating synaptic functions than other types of devices, especially for simulating concurrent 
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learning and dendrites integration that require a multi-terminal operation. In this section, the 

working mechanisms of the main synaptic transistor types, FeFET and SynT, are discussed with 

the focus on the central theme of the thesis as electrolyte-gated electrochemical synaptic 

transistors. A State-of-the-art review will follow to highlight the trends in this topic.  

 

Figure I. 5: Synaptic transistors: a) Ferroelectric field-effect transistor (FeFET). b) Electric double-layer 

electrochemical transistor. c) Ion intercalation electrochemical transistor [39]. 

 

3.2.1 Ferroelectric field-effect transistor (FeFET) 

 

FeFETs have been actively studied for practical nonvolatile memory applications due 

to their non-destructive readout, low power consumption, and high operating speed. The 

ferroelectric insulator layer, whose polarization states are spontaneous, is the main 

component of this technology. Upon gating, the carrier concentration of FeFETs can be 

precisely and gradually modulated by changing the polarization state of ferroelectric 

materials [29]. For traditional memory applications, the ferroelectric insulator switches 

between two polarization states representing two digital states of the memory.  Recently, 

FeFETs have attracted considerable attention as a promising platform for mimicking biological 

synapses thanks to the excellent multi-domain polarization switching capability of 

ferroelectric materials, which can be used to obtain multilevel FeFET channel conductance. 
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The multilevel channel conductance of FeFETs can be utilized to record synaptic weight. A 

general schematic of a FeFET is shown in Figure I. 5. [40]. 

Ferroelectric synaptic transistors show some promising features, such as high stability, 

large ON/OFF ratio, fast programming operations, as well as fewer variations in the weight 

update curve [41]. However, they also suffer from scaling issues as floating-gate synaptic 

transistors because of their similar charge-based memory characteristics. In addition, they 

have difficulties implementing excellent short-term synaptic plasticity. Therefore, further 

research focused on addressing these limitations of FeFET-based synaptic devices is urgent. 

 

3.2.2 Electrochemical Synaptic Transistor (SynT) 

 

An additional gate terminal and an ion-conducting electrolyte layer surrounding the 

channel material constitute the gate-stack of an electrochemical synaptic transistor. The ions 

inside the electrolyte could be driven toward and even into the channel material, leading to 

its conductance change. Such ionic dynamics much resemble the pre-synapse process emits 

synaptic transmitters, which then move across the synaptic cleft, pass the ion channels on the 

post-synapse, and finally enhance the post-synapse signal. There are two types of working 

mechanisms in SynTs: electric double-layer formation and ion intercalation. 

 

3.2.2.1 Electric double-layer formation 

 

A constant gate voltage or a low-frequency gate pulse would drive the ions with 

opposite charges, e.g., cations, toward the channel material surface, leading to a cation 

accumulation. According to Electrostatics, such an accumulation would also call for a thin 

layer of electrons inside the channel material, near the material surface Figure I. 5.b. The 

cations and electron layer would form an ultra-thin capacitor, which is named the electric 

double-layer capacitor (EDLC). The ion-induced electron layer also functions as a conductive 

layer, which would significantly improve the conductance of the channel material, leading to 

the resistance change of the channel material. By engineering the intensity of the gate pulse, 

the ion density, and the type of ion inside the electrolyte, the formation of the EDL could be 

changed, which provides an approach to tuning the temporal behaviors of the channel 

conductance.  

EDL-based devices possess many advantages compared to other mainstream 

mechanisms. The most important one is the extremely large electric field formed between the 

double layers, which can easily be more than 10 MV/cm due to the extremely short distance 



25 

 

between the two electrical layers. Such a strong electric field can hardly be achieved in 

conventional solid-state capacitors due to the dielectric breakdown or tunneling. It can lead 

to better gate control in artificial neuromorphic devices. In other words, the device can work 

at lower operation voltage compared to conventional devices. Moreover, in most cases, the 

electrolyte is only conductive to specific types of ions and is insulating to electrons. Hence, 

there only exists a very low leakage current between the resistive switching material and the 

controlling terminal. As a result, devices based on EDL formation can often work at a voltage 

lower than 0.3 V and possess energy consumption as low as 1.23 fJ/spike [33]. Moreover, after 

the controlling voltage is removed, the ions accumulated on the resistive material surface 

spontaneously diffuse back into the electrolyte and are re-distributed uniformly from a few 

milliseconds to a few seconds. This phenomenon leads to a significant current drop from the 

stimulated state to the original state, which can be read out by the source and drain terminals 

and greatly resembles the short-term plasticity inside biological systems.  

 

3.2.2.2 Ion intercalation  

 

Another phenomenon that takes place inside electrochemical transistor systems is ion 

intercalation. The mobile ions in the electrolyte would migrate into the target material under 

the influence of the gate voltage following electrochemical redox reactions. As a result, the 

electrical property of the channel layer changes, see Figure I. 5.c. The intercalation effect has 

been widely studied in electrode materials used for battery cells, with LiCoO2 and graphene 

nanosheets being the few types that have been thoroughly studied. Hence, for some layered 

structure materials, such as WSe2, MoS2, graphene, and some sub-stoichiometric salts, ions 

can get into the crystal structure and get stored inside the channel materials. Recent research 

studies have showed that intercalations inside neuromorphic devices are of two main types, 

namely electronic redistribution [30], [42] and phase transition of channel materials [43] 

induced by intercalation of external mobile ions. 

Unlike the devices based on EDL, the intercalated ions could remain inside the channel 

materials even after the controlling voltage is removed, leading to a constant memory effect. 

By repeatedly applying voltage pulses to the gate relative to the open-circuit voltage (OCV) 

of the vertical cell, relatively the same amount of ions would be intercalated into the channel 

material, leading to a linear increase in channel conductance. The OCV measured from Gate-

Source electrodes indicates the ionic concentration of the mobile ions inside the channel. 

Therefore, by controlling the gradual increase of this quantity, one can monitor the 

conductance change of the channel with precision. With the amount of inserted ions being 

controlled to the minimum, one can program analog conductance states with a large number 

of conductance states and small energy consumption of femto-Joule or less per WRITE action, 
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which is comparable to the biological synapses’ operations. These features of ion intercalation 

SynTs indicate a great fit for bio-inspired computing applications such as artificial neural 

network (ANN), in which these transistors are the constituting elements.  

Furthermore, desirable synaptic functions have been demonstrated with ion 

intercalation types of electrochemical synaptic transistors, such as short-term plasticity (LTP), 

long-term plasticity (LTP), spiking-time dependent plasticity (STDP), and spiking-rate 

dependent plasticity (SRDP) [31], [44]. The listed functions are the requirements for the next 

generation of the neural networks inspired by the biological nervous system, spiking neural 

network (SNN). They employ spiking neurons as computational units that process information 

with the timing of spikes. Therefore, SNNs provide the potential for spatiotemporal 

information processing with high time and energy efficiency.  
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 STATE OF THE ART IN ELECTROCHEMICAL SYNAPTIC 

TRANSISTORS 
 

4.1 Summary on the recent works 

 

Electrochemical synaptic transistors have attracted much attention from researchers 

as a great candidate for artificial synapses, and this device will be my main subject throughout 

this thesis. Two types of electrolytes are used in these devices: ionic liquid (IL) and solid-state 

electrolytes. ILs have been widely studied for the use of electrolyte gating to induce extremely 

large modulations in the carrier densities at the interfaces and also a faster switching speed 

compared to solid-state electrolytes [45]. However, this electrolyte's main drawbacks are 

environmental dependence, e.g., humidity and unscalability [31]. In fact, from a technological 

point of view, it is challenging to incorporate liquid phase and environmental factors in the 

device fabrication and encapsulation, limiting the high-density integration of the devices. 

Therefore, an all-solid-state electrolyte-gated transistor has a great potential for becoming 

the best candidate for a synaptic transistor with the application of neuromorphic computing. 

In this section, I will present some selected progress in the field of synaptic transistors. Table 

1 will sum up the characterizations of the devices. 

Among the current ions used for modulating the synaptic strength in the electrolyte-

gated transistors, such as Oxygen O2- and protons H+, Lithium ions Li+ show their merits in 

such tasks. Lithium-ion-based devices possess high reversibility and ultra-high stability of Li+ 

ion under electrolyte gating. Fuller and coworkers demonstrated the modulation of the 

conductivity of the LiCoO2 channel by intercalating (de-intercalating) Li+ via LiPON electrolyte 

in their Li-ion synaptic transistor for analog computation (LISTA) (see Figure I. 6.a) [30]. LiCoO2 

is well‐known for its reliability and endurance in electrochemical cycling. The removal of Li 

oxidizes Co3+ to Co4+ and generates positively charged polarons. As the fraction x in Li1−xCoO2 

is varied from 0 to 0.5, the material undergoes an insulator to metal transition, and this 

process is highly reversible. The LiPON electrolyte was chosen for its scalability, approximately 

down to 20nm in thickness, high ionic mobility (1.2 × 10−6 S/cm), and low electronic 

conductivity (8 × 10−14 S/cm) at room temperature. This pair of materials is also well studied 

in the field of all-solid-state micro-batteries. The electrical measurements of LISTA have 

shown promising characteristics of a synaptic transistor. It possesses a very dynamic 

conductance range in the order of micro Siemens, from 180 – 220 µS, with 200 nonvolatile 

states on average. In addition, high linearity, good endurance and low noise weight updates 

have been demonstrated. Achieving all this at a small cost of a few femto-Joule or even less 
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has been very promising and a driving factor toward brain-inspired energy-efficient 

neuromorphic computing. 

Yang and et al. exploited the stacked structure of α-MoO3 to illustrate short/long-term 

plasticity (STP/LTP) with very low channel conductance (Figure I. 6.b) [31]. α-MoO3 is a layered 

2D material allowing the reversible intercalation of Lithium via a Faradaic reaction involving 

the reduction/oxidation of Mo ions. This process tunes the oxide electrical properties with 

minimal structural changes compared to that of the filament formation of memristors. The 

short and long-term plasticity, bidirectional analog, and near-symmetric weight update 

between LTP and LTD have been shown with ultralow channel conductance values (<75 nS) 

and picojoules operation energy. These traits are essential for high-energy efficiency. Another 

promising technology involving 2D van der Waals layered crystals, or quasi-2D transition 

metal-oxide whose properties can be tuned with ion gating has been shown to exhibit both 

STP and LTP owning to high-frequency gating. This phenomenon is accounted by the lithium-

ion intercalation into the channel that yields a nonvolatile state before they can diffuse back 

into the electrolyte (volatile behavior).  

At the device level, synapses are still implemented by dozens of digital complementary 

metal-oxide-semiconductor (CMOS) devices in today’s artificial neural networks. Thus, 

developing synaptic elements with CMOS-friendly materials is highly desirable. Tang et al. 

presented an Electro-Chemical Random-Access Memory (ECRAM) employing the reversible 

Li-ion intercalation in the Tungsten oxide WO3 channel via LiPON solid-state electrolyte 

(Figure I. 6.c) [46]. This nonvolatile transistor can have more than 1000 stable conductance 

levels, prolonged retention of programmed states, and high-speed writing at 5 ns. All of these 

characteristics are notably demonstrated at under 100 fJ. Li and colleagues show a high-

performance, α-Nb2O5-based single transistors and system (Figure I.6.d) [44]. The devices 

exhibit quasi-linear update, good endurance (106) and retention, a high switching speed of 

100 ns, ultralow readout conductance (<100 nS), and ultralow areal switching energy density 

(20 fJ/μm2). The prominent analog switching performance is leveraged for hardware 

implementation of an SNN with the capability of spatiotemporal information processing, 

where spike sequences with different timings are able to be efficiently learned and recognized 

by a 32x32 crossbar array. 
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Figure I. 6: Recent electrochemical synaptic transistors. a) E. J. Fuller’s SynT in 2017, composing of 

LiCoO2 channel and LiPON electrolyte films [30]. b) C-S Yang’s SynT in 2018, composing of α-MoO3 

channel and PEO:LiClO4 polymer electrolyte films [31]. c) J. Tang’s SynT in 2018, composing of WO3 

channel and LiPON electrolyte films [46]. d) Li’s SynT in 2020, composing of α-Nb2O5 channel and 

LixSiO2 electrolyte films [44]. e) J. Zhu’s SynT in 2018, composing of 2D WSe2 channel and PEO:LiClO4 

polymer electrolyte films [47]. f) M. T. Sharbati’s work in 2017, composing of 2D Graphene channel 

and PEO:LiClO4 polymer electrolyte films [48]. g) Y. Li’s 1S1T in 2019, composing of a memristive 

Pd/Ag:SiO2/Pt selector, anatase-phase LixTiO2 channel and PEO:LiClO4 polymer electrolyte films 

[49]. h) E. J. Fuller’s 1S1T in 2019, composing of a CBM Pt/Ag/SiOxNy/Ag/Pt selector, PEDOT:PSS 

polymer channel and Nafion polymer electrolyte films [50]. i) . S. Kim’s selectorless SynT in 2019, 

composing of WO3 channel and HfO2 electrolyte films [51]. 
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Novel approaches involving two-dimensional (2D) materials have demonstrated high 

performance of synaptic functions based on the exotic physics of these layered materials and 

the potential for further scaling for synaptic devices. Zhu et al. presented an ionic-gating-

modulated synaptic transistor in which the channel is made-up of a 2D van der Waals layered 

crystal such as WSe2, NiPS3, and FePSe3 (Figure I. 6.e) [47]. These devices have shown almost 

linear potentiation and depression with multiple conductance states (<200 nonvolatile states), 

as well as very low energy consumption of 30 fJ per spike. However, a challenge with this 

device might stem from its tiny conductance change (approximately 300 pS), which is too 

subtle for realistic measurements and applications. In 2017, Sharbati and colleagues realized 

an energy-efficient electrochemical transistor with a layered Graphene channel (Figure I. 6.f) 

[48]. While the electrochemical behaviors of graphite with Li ions have been thoroughly 

characterized since this material has already been widely used as an anode in Li-ion batteries, 

Li ions also have been reported to have an unusually high diffusion coefficient (7×10−5 cm2s−1) 

in bilayer graphene at room temperature. This combination has resulted in a well-performed 

transistor with linear, precise, and reversible conductance change, together with scalability in 

switching speed and operation energy. However, devices based on low-dimensional materials 

show certain integration issues due to the immature deposition techniques. Thus, they are 

unsuitable for the further development of neural networks composed of a large number of 

synaptic components. 

Another recent concept that has caught the attention of researchers is combining an 

additional two-terminal memristive device connected in series with the gate of the synaptic 

transistor. This memristor acts as a switch to selectively program the transistor and prevent 

further unattended conductance changes through the gate [52]. Li et al. demonstrated a cell, 

i.e., 1 selector & 1 transistor, in which they utilized a two-terminal low-voltage threshold 

switch based on Ag filament formation (Figure I. 6.g) [49]. Concerning the transistor, they used 

a stack of LiTiO2/LiClO4:PEO/LiTiO2 to reduce the built-in open-circuit voltage. Because of this 

combination, they were able to demonstrate linear potentiation and depression of the 

channel conductance in more than 250 states with long retention. In addition to those, the 

write noise can be as low as 200 mV, corresponding to roughly 0.3 fJ per weight update. 

Similarly, Fuller and colleagues realized a 1S1T cell with the same memristor, but proton (H+) 

was utilized instead of Li+ ion (Figure I. 6 h) [50]. Another design worth mentioning in this 

section is the selector-free synaptic transistor presented by Kim et al. in his 2019 paper (Figure 

I. 6.i) [51]. Their idea is to create an additional oxide layer between the gate electrode and the 

electrolyte. This layer generates a supplementary nonlinearity in the IV characteristic that can 

act as a transistor threshold switch. Even though clear evidence behind this phenomenon was 

not provided in the article, the “selector-free” approach will gradually be a requirement for 

fully developed synaptic transistor technology.
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Table 1: Summary of current SynTs’ device characterizations (Figure I. 6) 

 

        Devices 

Characs.   
a[30] b[31] c[46] d[44] e[47] f[48] g[49] h[50] i[51] 

Mobile Ion Li+ Li+ Li+ Li+ Li+ Li+ Li+ H+ Li+ 

Channel Li1−xCoO2 α-MoO3 WO3 α-Nb2O5 WSe2 Graphene Li1−xTiO2 PEDOT:PSS WO3 

Dimensions 

SD: Pt   

Gate: Si 

Electrolyte : 

LiPON 400 

nm 

Channel : 

LixCoO2 

120nm thick 

2µm length 

SD and Gate: 

Cr/Au 

60/5 nm 

Electrolyte:  

PEO:LiClO4 

Channel: α-

MoO3  

16.8 - 28 nm 

thick (12-20 

layers) 

7µm length 

4µm width 

Electrolyte: 

LiPON 

Channel: WO3 

0.3-10-80 µm 

length 

0.3-60-

100µm width 

SD: TiN 40 

nm Gate: 

Cr/Au 

Electrolyte: 

LixSiO2 80 nm 

Channel: α- 

Nb2O5 20 nm 

thick 

Gate: Pd/Au  

50/10nm 

Electrolyte: 

PEO:LiClO4 

Channel: 

WSe2 

(5 – 48layers)  

1 µm length 

3µm width 

Electrodes: 

Cu 

80nm 

Electrolyte:  

PEO:LiClO4 

Channel: 

Graphene  

3 – 20 nm 

thick 

15µm length 

4µm width 

SD: Pt 

(50nm) 

Gate: LixTiO2 

(90nm) 

Electrolyte:  

PEO:LiClO4 

Channel:  

LixTiO2 8µm 

thick 

200 µm 

length 

10 µm width 

Electrodes: 

Ti/Au 5/100 

nm 

Electrolyte: 

Nafion 

Channel: 

PEI/PEDOT:PS

S 

125 µm 

length 

45 µm width 

Channel: 

WO3 

W/L from 

100/100 

µm to 

10/4 µm 

Physical 
characterizations 

SEM AFM TEM 

TEM, SIMS, 

GIXRD, AFM, 

XPS 

FIB-HRTEM, 

SAED, AFM 

Optical 

imaging, 

Raman Spec 

Optical 

imaging, 

SEM 

- TEM 

Electrical 
Characte
rizations 

Common 

• Conductance range : GSD or I = f(V) using gate sweep (VG or IG) 

• Number of states: GSD = f(pulse number) for one cycle.     

• Linearity: ∆G = f(G0 ), G = f(pulse number) for one cycle 

• Retention: G or I = f(t) 

• Endurance: cycling cycles 
• Energy consumption: ∆G = f(tw), E = f(channel area)  

Unique -
 C = f(Freq) 

STDP 
- STDP SRDP, STDP STDP - - - 



32 

 

4.2 Performance parameters of SynTs as artificial synapses 

 

The non-volatile synaptic transistors are developed for constructing novel 

neuromorphic computing architectures to achieve memory density, energy efficiency, and 

massive parallelism for data-centric tasks. Crossbar arrays built from SynTs reduce the 

computing cost by alleviating the need to shuttle data from memory storage to the central 

processing unit. To do so, the connected SynTs, in the role of artificial synapses, act as an 

embedded memory by storing information in a non-volatile manner in their channels’ 

conductance. Subsequently, the crossbar systems perform neural computing operations such 

as vector-matrix multiplication and parallel weight updates. For SynTs to become good 

candidates for artificial synapses, they must meet some electrical characteristics, such as 

conductance modulation with linear and symmetric profile, analog state retention, endurance, 

and low energy consumption per operation. I will discuss these figures of merit in detail in 

the following subsections. 

 

4.2.1 Conductance modulation 

 

When studying SynT, the most important figure of merit is the hysteresis change of 

channel conductance, between the lowest conductance to the highest conductance (see 

Figure I. 7). The source electrode is grounded to measure this, and a linearly ramped voltage 

is applied on Gate-Source (GS) electrodes while recording the current flowing through Drain-

Source (DS) electrodes. Observing this bidirectional change of the DS conductance is 

considered proof of the concept of electrochemical synaptic transistors. The scan speed (scan 

rate) is of great importance in determining the conductance modulation of the SynTs. The 

scan rate signifies how fast the applied potential is linearly varied. It is often presented in the 

unit of [V/s] or constant Gate current [A] by controlling an unchanged current flowing out of 

the electrodes. 

The electrical property of the channel layer is modified upon the change of its ion 

content via the charge (ion extraction) and discharge (ion insertion) processes. Fuller et al. 

demonstrate the change of Li1-xCoO2 conductivity by monitoring the gate current to be |IG| = 

350 nA for a full charge-discharge cycle and record the DS conductance (Figure I. 7.a) [30]. 

When the gate voltage (Open circuit potential – OCP) decreases from 0 V to -4.2 V (the charge 

process), the conductance of the channel increases from 4.5 to 270 µS. The discharge process 

drives the conductance back to the initial low conductance state and the gate voltage from -

4.2 V to 0 V. To avoid the saturation region, where the modulation of the conductance is low 

under the sweep of gate voltage, a voltage window of [-4.1 V, -3.0 V] is selected. The shown 
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profiles of cycles 1, 10, 20, 30, and 40 on this voltage window on the inset prove that these 

bidirectional scans are stable. 

 

Figure I. 7: Conductance modulation of channel layer under Gate voltage sweeps. a) LixCoO2 channel 

SynT works in the range of under 300 μS [30]. b) α-MoO3 channel SynT works in the range of under 

240 nS [31]. c) α-Nb2O5 channel SynT works in the range under 700 nS or 200 nS depending on the 

sweep rate [44]. d) Anatase LixTiO2 channel SynT works in the range of under 200 μS [49]. 

 

A similar hysteresis conductance curve was also demonstrated on an α-MoO3-based 

SynT (Figure I. 7.b) [31]. The voltage window used for this scan is from -1.5 V to 1.5 V at 20 

mV/s. Lithium (Li+) ions intercalate into the 2D α-MoO3 film and induce an important high/low 

conductance ratio of 17 at VG = 0 V. As we can observe from the curve, there is no significant 

change in DS current until the VG reaches 1 V. This is explained by the accumulation of mobile 

Li ions on the topmost layer of the α-MoO3 nanosheets before actually intercalating into the 

lattice of the channel with the increase of Gate potential. In contrast to the rapid increase of 

IDS from the forward scan, the decrease of channel conductivity under Li extraction is rather 

steady from the high conductance to the initial low conductance. This gradual decline of 

conductance can be explained by the fact that Lithiated α-MoO3 (LixMoO3) is 

thermodynamically stable, and a high negative Gate voltage is required to extract all the 
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inserted Li ions. The difference in dynamics between forward and reversed scans creates the 

large hysteresis curve as observed.  

Intercalation processes of mobile ions into various types of channel material have 

different timescales, and these timescales of the experiment are determined by scan rate. Li 

et al. show the bidirectional curves at different 2 scan rates of 10 mV/s and 278 mV/s with 

their α-Nb2O5-based SynT (Figure I. 7.c) [44]. The VG is swept from –5 to 5 V, creating a 

counter-clockwise loop with a large high/low current ratio. It is clear from graph that with 

smaller scan rate (10 mV/s) the ratio of high/low conductance is 3.5 times higher than that of 

higher scan rate (278 mV/s). This explains the fact that with slow scan rates, Li ions have more 

time to intercalate into α-Nb2O5, and thus the modulation of electrical property is of higher 

importance. However, one should keep in mind that the scan rates partially represent the 

realistic resistive switching speed of SynTs. Therefore, we have to select carefully a balanced 

trade-off between a high ON/OFF ratio and fast switching devices. 

With the help of a reference electrode (REF), monitoring how channel conductance is 

modified under the intercalation of ions is possible using the voltage sweep method. Li et al. 

show how the anatase phase LixTiO2 channel layer changes its conductance by 

electrochemically inset and remove Li ions using Li0.7FePO4 reference (Figure I. 7.d) [49]. The 

controlled charge and discharge constant current is 1 nA. Here, higher VREF means that the 

channel LixTiO2 is more reduced or more Li ions are inserted, and vice versa. The conductance 

of the anatase LixTiO2 film increases significantly with x in LixTiO2 rising from 0 to 0.2 by 

enhancing the Ohmic contact between DS electrodes and channel layer, before dropping 

sharply with x being from 0.2 to 0.6. This drop is associated with an anatase-to-Li-titanate 

phase transition. As more ions are intercalated into the structure, the re-increase of channel’s 

conductance is observed. The reversed scan shows the same pattern but with a smaller 

amplitude and a hysteresis, as seen previously in other electrochemical systems. The 

operating region for this LixTiO2-based device is between x = 0 and x = 0.65 for linearity 

reason.  

Studying these conductance hysteresis curves induced by Gate voltage sweep as a 

kick-start is more than obligatory for three reasons: (i) Observing the trend of conductance 

modulation, (ii) Determining the working voltage window to obtain a linear conductance 

profile, (iii) Estimating the switching speed of the device to balance with the high/low 

conductance ratio. However, it is important to note that the conductance modulation 

measured by the sweeping the GS voltage does not match the operating conditions of 

realistic transistors, which work with short, squared pulses followed by a relaxation time. 
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4.2.2 Analog states modulation 

 

In biological terms, long-term synaptic plasticity characteristics, including long-term 

potentiation (LTP) and long-term depression (LTD) of synaptic weight, are fundamental to 

accomplishing neuromorphic functions. Long-term potentiation is behind the mechanism of 

fundamental learning and memory in biological systems. On the contrary, long-term 

depression is applied to selectively weaken specific synapses and prevent encoding new 

information [53]. To mimic these features, the SynTs to be implemented as artificial synapses 

in the artificial neural network accelerators need to demonstrate long-term plasticity by 

modifying their conductance levels. We refer to this characteristic as the analog states 

modulation. 

 

 

Figure I. 8: Analog states modulation of SynTs. a) Gate current pulses (50 up then 50 down pulses 

with amplitudes IG = ± 100 pA and width tw = 5 s), showing good symmetry and a large high/low 

conductance ratio ~ 40. Zoom-in shows the behaviors of channel conductance during and after 

pulses [46]. b) More than 500 pulses per cycle realized with VG = ± 300 mV and short pulses of tw = 

10 ms, yielding a 2X high/low conductance ratio [49]. c) A threshold at 3 V between volatile and 

non-volatile analog state modulation with voltage amplitude as a parameter varying from 1 to 6 V 

and a constant pulse duration of 10 ms [54]. 
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Analog states modulation is the ability to switch among different conductance levels 

of the channel induced by the electric field from the gate. The increment (potentiation) or 

deduction (depression) of the channel’s conductance is realized by inserting or extracting 

mobile ions into the channel material host. Short and squared pulses of either potential 

difference or controlled current are applied to Gate-Source electrodes to perform the doping 

reactions (WRITE operations). Then they are followed by short pauses of relaxation. After 

applying writing pulses, the gate probe is usually switched to floating mode (no GS current 

exchange). The Drain-Source current is sampled during the pause period to record the analog 

change between the programming pulses (READ operations). The READ pulses, however, are 

kept as small as possible to avoid disturbing the programmed states, usually in the range of 

50 – 100 mV. 

In Figure I. 8.a, Tang et al. demonstrate their long-term plasticity experiment on a 

WO3/LiPON gate stack SynT [46]. In this case, the writing pulses are current monitored, i.e. 

controlling the amount of charge inserted/extracted into the WO3 channel. A series of 100 

pulses of IG = 100 pA, and tw = 5s duration are used to program the device for a full cycle, 

from the low conductance state of less than 1 nS to the high conductance state of 24 nS, 

yielding a large (40X) dynamic range. It should be noted that the conductance G and its 

change per pulse ∆G can be tuned by modifying pulse width/amplitude parameters, device 

geometry, and material engineering. In spite of some presented excellent merits of linearity 

and stability, the time spent for writing and settling for this device is quite long due to low 

ion kinetics.  

Li and colleagues present a fast and low voltage programming scheme on their thin-

film, Anatase-LixTiO2-based SynT (Figure I. 8.b) [49]. The weight update (or conductance 

modulation) for more than 500 states is conducted with writing pulses of VG = ± 300 mV and 

duration tw = 10 ms, giving a steep conductance change with 2X dynamic range, from 40 μS 

to 80 μS. The device can be programmed at low write voltage because the gate metal is of 

the same material as the channel, creating a lower chemical potential difference and providing 

an advantage in energy consumption. The relation between the applied voltages and the 

energy consumption will be discussed in the following section. 

The conductance change per write pulse is modifiable by playing pulses parameters. 

However, if not enough energy is provided for the intercalation reactions, the change of the 

channel’s conductivity is temporary. This transient modification is referred to as short-term 

plasticity. In Figure I. 8.c, Li et al. present the time evolution of their SynT’s DS current under 

different stimulus parameters (from VG = 1 to 6 V, 1 V-space) and the same duration time (tw 

= 10 ms). The threshold voltage is at about 3 V, where we can observe volatile and non-

volatile operation regions. When the applied pulses VG is less than 3 V, the DS current IDS 

first spikes and then quickly decays back to the initial value, resulting in zero net conductance 



37 

 

change. By increasing the VG to 3 V or higher, the Id gradually relaxes to a stable level and 

does not decay back to its initial value for a long period. The same story goes for the pulse 

duration variation, i.e., shorter pulses will lead to minor conductance modification and are 

likely less stable than longer pulses, but this feature is system-dependent. Therefore, 

researchers have to do experiments on their devices to find the threshold values for pulses’ 

amplitude and duration to balance the need for energy recession and stable analog states. 

 

4.2.3 Write nonlinearity 

 

Programmable SynTs are the essential hardware to build artificial neural network 

processors. In these crossbar systems, ideally, the SynTs would be programmed in a perfectly 

linear and controllable way, allowing them to be assigned to any arbitrary analog value. 

Unfortunately, realistic devices exhibit write nonlinearity, which stems from material 

properties or device architecture that one needs to consider when modelling artificial 

synapses with these transistors. There are two subclasses of write nonlinearity: Asymmetric 

nonlinearity, characterized by the asymmetric ratio AR, and symmetric nonlinearity, illustrated 

by nonlinearity parameter α. 

The asymmetric nonlinearity can reflect how much the potentiation slope differs from 

the depression slope (Figure I. 9.a). Usually, this nonlinearity is asymmetric with regard to the 

direction of the pulse. For example, near the maximum conductance level, a given pulse on 

the upward curve will contribute lightly to increasing the conductance. Still, it can decrease 

the conductance significantly on the downward curve. This is particularly true for 

electrochemical systems with an EDL charging types. In other words, the last pulses will 

accumulate ions on the surface and contribute faintly to the increase of channel conductance; 

a pulse with opposite polarity, however, will purge this layer, resulting in a massive drop in 

conductance. The AR of the modulation is calculated by the following equation: 

 

 𝐴𝑅 =  [
max |𝐺𝑝(𝑛) − 𝐺𝑑(𝑛)|

𝐺𝑝(𝑛𝑚𝑎𝑥) − 𝐺𝑑(𝑛𝑚𝑎𝑥)
]  𝑓𝑜𝑟 𝑛 = 1 𝑡𝑜 𝑛𝑚𝑎𝑥 Eq. 1 

 

where Gp(n) and Gd(n) are the channel conductance values after the nth potentiation and 

depression pulses, respectively, and nmax is the maximum pulse number for 

potentiation/depression. For ideal symmetry, the AR should be 0. 
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Figure I. 9: Write nonlinearity of synaptic devices. a) Asymmetric nonlinearity graph between a linear 

profile (AR = 0), and an asymmetric profile (AR = 0.8). b) Symmetric nonlinearity graph between a 

linear profile (α = 0) and a nonsymmetric profile (α = 5). c) 50 cycles plotted in a graph to 

demonstrate nonlinearity properties in a reaslistic SynT, for this device, the calculated AR = 0.31 ± 

0.12 [31]. d) Conductance modulation profile of 256 states (7 bits) with quantified nonlinearity [54]. 

 

On the other hand, some devices display a symmetric nonlinearity (Figure I. 9.b). This 

type of symmetry happens on electrochemical SynTs where the working voltage range covers 

different doping mechanisms. Some doping reactions are more significant (more mobile ions 

are intercalated or extracted) than others. Faradaic reactions and non-Faradaic reactions 

during a discharge curve (ions insertion) can be taken as an example. At the beginning of the 

cycle, a non-Faradaic reaction prevails. Thus, not a lot of ions are extracted from the channel 

creating a slow increase in channel conductance. Gradually, when the gate potential reaches 

the redox potential, a massive amount of ions are inserted into the matrix, driving a surge in 

the conductivity of the channel. As the potential sweep continues, fewer ions can intercalate 

into the channel, so we observe a saturation trend at the end. The reversed sweep has a similar 
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pattern. The conductance G of devices with symmetric nonlinearity can be modelled using 

the following Sigmoid-type equation: 

 𝐺 =  𝐴 ×
1

1 + 𝑒−2𝛼(𝑝−0.5)
+ 𝐵 Eq. 2 

where: 

 𝐴 = (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛) ×
𝑒𝛼 + 1

𝑒𝛼 − 1
 Eq. 3 

 

 𝐵 = 𝐺𝑚𝑖𝑛 −
𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛

𝑒𝛼 − 1
 Eq. 4 

 

Gmin is the minimum conductance, Gmax is the maximum conductance, p is pulse number, and 

α is a parameter characterizing the nonlinearity. α is defined such that the symmetric and 

asymmetric models have the same slope at the center conductance: (Gmin+ Gmax)/2. 

