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ABSTRACT 

 

 

Résumé : Les fibres optiques légèrement multimodes (FMF) sont une classe de fibres 

optiques multimodes. Dans le domaine de la télécommunication, chaque mode d’une FMF 

peut être utilisé comme un canal indépendant de transmission, ainsi, des débits bien supérieurs 

aux fibres optiques conventionnelles pourraient être atteints. Cependant, des problèmes 

inhérents à l'utilisation de ce type de fibre sont le couplage de mode et la dispersion de mode 

qui dégradent les performances de transmission. Cette thèse entre dans le cadre de l’étude du 

couplage de mode de différents profils de fibre.  Ce travail se décompose en deux axes : i) la 

modélisation du couplage de mode qui est effectué en considérant la fibre comme une 

concaténation de plusieurs segments courbés, dont chaque segment est associé à un rayon de 

courbure aléatoire. ii) La mesure du couplage localisé qui est basée sur la méthode 

expérimentale A-S2. A l’aide de ce modèle et de ces mesures, nous pouvons confirmer  

l’absence ou la présence de couplage d’une fibre exposée à des micro-courbures ou à une 

perturbation aléatoire.  

 

 

Abstract:  Few multimode fiber (FMF) is a class of multimode fiber. Each mode of a FMF is 

considered as an independent transmission channel in telecommunication field. Thus, much 

higher rates than conventional optical fibers could be achieved. However, this fiber can 

present the mode coupling and mode dispersion that can degrade the transmission 

performance. The mode coupling over different fiber profiles is studied in this thesis. This 

work is divided into two parts: i) the modeling of the mode coupling considering the fiber as a 

concatenation of several curved segments, and each piece is associated with a random 

bending radius R. ii) The measurement of localized coupling which is based on the 

experimental method A-S2. Using this model and these measurements, we can demonstrate 

the absence or the presence of coupling of a fiber exposed to micro-curvatures or a random 

perturbation. 
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INTRODUCTION 

 

Optical links provide an enormous bandwidth and the optical fiber is the only medium 

that can meet the communication capacity needs of our modern society. This demand of high 

bandwidth involved by applications like video on-demand, cloud computing, social network, 

online games amongst others is the mainstream of the constantly growing telecommunication 

market which in a way is a master piece of the economic activity of our societies. 

Optical fibers used in communication systems are divided into two categories: Single 

Mode Fiber (SMF) for long and mid -haul communications (submarine and terrestrial 

solutions) and, Multi-Mode Fiber (MMF) mainly used in short distance communication (less 

than 1km), as is the case for the data-centers 

Regardless of the efforts of improvements in long-haul optical communication 

equipment, researchers and industry are betting on new long distance fibers based on spatial 

division multiplexing, because these solutions could provide a higher capacity-distance 

product. The fibers developed in this context are known as few mode fiber (FMF) and multi-

core fiber (MCF). As FMF supports multiple transmission modes in a single core, it is more 

attractive from an industrial point of view because the manufacturing methods are similar to 

the one developed for conventional fibers. FMF in Mode Division Multiplexing (MDM) 

operation could be a possible candidate to increase the transmission capacity for long-haul 

optical communication, and for satisfying the demand of short high capacity optical 

transmission links. Nevertheless, the elements must be adapted to these emergent optical 

fibers. 

As conventional fibers, FMF capacity is restricted by linear and nonlinear effects. For 

MDM operations, the mode coupling and intermodal dispersion are the main parameters to 

control. The intermodal dispersion in FMF is produced when several modes propagate with 

different group velocities, arriving at the reception at different times. This time delay between 

the slowest and fastest modes produce a spreading of the optical pulses as they travel along 

the fiber and set a limit to the maximum achievable transmission distance without distortion, 

which is one of the problems to reach maximal rates. To quantify the intermodal dispersion, 

the parameter known as the Differential Mode Group Delays (DMGD) – the difference 

between the maximum and minimum time delay (group delay) in a given length of the optical 

fiber – is generally used. This effect obviously accumulates during the propagation.



Another impairment is the mode coupling that occurs because as light is guided by the 

different modes (or by the orthogonal combinations of these modes), it can be randomly 

exchanged along the fiber between the spatial channels, due to perturbations in the fiber. In 

some cases that will be introduced in the present thesis, the impact of this coupling is 

considered as a strong drawback and must be controlled. 

By employing a multiple-input multiple-output (MIMO) equalization digital signal 

processing (DSP) at the receiver, mode dispersion and mode coupling can be mitigated. 

However, the complexity of the MIMO equalizer results in a quadratic growth with the 

number of spatial channels. For instance, for the optical fibers that support 10 spatial modes 

like the ones theoretically studied in this thesis, the size of the MIMO should be 20x20 if we 

consider the polarization, which is a 100 times larger than the ones used for SMFs (2x2). 

Additionally, the equalizer complexity can also be affected by long values of the DMGD. If 

we consider a 4x4 MIMO (two spatial mode and two polarizations), the equalization filter 

windows (or taps) needed to cover the time delay between two modes, has to be longer than 

the delay between these modes. Thus, this window can be reduced by controlling the coupling 

or by reducing the DMGD. Hence, the FMF design can be adapted to decrease the constraints 

on the MIMO equalizer or its complexity. As we will show in this thesis, a step refractive 

index profile can be adopted in order to reduce the coupling, whereas a graded refractive 

index profile can be used to reduce the DMGD. Moreover, we will see later that the highest 

capacity per distance is reached by using graded-index FMF. Consequently, we studied 10-

mode fibers applying a coupled-mode model based on random perturbations to estimate the 

impact of different coupling regimes on the DMGD.  

In a second part of this work, to validate our model, we developed an experimental 

method combining spatially and spectrally resolved images (S2) with a wire-mesh approach 

to produce different coupling states.  S2 is a powerful technique that can measure the modal 

content and mode-coupling quantitatively in a simple experimental setup. Mode coupling in 

two types of 2-mode step-index fibers has been experimentally observed. 

 

This thesis is organized as follows: 

 

 Chapter 1 focuses on the history of SMF and MMF and on the impairments and 

constraints associated to light transmission in SMF. Then, we will present the emergent 

optical fibers, called FMF and MCF that today appear as possible candidates to overcome the 

capacity limits of SMF. 



In chapter 2, we will introduce the wave equations and the scalar wave equations from 

the Maxwell’s equations and present the notion of optical modes, either vector modes and LP 

(Linearly Polarized) modes. Here, we will study two types of fiber with well-known refractive 

index profiles: the step-index and the graded-index profiles. For step-index profile, we will 

analytically obtain the eigenmodes whereas, for graded-index profiles, we will use a semi-

analytical model based on the Laguerre-Gauss or Hermite-Gauss functions. Besides, we will 

include the notion of weakly-guided and radiative modes and will describe the different 6-LP 

modes fibers used in the simulation of Chapter 3. 

In chapter 3, we will compare the main coupling-models and describe the multi-

segment coupling model developed for the FMFs studied in this Thesis. Indeed, we will 

compute the group operator and find its eigenvectors that are the principal modes. The 

principal modes are potential candidates as data carriers instead of the conventional ones 

(especially the LP modes) as they are robust against modal dispersion. Besides, we will 

simulate six 10-spatial-mode fibers with trench-assisted graded-index-core profiles in order to 

study the dependences of the group delay on the fiber bending and length in different coupling 

regimes (weak and strong coupling). Finally, we will demonstrate that the fibers with a large 

difference of effective index between modes (Δneff) are more resilient to the strong-coupling. 

In chapter 4, we will describe the different methods to measure the coupling, and will 

develop a method based on S2 imaging and the wire-mesh. Finally, we will prove that a 2-

mode step-index fiber with a large index difference between modes (Δneff) does not present 

coupling under the conditions of the experiment. 
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1 Generalities of the optical communication 

transmission 

 

This chapter will briefly review the fundamental capacity limit in the optical transmission 

using single mode and multimode fiber, and some proposal based on spatial division 

multiplexing (SDM) to overcome the capacity crunch of conventional systems. I will start by 

some general concepts and carry on with some of the emerging solutions (new optical fibers), 

as Few Mode Fiber (FMF). 

 

 A brief history of optical fiber 1.1

 

Our ancestors used smoke and fire to relay messages between cities separated by 

mountains. Such communication systems were limited in distance and not secured, because 

anyone could see the message, decipher it or worse intercept it and alter it. Throughout the 

years, the transmission of data was possible over radius (Marconi, 1901), copper cable and 

optics (1920), allowing to substitute the archaic communication systems and services by more 

sophisticated techniques, such as the telegraph (Morse, 1799), telephony (Graham Bell, 

1876), television (Logie, 1925), the internet (ARPANET, 1960), cellphones (Cooper, 1973) 

and videoconference.  

To date, optical communication systems reach a higher throughput than the others. This 

dates back to 1961 and 1964 when Elias Snitzer published a theoretical description of a fiber 

with a core so small that it could carry light with only one waveguide mode. Later, Dr. 

Charles Kao established that the light loss (10 or 20dB/km) can be reduced in a purer form of 

glass [ITU-T, 2009]. 

In 1970, Corning glass researchers invented an optical fiber with loss of 17dB/km at 

633 nm by adding titanium into the fiber core. Two years later, this group invented a 

multimode germanium-doped fiber with a step index profile and 4dB/km of loss. Not satisfied 

with the low bandwidth of the multimode index fiber, researches concentrated on multi-mode 

fibers with a gradual refractive index increase between the core and the coating, and core 

diameters of 50 or 62.5 micrometers. In 1974, they succeeded in massive manufacturing of 

high quality optical fiber by the modified chemical vapor deposition MCVD [MacChesney 

and Bell Labs]. 
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In 1977 in Long Beach, California and later in Chicago, the telephony company used 

fibers with loss around 2dB/km and GaAlAs laser diodes at 850 nm. Afterwards, an InGaAsP 

laser at 1300 nm was used and an improvement of fiber attenuation was reached as low as 

0.5dB/km, likewise the dispersion of the pulse was reduced to 850 nm.  At the beginning of 

the 1980s, the world networks began to use single-mode fiber at 1300 nm.  

For years, researchers have worked on improving the single-mode fiber properties 

because it could transmit higher data rates over longer distances, especially at wavelengths of 

1550nm, where the attenuation is lower. In 1985 the dispersion shifted Fiber (DSF) was 

introduced allowing the minimum attenuation in the 1550 nm window with zero dispersion at 

the same wavelength.  

In the early 1990, the Erbium-doped fiber (EDFA) seemed to revolutionize the optical 

system thanks to the capability to amplify light and raise the speed limitation imposed for 

electronic regeneration. Likewise, it allowed the development of the wavelength division 

multiplexing (WDM) technique, currently used.    

The deployment of these new technologies brought with it nonlinear effects in the 

transmission as a consequence of the extra power that the fiber had to carry through the use of 

several amplifiers with a larger number of wavelengths. One of the most damaging effects to 

appear is the four-wave mixing, because multiple wavelengths combine to create new 

wavelengths that can potentially interfere with the transmission. The effect is more noticeable 

when the dispersion is close to zero. Thereby, the development of the non-zero dispersion 

fiber industry (NZDSF) was a direct response to the non-linear effects of propagation. Later, 

the effective mode area was increased to reduce the nonlinear effects in the fiber design. 

Even if studies on the Raman amplification started around the 1970’, it was not 

industrially used before the development of suitable high power pumps. Since 2000, most of 

the submarine fiber-optic transmission systems (typically, above 800km) use Raman 

amplification. 

In the 1980s, the coherent detection became more attractive, principally in a WDM 

configuration, because it enables higher spectral efficiency through electrical domain channel 

selectivity, compared to direct detection in the optical domain and it also allows a higher 

sensitivity. Finally this technique provides access to modulation schemes with more bits per 

symbols. However, the coherent detection is more complex to implement.  
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Figure 1-1: MMF system evolution. [ISO/IEC 11801, 2011] [IEC 60793-2-10, 2011] 

  

 

> 
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Figure 1-2: SMF system evolutions 

 

Recently SMF fibers with ultra-low losses (losses less than 0.2dB/km) and low bends 

radii have been introduced on the optical network market especially for metro-access, 

FTTH/P networks (Local Area Network).  Likewise, MMF has evolved on bend-insensitive 

fiber to enhance macro-bending performance and thus to eliminate the cable bending 

challenges of the installations (standards: OM3, OM4). 
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The fiber and optical technology evolutions is shown in the Fig. 1.1 and 1.2 for MMF 

and SMF fibers. Although the optical communication systems can have higher capacity (40 

and 100 Gb/s), the new services and traffic requirements are reaching its limitation suggesting 

to the researchers the use of new technologies and fibers based on spatial division 

multiplexing (SDM).  

 

 Single mode fiber optical transmission system  1.2

 

A digital optical transmission system consists of a transmitter and a receiver connected 

between them by a single mode fiber (SMF).  The transmitter converts binary data into a 

modulated optical signal with a particular bit rate (~100Gb/s +) on a given wavelength 

channel.  Once the signal is modulated, it is sent through an optical link, often composed of 

several spans of optical fiber cascaded with other optical elements (fiber optical, add-drop 

devices and amplifiers) in order to overcome the attenuation signal without optoelectronic 

signal regeneration. In the end, the receiver recovers the binary signal over long distances 

(more than 1000km) by using a digital signal processing (DSP) and error correction 

techniques. An overview of the optical transmission system and its bit rate evolution per 

channel is shown in Fig. 1.3. 

 

 

 

 

 

Figure 1-3: Optical transmission system (top) and evolution of per channel bit rate as a function 

of years (bottom) 
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1.2.1 Transmitter  

 

An optical transmitter generates the optical signal using light-emitting diodes (LEDs) 

or LASERS. The generated optical light by LEDs or LASERS can be later modulated. The 

light generation depends on the recombination process in semiconductor materials; the light 

interacts with the material by absorption, spontaneous and stimulated emissions. Therefore,   

LED converts electrical energy in optical energy through the spontaneous emission resulting 

from spontaneous recombination of the excess carriers, whereas LASER does it by stimulated 

emission. These two different mechanisms of interaction between an atom and a photon for 

LED and LASER respectively are shown in Fig. 1.4. Here, hν is photon energy and 

corresponds to the Planck constant (h) multiplied by the optical frequency (ν) which is 

proportional to the energy difference between the energy levels E2 and E1. 

More specifically, the spontaneous emission occurs when an electron drops from an 

excited state to ground state without any external mechanism. Lasers begin by spontaneous 

emission, and then work by stimulated emission. In stimulated emission, a photon  interacts 

with an electron in excited state that drops to ground state to emit a photon coherent with the 

entrance photon.  

 

 

 

Figure 1-4: Spontaneous and stimulated emission. 

 

. 

One of the drawbacks of LED is that the emitted radiation is spontaneous and 

incoherent. LED have a spectral width of Δλ = 50-60 nm, with powers below 100 μW and 
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beam directivity lower than laser, making them impractical to use for long distance 

communications. Although the lasers are more complex devices than LED, their 

characteristics are the most used in communications at high speeds and long distances. The 

radiation is coherent which cause their spectral width to be much narrower and their 

directivity higher. As a matter of fact, they are 10 times more efficient than a LED (Pout~ 100 

mW) [Djafar, 2001] and can be modulated directly at higher rates. In this way optical 

transmitters for long haul distance are based mostly on semiconductor lasers (VCSELs in the 

MMF case), and optical modulators. 

Lasers can be divided into three main categories: continuous wave (CW), pulsed and 

ultrafast. The continuous-wave lasers produce a continuous beam of light, ideally with a very 

stable output power. A pulsed laser (produce pulses of 0.5 ns to 500 ns) is a system that will 

emit light in the form of optical pulses, rather than a continuous wave (CW). Ultrafast lasers 

are a special case of pulsed laser generally defined as lasers that produce pulses in the range 

of 5fs to 100ps.   

For many applications, pulsed laser systems are advantageous compared to CW lasers, 

because they generate extremely high radiation intensities, even at moderate average laser 

power. However, the VCSELs (CW and Quantum-CW) or laser diode have a truly massive 

use throughout telecommunications and data storage (DVDs, CDs), because of the high beam 

quality and that they can be modulated with high frequencies. 

Some transmitters implement a modulation stage to manipulate the output power in 

accordance to an input triggering signal. In the section below, the modulation will be 

presented. 

 

1.2.2 Modulator 

 

 Modulation format 

  

Modulation makes the information signal more compatible with the medium (optical 

fiber). This process can be used to transmit coded information in binary format, because the 

optical fiber can recognize the absence or presence of light. In addition, the complex 

modulation format can increase the capacity. Thus, an optical communication system can 

have two modulations, the simple and complex modulation. 

https://www.rp-photonics.com/semiconductor_lasers.html
https://www.rp-photonics.com/vertical_cavity_surface_emitting_lasers.html
https://www.rp-photonics.com/optical_modulators.html
https://www.rp-photonics.com/vertical_cavity_surface_emitting_lasers.html
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The first one is known as simple modulation because signal is directly proportional to 

the LED or laser response via amplitude modulation, and therefore the optical and electrical 

signal are modulated as a function of the transmitted data. Three types of base modulation are 

possible in optical communication systems: the format Return to Zero (RZ), Non Return to 

Zero (NRZ) and optical duobinary. In NRZ, a bit of logical value 1 (a pulse of light) changes 

its value from 1 (light) to 0 (no-light) or vice versa on a bit period. By contrast, the pulse of 

light in RZ is narrower than the bit period which allows less energy than a NRZ format (See 

Fig. 1.5). Like RZ, duobinary transmission are transmitted in a reduced bit period, and it can 

be understood as a multilevel transmission with phase encoded bits that are produced by 

adding one-bit-delayed data to the present data bit to give levels 0, 1, and 2.   

 

 

 

 

Figure 1-5: Schematic of NRZ, RZ and duobinary codes 

 

 

 

Note that scheme signal in RZ does not need to send a separate clock along with the 

signal, because it has more transition than the NRZ. However, RZ signals involve a periodic 

return to a zero signal value and thus signal bandwidth is cut in half because half of the 

bandwidth is used to this return the signal to zero volts. That is, RZ decreases the symbol rate 

of the transmission.       
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In other words, as the data rate increases, the NRZ and RZ signals could gradually 

achieve the bandwidth limit, and the duobinary signals can be an appropriate alternative 

because of the efficient utilization of the bandwidth and the increase of the spectral efficiency. 

More specifically,  [Phogat, 2013] demonstrated that on the simple modulations et at 10 Gbps, 

the duobinary is a much more resilient modulation format as compared to NRZ and RZ, 

because of its higher dispersion tolerance. 

 

 External modulation 

 

The first modulation format discussed above typically used the simplest modulation 

system called on-off keying (OOK), where the light beam is simply "turned on or off" 

depending on whether the information bit is a 1 or a 0 (binary information).  

This type of modulation can be performed in two ways, by direct modulation or by 

external modulation. To avoid the frequency variation of the signal or chirp, an external 

modulation is recommended. The chirp is a phenomenon where the frequency and phase of 

the carrier of transmitted pulses varies with time generating a greater dispersion during its 

transmission. At speeds above 10 Gbps the chirp is so high that the direct modulation of 

semiconductor lasers is very seldom used [Agrawal, 2000]. 

In optical long-haul transmission systems, coherent continuous-wave lasers (CW) with 

external Mach–Zehnder modulators are used. These modulators are based on Mach–Zehnder 

interferometer between two waveguides with adjustable phase shifts. Consequently, an 

external electric field will generate changes in the refractive index of the material. Here, two 

cases are possible depending on the absence or presence of an external field. In the first case, 

the interference contributes constructively, because the optical field of the signal from the 

laser will have an equal phase change in the two arms. In the second case, the interference 

contributes destructively because the phase shift between the both arms can be equal to π.   

 

     High-order modulation for optical fiber transmission 

 

Even more sophisticated modulation schemes are used to increase the capacity by 

using multilevel modulation formats with M=2
n
 bits per symbol. Thereby, we transmit more 

bits on an optical symbol by coding n bits through a sequence of 1 and 0. In this case, the 

amplitude and phase modulation can be used to obtain symbols with 2
n 

different forms.  
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Phase shift keying (PSK) modulates the optical signal by changing the phase of the 

signal. The PSK constellation symbols are positioned with uniform spacing around a circle 

and its performance decays as the number of symbols increases around the circle, because the 

effect of noise is more visible between each other due to their near position. To avoid that the 

symbols be located all around the circle, we can use the constellations based in quadrature and 

amplitude modulation (QAM) whose symbols can be more spaced. Here, the symbols in 

QAM can be distributed in amplitude and phase, by using I and Q orthogonal components 

separated 90 degrees between them (See Fig. 1.6). 

 

BPSK QPSK/QAM 8QAM 16QAM 

    
1 bit/symbol 

2 symbols 

2 bit/symbol 

4 symbols 

3 bit/symbol 

8 symbols 

4 bit/symbol 

16 symbols 

Figure 1-6: Schematic constellations of advanced multilevel modulation formats. 

 

Figure 1.7 shows the block diagram of an optical transmitter adapted to QPSK 

modulation. In the transmitter, the laser signal is fed by the electrical signal current which 

allows to generate modulated light power. The transmission is ensured by the phase electrical-

optical modulator MZM that allows the amplitude and phase modulation. Each MZM has 2 

levels of voltage that give 2 points in the constellation; however one of the arms should be 

shifted in phase π⁄2 to allow moving the others points of constellation around 90
o
.    

 

Figure 1-7: QPSK modulator. 
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1.2.3 Receiver (coherent detection) 

 

At the reception, the optical signal is converted back into an electrical signal. The 

nature of the receiver depends on the modulation format. For example to detect modulated 

signal in OOK, it can be sufficient to use a simple photodiode, because it is not necessary to 

follow the signal phase. A photodiode gives only information about the intensity of the optical 

field making impossible the recovery of phase information, this modulation is well-known as 

direct modulation. However, sophisticated modulation schemes use coherent detections that 

allow the detection of the amplitude and phase of the incoming optical signal by using the 

polarization diversity receive. Such detectors use interferometric methods.  

Figure 1.8 shows a coherent receiver scheme. Here, an optical input signal interferes 

with an unmodulated or laser local oscillator (LO) by using a coherent mixer. Note that each 

arm in the coherent mixer has a polarizer that is positioned to have the same field in the x and 

y axis. In addition, the wave-plate λ/4 produces a phase shift of π⁄2 only in the x-polarization. 

Thereby, polarization of the LO becomes circular, while the signal remains linearly polarized 

and its polarization angle is 45 with respect to the principal axis of polarization beam splitters. 

After passing through the half mirror,  the Polarization Beam Splitter (PBS) separates the light 

into two orthogonal polarizations, while the interference and difference of phase between LO 

and the modulated signal are detected by the photodiodes PD1, PD2, PD3 and PD4.  

 

 

Figure 1-8: Coherent receiver. 
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Coherent detection together with Digital Signal Processing (DSP) technology is 

actually used to provide a solution to the detection problem of long‐haul transmission systems 

[Ly‐Gagnon, 2004]. Analog‐to‐digital conversion (ADC) and DSP compensate the 

imperfections of the coherent receiver and the other signal impairments coming from fiber 

propagation. Besides, coherent detection with DSP algorithms provides potential for superior 

receiver sensitivity. The common scheme of a DSP is shown in Fig. 1.9. Let's describe briefly 

each block. 

CD compensation block is used to compensate the impairments produced by the 

chromatic dispersion (Section 1.3.1), clock recovery allows to correct the digital sampling 

error made by ADC. Polarization de-multiplexing block (Section 1.4) uses an algorithm to 

find principal of polarization. Phase and frequency recovery block corrects the phase and 

frequency difference between received signal and LO.  

 

 

Figure 1-9: DSP and ADC configuration. 

 

1.2.4 Transmission 

 

 Optical channel  

 

To explain the propagation inside the optical fiber, we will start by introducing the ray 

optic study (Snell law) by supposing that three layers of different refractive index materials 

can model the fiber. Snell law (equation 1.1) schematically explains how light behaves in the 

optical fiber. This behavior depends on the refractive index of the material, which is the ratio 

light velocity in vacuum and in the medium.  

 

𝑛𝑎𝑖𝑟 sin 𝜃 = 𝑛𝑐𝑜𝑟𝑒 sin 𝜃1                                        (1.1) 
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To make sure to trap the light inside the core, the cladding refractive index (ncladding) 

should be smaller than the core refractive index (ncore), and the light must be incident on an 

optical fiber with an angle of incidence smaller than the critical angle. Thereby, the critical 

angle must be only defined when ncladding / ncore is less than 1.  To accept maximum incident 

light, we can measure how much light can be collected by an optical fiber though the 

numerical aperture (NA). 

 

Figure 1-10: Snell law in the optical fiber. 

 

The core refractive index profile is fundamental for light propagation and describes the 

radial change of the refractive index from the fiber to towards the cladding. Thus, the rays can 

be propagated as in a straight line or zig-zag, because the refractive index is homogenous in 

the core (step-index SI), or in parabolic form because the refractive index continually 

decreases from the fiber axis to the cladding (graded index GI).       

According to the propagating modes, the optical fibers can be divided in single mode 

and multimode. In the former, one only mode should travel the length of the fiber.  The 

number of modes of an optical fiber depends on its dimension and the variation of the 

refractive indices of both core and cladding across the cross section. This will be detailed in 

chapter 2. 

Two classic profiles are shown in the Fig. 1.11.  

 

 

Figure 1-11: Step index profile (SI) and graded index profile (GI) are the most well-known 

refractive index profile. 
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 Physical transmission constraint in Single Mode Fiber 1.3

 

Light is affected by the linear effects (chromatic dispersion (CD) and polarization mode 

dispersion (PMD)) that transform the signal linearly, or nonlinear effects (Kerr effect) as a 

result of the nonlinear behavior of the material.  

The nonlinear effect represents one of the main reasons of the capacity limitation in 

long haul optical transmission system. In figure 1.11, the y axis represents the maximal 

channel capacity without error and the x axis the signal-to-noise ratio (SNR). According to the 

Shannon theory [Shannon, 1948], for a linear transmission system with a given SNR, the 

optical channel capacity is given B. log2(1+SNR) [bits/s] and the spectral efficiency (SE) by 

log2(1+SNR) [bits/s/Hz] by dividing the channel capacity by spectral bandwidth B. 

Figure 1.12 shows the capacity as a function of the SNR for an optical system. Here, the 

curve can be separated in one linear and one nonlinear part, the first one corresponding to the 

positive slope of the curve, where the capacity is only limited by the amount of amplified 

spontaneous emission noise [Tang, 2006] without the intervention of the non-linear effects. 

The second is the negative slope parts whose capacity deterioration is in large part due to the 

non-linear effects. 

As an illustration, for a typical optical amplifier with a SNR of 40dB, we expect a 

theoretical limit for the capacity of 13 bits/s/Hz if the Kerr nonlinear effect is absent. 

However, for a given SNR the non-linear effects [Ellis, 2010] could appear and affect 

capacity nonlinearly, as is shown in the Fig. 1.12.  

 

Figure 1-12: Effect of non-linearity over fiber capacity. 
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SE (bits/s/Hz) generally corresponds to the ratio between the channel bit rate and 

channel spacing. It is to be noted that the only way to increase the SNR is to increase the input 

optical power, but as input power increases, fibers cease to be a linear transmission media. 

That is, the nonlinear distortions are strongly dependent on the signal power. In this section, 

we will study the different effects that degrade the optical transmission performance. 

 

1.3.1 Linear effect 

 

 Attenuation 

 

Attenuation (α) is the signal energy reduction during propagation. It varies as a function of 

wavelength (near infrared region). Typically, optical fibers work in the infrared region 

(850nm, 1300nm and 1550nm), however the lowest loss attenuation is found at 1550nm (less 

than 0.2dB/km [Agrawal, 2010]), as is shown in Fig. 1.13.  In the end, this parameter will 

depend on the fiber length.  

 

Figure 1-13: Attenuation as a function of wavelength (SMF). 

   

To compensate the attenuation, current transmission systems use optical amplifiers 

(OA) without optoelectronic regeneration. However, all amplifiers degrade the signal-to-noise 

ratio (OSNR) of the amplified signal because a part of the amplification energy is naturally 

used to produce amplified spontaneous emission (ASE) during the amplification process. This 

OSNRs degradation is quantified by the noise figure (NF), which relates the input and output 
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signal-to-noise ratios of an amplifier. The ASE can be a dominant source of noise, because it 

is usually cumulative. It is an unwanted effect that limits the amplifier gain by increasing its 

noise level.   

Erbium Doped Fiber Amplifiers (EDFA) and Raman amplifiers are the most popular 

amplifiers. EDFA are mostly used in terrestrial links and they work in the C-band (between 

1530 and 1565 nm) and L-band. Raman amplifiers are most often used in submarine links. 

 

 Chromatic dispersion (CD) 

 

 In bulk materials, chromatic dispersion is the signature of the dependence of the 

refractive indices of core and cladding on the wavelength. In optical waveguide, the 

dispersion may be due to the optical geometry and the material properties. To study the CD, 

we will consider the combination of both dispersion sources. To characterize this 

phenomenon, we can use the dispersion parameter D (See Eq.1.4). It can be described as the 

derivative of the inverse of group velocity with respect to the angular frequency, with a β2 

dispersion factor (ps
2
/km) and is measured per unit length (ps/(nm.km)). The dispersion 

(ps/(nm.km)) is the propagation time difference that is observed around a kilometer of optical 

fiber between two spectral component spaced by 1nm. 

 

 

𝜈𝑔  =
𝜕𝜔

𝜕𝛽
                                                                         (1.2) 

𝛽2  =
𝜕𝛽1

𝜕𝜔
=

𝜕
1

𝜈𝑔

𝜕𝜔
                                                                (1.3) 

 

𝐷 =
𝜕𝛽1

𝜕𝜆
= −

2𝜋𝑐

𝜆2 𝛽2                                                          (1.4) 

 

The dispersion parameter is called normal when D<0 (β2>0), and anormal when D>0.  

The typical value D is approximately 17 ps/(nm.km) for standard fiber at 1550nm.  

Likewise, CD can become a cumulative effect along the propagation in all fiber sections 

and it can be reduced through special fiber sections with an opposite dispersion sign, called 

dispersion compensating fiber (DCF) or dispersion compensating module (DCM) for 
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terrestrial system. To compensate the accumulated dispersion, these modules are placed 

regularly along optical network. Their typical values are [-100; -50] ps/(nm/km) at 1550 nm. 

 

 Modal dispersion  

 

Modal or intermodal dispersion is produced in MMF as a result of the differences in the 

linear properties of the modes. Since the modes are generally not excited equally and they 

have different effective indices (𝑛eff), they can travel at different velocities producing a 

differential mode group delay (DMGD). Note that the modal dispersion can be quantified as 

the DMGD and it depends on the refractive index profile of the fiber. For instance, the modal 

dispersion can be minimized by using an optimum parabolic profile. 

In the context of MM transmission, this effect could introduce a distortion of the signal 

that results in transmission errors. However, if the transmission distance is short, the modal 

dispersion effects could be almost negligible. In long haul transmission, the modal dispersion 

limits the transmission rate and it is all the more significant when the time symbol (Ts) is 

smaller than the propagation time difference between the fast and slow mode (τr).  According 

to equation (1.5), the delay is proportional to the fiber transmission length. Here, 𝑛g,max is the 

group index which corresponds to the group velocity of the propagating mode. 

 

 

𝜏𝑟 =
𝐿

𝑐
. 𝛥𝑛𝑔,𝑚𝑎𝑥 = 𝐿.𝐷𝑀𝐺𝐷                                                          (1.5) 

𝑛𝑔,mode =
𝑐

𝜈g,mode
= 𝑛𝑒𝑓𝑓,mode + 𝜔.

𝜕𝑛𝑒𝑓𝑓,mode

𝜕𝜔
                                        (1.6) 

 

Multimode dispersion does not occur if the waveguide allows only one mode to propagate 

(Δ𝑛g,max=0). 

 

 

 

 Polarization mode dispersion (PMD) 

 

The speed of propagation of the light depends on the index of refraction of the optical 

fiber in the direction of oscillation of the electric field. For instance, if we consider a short 



Generalities of the optical communication transmission   
 

44 

 

length of SMF and an index difference between the x and y directions, a wave that travel in 

the z direction can be decomposed into two waves having x and y electric fields. These waves 

propagate at slightly different speeds which lead to an accumulation of the optical phase shift 

and differential delay as a function of the distance. The optical fiber that presents this optical 

phase shift can be called birefringent.  

Birefringence in the optical fiber can be produced by geometric imperfections (lack of 

symmetry) that lead to a core deformation making its form elliptical. Likewise, the differential 

group delay (DGD) is due to the dependence of the birefringence with the wavelength. PMD 

is defined as the average value of DGD and maybe responsible of output pulse broadening. In 

figure 1.14, Note that the optical fiber birefringence can cause a difference in the propagation 

time as a result of the different optical axes due to one polarization mode tending to travel 

faster than the other. 

 

 

Figure 1-14: PDM impact on the transmitted pulse. 

 

 

Birefringence can be modeled by dividing the optical fiber in several pieces, each piece 

having a random orientation axis whose evolution is time dependent. The propagation time 

differences between both polarization states are known as Differential Group Delay (DGD). 

The DGD is different along the fiber and has a stochastic nature, following a Maxwellian 

Fiber without  PDM 

Fiber with PDM 
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distribution [Poole, 1991] for an instantaneous DGD. The PMD is the mean value of the DGD 

[Frignac, 2003]. 

𝑃𝑀𝐷 =< 𝐷𝐺𝐷 >                                                          (1.7) 

 

By coupling the polarization modes the mean DGD can be increased with the square 

root of the transmission length (√𝐿). 

 

𝑃𝑀𝐷 = 𝑃𝑀𝐷𝑐𝑜𝑒𝑓𝑓. √𝐿                                                          (1.8) 

 

The accumulated PMD is given in ps  and its coefficient in ps/km
0.5

. Typical PMD of a 

transmission fiber is today between 0.1 to 0.04 ps/km
0.5

. Thereby, PMD limits the 

transmission distance to 10000 km (at 10Gb/s) and to 600km (at 40Gb/s). PMD is difficult to 

reduce, it is generally necessary to introduce an automatic feedback system in the context of 

direct detection receiver or a digital signal processing after coherent detection. 

 

 Polarization dependent loss (PDL) and polarization dependent gain 

(PDG) 

 

In PDL and PDG, the attenuation (or gain) depends on the polarization state. The 

difference between them is that PDL comes from the passive components and the PDG comes 

from saturated amplifier (EDFA) gain anisotropy. The combination of these effects produces 

time varying degradations. We can express PDL or PDG as the ratio between the maximum 

and the minimum losses (or gain) depending on the input polarization state. These effects 

cause OSNR variations, due to the power instabilities. 

 

1.3.2 Nonlinear effects 

 

The nonlinear optical effects are produced because all materials behave nonlinearly at 

high intensities and their refractive indices change with intensity [Friesem, 1989]. The 

nonlinear phenomena most relevant for optical system are summarized in Fig. 1.15.  
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Figure 1-15: Nonlinear Effect in the optical fiber. Stimulated Light Scattering, Stimulated 

Brillouin Scattering, Stimulated Raman Scattering, Nonlinear Phase Modulation (Self-Phase 

Modulation, Cross-Phase Modulation), and Four-Wave Mixing. 

 

However, we will not describe the Raman and Brillouin effects. 

Instead, we will focus in particular on the Kerr effect distortions, because the capacity in 

an optical fiber is strongly affected by this effect. Kerr effect produces a change of refractive 

index of the medium (𝑛) in proportion to the intensity (I). 𝑛o and 𝑛2 are linear and nonlinear 

refractive indeces, whose typical values in the silica are ɳo≈1.5 and ɳ2≈2.7.10
-20 

m
2
/W. 

𝑛 = 𝑛𝑜 + 𝑛2. 𝐼                                                               (1.9) 

As a consequence the accumulated phase shift in the fiber can increase after a 

transmission distance L. 

ф = 𝑘 ɳ𝑜𝐿 + ф𝑁𝐿                                                               (1.10) 

Here, k is the free space wavenumber and ф𝑁𝐿 is a nonlinear phase shift. This phase 

shift depends on the optical signal power and the fiber nonlinear coefficient.   

Kerr effect is usually decomposed into the Self-Phase Modulation (SPM), Cross-Phase 

Modulation (XPM) and Four-Wave Mixing (FWM). SPM leads to the frequency chirping of 

optical pulses as a consequence of the nonlinear phase shift accumulated in the fiber. The 

SPM-induced chirp affects the pulse shape and often generates additional pulse broadening. 

As a consequence it may aggravate the problems produced by the chromatic dispersion.  
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XPM is produced when two optical signals with different carrier wavelengths are 

propagated in the same fiber and one signal affects the phase of the others. This effect can be 

two times stronger than the SPM. XPM also affects the communication system that uses 

wavelength division multiplexing (WDM) technique to increase the capacity, because it mixes 

different optical signals modulated around different carrier wavelengths. Hence, if two or 

more optical channels have close wavelength and they are transmitted simultaneously, the 

intensity variations of a particular channel can produced a phase fluctuation over another 

channel. The nonlinear phase shift for a specific channel depends not only on the power of 

that channel but also on the power of other channels which implies that each WDM channel 

must have an adequate equalization.  

Another effect is the four-wave mixing (FWM) which is considered as an inter-

modulation phenomenon. FWM appears as result of the interactions between two wavelengths 

that produce two extra wavelengths in the signal. FWM can be generated, for example, 

between Raman pumps.   

One way to mitigate the nonlinear effect is by dispersion management [Bigo, 2006], or 

DSP after coherent receiver. 

 

 How to increase capacity in optical communications systems  1.4

 

To increase the spectral efficiency, we can combine the multilevel modulation formats 

and the multiplexing technique. Higher order modulations with M=2
n
 bits per symbol (QPSK, 

M-QAM) can increase significantly the transmission rate, but also limit the transmission 

performance due to the lower robustness to signals impairment or noise addition.   

Some of the most typical multiplexing techniques are detailed hereafter. 

 

1.4.1 Wavelength division multiplexing (WDM) 

 

In WDM, each channel is modulated with a particular carrier wavelength (see Fig. 

1.16) and then all channels are combined by optical multiplexer. The channels may have 

different phase or time shift before combination. By this technique, all channel bit rates are 

usually identical; hence the total throughput is the sum of the individual channel bit rates.  
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Figure 1-16: Optical transmission system with WDM. 

 

 

Dense-WDM is used for long distance and is approximately limited to 80 wavelengths 

using 50GHz ITU-Grid in the C-band of EDFA, since the physical realization of DWDM 

networks requires accuracy for the wavelength selective devices. Incidentally, some non-

linear effects can appear due to the wavelength proximity on certain channels, or by the use of 

the optical amplifiers to provide long transmission distances. 

 

1.4.2 Polarization division multiplexing (PDM) 

 

As we discussed in section 1.3.1, guided modes in SMF can exhibit degeneration in 

polarization, which allows to have two orthogonal polarization modes and to use them as 

independent channels with an effective half-symbolrate, maintaining the bit rate. Thereby, 

two independent signals can be sent on two orthogonal transverse polarization states and be 

recovered by separations of these polarizations. However, SMF can exhibit an unwanted 

birefringence which implies a time delay between the polarization components of the signal or 

a modification in the polarization state. This rotation of the polarization state should be 

corrected at the reception as well as the impact of the temporal translation of the symbols. 

After the polarization recovery, the signals are treated in order to compensate the 

dispersion effect in the polarization by using MIMO (Multiple Input Multiple Output), 

presented in more details in section 1.4.3 and Appendix.  

PDM can be exploited in combination with WDM to increase the capacity. It is also 

known as dual polarization (DP).  
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1.4.3 Compensation of linear impairments  

 

The digital equalization for a dually polarized system is shown in Fig. 1.17. Note that 

a PBS divides the signal into two arbitrary and orthogonal signals with x-y polarization. 

