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It took years of development and a whole new cosmology for people to accept the insights

of Galileo, Newton and others –– to really take in the idea that the Earth is not the center

of the universe. Similarly, the idea that “I” am not the center of the universe demands an

equally challenging —- even troubling –– paradigm shift.

Gregory Kramer in Insight Dialog, The Interpersonal Path to Freedom (2007).

Il a fallu des années de développement et une cosmologie entièrement nouvelle pour que les

idées de Galilée, de Newton et d’autres soient acceptées — pour vraiment assimiler l’idée

que la Terre n’est pas le centre de l’univers. De même, l’idée que “je” ne suis pas le centre

de l’univers exige un changement de paradigme tout aussi difficile — voire troublant.

Gregory Kramer dans Le dialogue conscient : le chemin interpersonnel vers la liberté

(2007), traduction personnelle.
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Résumé substanciel

L’étude de la méditation comme outil scientifique pour comprendre « l’inscription corporelle de

l’esprit » a été initialement proposée par le neuroscientifique Francisco Varela et ses collaborateurs

dans un ouvrage pionnier en 1991. Trente ans plus tard, un nombre croissant de preuves scientifiques

confirme que la pratique de la méditation peut avoir un impact bénéfique sur le corps et l’esprit.

Pourtant, et malgré des modèles physiologiques et psychologiques prometteurs, une compréhension

générale des mécanismes associés aux pratiques méditatives, ancrée dans les neurosciences, fait toujours

défaut. En parallèle, la caractérisation de la cognition humaine par la théorie du traitement prédictif

(predictive processing) et son implémentation cérébrale, laisse entrevoir une explication unifiée de

processus aussi divers que la perception, l’action, l’attention et l’apprentissage. Basée sur des principes

de statistiques Bayésiennes, cette théorie envisage le cerveau comme un « organe d’inférence » qui à la

fois prédit et contraint, de manière proactive, les sensations que l’organisme reçoit de son corps et du

monde extérieur avec pour impératif de maintenir les constantes vitales propres à chaque être vivant.

L’objectif principal de ce doctorat a été d’élucider certains des principes neuronaux et computationnels

de différentes pratiques méditatives en utilisant ce cadre théorique. Notre hypothèse générale est

que la régulation par la méditation de l’attention et des émotions, est associée à un ajustement des

mécanismes prédictifs du cerveau. Entre autres, les degrés de confiance dans la validité des prédictions

et des sensations seraient différemment altérés, aboutissant à des a priori cognitifs plus malléables

et adaptatifs. Cette transformation de la façon d’appréhender aussi bien l’expérience mentale que

le monde extérieur, pourrait expliquer les effets psychothérapeutiques démontrés de la méditation de

pleine conscience pour faire face à la rechute en dépression, à l’anxiété, aux douleurs chroniques ou

encore aux addictions.

Pour tester cette hypothèse, nous avons mené plusieurs études expérimentales. Dans un premier

projet (Etude 1) nous avons combiné l’électroencéphalographie (EEG) avec un paradigme de déviance

auditive permettant d’étudier la négativité de discordance (mismatch negativity, MMN ). Ce potentiel

électrique généré par le cortex cérébral peut-être observé lors de l’interruption d’une séquence de sons

similaires et donc prédictibles, par un son déviant générant alors une erreur de prédiction. Contraire-

ment à de précédents résultats, nous avons montré que ce corrélat cérébral du traitement prédictif

n’était pas affecté par deux styles de méditation différents (l’attention focalisée et la conscience ou-

verte) ni par leur degré de maîtrise (méditants experts ou novices). Pour comprendre ce résultat négatif,

nous avons ensuite commencé par analyser la condition contrôle, non méditative, par une approche de

modélisation (Etude 2). Nous avons comparé les principales hypothèses présentes dans la littérature

concernant le mécanisme génératif de la MMN, à savoir une adaptation neuronale différentielle et un

apprentissage Bayésien basé sur la théorie du traitement prédictif. En confrontant les prédictions issues
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de différents modèles simulant ces hypothèses avec nos données EEG, nous avons pu montrer que les

deux mécanismes supposés (adaptation et apprentissage Bayésien) sont nécessaires pour expliquer la

négativité de discordance (MMN). La modélisation des états de méditation sera poursuivie après le

travail doctoral.

En parallèle, nous avons adapté une expérience de recherche existante pour explorer l’effet de

la méditation sur les mécanismes prédictifs des dimensions sensorielles et affectives de la douleur.

Pour cela nous avons mesuré les variations dans sa perception, en termes d’intensité et de caractère

désagréable, selon les attentes induites par des indices visuels et leur interaction avec les à-priori cog-

nitifs individuels sur la douleur. Notre hypothèse de travail était que la sensibilité perceptive et les

qualités de non-jugement et non-réaction développées lors de la pratique méditative pouvaient influ-

encer les processus prédictifs automatiques à l’œuvre dans la perception douloureuse. Pour explorer

cette hypothèse, nous avons recruté des participants ayant une pratique préalable de méditation et

les avons soumis à l’expérience mentionnée ci-dessus (ainsi que de nombreuses autres non développées

ici) trois fois: avant, pendant et après une retraite de 10 jours de méditation de pleine conscience.

Une nouvelle fois, nous avons analysé les données recueillies en modélisant les mécanismes prédictifs

liés à l’expérience douloureuse. Dans un premier manuscrit sur la mesure initiale faîte avant la re-

traite de méditation (Etude 3), nous avons pu reproduire des travaux de modélisation existants sur

la composante sensorielle de la douleur, et les étendre pour intégrer sa composante affective. Nous

avons également identifié des corrélations intéressantes entre certains paramètres de notre modèle et

des questionnaires mesurant le catastrophisme à la douleur ou au contraire la prise de distance cogni-

tive, ainsi que l’expérience méditative des participants. En appliquant le même modèle aux mesures

effectuées pendant et après la retraite (Etude 4), nous avons pu montrer pour la première fois qu’une

retraite intensive de méditation peut réduire l’influence d’attentes induites expérimentalement sur la

perception sensorielle et affective de la douleur.

Dans l’ensemble, ce travail de thèse fournit certaines des premières découvertes directes de la

façon dont la méditation pourrait avoir un impact sur le traitement prédictif et, ce faisant offre un

éclairage mécanistique nouveau sur la manière dont les pratiques de méditation peuvent contribuer à

une régulation bénéfique de formes inadaptées ou pathologiques de perception et de cognition.

Mots clés : méditation, pleine conscience, retraite méditative, cognition incarnée, traitement pré-

dictif, codage prédictif, inférence Bayésienne, inférence perceptive, inférence active, électroencéphalo-

graphie, potentiels évoqués, négativité de discordance, MMN, douleur, modélisation Bayésienne, mod-

élisation computationnelle, défusion cognitive, catastrophisme douleur.
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Abstract

The idea of meditation as a scientific tool to understand the “embodied mind” was initially sug-

gested by neuroscientist Francisco Varela and his collaborators in a ground-breaking publication in

1991. Thirty years later, a growing amount of scientific evidence confirms that meditation can have

beneficial impacts on the body and mind. Despite encouraging physiological and psychological models,

a general understanding of the mechanisms at play during meditative practices, grounded in neuro-

sciences, is still lacking. Additionally, the comprehension of human cognition based on the predictive

processing theory, and its cerebral implementation, could offer a unifying explanation for processes

as diverse as perception, attention, learning, and action. Founded on Bayesian statistics, this theory

models the brain as an “inference organ” which simultaneously predicts and constrains, proactively, the

sensations the organism receives from both its own body and the outer world, with the main purpose

of maintaining itself in a viable state. The primary objective of this PhD was to elucidate, within this

theoretical framework, some of the neuronal and computational mechanisms of different meditative

practices. Our general hypothesis is that the regulation of attention and emotions by meditation is

associated with an adjustment of the brain’s predictive processes. The degrees of confidence in the va-

lidity of predictions and sensations, among other factors, would be differently altered, leading to more

malleable and adaptive cognitive priors. This transformation of the way of approaching mental expe-

rience as well as external influences, may explain the proven psychotherapeutic effects of mindfulness

meditation to cope with depressive relapse, anxiety, chronic pain or addictions.

Keywords: meditation, mindfulness, meditation retreat, predictive processing, predictive cod-

ing, Bayesian inference, perceptual inference, active inference, electroencephalography, event-related

potentials, mismatch negativity, pain, Bayesian modeling, computational modeling
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Preamble

The first part of this thesis will present the necessary theoretical background to understand and

critically apprehend our experimental work. In Chapter 1, I will first give an historical account of

meditation emergence and development (Section 1.1.1) and describe the transformation of mindfulness

meditation in the modern world (Section 1.1.2). We will then see how psychology, psychotherapy and

cognitive neurosciences got progressively interested into meditation in the last 50 years (1.2.1) and

the associated need for a scientific classification of contemplative practices (1.2.2). Primary scientific

findings regarding attentional (1.2.3) and emotional (1.2.4) regulation effects, as well as hindrances

arising from the scientific study of meditation (1.2.5) will be reviewed.

In Chapter 2, I will present the recently developed predictive processing theory of perception and

cognition. To do so I will first briefly describe Bayesian concepts (2.1.1) and the Free Energy Principle

from which it derives (2.1.2) and then get to the heart of the matter by detailing its hypothesized

neuronal implementation: predictive coding (2.1.3), as well as the empirical evidence supporting it so

far (2.1.4). We will then address the perceptual processes of interest for the current PhD: auditory

deviance detection (2.2.1) and pain perception (2.3.1), detailing for both the predictive coding (or

processing) mechanisms at play and how they may be modulated by attention for deviance detection

(2.2.2) and expectations or uncertainty for pain (2.3.2).

In a final introductory and methodological chapter (Chapter 3) I will try to bind together what we saw

previously by reviewing recent theoretical proposals of the interplay between meditation and predictive

processing (3.1.1) and drawing mechanistic hypotheses of how meditation may impact our perception

and cognition under this framework (3.1.2). In a second time I will cast more specific predictions on the

influence of contemplative practice on auditory deviance detection (3.2.1) and pain perception (3.2.2),

and present the experimental paradigms we used to test them. Finally, I will describe the primary

experimental project of this PhD: the LONGIMED study, a controlled and randomized longitudinal

investigation of the effects of an intensive 10-day mindfulness meditation retreat on diverse perceptive

and cognitive processes at the phenomenological, behavioral and neuronal levels (3.2.3).

In a second part I will present my experimental work with a first article published in second author on

the effect of meditation on auditory deviance detection as tested with the mismatch negativity (MMN,

4.1), and a second article submitted as first author on the computational mechanisms of the MMN

(4.2). I will then report the first results of the LONGIMED study through a third (draft) article as first

author on Bayesian models of pain perception using the baseline data from this study (4.3), followed

by preliminary longitudinal results of the effects of an intensive meditation retreat on pain (4.4).

In a third and last part I will discuss my experimental findings in regard to the existing literature,

address their limitations and envision potential perspectives arising from my research work.
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Part I

Theoretical background
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Chapter 1

Historical and scientific perspectives on

meditation
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1.1 Meditation(s): history and modern transformations

The point of mindfulness/awareness is not to disengage the mind from the phenomenal

world; it is to enable the mind to be fully present in the world. The goal is not to avoid

action but to be fully present in one’s action, so that one’s behavior becomes progressively

more responsive and aware.

Francisco Varela, Evan Thompson and Eleanor Rosch in

The Embodied Mind: Cognitive Science and Human Experience (1991)

As Varela, Thompson and Rosch pointed out in their ground-breaking work The Embodied Mind

[Varela et al., 1992], meditation is not about cutting oneself off from the rest of the world and “do

nothing” or stop any thoughts, emotions or sensations. These common misunderstandings still cling to

this concept describing millennia-old practices and conceal their spiritual and philosophical richness.

At the exact opposite of such misconceptions, and as we shall see throughout this doctoral thesis,

meditating is to open widely to the world and be fully present, here and now, to one’s body and

mind. It is not about blocking all mental activity or resting in a totally passive attitude but rather

about actively becoming aware of sensations, thoughts, emotions, fears, joys, desires or any other

conscious experience that may arise. In order to have a clearer and fact–based understanding of what

is meditation and what it is not, we will engage in this first section in a journey from its origins in

ancient India to its latest development in the modern world. First, we will show that there is not one

but many different types of meditations, by giving a brief historical account of the numerous spiritual

and philosophical traditions which developed mostly in East Asia and used so-called contemplative

practices. Most of these traditions perpetuated until today in the Eastern world, from which they

finally spread to the West during the last 70 years. The encounter between various meditative practices

and Western medicine and science gave rise to a secular technique which thrived to the point of almost

becoming a fad: mindfulness meditation. I will try to trace back the historical roots of mindfulness

in ancient traditions and describe how it was adapted to occidental clinical settings. As a conclusion

to this first introductory part I will discuss the caveats that mindfulness meditation is facing as a

side effect of its popularity, emphasizing the need for a careful and scientific inquiry of its effects and

potential benefits.
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1.1.1 A constellation of ancient spiritual and philosophical traditions

Historically meditation is often thought to be born with Buddhism and his spiritual teacher Siddhārtha

Gautama, also know as the historical Buddha, who presumably lived from 563 to 483 Before Common

Era (BCE). However the oldest traces of meditation can be found on clay seals crafted by an ancient

civilization of the Indus valley, the Harappan Civilization who thrived through 3500 to 1700 BCE.

One of those seals represents a deity sitting in a postulated yogic-like meditative posture (Figure 1.1).

If the interpretation of these relics is debated [Samuel, 2008], written evidence of the precedence

of yogic meditation over Buddhism can be found in the Early Upanishads, one of the principal Vedic

(pre-Hinduist) scriptures, approximately dated between the 10th and 6th century BCE [Olivelle, 1998].

Those texts present different yogic techniques such as pranayamas (breath control) or mantra repetition.

Besides we know from historians of Siddhārtha Gautama that he was first trained in meditation by

two yogis [Armstrong, 2004], indicating that contemplative practices were already cultivated before his

teachings.

Figure 1.1: Seal from Mohenjo-Daro representing a deity seated in yogic meditative posture.
Source: J.M. Kenoyer/Harappa.com, Courtesy, Dept. of Archeology and Museums, Govt. of Pakistan.

Yet, he was indeed the driving force in developing a truly formed meditation technique and most

importantly in disseminating it to lay people in North India at that time. By teaching meditation

not only to monks and nuns but also to lay people, he started the democratization of contemplative

practices which were before reserved to few ascetics. I would like to highlight the fact, often forgotten,

that if Buddhism can be classified as a religion, it is also and before all a spiritual, experiential and

philosophical tradition. It is clear from the transcriptions we have of his discourses, that Gautama

never encouraged any devoted cult to either himself or any gods, but instead promoted free, critical
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and renewed thinking [Armstrong, 2004].

After his death, divergences in early Buddhist schools concerning philosophical interpretations

and acceptance of precepts taught by the Buddha lead to a schism between two main schools: the

Sthaviravada and the Mahasanghikas, after the second Buddhist Council held during the 4th century

BCE. The Sthaviravada or Theravada in Pāli (“School of the Elders”) expanded during the 3rd century

BCE under the reign of the Indian emperor King Ashoka when it was established as the main Buddhist

doctrine in the Mauryan empire and spread throughout India and Sri Lanka [Conze, 2007]. The

main principles of Theravada meditation practices come from their version of the Tripit.aka (“Three

baskets”) Buddhist sacred scriptures : the Pali Canon. The Tripit.aka is the first written account

of the Buddha teachings, collected and codified during the fourth Buddhist Council around the 1st

century BCE, and is the basis of all major Buddhist schools. The particularity of the Theravada

tradition is to rely almost exclusively on these early scriptures for guidance of their practice, and to

reject any subsequent elaborations. As can be seen from Figure 1.2, it spread over South-East Asia

during the last two thousand years, and is now considered one of the three main Buddhist traditions,

predominant in Cambodia, Laos, Myanmar, Sri Lanka, and Thailand. The last two centuries saw a

revival of Theravada and its extension to the Western world through modern Buddhist movements.

For example the Vipassana movement started at the beginning of the 19th century in Myanmar gave

rise to the worldwide practice of Vipassana or Insight meditation, whereas Thailand saw the renewed

emergence of strict monastic life with the Thai Forest tradition [Conze, 2007].

Following the fourth century BCE schism, the Mahasanghikas school progressively gave rise to the

second main school of Buddhism: Mahayana (“The Great Vehicle”), which started to be established

under King Kanishka (2nd-1st centuries BCE) whose empire encompassed northern India and large

parts of Central Asia. It really became influential only later on, starting around the 5th century Com-

mon Era (CE) when it spread to China through the Silk Road, giving rise to Chan Buddhism, which

in turn laid the foundations of Thien in Vietnam, Seon in Korea and Zen in Japan. Like Theravadins,

Mahayanists relied on the Buddha’s direct teachings presented in the Tripitaka, but they also allowed

the developments of new sutras and philosophical treatises inspired by renowned meditation masters.

They notably impulsed a major transformation of the Buddhist concept of enlightenment. Whereas

the Theravada view of meditation was quite personal, with the aim of liberating oneself from suffering,

the Mahayana looked for their own liberation, only to help liberate all other sentient beings. Doing so

they opened up the previously secluded vision of meditation to include any day-to-day life situations.

A very deep and important treatise in the Mahayana doctrine is the Root Stanzas of the Middle Way

from Nagajurna, an Indian philosopher who lived from 150 to 250 CE. His work led to the foundation

of the Madhyamaka (Middle way) thinking school which was later embraced by Tibetan Buddhism

[Kalupahana, 1986]. The third main Buddhist school, Vajrayana (“Diamond Vehicle”), also known as
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Figure 1.2: Expansion of Buddhism from India in the 5th century BCE to the rest of Asia. Source: Gunawan
Kartapranata, CC-BY-SA-3.0 license.

Tantric Buddhism, emerged from Mahayana around the 5th century CE. Its adepts base their medita-

tion on Tantras scriptures, using techniques found in Mahayana but also new ones such as mantras or

visualizations (e.g. deity yoga), considered to provide a faster way toward enlightenment. This doctrine

was imported, preserved and developed in Tibet from the 7th century CE onward, and is now known

as Tibetan Buddhism [Conze, 2007]. It is also predominant in neighboring countries such as Mongolia,

Nepal, Bhutan and northern Indian States. The Tibetan diaspora following the Chinese invasion in

1959 led to the worldwide propagation of Tibetan Buddhism thanks to charismatic leaders such as the

14th Dalai Lama and other Tibetan teachers.

The three traditions of Theravada, Mahayana and Vajrayana are predominant in contemporary

Buddhism. However they are composed of many subschools and countless other Buddhist schools exist,
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each with their own particularities depending on historical, philosophical and sociological context.

Besides, if Buddhism cultivated the practice of meditation to an art of living, other spiritual and

philosophical traditions also used contemplative techniques for personal, religious or philosophical

flourishing. The most famous nowadays in the occidental world, although its modern practice diverged

greatly from its origin, is indubitably yoga. As we previously evoked, Hindu yoga practices and treatises

preceded the development of Buddhism and influenced later traditions such as tantric practices in

Vajrayana. In its original form, as described for example in the Yoga Sutras of Patanjali, yoga is

at the same time a philosophy, a moral doctrine, and a set of breathing practices, physical postures,

and concentration techniques aiming at the cessation of mental fluctuations [Bryant, 2015]. Another

tradition perpetuating some form of instructed meditation practices is Jainism, an Indian religion

sharing its cosmology with Hinduism and Buddhism.

While India was the cradle of many contemplative traditions, its close neighbor China also saw the

development of influential philosophical movements inclined to contemplation such as Confucianism and

Taoism, whose founding text the Tao Te Ching was written contemporary to the Buddha’s teachings

around the 6th century BCE by Laozi. In the same period, called by philosophy historians the Axial Age

[Jaspers, 1953] for its striking philosophical and spiritual turmoil throughout the world, the European

continent also witnessed the appearance of philosophical contemplation in Greece. Pythagoras is well-

known for his mathematical discoveries, yet he was also the founder of an ascetic school of thought

which later influenced Plato, Aristotle and other Greek philosophers, whose works set the basis for

western philosophy. Actually some scholars advanced that early Buddhism had a direct influence on

Greek philosophy through Pyrrho who travelled with Alexander the Great during his Asian conquest

up to India around 327-325 BCE [Beckwith, 2015]. Pyrrho was most likely exposed to Indian and

Buddhist philosophy there and later founded Pyrrhonism, the earliest school of Greek philosophical

skepticism. He notably created the concept of epoché, or “suspension of judgement”, later embraced

by Husserl in the 20th century CE to theorize his philosophical method for the study of conscious

experience: phenomenology, which still has tremendous influence on modern philosophy and cognitive

science [Husserl, 1931]. Finally for the sake of completeness, we may precise that the three main

monotheists religions also have their own contemplative practices, often referred to as “mysticism”. We

can quote for example “letter permutation” in Judaism, “divine light” contemplation in Christianity

and Sufi whirling in Islam.

Putting back meditation into its historical context clearly shows us the inadequacy of trying to

give a single and unitary definition of such a varied and distributed concept. Nevertheless contem-

plative practices, despite forming a broad constellation, also share some commonalities. First, and in

opposition to the naive understanding of meditation as a passive task, they all involve some form of

mental regulation and training, mainly in ways of redirecting one’s attention to specific external or
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internal objects such as sensations, emotions or thoughts. To do so a specific posture is often adopted,

facilitating stillness (or at least controlled movement) in order to calm the mind and the body, such as

sitting, kneeling or laying down. Finally, contemplative practices have the common goal to foster some

transformation in the way we apprehend ourselves, others and our world, be it in terms of personal

well-being, spiritual flourishing or existential meaning. This general definition is still vast and subject

to controversy, therefore when scientifically studying meditation it is important to define which kind

of meditation we are talking about. Thereafter I will describe in more detail a recently emerging col-

lection of meditation practices gathered under the umbrella term of “mindfulness”, which was largely

used in scientific and clinical research.

1.1.2 The mindfulness “boom”

The coming of Buddhism to the West may well prove to be the most important event in

the twentieth century.

Arnold Toynbee, author of A Study of History

Modern or secular mindfulness practices have a complex history embedded in the modernization of

traditional Buddhist contemplative practices and the growing interest of the West in “Eastern spiritu-

ality”. In response to British colonization in Burma (now Myanmar), Theravada Buddhist monks from

the late nineteenth century sought to revitalize traditional practices by developing new meditations

that avoided explicit religious content and thus were more accessible to lay people. Promoting the

direct practice of insight meditation (Vipassana), Ledi Sayadaw, Mahasi Sayadaw and others launched

the modern Vipassana movement which had a profound influence in the spread of Asian meditation

practices to the Western world [Braun, 2013]. The twentieth century also saw the spread of other tradi-

tions to the West, such as Zen and Tibetan Buddhism. This dissemination process was greatly helped

by charismatic spiritual teachers such as S.N. Goenka, Thich Nhat Hanh, Shunryu Suzuki or Chögyam

Trungpa who recognized early on the Western demand for spirituality, but also the crucial need to

accommodate traditional meditation practices to the Westerners’ way of life. Teachings, books, retreat

centers opening and the formation of Western teachers led to a most fertile ground for the spread of

meditation practices in Europe and America in the second half of the twentieth century.

A turning point was reached in the U.S. in the seventies, when Jon Kabata-Zinn, a medical doctor

with a PhD in molecular biology and a personal experience in yoga, Zen and Vipassana, set out to apply

the knowledge he gained through these practices to common illnesses. In 1979, Kabat-Zinn developed

at the University of Massachusetts Medical School, a 10-week clinical program initially dedicated to
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treat the psychological dimensions of chronic pain disorder, through the use of combined meditation

and yoga techniques from various traditions (mainly Theravada and Zen Buddhism, as well as con-

temporary Hatha yoga [Kabat-Zinn, 1982]). Importantly, Kabat-Zinn removed any religious terms

or cultural references to their Eastern origins in his instructions, emphasizing his program as secular

and scientifically plausible. The program was later shorten to 8-week and renamed Mindfulness-Based

Stress Reduction (MBSR) [Kabat-Zinn, 1991]. Subsequently, several studies supported its usefulness

in a large range of pathologies from depression to eating disorders, and in synergy with a renewed

spiritual interest, led to its global spread through the U.S. and later worldwide. If Kabat-Zinn’s defini-

tion of mindfulness as: “the awareness that arises through paying attention, on purpose, in the present

moment and non-judgmentally to the unfolding of experience moment by moment” [Kabat-Zinn, 1991],

is most known nowadays, semantic ambiguity concerning the historical use of the word and the pre-

cise concepts it conveys are still subject to debate among Buddhist scholars [Anālayo, 2019a, Bodhi,

2011, Dreyfus, 2011, Dunne, 2011a, Gethin, 2011]. Indeed, as remarked by some, the Pali term for

mindfulness, “sati”, originally meant memory or recollection. Others argue that the Buddha’s teach-

ings transform the use of the word, making it more aligned to Kabat-Zinn’s one, as illustrated by the

following extract from the Pali Canon:

And what, monks, is right mindfulness? Here, a monk dwells contemplating the body

in the body, ardent, clearly comprehending, mindful, having removed covetousness and

displeasure in regard to the world. He dwells contemplating feelings in feelings . . .

contemplating mind in mind . . . contemplating phenomena in phenomena, ardent,

clearly comprehending, mindful, having removed covetousness and displeasure in regard

to the world. This is called right mindfulness. [Bodhi, 2011]

The definition of mindfulness is an important step for its scientific study [Van Dam et al., 2018, Lutz

et al., 2015], as the term has been often associated with anything and everything in the scientific vul-

garization literature and the news media. Setting aside theoretical disagreement for the moment (but

we will come back to it later on, see Section 1.2.5), we can define mindfulness practices as encom-

passing qualities of attention and awareness, as well as discernment, acceptance and non-judgment,

within the present moment ([Van Dam et al., 2018, Bishop et al., 2004] but see [Dreyfus, 2011, Bodhi,

2011, Gethin, 2011] for critical perspectives on the non-judgmental and present centered aspects of

mindfulness). Importantly, most Buddhist scholars agree that despite the biases inherent to the use

of mindfulness meditation in a secular fashion uprooted from its traditional and cultural milieu, the

benefits it can bring to the entire society is very promising as long as it remains faithful to its initial

purpose of reducing human suffering [Anālayo, 2019b, Bodhi, 2011]. Doug Oman articulated well the

need for Western mindfulness teachers to shift from the traditional spiritual goal of “enlightenment”
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and alleviating suffering for all beings to a more proximate goal of developing mindfulness, in order to

facilitate the secular needs of individual well-being [Oman, 2021]. More critically, Walsh and Shapiro,

pioneers in meditation research, talk about this contemporary transformation of mindfulness as a “re-

visioning of the practices within an exclusively Western psychological and philosophical framework”

[Walsh and Shapiro, 2006]. Not honoring ancient spiritual traditions from which they emerged, such

“re-contextualization” (Ibid.) might prove dangerous for modern mindfulness itself.

Meditation techniques are often taken for granted, forgetting the fact that they were developed and

transmitted across centuries, resisting wars, schisms, cultural assimilation, thanks to dedicated prac-

titioners and masters who strove ultimately for liberation from suffering without concern for worldly

benefits. Remembering this historical debt and invaluable heritage sets a critical perspective on recent

developments of meditation as another profitable commodity. As a matter of fact, the twenty-first

century saw the exponential development of mindfulness meditation supports such as books, documen-

taries, podcasts, magazines, smartphone applications, etc... Some of these can be valuable and have

sprung from a genuine intention to help people in their quest for meaning, spirituality or well-being.

However, scholars noticed that mindfulness has also been appropriated by the modern capitalist econ-

omy [Wilson, 2014, Purser et al., 2016, Titmuss, 2016]. Wholesome initiatives do exist, for example

to make mindfulness widely accessible or improve the quality of work life, but purely profit oriented

businesses on mindfulness are not that rare anymore. Coaching services promise individual customers

to “boost” their attentional abilities and make them smarter. Online platforms sell “workplace mindful-

ness” programs to large companies as a “mental technology” to increase productivity and save healthcare

costs, behind the facade argument of reducing employee stress [Wilson, 2016]. Start-ups trade high-

tech products and software supposed to make their owners more aware and present to the moment,

while some famous brands qualify goods such as jewels, clothes and gadgets as “mindful”, apparently

unfazed by the absurdity of such assertion [Wilson, 2016]. This neoliberal development coined “Mc-

Mindfulness” or “corporate mindfulness” underwent severe criticism in the last decade [Purser et al.,

2016, Purser, 2018]. Although such misuses of mindfulness can seem anecdotal, they do influence the

current view of meditation in the general population and may contribute to foster harmful behaviors

which meditation actually aims to soothe. As Jeff Wilson wrote, the capitalistic uptake on mindfulness

contributes to a “[...] heightened competition around mindfulness: Because money can be made off

mindfulness, it invites competition and consumption [...]” [Wilson, 2016], values completely at odds

with genuine mindfulness teaching and the traditions it comes from. As was ironically coined by an

eminent Buddhist monk and scholar “mindfulness has become a handy buzzword that can be attached

at random to virtually any product or skill in order to invest it with a spiritual aura or increase its

market appeal: mindful romance, mindful birthing [...] Perhaps, just over the horizon, we will find

some entrepreneurs pushing mindful mindfulness.” [Bodhi, 2016] Another risk of the mindfulness hype
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is to confuse the means given by meditation practice (attentional training, stress reduction, emotional

regulation, etc. . . ) for an end in itself. When the fundamental aim to reduce one’s own and others’

suffering (in its broadest meaning) is forgotten, mindfulness can just become another tool to promote

the cultural and moral imperative for self-improvement [Payne, 2016, Bodhi, 2016]. At the opposite,

traditional teachings emphasize the impermanence of all things, particularly of our “Self”, to which

we cling even more when we are drawn into the compulsive business of self-improvement. Meditation

should be a remedy, not a catalyst, to the modern attentional overload.

To summarize, we saw how modern mindfulness meditation are rooted in both Eastern philosophical

traditions and Western medicine and science. This marriage of convenience planted the seeds for a

worldwide dissemination of meditation while thoroughly transforming it in the process, a step deemed

necessary to adapt it to Western sensibilities. The encounter with neoliberal economy also raised a new

challenge for those two thousand years old practices: how to resist the capitalist incentives, at odds

with the ethical and moral values presented in the traditional teachings ? As has always been the case

through their history, contemplative traditions need to adapt to a constantly changing world. Entering

a discussion with cognitive sciences, their alter ego to the study of the mind in the West, may well be

a promising avenue. Scientific investigation could indeed shed a new light on meditative practices and

teachings. Deeper comprehension of the mechanisms at stake during meditation might help refine the

techniques and adapt it to the fast transformations undergoing our societies. In the process, science

may confirm or contradict traditional claims about mind and body function. The Dalai Lama himself

said in the columns of the New York Times : “If science proves some belief of Buddhism wrong, then

Buddhism will have to change. In my view, science and Buddhism share a search for the truth and for

understanding reality. By learning from science about aspects of reality where its understanding may

be more advanced, I believe that Buddhism enriches its own worldview.” [Gyatso, 2005].

This is exactly what we are going to engage with now, describing the fruitful encounter between science

and Eastern spirituality, its main scientific results and the issues still unresolved.
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1.2 Scientific studies of contemplative practices

I believe it important to acknowledge that psychology and Buddhist meditation are

different knowledge systems with distinct epistemologies and dissimilar final aims.

Nevertheless, they converge on a keen interest in understanding the workings of the mind

with a view to alleviate unnecessary suffering.

Bhikkhu Analayo in [Anālayo, 2019b]

Research on meditation is a recent field drawing from domains as diverse as philosophy, psychology,

neurosciences and clinical psychology and psychiatry. Investigation of the potential benefits of medita-

tion in clinical settings was one of the starting research lines, as the mindfulness-based stress reduction

(MBSR) program created by Pr. Kabat-Zinn in the late seventies had to be validated empirically. It

was first tested on common troubles such as chronic pain, depression and anxiety with promising results

[Kabat-Zinn et al., 1985, Kabat-Zinn et al., 1986, Kabat-Zinn et al., 1992, Miller et al., 1995]. This

line of research is still active today, with the development of new programs such as Mindfulness-Based

Cognitive Therapy (MBCT) and others, gathered under the label Mindfulness-based Interventions

(Mindfulness-Based Intervention, [Shapero et al., 2018]). It was also applied to other pathologies and

different populations such as children, teenagers and aging people. The important number of studies

now published allow researchers to perform meta-analyses and draw conclusions on the usefulness of

meditation as a therapeutic tool. For example mindfulness meditation proves to be helpful in coping

with chronic pain [Ball et al., 2017, Hilton et al., 2017, Goldberg et al., 2018, Goldberg et al., 2022b];

depression in adolescents [Reangsing et al., 2021], students [González-Valero et al., 2019] and more

generally in the adult population [Goyal et al., 2014, Goldberg et al., 2018, Goldberg et al., 2022b];

and anxiety [González-Valero et al., 2019, Goyal et al., 2014, Liu et al., 2021]. Overall meditation

seems to improve psychological well-being, as we could expect from a technique aiming at reducing

suffering, but methodological flaws were also identified and will be reviewed in the last part of this

chapter.

The question that now arises is: how do contemplative practices produce their effects ? Indeed a

second major line of research is concerned with the mechanisms at work during meditation. How does

it train our attention and redirect it closer to our actual experience and away from anxious thoughts

? Does it rewire our habitual psychological and neuronal patterns to be able to deal with strong

emotions ? Can it change the way we perceive ourselves, others and our environment ? The study

of psychological and neuronal mechanisms underlying such transformations is a central theme in this

PhD. Thus, I will shortly present how science, and more specifically cognitive neurosciences, came to
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study meditation practitioners, and the current research efforts in this domain. A summary of major

and consistent results on the effects of meditation on attentional and emotional regulation will then

be given. Finally we will address the hindrances facing this recent but complex research field and how

they could be overcome.

1.2.1 A recent but rapidly growing research field

A complete and thorough history of meditation research is yet to be done as the field is very recent,

however Doug Oman chapter in The Oxford Handbook of Meditation gives a fair summarized account

of its first fifty years [Oman, 2021]. Scientific study of contemplative practices started in the late fifties

with preliminary experiments on expert Indian yogis [Bagchi and Wenger, 1957], followed by research

on Japanese Zen practitioners [Kasamatsu and Hirai, 1966]. They focused primarily on physiological

correlates of meditation states such as changes in blood pressure, respiration and brain rhythms. In

the seventies then started a series of research works on Transcendental Meditation (TM), a mantra

based meditation recently imported in the United States by Indian yogi Maharishi [Wallace, 1970].

Research on TM transformed the field, with the use of new methodologies, longitudinal, randomized

and controlled designs. However the proprietary embargo on details of the technique enforced by the

TM organization prevented it from having real scientific significance. Indeed if it showed changes

in physiological and electrophysiological measures and proved to be of clinical relevance for certain

pathologies its mechanisms of action were never studied in detail up to recently and therefore did

not bring much to the scientific understanding of processes at stake during contemplative practices.