For the devices whose conductance modulation profiles do not clearly resemble a 

logistic function, we can fit the conductance values by using the below equations: 

 𝐺 = ((𝐺𝑚𝑎𝑥
𝛼 − 𝐺𝑚𝑖𝑛

𝛼 ) × 𝑝 + 𝐺min
𝛼 )

1

𝛼  if 𝛼 ≠ 0, and Eq. 5 

   

 

 
𝐺 = 𝐺𝑚𝑖𝑛 × (

𝐺𝑚𝑎𝑥

𝐺𝑚𝑖𝑛
)𝜔  if 𝛼 = 0 Eq. 6 

 

Two examples of write nonlinearity in realistic electrochemical transistors are 

presented in Figure I. 9.c, d. In their work, Yang et al. demonstrate a 50-cycle condensed plot 

of programming an α-MoO3-based SynT (Figure I.9.c). We can observe that their device shows 

asymmetric nonlinearity property as the first depression pulses deduce the conductance 

rapidly. The calculated AR (using Eq. 1) for this profile is 0.31 ± 0.12, which is reasonably linear. 

Li et al. illustrate a linear conductance modulation profile with 0.29 AR using their α-Nb2O5 

channel SynT (Figure I.9.d). In this programming scheme, 7-bit (128 analog states) are shown 

with the doping of Li ions. The symmetric linearity parameters α of the potentiation curve and 

depression curve are calculated (using Eq. 5) to be 1.38 and -0.51, respectively. Nonlinearity 

is an indispensable property of realistic nano-devices, and the impact of these features on the 

performance of neural network systems will be discussed in a following chapter. 
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4.2.4 State retention 

 

Studying state retention of a nonvolatile SynT device consists of checking if the 

programmed states are stable over time after the WRITE operations. After inducing the 

conductance modulation (either potentiation or depression), the ability to hold the states can 

be analyzed by sampling the channel using a low (around 100 mV) read voltage over time, 

and subsequently measuring a current versus time (IDS = f(t)) curve for each state. An example 

of this strategy is showed in Figure I. 10.a. Authors have programmed the devices using 9 

identical pulses for potentiation and depression. Following each pulse is a relaxing and 

sampling time of 100 seconds. Receiving pulses from the gate, the conductance rises 

temporarily to a high value, and then decreases to a stable state, which can be considered as 

a long-term effect. 

 

Figure I. 10: Analog state retention of synaptic transistors. a) Retention of the α-MoO3-based channel 

conductance states for LTP (top) and LTD (bottom) in periods of 100 seconds [31]. b) The retention 

of more than 500 seconds of single states (highest and lowest) measured on a 1S1T device after the 

selector is switched off (each pulse represents 1 s) [49].  

 

For electrochemical transistors, certain phenomena can disturb the programmed 

states and diminish the state retention of the devices, including redistribution/rearrangement 

of ions inside the channel host, surface self-relaxation, and ions migration between the gate 

and the channel. In order to prevent such effects, scientists have implemented a memristive 

selector acting as a switch. This selector is turned off if the applied voltage is under a threshold 

voltage, thus, preventing the potential disturbance or noise from the electrical system. Li and 

colleagues demonstrate the state retention of a 1S1T device with a Pd/Ag:SiO2/Pt memristor 
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as the selector (Figure I. 10.b). Here, after programming the device to a high conductance 

state (75 µS), the memristive selector switches by relaxation, and DS electrodes are sampled 

by pulses of 1-second duration. This stability of over 500s proves that bulk ion migration is 

the critical phenomenon of nonvolatile conductance modulation in this electrochemical SynT. 

Further experiments show that this device can hold this high conductance state for 

more than 7 hours with the selector in the OFF state. Long retention is definitely desired for 

a memory system. However, a recent study demonstrated that a potential resistive device that 

will be implemented as an artificial synapse in a neuromorphic architecture does not require 

very long retention to function well [15]. 

 

4.2.5 Energy consumption 

 

Achieving high computation yield with minimum consumption of energy is the 

ultimate goal of the field of neuromorphic computing [55]. It is desirable to develop a crossbar 

architecture having higher energy efficiency than CMOS systems, and then gradually 

surpassing the brain itself [30], [56]. 

 

 

Figure I. 11: Current measurements for energy calculation. a) The pulses scheme for GS and DS 

electrodes (bottom), and the resulted current measurement. The ISD represents the analog states and 

IGD represents the flow of charge transferred [57].  

 

Characterizing writing (switching) energy requires measuring the charge transferred 

upon each weight update. This charge quantity is the outflow/inflow of electrons 
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compensating for the voltage-induced ionic intercalation into the channel, creating an 

electrostatic equilibrium. The total charge recorded for potentiation (depression) pulses in a 

cycle is divided by a total number of states, yielding the average charge required for 

programming from one state to an adjacent one. The following equation then calculates the 

energy for each WRITE operation: 

 

 𝐸𝑊 = 𝑉𝐺 × ∆𝑄 Eq. 7 

 

where Ew is the energy consumption per operation, VG is the potential applied on GS 

electrodes, and ∆Q is the average charge transferred.  

In Figure I. 11.a, we can observe the potential pulses applied to modified the analog 

states and the channel sampling of a SynT (bottom graph), and the subsequent current 

readouts (top graph) [57]. With approximately 400 µA each pulse, the channel witnesses an 

increase of ∆G = 1 µS. The energy consumption per writing of this device then equals 1.6 nJ 

by Eq. 7. We can see the relation between the charge transferred and conductance gap ∆G in 

Figure I. 11.b. [46]. With a certain charge injected/extracted, the gap of 

potentiation/depression nearly superimposes. In addition, the conductance gap ∆G linearly 

scales with the pulse charge ∆Q. The amount of charge transferred controls the conductance 

gap ∆G and the writing energy. Therefore, efforts have been made to decrease this quantity, 

either by reducing the volume of the channel (reducing gate area, channel area and thickness) 

[46], [48], or deducting the amount of ions injected for each pulses but still maintaining the 

stable of the analog states. While the former method requires engineering endeavor, the latter 

solution relies on finding the right pulse parameters to control single ions intercalation. 

Several reported SynTs demonstrate a high, temporary current increase after the pulse 

application and then relax rapidly. This current is referred to as the excitatory postsynaptic 

current (EPSC). The energy consumption for a single pulse event for these devices is calculated 

as following: 

 

 𝐸𝑊 = 𝐼𝑝 × 𝑉𝐷𝑆 × ∆𝑡 Eq. 8 

 

in which Ip, VDS, and ∆t represent the peak value of the EPSC, the reading voltage, and the 

pulse duration, respectively. 

Crossbar arrays’ working mechanism is reading the conductance of the elemental 

SynTs’ channel following Ohm law and Kirchhoff circuit law. Thus, minimizing the conductivity 

of the channel layer will lower the overall power consumed for operating neuromorphic 
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networks [56]. In addition to reducing the energy consumption to operate ANN systems, low 

conductance synaptic devices are favorable for dense crossbar arrays. Low device 

conductance is highly required for use in crossbar arrays. For instance, to support a 1000x1000 

crossbar with a fully parallel write/read operation, each synaptic device can load a maximum 

current of 10 nA (or 200 nS at 50 mV) because the scaled wires at 10 nm half-pitch can only 

handle 10 μA to avoid electromigration issues. Furthermore, a higher operating current on 

the system will induce unacceptable parasitic voltage drops and excessive energy dissipation 

on connection lines [56]. For these reasons, scientists are focusing on materials with intrinsic 

or engineered low electrical conductivity materials to construct SynTs. 

 

4.2.6 Endurance 

 

If SynTs are to be integrated into ANN accelerators, they must demonstrate stable 

operation during extensive cycling. In a SynT, device endurance is defined as the number of 

cycles and times it can be switched among the intermediate states keeping a defined ratio 

between the highest conductance state/lowest conductance state and the conductance gap 

among each other. Therefore, an endurance test consists of finding out the maximum number 

of operations (or cycles) that the intermediate analog states are still distinguishable. The 

common figure of merit is a saw-like graph representing a series of conductance modulation 

cycles (see Figure I. 12). Several devices are demonstrated to survive several hundreds of 

cycles (Figure I. 12.a) [44], while others can keep their functionalities after 2.7x107 writing 

operations (Figure I. 12.b) [51].  The failure of the resistive device may not happen in one 

specific cycle, but it may be progressive (Figure I. 12.c) [58]. 

Here, the device has been cycled for 105 operations, and during the course of this 

endurance test, the Gmax loses 12%. It is worthy to note that 105 operations of weight 

updates are largely sufficient for training the MNIST data set because not every synapse is 

updated in each training cycle [59]. There are many possible phenomena associated with the 

gradual decrease of Gmax in electrochemical transistors, namely material degradation (phase 

change), mobile ions loss due to trapping or being oxidized, etc. [60], [61]. The endurance 

characterization is performed in a similar scheme to the conductance modulation test, but it 

takes long time to complete. Thus, environmental testing conditions such as temperature, 

humidity, and air exposure must be considered when performing such tests for high precision. 
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Figure I. 12: Endurance test of SynTs. a) 100 cycles of channel conductance switching with 32 discrete 

states induced by asymmetric VG pulses [44]. b) Demonstration of endurance for 1300 cycles and 

2.6×107 pulses on a SynT using a conditioned cycling measurement, and the device still works after 

the last cycle of this test [51]. c) A SynT demonstrated with >105 writing operations and the evolution 

of the highest conductance value Gmax over the cycles [44].  

 

4.2.7 Temporal dynamics for SNN applications 

 

The aforementioned merits, including stable, numerous conductance states and linear 

and reversible modulation profiles, are more adapted to the analog-based ANN applications. 

In this subsection we will consider a SNN-oriented properties demonstrated on certain SynTs 

[43], [47], [58]. SNNs have recently attracted much attention due to their close similarity to 

biological systems. In SNNs, the input signals are spikes, and being able to process spikes is 

believed to be one of the reasons that the brain is so spectacular at sequence recognition as 

well as memory [62]. Developed for several decades, the Hebbian learning rule is mainly 

reflected in two kinds of plasticity: spike-timing-dependent plasticity (STDP) and spike-rate-

dependent plasticity (SRDP). STDP is defined as the change of synaptic weight as a function 

of the time difference between the pre-synaptic spikes[63]. In general, the weight change 

increases nonlinearly as the time difference decreases, and this feature can be quantified by 

calculating the paired-pulse facilitation (PPF) ratio (Figure I. 13.a) [31]. 
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 𝑃𝑃𝐹 𝑟𝑎𝑡𝑖𝑜 =  
𝐴2 − 𝐴1

𝐴1

 Eq. 9 

 

where A1, A2, as denoted in the plot, are the peak current after the first and the pre-synaptic 

pulses, respectively. The experimental results can be presented with the PPF ratio as a function 

of pulse interval (∆t) well approximated using the double exponential decay function  

(𝑓(𝑡) = 𝑐𝑒
−∆𝑡

𝜏  ) that is verified in biology [64]. 

 

 

Figure I. 13: Temporal dynamics demonstrated on SynTs. a) Paired-pulse facilitation (PPF) ratio 

measurement on an α-MoO3-based SynT represents STDP characteristics [31]. b) The current 

(weight) change in linear scale (top panel), log scale (middle panel) in WSe2 based synaptic 

transistors as a function of the frequency of gate pulses, implying SRDP behavior [47]. 

 

SRDP states that the synaptic weight change is a function of the frequency of the pre-

synaptic spikes [65]. According to SRDP learning rules, pre-synaptic pulses with high 

frequency result in a significant change in weight value, and that with low frequency will lead 

to small and short-term potentiation STP (Figure I. 13.b) [47]. 

The realization of “brain-like computing” can start from simulating the structure and 

function of neural networks and artificial synapses without waiting for neuroscientists and 

cognitive scientists to understand fully the brain’s mechanism, which may even need the 

exploration process to be longer. 
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 CONCLUSIONS 
 

In summary, we have discussed the necessity of developing a novel computing 

paradigm stemming from Von Neumann bottleneck of conventional computer architecture. 

Taking the inspiration from human brain, the neuromorphic computing systems have great 

potential in performing data-intensive tasks in an energy- and time-efficient way. 

Different types of physics are employed to realize electronic devices that will be used 

for constructing artificial synapses in neuromorphic computing hardware. Several of them are 

described in this chapter, including the two-terminal devices (ReRAM, PCM, and MRAM), and 

three-terminal devices (FeFET and SynT). Each of these technologies have both advantages 

and drawbacks when being implemented as artificial synapses. A comparison radar chart to 

summarize the performance of synaptic devices can be found in Figure I. 14. The two-terminal 

devices in general have fast speed, high endurance, great dynamic range and retention. 

However, they also exhibit nonlinear behavior and high operation (WRITE/READ) power that 

can limit learning accuracy and power efficiency in large-scale neural networks.  

 

Figure I. 14: Radar graph comparing the device metrics among SynT (bold red line), FeFET (orange 

line), ReRAM (green line), PCM (yellow line), and MRAM (blue line). 

 

FeFET synapses, on the other hand, may offer fast programming operations, high 

stability, and less update variations. Nonetheless, this type of three-terminal device suffers 

from the similar scaling problems as DRAM and floating gate memories because in essence 

they all are charge-based memories. Furthermore, temporal dynamics can be difficult to 
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demonstrate on FeFET components. Nanoscale SynT devices are shown to have a great 

precision, ultralow operation power, linear analog-state modulation, and potentially low 

device variations with robust electrochemical working mechanism. Nonetheless, the low 

programming speed, mediocre state retention, and ON/OFF ratio are key performance merits 

that SynT needs to work on to become more appealing for neural network applications.  

State-of-the-art of SynTs before the beginning of this work is discussed in the section 

4 based on several performance figures of merits such as conductance modulation, analog 

state modulation, nonlinearity, retention, energy consumption, endurance, and temporal 

dynamics. A summary of selected SynTs can be found in Table 2. To optimize further the 

performance of SynTs, several approaches have been suggested, including novel material 

screening and design (deposition techniques, phase engineering), dimensions shrinking 

(ultrathin, small active area layers) and advanced process integration (CMOS-compatible 

elaboration techniques). Furthermore, understanding the underlying physics of resistive 

switching of Li-based SynTs, either by advanced physical characterization or atomistic 

simulation, plays an important role in advancing further the existing and implementing new 

gate stacks. 

In this thesis, we focus on three goals: (i) proposing innovative solid-state gate-stacks 

and designs to optimize the overall performance of SynTs (ii) elaborating and characterizing 

such solid-state electrochemical synaptic transistors with CMOS compatible processes, (iii) 

demonstrating their required synaptic functionalities thanks to the fast dynamics of Li-ion 

intercalation leading to rapid and ultralow power analog switching. 
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Table 2: SynTs' Performance figures of merits 

 

                           Devices        

Merits
  

a [30] b [31] c [46] d [44] e [47] f [48] g [49] h [50] i [51] 

Conductance 
modulation range 

4 - 270 μS 8 - 240 nS - 0 - 700 nS - - 0 - 200 μS - 0 - 50 μS 

Analog states 
modulation 

(# states, 
operation G 

range, 
programming 

pulses) 

200 
states/cycle 
180 – 230 μS 

±400 
nA/±100 mV 

 tw = 2s 

100 
states/cycle 
40 - 80 nS 

±2.5 V 
 tw = 10 ms 

100 
states/cycle 

0 - 24 nS 
±100 pA 
 tw = 5 s 

32 
states/cycle 
30 - 100 nS 
+3.6 V, - 3.4 

V 
 tw = 10 ms 

120 
states/cycle 

250 - 570 
pS 

1.2 V, -0.4 V 
 tw = 100 ms 

250 
states/cycle 
100 - 1100 

μS 
±50 pA 

tw = 10 ms 

250 
states/cycle 
40 - 80 μS 
±300 mV 

tw = 10 ms 

100 
states/cycle 
50 - 100 nS 

-0.95 V, 
1.2V 

 tw = 50 μs 

1000 
states/cycle 

1 - 2 μS 
±2.5 V 

 tw = 100 ns 

Write 
nonlinearity 

- AR = 0.31 
αp = 0.347, 
αd = 0.268 

αp = 0.6 
αd = 1.58 

- - - - - 

State retention - 100 s - > 1000 s - 13 h 7 h - 15 h 

Energy 
consumption 

10 aJ 
(projected) 

0.16 pJ 
1 fJ 

(projected) 
200 aJ 

(projected) 
30 fJ 500 fJ 30 pJ - 

100 fJ/nS 
(projected) 

Endurance 40 cycles 50 cycles 1000 cycles 100 cycles - 
500 cycles 
(2 states) 

4000 cycles 106 cycles 2.6x107 ops 

Temporal 
dynamics 

- 

STDP, τ1 = 
110 ms and 

τ2 = 2624 
ms 

- 
STDP, τ1 = 

17.27 s 
STDP, SRDP 

STDP, τ1 = 
22 ms, τ2 = 

315 ms, τ3 = 
19 s 

- - - 
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ABSTRACT 
 

 

 

In the second chapter, we will introduce the processes in microfabrication, including 

thin-film deposition, patterning, and characterizations employed in elaborating the 

electrochemical synaptic transistors. This chapter is divided into 4 main sections. 

Section 1 of this chapter introduces thin-film processes, including deposition and 

patterning. We will focus on deposition techniques and their parameters that allow the 

coating of controllable uniform films on 200 mm Si wafers, such as atomic layer deposition 

and sputtering. Details on the steps of thin-film patterning, such as photolithography and 

etching, will be discussed to create a comprehensive view of the process development to 

fabricate synaptic transistors.  

Section 2 addresses multiple types of thin film and device characterizations, such as 

photon/electron microscopy and spectroscopy. These tests serve as quality checkpoints for 

devices after microfabrication. Furthermore, micrometrology reveals valuable information on 

the stack's appearance, elemental composition, material phase, and crystallography of the 

films presented in the devices, assisting in understanding their electrical performance. 

We will present the process flow to elaborate SynTs in section 3. The details of different 

steps are shown, facilitating the reproduction or further developments of synaptic transistors 

based on thin films. In addition, the work to optimize the procedures, the design and the 

materials is also included, which gives an example of the process development for a device. 

Finally, some ideas to summarize the chapter can be found in section 4. 
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 MICROFABRICATION PROCESSES 
 

1.1 Introduction 
 

A schematic view of our elaborated synaptic transistors during my thesis is 

illustrated in Figure II. 1 below. For the bottom electrodes (source and drain, in yellow), two 

different materials have been tested: Ti and Pt (deposited by DC-sputtering). Concerning 

the channel (in red), two materials have been examined: LiCoO2 (deposited by RF-

sputtering) and TiO2, (deposited by ALD). The electrolyte (in blue) was made of LIPON, 

deposited by RF-sputtering. The top electrode (in yellow) is made of Ti, deposited by DC 

sputtering (more details concerning the process flow will be given in section 3). 

 

 

Figure II. 1: Schematic view of the synaptic transistors elaborated. 

 

In the following, I will show a global view of the microfabrication processes 

(deposition, patterning, etching), with a special focus on the methods we used for our 

synaptic transistors elaboration.  

 

1.2 Thin-film materials and deposition techniques 

 

A thin film is a material layer with a thickness ranging from a fraction of a nanometer 

(atomic monolayer) to several micrometers. It is to state that thin films are building blocks 

of the nano-world as they are responsible for multiple functions in nanometric devices. 

They are not only part of the finished devices but also employed during wafer processing 

as protective films or sacrificial layers in etching or as diffusion masks. 
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Figure II. 2: Schematic view of thin-film production methods. Adapted from [1]. 

 

Thin films are available in different electrical resistivity, for instance, conducting (Pt, 

Ti, W), semiconducting (Si), and insulating (SiO2, Al2O3) films. For their usage, metallic films 

can serve as electrodes to make contact with non-conducting parts of the devices. 

Semiconducting layers can change under different conditions to act as a switch in some 

applications. Insulating layers can block the flow of current as a dielectric in field effect 

transistors, and they can be used as passivation to protect components from 

environmental factors. Electrolyte layers are electrical insulators, but they can conduct 

mobile ions (Li+, Na+, O2-, etc.). These films are widely used in energy and information 

storage applications. 

There is a wide range of microfabrication techniques that can deposit these thin 

functional layers using physical or chemical ways (See Figure II. 2). While physical 

deposition of films relies on the material extraction from a source using physical excitation 

(heating, bombarding, etc.) and coating it on a substrate, chemical deposition methods 

use chemical reactions and their products to form desired films.  
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In my thesis, we wanted to produce controlled, uniform solid-state thin films with a 

thickness that varies from a few tens of nanometers on Si wafers, hence we consider only 

the sputtering technique for Physical Vapor Deposition (PVD) and atomic layer deposition 

(ALD) technique for Chemical Vapor Deposition (CVD).  

Many thin-film properties (resistivity, refractive index, density, thermal expansion, 

crystal orientation) are thickness dependent and can be monitored during deposition 

steps. In this part, I will discuss the principles of selected deposition techniques in 

microfabrication and how different parameters are employed to control the characteristics 

of the grown films. 

 

1.2.1 Physical vapor deposition (PVD) 

 

Physical vapor deposition is the semiconductor industry's primary method for 

metallic thin-film deposition. PVD is a versatile deposition technique allowing depositing 

metals, metal alloys, and compounds like Ti, W, Au, ZnO, AlN, and so on. The deposition 

rate is fast, ranging from 1 – 100 angstrom per second. The principle of PVD is material 

ejection from a condensed target material, transport in a vacuum in a vapor phase, and 

then to the substrate in the condensed phase again (Figure II. 3). 

Based on the types of excitation, we can generally divide the PVD method into 

various subclasses, as described in Table 1 below. 

 

Table 1: PVD classification by excitation types 

Deposition method Excitation type 

Thermal evaporation Resistive heating 

E-beam evaporation Electron beam heating 

Sputtering Argon ion bombardment 

 

Evaporation, in general, is a standard method for depositing thin films. The source 

material is excited to a threshold and evaporated in a vacuum environment. The vacuum 

assists these vapor particles in being transferred directly to the target substrate, where they 

change phase to become a solid-state film. Evaporation is usually used for the deposition 

of metal layers. The evaporation deposition technique, however, offers a poor step 

coverage of evaporated films because of the directional nature of the ejected material. 

Heating and rotating the substrate can help increase the coverage area of the film, but 

they cannot form a continuous film for an aspect ratio greater than 1 (with 𝐴𝑅 =
𝑠𝑡𝑒𝑝 ℎ𝑒𝑖𝑔ℎ𝑡

𝑠𝑡𝑒𝑝 𝑤𝑖𝑑𝑡ℎ
). 

Therefore, a method for less directional coating is required. Sputtering is a primitive 
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alternative to evaporation, and its working mechanisms will be presented in the next 

section. 

 

 

Figure II. 3: Physical vapor deposition working principle. Adapted from [2]. 

 

Sputtering 

 

Sputtering (used to deposit the electrodes, active material and the electrolyte in my 

thesis) is an essential PVD technique. In principle, the excitation comes from Argon ions 

(Ar+) (generated from a glow discharge plasma), which will hit the negatively biased target 

and slow down by collisions. Upon the impact, one or more target atoms are ejected 

towards the substrate wafers in vacuum. The schematic of DC and AC sputtering methods 

is presented in Figure II. 4.  

The glow discharge is produced by an applied electric field between two electrodes 

in a flowing gas (usually inert) at low pressure. The gas breaks down to conduct electricity 

when a certain minimum voltage is reached. Ions of the plasma are accelerated towards 

the target under the influence of a large electric field. When the ions reach the target, 

atoms are ejected from the target into the plasma, where they are carried away and then 

deposited on the substrate. This type of sputtering is called DC sputtering (Figure II. 4.a). 

As the plasma ions hit the target, they become neutralized and then return to the process 

as atoms. In the case the target is an insulator, this neutralization process will positively 

charge the target surface. As a result, bombarding ions are partially repelled and the 

sputtering process will be gradually halted. To facilitate the process, the polarity must be 

reversed to attract enough electrons from the plasma to eliminate surface charge. This 
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periodic switch of polarity is done by applying a radio-frequency (typically 13.56 MHz) 

voltage on the electrodes, thus the name RF sputtering (Figure II. 4.b). 

 

Figure II. 4: Schematic illustration of sputtering reactors using a) DC voltage source, and b) AC 

voltage source to generate plasma [2]. 

 

In order to increase the efficiency of the sputtering process, it is common for the 

sputtering source to have some magnetic confinement through a magnetron source. The 

electrons are driven inside a magnetic field so that they have more chance of undergoing 

an ionizing collision, thus enabling the plasma to be operated at a higher density. This type 

of sputtering is called “magnetron sputtering” and it can be used with DC or RF sputtering. 

As an example, RF-sputtering Lithium phosphorus oxynitride (LiPON) is a very 

common solid-state electrolyte [3], [4], which we used in our elaborated synaptic 

transistors. The LiPON film is deposited by sputtering a Li3PO4 target in a nitrogen plasma 

(Figure II. 5). Nitrogen is incorporated into the layer, leading to the formation of LiPON. 

The film now improves its stability and ionic conductivity, enhancing the cross-linking of 

the phosphate chains [5]. Furthermore, deposition parameters such as RF power and N2 

flow can affect the properties of this thin film. It is observed that with an increase in RF 

power, ionic conductivity is increased and for increased nitrogen flow, there is an increased 

ionic conductivity for 10 to 30 sccm but reduces for higher N2 flow of 40 sccm. This 

amorphous ion-conducting layer has been deposited by other techniques, such as electron 

beam evaporation and pulsed laser deposition [6], [7]. However, LiPON synthesized by RF 

sputtering has the highest ionic conductivity of 3.3 × 10−6𝑆/𝑐𝑚. In addition, RF sputtering 

offers high repeatability for multi-elemental compounds, formation of pinhole-free films 

with good contact, and high particle energy leading to dense layers [4]. 
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Figure II. 5: Schematic view of magnetron sputtering system using Li3PO4 powder target for LiPON 

deposition [4]. 

 

1.2.2 Chemical vapor deposition (CVD) 

 

Chemical vapor deposition is a general name for deposition techniques that occur 

due to a chemical reaction among reactants in the vicinity of the substrate. In principle, 

reactant gases (precursors) are pumped into a reaction chamber (reactor). Under the right 

conditions of temperature and pressure, reactants undergo a reaction at the substrate. One 

of the products of the reaction gets deposited and accumulated on the substrate. The 

volatile by-products are pumped out with the gas flow. In several CVD types, the chemical 

reactions take place simultaneously in the gas phase and on the substrate surface, which 

complicates the deposition processes, potentially leading to the loss of film conformality. 

A solution to such problems is a form of CVD where the gas phase precursors are 

introduced to the system separately, eliminating the gas phase reactions. This form of CVD 

is called atomic layer deposition (ALD). We used ALD for the TiO2-based channels in our 

synaptic transistors, hence it is described in more details in the following. 

 

Atomic layer deposition (ALD) 

 

Atomic layer deposition has become recognized as a reliable method to deposit 

dielectric (for example, Al2O3, TiO2, etc.) and metal (TiN) thin films in the microelectronics 

industry. This technique is able to coat uniformly ultrathin films for narrow and three-

dimensional structures with complex surfaces, for example, high-k dielectric gate materials 

in MOSFET [8] or energy storage (supercapacitor and battery) development [9], [10].  
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For each ALD cycle, there are at least two half-cycles, as illustrated in Figure II. 6. 

The half-cycles consist of an introduction of gaseous precursors or co-reactants, 

subsequently followed by purge steps with inert gas to remove any unreacted precursors 

or volatile byproducts. The reactions between gaseous precursor molecules and substrate 

groups are self-limiting, thus, the film thickness growth per cycle is ideally the same. 

Therefore, by repeating a certain number of ALD cycles, the targeted thickness of 

depositing film can be achieved.  

There are different parameters that one should consider for the development of an 

ALD process. The precursors and co-reactants for a desired film’s material composition are 

selected so that they are reactive toward the substrate surface groups. The target chemical 

composition of the film after growth is consistently verified by X-ray photoelectron 

spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), or a quick check by 

refractive index. The thickness control is essential in this deposition technique because it 

can provide the amount of material growth in each cycle. This characteristic is referred to 

as growth per cycle (GPC). GPC can be monitored using spectroscopic ellipsometry in 

situ by following the depositing film during the process or ex-situ by measuring the 

deposited film after a number of cycles. Uniformity of the deposited film (thickness, 

resistivity, chemical composition, etc.) over a large substrate can be assessed manually or 

using an automated mapping stage. 

 

 

Figure II. 6: Illustration of a ALD cycle with two half-cycles. Precursor and co-reactant doses are 

introduced at the beginning of each half-cycle and followed by purge steps, leading to self-

limiting film growth. “M” represents the metal center, blue reactant atoms are typically O, N, S, 

etc., and precursor ligands are colored green [11]. 

 

ALD of titanium dioxide – TiO2 has been realized for a wide range of applications 

from device passivation coat to photovoltaic and catalyst fabrication. In my thesis, ultrathin 

layers of TiO2 are deposited to serve as the electrical bridge (channel) between the source 

and drain electrodes. The deposition tool (ALD Savannah) is placed inside a glove box to 

minimize air exposure to deposited film (Figure II. 7.a). The thin film is grown with TDMAT 
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(tetrakis (dimethylamino) titanium – Ti(N(CH3)2)4) and water precursors. In the first half of 

the cycle, pre-heated at under 100 ˚C, TDMAT precursor is introduced into the wafer 

vicinity, leading to the reactions with Hydroxyl (OH) groups at the surface. The remained 

TDMAT and the reaction products will be purged by a gas flow to conclude the half cycle. 

In the second half, H2O precursor is pumped into the chamber, and the water molecules 

will react with surficial TDMAT, creating new OH groups on the substrate and bonding Ti 

atoms with Oxygen bridge. The unreacted H2O and the byproducts are then purged, thus, 

completing a cycle. At the end of the deposition, the film is inspected by ellipsometry 

mapping (Figure II. 7.b).  

 

Figure II. 7: a) ALD deposition tool and the schematic of the parts. Adapted from [12]. b) A 

thickness mapping by ellipsometry on 50 nm TiO2 film grown on SiO2. 

 

1.3 Pattern generation 

 

The microstructure designs are transcribed to physical structures by pattern 

generation tools. Such machines must obtain the ability to expose single pixels in a fast 

manner since the designs can be of the order of millions of pixels. In the early days of 

microfabrication, patterns were generated by using mainly the optomechanical shuttle 

systems with a flash bulb, yielding limited linewidths resolution. Drawing features with a 

focused beam of electrons, ions, or photons is considered the most precise way of 

delineating devices nowadays. Two main applications of direct writing lithography are 

considered in this section: Direct electron beam writing and optical photomask writing.  

Electron beam lithography has been considered one of the most flexible methods 

to realize sub-micrometric devices. The versatility of EBL has been obtained thanks to the 

successive development of different components and elements involved in the process, 

including the beam generation, the system, the resist, and the operation system. While the 

effect of diffraction is detrimental in photolithography, it is not a concern for electron 

radiation. The resolving power of an optical system is defined as: 
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 𝑅 =  
0.61 × 𝜆

𝑁𝐴
 Eq. 1 

 

where 𝑅 is the resolving power or the smallest separation of two closely-placed structures 

which still permits them to be distinguished as separate, 𝜆 is the wavelength of the light 

source, and 𝑁𝐴 is the numerical aperture of the lens. For photons, the wavelength is fixed, 

and it depends on the light source. For electrons, on the other hand, the wavelength can 

vary, and it follows the de Broglie equation: 

 𝜆 =  
ℎ

𝑚𝑣
=  

ℎ

√2 × 𝑚 × 𝑒 × 𝑉𝑎

  Eq. 2 

 

where ℎ is the Plank’s constant, 𝑚, 𝑒, 𝑣 are respectively the mass, charge and velocity of 

electron, and 𝑉𝑎 is the acceleration voltage. An accelerating voltage of 1V leads to a 

wavelength of 𝜆 = 1.2 nm, and 1000 V to 𝜆 = 0.03 nm. Thus, yielding a much more 

pronounced resolution compared to, for example, a violet light source with 𝜆 = 380 nm. 

In spite of having the ability to draw with ultimate resolution, EBL is not 

recommended for high throughput microfabrication due to several drawbacks, including 

excessive write time, electron scattering inside resist, space charge effect, and proximity 

effect. Electron beam writing, hence, is mainly considered for R&D or low volume 

productions, while optical lithography is and will be the mainstay of large-scale 

microlithography (this is why this method only has been used in my thesis). 

 

Photomask optical lithography 

 

Instead of direct writing millions of pixels from one wafer to another, beam writers 

can be used to write photomasks for optical lithography. Photomasks are glass plates 

coated with chromium (ca. 100 nm thick). Soda-lime glass is used for larger linewidths (>3 

μm), and quartz is the material of choice for micron and submicron work. The photomasks 

can be dark field (DF) or light field (LF) depending on the chrome coverage area over the 

plate. Mass microfabrication of electronic devices uses optical lithography with 

photomasks because of its speed: illumination through a photomask exposes up to 1010 

pixels in a one-second exposure.  

