
HAL Id: tel-04213328
https://theses.hal.science/tel-04213328v1

Submitted on 21 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Human-aware motion planning and control for a flying
coworker
Jérôme Truc

To cite this version:
Jérôme Truc. Human-aware motion planning and control for a flying coworker. Robotics [cs.RO].
Université Paul Sabatier - Toulouse III, 2023. English. �NNT : 2023TOU30013�. �tel-04213328�

https://theses.hal.science/tel-04213328v1
https://hal.archives-ouvertes.fr


THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 31/01/2023 par :
Jérôme TRUC

Human-aware motion planning and control for a flying coworker

JURY
Francis COLAS Chargé de Recherche Examinateur
Philippe FRAISSE Professeur Examinateur
Jacques GANGLOFF Professeur Examinateur
Simon LACROIX Directeur de Recherche Président du Jury
Florent LAMIRAUX Directeur de Recherche Examinateur
Jessica CAUCHARD Professeure Associée Rapportrice
Cédric PRADALIER Professeur Associé Rapporteur
Daniel SIDOBRE Maître de Conférences Directeur de Thèse
Rachid ALAMI Directeur de Recherche

Emérite
Invité

Serena IVALDI Chargée de Recherche Invitée

École doctorale et spécialité :
EDSYS : Robotique 4200046

Unité de Recherche :
LAAS-CNRS

Directeur de Thèse :
Daniel SIDOBRE

Rapporteurs :
Jessica CAUCHARD et Cédric PRADALIER





i

Acknowledgments

Je souhaite en premier lieu remercier les membres du jury : à commencer par Jes-
sica CAUCHARD et Cédric PRADALIER pour leur rôle de rapporteur/rapportrice
de mes travaux de thèse, le président du jury Simon LACROIX ainsi que les ex-
aminateurs Francis COLAS, Philippe FRAISSE, Jacques GANGLOFF et Florent
LAMIRAUX. Merci également aux invités Rachid ALAMI et Serena IVALDI pour
leur intérêt. Je suis ravi que vous ayez apprécié la présentation de mes travaux lors
de la soutenance. J’ai apprécié également la diversité de nos échanges, les nombreux
membres du jury spécialisés dans des domaines divers ont soulevé des questions très
intéressantes.

Je remercie chaleureusement mon directeur de thèse Daniel SIDOBRE pour son
suivi assidu de mes travaux en toute circonstance. Toujours disponible, il a su être
à l’écoute et m’a apporté tous les outils nécessaires à la réalisation de mes travaux
notamment au travers du développement d’une extension de la librairie SoftMotion.
Au delà du travail de thèse, il y a la vie personnelle, avec des hauts et des bas et je
ne remercierai jamais assez Daniel d’en avoir tenu compte avec toute son humanité.

Merci également à Rachid ALAMI pour son suivi de près de mes travaux et ses
précieux conseils notamment sur les aspects intéraction humain robot. Nos échanges
ont toujours été enrichissants et productifs, m’ayant permis d’apporter ma pierre à
l’édifice dans le vaste domaine de la robotique sur un projet complexe.

Je n’oublie pas le laboratoire du LAAS-CNRS, qui m’a acceuilli avec tout le
confort nécessaire à la réalisation de mes travaux. Merci de même à l’équipe RIS et
tous les membres qui la composent. Toujours agréables et disponibles pour aider,
ils contribuent au confort et à la qualité du travail effectué dans le laboratoire.

Je remercie mes parents pour m’avoir fourni tout ce dont j’avais besoin pour
en arriver là où j’en suis. Ils ont toujours répondu présents quelque soit mes choix
personnels ou professionnels.

Merci à mes amis de m’avoir permis de relativiser et décompresser durant ces
moments intenses.

Enfin je remercie infiniment ma compagne Marion pour son soutien sans faille
au quotidien et pour avoir su gérer mon caractère. Je la remercie également pour
le bonheur apporté par la naissance de notre fille Julia, née au cours de cette thèse
dont elle s’est occupée admirablement durant cette phase où je n’étais parfois pas
toujours disponible.





Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Flying CoWorker project . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Published . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Submitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Manuscript organization . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Human-aware reactive navigation planning for a Flying CoWorker 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 KHAOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Initial path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Human-aware Costs . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Kinematic constraints . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 KHAOS main algorithm . . . . . . . . . . . . . . . . . . . . . 17
2.3.5 Local and global trajectory costs . . . . . . . . . . . . . . . . 18
2.3.6 Convergence criterion . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Simulation environment . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 KHAOS improvements Using BSpline 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Tests of existing solutions . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 KHAOS improvements using B-Spline . . . . . . . . . . . . . . . . . 46

3.4.1 Introduction to B-Spline . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 SoftMotion extension using Non-Uniform Cubic B-Spline . . 49

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Initial path smoothing . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 Kinematic compliance . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Human-FCW Handover planning and control 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Flying CoWorker design and handover . . . . . . . . . . . . . . . . . 58
4.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



iv CONTENTS

4.4 Flying CoWorker base orientation for Handover . . . . . . . . . . . . 62
4.4.1 Orientation calculation details . . . . . . . . . . . . . . . . . 63
4.4.2 Orientation behavior during approach . . . . . . . . . . . . . 63
4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Reactive FCW goal state estimation for handover . . . . . . . . . . . 66
4.5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Reactive goal estimation . . . . . . . . . . . . . . . . . . . . . 68

4.6 Coordinated motion for FCW . . . . . . . . . . . . . . . . . . . . . . 79
4.6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.2 KHAOS main algorithm extension for coordinated motion . . 80
4.6.3 Coordinated handover results . . . . . . . . . . . . . . . . . . 87

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Conclusion 97

Bibliography 101



Acronyms

B-Spline Non-Uniform Cubic B-Spline. iii, 7, 37, 38, 46, 47, 48, 49, 50, 51, 52, 55,
97, 98

FCW Flying CoWorker. iii, iv, 1, 2, 3, 4, 5, 6, 7, 9, 10, 15, 18, 20, 22, 23, 25, 26,
27, 28, 29, 32, 34, 35, 38, 39, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 112

HRI Human Robot Interaction. 1, 2, 9, 11, 47, 49, 62, 98, 112

KHAOS Kinematic Human Aware Optimization-based System for reactive plan-
ning of flying-coworker. iii, iv, 7, 9, 10, 13, 15, 17, 21, 22, 32, 34, 35, 37, 38,
39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 80, 82, 85, 86, 91,
94, 95, 97, 98, 99, 112





Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Flying CoWorker project . . . . . . . . . . . . . . . . . . . . . 2
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Published . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Submitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Manuscript organization . . . . . . . . . . . . . . . . . . . . . 7

1.1 Context

Aerial drones use is increasing in our society, with new applications in human-
populated areas which go beyond leisure and visual inspection. With increased
payload and interaction capabilities, they are now considered for object delivery and
collaboration with workers in civil and industrial applications. Safety is paramount
in these environments, a trajectory error, a broken propeller, a poor estimation of
obstacles, outdoor weather conditions or even low batteries, can have dramatic con-
sequences on the health of humans in the surrounding area. In another perspective,
navigation and interaction in close proximity to humans call for the consideration
of some specific social or ergonomic skills, such as producing legible and acceptable
motions.

Aerial drones or Unmanned Aerial Vehicles (UAVs) come in many shapes,
weights and sizes depending on their intended use. Some can be equipped with
a fixed or flapping wing, which are more suitable for long distance and high al-
titude flights. They can be found in the military, transport or scientific research
fields. In this thesis, we are interested in another category of aerial drone whose lift
is provided by several rotors. Control of the vehicle motion is achieved by varying
the relative speed of each rotor to change the thrust and torque produced by each.
Multi-rotor drones allow for hovering and high precision at a small size for use in
human-populated environments.

Like ground mobile robots, multi-rotors drones can be used to navigate among
humans. A recent survey by Mavrogiannis et al. [Mavrogiannis 2021] examines the
work over the past three decades on social robot navigation. This survey shows
a low amount of contributions related to drone navigation in the field of Human
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Robot Interaction. However, due to the numerous additional constraints on aerial
robots, the techniques applied to ground mobile robots are not directly applicable.

Multi-rotor drones can be equipped with a manipulator arm to perform tasks re-
quiring physical contact. We speak then of autonomous aerial manipulator (AAM)
combining the flexibility of 3D motion of multi rotor drones and object grasping
using their arm. They can be used for industrial maintenance in difficult to ac-
cess areas or to accomplish more specific tasks such as object manipulation or door
opening.

In this thesis, we use an AAM to interact with humans in several aspects. First
of all, to move in an environment populated with humans but also for a more specific
purpose which is handover. In our context, a handover concerns the transfer of an
object between a robot and a human. Handover task require to interact in proximity
and physically with a human. Safety in these cases is essential but not sufficient to
ensure good interaction. The human feeling of safety is also essential. A survey by
Rubagotti et al. [Rubagotti 2022] talks about “Perceived Safety in Human Robot
Interaction” (pHRI) and shows a growing number of contributions on drones in this
field. On the other hand, for many years, contributions on mobile manipulators have
remained low. Nowadays, the use of mobile manipulators is still mostly reserved
for industrial or collaborative applications [Sandakalum 2022] where the robot does
not enter the close space of the human.

All this shows how much remains to be explored in the field of autonomous aerial
manipulators that navigate and physically interacting with humans as presented
in this thesis. In this manuscript we present preliminary planning results in the
interaction motion of an aerial manipulator named “Flying CoWorker”. Further
studies are needed to determine the levels of safety and ergonomics acceptable to
interacting humans with AAMs. Also, we propose configurable solutions to be
adapted according to the knowledge of Human Robot Interaction and in relation to
the Flying CoWorker design.

1.2 Flying CoWorker project

The Flying CoWorker project is an ANR project1 resulting from the collabora-
tion between two French laboratories, the “Laboratoire d’analyse et d’architecture
des systèmes du Centre National de la Recherche Scientifique” associated with the
“Université de Toulouse” and the “Institut National de Recherche en Informatique
et Automatique” (INRIA) associated with the “Université de Lorraine” and the
CNRS.

LAAS-CNRS team The team “Robotique et InteractionS” (RIS) of the LAAS-
CNRS realizes researchs in robotics and in particular for human/robot interaction,

1This work was partially supported by the French National Research Agency (ANR) (project
Flying Co-Worker, https://www.laas.fr/projects/flying_coworker, grant ANR-18-
CE33-0001) and the Artificial and Natural Intelligence Toulouse Institute - Institut 3iA (ANITI)
under grant agreement No: ANR-19-PI3A-0004.

https://www.laas.fr/projects/flying_coworker
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motion planning, aerial robots and control. To have available world-level robots and
experimental means, the LAAS regrouped these resources in the robotic platform
that allows to share the expertise and maintain up to date robots and systems.
The interactions induced by robots are varied, and constitute the main interest of
the Robotic and InteractionS (RIS) team involved in this project. The work of
this thesis took place within the RIS team which is a leading group in HRI, aerial
robotics and aerial manipulation systems. Antonio Franchi, a research associate at
LAAS-RIS, is now professor at the University of Twente in the Netherlands. He
is an expert in the control and design of aerial manipulators and part of the EU
horizon 2020 project “AERIAL-CORE”.

INRIA team The LARSEN team of LORIA is involved in this project and works
on life-long autonomy and interaction skills for robots, combining robotics and
AI / machine learning. The team has strong experience in activity recognition,
multi-sensor fusion, planning under uncertainty, human tracking, robot learning
and human-robot interaction. LORIA (“Lorraine Research Laboratory in Computer
Science and its Applications”) is a research unit (UMR 7503), common to CNRS,
the University of Lorraine and INRIA. INRIA is a public scientific institute with 8
research centers in France.

Context and scenarios Combining recent advances in the fields of human-robot
physical and decisional interaction and control of aerial manipulators, the project
investigates the Flying CoWorker, an aerial manipulator robot that cooperates with
a worker to carry a bar or perform manipulation tasks. The ability of robots to con-
sider humans and their safety is at the core of this research to build robots that can
cooperatively manipulate and deliver objects to a worker in a safe, efficient, relevant
and acceptable manner. The methods developed for terrestrial robots are not trans-
posable to aerial manipulators because the base is unstable, the payload is limited
and the energy constraints are strong. Based on the perception and interpretation
of human activity, the objective of the project is to build an aerial manipulator
capable of planning and controlling its movements to perform collaborative tasks.

One collaborative task envisaged is to carry a long object at one end from a
point A to B in collaboration with a human carrying the other end as shown in
Fig. 1.1a. Another collaborative task envisaged is the reception and transport of
an object, such as a tool, in an environment populated by humans as illustrated in
Fig. 1.1b with the aim of exchanging the object with a worker on arrival. There
will therefore be a navigation phase with the tool as a load and a delicate phase at
proximity of a worker with the aim of a handover (Fig. 1.1c).

Hardware and low level control The Flying CoWorker available at LAAS is a
unique prototype composed by a hexarotor with tilted propellers that is equipped
with a 3-DoF arm as shown in Fig. 1.2. The whole mechanical design and low
level control have been developed at LAAS, thus ensuring full mastering, indepen-
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(a)

(b)
(c)

Figure 1.1: On the left: Flying CoWorker project scenarios of the bar transportation
in collaboration with a human and navigation in human populated environment
carrying a tool. On the right: Illustration of the Flying CoWorker platform in close
proximity to a human for handover
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dence, and high customizability. The tilting of the propellers confers to the robot
the unique capability of exerting a total force in any direction in body frame (nor-
mal multi-rotors can exert their force in only one direction in body frame). The
architecture thus allows for great stability of the base and very precise control,
making it possible to act close to humans with greater safety. This unique feature
confers 9 fully-actuated flying DoFs, thus overcoming the underactuation of stan-
dard aerial vehicles and making the FCW the state-of-the-art solution for mastering
aerial physical interaction. LAAS already has gathered a long experience with such
platform and its variants, one of which has been successfully shown at the Hannover
fair 2017 as one of the finalist projects of the Kuka Innovation Award 2017.

Figure 1.2: Flying CoWorker platform: hexarotor with tilted propellers equiped
with a 3-DoF arm.

Project organization The tasks to be performed within the framework of the
FlyingCoworker project require the development of technological bricks at all levels,
ranging from perception to low-level control of the robot. To meet the many chal-
lenges of the project, the work is divided into four main workpackages corresponding
to the work of four PhD students briefly presented below:

1. WP1 - Physical human-robot interaction for a FCW is focus on devel-
opping a general control framework for FCW physical interaction with human
including force estimation for cooperative transportation of the bar and object
handover.

2. WP2 - Perception and interpretation of human activity deals with
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the human perception and its goals is to provide the information about the
human that are relevant for the other WPs. The tasks explored are human
perception by a FCW, activity recognition and prediction, gesture and inten-
tion estimation and finally predict the human activity.

3. WP3 - Human-aware motion planning and control for a FCW is the
work presented in this manuscript. The challenge here is to develop a reactive
planner that will allow the FCW to plan and execute adaptively the motions
needed by the different collaborative tasks.

4. WP4 - Task planning and collaborative task achievement aims to
design and build decisional processes that are necessary for a FCW to perform
cooperative task achievement in a pertinent and fluent manner.

The activities of these four workpackages are linked. WP1 allows the low-level
control of the Flying CoWorker actuators from the force sensors present on the
arm and the recognition of human activity delivered by WP2. The planning of the
Flying CoWorker motion is done by WP3 which provides the reactive trajectories
to the controller developed in WP1. WP3 also uses the human activity data given
by WP2 to take it into account during the planning. WP3 corresponds to the
work presented in this thesis manuscript. Similarly this data is used by WP4 to
coordinate the activity and plan the high level tasks of the Flying CoWorker.

1.3 Publications

Some of the contributions of this thesis have been published and listed hereafter:

1.3.1 Published

• TRUC, Jérôme, SINGAMANENI, Phani-Teja, SIDOBRE, Daniel, IVALDI,
Serena et ALAMI, Rachid. KHAOS: a Kinematic Human Aware
Optimization-based System for Reactive Planning of Flying-Coworker. In
: ICRA 2022. 2022.

• TRUC, Jérôme, SIDOBRE, Daniel, et ALAMI, Rachid. KHAOS improve-
ments using BSpline. In : ICCAS-The International Conference on Cognitive
Aircraft Systems. 2022.

1.3.2 Submitted

• TRUC, Jérôme, SIDOBRE, Daniel, et ALAMI, Rachid. Reactive Planning
for Coordinated Handover of an Autonomous Aerial Manipulator. Submitted
to International Conference on Human-Robot Interaction (HRI). 2023.
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1.4 Manuscript organization

Chapter 2 introduces KHAOS a human-aware reactive planner for social nav-
igation of a Flying CoWorker. It considers human activity and the kinematic
constraints of the Flying CoWorker to generate a trajectory in a reactive man-
ner. KHAOS takes into account the dynamic environment in which the Flying
CoWorker evolves to adapt in real time.

Chapter 3 presents the improvements made to the initial input path of KHAOS
and the output trajectory it generates. We show the interest of the use of B-Spline
allowing an efficient smoothing facilitating the respect of the Flying CoWorker
kinematic constraints.

Chapter 4 presents an extension of KHAOS to provide a human-aware Flying
CoWorker trajectory for the handover case. For this task, we present a way to
determine the orientation of the Flying CoWorker base to signal to the human
the intention to interact. We show how the final state of the Flying CoWorker is
estimated for a handover. Finally, we present a way to plan the coordinated motion
of the Flying CoWorker to achieve a smooth and acceptable motion for the human.

Chapter 5 concludes the work done during this thesis and describes the perspec-
tives for improvement.





Chapter 2

Human-aware reactive
navigation planning for a Flying

CoWorker

Contents
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2.3 KHAOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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2.3.2 Human-aware Costs . . . . . . . . . . . . . . . . . . . . . . . 15
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2.4.1 Simulation environment . . . . . . . . . . . . . . . . . . . . . 22
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2.5 Discussion and future work . . . . . . . . . . . . . . . . . . . 34
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

The focus of this chapter is to show how we manage the navigation prob-
lem of the Flying CoWorker. We present KHAOS: a Kinematic Human Aware
Optimization-based System for reactive planning of flying-coworker published and
presented at ICRA 2022 conference [Truc 2022]. More details and discussions are
given in this manuscript. Then, we describe our simulation environment especially
how humans and obstacles are considered. This simulation environment will be also
used in the following chapters. Finally, we present several situations to show that
the behavior of our system can be used for Human Robot Interaction.

2.1 Introduction

In this chapter, we address navigation planning in the scenario of the Flying
CoWorker project presented in 1.2: a multi-rotor drone that collaborates with work-
ers to fetch small objects. The robot must fly in a human-populated area, where
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only a handful of human workers may be “aware” of the robot’s current task and
mission, and a fraction of them may be involved in the physical interaction (e.g.,
object delivery): the robot must assume that most humans are “observers”, i.e.,
they ignore its current mission and are not involved with it. In such conditions,
the Flying CoWorker needs to carefully plan its 3D motion in a reactive way to
navigate and act safely in close proximity to humans. Beyond safety, the Flying
CoWorker should aim at exhibiting navigation strategies that are, as much as pos-
sible, socially aware: for example, it should avoid fast movements close or toward
humans which could scare the observers; it must also maximise its visibility from
the workers’ point of view to avoid the surprise effect and improve the legibility of
its intentions, particularly during an interaction.

We propose a Kinematic Human-Aware Optimization System (KHAOS) for re-
active navigation planning which addresses the requirements mentioned above by
synthesizing trajectories in the 3D space satisfying the kinematic constraints of
the Flying CoWorker and ensuring the visibility and ease of the humans present
in the environment. The human-aware behavior is realized by proposing a vis-
ibility cost and a novel discomfort cost which are combined with the kinematic
constraints. A stochastic optimization process inspired by the STOMP algorithm
[Kalakrishnan 2011] is used to optimise these various costs and thus generate the
trajectory. These definitions of costs and constraints for the social navigation of
the drones, together with the new reactive planning system, KHAOS, are the main
contributions. In this work, we only consider multi-rotor drones such as the Flying
CoWorker base, and throughout this chapter, the term drone always refers to a
multi-rotor drone or Flying CoWorker.

2.2 Related work

Human-aware navigation A mobile robot that has to perform a defined task
may have to navigate in its environment. It follows a trajectory starting from a
position, for example its current position, and ending at the position of its goal.
This trajectory is previously planned by a planner considering the environment as
well as the obstacles in it before being executed by the robot. During its execution,
the trajectory can be regularly updated or re-planned considering new events such
as humans moving in the scene for example. This is called a reactive planner. The
trajectory can be planned based on relative elements like the human-robot distance
instead of considering an absolute position in the scene.