Therefore, the incoming signals are first detected with phase and polarization diversity 

coherent receiver to obtain the full information of the optical signal and then are recovered in 

baseband modulated signal by using the dual-polarization optoelectronic downconverter. The 

outputs of polarization DEMUX and dual downconverters are connected to an anti-aliasing 

filters with impulse responses p(t) correctly synchronized [Meyr, 1997]. Since the dual-

polarization downconverters linearly recover the electric field, CD and PMD can be 

compensated in the electronic domain after photo-detection by using tunable analog filters. 

However, they are difficult to make adaptive, so the digital equalization is more advisable.  

 

 

 

Figure 1-17: Digital equalization with dual polarization. 

 

 

As discussed above, CD and PMD can be compensated in the electronic domain after 

detection by using digital equalization. At the output of the dual polarization receivers, it is 

possible to obtain information on the received electrical field, which permits compensation of 

distortion by linear filter. The two most known linear filters are infinite impulse response 

filter (IIR) and finite impulse response filter (FIR). IIR filter allows CD compensation 

[Goldfarb, 2007] and it has less cell numbers or taps, the taps number being associated to the 

impulse response system, but it can require very complex receiver due to the need to use the 

time-reversal filters. Thus, the equalization by FIR is more appropriate under DP coherent 

system.  
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In the digital equalizer phase are taken N samples to compute the minimum-mean-

square error (MMSE) estimates. Later, the error is obtained in the absence of other channel 

effects, and this value is used in the mean-square error (MSE) matrix associated with 

equalizer in order to find the optimized equalizer matrix by using one of the two algorithms: 

the least mean square (LMS) or recursive least squares (RLS) [Widrow, 1985]. 

This block is also called MIMO 2x2, the number 2 is associated to two input data series 

and two output data series. In this case each FIR has 2n taps for symbol, because the impulse 

response is measured as n.Ts, where Ts is symbol duration. This technique is also used in 

MMF. 

 

 Toward spatial division multiplexing (SDM) 1.5

 

Capacity demand in the optical communication is ever growing owing to the increase in 

the number of customers and new services [Essiambre 2009]. As we have seen in the section 

1.4, despite the effort to overcome the limits in the single-mode fiber, the SE maximum and 

capacity seem to be insufficient to cover the new requirements of optical networks. As we 

described above, the design of SMF did not evolve and their main problems are the 

nonlinearity effects (as Kerr effect), which have prevented a greater capacity, regardless of the 

efforts in reducing the losses, in finding an appropriate modulation format of higher order, in 

increasing the OSNR, in increasing the WDM channels number or by combination of all the 

above. To date, the highest SE reported is 15.3bit/s/Hz [Beppu, 2014] by using the 

combination of a high modulations format 2048-QAM (2
11

 or 11(bit/s/Hz)) and Polarization 

Division Multiplexing (PDM), but over a distance of 150 km. 

Independently of the metric used, the SMF communication systems may not be 

sufficient to satisfy the future demands (See Fig. 1.18), as it has been demonstrated in several 

experiments [Sano, 2012], [Qian, 2011].  One of the solutions could be to install additional 

optical fibers, but the installation cost will also involve the cost of the optical system 

communication equipment, resulting in a deployment without decreasing the cost per bit 

transmitted that is prohibitive for the current market, because this cost per bit has declined and 

continue to do so. Research, laboratories and industries are finding new strategies to increase 

the capacity by considering a reduction of cost and consumption per bit. One of the proposals 

consists in using fibers based on Space Division Multiplexing (SDM).  
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SDM can be technically viable due to advances in accurate fabrication methods and 

design of the optical fiber.  SDM is another technique of multiplexing and it uses a 

multiplicity of space channels to increase the capacity at the expense of a change in the 

conventional infrastructure that could increase the cost of the installation but with the 

advantage of covering future capacity demands on the long term without adding new optical 

fibers (SMF) and elements to the system. The SDM communication system has been made 

possible by the coherent detection technologies supported by digital signal processing because 

they can enable multiple inputs and multiple outputs processing (MIMO). Thus, the capacity 

increase given by SDM system has been demonstrated in laboratory and commercial 

environment. 

 

Figure 1-18: Capacity limit for single mode fiber [Mizuno, 2017]. 

 

In SDM, many fibers have been proposed to support SDM transmission in optical 

networks [Richardson, 2013][ Zhu, 2013][Bai, 2013], but the most typical fibers to reach high 

spectral efficiency are multi-core fiber (MCF) and Few-mode fibers (FMF) or the 

combination of both (see Fig. 1.19).  In this section, we will concentrate mainly on FMF. 

  In the following, we use the term core multiplexing for MCF and mode division 

multiplexing (MDM) for FMF. 
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Figure 1-19: Fibers proposals based on SDM to achieve high spectral efficiency (HSE). 

 

 

1.5.1 Components used in core multiplexing and MDM. 

 

The commercial implementation of SDM could be a challenge, especially in the 

amplification phase and digital signal processing.  

In the first case, the conventional optical amplifiers can hardly ensure similar gain 

between each spatial mode (FMF) or each core (MCF) and therefore we need to take into 

account each mode or core separately, and then amplify each of them individually. In the case 

of FMF, multimode amplifiers have received broad acceptance by the scientific community 

by using and adapting the conventional methods of amplification based on Erbium doped 

fiber (FM-EDFA [Bai, 2011], [Le Coq, 2012], [Ono, 2015] and FM-Raman [Weng, 2016]).  

Likewise, the MCF amplifiers have been studied on the EDFA and Raman amplification: 

MCF-EDFA and MCF-Raman [Krummrich, 2012].    

In both cases, the signal can deteriorate because of crosstalk from the inter-channel 

coupling, the distortion caused by CD and the accumulated differential mode group delay 

(DMGD). To compensate them, the frequency domain equalizers are used (MIMO-Multiple 

Input Multiple Output) and the DSP [van Uden, 2013] [Arik, 2014]. MIMO-DSP uses 

algorithms that allow tracking fast changes of the channel, even though it can become difficult 

over large accumulated DMGD, since a large accumulated DMGD requires a large number of 

training blocks and taps which increases the equalizer complexity. MIMO also depends on the 

number of the modes or core [Inan, 2012].  In FMF, these equalizers are well-known as 

uncoupled-MIMO or coupled DSP-MIMO. 
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For a DSP-MDM with N modes, the MIMO would need to be scaled to 2Nx2N, or 

2N
2
 adaptive filters (FIR), and 4N adaptive filters (FIR) for uncoupled-MIMO. Although the 

uncoupled-MIMO seems less complex, scalability could be compromised by the increased of 

the number of modes and by the use of PDM. Uncoupled-MIMO is not able to compensate 

the DMGD and mode crosstalk completely. In other words, the propagation speed difference 

between each polarization state would generate a progressive delay that will allow the 

coupling of information, this phenomenon is generally compensated by the equalization. 

Thus, DSP-MIMO even if more complex is suitable to compensate DMGD and mode 

crosstalk, by taking into account the length of the impulse response spread since it must be 

shorter than the equalization filter length.  In both cases, each propagation mode is seen as an 

independent transmission channel.     

Besides, we need to consider the design of the passive components to ensure the 

transmission by core multiplexing or MDM. Here, we will mention the multiplexer and de-

multiplexer, called MUX. However, regardless of the passive components, they must be 

designed to ensure low insertion loss, low core or mode dependent loss, low crosstalk among 

modes or cores and wide bandwidth to authorize wavelength division multiplexing techniques 

on SDM signals. 

Many multiplexer and de-multiplexer for FMF and MCF have been proposed: bulk 

free-space (FMF and MCF), optical photonic lanterns (FMF), photonic integration technology 

(FMF), 3-dimensional waveguide (3DW) (FMF and MCF), multi-core fiber coupler and fiber-

based couplers (FMF and MCF).  

The bulk free-space optics use thin glass plates or phase plates with prescribed spatial 

distributions of phase to generate a spatial modulation and excite a given mode of the FMF 

[Igarashi, 2014]. To multiplex N spatial modes, it is necessary to have N-1 lossy beam 

combiners (See Fig. 1.20), which leads to high insertion loss. It occupies more space and it 

could present problems inherent to the manufacturing defects of the phase plates. However, it 

has been used in seven cores of an MCF [Tottori, 2012]. 
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Figure 1-20: Phase-plate based SMUX 

 

 

Besides, some multiplexer and de-multiplexer for MCF use the fan-in/fan-out 

components. Basically, they are composed of different SMF, whose core is fused and tapered, 

and spliced to an MCF [Zhu, 2011] (See Fig. 1.21).  The limitation is in the end of the fan-

in/fan-out of the MCF, since the arrangement of the SMF has to be as similar as possible to 

that of the line MCF. There is also MUX fan-in/fan-out which uses free space optics [Tottori, 

2014]. 

 

 

Figure 1-21: Multiplexer for MCF. 

 

 

One of the most promising proposals for SMUX is the photonic lantern. They are 

fibers that use the adiabatic conversion from a multimode fiber to a series of single-mode 

fibers or vice versa (See Fig. 1.22). Photonic lantern can be all-fiber technology manufactured 

[Leon-Saval, 2014] and 3D waveguide technology [Gross, 2014]. To date, [Ryf, 2014] has 

demonstrated experimentally the use of the SMUX with 3 modes FMF.  
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Figure 1-22: Photonic lanterns 

 

The cheapest and most compact MUX solutions are based on the photonic integration 

technology [Koonen, 2012]. The silicon-on-insulator (SOI) [Heck, 2013] and indium 

phosphide (InP) [Soares, 2011] are the most known. The principle is to integrate the optical 

functionalities on a single chip. However, the photonic lantern presents a lower MDL. 

The fiber-based couplers use the mode conversion by coupling the fundamental mode 

of an SMF to a higher-order mode of an adjacent FMF, where the propagation constant of the 

higher-order mode is the same as that of the SMF. The limitation is that fiber alignment 

should be precise to obtain as appropriate performance.  

The core and cladding in 3-dimensional waveguide are manufactured by pure fused 

silica on the use of femto-second laser pulses that are focused inside a fused silica substrate 

(See Fig. 1.23). The waveguides in 3D are created by locally modifying the refractive index 

of glass (See Fig. 1.24). This provides a solution to modify the refractive index of glass 

locally and generate waveguides in 3D.  

 

 

Figure 1-23: The waveguide is inscribed in 3-dimensional by a femto second laser. 
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In 3-dimensional waveguide, the difference of the refractive index between core and 

cladding is important, therefore it must be low for MCF coupling because each core is single 

mode, and large for FMF because the modes share the same core and become more sensitive 

to the coupling, even more so if we have a large number of modes. A spatial-multiplexer 

based on this technique has been demonstrated for 6 modes FMF [Chen, 2014].  

 

  

Figure 1-24: 3-dimensional waveguide a) Left: SMUX for 7-core MCF and b) Right: SMUX for 

6-mode FMF [Chen, 2014]. 

 Another promising spatial MUX/DEMUX with very low intrinsic loss and high modal 

selectivity are those based on the Multi-Plane Light Conversion (MPLC). They consists of a 

series of phase masks separated by a Fourier transform or free-space propagation. In practice, 

they use a multi-pass cavity where the successive phase profiles are all printed on a single 

reflective phase plate. This cavity is formed by a mirror and the reflective phase plate, and 

performs the successive phase profiles and optical transforms. One of the advantages is its 

scalability to the high number of modes [Morizur, 2015] [Barré, 2017]. 

1.5.2 Few modes fiber (FMF) and Multicore fiber on transmission   

 

The Few modes fiber (FMF) have only one core that supports multiple modes (fewer 

modes than an MMF) of propagation and each mode can carry different information. This 

strategy allows to increase “N modes” times the unitary transmission rate of an SMF.  As all 

modes share the same physical space, the inter-modal crosstalk and the coupling are 

inevitable. As we will see later, in some cases the coupling may be beneficial (chapter 3). 

Increasing the number of spatial modes for FMF is not difficult, but it could 

complicate the multiplexing and de-multiplexing process.  By the same token, the bending 

loss of the higher-order modes will be larger than the lower-order modes. However, the 

manufacturing process of the FMF is similar to the conventional fiber which makes them 

families promising candidates to overcome the capacity crunch. 
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The FMF can be divided into weakly-coupled and low DGD (strong-coupled). FMF 

with weakly-coupling could be more adapted to short-distance applications [Sillard, 2016], 

because the transmission distance is limited by the highest loss and coupling between the 

modes. FMF with low DGD with DSP-MIMO could be used in long-haul transmission. To 

decrease the group delay spread (GDS) is equivalent to reduce the DGD. To do so, we can 

apply one of two strategies (See Fig. 1.25). The first one consists in reducing the DMGD by 

compensation techniques, such as MIMO-DSP or insertion of DMGD compensation spans by 

designing fiber with a DMGD as small as possible; generally these fibers have a graded index 

profile. The characteristic of this method is that group delay spread (GDS) increases linearly 

with the distance. The second one consists in increasing the coupling by fiber design or by 

intentional perturbation. Thereby, we expect that the GDS only depends on the square root of 

the distance. We will study in details these two strategies in the chapter 3. 

 

 

Figure 1-25:  Decreasing the DGD 

 

 

To date, the highest SE for FMF (low-DGD) has been reached with 6 SDM channels 

[Rif, 2013]. 

The MCF [Inao, 1979] comprises several independent cores in one fiber core, thus the 

capacity is increased in N cores times the unitary transmission rate of an SMF. It can be also 

divided into weakly-coupled and low DGD. The most common are the weakly-coupled, 

because the MCF with very low DGD needs experimental validation.   The weakly-coupled 

technology is considered as the simplest technology in MCF, because it is not necessary to 

recover the signal by complex equalization.  These fibers have a high spatial density larger 

than FMF, regardless of the crosstalk between any cores. The crosstalk can be reduced by 

using a trench assisted inner cladding [Takenaga, 2011], lower-index inner-cladding, or the 

inter-core crosstalk management and multicarrier nonlinear compensation [Kobayashi, 2013].  
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To date, an MCF weakly-coupled can reach a transmission capacity of 2.15 Pb/s over 

31 km, using 22 SDM channels and a spectral efficiency of 214 b/s/Hz [Puttnam, 2015], 

exceeding the FMF capacity (See Fig. 1.26).  The physical implementation with other devices 

and the non-standard manufacturing could limit its use in the telecommunication business. 

Another interesting fiber candidate to improve the spectral efficiency is the FM-MCF 

fiber that is the combination between few mode and multicore fibers. One of the challenges is 

to determine the distance between the neighboring cores by considering a similar crosstalk to 

the conventional MCF and taking into account the transmission distance and the modulation 

format. To date, 114 SDM channels (19 cores and 4 LP modes) with a spectral efficiency of 

456 bit/s/Hz have been reported by [Soma, 2015].  

 

 

 

Figure 1-26: Spectral efficiency between different technologies [Sillard, 2016] 

 

 

A comparison between SDM technologies (MCF and FMF) with the SMF is shown in 

table 1. The comparison is based on the fiber characteristics, the elements of the 

communication system, complexity and applications.   These parameters give us an idea about 

the limitations and advantages of each communication system. For example, we can say that 

the FMF modes share the same core which brings about the undesired intermodal crosstalk 

between two spatial or polarization modes, similar to that MCF due to the proximity of their 
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cores. If the space density increases, the effective area of FMF and MCF should increase in 

comparison to the SMF. Therefore, the large core FMF could be advantageous to limit the 

nonlinearity effect, but these fibers have more modes which could produce more crosstalk and 

other negative parameters (intermodal four wave mixing, for example). The index profile is 

also important in the design of the optical fiber to reduce the crosstalk (Step-Index) or DGD 

(Graded-Index).  

 

Table 1: Evaluation between SMF, MCF and FMF. 

Parameter SMF MCF FMF 

Fiber loss <0.2dB/km Low (~SMF) Low (~SMF) 

Fusion splicing Easy 
Special fusion, 

medium to high loss 
Easy, low loss 

Effective area (µm
2
) From 18.8 to 76.3 ~72 to 116 

Large (depend mode 

number) 

Intra-mode 

nonlinearity 
~SMF Standard to high Low  

Inter-mode 

nonlinearity 
No Low  Low to medium 

Crosstalk 
Very low (< -20dB) 

Medium 
Low to High (~ -

25dB) 

Dispersion (ps/nm.km) From -162 to 17     

Amplifiers EDFA yes yes yes 

Amplifiers number N N 1 

Number of ROADM 
N N 1 

DSP complexity Low Medium Medium to high 

Multiplexation cost 

Theoretical 
SESMF Ncore*SESMF Nmodes*SESMF 

Routing Yes No Yes 

Index Profile SI, GI, 3-clad to 4-clad SI, GI with trench SI, GI with trench 

Application Little to high reach 
Medium to high 

reach 
Little to high reach 
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 Summary 1.6

 

We have introduced the fundamentals of SMF optical transmission systems and the 

main physical effects that reduce the transmission distance and capacity. We discussed that 

the optical fibers are affected by loss, dispersion, non-linear effects, macro bend and micro 

bend and other drawbacks, needing the recovery of signal at the communication end.  Under 

this approach, the fibers and the communication system must be carefully designed.    

We have described the different optical fibers based on SDM and the conventional 

SMF. Indeed, figure 1.27 summarized the different SDM technologies that offer greater 

spectral efficiency and they are compared with the SMF [Sillard, 2016]. In any of these cases, 

the SMF spectral efficiency (~ 15.3b/s/Hz [Beppu, 2014]) is lower than the SDM 

technologies.  Thereby, the research points to three SDM strategies: weakly coupled MCF, 

FMF-MIMO (strong coupled) and weakly coupled.  

The maximum SE is reached with weakly coupled MCF+MIMO FMF or weakly 

coupled MCF. Yet, many are betting on FMF, because it has an easier manufacturing method. 

Thereby, the interest of this research is focused in FMFs.   As was commented above, there is 

still much to be improved from these emerging fibers and the elements that make up the 

communications system. 

Later, we will describe the FMF propagations and its constraint, specifically the mode 

coupling.  
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2 Propagation in the Few Modes Fiber (FMF) 

 

Optical fibers are mainly composed of silicon dioxide (SiO2) and small amounts of other 

chemicals are often added. The purity and chemical composition of the glass used in optical 

fibers as well as the fiber opto-geometrical parameters determine their characteristics, such as 

the attenuation and chromatic dispersion. These parameters are crucial in the design of an 

optical fiber, because they could modify the performances of the fiber, such as absorption and 

scattering. In this study, we will not focus on the manufacturing process, nor on the chemical 

composition of the optical fiber, but rather on the propagation process of the optical fiber. 

The propagation of light inside an optical fiber follows distinct patterns called modes. A 

mode is fundamentally a path that drives light through of the fiber. Therefore, the optical fiber 

can be categorized into: single mode (SMF) and multimode (MMF). In this study, we will 

focus on special type of MMF called FMF for Few Modes Fiber, as introduced in the chapter 

1.       

The basic structure of an optical fiber consists of two areas: the core and the cladding 

(See Fig. 2.1a). The core area has a refractive index, denoted 𝑛(𝑥, 𝑦), which can vary. In 

variable-refractive-index, the maximum value (𝑛1) is found at the fiber core axis 𝑟 = 0 (See 

Fig. 2.1). Whereas the cladding area has a smaller refractive index (𝑛2) which is usually 

lower than 𝑛 to guarantee the total internal reflection inside the core.      

 

Figure 2-1: Graded index profile n(x,y) with variations only over the core. 

 

In addition, the variation in refractive index over the cross section of the waveguide is 

given by the profile 𝑛(𝑥, 𝑦), which can also be represented as a function of the fiber radius 

𝑛(𝑟). In this study, a general description of the refractive-index profile can rely on the alpha 
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or power-law profiles (cf. equation 2.1) from [Gloge, 1973] that are mainly used to describe 

parabolic fiber profiles. 

 

𝑛2(𝑟) = 𝑛1
2. [1 − 2. ∆. 𝑓(𝑟)];          𝑓(𝑟) =   (

𝑟

𝑎
)
𝛼

             𝑟 < 𝑎                  (2.1) 

     

Here, r is the radial coordinate, α is the power-law exponent, a is the core radius.  Δ is 

the relative refractive index difference between the maximum index of the core  𝑛1 and the 

cladding refractive index 𝑛2. 

∆≈
𝑛1

2−𝑛2
2

2.𝑛1
2                                                                      (2.2) 

 

As discussed in the section 1.2.4, the most well-known refractive index profiles are the 

step index profile and the parabolic index profile. By equation 2.1, we can account for them 

by changing the power of the exponent α in f(r). f(r) describes the shape of the profile, and so 

we can obtain a Heaviside-step for α=∞ (step index profile) or a parabolic profile for α=2.  

Besides, the propagating modes calculation methods must be adapted to the refractive 

index profile. The following is a sum-up of the 2 main propagating modes calculation 

methods: 

 

a) For fibers with step index profiles, the modes can be resolved analytically using the full 

set of Maxwell’s equations. In this case, full vectorial modes are obtained. However, in 

some cases (low index contrast hypothesis), approximations can be made to simplify the 

equations and scalar modes can be obtained (known as Linearly Polarized (LP)). These LP 

modes are useful approximations to understand the modal cutoff and temporal propagation 

characteristics of the fiber. 

b) For fibers with parabolic or graded index profiles, the full or exact solutions are 

impossible to obtain analytically, because the refractive index varies along to the core. 

When we use this profile some approximations are needed to obtain the analytical 

solutions. The approximate solutions can be obtained in the framework of the weakly 

guiding approximation by considering that the refractive index difference between the 

core and the cladding tends to zero.   

In this research, we will consider a graded index FMF. Consequently, we will use an 

approximation of the Maxwell’s equations which admits analytical solutions under the 

form of either Laguerre-Gauss [Masaki, 1978] or Hermite-Gauss [Shemirani, 2009] 
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polynomials considering only an infinite square law profile (refractive index infinite, see 

Fig. 2.2). The Laguerre-Gauss will be used throughout the entire thesis. 

 

Figure 2-2: Exemplary refractive graded index profile n(x,y). The infinite parabolic profile used 

by the Laguerre-Gauss method. 

 

The definitions and derivations follow the outline of Bures’s book [Bures, 2009]. 

In this chapter, our aim is to study the characteristics of bound and radiated modes for a 

set of graded-index profile fibers by numerical means. The calculation of the guided modes 

will use a homemade tool developed by researchers from Prysmian group. The validation of 

this method has been proven in cases of guided and leaky modes by [Molin, 2016].  

Therefore, the goals of this chapter are to understand: 

 

 How to obtain the different modes (guided, leaky and radiation) of an FMF 

 How to improve the performances of an FMF 

 The effect of the number of modes over different parameters of the FMF  
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  Propagation in Optical fiber 2.1

 

 

Wave propagation in FMFs is similar to conventional MMFs, the main difference lies in 

a reduced number of modes and the fact that each mode can potentially be used to transmit 

information. Therefore, we will start with the main definition without making any distinction 

on fiber type. In a simplistic view, light is reflected on the core-cladding boundary and the 

wave can interfere with itself giving rise to complex interference patterns, called transverse 

modes. These modes are the solutions of the propagating equations which result from the 

Maxwell equations applied on the waveguide. To analyze the optical fiber, we consider the 

light as an electromagnetic and monochromatic wave with a propagation constant β and an 

angular frequency ω. Thus, the electric E⃗⃗  and magnetic fields H⃗⃗  of this electromagnetic and 

monochromatic wave can be written as: 

 

                                                         E⃗⃗ (r , t) = E⃗⃗ (x,y,z)e
i(ωt)                                                (2.3a) 

                                                         H⃗⃗ (r , t) = H⃗⃗ (x,y,z) e
i(ωt)                                               (2.3b) 

 

The following set of Maxwell’s equations describes the electric and magnetic fields 

arising from distributions of electric charges and currents, and the variation of those fields 

change in time and space. 

                                                         ∇⃗⃗ . D⃗⃗ = ρ                                                                      (2.4a) 

∇⃗⃗ . B⃗⃗ = 0                                                                      (2.4b) 

∇⃗⃗ × E⃗⃗ = −
∂B⃗⃗ 

∂t
= −µ𝑜

∂H⃗⃗ 

∂t
= −µ𝑜𝑖𝜔H⃗⃗                              (2.4c) 

∇⃗⃗ × H⃗⃗ = j +
∂D⃗⃗ 

∂t
                                                              (2.4d) 

Here, vectors D⃗⃗ , B⃗⃗ , E⃗⃗  and H⃗⃗  : are the electric displacement field, the magnetic induction 

field, the electric field and the magnetic field respectively. 

Let us consider that the monochromatic wave propagates in an isotropic, homogenous 

medium, non-magnetic material and without charge. As a result, j (free current density vector) 

and ρ (free charge density) are null, and thus the Maxwell’s equations can be expressed as: 

 

D⃗⃗ = εE⃗⃗ = 휀𝑜(1 + χ𝑒)E⃗⃗                                                      (2.5a) 
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B⃗⃗ = μ0H⃗⃗                                                                            (2.5b) 

 

Here, ε, 휀𝑜, μo and χe are the permittivity, the vacuum permittivity, the vacuum 

permeability, the electric susceptibility. These parameters are related to the material. 

Likewise, we can associate the refractive index of the medium with the relative permittivity or 

dielectric constant, 휀𝑟, by the following expression 𝑛 =  √휀𝑟  to rewrite the equations in term 

of 𝑛. 

By using the constitutive relations (2.5a and 2.5b) and (2.3a) and (2.3b), the 

Maxwell’s equation (2.4a, 2.4b, 2.4c and 2.4d) can also be written in terms of E and H vectors 

as follows: 

∇⃗⃗ . (휀𝑟E⃗⃗ ) = 0                                                                        (2.6a) 

∇⃗⃗ . (µ𝑜H⃗⃗ ) = 0                                                                         (2.6b) 

∇⃗⃗ × E⃗⃗ = −𝑖𝜔μ𝑜H⃗⃗                                                              (2.6c) 

∇⃗⃗ × H⃗⃗ = 𝑖𝜔휀𝑜𝑛
2E⃗⃗                                                             (2.6d) 

 

These equations allow finding the homogeneous vector wave equations.     

          

2.1.1 Homogeneous vector wave equations 

      

Because the vector wave equations are current density free, these equations will be 

homogeneous. They are obtained from equations 2.6c and 2.6d only in terms of E⃗⃗  or H⃗⃗ , 

applying the curl operator (∇⃗⃗ ×)  to the equation 2.6c, and substituting the equation 2.6d to the 

result of the previous procedure.  

Therefore, we get the equation 2.7a for the electric field by also considering the 

following vectorial identities:  ∇⃗⃗ × (∇⃗⃗⃗⃗ × E⃗⃗ ) = ∇⃗⃗ (∇⃗⃗ . E⃗⃗ ) − Δ E⃗⃗   and  ∇⃗⃗ . (∇⃗⃗ × E⃗⃗ ) = 0. 

 

∇⃗⃗ × (∇⃗⃗⃗⃗ × E⃗⃗ ) = ∇⃗⃗ (∇⃗⃗ . E⃗⃗ ) − Δ E⃗⃗  = 𝑛2𝑘𝑜
2E⃗⃗                                  (2.7a) 

 

Following the same procedure, we can get the equation 2.7b for the magnetic field. 

Note that in this case we apply the curl operator to the equation 2.6d, and later we substitute 

the equation 2.6c in the previous result.  
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∇⃗⃗ × (∇⃗⃗⃗⃗ × H⃗⃗ ) = ∇⃗⃗ (∇⃗⃗ . H⃗⃗ ) − Δ H⃗⃗ = 𝑖
𝑘𝑜

𝜂0
(𝑛2∇⃗⃗ × �⃗� + ∇⃗⃗ (𝑛2) × �⃗� ) = 𝑘𝑜

2𝑛2�⃗⃗� + 𝑖
𝑘𝑜

𝜂0
∇⃗⃗ (𝑛2) × �⃗�                                  

(2.7b) 

Here, 𝜂0  is the electromagnetic impedance of free space (~ 377 Ω). 

By combining the two curl identities (2.7a and 2.7b) and the above relations: 

∇⃗⃗ . (𝑛2E⃗⃗ ) = 0 =  𝑛2∇⃗⃗ . E⃗⃗ + E⃗⃗  ∇⃗⃗ 𝑛2 leading to   ∇⃗⃗ . E⃗⃗ = −∇⃗⃗ (ln𝑛2). E⃗⃗   

 

We obtain the two homogeneous vector wave equations:  

 

(Δ + 𝑛2𝑘𝑜
2)E⃗⃗ = −∇⃗⃗  (E⃗⃗ . ∇⃗⃗ ln(𝑛2))                                                     (2.8a) 

(Δ + 𝑛2𝑘𝑜
2)H⃗⃗ = (∇⃗⃗ × H⃗⃗ ) × ∇⃗⃗ ln(𝑛2))                                               (2.8b)     

 

Note that the equation 2.8a and 2.8b are expressed only by the terms E⃗⃗⃗  , H⃗⃗  and 𝑛2.  

 

2.1.2 Translation-invariant optical fiber 

 

Considering the propagation along the z-axis, the transversal and longitudinal 

components of the E⃗⃗ , H⃗⃗  fields can be written as: 

 

                                                         E⃗⃗ (r , t) = E⃗⃗ (x,y) e
i(ωt)e−i(βz)                                     (2.9a) 

                                                         H⃗⃗ (r , t) = H⃗⃗ (x,y) e
i(ωt)e−i(βz)                                    (2.9b) 

 

Equations 2.9a and 2.9b become 2.10a and 2.10b, by taking into account a fiber with a 

refractive index profile invariant along the z-axis. Note that the electric and magnetic field are 

expressed as a superposition of fields written in separated form (we have omitted the time 

dependence, ei(ωt)). 

  

 

E⃗⃗ (x, y, z) = E⃗⃗ (x, y)e−i(βz) = (E⃗⃗ t + �̂�. Ez )e
−i(βz)                                     (2.10a) 

H⃗⃗ (x, y, z) = H⃗⃗ (x, y)e−i(βz) = (H⃗⃗ t + �̂�. Hz )e
−i(βz)                                    (2.10b) 
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E⃗⃗ t ,H⃗⃗ t, Ez and Hz correspond to the transversal and longitudinal components of the 

electrical and magnetic field. In the same way, we can express the gradient operator and 

Laplacian vector as equations 2.11a and 2.11b, because the electrical and magnetic fields are 

only x and y dependent. 

 

∇⃗⃗  = ∇⃗⃗ t + �̂�
𝜕

𝜕𝑧
= ∇⃗⃗ t − iβ�̂�                                                    (2.11a) 

Δ⃗⃗ E⃗⃗  = ∇⃗⃗ t
2
E⃗⃗ +

𝜕2𝐸

𝜕2𝑧
= ∇⃗⃗ t

2
E⃗⃗ − β2E⃗⃗                                                (2.11b) 

 

Now, we rewrite the homogeneous equation (2.8a and 2.8b) [Bures, 2009], by 

applying 2.11a, 2.11b and reducing ∇⃗⃗ ln(𝑛2) to ∇⃗⃗ t ln(𝑛2), E⃗⃗ . ∇⃗⃗ ln(𝑛2) to E⃗⃗ t . 𝛻t ln(𝑛2). 

 

 (∇⃗⃗ t
2
+ 𝑛2𝑘𝑜

2 − β2) E⃗⃗ = −(∇⃗⃗ t − 𝑖β�̂�) (E⃗⃗ t . ∇⃗⃗ t ln(𝑛2))                                     (2.12a) 

                        β2E⃗⃗ = (∇⃗⃗ t − 𝑖β�̂�)(E⃗⃗ t . ∇⃗⃗ t ln(𝑛2)) + ∇⃗⃗ t
2
E⃗⃗ + 𝑛2𝑘𝑜

2E⃗⃗  

 

(∇⃗⃗ t
2
+ 𝑛2𝑘𝑜

2 − β2)H⃗⃗ = ((∇⃗⃗ t − 𝑖β�̂�) × H⃗⃗ ) × ∇⃗⃗ t ln(𝑛2))                                (2.12b) 

                                   β2H⃗⃗ = −((∇⃗⃗ t − 𝑖β�̂�) × H⃗⃗ ) × ∇⃗⃗ t ln(𝑛2)) + ∇⃗⃗ t
2
H⃗⃗ + 𝑛2𝑘𝑜

2H⃗⃗  

 

    The solutions of the equations 2.12a and 2.12b are eigenvectors, eigenmodes or modes of 

the linear operators that are associated to the eigenvalue β
2
.  β can be related to an effective 

index as in 2.13. This effective index represents the ratio of the propagation constant in the 

waveguide to the free space propagation constant. 

  

β =
2𝜋

𝜆
𝑛𝑒𝑓𝑓 = 𝑘𝑜𝑛𝑒𝑓𝑓                                                   (2.13) 

       

The eigenmodes or modes can be divided into two groups of guided-modes and 

radiation modes. In general, each mode has its own effective index. To distinguish the modes, 

we must consider the inferior and superior limit of β. Thus, the guided modes have a real and 

discrete β and are typically restricted to the range ( 𝑘𝑜 . 𝑛1> β > 𝑘𝑜 . 𝑛2). Where 𝑛1 is the 

maximum refractive index in the core, 𝑛2  is the refractive index of the cladding.  
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The radiation modes can be subdivided into: leaky modes and a continuous set of 

modes with real propagation constants or purely imaginary propagation constants (See Fig. 

2.3).  

 

Figure 2-3: Modes inside an optical fiber. 

 

 The leaky modes (𝑘𝑜 . 𝑛2>β) have complex and discrete β’s. They propagate like 

guided modes but with leakage losses due to the imaginary part of their propagation 

constant. (as, is the case, for example, in photonic crystal fibers) 

 

 The radiated modes (𝑘𝑜 . 𝑛1> 𝑘𝑜 . 𝑛2>β) can have a real and continuous β, they 

propagate like refracted rays and their energy is located outside of the core. These 

modes attenuate quickly compared to leaky modes and their propagation constants 

are typically smaller than those of guided-modes. 

 

2.1.3 Modal vector equation  

 

From the Maxwell equation (2.6c and 2.6d), we can express the transverse 

components (E⃗⃗ 𝑡 and H⃗⃗ 𝑡) by the longitudinal components (Ez and Hz).  

E⃗⃗ 𝑡 =
𝑖

𝑘𝑜
2𝑛2−𝛽2 (β∇⃗⃗ tE𝑧 − (

µ𝑜

𝑜
)

1

2
𝑘𝑜 �̂� × ∇⃗⃗ tH𝑧)                                     (2.13a) 

H⃗⃗ 𝑡 =
𝑖

𝑘𝑘𝑜
2𝑛2−𝛽2

(β∇⃗⃗ tH𝑧 + ( 𝑜

µ𝑜
)

1

2
𝑘𝑜𝑛

2�̂� × ∇⃗⃗ tE𝑧)                                 (2.13b) 
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Thereby, the transverse component is obtained only in terms of derivatives of the 

longitudinal components in Cartesian coordinates [as in Bures, 2009].  

E𝑥 =
1

𝑘𝑜
2𝑛2−𝛽2

(β
∂iE𝑧

∂x
+ (

µ𝑜

𝑜
)
1/2

𝑘𝑜  
∂iH𝑧

∂y
)                                    (2.14a) 

E𝑦 =
1

𝑘𝑜
2𝑛2−𝛽2

(β
∂iE𝑧

∂y
− (

µ𝑜

𝑜
)
1/2

𝑘𝑜  
∂iH𝑧

∂x
)                                    (2.14b) 

H𝑥 =
1

𝑘2𝑛2−𝛽2 (β
∂iH𝑧

∂x
− ( 𝑜

µ𝑜
)

1

2
𝑘𝑜 𝑛

2 ∂iE𝑧

∂y
)                                    (2.14c) 

H𝑦 =
1

𝑘𝑜
2𝑛2−𝛽2 (β

∂iH𝑧

∂y
+ ( 𝑜

µ𝑜
)

1

2
𝑘𝑜 𝑛

2 ∂iE𝑧

∂x
)                                    (2.14d) 

     

By substituting 2.14a, 2.14b, 2.14c and 2.14d in 2.12a and 2.12b, we obtain the 

coupled equation for Ez and Hz. 

𝛻t
2E𝑧 + (𝑘𝑜

2𝑛2 − 𝛽2)E𝑧 −
𝛽

𝑘𝑜
2𝑛2−𝛽2

{
 
 

 
 𝜕 ln(𝑛2)

𝜕𝑥
(β

∂E𝑧

∂x
+ (

µ𝑜

𝑜
)

1

2
𝑘𝑜  

∂H𝑧

∂y
) +

𝜕 ln(𝑛2)

𝜕𝑦
(β

∂E𝑧

∂y
− (

µ𝑜

𝑜
)
1/2

𝑘𝑜  
∂H𝑧

∂x
)
}
 
 

 
 

= 0          (2.15a) 

𝛻t
2H𝑧 + (𝑘𝑜

2𝑛2 − 𝛽2)H𝑧 −
𝑘2𝑛2

𝑘𝑜
2𝑛2−𝛽2

{
 
 

 
 𝜕 ln(𝑛2)

𝜕𝑦
(β

∂H𝑧

∂y
+ ( 𝑜

µ𝑜
)

1

2
𝑘𝑜𝑛

2 ∂E𝑧

∂x
) +

𝜕 ln(𝑛2)

𝜕𝑥
(β

∂H𝑧

∂x
− ( 𝑜

µ𝑜
)

1

2
𝑘𝑜𝑛

2 ∂E𝑧

∂y
)

}
 
 

 
 

= 0         (2.15b) 

 

The resolution of the z-component of the fields (2.15a and 2.15b) is the basis to 

calculate the exact modes or vector modes of the fiber as introduced in the next example. 

 

2.1.3.1 Example: vector modes of a step-index profile 

 

This example which will provide the simplest analytical form of vector modes, is 

obtained with a circular step-index fiber because its refractive index is constant in the core 

and the cladding. The propagation in the core is ensured according to 𝑛1 > 𝑛2 and  𝑘𝑜 . 𝑛1> β 

>𝑘𝑜 . 𝑛2. Thereby, the coupled equations 2.15a and 2.15b are simplified by making the term 

𝛻t ln(𝑛2) equal to zero, except at the core-cladding interface. At the core-cladding interface, 

𝛻t ln(𝑛2)  can be omitted and replaced by continuity conditions of radial and azimuthal 

components of the fields. 
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𝛻t
2E𝑧 + (𝑘𝑜

2𝑛2 − 𝛽2)E𝑧 = 0                                                    (2.16a) 

𝛻t
2H𝑧 + (𝑘𝑜

2𝑛2 − 𝛽2)H𝑧 = 0                                                    (2.16b) 

  

By replacing E⃗⃗  or H⃗⃗  by ψ(r, θ), the same equation accounts for E𝑧 and H𝑧 

𝛻t
2ψ + (𝑘𝑜

2𝑛2 − 𝛽2)ψ = 0.  

As the fiber has a circular symmetry, the transverse scalar Laplacian of this equation 

can be represented in cylindrical polar coordinate, by: 

 Δt = 𝛻t
2 =

𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕

𝜕𝜃2,  

 

Thereby, the two following differential equations from the scalar equation above can 

also be written in cylindrical polar coordinates. Here, the different regions of optical fiber are 

considered. 

          

{
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕

𝜕𝜃2 +
𝑈2

𝑎2}ψ(r, θ) = 0                 0 < r < ɑ                    (2.17a) 

{
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕

𝜕𝜃2
−

𝑊2

𝑎2
}ψ(r, θ) = 0                       r > ɑ                    (2.17b) 

    

These equations (2.17a and 2.17b) contain the modal parameters U (expressed in 

equation 2.18a), W (expressed in equation 2.18b) and the field ψ(r, θ). U and W are related 

with the normalized frequency (V) by equation 2.18c. V depends on the index profile and the 

wavelength and it is widely used to determine the number of modes. ψ(r, θ) is the field and 

by definition it is invariant after a 2π rotation around the z-axis that is why it can be written 

as: 

ψ(r, θ) = F(r). {
𝑐𝑜𝑠(𝜐. 𝜃 + 𝜑𝑝)

𝑠𝑖𝑛(𝜐. 𝜃 + 𝜑𝑝)
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where υ is the integer modal azimuthal number and F(r) is the amplitude of the field.       