With the substrate and the photomasks ready, the lithography workflow consists of 

the following steps: 

1. Photosensitive film (photoresist) application 

2. Alignment of mask and wafer 

3. Exposure of the photoresist 

4. Development of patterns. 
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The goal of this process is to transfer the patterns of the photomask onto the 

photoresist film coated on a wafer. The photoresist matters will be discussed thoroughly 

in a following section. To begin, the mask is first set in a mask-aligner/exposure tool. It is 

then aligned to the desired wafer, and exposed by different radiation sources (Figure II. 8). 

 

 

Figure II. 8: Schematic of an optical lithography aligner/exposure tool [2]. 

 

The gap between the photomask and resist-coated wafer can immensely affect the 

final patterns after exposure and resist development. There are two modes of lithography: 

contact and proximity. Contact mode lithography is done simply by bringing the mask and 

the wafer into intimate contact and then expose. Then, mask dimensions and diffraction at 

mask edges determine the resolution of transferred patterns. Extremely small patterns can 

be made in theory using photomasks with submicron features; however, realizing such 

masks is prohibitively expensive. The other mode is proximity lithography, in which a small 

gap, i.e., 3 to 50 μm, is kept between the mask and the wafer. The light traversing the mask 

is diffracted by the mask patterns, and Fresnel diffraction formulae have to be used to 

estimate resolution: 

  2𝑏𝑚𝑖𝑛 =  3√
𝜆

𝑛
× (𝑔 +

𝑑

2
)  Eq. 3 

 

where 2𝑏𝑚𝑖𝑛 is the minimum resolvable period, 𝜆 is the wavelength of radiation source (436 

nm for mercury lamp g-line), 𝑔 is the gap between mask and photoresist (0 – 50 μm), 𝑑 is 

the thickness of photoresist (1 – 10 μm), and 𝑛 is the refractive index of photoresist (around 

1.6). Following the formula, we can achieve higher resolution by using extreme ultraviolet 

(EUV) or even X-Ray sources. The resolution generated by proximity mode is lower than 
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that of contact mode, but the photomasks are better conserved in this case. Both contact 

and proximity lithography are conducted in the same machine, with the gap being an 

adjustable parameter.  

The previous methods of lithography are used for 1X optical systems, in which the 

size of generated and the original patterns are the same. Another approach to improve the 

performance of lithography step is to use reduction optics, marked as system II in Figure 

II. 8. For example with 5X reduction projection optics, the original photomask features can 

be made rather large, for example, 1μm for 0.2 μm final feature size. Fraunhofer far-field 

diffraction governs the optics of projection systems. Projection optics is often used for the 

step-and-repeat approach, where one die is exposed, the wafer is moved to a new position, 

and another die is exposed. The systems are known as steppers, and their photomasks are 

termed reticles. Exposing each chip (4X, 5X) is certainly longer than exposing the whole 

wafer (1X), but we can have a better critical dimension at a lower cost. 

Since microfabricated devices are formed by building up thin films, the ability to 

align micro-patterns precisely with successive layers, which is termed overlay, is a critical 

factor in defining the resolution. The overlay is affected by lens aberrations, wafer chuck 

irregularities (equipment-related problems), mask pattern misplacement (mask fabrication 

problems), wafer alignment, or distortions on the wafer itself, such as thermal expansion 

or site flatness. Because of the variety of error sources in the lithography process, 

controlling the structures regularly with micrometrology (optical/electron microscopy) is 

necessary to ensure the high yield of fabricated wafers. 

 

1.4 Lithographic photoresist pattern 

 

The properties of photoresists as an optical material will be discussed in this 

subsection. Patterns of resists will serve as the etch mask for the underneath layer(s), so 

they strongly affect the whole lithography process. Photoresists have exposure threshold 

energy, finite contrast, and finite selectivity in developers. Furthermore, they are parts of 

the optical system in which they exhibit optical reflection, interference, and absorption 

properties. These features are enhanced when one patterns photoresists on topology, 

which is very likely in the context of semiconductor device. 

 

1.4.1 Photoresist application 

 

The application process starts with surface preparation. The wafer is annealed in a 

short time to remove moisture. Then, some substrates require a wafer-priming step known 

as adhesion promotion. Adhesion promotion is essential to protect wafers from cleanroom 

humidity variations and an equalizer for wafers with different storage times. 
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After the surface preparation, the photoresist is commonly applied to the wafer by 

spin coating (an illustration of a spin coater can be found in Figure II. 9). A quantified 

amount of photoresist is slowly distributed on a static or rotating wafer. The wafer rotation 

is then accelerated up to several thousand rotations per minute (rpm), spreading the resist 

uniformly over the wafer. Rotation speed can tune down the thickness of the applied resist 

to a specific limit, for example, from 0.5 to 5 μm. If we want to flatten further, a new 

photoresist is required. After the coating, the resist film typically has a residual solvent 

concentration of 10 - 35%, depending on the film thickness and the solvent type. To get 

rid of the high solvent content, the wafer is annealed for a short period on a hot plate or 

in an oven, which is termed soft bake. In addition to drying the substance, this process 

promotes the resist adhesion to the substrate and prevents photomask contamination with 

resist sticking. 

 

Figure II. 9: Schematic of a photoresist automatic dispenser [13]. 

 

There are other resist coating techniques: electrochemical coating, spray coating, 

and casting. These methods of resist covering are highly preferred on topographic surfaces, 

where spin coating performs poorly. The electrochemical coating requires special resist 

formulations, and spray is applicable to thin resists. Casting is suitable for thick resists only. 

Thin resists are preferred for better resolution. However, they are prone to particle defects, 

and pinhole density rapidly increases when resist thickness is scaled down. 

 

1.4.2 Photoresist properties and processes 

 

A photoresist is an organic polymer with three main components: (1) a film-forming 

agent or resin to control the mechanical and thermal properties, (2) a photoactive 

compound to determine the radiation sensitivity, and (3) a solvent to control viscosity. 

There are two types of photoresists: negative and positive. In a negative resist, the polymers 



68 

 

change from an un-polymerized state (soluble in developer solvents) to polymerized 

(insoluble in developer solvents) state after exposure to a light source and vice versa for a 

positive resist (see Figure II. 10). The terms positive and negative stem from photographic 

processes, in which the results of the lithographic process is either positive or negative 

images of the original patterns. Negative photoresists are considered tougher than positive 

photoresists and can withstand more rigorous etching processes.  

 

Figure II. 10: Two types of photoresist: positive and negative. 

 

Exposure is important to consider while doing photolithography. As described 

above, the goal of this step is to decompose inhibitors in the resist using radiation. The 

theoretical calculation of exposure dose depends on different parameters such as 

exposure-dependent, exposure-independent absorption, and sensitivity to exposing 

radiation. These are called Dill parameters, and they depend on the intensity and 

wavelength of the light source [14]. The exposure dose or energy (normally presented in 

mJ/cm2) for a unit of thickness can be found in the technical data sheet of the photoresist. 

With this information, the time required for each exposure session is calculated by: 

 𝑡𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝑠) = 𝐼 × 𝐷𝑜𝑠𝑒 Eq. 4 

 

where 𝐼 is the light source intensity in W/cm2. However, this dose value serves as a 

reference only as the lithographic conditions and tools might differ from case to case. Thus, 

in order to find the good exposure time for a specific process, we need to conduct a study 

with different exposure times and controlled experimental conditions (light intensity of the 

aligner, prebake temperature, moisture, etc.).  

After exposure, the resist mask exists as a latent image in the photoresist: the 

exposed and the non-exposed areas are chemically different. The development step is 
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performed to dissolve the depolymerized areas from the prior irradiation step, resulting in 

the final desired resist structures. Aqueous alkaline developers are frequently employed to 

develop photoresists in microfabrication. These developers have different bases, for 

example, diluted sodium hydroxide or potassium hydroxide solution or on an aqueous 

solution of the metal ion-free organic TMAH (TetraMethylAmmoniumHydroxide). A good 

development process is performed in a short period resulting in minimum pattern 

distortion or swelling. The development process can be carried out using different 

methods, including immersion developing, spray developing, or puddle developing. 

Immersion of wafers into a solvent bath is a common method used for Si wafers. 

Subsequently, the wafers are rinsed with deionized water and dried out using air or N2 gas 

to terminate the development reactions. Depending on the demand of the next step, the 

developed film can go through an annealing process, termed hardbake, to increase the 

thermal, chemical, and physical stability of developed resist structures by cross-linking. 

The lithographic patterns are then inspected for errors using microscopy before the 

wafer is ready for the next lithographic steps of etching, implantation, or depositions. Each 

step has its different properties and requirements for the resist film. For example, in wet 

etching, the resist has to have good adhesion to the material underneath, and it must 

tolerate hot, strongly acidic, or alkaline etch solutions. On the other hand, in plasma 

etching, the resist must be thick enough because it will be consumed/damaged in the 

process. The etch properties will be covered in the next part of this section. 

After serving its role as a protective layer, the polymerized film has to be removed. 

In some cases, the photoresist can be easy to remove by being dissolved in a strong solvent 

like acetone. However, it is highly recommended to rinse the wafer with isopropanol to get 

rid of the contaminated solution before it vaporizes and creates stubborn streaks. If the 

photoresist has undergone a plasma etch or a hard bake, acetone cannot fully remove the 

polymer film; in this case, aqueous alkaline remover must be used. 

 

1.5 Etching 

 

In the previous part, we discuss the process of creating a protective layer with 

desired patterns. In this section, we will cover the etching techniques to transfer the 

patterns from the photoresist to the underlying materials. There are two classes of etching 

techniques: wet and dry. In principle, wet etching solvents remove the uncovered area of 

materials by turning them into soluble products, while gaseous etchants turn solid films 

into volatile products and purge them. Note that I use the term dry etching, as opposed to 

wet etching, to indicate plasma etching. However, other dry, physical etching techniques 

do not involve a plasma creation process. For example, ion milling and etching using XeF2 

gas. A short summary of the two techniques can be found in Table 2. Here, we can observe 

that both techniques have their pros and cons, and thus, selecting the right method for 
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each step is case-dependent. In the following parts, I will explain the working mechanisms 

of wet and dry etching and give examples from my thesis work. 

 

Table 2: Comparison between wet and dry etching methods. 

 

 

1.5.1 Wet etching 

 

Wet etching is a common and theoretically easy method in microfabrication. The 

basic process is illustrated in Figure II. 11. The simplified reaction for the wet etching is as 

follows: 

 𝑆𝑜𝑙𝑖𝑑 + 𝑙𝑖𝑞𝑢𝑖𝑑 𝑒𝑡𝑐ℎ𝑎𝑛𝑡 → 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 Eq. 5 

The reaction is then subdivided into two main mechanisms: electron transfer for metal 

etching, and acid-base reaction for insulator etching. The etching rate is dependent on the 

surface reaction: (1) if the surface reaction is slow, the reaction determines the rate and (2) 

if the reaction is fast, etchant availability in the solution determines the rate.  

 

 

Figure II. 11: Schematic illustration of wet etching process. Adapted from [15]. 
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Submersion-type wet etching is conducted in a tank (or bath) made of quartz in a 

heating and temperature control. The vessel is filled with water and chemicals, and the 

wafers are submersed in liquid for the required time and then transferred to a similar sink 

to rinse/dry and stop the reactions. A programmable single-wafer tool is an alternative to 

bath etching, in which, instead of immersion, the etchants are sprayed to rotating wafers 

through stationary nozzles. The rinsing and drying steps follow the etching in the same 

chamber. Thus, the single-wafer tool has more advantages over tanks in controllable 

processes. 

Platinum (Pt) is an important current conductor in my technology. This noble 

transition metal, however, can be tricky to etch. The film can be etched using a mixed 

solution of water, nitric acid, and hydrochloric acid following the ratio of 

4H2O:1HNO3:7HCl. The etching solution is heated to 57 ˚C inside a glass tank using the 

water heating system of a chemical bench. The wafer is submerged in the tank for 7 

minutes and 30 seconds for Pt to be completely removed, and then it is rinsed using DI 

water. The time used here is approximate because this etching step happens at a high rate 

inside an acidic and corrosive solution, so it is hard to control manually with bare eyes. 

Thus, most of the time, the patterns will be slightly over-etched after this step. Several 

etching etchant compositions are presented in Table 3. 

 

Table 3: Wet etchants for some materials. 

Materials Wet etchants 

Al H3PO4:HNO3:H2O (80:4:16), water can be changed to acetic acid 

W H2O2:H2O (1:1) 

Pt H2O:HNO3:HCl (4:1:7) 

Cu HNO3:H2O (1:1) 

Ti HNO3:H2O2:H2O 

Au KI:I2:H2O; KCN:H2O 

 

Most wet etchants result in an isotropic profile due to the same rate of etching 

reactions in all directions (horizontal and vertical). Such phenomenon creates an 

undercutting with the same dimension of the etched depth, preventing this method from 

creating sub-micrometric features. As opposed to an isotropic etching profile, an 

anisotropic etching profile is generated by etchants that react more favorably in the vertical 

direction than lateral direction, creating vertical/near vertical structures of the sidewall. 

Anisotropy profile is a result of directional ion bombardment in the plasma reactor. This 

etching profile is commonly observed in dry etching processes, which will be discussed in 

the following subsection. 
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1.5.2 Dry etching 

 

Dry or plasma etching has been a popular method for more than 40 years. It has 

always been able to transfer with high precision those lithographic patterns printed in 

photoresist to the underlying materials. There are three main types of dry etching with 

different properties: physical/sputtering, reactive ion etching (RIE), and chemical plasma 

etching. A brief comparison of the three types can be found in Figure II. 12.  

         

Figure II. 12: Dry etching spectrum with pressure and ion energy as parameters. 

 

Plasma etching is conducted in a vacuum chamber by reactive gases excited under 

radio frequency (RF) fields. The excited and ionized species are equally important for this 

process. Excited molecules like CF*4 are very reactive, and ionic species like CF+
3 are 

accelerated by the RF field, and they impart energy directionally to the surface. Plasma 

etching is, thus, a combination of chemical (reactive) and physical (bombardment) 

processes. The subsequent microscopic steps of RF plasma etching are presented in Figure 

II. 13.  
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Figure II. 13: Processes that happen inside a plasma etching system [16]. 

 

Ion bombardment supplies energy to horizontal surfaces. These surfaces experience 

ion-induced desorption, ion-induced damage, and ion-activated chemical reactions. Thus, 

etching processes are accelerated or favored. Sometimes etchant gases (together with 

resist erosion products) form films on the sidewalls, and these films prevent etching 

laterally. Sidewalls do not experience ion bombardment, and, therefore, an anisotropic 

etching profile is a critical feature of dry etching. However, plasma etching suffers from 

several disadvantages of thin-film selectivity, surface ion damage, and residue formation 

on the sidewalls that require engineering solutions, including increased etching/additive 

gas content [17]. 

In many applications, the choice of wet versus plasma etching is a question of 

convenience: certain equipment or etch bath is available, or some suitable masking 

material is handy. When sloped etch profiles are required, or when undercutting is needed, 

wet etching with an isotropic profile must be used. On the other hand, dry etching with 

the anisotropic profile is preferred when vertical walls are needed or etching with solution-

sensitive bottom layers. 
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 THIN-FILMS AND MATERIALS CHARACTERIZATIONS 
 

2.1 Microscopy and visualization 

 

Coming out of microfabrication, the patterns, the thin films, or the devices usually 

have micrometric and sub-micrometric features that eyes and normal magnifiers cannot 

resolve. To characterize and control the quality of these processes, measurement tools 

should be ready to observe even smaller details. 

The first characterization tool that comes in handy is optical microscopy. Optical 

microscopy resolution is similar to wavelength, that is, in the micrometer range. This is 

useful in many applications because we can always observe the sample in its real colors 

with no need for pre-treatment. Furthermore, the system is fast and adaptable to all kinds 

of sample systems, in any shape or geometry. However, due to the light diffraction limit, 

this type of microscopy can only resolve down to a few hundreds of nanometers. The 

electron-based tool can solve this problem. Scanning electron microscopy (SEM) has a 

minimum resolution down to 10 nm, which makes it applicable to almost all 

microfabricated structures. With this resolution power, SEM can provide details of 

electronic devices such as deposition step coverage and interlayer defect inspections via 

their cross-sections. Transmission electron microscopy (TEM) provides ultimate image 

resolution down to the atomic scale.  

In my thesis, SEM and TEM techniques have often been used. Thus, in this part, I 

will cover the fundamentals of these electron microscopy techniques and their applications 

in microfabrication imaging. 

 

2.1.1 Scanning electron microscopy (SEM). 

 

Electron waves can be used in imaging. By accelerating the electrons into a high-

energy beam (with high voltage), the generated wavelength is far shorter than that from 

photon light sources. Therefore, the diffraction limit is not a big issue for electron 

microscopy. In an SEM system, an electron beam is focused into a small probe and scanned 

in a raster pattern across the surface of a specimen. Several electron-matter interactions 

with the sample result in the emission of electrons or photons as the electrons penetrate 

the surface. These emitted particles can be collected with different detectors to yield 

valuable information about the materials (Figure II. 14.a). 

SEM can produce multiple signals, including secondary electrons, back-scattered 

electrons (BSE), characteristic X-rays, light (cathodoluminescence), and transmitted 

electrons. Secondary electrons are electrons generated as ionization products. Secondary 
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electrons result from the inelastic collision and scattering of incident electrons with 

specimen electrons. They are helpful in revealing the surface structure of a material with 

high resolution. Another type of electron that contributes to the visual inspection of the 

sample surface is BSE. Back-scattered electrons are a result of an elastic collision and 

scattering event between incident electrons and specimen nuclei or electrons. Back-

scattered electrons can be generated further from the surface of the material and help to 

resolve topographical contrast and atomic number contrast with a resolution of >1 µm. 

Furthermore, BSE is used in analytical SEM along with the spectra made from the 

characteristic X-rays to provide valuable information about the distribution of different 

elements in the sample. 

 

Figure II. 14: a) Illustration of electron-matter interaction volume and the generated signals [18]. 

b) Schematic of scanning electron microscopy instrument [19]. 

 

Characteristic X-rays are emitted when the electron beam removes an inner shell 

electron from the sample, causing a higher energy electron to fill the shell and release 

energy. The X-ray signal can originate from further down into the surface of the specimen 

surface and allows for the determination of elemental composition through EDS (energy 

dispersive x-ray spectroscopy) analysis of characteristic X-ray signals, which will be 

discussed in the physiochemical characterization part following. 

The SEM instrument comprises two main components, the electronic console, and 

the electron column. The electronic console provides control knobs and switches that allow 

for instrument adjustments, while the electron column is where the electron beam is 

generated, focused, and scanned across the surface of a specimen. A schematic of the 

electron column can be found in Figure II. 14.b. 

In principle, the electron gun generates free electron beams by thermionic emission 

from a tungsten filament at ~2700 °C. The voltage applied to accelerate electrons are 
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adjustable in the range of 200 V to 30 kV. After that, the condenser lenses guide the beam 

to converge and pass through a focal point at which the electron beam is focused down 

to 1000 times its original size. The apertures (spray and final lens) reduce and exclude 

extraneous electrons in the lenses and decrease the beam spot size at the specimen. A 

small spot size will allow for an increase in resolution and depth of field with a loss of 

brightness in imaging. Images are formed by rastering the electron beam across the 

specimen using deflection coils inside the objective lens. The astigmatism corrector is 

located in the objective lens and uses a magnetic field in order to reduce aberrations of 

the electron beam. The lower portion of the column is called the specimen chamber. 

Specimens are mounted and secured onto the stage, which is manually controlled by a 

goniometer for x, y, and z translation, 360° rotation, and 90° tilt. 

SEM is commonly used to inspect the appearance of the device from the top view 

and the details of the composition of thin films from the cross-section observation. Here, 

the surface of the grid-like array architecture of a transparent thin film battery is examined 

using SEM with BSE enhancement (Figure II. 15.a). The cross-section of the battery 

illustrated in Figure II. 15.b demonstrates good conformal coverage of the top electrode 

and the lateral etching control of LiCoO2 and LiPON films. [20]. 

 

Figure II. 15: SEM visualization of a thin-film battery. a) Top grid structure view using BSE, and b) 

Cross-section SEM of the device [20]. 

 

Even with high power resolution, sample imaging with SEM requires attentive 

control to avoid image disturbances such as lack of sharpness, low image quality, noises, 

and image distortion & deformation, especially for samples constructed by ultrathin layers 

of tens of nanometer thickness or less. In this case, a more powerful technique is employed, 

which is transmission electron microscopy. 
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2.1.2 Transmission electron microscopy (TEM) 

 

Transmission Electron Microscopy (TEM) is widely used for the study of 

semiconductor devices due to its ability to offer an atomic resolution. TEM can provide 

information about the microstructures, crystal structures, and defect concentrations in a 

sample. Diffraction patterns reveal crystal symmetry and lattice parameter data, and the 

elemental composition of the specimen can be obtained from TEM-coupled techniques 

such as energy dispersive X-ray analysis, Auger spectroscopy, and Electron Energy Loss 

Spectroscopy (EELS). 

A beam of electrons (typically 100- 1000 keV in energy) is generated in an electron 

gun and sent down an evacuated column through a series of lenses. The specimen itself is 

inserted through an airlock. The transmitted electrons, which may be unscattered (direct), 

elastically scattered (diffracted), or inelastically scattered - are used to form an image, 

which is observed and analyzed by various detection devices. 

The TEM optics are built so that the full thickness of the specimen is simultaneously 

in focus, and no refocusing is required when switching between image collection systems. 

The TEM is usually operated in one of two fundamental modes: imaging mode or 

diffraction mode with the schematic ray diagrams illustrated in Figure II. 16. 

 

Figure II. 16: Illustration of the transmission electron microscopy operation modes. a) Imaging 

mode. b) Diffraction mode [18]. 
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TEM imaging mode (Figure II. 16.a) functions based on two kinds of image contrast: 

amplitude contrast and phase contrast. Amplitude contrast is the combined result of mass-

thickness contrast and diffraction contrast which alters the scattered electron amplitude 

and thus the intensity. Phase contrast comes from the phase change of the electron wave 

as it is transmitted through a sample. This contrast mechanism is hard to interpret due to 

many factors such as the objective lens focus and astigmatism, the orientation, and the 

changes in the thickness of the sample. All of these factors can be exploited to produce 

atomic resolution TEM images arising from the interference between different diffracted 

beams and the unscattered beam. 

TEM diffraction mode (Figure II. 16.b) functions based on the interaction of the 

electron wave and the microstructure of the sample. When electron waves propagate 

across the periodic crystal planes in the sample, elastic scattering of the electron wave 

is generated at various different angles according to Bragg’s Law, forming an electron 

diffraction pattern in the back focal plane. A selected area (SA) aperture is inserted in 

the first intermediate image zone to define the diffracting area. Samples with a single 

crystal will generate spot diffraction patterns, whereas polycrystalline materials will 

create ring diffraction patterns on the viewing screen. The SA electron diffraction 

(SAED) technique can provide information about the material crystallography, such as 

the crystallographic lattice spacing, the crystal growth direction, and the exact 

crystalline phase. High-Resolution TEM (HRTEM) images are very advantageous for 

studying the microstructures at the atomic resolution of samples. In principle, no 

objective aperture is used, and both the scattered and unscattered electron waves are 

employed to produce HRTEM images. 

In the field of nano-devices, a cross-section view of the stack can provide useful 

information on layer appearance, interlayer diffusion, and film defects. A synaptic transistor 

with a schematic view of the device can be found in Figure II. 17.a [21]. The gate stack of 

the transistor comprising of 25 nm WO2.7 channel, 40 nm ZrO1.7 electrolyte, and 20 nm GdOx 

is confirmed with a TEM observation (Figure II. 17.b). 

 

Figure II. 17: TEM imaging of a synaptic transistor. a) Schematic view of the device. b) Cross-

section TEM and EDS measurements of the gate-stack. Adapted from [21]. 
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2.2 Physicochemical analyses 

 

2.2.1 Raman spectroscopy 

 

Raman spectroscopy is a widely used optical technique in chemistry and material 

science for materials identification and the characterization of their properties. This 

spectroscopic technique studies the inelastic scattering of monochromatic light, known as 

Raman scattering, named after the physicist C. V. Raman. 

An energy diagram illustrating the processes involved in light-matter scattering is 

shown in Figure II. 18.a. The majority of photon scattering are elastically scattered (or 

Rayleigh scattering), resulting in scattered photons whose energy is conserved (same 

frequency, wavelength, and color as the incident photons) but with different traveling 

directions. The intensity of Rayleigh scattering is around 0.1% to 0.01% compared to that 

of a radiation source. Scattered photons whose energy is shifted after the interaction, on 

the other hand, are naturally much rarer (approximately 1 in 1 million). This phenomenon 

is called inelastic scattering or Raman scattering. In the Raman spectroscopy experiment, 

a visible laser will be used as the monochromatic light source. As the laser photons interact 

with molecular vibrations, the energy of the laser photons will be shifted down or up 

(Stokes or Anti-stoke Raman scattering). This energy shift provides information about the 

vibrational modes in the materials (fingerprints).  

 

Figure II. 18: Raman spectroscopy. a) Energy diagram of Rayleigh scattering [22]. b) Diagram of 

a Raman spectroscopy setup [23]. 
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A schematic view of a Raman spectrometer is presented in Figure II. 18.b. We begin 

by focusing a polarized monochromatic laser into a specimen, and the scattered light at 

90o to the incident laser beam is collected. The scattered light is guided to the 

spectrometer, where it is dispersed by a high-resolution monochromator (grating 

component) and then detected by a CCD camera to obtain the scattered frequency 

spectrum. The scattered light yields a very low count (<10-7 of the incident power). Thus, 

monochromators with excellent undesired photons rejection and sensitive detectors are 

required for the experiment. Signals acquired from the CCD will be fed to a built-in 

program to show the photon counts directly as a function of their Raman shift. 

The Raman shift of the scattered photons is presented in wavenumbers, whose unit 

is length inversed. To convert from spectral wavelength to wavenumbers, we can use a 

formula as follow: 

 
∆𝜈̃ =  

1

𝜆0

−
1

𝜆1

 

 

Eq. 6 

 

where ∆𝜈̃ is the Raman shift, 𝜆0 and 𝜆1 are the wavelengths of the incident radiation and 

the scattered one, respectively. The Raman shift is normally presented in [cm-1], thus, the 

wavelengths are converted from [nm] to [cm] by default. 

Raman spectrum measured on our ALD-deposited TiO2 film is demonstrated in 

Figure II. 19. The vibration dynamics of anatase phase TiO2 are schematically illustrated in 

Figure II. 19.a, in which the arrows show the actual displacement of the corresponding 

atoms [24]. We deposited 50 nm TiO2 film on a 200 mm Si wafer. The as-deposited film is 

of amorphous phase. Subsequently, we annealed the whole wafer under air at 400 ˚C for 

30 minutes using an RTP tool to transfer this film into the anatase phase. Raman scattering 

on the layer was excited by a 532 nm laser, and the spectrum was acquired using the inVia 

spectrometer (Renishaw, UK) coupled to a Leica microscope at room temperature. The 

spectrum reveals all the vibration modes available in the TiO2 film, and they correspond 

correctly to the theoretical calculation of anatase phase. Thus, it proves the phase transition 

of an as-deposited 50 nm amorphous TiO2 film to anatase TiO2 by thermal annealing 

(Figure II. 19.b). As a remark, we have not observed the described phase transition for 10 

nm amorphous TiO2, which is integrated as the channel material for first generation of 

SynT, with the same thermal treatment. 
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Figure II. 19: Raman spectroscopy experiment on anatase-phase TiO2. a) Scheme of Raman active 

atomic vibrations in anatase TiO2 (the arrows represent the amplitudes of vibrations) [24]. b) 

Raman spectrum of 50 nm TiO2 anatase measured at 25 ˚C. 

 

2.2.2 Energy dispersive X-ray spectroscopy (EDX-EDS) 

 

Energy dispersive X-ray spectroscopy (EDX or EDS) is a powerful technique when it 

comes to the elemental or chemical analysis of a solid-state sample. EDS functions based 

on the X-ray spectrum emitted because of the interaction of a focus electron beam and a 

sample. The resulted X-ray carries the information on the atomic structure of the elements 

in the specimen, yielding a unique set of peaks on its emission spectrum. EDS can provide 

either qualitative analysis (identification of the elemental lines in the spectrum) or 

quantitative analysis (determination of the concentrations of the elements based on the 

Standards of known composition). The range of detectable elements is wide, from 

Beryllium (atomic number = 4) to Uranium (atomic number = 92), making it a standard 

tool for micrometrology. EDS can produce element distribution images or maps when 

coupled with SEM, which is extremely versatile for analyzing the interfacial processes on 

cross-sections of thin-film devices (defects, anomalies, diffusion, etc.). 

In principle, to obtain the emission of characteristic X-rays from a sample, a focused 

beam of electrons is guided into the specimen. At the rest state, an atom contains ground 

(unexcited) state electrons in discrete energy levels (electron shells) bound to the nucleus. 

The incident beam provides enough energy to excite an electron in an inner shell, ejecting 

it from the shell while creating an electron hole in the atom. An electron residing on an 

outer, higher-energy shell then fills the hole, and the energy difference between the higher 

and lower shells is released in the form of an X-ray. An energy-dispersive spectrometer 

records the count and energy of the emitted particles from the sample.  
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As measured X-rays are characteristic of the emitting elements constituting the 

sample (difference in energy between the two shells and the atomic structure), EDS allows 

the elemental composition measurement of the specimen (Figure II. 20). 

                 

Figure II. 20: Illustration of the electron-matter interaction resulting in electron and characteristic 

X-ray emission [25]. 

 

Some steps have to be considered when performing an EDS experiment. As the 

electron beam can only penetrate a shallow depth, samples should be well prepared so 

that the morphology of the surface does not affect the results. Similar to SEM, the 

insulating samples have to be coated with a conducting material to avoid the charging 

effect. For EDS, the common coating material is vacuum-evaporated carbon, which has 

minimal effect on X-ray intensity thanks to its low atomic number. 

In Figure II. 21, I present a cross-section of our SynT with the gate stack 

Ti/TiO2/LiPON/Ti microfabricated on thermally grown SiO2 on a Si wafer. The device was 

prepared with the focused ion beam (FIB) technique using Gallium ions. A portion of the 

cross-section was observed using SEM (Figure II. 21.a). Here we can see the coverage of 

the LiPON film on the bottom Ti electrode and the overall topology of the device via the 

contrast. An EDS measurement was performed on the selected region, and the presented 

elements can be identified by their emission spectrum. Besides the detectable principle 

elements, such as Si, P, O, N, and Ti, we can also find the byproducts of the FIB process that 

are C from the protective film and Ga from the milling ions (Figure II. 21.b). The previous 

SEM image was coupled with the detected elements to obtain an EDS MAP (Figure II. 21.c). 

The gate stack is well-defined with LiPON electrolyte with P and O as the representative 

elements and Ti electrodes. We can see from the MAP that the information on the far side 

of the sample is also illustrated, causing the image to be confusing. On the other hand, 

when we observed the sample with the secondary electron mode, mainly the signals from 

the interesting cross-section (near the electron beam) were detected and mapped (Figure 

II. 21.d). 
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Figure II. 21: SEM coupled with EDS analysis on transistor structure. a) SEM cross-section of the 

transistor. b) EDS spectrum of the presenting elements in the transistor sample. c) Elemental 

mapping without secondary electron (SE) mode, and d) with SE mode. 
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 ELECTROCHEMICAL SYNAPTIC TRANSISTOR PROCESS 

FLOW 
 

An example of a completed wafer after microfabrication can be found in Figure II. 

22.a. There are a number of different devices on this wafer, with the SynTs lying on the 

dices on the edge of the wafer. Elaborated electrochemical synaptic transistors are three-

terminal devices comprising Gate, Source, and Drain electrodes, a semiconductor channel 

connecting the Source-Drain electrodes, and an electrolyte layer separating the Gate 

electrode and the channel (See Figure II. 22.b). The sandwich structure of thin films on 

silicon wafers can be realized by a sequence of microfabrication techniques, including 

deposition and patterning steps. Devices’ performance depends directly on the several 

details of the fabrication process. For example, the micrometric gap between SD electrodes 

defines the channel length and, thus, the channel current. This gap dimension can be 

undesirably widened from the designed feature by overexposed or overdeveloped 

photoresist patterning and overetching with high-temperature wet etchants. Precise 

alignment is critical for this multiple-layer device. For instance, a slight misalignment on 

the gate electrode can add an extra capacitance (created by metal/electrolyte/metal in 

parallel to the transistor gate stack). 

 

Figure II. 22: a) Photo of an elaborated SynT 200 mm substrate with multiple test structures. b) 

Schematic illustration of an electrochemical synaptic transistor from the wafer. 