Unfounded claims about some of TM’s effects and the close vicinity of researchers as well as research

participants to the TM organization added to the skepticism surrounding TM‘s research. In opposition

to the secluded view of meditation research endorsed by the TM organization, other Western scholars

defended an open and inclusive investigation of meditation.

Many contemplative practices were actively studied in laboratories throughout the world at that

time and empirical results were compiled by Shapiro and Walsh in an influential book [Shapiro and

Walsh, 1984]. Similarly to early works, results on physiological correlates such as breathing rate, heart

rate, skin conductance, but also electroencephalographic correlates, were presented. As acknowledged

by the community, they still lacked consistency and were mostly inconclusive, emphasizing the need for

more numerous and thorough studies of meditation. Yet pioneering works were carried out, for example

comparing meditation and sleep or other altered states of consciousness, or evaluating potential adverse

effects of meditation, a topic taken up by scientists only recently (see Section 1.2.5). Published at

the same time as Kabat-Zinn’s first studies on MBSR, the volume also presents preliminary results on

therapeutic outcomes of meditation practices, while wittily mentioning the methodological flaws facing
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such research —which we should come back to later on in this manuscript. Interestingly the editors,

as well as renowned psychologist Daniel Goleman and Buddhist scholar Daniel Brown, emphasized

the importance for scientific research of meditation to also look in classical texts of contemplative

traditions for phenomenological accounts and philosophical analyses of the practices at stake [Shapiro

and Walsh, 1984]. Indeed meditation can be seen as an experiential investigation of the body-mind

and its thousands years experience on the topic might inform researchers on crucial features of the

human psyché such as perception, attention, emotions or consciousness.

Chilean neuroscientist Francisco Varela saw this early on. Initially a biologist interested in cy-

bernetics and lifeforms organization [Maturana and Varela, 1980], he was also a major actor in the

development of a fully fleshed science of human cognition. Acquainted with Tibetan Buddhist medi-

tation practice and philosophy, he drew with collaborators Evan Thompson and Eleanor Rosch in The

Embodied Mind [Varela et al., 1992], what ought to be a visionary research program on human ex-

perience through the two-sided lens of cognitive science and Buddhist meditative psychology. Parallel

to this groundbreaking book, he initiated with others the first Mind and Life Dialogue between the

Dalai Lama and Western scientists and scholars in 1987. This meeting aimed to create a concrete con-

versation between Buddhist philosophy (initially from the angle of Tibetan Buddhism) and cognitive

science, both converging on a deep interest to understand the human mind. After the foundation of

the Mind and Life Institute in 1991 many similar conferences followed, exploring subjects as diverse

as sleep, altruism, emotions, attention and others. Renowned researchers but also monks and scholars

from other contemplative traditions played along to explore the functioning of minds and matter and

discuss major issues facing mankind at the dawn of a new millennium. It is actually the published

account of a Mind and Life Dialogue on destructive emotions [Goleman et al., 2008] which led the

author of the present manuscript to engage in meditation research. Beyond creating vocations, those

conferences allowed to set promising research lines for meditation science, as well as collaborations

between long-term meditation practitioners of different contemplative traditions and research labora-

tories. Meditation centers being quite recent in the West at the time, such “expert” meditators were

not that easy to find and recruit for scientific experiments. Converging efforts to draw research pol-

icymakers’ attention on the potential benefits of meditation as a therapeutic tool in clinic, but also

a scientific one to investigate the human mind, created a fertile ground for meditation research at

the start of the twenty-first century. The two last decades saw an exponential growth of meditation

related scientific publications per year with 131 articles (on mindfulness or meditation) in 2000 to 2978

in 2020, totaling in a 19,752 entries literature [Wang et al., 2021]. Summarizing such a large literature

is not our intent, we will instead focus on major cognitive and neural results and the conclusions they

enable us to formulate on the effects of contemplative practices on the brain.
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1.2.2 The need for a scientific classification of meditative practices

[...] meditation can usefully be framed both as a family of mental training techniques, and

as a progressive and iterative process of learning and self-inquiry: over time, and with

dedicated practice, it is alleged that meditation practitioners can learn to cultivate specific

mental faculties conducive to the alleviation of suffering, and to enduring improvements in

psychological well-being.

[King et al., 2019]

We saw in the first part of this chapter the large diversity of contemplative practices and there-

fore the need for detailed descriptions of the meditations at stake in research studies. After multiple

attempts [Lutz et al., 2007, Lutz et al., 2008a], researchers have come with an integrative framework

classifying most of the known meditations in three principal families based on their underlying cog-

nitive mechanisms [Dahl et al., 2015]. The first one was described as the “attentional” family and

regroup practices developing some kind of attentional regulation. Their common characteristic is to

train practitioners in stabilizing, sustaining and redirecting their attention. Doing so they are also hy-

pothesized to reinforce meta-awareness (or meta-cognition): the ability to be aware of one’s attentional

processes as well as other mental processes which might go on at the same moment such as perceiving,

feeling and thinking. Meta-awareness can be seen as the opposite of experiential or cognitive fusion,

where one might be aware of the objects of consciousness (sensations, feelings, thoughts) but not of

the mental processes sustaining them. The development of meta-awareness in the place of cognitive

fusion is thought to mediate some of the positive effects of mindfulness-based practices on well-being.

Further distinction can be made inside the attentional family depending on the direction and extent

of the practitioner’s attentional stance. A first group of practices entailing the cultivation of single-

pointed concentration on an object of experience was previously called FA meditation [Lutz et al.,

2008a]. It encompasses practices such as breath counting in Zen Buddhism, awareness of breathing

sensations in modern Vipassana, Shamatha or calm abiding with support from the Tibetan tradition,

and body awareness scanning common to many traditions. A second group, previously defined as

a single category, are Open Monitoring (OM) practices where the meditator also develops its meta-

awareness but without focusing on a specific object. OM meditations were further distinguished in the

newest classification [Dahl et al., 2015] into “object-oriented” open-monitoring and “subject-oriented”

or “awareness-oriented” open-monitoring. In “object-oriented” OM, as practiced in choiceless awareness

meditation from Tibetan Buddhism or Western mindfulness-based interventions, attention is directed

to any physical or mental object entering the flow of consciousness. Differently “awareness-oriented”

open-monitoring aims at attending to the “knowing quality of awareness itself”, like in Shamatha with-
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out support practice. In most Buddhist schools focused-attention practices are traditionally taught

first to stabilize and calm the mind, before more advanced open-monitoring practices, as well as “con-

structive” and “deconstructive” practices which we will describe now.

The second family is composed of “constructive” practices which also have a meta-awareness com-

ponent, however instead of just observing, they actively engage with emotions and thoughts. Doing

so they foster the development of wholesome qualities leading to improvement in personal but also

universal well-being. They have been further classified by Dahl et al. depending on their constructive

orientation towards: relation, values or perception. The first group of “relation orientation” is mostly

known for developing harmonious relationships with others by practicing for exemple loving-kindness

meditation. Such practice aims to cultivate compassion, “a feeling of concern for another person’s

suffering which is accompanied by the motivation to help” [Singer and Klimecki, 2014], associated with

positive emotions such as joy and love. The second group, “values orientation”, consists in changing

one habitual perspective to include ethical and moral considerations, for example by reflecting on one’s

own mortality or the universal fragility of life and the need for preserving it. Finally the third group of

“perception orientation” aims to nurture a shift in mental perspective up to our physical perception of

the world and ourselves. A common pattern of those three constructive practices groups is to develop

two important cognitive mechanisms: cognitive reappraisal and perspective taking. Through cognitive

reappraisal one implicitly learns to alter his natural responses to challenging situations such as fear,

anger or sadness, ultimately forming virtuous habits like patience and equanimity. Complementarily

the development of perspective taking qualities allows one to project oneself in a difficult context or in

someone else’s shoes, contributing to healthy interpersonal relationships and social emotions such as

altruism.

The third and last family regroups “deconstructive” practices which have similar objects of con-

templation as the previous ones (perception, emotions, thoughts) but instead of just observing them as

in the attentional family, or at the opposite altering them through constructive practices, they aim to

explore and dissect the objects of conscious experience. Deconstruction is mainly performed through

various forms of “self-inquiry” and aims to elicit insight, a new and sudden intuitive understanding about

the world (object-oriented insight), oneself (subject-oriented insight), or their relationship (non-dual-

oriented insight). “Object-oriented insight” practices can be directed toward any object appearing to

our consciousness, be it a visual image, a sound, a sensation, for example analyzing their impermanent

nature as in Vipassana Insight meditation or Tibetan analytical meditations. “Subject-oriented insight”

meditations focus on mental cognitive and affective processes, reflecting for exemple on the emergence

of thoughts and emotions and how we are usually fused with them. Finally “non-dual-oriented” prac-

tices aimed at putting into question habitual distinctions of self/other and subject/object, challenging

our natural view of our Self as independent and permanent, and of the mental content it produces
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as truth-value descriptions of reality. Mahamudra and Dzogchen practices are examples of non-dual

meditation in the Tibetan tradition, in Zen it is known as Shikantaza or “just sitting” meditation. De-

constructive meditations are often described as more advanced as the practitioner first needs to master

attentional meditation to stabilize his attention on the targeted object of experience before being able

to inquire about it.

Examples from all three families are described in the main table of Dahl et al. (2015) which we

reproduce here for the curious reader (Figure 1.3). This classification has proved very helpful to com-

pare different practices and has notably allow to distinguish the brain correlates of the most studied

ones (FA, OM, loving-kindness and compassion, see [Raffone et al., 2019] for a review). However, it

is important to keep in mind that contemplative practices should not be taken as totally independent

from each other, nor from the broader context in which they are embedded. As described previously

some practices from the attentional family are often taught in Buddhist traditions as a preliminary

training for more advanced constructive and deconstructive practices. However some attentional med-

itations are practiced by both beginners and experienced practitioners and it is not impossible to go

from an attentional practice to a constructive or deconstructive practice from the same tradition within

a unique meditation session, for example to calm the mind before starting a meditation on compassion

or on the nature of reality. More generally contemplative practices are rarely done in total isolation

from social and cultural contexts whose role in framing subjective experience should not be forgotten

when scientifically studying meditation.

Figure 1.3: Classification table of contemplative practices with examples, reproduced from [Dahl et al., 2015].

Modern mindfulness meditation presented in health care programs or secular contexts uses prac-

tices from all three families, as suggested by its mixed origin from multiple traditions. Mindfulness

practitioners are first proposed to accustom themselves with their conscious experience and its under-

lying attentional movements with exercises such as FA on the breath or body sensations. They are then

40



introduced to a more open practice akin to object-oriented OM where the full spectrum of experiences

is attended to in a non-judgmental way. Cognitive processes proper to the constructive family can also

be trained in some mindfulness-based interventions, for example by developing self-compassion and

loving-kindness for others. Finally elements of the deconstructive family are touched upon without

theorizing them too much, for example by noting the constantly changing nature of all sensations,

thoughts and emotions and the distance we can voluntarily take from them.

1.2.3 The effects of attentional training

The faculty of voluntarily bringing back a wandering attention, over and over again, is the

very root of judgment, character, and will. No one is compos sui [master of himself] if he

have it not (sic.). An education which should improve this faculty would be the education

par excellence. But it is easier to define this ideal than to give practical directions for

bringing it about.

William James in The Principles of Psychology (1890)

William James, pioneer in the development of modern psychology, understood in advance the

tremendous benefits that could carry a formal education of attention. As we saw in the previous part,

most contemplative traditions have for preliminary practices mental exercises aimed at controlling and

redirecting one’s attention. It is not a surprise then that an important part of the scientific research

on meditation was directed on such attentional practices and tested if they have lasting effects outside

of meditation, both at behavioral and neural levels. Anyone who has ever tried to do a session of

focused-attention meditation noticed how his or her mind kept switching between the object of focus

(the breath for example), and an uncountable number of physical and mental distractions (pain in

the legs, itching on the nose, noises outside the room, remembrance of last night dinner, planning of

tonight’s dinner, etc). Focused-attention training is all about recognizing that one’s mind wandered

away, letting go of the distraction and redirecting one’s attention to the breath. Researchers identified

core cognitive mechanisms and theoretical brain networks supporting the various mental processes at

stake during attentional practices [Lutz et al., 2008a, Malinowski, 2013, Raffone et al., 2019]. As can

be seen in Figure 1.4, focusing on a chosen object involves sustaining one’s attention, a process most

likely supported by the fronto-parietal alerting network. Mind-wandering toward distractive sensations,

emotions or thoughts is hypothesized to happen through the activity of the Default Mode Network

(DMN). Recognition of this wandering thanks to monitoring processes is thought to be endorsed by

multiple regions involved in other networks such as the dorsal Anterior Cingulate Cortex (ACC), the
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ventrolateral PreFrontal Cortex (vlPFC), and the anterior insula, which together constitute the salience

network. Attentional disengagement from the sources of distraction would be mediated by the execu-

tive network also composed of the ACC, as well as lateral ventral cortex, PreFrontal Cortex (PFC) and

basal ganglia. Finally the redirection of attention to the object of meditation involves the orienting

network (superior parietal cortex, temporal parietal junction, frontal eye fields and superior colliculus).

Figure 1.4: Cognitive processes involved in attentional meditative practices (A) and brain networks hypothe-
sized to support them (B). Details of the brain areas involved in each network are given in the main text of the
manuscript. Reproduced from [Malinowski, 2013].

Those processes and the involvement of brain regions supporting them may not be perfectly delin-

eated in time but instead most likely overlap and interact with each other. Additionally their timing

and sequence may vary with the practice at stake as well as meditation practitioners’ proficiency. As

suggested by Lutz et al. (2008), intensive training in FA should lead to longer periods of attentional

sustaining and reduced distractions, as well as less effort for monitoring, disengaging and reorienting the

attention to the object of focus. Furthermore, other attention-based practices, mainly object-oriented

and subject-oriented OM, may also rely on those networks to become aware of distractions, disengage

from them and return to an open attentional stance toward any experience that may arise. Experi-

mental studies of practitioners engaging in single-focus meditation partly confirmed the involvement

of hypothesized brain networks [Baron Short et al., 2010, Brefczynski-Lewis et al., 2007, Hasenkamp

et al., 2012, Manna et al., 2010]. Of particular interest, meditation experience was found to be corre-

lated with decreased activity in regions involved in monitoring, disengaging and re-orienting attention

[Hasenkamp et al., 2012, Manna et al., 2010]. These findings suggest that with accumulated hours of
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practice, and so of attentional training, practitioners may need less neural resources to perform those

attentional processes, and support the phenomenological descriptions of less effort in FA meditations

for experienced meditators. Another study of OM, FA and loving-kindness meditations in both novices

and expert practitioners revealed stronger deactivations of two cores regions of the DMN (Posterior

Cingulate Cortex – PCC and medial PreFrontal Cortex – mPFC) in the experts group [Brewer et al.,

2011], emphasizing the importance of increased meta-cognitive abilities in non focused practices.

A more recent randomized study on multiple cohorts of novices participants after 9-month of three

different mental training modules, extended these results [Valk et al., 2017]. Of particular interest

to us here is the significant increase in cortical thickness in lateral PFC and ACC, regions linked

to executive attention, after 9-month training in the “Presence” module which aimed at cultivating

present-moment attention and interoception in the same vein as classical mindfulness interventions.

The behavioral effects of this meditation module were confirmed, with a seemingly increase in executive

control of attention [Trautwein et al., 2020], but no correlation with cortical thickness increase in

expected brain regions were found [Valk et al., 2017]. Finally recent systematic reviews on the effect

of MBI on cognitive functions revealed strong evidence for a small effect on executive functions —

compared to inactive, but not active, comparators— [Cásedas et al., 2020, Whitfield et al., 2021] but

no difference in behavioral measures of attention [Whitfield et al., 2021]. The authors emphasized

a number of methodological issues in the included studies, notably the poor reliability and lack of

consistence of the different measures of attention used. However, a similar meta-analysis focusing

only on attentional performance in both experienced meditators practicing FA and OM meditations

and novices practitioners following FA/OM based MBI, found that executive and alerting networks of

attention were improved by meditation [Sumantry and Stewart, 2021].

We saw that, as suggested by theoretical predictions based on traditional texts [Dahl et al.,

2015, Lutz et al., 2008a], contemplative practices have an effect on brain regions involved in atten-

tional processes. Yet the exact neurocomputational mechanisms supporting the attentional effects of

meditation are still unknown. The current thesis tried to investigate such mechanisms through the

novel understanding of attention brought forth by predictive processing, a theory of brain functioning

based on Bayesian inference which we will be the topic of our second chapter. We will now turn toward

another important area of research in meditation, namely emotional regulation processes.

1.2.4 Emotional regulation: the example of pain

Mindfulness-based programs have been used in a variety of psycho-pathological conditions as a comple-

ment or alternative to traditional medical and psychological treatments. Recent meta-analyses suggest
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that they are effective interventions to treat depression, anxiety, pain, schizophrenia and weight/eating-

related disorders when evaluated alone ([Goldberg et al., 2018, Goldberg et al., 2022b], Figure 1.5).

They also show similar effect as active control interventions for anxiety, pain and weight/eating; and

even superiority for depression and addictions (Figure 1.5). When compared to evidence-based treat-

ments (e.g., cognitive behavioral therapy or antidepressant medication), MBI show superior efficacy

to prevent major depressive disorder relapse and were equivalent for general depression and anxiety

[Goldberg et al., 2018, Goldberg et al., 2022b]. Positive effects of MBI on these pathologies are thought

to be mediated, in part, by emotional regulation processes developed in meditative training [Chambers

et al., 2009, Wielgosz et al., 2019]. The current PhD project aimed to understand in particular the

mechanisms behind meditation-based pain regulation, through the lenses of Bayesian inference and

predictive processing. The following section will present some reminders of human pain processing in

the brain as well as the view of pain experience from the contemplative side, to finally describe the

scientific results obtained from the study of “meditative analgesia” in the last decade. Bayesian models

of pain perception will be further presented in the next chapter.

Figure 1.5: Effect sizes for mindfulness meditation-based interventions (MMBI) mediated improvement in
different therapeutic conditions compared to no treatment or active control interventions. Comparison to active
control treatments led to a reduction in the effect sizes of MMBI, which are still in the range of similar evidence
for anxiety and pain, and higher for depression and substance use. Adapted from [Wielgosz et al., 2019].

The scientific view of pain processing in the brain

The International Association for the Study of Pain (IASP) recently reviewed its definition of pain

as: “an unpleasant sensory and emotional experience associated with, or resembling that associated

with, actual or potential tissue damage.” [Raja et al., 2020] and adds as a side note: “that is influ-

enced to varying degrees by biological, psychological, and social factors”. More precisely, pain can be
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seen as the interaction between discriminative (where, how much, how long), affective (aversiveness,

warning signal) and evaluative (expectations) features [Melzack and Casey, 1968], which indeed can

be increased or decreased by one’s biology (pain sensitivity), psychological conditioning (mood, ex-

pectation, anticipation) and social context (sport, aggression, therapy, etc. . . ). Importantly the IASP

specifies that pain can be present without actual tissue damage or even sensation, as it is sufficient to

mentally induce a process mirroring such damage to provoke pain, as in the nocebo effect [Colloca and

Barsky, 2020]. Thus, tissue damage is not necessary, nor sufficient to experience pain as “[...] pain and

nociception are different phenomena. Pain cannot be inferred solely from activity in sensory neurons”

[Raja et al., 2020]. A characteristic exemplified by rare conditions like congenital analgesia [Nagasako

et al., 2003] or pain asymbolia [Gerrans, 2020] where the nociceptive system can be intact yet patients

do not feel pain.

Lesions and brain imaging studies in animals and humans provided important data to understand

how pain experience is formed in the brain. Recent theoretical works converged on the idea of multiple

overlapping and flexible networks sustaining painful experience and forming multiple “pain matrices”

([Garcia-Larrea and Peyron, 2013, Tracey and Mantyh, 2007, Garcia-Larrea et al., 2003, Schweinhardt

and Bushnell, 2010, Wager et al., 2013], Figure 1.6). A first-order “nociceptive matrix” composed pri-

marily of the posterior insula, secondary somatosensory cortex (SII) and the upper part of the sylvian

sulcus —-regions hardly distinguishable in functional Magnetic Resonance Imaging (fMRI) and thus

usually grouped under the term operculo-insular cortex–– as well as Mid-Cingulate Cortex (MCC) 1 ,

primary sensory cortex (SI) and Supplementary Motor Area (SMA), is necessary to produce a sensory

pain experience and generate pre-motor and orienting processes. However a fully fleshed conscious pain

experience requires the involvement of a second-order “attentional-perceptive matrix” comprising mid

and anterior insula, rostral Anterior Cingulate Cortex (rACC), dorsolateral PreFrontal Cortex (dlPFC)

and Posterior Parietal Cortex (PPC). These areas are thought to sustain attentional and evaluative

pain processes such as anticipation, learning and cognitive control [Garcia-Larrea and Peyron, 2013].

Two particular regions, anterior insula and rACC, are part of a “salience network” involved in the

detection of any salient stimuli, not only painful ones [Legrain et al., 2011]. The rACC in particular

has been associated more generally to negative affect (including pain), and may be a central node for

affective pain modulation due to its close connections to subcortical regions involved in negative stim-

uli processing (amygdala, nucleus accumbens). The combined activity of nociceptive and perceptual

matrices allows pre-conscious nociception to be transformed into a conscious pain experience [Garcia-

Larrea and Bastuji, 2018]. All regions of this extended pain matrix receive inputs from the thalamus,

1The distinction of the MCC as a separate brain region, and not as a dorsal/caudal/posterior part of the
ACC, was clearly made only recently [Stevens et al., 2011, Vogt, 2009, Vogt, 2016]), leading to numerous
previous articles in the literature talking generally about the ACC, as exemplified in Figure 1.6A. We will try
to disambiguate this problematic labelling when needed for the interpretation of neuroimagery results.
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an important node in the transmission of nociceptive signals from peripheral to cortical centers [Tracey

and Mantyh, 2007].

Finally, a third-order “affective-reappraisive” matrix influences pain experience depending on individ-

ual priors about pain (for example the degree of pain catastrophizing [Sullivan et al., 2001]), emotions

and expectations [Atlas and Wager, 2012]. This last network is formed of polymodal regions outside of

the classical pain matrix: the perigenual Anterior Cingulate Cortex (pgACC), OrbitoFrontal Cortex

(OFC), temporal pole, and anterolateral prefrontal areas. They are activated during cognitive mod-

ulation of pain such as placebo and nocebo effects, mood related pain modulation and self-regulation

of pain [Wiech et al., 2008], likely promoting a “reappraisal” or reinterpretation of painful stimuli.

These regions, and particularly the ventromedial prefrontal cortex (composed of pgACC and OFC) are

implicated in the top-down modulatory control of pain (through the periaqueductal gray and brain-

stem), therefore indirectly influencing primary and secondary matrices through inhibition of ascending

nociceptive signals [Bushnell et al., 2013].

Figure 1.6: A: Schematic representation of pain processing brain regions, adapted from [Schweinhardt and
Bushnell, 2010]. B: Updated “pain matrices” proposed by [Garcia-Larrea and Peyron, 2013] with first-order
nociceptive, second order attentional-perceptive and third order affective-reappraisive networks. S1: primary
somatosensory cortex, S2: secondary somatosensory cortex, ACC: anterior cingulate cortex, PFC: prefrontal
cortex, M1: primary motor cortex, SMA: supplementary motor area, PCC: posterior cingulate cortex, BG: basal
ganglia, HT: hypothalamus, Amyg: amygdala, PB: parabrachial nuclei, PAG: periaqueductal gray, DLPFC:
dorsolateral prefrontal cortex, ALPFC: anterolateral prefrontal cortex.
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Contemplative view of pain experience

Just as if they were to shoot a man with an arrow and, right afterward, were to shoot him

with another one, so that he would feel the pains of two arrows, in the same way, when

touched with a feeling of pain, the uninstructed run-of-the-mill person sorrows, grieves, and

laments, beats his breast, becomes distraught. So he feels two pains, physical and mental.

[...] Now, the well-instructed disciple of the noble ones, when touched with a feeling of

pain, does not sorrow, grieve, or lament, does not beat his breast or become distraught. So

he feels one pain: physical, but not mental.

Siddhārtha Gautama (Buddha) in The Arrow, Sallattha Sutta, SN 36 [Bhikkhu, 2003]

This well known discourse attributed to the historical Buddha, emphasizes the psychological view

of pain shared by most Buddhist traditions. Akin to scientific theories on pain, Buddhist philosophy

makes the distinction between physical and mental pain, and proposes that meditation may be able to

modulate the second, mental “arrow”, which can be thought of as combining attentional, affective and

cognitive dimensions of scientific models. The Arrow sutra goes on :

“As he [the well-instructed disciple] is touched by that painful feeling, he is not resistant.

No resistance-obsession with regard to that painful feeling obsesses him. Why is that?

Because the well-instructed disciple of the noble ones discerns an escape from painful

feeling aside from sensuality. [...] Sensing a feeling of pleasure, he senses it disjoined from

it. Sensing a feeling of pain, he senses it disjoined from it. Sensing a feeling of neither-

pleasure-nor-pain, he senses it disjoined from it. This is called a well-instructed disciple of

the noble ones disjoined from birth, aging, and death; from sorrows, lamentations, pains,

distresses, and despairs. He is disjoined, I tell you, from suffering and stress.” [Bhikkhu,

2003], SN 36

The key would be to just observe all sensations, including pain, without trying to resist them mentally or

judging them as positive or negative, as we are naturally inclined to do. This seemingly simple technique

of mere observation is taught in attentional practices such as OM where pain is seen as just another

sensory experience without further elaboration needed. Constructive and deconstructive practices can

also bring about further perspective taking about pain, mostly its affective component which we can

“disjoin” from by seeing it as a mere creation of our mental. Doing so, only the physical sensation, the

first arrow, remains and for the better as it is a necessary life-saving signal selected through evolution.

Kabat-Zinn clearly saw the therapeutic potential of such detached, yet aware, attitude toward pain
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when he tried to apply his newly created MBSR program — inspired from diverse contemplative

traditions — to chronic pain patients resistant to traditional medical care [Kabat-Zinn, 1982]. The

results were much convincing, with significant improvement in physical and psychological pain status

just after the intervention [Kabat-Zinn et al., 1985] but also up to four years later on more than two

hundred patients [Kabat-Zinn et al., 1986]. After over thirty years of clinical research on various

mindfulness-based interventions, chronic pain types and patients population, several meta-analyses

and reviews allow us to draw preliminary conclusions [Bawa et al., 2015, Hilton et al., 2017, Goldberg

et al., 2018, Goldberg et al., 2022b]. In summary, mindfulness interventions are more effective at

reducing chronic pain symptoms than passive interventions and show similar efficacy to active controls

(traditional evidence based-treatment or education/sport groups). Interestingly overall evidence seems

to be stronger for an effect on the affective dimension of pain (depression, mental health-related quality

of life) than its physical dimension. Nevertheless all reviews highlighted the need for higher quality

studies with rigorous control groups to draw definite conclusions on the efficacy of meditation for

chronic pain disorders.

Scientific insights on pain modulation by meditation

As we just saw, the clinical application of mindfulness meditation to relieve pain started in the early

1980s with Kabat-Zinn studies, yet a systemic scientific investigation of the mechanisms involved in

“meditative analgesia” is very recent [Grant, 2014]. Two lines of research can be delineated, one inter-

ested in the mechanisms behind pain relief in brief mindfulness-based training on naive participants,

and another focusing on the state and trait effects of intensive meditation practice, that can be mea-

sured in long-term meditation practitioners. Those parallel research programs are complementary and

necessary. A precise mechanistic account would more likely be available from the study of expert

meditators with a long experience of pain regulation. However generalization of those mechanisms to

short meditation training in a health-care context is not straightforward and needs to be investigated.

A first pilot study on 42 naive students trained either in mindfulness over six, one hour sessions, or

a control condition (guided visual imagery over two, one hour sessions) provided evidence that brief

mindfulness training on healthy subjects can increase pain tolerance but this effect was not linked to

a similar change in mindfulness skills [Kingston et al., 2007]. Numerous subsequent studies system-

atically identified a reduction in intensity or unpleasantness pain ratings —- associated respectively

to sensory and affective pain dimensions —- in participants following a short mindfulness intervention

compared to relaxation or bare attention to the breath [Zeidan et al., 2010, Zeidan et al., 2011], but

also placebo and sham-mindfulness conditions [Zeidan et al., 2015]. 2

2In this study, sham-mindfulness was an active control mirroring their meditation intervention in all psy-
chosocial factors (group, posture, breathing, eyes closed) except the core mindfulness component: mindful and
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Neuroimagery results from some of those studies identified several brain structures mediating

mindfulness-based pain regulation. Pain modulation during painful stimulation was associated with

significant deactivation in primary sensory cortices (SI) of the stimulated zone as well as in the tha-

lamus, two major regions in the sensory processing of pain. Greater activation of the pgACC, right

anterior insula and bilateral OFC were also observed ([Zeidan et al., 2011], see Figure 1.7 middle

panel). Modulation of affective and cognitive components of pain by meditation may be sustained by

these three regions part of second and third-order pain matrices. Interestingly these brain regions were

distinct to the ones implicated in placebo (activation of ACC, dlPFC and deactivation of posterior

insula and SII) and sham-mindfulness analgesia (activation of thalamus, putamen, PCC and SI and

deactivation of ACC and medial PFC) when tested in the same study [Zeidan et al., 2015]. Finally the

same research team showed that even in participants without any meditative training, their degree of

“dispositional” or trait mindfulness (assessed through the Freiburg Mindfulnes Inventory, FMI or the

Five Facets Mindfulness Questionnaire, FFMQ) could also explain lower intensity and unpleasantness

ratings and was associated with weaker activation and connectivity between nodes of the DMN (mPFC,

PCC, precuneus) ([Harrison et al., 2019, Zeidan et al., 2018], see Figure 1.7 upper panel).

Studies of long-term meditation practitioners revealed coherent but still different mechanisms at

stake during pain modulation by extensive training. The first study from Grant and Rainville [Grant

and Rainville, 2009] showed that experienced Zen practitioners (> 1000 hours of practice) had higher

thermal pain tolerance than age and gender-matched meditation naive controls, a difference most likely

mediated by higher scores in observing and non-reacting dimensions of the FFMQ. Long-term prac-

titioners also presented reduced intensity and unpleasantness ratings during concentrative (FA style)

and mindfulness (OM style) meditations, compared to controls. Finally these reductions in sensory

and affective pain were correlated to meditation experience (only significant for intensity ratings) and

breathing rate. Surprisingly these behavioral results, as well as previous ones on brief mindfulness

training, are at odds with subsequent studies showing significant differences only in unpleasantness

(not intensity) pain ratings between naive and expert subjects [Brown and Jones, 2010, Gard et al.,

2012, Lutz et al., 2013, Perlman et al., 2010]. The decoupling between sensory and affective components

of pain perception during and as a result from intensive mindfulness meditation recently received fur-

ther evidence from our research group. Expert practitioners in the Tibetan Buddhist tradition (more

than 10,000 hours practice) demonstrated higher reduction in pain unpleasantness but not intensity

during both open monitoring practice and a control condition, compared to novice subjects which also

exhibited a significant difference between meditation and control conditions [Zorn et al., 2020]. In a

subsequent study [Zorn et al., 2021], this sensory-affective uncoupling proved to be better explained

by an increase in cognitive defusion, the ability to distance oneself from negative experiences such as

non-judgmental attention to the breath, see [Zeidan et al., 2015] for more details.
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Figure 1.7: Partial summary of fMRI results on pain-related brain activation as a function of dispositional
mindfulness (upper panel), brief mindfulness training (middle panel) and extensive mindfulness training (lower
panel), adapted from [Zeidan et al., 2019]. Upper panel: higher trait mindfulness was associated with greater
deactivation of posterior cingulate cortex (PCC) and precuneus, and lower pain. Middle panel: pain relief
during heat stimulation caused higher activation of orbitofrontal cortex (OFC) and rostral anterior cingulate
cortex (rACC), but deactivation of the thalamus, for participants included in a short mindfulness program
compared to controls. Lower panel: Experienced Zen practitioners presented higher activation of thalamus
and deactivation of OFC and dorsolateral prefrontal cortex (dlPFC) compared to age-matched controls.

pain (measured with the Drexel Defusion Scale, DDS [Forman et al., 2012]), rather than a decrease in

pain catastrophizing, an exaggerated negative mental attitude expressed during pain or its anticipation

(as measured by the Pain Catastrophizing Scale, PCS [Sullivan et al., 1995]). In addition, a mixed-

methods study combining the results mentioned above with qualitative data obtained from in-depth

structured interviews with expert and novice participants on their relation to pain experience [Poletti

et al., 2021], revealed how long-term meditation practice can thoroughly change the experience of pain
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(for instance to encompass qualities of acceptance and compassion). Another very recent experimental

work on highly-experienced Theravada Buddhist practitioners (mean lifetime practice of 25.000 hours)

further advanced our understanding of the mental causation of pain [Nicolardi et al., 2022]. Basing

themselves on the Buddhist psychology model of the “two arrows” of pain, the authors could observed

(Granger) causal links between identification, aversion and pain experience, with a notable reduction

of both pain and its idenfitication during loving-kindness meditation (constructive family of practices).

Finally a study of the nociceptive reflex under fear conditioning, combining various meditative styles,

provided preliminary evidence that meditation does not block sensory pain processing at the spinal level

nor necessary pain related fear learning; but instead impedes its later influence on pain expectations,

anticipation and perception [Taylor et al., 2018].

Results from fMRI studies point toward various brain changes associated with pain modulation

by long term practice. Experienced Zen meditators were shown to present higher activation of pri-

mary nociceptive processing regions (thalamus, insula and dorsal ACC = anterior MCC in the new

nomenclature) and lower activation of areas involved in cognitive and affective modulation (dlPFC,

OFC) compared to matched controls ([Grant et al., 2011], see Figure 1.7 lower panel). Interestingly

the results correlated with their years of meditation and the decoupling between executive and pain

processing cortices (decreased dlPFC–ACC connectivity) was linked to higher pain tolerance. The

fact that participants did not actually engage in meditation during the fMRI recording supports the

claim that meditation-related changes in brain and behavior might extend to day-to-day life. Another

study on experienced Vipassana practitioners displayed similar results with increased activation of

right posterior insula and SII, and decreased activation of lateral PFC [Gard et al., 2012]. Finally

Lutz and collaborators [Lutz et al., 2013] studied highly experienced Tibetan Buddhist practitioners

(mean meditation experience of 27 000 hours) during thermal pain but also its preceding anticipatory

period. If core regions of the pain salience network (left anterior insula and aMCC) were more acti-

vated during pain stimuli in practitioners compared to meditation naive controls; these same regions

as well as the amygdala showed reduced activation during anticipation for experts participants only.

This deactivation of the left insula was correlated to lifetime meditation practice. Another report using

EEG presented a similar decreased activity in MCC during pain anticipation for expert meditators,

related to lower unpleasantness ratings and higher lifetime practice [Brown and Jones, 2010].