𝑈2 = 𝑎2(𝑛1
2𝑘𝑜

2 − 𝛽2)                     r < ɑ                        (2.18a) 

𝑊2 = 𝑎2(𝛽2 − 𝑛2
2𝑘𝑜

2)                     r > ɑ                        (2.18b) 

𝑉2 = 𝑈2 + 𝑊2 = (𝑘𝑜 . 𝑎√𝑛1
2 − 𝑛2

2)2                                                   (2.18c) 

 

To solve equations 2.17a and 2.17b, we must have noted that the field in each guided 

mode must be finite in the core in r→0 and the field in the cladding must tend to zero when  

r→∞ (the cladding expressions are monotonically decreasing). The appropriate solutions can 

be expressed with Bessel functions of the first kind  Jυ in the core (0 < r < ɑ) and modified 

Bessel functions of the second kind  Kυ in the cladding (r ≥ ɑ) (ɑ is the radius of the core). 

From these solutions we can find the longitudinal components E𝑧 and H𝑧 (equations 2.19a, 

2.19b, 2.19c and 2.19d) and later, the transversal components (whose mathematic steps are 

not shown here).     

 

𝐸𝑧(𝑟) = 𝐴 𝐽𝜐(𝑈
𝑟

𝑎
)cos (𝜐θ + ∅𝑝)              0 < r < ɑ                                    (2.19a) 

𝐻𝑧(𝑟) = 𝐵 𝐽𝜐(𝑈
𝑟

𝑎
)sin (𝜐θ + ∅𝑝)             0 < r < ɑ                                     (2.19b) 

𝐸𝑧(𝑟) = 𝐶 𝐾𝜐(𝑈
𝑟

𝑎
)cos (𝜐θ + ∅𝑝)                 r ≥ ɑ                                       (2.19c) 

𝐻𝑧(𝑟) = 𝐷 𝐾𝜐(𝑈
𝑟

𝑎
)sin (𝜐θ + ∅𝑝)                  r ≥ ɑ                                      (2.19d) 

 

𝜙p is the arbitrary phase and υ is the angular quantization that must be an integer.     

To find the exact mode field expression and the eigenvalue equation, we consider the 

boundary condition between the core and cladding. That is, this condition must allow 

continuity of the magnetic field and the electric field tangential and azimuthal components at 

the interface between the core and cladding. Thereby, we can obtain the equation fulfilled by 

the propagation constant (2.20). 

 

 

[
𝐽𝜐
′ (𝑈)

𝑈𝐽𝜐(𝑈)
+

𝐾𝜐
′(𝑊)

𝑊 𝐾𝜐(𝑊)
] [

𝑛1
2

𝑛2
2

𝐽𝜐
′ (𝑈)

𝑈𝐽𝜐(𝑈)
+

𝐾𝜐
′(𝑊)

𝑊 𝐾𝜐(𝑊)
] = 𝜐2 [

1

𝑈2 +
1

𝑊2] [
𝑛1

2

𝑛2
2

1

𝑈2 +
1

𝑊2]                   (2.20) 

 

 

Through equation 2.20, we can find three kinds of solutions. These solutions correspond 

to three classes of modes:  
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 Transverse electric modes (TE0µ) υ=0 : 

In such modes, z and radial components of the electric field and the azimuthal 

component of the magnetic field are equal to zero. The mode corresponding to the µth root 

of equation 2.21 is noted TE0µ. The first mode is called TE01 (one ring on the intensity field, 

see Fig. 2.4a), the next one TE02 (double ring on the intensity field, see Fig. 2.4b), and 

etcetera. Eigen modes of such modes are discussed below: 

 

𝐽1(𝑈)

𝑈𝐽0(𝑈)
= −

𝐾1(𝑊)

𝑊 𝐾0(𝑊)
                                                        (2.21) 

 

 

Figure 2-4: The intensity is represented by the shadow and direction of the vector field by the 

arrows (TE01 and TE02). 

 

 Transverse magnetic modes (TM0µ) υ=0 : 

 

In such modes, z and radial components of the magnetic field and the azimuthal 

component of the electric field are equal to zero. Here μ is the index of the U solution of the 

equation 2.22. The first mode is called TM01 (See Fig. 2.5a), the next one TM02 (See Fig. 

2.5b), and etcetera. Eigen modes of such modes are discussed below: 

 

𝑛1
2

𝑛2
2

𝐽1(𝑈)

𝑈𝐽0(𝑈)
= −

𝐾1(𝑊)

𝑊 𝐾0(𝑊)
                                                        (2.22) 

 

 

 

Figure 2-5: The intensity is represented by the shadow and direction of the vector field by the 

arrows (TM01 and TM02). 
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 Hybrid modes  (HEυµ and EHυµ) υ≠0 :  

For υ>1, the z components of their electromagnetic fields are different to zero. We can 

find two types of modes: HEυµ (where Hz > Ez) and EHυµ (where Hz < Ez) (See Fig. 2.6). 

 

Figure 2-6: The intensity is represented by the shadow and direction of the vector field by the 

arrows. To be noted that HE11odd and HE11even are linearly polarized. 

 

Likewise, by using the relationship between Bessel functions of consecutive orders, 

we can find modes that share the almost same propagation constant (for example EHυµ and 

HEυ+2µ, as well as HE2µ, TE0µ and TM0µ). These kinds of modes are degenerated with each 

other. Hence, we can combine them to get other type of modes, such as the linear polarized 

LP modes (see section 2.1.4). 

2.1.4 Scalar modes 

      

If the refractive index difference between the core and the cladding is very small 

compared to the index value of the core, we can assume that the refractive index in the fiber is 

homogeneous (𝛻t ln(𝑛2) ≈ 0), such as in free space case with uniform refractive index. As a 

consequence the vector wave equations are reduced to the left-hand side and the modes can be 

considered Transverse Electric and Magnetic (TEM) with E≈Et and H≈Ht and the longitudinal 

components are equal to zero (Ez ≈ Hz ≈ 0). 

Considering  E𝑡
⃗⃗  ⃗ = E𝑥x̂ + E𝑦ŷ, with x̂ and ŷ as unit vectors parallel to the Cartesian 

axes, equation 2.12a becomes: 

𝛻t
2E𝑥 + (𝑘𝑜

2𝑛2 − 𝛽2)E𝑥 ≈ 0                                                        (2.23a) 

𝛻t
2E𝑦 + (𝑘𝑜

2𝑛2 − 𝛽2)E𝑦 ≈ 0                                                        (2.23b) 
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Here, the vectors (�̂� and �̂�) determine two polarization directions which will define the 

linear polarized mode with their electrical components along x or y. 

Note that equations 2.23a and 2.23b are scalar and can be rewritten as equation 2.24 

with 𝐹𝜐(r, θ) being either E𝑥
⃗⃗⃗⃗ 

 or  E𝑦
⃗⃗ ⃗⃗ 

 . 𝐹𝜐(r, θ) is the distribution of mode, 𝜐.   

 

 (𝛻t
2 + 𝑘𝑜

2𝑛2 − 𝛽2)𝐹𝜐(r, θ) = 0                                             (2.24) 

 

The solutions of this scalar wave equation (2.24) are known as linearly polarized 

modes (LP modes). These modes can be regarded as the proper linear combination of 

vectorial eigenmodes guided of the fiber. It is usually represented as LPυµ, where υ subscript 

is the angular quantization or the azimuthal number, and represents half the number of 

minima (or maxima) that occurs in the pattern of intensity, whereas µ subscript is the radial 

quantization and indicates the number of maxima in the intensity pattern that occur in a radial 

line between zero and infinity.  

These LP modes can be found in fibers whose core is circular and not perfectly 

circular. However, its study can be simplified by considering radial periodic and symmetric 

core with respect to the z-axis. In this case 𝐹𝜐(r, θ) must be represented as: 

 

𝐹𝜐(r, θ) = ψ𝜐(r). {
𝑐𝑜𝑠(𝜐. 𝜃)
𝑠𝑖𝑛(𝜐. 𝜃)

                                               (2.25) 

 

Now, the equation 2.24a has two solutions, one for each allowed values of β (cf. 

paragraph 1.1.2). The first solution produces the even modes ψ𝜐(𝑟){cos(𝜐𝜃)} and the second 

one, the odd modes  ψ𝜐(𝑟){sin(𝜐𝜃)}. 

We must also consider two different cases depending on 𝜐: 

 For 𝜐 = 0, we can have two modes for each allowed values of β. LP0µ  is degenerated 

two fold (two possible polarization states) and it is obtained assuming (2.26a and 

2.26b). 

E𝑥
⃗⃗⃗⃗ = ψ0µ(r) x̂                                                                         (2.26a) 

E𝑦
⃗⃗ ⃗⃗ = ψ0µ(r) ŷ                                                                         (2.26b) 

 For 𝜐 ≠ 0, LPυµ has 4 possible degenerated states (two polarization states and two 

intensity patterns). 
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E𝑥,𝑒
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ψ𝜐µ(𝑟){cos(𝜐𝜃)} x̂                                                        (2.27a) 

E𝑦,𝑒
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ψ𝜐µ(𝑟){sin(𝜐𝜃)} ŷ                                                        (2.27b) 

E𝑥,𝑜
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ψ𝜐µ(𝑟){cos(𝜐𝜃)} x̂                                                        (2.27c) 

E𝑦,𝑜
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ψ𝜐µ(𝑟){sin(𝜐𝜃)} ŷ                                                        (2.27d) 

        

By the following example, we will find the LP modes for a step index. 

2.1.4.1      Example: LP modes  

 

To obtain LP modes for a step index, we can express the solution of the scalar 

equation using the J Bessel function (of the first kind) within the core since field intensity in 

each guided mode must be finite. For the cladding, we use the K modified Bessel functions of 

the second kind because the field must monotonically decrease (See equations 2.28a and 

2.28b). 

 

                𝛹𝜐(𝑟) = 𝐴 𝐽𝜐(𝑈
𝑟

𝑎
) {

cos (𝜐𝜃 + ∅𝑝)

sin (𝜐𝜃 + ∅𝑝)
              0 < r < ɑ                         (2.28a) 

𝛹𝜐(𝑟) = 𝐵 
𝐽𝜐(𝑈)

𝐾𝜐(𝑈)
𝐾𝜐(𝑊

𝑟

𝑎
) {

cos (𝜐𝜃 + ∅𝑝)

sin (𝜐𝜃 + ∅𝑝)
         r ≥ ɑ                         (2.28b) 

 

Conversely to the vector mode calculation, LP modes are found by assuming n1
2
⁄n2

2
≈1 

from weakly guiding approximation. Thereby, the equation 2.20 becomes: 

 

[
𝐽𝜐
′ (𝑈)

𝑈𝐽𝜐(𝑈)
+

𝐾𝜐
′(𝑊)

𝑊 𝐾𝜐(𝑊)
] = ±𝜐 [

1

𝑈2
+

1

𝑊2
]                                            (2.29a) 

 

From 2.29a, we can obtain three different equations by using the relationship between 

the Bessel function with their first derivatives. Therefore, one of these equations (2.29b, 2.29c 

and 2.29d) are used to obtain the finite set of discrete root U𝜐µ, for a given V and 𝜐. The root 

of U𝜐µ is related to 𝑛𝑒𝑓𝑓 and β.   

 

𝑈
𝐽0(𝑈)

𝐽1(𝑈)
= −𝑊

𝐾0(𝑊)

 𝐾1(𝑊)
                                                (2.29b) 
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𝑈
𝐽𝜐(𝑈)

𝐽𝜐−1(𝑈)
=    𝑊

𝐾𝜐(𝑊)

 𝐾𝜐−1(𝑊)
                                              (2.29c) 

𝑈
𝐽𝜐(𝑈)

𝐽𝜐+1(𝑈)
= −𝑊

𝐾𝜐(𝑊)

 𝐾𝜐+1(𝑊)
                                              (2.29d) 

 

As we discussed before U (equation 2.18a) and W (equation 2.18b) are the modal 

parameters and are related to the normalized frequency (V) by equation 2.18c. V contains all 

the parameters of the optical fiber (index, wavelength and radius) and the 𝜐 value, that is a 

positive and an integer root number. 

The modal solutions of U𝜐µ of a guided mode LP𝜐µ are comprised between the cut-off 

value of U where the mode can exist, and U values far away of the cut-off.  Note that U 

values are important to determine the solutions. Each U𝜐µ solution represents a guided mode 

and their values are localized between U→V and U (V→∞).  

V is commonly used to define the number of modes of an optical fiber. Thereby, we 

ensure only one mode for a step index, if V ≤ 2.405 and several modes, if V > 2.405. The first 

mode of an optical fiber is commonly known as the fundamental mode, LP01, Note that there 

will always be a mode at which υ=0. This mode is the only one present in an SMF.  

Contrarily, in a step-index MMF (V > 2.4) other LP modes can appear. For instance, 

we can find 2 LP modes (LP01 and LP11) in a step-index fiber with V<3.7. LP01 has two 

possible polarization states and LP11 two polarization states and two intensity patterns, as in 

the Fig. 2.7. 

 

 

Figure 2-7: Step index fiber with 2 LP modes (LP01 and spatial degenerate LP11). LP11 mode is 

obtained by superimposing the vector mode pairs (TE01, HE21) or (TM01, HE21). 
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To define the modal characteristics (or number of modes) of the fiber, the normalized 

propagation constant figure are used. In the figures 2.8a and 2.8b, two examples are used to 

compare the conventional fibers (step-index profile and graded-index profiles) in terms of 

modal characteristics.  

The number of modes with the normalized frequency can also be determined by the 

following relation: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠 =
𝛼

𝛼+2

𝑉2

2
  

However, this relation for a graded-index fiber applies only when the number of 

modes is a large number. 

  

 

Figure 2-8: Normalized propagation constant vs normalized frequency for a) a step index. b) a 

graded index (α=2) obtained by numerical tools. The x-axis corresponds to the normalized 

frequency and the y-axis corresponds to the normalized propagation constant, B=(neff
2
-

n2
2
)/(n1

2
-n2

2
) [Sillard, 2016] 

 

It should be noted that we ensure only one mode for this graded-index, if V ≤ 3.7 and 

several modes, for V > 3.7. Comparing with step-index, V is greater in this profile because V 

depends on the numerical aperture (N.A) that is greater in this profile.  

N.A is the ability of an optical fiber to capture light.  

In the next section, we shall briefly detail the calculation of the modes in graded-index 

fiber. In this fiber, the Bessel functions are no longer valid to calculate the modes, since the 

refractive index in the core is not constant. One of the ways is to solve the wave equation in 

the core and cladding separately and to match those solutions at the core-cladding boundary. 

The typically used approach is based on the asymptotic WKB approximation (Wentzel–

Kramers–Brillouin), but they are not accurate enough for the practical study of optical fibers 

[Liu, 1995]. Hence, there are other more appropriate methods which use an analytical 

expression as Laguerre-Gauss [Masaki, 1978] or Hermite-Gauss [Shemirani, 2009]. These 

methods allow to calculate the modes from the scalar modes equation. 
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2.1.5 Laguerre and Hermite modes (graded index profile) 

 

To obtain the analytical expression of the scalar modes for a graded-index profile, we 

need to assume α = 2 and an outer cladding of refractive index invariant extended to infinity 

(Equations 2.30a-b).  For α ≠ 2, the scalar wave can be solved by the method of 

approximation known as the Wentel-Kramers-Brillouin-Jeffreys (WKBJ). 

 

   𝑛2(𝑟) = 𝑛1
2. [1 − 2. ∆. (

𝑟

𝑎
)
2

]                                                                     (2.30a) 

 

    𝑛2(𝑥, 𝑦) = 𝑛1
2. [1 − 2. ∆. (

𝑥

𝑎
)
2

− 2. ∆. (
𝑦

𝑏
)
2

]                                              (2.30b) 

 

In this particular case, solutions of the scalar wave equation are expressed below and 

correspond to the Laguerre-Gauss (in cylindrical coordinator) or Hermite-Gauss Gauss (in 

cartesian coordinator). That is, the equations 2.31a-b are the exact solution of the scalar wave. 

   

𝛹𝑚𝑛(𝑥, 𝑦) = (√
𝜉

2𝜋
.

1

√2𝑚+𝑛
. 𝑒−

𝜉.(𝑥2+𝑦2)

4 ) .𝐻𝑚 (√
𝜉

2
. 𝑥) . 𝐻𝑛 (√

𝜉

2
. 𝑦)               (2.31a) 

 

𝛹𝑙𝑞(𝑟) = (
𝜉

𝜋
.

𝑞!

(𝑞+𝑙)!
. 𝑒−

𝜉.(𝑟2)

2 ) . (𝜉. 𝑟2)𝑙/2. 𝐿𝑞
𝑙 (𝜉. 𝑟2)                                     (2.31b) 

 

These equations use the Laguerre (L) and Hermite (H) polynomials, whose sub index 

mn or lq are the mode indices. Thereby, Hm and Hn are the Hermite polynomial of order m 

and n and 𝐿𝑞
𝑙  is Laguerre polynomial of order l and q.  

𝜉 =
𝑘.𝑛1√2.∆

𝑎
                                                                      (2.32) 

The effective index of a mode mn is given by the equation 2.33a-b. From these 

equations, we can find the propagation constant β by the relation 2.13. 

 

 

𝑛𝑒𝑓𝑓
2

𝑚𝑛
= 𝑛1

2. [1 −
(2.𝑚+1).√2.∆

𝑘.𝑎.𝑛1
+

(2.𝑛+1).√2.∆

𝑘.𝑏.𝑛1
]  =  𝑛1

2. [1 −
2√2.∆

𝑘.𝑎.𝑛1
. (𝑛 + 𝑚 + 1)]          (2.33a) 
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    𝑛𝑒𝑓𝑓
2

𝑙𝑞
= 𝑛1

2. [1 −
2√2.∆

𝑘.𝑎.𝑛1
. (2𝑞 + 𝑙 − 1)]                                   (2.33b) 

    

It can be noted that the combination of the sub-index (n+m+1 or 2q+l-1) of certain 

modes can lead to the same effective index or propagation constant. These modes group are 

known as principal mode number and use the mode group (MG) order n+m+1 or 2q+l-1 .     

The total mode group numbers of GI, Mnt can be calculated by the equation 2.34 and 

the total modes, M by the equation 2.35. (See Fig. 2.9). Mnt should be rounded to the next 

smaller integer. Indeed this approximation is valid in graded index fibers supporting a lot of 

modes (with a huge core). 

        𝑀𝑛𝑡 = ⌊𝑘. 𝑎. 𝑛2√
∆.𝛼

𝛼+2
⌋                                                 (2.34) 

        𝑀 = 𝑀𝑛𝑡
2 + 𝑀𝑛𝑡                                                     (2.35) 

  

 

Figure 2-9: a) Laguerre-Gaussian modes of 4th mode group (=850nm, =1%, a=25µm) 

 b) Hermite-Gaussien modes of 4th mode group (=850nm, =1%, a=25µm), [Molin, 2016]. 
 

The normalized propagation constant vs normalized frequency for a graded-index is 

shown in the Fig. 10. Here, the normalized propagation constant is determined by 

 𝐵 = 1 −
√2𝑛1

𝑉
(2𝑞 + 𝑙 − 1).  
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Figure 2-10: Normalized propagation constant vs normalized frequency for a graded index with 

9 multi-group (MG) [Molin, 2016]. 

 

 Group velocities 2.2

 

The group delay per unit length (fiber length) can be introduced from the group velocity 

(equation 1.2). It is given by the first order derivative of the propagation constant with respect 

to the angular frequency. 

𝜏ℓ𝑞 =
𝐿

𝜈𝑔 
                                                          (2.36) 

Here, each ℓ, 𝑞 mode or mode group propagates with its own group delay.  

For a graded-index profile, the time delay can be obtained by solving the scalar wave 

equation or by WKBJ method [Gloge, 1973] (equation 2.37): 

𝜏ℓ𝑞 = 𝐿
𝑛𝑔

𝑐
(1 −

1

2

(𝛼−2+
2 𝜆 𝑛1

𝑑∆
𝑑𝜆

𝑛𝑔 ∆
)(

𝛽ℓ𝑞
2

𝑛1
2𝑘2−1)

𝛼+2
+

1

8

(3𝛼−2+
4 𝜆 𝑛1

𝑑∆
𝑑𝜆

𝑛𝑔 ∆
)(

𝛽ℓ𝑞
2

𝑛1
2𝑘2−1)

2

𝛼+2
) + 𝑂(∆3)   (2.37) 

   𝑛𝑔 = 𝑛1 − 𝜆
𝑑𝑛1

𝑑𝜆
                                                          (2.38) 

In Prysmian’s tool the time delays are obtained by solving the scalar wave equation with 

the Galerkin’s method (Appendix D). 
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 Numerical method 2.3

 

As mentioned before, only in a few types of fibers analytical expression of the 

eigenvectors can be found (that is step index for vectorial modes, and graded index using 

approximations). Numerical methods are then important to develop. 

Several numerical methods can solve the scalar wave equations. In the current section, 

we will use the shooting method by using Runge-Kutta 4 procedure to obtain the radiation 

modes fields (Appendix C). Runge-Kutta 4 is a method for finding numerical solutions of 

differential equations that combines adaptive step-size routine. As it is well known, numerical 

methods usually solve systems of first order equations and therefore we must transform the 

second order equation to first order before applying the numerical method. 

Even if we can use this method to find the guided modes, we discard it due to the 

instability attributable to the fact that the Runge-Kutta’s instability does not allow to solve the 

equation at x=y=0. Thus, for guided modes field calculation, the Galerkin method (Appendix 

D) is one of the best choices, since the shooting method is not appropriate to the large core 

fibers, because the lower order modes can be miscalculated.  

These methods have been developed in MATLAB, and they have been included in the 

homemade software used by Prysmian. The validations of the guided and leaky modes were 

assessed by [Molin, 2016].  

It is now of interest to introduce the external losses in FMF fiber. 

 Few modes fibers 2.4

 

In chapter 1 the FMF based communication system has been discussed briefly. This 

system uses a class of multimode fibers, well known as FMF that takes few guided modes as a 

carrier.  

To date numerous improvements in the optical properties of FMF have been achieved, 

such as lower attenuation and modal dispersion control that were inherited from MMF. 

Despite these improvements, transmission in optical fiber (even FMF) communication system 

is not 100% effective, chiefly owing to the losses inherent to optical fiber (as Rayleigh 

scattering) and the external losses produced by fiber mismatches, microbending and 

macrobending, which will be mainly discussed in 1.2.1, 1.2.3 and 1.2.4. 



Propagation in the Few Modes Fiber (FMF)   
 

82 

 

2.4.1 Rayleigh scattering losses 

    

Rayleigh scattering is the dominant losses mechanism in silica based fibers and it 

depends on the chemical composition of the fiber. For instance, the higher the dopant 

concentration, the higher the losses. This parameter varies as 1/λ
4
. Rayleigh scattering has 

been studied in SMF and MMF. Even if our interest is the Rayleigh scattering applied to FMF 

[Wang, 2016], we will use the Rayleigh scattering losses definition as in [Tsujikawa, (2007)]. 

 

𝛼𝛽 =
∫𝑅(𝑟).|𝛹(𝑟)|2rdr

𝜆4 ∫ |𝛹(𝑟)|2 rdr
                                                       (2.39) 

Here R(r) is the local Rayleigh scattering coefficient and it depends on the fabrication 

process. 𝑅(𝑟) = 𝑅𝑠𝑖. (1 + 𝑎 𝑐𝐺𝑒(𝑟) + 𝑏 𝑐𝐹(𝑟)). Where, a and b are constants,  𝑐𝐺𝑒(𝑟) and 

𝑐𝐹(𝑟) are the radial concentration of dopant over the radius expressed in weight percent, in 

the case of fiber doped with germanium or fluoride. 

2.4.2 Microbending losses 

 

Microbending is the loss produced by random bends in the fiber axis and it is mainly 

dependent on mechanical properties (namely the mechanical stress) of the coating around the 

fiber. Microbending will be studied in Chapter 3. 

2.4.3 Macrobending losses 

 

Macrobending is the loss mechanism associated with bending which produces light 

leakage in the fiber and it is strongly dependent on the optical properties. Macrobending 

losses increase logarithmically as the bend radius decreases [Jay, 2010] and it is usually 

expressed in dB/turn or dB/m for SMF. However, for MMF and SMF, it should be treated 

differently, especially in MMF, since each mode can have different bend sensitivities on 

account that the highest order modes are weakly guided compared to the lowest order modes 

and thus more sensitive to bending. In MMF, the bend loss is expressed in dB by specifying 

the number of turn and the launching conditions. The launching conditions can influence the 

bend losses, since a launching condition that predominantly excites the highest order modes 

produces higher bend loss than a launching condition that excites the lowest order modes. 
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Hence, the most appropriate launching condition is when the modes are equally excited, such 

as was developed in the Prysmian’s homemade tool [Molin, 2016].     

In this tool, the macrobending loss was calculated by considering the semi-analytical 

approach that is an extension of Marcuses model [Marcuse, 1976]. Here, all the modes are 

assumed to be leaky modes, since the external cladding index always surpasses that of the 

core somewhere. That is, under bending conditions there are no more guided modes and so 

the propagation constant of all eigenmodes are complex and the macrobending losses 

calculation only considers the imaginary part of the propagation constant. The optical power 

outside of the fiber core can be calculated by the expansion of the mode field onto a 

superposition of cylindrical outgoing waves, thereby we can approximate the bend losses for 

the bend radius of each guided mode as [Molin, 2016]. 

One strategy to control the macrobending will be presented in the next paragraph. 

2.4.4 Design of trench on refractive index of FMF  

 

It is well known that the bending behavior of FMF fibers is usually different from that 

of SMF fibers, because the different modes of the FMF can have different bend sensitivities 

and in addition coupling between modes can occur, which is not the case in SMF. Generally, 

the highest order modes (HOM) are more sensitive to bending than the lowest order modes 

since they are weaklier guided (𝑛eff close to the cladding). To minimize this macro bending 

effect, the index profile of the fibers includes a trench in the outer cladding [Molin, 2010]. 

Using the trench, the macrobending losses can be decreased, without changing the N.A. It 

should be noted that the trench mainly affects the highest order mode groups.  

To obtain an appropriate trench effect, we must carefully design the fiber and therefore 

locate appropriately the trench. Macrobending losses can be reduced by larger trench volume 

but it requires improved guidance of undesirable leaky modes, if the trench volume is too 

large.  

Figure 2.11 shows a GI fiber with a trench. To mitigate the presence of the external 

modes and their negative effects, especially losses and high delay, we must find a 

compromise on the position of the trench with respect to the core, thus: 

 The trench should be close (but not too close) from the core to reduce the losses 

produced by the external modes (cf. Fig. 2.11, w1) 

 The space between the core and trench should be optimal to minimize differential 

delay between guided and leaky modes. 
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These modes can be confined within the core because the trench is too close to the core, 

resulting in an increase of differential mode group delay, because the highest order modes 

tend to be slower than the others owing to their excessively high time delay, whose major 

influence is in the bandwidth.  

 

Figure 2-11: Refractive index with trench. r1 is the length between R=0 and the end of the  

parabolic shape, r2 is the length between R=0 and the beginning of the trench, r3 is the radius 

distance between R=0 and the end of the trench.  ∆neff1 is the differential refractive index of the 

parabolic shape, and ∆neff2 is the differential refractive index of the trench. w1 is width after 

parabolic shape and before trench. w2 is width of the trench. 

 

As this profile index promises a low differential mode group delay, low mode coupling 

and low loss, we will be using the optical fiber with 6-LP modes as in [Sillard, 2014] that is 

optimized by the trench-assisted fiber design [Molin, 2010]. To obtain the optimized 6-LP 

mode, firstly, we establish the normalized frequency to support six LP modes, then the trench 

volume should be adjusted to ensure bend losses less than 10dB/turn at 10mm. It must be 

mentioned, however, that the optimal α in the parabolic profile does not depend on the trench 

design. 

To find an optimal profile, one of the solutions is to introduce a small cladding 

between the parabolic index core and the trench. The refractive index inside the cladding 

(inner ring) is used to equalize the time delay (TD) between the HOM and the other modes.  

To manage the time delays of the HOM, we can optimize the position of the trench in 

the external cladding or implementing the trench far of the core and limits the trench depth. 
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Prysmian uses a tool based on like pattern search or genetic algorithms to optimize 

multi-parameters, like exponent of the gradient, the core-cladding interface and volume, 

position of trench. 

 

 Example GI FMF with trench  2.5

 

Six different profiles fibers keeping 6 LP-modes with varying effective refractive-index 

differences (see table 2.1) have been designed by numerical method. The effective refractive-

index differences are calculated by the difference between the maximal effective refractive 

index of each mode and the refractive index of the cladding at 1550 nm 

∆𝑛𝑒𝑓𝑓 = 𝑛𝑒𝑓𝑓(𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠 𝑁) − 𝑛𝑒𝑓𝑓(𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠 𝑁 − 1) .  

Likewise, the trenches of these profiles are optimized by using the optimization 

algorithms from MATLAB to manage the highest order mode effect and obtain the minimal 

macro-bending losses.  

Two profiles of these fibers will be studied, which correspond to those that can be 

manufactured with the current manufacturing techniques,  ∆𝒏𝒆𝒇𝒇=𝟐. 𝟏 × 𝟏𝟎−𝟑   with a core 

radius of 14µm and ∆𝒏𝒆𝒇𝒇=𝟑. 𝟑 × 𝟏𝟎−𝟑  with a core radius of 11µm (see Fig. 2.12) in term of 

guided and radiation modes. Indeed, the purpose of this section is to analyze the behavior of 

these two extreme designs of fibers with regard to the ∆𝑛𝑒𝑓𝑓 effect on the time delay and 

losses. 

  It is important to note that the procedure to obtain the propagation constant, field, profile, 

∆𝑛𝑒𝑓𝑓, and so on was discussed in the previous sections of this chapter.     

These profiles will also be used in the coupling analysis of the next chapter.  
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Figure 2-12: Index profile difference for both profiles. Here, LP01, LP11, LP02, LP21, LP12 and 

LP31 correspond to six guided modes groups, the rest of the modes correspond to the leaky 

modes. It should be noted that the amount of leaky modes is different between both profiles. 

Note that the leaky modes appear at ∆neff < 0, whereas the guided modes exist for ∆neff > 0. 

Right: core radius=11µm (∆neff=3.3×10
-3

), Left: core radius=14µm (∆neff=2.1×10
-3

). 

 

2.5.1 Study of trench depth  

 

We study the variation of the differential time delay as a consequence of the variation 

of the trench depth for two different profiles (See Fig. 2.12). Here, width w1 and w2 (cf. Fig. 

2.11) and the trench position are fixed taking into account the recommendation of the section 

2.4.4  

Time delay (TD) (details in the chapter 1, equation 2.37) is obtained from wave 

equation, and therefore the differential TD by the maximum and minimum value of TD. 

Figure 2.13 a) and b) show how the TD difference depends on the depth of the trench.      

Figure 2.13a and 2.13b also show that the lower macrobending can be achieved for 

greater depths of the trench, however with a trench deeper that 5µm, the manufacturing 

process can become complex. The optimal depth of the trench is around -5 µm since at this 

location the differential time delay is minimized and thus the bandwidth [Molin, 2016].  
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Figure 2-13: Modeling of differential time delay as a function of trench depth for: a) 

∆neff=2.1×10
-3

 and b) ∆neff=3.3×10
-3

. 

2.5.2 Impact of differential TD by the modification of the Δneff  

 

To study the impact of the parameters of the FMF on ∆𝑛𝑒𝑓𝑓, we have used six FMF 

fibers with trench-assisted graded-index-core profiles and different ∆𝑛𝑒𝑓𝑓. These FMF were 

designed for supporting 6 modes (normalized frequency of V=9.65). Besides, they were 

optimized to get the smallest differential TD possible, low bend losses (<10dB/turn at 10mm 

radius) for all the guided modes and high losses (>19.34dB on a 22m sample) for the higher-

order leaky modes to guarantee effective cut-off. That is, the width, depth and position of the 

trench and the refractive index profile between the end of the gradient and the interior trench 

radius were carefully adjusted to obtain the best performance in term of macrobending.  

Later, we obtain the time delay by the wave equation and we compare all the profiles 

in terms of differential TD. These profiles will also be used to study the coupling. 

 

Table 2.1: Fiber parameters for the six FMF fibers with trench-assisted graded-index-core profiles. Δneff varies 
between 1.8x10-3 and 4.4x10-3. Here, we will focus only on R=11µm and R=14µm. The calculations of the 
other profiles follow the same procedure. 

Rcore (µm) 10 11 12 13 14 15 

Δcore x 10
-3

 19.4 16.1 13.5 11.5 10 8.7 

Δneff x 10
-3

 4.4 3.3 2.8 2.4 2.1 1.8 

MaxTD - MinTD (ps/km) 312 35.9 26 21.6 18.8 16.1 
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Figure 2-14: Time delay for each modes a) core radius=14µm (∆neff=2.1×10
-3

) b) core 

radius=11µm (∆neff=3.3×10
-3

). Here, we have grouped into 4 multi-group (MG) taking into 

account almost the same Δneff. Thus, LP01(MG1), LP11(MG2), LP02(MG3), LP21(MG3), 

LP12(MG4). The index difference is the difference between the effective refractive index and the 

refractive index from cladding.  

 

Using the figure 2.14 is also possible to find the difference between the maximum 

value and the minimum value of TD, for example for ∆𝑛𝑒𝑓𝑓 = 3.3 ×10
-3

, the maximal value 

is given by LP31 (8.3 ps/km) and the minimum value by LP11 (-27.6 ps/km), hence the 

differential TD is (8.3 ps/km - (-27.6 ps/km)) = 35.9 ps/km. Note that TD is considered with 

reference to LP01.  

In figure 2.15, note that as ∆𝑛𝑒𝑓𝑓 decreases the difference time delay decreases, 

because the difference of propagation constant between the different modes tends to be 

smaller. This is evident when we compare the difference in time delay between LP31 and LP12 

(M4) of the Fig. 2.14a and 2.14b. Likewise, as the modes number increases, time delay 

increases within a given mode group. 

We have demonstrated that for a given V number, the lower difference time delay is 

reached with a bigger core radius. However, a greater radius in FMF with GI trench can 

increase the amount of leaky modes that is one of the main causes of the losses under certain 

conditions. As we will see, ∆𝑛𝑒𝑓𝑓 is used in the design of FMF to control the time delay 

between modes and so the coupling.  
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Figure 2-15: Maximum time delay for the different profiles of the table 2.1. 

 

 

2.5.3 Guided modes 

     

The field intensity of two 6-LP-mode for fibers with different core radius (R=14 µm 

and R=11 µm) are simulated by the LP basis function. These field intensities are normalized 

to unit with respect to the core radius, such that their maximum value is one. Note that figures 

2.16c-d are plotted in absolute values and these figures show the 6 LP modes: LP01, LP02, 

LP11, LP12, LP21 and LP31. All guided modes are essentially restricted to the core region and 

the fundamental mode, LP01 tends to follow the index profile shape in the core region. 

Figure 2.16 shows that as the number of modes increases, the amplitude of the field F(R) 

is increasingly elongated to the cladding, because part of the energy goes away from the core. 

Besides, the number of times the radial function, F(R) crosses zero for a LPυµ mode 

corresponds to the radial term (µ) minus 1. Thus, For LP11, LP21 and LP31, µ=1, there are no 

zeros.  
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Figure 2-16: F(R) of the 6-LP modes with a-c) R=14µm (∆neff=2.1×10

-3
) and b-d) R=11µm 

(∆neff=3.3×10
-3

). 

a) b) 

c) 

d) 
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As we have discussed, there are two polarizations, two for each fundamental mode 

with υ=0 and 2modes and 2 polarizations when υ>0. In this example, we have 20 guided 

modes. 

For both profiles, we evaluate the losses for all the modes considering an injection on 

only one mode i of fiber (i=1,2….N) at z = 0. That is, we calculate the total power section 

after section, or the sum of the power of all modes. In this calculation, we have only included 

the Rayleigh scattering (section 2.4.1) for all modes, because β in the guided-modes are real 

and therefore their leakage losses are null. 

Figure 2.17 shows the Rayleigh losses for the two fibers profiles (2.1@ R=14 µm and 

3.3@ R=11 µm). Both  profiles keep the same concentration of fluoride (cFl), however they 

have different concentration of germanium (cGe), so that the fiber profile with a small ∆𝑛𝑒𝑓𝑓 

exhibits smaller losses which can be attributed to the lower concentration of germanium (cGe) 

[Zhi, 2003].  

∆𝑛𝑒𝑓𝑓 decreases, because ∆n decreases, which reduces the diffusion.   

Note also that for a large ∆ (refractive index contrast of an optical fiber) we can find the 

maximum losses. The information of ∆ at 633 nm for each profile is given below: 

 ∆ @633 nm at 1% 0.705 for ∆𝑛𝑒𝑓𝑓(× 10−3) = 2.1.  

 ∆ @633 nm at 1% 1.132 for ∆𝑛𝑒𝑓𝑓(× 10−3) = 3.3.  

 

Figure 2-17: Rayleigh losses in guided modes for the profile of the Fig. 2.12. 

 

2.5.4 Leaky modes 

 

The Leaky modes propagate as guided modes but can have leakage losses due to the 

imaginary part of their propagation constant. This leakage loss could also affect the guided 
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modes, because leaky modes are capable of being reflected at the core-cladding interface and 

at the boundary between the inner cladding and the trench. Therefore, it would be far better if 

we could avoid them. 

The Leaky modes correspond to the discrete set of eigenmodes with complex 

propagation constant. Likewise, they satisfy the propagation equation by considering a 

complex propagation constant β. The β limits where the leaky modes can appears are:   

(𝑘. 𝑛2 > 𝑟𝑒𝑎𝑙(β)  > 𝑘. 𝑛𝑡𝑟𝑒𝑛𝑐ℎ), Here, 𝑛𝑡𝑟𝑒𝑛𝑐ℎ is the refractive index of the trench. 

To obtain the leaky modes, the shooting method (Appendix B) which has been studied 

in conventional fibers and special fiber profiles with a trench, can be used. In this part the 

derivations follow the outline of [Molin, 2016]. 

Let us see the following example that corresponds to the two fibers studied for guided 

modes: 

 For  ∆𝑛𝑒𝑓𝑓 = 2.1 ×10
-3 

, the limits of  β correspond to  

  𝑘. (1.457) > 𝑟𝑒𝑎𝑙(β)  > 𝑘. (1.452) 

 For  ∆𝑛𝑒𝑓𝑓 = 3.3 ×10
-3 

, the limits of  β correspond to 

   𝑘. (1.457) > 𝑟𝑒𝑎𝑙(β)  > 𝑘. (1.452) 

 

Figure 2-18: Refractive index profile for a) ∆neff=2.1×10
-3

 and b) ∆neff=3.3×10
-3

.
  

 

It should be noted that the maximum core radius between both profiles is found for 

∆𝑛𝑒𝑓𝑓 = 2.1 ×10
-3

, which could allow the appearance of more leaky modes.  In these 

examples, the first leaky mode is LP41 and the last leaky modes are LP13 and LP04 for 

∆𝑛𝑒𝑓𝑓 = 2.1 ×10
-3 

and ∆𝑛𝑒𝑓𝑓 = 3.3 ×10
-3 

respectively. It means that the ∆𝑛𝑒𝑓𝑓 = 2.1 ×10
-3 

profile presents three more leaky modes. Besides, the leakage+Rayleigh losses and time delay 

on the leaky modes of these fibers will be taken into account, to be later studied on the effect 

of the coupling between the leaky and guided modes (Chapter 3).   
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Figure 2-19: a-b) Intensity field of leaky modes for a) R=14µm (∆neff=2.1×10
-3

) and b) R=11µm 

(∆neff=3.3×10
-3

). c-d) Field Intensity of leaky modes for a) R=14µm (∆neff=2.1×10
-3

) and b) 

R=11µm (∆neff=3.3×10
-3

). 

a)  b) 

c) 

d) 
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Figure 2.20 illustrates the time delay for each leaky modes in the two fibers studied. 