 

In this section, I will spend time describing the details of the process flow to 

microfabricate SynTs at LCRE.  
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3.1 Process flow 

 

The completed process of SynT microfabrication is illustrated in Figure II. 23. All the 

devices realized in this thesis are on (100) single-crystalline silicon wafers of 200 mm in 

diameter and 550 μm in thickness. A 3-μm layer of SiO2 insulator grown by thermal 

oxidation serves as a dielectric and support layer (Figure II. 23.a). There are two types of 

metals used for SynTs’ electrodes, namely Platinum (Pt) and Titanium (Ti) (Figure II. 23.b). 

Pt is a noble transition metal that has remarkable resistance to corrosive reactions or 

thermal oxidation. To avoid platinum silicide compound (PtSi) formation at the interface 

[26], a thin TiO2 is grown to play as a barrier and adhesion layer before coating Pt by 

sputtering. Ti metallization is realized by DC sputtering. The metal-coated wafers undergo 

common lithography patterning steps such as photoresist coating, insulation, 

development, and then metal etching. Pt metal is etched in a mixed solution of 

H2O:HNO3:HCl at 57 ˚C. The etching duration is controlled manually, and it depends on the 

etching conditions such as temperature, stirring, and also on material thickness. Ti metal 

and TiO2 adhesion layers can be patterned with a solution of NH3:H2O2:H2O at room 

temperature (Figure II. 23.c). Another method to etch these two materials is by RIE with SF6 

gas. Subsequently, the channel layer is deposited using different methods (Figure II. 23.d). 

 

 

Figure II. 23: Process flow of SynTs. 

 

There are two channel materials considered in this thesis work, TiO2 deposited by 

ALD with TDMAT and water precursors, and LiCoO2 deposited by sputtering. RIE recipes 

with SF6 or CF3/O2 can be employed to pattern the TiO2 layer, while wet etching is necessary 
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to handle the LiCoO2 film (Figure II. 23.e). To etch LiCoO2, the wafer is immersed in a bath 

with H2SO4:H2O2:H2O  solution at room temperature. Both channels have to undergo a 

thermal treatment at 400 ˚C and/or 700 ˚C to finalize the material preparation. With the 

channel ready, the LiPON electrolyte and Ti gate electrode are deposited subsequently 

(Figure II. 23.f). The LiPON film is grown on the substrate by RF sputtering using Li3PO4 

target under the flow of N2 gas; the Ti metal is coated by DC sputtering. We continue by 

patterning Ti top electrode (Figure II. 23.g).  Unlike bottom Ti electrodes, RIE with SF6 gas 

is the only option for gate patterning. Wet etching of Ti will not be possible because LiPON 

film is water sensitive. Finally, LiPON is patterned by the wet method using a TMAH solution 

(Figure II. 23.h), and the wafers with SynTs are ready for physical and electrical 

characterizations (Figure II. 23.i). 

At the end of the fabrication process, we perform a FIB on our transistors to control 

the growth of the stacked layers. An example of the cross-sectional TEM image of an 

electrochemical synaptic transistor comprised of Ti metal electrodes (gate, source, and 

drain), TiO2 channel layer, and LiPON solid-state electrolyte can be found in Figure II. 24. 

At 5k magnification, we can clearly observe the appearance of the films and verify the 

thicknesses of SiO2 insulator layer, Ti electrodes, and LiPON electrolyte. Even though we 

can see a thin line representing the 10-nm TiO2 layer at the interface of the LiPON and the 

bottom Ti films, we need to increase the magnification level of TEM to inspect this channel 

more clearly. 

 

 

Figure II. 24: Cross-section TEM image of a SynT made of Ti electrodes, TiO2 channel, and LiPON 

electrolyte. 
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3.2 Progressive optimization of microfabrication steps 

 

3.2.1 SD patterning 

 

The gap between the source and drain electrodes defines the length of the 

transistor channel. Therefore, precisely patterning these bottom electrodes is critical. For 

the first generation of SynTs, the gap between SD electrodes ranges from L = 1.5 µm (SynT-

1) to L = 5 µm (SynT-5). However, it is not straightforward to pattern Pt metal electrodes 

with a few micrometer gaps because of two factors: the photoresist patterning and the 

etching method. 

As described in Eq. 3, the resolvable dimension of photoresist can be affected by 

three elements, namely resist thickness, exposure gap, and the wavelength of the light 

source. The photoresist used for the protective mask in this process is positive Microposit 

SPR220 with 8-µm thickness after development. Even though the thickness of this 

photoresist is not ideal for open these gaps precisely (<5 μm), the available post-bake 

process with this resist is essential to protect the underlayer from corrosive wet etchants. 

The wafers are exposed using proximity (≈3 μm gap) mode and hard contact mode (no 

gap) with a Hg UV light. At the beginning of the thesis work, the photoresist layer is mainly 

patterned using proximity exposure. This exposure mode leads to unopened features for 

SynT-1 and SynT-2, whose gaps are smaller than the exposure gap (See Figure II. 25.a). 

These SD pitches are opened by employing the hard contact mode, eliminating the gap 

between the photomask and the substrate. The exposure time is also tuned around the 

theoretical dose of SPR220 at this thickness to avoid the under- and over-exposure effect 

that can change the shape of the developed resist. As a result, we can obtain the resist 

patterns with acceptable dimensions (See Figure II. 25.b). 

 

Figure II. 25: a) Optical microscopy image of connected patterns of photoresist under the effect 

of proximity exposure. b) The photoresist patterns are open and correspond well to the designed 

gap of SynT-2 by using hard contact exposure. 
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We have to take into account the isotropic profile of the wet etching method that 

contributes to the widening of the electrode gaps in the Pt patterning process. Thus, 

etching 250-nm thick layer of Pt results in at least a 0.5 μm gap widening due to over etch. 

Furthermore, the reactions happen inside a hot, corrosive mixture of concentrated nitric 

and hydrochloric acids. With this condition, it is hard to monitor the etching evolution 

closely. As a consequence, the etching profile is not uniform within the wafer, and the gaps 

of Pt electrodes are much wider than the designed ones (5 times wider in Figure II. 26.a) at 

the beginning of the thesis. To improve this overetching issue, several experiments with 

different etching duration are done to find out an optimized time for this etching is around 

7 minutes and 30 seconds. Note that the etching substrate has to be rotated manually, and 

the solution bath has to be stirred constantly during the process so that the metal is 

removed equally at different positions within the wafer. Even though the etched patterns 

do not have the same dimensions as the designed ones, the SD gap is much improved 

(Figure II. 26.b).  

 

Figure II. 26: a) Severe overetching of Pt electrodes. b) An improvement of Pt electrode patterning 

by controlling the etching time and etching conditions. 

 

SD electrodes made of Ti can have better resolutions (smallest gap of SynT-1 = 1.8 

μm) due to the flexibility in the etching process. Bottom Ti metal can be etched with RIE 

etching with an anisotropic profile. In addition, with the wet etching process, Ti etching can 

be done with Microposit S1818 photoresist, which has four times thinner thickness 

compared to SPR220, resulting in a better definition of the features. 

 

3.2.2 Channel processes 

 

A channel is a patterned thin film connecting the source and the drain electrodes 

in a transistor. This layer can change its electrical properties under the field applied 

between the gate and the source electrodes. We consider ALD TiO2 and PVD LiCoO2 (LCO) 
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as the channels for the first generation of our electrochemical synaptic transistors. To 

prepare our channels, we first pattern and then anneal them using rapid thermal annealing 

(RTP tool). In the following parts, I will discuss the problems we faced and the ways to 

overcome both patterning and thermal treatment processes. 

 

 Channel patterning 

 

With their large ratio of the area over thickness, our channels are supposed to be 

patterned easily. This is the case for the 10-nm TiO2 channel. The film is etched with an 

SPR220 protective mask using CHF3/O2-based plasma etching. The patterned film has 

designed dimensions (Figure II. 27). The only issue observed in this process is the stripping 

of the photoresist after RIE. It is observed that after this etching, the photoresist structure 

becomes cross-linked and hardened because of the elevated temperature and UV radiation 

from the plasma inside the reactor. For this reason, resist remover 1112A at 50 ˚C is 

employed. 

 

Figure II. 27: An image of the patterned TiO2 channel with desired dimensions. 

 

For thin-film LiCoO2 with thickness from 50 nm to 100 nm, the etching happens 

rapidly under 10 s inside a mixed solution of H2O:H2O2:H2SO4. At this time scale, greatly 

lateral overetching can be expected with a delay of a few seconds (Figure II. 28.a). To have 

better control of this etching process, I dilute the etching solution by increasing the 

H2O:H2O2:H2SO4 ratio from 32:5:1 to 40:5:1 and perform the etching at room temperature 

instead of 35 ˚C as for micrometer-thick LiCoO2 films. As a result, the etching process 

finishes around 30 s, and the control of over-etch is easier (Figure II. 28.b). 
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Figure II. 28: a) Lateral over-etching of LCO thin film with the dashed square being the patterned 

photoresist mask. b) An improved patterning of LCO channel with 5 μm over-etched on each side. 

 

 Thermal processing 

 

Thermal annealing as a post process is important in thin-film microfabrication as it 

can alter the physical and chemical properties of the film, favor the formation of specific 

structural phases, and improve the surface roughness of inorganic films. For example, 

annealing the as-deposited LiCoO2 film at 400 ̊ C and 700 ̊ C can induce a low-temperature 

phase (LT-LCO) and a high temperature phase (HT-LCO), respectively [27]. LT-LCO has a 

spinel-type structure with space group Fd-3m. It is obtained at temperatures below 400 

°C. HT-LCO has a hexagonal structure with space group R-3m. It is obtained at 

temperatures above 600 °C. With an ordered structure favoring the Li intercalation, HT-

LCO is preferred as the cathode material in Li-ion battery application, and it is the target 

phase of our synaptic transistor channel. I will describe the process of development to 

obtain a qualified thin-film HT-LCO channel in the following part. 

From the previous step, the as-patterned LCO channel will be annealed in the RTP 

tool at 700 ˚C to transform the LCO phase into HT-LCO. However, the annealed LCO layer 

does not inhibit an R-3m structure, but it shows a vibration type similar to the Fd-3m 

structure under the Raman spectroscopy technique (Process 1, Figure II. 29). This undesired 

phase transformation can be explained by the exposure of the thin-film LCO to the solution 

during the etching step. In an attempt to obtain the HT-LCO phase of the channel layer, 

we proceed with annealing after deposition of LCO before patterning (Process 2). With this 

modification of the step sequence, we successfully observed the R-3m structure signature 

with Raman spectroscopy. Nonetheless, the etching step is long (> 20 minutes) and more 

complex to completely remove LCO (residue all over the wafer). Finally, by inserting an 

intermediate annealing step at 400 °C between PVD deposition of LCO and patterning 

steps, we obtain the desired HT-LCO phase with a feasible etching step (process 3). The 
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intermediate annealing step is believed to transform the as-deposited LCO into spinel LT-

LCO, which can protect the thin film from the effects of solution exposure. Process 3 is 

essential to obtain a functional LCO layer for both energy and synaptic transistor 

applications. 

 

Figure II. 29: Evolution of processes to obtain HT-LCO channel layers. 

 

3.2.3 Gate and electrolyte patterning 

 

Now we have to pattern the Ti gate electrode and then the LiPON electrolyte. Unlike 

bottom Ti electrodes, RIE is the only option for gate patterning. In the first versions of SynT, 

the gate electrode is designed to be relatively small (12x14 μm2). The size of this electrode 

makes it impossible to keep the square shape with proximity exposure due to sharp edge 

diffraction. As a result, the photoresist at the corners is over-exposed, creating a cross-

shape gate electrode (Figure II. 30.a). As the gate is patterned, the wafer is coated with an 

S1818 positive photoresist (MICROPOSIT) immediately to reduce the air exposure time of 

the bare LiPON surface. LiPON film is patterned with a photomask with a designed area of 

70x80  μm2 marked with a dashed rectangle. However, the lateral over-etching rate of 100 

– 200 nm LiPON film is extremely high inside a TMAH solution, creating a strange pattern 

as seen in Figure II. 30.a. An attempt to optimize the etching time has been done to pattern 

100 nm LiPON on SiO2 wafers. The immersing time inside the etching bath is 45 s for Figure 

II. 30.b and 32 s for Figure II. 30.c, and it is followed by 5 s of DI water rinsing. Although 

the overall shape of the pattern is monitored, the lateral over-etching may pose a risk of a 

short circuit between the gate and bottom electrodes, especially when adding the effect 

of bottom electrode topography.  
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Figure II. 30: a) Result of gate electrode and electrolyte patterning at the beginning of the thesis. 

Wet etching of 100 nm LiPON layer on SiO2 during b) 45 s + 5 s rinsing with DI water, and c) 32 

s + 5 s rinsing with DI water. 

 

To address the problems mentioned above, the designs of the gate electrode and 

the electrolyte film are extended in size (Figure II. 31.a). The gate electrode now has the 

same size as the channel layer (70x80 μm2), creating a fully overlapped gate stack. With the 

new size of electrode, the impact of edge diffraction is minimized, and we can comfortably 

probe on the gate electrode without the need for a redistribution layer, therefore 

accelerating the development cycle of the device. The size of the LiPON pattern now is 

470x425 μm2, covering the active zone of the device completely. The size of the layer will 

eliminate the lateral over-etching risk from the wet process. The completed view of a SynT-

1 device can be found in Figure II. 31.b, and this transistor is ready for further physical and 

electrical characterizations. 

 

Figure II. 31: a) The layers’ size adaptation of the SynT design to alleviate constrains from Ti gate 

electrode and LiPON electrolyte patterning. b) A top view of a complete synaptic transistor taken 

on SynT-1 device.  
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 CONCLUSIONS 
 

In this chapter, we have presented the microfabrication techniques used in my 

thesis. The deposition techniques are shown with a focus on the techniques that being 

used to elaborate our transistors: sputtering and atomic layer deposition. As examples, the 

deposition processes of the PVD LiPON and ALD TiO2 thin films are described. Furthermore, 

we have discussed the methods of photoresist mask forming and material etching because 

they directly affect the transfer of designed layers into the deposited thin films. The pattern 

resolution of photoresist depends heavily on their thickness, the exposure gap, and the 

light source’s wavelength. The final patterns of devices are dictated by the etching profiles 

of etching methods. 

Physical characterizations such as SEM and TEM are often employed to inspect the 

microstructures, thin films’ growth and their thicknesses, while EDS and Raman 

spectroscopy are particularly useful to obtain the chemical composition and the 

fingerprints of deposited layers. The working principles of these techniques and the 

examples from the literature and own work have been discussed in this chapter. These 

techniques are also useful for identifying possible defects and verifying the 

microfabrication steps. The physical understanding of the gate stacks allows us to interpret 

more precise the performance of the devices.  

In the last section, we have shown the process flow to elaborate our electrochemical 

synaptic transistors with details on the steps, from material deposition to patterning. An 

example of cross-section view of a SynT is also illustrated with verified thicknesses of 

different components of the device. We encountered numerous problems while realizing 

this generation of device, and the progressive optimization process is mentioned. At each 

microfabrication steps, there are various challenges: unopen features, over-etching layers, 

and undesired channel structure. Resolving these difficulties required efforts from different 

approaches including adjusting exposure gap, monitoring patterning time and 

temperature control, and redesigning the photomask. The first functional SynTs have been 

elaborated using the described processes.  
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ABSTRACT 
 

 

 

In the third chapter, we will introduce the first functional gate stacks of SynTs 

including the materials and the characterizations. The chapter is divided into three principle 

sections, the materials composing the transistors, the characterizations of SynTs with 

LiCoO2/LiPON gate stack, and the characterizations of SynTs with LixTiO2/LiPON gate stack. 

Section 1 of this chapter is dedicated to introduce the properties of the materials used 

for the elaboration of the SynTs, including LiCoO2 and LixTiO2 for the channel, and LiPON for 

the solid-state electrolyte. For the channel materials, their crystal structures of different 

phases and their insulator metal transition phenomenon are mentioned. The advantages of 

LiPON solid electrolyte over other types of ionic conductors are presented to highlight the 

material choice of the first generation of SynTs. 

Section 2 shows the development and a first study of SynTs composed of 

LiCoO2/LiPON gate stack. With different test structures and electrical setup, the properties of 

this gate stack are revealed. The contribution of HT-LCO and LiPON electrolyte are verified 

with impedance spectroscopy and cyclic voltammetry characterizations. The resistive 

switching and analog programming desired in electrochemical synaptic transistors was 

demonstrated experimentally. 

We will present an extended study of LixTiO2/LiPON gate stack comprising of physical, 

electrical and electrochemical characterizations in the third section. SEM and EDS are used 

to study the films’ thickness and composition. HRTEM affirms the quasiamorphous phase of 

LixTiO2 channel material and the fact that there exists nanoinclusions inside the amorphous 

matrix. The good merits of this gate stack in transistor configuration such as low-conductance 

analog switching in the range of nano-Siemens and low writing energy (fJ/μm2) are 

confirmed with electrical tests. Synaptic plasticity characteristics required for an artificial 

synaptic component are also demonstrated. The high operation speed is accounted for by the 

fast ion intercalation into pseudocapacitive behavior of the 10-nm thin TiO2 channel, which 

is verified by the results of electrochemical tests on a two-terminal structure. 
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INTRODUCTION: BACKGROUND RECALL 

 

 

Among three-terminal artificial synapses, electrochemical synaptic transistors 

(SynTs) appear as suitable candidates due to their similarities with biological synapses. In 

a SynT, the gate dielectric is an electrolyte film, which conducts only ions. When an external 

voltage pulse (WRITE) is applied between the gate and source, mobile ions intercalate into 

the channel film through electrochemical reactions, which yields modulation of the 

channel's electronic conductivity. This similarity potentially places SynTs in a close position 

to its inspiration, the biological synapses, in terms of operation, energy, and speed.  

However, elaboration of most electrochemical SynTs towards further scalability and 

CMOS compatibility suffers several kinds of difficulties. Liquid and solid polymer 

electrolytes (ionic liquids [1], ion gels [2], PEO-LiClO4 [3]–[6]) show clear limitations towards 

wafer scale integration [7]. Furthermore, channels composed of mechanically exfoliated 

layers appear not suitable for future elaboration of networks composed of a large number 

of synaptic components [3], [5], [8]. For these reasons, fabrication of all-solid-state wafer-

scale SynTs is highly desirable and is drawing considerable attention [9]–[15]. 

To overcome such problems, we investigated specific all-solid-state, wafer-scale 

fabricated electrochemical synaptic transistors: concerning the channel material, we first 

tried LiCoO2 then LixTiO2. Regarding the electrolyte, we used LiPON. In the following parts 

of the chapter, we will first present the properties of the constituting materials, followed 

by the characterizations of SynTs with the corresponding gate stacks.  
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 MATERIALS 
 

1.1 Lithium cobalt oxide (LiCoO2) channel 

 

In an electrochemical synaptic transistor, channel is a semiconductor material 

whose doping level can be altered by the injection of mobile ions under the field effect 

from the gate, thereby modulating the conductance states. Therefore, the channel material 

choice controls directly the working voltage window, dynamic range, and reading energy 

of the device. 

LiCoO2 is a common material in Li-based energy storage application. LiCoO2 

exhibits two crystal structures depending on the preparation and the synthesis 

temperature. While the high-temperature LiCoO2 (HT-LCO) has a hexagonal layered R-3m 

structure by synthesizing at T > 600 °C, the low-temperature LiCoO2 (LT-LCO), synthesized 

at a lower temperature T < 400 °C, has a cubic spinel-related Fd-3m structure (see Figure 

III. 1) [16], [17]. For its superior electrochemical performance [18], only HT-LCO is 

considered in this thesis. 

 

Figure III. 1: Crystal structures of (a) Fd-3m spinel LiCoO2 (LT-LCO) and (b) R-3m layered LiCoO2 

(HT-LCO) [17]. 

 

HT-LCO is used as a cathode (positive electrode) in commercial Li-ion batteries for 

its high energy density and great cycling stability. Charge–discharge cycling with cell 

voltage in the range of 3.5 to 4.2 V corresponds to deintercalation/intercalation of about 

0.5 Li per LiCoO2 formula unit, giving a specific capacity of about 140 mAh/g [19]. Deeper 

lithium extraction causes structural instability of the LixCoO2 cathode material and its 
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reaction with electrolyte. Stoichiometric Li1CoO2 crystalline film is reported to be an 

insulator [20]. As lithium ions are extracted from LiCoO2 film, there exists an insulator-metal 

transition (IMT), and the nature of this phenomenon is thoroughly studied using different 

approaches in REFs [19], [21], [22]. The IMT of LiCoO2 can be observed from its computed 

electronic structures for lithium content x = 1, 0.99 and 0.6 in Figure III. 2.  

 

Figure III. 2: Total and site-decomposed DOS of LixCoO2 oxides with different Li concentration, i.e. 

a) x=1, b) x= 0.99, and c) x = 0.6. d) Variation of the electrical conductivity of LixCoO2 at 300 K 

as a function of lithium concentration x. Adapted from [19]. 

 

With x = 1, the electronic structure of pure compound consists of a separation of 

valence and conduction bands by a gap of 1–1.2 eV with Fermi level EF lying inside the gap, 

indicating a low conducting state of the film (Figure III. 2.a). Note that the position of the 

Fermi level relative to the band structure, the electronic conductivity of the electrode 

material can be determined, e.g., if a Fermi level crosses a band, the electrons can be 

excited to non-localized conduction states at the expense of very little energy. We can 

observe that with little deintercaltion of lithium from x= 1 to x = 0.99, the film becomes 

more conducting with EF lying on top of the valence band (Figure III.1.b). With more lithium 

extraction at x = 0.6, LixCoO2 film is an electronic conductor at room temperature (Figure 

III. 2.c). The electrical conductance profile of LixCoO2 as a function of lithium concentration 

can be found in Figure III. 2.d. The total variation of conductivity under Li deintercalating 
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effect can be of six orders of magnitude, which is promising for electrochemical synaptic 

transistor applications [9], [11], [23]. Besides, LiCoO2 had already been studied (in two-

terminal configuration toward non-volatile memories [24], [25]) in a former collaboration 

between GeePs and CEA-LETI laboratories. For all these reasons, we select this material for 

the channel of our first SynTs.  

 

1.2 Lithium titanium oxide (LixTiO2) channel 

 

Titanium oxide is an important metal oxide in surface science. This material is widely 

used for multiple applications, such as solar cells, gas sensors, optical waveguides, 

capacitors, and batteries because it has high chemical stability, good photoactivity, 

relatively low cost, and nontoxicity. Crystalline TiO2 may exist in three polymorphs such as 

rutile, anatase, and brookite (see Figure III. 3). 

 

Figure III. 3: Crystal structures of TiO2 (a) anatase (tetragonal), (b) rutile (tetragonal), and (c) 

brookite (orthorhombic) polymorphs [26]. 

 

Brookite is quite rare in nature. Rutile phase is stable at high temperature while it is 

not the case for anatase phase. However, the intercalation of lithium ion into rutile structure 

of TiO2 is difficult due to its large distortion of the bulk lattice [27]. On the other hand, 

anatase TiO2 is well known for its ability to accommodate charge in the form of interstitial 

lithium ions, thus more advantageous in applications require ion intercalation such as 

electrochemical energy storage and information storage [4], [28]–[31]. Upon lithium 

intercalation, anatase-based LixTiO2 film observes an interesting change in electronic 
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conductivity, which was verified using experimental and theoretical approaches in REFs 

[32], [33], and is demonstrated with ab-initio calculation performed for TiO2 and Li1TiO2 in 

Figure III. 4. 

 

Figure III. 4: Total density of state of anatase-phase a) TiO2 and b) LiTiO2 anatase respectively 

related to the partial DOS of atomic orbitals of Ti and O. 

 

From Figure III. 4, the material will be transformed from an insulator from TiO2 to 

an electronic conductor upon the Li intercalation Li1TiO2. In the case of TiO2 anatase, the 

Fermi energy EF is located at the bottom of a ~3 eV bandgap, thus in this case, the anatase 

TiO2 is referred to as an insulator at room temperature. On the other hand, in Li1TiO2 

anatase, the Fermi energy crosses the conduction band, which is mainly contributed by the 

3d-orbital of Ti. This implies the charge-compensating Li-2s electron to enter the material 

in a non-localized state (Li atoms are fully ionized and become Li+, resulting in an excess 

of electrons in the system filling partially Ti 3d and moving the Fermi level to the middle 

of the conduction band), transforming the pristine crystal from an insulator to an electronic 

conductor [33]–[35]. 

This IMT property was employed in an electrochemical synaptic transistor whose 

channel is made of anatase LixTiO2 [4], see Figure III. 5. The memory cell, illustrated 

schematically in Figure III. 5.a, comprising of a redox transistor and a diffusive memristor 

selector. The transistor is made of a 30-nm LixTiO2 channel and LiClO4:PEO polymer 

electrolyte. A Li0.7FePO4 reference electrode controls the concentration of lithium inside 

LixTiO2 channel during (de)intercalation, while its electronic conductivity modulation is 

sampled with a small bias (See Figure III. 5.b.). As Li ions incorporate into the material (VREF 

< 1.6 V), the conductance rise significantly from nearly zero to 200 μS (red curve). This can 
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be explained by the total contribution of lithium doping as n-type donors. When more ions 

are inserted, the conductance drops rapidly, before rising again at VREF = 1.9 V. This drop 

of conductance can be assigned to an anatase-to-Li-titanate phase transition studied in 

REF [32]. The same trend is observed in the reversed direction (blue curve) with a common 

voltage hysteresis in electrochemical systems. This study demonstrates that LixTiO2 is an 

excellent channel material for synaptic transistor with many great merits. However, the 

conductance level of this channel is still high (μS range). Thinning down to 10-nm or less 

and working with a less conducting phase can further improve the energy performance of 

this channel. Furthermore, amorphous, ultrathin TiO2 film exhibits extrinsic-

pseudocapacitive behavior that endures rapid Li intercalation and tremendous cycling. For 

these reasons, we construct our first generation of SynTs with a channel made of thin and 

amorphous TiO2 layer. 

 

Figure III. 5: a) An electrochemical synaptic transistor made of an anatase-phase LixTiO2 channel. 

b) The conductance variation of the channel under the change of Li content.  Adapted from [4]. 

 

1.3 Lithium phosphorous oxynitride (LiPON) electrolyte 

 

In electrochemical synaptic transistors, electrolytes serve as ion conducting media 

to modulate channel conductance via electrostatic mode (EDL formation) and intercalation 

mode (redox reactions). Thus, this layer contributes directly to the operation speed, energy, 

and state retention. LiPON is a common solid-state electrolyte for ion-based devices 

(battery, supercapacitor, electrochemical transistors) [9], [36], [37]. Solid-state electrolyte 

has advantages of operation temperature and stability over other types of electrolytes such 

as ionic liquids or polymer. LiPON can endure temperature up to  350 °C  without 

degradation [38], much higher than polymer or organic-based electrolytes. In addition, 

they allow easy miniaturization and on-chip integration, which enables the elaboration of 

highly dense structures or for medical implant applications. LiPON thin film is selected to 
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be our electrolyte because of its known scalability (down to 20 nm), a large chemical 

stability window (0 – 5 V vs Li+/Li), a high electrical resistivity (>1015 Ω.cm), and a reasonable 

ionic conductivity (10–6 S/cm). To verify the ionic conductivity of our LiPON layer, we 

perform the electrochemical impedance spectroscopy (EIS) experiment on MIM structure 

with different electrode areas (see Figure III. 6). 

We propose a simple equivalent circuit as in Figure III. 6.a to fit the impedance 

response of the test structure. Here, the first part is a Rsystem represents the resistance 

contributed by the measurement system (wire and probe contact). The second part of the 

circuit is composed of two components in parallel: a resistance RL, which characterizes the 

ionic conductivity of the electrolyte, and a constant phase element (CPE) Q1, corresponding 

to the dielectric behaviors of LiPON layer. Finally, a second CPE Q2 emulates the double 

layer capacitance of this MIM capacitor. The impedance of the CPE is denoted by 𝑍𝐶𝑃𝐸 =

 1 𝑄(𝑖𝜔)𝑛⁄ . With this circuit model, we can obtain the characteristic frequency of LiPON 

𝑓𝑐_𝐿𝑖𝑃𝑂𝑁 at the middle of the semicircle curve. Furthermore, the value of LiPON resistance 

(𝑅𝐿𝑖𝑃𝑂𝑁) can be extracted from the diameter of the semicircle. By measuring RLiPON of MIM 

devices with 100-nm thick LiPON and the areas ranging from 19.6 mm2 to 33.2 mm2, we 

can calculate the ionic conductivity of LiPON (𝜎𝑖𝑜𝑛) by following the relation: 

 
𝑅𝐿𝑖𝑃𝑂𝑁 = (

1

𝜎𝑖𝑜𝑛
) × (

𝑙

𝑆
), 

 

Eq. 1 

 

where 𝑙 is the thickness of the LiPON and 𝑆 is the area (Figure III. 6.c).  

 

 

Figure III. 6: a) EIS spectra of a Ti/LiPON/Ti MIM structure. b) Deduced ionic conductivity of LiPON 

electrolyte from EIS spectra.  
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 PRELIMINARY STUDY OF SYNT WITH {LiCoO2/LiPON} 

GATE STACK 
 

2.1 Electrical measurement setup 

 

Before moving to the characterizations of the first realized synaptic transistors with 

LiCoO2 channel and LiPON electrolyte, we will discuss the setup employed for both 

electrical and electrochemical measurements. The performance of the devices are analyzed 

using multi-channel VMP3 potentiostat (Bio-Logic) coupled with ultra-low current 

modules, allowing current in the range of nA to be measured with precision (See Figure III. 

7.a). To prevent external electromagnetic noise sources, we employ also a Faraday box to 

shield our electrical measurements. The potentiostat is controlled by the EC-Lab software 

on an Ethernet-connected computer. 

There are two types test devices available on the elaborated wafers, and they 

correspond to two types of connection on the VMP3. First, the battery-like structures refer 

to the cells with parallel electrodes, sandwiching an active material (cathode) and a layer 

of ionic conductor (electrolyte) (Figure III. 7.b). These devices allow us to closely study the 

electrochemical reactions and processes happen at the active material and the interfaces 

by performing techniques such as cyclic voltammetry, electrochemical impedance 

spectroscopy, Galvanostatic cycling, et cetera. To test these two-terminal structures, 

“working electrode” (denoted as the red probe and “+”) is probed to the bottom side and 

“counter electrode” (denoted as the blue probe and “–”) is probed to the top one. These 

electrodes are connected in the “Standard mode” where the working electrode is 

connected to CA2 and Ref1 (Ref for reference, and CA for current amplifier). The counter 

electrode to CA1, Ref2. Ref1, Ref2 are used to measure the voltage difference, e.g., the cell 

potential is measured by the potential difference between Ref1 and Ref2. CA2 and CA1 to 

apply the current in Galvanostatic mode. 

Second, the principle devices are the transistors with Gate, Source and Drain 

electrodes. The active material now serves as the channel connecting the drain and source 

electrodes, and the electrolyte film lays between the gate electrode and the channel (See 

Figure III. 7.c). It is possible to use this potentiostat to work with multiple-terminal devices 

by switching the connection mode to “CE-to-Ground”. In this mode, the counter electrodes, 

probing on Source electrode, are connected to the Ref2 and they are grounded. The other 

two working electrodes, one for Gate programming and one for Drain reading, are 

connected to the Ref3 and CA1 lines. With this connection, one can program the transistor 

by applying potential pulses on gate and source electrodes, and perform current read 

operations on drain and source electrodes without interfering the other. I will present the 

characterizations of the first gate stack in the next section. 
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Figure III. 7: a) The electrical setup used to characterize electrochemical systems in this thesis. 

Schematic illustration of b) a two-terminal structure measurement and c) a transistor 

measurement.  
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2.2 Electrochemical characterization of the gate stack 

 

We elaborate a wafer with devices comprising of 500 nm LCO and 500 nm LiPON 

electrolyte. An EIS test was done on a battery-like device with area S =  1.13 mm2 to 

evaluate the electrochemical contribution of the vertical gate stack (Figure III. 8.a). The 

frequency was scanned from 1 Hz to 1 MHz and the complex impedance response was 

recorded and presented in Figure III. 8.b. The diameter of the semicircle impedance 

indicates the ionic resistance of the LiPON electrolyte, whose value is 𝑅𝐿𝑖𝑃𝑂𝑁 = 5.2 𝑘Ω. The 

ionic conductivity is hence, 𝜎𝐿𝑖𝑃𝑂𝑁 =  0.85 × 10−6 𝑆/𝑐𝑚, corresponding well to the reported 

value of this sputtered electrolyte. Figure III. 8.c shows the first cyclic voltammetry (CV) 

curve for the HT-LiCoO2 active layer between 3.3 V and 4.2 V at a scan rate of 0.5mV/s. Li+ 

ions can be intercalated into/extracted from LixCoO2 active material following the redox 

reactions:  

 

𝐿𝑖1𝐶𝑜𝑂2 ↔ 𝐿𝑖1−𝑥𝐶𝑜𝑂2 + 𝑥𝐿𝑖+ + 𝑥𝑒− Eq.2 

 

The CV curve for the HT-LCO exhibits one major cathodic peak and one anodic peak 

at 4.01 and 3.84 V respectively. There exists also two minor cathodic and anodic peaks at 

4.09, 4.19 and 4.03, 4.15V, respectively. The pair of major redox peaks correspond to the 

first-order phase transition, while the two pairs of minor redox peaks correspond to the 

order-disorder phase transitions [39]. The inset illustrate the result of the whole scan from 

the initial OCV (0.43 V). We can observe that there is no activity recorded up to the reaction 

potentials around 4.0 V. With these results from electrochemical tests, we can verify the 

contribution from LiPON electrolyte and the HT-LiCoO2 active material. 
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Figure III. 8: Electrochemical study of LiCoO2/LiPON gate stack. a) The illustration of the battery-

like structure used. b) EIS study of a test structure with an area of 1.13 mm2. b) CV study of the 

same device showing the redox potentials. 