Human-aware robot navigation needs to consider additional constraints on the
trajectory as well as the motion of the robot [Kruse 2013] to navigate safely around
the humans. Most of the human-aware navigation planners mainly use only the
so-called proxemics [Kruse 2013, Rios-Martinez 2015] criteria. This criterion often
corresponds to a distance to be respected in order not to violate the virtual personal
space around a human as proposed by Edward T. Hall [Hall 1966]. The work of
Ferrer. et al. [Ferrer 2013], further developped by Repiso et. al. [Repiso 2017] uses
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a social force model (SFM) based controller to navigate in the crowd and to accom-
pany humans. Social force models represent moving agents like robots or humans as
masses under virtual gravitational forces. Truong et. al [Truong 2017] extended the
social force model to human-object and human-group interactions by proposing the
proactive social motion model. Detecting interactions between people or between a
person and an object, it allows the robot to avoid passing between people talking to
each other for example. Inspired by these, Garell et. al [Garrell 2017] proposes an
Aerial Social Force Model (ASFM), a 3D version of SFM, that allows the drones to
safely accompany humans to their final destination. Some recent works in ground
robot crowd navigation use Graph Convolutional Networks to predict human mo-
tion [Chen 2019]. Deep reinforcement learning techniques are used by Güldenring
et al. [Guldenring 2020] to learn acceptable navigation behaviors and control a
mobile robot in environments with active pedestrians. A recent contribution uses
optimization to produce more legible robot trajectories along with modality shifting
to address multi context navigation [Singamaneni 2021]. Based on elastic bands,
the planner can, for example, switch between a single-band mode, for the robot
only, and a dual-band mode, one for the robot and one for the human. In case of
drone navigation, the recent work of Garell et. al [Garrell 2019] focuses on using
neural networks to learn the non-linear ASFM to address the problem of human ac-
companiment. Unlike to these approaches based on reactive controller based on the
Aerial Social Force Model, we present a reactive planning approach in this chapter
inspired by the STOMP algorithm [Kalakrishnan 2011] which is highly flexible and
can be adapted to various situations.

Interaction When the robot needs to approach a human for interaction, new
motion criteria such as “approach the user from the front“ [Dautenhahn 2006,
Koay 2007] and at a reduced speed, [Butler 2001] need to be introduced to take
into account the specific constraints related to Human Robot Interaction. The
noise and the wind generated by the propellers of drones cause significant addi-
tional annoyance for people as mentioned in [Cauchard 2015]. A user study carried
out by Duncan et al. [Duncan 2013] evaluating the approach distance and height of
the drone towards a human concluded that the human-human proxemics might not
be directly transferable to human-aerial robot interactions. Yeh et al. [Yeh 2017]
also performed a user study for evaluating proxemics in human-drone interaction
and showed that the personal space of the humans varied based on social cues,
like greeting and the design of the drone. A more recent work by Jensen et al.
[Jensen 2018] studied the drone’s interaction distance with a human to signal its
presence and concluded that humans feel acknowledged between 2 m to 4 m. We
use these distances to define the size of a visibility grid in the rest of this chapter.

At this point, one could also wonder what is the best angle of approach to
interact with a human as studied for a mobile robot by Koay et al. [Koay 2007]
who show a preference of the users for a frontal approach, in the visual field of
the human. In our work, we want to propose safe and friendly trajectories for the
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drone’s navigation that are less disruptive to the humans it comes into contact with
or encounters on its way. For this, we take into account the field of view of humans,
the effort to make the drone visible and the discomfort caused to humans by the
drone’s motion.

The interaction between two agents, human or robot, can be improved when
one knows the intention of the other. Pertinent communication of intentions
by the robot can improve legibility [Dragan 2013] and safety. These inten-
tions can be communicated by a more ’readable’ trajectory of the robot as
discussed by Dragan et al. [Dragan 2013] or with some gestures [May 2015] or
through gaze [Khambhaita 2016, Hart 2021]. A recent work by Bevins and Dun-
can [Bevins 2021] studies the human perception of different drone paths. They
show how the participants would react physically, as well as their perception of the
messages contained in these flight paths. They generated several types of paths
and, based on a three-phase user study, proposed some guidelines on path de-
sign to help robots communicate through their motion. Works by Kruse et. al
[Kruse 2014] and Sisbot et al. [Sisbot 2007] studied the effect of directional costs
and visibility to produce more legible paths for robot navigation. The approach
presented by Khambhaita et al. [Khambhaita 2017] and later developed by Singa-
maneni et al. [Singamaneni 2020] proposed proactive trajectory planning for co-
operative human-robot navigation and introduced the concept of time to collision
(time_to_collision) that defines the time it would take for the robot to collide with
an obstacle if it continues its movement at the same speed. It is used as a cost
predicting a future collision with a human and pushing the robot to act earlier
and show its intention to the human. The discomfort_cost proposed in this chap-
ter is inspired by this. Similar behavior was applied to the case of the drone in
[Yoon 2019], showing the anticipation effect where the drone takes into account the
perception of the human.

In addition to the shape of the trajectory, the intention can also be deduced
through the kinematics of the trajectory. A sudden motion towards the human can
be equated with hostile intent, for example. The results of the study by Szafir et al.
[Szafir 2014] show the importance of taking into account the phases of acceleration
and deceleration of the drone and therefore, its kinematics to improve their social
integration in an environment where they collaborate with humans.

2.3 KHAOS: a Kinematic Human Aware Optimization-
based System for reactive planning of flying-
coworker

We need a reactive planner which can perform well in a 3D environment that is
not too sensitive to different local minima. We propose an approach inspired by
the STOMP algorithm [Kalakrishnan 2011] which allows great flexibility due to its
stochastic nature. The optimization takes as input a list of points forming an initial
path whose ends are the start position and the desired goal. From this initial path,
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it generates K noisy trajectories exploring the surrounding space and calculates
the associated costs. These K trajectories are then analyzed using different costs
applied at each timestep or waypoint to sort the most interesting configurations
and finally generate an optimized trajectory.

In the context of this chapter, a trajectory is a list of waypoints with a time
stamp. Each waypoint has a three-dimensional position and may have associated
kinematic information. The transformation to a time-continuous trajectory is dis-
cussed in the next chapter

In this section, we first propose a way to generate an initial path to provide
as input of the system. We then introduce the various costs we use to help the
optimizer generate safe and comfortable trajectories for humans in the scene. We
also present how we extend the original STOMP algorithm to take into account
not only the kinematic constraints of the robot but also the constraints imposed
to respect human comfort and safety. Finally, we discuss how we evaluate the
trajectory cost at different stages of the optimization process.

2.3.1 Initial path

KHAOS, like STOMP from which it is inspired, needs an initial path as a starting
point which is then deformed by the optimization process using the various ap-
plied costs. The initial path is composed of a list of waypoints whose number is
configurable.

Chronologically, the initial path is planned before the drone starts its motion.
KHAOS generates a first trajectory from the initial path and then the drone starts
to execute this trajectory. Then the trajectory being executed serves as a new input
to KHAOS to replan and update the trajectory considering new events like dynamic
obstacles or human motions.

The definition of the initial path is therefore a preliminary step to the reactive
planning phase carried out by KHAOS. It is a step that serves as a guide for the
reactive planner at start-up, so it is essential to respect certain criteria. The initial
path must above all avoid obstacles and take into account the geometry of the drone
to respect a safe distance. Furthermore, the length of the path between the starting
point and the target must be minimal to favour short duration trajectories.

Before starting its motion, humans can accept that the robot takes a few mo-
ments to plan a first trajectory. We can therefore afford to use an initial path
planner which takes time to calculate the initial path but which will explore the
environment extensively to find the most interesting solution.

For this purpose, we propose below a planner that analyses the collisions in a
large space of the environment by a 3D grid and finds the shortest path taking into
account the obstacles.

Implemented method To meet the input requirements of KHAOS, we use a
wavefront expansion algorithm applied to a three dimensional grid. To do this, a
cost is propagated through the grid starting from the cell of the grid corresponding
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to the position of the target the robot is to reach. Each cell is a cube of configurable
size. For a given grid cell, the cost is for example incremented by a value of 1 for
the six closest cells. For the cells in the corners of the cube surrounding the original
cell, the cost is incremented by

√
3 and by

√
2 for the remaining cells. If the tested

cell is located too close or in an obstacle, then the cost applied is -1 corresponding
to a value that will be ignored in the path finding phase. Going through the grid
by applying these costs makes it possible to obtain significant costs for the most
distant regions by considering the obstacles.

The initial path is then obtained by starting from the cost associated with the
cell located at the starting point of the robot and performing a gradient descent to
reach the objective which corresponds by default to the lowest cost of the grid.

The list of cells recorded during the gradient descent is used to obtain the list
of positions forming the initial path. These positions correspond to the midpoint
of the cells. An example of the obtained result can be seen in Fig. 2.1 where the
starting point is in a region where the robot is hidden by walls and the objective
is in front of the human represented in green. The darker colors correspond to
the lower costs and the lighter colors correspond to the higher costs. The lowest
costs are therefore found around the goal. The highest costs correspond well to the
most distant regions given the obstacles because where the starting point is, it is
necessary to go around the wall to access this area.

(a) 3D view (b) top view

Figure 2.1: Initial path generated using wave expansion algorithm. Darker colors
correspond to the lower costs and the lighter colors correspond to the higher costs.

Discussion The method used is simple and interesting to obtain a result that
avoids local minima, is repeatable and considers obstacles in the scene. On the
other hand, it has several shortcomings.

First of all, due to the nature of the grid, the result obtained is a discretized
path, it is thus necessary to apply a smoothing method to have a continuous path.
We will see in the next chapter how we overcome this problem. Second, a global
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planner is usually slow, so it takes some time to update and compute a new path
if objects or humans in the scene move. This is why it is necessary to use other
techniques like the one used in KHAOS. Finally, the initial path generated using this
technique only optimizes the distance to travel. To improve the system, it would
be interesting to integrate human-aware costs such as those integrated in KHAOS.
This could improve the shape of the initial path, which could further improve the
performance of KHAOS in its trajectory search.

2.3.2 Human-aware Costs

Below we define the various social and kinematic constraints that are used in the
optimisation phase of KHAOS.

We first present a means of evaluating the discomfort caused to humans through
the discomfort_cost. Then we present the visibility_cost which reflects how the
human’s visual field is taken into account but also the effort required to turn the
head and see the Flying CoWorker. Finally, we present a way to constrain the speed
of the Flying CoWorker according to a discomfort_constraint while considering the
kinematic limits of the Flying CoWorker.

2.3.2.1 Discomfort

To represent the discomfort caused to one or more humans when a drone moves
in the environment, we consider a cost based on the relative speed and distance
between the drone and humans present. Indeed, we want to translate the fact that
a drone moving fast and close to a human is much less comfortable than a distant
slow drone. In addition, if the drone is forced in one way or another to pass close to
a human, it must adapt its speed by reducing it to limit the discomfort generated to
this human, or even stop if it has reached a certain threshold. The time_to_collision
cost presented in [Khambhaita 2017] is the first part of the answer, but we need also
information on this cost even when the velocity vector of the drone is not oriented
towards the human. Therefore, we formulate the discomfort_cost as:

Cdis = ‖
−−→
Vrob −

−−−→
Vhum‖

Distrob−hum
+ αproximity
Dist2rob−hum

(2.1)

where ‖−−→Vrob −
−−−→
Vhum‖ and Distrob−hum are respectively the relative speed and dis-

tance between the drone and the human. The second term of Eq. (2.1) describes
the cost associated with the proximity of the drone to the human whose influence
can be adjusted using the scaling factor αproximity. It reflects the nuisance caused
by the presence of the drone hovering in the human environment. This can include
the physical presence of the drone but also the noise emitted by the propellers.
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Figure 2.2: Visibility cost : a) (resp. b) Cutaway top (resp. side) view showing
the 3D simulation rendering of the change in visibility cost as a function of the
panoramic (resp. tilt) angle. c) 3D view showing the consideration of obstacles. The
human gaze direction is represented by a red arrow. Red colored cells correspond
to high cost while blue colors correspond to low cost.

2.3.2.2 Visibility and effort to see

The visibility criterion presented in [Sisbot 2007] uses a 2D grid. Since a drone can
move in three dimensions, we need to extend the model to a 3D grid. A 3D grid
centered at the origin of the human visual field gives the visibility cost, Cvis. For
each cell the cost is computed as follows:

• All cells contained in a cone of pan and tilt angles respectively equal to 2∗ |α|
and 2∗|α′| (blue zone in Fig. 2.2a and Fig. 2.2b) located in front of the human
have the same cost value. This value is relatively low (= 1) representing
a relatively free zone and corresponding to the preferential approach zone
according to [Koay 2007].
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• Angles increase clockwise as |β| = π − |α| and |φ| = π − |α|. Black and white
arrows in Fig. 2.2 start at the minimum value of the angle and end at the
maximum values. Cells in the zone starting at |αmax| (respectively |α′max|)
and ending at |βmax| (respectively |φmax|) have a cost proportional to |α|+ |β|
(respectively |α′|+|φ|). This makes it possible to reconcile the approach zones
in the visual field which are less comfortable than the frontal zone and the
zones which are not in the visual field of the human that require an effort to
turn around.

• Zones hidden by obstacles, out of the visual field and beyond a threshold
distance (4 m) correspond to a zero cost value.

As depicted in Fig. 2.2, the orientation of the human gaze is represented by the
red arrow. Directly in front of human is represented in dark blue, the zone of low
cost, and then there is a gradual increase of the cost more and more towards the
rear corresponding to more and more reddish colors.

2.3.3 Kinematic constraints

The driving idea behind our approach is to take into account the kinematics of the
drone while respecting human comfort by taking as a reference the discomfort_cost
defined above. The particularity of the STOMP algorithm on which we based the
optimization part of our approach is the generation and comparison of K noisy
trajectories. These noisy trajectories aim to explore space around the previous
trajectory in a stochastic manner.

Starting from this principle, we propose in Algorithm 1 to constrain these K
generated trajectories by considering the kinematic constraints of the drone such
as its maximum speed vmax, acceleration amax and deceleration decmax. To this,
we add an additional constraint linked to the cost of discomfort by setting a value
DCFmax. This value cannot be exceeded and is named as discomfort_constraint
in this manuscript. Thus for each point of the trajectory generated randomly, we
calculate the maximum speed vkin that the drone can reach considering its kine-
matics limits. If for this position and speed, the Cdis exceeds discomfort_constraint
limit DCFmax, then the discomfort_constraint predominates and limits the speed
below the maximum speed that it is possible to achieve. Conversely, if for a given
position, the drone can move at its maximum speed and it is not inconvenient for
humans, then it will limit its speed to its maximum kinematic limits.

2.3.4 KHAOS main algorithm

The initial path and costs defined above are used by the KHAOS main algorithm
which is based on the well-known STOMP algorithm [Kalakrishnan 2011]. Algo-
rithm 2 represents the different steps that take place when running KHAOS. Like
STOMP, it starts from a starting state x0 and an ending state xN , which in the
context of this chapter represent the Cartesian coordinates (xBase, yBase, zBase) of
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Algorithm 1: Constrained velocity computation
1 Given

– Drone kinematics constraints: vmax, amax, decmax

– discomfort_constraint: DCFmax

for each noisy smooth trajectory do
for each 3D position of the drone do

Compute kinematic velocity of the drone vkin;
Compute discomfort cost Cdis with vkin;
if Cdis < DCFmax then

vchoice = vkin;
else

vchoice = (DCFmax − αproximity
Dist2

hum−rob
) ∗Disthum−rob;

end
vdrone = min(vmax, vchoice)

end
end

the centre of mass of the Flying CoWorker base. The initial path obtained by
the method described in Section 2.3.1 allows to define the initial discretized tra-
jectory θ composed of N Cartesian positions. As presented by Kalakrishnan et
al. [Kalakrishnan 2011], N is the number of waypoints chosen to discretize the tra-
jectory, A is a finite differencing matrix that when multiplied by the position vector
θ, produces accelerations θ̈. M is used in the optimization process to smooth the
updated trajectory.

As the initial path only gives the positions for the base, Algorithm 1 is first
applied to define the speeds associated with θ before optimisation. These values
are needed to evaluate the cost of the path to be compared during the convergence
test detailed later in this chapter.

The first step in the optimisation loop is to create K noisy trajectories θ̃i using
a normal distribution N with mean θ and variance R−1. For each noisy trajectory,
speeds are calculated using Algorithm 1 as the next step is to estimate the costs
for each waypoint on each noisy trajectory. The speeds are needed to evaluate the
local costs and especially the discomfort_cost. The next steps allow to sort the costs
using P (θ̃k,i) and to keep the most interesting base positions before estimating the
global cost of the trajectory Q(θ).

2.3.5 Local and global trajectory costs

Similarly to the STOMP algorithm [Kalakrishnan 2011], we estimate the costs in
two distinct stages of the algorithm. A first step where an estimated local cost for
a particular waypoint is estimated. A second step carried out at the end of the
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Algorithm 2: KHAOS main algorithm
• Given:

– Start (x0) and goal (xN ) states, xi ∈ RDoF

– An initial discretized trajectory θ ∈ RDoF×N

– A state-dependant cost function q(xi)

• Precompute:

– A = finite difference matrix
– R−1 = (ATA)−1

– M = R−1, with each column scaled such that the maximum element is
(1/N)

– Apply Algorithm 1 to θ to obtains associated speeds, θ ∈ R2×DoF×N

• Repeat until convergence of global trajectory cost Q(θ):

1. Create K noisy trajectories, θ̃1 · · · θ̃K with parameters θ + εk, where
εk = N (0,R−1)

2. Apply Algorithm 1 to each θ̃i to obtains associated speeds
3. For k = 1 · · ·K, compute:

(a) Local cost S(θ̃k,i) = q(θ̃k,i) according to Equation 2.2

(b) Probability metric for sorting: P (θ̃k,i) = e
− 1
λ
S(θ̃k,i)∑K

l=1[e− 1
λ
S(θ̃l,i)]

4. For i · · · (N − 1), compute: [δ̃θ]i =
∑K
k=1 P (θ̃k,i)[εk]i

5. Compute δθ = M δ̃θ

6. Update θ ← θ + δθ

7. Compute global trajectory cost Q(θ) =
∑N
i=1 q(θi) + 1

2θ
TRθ according

to Equation 2.3
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optimisation loop to estimate the global cost of the trajectory.

Local cost The local cost function estimated at each waypoint is defined as fol-
lows:

S(θ̃k,i) =
{ ∑

(Cvis + Cdis + Ctime_local) if no collision
Cobstacle else

Ctime_local = αtime_local ∗
dist_to_goal
||Vi||

(2.2)

where Cvis is the visibility cost defined in 2.3.2.2, Cdis is the discomfort_cost and
Cobstacles is the obstacle cost, which pushes the waypoints away from the obstacles
whenever possible without violating the social constraints.

Note the introduced cost Ctime_local which is homogeneous to a time. The
calculated distance dist_to_goal corresponds to the distance between the consid-
ered waypoint and the objective, passing through all the following waypoints of
the trajectory. ||Vi|| is the drone speed magnitude for the considered waypoint and
αtime_local is a constant. This cost therefore represents the time it would take the
Flying CoWorker to reach the objective if it continued at the same speed. Reducing
this cost favours high speeds or short distances.

Global cost In contrast to the local cost, we estimate here a cost for the whole
trajectory called global cost. It is used to estimate the whole trajectory and compare
it to the input trajectory or to the trajectories that did not meet the convergence
criterion.

The global trajectory cost is defined as follows:

Q(θ) =
N∑
i=1

(Cvis + Ctime) + Csmooth

Ctime = αtime ∗
L

V

(2.3)

where, N is the number of waypoints and Cvis is the visibility cost defined in 2.3.2.2.
Ctime is a cost that can be assimilated to the duration of the trajectory to be ex-
ecuted by the drone when cumulated over the whole trajectory. L and V are the
distance and average speed of the drone between waypoint i and i− 1 respectively
and αtime is a constant. Csmooth = 1

2θ
TRθ represents the sum of squared accelera-

tions along the trajectory as defined in [Kalakrishnan 2011] and allows to improve
the smoothness of the trajectory.

2.3.6 Convergence criterion

The optimization loop detailed above is executed as long as the convergence criterion
is not met. Many convergence criteria are listed in the literature and several of
them have been tested for our case. Nevertheless, it is always difficult to define
a convergence criterion that is a good compromise between execution speed and
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quality of the result, i.e. the trajectory in our case. Our need is to obtain first of
all a trajectory which does not include any waypoint in collision with the obstacles
and the humans present in the environment. Secondly, we want the trajectory to be
sufficiently deformed if necessary, to respect the various social costs, to bypass the
obstacles widely enough to avoid the surprise effect for example. Finally, we want
the execution time to be short enough to take advantage of a reactive planner that
can react quickly to various changes in the environment and to unforeseen events.

Algorithm 3: Convergence criterion
1 Given

– Counter initialization: attempt← 0

– Maximum number of attempts: max_attempts

– Previous global trajectory cost: Q(θ)previous

while attempt < max_attempts do
attempt+ +;
Compute new global trajectory cost: Q(θ);
if Q(θ) < Q(θ)previous then

Reset counter: attempt← 0;
Update global cost: Q(θ)previous ← Q(θ);

end
end

To meet our need, we propose to use Algorithm 3 where a counter called attempt
is used to list the number of successive attempts where the optimization process
did not improve the global trajectory cost Q(θ) previously defined. If the optimizer
succeeds in improving the global cost of the trajectory, then the attempt counter is
reset to 0. If, on the other hand, aftermax_attempts attempts without success, the
optimizer is stopped to keep the trajectory corresponding to the best attempt. Thus,
by changing the max_attempts parameter, the desired quality of the trajectory can
be set.

Another interesting alternative may be to give a time criterion to the optimizer
as used by Park. et al. [Park 2012]. By setting a maximum time for the optimization
loop, it is possible to be sure that the result is always obtained within the given time.
This can be interesting when integrating into a state machine for example. It is
thus possible to control the duration of the optimization task and avoid blocking the
system if for some reason the optimization loop takes much longer than expected.