We saw in this section that the research on meditation and pain is already quite advanced with

numerous behavioral and brain imagery studies shedding light on the specific effects of meditation

on the affective component of pain and the probable brain regions mediating them. Yet, similarly

to the effect of meditation on attentional training, a clear understanding of the mechanisms at play

is still awaited for. Once again we suggest that predictive processing and Bayesian accounts of pain
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perception (which will be detailed later in chapter 2 and 3) might provide an integrated view of pain

modulation by meditation, from behavioral to neuronal levels. In this sense we implemented during

this PhD an experimental study testing some core predictions, and that will be presented in chapter

5. For now we will turn to the limitations facing the contemplative research field, some of them are

common to all psychological sciences and neurosciences and start to be addressed in a global way (e.g.,

lack of reproducibility). Others hindrances such as the difficulty to define “mindfulness” and how to

deal with adverse effects are proper to meditation research. Identifying these problems allowed us to

solve some of them during this PhD.

1.2.5 Hindrances facing contemplative research

We had a sense throughout this chapter, of how deeply the research work presented in this thesis

stands upon many shoulders, from early Buddhist practices and philosophy to its modern scholar

study, not forgetting recent clinical and fundamental investigation of the effects and mechanisms at

stake in contemplative practices. Yet we must also acknowledge that biases and flaws, inherent to

the study of a complex phenomenon, are present in the scientific literature on meditation. Indeed

contemplative sciences are not immune to a number of issues undermining scientific research in general:

false positives [Ioannidis, 2005], p-hacking [Head et al., 2015], HARKing (Hypothesizing After the

Results are Known) [Kerr, 1998] and reproducibility [Munafò et al., 2017, Begley and Ioannidis, 2015]

to cite only a few. Caveats proper to neurosciences such as double dipping in neuroimagery data analysis

[Kriegeskorte et al., 2009, Button, 2019] or low sample size [Button et al., 2013] can also affect results

from neuroscientific research on meditation and should be carefully prevented. Furthermore, borrowing

numerous methods and theoretical grounds from psychology, experimental works on meditation were

affected by recent critics concerning psychological science [Vul et al., 2009, Ferguson and Brannick,

2012, Kühberger et al., 2014, Makel et al., 2012, Simmons et al., 2011]. Yet they could also benefit from

the growing incentive for opened, registered and reproducible science lead by researchers in behavioral

and brain science [Nosek and Lakens, 2014, Nosek et al., 2018, Open Science Collaboration, 2015].

Hindrances specific to research on meditation exist and have been documented in several reviews

and meta-analyses [Davidson and Kaszniak, 2015, Coronado-Montoya et al., 2016, Goldberg et al.,

2017, Van Dam et al., 2018].

Reproducibility of meditation-related results and other methodological challenges

A first major hindrance, linked to the replication crisis, is the inconsistencies in many neurobehavioral

and clinical results on meditation. For example, as will be presented later in a replication article
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to which I participated [Fucci et al., 2021], the effects of meditation on well-studied Event Related

Potentials (ERPs) – such as the Mismatch Negativity (MMN) – or brain oscillations (e.g. alpha power

from 8 to 12 Hz) derived from Electroencephalography (EEG) recordings are still not clear despite an

important number of studies on these measures, and may be biased by previously mentioned caveats

such as false positives, lack of replication and low sample sizes. On the clinical side warnings were also

raised early on concerning the methodological rigor of the first scientific studies on mindfulness-based

interventions from 1980 to 2000’s [Baer, 2003, Bishop, 2002], and unfortunately are still relevant today

[Davidson and Kaszniak, 2015, Dimidjian and Segal, 2015, Farias et al., 2016, Goldberg et al., 2017].

Goldberg et al (2017) systematically investigated potential improvements of MBI studies in time over

the use of active control conditions, larger sample sizes, longer follow-up assessment, treatment fidelity

assessment, reporting of instructor training and intent-to-treat (ITT) analyses [Goldberg et al., 2017].

Astonishingly they found no significant evidence for improvements along any of these measures, but

changes were at least in the good direction. Exclusion of an early high-quality study [Teasdale et al.,

2000] allowed to see significant improvements over time in sample size, treatment fidelity assessment,

and reporting of ITT analyses. The authors acknowledged with others that the observed absence

of improvement might be due to the development of a large number of mindfulness-based programs

in the recent years, which are thus still in testing phase with less rigorous methodology [Dimidjian

and Segal, 2015]. Besides, if no improvements is seen overall, an important part of the studies now

published make use of an active control for example (40% in [Goldberg et al., 2017] sample), allowing

to draw firm conclusions based on meta-analyses restricted to these higher-quality studies [Goldberg

et al., 2018, Goldberg et al., 2022b]. However these same studies may also be biased to report positive

findings, an issue almost never raised by previous meta-analyses [Coronado-Montoya et al., 2016]. If it

does not prevent the field to aim for clinical gold standards, such flaws are not restricted to meditation

research but shared among many psychological and neuroscientific disciplines [Ferguson and Brannick,

2012, Luck and Gaspelin, 2017, Open Science Collaboration, 2015, Vul et al., 2009].

How to define “mindfulness” ?

A second important issue, particularly relevant to research on contemporary mindfulness meditation

is the difficulty to have a single and unified definition of “mindfulness” [Van Dam et al., 2018, Lutz

et al., 2015]. Indeed when looking at it more closely, one sees that “mindfulness” is actually a complex

construct, with three main meanings used in its scientific study. Firstly, it can be seen as a mental

trait, more or less present in each individual, practicing meditation or not, and which can be measured

through validated psychometric questionnaires —for example the Five Facets Mindfulness Question-

naire (FFMQ, [Baer et al., 2006]), the Mindfulness Attention Awareness Scale (MAAS, [Brown and
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Ryan, 2003]) or the Freiburg Mindfulness Inventory (FMI, [Walach et al., 2006]) to cite only a few.

Secondly it is often described as a “way of life” for cultivating well-being and alleviate suffering in

accordance with its Buddhist roots, a usage which had great influence in its initial development and

spread in the Western world [Lutz et al., 2015]. A third usage employs it in a more technical way to

describe a core cognitive process developed through meditation training and which rejoins Kabat–Zinn

initial description as paying attention in the present moment and non-judgmentally. Yet the interpre-

tation of this “mindfulness” capacity is the matter of an animated debate among Buddhist scholars

with multiple authors offering critical analyses of the non-judgmental and present–centered features of

traditional contemplative practices [Bodhi, 2011, Dreyfus, 2011, Dunne, 2015, Gethin, 2011]. The other

meanings of mindfulness cited above also have their own caveats, with trait measures inherently biased

by social–desirability responding or demand characteristics for instance, while describing mindfulness

as a way of life is not specific enough to allow the scientific study of precise mechanisms [Van Dam

et al., 2018, Lutz et al., 2015]. Overall disagreement concerning the definition of mindfulness as well

as diverging use of the word led to difficulties in integrating results from different studies, as well as

to compare experimental results from mindfulness-based program to more traditional contemplative

practices [Van Dam et al., 2018].

To overcome these obstacles, researchers recently proposed to approach mindfulness as “a variety

of cognitive processes embedded in a complex postural, aspirational, and motivational context that

contribute to states that resemble one another along well-defined phenomenological dimensions” [Lutz

et al., 2015]. The problem is then shifted from the definition of mindfulness to its decomposition into

multiple dimensions or features of meditative experience, whose dynamic variations could theoretically

be mapped to different practice styles as well as degrees of expertise. The initial proposal identified

three primary, “functional”, dimensions of formal meditation practice under mindfulness training (ob-

ject orientation, dereification and meta-awareness), as well as four secondary, “qualitative”, dimensions

( aperture, clarity, stability and effort). A detailed description and justification of these dimensions is

beyond the scope of the current thesis, yet we can briefly have a look at how these features allow to map

different meditative practices and expertise levels in a phenomenological space (Figure 1.8). Building

on the distinction made earlier between focused attention (FA) and open monitoring (OM) styles of

attentional meditative practices, we can now see concretely how they differ in this phenomenological

space. For example FA practice in novice practitioners (the usual starting practice in most contem-

plative traditions, for example FA on the breath or body sensations) is characterized by a high degree

of orientation toward an object and low meta-awareness and dereification, at least at the beginner

stage (see FA-nov in Figure 1.8). Further training in the practice may lead to an increase in those last

dimensions as well as in clarity of experience and stability, whereas the effort necessary to maintain

focus on a given object would diminish (FA-exp in Figure 1.8). Similarly one can describe OM prac-
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tices which are from the start less object-oriented than FA and may require less effort. Interestingly

the mapping of mental states relevant to psychopathology and which are thought to be alleviated

through MBI, reveals their discrepancy to mindfulness experience in this phenomenological space (see

mind-wandering, addictive craving and rumination in Figure 1.8).

Following the work from Lutz et al (2015), similar phenomenological approaches for the study of med-

itation have been derived with varying dimensions and applications [Van Dam et al., 2018, Vago and

Zeidan, 2016]. The main advantage of this paradigm shift is to provide a common theoretical frame-

work from which to cast mechanistic hypotheses about cognitive processes at stake during mindfulness

meditation. These hypotheses can then be tested by well-defined phenomenological scales given to

meditation practitioners (see [Abdoun et al., 2019, Poletti et al., 2021, Nave et al., 2021] for non-

exhaustive examples), and ideally correlated to physiological and neurophysiological markers to gain

a better understanding of meditation-related changes, rejoining the neurophenomenological research

program envisioned by Franciso Varela [Lutz and Thompson, 2003, Varela, 1996].

Figure 1.8: The phenomenological matrix of mindfulness presented by Lutz et al. (2015). The
primary dimensions (meta-awareness, object-orientation and dereification) are mapped on the orthogonal axes
of the matrix while secondary features (aperture, clarity, stability and effort) are described through different
symbols. The position of meditative practices (OM, FA) depending on degrees of expertise (Exp.: Experts,
Nov.: Novices) within the phenomenological space can be visualized, and compared to typical mental states
potentially at stake in some psychopathologies. Reproduced from [Lutz et al., 2015].

Adverse effects in meditation practices

A last major hindrance facing contemplative research is adverse effects (AEs) of meditation, or rather

their lack of systematic reporting and prevention in MBI research trials. Adverse effects or events
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can be any harmful effect resulting from an intervention or treatment, they are qualified of “serious”

when their occurrence threatens the life or function of a participant [Ioannidis et al., 2004]. Such

effects are rare but still expected in any behavioral intervention, furthermore on clinical populations.

Meditation interventions are no exception and adverse effects have actually been reported early on

in a seminal review [Shapiro, 1982], a retrospective study on transcendental meditation [Otis, 1984],

and in a preliminary prospective study in long-term meditators [Shapiro, 1992]; on top of being well-

documented in Buddhist texts [Van Dam et al., 2018]. These unwanted and potentially harming effects

are not a problem in themselves if they are known, prevented, anticipated and taken care for. At the

opposite if they are silenced and not skillfully investigated, they could put at risk vulnerable patients

with ongoing or previous psychiatric conditions. Exclusion criteria guidelines for participating to a

MBI (e.g. substance dependence, suicidality, psychosis, severe depression, severe social anxiety, etc)

are provided by MBSR and MBCT programs [Kuyken et al., 2012, Santorelli et al., 2017] —the two

more prevalent and well-tested MBIs— but without official endorsement by national health agencies

they may not be well followed. Medical organizations indeed do not provide clear guidelines concerning

the exclusion of at-risk patients from MBI: the American Psychiatric Association identifies only few

meditation-induced clinical problems in its Diagnostic and Statistical Manual of Mental Disorders

[American Psychiatric Association et al., 2013]; and the American National Institutes of Health simply

states that “meditation could cause or worsen certain psychiatric problems” and advises patients to

check with their doctor.

Fortunately recent research efforts were made to identify and understand adverse effects caused by

meditation practice. The extensive review from Baer and collaborators [Baer et al., 2019] provides an

integrated view on the topic. A first alarming analysis is that despite the fact that most Randomized

Controlled Trials (RCTs) on MBI need ethical approval from human research committees asking for

adverse effects monitoring, their actual reporting is very variable between studies, with the largest

meta-analyses on respectively 47 and 231 studies showing that only 19 and 16% of them reported data

on AEs [Goyal et al., 2014, Wong et al., 2018]. The prevalence of adverse effects when reported was

also quite variable, with 0 and 1% of AEs in the largest meta-analyses cited above, up to 10% for

a meta-analysis of MBIs for PTSD patients [Banks et al., 2015], with previous psychiatric condition

potentially explaining such a high rate. Overall these reported AEs were not qualified as serious and

were not more common than in control groups not receiving a meditation intervention [Baer et al.,

2019]. Yet these results should be taken cautiously, first because of the poor representativeness of AEs

reporting studies in regards to all MBI trials (between 16 and 19%). Second second many factors could

impede the veridical report of these AEs, such as not being well-defined for meditation practice or

not being reported due to auto-censorship from participant arising from social desirability, combined

with a positively biased view of mindfulness. Indeed when prospectively investigated through online
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surveys to experienced meditators from diverse traditions, AEs prevalence revealed to be quite higher,

ranging from 4 to 63% [Baer et al., 2019].

More recently two online surveys with very high samples (more than 400 and 1000 participants

respectively) found prevalence of meditation-related AEs or “unpleasant experiences” in respectively

32 and 25% of regular meditation practitioners [Goldberg et al., 2022a, Schlosser et al., 2019]. Careful

scrutiny is again needed to not draw hasty pessimistic conclusions from these results, for example

that meditation practice can be “harmful” in one quarter of people and thus should be avoided. As

highlighted in previously quoted articles as well as in Baer et al. (2019), adverse or unpleasant ex-

periences are documented in traditional contemplative practices and seen as inherent to the training

they propose to ultimately foster well-being, equanimity and relief from suffering. However, it is worth

emphasizing that just because an experience is unpleasant does not mean it is necessarily harmful.

A simplistic analogy can be drawn with physical exercise where one’s muscles ache yet we still do it

because we trust it is good for our health in the long run. But a trade-off between costs and benefits

has to be found, exercising too much at once or in a maladaptive way, may indeed cause injury and

be harmful. Similarly we can imagine that an appropriate and skill–full “dosing” of meditation could

be defined, which optimizes the benefits/costs balance depending on individual factors. It is actually

what meditation instructors often do intuitively, adapting and shaping their teachings to their audi-

ence. Obviously further scientific understanding of such “dosage” and quality effects is not an easy

task, as meditative experiences are embedded in a personal, social and sometimes religious contexts.

Multiple theoretical works started to embrace this issue [Baer et al., 2019, Compson, 2018, Lindahl

et al., 2019], questioning for instance how to make the difference between relevant psychopathological

AEs and expected, sound, contemplative development.

In this respect a recent study offered interesting insights by thoroughly investigating through quali-

tative interviews meditation-related experiences, and more particularly “challenging” ones, in a sample

of 60 Buddhist practitioners equally coming from Theravada, Zen and Tibetan traditions and with

varied type of practices [Lindahl et al., 2017]. Of importance 60% of these participants were medi-

tation teachers and 40% of them had more than 10.000 hours of lifetime meditation, stressing their

particular experiential knowledge of these experiences. Their database was completed by interviews of

32 “experts” (11 of whom were also interviewed as practitioners) describing their experience as medita-

tion teachers when their students had these kind of experiences and how they managed it. They could

identify 59 different meditation-related experiences gathered in seven domains (cognitive, perceptual,

affective, somatic, conative, sense of self, and social) as well as their valence, severity, duration, and the

practitioners/experts’ responses to it. Overall they found that very few experiences were unanimously

described as adverse, suggesting that such adversity is highly dependent on the complex interaction of

multiple factors [Lindahl et al., 2017]. These influencing factors were further investigated within the
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interviews with practitioners and experts. In summary, this pioneering qualitative study provides an

example of the possibility to seize and disentangle adverse effects in meditation practices, and offer

some leads for potential remedies. Inspired by their work, we assessed meditation–related uncom-

mon experiences during our investigation of an intensive 10-day mindfulness meditation retreat. The

important role of contemplative research in the future would be to acknowledge the potentiality of

these unpleasant meditation-related experiences, and to carefully report and study them in order to

better know when and how adverse effects can occur, with the ultimate goal of not exposing at-risk

individuals, or adapting the practice to them.

Resonating with the justified criticisms developed above on contemplative research we strove to

implement some of the proposed solutions in our experimental work. For instance, control groups

were systematically used, group assignment was randomized when applicable and sample sizes were

raised to high limits in the field. Adverse events, which had a non-null probability to occur in our

study of a 10-day meditation retreat, were carefully assessed. We additionally tried to follow the

scientific shift for an open and reproducible science by making our data and analysis code available

online, moving away from frequentist statistical analysis toward Bayesian statistics and in the case

of our second study, preregistering its analysis online. These methodological considerations will be

described in more details in our third chapter. Importantly we also based our experimental work

and hypotheses on theoretical models such as the one proposed by Lutz et al. (2015) as well as novel

understandings of brain functioning within a Bayesian framework. We will now describe this framework

and its implementation in the brain as predictive coding which was a keystone of this doctoral project.
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Chapter 2

Perception as hierarchical Bayesian

inference in the brain

[...] organism and environment enfold into each other and unfold from one another in the

fundamental circuitry that is life itself.

Francisco Varela, Evan Thompson and Eleanor Rosch in

The Embodied Mind: Cognitive Science and Human Experience (1991)
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2.1 A Bayesian framework for perception, learning, action

and much more

The idea that perception by living organisms results from a process of casting inferences about the

causes of sensations can be traced back to Helmholtz some 150 years ago [Kahl, 1971]. This avant-

garde intuition recently led to the formalization of perception and learning as processes of hierarchical

inference in the brain, under the predictive coding or processing framework [Friston, 2003, Friston, 2005,

Kiebel et al., 2009]. Friston and colleagues further extended the explanatory scope of the framework

(termed “active inference” in its latest incarnation) to include action, planning and decision-making

[Brown et al., 2013, Friston et al., 2010a, Friston et al., 2011], interoception, emotions and the sense of

Self [Allen et al., 2019, Barrett and Simmons, 2015, Limanowski, 2017, Seth et al., 2012, Seth, 2013], up

to consciousness [Friston, 2018a, Rudrauf et al., 2017, Williford et al., 2018], to cite only a few domains.

In fact, it has been proposed that these various body-brain processes — but also life itself, as well as its

evolution — could be usefully examined through the lenses of a single organizing notion, namely the

Free-Energy Principle (FEP) [Friston et al., 2006, Friston and Stephan, 2007, Friston, 2009, Friston,

2010, Friston, 2013, Kirchhoff et al., 2018, Ramstead et al., 2018]. In the forthcoming section we will

explain in more details the FEP and its hypothesized implementation in the brain. To do so, we will

first introduce some necessary concepts such as the Bayes’ rule and its corollary, Bayesian inference,

which play a central role in upcoming theoretical descriptions. We will also illustrate the Bayesian

brain hypothesis [Pouget et al., 2013], which was contemporary to predictive coding formulations, and

offers a parallel proposal on how the brain may deal with uncertainty in its environment.

2.1.1 Bayes’ rule, Bayesian inference and the Bayesian brain hypoth-

esis

Bayes’ rule, named from English mathematician Thomas Bayes (1701-1761), is central to modern

Bayesian statistics and has had tremendous influence in many scientific fields. It derives from the

mathematical expression of the joint probability p(A,B) (or p(A∩B)) of observing two events, A and

B at the same time :

p(A,B) = p(A|B)p(B) (2.1)

where p(A|B) denotes the conditional probability of observing A knowing that B occurred and p(B)

denotes the probability of observing B regardless of whether A occurred or not.
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As p(A,B) depends symmetrically on A and B, Equation 2.1 can be rewritten by marginalizing

on A :

p(A,B) = p(B|A)p(A) (2.2)

Combining the two above equations one can obtain the Bayes’ rule:

p(A|B) =
p(B|A)p(A)

p(B)
(2.3)

Next, we can define Bayesian inference as an “informed guess” about unknown causes from observ-

able consequences. Importantly, Bayes’ rule defined on discrete events A and B can be extended to

random variables defined by probability densities (e.g. Gaussian densities), and can thus be generally

employed to model the process with which sentient beings acquire knowledge about the world (Fig-

ure 2.1). If we accept the axiom that we can only build and update our beliefs about the (hidden)

states of the world through our sensations, Bayes’ inference describes the process by which pre-existing

beliefs about the state of the world are updated every time we gather novel sensory evidence [Smith

et al., 2021]. Pre-existing beliefs are represented by what is called a prior density that, in the Gaussian

case, can be completely described by its sufficient statistics of mean and variance (which are then re-

ferred to as prior parameters). Beliefs about how worldly causes generate observable consequences are

represented by a likelihood density, which express the probability of gathering the actual observation

depending on the various possible worldly causes. Bayes’ rule can then be viewed as combining prior

and likelihood densities to compute an updated belief about the world (a posterior density) in the face

of new evidence [Smith et al., 2021]. The posterior belief or knowledge about unknown causes θ given

observations y can be described with the Bayes’ rule as follows:

p(θ|y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y|θ)

prior︷︸︸︷
p(θ)

p(y)︸︷︷︸
evidence

(2.4)

Likelihood and prior together represent the model of the world, i.e., the joint probability of causes

and evidence. The model evidence p(y) is a constant obtained by marginalizing p(y|θ) over all possible θ

values (and is thus also known as marginal likelihood), which is necessary to make the posterior a proper

density (i.e.,integrating to unity). Bayes’ rule can also be graphically represented by the likelihood,

prior and posterior probability distributions over θ, as in Figure 2.1, which is useful to illustrate the

role of uncertainty, or inversely precision, of information. A lack of reliable knowledge about the world

is represented by a prior distribution with a large variance (low precision), corresponding to a low
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confidence about prior beliefs. Conversely, if prior knowledge is deemed precise and trustworthy, this

translates into a “sharp” prior distribution. Similarly, if observations from the world are considered

noisy and unreliable, the likelihood distribution would be characterized by a “flatter” shape (large

variance). Crucially, the precision of prior and likelihood distributions determine their respective

weights during Bayesian inference according to Bayes’ rule, and thus the outcome of the posterior

[Smith et al., 2021]. In other words, the posterior can be more or less informed by the prior or the

likelihood depending on their respective precision. For example, in the left panel of Figure 2.1, the

prior has lower variance (higher precision) than the likelihood and the posterior is consequently “pulled”

closer to the prior. The posterior is also “sharper” (more precise) than both the prior and likelihood,

indicating an improved knowledge about the world. Conversely, in the right panel of Figure 2.1, the

likelihood distribution is more precise than the prior, and the greater confidence afforded to it “attracts”

the posterior towards it.

Figure 2.1: Schematic representation of Bayesian inference. Prior, likelihood and posterior are repre-
sented as normal distributions over unknown causes θ with given means and variances. (Left) When the prior
has a lower variance (or higher precision) than the likelihood, the posterior is pulled towards it. (Right) In
the opposite case, when the likelihood has higher precision than the prior, the posterior becomes more strongly
informed by the likelihood.

The Bayesian brain hypothesis proposes that our brain actually performs approximated Bayesian

inference and learning for a number of cerebral functions, from perception to cognition [Knill and

Pouget, 2004]. Indeed our only link to events in the external world (i.e. unknown causes) is through

sensory inputs (i.e. observations), and is thus constrained by our body and brain structures. Impor-

tantly, to disambiguate between similar or noisy percepts we can rely on previous knowledge accrued

through past interactions with the world (i.e. priors), which in turn can bias our perception, as illus-

trated by perceptual illusions. Such process seems to approximate Bayes’ rule: p(causes|sensations) ≈
p(sensations|causes)p(causes). Notably, the need to deal with uncertainty accommodated by the prob-

abilistic nature of the Bayesian brain hypothesis also arises from the presence of internal noise proper

to sensory transduction and neuronal communication.
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Knill and Pouget developed the notion of the Bayesian brain in an influential review based on nu-

merous previous works [Knill and Pouget, 2004, Lee and Mumford, 2003]. According to their proposal,

the brain accounts for different sources of uncertainty by encoding information in the form of proba-

bility distributions. Based on computational simulations, they claimed that such encoding could be

implemented at the level of neuronal populations, although unequivocal empirical proofs of neuronal

probabilistic processing are still lacking [Pouget et al., 2013]. At the cognitive level, multiple lines

of evidence seem to validate the hypothesis that human observers behave in a (near) Bayes-optimal

manner, not in the sense that their behavior is perfect or ideal — we all intuitively know that this is not

the case — but because it conforms to the integration of prior knowledge and current evidence while

properly accounting for uncertainty [Knill and Pouget, 2004]. At the perceptual level, for instance,

human subjects integrate sensory cues from multiple sources (both within and across sensory modal-

ities) in a Bayesian way depending on their respective uncertainty [Battaglia et al., 2003, Ernst and

Banks, 2002, Körding and Wolpert, 2004, Knill and Saunders, 2003], potentially explaining bimodal

illusory effects such as ventriloquism [Alais and Burr, 2004]. Moreover, Bayesian inference seems also

to take place in higher-order brain functions, such as decision-making or language learning [Behrens

et al., 2007, Tenenbaum et al., 2011].

2.1.2 The Free-Energy Principle

The Free-Energy Principle (FEP), developed by Karl Friston and colleagues, intends to describe how

self-organizing systems (such as the brain, but also bacteria and social networks) are able to temporarily

shield themselves from the tendency to disorder prescribed by the second law of thermodynamics by

minimizing an upper bound on statistical surprise called free-energy [Friston et al., 2006, Friston,

2009, Friston, 2010], in agreement with earlier autopoietic accounts of biological organization [Maturana

and Varela, 1980]. Statistical surprise, also known as “self-information” or “Shannon surprise”, is a

measure of the unexpectedness of an outcome u given a statistical model of the world m. It is defined

as the negative log-probability of this outcome: − log p(u|m) [Shannon, 1948] and is close to 0 when

the outcome is expected or not surprising (p(u|m) ≈ 1), and tends to infinity when the outcome is

totally unexpected and thus very surprising (p(u|m) ≈ 0). As expressed mathematically in [Friston,

2009], to minimize its entropy (disorder), an organism has to suppress surprise over time and so avoid

surprising events according to its phenotype (e.g., being out of water is surprising for a fish but fully

expected for a terrestrial animal). While tracking probabilities over all potential (hidden) states of

the world is not biologically or computationally plausible, living organisms can minimize free-energy

which is always greater than surprise and can be computed [Friston, 2009]. Interestingly, Friston

hypothesized that free energy minimization can happen through two mechanisms: perception and
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action. In most multicellular animals (at the exception of some marine invertebrate such as sponges)

these biological processes are governed by a nervous system. Indeed, by sampling statistical regularities

of its environment through sensory inputs processed by the brain, an organism can update “its” model

of the world. This is actually Bayesian inference and learning supported by sensory perception and

one can sees how the FEP formulation subsumes the Bayesian brain hypothesis. Importantly and in

convergence with enactivist formulations of embodied cognition [Varela et al., 1992], this view departs

from classical cognitivist accounts by stating that the brain —and more generally its extension in

the body as the nervous system— do not have a model of the world per se, that represents objects

“out there”, but rather is itself this model, shaped by a life-long interaction with a co-constructed

world, what enactivists named its “milieu” [Varela et al., 1992]. Such co-arising model can even be

extended to the past-history of interactions between the ever-changing ecological environment and the

adapting organism, namely phylogenetic selection, which was progressively hard-coded in the genome

of the organism and which now defines its body —and more particularly brain— organization and the

way it perceives the current environment. Free-energy minimization can then be seen as a long-run

evolutionary process where accurately predicting and avoiding events of high surprise (e.g. a predator

attack or other threats) would lead to a specie survival, and defaulting to do so, its extinction. Making

the link with the Bayesian Brain hypothesis, in this scheme priors about expected states of the world

—but also physiological states of the organism— can be innate when selected by natural selection,

and/or acquired through learning during the organism life-time.

Coming back to free-energy minimization at the timescale of the organism, just knowing which events

are surprising is not enough to actually avoid them, thus the FEP also describes how overt action

allows to minimize free-energy. This was described as active inference and entails acting upon our

body and/or the world to change the sensory signals we receive, so to avoid states of high surprise

[Friston et al., 2010a, Friston et al., 2011]. Said otherwise, instead of changing “its” internal model to

reduce surprise, a living organism also has the possibility to change its perceptual states (and doing

so potentially the states of the world), so its predictions are fulfilled. In practice both perception and

action are hypothesized to act in synergy to reduce free-energy.

If the FEP account seems theoretically valid, and could actually be an unifying framework for

numerous theories and model of brain functioning [Friston, 2010], it does not tell us exactly how free

energy minimization is implemented in the brain and we need to appeal to a more physiologically

grounded formulation of Bayesian inference.
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2.1.3 A neuronal implementation of hierarchical Bayesian Inference :

predictive coding

In the 20th century we thought the brain extracted knowledge from sensations. The 21st

century witnessed a ‘strange inversion’, in which the brain became an organ of inference,

actively constructing explanations for what’s going on ‘out there’, beyond its sensory

epithelia.

Karl J. Friston in Does predictive coding have a future ? (2018)

Initial proposals

Helmholtz’s insight of seeing “perception as unconscious inference” [Kahl, 1971] had a great influence

on connectionist ideas starting from the 1980’s. Pioneering works gave rise to back-propagation learn-

ing [Rumelhart et al., 1986] and the so-called Helmholtz’s machine which set the start for the use of

hierarchical generative models to explain brain functioning [Dayan et al., 1995]. In a seminal article,

Rao and Ballard presented hierarchical predictive coding as encompassing two concurrent processes: a

feedback stream of predictions flowing from higher to lower levels of the hierarchy, and a reciprocal

feed-forward passing of prediction errors—the residual difference between predictions and actual inputs

[Rao and Ballard, 1999]. This scheme presents the advantages of removing redundancy in neuronal

transmission by discarding the predictable part of input signals, while being highly sensitive to devia-

tions from statistical regularities of the natural world. Training computational networks implementing

this algorithm on natural scenes images they could reproduce the hierarchical processing of basic to

more complex features observed in ascending areas of the visual cortex, as well as some extra–classical

receptive-field effects [Rao and Ballard, 1999]. A theoretical proposal of such reciprocal message passing

within cortical areas was already proposed by Mumford based on physiological observations of cortical

organization [Mumford, 1992], yet it lacked a concrete computational implementation and simulation

which Rao and Ballard adequately provided.

Interestingly, from a mathematical viewpoint, Rao and Ballard algorithm had the advantage to

update most of the model’s parameters of interest with gradient descents on a unique energy function

which minimized prediction error. According to Karl Friston [Friston, 2018b], it is this simple yet

far-reaching mathematical solution which prompted him to the groundbreaking nature of such predic-

tive coding algorithm and lead to the profound paradigm shift he and others impulsed in cognitive

neurosciences for the last twenty years. Indeed predictive coding as hierarchical inference in the brain
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was further detailed and extended by Friston and colleagues [Friston, 2003, Friston, 2005, Friston,

2008], and integrated within the FEP [Friston and Kiebel, 2009, Friston et al., 2010b] through the

translation of Rao and Ballard energy minimization function into variational free energy. An impor-

tant refinement made by Friston and colleagues was to understand the predictive coding algorithm as

implementing approximated Bayesian inference, thus making the link to the Bayesian brain hypothesis.

Indeed, descending predictions from higher cortical areas can be intuitively understood as arising from

a generative model of the world based on prior knowledge and are sometimes called prior expectations.

The predictive coding circuitry within the cortex

Any theory of brain functioning should be able to describe the neurocomputational mechanisms un-

derlying perception. To do so it must be able to explain empirical findings at the neural level but also

the supposed mechanisms should be neurophysiologically testable. In this sense, the mapping between

computational implementations of predictive coding and the physiological structure of the brain was an

important step for formalizing the FEP as an unifying brain theory [Friston, 2009, Friston, 2010]. In-

deed the FEP supposes that to reduce surprise an organism must accurately predict future states of the

world (including itself), and to do so maintain —or said differently embody and enact— a generative

model of hidden causes in the world. Such model would necessarily be hierarchical or multi-layered to

adequately mimics the causal interactions defining the physical world. Friston proposed early on that

the brain, and in particular the cerebral cortex, possessed the structural organisation for embodying

a hierarchical generative model of the world [Friston, 2003, Friston, 2005, Friston, 2008]. Similarly

to Rao and Ballard algorithm, the brain would implement the transmission of backward predictions

and forward predictions errors between cortical areas. Starting at the lower level of the hierarchy, in

primary sensory cortices, for example A1 for an auditory stimulus, neuronal “error” units would com-

pare sensory inputs from the thalamus to the signal predicted in “representational” units (also called

expectation or prediction units) and informed by descending prediction from higher areas (secondary

cortices, A2 for example). Only the residual “prediction error” would be transmitted upward to the

next cortical level as a new input to be compared against downward predictions from the area above.

This process, which is depicted schematically in Figure 2.2A, would be repeated time and again along

the full cortical hierarchy with various relays depending on the sensory modality. As described origi-

nally by Mumford, such reciprocal passing of sensory information —which goes against the historical

view of perception as a feedforward process— is plausible given the hierarchical organization of the

cortex and its massive backward connections [Mumford, 1992]. Importantly to implement predictive

coding per se, predictions units try to suppress or minimize prediction errors at the level below. They

are also supposed to apply precision-weighted modulation over the post-synaptic gain of lower level er-
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rors neurons through feedback projections [Feldman and Friston, 2010]. Perception is then thought to

arise from the hierarchical minimization of precision-weighted prediction errors at multiple level of the

hierarchy. Casting it in Bayesian terms, prediction errors from level n-1 (or sensory inputs at sensory

cortices) can be seen as the “likelihood” of an observation, predictions from level n+1 are “priors” over

hidden causes of this observation and their combination as a prediction error would be the “posterior”

at level n, becoming the next “likelihood” for the level n+1.

Figure 2.2: Simplified representation of hierarchical predictive coding within and between cortical
areas (A) and its laminar organization within a cortical column (B). A - At each level of the hierarchy
representational units (R, also called “state” or “prediction” units) would receive ascending inputs from the level
below (sensory inputs in black for primary cortices or prediction errors in blue for higher areas) as well as lateral
connections (dashed arrows) from error units (E) at the same level. Meanwhile error units are hypothesized
to receive descending predictions (green) from the level above, as well as lateral predictions (dashed green)
from representational units at the same level. The difference between descending predictions and ascending
inputs gives rise to a PE which propagates upward, becoming an ascending inputs for the level above. Intrinsic
inhibition by inhibitory interneurons is represented by black arrows above E and R units. This scheme is
supposed to be repeated along the cortical hierarchy with a varying number of relay depending on the sensory
modality (Reproduced from [Stefanics et al., 2014]). B - Within a cortical column, superficial pyramidal cells in
supragranular layers (II/III) are thought to compose error units (E), while prediction or representational units
(P) would be constituted of deep pyramidal cells in infragranular layers (V/VI). Inputs would be received in
the middle granular layer (IV) of the cortex (Adapted from [Heilbron and Chait, 2018])

Friston also described the potential laminar organization of error and prediction units within a

cortical column [Friston, 2008]. The so-called canonical microcircuit for predictive coding was further

detailed by Bastos et al. based on a review of cortical organization and projections found in electrohys-

iological studies [Bastos et al., 2012]. In a nutshell, superficial layers II and III of a given cortical area,

also called supragranular layers, send most of their projections to the granular layer IV of higher-level

areas, while they receive projections from the deep infragranular layers V/VI of these upward cortices.
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Thus superficial pyramidal cells from layers II/III most likely form error units, encoding predictions

errors which are sent forward in the cortical hierarchy (Figure 2.2B). In turn, deep pyramidal cells

from layers V/VI would be the ideal candidates for representation units sending backward predictions.