 

2.3 Electrical characterization of the transistor 

 

2.3.1 Resistive switching phenomenon 

 

The first electrical characterizations of SynTs were dedicated to verify the IMT 

transition of LCO channel layer (see Figure III. 9.a). We extracted the Li ions by applying a 

constant potential of 4.2 V on the gate-source electrodes during 300 s. The change in 

conductivity of the channel was recorded with a constant potential of 0.1 V applied 

between the drain-source electrodes. Figure III. 9.b depicts the exponential current growth 

of over 5 decades in less than 50 s of ion extraction (similar to the charge process), and 

this agrees well with the reported IMT in the literature [19].  

With this information of phase transformation, it is interesting to test if we can 

retrieve the insulator phase by intercalating Li ions into the channel. To do that, we 

performed a voltage scan on gate-source electrodes, with the voltage from the out-of-fab 

OCV of 0.7 V to 4.2 V. Then, the scan was reversed to –3.4 V and ended at 0 V. From Figure 

III. 9.c, the conductance does not rise until VG reaches 4.1 V. At this potential, the 
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conductance of the channel rises significantly to 700 μS. These features agree well with the 

CV inspection of the gate stack. In the reversed direction, the ions are gradually intercalated 

into the channel, driving the conductance to decrease. The timescale of the reversed 

reaction is much slower, thus, leading to the difference between the rising and the falling 

slopes, which creates a hysteresis curve. This type of hysteresis is typical for non-volatile 

memory devices as it indicates the resistive switching phenomenon [8].  

 

Figure III. 9: Electrical test of the synaptic transistor. a) The illustration of the SynT with a 500-nm 

LiCoO2 channel and 500-nm LiPON electrolyte. b) The evolution of channel conductance under 

a constant extraction of Li ion at VG = 4.2 V. c) Hysteresis conductance profile of the channel 

under Li intercalation. 

 

2.3.2 Analog state programming 

  

In this part, we study the analog programming of multiple states with this transistor 

using potential pulses. In Figure III. 10.a, we show the pulse scheme used for the writing 

and the recorded profile of drain-source conductance (GDS). The pulses with VG = 4.2 V are 

used to increase the channel conductance while the pulses with VG = -4.0 V are applied to 

drive down the conductance states. After the application of pulses in 1 s, the gate voltage 

is switched OFF during 4 s (rest state). Here, the train of 5 up pulses results in a stepped 

increase in GDS from 870 to 910 μS. During “write” operation, an increase in the GDS is 
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observed due to Li leaving the channel, while during each “read” operation GDS remains 

constant at a value corresponding to the new conductance state. This process is reversible, 

and a subsequent train of 5 down pulses returns the device to the initial conductance level. 

The consecutive programming was done with 40 pulses potentiation and depression per 

cycle with the same pulse scheme (+4.2 V up and – 4.0 V down, td = 1s). In this experiment, 

the rest state time was reduced to 1 s (See Figure III. 10). As a result, the channel 

conductance varies from around 1.3 mS to 1.5 mS. These tests confirm the concept of 

synaptic transistor of LiCoO2/LiPON gate stack. 

 

Figure III. 10: a) Analog conductance modulation demonstrated with five pulses of VG = +4.2 and 

-4.0 V amplitude and 1 s duration. b) One cycle of conductance modulation with 40 pulses of 

potentiation and depression pulses. 

 

2.4 Summary 

 

In conclusion, we are able to realize the first functional wafer-scale and all-solid-

state synaptic transistors made of LiCoO2/LiPON gate stack. The battery-like structures 

allow us to decorrelate the contribution of the active material and the electrolyte. For the 

LiPON layer, the ionic conductivity and characteristic frequency are determined with EIS 

technique to be in line with the reported values of this material. With cyclic voltammetry, 

the redox potentials representing the phase transitions of HT-LiCoO2 layer are clearly 

identified. Electrical tests focusing on the conductance modulation of the channel are done 

to confirm its reversible IMT under the intercalation of Li ion from the gate. With a train of 

programming pulses, the analog conductance state modulation is demonstrated with a 

cycle of 40 pulses and a channel conductance varying from 1.3 to 1.5 mS. 

The realization and characterizations of the first devices allow great understanding 

of the microfabrication process flow and the operation principles of these electrochemical 

systems. However, the operation scheme and performance of the transistor can be further 
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improved. First, the working conductance of this device is in the range of mS, which can be 

costly to implement into a complex neural network comprising millions of transistors. The 

programming voltage is considerably high for this gate stack (~4 V). In addition, a long 

programming duration of 1 s of VG pulses can contribute to the overall energy 

consumption of this transistor. These problems can be addressed by thinning down the 

channel material down to a few tens of nanometers, which can reduce the conductance 

and the programming time thanks to the reduced diffusion length of ions into the material. 

Furthermore, working with top electrode made of the same materials with the active 

material can reduce significantly the chemical potential difference, thus, minimizing the 

programming amplitudes. For these reasons, we explore the ultra-thin film LixTiO2 for the 

channel material as a next step to optimize the performance of our first generation SynTs.  

 

  



114 

 

 EXTENDED STUDY OF SYNT WITH {LixTiO2/LiPON} GATE 

STACK 
 

3.1 Artificial electrochemical synapse 

 

Figure III. 11 shows an illustrative view of our micro-fabricated SynT device. The cell 

core (synaptic element) is a vertical stack consisting of an ultra-thin (10nm) titanium 

dioxide (TiO2) channel, an electrolyte made of amorphous lithium phosphorus oxynitride 

(LiPON), and a top gate made of Ti. This vertical configuration was considered to allow for 

shorter diffusion path, thus increasing the operational speed [4], [40]. 

 

Figure III. 11: Schematic view of our SynT with LixTiO2/LiPON gate stack. 

 

Amorphous TiO2 was selected as a channel material because of its well-studied 

intrinsic merits as suitable host for Li-ion intercalation in energy storage applications [41]–

[43]. Additionally, TiO2 in its amorphous form is known to exhibit pseudocapacitive 

characteristics which allow fast, reversible ion intercalation without phase transition [44], 

[45]. Furthermore, TiO2 undergoes an insulator-to-metal transition upon ion intercalation, 

thus making it an appealing material for ion-based SynTs [32], [33]. LiPON has been chosen 

as solid-state electrolyte for its high chemical and electrochemical stability [46]–[49], and 

scalability [37], [50]. 

The inset of Figure III. 11 shows a schematic cross-section of the transistor. Square-

shaped voltage pulses applied to the gate mimic the biological impulses of the pre-

synaptic neurons. Under these spikes, Li+ ions are inserted into the channel material (red 

layer), connecting the source and drain electrodes via the electrolyte (blue layer), hence 

creating a change in electrical conductance. This conductance change is captured by 
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electrically sampling with a small, constant potential bias (VR) the current flowing between 

the source and drain. 

 

3.2 Physical characterizations 

 

The cross-section of a SynT is prepared using FIB technique for the SEM/EDS and 

TEM characterizations. From Figure III. 12.a (top panel), we can observe that the channel 

length (between source and drain electrodes) is about 3 μm, using Scanning Electron 

Microscopy (SEM). The LiPON layer thickness is 200 nm, as desired. The elemental mapping 

of the layers is observed with the help of energy dispersive X-ray spectrometry (EDS), where 

elements P and O represent the LiPON electrolyte. Furthermore, no interfacial inter-

diffusion is discerned with the detectable elements.  

 

Figure III. 12: a) SEM and EDS characterizations of SynT's gate stack. b) HRTEM image with the 

focus on the neighborhood of TiO2 channel (inset: FFT on the selected Zone A) 

 

High-resolution transmission electron microscopy (HRTEM) has been carried out to 

inspect the channel's structural properties (Figure III. 12.b). The stacked layers are 

differentiated based on the thicknesses and their contrasts. The 10nm thickness of the TiO2 

layer is clearly confirmed from the image. Besides, the HRTEM analysis gives valuable 

information about channel film properties, indicating the presence of 2 nm size 

nanocrystallites embedded in the amorphous matrix. The structure of TiO2 channel layer 

appears to be an amorphous one. However, by doing local FFT, we observed some spots 

in the diffractogram. They are underlined by white arrows. The distance between spots are 

measured and indexed with reference to Si atomic planes. Si substrate images were 

acquired in a similar magnification as the TiO2 images, and local FFT images were then 

done from comparable field of view (FOV), 13x13 nm2 for 400k magnification. The known 

atomic plane distances of silicon served as reference for calculating a constant value 
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adapted to the magnification. The extracted constant value is 21.45 for x400k. Once the 

constant value was determined, we calculated the interatomic distance in real space d = 

0.207 nm from the distance d* in the reciprocal space, d* = 10.37/nm in this case. The 

distance corresponded to the (210) crystal phases of the TiO2 rutile (JCPDS no. 21-1276). 

Same experiment was done with 300k magnification on other nano-crystallites and the 

results showed that the major part of the crystal structure was TiO2 rutile. 

 

3.3 Electrical characterizations 

 

The first electrical tests were done to confirm the conductance modulation 

phenomenon under the intercalation of Li ion. Figure III. 13.a depicts the evolution of the 

SD channel conductance GSD, by application of a bidirectional sweeping gate voltage from 

-3.0 V to 3.0 V (at a rate of 50 mV/s). A small bias of 0.1 V was applied to read the change 

in Source-Drain current (ISD). Initially, GSD is very low (GSD ≤ 20nS at VG = 0 V). Then GSD 

increases up to a 100 times higher value, reaching 250 nS, due to intercalation of Li+ ions 

into the TiO2 quasi-amorphous channel. For the backward sweep (Li+ extraction), GSD 

decreased gradually back to its low conductance state, exhibiting a clear counter-clockwise 

hysteresis pattern. We can see that the highest slopes (which correspond to a more 

effective conductance variation) are located within the [-0.5 V, 1.5 V] VG potential region, 

whereas other regions demonstrated slow, saturated modification of channel conductance. 

For this reason, we selected the [-0.5 V, 1.5 V] potential window (inset of Figure III. 13.a) to 

develop our SynTs. More details on the underlying electrochemistry of the Li+ doping 

mechanism under different potential windows will be discussed in a following section. 

 

Figure III. 13: a) Charge transfer curve (channel conductance GSD as a function of gate voltage 

VG) with a gate sweep of 50 mV/s in the potential range [-3 V, 3 V] (inset: Focused working 

window of [-0.5 V, 1.5 V]). b) Conductance GSD change under incremental voltage amplitude 

pulses from 100 mV to 300 mV with a duration td of 0.1 s. 
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To demonstrate the ability to modify the analog states required for an artificial 

synapse, we programmed SynT with a train of 10 voltage pulses with different amplitudes 

relative to the open-circuit voltage (OCV) measured between the gate and source 

electrodes at rest. Note that in electrochemical devices, chemical potential gradients are 

generated by modifying the ionic content of one electrode, and this phenomenon is 

termed nanobattery effect.[51] Therefore, it is essential to program electrochemical 

synaptic transistors with a gate potential VG whose amplitude takes into account the OCV 

values of the cell. After the application of each pulse, the gate terminal was switched OFF 

for 1 s, when the READ action occurs, to prevent the electron movement and perturbation 

of the programmed state. Figure III. 13.b illustrates the change of conductance states (∆G) 

under the influence of WRITE pulses with the same duration of 0.1 s but different 

magnitudes (V), from 100 mV to 300 mV.  The pulses of higher amplitude result in a more 

pronounced change of conductance states. A simple linear fitting better shows the relation 

between the changes of SD conductance and the pulse amplitudes. Here, one can observe 

that by varying the pulse amplitude, we are driving the SynT channel conductance along 

the “Li+ insertion” conductance curve from Figure III. 13.a but at a different VG sweeping 

rate. 

Maintaining the programmed states is of great importance to synaptic elements in 

an artificial neural network for a high learning precision [52]. In Figure III. 14.a, b, we 

demonstrate the retention of the SynTs with both potentiation and depression (increase 

and decrease of conductance level respectively). A series of pulses with ±200 mV 

magnitude and 0.5 s duration was used for programming the device. The pulses were 

followed by a resting time of 50 s while the GSD was recorded.  

 

Figure III. 14: a) Retention (during 50s) of GSD after each potentiation pulse (200 mV, 0.5 s), and 

b) Retention of GSD after each depression pulse (-200 mV, 0.5 s). The two experiments are 

performed on the same device without any disruption. 

 

We further checked the stability by applying a voltage pulse (500mV, 0.5s), then 

switched off the gate and measured the conductance evolution during over 4000 s (See 
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Figure III. 15). At 4000 s, the conductance decrease is lower than 15%. The initial small drop 

(~5%) could be explained by the discharge of the capacitor at the LiPON interface with a 

fast time constant. After this, the channel conductance decreases only very little, and at a 

much slower rate. Overall, we can see in this example that the programmed states appear 

quite stable. Such a stability may be due to ions intercalation (inside the channel) via 

Faradaic reactions. 

To optimize even further the state retention of electrochemical synaptic transistors, 

several possibilities may be explored in the future. First, the chemical potential difference 

(while operating) can be diminished by designing the gate and the channel of the 

transistors to be the same materials (see for example REF [4]). Secondly, an additional 

electronic element (memristor/transistor) can be implemented on the gate electrode to act 

as a physical switch; this switch can serve as a selector for precise programming when the 

synaptic transistors are implemented in a crossbar-array structure (see REFs [4], [13], [53]).  

 

Figure III. 15: Retention profile of a conductance state over 4000 s. 

 

Synaptic functions required for artificial synapses were demonstrated in this device. 

As shown in Figure III. 16.a, emulation of neuromorphic behavior, such as long-term 

potentiation (LTP) and long-term depression (LTD) was achieved by alternatively 

programming the SynT with 50 identical pulses (±100 mV, 0.1 s) and settling and reading 

time of 1 s. The conductance states are modified in an analog way from a low conductance 

level of 28 nS to a high conductance level of 74 nS, which corresponds roughly to a 1 nS 

increase from one state to the next one. The device-to-device variation was confirmed to 

be small across SynTs by conducting the same characterization in multiple devices (see 

Figure III. 16.b).  
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Figure III. 16: a) Long-Term Plasticity demonstration with 100 states of potentiation and 

depression. b) Conduction modulation with 100 states performed on 5 different SynTs. 

 

The injected charge over 50 operations has been recorded in order to estimate the 

amount of energy to program a state to an adjacent one. The energy consumption for 

SynT devices is calculated by the expression: 

 𝐸𝑤 = Δ𝑄 × 𝑉𝑤 Eq.3 

where Δ𝑄 is the injected charge and 𝑉𝑤 is the voltage used for programming. The average 

charge transferred for SynT was 90 pC, and the voltage used for writing is 0.1 V. Therefore, 

9 pJ is spent for each writing operation. For our SynT with a TiO2 area of 70x80 μm2, we 

obtain the normalized energy consumption of 1.6 fJ/μm2. Assuming the energy per write 

operation is directly proportional to the channel area, we obtain a projected programming 

energy of 16 aJ for a scaled 100x100 nm2 device. Hence, together with the conductance 

levels in the range of nano-Siemens, our SynT can be considered as one of the most 

energy-efficient all-solid-state synaptic devices realized in both READ and WRITE 

operations. 

The symmetry property of conductance modulation or the weight update between 

potentiation and depression processes is characterized by the asymmetric ratio (AR), 

defined as 

 𝐴𝑅 =  [
max |𝐺𝑝(𝑛)−𝐺𝑑(𝑛)|

𝐺𝑝(50)−𝐺𝑑(50)
]  𝑓𝑜𝑟 𝑛 = 1 𝑡𝑜 50, Eq.4 

where Gp(n) and Gd(n) are channel conductance values at the nth state after the potentiation 

and depression pulses. For our SynT, the AR was calculated to be 0.31 (in Figure III. 16.a) 

for 100 pulses per cycle, indicating a good symmetry in comparison to results reported in 

literature [40], [54]. 
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Figure III. 17: Correlation between the number of conductance states and the asymmetric ratio. 

 

To analyze the relationship between the number of states per cycle and its AR, we 

performed a series of programming cycles on a device with a different number of 

intermediate states and analyzed the corresponding AR (see Figure III. 17). The number of 

gate pulses increases from 10 to 50 pulses, yielding an increase of AR from 0.1 for 10 pulses 

to 0.38 for 50 pulses. Thus, one needs to consider the compensation between the desired 

programming states and their AR for each application. 

 

 

Figure III. 18: Endurance test with 1000 cycles and 105 operations shows no degradation. 

 

Figure III. 18 demonstrates the endurance test of SynT after more than 1000 cycles, 

with 100 weight update operations in each cycle and with the same pulse scheme as in 

Figure III. 16.a. The endurance of this device is high since its small change of Max-Min 

conductance after 1000 cycles is calculated to be 

 𝛥𝐺 =  (𝐺𝑚𝑎𝑥  – 𝐺𝑚𝑖𝑛)1𝑠𝑡  −  (𝐺𝑚𝑎𝑥 – 𝐺𝑚𝑖𝑛)1000𝑡ℎ  =  0.5 𝑛𝑆 Eq.5 
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This endurance of 105 weight updates is considered largely sufficient for ANN 

pattern recognition training using artificial synaptic hardware, since not all of the synapses 

will be repeatedly updated in the course of the training epochs [55]. 

By scaling down the channel to 10 nm, our amorphous TiO2 film exhibits extrinsic 

pseudocapacitive behavior, which allows simultaneously for ultra-low energy consumption 

and fast/reversible conductance modulation. Both features are indispensable for artificial 

synapse application. We can observe that low power dissipation is the highlight that this 

artificial synapse offers. The operational conductance (a few tens of nS) is comparable or 

lower than other types of three-terminal SynTs. In addition, by reaching an outstanding 

low energy consumption per spike (1.6 fJ/μm2), close to the biological energy range of 

femtojoule, our present SynTs appear as an excellent candidate for large-scale energy-

efficient neural networks. This high energy-efficient property stems from the choice of a 

resistive yet ion-intercalation-sensitive channel material TiO2. Furthermore, with a 10 nm 

TiO2, the intercalation process of Li ion happens at a fast pace without the solid-state 

diffusion limit. This has an important effect for SynTs because the conductance modulation 

can be stimulated by fast gate voltage pulses. This important phenomenon will be 

discussed thoroughly in the following section. 

 

3.4 Electrochemical characterizations 

 

In the specific context of electrochemical synaptic transistors, there is a correlation 

between conductance modulation and the various ion exchange reactions taking place in 

the electrodes’ bulk and at the interfaces with the solid electrolyte [56]. In the following, 

the study of a vertical LixTiO2/LiPON/Li structure has been carried out in an effort to 

investigate the channel LixTiO2 electrochemical reactions and the relative uncorrelated 

effects on our SynT electrical response. 

 

Figure III. 19: a) Schematic view of Ti/LixTiO2/LiPON/Li vertical structure during GCPL charge 

process. b) Comparison of 1st and 10th cycle upon GCPL (The cell is charged to 3.0 V and 

discharged to 0.5 V with the current density of ±2.6 μA/cm2). 
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The vertical structures (Figure III. 19.a) showed an average OCV around 1.5 V after 

fabrication, thus substantiating a diffusion of Li+ ions into TiO2 during LiPON deposition 

[47], [57], [58]. A first charge (delithiation) capacity corresponding to an initial Li0.32TiO2 

stoichiometry (Figure III. 19.b) corroborated this fact. Furthermore, the following discharge 

(lithiation) exhibited an unexpected potential profile (1 V plateau) and a high (Li1.3TiO2) 

capacity; both characteristics have been already reported [44], [45] and attributed to an 

activation process [59]. Subsequent cycling curves have consistent features, revealing the 

highly reversible ion (de)intercalation reactions. 

 

Figure III. 20: a) Voltammogram comparison of SynTs and vertical test structure. b) Discharge 

curve of the half-cell showing the cell potential drops from 3 V to 2.5 V when Li metal facing Li 

depleted TiO2 (Li0TiO2). 

 

Figure III. 20.a presents results of cyclic voltammetry analysis that has been carried 

out in order to compare the TiO2 response upon ion (de)intercalation in two configurations: 

lithium excess (vertical structure) and deficiency (SynT). Li+ ions can be intercalated into 

TiO2 with the consecutive reduction of Ti(IV) to Ti(III) redox centers, given as:  

𝑇𝑖𝑂2 + 𝑥𝐿𝑖+ + 𝑥𝑒−  ↔  𝐿𝑖𝑥𝑇𝑖𝑂2 Eq.6 

with 0 ≤ 𝑥 ≤ 1. In a lithium excess configuration, TiO2 films show broad anodic and 

cathodic peaks (at 1.88 and 1.66 V respectively) corresponding to Li+ ion intercalation. 

However, in a lithium deficiency configuration, anodic and cathodic peaks reside at -0.5 

and 0.8 V respectively. The peak shift of around 2.5 V corresponds to the difference of top 

electrodes (Li metal and Ti metal). We notice from our experiments that there is an oxide 

film formed on the interface between Ti top metal and LiPON. Thus, the potential difference 

is now between Li and TiO2, which is illustrated in Figure III. 20.b. These redox peaks of 

SynT exhibit lower current densities due to insufficient ion quantity for a complete 

(de)intercalation reaction (xavailable = 0.32). Notwithstanding, the potential window of the 

redox peaks corresponds to the largest variation of electronic conductance, highlighting 

the correlation between both phenomena (See Figure III. 21). From the voltammogram of 
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the gate stack, we can see that the shortage of Li supply led to the wide shape of oxidation 

and reduction peaks, and the Li intercalation process will become capacitive instead. As a 

result, one may observe a slow change of SD conductance at the end of voltage sweeps. 

 

Figure III. 21: SynT channel conductance modulation (blue curve) and gate current response (red 

curve) as functions of the sweeping of gate voltage.  

 

To further investigate the Li+ ion (de)intercalation kinetics, additional CV 

experiments of vertical structures were performed at varying scan rates (Figure III. 22). 

Cyclic voltammetry was performed on a cell with an electrode area of 0.375 cm2. The cell’s 

potential was linearly swept from 0.5 V to 3.0 V vs. Li electrode at increasing speed from 1 

mV/s to 1 V/s with 10 cycles for each rate. The current response at each scan rate is 

illustrated in Figure III. 22.a. The recorded current density increases with the increase of 

scan rate due to the reduction of diffusion layer thickness.  

A closer examination of the CV scan rate dependence allows discriminating 

quantitatively the contributions of diffusion and surface controlled processes to the current 

response. At a fixed potential V, the current measured has a linear relation with the scan 

rate 𝑖(𝑣) ∝ 𝑣 → 𝑖(𝑣) =  𝑘1𝑣1 for a capacitive process. In a Faradaic process, the relation of 

current and scan rate can be deduced from Cottrell equation: 𝑖(𝑣) ∝ 𝑣1/2  → 𝑖(𝑣) =  𝑘2𝑣1/2. 

Then, the current measured by CV can be decomposed as the following equation [28]: 

 𝑖(𝑣) = 𝑘1𝑣 + 𝑘2𝑣1/2 Eq.7 

 

where 𝑖, 𝑣, 𝑘 denote the current measured, the scan rate applied and the process coefficient 

respectively. If we divide the Eq.7 by 𝑣1/2, we will obtain: 

 𝑖(𝑣)

𝑣1/2
= 𝑘1𝑣1/2 + 𝑘2 

 

Eq.8 
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Figure III. 22: a) Cyclic voltammetry of TiO2/LiPON/Li half-cell at increasing scan rates from 1 to 

1000 mV/s. b) CV study at 10 mV/s and the calculated pseudocapacitive current contribution. c) 

Logarithmic relationship between cathodic peak current (Li+ insertion) and scan rates between 1 

mV/s and 1 V/s. 

 

Hence, using Eq.8, we can fit the 𝑘1 and 𝑘2 coefficients as the slope and y-intercept 

from the data of measured current at different scan rates. These coefficients represent the 

contribution of Faradaic and non-Faradaic currents. 

Interestingly, pseudocapacitive contribution dominates, overwhelmingly, the stored 

charge in TiO2 over the entire potential window at scan rates between 10 mV/s and 1 V/s 

(51% and 90%, respectively). Consequently, a higher SynT performance is expected using 

such channel material insofar as diffusion-controlled processes are completely inefficient 

in these conditions.  

The reaction kinetics is resolved by examining the variation of peak current (𝑖𝑝) with 

scan rate (𝑣) using the power-law relationship [60]:  

 𝑖𝑝 = 𝑎𝑣𝑏   Eq.9 
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where the b-value of 0.5 indicates a diffusion-controlled process and the value of 1 

suggests a surface-controlled or diffusion-irrelevant capacitive behavior.  

Figure III. 22.c presents a plot of log (i) versus log (v) for the redox peaks of TiO2. It 

is shown that the material exhibits fast surface driven intercalation (b = 0.99) up to 50 mV/s 

and remains the predominant contribution (b = 0.8) up to 1 V/s, which is consistent with 

the extrinsic pseudocapacitive intercalation in amorphous TiO2 [44], [45], [61], [62]. In the 

literature, a mixed intercalation process was reported for this system. Ye et al. suggested 

that the separation of b values for amorphous TiO2 is due to deeper sites in bulk being 

inaccessible for Li+ ion intercalation on higher scan rates, thus decreasing the gravimetric 

current response with the increase of the thicknesses [45]. 

To test the effect of cycling on the contribution of the LiPON layer, we performed 

EIS before and after the CV cycling. The EIS plots remain unchanged over 100 cycles (Figure 

III. 23), proving consistency with a major and stable ion conductor contribution (ion 

conductivity 𝜎𝐿𝑖𝑃𝑂𝑁 = 0.5 𝜇𝑆/cm, characteristic frequency 𝑓𝑐𝐿𝑖𝑃𝑂𝑁 = 38 𝑘𝐻𝑧).  

 

 

Figure III. 23: EIS spectra (at V = 1.2 V) before and after 100 CV cycles.  

 

The specific capacity and Coulombic Efficiency (CE) per cycle are shown in Figure III. 

24. CE is the ratio of total charge extracted out of active material to the total charge 

inserted into the active material over a cycle. Here we demonstrated a high rate capability 

of TiO2 electrode with a capacity fading less than 50% for a 100 times current rate increase. 

As the current density was switched back to the low current rate, the capacity recovered 

its initial value. This recovery of the total capacity indicated that the capacity fading with 

incremental current rate was only related to kinetics limitation, and not material 

degradation or parasitic reactions. This high rate and reversibility were also confirmed by 

approximately 100% CE. These characteristics of TiO2 confirmed a high-quality channel 

material for fast intercalation operations and high endurance. 
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Figure III. 24: Specific capacity and Coulombic efficiency variation with current density and cycle 

number. 

 

The high rate incorporation of Li into amorphous TiO2 is a unique characteristic that 

allows fast conductance modification at the channel of SynT. Figure III. 24 depicts the 

recorded variation of SD conductance and its change of maximum conductance when 

experiencing increasing sweeping rates of VG within the voltage range of VG = [-0.5V, 1.5V]. 

For a full programming cycle (50 states of potentiation and 50 states of depression, in this 

voltage range), the average voltage difference between two adjacent states is calculated 

to be 40 mV. Thus, with such potential gap, the switching time for 50 mV/s sweeping rate 

is 0.8 s. Similarly, we have 4 ms switching operations at 1 V/s, while maintaining the “M-

shaped” conductance modulation with only a 7% decrease of Gmax.  

 

Figure III. 25: The channel conductance modulation under the increasing Gate voltage scan rates 

between 50 mV/s to 1 V/s. 

This observation highlights the beneficial effect of TiO2 pseudo-capacitive behavior 

to alleviate kinetic inhibition in all-solid state configuration. In addition to TiO2, other 

intercalation materials serving as channels (LiCoO2, WO3, etc.) can be engineered to be 

“extrinsic pseudocapacitive” materials by thinning their film thickness to a few nanometers, 

thus significantly reducing the ion diffusion length and making the whole system more 

agile in terms of operation [63]. 
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Overall, the electrochemical study allows us to prove the followings: 

(i) TiO2 was initially lithiated up to 0.32 Li due to the LiPON PVD process,  

(ii) The initial lithiation was reversible,  

(iii) The electronic conductance modulation was correlated to (de)intercalation 

reactions of Li+ ions in TiO2,  

(iv) TiO2 exhibited a pseudocapacitive behavior, with a fast and reversible 

(de)intercalation thus conferring to SynTs high performances in terms of 

response time and endurance [64]. 

 

3.5 Summary 

 

In summary, we report a low energy consumption, all-solid-state electrochemical 

synaptic transistor prepared with wafer-scale microfabrication processes. The devices were 

assembled with an amorphous 10 nm thick TiO2 channel and a LiPON electrolyte in a 

vertical configuration facilitating fast ions doping, nano-Siemens conducting level, and 

femtojoule writing energy. Synaptic plasticity characteristics required for an artificial 

synaptic component are also demonstrated. The stability and endurance of the transistors 

are confirmed by more than 1000 cycles and 105 reversible programming states in ambient 

conditions.  

We proposed a systematic study of the vertical structures, involving several 

electrochemical characterizations. These investigations revealed valuable information on 

the electrochemical reactions which occur: (i) contribution of the channel bulk and its 

interfacial region, (ii) electrolyte contribution, and (iii) the reaction mechanism reversibility. 

Therefore, we can make a clear correlation between electrochemical reactions and the 

performance characteristics of our LixTiO2-based three-terminal devices. The fast operation 

rate stemmed from the rapid Li diffusion into the pseudocapacitive amorphous TiO2 layer, 

while high ionic activities around the potential 1.68 V vs. Li+/Li suggested a highly efficient 

working voltage range. The EIS and rate capability tests further confirmed the TiO2 thin 

film’s resilience under different sweeping rates, thus making it an appropriate channel 

material for SynTs used for online training and high-speed, low-power neuromorphic 

systems. 

In future work, the writing energy can be reduced by shrinking the dimensions of 

the devices. Miniaturization of the area for the gate stack has been reported to be practical 

to reduce the power spent on programming SynTs [10]. Similarly, by thinning the TiO2 

amorphous channel, the electrical conductivity is lower horizontally and faster vertically in 

terms of Li incorporation into ultrathin pseudocapacitive films. However, to assure the 

amount of mobile Li in the system, a stoichiometric LiTiO2 is compulsory. Instead of relying 

on the passive Li diffusion after the PVD LiPON step, we will develop an ALD technique 

that allows depositing lithiated TiO2 film.  
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 CONCLUSIONS 
 

In this chapter, we first presented the materials employed to build the 

electrochemical synaptic transistors, such as LiCoO2 and LixTiO2 channels, and LiPON 

electrolyte. The high-temperature phase LiCoO2 exhibits a six-order of magnitude IMT 

upon Li extraction. LixTiO2 film shows a reversible conductance modulation with the 

modification of Li content. The conductivity modulation of this layer can be accounted by 

the forming of EDL and the anatase-to-titanate phase transition. In addition, the solid-state 

LiPON electrolyte has electrochemical and temperature stability advantages over other 

phase of ionic conductors such as ionic liquid and polymer types, facilitating the 

microfabrication of wafer-scale, BeOL compatible synaptic transistors. 

The preliminary results of SynTs with LiCoO2/LiPON gate stack were presented as a 

proof-of-concept of the wafer-scale elaboration synaptic transistors. The electrochemical 

tests such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) 

on the battery-like structures help identifying the contribution of LiPON electrolyte (ionic 

conductivity and characteristic frequency) and LiCoO2 active material (reaction potentials).  

The important IMT of the HT-LiCoO2 channel was confirmed by measuring the channel 

current while extracting Li ions with a gate voltage of +4.2 V. Upon the re-intercalation of 

ions, the conductance decreased to the initial state at a different slope, creating the typical 

hysteresis of SynTs. A train of pulses allowed to modify the conductance in an analog 

manner for 40 times per cycle, proving the required functions for an artificial synaptic 

device. However, the programming voltage and the channel conductance of this gate stack 

were considerably high. 

Finally, a comprehensive study on SynTs with the LixTiO2/LiPON gate stack was 

conducted with the goal to improve the performance of the previous material composition. 