As one can see, the leaky modes exhibit a very much larger delay than the guided modes (Fig. 

2.14). More precisely speaking, the larger delays are found over the leaky modes that are the 

furthest away from the core since they reach the end of the fiber later than lower order modes. 

 

 

Figure 2-20: Time delay for each leaky modes a) core radius=11µm (∆neff=3.3×10
-3

), b) core 

radius=14µm (∆neff=2.1×10
-3

). The index difference is the difference between the effective 

refractive index and the refractive index from cladding. 

 

Figure 2.21 represents the leakage + Rayleigh losses for both profiles studied. Here, 

the Rayleigh loss is calculated by equation 2.39, while the leakage loss is defined by the 

imaginary part of the propagation constant as: 

 (dB/m) 𝑙𝑜𝑠𝑠 =
20

ln(10)
. 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(β).   

Note that leakage + Rayleigh losses increase exponentially and more quickly than the 

Rayleigh losses of the guided modes (see Fig. 2.17 and 2.21a-c). If we compare both profile, 

losses are larger in the fiber with lower radius (∆𝑛𝑒𝑓𝑓 = 3.3 ×10
-3

) because it presents more 

leakage losses than the other profile (see Fig. 2.21a-b). Note also that the leakage loss is 

extremely high, which make that some of these leaky modes disappear along the propagation 

(especially at several kilometers).      

Besides, by varying the position, the depth and thickness of the trench, the leakage 

losses can be managed. Thus, a wider trench without changing the radius will produce the 

same amount of leaky modes with lower leakage losses. Now if the trench tends to be 

infinitely wide, the leaky modes become guided without significant leakage losses. 
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Figure 2-21: a-b) Leakage loss in leaky modes for both studied profile. c) (Rayleigh + Leakage) 

in leaky modes for the profile of the Fig. 2.12. 
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 Summary 2.6

    

In this chapter we have studied the notion of the guided mode by solving Maxwell’s 

equations and more importantly, by placing ourselves in the context of the weakly guiding 

approximation. As discussed this approximation simplifies the solutions of Maxwell’s 

equation under the condition that the normalized refractive index difference is much smaller 

than unity. Here, the longitudinal components can be neglected, because the fields are 

transverse which gives rise to the linearly polarized modes (LP), widely used in the study of 

the optical fiber.  

We have demonstrated that a complete analytical set of solutions can be easily obtained 

in a step index fiber. Conversely, for a graded index it is impossible to obtain these exact 

equations, which leads to use an approximation whose solutions can be obtained by semi-

analytical methods, such as Laguerre-Gauss and Hermite-gauss. Note that the exact or 

approximated solution is dependent on the specific refractive index profile. In this chapter 

several fibers with a graded index optimized in order to minimize the macrobending losses 

and to manage the time delay difference and ∆𝑛𝑒𝑓𝑓 were studied. 

The modes of higher order are mostly affected by the cladding profile, making them 

more sensitive to the leaky modes effect. These effects (losses) can be reduced by avoiding 

the appearance of these modes by a careful design of the optical fiber. Here, we have also 

obtained the radiation modes, but it was impossible to make an extensive study of their effects 

in the guided modes. 

In the next chapter, we will study the coupling on the fibers used in the example GI 

FMF with trench. 
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3 Coupled mode in the emerging MDM 

communication systems 

 

A mode division multiplexing system using an FMF with N spatial mode as data 

channels to transmit N independent information is a potential candidate to the new generation 

of optical communication systems because it can increase the optical transmission capacity 

around N-times of an SMF communication system. Many spatial bases of mode, such as LP 

modes (chapter 2), Principal Modes (PM) (see section 1.4) or modes with an orbital angular 

momentum (OAM) [Wang, 2014] [Djordjevic, 2016] can be used in MDM systems. 

However, regardless of the spatial modes used, MDM systems could be affected by mode 

coupling which produces crosstalk. OAM will not be treated within this study.  

Crosstalk can be defined as the mixing of different data channels due to optical power 

coupling (optical mixing). This power distribution can be written as:  

 

Crosstalk (dB)=10.log(P1→2/ P1) 

 

Note that the distributed power from channel 1 to channel 2 (P1→2) is compared with 

the total power of channel 1.            

The presence of optical crosstalk will affect communications system performance, 

limiting capacity per unit distance. To explain this phenomenon on communication systems, 

the following two optical architectures will be used: 

 

 MDM system using an FMF (Fig. 3.1a and 3.2a) 

 WDM using an SMF (Fig. 3.1b and 3.2b). 

 

In Figure 3.1a-b are shown these communication systems in the absence of crosstalk. 

Here, both schemes use multiplexer and demultiplexer elements in order to combine and 

separate each spatial mode (MDM) or each signal as a function of wavelength (WDM). Note 

that at the end of the transmission process, in the absence of crosstalk, the signals are affected 

only by the attenuation in the channel (Optical fiber). The maximal throughput achieved is 

mainly limited by the FMF bandwidth.  

 

 



Coupled mode in the emerging MDM communication systems   
 

98 

 

 

 

 

 

Figure 3-1: General scheme of a) MDM using an FMF with 2 LP modes. b) WDM using an SMF 

with 2 wavelengths (it was discussed in chapter 1). Here, a laser is used as transmitter divided 

into N number of modulators. Modulator encodes different data to obtain a modulated optical 

signal. A basis LP for example is multiplexed (M-MUX) and transmitted on FMF. At the end of 

the transmission, each mode is de-multiplexed (M-DEMUX) and detected by the photodiodes 

. 

      

Figure 3.2a-b shows the communication system in the presence of crosstalk. The 

crosstalk in MDM system can be defined as modal crosstalk, because it appears as a 

consequence of the energy exchange between modes which share the same physical space. 

Hence, the power of one mode can be transferred to another mode, producing the mode 

coupling. This effect can only occur in the presence of a perturbation of the waveguide. A 

perturbation can be created by fiber irregularities (intentional - tapering - or not - random 

fluctuations), stress, twist, macro or micro-bending. In WDM, it can occur between 

neighboring channels (out-of-band crosstalk) or signals with same wavelength (in-band 

crosstalk). Contrary to MDM systems, it finds its origin in nonlinear interactions between the 

different wavelength channels. 
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Figure 3-2:  Crosstalk in a) MDM using an FMF with 2 LP modes and b) WDM using an SMF 

with 2 wavelength. 

 

We usually use the MIMO-DSP (Chapter 1) to mitigate the crosstalk in a 

communication system. Concerning MDM, the MIMO-DSP is designed in regards of the 

coupling regime. 

As discussed above, crosstalk in long fiber span is mainly produced by coupling. 

Therefore, in this chapter we will focus on mode coupling only in the optical fiber, and not 

that produced in each element of the communications system. To describe the coupling in an 

optical fiber, coupled equations are used. These equations can be obtained by many different 

ways, but one of most known approaches is through the theories of coupled modes from 

[Marcuse 1984].  

Since mode coupling is mainly generated by a perturbation, the coupling model must 

take into account this geometrical modification. In an optical fiber, three typical perturbations 

can occur, such as described in Fig. 3.3. The first one corresponds to a displacement of the 

core because of a non-centered splice, the second one corresponds to a displacement of the 

core due to variation that could be produced by the manufacturing process or an applied 

tension. The last one corresponds to the variation of the core size along the propagation axis 

(tapered core) that could be produced during the fabrication of the fiber. 
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Figure 3-3: Perturbation in the optical fiber. The dotted line corresponds to the unperturbed 

fiber, whereas the continuous corresponds to the perturbation. a) Splices b) perturbed core, c) 

tapered core. 

 

It should be noted that the biggest challenge in modeling the coupling effect in the 

fiber comes from the variety of phenomena that must be taken into account and the random 

aspect of the birefringence and perturbations in the fiber that makes the coupling localization 

and quantification difficult to foresee.  

As we will discuss later, we must adapt the model according to the treatment of the 

perturbation. 

 

 State of the art 3.1

 

The coupling studies in FMF date back from the coupling studies in MMF. Therefore, a 

power coupling theory [Olshansky, 1975] [Gloge, 1972] was developed and used for the first 

generation of MMF and it is still relevant for MMF laser systems. However, power-coupling 

theory is unable to take into account the polarization mode dispersion and the existence of 

main state of polarization. These latest effects are widely used to describe the polarization 

mode dispersion in SMF [Poole, 1986] and the modal dispersion in MMF [Fan, 2005].  

Furthermore, in power coupling, the power distribution always becomes uniform, even 

in the presence of the perturbation. In practice it has been demonstrated that one uniform 

perturbation can present random fluctuation on time and space, particularly in terms of phase. 

This phase variation can be modeled using the field coupling model [Shemirani, 2009] by 

dividing the optical fiber into several regular sections and model an ensemble of different 

random phase shifts between the uniform perturbed sections. This model can reproduce the 

ensemble-average result obtained using the power coupling model.  

The field coupling theory can also describe statistically the coupled group delay (GDs) 

and the mode dependent loss [Juarez, 2014], which has allowed it to gain ground in the 

coupling studies of the MMF 
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Following the above studies, theory of mode coupling has also contributed to the design 

of devices manufactured from FMF. For example, the passive components do not require an 

external source of energy and many all-fiber passive components are designed by using 

technologies such as fusion-tapering and grating descriptions. Similarly, the splitter and 

combiners are based on couplers (FMF modal couplers [Jung, 2013], [Ismaeel, 2013], [Jung, 

2014]). Indeed, several components can be concatenated or mixed to have a behavior, which 

may become more interesting. Moreover, many of these devices use fibers designed to 

enhance the coupling between modes, as Bragg grating [Wu, 2012] [Fang, 2014] [Ali, 2015] 

and long period gratings [Erdogan, 1997] [Lee, 2000]. They use small and periodic 

perturbations to generate the coupling. 

If we look at active devices such as the laser, coupled mode has been tested to represent 

an important mechanism for mode locking based in nonlinear mode coupling [Proctor, 2005] 

and to realize tunable laser based in tapered fiber [Huang, 2016], or based in two-mode fiber 

[Yun, 1996]. Other contributions are found in the amplifiers [Jung, 2014] [Trinel, 2017]. 

Independently of the domain, coupling is relevant in the design of optical fibers 

especially with new characteristics, either for the emerging communications systems (as we 

will see in the next section) or for the development of all-fiber devices.  

Emerging communication systems use space division multiplexing to increase the 

transmission rate and to overcome the optical network capacity crunch (as seen in chapter 1). 

They are based on excitation and detection of a modes group (MG) which are formed by one 

or several guided modes with almost the same propagation constant, and therefore 

information is encoded on each of these modes.  

One of the advantages of using fiber designed for weak coupling is that a simple MIMO 

is sufficient to detect the different signals at the end of transmission. Nevertheless, by a 

simple MIMO, the performance of the signal cannot be improved because, generally, the 

signal processing is non-existent but it could exist. Note that this approach is interesting for 

short transmission, including those that use direct detection [Nazarathy, 2013]. However, for 

long-haul transmission the accumulation of FMF random phenomenon should be 

compensated by treating the signal at the end of reception, by a MIMO combined with a 

digital signal processing, called MIMO-DSP. Therefore, the emerging long-haul transmission 

uses coherent detection and MIMO-DSP to manage the impairments present in the FMF.  

Besides, MIMO-DSP could become complex as a consequence of the number of modes 

and the long differential group delays (DGDs). The latter can be minimized by optical fibers 

able to reach a strong coupling, in order to accelerate the combination of modes, allowing also 
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a reduction of the group delay (GDs). This reduction is one of the key properties to decrease 

the differential groups delay (DGD), and consequently potentially reduce the number of taps 

required for MIMO processing, and consequently the DSP complexity of MIMO-DSP. 

The group delay (GD) description as a function of coupling will allow to evaluate the 

factors that benefit the reduction of the GD. Thus, [Shemirani, 2009] used the group operator 

eigenvalue to obtain the GD of the multi-group on different coupling regimes, demonstrating 

that the minimal GD can be found in the strong coupling regime. Later, a variation of this 

model was applied by [Juarez, 2013] and [Juarez, 2014] to study the coupling in FMF. The 

first model considers a circular bend and makes a polarization study by using Principal State 

of Polarization (PSP). The second one takes into account the losses through a fiber mismatch 

model using two fields coupling model approaches. Both use a parabolic profile index that 

restricts the study of trench profile commonly admitted to control the macro bend.  

As was noted earlier, most of the signal recovery responsibility lies on the equalizer, 

and indirectly on the FMF design. In an FMF, all modes share the same core, inducing an 

intermodal crosstalk created by the energy exchange between modes (mode coupling). In 

summary, the differences between the group velocities of modes, which could result in a high 

DGD, can generate difficulties in the propagation of these modes in an FMF. In the end, the 

mode coupling in addition with a large accumulated DGD could produce Inter-symbol 

Interference (ISI) on each spatial mode during the transmission and make the detection 

difficult.  Furthermore, the digital processing (MIMO) system can suffer from a very large 

DGD (Appendix D) making its structure complex. 

Whatever the design applied, we must study modal coupling to define its tolerance 

requirements for each mode but also to globally generate or minimize it. Therefore, depending 

on the design of the desired FMF system, mode coupling could be enhanced or not. We will 

study the different regimes of coupling in FMF in order to adapt it to the transmission system. 

After this review of previous works dealing with coupling regime in few mode fibers, 

we will now focus on the emerging mode division multiplexing (MDM) communication 

systems. 
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 Coupled mode theory applied to FMF 3.2

       

In this study, we describe the coupled mode theory applied to an FMF. The FMF is 

modeled as a concatenation of several curved segments (See Fig. 3.4). Each piece is 

associated with a random bending radius, R. In this model, coupling between back scattered 

and propagating waves is not considered, neither polarization effect. 

 

 

Figure 3-4: Coupling model for FMF. b) Microbending in FMF can be modeled as a set of very 

small random radius (bends) in the fiber core. 

 

 

The distribution of the inverse of the bending (the radius of curvature) is chosen to be 

a normal distribution with a mean value of 0 m
-1

 and a standard deviation of σ1/R. Here, the 

normal distribution is a function of the standard deviation of the curvature. For instance, with 

an array of 10000 random variables for 5 different standard deviations of curvature σ1/R=0.1, 

σ1/R=1, σ1/R=10, σ1/R=20 and σ1/R=100, we obtain Fig. 3.5 which compares the influence of the 

standard deviation in normal distributions. 

Note that the perturbation tends to be smaller when the radii of curvature are big or the 

standard deviation is small, and vice versa. For example if σ1/R=0.1, 95% of random values of 

radii of curvature will be in the range 5 ≤ 𝑅 < ∞. 

Each segment can be associated to an individual matrix of propagation, 𝑀𝑛 and 

calculated with the basis of the ideal mode [Marcuse, 1984] of an unperturbed fiber (as we 

will detail in the next section). To obtain an entire description of modal propagation of the 

FMF, we multiply each in individual matrix by using equation 3.1. 

 

𝑀𝑁 = ∏ 𝑀𝑛(∆𝐿, 𝜔) 𝑁
𝑛=1                                                (3.1)                                                                
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Figure 3-5: Gaussian distribution related with the inverse of bending for different standard 

deviation of curvature σ1/R. The x-axis is the inverse of the bending (1/R) and the y-axis is the 

amplitude of the distribution. 

 

We have modeled the perturbation in each segment by considering the theory of 

perturbation that uses a straight fiber to model a bent fiber [Petterman, 1976]. 

A perturbation can have different forms (periodic wave, random behavior), that 

usually depend on the effect that produces it. For instance, we can model the perturbation as a 

function of a periodic wave (widely used for Bragg fiber) or a splice (that is the easiest form 

of which to find the coupling coefficients). Also a random perturbation can be considered and 

used when we do not have exact knowledge of when and in which part of the fiber it is 

produced. Hence, statistical tools can model it. 

To study the coupling in MDM system, we will focus on the perturbation model based 

on the refractive index transformation by using statistical tools. It can be adapted to almost all 

type of perturbation that we will study. The model is based on the changes of the refractive 

index due to the perturbation (see equation 3.2 a-b).  Therefore, a perturbed fiber can be 

represented by an equivalent straight fiber by considering the transverse wavenumber of the 

bent and equivalent fiber (𝑘𝑡 and 𝑘𝑡𝑒): 
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𝑘𝑡
2 = 𝑘2. 𝑛𝑜

2(𝑥, 𝑦) − 𝛽2(𝑥, 𝑦)  

𝑘𝑡𝑒
2 = 𝑛𝑒

2. 𝑘2 − 𝑛𝑝
2(𝑥, 𝑦). 𝑘2 − 𝛽𝑜

2(𝑥, 𝑦) 

 

    Here, 𝛽𝑜 is the fundamental propagation constant. 

Consequently, a trigonometric function on Fig. 3.6 is applied to derive the following relation 

λ/(y+R) =λo/y,  

 

Figure 3-6: Equivalence of a perturbed fiber. It describes the equivalent model of a bend fiber. 

In a bent fiber, the optical path followed by light is longer at the outside of the concavity than at 

the inside, meaning that the equivalent wavelength in the material is modified through the cross-

section. 

 

However, for convenience, this relation is represented in terms of the propagation 

constant (β), by substituting the wavelength λ for β=2.π/λ. Thus, we can use it over the 

transverse wavenumber equation. We can say that β = βo for the straight fiber since 

propagation constant is considered invariant over all the cross section. By the assumption that 

the refractive index difference is small, βo can be approximated to k.𝑛1. 

Later, we find the propagation constant in one of the perturbed axis, extending this 

study for both axis (See details in Appendix E). Finally,  the perturbed refractive index of an 

equivalent straight fiber can be written as: 

 

𝑛𝑒
2(𝑥, 𝑦) = 𝑛𝑜

2(𝑥, 𝑦) + 𝑛𝑝
2(𝑥, 𝑦)                                           (3.2a) 

  𝑛𝑝(𝑥,𝑦)
2 ≈ (

2.𝑥

𝑅𝑥
+

2.𝑦

𝑅𝑦
) . 𝑛1

2                                                 (3.2b) 

      

Here,  𝑛1 is the maximum value of the refractive index of the core on the fiber axis 

and 𝑛0(𝑥, 𝑦) is the refractive index without perturbations. 𝑛𝑒
2(𝑥, 𝑦) and 𝑛𝑝

2(𝑥, 𝑦) represent the 

equivalent and perturbed refractive index. Specifically, the equivalent refractive index 

(equation 3.2a) will be taken into account in the coupling equation (equation 3.36a), because 

it represents the equivalent of the perturbation in the optical fiber. Since 𝑛𝑒
2(𝑥, 𝑦) and 𝑛𝑝

2(𝑥, 𝑦) 
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are independent of the z-axis, the numerical modeling of the coupling will be easier. Note also 

that the influence of the curvature is represented by the radius of curvature in the two axis 𝑅𝑥 

and 𝑅𝑦.  

 

In order to evaluate the mode coupling caused by this random perturbation, we will 

study the ideal modes. 

3.2.1 Coupled modes theory 

 

To evaluate the modal coupling caused by the perturbation, we expand the mode fields 

in terms of ideal or local normal modes. In these methods and only in real modes, the wave 

equation can be solved at each z along the fiber, where the refractive index can be dependent 

or non-dependent of z. These two main approaches will be briefly presented: 

 Method 1 also known as ideal mode coupling method. It is based on 

approximating the perturbed fiber by using only one set of modes for the whole 

fiber. These particular modes are the eigenmodes of the ideal fiber. It is 

recommended if the perturbation is a slight deviation from a z-invariant fiber 

[Marcuse, 1984]. 

 Method 2 also known as local mode coupling method. It uses the eigenmodes 

of the corresponding ideal fiber at a given z, that is, each section is described 

by a local coordinate system and the eigenmodes are calculated in a fictitious 

fiber. This method is more appropriate, especially if the waveguide varies 

slowly along z or if we can describe, in each z cross-section plane, a fiber that 

locally coincides with the perturbed fiber (Appendix F). 

Both approaches are field coupling models, i.e. they describe the coupling by complex 

coefficients, extending the study of the phase dependent coupling modes [Marcuse, 1984], 

[Shemirani, 2009]. Coupled power theory can also be used to describe the modes coupling, 

but using nonnegative real coefficients. Here, we will review the ideal mode theory (method 

1), because this method will be used to study the effects of strong and weak coupling in 

different FMFs.  
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3.2.1.1 Expansion in terms of ideal normal modes 

 

In uncoupled regimes or in the absence of perturbation, the modes do not couple 

together. Indeed they are eigenmodes of the ideal fiber. Coupling between modes can be 

caused by the radius variation dR/dz of the core arising from a perturbation. Bounded or 

unbounded electromagnetic fields in this perturbed structure can be expressed as an expansion 

of ideal modes or local normal modes. However, expansion in terms of ideal modes or local 

normal modes must be adapted to the problem of establishing coupling equations of modes 

with numerically usable coefficients that allow using the perturbation description in terms of 

the refractive index variation as a function of z, or 𝝏 𝑛² / 𝝏z. To simplify 𝝏 𝑛² / 𝝏z, we will 

use the perturbation model based on refractive index transformation [Petterman, 1976] (see 

equation 3.2a), so we need to use the expansion of ideal normal modes. In the following 

analysis, we will use a development similar to [Marcuse, 1973] 

An ideal normal mode is based on approximating the perturbed fiber by using only one 

set of modes for the whole fiber. These particular modes are the eigenmodes of the ideal fiber. 

The ideal normal modes of a waveguide can be expressed by a z dependence of the fields. 

 

𝑒−𝑖.𝛽𝑚𝑧 

 

     Where 𝑚 represents a particular guided mode or a radiation mode, thus the expression of 

the electric field can be written as:  Ԑ ⃗⃗⃗  = 𝑒𝑚 ⃗⃗⃗⃗⃗⃗ 𝑒𝑖.(𝜔.𝑡−𝛽𝑚𝑧) = Ԑ𝑚 ⃗⃗ ⃗⃗ ⃗⃗  ̃. 𝑒𝑖.𝜔.𝑡.                                     

Here, Maxwell’s equations hold, but the refractive index of the optical fiber is 

𝑛𝑜(𝑥, 𝑦) instead of 𝑛(𝑥, 𝑦, 𝑧), because we assume an ideal optical fiber whose refractive index 

𝑛𝑜(𝑥, 𝑦)  is independent of z.  

That is, 
𝜕

𝜕𝑧
= −𝑖. 𝛽𝑚.      

Now the modes satisfy the Maxwell equations and these equations for the ideal modes 

can be expressed as: 

 

∇⃗⃗ 𝑡 × (∇⃗⃗ 𝑡 × Ԑ⃗ ̃𝑚𝑡) − μ𝑜𝜔. (βm)�̂� × ℋ⃗⃗ ̃
𝑚𝑡 = 𝑛𝑜

2. 𝑘2. Ԑ⃗ ̃𝑚𝑡                              (3.3a) 

∇⃗⃗ 𝑡 × (
1

𝑛𝑜
2 . ∇⃗⃗ 𝑡 × ℋ⃗⃗ ̃

𝑚𝑡) + 휀0𝜔. (βm)�̂� × Ԑ⃗ ̃𝑚𝑡 = 𝑘2. ℋ⃗⃗ ̃
𝑚𝑡                                 (3.3b) 
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In this case, we will use  𝑒𝑚 ⃗⃗⃗⃗⃗⃗  instead of Ԑ⃗ ̃𝑚 in equations 3.3a and 3.3b since  

𝑒−𝑖.𝛽𝑚𝑧 vanishes.  

The total transverse fields E⃗⃗ 𝑡 and H⃗⃗ 𝑡 in the perturbated waveguide can be expressed as 

a sum of the eigenmodes of the ideal waveguide 𝑒𝑡 ⃗⃗⃗⃗  and ℎ𝑡 ⃗⃗⃗⃗⃗⃗ , whose solutions are found by the 

series expansions of these fields (See equations 3.4a and 3.4b).  

 

E⃗⃗ 𝑡 = ∑ 𝑎𝑚e⃗ 𝑚𝑡
𝑁𝑚
𝑚=1 = ∑ (𝐴𝑚

+𝑁𝑚
𝑚=1 . 𝑒−𝑖.𝛽𝑚𝑧 + 𝐴𝑚

− . 𝑒+𝑖.𝛽𝑚𝑧). e⃗ 𝑚𝑡                       (3.4a)    

H⃗⃗ 𝑡 = ∑ 𝑏𝑚h⃗ 𝑚𝑡
𝑁𝑚
𝑚=1 = ∑ (𝐵𝑚

+𝑁𝑚
𝑚=1 . 𝑒−𝑖.𝛽𝑚𝑧 − 𝐵𝑚

− . 𝑒+𝑖.𝛽𝑚𝑧). h⃗ 𝑚𝑡                      (3.4b)  

 

Note that z-dependence is reported in the  𝑎𝑚 and 𝑏𝑚 coefficients, and is not in the 

vectorial amplitude of transverse field.  

Here, 𝐴𝑚
+  and 𝐴𝑚

−  correspond to the amplitude of the progressive and regressive wave. 

By assuming a refractive index distribution as (𝑛𝑒
2 − 𝑛𝑜

2), where 𝑛0 is the refractive 

index without perturbations of and 𝑛𝑒 is the equivalent refractive index of the perturbed fiber, 

we can obtain the equations 3.5a and 3.5b whose solutions are the ideal mode fields.   

 

∑ {[(
𝑑𝑏𝑚

𝑑𝑧
) + iβm𝑎𝑚] 𝑖μ𝑜𝜔. �̂� × h⃗ 𝑚𝑡 + 𝑘2(𝑛𝑒

2 − 𝑛𝑜
2)𝑎𝑚e⃗ 𝑚𝑡}

𝑁𝑚
𝑚=1  = 0                  (3.5a) 

∑ {𝑏𝑚 (∇⃗⃗ 𝑡 × [(
1

𝑛𝑒
2 −

1

𝑛𝑜
2) ∇⃗⃗ 𝑡 × h⃗ 𝑚𝑡]) + [(

𝑑𝑎𝑚

𝑑𝑧
) + iβm𝑏𝑚] 𝑖μ𝑜𝜔. �̂� × e⃗ 𝑚𝑡}

𝑁𝑚
𝑚=1  = 0    (3.5b) 

 

Here,  𝑁𝑚 is the number of modes. 

It should be noted that the amplitudes of the modes in the coupled-waveguide system 

are governed by the coupled-mode equations. The solutions of the coupled-mode equations 

describe wave propagation and coupling in the perturbed waveguide. The coupling 

coefficients are calculated based on the optical fiber characteristics and using the coupled 

mode equation system.   

3.2.1.2 Differential equations for the coupled mode theory  

 

Using the cross product properties (A⃗⃗ × B⃗⃗ ). C⃗ = A⃗⃗ . (C⃗ × B⃗⃗ )  and multiplying the 

equation 3.5a with e⃗ 𝑚𝑡
∗  and 3.5b with h⃗ 𝑚𝑡

∗  and later the integration over the infinite cross 

section of the optical fiber, we obtain the following integro-differential equation sets: 
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(
𝑑𝑎𝑚

𝑑𝑧
) + iβm𝑏𝑚 − 2∑ [𝑘′𝑚𝑛. 𝑏𝑛]

𝑁
𝑛=1  = 0                                  (3.6a) 

(
𝑑𝑏𝑚

𝑑𝑧
) + iβm𝑎𝑚 − 2∑ [𝐾′𝑚𝑛. 𝑎𝑛]

𝑁
𝑛=1  = 0                                 (3.6b) 

 

Here, 𝑎𝑚 is the wave amplitude and βm propagation coefficient for each m-th mode. 

βm is developed until 2nd-order to consider both modal and chromatic dispersions, as: 

β
n
 ≈ 𝛽

0

(𝑛) + 𝛽
1

(𝑛)(𝜔 − 𝜔0) +
1

2
𝛽

2

(𝑛)(𝜔 − 𝜔0)
2.  Besides, 𝐾′𝑚𝑛  and 𝑘′𝑚𝑛  are the coupling 

coefficients of the transverse part: 

 

          𝐾′𝑚𝑛 =
𝜔. 0

4𝑖𝑃𝑧
.∬ (𝑛𝑒

2 − 𝑛𝑜
2). (e⃗ 𝑚𝑡

∗
𝐴∞

. e⃗ 𝑛𝑡)𝑑𝑆                                                (3.7a)  

𝑘′𝑚𝑛 =
−1

4.𝑃𝑧𝑖.𝜔. 0
. ∬ h⃗ 𝑚𝑡

∗ . ∇𝑡 × [(
1

𝑛𝑒
2 −

1

𝑛𝑜
2) (∇𝑡 × h⃗ 𝑛𝑡)]𝐴∞

𝑑𝑆                     (3.7b)  

 

Note that in the absence of coupling (see equations 3.6a-b and 3.7a-b), all coupling 

coefficients are equal to zero, because in a unperturbed fiber, the equivalent refractive index 

which represent the perturbation is equal to the refractive index of the fiber 𝑛𝑒 = 𝑛𝑜, which 

makes 𝐾′𝑚𝑛 = 0. 

(
𝑑𝑎𝑚

𝑑𝑧
) + iβm𝑏𝑚 = 0                                                           (3.8a) 

(
𝑑𝑏𝑚

𝑑𝑧
) + iβm𝑎𝑚  = 0                                                         (3.8b) 

    

Besides, the coupling coefficient can be expressed as a function of the longitudinal 

part of the fields (See equation 3.9a and 3.9b), by using the following relations:  

 

 e⃗ 𝑚𝑧�̂� =
−𝑖

0𝜔𝑛𝑜
2 ∇⃗⃗ 𝑡 × h⃗ 𝑚𝑡  and  h⃗ 𝑚𝑧�̂� =

𝑖

ϵ𝑜𝜔
∇⃗⃗ 𝑡 × e⃗ 𝑚𝑡 .   

        𝑘′𝑚𝑛 =
1

4𝑃𝑧
.∬ h⃗ 𝑚𝑧

∗ . ∇⃗⃗ 𝑡 × [
1

𝑛2
(𝑛𝑒

2−𝑛𝑜
2). e⃗ 𝑛𝑧]𝐴∞

𝑑𝑆                               (3.9a)  

𝑘′𝑚𝑛 =
𝜔. 0

4𝑖𝑃𝑧
. ∬ [

𝑛𝑜
2

𝑛𝑒
2 (𝑛𝑒

2−𝑛𝑜
2). e⃗ 𝑚𝑧

∗ . e⃗ 𝑛𝑧]𝐴∞
𝑑𝑆                                     (3.9b) 

     

As an example, we will use this method to study the steady state and the slowly varying 

amplitude of an optical fiber with 2 modes.   
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 Example: Two-modes fiber 

 

In the absence of coupling and considering two modes, the coupling equations 

become: 

(
𝑑𝑎𝑚

𝑑𝑧
) + iβm𝑏𝑚  = 0 

(
𝑑𝑏𝑚

𝑑𝑧
) + iβm𝑎𝑚   = 0                                                     

By differentiating equation 3.8b, the second-order differential equations (3.10a and 

3.10b) are obtained.  

(
𝑑2𝑎𝑚

𝑑𝑧2 ) + βm
2𝑎𝑚  = 0                                              (3.10a) 

𝑏𝑚 =
𝑖

βm
(
𝑑𝑎𝑚

𝑑𝑧
)                                                        (3.10b) 

 

In this case, equation 3.10a is a simple differential equation that admits two sets of 

solutions: 𝑎𝑚
+  = 𝐴𝑚

+ 𝑒−𝑖𝛽𝑚𝑧   and  𝑎𝑚
−  = 𝐴𝑚

− 𝑒𝑖𝛽𝑚𝑧.  Likewise, using equation 3.10b, we 

obtain the coefficient for the magnetic field, 

 𝑏𝑚
+  = 𝐴𝑚

+ 𝑒−𝑖𝛽𝑚𝑧 and 𝑏𝑚
−  = −𝐴𝑚

− 𝑒𝑖𝛽𝑚𝑧      

These solutions correspond to the guided modes in steady state of the waveguide, since 

they have a 𝑒−𝑖𝛽𝑚𝑧  dependency. That is, the amplitude depends on the propagation constant 

and z, while 𝐴𝑚 is constant.   

 

 Example: Slowly varying mode amplitudes 

 

For solutions to perturbations of the coupled wave equations it is convenient to 

introduce slowly varying mode amplitude approximation. We will take into account the 

progressive and regressive modes. The amplitude can be rearranged as: 𝑎𝑚 = 𝑎𝑚
+ + 𝑎𝑚

−  and 

𝑏𝑚 = 𝑏𝑚
+ − 𝑏𝑚

− . 

Under this condition, the set of coupled mode equations are: 

 

(
𝑑𝑎𝑚

+

𝑑𝑧
) + iβm𝑎𝑚

+ − ∑ [𝐾𝑚𝑛
++. 𝑎𝑚

+ ]𝑁
𝑚=1  = 0                               (3.11a) 
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(
𝑑𝑎𝑚

−

𝑑𝑧
) − iβm𝑎𝑚

− − ∑ [𝐾𝑚𝑛
−+. 𝑎𝑚

+ ]𝑁
𝑚=1  = 0                              (3.11b) 

 

With the coupling coefficients: 

𝐾𝑚𝑛
𝑝𝑞 = 𝑝𝐾𝑚𝑛

′ + 𝑞𝑘𝑚𝑛
′  

 

𝐾𝑚𝑛
𝑝𝑞 =

𝜔. 0

4𝑖𝑃𝑧
.∬ (𝑛𝑒

2−𝑛𝑜
2) [𝑝. e⃗ 𝑚𝑡

∗ . e⃗ 𝑛𝑡 +
𝑛𝑜

2

𝑛𝑒
2 . e⃗ 𝑚𝑧

∗ . e⃗ 𝑛𝑧]𝐴∞
𝑑𝑆                      (3.12) 

 

Rewriting the equations 3.11a and 3.11b by using A instead of 𝑎𝑚, we obtain: 

 

(
𝑑𝐴𝑚

+

𝑑𝑧
) + iβm𝐴𝑚

+ − ∑ [𝐾𝑚𝑛
++. 𝐴𝑚

+ + 𝐾𝑚𝑛
+−. 𝐴𝑚

− ]𝑁
𝑚=1  = 0                           (3.13a) 

(
𝑑𝐴𝑚

−

𝑑𝑧
) − iβm𝐴𝑚

− − ∑ [𝐾𝑚𝑛
−+. 𝐴𝑚

+ + 𝐾𝑚𝑛
−−. 𝐴𝑚

− ]𝑁
𝑚=1   = 0                          (3.13b) 

 

The matrix form of set of equations above is written as: 

(
𝑑𝐴𝑚

+

𝑑𝑧
𝑑𝐴𝑚

−

𝑑𝑧

) = ∑ [
𝐾𝑚𝑛

++𝑒𝑖(𝛽𝑚−𝛽𝑛)𝑧 𝐾𝑚𝑛
+−. 𝑒𝑖(𝛽𝑚+𝛽𝑛)𝑧

𝐾𝑚𝑛
−+𝑒−𝑖(𝛽𝑚+𝛽𝑛)𝑧 𝐾𝑚𝑛

−−. 𝑒−𝑖(𝛽𝑚−𝛽𝑛)𝑧
]𝑁

𝑚=1 (𝐴𝑚
+

𝐴𝑚
− )                                (3.13c) 

  

 

These solutions correspond to the guided modes in slowly varying mode coupling. 

Here, the amplitude depends on the propagation constant sum of two modes, z and coupling 

coefficient.   

     

3.2.2     Ideal mode propagation applied to an FMF 

 

The couple mode theory is applied to model an FMF by using an expansion in terms of 

one set of orthogonal modes that describe the fiber as unperturbable or invariant with respect 

to z (ideal modes). The perturbation is modeled as in the equation 3.2a [Petterman,1976 ]. The 

undistorted FMF and its eigenmodes follow the homogeneous scalar wave equation defined in 

Chapter 2. Depending on the fiber profile, the eigenmode can be described by the Bessel 

function for step index or by a good approximation as: Laguerre-Gauss mode basis for 

graded-index. 
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In the presence of perturbation, the modes couple and their propagation can be 

expressed by equation 3.14. 

Coupling and propagation description is calculated in each segment by using a matrix 

notation of the equations 3.11a-b to simplify the calculation in the numerical tool (equation 

3.14).  

The equation 3.14 represent the coupling equation for a particular segment of the fiber. 

Later, this equations will be extended for entire of the fiber.    

 

 [
𝒅𝒂(𝒛)

𝒅𝒛
] = (−𝑖[𝑩(𝜔)] − 𝑖[𝑲] )[𝒂(𝒛)]                                               (3.14) 

 

Here, [𝒂(𝒛)] corresponds to the column matrix which contains the wave 

amplitudes: [𝒂(𝒛)] = (𝒂𝟎(0), 𝒂𝟏(𝑧),…… . . 𝒂𝑵(𝑧))𝑻, where N is number of modes.  

Note also that equation 3.14 is a transmission matrix having two terms: the first term 

defines the uncoupled propagation matrix and contains the propagations matrix of a 

degenerate mode group, [B(ω)] and the second describes the coupling between modes, by the 

matrix, [𝑲]. This linear ordinary differential equations can be solved by its matrix solution, 

where the matrix exponential function is used.  

 

 

[𝑲] = [
𝑲11 ⋯ 𝑲1𝑁

⋮ ⋱ ⋮
𝑲𝑁1 ⋯ 𝑲𝑁𝑁

]  and  [𝐁(𝛚)] = [

𝐁1(𝛚) ⋯ 0
⋮ 𝐁2(𝛚) ⋮
0 ⋯ 𝐁𝑁(𝛚)

] 

 

   

To calculate the terms of [𝑲], we use equation 3.15a which represents the coupling 

coefficient between the m-th and n-th modes. Here, Kmn is written by assuming longitudinal 

components of the fields negligible or low index difference. 

In the case of a lossless system, Kmn=Knm and the matrix, K is Hermitian. In the 

absence of coupling [𝑲]  is a null matrix. 

 

    𝐾𝑚𝑛 =
𝜔. 0

4𝑖𝑃𝑧
∬ (𝑛𝑒

2 − 𝑛𝑜
2). (e⃗ 𝑥,𝑚

∗
𝐴∞

e⃗ 𝑥,𝑛 + e⃗ 𝑦,𝑚
∗ e⃗ 𝑦,𝑛)𝑑𝑆                         (3.15a) 
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It should be noted that e⃗ 𝑥,𝑛  and  e⃗ 𝑦,𝑛are the x and y components of the normalized 

electric field for both polarization.  