2.4 Results

In this section, we first present the simulation environment used to challenge
KHAOS. Then, several situations are studied, each of these have their own speci-
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ficities to give a global view of the capacities of KHAOS. Through these examples,
we will also see the influence of the various costs defined in the previous section.

2.4.1 Simulation environment

Figure 2.3: On the left: 0.9 m sphere diameter used by KHAOS to do collision
tests for the Flying CoWorker platform. On the right: Human model composed of
primitive convex objects.

To demonstrate the KHAOS behaviour, we need a suitable simulation environ-
ment. Our system is human-aware and therefore requires a human model to be
tested as well as a way to simulate the robot itself. Many collision tests are car-
ried out by KHAOS. To maximise the performance of collision tests, we use simple
primitives rather than complex meshes to represent the human(s), the robot and
the environment as collision objects.

The human model used is represented by a set of simple primitives such as cylin-
ders and boxes as represented in Fig. 2.3. These primitive objects are considered
as collision objects. Using this model, it is possible to differentiate between the
different parts of the human body. For example, the position of the right hand can
be known independently of the position of the head because they are two separate
collision objects.

In this same figure, the collision object used for the collision tests of the Flying
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CoWorker base can be seen. It is considered as a 0.9 m diameter sphere that can
be configurable. This representation gives an idea of the imposing dimensions of
the Flying CoWorker base in the proximity of the human. To improve readability,
the sphere corresponding to the drone is not shown in the following figures in this
section, showing only its trajectories. Depending on the examples, the scene is
completed with obstacles and humans.

The simulation results presented in the rest of this chapter use the
MoveIt [Chitta 2012] collision scene where the different collision objects of the hu-
man, the robot and the obstacles are imported.

2.4.2 Examples

2.4.2.1 Frontal approach

For this first example, we explore the case where the drone approaches the human
very closely from the front as shown in Fig. 2.4. We represent the trajectory by
drawing each of its segments with an arrow whose color depends on the drone
average speed. The more the color tends towards red, the higher the speed and the
more the color tends towards green, the slower the speed. From this representation,
we can visually see the phases of acceleration and deceleration of the drone.

The drone starts at a distance of 9 m from the human and approaches him at a
very close distance of 0.5 m and at a height of 1.5 m. This interaction distance is very
small and close to the human’s head, which can be considered a very uncomfortable
situation for him. As the approach is frontal, the cost of the human visual field
does not influence and does not distort the trajectory. In our implementation, we
favor positions far from obstacles, and that explains the slight deformation of the
trajectory towards the opposite direction of the ground, which is considered as an
obstacle.

discomfort_constraint of 0.5 We first choose a discomfort_constraint equal
to 0.5 that can be imagined as the maximum speed of 1 m s−1 for the drone at a
distance of 2 m from the human. Fig. 2.4 represents the speed of the drone as well
as the discomfort_cost along the trajectory. The movement of the drone can be
broken down into three phases. First of all, the drone accelerates in accordance
with its kinematic limits until it reaches its maximum speed of 1 m s−1. Gradually
approaching the human, the discomfort_cost increases until it reaches the discom-
fort_constraint of 0.5 that we have set. Once this maximum value is reached, the
optimizer will regulate the speed and start to decelerate so as not to violate either
the discomfort_constraint or the kinematic constraints of the drone.

discomfort_constraint of 0.25 Let us now consider the same trajectory but
this time we fixed the discomfort_constraint at 0.25. In Fig. 2.4f, we find the same
acceleration phase as before because the drone is far enough away. On the other
hand, the discomfort_constraint is reached more quickly which pushes the drone to
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Figure 2.4: Frontal approach with a discomfort_constraint of 0.5: a) Top
view b) Side view c) Side view with a zoom at the top showing the drone’s size
represented by a sphere of 0.9 m e) Drone speed and discomfort_cost over time.
Frontal approach with a discomfort_constraint of 0.25: d) Side view f)
Drone speed and discomfort_cost over time.

slow down approximately 2 s earlier, allowing the drone to signal to the human its
intention to slow down in his/her presence. In addition, the deceleration phase is
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much longer by around 3 s, which gives time to the human to better adapt to the
presence of the drone.

The discomfort_constraint is a parameter that allows the robot’s behaviour to
be adapted to the situation. The operator can accept a faster approach, for example
if the robot has already come several times under the same conditions. Or on the
other hand, if we want a very smooth deceleration, we can simply reduce this value.

2.4.2.2 The FCW overtake the human

Now let’s take a look at how the optimizer behaves when the human visual field
has a strong influence. We propose to visualize this influence Fig. 2.5 through an
example where the Flying CoWorker starts at a distance of about 6 m from the
human, approaches him in a straight line while passing to his/her right at a close
distance of 1.5 m and stops at a distance of about 6 m behind his/her back. As in
the previous use case, the height at which the Flying CoWorker moves in its original
and non-optimized trajectory is 1.5 m.

Fig. 2.5b and Fig. 2.5c show the shape of the optimized trajectory for a discom-
fort_constraint of 0.5 s−1, while Fig. 2.5d shows the corresponding Flying CoWorker
speed magnitude and the discomfort_cost along the trajectory. The red line repre-
sents the original path provided to the optimizer.

Here, the shape of the trajectory is greatly distorted by the discomfort_cost
and the human visual field. Having no obstacles, the optimizer explored the space
and found a trajectory where it could maximize the Flying CoWorker’s speed while
reducing the visibility_cost to a minimum. We also notice the deformation of the
trajectory along the z-axis, and the optimizer has indeed generated a trajectory
moving away as far as possible from the human.

We can observe that the discomfort_constraint limit is never reached and the
visibility_cost is, in this case, the major factor distorting the trajectory. Once
the trajectory reaches a minimum visibility_cost and discomfort_cost, the only
parameters which will influence the total cost of the trajectory are the length and
speed which will limit the deformation of the trajectory and prevent the Flying
CoWorker from going too far away.

Changing the discomfort_constraint to a value of 0.25 shows that the deforma-
tion can be greater as illustrated in Fig. 2.5a, where the shape of the trajectories
is visually compared to Fig. 2.5b. In this case, the influence of the visibility cost
is identical, but the discomfort_cost pushes back the trajectory more strongly in
order to minimize the Ctime_local and Ctime defined in 2.3.5. This ensures that the
speed is maximised along the trajectory and therefore the travel time is minimised
while respecting human comfort.

2.4.2.3 Corridor

Until now, the trajectories generated by the optimizer are not subject to constraints
linked to the environment except the human himself. Now let’s study a similar
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(a) (b)

(c)

(d)

Figure 2.5: Flying CoWorker overtaking the human with a discomfort_constraint
of 0.25 s−1 (a) and 0.5 s−1 (b) with the according side view (c). d) Flying
CoWorker speed magnitude and discomfort_cost as a function of time for a dis-
comfort_constraint of 0.5 s−1
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(a) Top view (b) Side view

(c)

Figure 2.6: Flying CoWorker trajectory in the corridor in presence of the human for
a discomfort_constraint of 0.5 s−1: a) Top view b) Side view c) Flying CoWorker
speed magnitude and discomfort_cost as a function of time

situation where the Flying CoWorker navigates in a corridor and crosses a human
on its way. For this, we added 2 walls 3 meters high, positioned so that there is
sufficient space for the Flying CoWorker to navigate to the human’s right. The
walls are high enough to force the Flying CoWorker through the corridor instead
of going around it. In this situation, the corridor walls do not allow the optimizer
to generate trajectories that deviate greatly from the human in order to allow the
Flying CoWorker to navigate at maximum speed. Here we use the same original
path as in the previous cases in order to have better visual comparisons of the
deformation of the trajectories.

The result is visible in Fig. 2.6 where we observe a trajectory with a discom-
fort_constraint of 0.5 s−1 that deviates much less from the human than in Fig. 2.5.
The side view Fig. 2.6b also shows an upward deformation in order to increase the
distance between the human and the Flying CoWorker.

Despite the constraints induced by the walls, the speed is close to the maximum
speed along the trajectory except for the points closest to the human as we can see in
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(a) Top view (b) Side view

(c)

Figure 2.7: Flying CoWorker trajectory starting behind the human’s back for a
discomfort_constraint of 0.25 s−1: a) Top view b) Side view c) Flying CoWorker
speed magnitude, normalized visibility_cost and discomfort_cost as a function of
time

Fig. 2.6c. For a discomfort_constraint of 0.5 s−1, the distance is generally sufficient
along the trajectory and the speed does not need to be strongly corrected. Indeed,
in Fig. 2.6c, we see that the discomfort_cost does not exceed 0.4 s−1, which means
that from the point of view of the discomfort_cost, the points of the trajectory
could be closer to the human while respecting the discomfort_constraint of 0.5 s−1.
On the other hand, the visibility_cost pushes the points of the trajectory further
away from the human. Here, the points of the trajectory are spatially blocked
by the wall, and therefore the discomfort_cost takes over by limiting the speed if
necessary. This is what we observe in Fig. 2.6c between 5 and 9 seconds when the
speed is limited by the discomfort_constraint.
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2.4.2.4 The FCW arrives from the back

Here we consider the case where the Flying CoWorker arrives from the back of
the human. Its starting point is at the back of the human and close enough to
be in the visibility_cost grid defined in 2.3.2.2. The visibility_cost at this position
is therefore non-zero. This in order to show that our planner makes sure to limit
the effort necessary for the human to turn his/her head and thus have the Flying
CoWorker in his/her field of view while respecting the discomfort_constraint.

Fig. 2.7 shows that the Flying CoWorker will move away from the human to
maximize its speed, reduce the effort required to see the Flying CoWorker while
adapting its speed because it starts very close to the human.

In Fig. 2.7c we can see the time evolution of the normalized visibility_cost in
addition to the speed and discomfort_cost. It can be seen that very soon the dis-
comfort_constraint is reached, limiting the speed and forcing the Flying CoWorker
to move away to gain speed. On the other hand, the visibility_cost keeps reducing
until it reaches a zero value because the Flying CoWorker has moved so far away
that it has gone out of the visibility_cost grid before entering it again. Then the
visibility_cost remains relatively low because the approach is made in a favourable
visibility cone for the human.

2.4.2.5 Two Humans

We now study the case where the robot meets a second human on its path. Fig. 2.8
shows the Flying CoWorker first navigating a corridor and passing a human repre-
sented in blue on its way, then continues by approaching a second human in green
from the back to finish at a position where it can exchange an object with him.

To build such a corridor, we added two 3 m high blocks that materialize these
walls, positioned so that there is sufficient space for the drone to navigate to the
human’s right in the corridor. We also add a ceiling to the corridor to force the
drone through it instead of going around it. In order to make the scene visible in
the figure, the block representing the ceiling has been made almost transparent.

Each human has his/her own visibility_cost grid computed as defined in 2.3.2.2.
In the presence of several humans, for a given Flying CoWorker position, we consider
only the highest discomfort_cost and visibility_cost values among these different
humans for the optimization process.

In this situation, the corridor walls do not allow the optimizer to generate tra-
jectories that deviate greatly from the human in blue located in the middle of the
corridor. Despite the constraints induced by the walls, the speed is close to the
maximum speed along the trajectory except for the points closest to the blue hu-
man. Here, the points of the trajectory are spatially blocked by the wall, and
therefore the discomfort_cost takes over by limiting the speed. This is what we
observe in Fig. 2.8c between 4 and 13 s when the speed is limited by the discom-
fort_constraint. At the same time, we can observe that the visibility_cost greatly
increases because the drone goes more and more towards the back of the blue human
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(a) (b)

(c)

(d)

Figure 2.8: Trajectory execution in a two-humans scenario for a discom-
fort_constraint of 0.5. a) First iteration, the robot starts by navigating in the
corridor b) A few iterations later, after having passed the blue human in the corri-
dor c) (resp. d) speed magnitude, discomfort_cost and visibility_cost as a function
of time corresponding to the trajectory from (a) (resp b: Time origin corresponds
to the beginning of the re-planned trajectory).
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and can’t pass far from him until it comes out of the influence of the visibility_cost
grid at approximately 14.5 s and visibility_cost drop to 0.

Once the drone has passed the human in blue, it finds itself behind the back of
another human represented in green. Here, the influence of his/her visibility_cost
becomes predominant compared to that of the human in blue. The trajectory
greatly deviates as shown in Fig. 2.8b and this shows how our planner ensures to
limit the effort necessary for the human to turn his/her head, and thus have the
drone in his/her field of view while respecting the discomfort_constraint. Fig. 2.8d
shows that the drone moves away from the human by adapting its speed and reduces
the effort required to see it specifically at the end when it is in close proximity to
the human.

In the situation where the drone disengages from the human after handover
(Fig. 2.9a), the shape of the trajectory is similar to the approach from the back. It
first prioritizes the positions in front of the human to move away and go around the
human. It accelerates smoothly, as shown in Fig. 2.9b until the first 2 s, limited by
the discomfort_cost, and then adapts its speed in agreement with other constraints.

(a)

(b)

Figure 2.9: Drone disengagement from the human and motion toward the corridor
with a discomfort_constraint of 0.5. a) Shape of the trajectory b) speed magnitude,
discomfort_constraint and visibility_cost as a function of time. Blue arrow indicates
the direction of the trajectory.
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2.4.2.6 Planner reactivity

In order to illustrate the reactivity of our planner, we use the corridor scenario
as used previously and study the reactivity of the planner when the human in
the corridor moves. Fig. 2.10a shows the trajectory deformation with the discom-
fort_constraint fixed at 0.25 when the human is located on the right in the corridor
at the beginning. While KHAOS is being executed, the human moves towards the
opposite wall reducing the Flying CoWorker initial passage space. This can be seen
in Fig. 2.10b where we observe that the planner reacts immediately by deviating
the trajectory upward to avoid the human. This behaviour shows the ability of
KHAOS to operate in real time.

The ceiling block above the corridor prevents the planner from deviating the
trajectory further upwards. In return, the speed is immediately adjusted to re-
spect the social constraints as can be seen in Fig. 2.10d especially when the Flying
CoWorker is close to the human.

2.4.2.7 Highly constrained environment

Sometimes the environment does not allow for a satisfactory solution close to the
original path that does not currently consider social constraints or simply because
the environment has changed suddenly. Here we show that KHAOS has also the
ability to adapt and find solutions even in very constrained environments.

For that, we take the previous corridor scene and add an obstacle that can be
compared to a counter in order to restrict the possibilities of the passage of the
Flying CoWorker through the place where the human is located. It is placed on
the ground and prevents access to the Flying CoWorker from the area below the
human’s right arm. The space between the ceiling and the human’s head is sufficient
for the drone to pass, but in this case, the trajectory would be very uncomfortable
for the human or even dangerous. We deliberately challenge KHAOS by choosing
an initial path passing through the area below the human’s left arm represented
by the red line in Fig. 2.11. Flying in this area would push it to pass very close
to the human body, which would be very uncomfortable. If the Flying CoWorker
had no other choice, the optimizer would be able to generate a trajectory where
the drone would go at a very slow speed as it passes close to the human body. In
the case presented here, the optimizer chooses a trajectory far from the human and
on the opposite side by changing the homotopy class. We, therefore, can say that
the trajectories generated by the optimizer are not deformed just locally but by
exploring the surrounding space to find more suitable solutions. This trajectory is
not only more comfortable for the human but also allows the drone to reach its goal
more quickly.
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(a) (b)

(c)

(d)

Figure 2.10: Planner reactivity when the human is moving to his/her right for a
discomfort_constraint of 0.25. On the left: First iteration (a) with correspond-
ing drone’s speed magnitude and discomfort_cost as a function of time (c). On the
right: Next iteration just after moving the human on his/her right reducing the pas-
sage to the drone (b) with its corresponding speed magnitude and discomfort_cost
as a function of time (d).
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Figure 2.11: Drone’s trajectory along the constrained corridor with a discom-
fort_constraint of 0.5.

2.5 Discussion and future work

The trajectory generated by KHAOS is refreshed at a frequency between 5-10Hz on
a standard computer (1.9 GHz Intel i7 CPU, 32 GB of memory): with such a per-
formance, our reactive planner can be used in real-time in real robot experiments.
Trajectories used in our experiments are generated from an initial path correspond-
ing to a straight line to simplify reading except for the two humans scenario. Indeed,
in our case, we must be attentive not only to the shape of the trajectories but also
to the adaptation of the speed.

The noise generated by a multi-rotor drone like the Flying CoWorker is a func-
tion of its speed and/or acceleration. Moreover, the acoustic intensity decreases
proportionally to the inverse of the square of the distance. We can therefore be
assumed that the discomfort_constraint described in this manuscript also reduces
this nuisance.

The physical model used for the calculation of the speeds of the drone by consid-
ering the discomfort_constraint can be improved. At some parts of the trajectory
the speed is not derivable, but most of the time, the system produces a smooth
motion compatible with human interaction. To improve it, we can combine it with
the bounded jerk model techniques [Sidobre 2019] that could produce smoother and
better velocity profiles. This improvement will be presented in the next chapter.

We plan to improve the planner by adding the management of drone orientation.
On the human-aware level, we want to go more in-depth by studying how to adapt
the trajectories by integrating the handover phase [Mainprice 2010] as well as the
control of the manipulator’s arm [Sisbot 2012], which requires being very close to
the human. We aim at a coordinated arm movement which can, for example, start
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reaching to exchange an object while the navigation phase is not yet over, which
requires testing deformable configuration spaces for the drone. The work on these
topics is presented in Chapter 4.

2.6 Conclusion

We have presented in this chapter a planning system called KHAOS for the gener-
ation of reactive human-aware trajectories in 3D for a Flying CoWorker.

Our system takes into account the kinematic constraints of the multi-rotor
drone. It also considers the potential discomfort caused by the drone’s fast mo-
tion in proximity to humans. For that, we proposed a discomfort_cost considering
the relative distances and speeds between a drone and a human. In addition, the
visibility of the drone by humans and the human effort to see it are also taken
into account. Finally, we have shown how the drone adapts its behavior in several
situations. Through these examples, we have highlighted the importance and influ-
ence of the various social constraints defined at the beginning of the chapter. We
have shown that our system respects the kinematic constraints of the robot in all
situations in addition to respecting the comfort of the human.
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3.1 Introduction

In the previous chapter, we presented KHAOS [Truc 2022], a Kinematic Human
Aware Optimization-based System for Reactive Planning of Flying-Coworker in
the context of the "Flying Co-Worker” project. It offers a solution that combines
motion planning with respect for the robot’s kinematic constraints. From an initial
path composed of waypoints corresponding only to positions, our planner is able to
modify this path by assigning new positions. These new positions are assigned a
speed, all of which allows the human-aware and kinematic constraints of the robot
used to be respected.

We first want to make sure that the kinematic information given at the output of
KHAOS is feasible. KHAOS provides a list of waypoints, so we want to link them
to obtain a continuous time trajectory executable by a low-level controller. We
also want this trajectory to respect as much as possible the kinematic information
given by KHAOS to avoid violating the social constraints between two consecutive
waypoints.

In this chapter, we start by introducing the problematic related to the poor
smoothing of the output trajectories presented in the previous chapter. We continue
by testing two trajectory generators from the literature. These tests highlight the
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need to develop a solution dedicated to the problem of defining a long trajectory
for a complex system. An important characteristic of KHAOS is that the final
trajectory is build by deforming an initial path and that the quality of this initial
path has a large influence on the solution. The use of Non-Uniform Cubic B-Spline
provides a solution to the two problems of the initial trajectory and the generation
of a continuous trajectory. We propose the use of an extension of the softMotion
library based on Non-Uniform Cubic B-Spline. Finally, we show through examples
the improvement brought to the conversion of a KHAOS trajectory into a continuous
trajectory in time.

3.2 Issues

Initial path quality As mentioned in the previous chapter, our planning system
is inspired by the widely used STOMP algorithm. The STOMP algorithm optimises
an initial path from a set of costs to generate a new smoothed path. This smoothing
is dependent on the initial path, as STOMP does not smooth out any significant
breaks in the initial path. These breaks will remain in the final result and may even
be amplified.

By inheritance, KHAOS suffers from the same problem and therefore requires
smoothing of the initial input path in order to obtain a satisfactory result. Further-
more, it generates a 3D trajectory constrained by kinematic limits (bounded speed,
acceleration and jerk) and human-aware costs that may also have an impact on the
kinematic parameters. This trajectory must therefore respect the feasibility from a
kinematic point of view by avoiding, for example, too tight turns that would force
the robot to slow down during execution.

Fig. 3.1 clearly shows the impact of the initial path defects on the output of
KHAOS. The initial path shown in red has two very sharp turns. After several
iterations, KHAOS was able to smooth out the turn visible on the left of the figure.
The second one, visible on the right, is reflected in the planner output. The defects
are still present and without improvement it is clear that the execution of such a
trajectory will be inefficient from a kinematic point of view. The Flying CoWorker
must reduce its speed sharply at each of these turns or even stop to follow the
trajectory faithfully.

Compliance of shape and kinematic In order to link the waypoints generated
by KHAOS and thus generate a complete continuous trajectory in time, we need
a trajectory generator adapted to the constraints of our system for the following
reasons:

• KHAOS output contains a large number of waypoints. A too small number
of waypoints does not allow to obtain a sufficiently accurate result, especially
when there are many turns or when the length of the trajectory is important.
Because of the large number of waypoints, the distance between them can be
quite small.
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Figure 3.1: Shape of the initial path (red) and trajectory generated by KHAOS
(green) after several iterations when no specific smoothing is applied

• The final trajectory must pass through the waypoints and connect them with-
out violating the social constraints imposed by KHAOS. The social constraint
most impacted by the trajectory generation is the discomfort_constraint de-
fined in 2.3.2.1. Indeed, a too large trajectory deviation between two way-
points can cause an increase of the discomfort_cost. This increase can be due
to an undesired physical approach of the Flying CoWorker to the human or
an increase of the speed too important. It is therefore preferable to avoid that
the speed of the Flying CoWorker between two waypoints is higher than the
highest speed at these two waypoints.