The cross-section of SynTs was prepared with FIB for SEM/EDS and TEM studies, providing 

useful information on the physical dimensions, presenting elements, and the quasi-

amorphous channel material phase. With electrical tests, the SynT showed good merits of 

an electrochemical artificial synapse, such as fast programming, reversible conductance 

modulation, retention, linearity, endurance, and small device-to-device variation. This 

transistor was highly efficient in terms of energy consumption for both write (fJ/μm2) and 

read (nS) operations. A systematic study using a two-terminal device representing the gate 

stack of SynT was done to decorrelate the electrochemical properties of the LixTiO2 channel 

and its electrical performance.  The test results highlighted the pseudocapacitive behavior 

of the ultra-thin LixTiO2 film; making it an appropriate channel material for SynTs used for 

high-speed, low-power neuromorphic systems. 

In Table 1, we present the materials and switching properties of the electrochemical 

synaptic transistor in this work and other reported SynTs. The purpose of this Table is to 

benchmark synaptic devices following wafer scale integration, and using microfabrication 

techniques and materials that are compatible with CMOS BEOL integration. A graphical 
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comparison among the technologies is presented in Figure III. 26. From this figure, we 

observe that our SynT has certain improvement in terms of performance, especially the 

energy consumption (write and read) aspects. However, the ON/OFF ratio of this device 

definitely require some improvement in the next generation to cover a wider dynamic 

range for different neural network applications. 

 

Table 1: Summary on materials and switching properties of selected works on CMOS compatible, 

all-solid-state SynTs  

 

 

Figure III. 26: Graphical comparison of the reported CMOS-compatible synaptic transistors. 

Conductance
level (nS)

ON/OFF ratio

Write duration
(ns)

Number of states
(#)

Writing energy
(fJ/um2)

Endurance
(Write)

Comparison of CMOS-compatible synaptic transistors 

LiCoO2

WO3

LiCoO2

WO2.7

aNb2O5

WOx/Al2O3

LixTiO2

Channel Electrolyte GSD (nS) 

Write 

duration 

(s) 

Gmax/Gmin 
# 

states 

Prog. 

Energy 

(fJ/μm2) 

Endurance 

(Writes) 
Reference 

LiCoO2 LiPON 290000 2 1.56 200 - >8x103 [9] 

WO3 LiPON 24 100x10-9 40 100 100 >105 [10] 

LiCoO2 Li3POSe 40 1 19 80 - >720 [11] 

WO2.7 Li3PO4 3500 1 6.4 60 1.4x106 >420 [12] 

aNb2O5 LiSiO2 100 0.01 10 100 20 >103 [13] 

WOx/Al2O3 Li3PO4 50 1 2.24 80 - - [15] 

LixTiO2 LiPON 75 0.1 2.6 100 1.6 >105 
This work 

[65] 
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ABSTRACT 
 

 

 

In chapter 4, we will introduce the neural networks that can make use of our 

electrochemical synaptic transistors (SynT), including artificial and spiking neural networks. 

These neural-inspired systems employ SynT in unique ways. 

Section 1 of this chapter is dedicated to giving an overview on the concept of artificial 

neural network (ANN), working algorithms, and the associated hardware development to 

afford the ever-increasing size and complexity of these systems that handle data-intensive 

tasks. Among the approaches, the deep learning accelerators made from emerging 

nonvolatile memory technologies using the concept of in-memory computing raised 

significant interest. The crossbar architecture and its functions are described to highlight the 

need for electronic synaptic devices that can modify its conducting weight in a linear and 

controllable way. We used the CrossSim simulator to simulate, train, and test neural networks 

taking into account realistic, nonlinear features of SynTs on image pattern recognition tasks. 

The simulated results reveal the high performance of our SynTs as artificial synapses for deep 

learning accelerators. 

Section 2 shows the potential applicability of SynTs toward spiking neural networks 

(SNNs) as artificial synapses. A neural network is designed using the simple “leaky integrate-

and-fire” (LIF) neuron model, and our synaptic transistor as one of the synapses. With the 

experimentally verified synaptic plasticity, the SynTs will be an essential part of the training 

process of the circuit. The all-analog neural circuit is simulated using LT-SPICE software to 

demonstrate the associative memory behavior as in Pavlov’s dog experiment. The simulation 

results reveal that the neural circuit can learn to link the stimuli from initially unconnected 

neurons and respond correspondingly, thus proving the applicability of our SynTs to the SNN. 

Conclusions on the applications of SynTs can be found at the end of the chapter. 
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 APPLICABILITY OF SYNTS TO ARTIFICIAL NEURAL 

NETWORKS 
 

1.1 Background 

 

The amount of data estimated to be generated in 2025 is 181 zettabytes, which is 

considered a substantial digital mine for technology development [1], [2]. However, it also 

poses a considerable challenge, requiring exhaustive computing resources to analyze and 

understand thoroughly. Artificial intelligence (AI) has been extensively used in the past 

decade to perform data-intensive tasks. This technology is becoming increasingly 

advanced and widespread in real-world applications, such as computer vision [3], natural 

language recognition [4], healthcare [5], and pattern classification [6]. Advances in AI 

technology have been achieved through the unprecedented success of deep-learning 

algorithms, coming along with the ever-increase sizes and complexities of neural networks 

and tasks [7]. Such developments outplayed the scaling trend of CMOS processors, which 

made the conventional digital computers based on von Neumann computing structures 

less appealing for jobs consisting of machine-learning operations [8]. It has been evaluated 

that, for many computing tasks, the majority of the energy and time is consumed in data 

movement process rather than computation [9]. This has necessitated the development of 

brain-inspired neuromorphic computing based on emerging non-volatile memory that can 

deliver efficient computing [10]–[12]. 

New and emerging non-volatile memory concepts have also been introduced into 

the traditional memory hierarchy to reduce the ‘distance’ between computing and the data 

[13], [14]. Instead of re-engineering conventional systems by individually improving the 

parallelism, memory bandwidth, or memory concept, in-memory computing aims to 

radically subvert the von Neumann architecture by carrying out calculations in situ at 

exactly the data location [15]. This approach is similar to the computing scheme in the 

human brain, where information is processed in sparse networks of neurons and synapses 

without any physical separation between computation and memory. In-memory 

computing offers a clear advantage by lowering the latency and energy burdens of the 

memory wall. 

Emerging hardware constructed on the base of crossbar architecture and emerging 

non-volatile memory elements leads to a significant push in processing speed and energy 

efficiency by carrying out these vector-matrix multiplications in an analog fashion [16], [17]. 

In this section, we focus on the description of the structure and working mechanism of the 

novel hardware systems that allow the acceleration of deep learning algorithms. In this 

aspect, we simulate and train an analog-based ANN employing our SynTs as the artificial 

synapses. 
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1.2 Working principle of an Artificial Neural Network (ANN) 

 

An ANN consists of neurons layers connected by “synaptic” weights. The first 

neuron layer is the input layer whose size is determined by the incoming data of interest: 

image pixels, reduced audio content, encoded words, etc. It is followed by a series of 

hidden layers. whose role is to perform nonlinear transformations of the input values 

entered into the network. If there is more than one hidden layer, an ANN is usually called 

DNN (Deep Neural Network). 

Hidden layers vary depending on the function of the neural network, and similarly, 

the layers may vary depending on their associated weights. The output layer’s size depends 

on the task that the DNN should accomplish, for example, classifying an image into a 

predefined set: a handwritten number or character, a type of flower, etc. There are two 

operation modes of DNN: Training and inference (illustrated in Figure IV. 1). 

 

 

Figure IV. 1: Two operation modes of DNN: Inference and training [18]. 

 

The forward inference is the evaluation of a trained neural network with defined 

weights connection on one or more new vector inputs. The computational tasks involved 

in this process are light. One of the dominant computation tasks in this phase is vector-

matrix multiplication (VMM) (Figure IV. 2). In this task, the input vector from the previous 

layer 𝑥𝑖 must be multiplied by a matrix of weights 𝑤𝑖𝑗 , creating a new vector of neuron 

excitations for the next layer 𝑦𝑗. In another word, this operation can be broken down into 

a series of multiply and accumulate (MAC) operations, followed by a nonlinear squashing 

function 𝑓(𝑥).  
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Figure IV. 2: Illustration of vector-matrix multiply operation during forward inference phase of 

DNN [11]. 

 

Such a nonlinear function is important from a neural network point of view because 

it prevents the forward-evaluate of a multi-layer network from collapsing into a single 

linear equation. Compared to the VMM of the previous step, the squashing function takes 

less computing effort. Typical nonlinear functions used for this purpose are ReLU or logistic 

sigmoid. ReLU is a piece-wise linear function with two segments: one along the x-axis, 

outputting zero for any input sum that is negative; and a second segment along the 

diagonal 𝑓(𝑥)  =  𝑥 directly passing any positive sum as the output. On the other hand, a 

sigmoid function is a mathematical function having a characteristic "S"-shaped curve, 

having the output from zero to one. These functions help to address the problems coming 

from saturating excitations and vanishing gradients.  

In the forward path, the input data is prepared as a vector and fed into the network 

via the input layer, and then it propagates in series until it reaches the end of the network. 

At the output layer, a softmax operation is usually called. Here, each raw excitation 𝑦𝑗 is 

put through an expanding nonlinearity and then normalized by the sum of all such 

intermediate results across the entire output layer. This operation guarantees that the 

produced outputs that fall between zero and one and to sum up to one as well. The output 

is now a probability vector, representing the guesses of the initially trained DNN on an 

example of data input. 
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Figure IV. 3: The reverse propagation step in DNN training involves a VMM between a vector of 

errors (𝛿𝑗) and (the transpose of) the weight matrix (𝑤𝑖𝑗) [11]. 

 

An important step to improving the prediction accuracy of the neural network is 

training. For the training mode, the weights of the neural networks are adjusted using the 

supervised backpropagation algorithm. In this case, the input vector xi is stored, and the 

output vector is compared with the label (expectation) to determine the error vector. The 

calculated vector reversely propagates through the network in a chain of VMMs from the 

end to the beginning (right to left), and the intermediate results are stored. Figure IV. 3 

shows the reverse propagate step, as a vector of errors (δj) is multiplied by the transpose 

of the original weights wij. Instead of operating a nonlinear squashing function, the sum is 

multiplied by the derivative of the squashing function as evaluated at the original 

excitation, xi, to compute the derivative of an ‘energy function’, 𝐸, for the overall DNN as 

a function of each individual weight, wij. Such energy functions can be minimized only 

when the guess of the DNN during inference matches with the data input’s label. 

Backpropagation then allows the DNN to adjust each weight connection to improve the 

prediction accuracy of the network upon the next encounter. Weight update for each 

weight is then the product of the original upstream neuron excitation, xi, and the 

downstream neuron’s error, δj. Typically, this is scaled by a fairly small number, 𝜂, called 

the learning rate. The learning rate has to be chosen so that the learning is not too slow 

with small 𝜂, or the training cannot converge because of too big 𝜂. This process of training 

(inference, errors calculating, and weights updating) is iterated many times until the desired 

error rate is reached.  

During the training phase, the complete dataset is presented to the network many 

times (epochs), which makes training a highly compute-intensive process, especially noting 

that modern datasets can have many millions of entries. In addition, while the forward 

propagation of the input vector and backward propagation of error processes are simple 

VMMs on stationary weights, the update operation manipulates the weights themselves. 
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From a computational complexity point of view, the update operation is much more 

complicated than other propagation operations as the system has to keep track of the 

weights, activations and errors at any time during the training process. Therefore, training 

is considerably heavier on memory requirements. The goal of computer architectures for 

machine learning with DNN is to make these operations as energy efficient as possible. 

 

1.3 From near-memory to in-memory computing 

 

1.3.1 Hardware approaches 

 

To increase compute efficiency for machine learning tasks, there are different 

approaches that are often referred to as “compute-near-memory” [19] and “compute-in-

memory” [20]. In principle, the idea is to perform the processing and the algorithms close 

to where memory resides, thus, minimizing the data shuttling efforts. Compute-near-

memory (CNM) is currently at present the most popular approach in the field and is entirely 

carried out using conventional digital CMOS components and approaches (both inference 

and training of DNN). The common goals of this approach are bringing memory closer to 

the compute engine and deploying reduced precision representation of the digital content. 

A schematic view of CNM can be found in Figure IV. 4. 

From Figure IV. 4, such a CNM structure allocates some small on-chip cache 

memory to each processor unit in order to mitigate the memory bottleneck. However, each 

processor in a GPU still needs to fetch data from the dedicated memory to the compute 

unit, execute the compute operation (such as MAC) and then write back to the local 

memory. Therefore, while the proximity of the memory units to the processors can reduce 

the effect of the Von Neumann bottleneck, the memory wall remains (due to the 

performance gap between the processor and the memory). While dynamic random-access-

memories (DRAMs), with structures of 1-transistor-1-capacitor, can offer high memory 

density, one cannot afford them for MAC operations due to their energetical expense. On 

the other hand, the six-transistor static random access memory (SRAM) on-chip memories 

can provide high bandwidth, high reliability, and offer fast and energy-efficient read/write 

operations. However, the density of SRAM is significantly limited due to its large area 

footprint, hindering its use as an on-chip memory for MAC engines and other applications. 

This is a limitation of the current CMOS-based compute near-memory. 
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Figure IV. 4: Computing near memory structure [21]. 

 

In another approach, compute-in-memory (CIM) paradigm aims at reducing data 

movement completely by using a crossbar architecture and non-volatile memory 

components to accomplish the MAC operation in an analog fashion (Figure IV. 5). Within 

a CIM chip, there exists computational, on-chip compatible memory and compute units. 

The CIM cores contain the crossbar memory array combined with the peripheral circuitry 

(Analog-to-Digital converter – ADC, and control/communications digital circuitry). The tiles 

of CIM cores and the digital compute unit communicate (digitally) via a data bus. I/O 

circuitry provides the means to communicate off-chip. This approach can significantly 

increase parallelism and reduce data transport to and from off-chip memory. Memory 

elements storing the weights in one-bit or multi-bit capacity (digital memories) or analog 

values along a continuous scale between a high and low conductance value (emerging 

analog memories) are arranged at the nodes of a crossbar array of metal interconnects. 

We will mainly discuss the latter in this thesis. Here, the VMM operation during inference 

is carried out in an analog fashion using Kirchhoff’s and Ohm’s laws (which will be discussed 

in detail in the next section). This mode of operation also enables incremental changes of 

all the array elements in parallel at constant times, thus increasing the computing efficiency 

for inference and training of DNNs.  
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Figure IV. 5: Computing in memory structure [21]. 

 

In the next section, we will discuss how the emerging non-volatile memories can be 

implemented into crossbar architecture to accelerate the VMM operations.   

 

1.3.2 The crossbar architecture as an analog in-memory accelerator 

 

The vector-matrix multiplication operation, which dominates most DNN workloads, 

can now be executed in-situ with massive parallelism and order-of-magnitude energy 

reduction using crossbar architecture. Recall that during the inference phase and the 

training phase of a DNN, it is always involved in the propagation (forward/backward) of 

the neuron excitation vector or error vector. Figure IV. 6 illustrates such a concept in three 

forms: neural network, mathematical, and electrical representations. The propagation of 

excitation values 𝑋𝑖 from Layer N to layer N+1 via weighted connection 𝑊𝑖,𝑗 can be viewed 

as a multiplication of the vector 𝑋⃗ and the matrix 𝑾: 𝑋⃗𝑾. Here, the vector Xi is transposed 

for the presentation purpose. Such mathematical expression can be reproduced by a 

crossbar array composed of analog electronics (artificial synapses) at the cross points.  
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Figure IV. 6: Vector-matrix multiplication illustrated in a) neural network, b) mathematical, and 

c) electrical representations. 

 

These synapses with conductance levels 𝐺i,j  are set proportional to the value of the 

matrix 𝑾, and a vector of input voltages 𝑉⃗⃗, which is proportional to 𝑋⃗, is applied to the 

rows as read voltages. An analog multiplication is computed at each cell following the 

Ohm’s law in which the current flowing out through the synapse is the product of its 

conductance 𝐺𝑖,𝑗  and the applied voltage 𝑉𝑖 . Along the columns, the accumulated current 

𝐼𝑗 will have the form of the dot product dictated by Kirchhoff’s law. The analog dot products 

are then quantized using an analog-to-digital converter. The converted dot product can 

now be processed (by squashing with a nonlinear function or being multiplied with the 

derivative of the squashing function evaluated at the squashing function) and transmitted 

digitally to the next layer of the neural network. 

During the training of DNN, another important operation accelerated using a 

crossbar array is parallel writing for the weight update. This operation is realized based on 

the rank one outer product update of the write duration and write amplitude (Figure IV. 7). 

Weight 𝑊𝑖𝑗 is updated by 𝑥𝑖 × 𝑦𝑖. In order to achieve a multiplicative effect, the 𝑥𝑖 are 

encoded in time while the 𝑦𝑖 are encoded in the height of a voltage pulse. The resistive 
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memory will only train when 𝑥𝑖 is nonzero. The height of 𝑦𝑖 determines the strength of 

training when 𝑥𝑖  is nonzero. 

 

Figure IV. 7: Illustration of parallel weight update during training. 

 

Such an analog approach for VMM has two fundamental advantages for energy 

efficiency: (i) A multi-bit multiplication is conducted with a single device, and summations 

of the current are simplified hardware-wise (just wire crossings), and (ii) the weight matrix 

does not need to be read out; only the inputs and outputs need to be communicated 

between processing cores. This dramatically reduces data movement energy. There exists 

several open-source simulation simulator package developed to simulate and benchmark 

analog-based deep learning (DL) accelerators taking into account the experimental 

characteristics of the artificial synapses in the literature, namely NeuroSim [22], AIHWKIT 

[23], and CrossSim [16]. In my thesis, CrossSim platform has been mainly used and it will 

be briefly described in the next part before introducing the simulation results of analog 

crossbar arrays made from SynTs. 

 

1.4 CrossSim crossbar simulator 

 

CrossSim, developed by Sandia National Laboratories, is a platform that provides a 

clean python application programming interface (API) allowing for the application of 

different algorithms built upon resistive memory crossbars while modeling realistic 

characteristics of devices [24]–[26].  

Within the CIM model, a crossbar-based neural core can be used to perform the 

parallel vector matrix multiply and outer product update, while a more general purpose 
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digital core can be used to process the inputs and outputs of the crossbar (Figure IV. 8.a). 

The flexibility of the digital cores allow many different algorithms to be implemented, while 

still taking advantage of the neural cores to accelerate VMM operations. The digital cores 

can also use digital on-chip resistive memory instruction caches to store slowly changing 

data while reserving expensive SRAM caches only for the data being processed. The neural 

core consisting of a resistive memory crossbar and peripheral circuits (Digital-Analog 

converter, Analog-Digital converter, and op-amps) is illustrated in Figure IV. 8.b. The inputs 

are processed in digital domain and fed into the crossbar using DACs. Here, a bias row and 

column are added to the crossbar to allow for negative weights to mimic the inhibitory 

influence of neurons [27]. The rows and columns are driven by either variable length or 

variable height of potential pulses. The output currents are integrated and then converted 

to digital using an ADC. 

 

Figure IV. 8: a) Illustration of a neural architecture used for CrossSim simulation comprising of 

Digital cores dealing with inputs and outputs processing and Neuron cores for VMM acceleration. 

b) Illustration of a neuron core [24]. 

 

During inference, input vectors are converted to variable length pulses proportional 

to the magnitude of each element of the input vector. The resulting current is integrated 

at the output op-amps. This allows analog input vectors to be encoded and multiplied by 

the analog resistance values. The inputs along the rows come from a previous layer of 

sigmoid neurons which have outputs in a 0 to 1 range. The column current outputs feed 

into a sigmoid slope of 1. During backpropagation, the crossbar is updated by the outer 

product of two vectors. The columns are driven by output of the previous layers’ neurons. 

This means the output will be in a 0 to 1 range. The rows will be driven by the product of 

the learning rate, 𝜂, the derivative of a sigmoid, and a backpropagated error. The simulator 

was designed considering this neuron model, but the generalized API can also be used 

with specialized hardware neurons.  
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1.5 Simulation of ANN with SynTs as synaptic elements 

 

In the following, our objective is to simulate, using the CrossSim platform, an ANN 

built with realistic SynTs, then test such ANN for pattern recognition tasks, and benchmark 

its performance among several available technologies.  

To do so, a three-layer neural network with one hidden layer is used, as shown in 

Figure IV. 9. In the neural core, the synaptic memory cell in the crossbar architecture 

comprises a SynT and a two-terminal access device. In fact, access devices (or selectors) 

are connected to the gate of the synaptic devices to increase the high OFF impedance of 

the gate stack after writing operations, thus, isolating the smallest potential perturbations 

from the gate to the channel and guaranteeing the long-term retention and programming 

accuracy required for DNN training. In addition, these selectors allow precisely parallel 

updating weights in large-scale systems [28]–[31]. Such a simulation of the access devices 

is to facilitate the benchmark afterward among other technologies using the same 

CrossSim platform as well.  

 

Figure IV. 9: a) Simulated three-layered ANN with one hidden layer. b) Crossbar array 

representation where SynTs serve as synaptic elements. 

 

Here, each layer of the network was mapped onto a simulated crossbar, which carry 

out two main operations: vector matrix multiplication and parallel outer product weight 

update. The parallel weight updates are realized by varying both the length of the update 

on the rows and the voltage amplitude of the update on the columns with the assumption 

that the weight (conductance) change is linearly dependent on the amplitude and the 

duration of writing pulses. Concerning system and algorithm parameters, the neuron’s 

nonlinear function is the Sigmoid function with a slope of 1 and a learning rate of  𝜂 = 0.1. 

The conductance range of the cross-point memories and their initial weights are initialized 

by default following the scheme reported in [25]. 
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To simulate a crossbar system with realistic synaptic devices, we simulate the 

nonlinearity and the write noise associated with the SynT operation (Figure IV. 10). We first 

start with a 100 cycles of conductance modulation from our SynT. The modulation profile 

exhibits the range from 25.8 to 73 nS with a clear saw-tooth shape for all the cycles 

considered. The step conductance 𝛥𝐺 from an initial conductance 𝐺0 due to a write 

operation at each level is calculated by 𝛥𝐺(𝐺0) = 𝐺 − 𝐺0 (see insets). We then condense 

the cycling results into 𝛥𝐺 versus 𝐺0 plots to analyze the write noise of the device. 

The illustrations of the conductance step as a function of initial conductance show 

the characteristic nonlinearity of an electrochemical device. The step conductance 𝛥𝐺 is 

proportional to the amount of ions injected/extracted per pulse, thus depending on the 

operation gate-source potential (recall the IGVG graph of a SynT – Figure III. 20). During 

potentiation, conductance levels at around 50 –  60 nS corresponding to the insertion 

potential of Li+ ions into the channel, explaining the high values of 𝛥𝐺 compare to the 

other regions of the scan. The same trend is observed for the depression graph at around 

60 nS.  

 

Figure IV. 10: a) 100 conductance modulation cycles are used as input to simulate the artificial 

synapses. The insets show the first cycle and a conductance step, respectively. b) and c): The 

probability function calculated for potentiation (b) and depression (c) operations. 
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The probability distribution function of the variable 𝛥𝐺 over conductance 𝐺 induced 

during potentiation or depression programming operations are also plotted (Figure IV. 

10.b, c). From these statistical plots, this SynT device exhibits an average standard deviation 

of 𝜎 = 0.46 ± 0.002 nS and 0.52 ± 0.002 nS for potentiation and depression, respectively. 

By sampling from the probability distribution during weight updates to the crossbar, the 

device noise, nonlinearity, and asymmetry are taken into account. In order to find the 

update, first we determine the initial state of the device 𝐺0, then we find the average weight 

update at 𝐺0 and sample a noise value from the probability distribution at that level in 

Figure IV. 10.b, c. For instance, if 𝐺0 = 60 nS, the mean update is 1.6 nS. Sampling from the 

probability distribution at that 𝐺0 position, we might obtain an update of 2 nS, giving a 

noise of 0.46  nS added to the mean update. Note that the write accuracy of the device is 

calculated to be (∆𝐺/𝜎)2 > 12, which is higher than that observed on ReRAMs [11] and 

PCMs [32] ((∆𝐺/𝜎)2 < 1), which limits their application on ANN.  

With the experimentally derived updates, we can now simulate how the ANN with 

SynTs as synaptic elements performs on different pattern recognition tasks using 

supervised backpropagation algorithm. The datasets and the associated networks’ size can 

be found in Table 1. 

Table 1: The information of the datasets and networks used for the simulation. 

Dataset Training examples Test examples Network size 

UCI Small images 

(8x8 pixels) 
3823 1797 64x36x10 

MNIST large images 

(28x28 pixels) 
60000 10000 784x300x10 

 

The training and testing results of our SynT device are compared to an identical 

network constructed with ideal floating-point numeric precision, which represents the limit 

of neuromorphic algorithm and provides an important benchmark for the system.  

For recognizing small, handwritten digits, the training accuracy of SynT reaches 

nearly the ideal numerical limit of 95.5% after 20 training epochs (Figure IV. 11.a). For the 

large digit dataset (Figure IV. 11.b), excellent accuracy is also obtained, reaching 95% 

compared to the ideal network of 98%. The decrease of recognition accuracy stems from 

the intrinsic operational nonlinearity of SynTs. However, with a low average write-noise 

level less than 1 nS, SynT performance on this pattern recognition test is relatively high 

compared to other available solutions.  
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Figure IV. 11: Accuracy of the MNIST data recognition tests of a) small digits b) large digits. 

 

A comparison based on the accuracy of the same recognition tests of different 

synaptic devices in the literatures can be found in Figure IV. 12. The devices are named 

based on their channel materials, namely α-MoO3 [33], PTIIG [34], SrFeO [35], IGZO [36], 

PEDOT:PSS/PEI [37], LiCoO2 [25]. From the results, we can clearly see that SynT 

performance is among the highest accuracy values of recently reported using the same 

simulation platform. Therefore, our CMOS-BEOL-compatible LixTiO2-based SynTs, which 

exhibit flexible synaptic plasticity at low energy consumption, are demonstrated to be 

excellent artificial synapses for ANN application. 

 

Figure IV. 12: Benchmarking SynT among the available synaptic transistors on the same image 

recognition tasks on the CrossSim platform. 
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 APPLICABILITY OF SYNTS TO SPIKING NEURON 

NETWORKS 
 

2.1 Background and objective 

 

In the first part of chapter IV, the excellence of ANN in solving data-intensive, 

realistic problems such as image recognition, has been highlighted. The huge interest in 

this topic over the past decade elevates the neural network from a laboratory-level 

demonstration to a powerful tool for real world applications.  

Nevertheless, the pursuit of greater accuracy in these networks have induced an 

unsustainable rate in the energy and processing demands for both training and 

deployment. Recently, there is a temptation to look for new approaches to build neural 

networks that are able to emulate biorealistic neuromorphic and cognitive properties of 

the brain, so called spiking neuron networks (SNNs). The SNN employs the concepts of 

spiking events: the information is encoded in the timing or frequency of the spikes. Many 

models have been proposed to account for the dynamics of a neuron. The leaky integrate-

and-fire (LIF) model [38]–[40], which may be the simplest and most well-known one, is 

illustrated in Figure IV. 13. Action potentials (V1, V2, V3) from pre-neurons (travelling 

through axons) arrive at the synapses connecting a post-neuron, and are converted into 

currents which depend on the corresponding synaptic weights (w1, w2, w3) [41].  The sum 

of these currents (current I) progressively increases (“integrates”) the membrane potential 

Vmem of a post-neuron (represented by a capacitance C). Since the membrane is not ideal, 

some leakage exists, represented by a resistance R. When Vmem reaches a constant 

threshold Vth, the post-neuron emits (“firing behavior”) an output spike (Vspike), and the 

potential of Cmem is reset through a switch. 

In the following, our main goal is to show the potential applicability of our SynTs to 

SNNs, by demonstrating the associative memory of a simple spiking neural network. To 

this end, we propose the design and the simulation (using a freeware circuit simulator “LT-

SPICE”) of an all-analog electronic circuit, composed of a LIF neuron and synapses, which 

reproduces very well the training of Pavlov’s Dog (classical conditioning). Such a simple 

neural network, which involves the synaptic plasticity of our SynT, works in a “hardware” 

way, without any interface with software control machine. This interesting feature may give 

insights towards future embedded applications. 
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Figure IV. 13: a) A biological neuron with interconnecting synapses b) Representative LIF model 

for a biological neural network: at synaptic connections, the action potentials (V1, V2, V3) are 

converted into currents which depend on the synaptic weights (w1, w2, w3).  The sum of these 

currents (current I) increases Vmem, until a threshold voltage (Vth) is reached. An output voltage 

spike (Vspike) is emitted and Vmem is reset through a switch. Extracted and modified from REF 

[41]. 

 

2.2 Pavlovian conditioning experiment 

 

By getting a static shock when touching doorknobs several times in the winter, our 

brain is “trained” to stop touching these metal objects in dry ambience. This relates to the 

associative memory that we have, which dictates the ability to correlate different memories 

to the facts or events after a learning process [42]. This behavior has also been observed in 

many other animals. In 1897, Ivan Pavlov published his findings in associative learning (or 

classical/Pavlovian conditioning) on dogs [43]. The illustration of the experiment can be 

found in Figure IV. 14. There are four steps involved in the conditioning:  

(I), (II) Before conditioning, salivation of the dog's mouth is set by the sight of food 

(unconditioned stimulus - US), and the dog does not salivate upon hearing the 

sound of the bell (neutral stimulus – NS).  
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(III) Then, during the conditioning period in which the sight of food is accompanied 

by a bell sound over a certain period, the dog learns gradually to associate/link the 

sound to the food.  

(IV) After conditioning, the bell sound alone can trigger its salivation (conditioned 

stimulus – CS) without the intervention of vision. 

 

 

Figure IV. 14: Illustration of different steps in the Pavlov’s dog experiment. Adapted from [44]. 

 

2.3 Electronic versions of Pavlov’s dog in literature 

 

This behavior has been intensively reproduced in artificial neural networks as a first 

important step in obtaining functionalities that resemble those of the human brain [45]–

[49]. Pavlov’s dog experiment can be modeled by a neural network circuit comprising two 

synapses and a neuron (Figure IV. 15). Here, the sight of food (US) and the sound of a bell 

(CS or NS), outputs of previous independent neurons, are modeled by electrical pulses sent 

to synapse 1 and 2 respectively. If the circuit is subjected to both input US and NS events, 

then after a sufficient number of occurrences, the output neuron starts to “salivate” upon 

the reception of CS only. 
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Figure IV. 15: Simple neural network model for Pavlov's dog experiment. Adapted from [45]. 

 

Electronic circuits which emulate the Pavlov Dog behavior have been reported 

previously in the literature. The Pavlovian conditioning was demonstrated mainly with two-

terminal memristors: the proposed circuits include operational amplifiers [50]–[52], 

computing devices [53], or microcontrollers [45]. 

Associative learning was also demonstrated with three-terminal synaptic transistors 

[46]. Such configuration allows separating the read step from the write step. This 

characteristic yields several advantages. Specifically, the shape of the pulses applied during 

the write step can be conveniently chosen quite independently from the read pulses. The 

proposed circuit involves a computer interface to run the associative learning scheme. 

Hereafter, the goal of our simulation task is to demonstrate the associative memory 

behavior, by using simple analog electronic elements, including our SynT with its 

experimental synaptic plasticity. Concerning the electronic neuron, we take advantage of 

a simple leaky integrate and fire (LIF) neuron circuit published recently [54], [55]. 

 

 

2.4 Design of an associative memory which involves our SynT 

 

2.4.1 Neuron circuit model involving 1 synapse (resistor) 

 

Toward the electronic implementation of the artificial neural network, we employ a 

LIF neuron model designed with analog components [54]. The circuit of the ultra-compact 

(UC) neuron and its simulated electronic response with a resistor as synapse, is illustrated 

in Figure IV. 16. 

The neuron circuit is subdivided into two parts: “leaky integrate-and-fire” and “axon 

signal transmission” by the analogy to that of a biological neuron schematically drawn on 

the top panel. This analog LIF neuron circuit functions based on the I-V characteristic of 
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the silicon controlled rectifier (SCR) electronic component (marked as U1 in the diagram). 

The key feature of the SCR is that it has a diode-like behavior with threshold and hysteresis 

that can be controlled by the SCR gate.  

 

 

Figure IV. 16: a) Illustration of Leaky integrate-and-fire neuron model circuit and b) its electrical 

response to pre-spikes. 

 

The leaky integrate feature is implemented by a RC pair (C1, R1, and R2). The 

capacitor acts as a membrane potential (VMembrane), integrating the charge of incoming 

current spikes, which may leak out through the resistor (R = R1 + R2) during the time 

intervals between spikes. The key fire feature of the neuron is realized by the SCR’s voltage 

threshold, which is set by its anode-cathode tension and is tuned by the gate through the 

resistors R1 and R2. When the voltage threshold is attained, the SCR switches to the on-
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state, and the capacitor quickly discharges through the small RS, generating a spike of 

current. The SCR remains in the on-state until the current decreases to the holding current 

value (Ihold) of the SCR, when the capacitor is almost fully discharged (then the SCR switches 

back to the off-state). In order for the spike to be able to drive a downstream neuron, the 

strength of the signal needs to be reinforced. As shown in Figure IV. 16.a, this is 

implemented by a pair of MOS transistors that play the role of the axon. Thus, the UC 

neuron is implemented with just one SCR and two transistors, plus one “membrane” 

capacitor and a few resistors. 