Intrinsic lateral connections within a cortical column mediate the integration of ascending inputs and

descending predictions, which are also modulated by various excitatory and inhibitory interneurons,

whose description is not essential to the current manuscript (see [Bastos et al., 2012] for the full depic-

tion of the canonical microcircuit and its link to the FEP and predictive coding equations, and [Kogo

and Trengove, 2015] for a critical review).

Interpreting attentional processes within the predictive coding framework

Friston and collaborators also added the critical modulation of prediction errors by their expected

uncertainty based on previous literature emphasizing the importance of attentional modulation for

proper handling of environmental uncertainty in Bayesian inference [Yu and Dayan, 2005]. Within the

Bayesian framework, uncertainty can be understood as the average surprise over all possible causes

of sensations — represented by a probability distribution (see section 2.1.1) — and can be measured

mathematically by the variance of the distribution, or its inverse: precision. Thus in addition to

predictions about the most likely causes of the sensations it receives, the brain would also maintains

second-order predictions on the reliability of these sensations. Weighting ascending inputs by their

respective expected precision would allow to select only informative inputs to be broadcast upward in

the hierarchy as prediction errors. Cognitively this process of reliability attribution of sensory inputs

would be mediated by attention, or in the words of Feldman and Friston (2010) : “attention is more

concerned with optimizing the uncertainty or precision of probabilistic representations, rather than

what is being represented” [Feldman and Friston, 2010]. Inputs (and later in the hierarchy prediction

errors) deemed reliable are thus “up-weighted” and transmitted upward with more strength, whereas

the influence of uncertain inputs would be down-weighted.

Interestingly, theoretical accounts have proposed that precision weighting for the perception of home-

ostatic signals, namely interoception, would have been hard-coded by natural selection to a fixed high

precision [Millidge et al., 2022, Seth, 2013, Seth and Friston, 2016]. Indeed down-weighting physiolog-

ical information about pain, hunger or thirst in favor of other non-vital but attentionally attractive

signals would seem non-adaptative. Dysfunctionning of precision modulation in the brain may be at

the basis of neuropsychiatric disorders such as schizophrenia, where patients are faced with halluci-

nation (false perceptions) and delusions (false beliefs) [Friston et al., 2016], or autism characterized

by hypo- or hyper-sensitivity and non-flexible priors [Haker, 2016]. Predictive coding could provide

an unifying framework to understand those pathologies as well as other ones linked to cognitive and
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cerebral dysfunctions and thus could foster the design of novel therapeutic solutions.

From perceptual to active inference

Attention as a precision-weighting mechanism would further mediate the transition from perceptual

inference —where we sample information from the environment (perception) and updates our hierar-

chical model (learning)— to active inference where we directly act upon the world (which includes

ourselves) to change the sensory inputs we receive (Figure 2.3). Indeed in active inference, descending

projections from cortical motor areas to spinal cord motor neurons are not seen anymore as simple

motor “commands” issued by a “central control system”, but as proprioceptive predictions about ex-

pected states (position, orientation, forces applied, etc) of the entire musculoskeletal system [Adams

et al., 2013, Friston et al., 2010a, Friston et al., 2011, Brown et al., 2011]. Movements would then be

the minimization of proprioceptive prediction errors between these predictions and the actual states

of our limbs and muscles. However, for action to happen, “counterfactual” predictions errors about

the sensory consequences of action need to have higher precision than sensory prediction errors arising

from perceptual inference [Limanowski, 2017] (where counterfactual representations refer to beliefs

about several alternative potential actions and the states of affairs that these actions would bring

about). If not, the actual state of the body is taken as the expected one, no prediction errors are

issued and immobility is maintained. Then attention plays a crucial role —in addition to the precision

of proprioceptive predictions— by disengaging from sensory inputs when we perform a movement,

thereby down-weighting sensory prediction errors [Limanowski, 2017]. Anyone can experimentally test

this hypothesis by intensively paying attention to sensations in the legs while walking for example,

movements usually become slower and less natural, or by trying to tickle oneself, as tickling sensations

mostly come from the unexpectedness of tactile sensation which is abolished when you do (and so

predict) it yourself [Blakemore et al., 2000]. More seriously the active inference explanation of motor

control can account for sensory attenuation effects observed in laboratory settings during controlled

movement [Brown et al., 2013], and its disruption in pathological conditions such as schizophrenia

[Shergill et al., 2005, Shergill et al., 2014].

After this introduction of the Bayesian view of perception and its implementation in the brain as

predictive coding, one might be thrilled by the potential explanatory power of such framework. Yet,

we can wander whether there is clear empirical evidence to support the view that the brain perceives

the world in a Bayesian way and through predictive coding–like mechanisms.
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Figure 2.3: Simplified representation of hierarchical perceptual and active (Bayesian) inference in
the brain. In perceptual inference (classical predictive coding), the system (our brain) is interested in gaining
information from the environment, sensory information is cast forward in the hierarchy by prediction error units
(E, red) and serve to update descending prediction signals generated by prediction units (P, blue). Prediction
error minimization is achieved at each level of the hierarchy by integrating (prior) predicted information (Pt−1))
to the ascending error (Et−1) in a Bayesian way (modulated by their respective precision, not shown in the
figure) to obtain posterior predictions (Pt). Instead, in the active inference mode, the system is interested in
validating its predictions by changing the observed state of the environment (including itself). To do so the
precision of ascending error signals is reduced, decreasing their weight in the inferential process at each level
and insuring the “stubbornness” of predictions to updating (Pt = Pt−1), thereby allowing the system to reach
the predicted state (movement). Reproduced from [Yon et al., 2019].

2.1.4 Empirical evidence for predictive coding in the brain and criti-

cism

Despite the short history of predictive coding, numerous articles —mostly by authors not involved

in its initial formulation— have already reviewed the behavioral, electrophysiological and neurophys-

iological experimental works supporting or disproving it [Heilbron and Chait, 2018, Millidge et al.,

2022, Walsh et al., 2020, Clark, 2013]. If some predictions of the theory received strong support from

the existing literature, certain assumptions are still a matter of debate because they are more difficult

to test experimentally. Regarding the former, accumulative evidence support the claim that predic-
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tion errors, mediated by feedforward activity of superficial pyramidal cells, would give rise (in part)

to the electrophysiological activity observed with EEG and magnetoencephalography (MEG) [Fris-

ton, 2005]. Consistent with this idea, the averaged brain responses time-locked to perceptual stimuli

(ERPs) during repetition suppression (RS) have been linked to the suppression of prediction errors

upon multiple presentations of a repeating stimulus [Garrido et al., 2009b]. Conversely,the mismatch

negativity (MMN), a change in ERP detected whenever a novel, unexpected stimulus is presented, has

been linked to the failure of prediction error minimization [Garrido et al., 2009c]. Another important

corollary of the predictive coding view is that brain responses should be influenced by the degree of

expectations of stimuli [Todorovic et al., 2011, Todorovic and de Lange, 2012]. Such expectations

are thought to be embedded in a hierarchical generative model of the world: higher areas bias per-

ceptual processing at lower areas through top-down predictions. This phenomenon has been cleverly

revealed by omission paradigms. In these paradigms, the brain responses time-locked to an expected

stimuli (e.g. MMN) can be observed even in the absence of actual sensory input [Wacongne et al.,

2011a] thereby demonstrating the major influence of prior expectations on perception as well as their

top-down nature [Chennu et al., 2013a, Chennu et al., 2016a].

Evidence for the more general assumption of message passing within the cortical hierarchy have

come from numerous studies in both humans and animals. An impressive series of studies from Garrido

and collaborators used Dynamic Causal Modeling (DCM) on EEG data from various auditory odd-

ball paradigms to identify the cortical network underlying deviance detection in humans (as measure

through the MMN) and its reciprocal connections [Garrido et al., 2007b, Garrido et al., 2007a, Garrido

et al., 2008, Garrido et al., 2009a, Kiebel et al., 2007]. In the auditory modality this network was

best modeled by a DCM model composed of brain sources in bilateral primary cortex (A1), bilateral

superior temporal gyrus (STG) and right inferior frontal gyrus (IFG), and their extrinsic connections,

both forward and backward between each level, as well as intrinsic connections in A1. It was further

refined more recently using DCM on EEG and MEG data from auditory local-global and omission

paradigms [Chennu et al., 2016b], but also through MEG and electrocorticography (ECoG) [Phillips

et al., 2015, Phillips et al., 2016] with an optimized paradigm using multiple deviance features ([Näätä-

nen et al., 2004], duration, frequency, gap, intensity and location). The updated network found in this

last MEG study is displayed in Figure 2.4. Compared to Garrido et al. initial model they found

an additional involvement of left IFG and its modulation by higher-order predictions [Phillips et al.,

2016], a difference potentially arising from the reconstruction of brain sources using MEG which is more

precise spatially than EEG or the use of more complex deviance paradigms. Another study indeed

found higher evidence for Garrido’s initial DCM model (bilateral A1 and STG but only right IFG) in

EEG and MEG on a “classical” mismatch but a model with bilateral IFG and its bilateral modulation

by higher-order predictions to win during an omission paradigm in EEG [Chennu et al., 2016b] (they
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found no clear omission response in MEG and thus did not apply DCM). In conclusion of these DCM

studies of the MMN, a global picture suggests that auditory deviance detection is supported by a

bilateral (at least up to STG) hierarchical network with reciprocal extrinsic connections and intrinsic

connections in A1, and that the particular involvement of the left IFG and higher-order predictions

may depend on the complexity of the auditory deviance. Interestingly, this network was confirmed in

two patients implanted with ECoG electrodes which allow a more direct recording of cortical activity

than EEG/MEG [Phillips et al., 2016]. Additional evidence for hierarchical message passing of predic-

tions and prediction errors along the auditory cortical pathway recently came from high-density ECoG

on macaque and marmoset monkeys [Chao et al., 2018, Jiang et al., 2022]. Nevertheless recent reviews

questioned whether these findings are unique to predictive coding and whether the used paradigms are

sufficient to discriminate between competing hypotheses about the mechanisms of perception [Heilbron

and Chait, 2018, Walsh et al., 2020].

Figure 2.4: Hierarchical cortical network underlying predictive coding processes in the auditory
modality, identified through DCM. The interplay between forward and feedback extrinsic connections
within the auditory cortical hierarchy, as well as intrinsic connections within A1, is represented schematically
on the left and the cortical sources located over an fMRI template of the brain on the right (transversal view).
A1: primary auditory cortex, STG: superior temporal gyrus, IFG: inferior frontal gyrus. Adapted from [Phillips
et al., 2016].

Another assumption, which was (ironically) less attended to, is the role of attention in weighting

sensory inputs —and later along the hierarchy, prediction errors— according to their predicted relia-

bility or precision. Basically attending to a certain sensory object of the environment (a sound) or a

particular feature within this object (its pitch) would increase its expected reliability and prioritized

its processing [Feldman and Friston, 2010]. For example in the visual domain this process of sensory

gating is hypothesized to be mediated by cortico-thalamic connections between visual cortices and the
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pulvinar, a large nucleus of the thalamus which is involved in visual attention [Kanai et al., 2015]. The

hypothesized increase in neural response to attended stimuli is a well observed fact in the neuroscientific

literature ([Brown and Friston, 2013, Auksztulewicz and Friston, 2015a, Gordon et al., 2019, Smout

et al., 2019a] and see [Feldman and Friston, 2010, Hohwy, 2012] for reviews), yet predictive coding

has been criticized for trying to explain any form of attention when it actually may not be able to do

so [Ransom et al., 2017]. Besides the particular assumption that predictability and attention should

have interactive effect on brain responses —a predicted stimulus evoking a smaller prediction error

while attention is boosting it— received contrasted evidence ([Chennu et al., 2013a, Chennu et al.,

2016b, Garrido et al., 2018, Kok et al., 2012, Richter and de Lange, 2019] and [Heilbron and Chait,

2018, Walsh et al., 2020] for critical reviews).

Finally a last critical assumption of predictive coding is that prediction and prediction errors are

encoded by different neuronal populations, representational (or prediction) units and error units re-

spectively. Two key features implemented in the canonical microcircuit would allow to differentiate

them experimentally: their laminar location within the cortex, supragranular layer (II/III) for er-

ror units and infragranular layer (V/VI) for prediction units; and the frequency range at which they

operate, gamma (> 30 Hz) and alpha/beta (10-30 Hz) respectively. While this latter difference in

frequency range between superficial and deep cortical layers is a well-established finding both in an-

imal and human (through ECoG, notably), the laminar segregation of prediction and error units is

more difficult to test and therefore only received scarce and sometimes contradictory proof (see [Mil-

lidge et al., 2022, Heilbron and Chait, 2018, Walsh et al., 2020, Shipp, 2016] once again for critical

reviews). Furthermore predictive coding also received criticism concerning the organisation of the

canonical microcircuit at a theoretical level. For example Kogo and Tengrove demonstrated the bio-

logical implausibility of some of the algorithmic computation supposedly performed by prediction and

error neuronal population [Kogo and Trengove, 2015]. Actually different neuronal implementation of

predictive coding were proposed which may not encounter these problems. For example Spratling, in

his predictive coding model based on biased competition in visual attention, advocated early on for

a different laminar organisation of predictive coding in the cortex, with error units in granular layer

IV and prediction units in both superficial and deep layers and therefore top-down and bottom-up

passing of predictions signals (see [Spratling, 2008a, Spratling, 2008b, Spratling, 2017] and Figure 2.5).

Critical voices were also raised concerning the “corticocentrist” view of predictive coding (at least in

the auditory modalidity), when numerous studies in animals demonstrated the importance of top-down

subcortical connections for perception (see [Asilador and Llano, 2021] for a review).

In summary, we saw that classical views of predictive coding make precise predictions on how

algorithmic computations necessary for hierarchical inference should be implemented in the brain. Yet

clear and uncontroversial evidence to support these assumptions are still scarce and could also be
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Figure 2.5: Simplified representation of cortical organisation of predictive coding under the biased
competition model in the auditory pathway. In this view error units are situated in the granular layer
(IV) while prediction or representational units are located in both superficial (II/III) and deep (V/VI) layers.
Consequently predictions are thought to be broadcast both backward and forward between cortical areas and
errors are suppressed by prediction units within a cortical area through intracolumnar inhibition. A1: primary
auditory cortex, A2: secondary auditory cortex, An: higher auditory areas. Reproduced from [Heilbron and
Chait, 2018].

explained by other theoretical views of perception. Hopefully recent advances in neuroimaging as well

as electrophysiological and cellular recordings would most likely allow to decide between competing

hypotheses in a near future and potentially refined unclear aspect of this major neuroscientific theory.

Indeed predictive coding (and the underlying FEP) is so far the only neuroscientific theory allowing

a global understanding of animal and human perception and we will now dive more deeply in its

application to two crucial topics of the current thesis: auditory deviance detection and pain experience.
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2.2 Auditory deviance detection revisited through predic-

tive coding

Whether we are awake or in an “unconscious” state (sleep, anesthesia or coma), our brain automatically

perceives and integrates auditory stimuli that are presented to it, for example simple tones in an

experimental protocol. The global electrical activity arising from brain functioning can be measured

at the surface of the skull, the scalp, through EEG or MEG for example. To actually measure the

specific activity related to the perception of a given sound, one has to separate it from the ambient

“noise” of the brain, any activity not related to sound processing. By presenting a stimulus an important

number of times (50 for example) and averaging the resulting brain activity time-locked to the stimulus

onset across all repetitions, one typically cancels out the noise (whose fluctuations are random) and

obtains an event-related potential (ERP): the averaged brain response to an event, in our current

example an auditory tone. In the case of human auditory perception this ERP is constituted of a

typical negative deflection peaking at fronto-central scalp electrodes around 100 ms after the tone

onset and thus called the N100 or N1. The N1 is actually composed of multiple sub-components whose

cortical generators were identified as the primary auditory cortex (A1) and the superior temporal gyrus

(STG) [Näätänen and Picton, 1987]. Of interest to us is what happens when a deviance is introduced

in a sequence of repeating tones at the same frequency (e.g. 1000 Hz), for example by presenting

a tone at a larger or lower frequency (e.g. 1100 Hz), a paradigm called an auditory “oddball” (see

Figure 2.6 for an example of sequence). Surprisingly the ERP to this rarely appearing “deviant” tone

is different to the one of the frequent “standard” tones, notably it presents a larger (more negative)

N1, as observed initially by Näätänen and collaborators ([Näätänen et al., 1978], see Figure 2.6 for

typical ERP waves of an auditory oddball paradigm). They named the negative wave obtained from

the subtraction of deviant and standard ERPs the “Mismatch Negativity” (MMN) and interpreted it

as a neural correlate of automatic deviance detection [Näätänen, 1990]. The MMN is better observed

at fronto-central electrodes in EEG and usually peaks between 100 and 200 ms after the deviant tone

onset with variation depending on the deviance feature (frequency, intensity, duration, gap, spatial

location, etc). Its generative mechanisms have been the subject of a long and intense scientific debate

for more than 20 years, that we will now review.
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Figure 2.6: Example of auditory oddball sequence and the resulting ERPs to deviants, standards
and their difference as the MMN. Oddball sequence are constituted of two tones (or more in the case of a
roving oddball, see [Haenschel et al., 2005]) differing in a specific auditory feature (e.g. frequency) and one tone
presented more frequently than the other (e.g. 80% of standard tones). Grand average ERPs measured with
EEG are presented for standards at 880 Hz (blue), deviants at 988 Hz (red) and their difference: the MMN
(black). One can observe the N1 to standards and deviants peaking around 100 ms (0.1s) and the MMN peaking
a bit later around 140 ms. The EEG scalp topography averaged over the MMN window (MMN significantly
different from 0, here from 84 to 192ms) is presented on the right with a negative cluster at fronto-central
electrodes. Based on data from [Fucci et al., 2021].

2.2.1 The Mismatch Negativity (MMN): a neural correlate of predic-

tion error ?

Memory-based and model-adjustment accounts

Early accounts of the MMN cast it as a marker of sensory memory processes [Näätänen, 1990]. The

rationale was that auditory change detection requires a memory trace of previously encountered sounds

to compare to the current input. However, while the so-called memory-based account can explain some

properties of the MMN, it is unlikely that the detection of abstract deviations [Paavilainen, 2013] can

be based solely on short-lived sensory memory traces. To address this limitation, early proponents of

the memory-based hypothesis developed a refined account of the MMN under the model-adjustment

hypothesis [Winkler et al., 1996, Winkler, 2007].

In this view the main mechanism behind the MMN is not only the detection of changes in some physical

features of a stimulus, but more generally the detection, representation and updating of regularities

in the auditory stream. Being more flexible, the model adjustment account can explain most of the

MMN properties, from omission responses to violations of abstract rules. Besides, dynamic model
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updating addresses the challenge of adapting to the frequent contextual changes present in natural

environments [Sussman and Winkler, 2001]. Inasmuch as it sees the MMN as a marker of error

detection and correction with respect to a perceptual model of statistical regularities in the world,

the model-adjustment hypothesis is also compatible with the predictive coding account of perception

presented below.

Adaptation hypothesis

Early on, defenders of the sensory-memory account acknowledged the possibility of the MMN being

an epiphenomenon of differential neuronal adaptation between frequent standard and rare deviant

tones. Indeed, due to stimulus-specific adaptation (SSA), neurons tuned to frequently repeated tones

would adapt faster than neurons tuned to rare deviant tones, causing their N1 to be attenuated

compared to the N1 response to novel fresh stimuli, hence the presence of a negative deflection in the

subtraction between the ERP to deviant and the ERP to standard tones (Figure 2.7). This alternative

interpretation has long been discarded in light of the evidence available at that time [Näätänen, 1990],

namely that (i) MMN and N1 latencies do not match, (ii) they have different cortical generator locations

and (iii) adaptation cannot account for mismatch to sound omissions. More recently, these arguments

against the adaptation hypothesis have been undermined by simulation [May and Tiitinen, 2004, May

and Tiitinen, 2010] and experimental [Jääskeläinen et al., 2004] findings suggesting that (i) the delayed

latency of the MMN compared to the N1 potential can be explained by lateral cortical inhibitions

between feature-specific neuronal populations [May and Tiitinen, 2004]; (ii) the seemingly shifted

location of the MMN can result from differential adaptation of anterior and posterior auditory cortex

N1 sources [May and Tiitinen, 2004, Jääskeläinen et al., 2004]; (iii) cortical neurons responsible for

the N1 response settle in a steady-state oscillation that does not stop immediately after the end of the

stimulus train [May and Tiitinen, 2001], thus providing a plausible mechanism for the presence of a

mismatch negativity in response to omitted sounds. At the same time, the adaptation hypothesis gained

plausibility with the demonstration of SSA processes in the auditory cortex in response to repetitive

sounds, both in humans [Jääskeläinen et al., 2004] and animals [Ulanovsky et al., 2003, Ulanovsky

et al., 2004].

As May et al. [May and Tiitinen, 2010] highlighted, memory-based and adaptation accounts fall in

two different categories: psychological and physiological, respectively, which are not mutually exclusive

explanations of the MMN. On the other hand, both accounts stumble over some properties of the

MMN such as its sensitivity to abstract rules, justifying further efforts in the development of a more

encompassing theory of the MMN.
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Figure 2.7: Schematic representation of the adaptation hypothesis of the MMN. [Upper panel] In
the adaptation account the N1 and the MMN are thought to arise from the same cortical generator. Thus,
overlapping neuronal populations answer to standard and deviant tones depending on their favorite frequency.
After many standard tone repetitions, neurons tuned to the standard frequency become adapted, meanwhile
neurons tuned to the deviant frequency adapt less, this is the SSA phenomenon. [Lower panel] At a global
scale (EEG or MEG recordings for example), the brain response to a first standard is high but then adapts
quickly. Upon presentation of a rare deviant stimulus, its response is higher than the preceding standard due
to non-adapted “fresh” neurons, the MMN is then interpreted as an “enhanced N1 response”. Reproduced from
[May and Tiitinen, 2010].

Predicting coding: a unifying framework?

Under the predictive coding theory, the MMN is viewed as an electrophysiological marker of the

discrepancy between top-down predictions based on repeated stimuli (i.e. standards) and bottom-up

unexpected sensory inputs (i.e. deviants): a prediction error [Friston, 2005]. Propagated through

forward connections, prediction errors would trigger the updating and optimization of an internal

model of sensory causes at higher cortical areas, in agreement with the model-adjustment hypothesis.

Adjusted predictions would then be sent backward to explain away or suppress prediction errors at

lower cortical areas. In this framework, suppression of the MMN when deviant tones are repeated

and thus become the new standards, as in the roving paradigm [Haenschel et al., 2005], is interpreted

as a minimization of prediction errors, the internal model having learnt a new statistical regularity

[Garrido et al., 2009c]. Additionally, hierarchical minimization of prediction errors would also be

weighted by the relative precision of predictions and sensory inputs, depending, as seen previously, on

their expected reliability. Physiologically, changes in local, intrinsic connectivity of prediction error

units would mediate this weighting process in auditory cortices via modifications of synaptic gains,
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reminiscent of the adaptation account [Garrido et al., 2009c].

Using Dynamic Causal Modelling (DCM), Garrido and colleagues showed that model-adjustment or

adaptation hypotheses alone are not sufficient to explain changes in extrinsic and intrinsic connectivity

specific to the MMN in both the classical and roving auditory oddball paradigms [Garrido et al.,

2007c, Garrido et al., 2007a, Kiebel et al., 2007, Garrido et al., 2009a, Garrido et al., 2008]. In

an attempt to unify, [Garrido et al., 2009c] they proposed that both hypotheses are necessary to

fully account for N1 and MMN brain responses, and are reconcilable under predictive coding. More

recently, two extensive and complementary reviews further emphasized this viewpoint. The first one

from Fitzgerald and Todd (2020) relied on their studies of first-impression or primacy bias of the

MMN through the multiple-timescale paradigm in humans [Fitzgerald and Todd, 2020]. This paradigm

implements two kinds of regularity: a local regularity associated with tone probabilities and a long-term

one associated with block length. Surprisingly, they showed that the MMN to deviant sound A was

modulated differently by long-term regularities (short vs. long blocks or stable vs. unstable sequences),

depending on the initial local regularity pattern (sound A initially presented as deviant or standard),

and that this effect was present for different kinds of deviance (duration and frequency) [Fitzgerald and

Todd, 2018, Todd et al., 2014]. The authors came to the conclusion that such order-driven modulations

of the MMN cannot be explained by adaptation alone but need predictive coding to account “for the

influence of tightly held, top-down representations of sounds on future sound processing” [Fitzgerald

and Todd, 2020].

A second review focused on single-cell studies of the SSA phenomenon in animals, the hypothesized

neural correlate of the MMN according to the adaptation hypothesis [Carbajal and Malmierca, 2018].

In a nutshell, Malmierca and collaborators could dissect the neuronal response traditionally associated

to deviance detection into a repetition suppression component reflecting adaptation processes, and a

prediction error component expected under predictive coding. To do so, they made use of newly created

“no-repetition” control sequences for the oddball paradigm, namely the “many-standards” where tones

of varying frequencies, whose the oddball “standard” frequency, randomly alternate; and the ascending

and descending “cascades” sequence where a tone of the same frequency as the deviant is heard within a

sequence of ascending or descending frequency tones (see [Parras et al., 2017] for a detailed description).

Their results prompt toward a segregation of repetition suppression and prediction errors mechanisms

across the auditory pathway, with the former more prevalent in subcortical regions (midbrain and

thalamus) and prediction errors–like neuronal activity gaining strength in auditory cortex [Parras

et al., 2017] until being predominant in prefrontal cortex [Casado-Román et al., 2020]. Moreover they

could show that this distinction also held within each regions of the hierarchy, with stronger prediction

error–like activity in neurons of the non-lemniscal (or secondary) auditory pathway compared to the

lemniscal (or primary) one. In summary, they interpreted their findings in light of the supposed
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hierarchical organization of predictive coding and, as Garrido et al. [Garrido et al., 2009c] before,

proposed a unification of previously opposing views of SSA and MMN under an integrated “physiological

generative mechanism of hierarchical inference founded on plastic changes in synaptic connectivity”.

Besides they also emphasized that their results supported the growing view of predictive coding has

not being restricted to the cortex [Carbajal and Malmierca, 2018].

Evidence for Bayesian views of the MMN were also found in multiple computational modeling

studies [Ostwald et al., 2012, Lieder et al., 2013, Wacongne et al., 2011b, Lecaignard et al., 2021], yet

without decisive conclusion against the adaptation hypothesis. Using two EEG datasets (final sample

size of 82 subjects) from similar auditory oddball paradigms, we compared again computational models

inspired from both theories using trial-wise as well as time-resolved Bayesian modeling. Interestingly

and in agreement with previously mentioned animal studies we found a temporal distinction in gener-

ative mechanisms of the MMN, with adaptation models better explaining the early part of the MMN

and Bayesian learning models predominantly explained the later latencies of the MMN. These results

constitute a submitted article presented in the current thesis as Study 2 (Chapter 4).

2.2.2 The effect of attention on the MMN

The interplay between the MMN and attentional processes has also been a debated topic since the

first reviews on the mismatch response [Näätänen, 1990, Näätänen, 1992] where it was qualified as

“pre-attentive” as it could be elicited without any attentional engagement to the auditory stream.

If, indeed, attention is not necessary for the MMN generation (e.g. MMN found in unconscious

patients [Morlet and Fischer, 2014]) it was still shown to increase the MMN response [Woldorff et al.,

1991, Woldorff et al., 1998, Näätänen et al., 1993]. However, these earlier results have been questioned

as they included highly focused attention condition and for some of them were most likely conflated

by the N2b ERP component, a negative-going wave elicited by target detection in attend conditions

at the same latencies as the MMN [Sussman, 2007]. Indeed experimental protocols which manage to

dissociate N2b and MMN components found no difference in the MMN between ignore and attend

conditions [Sussman, 2007]. These observations led Sussman (2007) to propose that there is no general

effects of attention on the MMN, but rather that these effects are specific to the attentional task

performed by the subject. Specifically, Sussman et al. (2002) showed that attention might influence

the standard formation phase of the MMN but not deviance detection per se, as attending to a global

pattern of tones led to the disappearance of the MMN to local deviant tones [Sussman et al., 2002].

They still advocated against the qualification of the MMN as “pre-attentive”, but emphasized that the

MMN is highly context-dependent and that this context can be shaped or not by attention [Sussman,

2007], a view further corroborated by recent first-impression bias results on the MMN [Fitzgerald and
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Todd, 2018, Todd et al., 2021]. In turn, the MMN itself is sometimes described as a signal for the

reallocation of attentional resources to informative sensory streams [Damaso et al., 2015, Näätänen

et al., 2011]. This explanation accommodates well finding of poorer performance in attentional tasks

following deviants from an irrelevant oddball sequence for example, but again seems to depends on the

context as highly demanding task do not show this effect but instead a reduced MMN [Damaso et al.,

2015]. The proposal suggests a varying threshold for attentional shifting which can allow redirection of

attention to highly informative (surprising, high MMN) signals, while “protecting” attentional resources

when the primary task is important and attentionally demanding [Damaso et al., 2015, Näätänen et al.,

2011].

We described previously how the MMN is interpreted as a neural correlate of prediction error

signaling within the predictive coding framework [Garrido et al., 2009c]. We also saw how attention

was integrated within this framework as a modulation or weighting of expected precision associated to

ascending sensory and prediction errors inputs [Feldman and Friston, 2010]. Heightened attention cast

onto sensory signal would lead to higher expected reliability and therefore stronger prediction errors.

This view is not opposite to the one of Sussman (2007), as depending on the context attention may

enhanced the precision afforded to local deviations or instead to global regularity patterns. Empirical

evidence seems to support an attentional enhancement of prediction error signals in both auditory

[Auksztulewicz and Friston, 2015b, Chennu et al., 2013b, Garrido et al., 2018] and visual domains

[Smout et al., 2019b, Gordon et al., 2019].

Given the effects of meditative practices on attention (section 1.2.3), we could expect that they

might influence the MMN. Hypotheses concerning the direction of a potential effect and its variation

depending on the kind of practice and the expertise of practitioners would be discussed in Chapter 3.

81



2.3 Does pain perception follow Bayesian principles ?

As we saw in a previous section (1.2.4), pain experience has — most often but not always — a sensory

dimension which makes it a perceptual information. Pain perception is based on the nociceptive

system which provides an immediate information about a dangerous event and the necessity for action.

As such it is an ideal candidate for a mechanistic explanation based on Bayesian inference and the

minimization of bodily threatening surprise. In the coming pages we will review Bayesian or predictive

coding accounts of pain and how they can provide parsimonious explanations to an extensive body of

empirical work on the influence of priors and uncertainty on pain, as well as dysfunctioning of pain

perception in clinical cases.

2.3.1 Bayesian accounts of pain perception

A first theoretical perspective on pain perception from a Bayesian view point was given only recently

by Büchel and colleagues, with an emphasis on placebo hypoalgesia [Büchel et al., 2014]. Placebo

effects can be defined as the clinical benefits obtained from a medical intervention where the key active

treatment (e.g. a drug, medical device, etc) has been replaced by a passive one without any physio-

logical effects. The remaining active effects are the psycho-social ones, which include the participant’s

believes in the benefices of the treatment and the medical context [Tracey, 2010, Finniss et al., 2010].

Placebo interventions have been mostly used in clinical trials as a control to assess the added benefits

from new interventions. However, and contrarily to common misunderstandings, they do have positive

outcomes that go beyond a mere report bias. When evaluated with adequate designs, on diseases

amenable to psychological factors and controlling for confounding factors, placebo treatments do have

an effect of their own on both subjective and objective measures, which can sometimes approach the

effect size of real treatments [Wampold et al., 2005]. The scientific literature gave particular interest

to placebo treatments for pain, an effect referred to as placebo hypoalgesia. While placebo hypoalgesia

has psycho-sociological causes, mainly positive outcomes expectations, it is mediated by at least one

specific neurophysiological pathway: the activation of the opioidergic descending pain control system

[Wager and Atlas, 2015, Tracey, 2010, Petrovic et al., 2002]. This pathway in turn inhibits the pro-

cessing of nociceptive inputs at low-levels of the nervous system, therefore decreasing the activation of

pain specific brain regions and reducing painful experience. The added value of Büchel et al. (2014)

theoretical work has been to explain how expectation on painful stimuli might be combined to noci-

ceptive inputs in a Bayesian way to give rise to hypoalgesic effects. Using the vocabulary introduced in

section 2.1.1, expectations of lower pain due to placebo (for example from an inactive drug described

by the physician as a pain killer) constitutes a prior on pain, most likely issued at higher brain levels
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of the “descending” pain system [Büchel et al., 2014]. Priors would be combined at different levels of

the pain processing hierarchy with nociceptive signals –constituting the “likelihood”– sent by afferent

nociceptors through numerous “ascending” pain pathways. Similarly as in other sensory modalities,

pain perception would thus arises from Bayesian inference over prior and likelihood to give rise to a

posterior, the actual pain experience. In mathematical notation:

posterior︷ ︸︸ ︷
p(pain experience|sensory signals) ≈ p(sensory signals|pain expectations)︸ ︷︷ ︸

likelihood

prior︷ ︸︸ ︷
p(pain expectations) (2.5)

Büchel et al. (2014) also provided an hypothetical neural implementation of predictive coding

mechanisms in pain related brain regions. In the same vein as the convolution of multiple “pain

matrices” proposed by Garcia-Larrea and Peyron [Garcia-Larrea and Peyron, 2013] and in adequacy

with the hypothesized hierarchical implementation of predictive coding in the brain [Friston, 2005],

they suggested to reformulate the dichotomy between independent pain ascending and descending

pathways into a single hierarchical system constituted of connected recurrent networks along the pain

processing hierarchy. Their proposal rests on a growing body of electrophysiological evidence for

reciprocal connections within the pain “descending” modulatory system, as well as observations of pain

modulatory signals through fMRI at all levels of the cerebral hierarchy [Büchel et al., 2014]. They also

evoked the possibility that in the final segment of the modulatory pain system –constituted of Peri-

acqueducqual gray (PAG), rostral ventromedial medulla (RVM) and the dorsal horn of the spinal cord–

opioids may not only have an analgesic effect, but also regulate the influence of top-down predictions

on pain perception.

Such Bayesian understanding of pain has been further extended to pain perception in general

[Wiech, 2016] as well as nocebo effects ([Tabor et al., 2017], how negative expectations about the

painfulness surrounding an actually inert experimental treatment or stimulus lead to increased pain).

Those converging accounts agree on the idea that the brain must maintain a model of expected pain

depending on previous painful experience. In relation to the pain matrix, priors expectations might be

modulated by affective and evaluative factors, for example a negative mood might set a higher than

usual prior for incoming painful experiences. Predictions from this pain model are then compared to

nociceptive inputs to emit a prediction error or “surprise” signal which, depending on its strength,

may lead to the update of the model, allowing the learning of cue-pain contingencies for instance

(Figure 2.8).