• Each waypoint generated by KHAOS contains position and speed information.
Speed magnitude is limited by the discomfort constraint and defined from a
basic constant acceleration calculation model. The components of the speed
vector are then defined from the segments connecting the previous and next
waypoint. The most important information to be used by the trajectory
generator is therefore the magnitude of the speed. Then, the components of
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the speed vector must be adapted to ensure continuity.

3.3 Tests of existing solutions

Meeting the criteria defined in the previous section with existing solutions is not
trivial. In our case, it is not enough to find a curve connecting two points with an
acceleration phase, a cruising speed phase and a deceleration phase. The speeds for
most of the different waypoints are not zero. In this section, we show in parallel
the results of two interesting libraries intended to solve our problem:

• KDTP (for KinoDynamic Trajectory Planner), based on a steering method
presented in the work of A. Boeuf [Boeuf 2017]. Spline-based, it is a trajectory
generator with minimal time and constant instantaneity. It is applicable to
any robot with decoupled (or differentially flat) dynamics to determine the
proximity of the dynamic states of a quadrotor.

• Ruckig, the result of work by Berschei et al. [Berscheid 2021]. An algorithm
for online trajectory generation (OTG) respecting third-order constraints and
complete kinematic target states. Given any initial state of a system with mul-
tiple degrees of freedom (DoFs), Ruckig calculates a time-optimal trajectory
to an arbitrary target state defined by its position, velocity, and acceleration
limited by velocity, acceleration, and jerk constraints.

These two libraries thus make it possible to connect two states from kinematic
data. We used them to connect the waypoints generated by KHAOS for two different
trajectories. The first one is a straight line trajectory with an acceleration phase, a
constant speed phase and a deceleration phase. The second is slightly deflected by
an obstacle to force the trajectory to have a certain curvature.

The kinematic limits used to constrain the trajectory generators are those used
by KHAOS. For speed, we limit to 1 m s−1, for acceleration we impose 0.5 m s−2

and 10 m s−3 for jerk. For the specific case of KDTP which requires a limit in snap,
we have limited it to 30 m s−4.

Straigth line trajectory Fig. 3.2 shows the results for the straight line trajectory
for both trajectory generators. On the left are the results from KDTP and on the
right those from Ruckig. For each (Fig. 3.2a and 3.2b), we show a shot of the shape
of the generated trajectories represented by red lines. The waypoints generated by
KHAOS are represented by green spheres.

Overall, we can see that both trajectory generators try to pass through the
different waypoints with a slight advantage for Ruckig. However, when zooming in
on the start of the trajectories (Fig. 3.2c and 3.2d), we notice large unexplained
trajectory deviations around the waypoints. These deviations are less important
for Ruckig but still exist and make the trajectory impossible to execute. The speed
magnitude curves (Fig. 3.2e for KDTP and Fig. 3.2f for Ruckig) show that the
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trajectory generators have difficulties in adapting the speed between each waypoint.
In both cases we observe oscillations between a zero speed and the speed provided
by KHAOS (green curve). For KDTP, we notice that the speed is higher than
that of KHAOS in several places on the curve, which has the impact of violating
the social constraints as explained in the previous section. The duration of the
trajectory generated by KDTP is more than 250s, far too long for a distance of a
few metres. Ruckig seems to do better with a trajectory lasting about 45s but still
too high. KHAOS’s speed is not exceeded by Ruckig’s for most of the trajectory
except during deceleration where it is permanently above. Compared to KDTP,
Ruckig seems to be able to generate a portion of the trajectory where the speed is
stabilised at the maximum speed limit between 31 s and 36 s.

(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Straigth line trajectory: On the left (resp. right): KDTP (resp.
Ruckig) results with full shape trajectory representation in a) (resp. b)). Gener-
ated trajectory is represented in red and green spheres represents the waypoints
generated by KHAOS. A zoom on the start of the trajectory in c) (resp. d)) and
in e) (resp. f)) the evolution of the speed magnitude as a function of time along
the generated trajectory in orange with the KHAOS correspondence in green. The
times on the KHAOS curves are adapted to the times of the generated trajectory
which do not correspond to the real times calculated by KHAOS.
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Curved trajectory The results for the curved trajectory can be seen in Fig. 3.3
which is organised in the same way as the previous figure. The trajectory overviews
(Fig. 3.3a and 3.3b) again show significant trajectory deformations around the way-
points. For KDTP (Fig. 3.3a), these deformations seem to be spread all over the
trajectory. Ruckig (Fig. 3.3b) seems to fit better as the oscillations are visible at
the beginning, at the end and at the point where the turn is most important. For
the rest of the trajectory, it seems to pass through the waypoints without deviating.
Zooming in on the start of the trajectory (Fig. 3.3c and 3.3d) allows the oscillations
to be better distinguished. It seems that in both cases the trajectory generator
passes the waypoint and loops back to the same waypoint, as if the time or distance
between the waypoints is not sufficient. Speed magnitude curves (Fig. 3.3e and
3.3f) are not very different from the straight line case with still as many oscillations
and a longer trajectory duration. Ruckig still does better than KDTP but seems to
be very much affected by the turn in the middle of the trajectory which is relatively
simple to execute. This can be seen in the trajectory duration which is around 100 s
compared to the 45 s achieved in the straight line case.

Basic trajectory The previous results show that the two trajectory generators
used do not meet our needs in their current state. They also do not allow us to
understand in detail what is problematic in our use of trajectory generators. We
know that they need the speed and acceleration vectors as input. We also know
that KHAOS does not accurately determine the components of these two vectors
because the model used is very simplistic. As both libraries seem to have similar
problems, we focus only on the KDTP library in the following section.

To understand a little better what is wrong, we propose below a study of a
very simple and basic case. We propose to reduce the previous three-dimensional
problem to a one-dimensional case. By doing so, the problem of the components of
the vectors is eliminated since they are necessarily oriented in one direction only.
We also reduce the difficulty by considering only two waypoints. Moreover, the
path between these two waypoints is travelled at constant speed. The acceleration
at these two waypoints is therefore zero. The only parameter left to study is the
distance between these two waypoints.

We show Fig. 3.4 the results of KDTP under the conditions described above
for three different distances between waypoints. Let’s first look at Fig. 3.4a which
corresponds to a distance of 2.3 m between the two waypoints. The acceleration
is zero throughout the trajectory and the speed remains constant at 1m/s. The
position increases linearly without fluctuation. These curves therefore correspond
to the expected normal result. However, when the distance between waypoints
is reduced to 2.2 m (Fig. 3.4b), unexpected deviations start to be observed. The
position no longer increases linearly and the speed reaches a zero value in the middle
of the trajectory before increasing again and reaching the maximum value at the
arrival waypoint. The first half of the trajectory is made with negative acceleration
and the second half with positive acceleration. If we reduce the distance between
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Curved trajectory: On the left (resp. right): KDTP (resp. Ruckig)
results with full shape trajectory representation in a) (resp. b)). Generated tra-
jectory is represented in red and green spheres represents the waypoints generated
by KHAOS. A zoom on the start of the trajectory in c) (resp. d)) and in e) (resp.
f)) the evolution of the speed magnitude as a function of time along the generated
trajectory in orange with the KHAOS correspondence in green. The times on the
KHAOS curves are adapted to the times of the generated trajectory which do not
correspond to the real times calculated by KHAOS.

waypoints to 0.5 m (Fig. 3.4c), we notice the same phenomena which are amplified.
The speed becomes negative and the position oscillates, representative of a backward
movement as in the loops we have seen in the first figures of this section.

The distances between waypoints generated by KHAOS during the first tests
are of the order of a few centimeters to a few tens of centimeters. We are therefore
in a case similar to that shown in Fig. 3.4c. There seems to be a threshold distance
between waypoints where the trajectory generator starts to encounter difficulties in
adapting the speeds and accelerations to connect the two waypoints in a minimum
time and in a coherent way. Under the conditions used, a minimum distance of
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(a) Distance between waypoints = 2.3 m

(b) Distance between waypoints = 2.2 m

(c) Distance between waypoints = 0.5 m

Figure 3.4: Position, speed and acceleration over time for three different distances
between waypoints using KDTP library. Kinematic limits used: |vmax| = 1 m s−1,
|accmax| = 0.5 m s−2, |jerkmax| = 10 m s−3 and |snapmax| = 30 m s−4.

2.3 m between waypoints is required to obtain a satisfactory result. This solution
is not feasible because such distances between waypoints prevent the trajectory
generated by KHAOS from being optimised efficiently. As the waypoints serve as
control points, the various costs used by the optimiser could not be evaluated at
enough locations. Furthermore, if the distance between the target and the current
robot position is less than 2.3 m, we cannot use our planner, which is not acceptable.
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We have studied a case where the modifiable parameters are minimal. The
previously mentioned threshold distance must be reducible. The only parameters
that we did not vary in our study are the kinematic limits imposed on the trajectory
generator.

(a)

(b)

Figure 3.5: Curved trajectory using new kinematic limits: KDTP result
with full shape trajectory representation in a). Generated trajectory is represented
in red and green spheres represents the waypoints generated by KHAOS. b) Speed
magnitude as a function of time along the generated trajectory in orange with the
KHAOS correspondence in green. The times on the KHAOS curves are adapted to
the times of the generated trajectory which do not correspond to the real times cal-
culated by KHAOS. Kinematic limits used: |vmax| = 1 m s−1, |accmax| = 50 m s−2,
|jerkmax| = 105 m s−3 and |snapmax| = 107 m s−4.

We show Fig. 3.5 the KDTP results for the example of the curved trajectory used
earlier but with different kinematic limits. We have freed the trajectory generator
by greatly increasing the imposed kinematic limits. By increasing the acceleration,
jerk and snap limits this reduces the threshold distance between waypoints at which
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we encountered fluctuations in the previous examples. With the new limit values,
the threshold distance could be reduced to a few centimeters. This small distance
makes it possible to use KDTP applied to waypoints generated by KHAOS.

We can see that the shape of the generated trajectory shown in Fig. 3.5a is
suitable and does not show any loops or other visible distortions. On the other hand,
if we look at the speed profile of the trajectory generated by KDTP (Fig. 3.5b),
we notice sudden variations during the acceleration and deceleration phases. This
can be easily explained by the very high acceleration limit applied. The speed goes
from its minimum to its maximum value in a very short time, which causes the
sudden variations visible on the curve. The problem of the shape of the trajectory
is therefore solved, but there are still these abrupt variations which are unacceptable
for our use case. We want to be able to impose limits on the trajectory generator
that correspond to realistic values.

The phenomena encountered when distances between waypoints are short is a
known problem. Under these conditions, it is likely that the next waypoint cannot
be reached directly at the desired speeds and accelerations while respecting the
kinematic constraints. The speed profile in this situation shows a slowing down
before accelerating again, which is not desirable here [Sidobre 2019].

In order to bypass these difficulties, we propose in the next section to generate
B-Spline trajectories that pass through the waypoints but without imposing speed
and acceleration. Only the times or dates of passage at each waypoint will be used
to define the kinematics.

3.4 KHAOS improvements using B-Spline

Many path planners (e.g. RRT, PRM) generate a list of waypoints consisting of at
least one position information. This list is then converted into a trajectory by a
trajectory generator and then into control signals which are processed and executed
by a low level controller. The quality of the control signals sent to the various robot
components is therefore directly linked to the quality of the trajectory effectively
followed.

The trajectory generator is therefore responsible for providing a quality trajec-
tory that takes into account the kinematic limits of the robot that must execute
it. The quality of a trajectory is characterised by the necessity to respect numer-
ous constraints. Firstly the smoothness of the input trajectory of a controller is
important to guaranty good following properties. In our case we consider essen-
tially trajectories defined by cubic functions over time for which the second deriva-
tive or acceleration is continuous. Secondly the controller and the system impose
constraints limiting the velocity, the acceleration and the third derivative or jerk.
Finally the context of the task to be realised and in particularly the humans in-
troduces new constraints in the operational space. The latter constraints also limit
the geometric and kinematic characteristics of the trajectory.

Most of these trajectory generators use various mathematical functions such as
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cubic functions or splines to connect waypoints. If the distances or times between
each waypoint are large, the mobile has time to accelerate and decelerate to reach
the waypoints on the planned dates. It is therefore relatively easy for the trajectory
generator to find a curve with good parameters that ensures continuity. On the other
hand, if the distances or times are short, we may encounter the phenomena presented
in the previous section. Unintentional spatial deformations of the trajectory or
strong variations in acceleration may occur.

Moreover, KHAOS generates a list of waypoints composed of position, speed and
time information in a context of Human Robot Interaction. In order not to violate
the social constraints planned by KHAOS, we need the spatial deformation between
two waypoints to be minimal and the speeds to be well respected. It is therefore
crucial that the trajectory generated by the trajectory generator faithfully follows
the planned positions and respects the times or dates imposed on each waypoint.

Generating a time-continuous trajectory from a set of waypoints with given
dates and kinematic constraints remains an open problem. To this end, after a
short introduction to the Non-Uniform Cubic B-Spline we propose in this section
the use of a new extension of the SoftMotion library and in particular the use of
Non-Uniform Cubic B-Spline [Piegl 1996] to generate feasible trajectories from a
list of waypoints.

3.4.1 Introduction to B-Spline

Figure 3.6: Cubic Bézier curve (n=3) representation (in red) with the corresponding
Bézier control polygon in black
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Bézier curve In order to understand what a Non-Uniform Cubic B-Spline is, let
us first give a short introduction to what a Bézier curve is. A Bézier curve composed
of n+ 1 control points (P0, · · · , Pn) is the set of points defined by:

P (u) =
n∑
i=0

Bn
i (u) · Pi with u ∈ [0; 1] (3.1)

where Bn
i (u) are the Bernstein polynomials [Bernstein 1912] and (P0, · · · , Pn) are

the control points forming the “Bezier control polygon”.
This definition of a curve can be assimilated to a trajectory by replacing the

parameter u where u ∈ [0; 1] by time t where tmin 6 t 6 tmax. From now on we
will only talk about trajectories.

One of the properties of the Bernstein polynomials Bn
i is the following:

n∑
i=0

Bn
i (t) = 1 (3.2)

So for n = 3 we can write:

13 = (1− t+ t)3 = ((1− t) + t)3 = (1− t)3 + 3(1− t)2t+ 3(1− t)t2 + t3 (3.3)

Including the n+ 1 = 4 control points Pi we get:

P (t) = B3
0(t) ∗ P0 +B3

1(t) ∗ P1 +B3
2(t) ∗ P2 +B3

3(t) ∗ P3 with t ∈ [tmin; tmax]
B3

0(t) = (1− t)3

B3
1(t) = 3(1− t)2t

B3
2(t) = 3(1− t)t2

B3
3(t) = t3

This gives us the Bézier curve of degree 3, also known as the cubic Bézier curve,
which is composed of four control points. Figure 3.6 shows an example of a cubic
Bézier curve and the "Bézier control polygon" formed by the four control points
(P0, · · · , P3). It can be seen that the curve necessarily passes through the control
points P0 and P3. However, it does not necessarily pass through the other control
points P1 and P2. A Bézier curve is infinitely differentiable (of class C∞), and the
vector −−−−−→Pn−1Pn is the tangent vector at point Pn.

Non-Uniform Cubic B-Spline Bézier curves characteristics presented in the
previous paragraph now allow us to introduce the Non-Uniform Cubic B-Spline. A
pth-degree B-Spline curve is defined by:

C(t) =
n∑
i=0

Ni,p(t) · Pi with tmin 6 t 6 tmax

U = (tmin, · · · , tmin, tp+1, · · · , tm−p−1, tmax, · · · , tmax)
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where the Pi are the control points, and the Ni,p(t) are the pth-degree B-Spline
basis functions defined on the non uniform knot vector U that includes m+ 1 knots
ti.

One way to define the B-Spline basic functions is to use a recurrence formula
due to Carl de Boor [De Boor 1972]. The ith basis B-Spline function of p-degree
(order p+ 1), denoted by Ni,p(t) is defined as:

Ni,0(t) =
{

1 if ti 6 t < ti+1
0 otherwise

Ni,p(t) = t− ti
ti+p − ti

Ni,p−1(t) + ti+p+1 − t
ti+p+1 − ti+1

Ni+1,p−1(t)
(3.4)

We have deliberately named the knots ti because for our use of the B-Spline we
can consider the knots as the times or dates of our trajectory. This is better adapted
to consider waypoints where knots defines the instant when the trajectory passes
through the waypoint. Since the time between each waypoint is not necessarily
the same, we use the generic form of B-Spline which is called Non-Uniform Cubic
B-Spline which have the particularity to accept different gaps between knots.

As we have seen, the Non-Uniform Cubic B-Spline do not necessarily pass
through the control points. The next section introduces the use of a new extension
to the softMotion library by describing how it handles the correspondence between
the control points and the waypoint positions of the trajectory given by KHAOS.

3.4.2 SoftMotion extension using Non-Uniform Cubic B-Spline

SoftMotion library SoftMotion1 is a library of functions for planning, generat-
ing, controlling and manipulating trajectories in the context of HRI. The first tool
was introduced in 2008 by Broquere et al. [Broquere 2008], it is a one-dimensional
time optimal trajectory generator that produces trajectories satisfying symmetric
bounded speed, acceleration and jerk limits. These trajectories are expressed as a
sequence of trajectory segments defined by cubic polynomial functions over time.
The work has been extended to the N-dimensional case and integrated into a com-
plete planning and control system [Broquere 2010]. Later a complete algorithm for
the one-dimensional time optimal trajectory generator with velocity, acceleration
and jerk asymmetric bounds is described in [Sidobre 2019]. This work is extended
by Desormeaux et al.[Desormeaux 2019] to bring back the current state of the robot
inside the admissible domain when one or more constraints are exceeded or violated.
This occurs in particular when limits are reduced, for example when the maximum
speed is reduced to ensure the safety of a human approaching the robot.

SoftMotion extension To meet our needs, we propose in this section to use
a new extension to SoftMotion based on Rousseau’s thesis work [Rousseau 2019].
In his work, one of the goals is to follow a cinematographic flight plan using a

1https://git.openrobots.org/projects/softmotion
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quadrotor. Just as in our use case, it is necessary to generate a smooth trajectory
passing through a set of waypoints. In his case, smoothing is essential in order to
obtain sufficient stability for taking pictures in mid-air. To do this, he uses B-Spline
to generate a minimum time trajectory constrained by the speeds, accelerations and
jerk.

In this new SoftMotion extension, trajectories are generated using Non-Uniform
Cubic B-Spline constrained by the positions and speeds at each waypoint provided
by the output of our KHAOS planning system. Global kinematic limits in acceler-
ation and jerk are also applied to control the behaviour of the trajectory.

As described earlier, a Bézier curve or a B-Spline does not necessarily pass
through its control points. It is therefore an approximation of these control points
that is carried out except at the end control points through which the curve neces-
sarily passes.

In our use case, we want the curve to faithfully connect the Si positions of the
waypoint list given by our KHAOS planner. We therefore want to interpolate the
Si with a B-Spline curve. Let be a Non-Uniform Cubic B-Spline defined by the
control points Pi and the instants or knots ti : At ti it approximates the point Pi
and passes through Si. We therefore know a list of waypoints Si from which we will
calculate the control points Pi.

By developing the terms of equation 3.4 in the case of an Non-Uniform Cubic
B-Spline, i.e. p = 3, we see that many terms are zero allowing the equation of the
curve to be simplified.. At time ti the trajectory reaches the waypoint Si, which
can be expressed as :

C(ti) = Si = aiPi−1 + biPi + ciPi+1 (3.5)

where ai = Ni,3(ti), bi = Ni+1,3(ti) and ci = Ni+2,3(ti) are the only three non-zero
coefficients.

To control the velocities and accelerations at the beginning and end of the tra-
jectory, some points are added to the list of points to be interpolated. These points
as well as the associated knots are chosen on a constant acceleration trajectory
segment built to extend the trajectory in a continuous way. The trajectory is then
truncated to keep only the useful part.

The set of these equations defines a tridiagonal matrix which is solved in N

complexity where N is the number of points to interpolate. By solving this system
of equations, we obtain the correspondence between the desired positions at each
waypoint of the trajectory and the control points of the Non-Uniform Cubic B-
Spline. Secondly, the functions already integrated in softMotion can be used to
determine the kinematic components along the trajectory.

The main advantage of this extension is to allow the control of the kinematic
parameters at the beginning and at the end of the trajectory. This is necessary
to ensure continuity between consecutive trajectories generated by two successive
plannings as in our case of reactive planning in a human-populated environment.
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3.5 Results

In this section, we show the results of the trajectory generator using Non-Uniform
Cubic B-Spline described earlier. We use it at two stage: first to smooth the initial
path and then to produce the final trajectory. Firstly we show the improvement
in the quality of the initial path that is essential for the proper functioning of
our planner. We then take the examples presented in section 3.3 and show the
improvements introduced by the use of this trajectory generator based on BSpline.
Finally, we introduce a new situation where two humans are present to show the
evolution of the speed profile during the execution of the trajectory.