Figure IV. 16.b shows an example of electrical response of an UC neuron circuit to 

which a synapse is connected (10M, corresponding to a 100nS conductance). Here, we 

employ components with values C1 = 50 μF, R1 = 50 kΩ, R2 = 200 kΩ, RS = 3 kΩ, Ra1 = 

200 kΩ, and Ra2 = 5 kΩ to model the leaky integrate and then fire features upon the 

reception of a train of potential pre-spikes from the previous layer of neurons.  

From the figure, the pre-spikes of voltage (5Volts) yield current spikes (I) which (after 

being amplified by a factor K ~ 1000) increase gradually the membrane potential 

VMembrane up to the threshold voltage before emitting an output spike and discharging the 

accumulated potential. 

 

2.4.2 Neuron circuit model involving 2 synapses (resistors) 

 

In the following proposed circuit, the signals of “food sight” (VFOOD, connected to 

synapse 1) and “bell sound” (VBELL, connected to synapse 2) neurons are simulated by 

voltage sources which provide voltage spikes (5V amplitude and 100ms duration). 

Two synapses (synapse1: 10M and synapse2: 30M) are connected to the LIF 

neuron circuit, through a “current mirror” stage, which allows to sum up (and amplify: gain 

25x35) the currents which flow through the two synapses. We selected the values (capacitor 

C1 = 50 nF and resistors R1 = 10 kΩ, R2 = 200 kΩ, RS = 3 kΩ, Ra1 = Ra2 = 5 kΩ), so that 

one input spike coming from synapse1 allows one output spike, and so that synapse2 

cannot yield any output spike. Figure IV. 19.b illustrates the obtained behavior. 
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Figure IV. 17: a) Circuit with two synapses (resistors of 10 MΩ and 30 MΩ) in red, and the LIF 

neuron circuit in green b) Simulation results of the evolution of the VOUT voltage, as a function of 

VFOOD and VBELL. 

 

In the following, a circuit detecting the simultaneity of VFOOD and VBELL will be added 

to the present circuit, and synapse2 will be replaced by a model corresponding to the SynT 

behavior. 

 

2.4.3 Neuron circuit model involving 2 synapses: 1 resistor and 1 SynT 

 

The whole circuit is illustrated in Figure IV. 18 below. For Synapse1, we still use a 

resistor (10 MΩ). On the other hand, our SynT, with its synaptic plasticity, is adapted to 

become synapse2. 
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Figure IV. 18: Schematic of the whole circuit: when VFOOD and VBELL arrive simultaneously to the 

AND component, the latter delivers a 5V voltage output, which is converted to a (in the nA range) 

current arriving at the gate of synapse2 (SynT): this results in a gradual increase of the SynT 

conductance. 

 

Both sources (VFOOD and VBELL) are connected to an AND logic component: when 

they arrive simultaneously to the AND component, the latter delivers a 5V output voltage, 

which is converted to a current (through an interface circuit). This current is injected into 

the gate of the SynT (synapse2) which allows the SynT conductance to increase gradually 

(during the conditioning period). 

 

2.4.3.1 Interface to the SynT gate 

 

Figure IV. 19 illustrates the function of this circuit. The pulses from A1 will turn on 

the Mg3 transistor, allowing a reference current to flow through the resistor Rint. By 

controlling the resistance value of Rint, the desired bias current for SynT programming can 

be tuned. A current mirror (Mg1 and Mg2 pair of pmos transistors) will “copy” such a 

current, which is then sent to the synaptic transistor gate.  
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Figure IV. 19: Interface proposed to inject current to the SynT gate (current controlled mode). 

 

2.4.3.2 Electrical model of the SynT device 

 

We model our SynT behavior with a combination of three components (Figure 

IV.19): a small capacitor (CsynT = 1 nF) can be charged up by the incoming spikes, to 

simulate the behavior of SynT gate stack. This capacitance is estimated based on the 

measured capacitance of a MIM structure [56], taking into account the active area and the 

thickness of the transistor’s gate stack. Besides, A resistor with a high value (RsynT = 10 

GΩ) is used to mimic the high leakage resistance of the gate stack (an estimation of RsynT 

value awaits to be obtained in the future). Finally, we use a transistor U2 in which the 

current IDS can be controlled by the gate voltage VG to model the conductance evolution: 

from the experimental measurement of the channel conductance as a function of gate 

voltage (Figure IV. 20.b), we fit the IDS of the component U2 with a linear function as follows: 

         𝐼𝐷𝑆 = 𝐺𝐷𝑆 × 𝑉𝐷𝑆              with            𝐺𝐷𝑆 = 𝐺𝐿𝑜𝑤 +
(𝐺𝐻𝑖𝑔ℎ−𝐺𝐿𝑜𝑤)

1.5𝑉
× 𝑉𝐶 Eq.1 

 

Figure IV. 20: a) Synaptic transistor compact model. b) Implementing the measured conductance 

as a function of the gate voltage. 
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The response of the synaptic transistor model to a train of current pulses is 

simulated in Figure IV. 21. Current pulses (IG) of around 0.7 nA and 100 ms duration are 

injected into the gate (equivalent to 70 pC charge per pulse: this is approximately 

equivalent to the actual charge needed to switch experimentally between adjacent states 

of the electrochemical synaptic transistors). This leads to a gradual increase of the gate 

potential VG (blue curve), thus to an increase of the GSD conductance, and to an increasing 

magnitude of the current spikes IDS (green curve) flowing across the SynT channel. 

 

Figure IV. 21: Simulation of the SynT response (Top) The writing current pulses. (Middle) The 

increase of gate potential (simulated by the potential across CSynT). (Bottom) The channel current 

IDS of SynT. 

 

Such evolution of GSD will contribute to the associative memory behavior that will 

be simulated in the next step. 

Note that we tried to program the synaptic transistor with potential pulses instead 

of current pulses. However, with voltage programming, the VCsynT increased rapidly with a 

few first pulses. Thus, the conductance increase was quite nonlinear and not appropriate 

for the associative learning application. 

 

2.5 Circuit simulation of the associative memory with SynT characteristics 

 

With the components described above, we reproduce Pavlov’s dog experiment with 

our neural network circuit.  In the first step, applying “food sight” stimuli triggers the 

“salivation”, whereas the “bell sound” stimuli do not induce any effect (step II). Electronically 

speaking, the output neuron fires because the currents through synapse 1 are high enough 

to get the neuron potential over the threshold (due to the resistance R1 = 10 MΩ, which 
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corresponds to a 100 nS conductance) while the current pulses sent to the neuron via 

synapse2 are too low (the initial conductance of the SynT is only 30 nS). 

 

 

Figure IV. 22: Simulation of the development of the associative memory, with a neural network 

circuit composed of SynT as a synaptic element. 

 

In the learning phase (step III), stimulus voltages are sent simultaneously to both 

synapses. As a direct result of “food sight,” the “salivation” neuron fires correspondingly. 

At the same time, the overlap between two sources of stimulus pulses facilitates the 

potentiation of the synaptic transistor via a train of current pulses. Thus, conductance of 

synapse 2 increases gradually: an association between “food sight” and “bell sound” signals 

develops progressively. 

Finally, in step IV, a train of signals of “bell sound” only is applied to the neuron: 

salivation still occurs, thereby proving the associative learning ability of the circuit. 

We may mention that during the training of the circuit, the conductance of the 

SynTs could only increase (with positive current pulses). The realistic high leakage 

resistance guarantees the programmed states to be nonvolatile. In this consideration, the 

circuit can only demonstrate the most important feature, which is associative learning and 

not the extinction phase, in which the dog gradually forgets about the link between “bell 

sound” and “food sight”. 
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With this circuit design featuring SynTs, we implemented efficiently an associative 

memory embedded network, which could be beneficial to real-world applications such as 

healthcare [57], [58], or other robotic sensing and reasoning by linking the realistic stimuli 

detected from sensory systems [59].  
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 CONCLUSIONS 
 

 

In this chapter, we investigated the use cases of the first generation of SynTs for 

different types of neural networks. First, we covered the working principle of the artificial 

neural network and then the related hardware engineering approaches to improve further 

the efficiency of the deep learning algorithms. The synaptic transistors could be used to 

construct computing-in-memory hardware to accelerate the dominant workload vector-

matrix multiplication operations of deep neural networks. Their long-term plasticity could 

be employed to implement the weight matrix of the network, while the ability to switch 

the analog states independently by using the gate electrode can be helpful for the training 

phase of these systems. 

Simulation of crossbar arrays with SynTs as cross-point memory devices was 

realized using the CrossSim simulator platform. With the experimental results from 100 

conductance modulation cycles, the simulator could take into account the realistic 

nonlinearity of the SynT and benchmark its performance on handwritten datasets. Even 

though the switching nonlinearity of SynT can be observed on its probability distribution 

function graph of ∆𝐺 = 𝑓(𝐺0) due to the high activity of ion intercalation or extraction at 

around 1 V, its pattern recognition accuracy on given tasks remains high compared to 

other technologies employing the same simulation platform.  

At the current stage, the access devices are mandatory for the parallel weight 

update operations of SynT crossbars. However, it would be beneficial from the energy and 

integration point of view if we could elaborate selector-free SynT arrays, which can be 

programmed in parallel (by stochastic update scheme for example). These SynTs can be 

integrated at BEOL, on top of other front-end-of-line circuit components (integrators and 

ADCs), which would be a major advantage in implementing area- and power-efficient 

neuromorphic processors. The approaches toward selector-free SynTs in the next 

generation will be proposed in the following chapter. 

Our SynT was also used to demonstrate a bio-plausible learning rule – associative 

memory with an all-analog spiking neural network circuit. In this simulation using LT-SPICE, 

we proposed a design of a neural network consisting of two synapses, including a resistor 

and a compact model of SynT, and a leaky integrate-and-fire neuron. The training phase 

of Pavlov’s dog experiment under the synchronous stimuli from “food sight” and “bell 

sound” was simulated by the potentiation process of the SynT. A train of current spikes of 

0.7 nA was used to increase the current flowing through SynT’s channel gradually. After 

the current is high enough to saturate the membrane potential in the neural, the circuit 

was successfully trained to react to “bell sound” stimuli by firing potential spikes out of the 

neuron. With the two preliminary examples, we showed that the SynTs can be employed 

in both types of neural networks. 



165 

 

 REFERENCES 
 

[1] “Volume of data/information created, captured, copied, and consumed worldwide from 

2010 to 2020, with forecasts from 2021 to 2025.” 

https://www.statista.com/statistics/871513/worldwide-data-created/ (accessed May 10, 

2022). 

[2] D. Reinsel, J. Gantz, and J. Rydning, “The Digitization of the World from Edge to Core,” p. 

28, 2018. 

[3] S. Tulyakov et al., “Time Lens: Event-based Video Frame Interpolation,” in 2021 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, Jun. 

2021, pp. 16150–16159. doi: 10.1109/CVPR46437.2021.01589. 

[4] J. Gu et al., “Recent advances in convolutional neural networks,” Pattern Recognition, vol. 

77, pp. 354–377, May 2018, doi: 10.1016/j.patcog.2017.10.013. 

[5] A. Rajkomar et al., “Scalable and accurate deep learning with electronic health records,” npj 

Digital Med, vol. 1, no. 1, p. 18, Dec. 2018, doi: 10.1038/s41746-018-0029-1. 

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 

Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90. 

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–

444, May 2015, doi: 10.1038/nature14539. 

[8] J. Dean, “1.1 The Deep Learning Revolution and Its Implications for Computer Architecture 

and Chip Design,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC), San 

Francisco, CA, USA, Feb. 2020, pp. 8–14. doi: 10.1109/ISSCC19947.2020.9063049. 

[9] I. S. Choi and Y.-S. Kee, “Energy Efficient Scale-In Clusters with In-Storage Processing for 

Big-Data Analytics,” in Proceedings of the 2015 International Symposium on Memory 

Systems, Washington DC DC USA, Oct. 2015, pp. 265–273. doi: 10.1145/2818950.2818983. 

[10] H.-S. P. Wong and S. Salahuddin, “Memory leads the way to better computing,” Nature 

Nanotech, vol. 10, no. 3, pp. 191–194, Mar. 2015, doi: 10.1038/nnano.2015.29. 

[11] H. Tsai, S. Ambrogio, P. Narayanan, R. M. Shelby, and G. W. Burr, “Recent progress in analog 

memory-based accelerators for deep learning,” J. Phys. D: Appl. Phys., vol. 51, no. 28, p. 

283001, Jul. 2018, doi: 10.1088/1361-6463/aac8a5. 

[12] S. Dai et al., “Recent Advances in Transistor‐Based Artificial Synapses,” Adv. Funct. Mater., 

vol. 29, no. 42, p. 1903700, Oct. 2019, doi: 10.1002/adfm.201903700. 

[13] H. Han, H. Yu, H. Wei, J. Gong, and W. Xu, “Recent Progress in Three‐Terminal Artificial 

Synapses: From Device to System,” Small, vol. 15, no. 32, p. 1900695, Aug. 2019, doi: 

10.1002/smll.201900695. 

[14] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive switching devices,” Nat 

Electron, vol. 1, no. 6, pp. 333–343, Jun. 2018, doi: 10.1038/s41928-018-0092-2. 

[15] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Memory devices and 

applications for in-memory computing,” Nat. Nanotechnol., vol. 15, no. 7, pp. 529–544, Jul. 

2020, doi: 10.1038/s41565-020-0655-z. 

[16] S. Agarwal et al., “Resistive memory device requirements for a neural algorithm 

accelerator,” in 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, 

BC, Canada, Jul. 2016, pp. 929–938. doi: 10.1109/IJCNN.2016.7727298. 



166 

 

[17] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network training using 

analogue memory,” Nature, vol. 558, no. 7708, pp. 60–67, Jun. 2018, doi: 10.1038/s41586-

018-0180-5. 

[18] “Inference: The Next Step in GPU-Accelerated Deep Learning.” 

https://developer.nvidia.com/blog/inference-next-step-gpu-accelerated-deep-learning/ 

(accessed May 10, 2022). 

[19] G. Singh et al., “A Review of Near-Memory Computing Architectures: Opportunities and 

Challenges,” in 2018 21st Euromicro Conference on Digital System Design (DSD), Prague, 

Aug. 2018, pp. 608–617. doi: 10.1109/DSD.2018.00106. 

[20] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-Memory Chips for Deep Learning: 

Recent Trends and Prospects,” IEEE Circuits Syst. Mag., vol. 21, no. 3, pp. 31–56, 2021, doi: 

10.1109/MCAS.2021.3092533. 

[21] W. Haensch et al., “A Co-design view of Compute in-Memory with Non- Volatile Elements 

for Neural Networks,” p. 56. 

[22] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+NeuroSim: An End-to-End 

Benchmarking Framework for Compute-in-Memory Accelerators with Versatile Device 

Technologies,” in 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, 

CA, USA, Dec. 2019, p. 32.5.1-32.5.4. doi: 10.1109/IEDM19573.2019.8993491. 

[23] M. J. Rasch et al., “A Flexible and Fast PyTorch Toolkit for Simulating Training and Inference 

on Analog Crossbar Arrays,” in 2021 IEEE 3rd International Conference on Artificial 

Intelligence Circuits and Systems (AICAS), Washington DC, DC, USA, Jun. 2021, pp. 1–4. doi: 

10.1109/AICAS51828.2021.9458494. 

[24] S. Agarwal et al., “Energy Scaling Advantages of Resistive Memory Crossbar Based 

Computation and Its Application to Sparse Coding,” Front. Neurosci., vol. 9, Jan. 2016, doi: 

10.3389/fnins.2015.00484. 

[25] E. J. Fuller et al., “Li‐Ion Synaptic Transistor for Low Power Analog Computing,” Adv. Mater., 

vol. 29, no. 4, p. 1604310, Jan. 2017, doi: 10.1002/adma.201604310. 

[26] “CrossSim: Crossbar Simulator.” https://cross-sim.sandia.gov/ (accessed Jan. 10, 2020). 

[27] P. Narayanan et al., “Toward on-chip acceleration of the backpropagation algorithm using 

nonvolatile memory,” IBM J. Res. & Dev., vol. 61, no. 4/5, p. 11:1-11:11, Jul. 2017, doi: 

10.1147/JRD.2017.2716579. 

[28] G. W. Burr et al., “Access devices for 3D crosspoint memory,” Journal of Vacuum Science & 

Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, 

and Phenomena, vol. 32, no. 4, p. 040802, Jul. 2014, doi: 10.1116/1.4889999. 

[29] Y. Li et al., “Low-Voltage, CMOS-Free Synaptic Memory Based on Li  X  TiO 2 Redox 

Transistors,” ACS Appl. Mater. Interfaces, vol. 11, no. 42, pp. 38982–38992, Oct. 2019, doi: 

10.1021/acsami.9b14338. 

[30] E. J. Fuller et al., “Parallel programming of an ionic floating-gate memory array for scalable 

neuromorphic computing,” p. 6, 2019, doi: 10.1126/science.aaw5581. 

[31] T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M. J. Marinella, “Analog architectures 

for neural network acceleration based on non-volatile memory,” Applied Physics Reviews, 

vol. 7, no. 3, p. 031301, Sep. 2020, doi: 10.1063/1.5143815. 

[32] P. Hosseini, A. Sebastian, N. Papandreou, C. D. Wright, and H. Bhaskaran, “Accumulation-

Based Computing Using Phase-Change Memories With FET Access Devices,” IEEE Electron 

Device Lett., vol. 36, no. 9, pp. 975–977, Sep. 2015, doi: 10.1109/LED.2015.2457243. 



167 

 

[33] C. Yang et al., “All‐Solid‐State Synaptic Transistor with Ultralow Conductance for 

Neuromorphic Computing,” Adv. Funct. Mater., vol. 28, no. 42, p. 1804170, Oct. 2018, doi: 

10.1002/adfm.201804170. 

[34] D.-G. Seo et al., “Versatile neuromorphic electronics by modulating synaptic decay of single 

organic synaptic transistor: From artificial neural networks to neuro-prosthetics,” Nano 

Energy, vol. 65, p. 104035, Nov. 2019, doi: 10.1016/j.nanoen.2019.104035. 

[35] P. Shi et al., “Solid-state electrolyte gated synaptic transistor based on SrFeO2.5 film 

channel,” Materials & Design, vol. 210, p. 110022, Nov. 2021, doi: 

10.1016/j.matdes.2021.110022. 

[36] Y. He et al., “IGZO-based floating-gate synaptic transistors for neuromorphic computing,” 

J. Phys. D: Appl. Phys., vol. 53, no. 21, p. 215106, May 2020, doi: 10.1088/1361-6463/ab7bb4. 

[37] Y. van de Burgt et al., “A non-volatile organic electrochemical device as a low-voltage 

artificial synapse for neuromorphic computing,” Nature Mater, vol. 16, no. 4, pp. 414–418, 

Apr. 2017, doi: 10.1038/nmat4856. 

[38] P. Stoliar et al., “A Leaky-Integrate-and-Fire Neuron Analog Realized with a Mott Insulator,” 

Adv. Funct. Mater., vol. 27, no. 11, p. 1604740, Mar. 2017, doi: 10.1002/adfm.201604740. 

[39] H. Lim et al., “Reliability of neuronal information conveyed by unreliable neuristor-based 

leaky integrate-and-fire neurons: a model study,” Sci Rep, vol. 5, no. 1, p. 9776, Sep. 2015, 

doi: 10.1038/srep09776. 

[40] H. Huang et al., “Quasi‐Hodgkin–Huxley Neurons with Leaky Integrate‐and‐Fire Functions 

Physically Realized with Memristive Devices,” Adv. Mater., vol. 31, no. 3, p. 1803849, Jan. 

2019, doi: 10.1002/adma.201803849. 

[41] S. Dutta, V. Kumar, A. Shukla, N. R. Mohapatra, and U. Ganguly, “Leaky Integrate and Fire 

Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET,” Sci Rep, vol. 7, no. 1, p. 

8257, Dec. 2017, doi: 10.1038/s41598-017-07418-y. 

[42] M. J. Kahana, “Associative symmetry and memory theory,” Memory & Cognition, vol. 30, no. 

6, pp. 823–840, Sep. 2002, doi: 10.3758/BF03195769. 

[43] R. E. Clark, “The classical origins of Pavlov’s conditioning,” Integr. psych. behav., vol. 39, no. 

4, pp. 279–294, Oct. 2004, doi: 10.1007/BF02734167. 

[44] M. Kumar, S. Abbas, J.-H. Lee, and J. Kim, “Controllable digital resistive switching for artificial 

synapses and pavlovian learning algorithm,” Nanoscale, vol. 11, no. 33, pp. 15596–15604, 

2019, doi: 10.1039/C9NR02027F. 

[45] Y. V. Pershin and M. Di Ventra, “Experimental demonstration of associative memory with 

memristive neural networks,” Neural Networks, vol. 23, no. 7, pp. 881–886, Sep. 2010, doi: 

10.1016/j.neunet.2010.05.001. 

[46] O. Bichler et al., “Pavlov’s Dog Associative Learning Demonstrated on Synaptic-Like Organic 

Transistors,” Neural Computation, vol. 25, no. 2, pp. 549–566, Feb. 2013, doi: 

10.1162/NECO_a_00377. 

[47] A. Cisternas Ferri, A. Rapoport, P. I. Fierens, G. A. Patterson, E. Miranda, and J. Suñé, “On the 

Application of a Diffusive Memristor Compact Model to Neuromorphic Circuits,” Materials, 

vol. 12, no. 14, p. 2260, Jul. 2019, doi: 10.3390/ma12142260. 

[48] K. Moon et al., “Hardware implementation of associative memory characteristics with 

analogue-type resistive-switching device,” Nanotechnology, vol. 25, no. 49, p. 495204, Dec. 

2014, doi: 10.1088/0957-4484/25/49/495204. 

[49] S. G. Hu et al., “Synaptic long-term potentiation realized in Pavlov’s dog model based on a 

NiO x -based memristor,” Journal of Applied Physics, vol. 116, no. 21, p. 214502, Dec. 2014, 

doi: 10.1063/1.4902515. 



168 

 

[50] M. Ziegler et al., “An Electronic Version of Pavlov’s Dog,” Adv. Funct. Mater., vol. 22, no. 13, 

pp. 2744–2749, Jul. 2012, doi: 10.1002/adfm.201200244. 

[51] L. Wang, H. Li, S. Duan, T. Huang, and H. Wang, “Pavlov associative memory in a memristive 

neural network and its circuit implementation,” Neurocomputing, vol. 171, pp. 23–29, Jan. 

2016, doi: 10.1016/j.neucom.2015.05.078. 

[52] S. Du, Q. Deng, Q. Hong, and C. Wang, “A memristor-based circuit design of pavlov 

associative memory with secondary conditional reflex and its application,” 

Neurocomputing, vol. 463, pp. 341–354, Nov. 2021, doi: 10.1016/j.neucom.2021.08.045. 

[53] C. Sun, C. Wang, and C. Xu, “A full-function memristive pavlov associative memory circuit 

with inter-stimulus interval effect,” Neurocomputing, vol. 506, pp. 68–83, Sep. 2022, doi: 

10.1016/j.neucom.2022.07.044. 

[54] M. J. Rozenberg, O. Schneegans, and P. Stoliar, “An ultra-compact leaky-integrate-and-fire 

model for building spiking neural networks,” Sci Rep, vol. 9, no. 1, p. 11123, Dec. 2019, doi: 

10.1038/s41598-019-47348-5. 

[55] P. Stoliar, O. Schneegans, and M. J. Rozenberg, “Biologically Relevant Dynamical Behaviors 

Realized in an Ultra-Compact Neuron Model,” Front. Neurosci., vol. 14, p. 421, May 2020, 

doi: 10.3389/fnins.2020.00421. 

[56] V. Sallaz, S. Oukassi, F. Voiron, R. Salot, and D. Berardan, “Assessing the potential of LiPON-

based electrical double layer microsupercapacitors for on-chip power storage,” Journal of 

Power Sources, vol. 451, p. 227786, Mar. 2020, doi: 10.1016/j.jpowsour.2020.227786. 

[57] M. Aldape-Pérez, A. Alarcón-Paredes, C. Yáñez-Márquez, I. López-Yáñez, and O. Camacho-

Nieto, “An Associative Memory Approach to Healthcare Monitoring and Decision Making,” 

Sensors, vol. 18, no. 8, p. 2690, Aug. 2018, doi: 10.3390/s18082690. 

[58] J. Wu, P. Huang, C. Lin, and C. Li, “Blood leakage detection during dialysis therapy based 

on fog computing with array photocell sensors and heteroassociative memory model,” 

Healthcare Technology Letters, vol. 5, no. 1, pp. 38–44, Feb. 2018, doi: 

10.1049/htl.2017.0091. 

[59] M. Hampo et al., “Associative Memory in Spiking Neural Network Form Implemented on 

Neuromorphic Hardware,” in International Conference on Neuromorphic Systems 2020, Oak 

Ridge TN USA, Jul. 2020, pp. 1–8. doi: 10.1145/3407197.3407602. 

 

 



169 

 

 

 

CHAPTER V 

 

 

 

OPTIMIZATION TOWARDS A SECOND 

GENERATION OF SYNAPTIC TRANSISTORS  



170 

 

ABSTRACT 
 

 

 

In chapter 5, we will discuss the means to improve the performance of SynTs in the 

next generations using material engineering and device design approaches.  

Section 1 of this chapter is dedicated to giving an overview of different metrics of the 

first generation (gen1) of SynTs and seek for improvement in various areas, especially the 

switching time, dynamic range, and endurance for neural network applications. To better 

build the next generation, we need to focus on searching for constituting materials exhibiting 

desired characteristics such as high ionic transport activity, low electronic conductance for 

electrolyte materials, and significant conductivity change upon Li intercalation for channel 

materials. The proposed functionalities can be obtained by elemental doping, phase 

engineering, or thickness downscaling. On the other hand, device design further optimizes 

the performance merits on top of the material properties. Some of the methods include 

shortening the migration pathway of ions by vertically stacking and maximizing area overlay. 

A passivation layer that protects the Li-based devices from environmental factors can 

enhance the retention and endurance of new SynTs.   

Section 2 of the chapter describes some of the efforts that we have already initiated 

to advance the figures of merits in the second generation (gen2) SynTs. First, we show the 

new design of a set of masks with different test structures, which allows us to study the 

transistors systematically with the design parameters and the electrochemical properties of 

the gate stack. In this design, the transistors have channel gaps varying from 200 nm to 1.5 

μm. In addition, we have started the study of ultrathin films of LiPON (prepared by atomic 

layer deposition – ALD) and LiNbO3 (prepared by pulsed laser deposition – PLD) as the 

electrolyte and channel layers, respectively. The preliminary results reveal the potential of 

these materials for synaptic transistor applications. The optimization work for these exercises 

remains to be done. Some conclusions in this aspect will be drawn in the last section.  
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 IDEAS TO IMPROVE THE PERFORMANCE OF SYNTS 
 

1.1 General considerations 

 

In my thesis, the first functional generation of the electrochemical synaptic 

transistor, the gen1 SynT, has been developed. While excellent synaptic functionalities have 

been demonstrated on these devices, such as ultralow operation power, linearity analog 

switching, good write endurance, etc., they still inherit the common characteristics of 

electrochemical systems, namely sluggish ionic kinetics, limited state retention, and small 

dynamic range with the modest amount of available ions. For these reasons, the goals of 

this chapter are to reconsider two main approaches: materials engineering and device 

design to boost the performance of the gen2 SynTs (see Figure V. 1). 

 

 

Figure V. 1: The estimated improvement of performance metrics for the second generation SynT 

compared to that of the first generation.  

 

It is noteworthy that some figures of merits are heavily correlated in the sense that 

the improvement of one metric may result in the diminution of another one. For example, 

while thinning down the channel layer can reduce the write time and energy, it has a 

counter effect on the endurance property of the film under ionic intercalation reactions. 

Therefore, the essential work is to consider the influence of different solutions on the 

device’s performance and then find an optimized trade-off among them. 
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1.2 Materials engineering 

 

A wide range of materials can be used to construct electrochemical transistors 

whose functionalities are directly dictated by the redox reactions, e.g., organic, polymer, 

two-dimensional (2D), and metal-oxide materials. Polymer and organic materials certainly 

have limitations regarding on-chip integration and operation. Therefore, to align ourselves 

with the roadmap of the neuromorphic chip industry, we will narrow our search to metal 

oxide materials, which are more adapted to the current CMOS technologies. 

 

1.2.1 Channel materials 

 

The channel layer is one of the critical blocks of SynTs, which governs the 

performance of the devices in the areas of switching rate, linearity, dynamic range, and the 

number of states. For this reason, the materials have to be carefully chosen with the 

suggested properties: 

(i) Exhibiting insulator-metal-transition induced by redox reactions. This phenomenon 

is often related to a structural phase transition. Many Li-based materials such as 

LixWO3 [1], LiCoO2 [2], LiNbOx [3] are demonstrated to have 3 – 5 orders of 

magnitude change in terms of resistivity upon controllable ionic intercalation, which 

are promising for multiple-state, high dynamic range transistors. A sufficiently high 

dynamic range is desired for the operation of the crosspoint memory to 

accommodate multiple states while tolerating write noise. For power consumption 

purposes, the conductance range should reside within nS to μS.  

(ii) Illustrating high ionic diffusivity. This has two consequences, the first of which allows 

ions to be rapidly doped “vertically” into the channel via the electrolyte layer via 

gate pulses. Thus, the accumulation of ions at the interface, which results in an 

asymmetric change of the channel conductance, can be avoided. Secondly, the high 

ionic activity of the active material facilitates the horizontal redistribution of doped 

ions inside the channel matrix, which will significantly reduce the time required for 

state rest-and-read duration after writing pulses. 

(iii) Displaying a nonlinear (ideally exponential) conductance modulation response to 

the gate sweep. Such characteristics will allow us to integrate these SynTs into 

crossbars in a selector-free manner. The gate terminals in the same row may also 

be directly connected to each other and used for update operations without cross-

talk. By applying voltage pulses with opposite polarities at matching gate lines and 

columns using the half-voltage selection scheme, parallel and sequential 

programming are facilitated with minimal disturbance at the unselected device 

using the half-select update scheme [4]. 
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With the given suggestions, ultrathin crystalline-phase channel materials are more 

favorable than the amorphous phase with demonstrated phase transitions. Furthermore, 

the redox reactions of crystalline phase intercalation materials are triggered at a specific 

value of gate potential, which means below that potential, the ionic exchange is negligible. 

Knowing that the conductance change is proportional to the intercalation charge, 

crystalline materials support point (iii). On point (ii), the crystalline materials can be 

engineered to have a sub-10nm thickness, which activates the extrinsic pseudocapacitive 

behaviors and allows fast ion intercalation time by reducing the diffusion length [5]–[8]. 

However, significant decreases (to below 5 nm) would increase the effects of the 

electrode/electrolyte interface, requiring tighter control of parasitic interfacial chemical 

and electrochemical reactions to avoid detrimental device performance. Therefore, in the 

next generations, we need to employ 5 – 10 nm channel layers made of prelithiated 

materials (Li stoichiometry is intrinsic to deposition process) such as LixWO3, LiCoO2, and 

LiNbOx. 

 

 

Figure V. 2: The choice of channel materials can affect a) The dynamic range and number of 

conductance states, b) The switching rate including writing and resting time, and c) The potential 

to obtain selector-less SynTs. 

 

1.2.2 Electrolyte materials 

 

The solid electrolyte layer is responsible for the conduction of mobile ions to (or 

from) the channel and not electrons. For this reason, it is desirable for this layer to have a 

good ionic conductivity and a high electronic resistivity. While high ionic conductivity of 
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electrolytes can contribute directly to the write time and energy, high electronic resistivity 

allows SynTs to maintain the programmed states with minimal leakage current. 

There are different methods to obtain better ionic conductivity in solid-state 

electrolytes. First, we can dope the metal oxide electrolyte and generate extrinsic mobile 

Li ions so that the activation is determined by the migration energy alone (i.e., EA = Em) [9]. 

The ionic conductivity is related to the activation energy by the equation: 

 𝜎(𝑇)  =  𝐴. 𝑒𝑥𝑝[−𝐸𝑎/(𝑘𝑇)] (1) 

where T is temperature, A is a pre-exponential factor, Ea is the activation energy, and k is 

the Boltzmann constant.  

Thus, by decreasing the activation energy, we increase the ionic conductivity of the layer. 

Furthermore, elemental doping can cause disordered Li-ion sublattice that provides more 

Li interstitial sites for easy Li ion migration [9]. With determined conductivity, a common 

method to obtain better ionic conductance is to scale down the layer’s thickness. The ionic 

conductance is calculated following the equation Gion = (σ×S)/d, where Gion is the ionic 

conductance, d is electrolyte thickness, and S is the device area. With this equation, the 

ionic conductance of an electrolyte layer will increase linearly with the decrease in 

thickness. This miniaturization is accelerated by the development of advanced deposition 

techniques, such as pulsed laser deposition (PLD) and atomic layer deposition (ALD), 

allowing the deposition of ultrathin electrolytes with a thickness less than 20 nm. 