Using the relation 𝑛𝑝
2(𝑥, 𝑦) = 𝑛𝑒

2(𝑥, 𝑦) − 𝑛𝑜
2(𝑥, 𝑦) and equation 3.15a, the coupling 

coefficient becomes:  

 

𝐾𝑚𝑛 =
𝜔. 0

4𝑖𝑃𝑧
𝑛1 ∬ (

2.𝑥

𝑅𝑥
+

2.𝑦

𝑅𝑦
) . (e⃗ 𝑥,𝑚

∗
𝐴∞

e⃗ 𝑥,𝑛 + e⃗ 𝑦,𝑚
∗ e⃗ 𝑦,𝑛)𝑑𝑆                         (3.15b) 

     

Likewise, the coupling coefficient can be expressed by considering the perturbation in 

only one axis, as in the following equation: 

 

𝐾𝑚𝑛 =
𝜔. 휀0𝑛1

2𝑖𝑃𝑧 . 𝑅𝑥
∬(𝑥). (e⃗ 𝑥,𝑚

∗

𝐴∞

e⃗ 𝑥,𝑛 + e⃗ 𝑦,𝑚
∗ e⃗ 𝑦,𝑛)𝑑𝑆 

    

To be more generic, we can include the propagation losses in the coupling model, by 

the matrix, [𝛂] 

     

[𝛂] = [

𝛼1 0

𝛼2

0 𝛼𝑁

] 

 

 

This new term is also added in the differential equation 3.14, so that: 

 

[𝒂(𝒛] = (−[𝜶] − 𝑖[𝑩(𝜔)] − 𝑖[𝑲])[𝒂(𝟎)]                                     (3.16a) 

 

Since matrices [𝜶], [𝑩(𝜔)] and [𝑲] are independent of z at a given segment, the 

resolution of the equation 3.16 can be given by: 

[
𝒅𝒂(𝒛)

𝒅𝒛
] = 𝑒−([𝜶]+𝑖[𝑩(𝜔)]+𝑖[𝑲]).𝒛[𝒂(𝟎)]                                     (3.16b) 

 

[𝒂(∆L)] = [𝐌(𝛚)] [𝒂(𝟎)]                                                 (3.16c) 
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∆L is the segment length, [𝒂(∆L)] describes the evolution [𝒂(𝟎)] after a segment of 

the fiber. [𝐌(𝛚)] is the propagation matrix, generally associated to the lossless propagation 

[𝐔(𝛚)] by the following relationship: 

      

[𝐌(𝛚)] = e−iΦ1(ω)[𝐔(𝛚)] = 𝑒−([𝜶]+𝑖[𝑩(𝜔)]+𝑖[𝑲]).∆L                          (3.17a) 

 

[𝐌(𝛚)] can be written, as a diagonal block matrix for a single section of ∆L length. 

Where, x, y sub-indices correspond to the x and y polarizations within a section. 

 

[𝐌𝒕(𝛚)] = [
𝑒𝑀𝑁𝑥∆𝐿 0

0 𝑒
𝑀𝑁𝑦∆𝐿] [

𝑒𝑀𝑁−1𝑥∆𝐿 0

0 𝑒
𝑀𝑁−1𝑦∆𝐿]… [

𝑒𝑀1𝑥∆𝐿 0

0 𝑒
𝑀1𝑦∆𝐿]                         (3.17b) 

    

To obtain the total propagation matrix, [𝐌𝒕(𝛚)], the individual propagation matrices 

of each segment are concatenated. This total propagation matrix describes the modal 

propagation on the whole optical fiber.    

    Besides, we can additionally obtain a new expression of [𝐌(𝛚)], from the following 

relationship:  

[𝐔(𝛚)] = eiΦ1(ω)[𝑴]                                                       (3.18) 

 

Φ1(ω) is arbitrarily chosen to be the phase of the fundamental mode with a 

propagation constant, β1(𝛚).  

Φ1(ω) = 𝑖(−𝜶 − 𝒊. 𝛽1
(𝛚) )𝒛                                     (3.19a)  

 

By expanding β1 (ω) through Taylor series (𝛽
1,0

+ 𝛽
1,1

(𝜔 − 𝜔0) + 0(𝜔 − 𝜔0)
2) and 

making 𝛽
1,1

(ω − ω0) ≈ τ1.(ω − ω0)  , equation 3.19a can also be rewritten as: 

     

Φ1(ω) ≈ (𝛽1,0 + τ1(𝜔 − 𝜔0) − 𝒊𝜶) . ∆L                                 (3.19b) 

 

Where, τ1  is the group delay of mode 1 per unit of length. 

z is replaced by a length segment ∆L.  

Here, Φ1(ω) represents the scalar variation of propagation constant as a function of 

the deviation of the angular center frequency by the transmission length.   
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Now, [𝐔(𝛚)] can be written    

 

[𝐔(𝛚)] = 𝑒𝜶𝟏.∆L𝑒𝒊𝜷𝟏.∆L𝑒−([𝜶]+𝑖[𝑩(𝜔)]+𝑖[𝑲]).∆L 

[𝐔(𝛚)] = (𝑒[∆𝜶].∆L+i.[∆𝑩(𝜔)].∆L−𝑖[𝑲].∆L)                                      (3.20) 

 

where,  

 

[𝑒−[∆𝜶].∆L] = [
1 … 0

𝑒(𝛼1−𝛼2).∆L = 𝑒∆𝛼2.∆L

0 … 𝑒(𝛼1−𝛼𝑁).∆L = 𝑒∆𝛼𝑁.∆L  
] 

[𝑒−𝑖[∆𝜷].∆L] = [
1 0

𝑒(𝜷1−𝜷2).∆L = 𝑒∆𝜷2.∆L

0 𝑒(𝜷1−𝜷𝑁).∆L = 𝑒∆𝜷𝑁.∆L  

] 

 

Here,  ∆𝛼𝑁  = (𝛼1 − 𝛼𝑁) and ∆𝛽𝑁 = (𝛽1 − 𝛽𝑁)  are the attenuation coefficients and 

propagation constant relative to those of the fundamental mode. 

 

 

 Example: For three modes, only one segment 

    

To illustrate the impact of bending on the fiber modes, we have simulated a step-index 

fiber that supports three modes, namely LP01, LP11e and LP11o. The e-o sub index is used to 

differentiate between even or odd mode orientations, respectively, in the vertical direction 

normal to the plane of the bend. Figures 3.7a-c show the coupling matrices and electric field 

in response to perturbation for different radii of curvature in each axis of the fiber. That is, a 

straight fiber is represented by making Rx and Ry infinite, whereas a perturbed fiber the radius 

of curvature on one or both axis must be varied.  

It should be noted that coupling matrix is an null matrix in the absence of perturbation 

and the electric fields correspond to the LP modes. As bending increases, the non-diagonal 

elements of the coupling matrix become different to zero, evidencing the coupling effect. 

Note also that intensity of the electrical field is affected by two factors: the coupling regime 

and the direction of the perturbation. 
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Figure 3-7: a-b) Coupling matrices and intensity of the electric field for a) straight fiber b) 

slightly perturbed fiber. c) Coupling matrices and intensity of the electric field for a perturbed 

fiber in x-axis. d) Coupling matrices and intensity of the electric field for a perturbed fiber in y-

axis.   
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 Group delay operator  3.3

 

Principal modes (PM) are one of the possible candidates for long haul optical 

transmission that use FMF because they are free of group delay dispersion to first order in 

frequency. The term first order denotes the fact that this description arises from the first-order 

term in a series expansion of matrix, [𝐌(𝛚)] (around the center frequency), in the absence of 

polarization-dependent loss.  

Principal modes is originally based on the concept of principal states of polarization 

(PSPs) developed to describe the dispersion in SMF. [Shemirani, 2009] and [Juarez, 2015] 

adapted this study on MMFs. Thereby, the eigenvectors of the group delay operator are the 

PMs. To obtain the group delay operator, we consider a narrowband optical signal at a given 

frequency, ω0 and an FMF that supports N guided modes.  

Later, the group delay operator will be compared to group delay (GD) under certain 

conditions. So, we consider relevant to give a review of GD. GD for m-th mode after 

propagation through a segment of length z of fiber is given by: 

 

T𝑚 =
𝑧

𝜈𝑔 
= 𝑧

𝑑𝛽𝑚

𝑑𝜔
= 𝑧𝑑𝜔𝛽𝑚                                          (3.21) 

 

GDs of an optical fiber can be defined by a vector [𝐓(𝛚)] as: 

 

[𝐓(𝛚)] = 𝐿. 𝜕𝜔[𝐁(𝛚)]                                             (3.22) 

 

Equation 3.22 can also be written as equation 3.23, by using the group delay per unit 

of length, 𝜏. 

[𝝉] = 𝜕𝜔[𝐁(𝛚)]                                                      (3.23) 

 

To obtain the group delay operator, we will use the equation 3.16c  

[𝒂(𝒛)] = [𝐌(𝛚)] [𝒂(𝟎)]     

 

As we have seen earlier, [𝒂(𝟎)] describes the excitation of the modes at the input end 

of the fiber (z=0), and it is constant. To simplify, we change for the following notation: 

 |𝑎⟩ = [𝒂(𝟎)] and |b⟩ = [𝒂(𝒛)] 
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The output field after propagation in the optical fiber can be written as follows by 

using relation 3.18: 

 

     |b⟩ω = e−iΦ1(ω)[𝐔(𝛚)] |𝑎⟩                                                        (3.24) 

 

Note that |b⟩ depends on pulsation, ω on the carrier.  To evaluate the frequency 

dependence equation 3.24 will be derived on both sides. For this case, the information carried 

occupies a bandwidth leading to the frequency dependence of the output, |b⟩, excepting in the 

input field pattern, because it can have slow variation with respect to ω. 

 

𝜕𝜔 |b⟩ = (−𝑖 𝜕𝜔Φ1(ω)[𝐔(𝛚)]  + 𝜕𝜔[𝐔(𝛚)] )e−iΦ1(ω)|𝑎⟩ 

 

By using equation 3.24, the last expression can be written as: 

    

𝜕𝜔 |b⟩ = (−𝑖 [𝐔(𝛚)]𝜕𝜔Φ1(ω) + 𝜕𝜔[𝐔(𝛚)] [𝐔(𝛚)]−1)|𝑏⟩ 

 

By differentiating equation 3.19b, we can obtain: 

 

𝜕𝜔Φ1(ω) = 𝜕𝜔(𝛽1,0
+ τ1(𝜔 − 𝜔0) − 𝒊𝜶) . z = τ1. z − iz𝜕𝜔𝜶 

      

This equation can be rearranged by neglecting frequency variation of 𝜶 

 

𝜕𝜔 |b⟩ = (−𝑖(τ1. z − iz𝜕𝜔𝜶)[𝐈]  + 𝜕𝜔[𝐔(𝛚)] [𝐔(𝛚)]−1)|𝑏⟩ 

 

Here, [𝐈] is identity matrix. The output field depends on the frequency due to the group 

delay operator G(ω), which is identified as 𝜕𝜔[𝐔(𝛚)] [𝐔(𝛚)]−1.  

 

𝜕𝜔 |b⟩ = (−𝑖(τ1. z − iz𝜕𝜔𝜶)[𝐈]  + [𝐆(𝛚)] )|𝑏⟩                         (3.25) 

 

Note that equation 3.25 describes the frequency evolution of the output fields at the 

end of the fiber. 
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3.3.1.1 Uncoupled and lossless fiber 

 

In this case, the coupling and loss matrices are negligible, thus matrix, [𝐔(𝛚)] 

becomes: 

[𝐔(𝛚)] = 𝑒𝑖[∆𝑩(𝜔)].𝒛 

 

This equation will be evaluated for each mode, m 

𝜕𝜔(𝑒
−𝑖.∆𝜷𝒎.𝒛) = 𝑖𝑧𝜕𝜔(∆𝜷𝒎)𝑒𝑖.∆𝜷𝒎.𝒛 

 

∆𝜷𝑚 is the difference between the propagation constants of the fundamental mode and 

mode, m.  

Then, we write ∆𝜷𝑚 in terms of the group delay, by expanding each β in Taylor series, 

and substituting β1(ω-ωo) by τ.ω, which is the term related to the inverse of the group velocity 

or group delay. 

             ∆𝜷𝒎 = ((𝛽
1,0

+ τ1(𝜔 − 𝜔0) − (𝛽
𝑚

+ τ𝑚(𝜔 − 𝜔0)), whose derivative is equal to: 

            𝜕𝜔(∆𝜷𝒎) = ∆. τ𝑚 

 

It should be noted that the derivative of ∆𝜷𝒎 corresponds to the difference in group 

delay per unit of length of mode, m compared with the fundamental mode. 

For this case, group delay operator [𝐆(𝛚)] can be written as: 

[𝐆(𝛚)] = 𝑖𝑧 [∆𝛕] 

[∆𝛕] is a diagonal matrix whose element corresponds to ∆. τ𝑚. The eigenvectors of 

[∆𝛕] are the normal mode of the fiber, while eigenvalue are group delays differences between 

each mode.  

3.3.1.2 Slowly varying envelop  

 

Assuming a slowly varying envelop and only one segment of the fiber and considering 

the modes at the output end of the fiber as: 

 

|b⟩ω = e−iΦ1(ω)[𝐔(𝛚)] |𝑎⟩ = [𝐌(𝛚)] |𝑎⟩ 

    

We can write matrix, [𝐌(𝛚)] of an uncoupled and lossless fiber, as follows: 
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[𝐌(𝛚)] = 𝑒−𝑖[𝑩(𝜔)].𝒛 

 

Normal modes of this diagonal matrix 𝑒−𝑖[𝑩(𝜔)].𝒛 propagate without changing.  

For instance, by considering the fundamental mode of the fiber with a propagation 

constant β1 in one only segment, the output end of the fiber can be expressed as: 

    |b⟩ω = 𝑒−𝑖[𝑩(𝜔)].𝒛 |1⟩  which means that  𝒂𝟏(𝑧) = 𝑒−𝑖β1.𝒛 (𝒂𝟎(0)) 

 

Note that the matrix coefficients can exhibit rapid oscillation for numerical 

considerations. We can avoid the previous condition by defining a slowly varying envelope 

|𝐵⟩ for the fields after the propagation in the fiber. 

|b⟩ω = 𝑒−𝑖[𝑩(𝜔)].𝒛 |𝐵⟩ 

By differentiating, we obtain  

|b⟩′ω = −𝑖[𝑩(𝜔)]𝑒−𝑖[𝑩(𝜔)].𝒛 |𝐵⟩ + 𝑒−𝑖[𝑩(𝜔)].𝒛 |𝐵⟩′ 

And thus: 

|𝐵⟩ = −𝑖𝑒𝑖[𝑩(𝜔)].𝒛 [𝑲]𝑒−𝑖[𝑩(𝜔)].𝒛 |𝐵⟩′                               (3.26) 

 

 Example: For three modes, only one segment 

    

Figures 3.8 a-c exhibit the group delays (GDs) under different conditions of bending for a 

3-LP step-index fiber (same fiber used in Figs.  3.7 a-c). The GDs have been calculated from 

the wave equation and eigenvalues of [𝐆(𝛚)] respectively. Note that in uncoupled regime, the 

calculated GDs by both methods are similar, since [𝐔(𝛚)] is a unitary matrix, so that 

 [𝐆(𝛚)] = 𝜕𝜔[𝐔(𝛚)] [𝐔(𝛚)]−1 and the diagonal matrix becomes the time delay of each 

mode. 

𝜕𝜔 |b⟩ = (−𝑖(τ1. z − iz𝜕𝜔𝜶)[𝐈]  )|𝑏⟩ 

In very weak coupling, the calculated GDs are also similar, because [𝐔(𝛚)] matrix 

depends almost exclusively on the propagation constant matrix, [𝐔(𝛚)] is Hermitian, and the 

variation of the diagonal matrix from group operator [𝐆(𝛚)] are tiny. In a strong coupling, the 

calculated GDs by both methods are different, because [𝐔(𝛚)] depends additionally of the 

coupling matrix and there are more significant variations of [𝐆(𝛚)]. 
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Figure 3-8: Group delay for a) straight fiber b) slightly perturbed fiber and c) perturbed fiber. 

 

 

 Principal modes (PM) 3.4

 

As discussed above (by equation 3.25), the output pattern after propagation at the end of 

the fiber (length z) depends on the frequency due to [𝐆(𝛚)] and initial composition of modes 

injected at the input of the fiber. However, we can find an output pattern independent from the 

frequency change to the first order by the following equation: 

[𝐆(𝛚)] |bP⟩ = ΥP|bP⟩ 

 

Therefore, the eigenmodes from this equation correspond to the Principal Modes (PM) 

and the eigenvalues to the group delay of principal modes. The eigenvalues can be complex if 

we consider the losses. 

Assuming invariant losses in ω 
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𝜕𝜔|bP⟩ = {−𝑖τ1. z + ΥP}|bP⟩ 

We can find also PM at the input end of the fiber 

 

{−𝑖τ1. z[𝐈] + 𝜕𝜔[𝐔(𝛚)][𝐔(𝛚)]−1}|𝑎⟩ = 0                                  (3.27) 

 

Here, [𝐔(𝛚)] [𝐔(𝛚)]−1can be also [𝐈], since [𝐔(𝛚)] is a Hermitian matrix.  

That is, 𝜕𝜔[𝐔(𝛚)][𝐔(𝛚)]−1 can be written as −[𝐔(𝛚)]−1𝜕𝜔[𝐔(𝛚)]. 

For simplicity, we can define [𝐅(𝛚)] as [𝐔(𝛚)]−1𝜕𝜔[𝐔(𝛚)], thus equation (3.27) 

becomes: 

(−𝑖τ1. z[𝐈] + [𝐅])|𝑎⟩ = 0 

 

By solving the eigenvalue equation 3.28, the PM at the input end of the fiber can be 

found. 

 

(−𝑖τP[𝐈] + [𝐅])|𝑎𝑃⟩ = 0                                             (3.28) 

 

PMs at the input end of the fiber are generally different from the PMs at the output end 

of the fiber since operators [𝐔(𝛚)]−1[𝐔(𝛚)] do not commute. 

It should be noted that τP is a scalar value, and 𝑎𝑃 does not depend on frequency.  

PMs does not satisfy the orthogonal condition since the losses in each PM could be 

different.   

In order to know the advantages of PMs on other bases (LP, OAM), a theoretical study 

of the PM in different coupling regime will be done.  The PM are studied in terms of the 

variation of DGD with the fiber length for weak and strong coupling.  

However, if we take into account the losses, the set of output PMs becomes a non-

orthogonal basis. PM can be used to expand any electromagnetic field pattern and provide an 

appropriate basis that describes dispersion in FMF. 
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 Example: For six modes 

 

Six 6-LP graded-index fibers with trench are used to study the PM (table 3.2). Such 

fibers support 10 spatial-modes organized into 4 nearly-degenerate mode groups (PMs) at 

1550 nm (Fig. 3.9).  To obtain the PMs, equation 3.28 is used by adapting the frequency by 

considering each fiber and number of segments.  

PMs have been studied in terms of the evolution of the differential mode group delay 

(max|DMGD|) as a function of the standard deviation of curvature. Therefore, max|DMGD| 

has been defined as the difference between the maximum and minimum value of the GD 

(MaxGD - MinGD). Later max|DMGD| of the PMs will be used for comparison with the 

max|DMGD| between the LP modes derived from the wave equation, as is summarized in 

Table 3.2. 

 

  
 

  
Figure 3-9: Evolution of group delay (delay) of the PMs as a function of standard deviation of 

the curvature for a trench-assisted 6-LP graded-index fiber of a) 13µm core radius. b) 12 µm 

core radius c) 10 µm core radius. Here, a coupling model using ideal mode was considered. The 

bending radius follows a Gaussian distribution with the given standard deviation of the 

curvature. GD of PMs over 100 segments.  
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More precisely, we vary the standard deviation of curvature on a range of 10
-2

 to 10
2
 

to study the group delay (GDs) evolutions of the PMs (Fig. 3.9 a-c). For this coupling regime 

(weak coupling, 1/R< 0.01), the PMs are well differentiated, without mixing with each other. 

Note that for the profiles ∆𝑛𝑒𝑓𝑓 = 2.4 × 10−3 and 2.8× 10−3 (even for ∆𝑛𝑒𝑓𝑓 = 1.8 × 10−3,

2.1 × 10−3), LP modes are grouped into 4 keeping almost the same max|DMGD| after 

reaching the coupling. However, for the fiber of radius =10 µm (∆𝑛𝑒𝑓𝑓 = 4.4 × 10−3), the 

modes are grouped into 5. This result can be attributed to the larger ∆𝑛𝑒𝑓𝑓 (design of the 

fiber).   

  At weak coupling, the crosstalk tends to increase when ∆𝒏𝒆𝒇𝒇 increases. As coupling 

increases and strong coupling is achieved, the PM’s are no longer the real modes of the fiber.  

 Coupling regime  3.5

 

The coupling regime is a key in the design phase of optical fibers and to choose the 

MIMO-DSP. The coupling regime can be divided into two categories: weak and strong. In 

weak-coupling, there is a slight mode coupling, allowing each LP mode and their group delay 

value to be properly defined. Likewise, the GDs are not degenerates and the difference of 

group delay (DGD) grows linearly with the fiber length, L. In strong-coupling, there is a high 

mode coupling which reduces the DGD because the GDs tend to merge. Usually, DGD is 

proportional to the square root of the fiber length [Shemirani, 2009]. 

These regimes can be estimated by finding the correlation or coupling length (LC), over 

which the local eigenvector can be assumed constant [Kahn, 2012]. Therefore, a weak 

coupling has a fiber length much smaller than LC. Over this regime, we can find a coupling 

between degenerated modes, forming multi-group (MG), or PM due to their similar 

propagation constant, but the rest of the modes have a restricted coupling. A strong coupling 

has a fiber length much bigger than LC. Here, we can find a significant coupling between all 

modes; allowing the Group Delay (GD) or delays tending to merge.  

 

     Study of 10-spatial-mode fibers with trench-assisted graded-3.6

index-core profiles 

 

We have studied six 10-spatial-mode fibers with trench-assisted graded-index-core 

profiles. The 10 spatial modes are divided into 4 mode groups also equally spaced with 
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respect to the effective index 𝑛𝑒𝑓𝑓 (see Fig. 3.10). These fibers were optimized to get the 

smallest possible DMGDs, low bend losses (<10dB/turn at 10mm radius) for all the guided 

modes and high losses for the higher-order leaky modes to guarantee effective cut-off. They 

have different core-cladding index differences (Δcore) and different core radii (Rcore), but the 

same normalized frequency, leading to different DMGDs and ∆𝑛𝑒𝑓𝑓. As previously reported 

[Sillard, 2014], DMGDs and ∆𝑛𝑒𝑓𝑓 increase when Rcore decreases and ncore increases, 

evidencing the resilience of the perturbation (coupling). The main fiber parameters are 

summarized in Table 3.2. 

 

       

Figure 3-10: Group delay operator calculation 

 

The coupling can influence the reduction of the overall DMGD of the FMF. An optical 

signal can travel on different modes at different times, which leads to an exchange of energy 

between modes randomly during the transmission [Shemirani, 2009]. By considering only one 

FMF type as the entire system without any devices (such as amplifiers, connecters, switches, 

etc.), it is possible to observe the change in the group delay of LP modes and PM.  
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3.6.1  Validation of the tools      

 

We have validated the PM model for 10-spatial-mode fibers with calculations, 

obtained by solving the scalar wave equation (Equation 2.37) in the weakly-coupled regime 

(𝜎1/𝑅 = 10−20). We compared the differences between the maximum and the minimum GDs 

of the PMs, divided by the distance, with the max|DMGD| between the LP modes derived 

from the wave equation. As shown in Table 3.2, results are in very good agreement for these 

two different calculations. Note that in the absence of coupling the max|DMGD| is almost 

similar for both calculations methods. As ∆𝑛𝑒𝑓𝑓 increases, the max|DMGD| calculated by PM 

method tend to be less accurate. The max|DMGD| calculation by the group operator (equation 

3.28) uses derivatives that are calculated by approximate methods (as numerical 

differentiation) in the numerical tools. A similar PM approach has been validated with 

experimental results obtained with a multi-core fiber in the strongly-coupled regime (𝜎1/𝑅 =

10−2) [Fujisawa, 2015].  

Besides, we have studied the group delay as a function of the curvature and the group 

delay variation as a function of the width trench on the profiles presented in Table 3.2. Note 

that different ∆𝑛𝑒𝑓𝑓 lead to different coupling behaviors, so that the higher the ∆𝑛𝑒𝑓𝑓, the 

more resistant to coupling. In other words, a large ∆𝑛𝑒𝑓𝑓 (small core) produces a high DMGD 

and vice versa. 

 

Table 3.2: Fiber parameters. It contains different radii of the core from 10 µm to 15 µm keeping 

the same the normalized frequency and bend losses to ensure minimal macrobending losses (as 

defined in chapter 2). 
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3.6.2 Group delay as a function of the curvature 

 

We have computed numerically the group delay as a function of the standard deviation 

of curvature on a range of 10
-20

 to 10
3
 based on the coupling model described previously for 

different segment number (100 and 1000) with a fixed fiber length of 1km. We used the fiber 

profiles of table 3.2 to study the coupling regime at different  ∆𝑛𝑒𝑓𝑓.  

To study the GDs evolution as a function of the curvature, we use the PM modes.  

They are obtained by the PM analysis modifying the frequency range. Figure 3.11 a-f) shows 

GDs of a fiber for different segments and two profiles: radius =14 µm (∆𝑛𝑒𝑓𝑓 = 2.1 × 10−3) 

and radius =11 µm (∆𝑛𝑒𝑓𝑓 = 3.3 × 10−3). Note that one of the main influences of the mode 

coupling is the reduction of the DMGD as the standard deviation (std) increases. This 

variation (in the DMGD) allows to determine different coupling regimes. Through these 

graphs, it is possible to describe three different coupling regimes std~10 m
-1

 (very weak 

coupling), 10<std<10
2
 m

-1
 (intermediate coupling) and std>10

2
 (strong coupling). At very 

weak coupling, the vector modes with a very similar propagation constant are grouped in MG, 

demonstrating their degenerescence. For an intermediate coupling, all the modes reduce their 

delay, leading to reductions in the DMGD. At strong coupling, the tendency is that all modes 

merge tending to have similar delay, further reducing the DMGD. It should be noted that the 

minimal spread between the maximum and minimum values of GDs is reached as the number 

of segments is increased.  

To study the leaky mode effect in the guided modes, we have considered two cases, 

without and with leaky modes (See Figs. 3.12a-b and Fig. 3.13a-b). To compare we have 

analyzed the attenuation (Rayleigh+leakage) as a function of the standard deviation of 

curvature on a range of 10
-10

 to 10
3
 based on the attenuation calculation described previously 

in chapter 2 for 1000 segments with a fixed fiber length of 1000 m. Note that, in the absence 

of leaky modes and in the strong coupling regime, the tendency is that all modes merge, 

losses are higher for some modes and lower for others. Here, the curvature losses are not 

considered. 
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Figure 3-11: a-b) Evolution of group delay of the PM modes as a function of curvature (1/R). 

 c-f) Evolution of group delay of the PMs as a function of the standard deviation of curvature. 

 

 

In the presence of leaky modes and intermediary coupling, we have expected that the 

leaky effect impacts over the guided modes. However, the leaky effect or attenuation 

presented an abrupt increase at 10
-3

 (close to the end of weak coupling) for the profile with a  

∆𝑛𝑒𝑓𝑓 = 2.1 × 10−3 and at 10
-2

 for the profile with a ∆𝑛𝑒𝑓𝑓 = 3.3 × 10−3 (Fig. 3.13 a-b). 

That is, the leaky effect occurs faster on ∆𝑛𝑒𝑓𝑓 = 2.1 × 10−3 because some of their leaky 
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modes have a ∆𝑛𝑒𝑓𝑓 closer to the guided modes, with a difference from the other profile 

(Section 2.8, chapter 2).  

For std>10
-3

, ∆𝑛𝑒𝑓𝑓 = 2.1 × 10−3 
(143 dB/km) presents higher losses than ∆𝑛𝑒𝑓𝑓 =

3.3 × 10−3 (30 dB/km) because the first profile has a greater amount of leaky modes and 

some of them undergo higher losses than the second profile which favors the losses during the 

coupling. 

 

  

Figure 3-12: a-b) Evolution of attenuation (guided PMs modes without leaky modes) as a 

function of curvature. 

 

Figure 3-13:  a-b) Evolution of attenuation (guided modes with leaky modes) as a function of 

curvature. To make the graph, a linear interpolation between the calculated points was realized. 

    

 

       Note that when the leaky modes are considered on these fibers profiles, the guided modes 

can exhibit high losses before to reach the strong coupling.  
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3.6.3  Study of the group delay variation as a function of the 

distance  

 

To study the group delay evolution, we varied the propagation length keeping the 

same segment length for different coupling regime. Thereby, the number of segments can 

change with the distance. We study the linear and square root behaviors of the GDS as a 

function of the propagation length. These linear and square root behavior can also be studied 

by equations 3.29a and 3.29b which permits to find the standard deviation, 𝜎𝐺𝐷 of the coupled 

modes in weak and strong coupling, through of the standard deviation of only one segment 

𝜎𝐺𝐷,𝑠 and the segment number used, N [Ferreira, 2015]. These equations are valid if all FMF 

segments have identical statistical properties. 

    

𝜎𝐺𝐷 = 𝑁. 𝜎𝐺𝐷,𝑠                                                                  (3.29a) 

 

𝜎𝐺𝐷 = √𝑁. 𝜎𝐺𝐷,𝑠                                                               (3.29b) 

 

These behaviors are obtained by multiplying the number of segments by the MaxGD-

MinGD value of an uncoupled mode.  

Likewise, by evolution of group delay (delay) figure, the linear and square root 

behavior can be well differentiated as in Figure 3.14.   

 

Figure 3-14: The linear and square root behaviors in the coupling regime curve. 
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  Figure 3.15 and 3.16 show the results up to a distance of 10000 km for fibers with 

∆𝑛𝑒𝑓𝑓 = 4.4 × 10−3, and with ∆𝑛𝑒𝑓𝑓 = 2.4 × 10−3. The upper solid line and the lower solid 

line represent the linear and square root behavior of the GDS respectively, and the dotted lines 

are the MaxGD-MinGD simulated values for 𝜎1/𝑅 = 10−20, 10−2, 100, 101 
and 102. 

 

 

Figure 3-15: Max-Min GD as a function of the propagation distance for different coupling 

strengths σ1/R for 10-spatial-mode fibers with Δneff =2.4×10
-3

. 

Δneff =2.4 x 10
-3 
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Figure 3-16: Max-Min GD as a function of the propagation distance for different coupling 

strengths σ1/R for 10-spatial-mode fibers with Δneff =4.4×10
-3

. 

 

As expected (Fig 3.15 and 3.6), in the weakly-coupled regime (𝜎1/𝑅 = 10−20), the 

GDSs increase linearly with the distance and perfectly follow the upper line for all 10-spatial-

mode fibers. This is in line with experiments made with graded-index 6-spatial-mode fibers 

where coupling between mode groups does not occur after 100s of km of propagation distance 

[Ryf, 2013] because of too small perturbations. Once the mode coupling (𝜎1/𝑅) increases, the 

GDS starts to decrease and its dependence with distance becomes weaker. The square root 

behavior is finally reached for very high perturbations (𝜎1/𝑅 ≥ 102) and for ∆𝑛𝑒𝑓𝑓 between 

3.3×10
-3

 and 1.8×10
-3

 (see representative results for ∆𝑛𝑒𝑓𝑓 = 2.4 × 10−3 in Fig. 3.15). What 

is remarkable is that this behavior is never attained for distances up to 10000 km for ∆𝑛𝑒𝑓𝑓 =

4.4 × 10−3 even for very high perturbations (𝜎1/𝑅 = 101 
and 𝜎1/𝑅 = 1 produced quite similar 

results as those for (𝜎1/𝑅 = 10−2), as shown in Fig. 3.16. This suggests that there is a 

∆𝑛𝑒𝑓𝑓 upper limit, between 3.3×10
-3

  and 4.4×10
-3

 for these fiber profiles, above which 

coupling becomes constant even for very high perturbations, which prevents them from 

reaching the strongly-coupled regime and the square root behavior of the GDS. This is in 

Δneff =4.4 x 10
-3 
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agreement with recent experiments that evidenced a constant mode-coupling phenomenon for 

∆𝑛𝑒𝑓𝑓 above a certain value for several few-mode fibers, including a graded-index 3-spatial-

mode fiber [Maruyama, 2015]. 

To evaluate the root square behavior of the GDS, we take the extreme cases of 

propagation distances of 1 and 1000 km and 𝜎1/𝑅 of 10
-20

 and 10
2
. At 1 km and 1000 km for 

small perturbations (𝜎1/𝑅 = 10−20) the GDS varies linearly, however the GDS increases once 

the distance increases, evidencing a GDS cumulative with the distance. For high perturbation 

and small distances (≤1 km), the coupling slightly reduces the GDS. 

 

Figure 3-17: Max-Min GD as a function of Δneff for σ1/R =10
-20

 and 10
2
 and propagation 

distance of 1km and 1000km for 10-spatial-mode fibers. 

 

For 𝜎1/𝑅 = 102 (high perturbations) and high distances (≥1000 km), the strongly-

coupled regime should be reached, and the GDS strongly reduced. Nevertheless, the steep 

increase of the GDS for ∆𝑛𝑒𝑓𝑓 between 3.3 and 4.4×10
-3

 is clearly visible, showing that in this 

∆𝑛𝑒𝑓𝑓 range, the strongly-coupled regime is never reached and probably it is in the 

intermediary coupling. The reduced GDS obtained when moving from small to high 

perturbations for distances between 1 and 1000 km is also shown. 
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Fig. 3.18 shows the square-root behavior of the GDS between the propagation 

distances of 1 and 1000 km and 𝜎1/𝑅 of 10
-20

 and 10. At 1 km and 1000 km and for small 

perturbations the GDS difference between 𝜎1/𝑅 of 10
-20

 and 10 are lower than in the previous 

case (Fig. 3.17) demonstrating a slight reduction of GDS or quite same behavior for both of 

𝜎1/𝑅 .  

However, for high perturbation and small distance (≤1 km), the GDS difference is 

lower than in the Figure 3.17 evidencing that the GDS are leaving the linear zone without 

reaching the root square behavior. 

 

 

Figure 3-18: Max-Min GD as a function of Δneff for σ1/R =10
-20

 and 10 and propagation 

distance of 1km and 1000km for 10-spatial-mode fibers. 

 

3.6.4 Influence of coupling regimes on the electrical field 

 

Figure 3.19 and 3.20 show the electric field vector for different coupling regimes, here 

we should consider the absolute value of Ex or Ey, multiplied by the real part sign of them. In 
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the absence of coupling and at very weak coupling, the LP modes are found without 

deformation. Whereas at strong coupling, these modes start to deform until they cannot be 

recognized.  

 

 

 

Figure 3-19: Evolution of electric field vector as a function of curvature for a) Δneff=2.1×10
-3

  

b) Δneff=3.3×10
-3. 

 

 

For weak and intermediary coupling, LP01 and LP11 seem to be more resilient to the 

coupling in both profiles.  

Taking as example the LP01 mode at ∆𝑛𝑒𝑓𝑓 = 2.1 × 10−3 
profile, the intensity of the 

electrical field vector LP01(MG1) has more deformation than the ∆𝑛𝑒𝑓𝑓 = 3.3 × 10−3 profile 
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(cf. Fig. 3.19b), possibly because LP01 receives more influence from its neighbors (LP11 and 

LP21), due to its low GD separation (See Fig. 2.14).      

It should be noted that some vectors of the electrical field in the presence of leaky 

modes are shifted to the cladding and others have lost their orientation. Probably, this 

displacement is produced by the reflections from leaky modes between cladding.  
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  Summary 3.7

     

The strength of coupling between the modes determines the coupling regime and it can 

be used as a criterion to reduce the MIMO-DSP complexity in FMF communication systems 

or to design fibers resilient to the coupling. The coupling between modes depends on how 

close is the modal propagation constant (or ∆𝑛𝑒𝑓𝑓) from each mode and this parameter is used 

in the FMF design. As was demonstrated, we can find two well-defined coupling regimes: 

weakly-coupled and strongly-coupled, and an intermediate coupling [Ferreira, 2015]. 

To describe the coupling regime, we can use the correlation length (LC), LC is found 

according to the invariability of the eigenvector, as proposed by [Fan 2005]. Once LC is 

identified, we compare the fiber length with LC to determine the coupling regime.  A weak 

coupling has a fiber length much smaller than LC. Over this regime, we can find an important 

coupling between non degenerate modes, forming multi-group (MG) or modes which are used 

in several practical applications.  

As we have seen above, the study of the GD as a function of the propagation distance 

for different coupling strengths allows to evaluate at which distance the square root behavior 

of GDS as a function of distance can be achieved. Thus, this behavior can be reached in the 

strongly-coupled regime up to 10 spatial modes, but only for high perturbations and for ∆𝑛𝑒𝑓𝑓 

below a threshold value. To minimize the GDS, one has to target fibers with the lowest 

possible ∆𝑛𝑒𝑓𝑓 while ensuring low bend losses for all modes. The challenge is to introduce 

high perturbations with low losses to achieve the strong coupling: should we use mode 

scramblers? Long period gratings? 

Instead of using the unperturbed eigenmodes of the FMF, Principal Mode (PM) is a 

candidate to use with MIMO-DSP, because these modes can minimize the modal dispersion, 

which is the main cause of the bandwidth limitation. The orthogonal advantage of the PM 

allows a minimal distortion in modal coupling. Thus, it is easier for MIMO-DSP to treat this 

mode group or PM, instead of the isolated modes (Eigenmodes). However, it must still be 

assessed how this could affect the transmission system elements, such as amplifiers, routers, 

etc.   

Strongly-coupled FMF is a promising technology for high-speed long-haul optical 

systems, while FMF weakly-coupled can be an interesting solution for short distances. 

Hence, depending on the coupling strategy, we distinguish two cases: 
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 For strongly coupled regimes, reducing the differential group delay (DGD) allows to 

decrease the complexity (in reception) in FMF systems based on so-called full MIMO 

DSP. 

 For weakly coupled regimes, reducing the coupling among all modes by design of the 

FMF allows the use of small size MIMO in the communications system, at the price of 

more stringent specifications for the optical fiber. 
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4 Localized mode coupling measurement in FMF 

    

As discussed in previous chapters, mode coupling is a stochastic process related to the 

fiber irregularities and perturbations. Several methods can measure the modal coupling ratio, 

but in FMF it is convenient to evaluate the modal content, especially so as to characterize 

crosstalk. Spatially and spectrally resolved imaging (S2 imaging), the correlation filter 

technique (CFT) and other techniques are experimental methods that allow to measure it.  

S2 can be used to retrieve modal content and power distribution in FMF. One can 

presume that this method could be expanded to characterize mode coupling. It is based on a 

spectral and spatial imaging technique and relies on Fourier analysis of the inter-modal 

interferences. However, in some cases, interpretation of the beat profile can be difficult and 

advanced S2 imaging (A-S2) provides a more robust analysis method [Sevigny, 2014]. We 

will now study the mode coupling in FMF under localized perturbation, using A-S2. 

 

  A brief review of coupling measurement 4.1

4.1.1 Method for measuring the modal content of a fiber 

 

As we have discussed before, FMF over MDM supports multiple spatial modes, thus 

each mode is seen as an individual communication channel. To be used at its optimum optical 

level of performance, an MDM system requires advanced characterization methods to 

evaluate the modal content of the FMF from several aspects: the geometry of the modes, the 

dispersion of the group index and the distribution of power between the different modes. 

Various methods, often interferometric, make it possible to characterize one or the 

other of these aspects, but only a few techniques are able to properly characterize all of them. 

The spatially and spectrally resolved imaging (S2) is one of the methods that offers the most 

simple experimental setup to characterize the modal content. It operates by spatially resolving 

the interferences that occurs when a coherent beam in an optical fiber is propagated over 

different modes with different group delays. As we will briefly see in this next section, there 

are other methods to reconstruct the total or partial information of modal content, for instance, 

the correlation filters and cross-correlated imaging (C2).  
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4.1.1.1 Correlated filter and matched filter (CFT) 

 

This method was introduced by [Golub, 1982] and requires a light shaping system in 

order to reconstruct the phase of the modes by a scanning of wavelength or delay which needs 

a certain time of acquisition. Thus, on the beam interference at the optical fiber output, a 

hologram is used which is especially encoded by the phase pattern of each mode. The 

calculation of this hologram uses the shape of the field envelopes, which are previously 

calculated or measured elsewhere. Through the successive diffraction of the beam by the 

holograms, proper to each mode, we get the different figures of intensity. This hologram is 

produced by a computer and specially masked as phase hologram (spatial light modulator-

SLM) [Flamm, 2012] or amplitude hologram (a personalized mask) [Kaiser, 2009]. 