3.5.1 Initial path smoothing

(a) Standard KHAOS (b) KHAOS using BSpline

Figure 3.7: Shape of the initial path (red) and trajectory generated by KHAOS
(green) after several iterations. a) No smoothing is applied b) BSpline smoothing
is applied

The use of BSpline allow to generate a smooth trajectory from a list of waypoints
even when they are numerous and very close. Many planners such as Probabilistic
RoadMap (PRM) or Rapidly exploring Random Tree (RRT) allow to generate an
initial path connecting a start point and an end point using a list of waypoints.
Between each waypoint composing this initial path, we have segments that by nature
do not allow to respect a continuity of speed. As detailed at the beginning of this
chapter, this lack of continuity can be reflected in the output of KHAOS and make
its optimisation phase inefficient.

We compare Fig.3.7, the outputs of the standard version of KHAOS when no
smoothing is applied (Fig.3.7a) and when a B-Spline is used (Fig.3.7b). When no
smoothing is performed, we show that even after many iterations, the continuity
defects present in the initial path are transmitted to the KHAOS result as presented
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in 3.2. On the other hand, when using B-Spline, it can be seen that the initial path
represented in red is smooth and has no sharp breaks. We can also observe that the
shape of the trajectory generated by KHAOS after several iterations is also very
smooth.

This result shows the influence of the quality of the initial path on the result of
the planner. The smoothing applied on the input side alone allows to considerably
improve the shape of the trajectory on the output side of KHAOS. This provides
smoothness which also facilitates continuity in kinematics as presented in the next
section.

3.5.2 Kinematic compliance

Now that the initial path smoothing defect is resolved, we can tackle the kinematic
compliance along the trajectory detailed at the beginning of this chapter.

The previous example showed the smoothing of the initial path consisting of
only four waypoints including the start and the goal. The distances between way-
points are therefore relatively high. It is necessary to test with a larger number of
waypoints more or less close together. If this test is successful, i.e. the shape of
the trajectory is continuous without distortion, it remains to be verified that from
a kinematic point of view the speed profile is also smoothed.

We propose in a first step to use the same examples of “Curved” and “Straigth
line” trajectories as presented in section 3.3 where the trajectory generators KDTP
and Ruckig encounter difficulties. The kinematic limits used are the same as those
used by KHAOS and are indicated in the legends of each figure. In order to verify the
correct functioning of our B-Spline solution, we are also interested in the evolution
of the discomfort_cost and the respect of the discomfort_constraint presented in
2.3.2.1.

Curved trajectory using BSpline In this paragraph we take up the example
of the curved trajectory presented earlier where the trajectory is deviated by an
obstacle and approaches a human. The result using BSpline is shown in Fig. 3.8.
The waypoints of the curved trajectory generated by KHAOS are represented by
green spheres in Fig. 3.8a. The result given by the BSpline is also represented by
a red curve. We notice that the trajectory is well smoothed and passes through all
waypoints without any distortion.

We also show the evolution of the discomfort_cost in parallel with the speed
profile in Fig. 3.8b. The applied discomfort_constraint is also shown to provide a
visual cue on the graph. The value of the discomfort_constraint is set to 0.5 in this
example. First of all, we can see that the speed is not distorted and appears to be
correctly smoothed. The speed limit of 1 m s−1 is not exceeded except towards the
end of the acceleration phase where a slight jump can be noticed. The evolution
of the discomfort_cost is also smooth and representative of a smooth movement of
the Flying CoWorker if it were to execute this trajectory. Finally, we note that the
discomfort_constraint is respected at all times, particularly when approaching the
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(a)

(b)

Figure 3.8: Curved trajectory using BSpline: a) full shape trajectory represen-
tation. Generated trajectory is represented in red and green spheres represents the
waypoints generated by KHAOS. b) Speed magnitude, discomfort_cost as a func-
tion of time along the generated trajectory for a discomfort_constraint of 0.5. Kine-
matic limits used: |vmax| = 1 m s−1, |accmax| = 0.5 m s−2, |jerkmax| = 10 m s−3.

human. In this example, the discomfort_constraint is rather high and is therefore
not very restrictive, especially as the objective of the trajectory is quite far from
the human.

Straigth line trajectory using BSpline The example of the straight line tra-
jectory shown in Fig. 3.9 further challenges the trajectory generator at the level of
social constraints. Indeed, the goal of the trajectory is very close to the human com-
pared to the previous example. Moreover, the chosen discomfort constraint is only
0.25. As a result, the trajectory planned by KHAOS forces the Flying CoWorker
to decelerate very early and to move at a very slow speed close to the human.

The shape of the generated trajectory using BSpline is shown in Fig. 3.9a. Again,
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(a)

(b)

Figure 3.9: Straigth line trajectory using BSpline: a) full shape trajectory
representation. Generated trajectory is represented in red and green spheres rep-
resents the waypoints generated by KHAOS. b) Speed magnitude, discomfort_cost
as a function of time along the generated trajectory for a discomfort_constraint of
0.25. Kinematic limits used: |vmax| = 1 m s−1, |accmax| = 0.5 m s−2, |jerkmax| =
10 m s−3.

it can be seen that the trajectory generator faithfully follows the result planned by
KHAOS without distortion between waypoints. As in the previous example, we
represent Fig. 3.9b the evolution of the speed magnitude and the discomfort_cost
by indicating with a horizontal line where the discomfort_constraint is located.
This shows that the speed profile is quite correct on the first part of the trajectory.
When the discomfort constraint of 0.25 is reached, the deceleration phase starts as
the FCW continues to approach the human and therefore has to adapt its speed
by reducing it. The BSpline produces a very smooth deceleration without distor-
tion. However, at the end of the deceleration phase, when the Flying CoWorker is
close to the human, the discomfort_constraint is exceeded in the last few seconds.
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This fault is not critical because between 16 s and the end of the trajectory, the
Flying CoWorker moves at a speed lower than 0.05 m s−1. As the system is highly
constrained in this example, the slightest deviation in this speed range can quickly
lead to constraint violation.

The reason for not respecting the discomfort_constraint in this particular case
does not come from the trajectory generator itself but rather from a wrong evalu-
ation of the deceleration by KHAOS. Indeed, we recall that KHAOS uses a basic
constant acceleration model for the calculation of speeds. It is therefore possible
that in cases requiring precision like this one, the KHAOS speed evaluation model
is not sufficient. This is because the trajectory generator is not aware of the dis-
comfort_cost or discomfort_constraint, it only relies on the speeds and positions
given by KHAOS and tries to follow these data as reliably as possible.

3.6 Conclusion

In this chapter we have proposed a solution based on the use of B-Spline to improve
the behaviour of the Flying CoWorker using our planner KHAOS presented in the
previous chapter.

First, we have shown the importance of improving the initial path given as
input to our planning system. Then we have shown, with the help of two trajectory
generators present in the literature, the difficulties to generate a continuous-time
trajectory from the list of waypoints given by KHAOS. We have identified that
the small distance between the waypoints generated by KHAOS and the need to
faithfully respect the constraints at each waypoint make it difficult to convert to a
time-continuous trajectory.

Following this, we proposed the use of a new extension of the SoftMotion library
using B-Spline. We have shown the interest of using the mathematical properties
of BSplines and especially their ability to respect a continuity. Finally, we have
shown through different examples that the use of B-Spline can considerably improve
the input and output of KHAOS. We have thus improved the smoothing of the
initial input path of KHAOS, preventing the optimizer from repeating unintended
faults. In addition, we now have a way to convert a KHAOS trajectory into a
time-continuous trajectory. The particularity of this trajectory is to respect the
social constraints planned by our system while ensuring a feasible and executable
solution from a kinematic point of view. This particularity allows this trajectory to
be executed by a low level controller.
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4.1 Introduction

We now know how to generate a trajectory for the Flying CoWorker base using
our Kinematic Human Aware Optimization-based System for reactive planning of
flying-coworker presented in Chapter 2. This trajectory allows the Flying CoWorker
to navigate in an environment populated with humans and various dynamic obsta-
cles. It considers the kinematic constraints of the Flying CoWorker but also social
constraints such as the visual field and the discomfort generated to the human. We
know that these constraints are valid in the proximity of humans and can therefore
be used for a handover task. We know that abrupt motions or interruptions in a
robot’s motion can be uncomfortable for the human and can affect the human’s un-
derstanding of its intention. We therefore want a system that offers the smoothest
possible motion.
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In this chapter, we address the handover problem based on our planner KHAOS
which, in its initial version, provides many advantages for evolving in proximity to
humans. We first propose a model of Flying CoWorker which is used in the rest
of this chapter. After the state of the art, we present a method to determine the
orientation of the Flying CoWorker base specific to a handover task. We continue by
presenting a method to determine the final complete state of the Flying CoWorker
for a handover task. Then, we propose an extension of KHAOS to generate the
complete trajectory of the Flying CoWorker with the particularity of coordinating
the motion of its arm and base. Finally, we present results of trajectories generated
with this extension to show the capabilities of our planner in simulation. To do this,
we use the human model and some of the situations used in the previous chapters.

4.2 Flying CoWorker design and handover

Discussion on the FCW design In order to better demonstrate the possi-
bilities of the proposed planning system, we propose in the remainder of this
manuscript to work only in simulation using the Jaco arm model from Kino-
vaRobotics [Campeau-Lecours 2019] as a replacement for the 3 degrees of freedom
arm currently fitted to the Flying CoWorker platform. Jaco’s arm design offers 6
degrees of freedom allowing a greater number of configurations and whose length is
also greater with a maximum reach of 0.9 m. The design and construction of such a
lightweight 6DOF arm for the Flying CoWorker application would be a significant
challenge, but it could allow us to tackle more complex HRI problems as the various
examples in this chapter demonstrate.

Indeed, the initial Flying CoWorker platform is equipped with a manipulator
arm with 3 degrees of freedom as described in 1.2. It is build mainly in carbon
composite using 3D printed parts for supports and joining parts. The diameter of
the base approaches 1 m when considering the propellers while the arm is just over
0.5 m. This means that even at full extension of the arm, it is difficult for a human
to perform a handover with the Flying CoWorker without being very close to the
propellers, especially if the object to be transferred is small.

The base used is a hexarotor with tilted propellers which provides very good
stability in flight. The orientation of the base can be defined by 3 angles Yaw,
Pitch and Roll. Unfortunately, the maximum tilt for this design is about 10◦ which
limits Pitch and Roll. As this tilt angle is relatively small, it does not allow for
real consideration at planning level. We prefer to reserve this freedom of motion
for control in order to ensure better stability. Therefore, we simplify the planning
level by assuming these two angles to be fixed and by acting only on the yaw angle.

Also, increasing the length of the arm would require increasing its weight, de-
creasing the payload of the Flying CoWorker and potentially increasing the diameter
of the base to increase the thrust required for flight. A possible hardware solution
would be to tilt the holding bars connecting the propellers to the centre of the
base in such a way that the propellers would be at a much higher altitude than the
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base. This would increase the accessible area under the Flying CoWorker but would
require significant changes in the design and control laws of the current platform.

Proposed model The model used in the remainder of this chapter is illustrated
in Fig. 4.1 where the elements that make up the platform are shown. The large blue
cylinder corresponds to the bounding cylinder of the hexa-rotor. The small blue,
cyan, red and black bounding cylinders correspond to the parts of the kinematic
chain of the arm. Finally, the purple cylinder represents an example of an object
to be exchanged.

We also introduce the different frames that define the location of the Flying
CoWorker joints as well as the end_effector holding the object to be exchanged
(purple cylinder). The small black, red and blue cylinders each one actually cor-
responds to two links that can rotate in relation to each other along the cylinder’s
axis of revolution. From a collision object point of view, they can therefore be rep-
resented by a single cylinder. The small blue cylinder represents the link between
the base of the arm and the shoulder that can rotate around the z0 axis. Cyan
cylinder represents the upper part of the arm linking the shoulder to the elbow.
Between the elbow and the wrist is the forearm represented by the red cylinder.
Finally, the black cylinder represents the link between the wrist and the hand (or
end_effector) of the arm.

Figure 4.1: Flying CoWorker model used for collision checking and frames of the
platform consisting of the hexa-rotor (large blue cylinder), the equipped arm (small
blue, cyan, red and black cylinders) and an example of object to be exchanged
(purple cylinder). Each reference frame represents a rotary joint about the zi axis.
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4.3 Related work

Handover is a generic term used in robotics to describe a joint action to exchange
an object. In our case this action is performed between a human and a robot where
each can have the role of the giver or the receiver [Fiore 2016]. But this generic
term can gather a large number of phases and subjects to be studied in order to
make this action happen in the best possible conditions. A recent review by Ortenzi
et al. [Ortenzi 2021] on the subject of handover classifies the work into two main
phases. The first is the pre-handover phase while the second concerns the physical
exchange of the object.

Physical exchange concerns all the part where the physical contact takes place.
The control of the exchange phase can be entirely realized by the human, for ex-
ample if he/she hangs the object on a hook carried by the robot, but the objective
is to realize a more natural exchange, i.e. an exchange where the robot behaves as
a second human would. In this case it is necessary to detect the contact, to control
the contact forces and to estimate the quality of the human’s grasp as treated by
He and Sidobre [He 2015] using “Bidule”. If the robot has the role of giver, it must
differentiate between a simple tactile effort by the human and a real grasping of the
object by the human so as not to drop the object unintentionally as in the work from
Medina et al. [Medina 2016]. If it is the receiver, the robot must control the effort
applied to the object to remove it at the right moment and not pull the donor’s
arm by withdrawing too violently for example as shown by Pan et al. [Pan 2018].
To accurately detect these contacts, force sensors are used which can for exam-
ple be mounted on the wrist of a manipulator arm as used by Konstantinova et
al. [Konstantinova 2017]. It is common to combine these force sensors with visual
feedback to predict and detect possible collisions or to anticipate the motion speed
of the receiver’s arm as in the work of Controzzi et al. [Controzzi 2018].

The phase dealt with in this manuscript concerns the pre-handover phase, which
itself comprises many stages. Before starting the physical interaction with the
human, it is necessary to determine the grasp of the object envisaged by the human,
which will induce the grasp by the robot itself. This grasp depends first of all
on the geometry as detailed by Miller et al. [Miller 2003] and mass of the object
in accordance with the end_effector of the robot used [Goldfeder 2007]. Complex
environments will also influence the choice of grasp especially when objects are close
to obstacles like shown by Berenson et al. [Berenson 2007]. Faced with all these
challenges representing an infinite number of solutions, an interesting approach
consists in generating a representative list of grasp and then choosing a good one
as handled by Saut et al. [Saut 2012]. Recent advances in neural networks make
it possible to define the grasp of the object from a large number of data as in the
work from Yang et al. [Yang 2020] and then further refined using model predictive
control to achieve a smooth handover [Yang 2022].

Until now, robot grippers have been rigid with few degrees of freedom, which
severely limits their ability to manipulate objects. Most of the time, robots and
especially those with only one arm, cannot re-manipulate the object after grasping
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it. As a result, the robot’s grasp on the object during the exchange will be the same
as when it started its trajectory. As the environment and the human’s situation can
be greatly modified during the execution of the trajectory, choosing a good grasp
on the object is not sufficient or even useless in some cases because another one
can quickly become more interesting. It is thus necessary to foresee the evolution
of the human’s posture and its close environment in time to predict a good grasp
pose and location to exchange the object as explored by Li et al. [Li 2015].

Finding the right place to exchange the object can be defined in many ways
which may depend on the context. Mainprice et al. [Mainprice 2012] presents one
such way by describing a shared effort between a PR2 robot (giver) that depends
on the mobility of the human (receiver), taking into account the difference between
an old person sitting on a chair and a young person standing. In another paper
Mainprice et al. [Mainprice 2010] proposed a sampling-based planner dealing with
handover in near human space with the use of a costmap considering visibility,
human’s posture and safety. Several studies have looked at how to approach the
human for a handover. Koay et al. [Koay 2007] concluded in their study that people
generally prefer a frontal approach while in Dautenhahn et al. [Dautenhahn 2006]’s
study shows a preference for a left or right approach depending on the task. The
exchange area can be reduced by considering the constraints of the human arm as
presented in Vianello et al. [Vianello 2021] work to avoid musculoskeletal disorders.
A slightly different approach allows Rasch et al. [Rasch 2018] to apply the con-
straints of the human arm to the robot arm in order to achieve a more sociable
behaviour. More recently, Corsini et al. [Corsini 2022] present in their work a Non-
linear Model Predictive Controller for handover considering the effort needed by
the human arm and its visual field.

To guide the robot’s choices for a handover and to help the human understand
these choices, it is important for both to communicate their intention. Moon et
al. [Moon 2014] were interested in the importance of gaze in this communication
of intention and how it can affect the timing of the handover. Another study by
Gharbi et al. [Gharbi 2015], referring to head motion associated with gaze, shows
a preference for two behaviours, OR (the giver looks at the Object then at the
Receiver) and ROR (the giver looks at the Receiver then at the Object and then
at the Receiver again) for object handover. Unfortunately aerial robots have very
limited means to communicate. Many signals are therefore transmitted through
their motion. Some work, such as that from Cauchard et al. [Cauchard 2015], looks
at the communication channels for a human to tell the drone what action to take.
Szafir et al. [Szafir 2014] and more specifically Jensen et al. [Jensen 2018] have
worked on the motion of the drone to indicate to the human an intention or to give
information. There is obviously the motion of the robot and the human to take
into account but the timing of the interaction is also essential to understand an
intention as discussed in the work of Cakmak et al. [Cakmak 2011].

Naturally, a human moves and gives an object to another human in a coordinated
way without distinguishing a break between the phase where he/she approaches by
walking and the phase where he/she gives the object by extending his/her arm. To
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our knowledge, there is no work in the Human Robot Interaction literature on the
coordinated motion of an aerial robot equipped with a manipulator arm interacting
with a human during a handover such as the Flying CoWorker. It is necessary
to look at the fields of motion planning for mobile manipulators as presented in
a review from Sandakalum et al. [Sandakalum 2022] and co-manipulation to find
work relating to the generation of coordinated motion of a robot equipped with a
mobile base and a manipulator arm.

In the field of co-manipulation, Peternel et al. [Peternel 2017] shows a mobile
manipulator collaborating with a human to move an object taking into account er-
gonomic requirements for the human co-worker which requires a very complete
and complex model of the human. In a completely different area, Vazquez et
al. [Vazquez-Santiago 2021] plan the motion of a mobile welding robot starting from
the initial welding path. Due to the precision required, the system takes several
minutes to find a unique solution not allowing to work with a human. In contrast,
a mobile non-holonomic manipulator is controlled using a visual servo process by
Li et al. [Li 2021], the system is able to track a target by simultaneously planning
for the base and the arm in real time. As part of a coordinated motion of a mobile
manipulator, it is difficult to choose when it is better to move the arm or rather the
base as shown by Xing et al. [Xing 2021] where several different behaviors of the
robot are presented. To define a good behavior of the mobile manipulator, many
works such as those of Zhang et al. [Zhang 2016] or Huang et al. [Huang 2000] are
based on the concept of manipulability defined by Yoshikawa [Yoshikawa 1985]. The
manipulability makes it possible to evaluate the configuration of the planned arm
in order to avoid singularities from a control point of view but does not necessarily
ensure a good motion in a Human Robot Interaction point of view.

After this presentation of the bibliographic context, we will extend our plan-
ner to the planning of the orientation of the Flying CoWorker base in order to
communicate to the human its intention to initiate a handover.

4.4 Flying CoWorker base orientation for Handover

Before dealing with the handover problem integrating the motion of the Flying
CoWorker’s arm, we first want to present a way for the Flying CoWorker to signal
its intention to the human using only its base. We assume that the base is equipped
with a device to identify its direction of travel, such as a camera attached at the
edge of the platform. This device can also allow the human to imagine eyes for the
Flying CoWorker and thus interpret its gaze. Thus, by orienting the camera of the
Flying CoWorker towards the human we can communicate an intention to interact.
The camera being fixed in relation to the base, it is thus necessary to orient the
base to orient the camera and thus the gaze of the Flying CoWorker.

An autonomous aerial manipulator like the Flying CoWorker approaching a
human for a handover is constrained by several aspects. The final configuration
of the Flying CoWorker dictates the orientation of the arm towards the human or
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the planned position for the exchange, while the Flying CoWorker base may be
constrained by its embedded camera which needs to observe the scene to find its
way around.

We propose in this section a way to determine the Flying CoWorker base orienta-
tion along the trajectory for the specific case of handover using an aerial manipulator
like the Flying CoWorker. In the same philosophy as our work on Flying CoWorker
navigation presented in the first part, we want of course to take into account the
human-aware aspects but also the kinematic constraints, namely the orientation of
the base θ and its angular speed θ̇. Concerning the human-aware aspects, we would
like the Flying CoWorker to signal its presence in advance to show its intention to
interact with a human for a handover.