Another important aspect of predictive coding formulations of perception is the influence of preci-
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Figure 2.8: Schematic representation of pain processing from a predictive coding perspective.
Illustration of the comparison between pain expectations (predictions arising from prior information about pain)
and sensory input. The process can give rise to an update of the brain model (learning) about incoming pain
if signaled by high prediction errors, or not if predictions accurately reflected sensory information. Reproduced
from [Wiech, 2016]

sion or uncertainty on the Bayesian inference process. In the same way as for other kind of perceptual

processes, the precisions of prior and sensory information about pain weight their respective effect on

the final pain experience. Büchel et al. described well how a more or less accurate description of a

placebo treatment can lead to increased or diminished placebo effect ([Büchel et al., 2014], illustrated

in Figure 2.9). In the opposite nocebo effect, a physician providing a very confident prognosis on the

highly painful evolution of a disease could explain a potentially amplified pain experience [Tabor et al.,

2017].

Related to nocebo, chronic pain is the transformation of an initial acute pain event or disease into

a painful experience persisting after the commonly observed healing phase [Apkarian et al., 2009].

Despite being one of the primary cause of long-term disability worldwide, the physiological and brain

mechanisms causing and maintaining it are still poorly understood and very few effective treatments

exist [Bushnell et al., 2013]. The change of acute pain into a chronic state has been associated to

peripheral and central sensitization processes [Cagnie et al., 2014, Kuner, 2010, Gold and Gebhart,

2010] most likely mediated by a dysfunctionning of glial cells [Ji et al., 2013], but also more specif-

ically to abnormal structure and activity of the dorsolateral Prefrontal Cortex (dlPFC) [Seminowicz

and Moayedi, 2017]. This cortical region has been identified as a core component of many different

functional networks, it notably seems to play a crucial role in pain detection and modulation. Under
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Figure 2.9: Bayesian interpretation of precision or uncertainty effect on placebo. In both graphics
the means of prior (expectation) and likelihood (sensory input) are fixed, and only the variance of the prior
information is changed. According to [Büchel et al., 2014], if a placebo intervention is given without much
precision on its efficacy (“weak” placebo), it gives rise to a broadly defined expectation for lower pain and thus
a final posterior perceived pain (pain experience) close to the initially high painful sensation (sensory input).
Instead if physicians give precise suggestions for the positive effect of the intervention (“strong” placebo), the
resulting expectation for lower pain will have stronger influence on the Bayesian inference process and leads to
lower perceived pain.

chronic pain, not only its activity and connectivity are altered (higher activation and mixed connectiv-

ity pattern to other regions), but also its structure with an observed reduction of gray matter volume

[Seminowicz and Moayedi, 2017]. Of clinical importance, non-invasive stimulation of the dlPFC has

been shown to reduce acute and chronic pain [Moisset et al., 2016], making of this brain region an

interesting therapeutic target. Chronic pain conditions have also been associated to other nodes of

pain processing and modulation, with notable structural decrease in gray and white matter of ACC

and insula as well as reduced opioid receptors binding [Bushnell et al., 2013].

Recently, Bayesian accounts of this leading health problem have also been proposed. A short

perspective on the topic was first offered by Moseley and Vlaeyen in 2015, where they developed the

“imprecision hypothesis” [Moseley and Vlaeyen, 2015]. In their view, chronic pain develops from an

initial low-precision encoding of the acute pain event (for example in low back pain, bending forward)

which may lead to the generalization of a high pain expectations for usually not painful events involving

similar movements. This novel idea was further articulated in predictive coding terms [Hechler et al.,

2016, Tabor and Burr, 2019, Jones and Brown, 2018] and two separate processes were suggested to

cause chronic pain. Firstly an aberrant heightened precision given to predictions of body threat,

and wrongly generalized to non-threatening situations through fear learning [Zaman et al., 2015],

a view akin to Moseley and Vlayen’s “imprecision hypothesis”. Secondly a disproportionate weight

given to sensory information, either painful or not. If the link to underlying physiological causes still

have to be tested, one can hypothesize that aberrant pain expectations and associations might be
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due to dlPFC dysfunction [Seminowicz and Moayedi, 2017], while excessive sensory precision could

be related to peripheral and central sensitization processes observed in chronic pain patients [Cagnie

et al., 2014, Kuner, 2010, Gold and Gebhart, 2010].

Once again we saw that predictive coding could be used as an encompassing theoretical framework

to understand the mechanisms at stake during maladaptive pain perception, and further investigation

in this sense is needed. Meanwhile experimental testing of Bayesian views on “normal” pain perception

already lead to interesting results that we will now describe.

2.3.2 Effects of expectations and uncertainty

Is pain perception (and its neural correlates) modulated by expectations in an

experimental context ?

The modulation of pain by positive or negative expectations in clinical settings is a well know phe-

nomenon which can cause hypoalgesia (placebo) or hyperalgesia (nocebo) [Tracey, 2010]. Yet, such

expectations are most often about the applied treatment, have an extended temporal span and can

imply numerous cognitive, social and motivational factors which are difficult to disentangle. To gain

more understandings on the cognitive and neuronal mechanisms supporting the effects of expectations

on pain perception, researchers used experimental paradigms designed to set cue-based stimulus ex-

pectancies. Ploghaus et al. (2003) offered a first review of this field of research which suggests that

even short-term expectations varying on a trial-to-trial basis, can have a strong influence on partici-

pants behavioral ratings of pain, but also on brain activation [Ploghaus et al., 2003]. They identified

the rostral anterior cingulate cortex (rACC) and the insula, core brain regions of the hypothesized

second-order “attentional-perceptive matrix” of pain ([Garcia-Larrea and Peyron, 2013], see section

1.2.4), as well as the posterior cerebellum, to be activated by certain expectations about impending

painful stimuli no matter if a lower or higher pain was expected. A more recent review from Atlas and

Wager (2012) confirmed these results but also emphasized the importance of the thalamus in setting

these expectancies, as well as more frontal regions associated with emotional appraisal such as the

dlPFC and orbitofrontal cortex (OFC) which would mediate the anticipatory response to cues [Atlas

and Wager, 2012].

The conclusion from these reviews, as well as more recent results on cue-based expectancies [Hoskin

et al., 2019, Lobanov et al., 2014, Peerdeman et al., 2021, Zaman et al., 2022], fit well with the pre-

dictive coding view of pain, both at behavioral and neuronal levels. Indeed prior expectations of the

painful or innocuous nature of upcoming stimuli would set strong predictions for respectively high or

low pain, which will be integrated to the actual nociceptive input in a Bayesian way, driving pain
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perception towards expectations if they are precise enough (as in the case of a “strong” placebo evoked

earlier for example) and updating expectation in case of a high discrepancy between predictions and

inputs (strong prediction errors). Retrospective interpretations of previous results would point to

rACC and anterior insula as central hubs of the predictive processing of pain in the cortical hierarchy.

Geuter et al. 2017 directly tested this hypothesis by submitting participants to warm or hot thermal

stimuli following cues of varying validity, leading to a combination of stimulus type (“warm” or “hot”),

expectation (“more likely warm”, “more likely hot” or “both as likely”) and therefore prediction errors

[Geuter et al., 2017]. They found that both skin conductance and pupil size were better explained

by a predictive coding-like model (where physiological response are modeled as the sum of differently

weighted predictions and predictions errors) than a stimulus only model and a stimulus plus expec-

tation model. More interestingly, the activation of the anterior insula recorded with fMRI was also

best explained by the predictive coding model (as well as the right amygdala) whereas the activity

in other regions of the pain matrix (whose the ACC and posterior part of the insula) was best ex-

plained by a stimulus only model [Geuter et al., 2017]. The involvement of the posterior insula only

in stimulus encoding was expected as it has been associated to the first-order nociceptive matrix of

pain [Garcia-Larrea and Peyron, 2013], yet surprisingly the ACC did not reflect expectations contrary

to previous results [Atlas and Wager, 2012, Ploghaus et al., 2003]. This discrepancy could have arisen

again from a broad definition of the ACC as Broadman areas 24 and 32 which does not distinguish

the rACC from its historically more posterior or caudal part now called mid-cingulate cortex (MCC)

and which is known to be more involved in primary pain processing [Garcia-Larrea and Peyron, 2013].

Fazeli and Buchel (2018) replicated and further expanded their previous results while controlling for

the aversiveness of their stimuli which could have driven expectations response in the anterior insula

[Fazeli and Büchel, 2018]. They showed again an involvement of the anterior insula in coding stimulus

intensity and expectation which could not be explained by aversiveness and interestingly they further

characterized the ventral part of anterior insula as specifically coding prediction errors.

We described how the behavioral and neural correlates associated with certain pain expectations

seem to agree with a predictive processing view of pain. However in this framework a consequent

importance is also afforded to the precision of expectations. The effect of uncertain expectations on

pain perception was also studied scientifically and we will now review some results on the topic.

The uncertain effect of uncertainty

As hinted to in section 2.3.1, Büchel et al. (2014) suggested that according to a Bayesian view of pain,

the precision with which a placebo intervention is given, and therefore the trust patients put on it, may

play a role in its efficacy (Figure 2.9). They notably base their hypothesis on a series of studies from
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Colloca and colleagues (2006, 2010) on placebo conditioning. In a nutshell, the authors found that

placebo-induced analgesia was stronger and lasted longer (up to 7 days) when the effectiveness of the

“fake” treatment was demonstrated empirically to the participants, instead of giving them only verbal

suggestions [Colloca and Benedetti, 2006]. A second study showed that participants who received

four conditioning trials showed again a stronger and longer-lasting (within a session) placebo-induced

analgesia (but also nocebo-induced hyperalgesia) effects than participants who only received one [Col-

loca et al., 2010]. Colloca et al. concluded that the placebo and nocebo effects rely on the learning

of expectation-stimulus contingencies that are reliable enough. Similarly in a predictive processing

framework, to form strong and long-lasting expectations about pain, these expectations need to be

precise.

Büchel’s team empirically tested their hypothesis in a recent study by artificially conditioning par-

ticipants to experience lower heat pain during a transcutaneous electrical nerve stimulation (TENS)

condition [Grahl et al., 2018]. Unbeknownst to the participants, there was actually no TENS appli-

cation but stimulus intensity was reduced during “Tens on” trials (Plac) of the conditioning phase to

either a constant 30% of pain tolerance for the high precision treatment group (HPT) or to a varying

intensity around 30% for the low precision treatment group (LPT, see Figure 2.10A). This manipula-

tion allowed them to create a high precision placebo (HPT group) and a low precision placebo (LPT

group) who indeed showed more variable pain ratings during the conditioning (Figure 2.10B). The

subsequent test phase presented participants with the same medium level stimulation in both “TENS

on” (Plac) and “TENS off” (Ctrl) trials, yet participants rated the pain as less painful during the

“TENS on”, showing a clear placebo effects (Figure 2.10B). Interestingly this effect was stronger in the

participants who received a high precision placebo, validating Büchel et al. (2014) hypothesis.

The placebo conditioning results we just reviewed globally show that the learning and subsequent

long-lasting effect of expectations depend on their associated precision or inverse uncertainty. However

these experiments did not test the direct effect of the uncertainty of cue-based trial-to-trial uncertainty.

Relying on preliminary results of these kind, Ploghaus et al. (2003) argued that painful stimulations

that are expected, but uncertain about their exact intensity, would cause hyperalgesia through anx-

iety related mechanisms mediated by the ventro-medial prefrontal cortex and mid-cingulate cortex

[Ploghaus et al., 2003]. They hypothesized that knowing with certainty the painful nature of impend-

ing stimuli would activate the fear response system, leading to a decrease in pain sensitivity [Rhudy

and Meagher, 2000], whereas uncertainty would activate anticipatory and anxiety mechanisms leading

to an increase in pain sensitivity. A subsequent empirical work controlling for the mean value of cue-

based expectations while changing their variance (inverse precision) showed indeed higher pain ratings

under high uncertainty conditions irrespective of the direction of the induced expectations [Yoshida
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Figure 2.10: Methods and behavioral results from placebo conditioning with variable precision
in [Grahl et al., 2018] (A) All participants received a placebo conditioning where stimulus intensity was
reduced to 30% of pain tolerance during “Plac” trials and was set to 70% during control (Ctrl) trials. For
participants in the high precision treatment (HTP) group this simulated analgesia was constant, whereas it
presented some variation and therefore was less precise for the low treatment precision (LTP) group. (B)
Behavioral ratings of pain intensity during the conditioning phase that placebo simulation was effective in both
groups, yet LTP participants had higher variation of pain ratings in the simulated placebo trials, as expected.
During the test phase, both groups showed a placebo effect (significant main effect of condition with Ctrl >
Plac), yet when controlling for difference in response to the Ctrl condition, the placebo was stronger for the
HTP group (significant interaction). Adapted from [Grahl et al., 2018].

et al., 2013]. However as emphasized in a recent review by Zaman et al. (2021), within the Bayesian

view of pain the effect of uncertainty (understood as the amount of variation of trial-to-trial cue-based

expectations) should be to decrease the overall influence of short-term expectations on the pain in-

ferential process. This is most likely not an all-or-none phenomenon and uncertain expectations may

have varying effects depending on experimental and individual factors but it has no reason to lead

forcefully to hyperalgesia [Zaman et al., 2021]. Trying to replicate the findings from Yoshida et al.

(2013) on a larger sample of subjects (40 vs 13), they instead found that in case of high uncertainty

of prior information pain ratings were biased toward the average expectation [Zaman et al., 2017], as

suggested by other results [Brown et al., 2008, Lorenz et al., 2005] and in agreement with a Bayesian

understanding of pain. Yet, as they emphasized, if short-term, cue-based, uncertainty may not have

an effect in experimental settings, it is most likely an aggravating factor in long-term chronic pain

conditions for instance [Zaman et al., 2021]. Actually meditation-induced psychological relief observed

in chronic pain patients following an MBSR program [Kabat-Zinn, 1982, Kabat-Zinn et al., 1985]

could be related, if not to a decrease, at least acceptance and equanimity towards the life-threatening

uncertainty of their pathology, a prospect we will develop later.

We saw in this section how scientific results on pain expectations and uncertainty lend some sup-

port for the predictive processing view of pain. Another way to test predictions from this newly

emerging framework of pain perception is to use computational models implementing the hypothe-

sized Bayesian-like processes. Computational modeling allows to predict at once both expectations
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and their uncertainty while taking into account trial and subject-wise variations, offering a more in-

tegrative approach than classical analyses of trial and subject averaged ratings. We implemented one

such approach in our study of pain perception and its potential regulation by intensive meditation

practice (chapter 5). Importantly, we got inspired from recent modeling works from different research

teams which overall provided considerable evidence for the superiority of predictive processing inspired

models to explain pain perception in humans in terms of behavior [Anchisi and Zanon, 2015, Grahl

et al., 2018, Hoskin et al., 2019, Nickel et al., 2022], physiological responses [Geuter et al., 2017, Fazeli

and Büchel, 2018, Nickel et al., 2022], fMRI brain activations [Geuter et al., 2017, Fazeli and Büchel,

2018, Grahl et al., 2018] and EEG oscillations [Strube et al., 2021, Nickel et al., 2022] as well as in

freely-moving animals (rats) with invasive electrophysiological recordings [Song et al., 2019, Song et al.,

2021].
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Chapter 3

A predictive processing view of

contemplative experience

In this last introductory chapter we will try to link what was discovered in the last 50 years of contem-

plative research — but also what has been already theorized by contemplative traditions for centuries

— to the recent explanations of the body-brain system as a predictive engine. In this effort we will

aim at integrating several preliminary theoretical works on this topic into a broader (but most likely

provisional) account of how meditative practices may alter predictive mechanisms. To do so, we will

develop three main working hypotheses on which we based our subsequent empirical work. Finally,

we will present the exact study design and experimental paradigms that we implemented during this

PhD, notably to investigate the acute effect of meditation during a 10-day residential retreat.

As a side note, following the terminology used in most scientific works in the field and to gain

clarity, we will interchangeably talk about predictive processing or Bayesian inference to refer to both

predictive coding (which was historically restricted to perception) and active inference (at first, limited

to motor behavior). Yet, it should be kept in mind that recent developments of active inference are

construed as the most general formulation of the Free Energy Principle applied to the brain and, as

such, have been proposed to explain not only action and perception but also interoception, mental

actions and extended cognition. To bridge this most recent developments of the theory with previous

formulations of mostly perceptual processes, such as the auditory deviance detection or pain perception,

in terms of “predictive coding” we chose to stick most of the time to the more popular term of “predictive

processing”, reserving the usage of “active inference” to the necessary cases (e.g., to account for mental

phenomena). We hope that the very recent release of the “Active Inference” volume by Parr, Pezzulo

and Friston (2022) will foster a broader use of the term and harmonize the field [Parr et al., 2022].
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3.1 Explaining the meditative brain (and body) through

perceptual, interoceptive and active (Bayesian) infer-

ence

3.1.1 Preliminary proposals

A first proposal to link contemplative practice and predictive coding is to be found within a theoretical

article from Khachouf, Poletti and Pagnoni (2013) whose main focus was to revive the neurophe-

nomenological enterprise initiated by Varela [Varela et al., 1992, Varela, 1996] with Kantian ideas on

transcendentality [Khachouf et al., 2013]. Briefly stated, they proposed that concurrent free-energy (or

prediction errors) minimization under low sensory stimulation and heightened attention during medita-

tive practice could allow the refinement of internal models of both the world and the self, progressively

revealing to the practitioner its own cognitive structure.

Similar ideas were developed in parallel by Farb et al. (2015) who focused more specifically on in-

teroception and its modulation by contemplative practices [Farb et al., 2015]. Indeed the percep-

tion of internally generated sensory signals (heart-rate, breathing, body temperature and any other

homeostatically-regulated physiological variables) could also be explained in terms of predictive pro-

cessing, with a central role of the insular cortex in the integration of interoceptive signals ([Seth et al.,

2012, Seth, 2013, Seth and Friston, 2016, Allen et al., 2019, Barrett and Simmons, 2015]; see also Fig-

ure 3.1 for a simplified mechanistic account). Farb et al. (2015) claimed that meditation would partly

exert its transformative effects on maladaptive habits and behaviors through enhanced sensitivity and

non-reactivity to bodily interoceptive signals but also increased regulation of automatic emotional re-

actions [Farb et al., 2015]. Such modulation would be mediated in a first place by attentional precision

weighting (i.e., amplification) of ascending interoceptive sensations proper to the body–oriented (e.g.,

breathing) meditative focus, whose sensory acuity have been found to be enhanced as a result of med-

itation [Daubenmier et al., 2013a, Fox et al., 2012, Kerr et al., 2008, Mirams et al., 2013]; with the

caveat that this mechanism may not apply to interoceptive signals in general — for instance, experi-

mental assessments of increased heartbeat perception, which is not a common meditation object, have

given mixed results [Bornemann and Singer, 2017, Khalsa et al., 2008, Melloni et al., 2013]. Farb et al.

(2015) also hypothesized that meditative training would induce an overall shift of cognition from active

Bayesian inference, where error minimization is performed by automatically acting upon the world,

to “passive” perceptual inference where prior knowledge is revised and down-weighted in the face of

current evidence [Farb et al., 2015]. This process of passive observation and regulation of one’s own

cognitive mechanisms was linked to the emotional and cognitive attitude of “decentering” that could
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help foster non-reactivity toward adverse experiences faced during the course of illness or emotionally

difficult events.

Figure 3.1: Simplified mechanistic representation of “interoceptive” inference. Similarly to classical
perceptual inference on exteroceptive inputs, interoceptive information from visceral states of the body would be
compared to interoceptive predictions in the insular cortex. Resulting prediction errors would serve to update
a generative model of our homeostatic states, but could also take part in the salience signaling function of the
insula. Detection of a surprising physiological sensation, e.g., higher-than-expected body temperature, would
thus lead to recruitment of the executive network and other relays (not represented in the figure) to regulate
through appropriate autonomic/hormonal/behavioral action the homeostatic variable back to a viable range
(for vital signals, most likely defined by genetically-encoded, non-flexible priors). Reproduced from [Jamieson,
2016].

The perspective of interoceptive predictive processing was also adopted by Jamieson (2016) in

the context of hypnotic states and meditative practices, with an emphasis on the central role of the

insula, whose activity has been shown to be modulated by both hypnosis and meditation [Jamieson,

2016]. Finally, Pagnoni and Guareschi (2017) approached the question through the original format of

a dialogue between a neuroscientist and a Zen Soto abbot [Pagnoni and Guareschi, 2017]. Exploring

topics as diverse as mind-body interaction, the importance of attention and posture in meditation, time

perception and dreaming, they discussed how parallels could be drawn between the Free Energy Prin-

ciple explanation of cognition, perception and action, and doctrinal and —perhaps most importantly—

empirical knowledge coming from the Buddhist Zen Soto tradition.

If these preliminary discussions were crucial in developing the bases for a predictive coding under-

standing of processes at stake during meditation, they nevertheless lacked an articulated organization

and general viewpoint and did not cast precise hypotheses and predictions on how meditative practices
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should influence predictive coding processes. This complex but potentially groundbreaking venture

was only initiated recently and theoretical articles are still sparse: a seminal work focused on the

open presence practice of shikantaza in Zen Buddhism ([Pagnoni, 2019], further developed in [Pagnoni

and Guareschi, 2021], while a more general account including focused attention meditation was de-

veloped at the same time [Lutz et al., 2019]; and finally extended to encompass focused attention,

open-monitoring and non-dual practices common to most contemplative traditions [Laukkonen and

Slagter, 2021], as well as modern mindfulness practice under the MBCT therapeutical intervention

[Manjaly and Iglesias, 2020]. Relying on these independent proposals we will now try to delineate an

integrated, but most likely provisional, view of meditative experience and effects within the scope of

predictive processing.
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3.1.2 An integrative hypothetical account of the predictive brain un-

der meditation

[The free energy principle] ties together in a coherent theoretical scaffold the core

meditative notions of attention (top–down deployment of precision weighting), the

conditioning power of habitual self-related patterns of thought and behavior (priors), and

the embodied nature of cognition and emotion (interoceptive inference)

Lutz, Mattout and Pagnoni in The epistemic and pragmatic value of non-action: a

predictive coding perspective on meditation (2019)

Calming the monkey mind through attentional modulation and sustained posture:

a precision-weighting story ?

The term “monkey mind” is often used in Buddhist teachings to refer to the restless and incessant

jumping from thoughts to thoughts that naturally arises when we do nothing special, or distract us

when we are engaged in a task [Rinpoche and Swanson, 2010a, Rinpoche and Swanson, 2010b]. This

cognitive process, now also widely studied in cognitive science as mind-wandering or “day-dreaming”,

has been investigated with brain imaging techniques and associated with the activity of the default

mode network (DMN, [Christoff et al., 2009]). It is important to note that mind-wandering has

most likely a significant adaptive value in supporting future planning, creativity and problem solving,

yet both contemplative traditions and empirical research agree that it is also often associated with

confusion, rumination, worry and overall negative mood [Killingsworth and Gilbert, 2010, Ruby et al.,

2013, Smallwood and Schooler, 2015].

The first and foremost method employed by most meditative practices to “loosen the grip” of this

monkey mind and attain calm and clarity is attentional training, which we described at length in the

first chapter (see section 1.2.3). Indeed, meditative practices have been shown to behaviorally increase

the recognition of mind-wandering episodes through enhanced meta-awareness, often leading to less

overall distraction and negative thoughts in daily-life [Kok and Singer, 2017, Jazaieri et al., 2016] or

while performing a cognitive task [Zanesco et al., 2016, Mrazek et al., 2013]. In neuroimaging studies,

meditation has been in fact associated with reduced activity of the DMN both at rest and during tasks

[Brewer et al., 2011, Garrison et al., 2015, Pagnoni et al., 2008], and with a recruitment of the salience

and executive networks, a finding interpreted to signal the role of these circuits in disengaging from

mind-wandering [Hasenkamp et al., 2012].

A number of theoretical works have proposed various mechanistic explanations for attention-related
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effects of meditation (see, e.g.,[Lutz et al., 2008b, Malinowski, 2013, Tang et al., 2015, Vago and Zeidan,

2016], non-exhaustive list). We will focus here on recent developments of a simple yet far-reaching

predictive processing explanation: meditative attention would differentially modulate the precision-

weighting of high-order cognitive contents and low-level sensory information.

This is most prominently exemplified in focused attention (FA) practices where meditators focus on a

single target, often breathing or bodily sensations — but it can also be on visual or auditory stimulus,

or even thought and emotions — while monitoring potential distractors and disengaging from them

whenever distracted. It most often involves to hold a steady sitting posture but lying down or walking

FA meditations also exist. In terms of predictive processing, this focus should increase the precision

afforded to attended sensory streams and their associated prediction errors, for example interoceptive

inputs in the case of breathing, proprioceptive ones for postural sensations and exteroceptive for visual

images and sounds. Most predictive processing accounts of meditation [Laukkonen and Slagter, 2021,

Lutz et al., 2019, Pagnoni, 2019, Manjaly and Iglesias, 2020] agree that such precision up-weighting of

low-level sensory content should mechanically down-weight the relative precision of abstract cognitive

content associated to mind-wandering (e.g. thoughts, memories, future planning, etc), as the latter

rely on “deep temporal models” of the world, established in higher-order areas (most likely prefrontal)

over longer timescales [Laukkonen and Slagter, 2021] 1.

Predictive processing can also account for the constant cycle between focus and mind-wandering

observed in FA practices. The usually calm and undisturbed environment prescribed for meditation

leads to a situation of relatively low surprise. After some time without much informative prediction

errors, the estimated “newsworthiness” of sensory streams declines and their precision is naturally

down-weighted. This increases the probability that the automatically-arising, habit-driven functioning

of the brain based on higher-order autobiographical priors (mind-wandering or deep temporal models),

becomes preponderant again. Crucially, though, when one is engaged in meditation such shift is likely

to be more promptly noticed, as meditation instructions install highly-precise predictions regarding

proprioceptive (body stillness) and interoceptive (regular breathing) signals. After few seconds of

mind-wandering, loss of attention to the posture may lead, e.g., to the head and shoulders naturally

stooping forward, the body leaning sideways, the gaze losing focus or the breath rhythm changing
2. These bodily changes would trigger interoceptive and proprioceptive prediction errors, due to

1Abstract cognition has been linked in the predictive processing framework to a refined version of active
inference involving “mental actions” and entailing hierarchical generative models whose inference concerns ex-
tended periods of time and are thus called temporally “deep” or “thick” models [Friston, 2018b, Limanowski
and Friston, 2018]. This more elaborated kind of inference is necessary for selecting the best sequence of fu-
ture actions (policy) to minimize expected surprise, based on beliefs about desired states of the organism (or
sensations), its environment and the consequences of its own actions. To do so accurately an organism needs
to entertain a certain counterfactual richness of future states it may fall in, a process therefore described as
“counterfactual inference” [Friston, 2018b, Corcoran et al., 2020].

2Slow and deep breathing is encouraged in some traditions and has been hypothesized to occur as a side
effect of meditation, even when not explicitly instructed [Gerritsen and Band, 2018]. Slower respiratory rate was
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the high precision concerning sensory signals and posture set by the meditative policy, that would

accumulate and eventually cause the involuntary attentional drift to be disclosed to consciousness

(most likely through the insula and salience network). Executive brain networks would then initiate the

disengagement from distracting mental content, thereby stopping abstract deep temporal processing,

and shift back attention to the meditative target.

The above perspective underwrites the importance of an active posture in meditative practices.

Pagnoni and Guareschi (2017, 2019, 2021) emphasized this point in the case of Zen shikantaza prac-

tice, where the posture is integral to the meditative process, functioning almost as a “biofeedback

device” with numerous channels (upright posture, half-closed eyes and steady gaze, specific hands po-

sition [Pagnoni and Guareschi, 2017, Pagnoni, 2019, Pagnoni and Guareschi, 2021]). A great care in

setting and monitoring bodily posture would prescribe a very high precision for interoceptive and pro-

prioceptive inputs and lead to easier detection and disengagement of ongoing mind-wandering during

meditation, a notion which was further developed and construed as a specific and disciplined form of

“mental action” in Lutz et al. 2019. The importance of interoception — and of its main cortical actor,

the insula — in mediating the “positive” effects of contemplative practices on bodily and mental health

were reviewed at length in [Farb et al., 2015], and the specific role of respiration detailed in [Gerritsen

and Band, 2018].

The example of shikantaza meditation is of particular relevance as it largely belongs to the family

of open-monitoring (OM) practices3, and we can thus ask ourselves whether the precision-weighting

process described above for FA meditation also fits OM practices, where attention is monitored but

not directed to a single sensory object.

Laukkonen and Slagter (2021) hypothesized that under a distributed attentional stance towards any-

thing that may arise in consciousness, “any content of experience is assigned equal precision, and

consequently low precision in relative terms” [Laukkonen and Slagter, 2021]. Thus, the consequences

of OM and FA practices on mind-wandering — i.e., an overall reduction of this process — would be

quite similar, as (spontaneous) mental content that is not afforded a relatively greater precision com-

pared to other content could not be sustained for very long. However, while one could predict shorter

and shorter mind-wandering episodes as a practitioner gain experience in the practice, the goal is not

to stop the natural flow of thoughts. In fact, a quality of non-judgment and non-reactivity (equa-

nimity) towards the content of experience is often instructed in OM meditations, which prominently

applies to any past- or future-oriented thoughts. A non-judgmental attitude could be construed in

indeed observed empirically in both novices (with also increased respiration volume when attending specifically
to their breath [Farb et al., 2013]) and experts meditation practitioners at rest [Wielgosz et al., 2016], compared
to control participants. Experts were additionally shown to have somewhat higher interoceptive accuracy of
their breathing compared to controls [Daubenmier et al., 2013b].

3But it could also be argued that shikantaza is closer to an advanced form of OM referred to as open presence,
a practice sometimes placed in the non-dual family of contemplative practices [Dunne, 2011b].
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predictive processing as a flattening of prior beliefs. No hypothesis, cause or explanation would be

greatly favored over another at higher cognitive levels. This would lead higher-order (temporally-deep)

predictions based on autobiographical ingrained priors and habits to have low precision and so impede

their triggering of self-reinforcing confirmative actions (habits are formed and maintained via their rep-

etition), ultimately causing them to degenerate (in the sense of having a shorter lifetime). According

to Laukonnen and Slagter (2021) this non-judgmental aspect of meditative experience should reach its

climax in highly advanced “non-dual” practices supposed to halt even the distinction between self and

objects, reaching a state of awareness “that is hence devoid of concepts (self, objects), intentionality

or the experience of time and space, i.e., a state in which even the most basic constructs of cognition

allegedly no longer persist” [Laukkonen and Slagter, 2021]. The realization of a non-dual state would

theoretically lessen the selection of any deep temporal processing or in the authors’ words, it would

“prune the counterfactual tree”, hypothetically interrupting any cognitive or sensory prior formation

for the duration of the practice (see Figure 3.2).

Pagnoni (2021) and Lutz (2019) further argued that the regulated physical and mental poise in-

stantiated during most meditative practices would suspend the habitual (and unaware) confirmatory

nature of our actions vis-à-vis our engrained priors, thus reducing the natural tendency to judge and

act compulsively [Pagnoni and Guareschi, 2021, Lutz et al., 2019]. In other words, meditative practice

would involve nudging Bayesian inference in the direction of “perception” (i.e. “changing the model to

better match the world”) rather than “action” (“changing the world to better match the model”), as

Farb et al. (2015) also emphasized, from which its epistemic value “of gaining an intimate knowledge

about the constructive and dynamical nature of mental function (e.g. recognizing the impermanence

of a thought)” [Lutz et al., 2019] that we are going to detail now.
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Figure 3.2: Schematic representation of the reduction in deep temporal processing supposed
to happen during meditative practices by Laukonnen and Slagter (2021) The left panel represents
the increase in temporal depth of processing, when ascending in the brain hierarchy, by the complexity of a
“counterfactual tree”. Different levels of self-experience are supposed to arise at multiple levels of the hierar-
chy. At the top we find a narrative self [NS] resulting from deep temporal models (over long timescales) on
autobiographical priors, which are supposed to predict future states and guide behavior to minimize expected
surprise. At an intermediary level is found an experiencing self [ES] based on less temporally thick models
embodying the causal structure of the world and minimizing actual surprise based on current inputs. At the
lowest level a primitive form of self-experience arising from the subject/object distinction would still be present.
The right panel represents the effect of meditative practices in reducing the temporal depth or thickness within
this scheme, or as metaphorically coined by the authors how they “prune the counterfactual tree”. Focused
Attention (FA) meditation would disrupt the narrative self (cause of mind-wandering processes) by passing
from a thinking to sensing mode of experience. Open monitoring (OM) practices are hypothesized to further
break down temporal depth to a state where any experience is appraised equally but the subject/object duality
still remains. Finally non-dual (ND) practices would remove even this duality to reveal the latent background
of all experience, awareness itself. A more precise description of such “pure awareness” states are provided in
[Laukkonen and Slagter, 2021], and notably the paradoxical assertion of being able to report on these states
despite the absence of “subject” to experience it is treated. The authors also acknowledged that the three layered
cognitive hierarchy depicted here is a simplification to map the three meditative practices developed above, and
that the real hierarchy is certainly composed of many more layers. Reproduced from [Laukkonen and Slagter,
2021].

From mental transparency to opacity: meditation as a tool to reveal the cognitive

structure of the mind

The hypothesis that meditative practice, through the modulation of predictive processing, may foster

insights into the deeply constructed nature of cognition was present in the earliest work on the topic

[Khachouf et al., 2013]. Farb et al. (2015) then developed how enhanced meta-awareness of intero-

ceptive processes may lead to a clearer view of the complex relationships between bodily reactions,

emotions and thoughts, informing the practitioner on both its mental and emotional cognition [Farb

et al., 2015]. A crucial link between meditation epistemic goal and predictive processing account of

mental activity was introduced by Lutz, Mattout and Pagnoni [Lutz et al., 2019], using the philo-

sophical notion of phenomenal transparency [Metzinger, 2003], which we will briefly illustrate in the
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following.

When we perceive, think or feel we are usually aware of their content, but not of the underlying cogni-

tive processes allowing these experiences, which are therefore “transparent” to us. In other words, we

have only access to the final product of our cognition (like when seeing a bird passing by our window)

but not of the medium by which cognition is possible (the transparent glass allowing us to see outside).

Conversely, a mental process is said to be “opaque” when we are clearly aware of the underlying cog-

nitive and contextual factors leading to a given experience, for instance the logical reasoning needed

to obtain a mathematical result. Within the predictive processing framework, conscious access to a

given mental process or object through “introspective attention” (“opacifying” it) has been linked to

the increased precision afforded to its corresponding representation 4 which crucially can be mediated

by top-down deploying precision-weighting at a specific level of the hierarchy of the generative model,

a “mental action” associated with attentional control [Limanowski and Friston, 2018].