 

 

  

 

Figure 4-1: a) The correlated filter method scheme to obtain the modal content. [Flamm, 2012]. 

b Left) Phase-hologram (encoded phase modulation) example for the six first guided modes by 

using an SLM as correlation filter. Right) Modal analysis with HM content, a) measured near-

field intensity by measuring of the power as intensity of the diffracted signal (red cross). b-g) 

Signal after correlation for the phase-hologram of figure-left. H) Measured modal power 

spectrum. Here, 60% of the total power is guided by HOM. 

 

 

SLM allows an amplitude and phase modulation encoded in a digital hologram which 

makes its use much more interesting than the conventional hologram. Indeed it is able to 

examine an arbitrary and unknown fiber with a successful modal decomposition by the real-
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time switching of the digital hologram. Unfortunately, the quality of the hologram can be 

affected by the SLM resolution, the modulation functions selected and the scaling factor that 

requires a priori knowledge of the modes geometry that is  a strong limitation. The correlated 

filter is a very efficient method but does not measure directly the modal dispersion. 

As we can see from figure 4.1, the output beam of the fiber is retransmitted through a 

beam splitter to a near-field camera and an SLM in reflection mode. The diffracted beam from 

the SLM is followed by a lens and then detected on a second camera (far field). The diffracted 

far field pattern contains direct information about the mode powers and intermodal phase 

differences. Thus, it is possible to measure the correlation signals, the amplitude and phase of 

the modes [Schulze, 2015] and even determine the angular alignment (horizontal or vertical) 

of the modes by the orientation of the hologram.  

This method is appropriate for real time decomposition of multimode fiber beams and 

its advantage is that the modes power evaluation is obtained directly by measuring the 

intensity, however measurements accuracy can be affected by the number of modes detected.  

 

4.1.1.2 Cross-correlated imaging C2 

 

C2 is another method that can be applied to obtain information on modal content, 

intensity distribution of the modes and group delay. The method allows to study the 

interference between the beam of the fiber and an external reference beam, detecting different 

modes in the time-domain as consequence of two relative optical paths of the two beams 

[Schimpf, 2011]. This method can also be performed in the frequency-domain [Demain, 

2014]. 

The C2 scheme is shown in the figure 4.2. The beam from the laser is divided into two 

beams: the reference and the probe arms here presented in a standard Mach-Zehnder 

interferometer configuration. The reference arm uses a dispersion compensating SMF, while 

the probe arm contains the fiber under test. The reference arm has an automated translation 

stage that scans across the temporal delay of each individual mode of the probe arm. Thereby, 

by the position variations of the delay stage, the camera takes the image of the interference 

between the combined beams of both arms. The resolution of the obtained cross correlation 

trace is sensitive to dispersion. Likewise, the relative weak size of the modes can crop the 

interference figures or make the intensity of the fundamental mode smaller, restraining the 

reconstruction of the field amplitudes. 
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Figure 4-2: a- Left) The C2 imaging scheme to obtain the cross-correlation trace [Schimpf, 

2011]. SLD: super luminescent diode. Right) Cross-correlation trace at one pixel of the images 

group. b- Left) Cross-correlation trace between the reference field and the output of the fiber by 

integrating over all pixels recorded by the camera. The peaks in the trace correspond to the two 

different modes (LP01 and LP02) in the fiber.  

 

 

In temporal term, C2 can be considered similar to S2 measurement. Even their data 

sets can be obtained through mathematically analogous methods. Both methods allow to 

reconstruct the modes from the stack of images obtained by the data acquisition (Camera). 

Specifically, C2 captures an intensity image at a given stage position. Thus, the electric field 

from intensity image is treated mathematically within a certain frequency domain to obtain a 

superposition of the output and reference fields. This sum describes the superposition of the 

optical fiber modes. Summarizing, the envelope of the cross-correlation trace is obtained from 

the stack of images recorded by the camera.     

By assuming that all modes have the same spectral excitation, the intensity can be 

described by the sum of two intensities which is the interference between the reference field 
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and the individual modes. Thereby, one of the intensity terms is independent from the stage 

position and the other depends on the phase-mismatch between the two arms of the 

interferometer. In the end, the difference between these two intensities is used to obtain a 

signal as a function of the translation stage position used to determine the envelope of the 

cross-correlation trace. 

C2 depends on the group-delay and dispersion. In the absence of dispersion, broad 

spectra can be used to achieve maximal temporal resolution. However, when the 

interferometer cannot control the dispersion (unbalanced dispersion), the broadening of cross-

correlation signal is dominated by the dispersion. For high bandwidths, C2 requires to control 

the dispersion to obtain an appropriate measurement, unlike to S2 imaging technique. By this 

technique, we can measure the group delay, dispersion, polarization, and the modal content. 

 

4.1.1.3 Spectrally resolved imaging (S2) 

 

S2 was introduced by [Nicholson, 2010] and it takes advantage of the fact that each 

mode propagates with a different propagation constant which leads to a spectral interference 

pattern in the fiber output. The spectral interference pattern in the near-field images is caused 

by the group delay difference between modes. This method measures this interference pattern 

at different wavelengths at any arbitrary point, which allows to obtain the optical spectrum 

(See Fig. 4.3-Left).  The collected data (optical spectrum) is studied by Fourier transform 

analysis in order to determine several beat frequencies at different group delays or group 

index differences (See Fig. 4.3-Right), or to reconstruct the amplitude and phase profiles. S2 

is similar to C2 except that the reference is not an external beam, but a mode of the fiber. 

 

 

Figure 4-3: Left) Example of an optical spectrum. Right) its Fourier transform with multiple 

beat frequencies [Nguyen, 2012]. These peaks correspond to each beats between the fundamental 

modes and each higher order modes. 
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As we already discussed, conventional S2 allows the characterization of field 

geometry, the difference of the group index between the modes and the power distribution of 

the different modes. However, its usefulness is limited by two factors: firstly one mode must 

clearly dominate the others, its relative power must be greater than 90% of the total power 

and, secondly, the group index differences of this mode with the others must not be 

degenerated with others group index difference, in which case the information on these two 

modes is confused and inseparable.  

To understand the method, let us assume linear polarization and uncoupled modes. 

Thus, the optical near field of the fiber at a given frequency can be written as in the equation 

4.1  

𝐸(𝑥,𝑦,𝜔) = ∑ 𝐹𝑘(𝑥,𝑦). √𝑃𝑘. (𝑒
𝑖(

2.𝜋.𝑛𝑒𝑓𝑓,𝑘

𝜆
𝐿−𝜔𝑡)

+ CC)𝑀
𝑘=1                                 (4.1) 

 

 

where Fk is the normalized field amplitude of the kth mode, Pk is the power in the kth 

mode, 𝑛eff,k  corresponds to its effective index, M is the total number of modes in the optical 

fiber and CC is the complex conjugate.  

The square of this output field allows to retrieve the intensity recorded by the camera. 

Thereby, from a mathematical point of view, we can obtain the spectral intensity caused by 

the interference between the propagating modes by the coherent sum of all modes fields of the 

fiber. Thus, the intensity (Equation 4.2) can be written as a function of the difference between 

the propagation constant Δβkℓ = βk - βℓ of the guided modes k and l by considering the 

following relationship β= 2.π. 𝑛eff /λ. 

 

𝐼 =  𝐼(̅𝑥,𝑦) + ∑ ∑ 2.√𝑃𝑘 . 𝑃ℓ.
𝑀
ℓ=𝑘+1

𝑀−1
𝑘=1 𝐹𝑘(𝑥, 𝑦). 𝐹ℓ(𝑥, 𝑦). cos ((βk − βℓ). 𝐿)               (4.2) 

In the equation 4.2, the first term corresponds to the constant intensity 

(∑ 𝑃𝑘 .
𝑀
𝑘=1 𝐹𝑘(𝑥, 𝑦)2) and the second term to the interference between the different modes. 

This interference can be characterized experimentally by the variation of the wavelength 

(optical frequency). Therefore, the mode propagation constant that is a frequency-dependent 

term can be expanded to the first order of the Taylor series (Equation 4.3). 

 

 β(ω) ≈ β𝑜(ω𝑜) + (ω − ω𝑜). β1(ω𝑜)                                      (4.3) 

β1(ω𝑜) =
𝜕β

𝜕𝜔
|
ω=ω𝑜

=
1

𝜈𝑔 
=

𝑛𝑔

𝑐 
                                                (4.4) 

Note that the term β1 is the inverse of the group velocity (υg).  
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Likewise, we write the effective index difference, Δβkℓ =βk - βℓ, using equation 4.3. 

 

Δβkℓ ≈ (β1,k − β1,ℓ).ω + [
(β𝑜,k−β𝑜,ℓ)

ω𝑜
−(β1,k − β1,ℓ)] . ω𝑜 = (β1,ℓ − β1,k).ω +

𝜙𝑘ℓ

𝐿
      (4.5) 

 

  

We can also define the propagation constant difference as a function of the group 

index or the time delay difference by: ω = 2πc/λ 

Δβkℓ = Δβo + (ω − ω𝑜)Δβ1 = Δβo + (ω − ω𝑜)Δ𝜏𝑘ℓ/𝐿                            (4.6a) 

Δβkℓ𝐿 = Δβo𝐿 + (ω − ω𝑜)Δ𝜏𝑘ℓ = 𝜙𝑘ℓ + ω Δ𝜏𝑘ℓ                                       (4.6b) 

 

 c is the speed of light and 𝑛g is the group index. 

Besides, Δ𝜏𝑘ℓ is the difference of the propagation time between the k and l modes. It is 

directly related to the group delay difference ∆𝑛𝑘ℓ.L /c.  Likewise, the propagation time 

difference is similar to the DMGD. Thus, equation 4.2 becomes:  

 

   𝐼(𝑥,𝑦,𝜔) = 𝐼(̅𝑥,𝑦) + ∑ ∑ 2.√𝑃𝑘. 𝑃ℓ.
𝑀
ℓ=𝑘+1

𝑀−1
𝑘=1 𝐹𝑘. 𝐹ℓ. cos (Δ𝜏𝑘ℓ. 𝜔 + 𝜙𝑘ℓ)           (4.7a) 

 

The spectrum of the signal presents different peaks localized at some determined time 

delay, ω is the optical angular pulsation and 𝜙kℓ represents initial phase of the beat. 

By using the following notation  Г𝑔 = 2.√𝑃𝑘. 𝑃ℓ,  𝑟𝑔(𝑥, 𝑦) = 𝐹𝑘. 𝐹ℓ (this notation will 

be also used later) and 𝜏𝑔 = 𝜏𝑘ℓ, equation 4.7a can be written:  

 

𝐼𝑥,𝑦,𝜔 = 𝐼�̅�,𝑦 + ∑ Г𝑔.𝑁
𝑘ℓ=𝑔=1 𝑟𝑔(𝑥, 𝑦). cos (𝜏𝑔. 𝜔 + 𝜙𝑔)                                 (4.7b) 

 

By assuming an infinite wavelength range, a time delay difference independent of ω 

(group velocity tends to zero) and the Fourier transform definition   δ(τ) =
1

2π
∫ 𝑒−𝑖𝜔𝑡𝑑

∞

−∞
𝜔, 

the Fourier transform of Equation 4.7a becomes: 

 

ℐ = 𝐼�̅�(𝜏) + ∑ Г𝑔.
𝑁
𝑘ℓ=𝑔=1 𝑟𝑔(𝑥, 𝑦). [𝛿(𝜏 − 𝜏𝑔) + 𝛿(𝜏 + 𝜏𝑔)]                    (4.8) 

 

It has to be noted that the interferences are located at particular 𝜏𝑔 values, whose 

spatial profile is given by the beat envelopes of the two interfering modes. Likewise, the 

constant intensity term is located at a null frequency. Let us suppose a fiber with total length 
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L propagating only 2 LP modes without degeneracies. In bi-mode fibers, only one spectral 

interference can be found which corresponds to the interaction between the fundamental mode 

and the higher order mode. In the Fourier domain, it will be represented by one peak (See Fig. 

4.4). Thus, if the fiber has N modes, the spectrum can contain 
𝑁2−𝑁

2
  different observable beat 

frequencies, resulting from the interferences between the fundamental modes and the higher 

order modes, and the interferences between HOMs themselves.  

In detail, Figure 4.4 shows the beat amplitude as a function of Δng. At Δng=0 (τ=0), 

we observe the average intensity term which represents the intensity of the fundamental mode 

from a nearly single mode excitation. At Δng 01-11, we find the interference of modes LP01 

and LP11 whose amplitude is given by the term  2.√𝑃𝑘 . 𝑃ℓ. 𝐹𝑘. 𝐹ℓ . It should be noted that the 

position and quantities of peaks, as we already mentioned, depend on number of modes but 

also to certain physical phenomenon such as splices, constrains, that induce mode coupling, as 

we already mentioned. Similarly, the peak coming from the two interferences is not infinitely 

narrow, because the data window is not infinite. 

 

Figure 4-4: Amplitude profile for a bi-mode fiber. 

 

In the end, the spectra is calculated for each pixel and their amplitude are summed, so 

that the spectral contributions accumulate, which makes it possible to see all the peaks 

simultaneously. Similarly, some modes have zero intensity in some part of space and so each 

pixel does not reflect the same interference pattern. 

In S2, the conventional algorithm used to recover modes is based on the hypothesis 

that the fundamental mode supports at least more than 90% of the total power. Thus, the 

interferences between other modes can be minimized. That is, all the terms related to the 

interferences between higher order amplitude modes become negligible in comparison to the 

terms of the fundamental mode.  
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Besides, the dispersion of the group velocity and the intensity source spectral-

distribution can cause an additional enlargement of the peaks which adds complexity to the 

discrimination between different beat profiles, even more so if the number of modes 

increases. This problem could be improved by the integration of the power output in the time 

domain (Fourier filter) or by filter techniques [Jollivet, 2014]. However, it could lead to 

additional optical elements complicating the setup.  

S2 has been used to analyze large mode area fibers [Nicholson, 2009], photonic crystal 

fiber [Bromage, 2011], all-solid and hollow core band-gap fibers [Fini, 2013], erbium-doped 

fiber amplifier [Nicholson, 2013]. Even if this method allows the evaluation of the modal 

content, it requires a modification in the signal processing to achieve the evaluation of 

degenerated modes. Sévigny et al. uses the intra-data correlation to discriminate the different 

beat profiles. In the following section, we will provide details about this method [Sévigny, 

2015]. 

  

 

 Summary 

 

Technique Source type Fiber length Difficulty  of 

experimental 

setup 

Correlated Filter 

CFT 

LED ≈30 cm 
☹ 

Cross-correlated 

imaging C2 

LED/LASER ≈ 1 m 

☹ 

Spectrally resolved 

imaging S2 
Laser > 100m 

☺ 

 

4.1.2 Method for measuring the mode coupling 

   

To study fiber properties and mode coupling in standard single-mode fibers, the 

curvature in the fiber has been experimentally studied in a sensor such as a Bragg fiber, 

especially in the long period grating configuration [Lee, 2003], [Schulze, 2013]. Likewise, 

different methods for studying coupling have been used in the telecommunication. Usually, 

these methods allow to examine the macro-curvature, micro-curvature and splices [Jay, 2010].  
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Several studies have been made on mode mixing effects in multimode fibers, but most 

of the experimental methods describe it only qualitatively or consider only LP mode groups 

without lifting the degeneracies. Thereby, the mode coupling can be obtained by analyzing the 

mode conversion ratio at splice point using the frequency domain responses [Maruyama 

2014], by the relationship between modal crosstalk on optical MIMO transmission [Mori, 

2014], or by measuring the loss difference between the modes with a synchronous 

multichannel OTDR  [Nakazawa, 2014].  

Further emergent telecommunication fibers (FMF or MMF) are developed taking into 

account the mode coupling in order to find the appropriated DGD to reduce the complexity at 

the reception. 

Recently, experimental methods have been used to measure mode coupling on 

degenerated modes. Some of them permits to measure the back-scattered light in each mode 

with both polarizations by using Brillouin optical time domain reflectometer (BOTDR) [Li, 

2014]. This method needs to be combined with an SLM to examine the modal content in x,y 

polarization with a polarization beam splitter.   

There are other more sophisticated methods to evaluate mode coupling in FMF, 

namely the correlation filter technique (See section 1.1.1.1 ) and the advanced spatially and 

spectrally resolved imaging (AS2 imaging), as we will explain in the next section. 

In the context of the present work, we will use an improved version of the S2 method to 

measure localized coupling in an FMF. 

   Advanced S2 and principal component analysis 4.2

 

   A-S2 has the same data acquisition procedure than S2. This simplicity (See Fig. 4.5) makes 

S2 and A-S2 imaging significantly easier to implement experimentally than other methods.  

   As was explained above, the intensity pattern caused by interference between propagating 

modes can be described by the coherent sum of the intensities of all modes at the fiber output. 

It was noted that the equations 4.7a or 4.7b have two terms: the constant intensity and the 

interference between the different modes, this second member being responsible of the 

appearance of the peaks localized at a well-defined τkℓ. 
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Figure 4-5: Schematic of the S2 imaging setup [Sévigny, 2015]. 

 

It was also explained that after processing the data by Fourier analysis, we could 

recover the mode profiles, power in each modes and DGD. However, when standard method 

S2 is applied to FMF, it is difficult to discriminate some beating modes even by using 

filtering techniques, because they can share almost similar differential group delay and energy 

distribution. One proposal is to use a statistical method to single out the different terms by 

using the spatial and spectral correlations, known as A-S2 [Sevigny, 2014]. As a result by 

using the A-S2 method we can obtain the isolated and degenerated beating modes. 

The data is treated by A-S2 using the principal component analysis (PCA), which is 

described hereafter, and independent component analysis (ICA), which will not be described. 

The PCA uses to process the data obtained from an experiment on FMF, will be described 

hereafter. 

 

 Principal component analysis (PCA) 

 

PCA tries to express the mixture of random variables into completely un-correlated 

components. Thus, it discriminates correlated and un-correlated components considering the 

spectral and spatial domain. In this operation, the data is decomposed in principal components 

of beat and their spectra according to their correlation. Thus, the beats with the same group 

index differences can be separated in case they do not have spatial correlation. In the end, the 

uncorrelated interferences of the same nature are separated, excepting the beat mode with 

high spatial correlation.  Let us summarize the PCA procedure details being presented in 

[Sevigny, 2015]. 

To begin, we can define the correlation function in the spectral domain by: 

 

𝐶(𝑥,𝑦,𝑥′,𝑦′) =
1

Δω
∫(𝐼𝑥,𝑦,𝜔 − 𝐼�̅�,𝑦)(𝐼𝑥′,𝑦′,𝜔 − 𝐼�̅�′,𝑦′)𝑑𝜔                            (4.9a) 
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Here, ∆𝜔 = 𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 is the full spectral width of the measurement, (x,y) and 

(x’,y’) corresponds to the correlation points. By substituting 4.7b into 4.9a, the cross-

correlation can be studied by the cosines terms, as follows: 

 

𝐶(𝑥,𝑦,𝑥′,𝑦′) =
1

𝛥𝜔
∑ ∑ Г𝑔.𝑁

ℎ=1 Гℎ
𝑁
𝑔=1 . 𝑟𝑔(𝑥, 𝑦). 𝑟ℎ(𝑥′, 𝑦′) ∫  cos (𝜏𝑔. 𝜔 + 𝜙𝑔)cos (𝜏ℎ. 𝜔 + 𝜙ℎ) 𝑑𝜔                  

(4.9b) 

As was discussed previously, PCA is based on the verification of the correlation of the 

spectra between each pixel, to isolate the corresponding beat figures and to get as much 

information as possible from the dataset. Notice from equation 4.9b that the correlation is a 

two-dimensional quantity calculated for the spectra of two different pixels.  

To begin, the images must be linearized, to form linear vectors for each optical 

frequency. Therefore, the obtained image from the dataset should be transformed to linear 

vectors by mapping the two-dimensional indices to a linear index for integration over ω.    

The concatenation of these vectors will then form a power signal matrix, V, whose each term 

corresponds to the integral over pixel surface centered in (x, y). For small pixels (pixels 

square), this value is proportional to the pixel intensity. 

 

𝑉 = [

𝐼(𝑥1,𝑦1,𝜔1) 𝐼(𝑥𝑖,𝑦𝑖,𝜔1) 𝐼(𝑥𝑟,𝑦𝑟,𝜔1)

𝐼(𝑥1,𝑦1,𝜔𝑗) 𝐼(𝑥𝑖,𝑦𝑖,𝜔𝑗) 𝐼(𝑥𝑟,𝑦𝑟,𝜔𝑗)

𝐼(𝑥1,𝑦1,𝜔ɳ) 𝐼(𝑥𝑖,𝑦𝑖,𝜔ɳ) 𝐼(𝑥𝑟,𝑦𝑟,𝜔ɳ)

] 

Here, 1……i correspond to the position of the pixels and 1…..j is the frequency 

numbers, ɳ is the points numbers of frequency and r is the number of pixels.  

By subtracting to each element the mean value of each column (I − I)̅, the scalar 

products of two pixels m, n (Equation 4.10) can then be used to represent the correlation.  

 

𝐶(𝑥𝑚,𝑦𝑚,𝑥𝑛,𝑦𝑛) =
1

∆𝜔
∑ [𝐼(𝑥𝑚,𝑦𝑚,𝜔𝑖)

− 𝐼(̅𝑥𝑚,𝑦𝑚)][𝐼(𝑥𝑛,𝑦𝑛,𝜔𝑖)
− 𝐼(̅𝑥𝑛,𝑦𝑛)]𝛿𝜔

𝑟
𝑖=1           (4.10a) 

           𝐶(𝑥𝑚,𝑦𝑚,𝑥𝑛,𝑦𝑛) =
1

ɳ
𝑣𝑚

𝑇 𝑣𝑛                                                                                       (4.10b) 

Here, 𝑣𝑛 correspond to the column of �̅�  that is the signal of the pixel n, ∆ω = ɳ. δω is 

the number of pulsation points and δω is the pitch of pulsation. 

The total correlation matrix and the correlation matrices can then be written as: 

 

𝐂 = ɳ−1�̅�𝑇 . �̅�                                                       (4.11a) 
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𝐂′ = ɳ−1𝑉𝑉̅̅ ̅̅ 𝑇                                                       (4.11b) 

 

Here “T” denotes the matrix transpose of V, V
T
 is refers to the centered dataset and 

they contain the spatial and spectral function. ɳ is the sum of the columns and the division of 

the angular frequency number. 

C and C’ are symmetrical matrices whose dimensions are (m, m).  

The principal components (PCA) are obtained by the diagonalization of the calculated 

correlation matrix. By this simple diagonalization of C and C’, we can reconstruct all the 

terms of the interferometer, if they are uncorrelated both in space and in the spectrum. The 

eigenvectors of C are images and the eigenvectors of C’ are signal or spectra after FFT. If 

there is not coupling between the solutions, C and C’ can have the same eigenvalues, Λ (same 

case for dataset where only one mode is dominant). That is, the eigenvectors can directly be 

the beat figures of the modes (See diagram of the Fig. 4.4). In this case, the eigenvalues can 

be represented by:  

 

Λ𝑘,ℓ=2. 𝑆𝑘,ℓ. 𝑃𝑘. 𝑃ℓ                                                          (4.12) 

Here  𝑆𝑘,ℓ   is the normalization constant of the beat profile. 

 

𝑆𝑘,ℓ = ∫∫𝐹𝑘. 𝐹ℓ 𝑑𝑥𝑑𝑦 

 

 

In summary, the principal component analysis aims at expressing a mixture of random 

variables in components completely uncorrelated with one another, the so-called principal 

components. It has thus been make possible, by observing the correlation of the spectra 

between each pixel, to isolate the corresponding beat patterns. Likewise, if all the terms of the 

equation of the interferometer are spectrally or spatially uncorrelated each other, they can be 

separated by PCA. 

Note also that from the beat figures it is possible to recover the transverse field profile. 

To recover the intensity field profile of any mode by using the average intensity figure and all 

the beats involving in this mode as in [Otto, 2013], we can write the average intensity as 

function of a given mode, ℓ (See equation 4.13a). Later, we multiply the equation 4.13a by 

𝐼ℓ = 𝑃ℓ|𝐹ℓ(𝑥,𝑦)|
2
 to obtain 4.13b 
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𝐼 ̅ = 𝑃ℓ𝐹ℓ
2 + ∑ 𝑃ℓ𝐹ℓ

2𝑀
𝑖,𝑖≠ℓ                                                      (4.13a) 

 

𝐼ℓ =
1

2
[𝐼 ̅ ± (𝐼2̅ − 2.∑ 𝑃ℓ. 𝑃𝑖|𝐹ℓ(𝑥,𝑦)𝐹𝑖(𝑥,𝑦)|

2𝑀
𝑖,𝑖≠ℓ ]                                       (4.13b) 

 

Through this method, it is possible, from a known field distribution, to deduce the 

other field distributions.  Later, we can obtain the modal reconstruction by considering the 

product of radial and azimuth function. The A-S2 method is summarized in the Fig. 4.6. ICA 

is not considered in this study. 

  

 

Figure 4-6: Beat resolution by the advanced S2 method 

 

      Schematic representation of the localized coupling in a 4.3

two-mode fiber 

 

As we have seen above, the intensity patterns caused by interferences between 

propagating modes can be described by the coherent sum of all the modes of the fiber (See 

Equation 4.7a).  In this equation, the first term corresponds to the constant intensity, the 

second term is the interference between the different modes and is responsible for the 

appearance of the peaks localized at a determined value.   
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Let us find these peaks by considering a FMF of total length, L, supporting only two 

modes without degeneracies (LP01 and LP11) and without perturbations. To start this study, 

we assume that the fiber can be described as an unperturbed system with two input and output 

ports, as illustrated by Fig. 4.7a. In this figure, P is the fiber input through which the laser 

power feeds each input port or LP mode. In the practical scheme, an offset splice is used to 

ensure the excitation of the higher modes and to feed one mode with higher power than the 

other, usually 90% of the power for one of them [Nicholson, 2009].  

In the absence of perturbation, energy is conserved for each port. In this case, we can 

find only two output ports (LP01 and LP11). The combination of the routes between each 

input port and each output port is called a path. Following the figure 4.7a we can form two 

paths between the input and output ports, as follows: LP01-LP01 (path 1) and LP11-LP11 

(path 2). At the system output, the beat is the result of a two-paths interference (See Fig. 

4.7b), in other words only one peak (α beat) should appear that corresponds to the interaction 

between both output ports (path 1 and path 2). 

 

Figure 4-7: a) Diagram of an unperturbed FMF. .b) α beat corresponding to one interference 

between 2 paths. 

 
 

The Figure 4.8 shows the beat amplitude as a function of Δng. We can generally find 

two spectral amplitudes, located at Δng=0 and Δng=c/L(∆τg) For Δng=0, we expect to 

observe the average intensity term. For Δng≠0 the interference of modes LP01 (path 1) and 

LP11 (path 2) is expected. Notice that the position and quantities of peaks depends on the 

number of modes and physical disturbance such as splices, constrains, etc, that can open new 

paths. 

Moreover, the beat frequency is proportional to the fiber length and to the difference 

between the group indices of the modes. The number of beats is equal to the possible coupling 

of modes. Thereby, when N modes are excited inside the FMF, we can have ½(N
2
-N) beats. 

That is, by a Fourier transform, we can obtain ½(N
2
-N) peaks that are distributed along Δng. 
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The amplitude is related to the power coupled in each mode. We will demonstrate such a 

coupling effect in the next paragraphs. 

 

Figure 4-8: Fourier transform of the optical spectra of an unperturbed 2 modes FMF. 

  

Let’s assume that we apply a localized perturbation (splice, wire-mesh, etc.) situated 

approximately at 40% of the total distance to avoid overlap of peaks with others around the 

spectra. In presence of this perturbation, it can be anticipated that new peaks can appear due 

to exchange of energy between the modes. Thus, the location of these new peaks will depend 

on the position of the perturbation.  

Let’s start the study by the condition of a new system with 2 input ports and 4 output 

ports. By comparing the figure 4.7a and 4.9a, we can see that the output ports number has 

doubled due to the coupling, which leads to new paths (path1: LP01-LP01, path 2:LP11-

LP11, path3: LP11-LP01 and path4: LP01-LP11). More clearly, path 1 is the route between 

the input LP01 and output LP01, path 2 is the route between the input LP11 and output LP11, 

path 3 is the route between the input LP11 and output LP01, and path 4 is the route between 

the input LP01 and output LP11 (See Fig. 4.9b). From the interaction of these four paths six 

beats are produced.  Thereby, the 6 elementary beats (γ, δ, β, α, μ and ε) are the result of the 

interference between the 4 paths. On figure 4.9a, L is the total length of the 2MF decomposed 

into L1 (length before perturbation) and L2 (length after perturbation). 
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Figure 4-9: a) Coupling diagram of a perturbed FMF. b) beats corresponding to six 

interferences between 4 paths. 

 

As in the previous system (Fig. 4.9a), the laser power (P) at the fiber entrance can be 

distributed as P.τ and P.(1-τ) for both guided modes. Here, τ is the percentage of the energy 

injected in LP01.  

                                   𝐸 = ∑ 𝐴𝑚. 𝐹𝑚. 𝑒−𝑖𝜔𝑡. 𝑒𝑖𝛽𝐿 . 𝑒𝑖𝜙𝑚
𝑚                                          (4.14.a) 

𝐸 = √𝑃. 𝜏.𝑀11 . 𝐹01. 𝑒
−𝑖𝜔𝑡. 𝑒𝑖𝛽1.𝐿 . 𝑒𝑖𝜙1          ⇒ 𝑃𝑎𝑡ℎ 1 

+√𝑃. (1 − 𝜏).𝑀22 . 𝐹11. 𝑒
−𝑖𝜔𝑡. 𝑒𝑖𝛽2.𝐿 . 𝑒𝑖𝜙2     ⇒ 𝑃𝑎𝑡ℎ 2 

+√𝑃. (1 − 𝜏).𝑀21 . 𝐹01. 𝑒
−𝑖𝜔𝑡. 𝑒𝑖𝛽2.𝐿1 . 𝑒𝑖𝛽1.𝐿2 . 𝑒𝑖𝜙2   ⇒ 𝑃𝑎𝑡ℎ 3 

+√𝑃. 𝜏.𝑀12 . 𝐹11. 𝑒
−𝑖𝜔𝑡. 𝑒𝑖𝛽1.𝐿1 . 𝑒𝑖𝛽2.𝐿2 . 𝑒𝑖𝜙1    ⇒ 𝑃𝑎𝑡ℎ 4 

                                (4.14.b) 

         𝐸∗ = √𝑃. 𝜏.𝑀11 . 𝐹01𝑒
𝑖𝜔𝑡. 𝑒−𝑖𝛽1.𝐿. 𝑒−𝑖𝜙1       ⇒ 𝑃𝑎𝑡ℎ 1∗ 

             +√𝑃. (1 − 𝜏).𝑀22 . 𝐹11𝑒
𝑖𝜔𝑡. 𝑒−𝑖𝛽2.𝐿 . 𝑒−𝑖𝜙2     ⇒ 𝑃𝑎𝑡ℎ 2∗                   

+√𝑃. 𝜏.𝑀12 . 𝐹11. 𝑒
𝑖𝜔𝑡. 𝑒−𝑖𝛽1.𝐿1 . 𝑒−𝑖𝛽2.𝐿2 . 𝑒−𝑖𝜙1 ⇒ 𝑃𝑎𝑡ℎ 3∗ 

+√𝑃. (1 − 𝜏).𝑀21 . 𝐹01. 𝑒
𝑖𝜔𝑡. 𝑒−𝑖𝛽2.𝐿1 . 𝑒−𝑖𝛽1.𝐿2 . 𝑒−𝑖𝜙2 ⇒ 𝑃𝑎𝑡ℎ 4∗ 

 

Next, we can calculate the electric field in all the modes by the coherent sum of the 

electric fields for a 2-mode fiber (2MF) as is done in 4.14.a and 4.14.b. To compute the 

coupling, we consider the product of E.E* (for instance, equations 4.14b) and the relation 

Δβ=Δng.L/c.ω, where Δng is the group index difference.   

It should be noted that in 4.14a and 4.14b, coupling can be described by a coupling 

matrix in intensity, M, each element of this matrix Mij corresponding to the coupling 

coefficient between the modes i and j. To help understanding the coupling matrix, we have 

changed the ports notation (See Fig 4.10), so that M11 corresponds to the coupling effect 
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between the LP01-LP01, M12 corresponds to the coupling effect between the LP01-LP11, and 

so on.  

In presence of coupling, the coupling coefficients must be considered to deduce the 

intensity detected on each pixel of the camera. 

 

Figure 4-10: Coupling diagram and coupling matrix of a perturbed FMF. 

From a mathematical point of view, the intensity detected on each pixel of the camera 

can be described by two kinds of terms (See equation 4.7a): the first one is the constant 

intensity (term without interference: ∑ ∑ (𝑃𝑖. 𝑀𝑖𝑗 . 𝐼𝑖𝑗𝑖 ) whereas the second one corresponds to 

the 6 interferences (or beats) between the 4 paths. Therefore, this intensity can be written as 

follows: 

 

𝐼 = 𝑃. 𝜏.𝑀11. 𝐼1 + 𝑃. (1 − 𝜏).𝑀22. 𝐼2 + 𝑃. 𝜏.𝑀12. 𝐼2 + 𝑃. (1 − 𝜏).𝑀21. 𝐼1

+ 𝑃.√𝜏. (1 − 𝜏).𝑀11. 𝑀22. 𝐹01. 𝐹11. 2. cos [(
𝛥𝑛𝑔

𝑐
. 𝜔. 𝐿) + 𝜙𝛼]                    𝛼  

+ 𝑃. (1 − 𝜏).√𝑀22. 𝑀21. 𝐹01. 𝐹11. 2. cos [
𝛥𝑛𝑔

𝑐
. 𝜔. 𝐿2 + 𝜙𝛿]                          𝛿   

+ 𝑃. 𝜏. √𝑀11. 𝑀12. 𝐹01. 𝐹11 . 2. cos [
𝛥𝑛𝑔

𝑐
. 𝜔. 𝐿2 + 𝜙𝛽]                                    𝛽  

+ 𝑃. √𝜏. (1 − 𝜏).𝑀12. 𝑀22. 𝐼11 . 2. cos [
𝛥𝑛𝑔

𝑐
. 𝜔. 𝐿1 + 𝜙 ]                               휀   

+ 𝑃. √𝜏. (1 − 𝜏).𝑀11. 𝑀21. 𝐼01. 2. cos [
𝛥𝑛𝑔

𝑐
. 𝜔. 𝐿1 + 𝜙𝛶]                               𝛶  

+ 𝑃. √𝜏. (1 − 𝜏).𝑀21. 𝑀12. 𝐹01. 𝐹11. 2. cos [
𝛥𝑛𝑔

𝑐
. 𝜔. (𝐿2 − 𝐿1) + 𝜙µ]         µ   

(4.15) 

Here, F01 and F11 are the normalized field profiles of the modes (respectively LP01 

or LP11), c is the speed of light, 𝜙𝛼 is the relative phase of the beat α, 𝜙δ is the relative phase 

of the beat δ, and so on. I1 and I2 stand for F01×F01and F11×F11. If we consider the cosine 
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argument for each term from equation 4.15, some beats have almost similar arguments, such 

is the case from δ and β or γ and ε. That is they share the same spectral dependence. Similarly, 

some beats can share the same spatial dependence, for example δ and β, (F01*F11). Table 4.1 

provides a summary of the spatial and spectral signatures of the 6 elementary beats. 

 

 

As shown above, ε, γ and β, δ share the same frequencies and we expect only 4 peaks 

in the S2 analysis, at the positions (Δng(L2-L1)/L), (ΔngL1/L), (ΔngL2/L) and Δng (see Fig. 

4.6). Correlations between ε, γ and β, δ beats make it difficult to analyze them. However, we 

can see that μ and α have particular unshared frequency, and thus, these beats are easy to 

extract from the experimental dataset, and to analyze.  

 

Figure 4-11: Fourier transform of the optical spectra of a perturbed 2 modes FMF. 

 

The amplitude of these peaks are obtained after the Fourier transform of the equation 

4.15. Thus, Aμ is the amplitudes of μ beat, Aα is the amplitudes of α beat, Aβ+δ is the 

Table 4.1. Correlated and un-correlated beats data in spectral and spatial domain. 

  Spectral domain 

S
p

a
ti

a
l 

d
o
m

a
in

   Δƞg*(L2-L1)/L Δƞg*(L1/L) Δƞg*(L2/L) Δƞg 

F01*F11  (Beats µ)   (Beats β,δ)  (Beats α) 

F01*F01    (Beats γ)     

F11*F11    (Beats ε)     
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amplitudes of β+δ beat (See equation 4.16a-c). Notice that 𝐴µ and 𝐴𝛽+𝛿   appear only in 

presence of coupling. Therefore, 𝐴𝛼 can be used as a reference since it is the only peak that 

appears in an uncoupled regime. 

 

𝐴𝛼     = √𝜏. (1 − 𝜏).𝑀11. 𝑀22                                                          (4.16.a) 

    𝐴𝛽+𝛿 = 𝜏.√𝑀11. 𝑀12 + (1 − 𝜏). √𝑀22. 𝑀21                                   (4.16.b) 

    𝐴µ     = √𝜏. (1 − 𝜏).𝑀21. 𝑀12                                                           (4.16.c) 

         

By considering an ideal symmetric matrix (M12=M21), the coupling coefficients M12 

can be extracted from the ratio of the amplitudes of μ beat (𝐴µ) and α beat in absence of 

perturbation (𝐴𝛼
𝑖𝑛𝑖𝑡) (See Equation 4.17b). For   𝐴𝛼

𝑖𝑛𝑖𝑡 the diagonal matrix is equal to one 

(M11=M22=1) and the other of elements are zero. Therefore the equation 4.16a can be written 

as 4.17a. 

 

    𝐴𝛼
𝑖𝑛𝑖𝑡  = √𝜏. (1 − 𝜏)                                                                       (4.17.a) 

    𝐴µ
𝑝𝑒𝑟𝑡  = √𝜏. (1 − 𝜏). √𝑀21. 𝑀12 = 𝐴𝛼

𝑖𝑛𝑖𝑡. 𝑀12                              (4.17.b) 

 

Herein, two methods have been derived to calculate the coupling coefficient M12. We 

will use the first one. 

 

  𝑀12 =
𝐴µ

𝑝𝑒𝑟𝑡

𝐴𝛼
𝑖𝑛𝑖𝑡                                                                        (4.18) 

 

By the equation 4.18, we can study the coupling, as we will see.  

 

      Experimental setup  4.4

 

The experimental setup and data acquisition are similar between both methods, S2 and 

A-S2. The figure 4.5 shows the S2 and A-S2 experimental setup. Through the camera, it is 

possible to measure the intensity profile I(x,y,L,ω) at the output cleaved face with a resolution 

given by pixel size. Likewise, by a spectral scanning produced by a tunable laser source, it is 

possible to follow the spectral evolution of this intensity profile. However, this implies that 
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the acquisition of an image for each wavelength can lead to a large number of recorded 

images, making the acquisition long and the amount of data to be treated quite large. 

More precisely, so as to acquire the dataset, we need to adjust three parameters: the total 

length of the fiber (L), the spectral range (∆λ) and the wavelength step (δλ). ∆λ is the maximal 

spectral range on which the FFT is made and δλ determine the resolution of the measurement 

in term of difference of group indices measurable. The relation between these parameters is 

given by equation 4.19a. 

 

                                   δ(∆ng) =
λ2

𝐿.∆λ
                                                         (4.19.a) 

The main idea is to find the appropriate spectral range by adjusting the fiber length 

and the step resolution of the wavelength that gives access to the maximum group index 

difference that can be measured, as is shown by equation 4.19b.     