4.4.1 Orientation calculation details

The different calculation steps are summarized in Algorithm 4. To obtain the
desired behavior by simply using the orientation of the Flying CoWorker base, we
propose that the Flying CoWorker starts to orient itself towards the human with
whom it must interact from the moment it enters its visibility grid. As a reminder,
the visibility grid considers the human’s visual field but also the effort to turn the
head and see the robot. Therefore, there can be an impact of the visibility grid even
if the Flying CoWorker approaches behind the human’s back. On the other hand,
the portion of the trajectory that is not in the visibility grid, the base will tend to
orient itself in the direction of its speed vector. This allows us to obtain −−−−−−−→Direction,
the vector pointing in the desired direction for the Flying CoWorker base. With
this in mind, we also ensure the feasibility of the rotation to be performed for
the base between two consecutive waypoints by calculating the desired orientation
θdesired that we compare with the feasible orientation from a kinematic point of
view. If the desired orientation is achievable in the duration allowed to go from
one waypoint to the next (∆tsegment), then we keep the desired value, otherwise
we keep the achievable value. The duration is determined from the cartesian speed
magnitude of the base and the distance traveled between the two waypoints. We
perform these different steps for each waypoint of the trajectory a first time in
the forward direction starting from the first waypoint. Then a second time in the
backward direction from the last waypoint to ensure that we respect the orientation
constraints at the start and goal.

4.4.2 Orientation behavior during approach

The obtained behavior is represented in Fig. 4.2 where the orientation of the base
θ is illustrated by the blue arrows while the other colored arrows (red and green)
represent its cartesian trajectory. The limit of the visibility grid is indicated by
the orange dotted circle. The human is depicted in green reaching forward with
his/her right hand. The starting orientation was deliberately chosen in an opposite
direction in order to show the evolution of the orientation during the first moments.
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Algorithm 4: Constrained orientation computation
1 Given;

– Orientation for last waypoint i-1: θi−1

– Speed vector of the base: ~vBase

– Flight duration of the base between waypoints i-1 and i: ∆tsegment

– Maximum angular speed: θ̇max

if Flying CoWorker base pose is in visibility grid then
−−−−−−−→
Direction = −−−−−−−−→Humanpose −

−−−−−−→
Basepose;

else
−−−−−−−→
Direction = −→v Base;

end
Compute desired orientation θdesired from −−−−−−−→Direction chosen;
Compute arc length δθ between θi−1 and θdesired;
Estimate duration δt to traverse δθ: δt = δθ

θ̇max
;

if δt 6 ∆tsegment then
θ = θdesired

else
θ = maximum feasible rotation during ∆tsegment

end
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At the beginning, the base of the Flying CoWorker is not in the visibility grid of
the human, so the orientation tends gradually to be oriented in the direction of
the speed vector and then to remain aligned until the frontier of the visibility is
reached. Once reached, the orientation starts to deviate towards the human to
ensure that when the Flying CoWorker reaches the handover position, it is fully
oriented towards the human. This moment when the Flying CoWorker starts to
turn towards the human can be parameterized differently, for instance, one can
decide that it starts to turn when the Flying CoWorker reaches a certain value of
visibility cost or when it enters a smaller perimeter than the visibility grid. Thus,
it is possible to modify the behavior of the Flying CoWorker in a very simple way
by changing very few parameters.

Figure 4.2: Flying CoWorker base orientation for handover illustrated by the blue
arrows along the cartesian trajectory represented by red and green arrows. The
base of the Flying CoWorker begins to orient itself along the trajectory before being
influenced by entering the visibility grid of the human whose limit is represented
by an orange dotted circle.

4.4.3 Discussion

In the case of the Flying CoWorker, the design offers a great stability of the base and
thus allows us to consider only the yaw angle in our calculations. However, we can
notice that Algorithm 4 works using quaternions allowing to take into account more
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complex rotational motions as for acrobatic drones for example. Moreover, for the
same considerations, we neglect the angular acceleration of the Flying CoWorker
in our calculations. Currently, angular accelerations are taken into account using
the BSpline presented in the previous chapter. To be closer to reality, future work
aims at better managing the accelerations directly in our system.

4.5 Reactive FCW goal state estimation for handover

We detail in this section our proposed method to define the complete goal state of
the Flying CoWorker during a handover in a reactive way. We take into consider-
ation the human visual field and its reachability as well as safety. We also manage
the static and dynamic environment as well as the dimensions of the object to be
transferred.

4.5.1 Context

The FCW goal state for a handover task to be determined requires thinking about
how to relate the navigation trajectory to the current situation of the human
with whom the handover is to take place. This state should represent the Fly-
ing CoWorker configuration at the start of the physical interaction with the human
if it is possible. Otherwise this state represents a waiting configuration of the Flying
CoWorker before the human is available for handover.

How the Flying CoWorker could present itself to the human in good conditions
of security and comfort during a handover. The answer to this question depends
on many parameters such as:

• human’s posture

• human and robot grasp positions

• geometry of the object to be exchanged

• robot’s geometry and habilities

• Various obstacles in the environment

First of all, the posture of the human has a crucial impact, he/she can be
standing, sitting, lying on the ground or on an object such as a scaffold. His/Her
posture can also allow or not to communicate information to the robot. He/She can
communicate his/her intention to the robot by holding out his/her hand, or not, or
be working on an electrical panel for example, which can disturb the communication
signals. The human’s gaze will also be important and can be used to passively or
actively guide the robot’s choice. Passively, if the human looks in a direction without
being aware that the robot is approaching, in this case the robot could move to the
area where it will be visible. In an active way if the human looks voluntarily in a
direction to propose to the robot to present itself in a place which is convenient to
the human.
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From the posture of the human, we can deduce and/or propose a configuration
for the object so that the human can grab it comfortably without having to contort
or twist his/her wrist for example. Therefore, it also impacts the grasp position of
the robot itself to be able to present the object in the right configuration. This point
is particularly delicate in the case of the Flying CoWorker because it is complicated
to change the grasp during the flight and therefore it is possible that the grasp at
the beginning of the trajectory is not ideal to respect the desired configuration for
the comfort of the human at the end.

The geometry of the object to be shared will also affect the solution proposed by
the planner. Let’s take for example a cylindrical object, with a grasp by the robot
at one end. If the object is long, the environment may constrain the possibilities
and the robot may have to choose a solution that is less comfortable for the human
to reach the goal, whereas a short object will offer a larger working space. Of course,
the geometry of the object will also influence the grasp positions. If the object is
too big for example to take it with full hand, it may be necessary to present it from
above so that the human can take it from below.

The geometry of the robot will also define the solutions space. In the case of
the Flying CoWorker, a rather imposing design is required to work with various ob-
jects. The base is a hexa-rotor drone that can reach 1 m in diameter, thus limiting
access to certain areas or flexibility for certain configurations in cluttered environ-
ments. Habilities of the robot are directly linked to its geometry but also to the
performances achievable by the hardware. The arm equipping the robot will not
offer the same possibilities if it has 3 degrees of freedom as an arm with 6 degrees
of freedom. The more degrees of freedom the arm has, the more complex motions
it will be able to perform and therefore offer more possibilities, especially in terms
of grasp positions. As well as the length of the arm which obviously limits the
interactions, especially for security reasons, because if it is too short it will force
the base of the Flying CoWorker to get closer, increasing the risk of collisions with
the rotors.

The environment itself can have many obstacles such as walls around the human
being considered for handover that can limit the solutions. The human may have to
move close to these obstacles or other humans or dynamic objects may be nearby.
Moreover, in the specific case of the Flying CoWorker, other parameters apply
contrary to a ground robot such as the wind for example.

Moreover, all these parameters can vary in time and therefore the state of the
robot planned at the beginning of the trajectory execution is likely to be different
when it gets closer to the human. The need to adapt the objective frequently is
therefore crucial. During the execution of the trajectory, the human can go from a
situation where he/she is inaccessible because he/she is working in a cramped place
for example. Then noticing that the robot is approaching to interact with him/her,
he/she turns around and moves to a more accessible area to allow the exchange.
The planning phase must therefore adapt in real time and not be blocked by an
unexpected situation.
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4.5.2 Reactive goal estimation

To answer the different points developed above, we propose a solution based on
3D cost grids and inverse kinematics. A first grid named human_grasp_grid, cen-
tered on the human with whom handover is considered, aims to determine the best
possible handover position for the human’s current posture. For each position of
the human_grasp_grid, various configurations of the object to be exchanged are
tested. From the position of the object, it is possible to determine the position of
the end effector and thus generate a second grid named base_goal_grid in order to
determine the best position for the base of the Flying CoWorker. By selecting the
position of the end_effector and the base, it is possible to define the configuration
of the Flying CoWorker’s arm by inverse kinematics. Everything is updated in a
very short time to allow the system to be reactive and adapt to the various changes
of situation.

4.5.2.1 Design and features

human_grasp_grid Simulating the complete configuration of a robot and a
human to find the best combination for a handover can be very time consuming
and difficult to integrate if responsiveness is desired. On the other hand, for security
and design reasons, the Flying CoWorker is very limited in the space it can move in.
This is why we propose an approach where we consider only the positions reachable
by the human hands for the handover. In this way, as the grid is updated with each
new trajectory computed, we avoid the whole complex part aiming at estimating a
good configuration of the human.

The human_grasp_grid shown in Fig. 4.3 thus represents potential human hand
positions for the envisaged handover. Each position is associated with a cost calcu-
lated using the following cost function:

Chuman_grasp_grid = Cclosest_human_hand ∗ (Cvis + Cturn)
Ctorso_dist

(4.1)

where:

• Cclosest_human_hand: distance from the cell to the nearest human hand

• Cvis: visibility cost defined in 2.3.2.2

• Cturn: angle originating in the human torso and formed between the front of
the human torso and the cell

• Ctorso_dist: distance from the cell to the human torso

By using this cost function, it is ensured that a target is found not far from one
of the human’s hands (Cclosest_human_hand), even if it is not reachable, and that
distant positions (Ctorso_dist) are favoured for safety. Visibility and effort to see
(Cvis) is also considered to take into account the human’s gaze while a Cturn cost is



4.5. REACTIVE FCW GOAL STATE ESTIMATION FOR HANDOVER 69

introduced specific to the effort required for the human to turn around regardless
of the direction they are looking. In the specific case of handover where the Flying
CoWorker is in the vicinity, Cturn allows for a greater compromise between a cell
located in the human’s field of view and its actual posture.

The space where costs are calculated is limited by several parameters. Firstly,
there is a safety limit distance between the cell and the human head, which is
considered the most sensitive part of the body. A maximum distance is determined
by the distance between the cell and the shoulders of the human constrained by the
length of the arms. Finally, a safety distance from obstacles is introduced to allow
some freedom of flight for the system when there are walls nearby for example.

Note also that the grid is oriented to the torso and more specifically to the
shoulders of the human. This set-up allows for all human postures to be considered,
such as when lying down as shown in Fig. 4.3b.

(a) (b)

Figure 4.3: Representation of the human_grasp_grid (resolution = 0.1 meter) when
the human is looking ahead. Warm colours represent high costs while cold colours
represent the lowest costs a) Distribution of costs all around the human without
obstacles. b) When the human is lying near obstacles the human_grasp_grid is
dynamically adapted. Floor is represented in grey and walls in green.

shared_object Once the human_grasp_grid has been generated, we can start to
traverse it starting from the lowest cost. This gives us a position where the human
can catch the shared_object. In our implementation, we consider a cylindrical
object that will be caught at one end by the human and at the other end by
the Flying CoWorker’s end_effector . The position corresponds to one end of the
shared_object, and we need to define the location of the other end. To do this,
we sample the surrounding space by incrementing an angle around the position
to define a preferred configuration of the shared_object. The angle chosen here
rotates around the z-axis, so we only consider horizontal positions of the cylinder.
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It is possible to use an additional angle to work in spherical coordinates and allow
more configuration for the object at the expense of performance. At the end of
this operation, we obtain a list of configurations for the shared_object to which we
apply the following cost function:

Cshared_object = Cvis
Chuman_head_dist

(4.2)

where:

• Cvis: visibility cost defined in 2.3.2.2

• Chuman_head_dist: distance between the end of the shared_object caught by
the Flying CoWorker’s end_effector and the human’s head

This cost function thus makes it possible to favour configurations where the
shared_object will be as most as possible in the visual field of the human while
favouring distant positions for the Flying CoWorker’s end_effector , thus providing
greater safety.

base_goal_grid From the list of configurations of the shared_object, we now
know the possible positions for the end_effector . Starting from the position where
Cshared_object is minimal, we generate a new cost grid named base_goal_grid which
this time allows us to determine the position of the Flying CoWorker base. The
cost function used is similar as Cshared_object, simply Chuman_head_dist becomes the
distance between the base of the Flying CoWorker and the human’s head. As with
the shared_object, care is taken to keep the Flying CoWorker’s base as far away as
possible, and therefore any rotors that might be dangerous or troublesome. For the
sake of comfort, the base will be located as most as possible in areas where Cvis is
low. Finally, we make sure that the base does not collide with the environment and
humans.

As with the human_grasp_grid, spatial limits are imposed on the
base_goal_grid. First of all, we ensure a minimum distance between the human’s
head and the base when constructing the grid. Therefore, Chuman_head_dist cannot
be less than this minimum distance. The maximum distance is determined by the
maximum length of the arm with which the Flying CoWorker is equipped. We also
require the base to be at a higher altitude than the human head to minimise the
risk of injury if the propellers are thrown off due to failure or impact.

The result can be seen in Fig. 4.4 where the position of the human_grasp_grid
that is being considered is represented by a pink sphere close to the human’s right
hand. We can notice the absence of a position at the back of the human as this
would force the base to be too close to the human which is not acceptable with our
parameters. Another remark, the lowest costs associated to cold colours correspond
well to the positions furthest from the human and in his/her visual field.
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Figure 4.4: Representation of the base_goal_grid (grid resolution = 0.2 meter) when
the human is looking ahead. The grid shows the possible positions for the base of the
Flying CoWorker considering the position of the human_grasp_grid represented by
the pink sphere near the right hand of the human. The pink sphere corresponds to
the position of the human_grasp_grid used to generate the base_goal_grid. Warm
colours represent high costs while cold colours represent the lowest costs. Lowest
costs are better.

Flying CoWorker’s arm The last step is to determine the configuration of the
Flying CoWorker’s arm. This is made possible by the use of inverse kinematics
starting from the position of the end_effector and linking the position of the base.
The orientation of the end_effector is fixed by the grasp at the shared_object, so the
solution of the inverse kinematics is unique. We then ensure that each part of the
arm respects a minimum distance to obstacles in order to provide flexibility to the
system. The calculation is performed for each cell of the base_goal_grid to select
the most interesting configuration. To do this, we sum the visibility cost (

∑N
i=1Cvis

with N the number of links in the arm) of each part of the arm to keep the lowest
cost configuration. Thus we favour the visibility of the arm by the human.
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4.5.2.2 Goal examples

Let us now examine some of the results of the Flying CoWorker goal state estimation
for handover generated by our implementation detailed earlier. In all the following
figures, we can see a representation of the shared_object (in purple), the parts
composing the arm (in black, red, cyan and blue) and finally the base represented
by the larger blue cylinder. These cylinders represent the actual volumes considered
for the collision tests, allowing us to visualize what is really taken into account by
the planner rather than a mesh representation.

Figure 4.5: Goal configuration for a frontal handover with no obstacles and human
looking ahead. Human gaze direction is represented by the red arrow. Shows the
planner’s ability to choose a configuration of the Flying CoWorker in the human’s
field of view to give the object (purple cylinder) to his/her most accessible hand.
Floor is represented in grey.

Frontal handover A first situation is shown in Fig. 4.5 where the human is
looking straight ahead (gaze direction is represented by the red arrow), holding out
his or her right hand with no obstacles. We can see that the Flying CoWorker is
located in the visual field of the human and as far away as possible considering the
orientation constraint chosen for the shared_object. It should also be noted that
the solution presented here does not offer a handover to the human’s left hand.
Indeed, as the human’s left arm is along his/her body, his/her left hand is too close
to him/her and so the planner prefers to propose a handover at the level of the
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right hand, which is further away and therefore safer.

Human gaze influence We can also look at the influence of the direction of the
human gaze in Fig. 4.6. In the 4 cases presented, there is no obstacle and therefore
the human’s hands are reachable. As a result, the end of the object to be exchanged
is always at the same position, close to the human’s right hand. We can therefore
see that for the same solution selected in the human_grasp_grid, we can have many
different configurations of the Flying CoWorker which will depend greatly on where
the human is looking.

(a) 90° right (b) 45° right

(c) 90° left (d) 45° left

Figure 4.6: Influence of the panoramic orientation of the human head on the Flying
CoWorker configuration for 4 different panoramic angle values. One end of the
object is proposed towards the human’s most accessible right hand position. The
positions of the base and the arm of the FCW are reactively adapted to remain as
much as possible in the visual field of the human. Floor is represented in grey.

The example where the human is looking 90 degrees to the right shows that the
Flying CoWorker is trying to facilitate the handover by placing the object as close
as possible to the human’s right hand while remaining visible, especially the base
which is placed in the direction of the human’s field of view. The same situation
arises when the human is looking about 45 degrees to the right, but this time the
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base can be placed further away for more safety. In the case where the human is
looking to the left, the influence of the gaze is more limited and even almost absent
in the 90 degrees case. This is due to the fact that the handover position is slightly
to the right of the human (right hand) and therefore the Flying CoWorker would
have to get too close to the human to get directly into his/her field of view. The
compromise chosen by the planner is to promote safety in this case.

(a) 0° (b) ≈ 35◦ (c) ≈ 70◦

Figure 4.7: Influence of the human head tilt on the Flying CoWorker configuration
for 3 different tilt angle values. One end of the object is proposed towards the
human’s most accessible right hand position. The altitude of the FCW base is
reactively adapted to remain as much as possible in the human’s field of view while
remaining at a distance so as not to cause discomfort to the human. Floor is
represented in grey.

The upward or downward tilt of the human head influences the altitude of the
Flying CoWorker base. Fig. 4.7 shows three different tilts for the same handover
objective. In the case where the human is facing him/her, the base is at maximum
distance and the whole robot is in his/her field of view. In the case at about 35
degrees, the base remains in his/her field of view by increasing its altitude while
keeping the same position for the end_effector . When the human is looking up
at an angle of about 70 degrees, the base further increases its altitude as far as
possible because it is constrained by the arm. In addition, the planner prohibits
flight positions directly over the human’s head, again for safety reasons but also
for comfort reasons because the wind generated by the Flying CoWorker’s rotors
can interfere with human vision and even project particles or dust present in the
environment directly into the eyes.

Dynamic adaptation to obstacles So far, we have presented examples without
barriers, leaving the planner free to choose and access both hands of the human. We
therefore propose to use a more complex scenario that brings together the majority
of the constraints that the Flying CoWorker might encounter when performing a
handover. This scenario is the following: the human is working in front of a wall,
for example on an electrical panel. The space is limited by the floor where the
human is, a ceiling above his/her head but also two walls, one on his/her right
and one on his/her left. This situation is illustrated in Fig. 4.8, we have kept
the same configuration of the human as in the previous examples. His/Her right
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(a) (b)

(c)

Figure 4.8: Behaviour of the planner when access to the Flying CoWorker is pro-
gressly reduced. a) The planner suggests placing the end of the object as close to
the human’s left hand as possible, as the right hand is not accessible. b) After
the right wall was moved closer to the human, the Flying CoWorker configuration
changed reactively to move its base away from the wall. c) After the left wall has
been moved closer to the human, the space is too small to offer a direct handover
solution. The planner proposes a waiting configuration away from obstacles and
within the visibility grid. Floor is represented in grey and walls in light blue.

hand forward, simulating a maintenance operation on the electrical panel and not a
proposed handover position as before, and his/her left hand along his/her body. As
can be seen, the Flying CoWorker’s access is very limited and can only approach
the human from behind. From left to right Fig. 4.8, the space between the left
and right walls is progressively reduced in order to observe the solutions delivered
by the planner in the three cases. For all three cases, the human_grasp_grid is
dynamically adapted to the obstacles. In the least restricted case (Fig. 4.8a), there
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(a) (b)

(c) (d)

Figure 4.9: Behaviour of the planner when access to the Flying CoWorker is pro-
gressively increased. a) The space only allows a configuration in the back of the
human. b) The space is large enough for the Flying CoWorker to fit on the side of
the human and offer a more accessible handover. The position of the base is accept-
able but close to the human. c) There is now enough room for the base to move
away to cause less discomfort to the human. d) Left and right walls are removed,
the chosen configuration places the base as far away as possible while offering an
accessible handover position. Floor is represented in grey and walls in light blue.

is just enough space to propose a handover close to the human’s left hand knowing
that the human will not see the robot if it does not turn around. In the Fig. 4.8b
situation, the right wall is slightly shifted to the left reducing the space even more.
It is no longer possible for the planner to propose a solution so close to the human’s
left hand, the position is still accessible in the human_grasp_grid but cannot be
reached by the robot. Indeed, the base of the Flying CoWorker cannot fit between
the two walls respecting the safety distances, which forces it to take a more remote
position by extending the manipulator arm and by decreasing its altitude.

In the last case Fig. 4.8c, the left wall is also moved towards the human to
keep the space to a minimum. We can see that there are still some positions in the
human_grasp_grid but they are not accessible by the robot. No solution is possible
for a handover in a case like this. To avoid returning an error our planner will still



4.5. REACTIVE FCW GOAL STATE ESTIMATION FOR HANDOVER 77

return a solution if it exists because let’s imagine a situation where the human is
accessible most of the time but for a moment he/she is not accessible anymore while
the Flying CoWorker has already started its journey, then the trajectory must not
be stopped by a temporary occultation. To meet this need, we have integrated
into our planner a means of proposing a waiting position for the Flying CoWorker
where it is set back from the human in the expectation that it will disengage from
the situation preventing the robot from getting close enough for a handover. In
our implementation, we propose the use of a fixed configuration of the arm in this
waiting position, if the goal is to reduce the in-flight power consumption of the
Flying CoWorker, a suitable position can be chosen. In our case, we propose that
the arm is folded under the base, but another more economical configuration could
be to extend the arm and the object vertically, improving the stability of the robot
and thus reducing the energy required.