Interestingly, phenomenal transparency seems to be our default cognitive mode [Lutz et al., 2019,

Pagnoni, 2019], and this cannot be changed by a simple conceptual understanding of this notion. Lutz

(2019) and Pagnoni (2019) suggested that meditative practice may enable a progressive opacification of

habitually transparent cognitive processes such as perception, emotions, up to the unfolding of thoughts

themselves. Carefully “looking inward” at the perceptual and mental phenomena accompanying an

emotional reaction (e.g. being angry) for instance, would progressively disclose its building blocks and

dynamics (e.g., the tension in the body, the sensation of a looming threat, etc.), thus revealing its

constructed and provisional nature. This specific meta-cognitive quality developed through meditation

training has been variously described as “phenomenological reduction” [Varela, 1996, Husserl, 1931],

“decentering”, “defusion” or “dereification” in the literature [Farb et al., 2015, Lutz et al., 2015] and

generally entails the ability to experience thoughts, emotions and percepts as transient mental events,

rather than taking them for granted as accurate depictions of reality or fixed ontological entities, and

therefore realize their dependent and impermanent nature.

However, as Limanowski and Friston (2018) observed, a disruption of the natural phenomenal trans-

parency at higher levels of cognition, up to our minimal sense of self-hood, may also cause experi-

ences of derealization and depersonalization, which appear in psychopathological conditions such as

schizophrenia [Friston et al., 2014], under psychoactive substances [Millière et al., 2018], but also during

meditation [Lindahl et al., 2017]. If the involuntary disruption of the sense of self has been character-

ized as an unpleasant “side effect” of meditation practice [Lindahl et al., 2017, Schlosser et al., 2019]

4Representation is here not used in the classic cognitivist sense of representations about objects which would
only exist “out there”, and would need a central controller to manipulate them —a view now fairly criticized, see
[Varela et al., 1992] for a detailed critic and the initial enactivist proposal. Differently in predictive processing /
active inference we can talk of patterns of brain activity behaving “as if” they were representing external objects
(after all, representation is in the eye of the beholder) and there is no need for a central controller as the system
is a self-organizing one.
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5, such experience is also intentionally brought forth in the so-called non-dual contemplative practices

described above [Laukkonen and Slagter, 2021, Dunne, 2011b]. More conventional meditative practices

such as FA would already change the transparency or “realness” of higher-order, temporally-thick cog-

nitive priors through the deployment of greater precision to the lower layers of the generative model

closer to the sensory surfaces [Laukkonen and Slagter, 2021]. OM practices are hypothesized to in-

crease dereification even more through the non-judgmental attitude they promote, and in doing so

should “reveal that the embodied and narrative self are just processes rather than concrete entities”

([Laukkonen and Slagter, 2021], e.g. [Teasdale and Chaskalson (Kulananda), 2011]) .

Manjaly and Iglesias (2020) provided another interesting mechanistic explanation for how mindful-

ness meditation may foster dereification through changes in predictive processing, focusing specifically

on the “being mode” and decentering qualities promoted within the MBCT (Mindfulness-Based Cog-

nitive Therapy) program [Manjaly and Iglesias, 2020]. In their view, the heightened attention, and

therefore precision, afforded to varying incoming sensory signals during meditation would induce a con-

stant update of beliefs (or priors) about states of the environment (world and body), as the prediction

errors associated to these signals are expected to carry meaningful information. According to the self-

efficacy hypothesis of bodily states control [Stephan et al., 2016], the brain would entertain a specific

model of internal physiological states, constantly monitoring vital signals of the body (allostasis). In

addition a secondary level in this system would monitor (make predictions on) the “controllability” of

these body states, a process that could be construed as meta-allostasis. Higher-order metacognitive

beliefs about physiological control would (in part) create our sense of agency: “I (the system) am in

control of my bodily states”. Meditation, by triggering a constant updates of beliefs about bodily states

through the heightened attention to interoceptive signals, would underscore the continuous variability

of such signals, which in turn would alter allostasis predictability [Manjaly and Iglesias, 2020]. As a

consequence, the metacognitive belief of being in control would be weakened, loosening our felt sense

of agency (see Figure 3.3). Said otherwise and perhaps more intuitively, paying attention to the body

informs the practitioner of the constant change of states of the world (of which its own body states),

what is often called in Buddhist teachings the “law of impermanence”, and reveals the illusory nature

of believing that one is totally in control, even of its own body.6

5While experientially clarifying the impermanent and constructed nature of the self is deemed a necessary
step to alleviate one’s own suffering in Buddhist philosophy [Varela et al., 1992], this does not guarantee future
“positive” consequences in the meditator, which may speak to the important role of cultural/religious framing of
these practices and of a close teacher (see [Lindahl et al., 2019, Schlosser et al., 2019] for insightful discussions
on this complex topic.)

6One could wander if such disruption of the feeling of being in control may not be aversive and trigger for
example a panic attack during meditation, a problem not tackled by [Manjaly and Iglesias, 2020] and which
could be further enhanced by pre-existing individual conditions. Adverse events of this kind are not impossible in
meditation, yet quite rare and known to meditation teachers who are usually trained to prevent and manage them
(see [Lindahl et al., 2017, Lindahl et al., 2019] and section 1.2.5 where we covered meditation–related adverse
events in details). More specifically, as envisaged in the self-efficacy hypothesis of allostatic control: “While
perceived low self-efficacy likely represents an inevitable consequence of persistent dyshomeostasis, various
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A critical commentary of Manjaly and Iglesias (2020) proposal was made by Verdonk and Trousselard

(2021). Briefly, they suggest that the increase precision in likelihood (sensory inputs) resulting from

mindfulness practice (on which they agree), is not compatible with Manjaly and Iglesias’s secondary

proposal of reduced prior precision [Verdonk and Trousselard, 2021]. Increased likelihood precision at

time t would indeed lead to increased precision of the posterior belief about causes of a given sensory

signal, a posterior which becomes the new prior at time t+1 according to Bayes’ rule. Instead they

propose that mindfulness would enhance the context-updating of prior beliefs in response to changes

in the environment so they are optimally adjusted to the present moment. Actually both proposal may

be reconcilable in the sense that to allow for an optimal updating of beliefs, priors need to be flexible

enough (not afforded overwhelming precision compared to sensory likelihood), what meditation would

permit.

Figure 3.3: Hypothesized mechanism for meditation induced decentering or dereification pro-
posed in [Manjaly and Iglesias, 2020]. The high-precision afforded to sensory prediction errors (PE) would
trigger a constant belief updating (BU) at perceptual levels modeling the inferred sensory states, crucially in-
cluding bodily ones. As a consequence, higher-order metacognitive beliefs about body states control would see
their relative precision reduced, leading to a loosening of the sense of control and agency, a first step for seeing
thoughts, emotions and percepts as transient and dependent mental processes (dereification). Reproduced from
[Manjaly and Iglesias, 2020].

protective factors may prevent its spread to other cognitive domains and block the generalization to hopelessness.
For example, intellectual abilities or social support may maintain a sense of mastery that shields against an all-
encompassing feeling of loss of control.” [Stephan et al., 2016] We can hypothesize that in the case of meditative
practice, group support and instructor teachings provide these protective factors, emphasizing the importance
of guidance from qualified instructors and the needed carefulness regarding individuals with predispositions to
“hopelessness”.
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Predictive model optimization, the praxis of contemplative stillness ?

Another way meditation could impact predictive processing in the brain is through the optimization of

the internal generative model [Pagnoni and Guareschi, 2017, Pagnoni, 2019, Pagnoni and Guareschi,

2021]. This notion is inspired by the predictive processing view of sleep and dreaming proposed by

[Hobson and Friston, 2012]. In a nutshell, Hobson and Friston proposed that rapid eye movement

(REM) sleep in mammals and birds serves a crucial function: optimizing the complex world model

shaped through active and perceptual inference during the waking hours by reducing its complexity

[Hobson and Friston, 2012]. This speaks to the parsimony principle known as the Occam’s razor:

any explanation (or model) should be as simple as possible, while still providing sufficient accuracy.

Indeed, an extremely accurate and complex model would both be computationally expensive and not

generalize well to novel situations (a situation known as overfitting in statistics). One of the strengths

of the active inference approach is that model accuracy and complexity are jointly optimized under

the free-energy minimization scheme. In this specific case, the reduction of complexity would be

carried out during REM sleep by pruning redundant synaptic connections, a proposal largely in line

with the synaptic homeostasis hypothesis of sleep [Tononi and Cirelli, 2006, Tononi and Cirelli, 2014].

Hobson and Friston (2012) additionally proposed that dreams would be a manifestation of priors-

driven inferential processes where top-down predictions continue to be emitted but sensory predictions

errors and motor behavior (except for rapid-eyes movements or during sleep related disorders) are

suppressed by a circadian shift from aminergic to cholinergic neuromodulation inhibiting sensory and

motor neurons [Hobson and Friston, 2012]. In this modality, the brain would entertain and optimize

virtual scenarios of its world based on the recombination of statistical regularities sampled during

wake. As summarized by the authors: “sleep provides an opportunity to eliminate the complexity

and redundancy accumulated by experience-dependent learning during the day” [Hobson and Friston,

2012].

Pagnoni (2017) first proposed an interesting parallel between REM sleep and meditation by noting

that both states imply a reduction in the complexity of the sensorium (darkness for sleep, calm environ-

ment for meditation) and an inhibition of overt behavior (automatic in sleep, voluntary in meditation)

[Pagnoni and Guareschi, 2017]. Similarly to REM sleep, meditation could also support a form of model

optimization, a notion reminiscent of the emphasis on “unlearning” dear to contemplative teachings

as exemplified by the famous quote of Shunryu Suzuki in his book Zen Mind, Beginner’s Mind : “In

the beginner’s mind there are many possibilities, but in the expert’s mind there are few.” [Suzuki,

2020]. More specifically, predictive processing accounts of meditation argue that this optimization of

our internal model would target in particular the relationships between mental activity and its bodily

correlates [Pagnoni, 2019, Lutz et al., 2019, Pagnoni and Guareschi, 2021]. By sitting still in a non-
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judgmental attitude toward anything that may arise, meditation would allow the concrete re-enacting

of stimulus-response behaviors occurring in daily life but in a non-reactive, non-confirming way. For

instance, a saddening thought or memory comes to mind and is quickly accompanied by a host of bodily

reactions: the posture bends forward, a churning sensation appears in the belly, the chest gets tighter,

breathing becomes shallower, etc. It is possible that with sufficient meditative training one can ob-

serve these natural processes “at a distance”, without trying to stop them, neither judging nor reacting.

Such “in-active” stance would steer the inferential process in the direction of pruning maladaptive but

long-ingrained reactive priors or “patterns, to chasing after what we like (including ‘enlightenment’)

and avoiding what we don’t like” [Pagnoni and Guareschi, 2021]. In this sense contemplative in-action

can been thought of as a virtuously constrained “wholesome” model optimization toward a long-term

reduction of suffering, which may mediate its positive effects on pathological conditions [Wielgosz et al.,

2019].

Predictive model optimization during sleep was further extended to “day-dreaming” or mind-

wandering by seeing these moments of abstract reflection secluded from the sensory world as “fact-free

learning”, potentially leading to insights [Friston et al., 2017, Laukkonen and Slagter, 2021]. From this

perspective, mind-wandering episodes naturally and recurrently occurring during meditation can be

seen as opportunities, rather than nuisances, “for the generative model that we are to learn about itself”

[Pagnoni and Guareschi, 2021]. Indeed, as noted by Pagnoni (2019), during REM sleep our mental

content is fully transparent, we do not know that we are dreaming (except during lucid dreaming),

and similarly — although to a lesser extent — during day-dreaming we are engrossed in our streams

of thoughts, oblivious to the cognitive processes generating them. Meditation, on the other hand, may

render mental processes more opaque [Pagnoni, 2019, Lutz et al., 2019], thereby facilitating the bodily

experience of thoughts and emotions as constructed processes, amenable to regulation and perspective

taking. By allowing the observation of the unfolding of mind-wandering, meditation could amplify

its insight-generating nature or as cleverly expressed by Pagnoni and Guareschi (2021): “meditative

in-action [can] be regarded as a skilled optimization of the ‘default’ auto-epistemic modality that char-

acterizes spontaneous mindful rest” [Pagnoni and Guareschi, 2021]. Once again, the non-reactivity

to spontaneous thoughts, instead of reinforcing them as in pathological cases of rumination (e.g., in

depression), would reduce their salience. Furthermore, the immobility prescribed by the posture would

compel the system (us) to find alternative ways of minimizing the prediction errors associated to unex-

pected mental states (e.g., anxiety) and their autonomic/bodily correlates (e.g. stress arousal), rather

than resorting, as we often do, to performing distracting actions that only temporarily attenuate the

consequences of the latent generating issue. During meditation one can clearly see how disturbing

thoughts are impermanent and quickly disappear when not actively sustained, while their associated

bodily reactions also vanish. Pagnoni and Guareschi (2021) went further by proposing that “meditation
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is not a strategy to assuage anxiety by reducing uncertainty, but rather a way of constraining dynam-

ics against habitual reactive patterns so that tolerance to uncertainty can be learned” [Pagnoni and

Guareschi, 2021]. While such view may seem at odds with the predictive processing axiom of surprise

minimization, the contradiction is only apparent: transient increases in surprise represents opportuni-

ties for the internal model to incorporate novel information, which may be necessary to minimize the

average surprise in the long term.

In summary, we identified three related ways in which meditative practice may influence predictive

processing. A first important step would be the precision up-weighting of low-level, temporally thin,

sensory (interoceptive, proprioceptive and exteroceptive) information and the resulting relative preci-

sion down-weighting of high-level, temporally thick, abstract mental content, via a disciplined training

of attention and postural immobility. The subsequent release of attentional focus in open-monitoring

practices would correspond to a more equitable redistribution of precision among the possible con-

tents of experience, a “flattening” of the distribution of prior beliefs over expected body-mind states

(e.g., mental habits and their bodily correlates), promoting a non-judgmental attitude. Additionally,

active monitoring of proprioceptive inputs and voluntary stillness could induce a shift of the infer-

ential process from the active, confirmatory modality (changing the world to increase the likelihood

of our desired states) to the perceptual modality (revising the model to make it more aligned to the

current evidence). A parallel outcome, naturally stemming from the previous changes, would be an

increased metacognitive access to the processes underlying any mental phenomena, be them percepts,

emotions, thoughts, up to the felt sense of an independent and permanent self. In time, such height-

ened meta-awareness is deemed to foster the “dereification” of mental content, which then comes to be

seen as mind-constructed entities, impermanent and dependent on various factors, abating the natural

tendency to automatically react to them in maladaptive ways. Finally, contemplative in-action and

the mindful regulation of day-dreaming episodes naturally appearing during its practice, could lead

to the optimization of our embodied generative model, ultimately cultivating further equanimity and

insights.

The theoretical account we just developed does not have the ambition to be fully exhaustive and

explain every aspect of meditative experience and its effects. Rather, we tried to extract the core

components on which most of the previous accounts agree and which could be reliably based on

known — and in some cases, experimentally proven — aspects of predictive processing. The main and

significant caveat of such proposal is the current lack of experimental evidence to support it. If previous

results from the meditation literature were ingeniously reinterpreted with predictive processing lenses

in a postdictive manner, experimental works genuinely testing the hypotheses developed above were

almost absent at the onset of this PhD project (2018), except from an initial work from our team on

a mismatch negativity EEG paradigm [Fucci et al., 2018], and a preliminary study on reward-based
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prediction errors [Kirk and Montague, 2015]. Since then we have identified only four studies which tried

to test the effect of meditation practice on cerebral and behavioral markers of predictive processing:

a follow-up fMRI study on the effect of mindfulness practice on reward prediction errors [Kirk et al.,

2019], two studies on pain conditioning [Taylor et al., 2018] and pain expectations [Vencatachellum

et al., 2021], and an experimental work on multi-sensory integration [Guthrie et al., 2022]. In addition,

a modeling work carried out in collaboration with our team simulated meta-awareness and attentional

control processes within an active inference framework [Sandved-Smith et al., 2021]. While these

pioneering works are certainly valuable, more experimental research is needed and the present PhD

thesis work was aimed precisely at this.

We will now detail simple predictions that can be drawn from the predictive processing account of

meditation we just reviewed, along with the experiments and study we designed to test them during

this PhD.
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3.2 From theoretical to active “scientific” inference: pre-

dicting and testing the effects of meditative practice

on predictive processing

3.2.1 Heightened sensory precision and decreased prior formation?

Insights from the study of auditory deviance detection under

meditation

The auditory mismatch negativity (MMN) response, which we described earlier (section 2.2), is hy-

pothesized to be a correlate of prediction errors within the cortical hierarchy and to be enhanced by

attention through precision-weighting. According to the predictive processing account presented pre-

viously, meditation would be expected to influence the MMN, potentially in different ways depending

on the specific meditative practice. FA meditation most likely fosters a global state of high-sensory

precision as potential distractors (e.g. out of focus sensations, mental contents) are monitored and

disengaged from. This enhanced attentional state, even if not usually directed to the auditory modal-

ity (focus on the breath or body sensations), would render unexpected stimuli (deviant tones) more

surprising, leading to an increased MMN. A meditation focusing specifically on the auditory modality

should further amplify this effect. During OM meditation, attention is more distributed than in FA

but higher precision is still given to sensory streams compared to higher-order mental content. An

effect specific to OM practice may concern the formation of prior expectations. Indeed the magni-

tude of the MMN is hypothesized to be dependent not only on the precision afforded to unexpected

tones (deviants) but also on the strength (confidence) of the prediction about expected incoming tones

(standards). This prior expectation is formed through the repetition of standard tones. Advanced

OM meditation could potentially decrease this regularity extraction process and therefore lead to a

reduced MMN, as the latter reflects the difference between “expected” and actual tone. In other words,

deviant tones would be less surprising and so not elicit a strong prediction error (MNN). Interestingly,

these predicted effects should also depend on the amount of practice, with experts practitioners show-

ing stronger effects than novices for example. FA in experts could also gradually resemble aspects of

OM. These predicted effects could also exhibit subtle differences following the meditative instructions.

For instance, applying FA on the auditory modality versus the visual modality, or on focusing on the

content of experience versus its monitoring aspect could impact sensory precision or prior formation.

A schematic summary of these predictions about sensory precision and prior formation in general (not

restricted to the MMN) is given in Figure 3.4. Notably, we do not expect a strong trait effect of

meditative practice in this regard (i.e., when off the cushion) — for example, when comparing experts
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and novices in an MMN paradigm during a rest condition — as permanently perturbing these low

levels perceptual processes would impair normal functioning (e.g, in schizophrenia MMN is abnormally

reduced [Damaso et al., 2015, Maekawa et al., 2012, Näätänen and Kähkönen, 2009]).

Figure 3.4: Expected effect of different meditative practices and degree of experience on sensory
precision and prior formation processes. At rest, we would expect both novices and experts practitioners
to show normal sensory precision and prior formation. During focused attention (FA), sensory precision would
increase as an effect of attentional focus, which should be more stable in experts. During open monitoring
(OM), sensory precision should still be higher than at rest and prior formation should decrease, with again
stronger effects in experts than in novices.

To our knowledge, only three experimental works have examined so far the tate (meditation vs.

control) and trait (experts practitioners vs. novices or naive participants) effects of contemplative prac-

tices on MMN. The first research study on the topic compared Kriya Yoga practitioners to meditation

and yoga naive participants [Srinivasan and Baijal, 2007]. The authors measured the MMN of yoga

practitioners at rest and after three kinds of yogic practices culminating on a concentrative meditation

on the breath (Sahaj Samadhi, FA style), and compared it to the MMN of control participants (naive

to any yoga or meditation practice) recorded at rest and during three repetitions of a “relaxation”

condition (reading a book). They found a main effect of group with the MMN of yoga practitioners

being on average higher (more negative) than naive participants over all conditions (rest and medita-

tion/reading). In yoga practitioners the concentrative condition further enhanced the MMN compared

to rest and preliminary practices done before. These results are in agreement with our prediction of

increased MMN during FA practice but the overall trait effect of meditation is quite surprising. How-

ever, as argued by Biedermann et al. (2016), this first study confounded different conditions between

“experts” and novices [Biedermann et al., 2016], potentially leading to artificially enhanced overall

MMN in experts. To remedy this potential bias, they compared experts practitioners in various con-

templative traditions (Zen, Chan, Tibetan, all with more than 10 years of meditation practice) to an
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age-matched control group of non-meditators, and importantly they recorded them during the same

two conditions: an FA breath counting task, and a control task (imagining building a tree house). This

study also revealed a general trait effect of meditation: an increased MMN in both meditation and

non-meditation condition, but no state effect as the interaction between group and condition was not

significant [Biedermann et al., 2016]. Of note, the trait effect was present at the Pz electrode but not

at Fz (where MMN is usually stronger), and this study did not control for a potential condition-order

bias, as the breath counting task always followed the control one. While this study seems to confirm

a potential trait effect of meditation on the MMN, it did not replicate the state effect of FA practice

found in the previous one, which was actually more expected.

Recent findings from our research group may be help to shed further light on these mixed results. Fucci

et al. (2018) assessed the MMN during FA and OM meditations, as well as during a control reading

task, in 16 highly experienced practitioners from the Tibetan tradition (> 10,000 hours of practice)

and 15 age-matched meditation naive participants who received a brief meditation training and prac-

ticed for 7 days before the experiment [Fucci et al., 2018]. This design overcomes some limitations

from the previous studies by comparing experts to control participants not totally naive to medita-

tion, by using similar meditation and control conditions whose presentation order was randomized,

and by analyzing the MMN averaged over an extended fronto-central region where it was shown to

be maximal. Interestingly, Fucci et al. (2018) found a significant expertise by condition interaction,

with post-hoc tests revealing trends for a higher MMN during FA but not OM (labelled OP in the

article for open presence, an advanced form of open monitoring performed by experts) compared to

the control condition in experts and, conversely, a higher MMN during OM but not FA, compared

to the control condition, in novices. The MMN during FA and OM was not significantly different in

neither groups of participants, and there was no group difference during OM and control conditions

but experts presented a higher MMN than novices in FA meditation ([Fucci et al., 2018] and see Figure

3.5 for the main results).

Overall the results from these three preliminary studies on the effect of meditation on the MMN

seem to support the hypothesis of an increased MMN during FA practice as an effect of enhanced

sensory precision. However the only study investigating advanced OM practice (open presence) did

not observe a decrease of the MMN compared to a control condition [Fucci et al., 2018], a state effect

that we would expect if such practice effectively reduced prior formation (Figure 3.4). Besides there is

no clear evidence for a genuine trait effect of meditation on the MMN as, contrary to previous studies,

Fucci et al. (2018) found no differences between highly experienced practitioners and meditation novices

during a control reading condition [Fucci et al., 2018]. The trait effect reported in previous studies

could have artificially arisen from the use of different control conditions [Srinivasan and Baijal, 2007],

as well as comparing experienced practitioners to participants totally naive to meditation [Biedermann
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Figure 3.5: Main results from [Fucci et al., 2018]. The figure displays the MMN waveform at a frontal
region of interest (ROI) for the different conditions and expertise groups (A), the related average scalp topog-
raphy between 90 and 180ms (B), and the mean value of the MMN over the frontal ROI between 90 and 180ms
+/- the standard error of the mean (C). FA: Focused Attention, OP: Open Presence, RE: Reading.

et al., 2016, Srinivasan and Baijal, 2007].

The replication article presented as Study 1 in this manuscript attempted to resolve these ambigu-

ities by comparing again meditative states (FA, OM) and a control condition (video watching instead

of reading), in highly experienced meditators and novice participants who followed a short meditation

program based on similar teachings as the experts [Fucci et al., 2021]. Combining the results from

both studies and using Bayesian statistics to assess the evidence for null effects, we found substantial

evidence for an absence of differences in the MMN amplitude between meditative and control states

as well as expertise group. The implication of these results on our hypotheses concerning the effect of

meditation on predictive processing in the context of auditory deviance detection will be discussed in

Chapter 6.
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3.2.2 Seeing prior expectations as impermanent: pain processing un-

der meditation

We saw earlier how meditative practice can modulate behavioral and neuronal correlates of painful ex-

perience, in particular its affective component (Section 1.2.4). From the perspective we have adopted,

meditation effects on pain regulation could be mediated by the attentional shift toward exteroceptive

and interoceptive sensations and away from (pre-)cognitive expectations — notably about incoming

painful stimuli — a stance cultivated in meditation. Moreover, the increased opacity of mental pro-

cesses promoted by contemplation, may allow the practitioner to become aware of the tendency to

cognitively amplify physically aversive events. With practice, an increased awareness and the develop-

ment of a non-judgmental, equanimous attitude towards anything that arises in experience may allow

one to defuse habitual catastrophizing tendencies (“it is painful, it will never stop”, etc...), thus largely

deflecting the “second arrow of pain” — i.e., the cognitive intensification of pain-related sensory data.

This hypothesis was suggested by Porro and Pagnoni in 2014, who noted that brain imagery results on

meditative analgesia indicated an increased activation in regions of the pain salience network (thala-

mus, anterior insula, MCC) but also a modulation of activity in areas implicated in affective/cognitive

processes (ACC, OFC, dlPFC) [Pagnoni and Porro, 2014].

According to the Bayesian take on perception as inference, and our hypothesis on the mechanisms

of contemplative practice, meditation should bias posterior pain experience toward the actual level of

nociceptive input, decreasing the influence of short-term prior expectations about it. More specifically,

we would expect meditation to increase the weight (precision) of the likelihood term in Bayes’ rule and

reduce the weight of the prior. This does not necessarily imply that meditators would experience more

intense pain and, in fact, most studies reported similar or reduced pain intensity ratings in meditators

compared to controls (see Section 1.2.4). Also, a structural MRI study in long-term Zen practitioners

revealed that decreased sensitivity to thermal pain (i.e., higher pain threshold) was associated with an

increase of cortical thickness in the dorsal anterior cingulate cortex (aMCC) and secondary somatosen-

sory cortex. Instead, we expect pain experience in meditators to be less vulnerable to intensification

by affective and cognitive priors about pain, with a net effect of a decrease in pain unpleasantness (see

Section 1.2.4 for some evidence of this). Another interesting, if somewhat counter-intuitive, corollary

is that experienced meditators should be less susceptible to both nocebo and placebo effects [Pagnoni

and Porro, 2014], a hypothesis that has begun to be put to experimental test (see below). Finally, if

meditation does indeed help in reducing the habitual cognitive intensification of pain, it should also in

turn build up a more general and long-lasting expectation of reduced suffering. Indeed, as discussed

at length in the first chapter, this is the explicit aim of most contemplative practices, where suffering

is taken in its broadest sense — i.e., concerning both oneself and other beings. Thus, the mounting

confidence of such long-term belief of reduced suffering accrued through practice would conceptually
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and experientially align with (i.e., provide evidence for) the soteriological high-level prior. In partial

support of this notion, two studies from our research group showed that expert meditators reported

less subjective pain catastrophism [Zorn et al., 2020] and employed different strategies to cope with

pain compared to control participants [Poletti et al., 2021].

Despite an early scientific interest, to this day very few experimental work on meditation and

pain expectations have been carried out. A first one from Taylor et al. (2018), replicated their previ-

ous fear-of-pain conditioning paradigm [Taylor et al., 2017] on a group of 11 experienced meditators

(1050 to 9500 hours of practice) compared to a group of 51 meditation-naive participants (11 of which

were selected to constitute an age-, gender- and education level matched control group, [Taylor et al.,

2018]). While meditators significantly reported less intense pain to painful stimuli, no difference was

found in the nociceptive flexion reflex (NRS), a measure of nocifensive spinal reflex, suggesting that

pain-modulation by meditation may not be mediated by inhibitory descending control (suppression

mechanism). Furthermore, no group difference in anticipatory skin conduction responses was detected,

a results in apparent contradiction with previous findings of reduced brain activations (anterior in-

sula, aMCC) in experts meditators during the anticipation of pain [Lutz et al., 2013, Brown and Jones,

2010]. However, these results can be potentially reconciliated if we assume that meditation may reduce

the affective and cognitive anticipatory elaboration about incoming aversive events (as reflected in the

anterior insular and cingulate cortice activity), while preserving survival-related physiological processes

selected by evolution to prepare for a fight or flight response (as reflected by SCR). Finally, and of

much interest for our current hypotheses, expert practitioners seemed to show a reduced influence of

outcome expectations and their associated uncertainty on subsequent pain ratings [Taylor et al., 2018].

A more recent report suggested that exposing meditation-naive participants to a brief (10 min) mind-

fulness induction aiming at accepting incoming painful sensations reduced the effect of conditioned-

hypoalgesia (placebo) compared to an experiential avoidance (suppression) induction ([Vencatachellum

et al., 2021], Figure 3.6). Interestingly, this effect extended to both intensity and unpleasantness pain

ratings but, contrary to the previous results from Taylor et al. (2018), was not present for conditioned

hyperalgesia (nocebo). A possible explanation for the latter finding is that the modulation of increased

pain expectations, compared to decreased pain expectations, may require a higher amount of medita-

tive practice as they signal potentially harmful events.

While these preliminary results are interesting, and seem to point in the expected direction, they

also have limitations, such as a low sample size of experienced practitioners [Taylor et al., 2018] or

the use of a very brief mindfulness induction protocol [Vencatachellum et al., 2021], which is unlikely

to reflect the refinement and modulatory power of a dedicated training over multiple years. Besides,

they do not explicitly test the mechanistic predictions stated above concerning the potential effect of
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Figure 3.6: Main results from [Vencatachellum et al., 2021]. Hypoalgesia, measured as the difference
in ratings between identical stimulation (medium level) following low-pain conditioned cues and novel cues
(without conditioning), was present in the suppression (yellow) but not mindfulness (blue) group, for intensity
and unpleasantness ratings. Both groups showed hyperalgesia, increased pain to high-pain conditioned cues
compared to novel cues.

meditation on sensory and prior-expectations precisions. To remedy these shortcomings, we aimed

to replicate an ingenious computational modeling work on a cue-based pain expectations paradigm

[Hoskin et al., 2019], applying it in the context of meditation. Hoskin et al. (2019) presented their par-

ticipants with two cues indicative of different pain intensity probabilities: for example, a 50% chance

to receive either a level 4 or a level 7 stimulation, and 50% chance of receiving either a level 5 or a

level 7 stimulation. Participants had to choose the option that best minimized the expected pain (e.g.,

in the case above, the option of a 50% chance to receive 4 or 7 should be picked). They then received

a cutaneous electrical shock whose level depended on the probabilities corresponding to the chosen

option, following which they rated their subjective pain experience in terms of felt intensity of the just

received stimulation on a 0 to 100 visual analog scale.

The novelty in Hoskin et al. (2019) study is that the analysis of behavioral pain ratings and their

dependency on expectations and uncertainty was conducted with computational models based on the

predictive processing approach to pain perception. In a nutshell, and as depicted in Figure3.7, Hoskin

and colleagues modeled the posterior intensity ratings at each trial as the (Bayesian) integration of a

two-component prior — a cue-independent (or trait-like) component about pain and a cue-dependent

component reflecting the information provided by the cue about the stimulation level of the upcoming

trial — and the actual stimulation level (i.e., the likelihood). Their models are twice Bayesian in the

sense that priors and likelihood are combined by Bayes’ rule and weighted by their respective precision

(inverse variance); and that free parameters (encoding prior/likelihood mean or variances) are modeled

as random variables with an associated probability distribution, which are therefore assigned a prior

and whose posterior distribution can be obtained through Bayesian inference. The study found that a
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“full” Bayesian model combining all three terms detailed above was better at explaining not only the

data from their first experiment, but also those from a replication with a slightly different paradigm.

More interestingly, a hierarchical version of the model with varying parameters per subject, proved

even better at explaining both datasets. They notably found important differences between subjects in

the cue-independent prior, which they related to a potential trait-like pessimism or optimism toward

pain, at least in the context of their experiment.

Figure 3.7: Experimental task and graphic representation of a Bayesian pain model from [Hoskin
et al., 2019]. (A) The paradigm involved the choice by the participant of the “best” pain outcome based on
two cues. In this example, one can either choose to receive a pain stimulation of level 4 or 7 with 50% chance
each, or a stimulation of level 5 or 7 with 50% chance each. The participant should select the cue minimizing
the expected pain, which is then displayed for 2s. The electrical stimulation is then delivered (in the illustrated
case, either 4 or 7), and the participants rate the felt intensity on a 0 to 100 scale. (B) Graphical representations
of Bayesian inference performed by the “full” hierarchical model at a given trial for two different subjects (left
and right columns). In the upper panels, the probability distribution associated with the cue-independent prior
(blue, different for the two participants) is first combined with the cue-dependent prior, which is treated as a
likelihood for this computation (red; note that the mean expected stimulation given the cue, q, is identical for
both subjects). The resulting posterior (black) forms the overall prior (lower panels, blue) to be combined with
the delivered painful stimulation X (lower panels, red). The final posterior (lower panels, black) corresponds to
the model-predicted value of the intensity ratings of the participants for this given trial. Since, in this example,
the two participants had different (in mean and variance) cue-independent priors and different (in variance only)
cue-dependent priors, they are characterized by different posterior ratings. Adapted from [Hoskin et al., 2019].

A main project of my PhD, the LONGIMED study, was to design an adapted version of Hoskin
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et al. (2019) experimental task in the context of a longitudinal study of a 10-day intensive medita-

tion retreat. The replication and extension of their modeling work to encompass also the affective

dimension of pain (unpleasantness) is the topic of a first article on the baseline data of this study

(Chapter 5, Study 3). Finally, we wanted to specifically test the effect of a 10-day meditation on

predictive processing components of pain perception, as assessed by potential changes in Hoskin et

al. (2019) Bayesian model’s parameters encoding the stimulation level (likelihood) and cue-dependent

prior variances (inverse precision) and the cue-independent prior mean and variance (Chapter 5, Study

4). The exact design of this randomized and controlled study which involved other experiments will be

described in the next section. The analysis plan for the pain experiment was also preregistered online

on the Open Science Framework (https://osf.io/awtph).
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3.3 Studying the acute and lasting effects of intensive prac-

tice: insights from a 10-day mindfulness meditation

retreat

3.3.1 Scientific studies of residential meditation retreats

Residential retreats are an important training component of many people’s ongoing

meditation practice and, accordingly, they offer an ecologically valid research strategy for

bridging empirical gaps between non-intensive interventions in novices and cross-sectional

studies of expert practitioners.

[King et al., 2019]

As emphasized by King et al. (2019), who wrote the first theoretical piece on the topic not long

ago, residential meditation retreats are not only a key component of most meditators’ practice, but

also a very interesting and more ecological setting to scientifically study meditation in its more acute

and traditional form [King et al., 2019]. It would be more accurate to talk about “forms” as there are

many kinds of residential retreat, depending on the contemplative tradition, teaching, practice and

culture. Yet, King et al. (2019) tried to extract the common ingredients to most forms of residential

retreat [King et al., 2019]. First, a retreat imposes a (variably) rigorous schedule ranging from 6 to

11 hours of formal meditation practice, often completed by informal practices. Formal practice is

performed during a dedicated period at a time (around 30 minutes to one hour, followed by a short

break) and is usually done sitting in meditation posture with specificities depending on traditions and

teachings (note for instance that some retreats allow practitioners to sit on a chair or lie down for

formal practice). Informal practices are also often encouraged and involve the extension of the mental

set brought to bear during formal practice (e.g., paying attention to internal or external objects, being

aware, a non-judgmental, non-reactive attitude, etc.) to any other habitual activity (walking, eating,

dish-washing, etc)7. To facilitate the adherence to such a demanding schedule and the extension of

the meditative attitude outside of formal sitting, residential retreat are typically located in secluded

places offering a serene and calm environment, where the practitioners’ basic needs are tended for 8.