 

                                   ∆ng,max =
λ2

2.𝐿.δλ
                                                         (4.19.b) 

 

Before, we need to calculate ∆ng for both fibers in order to know the position of the 

peaks without perturbation. 

 

      Experimental setup for studying the localized coupling in a 4.5

two-mode fiber  

 

So as to investigate the effect of a localized perturbation on mode coupling, we used 

two step-index fibers of different characteristics (See table 4.2). These fibers present a small 

and a large core-cladding index difference (∆n~5×10
-3

 and ∆n~15×10
-3  

at 1550 nm) and 

guide 2 LP mode groups (i.e. three spatial modes, namely LP01, LP11e & LP11o) at 1550 nm. 

They have been manufacture by MCVD.  

The optical properties of these fibers have been deduced from the refractive index 

profile of the rescaled to the fiber dimension. 
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The setup consists of a tunable laser connected to a small piece of single-mode fiber 

(SMF). This SMF is off-centered spliced to the 2-mode fiber (2MF) under test, ensuring the 

excitation of both LP01 and LP11 modes at the fiber input (LP01 being more strongly excited 

than LP11). The 2MF fibers lengths have been set to L=80m and 100m. Moreover, the 

perturbation (splice or wire-mesh, see Figs. 4.12a and 4.12b) is localized at L1=40 m from the 

fiber entrance. The output end of the fiber is imaged on an InGaAs camera and near field is 

recorded as a function of wavelength. The acquisition begins at 1550nm and ends at 1560nm 

with a resolution of 1pm or δλ=0.001nm. To fix these values we used the equations 4.19a-b. 

Figure 4.12b shows the localized coupling generated by a mesh grid and weights.  This 

wire-mesh and the different weights are used in order to create micro-bends and, thus, initiate 

mode coupling at a localized point. Thereby, multiple measurements have been made under 

the same experimental conditions with incremental weights of 500 g, from 0 to 10 kg, as is 

shown in Fig. 4.13a.  By these measurements, we are able to evaluate mode coupling as a 

function of the intensity of the perturbation. Later, the coupling ratio is obtained by 

comparing the measurement without and with weights. Besides, the reproducibility was 

qualitatively tested by detecting the presence of the coupling on the same experiment and 

under the same conditions at different times.     

 

 

 

Table 4.2- Fiber characteristic  

SI(Step Index) Fiber A Fiber B 

R1 (µm)  3.9 8 

∆n(×10
-3

at 1550 nm)  15 5.6 

∆ng(×10
-3

at 1550 nm)  1.52 0.92 

Length (m) 80 100 

 

 

 

 

Refractive index 
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Figure 4-12: a) Experimental setup. a) Localized coupling generated by an offset splice. b) 

localized coupling generated by a mesh grid and weights 

 

 

In this experimental setup, the effect of the fiber position inside the wire mesh has 

been considered by using three different settins, straight fiber, big loop and small loop fiber, 

as is illustrated on Fig. 4.13b.   
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Figure 4-13: a) Wire-mesh system. b) Fibers setting in the wire mesh: straight fiber (9.8cm), big 

loop (24cm) and small loop (12cm). 

 

In addition, the fibers were exposed to three types of meshes (See table 4.2) to 

evaluate the effects of the mesh dimensions on the coupling. 

 

Table 4.3- Mesh characteristic  

 Sieve opening(mm)+ Wire(mm) 

Mesh 1  1.018 

Mesh 2 2 

Mesh 3 0.96 

Mesh 4 0.3 

 

  Modeling the localized perturbation (wire-mesh) 4.6

 

Thanks to the wire-mesh system (Figs. 4.13a and b), the coupling can be mechanically 

induced. That is, by pressing the fiber between the wire-mesh and a flat plate, the fiber is 

slightly deformed itself due to the applied stress, which creates periodic micro-curvatures in 

the fiber. In the case of a straight fiber, these micro-curvatures act similarly to a long period 

grating, coupling the fundamental mode of the core with the different modes of the cladding 

and higher order modes.  
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The period of the perturbation of a grid can be defined as the period between two wires 

in the mesh (period Λ). Λ can differently affect mode coupling in the fiber, as well as the wire 

diameter and gap between the wires. In long period grid, Λ is calculated by the ratio between 

the vacuum wavelength (1550nm) and the difference of effective index between two modes 

[Vengsarkar, A., 1996]. 

∆𝑛𝑒𝑓𝑓 =
𝜆

Λ
 

 

Note that perturbation periods tends to be big (Λ→infinite), when ∆𝑛𝑒𝑓𝑓 tends to be 

small, which means that the degenerated modes are susceptible to couple at any weight.   

For fiber under test (∆n~5,6.10
-3

), ∆𝑛𝑒𝑓𝑓 between LP01 and LP11 is equal to 2.10
-3

, so 

we expect that the coupling will occur by using a mesh whose perturbation period is almost 

similar to Λ ~0,775(mm).  

Now we will try to model the coupling by using the coupled mode theory (chapter 3) 

for the straight fiber condition and by considering the wire-mesh characteristics. In chapter 3, 

the coupled mode was modeled by using the following parameters: number of sections, 

section length and total length. Therefore, we have modeled the wire-mesh perturbation by 

associating the number of sections with the total number of periods of the grid, the length of 

the section (Lm) with the period length of the grid, and the total length of the grid with the 

total length perturbed fiber (See Fig. 4.14). For instance, one section in the theoretical model 

is one period in the grid. 

 

Figure 4-14: Modeling the grid of wire-mesh system.  

 

To evaluate the coupling, we operated with the real profile of the fiber (RIP). 

Likewise, we have varied the number of sections and the length of perturbed fiber in order to 

find the appropriated setup for the simulation and experimental results, and thus compare both 

results. However, the random behavior of the experiment and the sensitivity to the fiber 
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position inside the wire-mesh as a consequence of the mesh orientation and weight can make 

these experiments non reproducible, even under same conditions.   

Moreover, modeling could be arduous especially because the experimental values do 

not coincide with those of the model.  Since some of their variables can have different 

physical properties such is the case between the theoretical (chapter 3) and current 

experimental models, where the coupling is generated by different ways, the first one by the 

standard deviations of curvature and the second one by the wire-mesh and weight. Herein, we 

tried to model the experiment by associating the standard deviations to applied weights, 

because the deformation intensity in the fiber can be statistically modeled by the inverse of 

the radii of curvature, which induces the same effect as the weight on fiber, even if these two 

parameters are not of the same physical nature. At the end, the most important is to have an 

idea of the coefficient coupling variation or the sensitivity of the optical fiber to different 

perturbation conditions. 

Based on the model described in chapter 3, we have performed numerical modeling of 

FMFs step-index of the table 4.2 with their real profile (RIP of the fiber) modifying one of the 

radii of curvature (Rx or Ry) of the axis of each section of the FMF to produce the 

perturbation. The radius of curvature (Rx or/and Ry) of each section is a random variable, 

whose probability density function is the positive side of a Gaussian distribution with a 

standard deviation of curvature.     Moreover, the section number has been varied among 20, 

30, 45, 100, for different lengths of the perturbed fiber (50mm, 70mm and 90mm) with the 

purpose of modeling the mesh effect (section number) on the coupling. By the relationship 

between the sections number and the length of the perturbed fiber, we can determine the 

section length, which is related to the perturbation period (See table 4.4). The simulation 

parameters have been chosen by taking into account the characteristics of the mesh from table 

4.4. 

Table 4.4- Simulation parameter of the mesh 

Fiber Length (mm) Sections number Section Length (mm) 

90 30 3 

90 45 2 

90 100 0,9 

50 20 2,5 

70 30 2,33 

70 100 0,7 

70 60 1,16 
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Figures 4.15 a-b) show the evolution of the amplitude of the modes as function of the 

standard deviation of the curvature for different sections number (30 and 45). The perturbed 

fiber is of 90mm which corresponds approximately to mesh 2. Here, the launched conditions 

and perturbation are the same for all the modes (LP01& LP11).  

 

 

Figure 4-15: Evolution of the amplitude of the modes as a function of standard deviation of 

curvature for perfect step index profile, and fiber length of 90mm. Perturbation is considered in 

Rx. a-b) Section number=30 and 45. LP01and LP11  

 

Figures show that as the number of sections becomes greater, the coupling is achieved 

at smaller standard deviation (See Fig. 4.15), because an increase in the number of sections 

must produce more coupling between modes.  

In the case of the fiber A, the coupling regime never was reached over the different 

mesh at large values of curvature. This behavior is qualitatively consistent, because its large 

core-cladding index difference makes this fiber resilient to the coupling. 

The present result provides an idea of the coupling behavior in these fibers. We will 

now present the experimental result. 

    

    Experimental result for s2 measurement 4.7

 

So as to validate the S2 method, we used the experiment of the Fig. 4.12b with a loop of 

fiber (24cm) inside the wire mesh used with mesh 3 (table 4.3). Thereby, we compare the 

theoretical value of group index difference Δng calculated by Prysmian tools for these fibers 

(table 4.2) with the one deduced from the measurement (last peak).  For instance, for a fiber 

with ∆n~5×10
-3

 (Fiber B), the value obtained experimentally, Δng is around 9.2×10
-4

.  Note 

that Δng value calculated (9.2×10
-4

) is in agreement with the experimental results (See Fig. 

4.16 a-b). 
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Figure 4-16: Fourier transform of the optical spectra by S2 a) Left: without perturbation (0kg) 

b) Right: with perturbation (6kg). 

As expected, without perturbation, two peaks appear on S2 spectra, the peak at ∆n~0 

corresponds to the constant intensity and the peak at Δng~9.2×10
-4

 is associated to α beat over 

the whole fiber length (position Δng). In the presence of perturbation generated by the 

wiremesh, three additional peaks appear at the positions (Δng(L2-L1)/L), (ΔngL1/L) and 

(ΔngL2/L) (See Fig. 4.16b).  

 

 A-S2 from S2 4.8

 

As explained early, A-S2 and S2 are based on the same data acquisition, but they are 

treated differently. Therefore, A-S2 analysis was applied to the dataset in order to retrieve the 

proper peaks with the corresponding beat profile. As we have seen, A-S2 is based on 

multivariate statistical analysis method allowing the separation of the interference terms 

spatially and spectrally correlated. Contrary to S2, A-S2 can separate the spatial beat profiles 

for LP01-LP11e beats and LP01-LP11o beats, as shown in the figure below.  

On figure 4.17a and 4.17d, the first spectrum presents the result obtained with the S2 

method (top figure) and then with the A-S2 (bottom figures) to compare the two methods for 

fiber under the same perturbation.  
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Figure 4-17: a-b) Upper: Spatial and spectral eigenvectors (LP01-LP11 beats) obtained by S2 

and A-S2 analysis for uncoupled case. a) Lower-left: LP01+LP11e. b) Lower -right: 

LP01+LP11o.  

 c-d) Upper: Spatial and spectral eigenvectors (LP01-LP11 beats) obtained by S2 and A-S2 

analysis for coupled case (6kg ). c) Lower-left: LP01+LP11e. d) Lower -right: LP01+LP11o. 
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From figure 4.17 d) noted that the second peak (ε+ɤ)  disappears on the A-S2 results, 

since ε and ɤ beats do not correspond to a LP01-LP11 beat (See Table 4.1). That is, ε+ɤ are 

correlated and unseparated in spatial domain (see section 4.2).  However, the coupling 

between LP01 and LP11o and between LP01 and LP11e can be analyzed by the ratio between 

the amplitudes of peak μ and α, as in the equation 4.18a. 

Besides, we compare the energy of the last peak from S2 and the sum of the energy of 

each last peak from A-S2. Here, energy was calculated by integrating PSD (power spectrum 

density) within a frequency range for uncoupled (0 kg) and coupled (6 kg) cases. Commonly 

the computation of PSD can be obtained directly by the method called FFT (Fast Fourier 

Transform) spectrum of the signal. The results are shown in the following table 4.3. 

      

Table 4.3 

Weight (kg) Energy of the (α) 

peak 

S2 A-S2 

0 0.0208 0.0234 

6 0.0178 0.0184 

 

Note that as expected the energy of LP01+LP11 calculated by S2 is similar to the sum 

of energy of LP01+LP11e and LP01+LP11o calculated from A-S2. Moreover, the small 

difference in this calculation can be attributed to the frequency window of integration. 

In the following, the other results will be shown based only on the A-S2 method over 

different conditions. 

   Experimental result for A-s2 measurement 4.9

 

Fiber A (largest core-cladding index difference) was installed at different positions in 

the wire-mesh and submitted to different entrance conditions (centered and offset splice). One 

of the results on the coupling condition is shown in the Fig. 4.18 a-b.  
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Figure 4-18: Spatial and spectral eigenvectors obtained by S2 and A-S2 analysis for the fiber A 

(∆n~15×10-3). We use a wire-mesh with a weight of 8kg and a straight fiber position inside to the 

mesh. a) Left: LP01+LP11e. b) Right: LP01+LP11o. 

It is obvious that, for this fiber, the perturbation is not sufficient to initiate coupling. 

This explains why, we will only present the result of the fiber with a small core-cladding 

index difference (∆n~5×10
-3

). 

 

4.9.1  Effect of the weight on the optical fiber 

 

Figure 19 shows the evolution of the spatial and frequency spectra as a function of the 

weight applied to the fiber (∆n~5×10
-3

). For this experience, we have used the experimental 

setup of Fig. 4.12a and a loop of fiber (98cm) positioned below the mesh 3. 

The weight and the mesh structure generate perturbation in the fiber, and the coupling 

between modes. Indeed, the coupling is detected by the appearance and evolution of 

amplitude between the peaks, as we explained early. Using these results, we can generate the 

next spectra for different conditions.  
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Figure 4-19: Evolution of the beats and frequency spectra (μ, β+δ and α) as a function of the 

weight applied to fiber B. a) Left: LP01+LP11o. b) Right: LP01+LP11e. 

 

4.9.1.1 Radius of curvature 98mm (fiber length =24cm) 

     

Figures 4.20 and 4.21 show the evolution of the peak amplitudes according to the 

weight for S2 and A-S2 analysis by using a loop of fiber (98cm) positioned below the mesh 3. 

As the weight increases from 0kg to 10kg, the energy transfer between the modes is more 

significant. As can be seen, the evolution of these amplitudes is not linear and follows a trend 

similar to that of a fiber coupler. Note that as the amplitude α decreases, the amplitude of β+δ 

increases in almost the same proportion.   

The evolution of the amplitude of peaks α, β+𝛿 and µ between the LP01-LP11e and 

LP01-LP11o analyzed by A-S2 are different (see Fig. 4.21-a-b), as their eigenvalue (see Fig. 
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4.23-a-b) demonstrating that LP11e and LP11o behave differently as a consequence of the 

asymmetry of the perturbation applied between the two axis of the fiber. Thus, the core shape 

of the fiber can be temporarily disturbed owing to the stress field in the core, alike the 

intensity and phase of the electric field of the modes LP11e and LP11o in a different way. At 

the end, coupling coefficient M12e and M12o are not necessarily the same.  

Figures 4.21 c-d represent the evolution of the μ peaks as a function of weight. These 

figures exhibit almost the same behavior than the coupling coefficient M12e and M12o (see 

Fig. 4.22 a-b), evidencing the dependence of μ to M12e and M12o. Notice that LP01+LP11o 

(lower-right) behaves almost linearly, whereas the LP01+LP11e (lower-left) behaves non-

linearly.  

     

 
Figure 4-20: a) Evolution of the amplitude of the peaks as a function of weight in S2. b) 

Evolution of the coupling coefficient as a function of weight. 

 

 

  
Figure 4-21: a-b) Evolution of the amplitude of the peaks as a function of weight in A-S2 for 

LP01+LP11e (upper-left) and LP01+LP11o (upper-right). c-d) Evolution of the amplitude of the 

µ peak as function of weight in A-S2 for LP01+LP11e (lower-left) and LP01+LP11 (lower-right). 
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Figure 4-22: a-b) Evolution of the coupling coefficient deduced by equation 4.18 as a function of 

weight for eigenvectors LP01+LP11e (upper -left) and LP01+LP11o (upper-right). 

 

 
Figure 4-23: a-b)  Evolution of the eigenvalue as a function of weight, LP01+LP11e (lower-left) 

and LP01+LP11o (lower-right). 

 

 

Figure 4.24 c-d corresponds to the variation of the power in each mode as a function 

of weight. Each power modes is obtained by the average of square of each intensity over the 

constant intensity. At 0kg, 94.33% of total power is found in the LP01 mode, while only 

4.22% and 1.45% in the LP01e and LP01o respectively. By increasing the weight (coupling), 

the power of the LP01 mode is slightly modified but stays around 90% of the total power.  

The variation of each mode power is detailed in the Figs. 4.24 b-d.  

Besides, it must be noted that strong coupling occurs when two mixed modes (as the 

case for LP11e and LP11o for 8kg) have almost equal amount of power (~50%) contained in 

the core (See Fig. 4.21a).  
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Figure 4-24: a) Evolution of the power in each mode as function of the weight (upper). b)-d) 

Evolution of the power in LP01 (lower-left), LP11e (lower-middle) and LP11o (lower-right) as 

function of the weight(mesh 3, radius of curvature of 98 mm).. 

 

Figure 4.21 can be compared with Fig. 4.15, which represents the simulations of the 

mesh 2.   Here, the comparison is qualitative due to the different natures of the variables, one 

is the applied weight at the perturbation and the other the standard deviation of curvature. 

Thereby, we compare the oscillatory variation of the shape more than the numerical values.  

 

4.9.1.2 Radius of curvature of 49mm (fiber length =12cm) 

 

Figures 4.25 and 4.26 show the evolution of the peak amplitudes according to the 

weight for S² and A-S² analysis by using a different loop of fiber (49cm) positioned below the 

mesh 3. Unlike the experiment with a radius of curvature of 98mm, the total exchange of the 

amplitude between α and (β+δ) occurs at 6kg that coincides with the maximum value of µ. As 

the macro curvature is more pronounced (radii of curvature smaller), LP01+LP11e is 

probably more sensitive to the coupling under this condition.  
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Figure 4-25:  a) Evolution of the amplitude of the peaks as a function of weight in S2. b) 

Evolution of the coupling coefficient as a function of weight. 

 

 

 
Figure 4-26: a-b) Evolution of the amplitude of the peaks as a function of weight in A-S2 for 

LP01+LP11e (upper-left) and LP01+LP11o (upper-right). c-d) Evolution of the coupling 

coefficient as a function of weight for eigenvectors LP01+LP11e (lower-left) and LP01+LP11o 

(lower-right). 

      

The fact that modes LP11e and LP11o vary in a different way, demonstrates that the 

applied weight exerts an asymmetric stress on the optical fiber. This behavior is also found in 

the coupling coefficient (see Fig. 4.26 c-d). We can see that the evolution described by Fig. 

4.26c  is non-linear, which can be related to the strong coupling whereas the evolution shown 

on Fig. 4.26d is more linear, which can be related to the weak coupling, (such as in Fig. 4.23 

a-b). This behavior can be easily understood by looking at the evolution of amplitudes of μ 

beat; that is, for a non-linear variation of μ, a non-linear evolution of M12 can be produced, 

and for a linear variation of μ, a linear evolution of M12 can be obtained.   
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Figure 4-27: Evolution of the power in each mode as function of the weight (mesh 3, radius of 

curvature of 49mm). 

 

Figure 4.27 presents the evolution of the power in each mode as a function of the 

weight. As was previously the case, the LP01 mode presents more than 90% of the total 

power for all the weights.  

Using the Fig. 4.15 as an illustration, we could have an idea about the coupling 

evolution, because it represents the simulations of mesh 3.  However, the actual simulations 

cannot predict the effect of the macro curvature on different coupling regime. Therefore, we 

will change the settings of the optical fiber in the wire mesh (Section 4.9.1.3) 

 

4.9.1.3 Straight Fiber (fiber length =9.8cm) 

 

For an appropriate comparison between the simulation and the experimental results, 

we have placed a straight fiber inside the wire-mesh in order to avoid the macro-curvature 

effect. Even if the simulation of the Fig. 4.15 is close from this experimental setup, we have 

demonstrated that the simulations cannot reproduce exactly the experimental behavior, but 

can predict the oscillatory behavior periodicity (compare Fig. 4.29a and Fig. 4.15).     
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Figure 4-28: a) Evolution of the amplitude of the peaks as a function of weight in S2. b) 

Evolution of the coupling coefficient as a function of weight. 

 

 

 

Figure 4-29: a-b) Evolution of the amplitude of the peaks as a function of weight in A-S2 for 

LP01+LP11e (upper-left) and LP01+LP11o (upper-right). c-d) Evolution of the coupling 

coefficient as a function of weight for eigenvectors LP01+LP11e (lower-left) and LP01+LP11o 

(lower-right). 

In contrast with the previous experiments, the oscillation occur at 2kg, 6kg and 8kg for 

LP01+LP11e and at 9kg for LP01+LP11o. For LP01+LP11e, we can see that the first 

oscillation occur almost each 2kg, this periodic behavior is also found in coupler devices and 

another experiences [Schulze, 2015].  
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Figure 4-30: Evolution of the power in each mode as a function of weight (mesh 3, straight 

fiber). 

 

Figure 4.30 shows the variation of power as a function of weight. Here, the maximum 

value is found in LP01 (more than 85% of the total power), followed by modes LP11e and 

LP11o, respectively. Notice that the maximum and minimum values of each mode coincide 

with the total amplitude exchange of the peaks α and (β+δ) from Fig. 4.30a, which means that 

these graphs could give us an idea about the coupling.     

By comparing these results with the previous one, we can deduce that the impact of the 

position of the fiber inside the wire-mesh together with the macro-curvature value could 

clearly affect the coupling regime. However, their impact cannot be measured on the present 

conditions of the experiment. 

 

4.7.2.2- Effect of mesh type  

 

We have studied the mesh effect by using the experimental setup (Fig. 4.12b) with 

different meshes: mesh 1, mesh 2 and mesh 4 (see table 4.2). Likewise, we have considered a 

maximum input power on LP01 and the usual coupling test that consider a macro-curvature of 

diameter of 98cm in the fiber under the mesh.  
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Figure 4-31: a) Evolution of the amplitude of the peaks as a function of weight in S2. b) 

Evolution of the coupling coefficient as a function of weight. The experimental setup uses mesh 

4. 

 

Figure 4-32: a-b) Evolution of the amplitude of the peaks as a function of weight in A-S2 using 

mesh 4 for LP01+LP11e (upper-left) and LP01+LP11o (upper-right). c-d) Evolution of the 

coupling coefficient as function of weight for eigenvectors LP01+LP11e (lower-left) and 

LP01+LP11o (lower-right). The experimental setup uses mesh 4. 

 

 

Figure 4-33: Evolution of the power in each mode as a function of weight. The experimental 

setup uses mesh 4. 
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The results from Figs. 4.31, 4.32 and 4.33 are related to the experiment with the finest 

mesh (mesh 4). Notice that, a very weak coupling is produced on all the applied weight range, 

which makes this mesh inappropriate for the coupling study. One explanation may be that the 

wire is so thin that it does not produce a perturbation sufficient to induce the strong coupling, 

even applying the maximum weight. This experiment was not simulated, because, the wire 

diameter of the mesh is not considered into the model.  

In the next experiments, only the evolution of the amplitude of the peaks α, µ and 

(β+δ) and the coupling coefficient as a function of the weight in A-S2 will be presented, 

because it is sufficient for comparing the mesh effect in the coupling. 

 

 

    

Figure 4-34: a-b) Evolution of the amplitude of the peaks as a function of weight in A-S2 for 

LP01+LP11e (upper-left) and LP01+LP11o (upper-right). c-d) Evolution of the coupling 

coefficient as a function of weight for eigenvectors LP01+LP11e (lower-left) and LP01+ 

LP01+LP11o (lower-right). The experimental setup uses mesh 1. 

 

Figure 4.34 corresponds to the experiment with mesh 1, as in the experiment with 

mesh 3, we can see that the oscillation occur at 6kg. Note that, even if these two experiments 

suggest that coupling occurs almost at the same weight, the shape of Figs. 4.34 are not similar 

to Figs. 4.22 since initial condition, fiber position and mesh are not the same. Likewise, 

LP01+LP11e achieves the coupling, while LP01+LP11e never reaches.  
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Figure 4-35: a-b) Evolution of the amplitude of the peaks as a function of weight in A-S2 for 

LP01+LP11e (upper-left) and LP01+LP11o (upper-right). c-d) Evolution of the coupling 

coefficient as a function of weight for eigenvectors LP01+LP11e (lower-left) and LP01+LP11o 

(lower-right). The experimental setup uses mesh 2. 

 

 

The results from figure 4.35 (mesh 2) demonstrates that the coupling is reached around 

2kg. Contrary to the other meshes (almost same diameter), mesh 2 possesses the largest wire 

diameter, making it difficult to predict when the strong coupling could be reached by 

comparing only with the other meshes. In case that mesh 2 would have had almost the same 

diameter than the other, under this condition the strong coupling would be reached after 6kg 

as a consequence of a longer period of the grid. However, the experiment shows that the 

strong coupling is reached around 2kg, instead of 6kg. One explanation may be that the wire 

diameter length could generate an additional deformation on the fiber, as is described in Fig. 

4.36. 

 

 

Figure 4-36: Deformation as function of the wire diameter. 
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It should be noted that each mesh produces different results (as we expected) and it 

can affect the coupling regime, because the experiment depends on the fiber disposition under 

the wire-mesh and mesh type.  

    

4.9.2  A splice as localized perturbation  

 

We used the experimental setup of the Fig. 4.12a with three different conditions for 

the localized perturbation (splice): without splice, centered splice and offset splice (See Fig. 

4.37). The coupling is measured through the evolution of the intensity of peaks between the 

unperturbed and perturbed fiber. Using the method described above, we can deduce the 

experimental value of coefficient, Mij. From this, we obtain the coupling coefficient to 

describe the strength of the interaction between the eigenmodes, by using the equation 4.18. 

 

 

Figure 4-37: Localized perturbation by splice. 

 

The theoretical coupling can be derived by using the amplitude transmission 

coefficient from one upstream fiber mode to any downstream fiber mode. It is well described 

by the so-called overlap integral. The theoretical prediction of Mij could be interesting to have 

the evolution as a function of position to the core (equation 4.20). 

 

Г𝑖,𝑗 = ∬ 𝛹𝑖 . 𝛹𝑗
∗. 𝑇

𝐴∞
𝑑𝑆 = 0;          𝑚 ≠ 𝑛                               (4.20) 

 

. However, in practice, we could not measure the offset between the optical fibers 

(splice), so the experimental results cannot be compared to the theoretical simulations. 

Therefore, we will only present the experimental results. 
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Here ψi corresponds to the field profile of an upstream fiber mode whereas ψj 

corresponds to a downstream fiber mode, T is the transmittance of the junction between the 

two fibers. T depends of the amplitude and the phase. Generally, the different rates of overlap 

between modes can be written in the form of a matrix or transition matrix of the mode. This 

matrix is not square, because it depends on the modes number guided in each fiber, excepting 

in this case (splice with the same fiber).  Nevertheless, we can obtain the power transition 

matrix between the modes by the square module of each term of this matrix |Гij|
2
. In the 

absence of the coupling, the transition matrix is square and the diagonal terms are equal to 

one, that is, the power of a given mode remains in this mode (the modes in a perfect fiber are 

identical and orthogonal to each another). However, when two fibers are not perfect, the 

diagonal terms are less than one and could appear another diagonal terms. 

Г𝑖,𝑗 = [
1 0
0 1

]     𝑖𝑑𝑒𝑎𝑙 𝑐𝑎𝑠𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔  

Г𝑖,𝑗 = [
0.7 0.3
0.3 0.7

]     𝑂𝑛𝑙𝑦 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡  

 

 

 

Figure 4-38: a-b) Evolution of the amplitude as function of the splice condition for LP01+LP11e 

(upper-left) and LP01+LP11o (upper-right). c-d) Evolution of the Aµ/A as function of the splice 

condition for LP01+LP11e (lower-left) and LP01+LP11o (lower-right). 

Figures 4.38c-d show the evolution of the non-diagonal term of the coupling matrix 

for different splice conditions for the small core-cladding index difference. Notice that these 
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figures are deduced from Fig. 4.38a-b. As we expect without perturbation, the non-diagonal 

terms are very small (tend to be zero) and the values of β+δ and µ are close to zero, but not 

equal to zero due to the noise. For the centered splice, a weak coupling is reached, indicating 

the difficulty there exists in realizing a perfectly centered splice, while for the offset splice, a 

strong coupling can be reached depending to the offset and fiber. This method can be 

recommended to examine the coupling effect on splices.  
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4.6- Summary 

 

Advanced S2 allows to measure and to analyze the modal crosstalk and the mode 

coupling between all modes, including spatially degenerated modes of a particular fiber. The 

measures of these parameters are crucial to study the fiber susceptibility and their impact on 

emergent optical communication system based in MDM. 

By using A-S2 and a wire-mesh, we have demonstrated the modal coupling of an FMF 

that LP11e and LP11o modes undergo different coupling coefficients as a consequence of the 

core deformation generated by the applied stress (perturbation).  

We determined that the sensitivity of the mesh system depend on the mesh type used 

and the dimension of the wire. Therefore, it is important to use an appropriate mesh that 

allows measure the curvature in the fiber.  

By using A-S2 and a splice, we have demonstrated qualitatively the mode coupling of 

a FMF. Therefore, this method can also be applied to the analysis of the effect of other 

perturbations, such as the splices and tapers. 

In order to compare the theoretical microbending model and the experiments, we have 

modeled the periodic perturbation (wire-mesh) by controlling the following parameters of the 

model: number of sections, section length and total length. The obtained values from 

simulation shows the amplitude behavior for different coupling of the degenerates modes, 

instead of the beat modes, however, these results provide an idea about the behavior of the 

optical fiber under coupling condition.  

.  
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5 CONCLUSION AND OUTLOOKS 

 

As the demand for data transmission increases and the optical fiber capacity 

approaches its limits, the research community is evaluating new ways and technologies to 

overcome the capacity crunch. To date, it is not yet clear if MCF or FMF, both, or neither will 

be the next generation of transmission fiber (chapter 1). MCF can minimize crosstalk among 

spatial channels (inter-core crosstalk), but the communication system would need high 

hardware complexity (the number of amplifiers, multiplexers, etc.) especially when scaling up 

to more cores. Besides, the manufacturing methods needed to synthesize these fibers are more 

complicated compared to the one used to manufacture FMF. However, an FMF-based system 

requires higher dimension channel equalization in comparison with SMF, and its complexity 

increases as the number of modes increases. Even if the SDM (MCF or FMF) system could be 

a possible candidate to overcome the capacity crunch, there are many unknowns such as 

optical amplifiers, nonlinearity in FMF, cost and power efficiency, etc. In this work, we 

focused on the passive FMF, particularly on the study of the mode coupling. 

In Chapter 3, a coupling model based on an expansion of ideal normal mode was 

developed for FMF. This model accepts any refractive index profile and an arbitrary number 

of modes, which extends its validity to the MMFs. Besides, it allows studying the mode 

coupling induced by random perturbations in the FMF, such as micro-bendings and splices. 

Mode coupling is modeled by dividing the fiber into numerous segments, each segment 

possessing a random bending. Therefore, we obtained a propagation matrix, the principal 

modes and their group delay for each random set of the following input parameters: fiber 

length, number of sections and standard deviation of the bending radius. To validate the mode 

coupling model, we compared the differences between the maximum and the minimum group 

velocity delay of the principal modes divided by the distance, with the maximum differential 

mode group delay (max|DMGD|) between the LP modes derived from the wave equation 

under the condition of weak-coupling. This model has been adopted and adapted by Prysmian 

group to improve the set of tools they have already developed to model the behavior of 

numerous optical fibers. 

The model has been used to study the evolution of the group delay under different 

coupling regimes, especially in weak and strong coupling conditions. As we discussed, a 
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small standard deviation of the curvature and a small fiber length produce weak mode 

coupling regimes and the group delays of the spatial modes (principal modes) are close to the 

values of LP modes, in absence of coupling. In this regime, the group delay behaves linearly 

as a function of distance. As the standard deviation of the curvature and fiber length increases, 

the group delay tends to merge and a strong coupling is reached, as long as the fiber design 

allows it. Under these conditions, we obtain a square root behavior of the group delay spread 

as a function of the propagation length. 

The evolution of the group delay as a function of the propagation distance has been 

studied through a set of FMFs (10 spatial modes) with various effective index differences and 

for a wide range of coupling strengths. Likewise, the group delay operator has been used to 

evaluate these evolutions for groups of modes and its spread reduction induced by the mode 

coupling process. We demonstrated under certain conditions (such as, high perturbations and 

an effective index difference between modes above a threshold value) that the group delay 

spread has a square root dependence on the propagation distance. This high perturbation 

usually allows a strong mode coupling. This regime has been proposed for long-haul MDM 

systems and imposes the use of coherent detection and full MIMO DSP. However, the MIMO 

DSP complexity depends on the DMGD. To obtain a low DMGD and a simple MIMO, group 

delays must be minimized by achieving a strong mode coupling, intentionally perturbing the 

FMF and considering a design with a small difference of effective index between modes with 

low bend losses for all modes. Further work in this area must be carried out to study the 

feasibility of MDM systems using external perturbations. 

As said before, long-haul transmission system use coherent detection and working on 

the basis of the principal modes [Fan, 2005] could be an interesting approach to increase their 

throughput, especially because these modes undergo a minimal distortion in modal coupling 

during their propagation. As these modes are robust in terms of the modal dispersion, they are 

good candidates MIMO-DSP as well. However, the other optical elements of transmission 

systems (such as optical amplifiers, router…) will have to take into account this basis of 

modes in their design. 

In Chapter 4, we have measured the mode coupling by an advanced-S2 method. This 

method allows to analyze the mode coupling between all modes, including spatially 

degenerated modes. By this method and applying either homogeneous or periodic mechanical 

stress (wire-mesh), we studied the mode coupling for a 2-mode FMF. The coupling between 

the non-degenerated modes (LP01 and LP11) and between degenerated modes (LP11e and 

LP11o) was indirectly measured. 



CONCLUSION AND OUTLOOKS   
 

187 

 

Our measurements have demonstrated that the coupling coefficients of the LP11o and 

LP11e modes are sensitive to the mechanical stress, evidencing that the perturbation acts on 

each axis of the fiber differently. This method can be applied to analyze the effects of other 

perturbations, including splices. Besides, the conventional coupling model allows to obtain 

the amplitude values of the degenerated modes and not the beat modes, which allows to 

compare only the amplitude shape between the experimental and the simulation results. 

 

What are the limitations of our study? 

 We found it difficult to compute the DMGD and losses when leaky modes are 

included in the coupling mechanism because the GD and loss values between the guided and 

leaky mode could vary significantly, especially in strong coupling regime. This made the 

calculation of these values from numerical method using Matlab, impossible. 

Data acquisition in the S2 method is sensitive to light, vibration, connecters, splice and 

entrance conditions. Therefore, we have tried to control these parameters, especially the 

influence of the input splice between the source and the fiber under test (FMF) to produce a 

beat-free result on uncoupled conditions. Here, we have replaced the input splice by several 

taper sections of the same FMF. However, the different tapers did not produce a beat-free 

result. 

Recommendations for further research 

 Since the realistic long-haul-optical transmission systems use amplifiers, fiber 

connectors, switches…, it would also be helpful to study the impact of these elements 

on the mode coupling and not only the impact of the transmission fiber. 

 It would be necessary to perform an in-depth exploration of how the different spatial-

mode-basis (LP, PM, OAM, and so on) influence the performance, latency, cost and 

complexity of a MDM system, especially of a MIMO–DSP. Likewise, the application 

of spatial-mode-basis is only thinkable if they can be excited without using costly 

adaptive systems. 

 More measurements and research works are needed on advanced-S2 to validate the 

method on FMF with more modes. 
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6 APPENDIX 

A. Normalization  

 

We consider LPυµ notation (υ and µ modes) to study the normalization. Modes are eigen 

vectors of the Maxwell’s equation, and thus are orthogonal by definition, meaning that they 

do not interfere between each other [Snyder, 1983]. We will discuss here the 

orthonormalization method. An integral overlap allows orthonormalization of modes as 

defined in Eq. (A.1). Thus, for guided modes, the projection of the mode with itself ensures an 

integral overlap of one (Ƴυμ =1), whereas the projection between different modes (υ, µ) 

produces a null overlap integral (Ƴυμ =0). Thereby, the overlap integral is equal or less than 1. 

For radiation modes, the expression on the right side of the equation, will be a function delta 

due to the continuous characteristic of the radiation modes. 

 

{
Ƴυµ = ∬ 𝛹υ 𝛹µ

∗
𝐴∞

𝑑𝑆 = 0;          υ ≠ µ

Ƴυµ = ∬ 𝛹υ 𝛹µ
∗

𝐴∞
𝑑𝑆 = 1;          υ = µ

                                (A.1) 

 

 

To note that we apply the orthogonality and normalization conditions over the forward-

propagating modes. Here, A∞ is the infinite cross section, Ψμ
*
 correspond to the complex 

conjugate of Ψμ.  

B. Shooting method 

 

This method is based on an iterative method, which use Runge Kutta (RK4) to obtain the 

approximate solutions of ordinary differential equations.  

We will explain this method for guided modes by using the following differential equation 

(2.24): 

(𝛻t
2 + 𝑘2𝑛2 − 𝛽2)𝐹𝜐(r, θ) = 0 

 

Remember that ψ(x,y)=F(r).G(θ).  Thus, firstly we obtain its normalized version in order 

to adapt it to the numerical method [Stoltz, 1982]. Then, we normalize the refractive index 

profile and radius as in equations B.2 and B.3. 
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𝑑2𝑓

𝑑𝑅2 +
(2𝜐+1)

𝑅

𝑑𝑓

𝑑𝑅
+ 𝑉2(𝑆 − 𝐵)𝑓 = 0                                            (B.1) 

 

𝑅 = 𝑟/𝑎                                                                          (B.2) 

 

𝑆(𝑅) =
(𝑛2(𝑅)−𝛽.𝑛2

2)

(𝑛1
2−𝑛2

2
)

                                                              (B.3) 

 

Here R is the normalized radius, B is the normalized propagation constant, S(R) is the 

normalized refractive index profile and F(R) is the field amplitude 𝐹(𝑅) = 𝑅𝜐. 𝑓(𝑅) and f(R) 

are the solutions over 0 and 1. 

To solve the equation, we chose the initial condition. For example, for the guided 

modes, the boundary condition was set at R=1 between the core and the cladding interface to 

guarantee their continuity.   Later, we integrate the equation B.1 by RK4 from R=0 to R=1 for 

a trial value of β. As was demonstrated by [Molin, 2016], this method is unstable for guided 

modes because it is not defined for R=0.  

 

B.1. Using the shooting method (Runge kutta 4) to find the 

radiation modes  

    

Radiation modes have an oscillatory wave form in the cladding and a β that is real and 

continuous. Radiation modes are derived by considering an infinite cladding. We adapt 

differential equation 2.27 to the numerical method (see equation B.1). 

To differentiate the radiation modes from the guided mode, we change the subindex υ 

to ν.  

ᴪ(𝑟, 𝜃) = 𝐹(𝑟) {
cos(𝜈𝜃)

sin(𝜈𝜃)
                                                      (B.4) 

 

𝑍𝜈(𝑟)𝜈in the equation B.5 corresponds to the different function solutions of the 

differential equation in the core (𝑟 ≤ 𝑎) and the cladding (𝑟 > 𝑎).  Therefore, the radiation 

modes can be described in the region 𝑟 > 𝑎 as the sum of the Hankel functions of the first 

kind Hν
(1)

 and Hankel functions of the second kind Hν
(2)

 because the outward and inward 

propagating cylindrical wave can be represented by these functions whereas in the region 

𝑟 ≤ 𝑎 the radiation modes are represented by parabolic function (𝐹𝜈) [Marcuse, 1991]. Note 
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that to resolve the equation, we must have noted that the power in each radiation mode must 

be infinite and oscillatory for 0< r<∞.  