 

 

Figure V. 3: The electrolyte can have direct impacts on a) Write duration with their ionic 

conductance and b) State retention with their electronic resistance.  
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However, we cannot thin down the layer too much, due to constraints from 

electronic conductivity, which also has a linear dependence on the thickness of the layer, 

and the mechanical and electrochemical stability. A wide stability window allows SynTs to 

be operated in a wide range of gate voltage, duration, or in current-controlled mode 

(voltage is blindly applied). Therefore, a study to optimize the thickness of the electrolyte 

that can maintain the integrity of the layer while maximizing the ionic activity is remained 

to be done. 

 

 

1.3 Device design 

 

Apart from the intrinsic properties of the gate-stack materials, there are several 

performance merits of SynTs that can be improved from the device design point of view, 

for example, switching rate and energy, operation voltage, endurance, and retention. 

 

1.3.1 Thin-film stacking and overlay 

 

Thin-film sandwiching is an effective method to decrease the migration path of the 

ions vertically to/from the channel, which directly affects the write speed. Indeed, by 

designing SynTs with different thin-film layers, the migration and diffusion length required 

for the ions are in the order of the film thicknesses (~nm), which is normally several orders 

of magnitude higher than that of the coplanar devices, which is limited by the lithography 

techniques (~μm). Another point on the design that can help to improve the switching rate 

is to maximizing the overlaying area of the gate electrode and the channel gap. A device 

with this configuration allows faster measurement of the conductance change by reducing 

the time required for the ions to diffuse horizontally within the channel matrix 

(corresponding to the rest time after each write pulse). Otherwise, in the designs where the 

gate area covers partly the channel gap, the application of write voltage induces ionic 

intercalation locally on a part of the channel, which requires a period for the ions or holes 

propagate to the other part before stable states could be measured.  

 

1.3.2 Dimension scaling 

 

Device downscaling is referred to as a key solution to improve the performance of 

the electrochemical transistors in terms of energy and time efficiency. As previously 

mentioned, the thickness of the active channel and the electrolyte can be thinned down to 

facilitate fast ion migration and diffusion. On the other hand, scaling down the device area 
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(the vertically overlapped area between the gate electrode and the channel) can help to 

decrease the energy consumed per write operation. Indeed, the charge involved in the 

conductance switching (∆Q) has been shown to scale approximately with the volume of 

the active material channel in SynTs [10]–[12]. For this reason, an energy gain of two orders 

is achievable for write operations by reducing the gate area to less than 1 μm2 and the 

channel thickness to 5 – 10 nm. The gap between the source and drain electrode is also 

worth downscaling to 200 – 500 nm as it would allow the measurement of highly insulating 

channel materials under the effect of ionic intercalation. Nevertheless, the process to open 

a 200 nm gap could be time-consuming to realize with common photolithography. 

 

1.3.3 Gate stack design 

 

From the first generation of SynT, we observe that the working voltage range 

depends heavily on the potential difference between the gate and the channel electrodes. 

Such a potential difference comes from the Li stoichiometry of the gate stack. In the next 

steps of SynT development, we suggest creating a symmetrical gate stack by adding a 

reservoir layer of the same material family as the channel between the electrolyte and the 

gate electrode. This layer is first beneficial to reduce the initial potential difference of the 

cell, thus, reducing the energy spent for each writing operation. Furthermore, this film may 

allow us to introduce a supplementary amount of mobile ions to the system, which 

potentially affects the linearity and the total number of programmable states of the 

channel [12]. However, it is apparent that introducing another layer to the process flow 

requires considerable effort in terms of integration. 

Another technological brick that we did not spend time developing in the first 

functional devices is the passivation step. Passivation or encapsulation is usually a shielding 

layer made of metal oxide or polymer passivation placed at the end of the process to the 

device from environmental factors such as temperature, humidity, and air exposure [13]–

[15]. This step is considered to be critical for some technologies, especially those that 

involve air-sensitive Li ions and Li-based compounds [16]–[18]. For the gen1 SynTs, the lack 

of passivation led to the degradation of the LiPON electrolyte and Li ion oxidation upon 

air contact. With a new protecting layer, gen2 SynTs will potentially improve their state 

retention and endurance. 

 

1.4 Summary on the approaches 

 

In general, different figures of merit could be enhanced using mainly two 

approaches: materials engineering by tuning the thickness and specific associated 

properties and device design with extra layers and structure (see Figure V. 4). The 
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suggestions on different levels can be used as a guideline to study and develop next 

generations of SynTs.  

 

 

Figure V. 4: Suggestions on the properties of the thin films and the structure of the next SynTs. 
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 CURRENT WORK TOWARDS A SECOND GENERATION OF 

SYNTS 
 

We have initiated several works towards a new generation of SynT (gen2). These 

works include the design of a new set of masks with multiple transistors and test structures, 

and efforts from the lithography side to realize a 200 nm channel gap. In addition, we have 

conducted some material developments to this purpose. A brief summary of these 

exercises will be included in this section.  

 

2.1 New design 

 

We have designed and fabricated a set of 9” chrome masks (Figure V. 5.a) with five 

main layers: bottom electrodes, active channel, electrolyte, top electrode, and passivation 

layer. Following the guideline in the previous section, the new SynTs are designed to have 

small gate areas (varying with A = 100 to 400 μm2) and maximized gate and channel 

overlap (marked as (1) in Figure V. 5.a). A closer view of a SynT is shown in Figure V. 5.b. 

The new SynTs come in variable dimensions (device area and channel gap), which allow us 

to study the correlation between transistor size and performance merits statistically. An 

encapsulation layer is designed to cover sufficiently the region of interest near the gate 

stack. Such a passivation does not require additional redistribution layer of metal, reducing 

the lithography steps to finalize the functional devices. Besides, in each die, we also place 

different test structures, such as one-gate-multiple-channel transistors (2) and battery-like 

structure (3). In general, these devices allow us to elucidate the electrical contribution from 

the channel geometry (length and width) and the electrochemical properties of the 

electrolyte. 

One of the interesting features of the gen2 SynT is that they might have a much 

smaller channel gap (smallest designed L = 200 nm) compared to the gen1, which could 

be defined by photolithography with an ASML ASM300 DUV (deep ultra-violet) stepper. In 

the first attempts, we were able to realize bottom electrodes with open gaps from 300 nm 

to 5 μm, which are sufficiently good compared to the reported SynTs. Even though the 

lithography of the gaps of 200 nm is theoretically possible, etching and opening the gaps 

completely without metal residues require extra engineering efforts (see Figure V. 6). 
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Figure V. 5: a) A die containing different test structures: SynTs (1), (2), and battery-like structures 

(3). b) A zoom into a SynT device. 

 

 

Figure V. 6: a) SEM observation of bottom electrodes belonging to a SynT device with the channel 

gap of 200 nm after patterning (inset: schematic illustration of the cross-section at the dashed 

line). b) FIB/SEM observation with the focus on the gap of the electrodes. The red rectangle 

highlight the Ti residue after etching indicating a failure to open this device. (TEOS - Tetraethyl 

orthosilicate and Pt films were coated to observe the gap) 
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2.2 Materials 

 

In parallel with lithography flow development, we have been seeking new materials 

that are compatible with our current process and have interesting ionic and electronic 

properties. The first one we need to mention is the ultrathin LiPON with a thickness of 

around 20 nm, which has been deposited by ALD with LiHMDS and DEPA precursors using 

Picosun R200. A TEM observation of a MIM stack composed of TiN/LiPON 20nm/Ti is 

shown in Figure V. 7.a. With the electrochemical impedance spectroscopy (EIS) 

measurement performed on the MIM structure, we can confirm the ionic conductivity is σ 

= 0.6 μS/cm (Figure V. 7.b), similar to that of sputtering LiPON. Such an ultrathin layer of 

electrolyte will enhance the write speed with its high ionic conductance 10 times compared 

to the gen1 SynT. However, more work needs to be done to master the deposition process 

and optimize the ionic properties of the ALD LiPON.  

 

 

Figure V. 7: a) TEM observation of a MIM structure composed of TiN/LiPON 20nm/Ti with the 

LiPON film deposited by ALD. b) The EIS measurement on the MIM structure indicates the ionic 

conductivity of the ALD LiPON to be σ = 0.6 μS/cm.  

 

Apart from the LiPON electrolyte, we have initiated the study of ultrathin lithium 

niobium oxide (LiNbO3) film prepared by PLD as an active material for the synaptic 

transistor. In the literature, the Li-Nb-O material family is reported to have conducting, 

semiconducting, and insulating properties across a wide resistivity and bandgap range, 

depending on the oxidation state of Nb (from metal Nb to LiNbO3 insulator) [3]. The goal 

of the exercise is to induce the reduction of Nb with Li ions and make use of the IMT of 
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the channel material. In the first experiments, we successfully integrated the LiNbO3 layer 

as a channel into the current process flow. The patterning step was realized using plasma 

etching, similar to that previously developed etching recipe of LixTiO2. We were able to 

characterize the SynT gate stack (LiNbO3 10 nm/LiPON 200 nm) using the battery-like test 

structure (see Figure V. 8). The CV performed on such test devices allowed us to locate the 

redox peak potentials (at 2.0, 2.2 V for oxidation and 1.4, 1.85 V for reduction). By 

integrating the current density over the time in the first Li extraction, we obtain the specific 

charge capacity extracted from the pristine active layer to be ∆QLiNbO3 = 0.87 μAh/cm2. This 

initial amount of charge is twice higher than of LixTiO2 layer in the gen1 SynTs (∆QLixTiO2 = 

0.42 μAh/cm2). The first successful electrochemical characterizations of the battery-like 

structures verify the functionality of the ionic activity within the gate stack. Nevertheless, 

we did not observe any controllable conductance modulation using the transistor 

configuration. We hypothesize that the conductance of LiNbO3 with the oxidation state of 

5 is too low, leading to undetectable change of channel current. Therefore, more work will 

be done to optimize the devices material-wise. 

 

 

Figure V. 8: Preliminary study of LiNbO3 as an active channel material. a) The battery-like test 

structure composed of Ti/LiNbO3/LiPON/Ti. b) The voltammogram of the test device confirms the 

functionality of the gate stack. 
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 CONCLUSIONS 
 

 

In this chapter, we suggested a few ideas to improve the performance of the new 

generation of SynTs based on our first generation. We may consider two main approaches 

at the device level: material engineering and device design. While the former focus on 

selecting and optimizing the ionic/electronic conductivity of the constituting films, the 

latter aims attention to improving the arrangement of different layers to boost the device 

performance on top of the intrinsic material properties of the gate stack. To summarize, 

the switching rate and linearity of the electrochemical transistors depend on the ionic 

transport activity of the electrolyte and active channel, which can be enhanced by 

minimizing the migration path of the ions. The dynamic range and the total number of 

conductance states depend heavily on the amount of available mobile ions, the IMT, and 

the charge capacity of the channel material. A passivation layer could improve the 

endurance and retention merits of SynT. Even though downscaling dimensions could be 

viewed as a general trend to advance the new SynTs, we have to study and quantify the 

inter-correlation effect among the merits and find a reasonable trade-off. 

In the second part of the chapter, we covered some of the optimization work and 

experiments for the gen2 SynTs, including new mask design, process optimization, and 

new materials research. The new set of masks consists of multiple SynTs with different 

parameters, allowing us to systematically study the performance of SynTs with different 

device parameters, such as gate area and channel gap. Furthermore, other test structures 

facilitating the decorrelation of the channel and electrolyte contribution are included in 

each dice. We could realize bottom electrodes made of Ti with channel gaps greater than 

300 nm. Concerning the material engineering aspect, we managed to realize 20 nm LiPON 

with the ALD technique and confirmed its ionic conductivity to be around 0.6 μS/cm. 

LiNbO3 channel layer was successfully integrated into the current process flow and proven 

its functionality as an electrochemically active material with cyclic voltammetry technique. 

However, these layers require further improvement in future experiments and processes. 
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CONCLUSIONS AND PERSPECTIVES 
 

Neuromorphic computing is one of the solutions to address the computing 

bottleneck (e.g., shared data bus between memory and processing units) created by the 

conventional Von Neumann architecture, paving the way to handling data-intensive jobs 

in an energy- and time-efficient manner. Many technologies have been suggested to 

construct the synaptic hardware for such brain-inspired systems, namely two-terminal 

devices (ReRAM, PCM, and MRAM) and three-terminal devices (FeFET and SynT). Each has 

both advantages and drawbacks when implemented as artificial synapses. Researchers 

have demonstrated nanoscale SynT devices to have an excellent overall performance with 

high programming precision, ultralow operation power, linear analog-state modulation, 

and potentially low device variations with a robust working mechanism. However, research 

efforts were essential to improve several performance merits of SynTs (i.e., programming 

speed, state retention, and ON/OFF ratio) to suit the neural network applications better. 

The state-of-the-art SynTs and the approaches to go beyond were reported in chapter 1. 

To advance the performance of SynTs, the goals of this thesis were: (i) Elaborating 

and characterizing solid-state Li-based electrochemical synaptic transistors with CMOS-

compatible processes. (ii) Demonstrating their required synaptic functionalities owing to 

Li-ion intercalation leading to rapid and ultralow power analog switching, showing possible 

applicability in neural network computing systems based on the performance of functional 

devices. (iii) Proposing innovative solid-state gate stacks and designs to optimize the 

overall performance and further upscaling. 

As a first step, we showed the possibility of elaborating nanoscale synaptic 

transistors using CMOS-compatible microfabrication processes such as material deposition 

(sputtering and atomic layer deposition), photolithography with photomask, and thin-film 

etching using either reactive ions or chemical etchants. Subsequently, different physical 

characterizing methods, including SEM, TEM, EDS, and Raman spectroscopy, were covered 

as beneficial ways to obtain the material properties of deposited layers. The physical 

understanding of the gate stacks allows us to interpret the performance of the devices 

more precisely. The process flow to fabricate our electrochemical synaptic transistors with 

details on the steps was described. We revealed especially the encountered problems while 

realizing this generation of devices and the progressive optimization process. The first 

functional SynTs have been elaborated using the described microfabrication steps. 

Afterward, we presented the interesting electrical and electrochemical properties of 

building materials of the first generation of the electrochemical synaptic transistor (LiCoO2 

and LixTiO2 channels and LiPON electrolyte) in chapter 3. The stability of these materials 

facilitates the microfabrication of wafer-scale, BeOL-compatible synaptic transistors. The 

preliminary results of SynTs with LiCoO2/LiPON gate stack were presented as a proof-of-

concept of the wafer-scale elaboration synaptic transistors. The electrochemical tests such 
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as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) on the 

battery-like structures allowed studying the contribution of LiPON electrolyte and LiCoO2 

active material. The important insulator-metal-transition of the HT-LiCoO2 channel was 

confirmed by measuring the channel current while extracting Li ions with a gate voltage. 

Upon the re-intercalation of ions, the conductance decreased to the initial state. A 

programming cycle with 40 conductance states was demonstrated, proving the required 

functions for an artificial synaptic device. 

Then, a comprehensive study on SynTs with the LixTiO2/LiPON gate stack was 

conducted to improve the performance of the previous material composition. The cross-

section of SynTs was studied with SEM/EDS and TEM, providing information on the physical 

and chemical properties of the gate stack. In addition, the SynT exhibited good merits of 

an artificial electrochemical synapse, such as fast programming, reversible conductance 

modulation, retention, linearity, endurance, and slight device-to-device variation. This 

transistor was highly efficient in energy consumption for both write (fJ/μm2) and read (nS) 

operations. A systematic study using a two-terminal device was further performed to 

highlighted the pseudocapacitive behavior of the ultra-thin LixTiO2 film; making it an 

appropriate channel material for SynTs used for high-speed, low-power synapses. 

We then investigated the use cases of the first generation of SynTs for different 

types of neural networks: ANN and SNN, in chapter 4. First, we use the experimental results 

of SynTs to simulate computing-in-memory hardware to accelerate the vector-matrix 

multiplication operations of ANNs. With the CrossSim simulator platform, the realistic 

nonlinearity of the SynT was taken into account to practically benchmark its performance 

on handwritten datasets with other available technologies. Our SynT was also used to 

simulate the associative memory with an all-analog spiking neural network circuit using 

LT-Spice. We proposed a design of a neural network consisting of two synapses, including 

a resistor and a compact model of SynT, and a leaky integrate-and-fire neuron. We 

successfully trained the circuit to react to neutral stimuli by firing potential spikes out of 

the neuron. With the two preliminary examples, we showed that the SynTs could be 

employed in both types of neural networks. 

In the future phases of this work, we intend to focus on optimizing further the 

performance of this SynT (i.e., the programming rate, the dynamic range, the retention and 

number of states, etc.) based on two main approaches: (i) Materials engineering, and (II) 

Device design (some ideas have already been proposed in chapter5). Concerning the 

materials, we will improve specific properties of the existing layers, such as ionic 

conductivity and voltage range stability of the electrolyte, ionic diffusivity, and the available 

mobile ions of the channel materials by thermal or deposition processes. Significantly, 

tuning the phases of channel material affects the programming voltage and the switching 

linearity, potentially allowing an area- and energy-efficient selector-free artificial synapse 

for large crossbar arrays. In the design of SynTs, we aim to reduce the programming energy 

per write operation by reducing the active area size and increasing the overlap between 

the gate and the bottom electrodes. A passivation layer on top of the gate can be designed 
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to prevent ion loss from oxidation upon air exposure, thus increasing both the retention 

and endurance of the devices. 
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RÉSUMÉ EN FRANÇAIS 
 

Introduction 

L’architecture classique de Von Neumann joue un rôle essentiel dans la résolution 

de problèmes de différents niveaux de complexité dans presque tous les domaines de la 

vie. Toutefois, cette architecture informatique présente un goulot d'étranglement : une 

quantité importante de temps et d'énergie est nécessaire pour transmettre les données 

entre les processeurs et la mémoire. Cet obstacle limite inévitablement l'efficacité des 

calculs, en particulier pour la résolution de tâches complexes telles que la reconnaissance 

des formes ou de sons, par exemple. S'inspirant du cerveau humain, les systèmes 

informatiques neuromorphiques devraient pouvoir surmonter cette limite en effectuant les 

calculs de manière massivement parallèle. 

Le développement de tels systèmes neuromorphiques nécessite cependant des 

synapses artificielles qui imitent le comportement de leurs homologues biologiques. Des 

efforts ont été réalisés pour simuler les fonctions synaptiques avec des circuits analogiques 

CMOS. Ils se heurtent cependant à un problème majeur de miniaturisation (des dizaines 

de composants sont nécessaires pour imiter une seule synapse). De ce fait, de nombreuses 

recherches se concentrent actuellement sur des dispositifs spécifiques (memristors), 

facilement miniaturisables, dont la conductance électrique peut être modulée, pour émuler 

l'évolution des connexions synaptiques biologiques. Ces composants peuvent être 

subdivisés en dispositifs à 2 terminaux et dispositifs à 3 terminaux. Chaque configuration 

a ses propres forces et faiblesses. En particulier, dans la configuration à 3 terminaux, 

l'opération d'écriture (modulation du poids synaptique) est découplée de l'opération de 

lecture, ce qui permet un meilleur contrôle de la conductance. 

Parmi les synapses artificielles à 3 terminaux, les transistors ioniques apparaissent 

comme de bons candidats potentiels. Leur fonctionnement repose sur un empilement 

{canal/conducteur ionique} qui permet d’injecter/extraire des ions (via le conducteur 

ionique) dans la partie active du transistor (le canal), et de moduler ainsi finement la 

conductance électrique du composant. 

L'intégration à grande échelle de tels dispositifs synaptiques est indispensable pour 

développer l’architecture l'informatique neuromorphique. Des dispositifs composés 

d'électrolytes liquides et polymères,  et de canaux exfoliés manuellement, ne permettent 

malheureusement pas leur intégration ultérieure dans des puces informatiques de grande 

densité. Pour surmonter ces limitations, les objectifs de ma thèse sont (i) de proposer des 

transistors synaptiques innovants qui permettent d’optimiser leurs performances globales 

(ii) d'élaborer ces transistors synaptiques électrochimiques avec des procédés compatibles 

CMOS, et (iii) de démontrer leurs fonctionnalités synaptiques. Les travaux de cette thèse 

ont été réalisés grâce à une collaboration entre le Laboratoire Composants pour la RF et 
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l'Energie (LCRE) au CEA-LETI àGrenoble, et le Laboratoire Génie Électrique et Électronique 

de Paris (GeePs), à Gif sur Yvette. 

 

Chapitre 1 

Dans le chapitre 1, nous avons souligné la nécessité de développer un nouveau 

paradigme informatique pour remédier au problème posé par l'architecture informatique 

conventionnelle de Von Neumann. S'inspirant du cerveau humain, les systèmes 

informatiques neuromorphiques ont un grand potentiel pour réaliser des tâches 

complexes de manière plus efficace en termes d'énergie et de temps. 

Plusieurs principes physiques et technologies différents peuvent permettre de 

réaliser des dispositifs électroniques qui émulent des synapses artificielles pour 

l’informatique neuromorphique. Plusieurs technologies sont décrites dans ce chapitre, 

notamment les dispositifs à deux terminaux (ReRAM, PCM et MRAM) et les dispositifs à 

trois terminaux (FeFET et SynT). Chacune de ces technologies présente des avantages et 

des inconvénients. Les dispositifs à deux terminaux sont en général caractérisés par une 

grande rapidité, une endurance élevée, une grande gamme dynamique et une bonne 

stabilité. Cependant, ils présentent également un comportement non linéaire et une 

consommation par opération (Ecriture/Lecture) élevée, qui peut limiter la précision (dans 

la phase d'apprentissage) et l'efficacité énergétique dans les réseaux neuronaux à grande 

échelle. 

Parmi les dispositifs à trois terminaux, les synapses de type FeFET permettent des 

opérations de programmation rapides, et possèdent une grande stabilité. Néanmoins, ce 

type de dispositif souffre des mêmes problèmes de miniaturisation que la DRAM et les 

mémoires à grille flottante (car il s'agit essentiellement de mémoires à base de charges). 

En outre, certaines fonctions synaptiques sont difficilement réalisables sur de tels 

composants. Les dispositifs de type SynT (transistors ioniques), eux, ont une consommation 

énergétique très faible, permettent une modulation précise et linéaire des états de 

conductance, et des variations potentiellement faibles d’un composant à l’autre. 

Néanmoins, la faible vitesse de programmation, la stabilité médiocre des états et le rapport 

ON/OFF faible sont des caractéristiques à améliorer pour que les SynTs deviennent plus 

attrayants pour des applications aux réseaux neuronaux. 

Un état de l'art sur les technologies de réalisation des SynTs est dressé, en mettant 

l’accent sur plusieurs paramètres importants (figures de mérite) tels que la modulation de 

conductance (intervalle et nombre d’états possible sur cet intervalle), la linéarité, la stabilité, 

la consommation d'énergie, l'endurance et la dynamique temporelle. Afin d'optimiser 

davantage les performances des SynTs, plusieurs approches ont été suggérées dans la 

littérature, notamment la conception de nouveaux matériaux, la diminution des 

dimensions, et la mise en œuvre de processus d'élaboration qui soient compatibles CMOS.   
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Chapitre 2 

 Dans ce chapitre, nous avons présenté diverses techniques de microfabrication, 

notamment celles utilisées dans ma thèse pour élaborer nos transistors (pulvérisation 

cathodique et ALD). En particulier, les processus de dépôt des couches minces de LiPON 

par PVD et de TiO2 par ALD sont détaillés. Nous avons également abordé les méthodes de 

photolithographie et de gravure des matériaux. La résolution des motifs réalisés sur la 

résine photosensible dépend notamment de l’épaisseur de la résine, du temps 

d’exposition, et de la longueur d'onde de la source lumineuse. Les motifs finaux des 

dispositifs sont dictés par les méthodes de gravure utilisées.  

Des techniques de caractérisations physiques (MEB : microscope électronique à 

balayage, et MET : microscope électronique à transmission) ont été utilisées dans ma thèse 

pour contrôler la microstructure, la croissance des films minces et leurs épaisseurs, tandis 

que la méthode EDS-EDX et la spectroscopie Raman ont été particulièrement utiles pour 

obtenir la composition chimique des couches déposées. Le principe de fonctionnement de 

ces techniques a été illustré au travers d’exemples de la littérature, et de mon propre travail. 

Ces techniques ont permis d’identifier les défauts et vérifier toutes les étapes de 

microfabrication.  

Nous avons rencontré de nombreux problèmes lors de la réalisation de la première 

génération de dispositifs SynTs. À chaque étape de la microfabrication, divers problèmes 

se sont posés (taux de développement trop faible de la résine, couches sur-gravées, 

résolution latérale du canal insuffisante, …). Résoudre ces difficultés a nécessité des efforts 

dans plusieurs directions, notamment l'ajustement de l'écart d'exposition, la surveillance 

du temps de formation du motif et le contrôle de la température, ainsi qu’une nouvelle 

conception du masque photolithographique. L’optimisation progressive de tous ces 

paramètres a permis d’obtenir les premiers SynTs fonctionnels. 

 

Chapitre 3 

Dans ce chapitre, nous avons d'abord détaillé les matériaux utilisés pour 

l’élaboration des transistors synaptiques électrochimiques (canal en LiCoO2 ou LixTiO2, et 

électrolyte en LiPON). L’obtention de dispositifs SynTs avec un empilement {LiCoO2/LiPON} 

a d’abord fourni une preuve de concept de l'élaboration de transistors synaptiques à 

l'échelle du wafer. Des tests électrochimiques tels que la spectroscopie d'impédance 

électrochimique (EIS) et la voltampérométrie cyclique (CV) sur les structures ont permis 

d'identifier la contribution de l'électrolyte LiPON (conductivité ionique et fréquence 

caractéristique) et du matériau actif (HT-LiCoO2). L'importante transition métal-isolant du 

canal HT-LiCoO2 a été confirmée en mesurant le courant du canal lors de l'extraction d'ions 

Li avec une tension de grille de +4,2 V. Lors de la ré-intercalation des ions, la conductance 

a diminué jusqu'à l'état initial avec une pente différente, créant un hystérésis typique des 

SynTs. Un train d'impulsions a permis de modifier la conductance de manière fine (40 états 
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de conductance par cycle), démontrant les fonctions requises pour un dispositif synaptique 

artificiel. Cependant, la tension de programmation et la conductance du canal étaient 

considérablement élevées. 

Une étude complète sur des SynTs avec empilement {LixTiO2/LiPON} a ensuite été 

menée afin d’améliorer les performances obtenues précédemment. La section transversale 

de ces SynTs a examinée par MEB, EDS-EDX et MET, fournissant des informations utiles sur 

les dimensions physiques, les éléments, et la phase (quasi-amorphe) du matériau 

constituant le canal. Lors des tests électriques, ces SynTs ont permis d’obtenir de très 

bonnes figures de mérite (programmation rapide, modulation réversible de la 

conductance, stabilité, linéarité, endurance et faible variation d'un dispositif à l’autre). Ces 

transistors se sont notamment montrés très efficaces en termes de consommation 

énergétique (fJ/μm2) pour les opérations d'écriture/lecture. Une étude électrochimique 

systématique (utilisant un dispositif à deux terminaux représentant l’empilement de grille 

du SynT) a été réalisée pour pouvoir se focaliser uniquement sur les propriétés 

électrochimiques du canal LixTiO2 et ses performances électriques. Cette étude a mis en 

évidence le comportement pseudo-capacitif du film ultra-mince de LixTiO2, ce qui en fait 

un matériau très utile pour des systèmes neuromorphiques très rapides et à faible 

consommation énergétique. 

 

Chapitre 4 

Dans ce chapitre, nous avons étudié l’applicabilité potentielle de la première 

génération de SynTs à différents types de réseaux neuronaux (ANNs et SNNs). En ce qui 

concerne les réseaux de neurones artificiels (ANNs), la simulation de matrices de transistors 

synaptiques a été réalisée à l'aide de la plateforme de simulation «CrossSim». A partir des 

résultats expérimentaux (100 cycles de modulation de conductance), le simulateur a pu 

prendre en compte une non-linéarité réaliste du SynT et évaluer ses performances sur des 

bases de données manuscrites (MNIST). Malgré la non-linéarité de commutation du SynT 

(due notamment à la forte activité d'intercalation ou d'extraction d'ions à environ 1 V), la 

précision de reconnaissance de formes sur ces tâches reste élevée ( 95%), comparée à 

d'autres technologies employant la même plateforme de simulation. 

Nous avons également montré l’applicabilité potentielle de nos dispositifs SynTs 

aux réseaux de neurones à impulsions (SNNs). Pour cela, nous avons étudié une règle 

d'apprentissage - mémoire associative – en proposant le design d’un circuit entièrement 

analogique. Dans cette simulation (utilisant LT-SPICE), le réseau neuronal est composé d’un 

neurone LIF (Integrate-and-Fire) et de deux synapses : l’une de ces synapses est 

représentée par un modèle compact de nos dispositifs (SynT). La phase d’entrainement de 

l’expérience du Chien de Pavlov, via les stimuli synchrones "vue de la nourriture" et "son 

de cloche" fait intervenir l’augmentation progressive de la conductance du SynT (au travers 
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d’un train d’impulsions de courant d’environ 1nA). A partir de là, le comportement de 

mémoire associative a été clairement mis en évidence.  

 

Chapitre 5 

Dans ce chapitre, nous avons abordé différentes pistes (choix des matériaux et 

configuration des dispositifs) qui permettraient d'améliorer encore les performances des 

transistors synaptiques. Les matériaux à rechercher doivent pouvoir répondre à des critères 

spécifiques (bon transport ionique et faible conductance électronique pour les matériaux 

d'électrolyte, et changement de conductivité significatif lors de l'intercalation de lithium 

pour les matériaux de canal). Concernant la configuration des dispositifs, il s’agit 

notamment de diminuer encore les distances de migration des ions. 

Quelques travaux préliminaires ont déjà été réalisés dans ce sens. Nous avons conçu 

et fabriqué de nouveaux types de masques, dans lesquels la distance source-drain des 

transistors varie dans l’intervalle [200 nm - 1,5 μm]. De plus, nous avons commencé à 

étudier des films ultra-minces de LiPON (électrolyte) et de LiNbO3 (canal). Les résultats 

préliminaires sont prometteurs : ce travail d'optimisation sera à poursuivre dans le futur. 

 

Conclusions et perspectives 

Dans cette thèse, nous avons exploré de nouveaux types de transistors nano-

ioniques pour la réalisation de synapses artificielles. Nous avons d'abord élaboré des 

transistors synaptiques tout-solide à l'échelle d’un wafer en utilisant des techniques de 

microfabrication compatibles CMOS : une première génération de composants (deux types 

d’empilements possibles : LiCoO2/LiPON, LixTiO2/LiPON) a été réalisée. Les propriétés 

physiques et structurales de tels transistors ont été caractérisées par différentes techniques 

de microscopie et de spectroscopie (MEB, MET, spectroscopie Raman). Leurs performances 

en termes de comportement synaptique (modulation de la conductance, stabilité des états, 

non-linéarité, consommation d'énergie et endurance) ont été clairement démontrées. Une 

étude électrochimique systématique (focalisée sur le matériau constituant le canal du 

transistor) a permis d’expliquer l’origine des performances de ces composants 

(comportement pseudo-capacitif de LixTiO2). À partir des résultats expérimentaux, des 

réseaux de calcul neuromorphique (ANNs et SNNs) ont été simulés. En particulier, un 

réseau de neurones artificiels (ANN) composés de matrices de transistors synaptiques a 

été simulé et testé sur différentes tâches de reconnaissance de formes. Le comportement 

cognitif de conditionnement classique (expérience de Pavlov) a également été simulé, 

montrant l'applicabilité potentielle de nos transistors synaptiques aux réseaux de neurones 

à impulsions (SNNs).  

Dans le futur, nous nous concentrerons sur l'optimisation des performances de ces 

dispositifs (nombres d’états, gamme de conductance, stabilité, etc.) en nous basant sur 
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deux approches principales : (i) l'ingénierie des matériaux, et (II) la configuration des 

dispositifs. En ce qui concerne les matériaux, nous chercherons à améliorer les propriétés 

spécifiques des couches existantes, telles que la conductivité ionique et la stabilité de la 

gamme de tension de l'électrolyte, la diffusivité ionique et les ions mobiles disponibles des 

matériaux du canal (via des processus thermiques ou de dépôt). Pouvoir contrôler la nature 

des phases du matériau constituant le canal affecte la tension de programmation et la 

linéarité de la commutation, pourrait potentiellement permettre d’obtenir une synapse 

artificielle sans sélecteur (gain en termes de surface et d'énergie). En ce qui concerne la 

configuration des dispositifs, nous visons à réduire l'énergie de programmation, en 

réduisant la taille de la zone active et en augmentant le chevauchement entre la grille et 

les électrodes inférieures. Une couche de passivation sur le dessus de la grille pourrait 

également être conçue pour empêcher la perte d'ions par oxydation lors de l'exposition à 

l'air, augmentant ainsi la stabilité et l'endurance des dispositifs. 
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