7Walking and other movement based activities, such as yoga or qi-gong, are sometimes taught as formal
practices in their own right.

8Note that, depending on the type of retreat, essential tasks such as cooking or cleaning can be either
(a) included in the costs and taken care of by the retreat centers’ employees, (b) performed in turn by the
participants to the retreat (this is best exemplified by Zen Buddhism retreats where work is an essential part of
the practice), or (c) performed by other meditators acting as volunteers, as is usually done in Vipassana retreats
(with a similar emphasis as Zen on the integration of practice in daily activities and on the service rendered to
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The creation of a setting favorable to the calm concentration required for practice is also the result

of a specific attitude brought forth by the participants. “Noble” silence is most often the rule (people

refrain from speaking except in case of urgent concerns, but do not communicate in any other ways

or initiate eye contacts), and the use of electronic devices or other medias, intoxicants such as alcohol,

smoking or drugs is proscribed, as is sexual intercourse. These restrictions are put in place not to

enforce a punitive or authoritarian regime, but to minimize distractions that could feed the “monkey

mind” and perturb meditative practice, while also helping to break the loop of ingrained habits. As

beautifully put by King et al. (2019): “retreats are designed to facilitate uninterrupted attention

and reflective awareness toward ongoing mental and sensory phenomena”, and “this training structure

expands the definition of meditation — often conceptualized as a delimited, formal activity — into

an embodied and intentional stance toward experience that informs one’s values, ethics, and attitudes

in all areas of life.” According to these authors, and the teachings of most contemplative traditions,

residential retreats establish the ideal setting for developing meditation as a “way of life” and help foster

a deeper impregnation of its multiple benefits to perceptual, affective, cognitive and social domains of

human life — against all odds 9.

As reported by King et al. (2019) in their review article (Figure 3.8), the effect of meditation

interventions most likely depends on their intensity (hours per day), their duration (number of days),

and the initial expertise of the participants (totally naive or already acquainted to meditation). Res-

idential meditation retreats, no matter their length, are inevitably more intense and recruit more

experienced practitioners than experimental induction treatments and standardized mindfulness-based

interventions (MBIs, app-based or 8-week live or online courses). Concerning duration, the picture

is more complex as MBIs usually last longer (typically 8 weeks) than most intensive retreats (7 days

to 1 month), yet their daily “dose” of meditation is much lower. Interestingly, King et al. (2019) also

reported the proportional number of longitudinal scientific studies that explored the effects of each of

this different intervention formats (blue circles in Figure 3.8): induction and 8-week courses are by

far the more studied cases. Indeed, scientifically studying meditation through a direct short induction

in the lab or through standardized interventions in a therapeutical setting is much easier than during

an intense residential retreat held in a remote place and in total silence. Yet, as noted earlier, res-

idential retreats are a really important ingredient in most practitioners meditative development and

their study may inform us on the “dosage” requirements for some effects to occur, the importance of

context (setting, teaching, silence, etc.), the mechanisms specific to intensive practice and their in-

dividual variations, which may be difficult to reproduce in a non-ecological laboratory setting [King

other as compassion in action).
9Indeed and similarly to the pragmatic value of contemplative “in-action” discussed previously (section 3.1.2),

it is at first counter-intuitive to see how a calm and silent environment may help to deal with “real life” stressful
and often violent problems.
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et al., 2019]. Last but not least, a retreat setting offers an almost perfectly controlled environment:

all participants have the same schedule and diet, are exposed to the same environmental disturbances

(which are rare, due to the seclusion of retreat centers), and share the same meditation schedule with

the same instructions and teacher.

Figure 3.8: Intensity, duration and expertise attributes of meditation interventions in the lit-
erature. Typical meditation interventions used in scientific studies are mapped onto a matrix with three
dimensions: intensity in hours per day, duration in number of days, and initial expertise of the participants
(composite score depending on cumulative lifetime hours, years of practice and number and length of attended
residential retreats). The size of blue circles represent the proportional number of published studies for each
kind of intervention. “Induction” are single-session meditation protocols carried out in the laboratory, “App”
includes mobile-based interventions and “8-week” refers to non-intensive standardized mindfulness-based inter-
ventions (MBSR, MBCT and derivatives). Reproduced from [King et al., 2019].

One of the most impressive study in the field to date is the Shamatha Project [Saron, 2013]

which aimed to investigate the effects of traditional shamatha or “calm abiding” Tibetan Buddhist

meditation (FA style), as taught by Alan Wallace [Wallace, 1999] during two 3-month residential

retreats. This controlled and randomized longitudinal study measured 30 participants with ongoing

meditation experience before, during (beginning, middle and end) and after (at 6-months, 18-months,

and up to 7-years later) the first residential retreat which included about 6 hours of individual practice

a day as well as meditation instructions, teacher talks and discussions twice a day. A second sample

of 30 participants matched in age, gender and meditation experience was recruited into a waiting-list

control group (group assignment was randomized) and also assessed longitudinally before participating

to a second 3-month retreat held after the first one. A large number of experimental measures were
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collected in this study, including changes in attention, perception, emotional regulation and their brain

correlates (EEG), psychological scores (questionnaires and interviews), physiological variables (heart

rate, respiration, skin conductance), and biological markers of stress, inflammation and aging (blood

and saliva samples). Taking place in spring and fall of 2007, the Shamatha study led to an impressive

number of publications, with the first one in 2010 [MacLean et al., 2010] and results still being published

today [Shields et al., 2020, Zanesco et al., 2021]. Summarizing all their results is out of the scope of

this manuscript 10, but King et al. notably clarified how some of them (as well as results from other

intensive residential retreats) were specific to the intensity of practice brought forth in these “high

dose” interventions. Of particular interest to us in the current work are findings of increased sustained

and selective attention [MacLean et al., 2010, Slagter et al., 2007, Lutz et al., 2009, Zanesco et al.,

2019], response inhibition [Sahdra et al., 2011], executive control [Zanesco et al., 2013, Shields et al.,

2020] and emotional regulation [Rosenberg et al., 2015], but decreased mind-wandering [Zanesco et al.,

2016] during and following intensive retreats. Importantly, authors from the Shamatha project found

that some of their initial effects (sustained attention and response inhibition) were partially maintained

seven years later, and that this maintenance was modulated by the continuity of meditation practice

after the retreats [Zanesco et al., 2018].

A more general review of all studies on residential meditation retreat up to 2017 found large

effects on psychological measures of anxiety, depression and stress, and moderate effects on measures

of emotional regulation and quality of life [Khoury et al., 2017], with the increase in mindfulness

strongly mediating these effects. However this result is based on just 21 studies testing meditation

effects during or after a retreat and therefore should be evaluated vis-à-vis the much larger amount of

evidence on mindfulness-based interventions (see Figure 3.8). Furthermore, studies able to implement

on-site measures during residential retreats as the Shamatha project are even scarcer. A primary

objective of my PhD was to partly fill this gap by testing the effects of a 10-day intensive mindfulness

meditation retreat on various perceptual and cognitive processes. We will now describe this controlled

and randomized longitudinal study titled “LONGIMED”.

10But see https://saronlab.ucdavis.edu/shamatha-project.html for an overview of the study, their
main findings and a list of all publications.

119



3.3.2 The LONGIMED study

Scientific aspects: design, experiments and questionnaires

In order to investigate the longitudinal effect of intensive meditation practice on predictive processing

mechanism we recruited 54 participants with variable meditation experience. Inclusion and exclusion

criteria are detailed at length in the clinical trial record of the study (https://clinicaltrials.gov/

ct2/show/NCT04449913), which received approval from an independent ethics committee on human

research (CPP Est IV 2020-A00669-30). Important inclusion criteria were: age between 18 and 67,

speaking french fluently, having been trained in a formal meditation practice (mindfulness, MBSR,

Buddhist traditions), having a regular practice of at least 20 minutes per day three times a week for

at least one year, and having already participated to a silent meditation retreat of at least two days

with a minimum of 6 hours of meditation per day. Stringent exclusion criteria were: neurological or

psychiatric antecedents, chronic pain or any other medical condition causing acute pain or increased

sensitivity to pain, motor or sensory deficit in the hands, severe auditory loss, the regular use of opioids

or antidepressant drugs, or more generally any drug or prescription acting on the central nervous

system. Participants were randomly assigned to an “active” or to a “control” group in equal proportion

(27 each, age- and gender-matched), whose differences will be explained below. Upon their first visit

to the laboratory, they received a detailed explanation about the study and the different measures

they will undergo before signing an informed consent and passing an interview with the author of

this manuscript to assess their meditation experience. More specifically, the following information was

collected: (1) the first type of meditation they practiced, (2) the one they were currently practicing,

(3) an estimation of the time (in hours) of practice every year since they started meditating (lifetime

practice), (4) the duration of their current daily practice (in minutes), (5) an estimation of the overall

time (in hours) spent in meditation retreats up to the time of entering the study, and (6) what was

the meditation type they have practiced the most during retreats.

All participants took part in three behavioral and EEG experiments with different timelines depend-

ing on group asssignment. We will briefly present below the experimental paradigms and hypotheses

for two of those experiments (on auditory and tactile perception) whose data are still under analysis

and thus will not be presented in this thesis. The first one is an auditory experiment adapted from

[Demarchi et al., 2019] that presented participants with two tone sequences of different predictability

while recording their EEG. Specifically, sequences differed in their presentation of four pure tones (200

Hz, 431 Hz, 928 Hz, 2000 Hz; 100ms duration, 3 Hz rate) following each other with 75% probability in

the “ordered” sequence or being presented in a completely stochastic fashion (equal 25% probability for

all tones) in the “random” sequence. Participants received no explicit information about the sequences

120



and were instructed to either perform a focused attention (FA) meditation on the tones, an open mon-

itoring (OM) meditation without particular focus on the auditory modality, or a control condition of

watching a calm marine documentary. They were delivered four tone sequences of four minutes each

(two ordered and two random) per condition and were asked to fill phenomenological scales about

their experience after each sequence (tone clarity, sequence rythmicity, attentional focus, meditation

stability, meta-awareness, and equanimity to the sounds). The presentation order of sequences and

meditation conditions was randomized within (longitudinal measures) and between participants. In

their initial article on MEG data, [Demarchi et al., 2019] observed differences between predictability

conditions (four conditions, with graded predictability from ordered to random) in brain activity pat-

terns preceding a sound (or an omission), which were interpreted as markers of auditory predictions.

They further used this protocol to assess how patients with tinnitus differed from healthy subjects

and found stronger anticipatory predictions in this pathology [Partyka et al., 2019]. According to the

hypotheses proposed in this thesis, we would expect our FA meditation condition to also increase the

magnitude of such markers of auditory predictions. Indeed the attentional focus set on the auditory

stream should amplify auditory prediction errors, thereby improving the precision of subsequent pre-

dictions and cause stronger pre-stimulus signals. On the other hand, we expect OM meditation to

decrease the formation of anticipatory predictions, leading to lower pre-stimulus signals.

The second experiment is an adaptation of the force-matching task [Shergill, 2003] taking into account

recent developments [Bays et al., 2005, Walsh et al., 2011, Kilteni and Ehrsson, 2017]. Participants

were presented with pressure forces of varying intensity (1 to 3.5 Newtons, fixed 3s duration) on the

fingertip of their left index finger via a motorized lever, and were then asked to reproduce the felt

pressure after each trial in three difference conditions. First they had to press their right finger 20

cm apart from the left one to control (through a synchronized sensor/motor coupling) the lever and

replicate the previously experienced pressure. In a second condition they had again to replicate the

experienced force, but this time by pressing directly on their left index finger with their right one.

Finally, the third condition asked participants to reproduce once more the force, but this time through

the lever which remained on top of their left index. Two devices measured the forces applied by the

volunteers: a ring sensor newly developed by the Tribology and Systems Dynamics Laboratory (LTDS

UMR 5513, Ecole Centrale Lyon, “Touchy Finger”), which directly assessed the deformation of the

right index finger pad (force application), and a more commonly used pressure sensor placed under the

left index finger (force reception). Importantly, participants sat in a meditative posture (on their knee)

to perform the task and were prompted to meditate using their finger sensations as the attentional

target for one minute before the start of each condition (30 trials). They were instructed to replicate

the delivered force intensity as best as they could, and maintain it for about 5s to obtain a “clean”

measure. Conditions order was randomized within and between participants.

The two first experimental manipulation described above exhibited consistent differences, with the
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replication of the force with a direct contact between fingers leading to a stronger force applied by the

participants [Bays et al., 2005, Walsh et al., 2011, Kilteni and Ehrsson, 2017]. This effect, known in

the literature as a process of sensory attenuation, is thought to be a crucial aspect of active inference

[Brown et al., 2013], namely the precision down-weighting of sensory prediction errors to allow the ful-

filment of motor predictions by an overt motor act (see section 2.1.3 for a more detailed explanation).

We adopted this experimental paradigm to test specific hypotheses about active inference regulation

through meditation. In a nutshell, we posited that the “in-active” meditative stance would affect such

sensory attenuation mechanisms. The higher-order policy of immobility set at the beginning of a med-

itation practice would lead to a down-weighting of movement-related predictions, while the heightened

attention (either sharply focused in FA or more distributed in OM) to bodily sensory signals would

increase their precision. This synergy of amplified sensory prediction errors and decreased strength

(precision) of motor predictions, would facilitate in turn meditative stillness. We expect this effect to

be enhanced during an intensive 10-day meditation retreat and measurable through the force-matching

paradigm as a decrease of sensory attenuation.

Our third and last behavioral experiment is a modified version of Hoskin et al. (2019) cued pain task

[Hoskin et al., 2019]), which we already described in Section 3.2.2), and whose results will be presented

in detail in Study 3 (Chapter 5).

The main difference between our two groups of participants is the time at which they underwent

the three experiments. “Active” subjects were first tested “on-site” upon their arrival at the retreat

center, one to two days before the beginning of the retreat (baseline visit/measure, V1 in Figure 3.9),

then 7 days later at days 6 or 7 of the retreat (V2, retreat measure) depending on the date of their

first measure, and a last time at a minimum of three weeks after their second measure (V3, follow-

up measure, between 21 and 30 days, except for one participant who could only come back 40 days

after the end of the retreat because of medical issues). This last measure was not collected as the

two previous ones “on-site” at the retreat center, but at the laboratory. To control for a potential

habituation to our experimental tasks that would explain a difference in results at V2, we also tested

“control” subjects three times with the same delay between measures as the “active” group (7 days

between V1 and V2 and between 21 and 30 days between V2 and V3) but in the laboratory and before

their participation to the retreat (Figure 3.9).

Importantly, “control” participants were recruited with the same criteria as “active” ones and the

partaking of both groups to the retreat ensured a similar motivation to participate to the study and

perform the experimental tasks — group attribution was simply indicated as group 1 or group 2 to

the participants. Some additional measures were also collected independently of group attribution and

analyzed for the 54 subjects sample as a whole (“Both” line in Figure 3.9), further deconstructing the

potential devaluation that could have come from a “control” vs. “active” dichotomy. This included
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Figure 3.9: Design of the LONGIMED study. 54 volunteers with ongoing meditation experience were
recruited and randomly attributed to an “active” or “control” group (27 each). “Active” participants underwent
the behavioral and EEG experiments just before (V1, -2 to -1 days), during (V2 at day 6 or 7 of the retreat) and
at least three weeks after a 10-day intensive mindfulness retreat (V3, +21 to +30 days). “Control” participants
took part in the experiments with the same timeline but before the retreat. Finally, we collected structural and
functional MRI scans for both groups before (MRI 1, -7 to -1 days), just after (MRI 2, +1 to +3 days) and
minimum three weeks after the retreat (MRI 3, +21 to +31 days). All participants to the retreat also completed
a battery of psychometric questionnaires during their first visit in the laboratory (V1 for “control” and MRI
1 for “active”), as well as a phenomenological questionnaire after every meditation sessions of the retreat (8
sessions per day, for 10 days).

one structural MRI and three fMRI scans (resting state, FA and OM meditation conditions) which

took place before (MRI 1, -7 to -1 days), just after (MRI 2, +1 to +3 days), and at least three weeks

after the retreat (MRI 3, +21 to +30 days). Participants also completed a battery of psychometric

questionnaires (French versions from validated or internal translations) during their first visit at the

laboratory (V1 for “control” subjects and MRI 1 for “active” subjects) which included (in alphabetic

order):

• BFI: Big Five Inventory (short version) [Plaisant et al., 2010]

• BIS–BAS: Behavioral Inhibition/Activation Scale [Caci et al., 2007, Carver and White, 1994,

Demianczyk et al., 2014, Morean et al., 2014, Studer et al., 2016]

• DDS: Drexel Defusion Scale [Forman et al., 2012]

• FFMQ: Five Facets Mindfulness Questionnaire [Baer et al., 2006, Heeren et al., 2011]

• FLANDERS: Flinder Handedness Survey [Nicholls et al., 2013]

• MAIA: Multidimensional Assessment of Interoceptive Awareness [Mehling et al., 2012, Edwige,

2014]
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• PHQ: Patient Health Questionnaire [Kroenke et al., 2010, Norton et al., 2007, Spitzer et al.,

1999]

• PCS: Pain Catastrophizing Scale [Sullivan et al., 1995, French et al., 2005]

• PTQ: Perseverative Thinking Questionnaire [Ehring et al., 2011, Devynck et al., 2017]

• RRS: Ruminative Response Scales [Treynor et al., 2003]

• SWBQ: Spiritual Well-Being Questionnaire [Gomez and Fisher, 2003]

Participants additionally completed an adapted version of the MEDEQ (Meditation Depth Question-

naire, [Piron, 2001]) at the end of the retreat, assessing their global experience of the retreat, the Life

Change Inventory Revisited (LCI-R, [Greyson and Ring, 2004]) during the follow-up visit (MRI 3), as

well as some of the questionnaires already completed at baseline to evaluate potential changes occurred

since the retreat (BIS–BAS, DDS, FFMQ, MAIA, PCS, PTQ, RRS, SWBQ).

During the retreat, no distinction was made between participants (except when “active” subjects

had to take part in the V2 measure at day 6 or 7) and they all completed a 5-minute phenomenological

questionnaire on tablets after every meditation session of the 10-day retreat (8 times/day). Since, sim-

ilarly to behavioral experiments 1 (auditory perception) and 2 (tactile perception), the data from this

questionnaire are still under evaluation, they will not be included in this thesis but we will nonetheless

briefly describe their content and goal.

The questionnaire was based on previous phenomenological inquiries of meditation [Kok and Singer,

2017, Abdoun et al., 2019, Petitmengin et al., 2017], published phenomenological models [Lutz et al.,

2015], as well as extensive experience of members from our team (both in day-to-day and retreat set-

tings) in various contemplative practices (Zen, Vipassana, Tibetan, mindfulness). It notably received

valuable feedback from the meditation instructor of our retreats who spent himself 15 years in Tibetan

Buddhist residential retreats and had over 80,000 hours of meditation experience. A preliminary ver-

sion of the questionnaire was first tested by a member of our team during a 10-day Vipassana retreat

and during a mindfulness meditation retreat on experienced practitioners, and was revised according

to acquired feedback.

The final version was composed of seven domains. The first one evaluated some general information

about the meditation session which had just been completed: (a) the overall instructions given to

participants, (b) an estimation of the percentage of time they were actively trying to meditate, (c) as

opposed to sleeping or dozing, (d) their degree of fatigue, and (e) how much doubt or confidence they

felt in the practice “efficacy” and their ability to meditate. Then, other five main domains were inquired

: affect, physical stability, mental stability, attention/awareness, and thoughts. Each domain contained

between 4 and 10 questions exploring various dimensions proper to this domain (e.g. for affect: main
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emotions felt, pain intensity and unpleasantness, equanimity). Finally, the last domain assessed more

occasional experiences which may not happen at every session. First, we asked if participants had

any “insights” (defined as “the impression of gaining some new understanding” about their meditative

practice, the teaching, their mind, their life, or anything else) and, if so, how intense was it. Second,

potential adverse events that could occur during an intensive retreat, as well as unusual positive expe-

riences, were also investigated based on previous work [Lindahl et al., 2017]. If participants reported

such experiences during the last-performed session, they also had to indicate its intensity, emotional

valence (negative or positive), and how unusual it was for them, and were encouraged to talk with the

meditation instructor about it if they felt the need to do so.

This study had a very low dropout rate, with only the third measure not collected on two partici-

pants. One control participant withdrew from the study after the second experimental measure (V2)

for personal reasons and one active participant had to quit the study after completion of the retreat

due to an adverse event unrelated to meditation.

We just reviewed most scientific aspects of the LONGIMED study also to underscore its complexity,

which required a large amount of dedicated time (more than one year) and problem solving. We will

now describe the meditation retreat which also represented an important organizational and logistic

challenge, especially given its coincidence with the COVID-19 pandemic.

Contemplative aspects: residential retreat logistics and teachings

Due to multiple logistic constraints — in particular, the need to record a large number of participants

in a short time period during and after the retreat, and the ongoing Covid-19 epidemic at that time —

we organised three separate 10-day mindfulness meditation retreats between fall 2020 and spring 2021

in the IZARIAT retreat center (https://izariat.com/) at Le Poizat-Lalleyriat (Ain, France). All

retreats followed the same structure but, because of initial difficulties in recruitment and Covid-19’s

sanitary restrictions, they varied in the number of participants: 7 “active” (6 females, 1 males) and

4 “control” participants (2 females, 2 males) took part in the first one, 11 “active” (7 F, 4 M) and

12 “control” (8 F, 4 M) in the second, and 9 “active” (5 F, 4 M) and 10 “control” (5 F, 5 M) in the

third and last retreat (one control participant enrolled in the third retreat withdrew from the study

before participating to it). The first retreat had to stop one day earlier, due to the Covid-19 pandemic

peak at the end of October 2020 and the announcement of a second national lockdown by the French

government. We were able to still perform most of our scientific measures, but participants to this first

retreat (who were only 11) only had 9 days of intensive practice instead of 10.

The three retreats were supervised by Stephane Offort, a qualified meditation instructor trained
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in the Karma-Kagyu tradition of Tibetan Buddhism under the guidance of Guendune Rinpoché. He

notably took part in a traditional 3-year 3-month 3-day Tibetan Buddhist retreat and further devel-

oped his meditative practice during twelve years of residential retreat. He has since been teaching

mindfulness meditation in both its secular and traditional forms to a large european audience for the

past 10 years, being also qualified as an MBSR instructor. For these particular “scientific” mindfulness

retreats he gave a fully secular teaching, with instructions mainly following the typical program of

mindfulness-based interventions. The retreats took place in silence, communication was restricted to

the bare minimum (except during discussion with the meditation teacher and necessary interactions

with the research team), and participants were encouraged not to use electronic devices, especially

smartphones. The daily schedule included approximately 7 hours of formal group meditation split in

eight 45 to 60 minutes sessions. Participants had the choice to meditate on a cushion or a chair and

a special emphasis was given on finding a comfortable yet active posture. Most sessions were continu-

ously guided by the meditation instructor except for a third (beginning of the retreat) to a half (end of

retreat) of them, during which practitioners were given instructions beforehand and left to meditate in

group without the instructor. A one-hour group session of questions and answers with the instructor

was provided at the end of each day.

Briefly, the first three days of retreat consisted in developing attentional focus while calming the mind

by directing one’s attention to breathing and body sensations (FA family of practices). Other sensory

modalities such as hearing and vision were then progressively inserted from day 4. Starting at day

5, the instructions encouraged participants to widen and loosen the attentional focus to encompass

any experience that may arise in the field of awareness, a practice described as “open consciousness

or presence” (OM practice). Participants were further instructed in the next days to allow thoughts

and emotions to come and go in this open consciousness. Specific instructions on how to let go of

difficult and particularly “sticking” thoughts and emotions were given, for example by pointing to their

impermanent and elusive nature. Participants were also encouraged to adopt an equanimous stance

toward mental and emotional experiences, without judging or reacting to them or, if they did so, by

remaining aware of them and of their mental and physical correlates. During the last days (around

days 7 to 10), the instructor would let more sessions go on unguided or with little guidance to give some

independence to the participants, with the general instruction to remain in an open consciousness or,

alternatively, to focus on a given sensory target if the mind was too distracted. Finally, brief instruc-

tions of compassion toward oneself and other beings were sparsely provided throughout the retreat,

with added emphasis during the last days. One or two sessions of meditation in motion, inspired by

yoga and qi gong, were also given by the instructor every day of the retreat, with again an emphasis

on being aware of movements and the sensations they engendered.

The general instructions, duration, and guidance (guided or not) of every meditation session was

recorded by the instructor.

126



“Active” participants who underwent the three behavioral and EEG experiments during the retreat

had to miss around 3 to 4 hours of meditation at day 6 or 7, depending on when they underwent their

first measure. We arranged to have the experiments distributed throughout the day so that participants

could maintain a continuity of practice. The choice of recording the “retreat” measure at day 6 or 7

and not the last day of the retreat was based on personal experience from the investigators of the study

(PhDs Antoine Lutz, Giuseppe Pagnoni, Oussama Abdoun and myself) who all participated to 10-day

and longer intensive retreats, and completed by the teacher experience of the meditation instructor

Stephane Offort. We posited that during a 10-day meditation retreat the “peak” effect of the practice

is attained around these days, after a usual halfway “low point” (day 5), and not at the end of the

retreat, as could be expected from an higher cumulative “dose” of meditation. From our students’ and

teacher’s experience, in the last days participants to a retreat already project themselves past the end

of the retreat, potentially diminishing the effects of intensive practice.

The scientific and contemplative elements of the LONGIMED study should be kept in mind when

we get to the description of the experimental methods, results and interpretation of the pain task in

Chapter 5 (Study 3 and 4).
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Part II

Experimental work
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Chapter 4

Predictive coding and meditation in

auditory perception

Following the previous introductory chapters, we now have all the theoretical elements and hypotheses

needed to fully apprehend our experimental work and their associated results. In this fourth chap-

ter, we will first present a manuscript, published in a peer-reviewed journal, where we investigated

the effects of two meditation practices and of meditation expertise on auditory deviance detection, as

measured by an auditory oddball EEG data [Fucci et al., 2021]. This dataset was collected by another

PhD student in our research group during the cross-sectional study composing the first part of the

ERC grant BrainandMindfulness (for details of the protocol see [Abdoun et al., 2019]). We could not

replicate some of the findings reported in a similar dataset [Fucci et al., 2018]. Instead, we reported a

null state effect of FA and OM meditation practices on the mismatch negativity (MMN), as well as a

null trait effect on the MMN when comparing novices and experienced practitioners (Study 1).

To better understand this null result, we used a computational modeling approach of the MMN to re-

fine our understanding of these processes. We first modeled the control state of the EEG datasets from

Fucci et al. (2018) and Fucci et al. (2022), which was not a meditative condition. We compared two

main hypotheses about MMN generation present in the literature, namely adaptation and predictive

coding accounts. By confronting the predictions from computational models simulating these hypothe-

ses with observed EEG data, we were able to show that both adaptation and predictive coding–like

mechanisms are needed to explain the MMN. This work is the object of a submitted publication at

PLOS Computational Biology (Study 2). The modeling of meditation states will be continued after

this PhD.
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4.1 Study 1: No effect of focused attention and open mon-

itoring meditation on EEG auditory mismatch nega-

tivity in expert and novice practitioners
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4.2 Study 2: Time-resolved dynamic computational mod-

eling of human EEG recordings reveals gradients of

generative mechanisms for the MMN response
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Abstract

Over ten years after the first review trying to unify the different theoretical accounts of the mismatch negativity

(MMN) under the predictive coding framework, there is still an ongoing debate on the neurophysiological

mechanisms responsible for the MMN. Low-level models of neuronal adaptation to recurrent stimuli are able

to explain most of the MMN features. On the other hand, several modeling studies reported evidence for

Bayesian learning models to explain human event-related potentials. However, adaptation models were not

systematically included in model comparison or could not be rejected decisively. Based on reports indicating

spatial and temporal dissociation of physiological mechanisms within the timecourse of mismatch responses

in animals, we hypothesized that different computational models could underlie different temporal phases of

the human MMN. Using electroencephalography data from two independent studies of a simple auditory

oddball task (82 subjects in total after pre-processing rejections), we compared adaptation and Bayesian

learning models’ ability to explain the trial-to-trial dynamics of auditory deviance detection in a time-resolved

fashion. We first ran simulations to evaluate the capacity of our design to dissociate the tested models and

found that they were indistinguishable below a certain level of signal-to-noise ratio (SNR). In subjects with a

sufficient SNR, our time-resolved approach revealed a temporal dissociation between the two model families,

with high evidence for adaptation during the early MMN window (from 90 to 150-190 ms post-stimulus

depending on the dataset) and for Bayesian learning later in time (170-180 ms or 200-220ms). Comparison of

parameterized models within the adaptation family revealed a gradient of adaptation rates. This finding

evokes an analogous anatomical gradient found in animal studies within the auditory cortical hierarchy.

Author summary

The ability to detect and adapt to changes in the environment is an essential feature for survival of living

beings. Two main theories have been proposed to explain how our brain performs such an automatic task

in the auditory domain. The first one, adaptation, gives prominence to the ability of auditory cortical and

sub-cortical neurons to attenuate their response to repeated stimuli, which renders the brain more sensitive

to deviations from expected sensory inputs. The second one, Bayesian learning, further involves higher-level

cortical regions, which would update their predictions about incoming tones, depending on their performance

at predicting previous ones. These two views may not be mutually exclusive, but few experimental work tried

to directly compare them. We used computational models inspired from both accounts to assess which view

may provide a better fit of two independent electrophysiological datasets from similar auditory experiments.
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Evidence from 82 subjects provided a complex picture, with adaptation processes seemingly dominating

the early phase of auditory brain response, and Bayesian learning processes appearing later on. Our results

converge with other recent works and emphasize the necessary reconciliation of those two theories for a better

understanding of human auditory perception.