Once the Flying CoWorker’s configuration is chosen, all that remains is to find a
backward position to wait for the human’s surrounding space to become available.
This is achieved by using the human visibility grid defined in section 2.3.2.2. Indeed,
it is preferable for the robot to wait within the range of visibility rather than behind
a wall, which would prevent the human from seeing it even after turning around.
The visibility grid thus allows to find an acceptable waiting place. A simple solution
is to test for collisions at several locations on the grid where the visibility cost is non-
zero and to keep the robot position closest to the human. To do this, we enclose the
robot in a larger cylinder reducing the number of collision tests needed, improving
the computation time. Thus, when the space around the human is available again,
the goal will be reactively adapted and the Flying CoWorker will be able to move
closer to the human for a handover.

We simulate this clearing of the space around the human in Fig. 4.9 and Fig. 4.10
by moving the walls near him/her step by step. This allows us to observe the
behaviour of the Flying CoWorker and to highlight the precision and sensitivity of
the planner in finding solutions according to the environment. In Fig. 4.9a, 4.9b
and 4.9c, the wall to the right of the human has been moved closer to him/her in
order to block the solutions in this area. On the other hand, the wall on the left is
gradually shifted at each stage in order to open up the space more and more and
show the solution proposed by the planner. Fig. 4.9a shows a situation where the
planner proposes a handover on the human’s left hand, his/her right hand being
unreachable. The base of the Flying CoWorker does not have enough space to
engage and place itself in the field of view. On the other hand, it is noticeable that
the arm is placed in a configuration to be visible as soon as possible if the human
turns around. Similarly, the object is oriented in such a way as to facilitate handover
as much as possible. In Fig. 4.9b, there is just enough space for the Flying CoWorker
to sneak up to the front of the human and into his/her field of vision. The operation
to get to this point will be very slow because the Flying CoWorker must get between
the human and the wall without risking injury. The solution is therefore feasible
and acceptable with the parameters used, but the following figure (Fig. 4.9c) shows
that as soon as there is enough space, the base of the Flying CoWorker will be
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(a)

(b)

Figure 4.10: Behaviour of the planner when access to the human’s right hand be-
comes available and adaptation of the Flying CoWorker’s altitude. a) The right
hand of the human is accessible, a configuration is proposed by the planner consid-
ering the osbtacles and the visual field of the human. b) The altitude of the ceiling
above the human is increased. The proposed configuration is reactively adapted
by increasing the altitude of the Flying CoWorker base to move it away from the
human and cause less discomfort. Floor is represented in grey and walls in light
blue.
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quickly moved away to limit the risks. Note that the base of the Flying CoWorker
is further away but also less in the visual field of the human than in Fig. 4.9b. Our
planner thus shows a great flexibility and capacity to make compromises between
human comfort and safety, which are essential when a robot must evolve close to
a human and interact with him/her. The right and left walls have been removed
in the last situation (Fig. 4.9d) showing that the proposed solution is still oriented
towards a handover to the human’s left hand. Indeed, the human_grasp_grid does
not propose an interesting handover solution for the right hand because the wall
facing the human is very close to him/her while the left hand is fully available.
This behaviour is rather interesting because in this situation, we can imagine that
the human has the right hand busy working while his/her left hand can recover the
object that the Flying CoWorker brings him/her.

This situation allows us to introduce another example Fig. 4.10 where this time
the wall facing the human is moved to clear the space and make the human’s right
hand accessible for a handover. We observe that the human_grasp_grid has been
extended in front of the human and the planner proposes a handover solution on
the right hand of the human with the manipulator arm extended to bring the
object as close as possible and the base respecting a safe distance with the ceiling
above the human’s head. Looking at Fig.4.10b, we can see the reactive adaptation
of the Flying CoWorker’s altitude as a result of the upward displacement of the
ceiling always respecting the safety distance to obstacles. Increasing the altitude of
the Flying CoWorker increases the distance between the propellers and the human
causing less discomfort due to the noise and wind they generate.

4.6 Coordinated motion for FCW

When a human wants to retrieve an object from a position and bring it to another
human to give it to him/her, most of the time there is no discernible difference
between the phase when he/she moves and when he/she hands the object to the
other human. The navigational motion performed by the human’s legs is coordi-
nated with the motion of the arm(s) that allow the object to be delivered. It is
a coordinated and uninterrupted motion that makes the action fluid and efficient.
Wherever possible, the same should apply to a robot.

Often in robotics, handover is a stand-alone issue, with a manipulator arm
whose base is fixed. In the case of a humanoid robot or mobile manipulator, it
is common for the robot to perform its navigation trajectory with the arm(s) in a
fixed configuration and then stop at a position close to the human before performing
its handover task using a different planner, specific for planning the motion of the
arm(s). In these cases the handover is therefore completely decoupled from the
navigation trajectory, marking a pause in the robot’s complete motion.

The Flying CoWorker is an aerial manipulator where the arm and base motions
are linked. For the reasons mentioned above, we want to couple the handover phase
with the navigation phase to obtain a smooth and efficient motion. For this purpose,
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we propose a coordinated planning of the Flying CoWorker motions based on our
KHAOS system.

In this section we propose an extension of KHAOS presented in Chapter 2 to deal
with the case of coordinated motion for the Flying CoWorker performing a handover
task. We first set the context before detailing the changes and improvements to the
KHAOS extension. We show how the trajectories generated by KHAOS initially
used for navigation are adapted to this new context of coordinated motion. We then
conclude by showing some examples that reveal the capabilities of our improved
planning system.

In the remainder of this chapter, when KHAOS is quoted, it refers to the mod-
ified version taking into account the coordinated motion described in this section.

4.6.1 Context

The version of KHAOS presented in Chapter 2 allows the generation of a trajectory
for the Flying CoWorker navigation. This trajectory provides position and speed
information in a human-aware context and respects the kinematic constraints of the
Flying CoWorker. Using this first version of KHAOS, we have a way to generate
a trajectory for approaching a human that will have a very smooth speed profile
limiting the discomfort that will be caused to him/her.

Initially used to generate a trajectory for the Flying CoWorker base, the same
algorithm can work for any object in the three-dimensional space as long as the ge-
ometry of that object is known. It is therefore also possible to generate a trajectory
for the object to be delivered to the human in the handover context. The object to
be delivered is the part that is closest to the human during the handover. Especially
during the physical contact between the object and the human because the robot
still has to hold the object so that it does not fall. It is therefore essential that
the trajectory of the object to be transferred is smooth and controlled, especially
in the vicinity of the human. KHAOS and its various adjustable parameters allow
to obtain this result if applied to the object.

For these reasons, we propose in this section to use also a second KHAOS
trajectory applied to the object to be transferred to the human. This additional
trajectory provides the positions and speeds of the object from the starting point
to the goal. This goal is determined using the method described in the previous
section. We thus have a complete state of the Flying CoWorker at the starting point
which is the current state of the robot and at the goal. We also have a trajectory for
the object which serves as a reference. It remains to determine for all intermediate
states, the configuration of the Flying CoWorker manipulator arm and the position
of its base.

4.6.2 KHAOS main algorithm extension for coordinated motion

The overall functioning of the KHAOS algorithm is recalled in Algorithm 5. The
general idea is still the same but details differ in several steps of the algorithm. We
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Algorithm 5: KHAOS algorithm extension
• Given:

– Start (x0) and goal (xN ) states, xi ∈ RDoF

– An initial discretized trajectory θ ∈ RDoF×N

– A state-dependant cost function q(xi)

• Precompute:

– A = finite difference matrix
– R−1 = (ATA)−1

– M = R−1, with each column scaled such that the maximum element is
(1/N)

– Apply Algorithm 1 to θ to obtains associated speeds, θ ∈ R2×DoF×N

• Repeat until convergence of global trajectory cost Q(θ):

1. Create K noisy trajectories, θ̃1 · · · θ̃K with parameters θ + εk, where
εk = N (0,R−1)

2. Apply Algorithm 1 to each θ̃i to obtains associated speeds
3. For k = 1 · · ·K, compute:

(a) Local cost S(θ̃k,i) = q(θ̃k,i) according to Equation 4.6

(b) P (θ̃k,i) = e
− 1
λ
S(θ̃k,i)∑K

l=1[e− 1
λ
S(θ̃l,i)]

4. For i · · · (N − 1), compute: [δ̃θ]i =
∑K
k=1 P (θ̃k,i)[εk]i

5. Compute δθ = M δ̃θ

6. Update θ ← θ + δθ

7. Compute global trajectory cost Q(θ) =
∑N
i=1 q(θi) + 1

2θ
TRθ according

to Equation 4.7
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explain these differences step by step in the rest of this section. We also identify
at the beginning of each sub-section by a green writing, the line or lines of the
algorithm which are concerned.

4.6.2.1 Flying CoWorker state representation

Start (x0) and goal (xN ) states, xi ∈ RDoF

The trajectory generated by KHAOS in Chapter 2 only considers the motion
of the Flying CoWorker base. In this extension, we wish to generate a trajectory
for the complete Flying CoWorker, i.e. the base but also the manipulator arm in
addition to the object we wish to give to the human as in the proposed model
presented in paragraph 4.2. For this purpose, the complete state representation of
the Flying CoWorker is given as follows:

Flying CoWorker state



xB, yB, zB
vx,B, vy,B, vz,B
qw,B, qx,B, qy,B, qz,B

 for the Base

µi=1..6 for the arm
xO, yO, zO
vx,O, vy,O, vz,O
qw,O, qx,O, qy,O, qz,O

 for the Object

(4.3)

which includes the positions xB, yB, zB (xO, yO, zO), the speeds
vx,B, vy,B, vz,B (vx,O, vy,O, vz,O), and then the quaternions qw,B, qx,B, qy,B, qz,B
(qw,O, qx,O, qy,O, qz,O) for the base (the object respectively). Manipulator arm joint
states are also represented by µi. The initial input states of Algorithm 5, x0 and
xN refer to this representation as well as all states calculated later in the algorithm.

4.6.2.2 Initial path adaptation

An initial discretized trajectory θ ∈ RDoF×N

The state considered for the Flying CoWorker evolves in this extension as pre-
sented in 4.3. The means of generating the initial path therefore also changes. The
method proposed in 2.3.1 shows how to generate an initial path. This path is com-
posed of a list of positions for the Flying CoWorker base allowing it to connect its
starting point and the arrival point by travelling a minimum distance and avoiding
obstacles.

We propose in this extension to use the same method as in 2.3.1 by generating
an initial path not only for the base but also for the object, both smoothed by the
method presented in Chapter 3. An example of result of the generation of these
two initial paths is shown in Fig. 4.11 which takes the example of the goal state
presented in Fig. 4.8a. The start state x0 and goal state xN are also shown. The
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starting state is given by the current position of the Flying CoWorker and the goal
state is given by the method presented in section 4.5.

Figure 4.11: Initial path generated for the Base (green) and the object (red)
Bottom left: Flying CoWorker goal state – Top right: Flying CoWorker start state
Floor is represented in grey and walls in green.

At this point, we have two paths consisting of a list of positions for the base
and the object as well as the complete start and goal state of the Flying CoWorker.
To guide the optimisation algorithm, we want to convert this list of positions into
a list of states of the Flying CoWorker. It is therefore necessary to determine the
configuration of the arm for each pair of base and object positions. To obtain the
arm configuration, we can use forward or inverse kinematics as used in the previous
section where we estimate the arm configuration for the goal state. In the case of
the estimation of the goal state, the position and orientation of the object is defined,
which fully define the position and orientation of the end effector. As we only con-
sider the closest solution, only one solution is defined for the arm configuration. For
all intermediate positions that are not the start and goal positions, the orientation
of the object is not known. These orientations must therefore be determined in
order to finally calculate the joint states of the Flying CoWorker arm using inverse
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Algorithm 6: Object’s quaternion determination
1 step_parameter = 1

N
2 for i = 1; i < N ; i+ + do
3 Qobject,i = Slerp(i ∗ step_parameter,Qobject,start, Qobject,goal);
4 end

kinematics.
To define these orientations, we propose to use the starting and goal orienta-

tions of the object and to perform a quaternion interpolation. Spherical Linear
Interpolation (Slerp) is a method introduced by Shoemake [Shoemake 1985] which
refers to a motion at constant speed along an arc of a circle of unit radius, given a
start and end point and using an interpolation parameter between 0 and 1.

Using this method, the quaternion of the object is defined by Algorithm 6 where
step_parameter is the interpolation step between 0 and 1. It depends on the
number of states N composing the initial discretized trajectory θ given as input to
algorithm 5. Qobject,i is the quaternion of the object for state i. Qobject,start and
Qobject,goal are the quaternions of the object for the start and goal states respectively.

4.6.2.3 Costs and constraints

A state-dependant cost function q(xi)

The costs and constraints used in the initial KHAOS version from Chapter 2
are reused in its extension for coordinated motion. As a reminder:

• Cdis : discomfort_cost defined in section 2.3.2.1

• Cvis: visibility_cost defined in section 2.3.2.2

• Cobstacle: cost related to collisions with the environment

• Ctime and Ctime_local: time costs related to the duration of the trajectory

• Csmooth: related to trajectory smoothness

• Kinematic constraints defined in section 2.3.3

In addition to the costs and constraints already presented, we propose to intro-
duce two additional costs.

Torque variation cost The Flying CoWorker base is the element that allows
the motion of the whole drone. The arm must allow the position of the object
to be adapted during the motion of the base so that the trajectory of the Flying
CoWorker, and consequently that of the object, is smooth.

The arm is composed of several degrees of freedom. Therefore, in order to
achieve a Cartesian motion of the object, several mechanical elements must be set
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in motion. It is therefore easier for the Flying CoWorker base to make this motion
than for the arm. For this reason, it is preferable to limit the motion of the arm
along the trajectory as much as possible. To meet this need, we propose to use a
torque variation cost Ctorque defined as follows:

Ctorque =
∑
|µ̇i| (4.4)

Where µ̇i is the time variation of the joint state i of the Flying CoWorker arm.
Ctorque is the sum of the absolute values of these variations for the whole arm.

Gap cost The various costs and constraints initially introduced in KHAOS aim at
deforming a trajectory. In its extension presented in this chapter, one can consider
that there are two trajectories to deform, that of the base and that of the object.
As a result, situations can arise where the object’s trajectory tends to be too close
to the base’s trajectory, leaving little flexibility for the object to collide with the
base.

On the other hand, it can be interesting to manage the difference in altitude
between the base and the object in order to favour a configuration of the arm when it
is not constrained by the configuration of the start and goal, i.e. during navigation.
We propose to use a gap cost Cgap defined as follows:

Cgap = zO − zB − d (4.5)

where zO is the altitude of the object, zB is the altitude of the base and d is a
configurable distance allowing the gap between the object and the base to be set.
The gap cost Cgap is positive when the object is at an altitude greater than that of
the base plus the distance d. Thus, by modifying the distance d, we can for example
favour a configuration of the arm extended downwards which can be interesting to
improve the stability of the Flying CoWorker and reduce its energy consumption in
flight.

Local cost

Local cost S(θ̃k,i) = q(θ̃k,i)

Equation 2.2 for calculating the local cost is modified to incorporate the two
new costs presented above:

S(θ̃k,i) =
{ ∑

(Cvis + Cdis + Ctime_local + Ctorque + Cgap) if no collision
Cobstacle else (4.6)

where Cvis, Cdis and Ctime_local are the human-aware costs defined in the Chap-
ter 2 with the difference that these costs are cumulated for the base but also for
the object in this extension (Cvis = Cvis_Base + Cvis_Object for example).
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Global cost

Compute global trajectory cost Q(θ) =
∑N
i=1 q(θi) + 1

2θ
TRθ

As with the calculation of the local cost, equation 2.3 for calculating the overall
cost of the trajectory is adapted to include the new costs:

Q(θ) =
N∑
i=1

(Cvis + Ctorque + Cgap) + Ctime + Csmooth (4.7)

where Cvis, Ctime and Csmooth are the costs defined in the Chapter 2. Again, these
three costs are also adapted to consider the Flying CoWorker base as well as the
object.

Kinematic contraints

Apply Algorithm 1 to θ to obtains associated speeds, θ ∈ R2×DoF×N

Apply Algorithm 1 to each θ̃i to obtains associated speeds

The trajectories generated by KHAOS are constrained by Algorithm 3 detailed
in Chapter 2. Initially planned for the Flying CoWorker base, we propose in this
extension to apply these same constraints to the object. This makes it possible to
control the smoothness of the motion of the object as well as that of the base. By
controlling the smoothness of the motion of both the base and the object, we hope
to achieve a smooth motion for the entire Flying CoWorker.

4.6.2.4 Noisy trajectories generation for coordinated motion

Create K noisy trajectories, θ̃1 · · · θ̃K with parameters θ + εk, where
εk = N (0,R−1)

The major change in this extension of KHAOS is in the step 1 of Algorithm 5
which generates a large number of noisy trajectories from a reference trajectory. In
this subsection we show how we determine the complete Flying CoWorker state of
noisy trajectories by referring to the Cartesian trajectory of the object.

In the initial version of KHAOS, only the values of the xB, yB and zB positions
of the Flying CoWorker base are randomly drawn according to a normal distribution
to noisy the reference trajectory. As explained earlier, in this approach we propose
to use the object trajectory as a “guide” trajectory. In this way, we ensure that the
object will follow a Cartesian trajectory allowing it to approach the human without
any abrupt motion for handover.

Noisy trajectories are generated as shown in Fig. 4.12. For readability, we show
only the state corresponding to a single waypoint of the trajectory. On the left is
the reference trajectory θ composed of the complete Flying CoWorker state for the
considered waypoint. As a reminder, this reference trajectory θ is determined as
detailed in subsection 4.6.2.2. In the middle, the K noisy states for the considered
waypoint are represented. Note that only the position of the object (x̃O,ỹO,z̃O) and
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θ θ̃k=1

· · ·

· · · · · ·

· · ·
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Figure 4.12: Noisy trajectories generation with complete state of the Flying
CoWorker using Inverse and Forward Kinematics. ø corresponds to a state not
yet defined.

the different joint states of the FCW arm (µ̃1..6) are noisy. Starting from the noisy
joint states µ̃1..6 of the arm, we can determine the position of the base (x̃B,ỹB,z̃B)
using forward kinematics. Proceeding in this way, we ensure that we find a correct
position for the base according to the object position since it is determined for a
given arm configuration. Knowing the arm configuration, we can also deduce the
orientation of the object (q̃w,O, q̃x,O, q̃y,O and q̃z,O). On the right are the K full
noisy states of the FCW with the position of the base and the orientation of the
object.

Once these noisy states are obtained, the speeds of the object and the base as
well as the orientation of the base are determined by step 2 of the Algorithm 5. After
this, we obtain a large number of trajectory samples to start the estimation phase
of the previously defined costs. Then we proceed with the optimisation process to
provide a human-aware trajectory that respects the kinematic constraints of the
Flying CoWorker.

4.6.3 Coordinated handover results

After having detailed the functioning of our extension to KHAOS concerning the
coordinated motion for the execution of a handover task, we present below some
results showing the capabilities of our planner. In the various figures presented in



88 CHAPTER 4. HUMAN-FCW HANDOVER PLANNING AND CONTROL

(a)

(b)

Figure 4.13: Frontal approach to the human by the Flying CoWorker to perform
a handover task. a) Illustration of the coordinated motion. b) Curves of the
speed magnitudes of the FCW base and the object with the corresponding dis-
comfort_cost. The Flying CoWorker speed decreases very early and smoothly,
limited by the discomfort constraint set to 0.15. The motion is coordinated and
never interrupted. Floor is represented in grey.

this section, the base of the Flying CoWorker is shown in transparency to facili-
tate the readability of the robot motions. The other links composing the Flying
CoWorker and the object are represented as the proposed model described in sec-
tion 4.2. Again for reasons of readability, only one third of the Flying CoWorker
states are shown in the figures. Moreover, in the different examples, the length of
the object (purple cylinder) is 0.3 m. The last example presented in this section
shows the consideration of an object of 1 m long.

Frontal approach A first example concerns a frontal approach to the human
by the FCW for a handover task as illustrated in Fig. 4.13. In this context, the
FCW moves into an area of the human’s visual field where the visibility_cost varies
slightly and therefore does not impact the shape of the trajectory.

The coordinated motion of the Flying CoWorker is shown in Fig. 4.13a. The
starting state of the Flying CoWorker is deliberately chosen in such a way as to
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force the planner to generate a solution where the Flying CoWorker has to turn
around before being in proximity to the human. In this way we can challenge our
system and show its ability to simultaneously adapt the positions of the base and the
object to perform a smooth and readable motion for the human. The goal state is
determined by the method described in section 4.5. We can observe that the object
is gradually rotated towards the goal. Thus we avoid the Flying CoWorker to stop
near the human to adjust the position of the object. In the same way, we reduce
the execution time of the trajectory by avoiding this stopping time. Moreover, this
stopping time could be annoying for the human who may wonder what the robot’s
intention is.