The function in the core and cladding can be summarized as: 

 

𝑍𝜈(𝑟)𝜈 = {
𝐴. 𝐹𝜈( 𝜎. 𝑟)                                                                                   𝑟 ≤ 𝑎

𝐵 ∙ 𝐻𝜈
(1)(𝜌 ∙ 𝑟) + 𝐶 ∙ 𝐻𝜈

(2)(𝜌 ∙ 𝑟)                                              𝑟 > 𝑎
             (B.5) 

 

With  𝜎 = √𝑛𝑐𝑜
2 ∙ 𝑘𝑜

2 − 𝛽2   for r<a and   𝜌 = √𝑛𝑐𝑙
2 ∙ 𝑘𝑜

2 − 𝛽2    for r>a         

 

To obtain B and C values as in the equation B.5, we have taken into account the 

boundary conditions for 𝑍𝜈 and d𝑍𝜈/dr to guarantee the continuity in the region r=a.  

 

[
𝐵
𝐶
] =

1

𝜌 ∙ 𝐻𝜈
(1)(𝜌 ∙ 𝑎) ∙ 𝐻𝜈

(2)′(𝜌 ∙ 𝑎) − 𝜌 ∙ 𝐻𝜈
(2)(𝜌 ∙ 𝑎) ∙ 𝐻𝜈

(1)′(𝜌 ∙ 𝑎)

∙ [
𝜌 ∙ 𝐻𝜈

(2)
′(𝜌 ∙ 𝑎) −𝐻𝜈

(2)(𝜌 ∙ 𝑎)

−𝜌 ∙ 𝐻𝜈
(1)′(𝜌 ∙ 𝑎) 𝐻𝜈

(1)(𝜌 ∙ 𝑎)
] ∙ [

𝐹𝜈(1)

𝐹𝜈′(1)

𝑎

] 

(B.6) 

 

To solve the equation B.5 by the numerical method known as shooting method, we must 

transform the second order equation into a system of first order equations. As a second-order 

differential equation is equivalent to a system of two first-order differential equations, we 

applied the same procedure with a very simple change of variable df/dR = w.  In the end, we 

obtain the equation B.7 and B.8.  

 

𝑑𝑤

𝑑𝑅
+

(2𝜈+1)

𝑅
𝑤 + 𝑉2(𝑆(𝑅) − 𝐵)𝑓 = 0                                                     (B.7) 

 

𝑑

𝑑𝑅
(

𝑓
𝑑𝑓

𝑑𝑅

) = [
0 1

−𝑉2(𝑆 − 𝐵) −
2.𝜈+1

𝑅

] (
𝑓𝜈

𝑑𝑓𝜈
𝑑𝑅

)                                            (B.8) 

 

 

Now, we can find the value of f(R) and f’(R) for a given R, by fixing a trial value β 

over the infinite possibilities of the radiation modes (ko.nco>ko.ncl >β ) and the initial 

conditions of the equation B.9. 
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𝑈𝑖𝑛𝑝𝑢𝑡(𝑅𝑖)  𝑖𝑠 (
𝑓𝜈

𝑑𝑓𝜈
𝑑𝑅

) = (1
0
)                                               (B.9) 

𝑈𝑜𝑢𝑡𝑝𝑢𝑡 = [
0 1

−𝑉2(𝑆 − 𝐵) −
2.𝜈+1

𝑅

] 𝑈𝑖𝑛𝑝𝑢𝑡                        (B.10) 

 

Here, Uoutput(Ri+1) for Ri+1 is calculated by RK4 algorithm.   

 

B.2. Using the shooting method to find the leaky modes  

 

Leaky modes can be calculated by solving the scalar wave equation B.1 of the 

shooting method, under an appropriate boundary condition at the core-cladding interface 

(R=1).  

The function in the core and cladding can be summarized as: 

 

𝑓′(1)

𝑓(1)
= [

𝐻𝜈−1
(2)

(𝑉√𝐵)−𝐻𝜈+1
(2)

(𝑉√𝐵)

𝐻𝜈
(2)

(𝑉√𝐵)
. 𝑉√𝐵𝑛𝑒𝑓𝑓 − 𝜈]                      (B.12) 

 

Here, Hν
(2)

 is the Hankel function of the second kind of order. Note that in the cladding the 

leaky field is defined by the Hankel function of the second kind and in the core leaky field is 

defined by the modified Bessel function of the second kind. 

 

C. Radiation modes 

     

We can decompose exactly the transverse fields E⃗⃗ 𝑡 and H⃗⃗ 𝑡 on the complete basis of all the 

transverse fields of the modes of the fiber with the radiation modes. To calculate radiation 

modes, we have used the method described in the section B.1. 

E⃗⃗ 𝑡 = ∑ 𝑎β. E⃗⃗ β𝑡. e
i(βz) + ∑∫ 𝑎𝑝E⃗⃗ 𝑝𝑡𝑑𝑝

∞

0
𝑁
β=1                                          (C.1a)    

H⃗⃗ 𝑡 = ∑ 𝑎β. H⃗⃗ β𝑡. e
i(βz)𝑁

β=1 + ∑∫ 𝑎𝑝H⃗⃗ 𝑝𝑡𝑑𝑝
∞

0
                                        (C.1b)   
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To simulate, we have chosen a λ=1550nm, a finite radius of 62.5µm as in the MMF 

standardization and the core radius of R=11µm and R=14µm.  To obtain the radiation modes, 

we firstly validate the coefficient B and C (B=C=0.5) in the limit of σ=ρ from equation B.5. 

Where:  

𝜎 = √𝑛𝑐𝑜
2 ∙ 𝑘𝑜

2 − 𝛽2   for r<a and   𝜌 = √𝑛𝑐𝑙
2 ∙ 𝑘𝑜

2 − 𝛽2    for r>a 

 

Secondly, we verify the continuity between 𝐹𝜈 and 𝐵 ∙ 𝐻𝜈
(1)(𝜌 ∙ 𝑟) + 𝐶 ∙ 𝐻𝜈

(2)(𝜌 ∙ 𝑟)  )  

 

Figure 6-1: Zν(R) of the 6-LP modes with R=14µm ν=0 b) field of the 6-LP modes with for Δneff 

=-0.084 for R=14µm. 

 

To normalize the radiation modes, we will take into account the eigenmode expansion 

technique which we would have liked to use them in the coupling study (chapter 3). It should 

be remembered that the radiation modes have infinite energy and so the normality condition 

from equation A.1 cannot be expected to apply. Radiation modes (open structure) are 

continuously oscillating and fields never vanish, thus the normalization integrals are 

unbounded. However, we can include the Dirac delta function, 𝛿(ρ − ρ′) (it should be a 

distribution) to normalize these modes [Sammut, 1982]. 𝛿νµ is the Kronecker symbol. 

 

Ƴνµ = ∬ 𝑍ν 𝑍µ
∗

𝐴∞
𝑑𝑆 = 𝛿υµ𝛿(ρ − ρ′)       ν, µ = 1,2… . N               (C.3) 

  

𝑍𝜈(𝑟) and 𝑍µ(𝑟) in the equation C.3 are the different functions solutions for ν and µ 

mode. 

The normalization of the radiation modes could be accomplished by direct 

computation of the normalization integral. However, due to the time limitation of the project, 

the normalization problem has not been solved and so we cannot use radiation modes to the 

coupling study in the next chapter.  
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In order to compare with the guided mode fields (Fig. 2.16), Fig. 5.2a-h illustrates 

those of the radiation modes at different propagation constants (between 5.5x10
6
 and 5.88x10

6
 

) keeping the condition (𝑘. 𝑛1> 𝑘. 𝑛2>β) and the modes number to zero (ν or µ=0). Note that 

in the guided modes, the envelope of the cladding field decays exponentially along the radius 

direction, that is without losses, whilst the radiation modes exhibit an envelope of cladding 

field monotonically and slowly decays. As β decreases, the number of oscillations tends to 

increase. 

Figure 5.3a- shows the radiation field at different modes (ν=µ=0, 1, 2, 3 and 4) with a 

given β=5.88x10
6
. As ν or µ increases, the oscillation amplitude in the cladding decays and 

the energy is confined in the core. For µ=0, the amplitude of the oscillations inside the core 

are greater than those of other radiation modes. Therefore, the impact of this mode on the 

guided mode can be considerable with respect to the others. 

For higher radiation modes µ=5, 10, 15, 20, 25, the energy that was confined in the 

core starts to move away from the core to the cladding. It shows that the higher order 

radiation modes have oscillations far away from the core and their energy could be considered 

negligible for the guided modes. 
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Figure 6-2 

Figure 6-3: a-h) Zν(R) and radiation field of 6-LP modes, R=14µm and ν=0 for different 

propagation constants. 

 

 

 

Figure 6-4: a) Zµ(R) and radiation field of 6-LP modes, for different radiation modes. B) 

Radiation field for higher modes. 
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D. Galerkin method 

 

By the Galerkin method [Gallawa, 1991], we adapt the differential equation into a set of 

simultaneous linear equation to simplify the numerical method. This method uses the Hermite 

or Laguerre-Gauss polynomial as solutions, which leads to a transformation of the differential 

equation from 2.50 to 2.55 through of the transformation parameters D.1 a-b  

 

𝑞 = 𝑉. 𝑅2                                                                     (D.1 a) 

 

𝑓(𝑅) = 𝐽(𝑅). 𝑒−
(𝑉.𝑅)2

2                                                            (D.1 b) 

 

𝑞.
𝑑2𝐽

𝑑𝑞2 + (𝑙 + 1 − 𝑞).
𝑑𝐽

𝑑𝑞
+ 0.25[𝑞 − 2. (𝑙 − 1) + 𝑉. (𝑆(𝑞) − 𝐵)]. 𝐽 = 0          (D.2 a) 

𝑞.
𝑑2𝐽

𝑑𝑞2 + (𝑙 + 1 − 𝑞).
𝑑𝐽

𝑑𝑞
+ 𝑔. 𝐽 = 0                                        (D.2 b) 

 

Here, 𝑔 = 0.25[𝑞 − 2. (𝑙 − 1) + 𝑉. (𝑆(𝑞) − 𝐵)] should be an integer to admit the 

Laguerre polynomial 𝐿𝑔
𝜐  as a solution. Hence, this equation is expanded in terms of orthogonal 

function basis as in [Gallawa, 1991].  

 

𝐽𝑙(q) = ∑ 𝑎𝑘.
𝑁
𝑘 𝐿𝑔

𝑙 (𝑞)                                                            (D.3) 

 

Later, equation D.3 will be inluded into equation D.2a and normalized by the 

orthogonality of Laguerre polynomials in the interval (0, ∞) with respect to the gamma 

distribution. In this part the derivations follow the outline of [Molin, 2016]. 

 

 

∫ 𝑒−𝑞 . 𝑞𝑙+1. 𝐿𝑘
𝑙 (𝑞). 𝐿𝑝

𝑙 (𝑞)𝑑𝑞 =

{
 
 

 
 (1 + 2. 𝑘 + 𝑙).

(𝑘+𝑙)!

𝑘!
. 𝛿𝑘𝑝

−(1 + 𝑘 + 𝑙).
(𝑘+𝑙)!

𝑘!
. 𝛿𝑘𝑝−1

(𝑘 + 𝑙).
(𝑘+𝑙−1)!

(𝑘−1)!
. 𝛿𝑘−1𝑝

∞

0
                                 (D.4 a) 

       

 

∫ 𝑒−𝑞 . 𝑞𝑙+1. 𝐿0
𝑙 (𝑞). 𝐿𝑝

𝑙 (𝑞)𝑑𝑞 = −(1 + 𝑙)!. 𝛿0𝑝−1 + (1 + 𝑙)!. 𝛿0𝑝 
∞

0
                 (D.4 b) 
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∫ 𝑒−𝑞 . 𝑞𝑙+1. 𝐿0
𝑙 (𝑞). 𝐿0

𝑙 (𝑞)𝑑𝑞 = (1 + 𝑙)!
∞

0
                                                 (D.4 c) 

 

 

The set of simultaneous linear equations are obtained by multiplying 𝑒−𝑞 . 𝑞𝑙+1. 𝐿𝑝
𝑙 (𝑞) 

and integrating from 0 to ∞: 

 

∑

(

 
 
 
 

𝑎𝑘 .
(𝑘 + 𝑙)!

𝑘!
. ((1 + 2. 𝑘 + 𝑙). 𝛿𝑘𝑝 − (1 + 𝑘 + 𝑙). 𝛿𝑘𝑝−1 − 𝑘. 𝛿𝑘−1𝑝)

−𝑎𝑘.
(𝑘 + 𝑙)!

𝑘!
. 2. (1 + 2. 𝑘 + 𝑙). 𝛿𝑘𝑝

+𝑎𝑘 . 𝑉. ∫ 𝑒−𝑞 . 𝑞𝑙. 𝑆(𝑞)𝐿𝑘
𝑙 (𝑞). 𝐿𝑝

𝑙 (𝑞)𝑑𝑞 = 0
∞

0

, ∀     𝑝 = 0,… . , 𝑁
)

 
 
 
 

− 𝑉. 𝐵

𝑁

𝑘=0

.∑ 𝑎𝑘 .
(𝑘 + 𝑙)!

𝑘!

𝑁

𝑘=0

. 𝛿𝑘𝑝 

(D.5) 

 

The equation D.5 can be written as in D.6 

 

 

    [𝑇 − 𝐼. 𝜆]. 𝐴 = 0                                                 (D.6) 

 

Here, matrix T is a square matrix with dimension (N+1), I is the identity matrix and λ 

corresponds to the eigenvalues. I. λ can be defined equally as the multiplication of a D 

diagonal matrix by the B constant propagation matrix and represents the eigenvalue of D
-1

. It 

should be noted that the equation is easy to compute numerically, because it becomes linear 

and first order. In the end, the eigenvector ɑk are the mode field amplitude. 

The Garlerkin method is not appropriate to find the leaky mode because the function basis 

applied there does not take into account the boundary conditions of the leaky modes. 

 

E. MIMO-DSP in MDM transmission system 

 

The Multiple-Input Multiple-Output Digital signal processing (MIMO-DSP) presented in 

the chapter 1 was analyzed to compensate the signal against the impairments suffered during 

transmission. Therefore, the effect produced by CD, FMF, mode coupling and mode 

dispersion must be compensated.   In this chapter, we will adapt MIMO-DSP to MDM system 

transmission. In a simplistic view, we consider a DSP in MDM (SDM). This DSP needs the 
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contribution of all the other output signals to compensate mode coupling effect that occurred 

in the FMF during the propagation and thus to recover each mode.  

MIMO can be classified into simple MIMO and MIMO-DSP. A simple MIMO use the 

direct detection, it is low cost, but it does not improve the performance significantly, because 

the receiver does not have the phase information (Awad, 2009). In opposition to simple 

MIMO, MIMO-DSP improves the performance, because it uses a coherent receiver which 

allows obtaining phase and amplitude information at the end of the transmission. Besides, we 

can use the higher order modulation formats to increase the data rate. 

Figure E.1 shows a MIMO digital signal processing [Juarez, 2013]. Note that each basis 

(LP or PM), carry a different data, which is mode-multiplexed (M-MUX) into the FMF, then 

transmitted and mode-de-multiplexed (M-DEMUX) by a spatial filter and detected at the 

receiver. LO is the local oscillator laser which transforms the pass band signal into a baseband 

signal. 

Then, MIMO-DSP is used to recover and to equalize the output information.  

 

 

 

Figure 6-5: MDM system using MIMO-DSP. 

 

In figure 5.4, x1(t)……. xN(t) corresponds to the modulated input signal,  y1(t)……. 

yN(t) are the optical output signal, u1(t)……. uN(t) are the complex envelope of the optical 

signal, y1(t)……. yN(t) are the pass band signals and u1(t)……. uN(t) are the baseband 

signals. Hence, Yn(t) can be defined by considering the complex envelope of the optical 

signal and ωo is the optical carrier frequency, as in equation E.1a. 
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𝑦𝑁(𝑡) = 𝑢𝑁(𝑡). 𝑒−𝑖.𝜔𝑜.𝑡                                               (E.1.a) 

The signal at the end of the de-multiplexer (yN(t)) can also be written as its inverse 

Fourier transform (E.1b). Here, the signals are DE-multiplexed from LP-modes. 

      

𝑦𝑁(𝑡) = ℱ−1(𝑦𝑁(𝜔))                                               (E.1.b) 

MIMO-DSP will be studied by assuming an MDM transmission system without noise 

which uses an ideal coherent receiver without frequency compensation technique, and a 

MIMO based on the Wiener Filter [Oppenheim, 2010]. Wiener Filter uses a complex filter 

coefficient, allowing treatment of the signals of the Fig. 5.4 without decomposing the signal in 

phase and quadrature component. A Wiener filter is an adaptive filter using the Minimun 

Mean-Squared Error (MMSE, Fig. 5.5) solution of the cost function to equalize the output 

signal of a distorted but noise free input signal. Thus, the MIMO Wiener filter can equalize 

the output signal, sN(t), by minimizing the square error.  

 

𝐸{|𝑒(𝑡)2|} = 𝐸 {|𝑠𝑁(𝑡) − 𝑠�̃�(𝑡)|
2
} ≈ 0                                               (E.2) 

 

 

Figure 6-6: A simple MIMO Wiener system. Here, T(ω) is the transfer function of the 

propagation channel. h-1(t) represents the estimated inverse channel impulse response and e(t) 

is the error. [Manolakis, 2005] 

 

 

In a simplistic view, we consider a simple single-input single-output (SISO) Wiener 

system. Here, the Wiener filter is studied for SMF and the channel is considered causal and 

invariant of the signal. Therefore, an input signal, x(t) propagates through an SMF. 

By following the Figure E.2, the output signal y(t) can be written as: 

 

𝑦𝑁(𝑡) = ℱ−1(𝑋(𝜔). 𝑇(𝑧, 𝜔). 𝑎)                                                  (E.3) 

 

The u(t) is sampled, and then convoluted with the h
-1

(t) as in the equation E.4 

�̃�(𝑡) = ℎ−1(t) ∗ u(t)                                                       (E.4) 
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Note that, the output signal is an estimate of the input data signal. Thus, the error, e(t) 

is treated and used to estimate the input signal after its optimization. The optimization from 

the Wiener filter is obtained when the expectation value of the square error is minimal 

(Equation E.5). 

 

𝐸{|𝑒(𝑡)2|} = 𝐸 {|𝑠𝑁(𝑡) − 𝑠�̃�(𝑡 − 𝑇′)|
2
} = 𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒                       (E.5a) 

    

T’ is time delay that be omitted for simplicity. The signal must be resampled by 

considering the Nyquist criterion in order to avoid aliasing. The sampled version of equation 

E.5 can be written as: 

 

𝐸{|𝑒(𝑛𝑇)2|} = 𝐸 {|𝑠(𝑛𝑇) − ∑ 𝑐𝑙𝑓𝑖𝑟

∗𝐿𝑓𝑖𝑟−1

𝑙𝑓𝑖𝑟=0 𝑢(𝑛𝑇 − 𝑙𝑇)|
2

}                     (E.5b) 

 

The length of FIR filter is 𝐿𝑓𝑖𝑟 and the complex filter coefficient are 𝑐𝑙𝑓𝑖𝑟

∗ . The error 

signal can be represented as:   

𝑒(𝑛𝑇) = 𝑠(𝑛𝑇) − ∑ 𝑐𝑙𝑓𝑖𝑟

∗𝑙𝑓𝑖𝑟−1

𝑙𝑓𝑖𝑟=0 𝑢(𝑛𝑇 − 𝑙𝑇)                           (E.6) 

   

To minimize the square error |𝑒(𝑛𝑇)2| = 𝑒(𝑛𝑇). 𝑒(𝑛𝑇)∗, the equation E.5b must be 

derivated with respect to the 𝑐𝑓 filter coefficients, as: 

 

𝜕|𝑒(𝑛𝑇)2|

𝜕𝑐𝑓
=

𝜕𝑒(𝑛𝑇)

𝜕𝑐𝑓
. 𝑒(𝑛𝑇)∗ + 𝑒(𝑛𝑇)

𝜕𝑒(𝑛𝑇)∗

𝜕𝑐𝑓
= 0                          (E.7) 

 

From the previous equations, we can obtain the following equation: 

𝐸{𝑢(𝑛 − 𝑓). 𝑠∗(𝑛)} − ∑ 𝑐𝑙𝑓𝑖𝑟

∗ . 𝐸{𝑢(𝑛 − 𝑓)𝑢∗(𝑛 − 𝑙𝑓𝑖𝑟)} = 0
𝐿𝑓𝑖𝑟−1

𝑙𝑓𝑖𝑟=0 ,  where f є [0,Lfir -1]      

(E.8a)    

    𝑟𝑓 − ∑ 𝑐𝑙𝑓𝑖𝑟

∗ . 𝑅𝑓,𝑙𝑓𝑖𝑟 
= 0

𝐿𝑓𝑖𝑟−1

𝑙𝑓𝑖𝑟=0                                         (E.8b)    
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Equation E.8 can be divided into two parts:  the first term, 𝑟𝑓 that corresponds to the 

cross-correlation value between the output and input signal and the second term, 𝑅𝑓,𝑙  that 

describes the autocorrelation of the u(t) at different time f-1. 

 

E.1. MIMO-DSP complexity 

     

To study the complexity in MIMO-DSP, we will present the following example: 

  

Example: Filter length Lfir =3 

By the equation E.8b, we can obtain the following set of equation for Lfir=3 

𝑟0 = 𝑐0. 𝑅0,0 + 𝑐1. 𝑅0,1 + 𝑐2. 𝑅0,2   

    𝑟1 = 𝑐0. 𝑅1,0 + 𝑐1. 𝑅1,1 + 𝑐2. 𝑅1,2                                        (E.9a)    

𝑟2 = 𝑐0. 𝑅2,0 + 𝑐1. 𝑅2,1 + 𝑐2. 𝑅2,2  

 

Equation E.9b is the matrix form of Equation E.9a 

.[

𝑟0
𝑟1
𝑟2

] = [

𝑅0,0 𝑅0,1 𝑅0,2 

𝑅1,0 𝑅1,1 𝑅1,2 

𝑅2,0 𝑅2,1 𝑅2,2 

] . [

𝑐0

𝑐1

𝑐2

]                              (E.9b) 

    𝑟𝑢𝑠⃗⃗⃗⃗  ⃗ = 𝑅𝑢𝑢 . 𝑐                                                              (E.9c)    

 

Note that the vector 𝑐  comprises all the unknown filter coefficients, the vector, 𝑟𝑢𝑠⃗⃗⃗⃗  ⃗ 

contains the crosscorrelation coefficients and the matrix, 𝑅𝑢𝑢 contains all components the 

autocorrelation, whose size is Lfir × Lfir . The coefficient vector can be obtained by equation 

E.9c.  

 

    𝑅𝑢𝑢 
−1. 𝑟𝑢𝑠⃗⃗⃗⃗  ⃗ = 𝑐                                                               (E.9d) 

    

Figure 5.6 shows the filter structure for a FIR length of Lfir=3. Here, the number of 

filter coefficient is equal to Lfir.  
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Figure 6-7: FIR filter for signal de-convolution. 

 

The signal passes by the filter bank. Then, u(n) is delayed by Δtfir and multiplied by the 

complex filter coefficient. In the end, the estimated signal, �̃�(𝑛) is obtained by the sum of all 

these blocks. As discussed before, the estimation of the cross-correlation vector needs the 

information of the input signal. It can be acquired for instance by training in real optical 

transmission systems. Moreover, the output signal u(n-Td) suffers from the delay (Td)  which 

should also be taken into account. Here, the length of the delay is an important parameter to 

obtain an appropriate detection, so that: 

 

 If the delay is too small, there is no correlation and the filter coefficients could be 

estimated incorrect, which leads a higher error.  

 If the delay is large, more than one filter tap necessary to minimize the square error, 

which leads to increase the complexity of the system. 

Assuming 1….i
th

 input signals and D is the total output signals, the expectation value 

of the square error can be described by: 

 

𝐸{|𝑒𝑖(𝑛𝑇)2|} = 𝐸 {|𝑠𝑖(𝑛𝑇) − ∑ ∑ 𝑐𝑙𝑓𝑖𝑟

∗𝑙𝑓𝑖𝑟−1

𝑙=0 𝑢𝑑(𝑛𝑇 − 𝑙𝑓𝑖𝑟𝑇)𝐷
𝑑=1 |

2

}                     (E.10) 

 

Note that the number of taps and equation change to D× Lfir  

 

    𝑟𝑢𝑠𝑖⃗⃗⃗⃗⃗⃗ = 𝑅𝑢𝑢 . 𝑐𝑖⃗⃗                                                              (E.11a)    

 

𝑅𝑢𝑢  is a matrix and its diagonal describes the autocorrelation of the output signal, the 

non-diagonal values describe the correlation between the different output signals. The cross-

correlation vector, 𝑟𝑢𝑠𝑖⃗⃗⃗⃗⃗⃗  comprises the correlation values between the input signal and all the output 
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signals. Besides, equation E.11 describes a receiver structure with multiple input single output 

(MISO), which can be adapted to the Multiple Input Multiple Output (MIMO) receiver by 

considering D×D number of equation (cf. Fig. 5.7).      

In Figure 5.7 shows a MISO assembly FIR to produce a MIMO. Here the output 

signals are combined to obtain the 1,2,…i input signal estimation. 

 

 

Figure 6-8: FIR filter for signal de-convolution. 

 

These MIMO are used in MDM transmission system with FMF. We can classify 

MIMO in two groups depending on digital filtering technique: MIMO Time-Domain 

Equalization (TDE) and MIMO Frequency-Domain Equalization (FDE). 

 In MIMO-TDE, the digital filtering is commonly implemented by direct time domain 

convolution and its complexity increase with the temporal memory length 

  In MIMO-FDE, we used a Fast Fourier Transform algorithm and the overlap-save or 

overlap-add method (Arik, 2013). For this MIMO, the complexity is related to the FFT 

block length which can also produce high processing latency. 

In this section, the Digital filtering and adaptation algorithm are not analyzed. 

However, the approaches to reduce MIMO equalizer complexity will be mentioned: 
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 The first approach is to design all the system components, de-multiplexers, FMF, 

amplifiers and switches to minimize mode coupling crosstalk. 

 The second approach is to design the transmission system with low group delay (GD) 

spread, whose purpose is to use a temporally short MIMO equalizer. 

  For this second approach, the GD spread is the parameter used to reduce the 

complexity in the FMF communication system detection (MIMO-DSP) [Savory, 2010], [Arik, 

2015]. 

 

      E.2. MIMO in weakly coupled 

 

In the presence of a simple MIMO, the fiber must be designed so that the modes admit 

a weak couple. In this regime, some modes could be coupled due to their almost similar 

propagation constants, but others will never reach a coupling state.  

The MDM channels in weakly-coupled regime do not need complex MIMO-DSP. In 

this regime [Sillard, 2015], we need to consider: 

 Minimizing mode coupling to limit the crosstalk and obtain the minimal effective area 

of all modes.  

 Choosing the appropriate fibers with a profile that allows low crosstalk and very large 

effective area, regardless of its large DMGD. One of the good candidates is the step-

index (SI). 

Weakly-coupled uses 2×2 or 4×4 MIMO with a small number of taps in order to 

separate each spatial mode, without requiring the differential mode delay compensation and 

digital signal processing.  Thus, MIMO handles only the polarization diversity and modes 

with the same propagation constant (degenerate modes). To date, 4 LP mode fibers with low 

crosstalk have been reported [Sillard, 2011]. The main restrictions to increase the modes 

number in this system are Aeff, attenuation and crosstalk (~25dB).  

E.3. MIMO in strongly-coupled 

 

In the presence of a MIMO complex, the fiber must be designed to admit a strong-

coupling. In this regime, the modes have nearly identical propagation constants which allow a 

full coupling.  To achieve this regime, external or intentional perturbation could be used.  
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The MDM channels in strongly-coupled regime required a MIMO-DSP. In this regime 

[Sillard, 2015], we need to consider: 

 Minimizing the differential mode group delay (DMGD), regardless of mode coupling.  

 Choosing the appropriate fibers with a profile that allows small differential mode 

delay. One candidate is the fibers with graded-index profile (GI).  

The strongly-coupled regime uses 2Nx2N MIMO techniques with 2 polarizations×N 

spatial modes that allow detecting all modes simultaneously and cross-talk compensation. 

This strategy is appropriated if the numbers of multiplexed modes is significant. To date, 10 

SDM channels (6 LP modes) with a spectral efficiency of 58 b/s/Hz (chapter 1) have been 

reported [Chen, 2016]. The main limitations to increase the modes number are DGD and 

differential mode attenuation. 

To overcome the complexity of MIMO, DMGD must be as small as possible. For 

example, [Zhao, 2015] has considered an ultra-low DMGD Fiber in spite of the difficulties to 

achieve a low DMGD once LP number is important. The channel spread can be reduced by 

introducing a strong coupling by an intentional perturbation. This reduction has an impact on 

the equalizer taps length [Ho, 2011], but mode-depend-loss could appear. Other approaches, 

such as [Sakamoto, 2013] use the DMGD-compensated fiber with a positive DMGD (P type) 

or a negative DMGD (N type) or finally introduce a computational efficient algorithms in the 

DSP side. 

In table E.1 is summarized the characteristics of these approaches (Weakly-coupled and 

strongly-coupled).  



APPENDIX   
 

205 

 

Table E.1: Weakly-coupled and strongly-coupled in FMF [Sillard, 2016]. 

 

    

The previous review highlights that the coupling in fibers has already been studied 

through many aspects. We propose to push these studies forward by adapting the coupling 

model to FMF in MDM communication system. 

F.    DGD in stochastic differential equation 

 

The strong coupling depends on the combination of effects of mode coupling over the 

entire fiber [Poole, 1986]. Therefore, the group delay has a statistical behavior. To study the 

DGD, we need to solve stochastic differential equations. Firstly, we assume that the curvature 

represents a stationary random process, RK(u)=<K
*
(z) K

*
(z-u) >, by considering the average 

of the curvature over one section length. Here, the brackets are ensemble averages. Secondly, 

curvature has a characteristic correlation length such that R(u)≈0 for |u|> correlation length, 

where u represents the elements of the matrix U. Third, amplitude are complex and their 

phase are sufficiently random. 

<aman>=<aman’>=0 for m≠n  

     

Criterion: Min |Δneff| FMF weakly-coupled FMF strongly-coupled

Parameter Step Index Graded Index

Aeff >80µm2, increases with the modes >80µm2

Attenuation It increases with the modes ~0.25dB/km It increases with the modesr ~0.25dB/km

Bend loses < 10dB/turn < 10dB/turn

Losses higher-order LPx1 modes >19.34dB higher-order LPx1 modes >19.34dB

Min |Δneff| Small It can be minimized

Δβ High 

DSP-MIMO Most cases (2x2MIMOs or 4x4MIMOs)
2Nx2N MIMOs (MIMO complexity 

depend of DMGD)

Max |DMGD| High  >>100ps/km Low<50ps/km

Crosstalk
Low, limits ~-25dB(high distance)                        

~-45dB(short distance-9LP)
Medium

Simplicity Yes No

Modes number limit 9LP (Impact on Crosstalk) 12LP (Impact on MDL)
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We also express the power spectral density (PSD) of the curvature by : 

 

𝑆𝐾 (
∆β

2.𝜋
) = ∫RK(u). e−∆βu du                                                    (F.1) 

 

By assuming an FMF with 2-LP modes (𝑚, 𝑛), equation 3.14 becomes: 

 

𝑎′⃗⃗  ⃗
(𝜔,𝑧) = [

−i. βm i. 𝐾(𝑧)
i. 𝐾(𝑧) −i. βn

] 𝑎 (𝑧)                                                     (F.2a) 

 
𝜕𝑎𝑚(𝑧)

𝜕𝑧
= −i. K(z). e−i∆βz 𝑎𝑛

∗(𝜔, 𝑧)                                                 (F.2b) 

𝜕𝑎𝑛(𝑧)

𝜕𝑧
=   i. K(z). e−i∆βz 𝑎𝑚

∗(𝜔, 𝑧)                                                 (F.2c) 

 

[Poole, 1988] describes the dispersion in an ensemble of fibers in terms of the second 

moment about the variance <Δτ(z)
2
>. Therefore, it can be expressed by considering the matrix 

element. Note that <Δτ(z)
2
> is expressed in terms of the complex amplitude. 

< 𝛥𝜏2 >= 4 < |𝑎𝑚′|2 + |𝑎𝑛′|
2 >        

                                           

Then, we derive the equation with respect to z twice and later we use equations F.2b 

and F.2c and their frequency derivatives. Thereby, we obtain the differential equation of    

d<Δτ2>

dz
 and  

d2<Δτ2>

dz
 as in [Poole, 1988].  

𝑑<Δτ2>

𝑑𝑧
= i. 4.

d(β𝑚−β𝑛)

d𝜔
. < 𝑎𝑚. 𝑎𝑚

′∗ + 𝑎𝑛. 𝑎𝑛
′∗ > +2. (

d(β𝑚−β𝑛)

d𝜔
)
2

𝑧           (F.3) 

where, 

∆β′ =
d(β𝑚−β𝑛)

d𝜔
  corresponds to the difference in the group delay time per unit length. 

By solving the stochastic coupled equation (3.53b and 3.53c) and assuming the 

complex amplitudes and their frequency derivatives are constant over intervals of the order of 

length section (weak-coupling approximation). We can obtaine the perturbation solutions for 

the complex amplitudes that are later used to solve the differential equations that permit to 

obtain <Δτ(z)
2
> ( See equation F.4).   

 

d2<Δτ2(z)>

dz
= −2. h.

d<Δτ2(z)>

dz
+ 2. (

d(β𝑚−β𝑛)

d𝜔
)
2

                                 (F.4) 
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Here, ℎ = ∫RK(u). e−∆βu 𝑑𝑢 ≈ 𝑆𝐾 (
∆β

2.𝜋
). h describes the ensemble-average ratio at 

which power is transferred between modes. The solution of the equation F.4 are obtained over 

the initial condition following < Δτ2(0) > =
d<Δτ2(0)>

dz
= 0, thus, we obtain the mean-square 

DGD (See equation F.5). 

 

< 𝛥𝜏2(𝑧) >= 𝐸[𝛥𝜏2] = (
𝜕∆β

𝜕𝜔
)
2

. [
1

2.ℎ2
. (𝑒−2.ℎ.𝑧 + 2. ℎ. 𝑧 − 1)]                           ( F.5a) 

< 𝛥𝜏2(𝑧) >= 𝐸[𝛥𝜏2] = (
d(β𝑚−β𝑛)

d𝜔
)
2

. [
1

2.ℎ2
. (𝑒−2.ℎ.𝑧 + 2. ℎ. 𝑧 − 1)]                  ( F.5b) 

 

To study the coupling regime, we can find the limit hz→0 for low-coupling or hz→∞ 

for strong-coupling. If z=L, we have: 

 

limℎ𝑧→0 𝐸[𝛥𝜏2(𝑧)] = (
𝜕∆β

𝜕𝜔
)
2

. 𝐿2 = (
d(β𝑚−β𝑛)

d𝜔
)
2

. 𝐿2                                 ( F.6a) 

limℎ𝑧→∞ 𝐸[𝛥𝜏2(𝑧)] = (
𝜕∆β

𝜕𝜔
)
2

.
𝐿

ℎ
  = (

d(β𝑚−β𝑛)

d𝜔
)
2

.
𝐿

ℎ
                                  ( F.6b) 

 

It should be noted that the mean square DGD in low-coupling looks like the equation 

3.51c. Here, DGD increases linearly. However, in strong-coupling DGD varies with the 

square root of the length and it varies inversely with h or power spectral density of curvature. 

Accordingly, there is a strong dependence on the fiber statistics. 

The coupling regime in PM’s will be relevant to understand the results of the next section. 
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NOTATIONS 

 

 Refractive Indices and Related quantities 

𝑛    Refractive index function 

𝑛𝑐𝑜𝑟𝑒    Core refractive index 

𝑛1    Maximum of the core refractive index 

𝑛2    Cladding refractive index 

𝑛0    Refractive index without perturbations 

𝑛𝑒     Equivalent refractive index 

𝑛𝑝     Perturbed refractive index 

𝑛𝑡𝑟𝑒𝑛𝑐ℎ   Trench refractive index  

𝑛𝑒𝑓𝑓    Effective refractive index  

Δ𝑛𝑒𝑓𝑓    Effective refractive-index differences 

𝑟    Radius parameter 

𝑎    Core radius 

𝛼    Power-law exponent 

∆    Relative refractive index difference 

𝑓(𝑟)    Shape of the index profile 

 

 Fields and related quantities 

�⃗�     Electric field 

�⃗⃗�     Magnetic field 

�⃗⃗�     Electric displacement field 

�⃗�     Magnetic induction 

𝛽    Propagation constant 

𝛽𝑚    Propagation constant of the guided mode 𝑚 

𝛽𝑜     Fundamental propagation constant 

𝛽2    Second order dispersion  

𝐷    Chromatic dispersion 

𝑣𝑔    Group velocity 

𝑘𝑜    Free space wavenumber 

𝑘𝑡    Transverse wavenumber of the bent fiber  
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𝑘𝑡𝑒    Transverse wavenumber of the equivalent fiber 

𝜔, 𝜆, 𝑡     Angular frequency, Wavelength, Time 

𝑗 , 𝜌    Free current density vector, Free charge density 

휀, 휀0, 휀𝑟 Permittivity, Vacuum permittivity, Relative permittivity 

𝜇0    Vacuum permeability 

𝐴𝑚
+      Amplitude of the progressive wave for the electric field 

𝐴𝑚
−      Amplitude of the regressive wave for the electric field 

𝐵𝑚
+     Amplitude of the progressive wave for the magnetic field 

𝐵𝑚
−      Amplitude of the regressive wave for the magnetic field 

𝑎𝑚     Amplitude of the mode m for the electric field 

𝑏𝑚     Amplitude of the mode m magnetic field 

 

 Fiber, Modes and related quantities 

𝐿    Fiber length 

Δ𝐿    Length of a fiber segment 

R    Bend radius 

𝜎1/𝑅     Standard deviation of the curvature 

𝜏    Group delay per unit length 

𝜎𝐺𝐷    Group delay standard deviation 

𝑁𝑚    Number of modes 

𝑈,𝑊    Modal parameters 

𝑉    Normalized frequency 

𝜐    Integer modal azimuthal number / angular quantization 

µ    Radial quantization 

 𝐽𝜐    Bessel functions of the first kind 

 𝐾𝜐    Modified Bessel functions of the second kind 

𝐹𝜐(𝑟, 𝜃)   Amplitude of the 𝜐 mode 

𝐿𝑞
𝑙      Laguerre polynomial of order l and q 

𝐻υ
(𝑖)

    Hermite polynomial of order i 

𝛼µ𝜐    Mode bend losses 

𝐾′𝑚𝑛    Coupling coefficient for the electric field 

𝑘′𝑚𝑛    Coupling coefficient for the magnetic field 
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 Matrix notations and related quantities 

[𝑩(𝜔)] Uncoupled propagation matrix: Propagations matrix of a degenerate mode 

group 

[𝑲]  Coupling coefficents between modes 

[𝒂(𝒛)]  Wave amplitude 

[𝛂]  Propagation losses 

[𝐌(𝛚)] Propagation matrix  

[𝐔(𝛚)] Lossless propagation matrix 

Φ1  Phase of the fundamental mode 

∆𝛼𝑁  Difference between the propagation constants of the fundamental mode and 

mode, N 

∆𝛽𝑁   Difference between the propagation constants of the fundamental mode and 

mode, N 

[𝐓(𝛚)] Group delay matrix 

[𝝉]  Delay per unit of length 

[𝐆(𝛚)] Group delay operator matrix 

[𝐈]  Indentity matrix 
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