Introduction 1

The MMN, a widely used tool in neuroscientific research 2

The auditory mismatch negativity (MMN) is a well-investigated electrophysiological marker of automatic 3

neural detection of changes occurring in the auditory environment [1]. The MMN is typically induced using 4

an oddball paradigm where sequences of frequent standard tones are presented interspersed with rare deviant 5

tones. It is most often observed in humans through electroencephalography (EEG) or magnetoencephalography 6

(MEG) and is defined as the difference between the deviant and standard event-related potentials (ERPs) [2]. 7

There are multifarious deviance features including pitch, duration, intensity, spatial location, etc. The MMN 8

is even observed in response to violations of abstract regularities that bear no relationship with the physical 9

features of the stimuli [3]. 10

The MMN is a negative wave generally peaking over fronto-central scalp electrodes between 100 and 11

250 milliseconds, with variations depending on the experimental design including the dimension of the 12

deviating feature [1]. Discovered more than 40 years ago [4], it was investigated in research areas as broad as 13

neurolinguistic [5], attention [6], altered states of consciousness [7,8], aging [9], psychiatry [10,11], emotions [12], 14

psychedelics [13] or meditation [14]. However despite its use in clinical research or as an experimental measure 15

for many cognitive functions [15], its generative mechanisms are still widely debated. 16

An old debate around the generative mechanisms of the MMN 17

Recent reviews described in details the different mechanistic hypotheses trying to explain mismatch responses 18

[16, 17] and we will only briefly described them here. The MMN was originally viewed as a marker of sensory 19

memory by its discoverers [18]. Yes this simplistic memory-based account could not explain the MMN 20

response to abstract deviations [3] and was refined under the model-adjustment hypothesis [19,20]. In this 21

view the main mechanism behind the MMN is not only the detection of changes in some physical features 22

of a stimulus, but more generally the detection, representation and updating of regularities in the auditory 23

stream. Being more flexible, the model adjustment account can explain most of the MMN properties, from 24
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omission responses to violations of abstract rules. 25

Another prevailing explanation for the MMN is the adaptation hypothesis which rests upon electrophysio- 26

logical observations of stimulus-specific adaptation (SSA) in auditory brain regions at the origin of deviance 27

detection [21–23]. Indeed midbrain [24], thalamic [25] and cortical [26–29] auditory neurons tuned to frequently 28

repeated tones adapt faster than neurons tuned to rare deviant tones. This differential adaptation process 29

observed at the neuronal level is supposed to account for the scalp N1 ERP to frequent tones (standards) 30

to be attenuated compared to the N1 response to novel fresh stimuli (deviants), and thus giving rise to 31

the negative deflection called the MMN [30–32]. If critics were raised concerning the explanatory power of 32

the adaptation hypothesis and its relation to the MMN [33–35], most of them were fairly answered with 33

simulations works [30, 31,36,37] and detailed reviews [22,38]. As May et al. [22] highlighted, memory-based 34

and adaptation accounts fall in two different categories: psychological and physiological, respectively, which 35

are not mutually exclusive explanations of the MMN but justify further efforts in the development of a more 36

encompassing theory of deviance detection. 37

Bayesian inference, and its implementation in the brain as predictive coding, has been used extensively in 38

the last two decades as a general model of perception [39–43], with particular emphasis on audition [44–46]. 39

In predictive coding, the MMN is seen as an electrophysiological marker of the discrepancy between top- 40

down predictions based on repeated stimuli (i.e. standards) and bottom-up unexpected sensory inputs 41

(i.e. deviants): a prediction error [40]. Propagated through forward connections, prediction errors would 42

trigger the updating and optimization of an internal model of sensory causes at higher cortical areas, in 43

agreement with the model-adjustment hypothesis. Adjusted predictions would then be sent backward to 44

explain away or suppress prediction errors at lower cortical areas. In this framework, suppression of the MMN 45

when deviant tones are repeated and thus become standards, as in the roving standards paradigm [47], is 46

interpreted as a minimization of prediction errors, the internal model having learnt a new statistical regularity. 47

Additionally, hierarchical minimization of prediction errors would also be weighted by the relative precision 48

of the predictions and sensory inputs. Physiologically, changes in local, intrinsic connectivity of prediction 49

error units would mediate this weighting process in auditory cortices via modifications of synaptic gains, 50

reminiscent of the adaptation account. Using Dynamic Causal Modelling (DCM) on human EEG data, 51

Garrido and colleagues showed that model-adjustment or adaptation hypotheses alone are not sufficient to 52

explain changes in extrinsic and intrinsic connectivity specific to the MMN in both classical [48–51] and 53

roving [52] auditory oddball paradigms. Converging with previous attempts to unify [53], they proposed that 54

both hypotheses are necessary to fully account for N1 and MMN brain responses, and are reconcilable under 55

predictive coding [54]. Empirical support for this integrated account has come from the previously mentioned 56
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DCM studies on EEG [48–52] and MEG data [55,56] as well as EEG-MEG fusion [57] and electrocortigraphy 57

(ECoG) recordings [56]; but also from more classical ERP and sources reconstruction analyses using refined 58

paradigms with EEG and MEG [58] or ECoG [59], to reveal the hierarchical organization of deviance detection 59

processes in auditory, associative and frontal cortices. 60

In parallel to above MMN studies in humans, an extensive field of research has developed on deviance 61

detection in the animal brain. The possibility to use more invasive methods on cats and rodents allows to 62

gain additional insights on the neural mechanisms of deviance processing. 63

Insights from animal studies 64

Animal studies of deviance detection have focused on the neuronal dynamics and location of such effects, 65

identifying SSA as the core neuronal mechanism at the microscopic level [26, 27], and defining the MMN as 66

the macroscopic correlate of SSA summed over multiple neuronal populations [21]. However theoretical and 67

methodological issues were encountered while trying to integrate SSA and MMN under the same deviance 68

detection mechanism [21,60]. More recently, following human research, results in animal studies have been 69

reinterpreted under the predictive coding framework with convincing explanatory power [16, 61]. Building on 70

new paradigms allowing to disentangle mere adaptation (repetition suppression mechanism) from prediction 71

error [16] and single-neuron recordings, researchers were able to demonstrate empirically the hypothesized 72

hierarchical organization of predictive coding in the auditory system at the neuronal level [62]. If neuronal 73

mismatch activity was predominantly explained by repetition suppression, a significant part could also be 74

accounted for by “genuine” deviance detection (prediction error). Notably such prediction error–like activity 75

was found as soon as the inferior collicus in the midbrain, and gradually increased when ascending to thalamic 76

and cortical areas [62], a result challenging the classical view of predictive coding as a cortex restricted 77

mechanism. In addition, the neurons in the non-lemniscal divisions of the recorded brain areas systematically 78

showed higher prediction error–like activity than their lemniscal counterparts at each level of the auditory 79

hierarchy. This empirical finding is consistent with the known anatomical and functional connectivity of the 80

non-lemniscal pathway. Indeed, Carabajal and Malmierca (2018) have argued that the fact that broadly tuned 81

non-lemniscal neurons receive the bulk of descending cortical signals, as well as inputs from the neighbouring, 82

sharply tuned and tonotopically organized lemniscal neurons, make it a good candidate for hierarchical 83

predictive coding [16]. Interestingly, in a subsequent study, the same authors tested again this dichotomy 84

at frontal areas, confirming the existence of genuine mismatch responses in the prefrontal cortex (PFC) of 85

anesthetized rats [63]. Those responses differ in multiple aspects from auditory cortex responses, adding 86

5/60



further evidence for the hypothesis of divergent but complementary roles of frontal and sensory areas in 87

predictive coding. Indeed responses at prefrontal areas were mostly explained by a prediction error index, 88

and occurred later than auditory cortex responses dominated by repetition suppression mechanisms. 89

Insights from computational modeling 90

Computational modeling has been of great help to try to better understand MMN generation mechanisms 91

under adaptation and predictive coding accounts. Independent modeling efforts have designed models 92

of adaptation at the neuronal [30, 64, 65] and cortical level [37, 66], while a predictive coding model was 93

implemented with a neuronal architecture simulating a thalamo-cortical network [67]. Additionally, more 94

phenomenological models linked auditory perception as hierarchical Bayesian inference to electrophysiological 95

responses such as the MMN [68, 69]. However, if these independent models successfully accounted for critical 96

SSA or MMN features, few studies directly compared models derived from divergent MMN theories. A first 97

attempt found a “Bayesian surprise” model, consistent with predictive coding accounts, to outperform classical 98

“stimulus change” (or change detection) models at predicting somatosensory mismatch EEG responses at the 99

source level [70]. This work was extended to the auditory MMN in fused EEG-MEG [71] and electrocortigraphy 100

(ECoG) [72] modalities, confirming the previous results and designing new Bayesian learning models of 101

auditory deviance. 102

Only one study directly compared all major MMN theories: change detection, adaptation, and three 103

flavours of Bayesian inference derived from the Free Energy Principle [42]—predictive coding, model adjustment 104

and novelty detection [73]. In their 2013 modelling study of auditory MMN responses elicited by a roving 105

oddball paradigm [73], Lieder and colleagues found substantially higher evidence for a set of Bayesian models 106

compared to a set of alternative models (adaptation and change detection models). However, this result 107

hinged on the model comparison being carried out at the level of families aggregating multiple models, and 108

no conclusion could be drawn at the level of individual models, possibly due to an insufficient sample size 109

(8 participants). Critically, the analysis was performed on a time-averaged signal, rendering it blind to any 110

temporal differences in MMN generation processes. 111

The current study 112

In the current study, we used two independent EEG datasets of 28 and 54 subjects from similar auditory 113

oddball paradigms to compare five model families, each inspired by prevailing MMN theories (change 114

detection, adaptation, predictive coding, model adjustment and novelty detection). Building on previous 115

6/60



modeling studies [70,71,73], we defined an extensive set of models and employed a time-resolved dynamic 116

modeling approach to test a potential temporal dissociation in the computational mechanisms explaining the 117

MMN, as suggested by recent electrophysiological findings [63]. As a first validity check and methodological 118

improvement from former studies, we ran confusion analyses on simulated data with varying signal-to-noise 119

ratio (SNR). Under our design and models set, model recovery was highly dependent on SNR and allowed us 120

to test the veracity of later model comparison results. Indeed Bayesian model fitting and comparison revealed 121

a clear distinction in models’ families dominance between early and late windows of the MMN, that could not 122

be explain by confusion between the models. We could also identify a temporal gradient within adaptation 123

models time constant, reminiscent of recent electrophysiological results in the animal literature [29, 63]. 124

Materials and methods 125

For the present trial-by-trial modeling study, we used datasets from two published EEG experiments 126

investigating the impact of meditation states and meditation expertise on the amplitude of the MMN evoked 127

potential [14], [74]. The original experiments have been extensively described in the corresponding articles; 128

below we report only the materials and methods relevant to the current study. In particular, only the data 129

from the control conditions (defined below) of the two original experiments have been used for modeling. 130

To ensure the quality of the modeled data and thus of the results derived from it, participants with insufficient 131

data after preprocessing or lacking a detectable MMN based on objective criteria were rejected. 132

The last part of the methods section describes in details our modeling approach. We introduce the specific 133

framework used and detail the computational implementations of the prevailing accounts offered as generative 134

models of the MMN response. The parameters of the model fitting procedure are provided for replication 135

purposes. The approach we implemented for inference based on Bayesian model comparison as well as model 136

recovery analysis are described with their underlying rationale. A last section concerns the measure used to 137

evaluate the absolute goodness-of-fit of the selected models. 138

Study 1 139

Participants 140

Data from 31 healthy participants (25 males, mean age of 42.9 ± 10.4 years old) were collected. The research 141

protocol was approved by the UW-Madison Health Sciences Internal Review Board and participants provided 142

written informed consent for all study procedures. 143
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Experimental design 144

Subjects underwent a passive auditory oddball task [75] consisting of the variable repetition of a standard 145

tone (1000 Hz; 60 ms duration; 10 ms rise and fall; 80 dB SPL) followed by the presentation of a frequency 146

deviant tone (1200 Hz; 60 ms duration; 10 ms rise and fall; 80 dB SPL). Each block of the task contained 147

80% standard tones (n = 200) and 20% deviant tones (n = 50) with a variable inter-stimulus interval (ISI) of 148

800—1200 ms. Each subject underwent three blocks of three conditions each: two meditative practices and 149

one control condition. During the control condition, subjects were instructed to read a newspaper and ignore 150

the auditory stimulation. We refer the interested reader to the mentioned article [14] for details about the 151

meditation instructions. The order of conditions within a block was randomized but all subjects had the 152

same order, with the control condition being the first condition in the first block and then the third condition 153

in the second and third block. 154

EEG data was collected with a 128-channel Geodesic Sensor Net (Electrical Geodesics, Eugene, OR), 155

sampled at 500 Hz, and referenced to the vertex (Cz). 156

EEG data preprocessing 157

Data were pre-processed using the EEGLAB software [76] on Matlab (The Mathworks Inc.). Notch filtering 158

was applied at 60 Hz to remove line noise, followed by the application of a band-pass filter between 0.5 159

and 100 Hz. Raw data were manually cleared of large movement-related artefacts and bad channels were 160

identified and interpolated. Independent Component Analysis (ICA) was applied to the raw data of each 161

participant (only on the non-interpolated channels) using runica (Infomax) algorithm [77] to identify and 162

remove artefacts caused by eye blinks and saccades, as well as cardiac and muscular activity. After ICA 163

correction, data were re-referenced offline to the average of both mastoids, a non-causal band-pass 1—60 164

Hz digital filter was applied, and two-second epochs centred on stimulus onset (−1 to 1 s) were extracted. 165

Epochs were visually inspected and the ones still presenting muscular or eye movement artefacts were marked 166

for rejection. Finally, the epoched data were baseline-corrected by subtracting the mean value of the signal 167

during the 100 ms window preceding stimulus presentation. 168

We focused the present analysis on the same region of interest (ROI) as Fucci and colleagues [14], a frontal 169

area comprising 12 electrodes selected based on the previous literature (including Fz). This ROI can be 170

visualized in Fig S1A. The data fed to the models was always the average over these ROI electrodes. 171
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Study 2 172

Participants 173

The second dataset used for modeling comes from a subsequent, replication study by the same authors [74]. 174

66 participants were included in this study (30 females, mean age of 52 ± 7.7 years old). All participants 175

signed an informed consent before the beginning of the experiment, and were paid for their participation. 176

Ethical approval was obtained from the appropriate regional ethics committee on Human Research (CPP 177

Sud-Est IV, 2015-A01472-47). 178

Experimental design 179

The experiment consisted in a passive auditory oddball task with sequences of standard tones of variable 180

length (880Hz; 80ms duration; 10ms rise and fall) followed by the presentation of a frequency deviant (988Hz; 181

20% of all auditory stimuli). The stimuli were presented binaurally with a fixed ISI of 500ms. A threat 182

induction procedure [78] was added to the experiment. Participants were exposed to two experimental 183

conditions while passively listening to the tones : “threat” periods during which they were informed they 184

could receive an electrical shock on the wrist (whose amplitude was calibrated beforehand, based on the 185

participant pain threshold), and “safe” periods where they knew no shocks would be delivered. Safe and 186

threat periods were alternating randomly every 70 stimuli (35 seconds) and participants were cued to the 187

change. This threat induction oddball paradigm was split into three blocks where subjects were either asked 188

to: watch a silent movie (control condition), practice a focused attention meditation, or practice an open 189

presence meditation. The order of the blocks were randomized between participants. 224 standards and 190

56 deviants were presented per block and per condition (4 safe and 4 threat periods per block). The full 191

paradigm was repeated in a second session two hours later. For the purpose of the current article we will focus 192

on EEG data from the control condition (watching a silent movie) and safe periods (no threat of electrical 193

shock) only. EEG data was collected in a shielded Faraday chamber with a 64 electrodes Biosemi ActiveTwo 194

system at a 512 Hz sampling frequency, offset was maintained within 50mV (± 25) as recommended in the 195

Biosemi guidelines. 196

EEG data preprocessing 197

Pre-processing was done using EEGLAB [76] and in-house Matlab scripts (Matlab version R2017a, The 198

Mathworks Inc). EEG data was downsampled to 250 Hz, re-referenced to the average of the mastoids and 199

visually inspected, noisy channels (deficient electrodes, long-lasting muscular artefacts, etc) were marked 200
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and removed temporarily. For every subject, and separately for the two sessions, Independent Component 201

Analysis (ICA, with runica algorithm) was applied on 1–20 Hz filtered data (EEGLAB eegfiltnew function, 202

Hamming windowed sinc FIR filter of order 826) to improve ICA decomposition. ICA weights hence obtained 203

were applied to the unfiltered data and ICA components reflecting blinks and eye movements were manually 204

selected and rejected. Subsequently a 2 Hz high-pass filter (Hamming windowed sinc FIR filter of order 205

414) was applied to remove low-frequency drifts most likely caused by stress-related perspiration induced by 206

the threat of electrical shocks. Previously marked bad channels were interpolated using EEGLAB spherical 207

splines interpolation and a line noise removal algorithm (Cleanline, linefreqs=50, bandwith=2, tau=100, 208

winsize=4, winstep=1) was applied. 209

Cleaned data were epoched between -200ms and 500ms around auditory tones. The baseline was chosen as 210

the 100 ms period before stimulus onset, as recommended in most of the MMN literature, and removed for 211

subsequent analyses. Finally epoched data were low-pass filtered at 60 Hz (order 56), a ± 75 mV rejection 212

threshold was applied and epochs marked for rejection visually inspected. For this article where only data 213

from the control state (watching a video) were analysed, the recording for one subject was excluded due 214

to an excessive amount of high-frequency noise and two others because they ended up with less than 35 215

remaining good epochs per condition to compute the MMN (deviant and standard before deviant). This led 216

to 63 participants remaining for Study 2 after EEG preprocessing. 217

For subsequent analyses we selected the same frontal ROI as [74] (Fig S1B), comprising only 5 electrodes 218

but similarly located as the ones in Study 1 when taking into account the difference in electrodes layout 219

(EEG system with 64 electrodes for Dataset 2 instead of 128 for Dataset 1). We always modeled the average 220

over these 5 electrodes ROI. 221

Validation of individual MMN 222

The MMN is a rather robust component observable in virtually all human participants, but in some occasions 223

it might fail to be detected even in healthy participants with intact sound discrimination [79, 80]. We used a 224

simple automatic procedure to identify those participants that did not show a detectable MMN. For each 225

participant, a Gaussian function was fitted on the standards minus deviants ERPs difference, averaged over all 226

selected ROI electrodes, by optimizing two free parameters—the offset level and the standard deviation—as 227

well as two constrained parameters: the temporal location of the peak forced between 100 and 200ms and the 228

amplitude of the peak, restricted to negative values. If the optimizer converged on a zero amplitude solution, 229

it was interpreted as failing to detect a negative deflection in the signal and the participant was excluded. 230
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The results of the Gaussian fit on the ERP procedure are represented in Fig S2. As a result of the 231

procedure, 3 participants out of the 31 in study 1 were excluded, as well as 9 out of 63 in study 2. 232

Modeling 233

Modeling framework 234

The goal of this study was to compare alternative accounts of MMN generation, namely adaptation and

Bayesian learning. Importantly, those accounts are based on the temporal dependency to previously heard

tones, a feature that is difficult to explore with traditional average-based ERP analyses. Thus we used

dynamic modeling to explore trial-by-trial fluctuations of deviance detection processes. Static models were

also designed to serve as controls. To model MMN responses in a dynamic way we used variational Bayes

inference as implemented in the VBA toolbox [81]. This framework uses non-linear state-space models to

predict a response y (or measurement, e.g. EEG scalp activity) to experimental inputs u (e.g. auditory tones),

given internal (hidden) states x that are not directly observable. Such models are composed of two functions

working together. First an evolution function f describes how internal hidden states x evolve over time

(here represented by trial index i):

xi+1 = f(xi, ui,θ) (1)

where θ is a vector of evolution parameters and ui codes the identity of trial i (standard tones: u = 0, deviant 235

tones: u = 1). 236

Second we need to define an observation function g that computes the predicted response generated by

hidden states x. The predicted response is connected to neural activity through a simple linear function:

yi = φ0 + φ1g(xi, ui,λ) + εi (2)

where φ0 and φ1 are (fitted) observation parameters and ε the Gaussian measurement noise which is always 237

modeled but will be omitted in later description of the models for the sake of simplicity. λ = (λ0, λ1) is a 238

model-dependent pair of offset and scale factor that normalize the observation function to a similar range 239

across models. Unlike φ, λ is not fitted but estimated for each model using synthetic data, as such they 240

are not model parameters per se. These normalization constants allow the parameters φ to share the same 241

interpretation across models. In practice, we set λ so that φ0 can be interpreted as the mean response to 242

standard tones (ȳu=0), and φ1 as the mean deviant minus standard difference potential (ȳu=1 − ȳu=0). 243
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Model inversion over all EEG trials was performed independently for every model, subject and 10ms 244

averaged time window ranging from 45 to 255ms post–stimulus. It issued inversion diagnostics, model’s 245

posterior parameters estimation and goodness–of–fit measures which will be described later. We will now 246

present in more detail the generative models used to formalize the MMN hypotheses at stake. 247

Generative models of brain responses 248

We will first describe the two static models used as controls, namely the null model and the deviant detection. 249

By definition, static models have no evolution function. 250

The Null model predicts a constant response to any auditory stimulus.

g(ui) = 0 (3)

Deviant detection (DD) model predicts the MMN to be a response to deviant stimuli only:

g(ui) = ui (4)

Adaptation models are based on the neuronal adaptation hypothesis [22] which sees the auditory MMN 251

as resulting from a difference in adaptation of frequency-specific cortical neurons, a process often called 252

stimulus specific adaptation (SSA). Neurons tuned to the frequency of standard tones adapt quickly with 253

recurrent repetitions thus decreasing their responsiveness, while neurons responding preferentially to the 254

frequency of deviant tones presented rarely will adapt less and therefore produce a stronger response than 255

their standard counterparts. SSA has been observed with electrophysiology throughout the entire auditory 256

hierarchy, particularly in cortical areas [23]. It is commonly and adequately modeled computationally as a 257

process of exponential decay [72,82,83]. For the sake of simplicity we will abbreviate adaptation models to 258

SSA, from the supposed underlying electrophysiological mechanism, yet one has to keep in mind that we do 259

not model a biologically plausible implementation of SSA (see [30, 37, 64, 66] for such works) but only its 260

phenomenological approximation as exponential decay. 261

In the implementation of adaptation dynamics two hidden states (x0, x1) represent neuronal responsiveness 262

to standards and deviants, respectively. Adaptation and recovery are each modeled with exponential functions. 263

Neural activity in response to the presented tones is then supposed to be proportional to the responsiveness 264

of tone-specific neuronal populations: 265
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f(xi, ui) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if ui = 0 (standard)

⎧⎪⎪⎨
⎪⎪⎩

x0,i+1 = x0,iKa

x1,i+1 = 1− (1− x1,i)Kr

if ui = 1 (deviant)

⎧⎪⎪⎨
⎪⎪⎩

x0,i+1 = 1− (1− x0,i)Kr

x1,i+1 = x1,iKa

(5)

with Ka = e−1/τa and Kr = e−1/τr

g(xi, ui,λ) = λ0 + xui,iλ1

Single-cell recordings in the cat auditory cortex (A1) have revealed the existence of multiple timescales 266

of adaptation ranging from less than a second to several tens of seconds with recovery rates about twice as 267

high [27]. Based on this literature we implemented six SSA models with different adaptation parameters 268

τa ∈ [3, 10, 20, 30, 50, 100, 200]. The recovery parameter τr was always set to be twice τa, as informed by 269

electrophysiological data on auditory neurons of anesthetized cats [27]. 270

271

Bayesian Learning (BL) models are based on the predictive coding view of the MMN, they assume the 272

brain learns the probability to have a deviant. We inspired from computational models initially designed 273

by Ostwald et al. [70], which treat the MMN as a measure of Bayesian surprise : the difference between 274

prior and posterior distributions of beliefs on states of the world (here states being the category of tone 275

stimulus : deviant or standard). Such models also implement an approximate learning of the statistical 276

regularities of the environment by setting a “forgetting” constant. In their study they showed that these 277

models predict better the somatosensory mismatch response than control models that do not learn. This 278

finding was replicated in the auditory modality combining EEG and MEG measurements [71]. 279

A common evolution function models auditory tones as the outcome of a Bernouilli process of parameter

μ ∈ [0, 1], the probability to have a deviant. The belief over μ follows a Beta distribution: μ ∼ Beta(α, β) with

parameters α and β, tracking the number of deviants and standards that have been heard so far, respectively.

The particularity of BL models is to compare prior and posterior beliefs over μ. We thus assigned hidden states

to α and β parameters of the Beta distribution over μ. x1,i and x2,i therefore define the prior belief over

deviant’s probability before having heard the current tone ui, while x1,i+1 and x2,i+1 define the posterior

belief. We can see that the main characteristic of these hidden states is to implement a memory of past

inputs. However to be biologically plausible, and take into account recent inputs history more representative
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of ongoing dynamics, this memory should not be “infinite”. Following previous implementations [70,71], we

weighted the stimulus counts by a “forgetting” constant depending on a temporal integration parameter τt :

Kt = e−1/τt , which is hypothesized to account for different temporal integration windows. Hence with varying

forgetting constants, this model can be seen as having more or less “memory” or, in a predictive coding

scheme, as having more precise prior beliefs and associated predictions to make its perceptual decision. Thus

it can “learn” if τt is sufficiently high (Kt → 1, slow forgetting) or not if it is too low (Kt → 0, fast forgetting).

Based on our previous work in the auditory modality [71] we defined models for τt ∈ [5, 10, 20, 30, 50, 100].

f(xi, ui) :

⎧⎪⎪⎨
⎪⎪⎩

x1,i+1 = ui + x1,iKt

x2,i+1 = (1− ui) + x2,iKt

with Kt = e−1/τt (6)

Multiple hypotheses exist in the predictive processing literature about which internal mechanism is 280

reflected by the MMN [73]. Accordingly, we derived three BL “outputs” which differ in their observation 281

function that predicts the mismatch response. 282

• 1. Novelty detection or Surprise (BLsurp). A first way to describe the MMN response in the

Bayesian leaning framework is as a neuronal process encoding surprise about the category of the

stimulus. It corresponds to the novelty detection model about sensory inputs described by Lieder et

al. [73] and can be formulated as the Shannon surprise on the current input category: − ln p(ui|xi), with

p(ui|xi) being the probability of observing input u at trial i given prior belief on stimuli probability xi.

g(xi, ui,λ) = λ0 − ln p(ui|xi)λ1 (7)

with p(ui|xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1,i

x1,i + x2,i
if ui = 1 (deviant)

x2,i

x1,i + x2,i
if ui = 0 (standard)

• 2. Precision-Weigthed Prediction Error (BLpwpe). In this view, the brain would implement

approximated Bayesian inference by doing predictive coding : hierarchical minimization of precision-

weighted prediction errors [42]. In our modelling framework we could simulate this process by computing

the difference between the prediction about incoming sensory data (i.e. the expected value of the prior

Beta distribution) and sensory input ui, weighted by the precision of the model (i.e. the inverse variance
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of the prior Beta distribution).

g(xi, ui,λ) = λ0 +
ui − E[B(x1,i, x2,i)]

var[B(x1,i, x2,i)]
λ1 (8)

• 3. Model ajustment (BLmadj). Finally Bayesian learning can be conceptualized as the amount of

belief updating about model parameters. It was described as “Bayesian surprise” in Ostwald et al. and

as “model adjustment” in Lieder et al. We adopted this last formulation and quantified updating as the

divergence between prior and posterior beliefs about parameter μ. In practice it can be computed as the

Kullback-Leibler divergence DKL (or relative entropy) between posterior and prior Beta distributions

over μ, leading to the following observation function :

g(xi, ui,λ) = λ0 +DKL(μprior, μposterior)λ1 (9)

with DKL =

∫
p(μprior) ln

(
p(μprior)

p(μposterior)

)
dμ =

∫
p(μ|x1,i, x2,i) · ln

(
p(μ|x1,i, x2,i)

p(μ|x1,i+1, x2,i+1)

)
dμ

For Beta distributions DKL is simplified and can be solved analytically:

DKL = log

(
Γ(x1,i + x2,i)

Γ(x1,i+1 + x2,i+1)

)
+ log

(
Γ(x1,i+1)

Γ(x1,i)

)
+ log

(
Γ(x2,i+1)

Γ(x2,i)

)

(x1,i − x1,i+1)[ψ(x1,i)− ψ(x1,i + x2,i)] + (x2,i − x2,i+1)[ψ(x2,i)− ψ(x1,i + x2,i)] (10)

with Γ and ψ the Gamma Euler and digamma Euler functions.

Model fitting 283

We ran VBA model inversion scheme on the 27 models defined before (null, DD, SSA with seven different τa 284

and three BL outputs with six different τt each), independently for each subject and time window of epoched 285

EEG data. We defined 21 non overlapping 10ms time windows from 45 to 255 ms around tone onset (45 to 286

55ms, 55 to 65ms, etc). The data given to the VBA model inversion function was the EEG activity averaged 287

temporally over each 10ms window, and spatially over the ROI defined before, trial by trial. 288

Priors over models’ parameters and initial hidden states need to be set before model inversion and were 289

identical for both studies. All priors and initial hidden states were defined as multivariate normal distributions. 290

No evolution parameters θ were used as for the SSA and BL model families, τa and τt were fixed for each 291

different model and not fitted. 292

All models had two observation parameters φ (except the null model which only had one): a factor φ1 293
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scaling the model response and an offset φ0. We set them empirically in the same manner for all models with 294

prior means: 295

• φ0 = mean(standards) : the mean amplitude over all standard tones (in the given time window) 296

• φ1 = mean(deviants) − mean(standards) : averaged deviant minus standard amplitude, hence a 297

measure of the MMN response (again in the time window of interest) 298

and a diagonal prior covariance matrix with variance 10. 299

The prior for the measurement noise precision σ was a Gamma distribution of shape 0.1 and rate 1, consistent 300

with a standard deviation (inverse precision) for amplitude measurement of 10 μV. 301

Initial hidden states (X0) are necessary to initiate the inversion and depended on the models. The null 302

model did not have any hidden state. For all other models, a null covariance matrix was specified, encoding 303

absolute certainty about the initial values of hidden states. The DD model’s single hidden state was initiated 304

to 0, while SSA models’ initial hidden states were set to 1, reflecting the likely assumption that both standard 305

and deviant specific neuronal populations are not adapted before hearing any tone and their responsiveness 306

is therefore maximal. BL models’ initial hidden states were also conventionally set to 1, even if no tones 307

were ever heard, to satisfy computational constraint (the Kullback-Leibler divergence is not defined for null 308

hidden states). 309

In study 2, all parameters were reinitialized and fitted independently for the two sessions, as these were 310

acquired several hours apart. For the whole experiment of Study 1, and within a session of Study 2, conditions 311

and blocks followed one after the other, separated only by short transitions of a few seconds, which we simply 312

ignored in the modeling scheme. Therefore the inputs from all conditions and blocks were used and treated as 313

a continuous and uninterrupted sequence for the evolution function, but only the EEG data from the control 314

conditions were used to inform model inversion. Similarly trials marked for rejection during pre-processing, as 315

well as outliers defined as any trial whose EEG amplitude exceeded four times the standard deviation over all 316

trials, were included in the sequence of inputs to modeled—informing the evolution function dynamics—but 317

not in the computation of goodness-of-fit measures. 318

VBA inversion outputs the summary statistics (mean and covariance) of the posterior distributions of all 319

model variables, as well as goodness-of-fit metrics of which two will be of particular interest to us: 320

• the model’s variational free energy F—an approximation of model log-evidence that favors accuracy 321

while penalizing model complexity [84]. It was shown to outperform other information-theoretic criteria 322

for model comparison [85] and so will be used in this sense (see below). 323

16/60



• the percentage of variance explained by the model R2
obs, which will allow us to derive an absolute 324

goodness-of-fit measure. 325

Inference 326

We carried out inference in two hierarchical steps. First we compared models at the level of families, i.e. sets 327

of models sharing a similar structure or computational feature. In the present study the families are SSA and 328

the three outputs of BL, and each of them aggregates models that differ only in the value of the temporal 329

parameter τ (τa for SSA and τt for BL). This first step allowed us to select the most plausible computational 330

mechanism for each (10ms averaged) post-stimulus time windows of the auditory evoked response. Second, 331

we estimated the value of τ for the winning family through Bayesian model averaging (BMA). The two steps 332

are described below in more detail. 333

334

Bayesian Model Comparison (BMC). There are two different approaches to BMC, depending on 335

the assumption made about the structure of the underlying population. In fixed-effect BMC (ffx–BMC), 336

the population is assumed to be homogeneous in the sense that all subjects’ data are best described by the 337

same unique model. Alternatively, random-effect BMC (rfx–BMC) treats the optimal generative model as a 338

random effect that may vary across subjects, with a fixed but unknown heterogeneous population distribution. 339

Stephan et al. (2010) recommends to select the population structure (and, therefore, the BMC procedure) 340

based on characteristics of the effect of interest, with the homogeneous assumption being “warranted when 341

studying a basic physiological mechanism that is unlikely to vary across the subjects” [86]. The mechanisms 342

underlying the MMN arguably falls under this definition, justifying the use of ffx-BMC. Alternatively, the 343

choice between inference procedures may be data-driven as described in . 344

In fixed-effect BMC group-level inference starts out by calculating the evidence for each model given the

whole sample using the product rule for independent events:

p(y|m) = p(y(1), y(2), · · · , y(N)|m) =
N∏
s=1

p(y(s)|m) (11)

where y(s) is the observed data for the participant s and N is the number of participants. Group model

evidence is often calculated in log form:

log(p(y|m)) =
N∑
s=1

log p(y(s)|m) (12)
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Then, the posterior model probability (PMP) of model mj can be derived from all models evidence using

the Bayes theorem:

p(mj |y) = p(y|mj)p(mj)∑
k p(y|mk)p(mk)

(13)

In the context of a uniform distribution over model space (i.e. the prior belief that all models are equally

likely), which we will assume in the present study, the previous formula can be further simplified to:

p(mj |y) = p(y|mj)∑
k p(y|mk)

(14)

The model with the highest posterior model probability may then be selected as the most plausible at

the population level. Alternatively, one may focus on the Bayes Factor for a model j (compared to all other

models) which can be written as the ratio of posterior odds to prior odds:

BFmj ,all =
p(mj |y)

1− p(mj |y)
/

p(mj)

1− p(mj)
=

p(mj |y)
1− p(mj |y) (K − 1) (15)

with K the number of compared models, all with equal prior probability p(mk) = 1/K. 345

346

Bayesian Model Averaging (BMA). Once a model family has been selected, the best value for the τ

parameter can be found by using a BMC procedure again, this time restricted to a single family. Alternatively

it is possible to take into account the model uncertainty in the estimation of τ . BMA does so by averaging all

possible (modeled) values of the parameter, weighted by the posterior probability of the corresponding model:

τ̂ =
∑
m∈M
τ∈T

τ · p(mτ |y)
|T | (16)

where M designates a family of model, T the set of τ values that were modeled, and |T | the size of T . 347

348

Interpretation of Bayes Factors. We will adopt the conventional heuristics proposed by Kass and 349

Raftery (1995) [87] whereby a BF higher than 100 is interpreted as decisive evidence, a BF between 10 and 350

100 indicates strong evidence and a BF between 3 and 10 suggests substantial evidence. BF below 3 are 351

deemed inconclusive. 352
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Model recovery 353

Before taking the results of model comparison at face value, it is essential to validate that the BMC procedure 354

delivers reliable results using simulations [88]. Model recovery analysis ascertains whether and under which 355

experimental conditions (design, sample size, signal-to-noise ratio) we can conclusively arbitrate between 356

different models. The overall approach involves generating synthetic data from each of the candidate models 357

and fitting all the models to determine whether we can recover the true one. The main purpose of the model 358

recovery analysis for the present study is to assess the separability of SSA from BL models, and the possibility 359

to disambiguate BL outputs. Therefore we restricted the simulated model space to one specific value of τa 360

(for SSA models) and one for τt (for BL models), making the analysis more tractable. Based on previous 361

modeling results obtained from an oddball experiment by some of us [71], we chose τt = 20. The three BL 362

output functions are highly correlated at this value of τt (0.93 on average), more so than at most other 363

parameter values, ensuring that the results of model recovery will be conservative. Following the same logic 364

we chose the value of τa that maximized the correlation between SSA and BL20 models, that is 10 (average 365

SSA10–BL20 correlation = 0.94). 366

The details of our model recovery analysis are depicted in Fig 1. For each participant, the input sequence

that was presented to her is fed to a candidate model to generate a series of predicted responses (Fig 1A),

which is then declined in multiple versions varying in amplitude of the predicted deviant minus standard

difference response, as well as in level of Gaussian noise (Fig 1B). Amplitude and noise levels were manipulated

factorially, resulting in 30 pairs chosen to span the range of SNR values observed in the electrophysiological

data during the MMN time window. Besides, 5 datasets were generated for each (amplitude, noise) pair—these

datasets shared the same statistics and differed only in the actual realization of noise. Therefore, a total of

150×K ×N datasets were generated, where K denotes the number of candidate models and N the number

of participants. The candidate models were then fitted on these synthetic datasets, yielding free-energy

approximations of model evidence that were used to select the best model as described before, i.e. the

model with the highest posterior probability (Fig 1C). In practice we carried out BMC on 1000 bootstrapped

samples. Each of these samples was composed of N participants’ data simulated at the appropriate levels of

amplitude and noise, each randomly draw from one of the 5 realizations of noise—allowing for 5N possible

combinations. The results from the 1000 simulations can be conveniently summarized and displayed in a

confusion matrix A = (aij) where the element aij denotes the frequency with which each candidate model j

has been selected for data simulated under model i (Fig 1D). The confusion matrix is of size K ×K but may

be summarized in fewer pieces of information (Fig 1E). Of particular interest are two performance indices
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that are defined model-wise: the true positive rate (TPR) which is the chance we have to select the true

model as the best one assuming that it is included in the model space, and the positive predictive value (PPV)

which is the chance that a model selected as the best is indeed the true model (again, assuming that the

latter is in the model space). TPR and PPV are measures of sensitivity and specificity, respectively, with

TPR amounting to statistical power in a 2-class problem. Ideally if the BMC procedure worked perfectly the

confusion matrix would be the K ×K identity matrix and we would have TPR=PPV= 1. Thus, another

useful summary statistic of a confusion matrix is its distance from the optimal, identity matrix IK—which

we computed using the L1 norm:

|A− IK |1 =

K∑
i=1

K∑
j=1

|aij − δij | with δij =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j

0 otherwise

(17)

Conversely, if models were not distinguishable and the model selection produced random results under 367

the experimental design and other relevant characteristics of the data, the confusion matrix would be a 368

matrix UK with all elements equal to 1/K (hereafter called the normalized unit matrix ) and we would have 369

TPR=PPV= 1/K. The randomness of the confusion matrix may be summarized by its distance from the 370

normalized unit matrix. 371

Confusion matrices, as well as their distance to identity and normalized unit matrices are displayed as 372

a function of SNR (magnitude/noise pairs) in Fig 4 and interpreted in the results section. In order to get 373

a hint of our ability to decide between different models in our real data along the timecourse of the MMN 374

response, we selected confusion matrices matching the level of SNR in EEG data for each participant, at each 375

post-stimulus time window (50-250ms). Time-resolved TPR and PPV metrics were then computed based on 376

“real SNR” and compared to conventional thresholds (Fig 6). 377

Absolute goodness-of-fit 378

BMC procedures pick a model out of a set of candidates based only on their relative performance, i.e. their 379

comparative ability to predict the observed data while being parsimonious. Said otherwise, model comparison 380

can single out a model as being better at predicting the data than other examined models, but it does not 381

follow that the selected model is good in an absolute sense. It might actually be missing important features 382

of the data, suggesting that the true generative model (or a useful approximation of it) was not in the set of 383

candidate models and remains to be discovered. 384

A simple and straightforward measure of absolute fit is the coefficient of determination R2, which in the 385
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