The magnitudes of the Flying CoWorker base and object speeds and the corre-
sponding discomfort_cost are shown in Fig. 4.13b. These curves allow us first of
all to observe that the discomfort_constraint fixed here at 0.15 is never violated.
We recall that the discomfort_constraint is used to limit the speed of the robot ac-
cording to the estimated discomfort generated to the human. We can see here that
the speed is limited very early by the discomfort_constraint, only two seconds after
the Flying CoWorker departure. The deceleration is very gradual with a higher
deceleration for the object than for the base. This is explained by the fact that the
object has to be presented to the human and therefore is supposed to be closer to
the human than the base.

At around 15 seconds, we notice that the speed of the object is very close to
zero. This is due to the fact that the object is almost in its goal state while the base
must slowly move closer to meet the discomfort_constraint. This phase corresponds
to the moment towards the end when the Flying CoWorker arm folds back to allow
the base to move into the desired position. The position of the base is determined
by the method in section 4.2 which requires the base and arm to be as visible as
possible to the human.

Approach from the human side In this second example, we present Fig. 4.14
a situation where the Flying CoWorker starts in a state that is not directly in the
human’s field of view. It starts from the left of the human for an estimated goal
in front of him/her as shown in Fig. 4.14a. We observe the deformation of the
trajectory of the Flying CoWorker which shifts to place itself as soon as possible in
the visual field of the human. A natural human reaction would be to turn his/her
head to the left when he/she hears noise, mainly from the Flying CoWorker rotors.
As he/she turned his/her head he/she would see the FCW appear. By shifting
early to the area in front of the human, the Flying CoWorker prevents the human
from turning its head too far. This behaviour reduces the discomfort caused to the
human and avoids the surprise effect.

The Flying CoWorker bypasses the human to finish its trajectory facing him/her,
taking care to place its base as far away as possible from him/her and being as
visible as possible. In this configuration, the arm is extended to allow a secure
object handover area. This keeps the base of the Flying CoWorker as far away as
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(a)

(b)

Figure 4.14: Flying CoWorker approaches the human from his/her left for a han-
dover. a) Illustration of the coordinated motion. b) Curves of the speed magnitudes
of FCW base and the object with the corresponding discomfort_cost and normal-
ized visibility_cost. The Flying CoWorker’s trajectory is deviated so that it appears
very early in the human’s visual field in order to signal its presence and its intention
to interact with him/her. Floor is represented in grey.

possible, preventing the wind generated by the rotors from causing discomfort to
the human during the exchange. With the rotors away from the human hands, the
risk of injury in the event of failure or breakage is reduced.

Here again we notice that the object is oriented very early on towards the
human, ready for the exchange. This also allows the human to understand the
Flying CoWorker’s intention while he/she is several meters away.

This situation allows us to show that the trajectory behaviours presented in
Chapter 2 for Flying CoWorker navigation are still present in this extension. More
precisely, we show that the influence of the visual field is still correctly taken into
account using the visibility_cost.

The magnitudes of the Flying CoWorker base and object speeds and the cor-
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responding discomfort_cost are shown in Fig. 4.14b. The discomfort_constraint is
set at 0.15 and reached only 2 s after the start of the Flying CoWorker limiting its
speed which slowly decreases. Around 7 s, the Flying CoWorker enters the visibility
grid of the human. The visibility_cost decreases rapidly to reach its minimum at
4 s before the end of the Flying CoWorker motion. This shows that the human is
warned very early of the Flying CoWorker’s intention to interact.

Approach and proposal for handover in a confined space We now present
a situation where the human is working on an electrical panel. Fig. 4.15 shows that
he/she is in a confined space where the Flying CoWorker cannot fully engage for
a handover. Furthermore, the human is facing the wall and does not offer a direct
solution for a handover without first turning around.

The Flying CoWorker starts from a position far behind the walls where the
human is located. It must therefore bypass the obstacles and propose a handover
solution. The only possibility for the Flying CoWorker is to arrive and propose a
handover behind the human’s back as long as he/she does not turn around.

The proposed solution is to bring the object closer to the human’s left hand.
It is indeed the left hand that is most easily accessible in this situation because
the human’s right hand is already busy working on the electrical panel. There is
therefore not enough space for the planner to propose a solution in the area in front
of the human. The left hand is not directly accessible either, as it is located along
the human’s body. KHAOS therefore proposes a solution that is slightly set back
in order to maintain a safe distance.

We see that the Flying CoWorker performs a coordinated motion along its tra-
jectory. In particular, the orientation of the object is anticipated well in advance
to ensure that it is presented in the correct configuration when it arrives. In effect,
the Flying CoWorker must bypass the obstacle to present the object behind the
human’s back. It is therefore more difficult for this example to turn the object in
the direction of travel and then turn it again in the direction of the human. This
is because the object’s initial state is already oriented towards the goal.

We can see on Fig. 4.15b that the Flying CoWorker enters the human visibility
grid at around 25 s. From this moment the visibility_cost is and remains maximum
because the Flying CoWorker is located in the back of the human. In this situation
we accept that the visibility_cost is high to propose a handover solution. When the
human will turn around to take the object, the visibility_cost will reduce.

The orientation of the object along the trajectory in this example is questionable.
If the Flying CoWorker were to encounter other humans along its path, perhaps
orienting the arm and thus the object in the direction of travel would make the
trajectory more legible. In our implementation, only the orientation of the base,
not shown in the figure, is oriented in the direction of travel as long as the base
does not reach the visibility grid (see section 4.4 for more details). Assuming that
a camera is installed on the base, it would indicate the orientation of the base and
therefore the direction of travel.
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(a)

(b)

Figure 4.15: Human working on an electrical panel in a confined space. a) Illus-
tration of the coordinated motion. b) Curves of the speed magnitudes of Flying
CoWorker base and the object with the corresponding discomfort_cost and nor-
malized visibility_cost. The Flying CoWorker’s motion is coordinated and bypasses
obstacles to provide a handover solution behind the human’s back. Floor is repre-
sented in grey and walls in light blue.
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(a) View from the start side

(b) View from the goal side

Figure 4.16: The Flying CoWorker crosses a narrow window from two different
perspectives. The Flying CoWorker configuration is dynamically adapted to handle
narrow passages. Floor is represented in grey and walls in light blue.

Dynamic FCW configuration through a narrow window Taking the pre-
vious situation, we increase the difficulty in this example by forcing the Flying
CoWorker to navigate through a narrow passage. To do this we add two walls that
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cut the Flying CoWorker’s trajectory and leave only a narrow passage of one meter
high as shown in Fig. 4.16 in two perspectives.

The starting and goal states of the Flying CoWorker are the same as in the
previous example. Only the narrow passage therefore affects the trajectory result
generated by KHAOS compared to the previous example.

We observe the coordination of the motion of the complete Flying CoWorker
which folds its arm to avoid any collision as well as the base which respects a certain
safety distance with the walls. Once the passage is crossed, the arm is extended
again to prepare for the handover.

This example shows that our system can dynamically modify the Flying
CoWorker configuration to navigate in many situations where a rigid robot could
not pass. The Flying CoWorker, although large in size, can address problems sim-
ilar to those presented in the work of Falanga et al [Falanga 2018]. In their work,
they present a morphing system for quadrotors that consists of four arms that can
fold around the main body. In our case, it is the manipulator arm that morphs the
Flying CoWorker.

Figure 4.17: Coordinated motion of the Flying CoWorker for handover of a long
object. Floor is represented in grey and walls in light blue.

Long object In this last example, we want to show the ability of KHAOS to
adapt to the length of objects even if they are relatively long. We show Fig. 4.17
the coordinated motion of the Flying CoWorker for an object whose length is 1 m,
which is approximately 3 times longer than in the previous examples. Goal state
estimation of the Flying CoWorker is in agreement with the previous results with a
smaller object. The object and the Flying CoWorker are as much as possible in the
visual field of the human, the base is as far away as possible while remaining visible.
Finally the end of the object is proposed close to the right hand which is accessible
in this example. Despite the length of the object, KHAOS offers a smooth motion
that avoids obstacles. We can notice that the Flying CoWorker takes altitude to be
able to direct the object downwards before reorienting the object for handover.
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Performances The trajectories generated by KHAOS in the previous examples
are refreshed at a frequency around 3 Hz on a standard computer (Intel i7 1.9 GHz
CPU, 32 GB memory). The integration and planning of the Flying CoWorker arm
and object motions only slightly degrades the performance of KHAOS compared to
its initial version (see section 2.5). The duration of the Flying CoWorker goal state
estimation phase can vary between 10 Hz and 100 Hz depending on the surround-
ing environment of the human. Such performances allow to address in real time
the complex motion planning topics presented in this manuscript. However, these
performances are indicative and depend on many parameters. The convergence
criterion can be adapted to obtain a more regular result by fixing the duration of
the optimization phase as detailed in section 2.3.6. The factor that impacts the
performance the most is the numerous collision tests performed during the goal
state estimation and trajectory optimization phase. A better collision management
can greatly improve the performance.

4.7 Conclusion

In this chapter we have proposed a model of the Flying CoWorker with a six degree
of freedom arm. This model is defined with the aim of enriching the possibilities of
the Flying CoWorker to perform a handover task.

We proposed a method to determine the orientation of the Flying CoWorker
base in a handover context. This method considers the visual field of the human
and the kinematic constraints of the Flying CoWorker to evaluate when the base
should start orienting itself towards the human to signal its intention.

We presented a method to define the complete goal state of the Flying CoWorker
for a handover task. This method studies the near-human environment to define a
feasible Flying CoWorker state for a handover. It also considers various parameters
already used in previous chapters such as the visibility of the Flying CoWorker by
the human and the proximity. It thus allows to determine a state of the Flying
CoWorker that is both feasible and comfortable for the human. This method is
reactive and updates the final Flying CoWorker state in real time. It offers a
solution even in cases where the human does not offer an immediate position for
the exchange, such as when he/she is turned around and working on an electrical
panel. This method therefore addresses situations where the receiver proposes a
solution and guides the giver to the handover, but also situations where the giver
has to propose a solution.

Based on the previously mentioned goal determination method, we propose an
extension of our planning system KHAOS presented in chapter 2. This extension
generates a human-aware trajectory and respects the kinematic constraints of the
Flying CoWorker for the base but also for the arm and considers the object to
be transferred. The trajectory of the object is thus controlled and very smooth
allowing a secure handover and causing the least possible discomfort to the hu-
man. This extension of KHAOS also proposes a coordinated motion of the Flying
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CoWorker allowing a smooth and uninterrupted motion of the whole robot. The
Flying CoWorker behaviour is therefore readable by the human as soon as possible
and causes little discomfort. We have presented simulation results of the coor-
dinated Flying CoWorker motion in several situations. We have shown that the
original KHAOS criteria are met for the whole robot. Finally, we presented a situ-
ation showing the ability of our system to dynamically adapt the Flying CoWorker
configuration to navigate in narrow or cluttered environments.



Conclusion

The main contributions presented in this thesis are summarised below. We then
discuss the perspectives for improvement and extension of the developed Kinematic
Human Aware Optimization-based System for reactive planning of flying-coworker.

Contributions

We started this thesis manuscript in Chapter 1 by presenting the context of this
thesis work. We detailed the purpose of “The Flying CoWorker” project, which is to
have an aerial manipulator interact with humans. We stated that the work in this
thesis is concerned with the motion planning and control of the Flying CoWorker.
Among the objectives of the project, we presented two types of interaction scenarios
to be addressed: the transport of a long object in collaboration with a human and
the transport of a tool that needs to be brought to a human. This thesis work deals
with the second scenario where two distinct phases have been identified. The first
concerns the navigation phase of the Flying CoWorker transporting the object in a
human-populated environment. The second concerns the completion of a handover
task.

In Chapter 2, we introduced KHAOS: a Kinematic Human Aware Optimization-
based System for reactive planning of flying-coworker. It allows reactive planning
of the navigation motion of a multi-rotor drone such as the Flying CoWorker base
in a human-populated environment. It takes as input an initial path composed of a
list of positions that it deforms using an optimisation algorithm. The deformation
is achieved with the help of social and kinematic constraints that we have made
explicit. The social constraints mainly take into account the visibility of the robot
by humans and the discomfort caused to them. The system output provides a way-
point list communicating position and speed information from the Flying CoWorker
base. We have shown that KHAOS allows to generate a human-aware trajectory
that considers the kinematic limits of the multi-rotor drone through many situa-
tions. The influence of the different constraints and the behaviour of our system
are presented through these situations.

In Chapter 3, we have addressed two important issues to improve our KHAOS
planning system. The first point concerns the improvement of the initial path pro-
vided as input to our system. The second point concerns the conversion of the
output of KHAOS, a list of waypoints, into a time-continuous trajectory. We have
highlighted the difficulty of dealing with these problems with the trajectory genera-
tors present in the literature. We proposed a solution by using a new extension of the
SoftMotion library which uses Non-Uniform Cubic B-Spline. Thus, by coupling this
extension of SoftMotion to KHAOS, we are able to generate time-continuous and
human-aware trajectories respecting the kinematic constraints of Flying CoWorker.
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In chapter 4, we presented an extension of our KHAOS planning system to
handle a handover task coupled with the navigation phase. We first detailed our
approach to determine the orientation of the Flying CoWorker base along the tra-
jectory that ends in a handover phase. We then presented a method to determine
the final state of the Flying CoWorker for a handover. The method reactively con-
siders the near-human environment as well as social constraints such as visibility
and safety. Knowing the final state of the Flying CoWorker using this method, we
were able to present the third contribution of this chapter which deals with the
coordinated motion of the Flying CoWorker along the trajectory. This extension
of KHAOS thus proposes to generate a human-aware trajectory for the complete
state of the Flying CoWorker while respecting its kinematic limits. This trajectory
performs a coordinated motion of the arm and the base of the Flying CoWorker
while considering the trajectory of the object. The object trajectory is a Cartesian
trajectory allowing a smooth and comfortable motion for the approached human
during the handover phase.

Perspectives

KHAOS optimisation The optimisation phase of our KHAOS planning system
is based on the stochastic optimisation algorithm STOMP. Aware of the existence
of a multitude of optimisation techniques, it would be interesting to explore other
ways to optimise the trajectories generated by KHAOS. As shown in Chapter 3,
we use an independent SoftMotion library to convert KHAOS trajectories (list of
waypoints) into a time-continuous trajectory. We are keen to develop a method that
incorporates B-Spline in the optimisation phase rather than the current waypoint
list. This would allow us to better control the location of the B-Spline where we
evaluate the costs. Moreover, we would be sure to evaluate trajectories that are
already respecting the constraints of geometric and kinematic continuity.

Coordinated motion in continuous time Work is underway to generate a
continuous-time trajectory for the coordinated motion presented in section 4.6 by
adapting the SoftMotion extension presented in section 3.4. Indeed, the SoftMotion
library extension uses B-Spline to generate a trajectory for the Flying CoWorker
base only. By extending the use of B-Spline to the arm and the base of the Flying
CoWorker, we could obtain a continuous-time and feasible trajectory for the whole
robot.

Flying CoWorker dynamics Focusing essentially on the Human Robot Inter-
action aspects coupled with the kinematics of the Flying CoWorker, it would be
interesting to go further on the control aspects by integrating the dynamics of the
robot. From a trajectory feasibility point of view, this would certainly have an im-
pact on the planned motion for the arm. Indeed, considering the weights of the arm
and the object, we would certainly have to review the way of carrying the object
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during the navigation phase to improve stability and avoid consuming too much
energy.

KHAOS initial path As described in section 2.3.1, we use a basic planner to
provide our system with an initial path. This initial path avoids obstacles and
returns the shortest path between the start and goal. All the work required to
generate a human-aware trajectory is therefore done by our system afterwards. In
order to guide our system as well as possible from the first planning, it would be
interesting to integrate social constraints in the planner providing the initial path.
This would have an advantage especially when the environment is complex and the
human-aware path would be quite different from the shortest path.

Human simulator An important aspect of evaluating a system to interact with
humans is to be able to simulate those humans. There are many models or simu-
lators of humans in the literature, but to our knowledge, none of them correspond
to our needs. Either the model is very complex and difficult to implement for sim-
ple tests, or the model is not complete enough as is the case for many pedestrian
simulators. The latter are often interested in navigation issues only. As a result, in
terms of collision, the human is often considered as a large cylinder moving in 2D.
In our case, we need a simple model for navigation, but one that distinguishes the
different parts of the human, such as the head and hands, for the handover phase.
Moreover, a more complete human simulator where the motion of the human’s arms
is simulated would have allowed us to refine our results.
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Résumé: Le sujet des travaux de cette thèse vise à planifier les mouvements
d’un manipulateur aérien (Un héxa-rotor équipé d’un bras manipulateur) aussi ap-
pelé collaborateur volant. Il est utilisé pour intéragir avec des humains notamment
pour transporter un objet et le remettre à un collègue humain.

Le transport d’un objet par le collaborateur volant jusqu’à son destinataire hu-
main pour le lui donner nécessite d’abord de naviguer dans un environnement com-
portant des obstacles et potentiellement d’autres humains pouvant eux aussi être
en mouvement. Au delà du problème classique de la recherche et de l’optimisation
d’un mouvement sans collision, cette phase de navigation doit tenir compte des
contraintes et préférences humaines. Un aspect important concerne la lisibilité et
l’acceptabilité de l’intention du robot afin d’être compris par les humains environ-
nants et notamment son destinataire. De nombreux signaux peuvent être inscrits
dans la forme et la dynamique du mouvement d’un robot. Un déplacement rapide
du robot en direction d’un humain peut s’avérer inquiétant pour celui-ci. De même
qu’un robot qui surgit de derrière un obstacle proche d’un humain peut surprendre.
La phase de remise de l’objet à l’humain doit considérer tout ces paramètres en plus
du déploiement du bras qui doit proposer un transfert de l’objet en toute sécurité
et considérer le confort du collègue humain. La coordination du mouvement entre
la base et le bras du collaborateur volant est un atout pour améliorer la fluidité
du mouvement le long de sa trajectoire et signaler son intention au plus tôt pour
que les humains puissent réagir en conséquence. La position des humains et des
obstacles de l’environnement étant amenées à varier fréquemment, la plannification
des mouvements du collaborateur volant doit être réalisée de manière réactive et
adaptative.

Nous présentons KHAOS un systême de planification réactive considérant les
contraintes et préférences humaines en plus des contraintes cinématiques du col-
laborateur volant. Basé sur un algorithme d’optimisation stochastique, il déforme
un chemin à l’aide de coût sociaux et cinématiques et génère une liste de points de
passages donnant les positions et vitesses pour la navigation dans un espace 3D.

Nous utilisons un générateur de trajectoire basé sur des B-Spline dans le but de
former une trajectoire continue en temps passant par les positions et respectant les
vitesses donnés par la liste de points de passages de KHAOS. En procédant ainsi
nous fournissons une trajectoire respectant la cinématique du collaborateur volant
à chaque instant et permettant l’execution directe par un contrôlleur bas niveau.

Nous étendons ensuite les capacités de KHAOS en appliquant des contraintes
supplémentaires afin qu’il puisse également planifier les mouvements du bras et de
l’objet en plus de la base dans le but de naviguer et réaliser une tâche de remise
d’objet. Dans cette extension, les mouvements sont planifiés de manière coordonnée
permettant un mouvement fluide et sans interruption durant le déroulement de la
tâche.
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Abstract: The subject of this thesis is to plan the motions of an aerial ma-
nipulator (a hexa-rotor equipped with a manipulator arm) also called a Flying
CoWorker. It is used to interact with humans, in particular to transport an object
and deliver it to a human coworker.

The transport of an object by the Flying CoWorker to its human receiver to give
it to him requires first to navigate in an environment with obstacles and potentially
other humans who may also be in motion.

Beyond the classical problem of finding and optimising a collision-free motion,
this navigation phase must take into account human constraints and preferences. An
important aspect is the legibility and acceptability of the robot’s intention in order
to be understood by the surrounding humans and in particular its receiver. Many
signals can be embedded in the shape and dynamics of a robot’s motion. A fast
motion of the robot towards a human may be alarming to the human. Similarly, a
robot that emerges from behind an obstacle and close to a human can be surprising.

The handover phase must consider all these parameters in addition to the de-
ployment of the arm, which must offer a safe handover of the object and consider
the comfort of the human coworker. The coordination of the motion between the
base and the Flying CoWorker’s arm is an asset to improve the smoothness of the
motion along its trajectory and to signal its intention as soon as possible so that
the humans can react accordingly. As the position of humans and obstacles in the
environment are likely to vary frequently, the planning of the Flying CoWorker’s
motions must be done in a reactive and adaptative manner.

We present KHAOS, a reactive planning system considering human constraints
and preferences in addition to the kinematic constraints of the Flying CoWorker.
Based on a stochastic optimisation algorithm, it deforms a path using social and
kinematic costs and generates a list of waypoints giving positions and speeds for
navigation in a 3D space.

We use a B-Spline based trajectory generator to form a continuous trajectory in
time through the positions and speeds given by the KHAOS waypoint list. By doing
so we provide a trajectory that respects the kinematics of the Flying CoWorker at
each instant and allows direct execution by a low-level controller.

We then extend the capabilities of KHAOS by applying additional constraints
so that it can also plan the arm and object motions in addition to the base in order
to navigate and perform an object handover task. In this extension, the motions
are planned in a coordinated manner allowing smooth and uninterrupted movement
during the task.

Keywords: Human Robot Interaction, Autonomous Aerial manipulation, Co-
ordinated motion planning, Aerial robots


